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Preface 

The chapters in this book mostly started as presentations at the Terrain 
Analysis and Digital Terrain Modelling conference hosted by Nanjing 
Normal University in November 2006. As far as I am aware this was the 
first international conference devoted specifically to this area of research, 
and since it was also my first visit to China it was an exciting and unique 
experience for me. The participants ranged from leaders in the field 
discussing visions and challenges for the future to students grappling with 
the possibilities and exploring new directions. These papers are a selection 
of the many presentations at the conference and give some indication of 
the breadth of research on show at the meeting. 

Digital terrain analysis has moved beyond a research tool into routine 
application, such as determination of catchment areas and flow pathways 
in hydrological analysis, supporting soil mapping through spatial 
prediction and the definition of landform elements, and the use of slope 
and other attributes for land capability analysis. But there are still many 
areas of active research refining these methods or exploring new 
approaches, as this book shows. 

One recent development explored in several of the papers in this book is 
the availability of global or near-global terrain data in several forms, 
GTOPO-30 and SRTM 3 second data being the most significant. Reliable 
global topographic data opens the doors for truly global analysis, 
consistent analysis on different continents and the generation of collective 
experience that is transforming the field of geomorphometry into a robust 
science. 

Another theme reflected in these papers is the increasing sophistication 
in our understanding of issues related to scale, accuracy, uncertainty and 
error propagation in digital terrain analysis. As these methods are 
increasingly used to support important decisions, information on 
uncertainty becomes vital for the rational use of predictions. There is still 
some way to go before we have tools for estimating and representing 
uncertainties that meet the needs of our user community. 

Other papers demonstrate the continued demand for improved methods 
to classify and segment the land surface into useful units for land 
management or mapping; showcase innovations in representing and 
characterising the land surface; highlight a growing focus on processes 
rather than statistical correlations for understanding the earth’s surface; 
and exemplify the ongoing development and testing of new algorithms 
addressing deficiencies in quality and efficiency of existing methods. 



At the Nanjing conference, I was astonished by the number of students 
from China and elsewhere training in this research area and by the variety 
and innovation of their work. I was also impressed by their probing 
questions and contributions to the discussions. The conference provided an 
opportunity to renew some old friendships, make new friends and meet for 
the first time some of the people whose names I knew from their published 
papers. I greatly enjoyed the interaction with so many disciples in the field 
of terrain analysis and consider myself fortunate to have had the 
opportunity to participate in this meeting. I am hopeful of many more 
stimulating and rewarding meetings and discussions as part of the TADTM 
initiative in the coming years. 
 
 
 
 
 
 
 
 
 

Dr John Gallant 
CSIRO Land and Water, November 2007 
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Advances in Digital Terrain Analysis: 

ZHOU Qiming, Brian G. LEES  

Background 

Digital terrain modelling has been one of the most active research and ap-
plication fields in geo-spatial information science and technology. Using 
the techniques of computer graphics, the land surface, or terrain surface, 
can be represented digitally using large volumes of regularly or irregularly 
distributed sample points, instead of solely relying on the traditional con-
tours or other cartographic symbolism. The term digital terrain model 
(DTM) is now widely recognized as the digital representation of the terrain 
surface for a given geographical region. 

Compared to traditional contour maps, Li et al. (2005) outlined the spe-
cific features of a DTM as: 

1. A variety of representation forms, 
2. No accuracy loss of data over time, 
3. Greater feasibility of automation and real-time processing, and 
4. Easier multi-scale representation. 

Despite its obvious advantages as listed above, the effective use of 
DTMs, however, requires more effort than the interpretation of traditional 
paper maps. Just as terrain information extraction from a contour map re-
quires the techniques of map reading, interpretation, and measurement, de-
riving terrain features and measurements from a DEM also demands in-
formation extraction methods and techniques based on digital 
representation of the terrain. This leads to the focus of this volume – digi-
tal terrain analysis (DTA). 

If we use the term digital elevation model (DEM) to refer to terrain 
models with elevation information only, while the term digital terrain 
model (DTM) refers to a much broader concept of terrain representation, 
including terrain parameters such as slope and aspect, terrain features such 
as ridges and valleys and other geographical/environmental characteristics, 
DTA specifies the process that transforms DEMs to DTMs, using the prin-
ciples and knowledge of geography, or other application fields (Figure 1). 
This process was also previously termed “DTM interpretation” (Hutchinson
and Gallant 1999). 

The TADTM Initiative 

 and TANG Guo-an 
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Figure 1. DEM, DTM and DTA. 

Development of Computer-aided Terrain Analysis 

Computer-aided terrain analysis is not a new concept. It has been an active 
field of study for some years and has attracted effort from many research-
ers including geographers, surveyors, engineers, and computer scientists. 
However, due to lack of communication across various disciplines, the ef-
forts seem to be quite isolated and have mainly focused on problems 
within individual application fields. For example, in the field of geomor-
phometry, the research focuses on the extraction of morphological features 
of terrain and simulation of geomorphological processes (Miliaresis 2001). 
In the field of hydrology, researchers concentrate on deriving quantitative 
derivatives from DEMs for hydrological modelling (Band 1999), while in 
the field of geo-sciences the statistical features of the terrain in a geo-
graphical region attract more attention (Davis 2002). 

The different application fields share the basic principle of terrain analy-
sis as they fundamentally deal with the same thing – extracting quantitative 
derivatives from digital terrain data. Thus it is natural to expect the break-
down of the “communication barrier” between different interest groups so 
that the technology can further advance for problem solving, which will 
eventually deliver the benefits to everybody. In the past decades, there 
have been some efforts to bring people in the field of terrain analysis to-
gether. The pioneering works of Moore et al. (1991) and others are mostly 
focused on the hydrological applications (Beven and Moore 1991), but po-
tential applications in the fields of geomorphology and biology were also 
reviewed. Wilson and Gallant (2000) presented a collection of techniques, 
methods, and applications of terrain analysis in the fields of hydrology, 
geomorphology, ecology, and soil sciences. Though the majority of the 
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methods and applications were demonstrated through a dedicated software 
tool – TAPES (Terrain Analysis Programs for the Environmental Sci-
ences), comprehensive and in-depth discussions on principles and algo-
rithms of digital terrain analysis were well covered. 

Although the methodology and technology of DTA have been devel-
oped well with the rapid advances in geo-spatial information technology, 
they remain for the most part in the research and development domain. 
Driven by commercial motivations, today’s popular GIS software pack-
ages are more interested in DTM visualization and presentation, the quan-
titative analysis and information extraction from digital terrain data being 
poorly supported. Even though more advanced and accurate algorithms 
have already been developed in DTA for some years, their implementation 
in commercial GIS software packages has been slow and seldom sup-
ported. 

The poor implementation of DTA technology is largely due to the fol-
lowing reasons: 

 Most DTA research is narrowly focused with assumptions and limi-
tations that only apply to the local conditions. 

 Quantitative models in many application fields such as geography, 
geomorphology, ecology, and soil sciences are either poorly devel-
oped or too generous to be tested in real-world conditions. 

 Lack of awareness of advanced technology in DTA has restricted 
broader DTA applications. 

 Lack of communications and inter-discipline collaborations results in 
slower progress in the advance of DTA. 

With the rapid growth of Geographical Information System (GIS) tech-
nology, particularly the establishment of high resolution digital elevation 
models (DEM) at national level, the challenge is now focused on deliver-
ing justifiable socio-economical and environmental benefits, i.e. extracting 
and presenting parameters and features inherent in the DEM for more di-
rect use in applications. To make this possible, more collaborated inter-
discipline effort is undoubtedly needed. 

About the TADTM Initiative and the Symposium 

In response to the above shortfalls, the Terrain Analysis and Digital Ter-
rain Modelling (TADTM) initiative was proposed in early 2006 and over-
whelmingly supported by workers in the DTA fields around the world. The 
initiative proposed actions such as: 

Advances in Digital Terrain Analysis: The TADTM Initiative 
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 Identifying research groups that had been active in research fields re-
lated to digital terrain analysis. 

 Establishing communication platforms (or “access points”) such as 
websites and mailing lists, so that regular exchange of ideas could be 
conducted. 

 Organizing an international workshop on digital terrain analysis. 
 Publishing selected research papers in an edited volume or in jour-

nals. 
 Establishing a workgroup on digital terrain analysis in related inter-

national communities. 
One of the above actions was the organization of the International Sym-

posium on Terrain Analysis and Digital Terrain Modelling, which was 
held in Nanjing Normal University, Nanjing, China during 23–25 Novem-
ber 2006. The Symposium attempted to create a platform for better com-
munications and scholarly exchange among researchers in the fields of ter-
rain analysis, geomorphometry, environmental modelling, and 
geographical information sciences. The Symposium comprises about 60 
papers covering broad areas of terrain analysis and modelling, including: 

 Feature extraction from DEM 
 Terrain classification and spatial analysis 
 Terrain modelling and DEM management 
 Scales in digital terrain analysis 
 Uncertainty in digital terrain analysis 
 DTM and geomorphometry 
 DTM and land cover modelling 
 DTM-based soil-landscape modelling 
 DTM-based environmental change modelling and simulation 
 Urban DTM 

Three keynote papers were presented by John WILSON on “From pre-
cipitation to streamflow: simulating the movement of water within land-
scapes”, George MILIARESIS on “Terrain modelling for specific geomor-
phologic processing”, and John GALLANT on “Multiscale methods in 
terrain analysis”. Eight invited papers covering a wide range of topics were 
also presented in plenary sessions by CHEN Jun, Josef STROBL, Peter 
SHARY, TANG Guo-an, Petter PILESJÖ, ZHU A-xing, LI Zhilin and 
Igor FLORINSKY. A panel discussion session was also organized to 
stimulate free discussion between the audience and panellists. The Sympo-
sium was well received by over 100 participants including many young 
scholars and postgraduate research students, who we believe will form the 
backbone of the future DTA community. 

ZHOU Qiming, Brian G. LEES and TANG Guo-an 
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About this Volume 

This volume collects 23 contributions from papers presented in the 
TADTM 2006 Symposium. The selected papers were first revised by the 
contributors to meet the publication quality required for book chapters. 
The manuscripts were then peer-reviewed by an international expert panel 
and the authors were requested to revise and respond to the criticism and 
comments raised by the reviewers before the contributions were presented 
in their final form. 

The contents of this volume are divided into five sections: 
Section 1 “Digital Representation for Terrain Analysis” focuses on the 

terrain data model and representation for DTA. From the point of view of 
geomorphometry, Miliaresis provides a review of the research on quantita-
tive models of terrain processes – the theoretical foundation of DTA. Simi-
larly, Shary describes the mathematical foundations of the representation 
of digital terrain models and terrain derivatives. Li addresses the issues re-
lated to the multi-scale representation of the terrain, which may have great 
impact on the outcomes from DTA. For DTA at a global scale, Zhao et al. 
propose a seamless and adaptive LOD (level of details) model of the 
global terrain based on QTM (Quaternary Triangular Mesh). 

Section 2 “Morphological Terrain Analysis” contains six chapters fo-
cusing on the extraction and interpretation of morphological features and 
measurement of terrain. Tang and Li propose a statistical approach that 
employs “slope spectrum” for landform classification in the Loess Plateau 
of China. Strobl presents a review of the basic conceptual foundations for 
segmentation in terrain classification. Also on terrain classification, Dragut 
and Blaschke report on research that segments and classifies Shuttle Radar 
Topography Mission (SRTM) data into specific landforms using object-
oriented image analysis. As well as classification issues, new methods for 
terrain description are also addressed in this section. Lu proposes the com-
pound terrain complexity index (CTCI), which is made of four traditional 
terrain morphological indices including total curvature, roughness, local 
relief, and local standard deviation as a quantitative measurement of terrain 
complexity. Liu proposes a method for extracting local relief from a 1-km 
resolution DEM of China to investigate the large-scale geomorphological 
features. Yang et al. describe an approach by slope histogram matching to 
re-scale a coarser resolution slope histogram into the slope histogram at a 
finer resolution, so that the statistical characteristics of the higher-
resolution DEM derivatives will be maintained to minimize the “slope-
reduction” effect. 

Advances in Digital Terrain Analysis: The TADTM Initiative 
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Section 3 “Hydrological Terrain Analysis” addresses principles and al-
gorithms of hydrological modelling with DTMs. Wilson et al. present a 
comprehensive review of the advances in hydrological applications of 
DTA with the emphasis on the simulation of the movement of water within 
landscapes. Pilesjö reports a new algorithm that simulates the flow over a 
surface defined by a grid DEM. For the study of soil erosion, especially in 
the Loess Plateau of China, Tian et al. report the development of a modern 
catchment landform evolution model (MCLEM) that describes and simu-
lates the processes of tectonic elevation, weathering, hillslope, and fluvial 
transportation. 

Section 4 “Uncertainty in Terrain Analysis” comprises contributions fo-
cusing on the uncertainty and errors in DTA. Zhou and Liu analyse errors 
in the derived slope and aspect from grid DEMs due to errors in data, algo-
rithm selection, data properties such as precision, grid resolution and ori-
entation, and terrain complexity. A data-independent assessment method is 
proposed for more objective and accurate evaluation of DTA algorithms. 
Liu and Bian analyse the impact of spatial autocorrelation of DEM data er-
ror, estimate the accuracy of selected slope algorithms accordingly, and 
then design a Monte Carlo simulation experiment to validate the results. 
Deng et al. study the uncertainty of derived slope field (i.e. farmland with 
a steep slope) related to the scale of DEM data. On more application ori-
ented studies, Zhu et al. examine the combined effect of DEM resolution 
and neighbourhood size on computed terrain derivatives and its impact on 
digital soil mapping, while Lees et al. analyse the impact of DEM error on 
the derived indices, which in turn influence predictive vegetation mapping 
for landuse and land cover classification. 

Section 5 “Applications of Terrain Analysis” contains contributions that 
report the newest developments in DTA applications. Florinsky examines 
the hypothesis for the existence of hidden global linear (helical) structures, 
which are tectonically and topographically expressed, using 18 topog-
raphic variables derived by DTA based on a 30-arc-minute grid DEM for 
the entire surface of the Earth. Lindsay and Rothwell present and evaluate 
a new index of exposure/sheltering to wind, the channelling/deflection in-
dex (CDI), which is capable of modelling channelling and deflection of 
flowlines and shadowing of wind. Tested in 47 different loess landforms 
represented by a DEM with 5 m resolution, Zhang et al. propose a spatial 
correlation model for nine selected terrain attributes for deriving quantita-
tive terrain parameters and landform recognition. Yang and Xiao show the 
use of DTA for surface temperature estimation by constructing a terrain 
reversed model, which estimates surface temperature by simulating insola-
tion on each grid cell of a DEM. Barringer et al. report on a project where 
a national dataset of landform elements derived from a 25 m resolution 

ZHOU Qiming, Brian G. LEES and TANG Guo-an 
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in soil-landscape modelling in the 
complex steepland terrain of New Zealand. 
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Quantification of Terrain Processes 

George Ch. MILIARESIS 

Abstract 

Terrain processes quantification requires an object terrain segmentation 
framework allowing the partition of the landscape to either a continuous 
framework (aspect regions) or a discontinuous framework (landforms). 
Each object is parametrically represented on the basis of its spatial 3-
dimensional arrangement and mapped according to a terrain classification 
scheme in an attempt to identify regions that include objects with distinct 
parametric representation. Case studies are presented that include tectonic, 
fluvial and aeolian, and gravity (landslides) processes quantification in 
both the Earth and Mars. 
 
Keywords: fluvial, morphotectonic, aeolian, terrain segmentation, terrain 
pattern recognition, spatial decision making. 

1 Processes and Landforms  

The Earth’s surface is comprised of relief features of different scales. A 
scale dependent generalized classification assigns continents to the 1st re-
lief order, mountain ranges and basins to the 2nd order, alluvial fans to the 
3rd order, while sand dunes are assigned to the 4th order (Pandey 1987). 

The relief features are the result of endogenic and exogenic processes 
that shape the Earth’s surface. Exogenic processes include denudation (that 
is the downwasting of land surfaces due to erosion, gravity forces, weath-
ering, etc.) and deposition (the filling up with sediments) (Summerfield 
1996). Endogenic processes are associated with geotectonics and include 
volcanism, faulting, crustal warping, etc. (Summerfield 2000). The relief 
features recognized on the Earth’s surface, often called landforms, could 
be the result of different kinds and intensities of processes. Landforms are 
defined as natural terrain units, which might be developed from the same 
soil and bedrock or deposited by a similar combination of processes and, 
under similar conditions of climate, weathering, and erosion, exhibit a 
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The study of landforms and the recognition of the various processes act-
ing are of great importance in both geomorphologic and terrain analysis 
studies for site evaluation and site selection. This fact gave rise to geomor-
phometry, which involves subdividing a landscape into landforms based 
on a terrain segmentation methodology and measurement of their size, 
shape, and relation to each other (Evans 1981). During its initial stages, 
geomorphometry concentrated mainly on drainage basin analysis from to-
pographic maps, since basins could be defined in a rather continuous way 
in the majority of geomorphologic landscapes evident in mid-latitudes. 
The historical steps in the development of geomorphometry involved: 

 Orometry, the 19th-Century measurement of mountains was an at-
tempt to interpret landscape evolution and physical process that re-
flect the interplay of mountain building and erosion in regions of ac-
tive deformation. Today, the mountain topography (Miliaresis 
2001a) is of great significance, not only in tectonic geomorphometry 
but also in terrain analysis, in navigation of airplanes, and in the In-
SAR processing chain. 

 Physiography corresponds to the regional-scale geomorphologic 
studies (1st and 2nd order landforms) in the early part of the 20th 
century (Miliaresis and Argialas 1999). Physiographic analysis was 
based on the partition of terrain into physiographic units by taking 
into account the form and spatial distribution of their component fea-
tures through fieldwork and visual interpretation of topographic 
maps. Today, physiography is being stimulated by the need to ex-
plain enigmatic landscapes, newly explored on the surfaces of other 
planets through remotely sensed data (Miliaresis and Kokkas 2004). 

 Terrain analysis corresponds to large scale geomorphometry and it 
involves the systematic study of pattern elements relating to the ori-
gin, morphologic history and composition of the distinct terrain 
units, called 3rd and 4th order landforms (Way 1978). Typical pat-
tern elements examined include topographic form, drainage texture 
and pattern, gully characteristics, soil tone variation and texture, land 
use, and vegetation cover (Lillesand and Kiefer 1987). 

Nowadays, quantitative techniques (Pike 1995, 2000) have been devel-
oped and applied in order to automate the interpretation of terrain features 
from digital elevation models (DEMs) and various geomorphometric pa-
rameters were developed in an attempt to characterize the landscape and 
identify the various processes (Evans et al. 2003). This chapter aims to re-
view the physical world terrain partition frameworks at various scales and 

distinct and predictable range of visual and physical characteristics 
(Lillesand and Kiefer 1987). 
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present how terrain objects’ parametric representation, classification, and 
mapping might be used for tectonic, fluvial, and aeolian processes quanti-
fication. 

2 Data Analysis Techniques  

The quantification of processes requires a partition framework, which 
transforms the DEM representation of the landscape to elementary objects 
(Miliaresis and Argialas 2000). Physical processes are scale dependent and 
define various continuous (Miliaresis and Kokkas 2004) or discontinuous 
(Miliaresis and Argialas 2002) terrain partition frameworks. A unified ter-
rain partition framework is impossible to achieve; instead various physical 
processes-objects dependent terrain representation schemes might be es-
tablished. Thus from the conceptual point of view, processes and scale de-
termine the physical terrain partition framework that should be derived 
from the DEM data. The derived terrain partition framework defines the 
objects that are parametrically represented, classified, and mapped towards 
processes quantification. 

2.1 Data 

During the initial steps, studies were based on interpretation and measure-
ment performed on topographic maps and imagery. Nowadays, DEMs that 
are freely available from the WEB represent the Earth’s relief at regional 
to moderate scales (Pike 2002). More specifically: 

 The GTOPO (GTOPO30 1996) and the Global land one-kilometre 
base elevation (GLOBE 2001) DEMs are available, providing a digi-
tal representation of the Earth’s relief at a 30 arc-seconds sampling 
interval. 

 The Shuttle Radar Topography Mission (SRTM) successfully col-
lected Interferometric Synthetic Aperture Radar data over 80% of the 
landmass of the Earth between latitudes of 60 degrees North and 56 
degrees South in February 2000 (Farr and Kobrick 2000). The Con-
sortium for Spatial Information of the Consultative Group for Inter-
national Agricultural Research is offering post-processed void-free 3 
arc-second SRTM DEM data for the globe (SRTM 2006) that is suit-
able for 1:250,000 studies. 

 A moderate-resolution DEM (500 m spacing) is available for Mars, 
acquired by the Mars Orbiter Laser Altimeter (MOLA), a 10-Hz 
pulsed infrared-ranging instrument, which operated in orbit around 
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the planet from 1997 to 2001 aboard the Mars Global Surveyor 
(MOLA 2004). 

2.2 Terrain segmentation 

Terrain segmentation is applied to either DEMs or to derivative products 
and so slope, aspect, or even curvature could be computed according to the 
methods proposed by Shary (1995) and Florinsky (1998). The terrain parti-
tion framework of the landscape is either continuous (Miliaresis et al. 
2005) or discontinuous (Miliaresis 2001a). 

2.2.1 Continuous segmentation framework 

Aspect regions are a paradigm of a continuous terrain segmentation 
scheme (Miliaresis and Kokkas 2004). In this approach, aspect is com-
puted for every DEM point (Figure 1a). Then aspect is standardized to the 
eight directions (N, NE, E, SE, S, SW, W, NW) defined in a raster image 
(Figure 1b). For example, points with aspect in the range 22.5o to 67.5o are 
considered to slope towards 45o azimuth (NE) and they are labelled with 
the same integer identifier. Note that zero labels indicate flat terrain (if 
slope < 2o, then aspect is undefined). Thus, the points of the resulting as-
pect image are labelled with 9 integer identifiers corresponding to eight 
geographic directions defined in a raster image and the aspect undefined 
label (Miliaresis et al. 2005). 

The aspect regions are easily interpreted from Figure 1b, since they are 
formed from points having the same shade of grey. For aspect regions to 
be explicitly defined, a connected component-labelling algorithm (Pitas 
1993) is applied. The algorithm scans the image and identifies the regions 
formed by adjacent points labelled with the same aspect label. Approxi-
mately 30,000 aspect regions were identified. In Figure 1c, each aspect re-
gion is assigned to one out of seven classes depending on the mean slope 
of the DEM points that form the aspect region. In Figure 1d, aspect regions 
with mean elevation and mean slope in a specific interval are mapped in an 
attempt to express the following geomorphometric rule: “landslide risk is 
high if aspect region elevation is low while aspect region slope is high” 
(Miliaresis et al. 2005). So the parametric representation of aspect regions 
expresses in a quantitative manner the qualitative knowledge that was ac-
quired by domain experts (landslide engineers) (Argialas and Miliaresis 
2001). 
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Figure 1. A continuous terrain partition framework (Miliaresis et al. 2005). 

(a) DEM of the study area in SW Greece; the darker the point, the greater its 
elevation.  

(b) The aspect regions are easily interpreted from the aspect image. Note that 
aspect was standardized to the 8 geographic directions defined in a raster 
representation, while an aspect region is formed by adjacent points with 
the same shade of grey. 

(c) Each aspect region is assigned to one of seven classes depending 
on the mean slope of the DEM points that form the aspect region 
and mapped by a unique shade of grey. 

(d) Aspect regions (black regions) with mean elevation and mean 
slope in a specific interval are mapped. 

2.2.2 Discontinuous segmentation framework 

Region growing segmentation is applied in order to isolated specific land-
forms from the geomorphologic background (Figure 2); thus a discontinu-
ous terrain partition framework is created. This technique uses an initial set 
of points (seeds) and growing-stopping criteria (Miliaresis and Argialas 
1999). The seeds are expanded during successive iterations by checking 
the neighbouring points. If the region growing criteria are fulfilled, then 
the neighbouring points are added to the initial set of points. The procedure 
is repeated until no more points are added.  

Quantification of Terrain Processes
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Figure 2. A discontinuous terrain partition framework (Miliaresis 2006) that iden-
tifies mountains (white pixels) from the surrounding basins (black pixels) in Asia 

Minor (SW Asia). 

For mountains (Miliaresis 2001a, 2006), seeds correspond to ridge 
points and the region growing criteria are defined on the basis of 
slope/elevation range and pixels that belong to the valley network. For al-
luvial fans (Miliaresis and Argialas 2000), drainage outlet points determine 
the seeds and the region growing criterion is based on slope (Figure 3). For 
bajadas (coalescent fans), streams emerging on the basin floor form the set 
of seeds (Figure 4), while the region growing criterion is based on slope 
combined with size dependent objects filtering and drainage pixel removal 
after the first iteration (Miliaresis 2001b). 

2.3 Object representation, terrain classification and mapping 

The representation of the segmented objects is performed by a set of pa-
rameters that are associated either with their planimetric shape (size, elon-
gation, etc.) or their 3-D arrangement (mean elevation, local relief, rough-
ness, mean slope, hypsometric integral, etc.). For example: 

 The area of the region occupied by the object is computed as the ag-
gregate of the pixels constituting the object region multiplied by the 
area extent of each pixel.  

 The mean elevation of objects is computed as the average elevation 
of the pixels that belong to an object’s region.  

 Roughness corresponds to the standard deviation of elevation and it 
is a stable measure of the vertical variability of the terrain within an 
object.  
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Figure 3. Alluvial fans in Death Valley, California (Miliaresis and Argialas 2000). 

(a) Block diagram of an alluvial fan deposited in front of a valley mouth.  
(b) 3D view of the study area. 
(c) Landsat image of the study area. 
(d) Region growing segmentation of alluvial fans on the basis of drainage 

outlet points. 
 

 
Figure 4. Bajadas segmentation in Death Valley (Miliaresis 2001b). 

(a) The DEM of the study area. The elevation values (-86 to 1,904 m) were 
rescaled to the interval 255 to 0 (the brightest pixels have lowest eleva-
tion). 

(b) Region growing segmentation (first iteration). 
(c) The borderline of the segmented bajadas object superimposed on the TM 

image (band 5). 
(d) Hybrid image. TM band 5 in the background while the map is shown 

through the segmented bajadas polygon. 
 

These parameters quantify the physical processes since they indicate the 
elevation and slope variability within the object. The hypsometric integral 
reflects the stage of landscape development, while the mean slope is asso-
ciated with the intensity of both erosion and tectonic processes (Miliaresis 
and Argialas 2002). 

Terrain classification is achieved by cluster analysis of the parametric 
representation of objects. It is based on measurement of the Euclidean dis-
tance, which is calculated in a c-dimensional space, where c represents the 

Quantification of Terrain Processes

number of attributes used in the clustering process (Miliaresis and Iliopoulou 
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2.4 Software for terrain segmentation 

Connected components labelling, object filtering, and region growing 
segmentation can be implemented with Geologic Shell (2001). This soft-
ware package is freely available for download on the internet from the 
WEB site of the International Society for Mathematical Geology, and a 
newer version will be available soon (Miliaresis and Kokkas 2007). 

Drainage basins, ridge and valley networks, as well as general geomor-
phometric parameters could be determined with TAS software (Lindsay 
2005) that is available free through the WEB (TAS 2004). 

3 Terrain Processes Recognition  

3.1 Asia Minor versus Zagros Ranges 

In the Zagros Ranges, the collision of the Arabian Shield with Iran has 
shortened and thickened the crust to produce a spectacular mountainous 
physiography. The linear topographic highs represent huge folds (NW–SE 
anticlines), marked by SW facing topographic escarpments, while the ge-
ometry of asymmetrical anticlines indicates the existence of basement re-
verse faults (Berberian 1995). In Asia Minor, horizontal expulsion is tak-
ing place and most of the area is extruding westward away from the 
Arabian-Eurasian collision and towards the small remnant of oceanic crust 
underlying the Aegean Sea (Miliaresis 2006). 

Having decomposed the terrain into the mount and non-mount terrain 
classes, elevation frequency histograms are computed for each class of 
Asia Minor and the Zagros Ranges. The underlying idea is that mountains 
are usually under a different (kind or intensity) physical process than the 
surrounding basins. These differences should be revealed in the frequency 
distributions used to describe each class (Miliaresis 2001a). 

The elevation frequency histogram of the non-mount terrain class looks 
very similar to the overall frequency histogram of the study area (Figure 
5), both including three major peaks. The resemblance of the two histo-
grams is explained by the fact that the non-mount terrain class occupies 

2004). Terrain mapping and interpretation of the spatial distribution of 
clusters will be presented in the following case studies. 

64% of the study area, forcing the histogram of the study area to fit the 
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Figure 5. Descriptive statistics of Asia Minor (Miliaresis 2006). Elevation fre-

quency histograms of the decomposed terrain classes of the study area. (a) study 
area, (b) mount, (c) non-mount, (d) a rose-diagram of the aspect vector (pointing 

downslope) standardized to 8 geographic directions defined in a raster image. 

The aspect vector rose diagram (Figure 5d) indicates that the landscape 
flows equally in the North and South directions at right angles to the main 
axes of the mountain ranges (Figure 2). 

In the Zagros Ranges, the frequency histograms of elevation (Figure 6) 
indicate that the extracted mountain objects are developed almost equally 
on all levels in the elevation domain (Miliaresis 2001a). The greatest fre-
quencies were observed in the range 1,500 m to 2,500 m. The frequency 
histogram of the non-mount terrain class looks very similar to the overall 
elevation frequency histogram of the study area because both include the 
extensive NW coastal plains (Figure 8). 

The rose diagram of aspect pointing downslope (Figure 6C) indicates 
that much of the surface is sloping away from the mountains in a NW to 
SE direction. This direction is at right angles (Figure 8) to the collision of 
the Arabian Shield with the Iranian Plateau and verifies the asymmetry of 
the mountain ranges (huge asymmetrical anticlines). 
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histogram of the non-mount terrain class. The three major peaks at eleva-
tions of 0, 420, and 1,045 m observed in the histogram of the non-mount 
terrain class indicate the existence of three major peneplains at regional 
scale. The elevation frequency histogram of the mount terrain class pre-
serves one peak at an elevation of 1,260 m, with the elevation frequency 
declining gradually away from it. 
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Figure 6. Descriptive statistics of Zagros Ranges (Miliaresis 2001a). Elevation 
frequency histograms of the decomposed terrain classes of the study area. (a) 

mount, (b) non-mount, (c) a rose-diagram of the aspect vector (pointing 
downslope) standardized to 8 geographic directions defined in a raster image. 

 

 
Figure 7. Linear regression of local relief (LR) versus slope (G) for the mountain 

objects identified in Zagros Ranges (Miliaresis and Iliopoulou 2004). 

The correlation between the attributes of the mountain objects is of great 
significance and might be explored either by computing correlation coeffi-
cients, or by assuming the linear regression model (Miliaresis and Iliopou-
lou 2004). In the case study of the Zagros Ranges, the correlation between 
Local Relief (LR= Hmaximun - Hminimum, within a mountain object) and slope 
(G) is expressed by the equation (Figure 7): 

LR =  -316.+156.1*G 

Such models are of great significance since they might prove to be 
quantitative indicators of landscape development and tools for estimating 
the intensity of processes. 
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Figure 8. Spatial arrangement of the clusters derived by the centroid method in 

Zagros Ranges (Miliaresis and Iliopoulou 2004). 

3.2 Clustering of Zagros Ranges 

The mountain objects segmentation and parametric representation (Mil-
iaresis 2001a) followed by the centroid clustering method revealed clearly 
the SE–NW stair-step topography observed in the Zagros Ranges, while 
the steepest and more massive mountains were also observed along this di-
rection (Figure 8). 

The zones derived by the mapping of clusters were associated with the 
existing morphotectonic zones of the study area, while geomorphometric 
processing proved capable of segmenting morphotectonic zones to sub-
regions with different geomorphometry (Miliaresis and Iliopoulou 2004). 

3.3 Tectonic processes identification in Mars 

The DEM to Mountain transformation of Valles Marineris in Mars (Mil-
iaresis and Kokkas 2004) revealed numerous tributary valleys originated 
from the plateau that cross the chasma sides and the mountain features ex-
tending to the basin floor (Figure 9). 

The observation of segmented chasma downslope borders (fronts) indi-
cates that they are rectilinear. A tentative interpretation is that uplift along 
front-faults produced the mountain fronts that are relatively straight, since 
they have not had time to be dissected and embayed by streams. As the 
range front is eroded, major drainage embays the front and causes it to re-
treat, depending on the width of the ranges and the length of the steams. 
This process might be accelerated by landslides that cause the occasional 
concave in plan hillslope forms (Figure 9). 
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Figure 9. The mountain terrain class in Valles Marineris (Mars). The white pixels 
represent the pixels labelled by the DEM-to-Mountain transformation (Miliaresis 

and Kokkas 2004). 

Additionally, the segmentation to aspect regions and their representation 
on the basis of mean elevation and mean gradient revealed the chasma ter-
rain structure, proving that the basin floors of the elementary chasmata are 
interrupted by regions with higher mean elevation and gradient, due possi-
bly to vertical tectonic movements (Miliaresis and Kokkas 2004). 

3.4 Prospects: aeolian landforms segmentation 

Desert environments are dominated by dunes that are accumulations of 
sediment blown by the wind into a mound or ridge. Dunes have gentle up-
wind slopes on the wind-facing side. The downwind portion of the dune is 
commonly a steep avalanche slope referred to as a slipface (Bullard 2006). 
The slipface stands at the angle of repose, which is the maximum angle 
(30° to 34° for sand) at which loose material is stable. 

Dune typical heights and wavelengths (spacing) are in the range of 5 to 
30 m and 50 to 300 m, respectively. Linear megadunes, in the Western De-
sert in between Egypt and Libya (Figure 10) and in the Namib Sand Sea 
(Namibia), attain even greater dimensions with heights of up to 400 m and 
wavelengths up to 4 km; the most significant factors determining their 
morphology are wind regime and sand supply (Summerfield 1996). 
Megadunes must take hundreds of years to attain an equilibrium form and 
thus are key landforms in the study of possible severe climatic change that 
will possibly be expressed by change in the direction and intensity of 
winds in desert regions. 

Towards this end, linear megadune segmentation might be performed 
from SRTM DEMs (SRTM 2006) acquired in February 2000, while topog-
raphic information might be acquired from LANDSAT-SRTM imagery 
(Levin et al. 2004) for the period 1980–2000 and from ASTER imagery 
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for the period 2001–2007. A multi-temporal analysis and change detection 
of their morphology might provide answers for the global climatic change 
in desert environments. 

 

 
Figure 10. Mega-dunes (aeolian landforms). 

(a) The SRTM DEM of the study area (the brighter the pixel, the greater its 
elevation)  

(b) A physiographic map and the location of the study area in SW Egypt. 
(c) Shaded relief map of the SRTM DEM of the study area. 

 
An initial experiment on the delineation of megadunes is presented in 

Figure 11. Slope (Figure 11b) was derived from the DEM (Figure 11a). 
The initial set of seed points (Figure 11c) was defined by thresholding the 
upslope runoff image, while region growing criteria were based on both 
the slope and the valley network (Figure 11d). 

 
Figure 11. Towards the delineation of sand-dunes from SRTM DEM. 

(a) DEM of the study area (the brighter the pixel, the greater its elevation). 
(b) Slope image (the darker the pixel, the greater its slope). 
(c) Seeds that correspond to points with upslope runoff greater than a thresh-

old. 
(d) Valley network extracted by runoff simulation and the seeds superim-

posed on the Landsat image. 

Quantification of Terrain Processes
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4 Conclusion 

Global digital elevation models of earth and other planets have fostered 
geomorphometric and terrain modelling at broad spatial scales. The broad-
scale quantification of topography and the DEM-based analyses trans-
formed geomorphometry into one of the most active and exciting fields in 
the Earth sciences. Segmentation techniques allowed the partition of the 
terrain into continuous and discontinuous schemes. The parametric repre-
sentation of the derived objects combined by object classification schemes 
allowed the mapping and the quantification of various processes. 
More specifically, tectonic processes were quantified on the basis of the 
discontinuous partition framework based on mountains. The quantification 
was based on the spatial distribution of the mountain pattern, on the linear 
regression of mountain attributes, and on the hypsometric and frequency 
distributions of elevation and aspect. Fluvial landforms (alluvial fans and 
bajadas) forming zones that are subject to frequent flash flooding were de-
lineated from DEMs. 

The aspect regions continuous terrain partition framework allowed the 
identification of regions with high landslide hazards on the basis of aspect 
regions parametric representation and knowledge-based rules acquired by 
domain experts, while in Mars aspect regions modelling revealed the tec-
tonic processes. SRTM DEMs seem to be capable of capturing aeolian 
processes on the basis of the morphometry of linear megadunes in desert 
regions. 

Geomorphometric analysis provides a quantitative way to compare de-
veloped and developing landscapes in areas of both differing and similar 
geologic structure. Additionally, experience with the Earth’s landscape as-
sists the exploration and interpretation of various landscapes in inaccessi-
ble areas on other planets from digital elevation data. 
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Models of Topography 

Peter A. SHARY 

Abstract  

Models of topography, such as smooth and non-smooth, single-sided and 
double-sided, appear to be of value in choosing algorithms to calculate to-
pographic attributes, and assist in predicting and understanding paradoxes 
in topography, such as statistically predictable or terrain-specific behaviour 
of landforms. This results in a new vision of how to use geomorphometry 
in digital terrain analysis: for example, the dependence of topographic at-
tributes on scale creates results in problems of comparing observations ob-
tained from different scales, while the use of predictable landforms may 
lead to unrealistic expectations of predictable properties of soil or vegeta-
tion patterns. The purpose of this chapter is to study models of topography. 
To achieve this purpose, direct studies on the dependence of topographic 
attributes on scale are considered, based on a theoretical background, such 
as two concepts of scale, Gibbs-like phenomena, an internal smoothing in 
algorithms, and sub-dividing of topographic attributes into non-
intersecting classes. Results include a new approach to the comparison of 
algorithms, some artefacts from Gibbs-like phenomena, and a method to 
evaluate a minimal grid mesh from contour DEMs. Based on these results 
and concepts, methodological issues are discussed of both geomorphome-
try itself, and of its applications in digital terrain analysis. 
 
Keywords: geomorphometry, scale, landform predictability, topographic 
attribute and variable, Gibbs phenomenon. 

1 Models, Restrictions, and Phenomena 

Quantitative terrain description needs topographic attributes that may be 
ascribed to each terrain location. Such attributes are variables, in contrast 
to measures that refer to some objects, such as area and volume of a de-
pression (that refer to all the depression) or contour line length, which are 
also topographic attributes, but are not variables (Shary et al. 2002). This 
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distinction is important in the context of this chapter, and therefore two 
terms are used below: topographic variables and topographic attributes. 

National traditions have resulted in several meanings of the same term 
in the literature. Namely, in some Roman-language-based countries (e.g. 
France, Russia, Slovakia, Spain) the term relief is used as a synonym of 
topography, but this is not the case for Anglo-Saxon countries (e.g. Great 
Britain, USA), where it has come to denote a difference between maximal 
and minimal values of elevation. For example, King et al. (1999) used the 
first meaning, in contrast to Evans (1972). 

Geomorphometry is a science of quantitative land surface analysis (Pike 
1995). The approaches under consideration may be attributed to general 
geomorphometry described by Evans (1972) as follows: ‘General geomor-
phometry as a whole provides a basis for the quantitative comparison even 
of qualitatively different landscapes, and it can adapt methods of surface 
analysis used outside geomorphology. Specific geomorphometry is more 
limited; it involves more arbitrary decisions, and leaves more room for 
subjectivity in the quantification of its concepts’. 

Any choice of the best model of topography, such as smooth (i.e. differ-
entiable) or non-smooth, single-sided or double-sided ones (see Section 1.1 
below), cannot be proven experimentally, because researchers always use 
only finite sets of points with measured elevations, in contrast to infinite 
sets of points that are necessary in mathematical proofs. Also, the land sur-
face may be considered as a surface only at scales in which separate frag-
ments that compose it (e.g. gravel, rocks, soil aggregates) are invisible. 
Consequently, correct mathematical proofs are impossible here and, in-
stead, rules to choose between models include both pragmatic criteria (e.g. 
dependence of topographic attributes on scale), and the criteria of certain 
model’s ability to predict and explain a wide spectrum of phenomena, such 
as statistical predictability of landforms. 

Specific models of topography related to particular Digital Elevation 
Models (DEMs), such as elevation grids of Shuttle Radar Topography 
Mission (SRTM), are not considered here, although they may be useful, 
for example, in DEM accuracy evaluation. The purpose of this chapter is 
to study general models of topography, such as smooth and non-smooth, 
one-sided and orientable (double-sided), together with their influence on 
principles, methodology, and applications in Digital Terrain Analysis 
(DTA). 

For all calculations and map images, the author’s software ‘Analytical 
GIS Eco’ (Shary 2005) was used. 
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1.1 Restrictions of topography 

A general method, especially when DEMs are used, is to describe eleva-
tions by a function z = f(x,y), where elevation z depends on plan coordi-
nates x, y, and z has only one value at each location (x,y) (Cayley 1859). 
This restriction is essentially a simplification, which means that research-
ers usually do not quantitatively describe ‘ceilings’ (of caves), overhangs, 
boulders, and so on (Shary 1995), (Figure 1a). Another kind of restriction 
is the characteristic of the land surface as a boundary of two different me-
dia (e.g. soil and air), and therefore the land surface is always orientable, 
or double-sided (Shary 1995), in contrast to some single-sided mathemati-
cal surfaces, like Möbius’ strip, for which distinctions between hills and 
pits cannot be defined (Gauss 1827), (Figure 1b). 

 

 
Figure 1. Two kinds of restrictions in models of topography. a – a cave with 

negative slope steepness on its ceiling, b – Möbius’ strip as an example of a sin-
gle–sided surface; its model is a sheet of paper ABCD connected at its edges AB 

and CD. 

Although the second restriction is always valid for the land surface (and 
models of single-sided surfaces are essentially not used in DTA), certain 
issues from differential geometry of surfaces were developed for single-
sided surfaces, and this may result in some misunderstanding. One exam-
ple is that curvature sign choice is arbitrary for single-sided surfaces (and 
in differential geometry), while it is commonly chosen to be negative for 
concave landforms and positive for convex ones. Nevertheless, some au-
thors (e.g. Pachepsky et al. 2001) used the opposite sign of curvatures. 
Another example is as follows. Gauss (1827) introduced two surface form 
classifications, (i) single-sided and (ii) orientable (double-sided) surfaces; 
attempts of several authors (e.g. Wood 1996, Schmidt and Hewitt 2004) to 
describe elliptical forms of Gauss’ classification (i) as ‘pits’ may be 
misleading (by Gauss’ (1827) definition, elliptical forms are both pits 
and hills), because there is no distinction between hills and pits on a 
single-sided surface. There is a great distinction between hills and pits in 
landscapes (Dokuchaev 1886), so that the double-sided model is clearly 
preferable. Results from differential geometry play an important role in 
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1.2 Smooth and non-smooth models 

First approaches to study topography were based on a smooth model of 
land surface, in which the surface was considered as differentiable (Gauss 
1827, Cayley 1859). This model was developed primarily to study equilib-
rium capillary surfaces (Finn 1986), where a surface (like a soap film) may 
be considered as smooth, because particles on it fast change their locations 
during observation, resulting in a physical smoothing, not observed for the 
land surface (Maxwell 1870). 

Which results are difficult to explain using the smooth model of topog-
raphy? Richardson (1961) has empirically shown that contour line length 
tends to infinity as scale increases, but it should have a finite limit in the 
case of a smooth surface (Sard 1942). Richardson used a polyline to evalu-
ate contour line length at various scales, and plotted polyline length against 
polyline segment length (scale); the result was a straight line (in logarith-
mic units), in contrast to a circle. Based on Richardson’s results, Mandel-
brot (1967) noted that each landform is composed by smaller ones, at any 
given scale, and that the length of a given contour line should rather be 
considered as infinite. 

Evans (1980) has empirically found a stable positive correlation be-
tween independent local variables, plan and profile curvatures, for about 
60 terrains (Evans and Cox 1999). Shary et al. (2005) have shown that this 
Evans’ phenomenon is a consequence of the statistical hypothesis (Shary 
1995), according to which the proportion of area occupied by given land-
form type defined by signs of curvatures is the same for any terrain, and 
concrete values of these proportions have been predicted in Shary (1995). 
This was empirically confirmed for a set of DEMs (Shary et al. 2005). 
Such landform predictability is not characteristic of a smooth surface. 
Gauss’ (1827) and Troeh’s (1964) curvature-sign-based landform types are 
shown in Figure 2 (numbers indicate predicted probabilities to meet each 
of them), and results of experimental checks are shown in Figure 3. 

Experimental study of oil spills (e.g. Shary et al. 2005) have revealed 
multiple flow-line branching and confluence in oil runoff. Indeed, an oil 
flow encounters small hills and branches on each of them, and is confluent 
behind them. Since there are many out-of-scale hills at a given fixed scale 
(Mandelbrot 1967), this process results in multiple flow-line branching and 
confluence, which is also not characteristic of a smooth surface. Oil traces 

geomorphometry (Koenderink and van Doorn 1994), so that concepts of a 
single-sided surface should be adapted to those of a double-sided surface 
before their use. 
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were satisfactorily described by catchment area from a single grid cell 
(Shary et al. 2005). To prevent interrupts in flows, algorithms of catch-
ment (upslope) area must take depressions into account (Martz and de Jong 
1988). Shary et al. (2005) concluded that multiple flow-line branching and 
confluence is physically meaningful in variables like catchment area; they 
are not simply a tool for diminishing grid bias. 

 

 
Figure 2. Gauss’ (left) and Troeh’s (right) landform types. Numbers indicate 

probabilities to meet specific landforms. 

 

 
Figure 3. Proportions of terrain area occupied by Thoeh’s and Gauss’ landform 

types observed for 17 terrains (Shary and Sharaya 2006). Black columns indicate 
theoretical values, white – gently sloping, dashed – mountain terrains. 

Evans (1975) initiated direct studies of the dependence of topographic 
attributes on grid mesh (i.e. on scale) using his method of ‘matrix thinning’ 
that provided attribute values for grid meshes of w, 2w, 3w, and so on. He 
has shown that average slope steepness (gradient) increases as scale 
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enlarges. No finite limit was found for the limit case (Figure 4). Shary et al. 
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ness should be proportional to 1/w, where w is grid mesh, for a model of 
quasi-stochastic, noisy surface with a horizontal trend. In logarithmic 
units, this dependence is described by a straight line (Shary et al. 2002). In 
other words, the dependence of local (i.e. based on derivatives) topog-
raphic variables on scale is a ‘price to pay’ for the land surface behaving 
rather like a non-smooth surface. 

 

 
Figure 4. The dependence of average slope steepness on grid mesh w. No finite 

limit was observed for the limit case of w  0. See details in Evans (1975) and in 
Shary et al. (2002, 2005). 

These phenomena are difficult to predict or explain using the smooth 
model of topography, in contrast to the non-smooth ones that have permit-
ted, for example, the calculation of the probabilities to meet each of curva-
ture-sign-based landform types for any terrain. Both pragmatic criterion 
(the dependence of local attributes on scale), and criteria of the model’s 
ability to predict and explain a wide spectrum of phenomena indicate that 
the non-smooth model of topography is better than the smooth model. 

These phenomena may have essential consequences in DTA. Some ex-
amples are as follows. The dependence of local topographic attributes on 
scale prevents results from different scales (authors) to be accurately com-
pared, and this is also an essential source of uncertainty in DTA using 
these attributes. Curvature-sign-based landform classifications appear sta-
tistically predictable, that is, areas occupied by each landform type are 

(2002) have confirmed his results and shown that average slope steep-
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predictable, in contrast to landform patterns (Shary et al. 2005). When 
such landform classifications are used in DTA, this may result in corre-
sponding predictability of soil or vegetation that may appear unrealistic. 
MacMillan and Shary (2007) reviewed current approaches to landform 
classifications, and classified these classifications themselves into predict-
able and terrain-specific, objective and subjective, quantitative and qualita-
tive, supervised and unsupervised, and so on. 

1.3 Fractal and mathematical models 

Another interesting property of topography is its fractal structure. Mandel-
brot (1967) was among the first who suggested measures that could be 
used to describe it. The most important measure is the fractural (i.e. not in-
teger, like 2.5) dimension, also known as fractal dimension. The dimen-
sion of a smooth line is 1, and that of an area is 2. A non-smooth line may 
look more or less like a band around a given line, and Mandelbrot (1967) 
suggested describing and measuring the noise of a line using a single di-
mension of given line between 1 and 2 (between 2 and 3 for a surface). 
The fractal theory is also based on the hypothesis of self-similarity (Man-
delbrot, 1967), according to which each landform is not only composed by 
smaller ones, but larger landforms are geometrically similar to smaller 
ones. Based on these concepts, typical notes on ‘fractal models of topogra-
phy’ were like ‘Pure self-similarity is not a property of the real land sur-
face’ (Goodchild, 1982), or ‘Fractal analysis… seems unlikely to capture 
the essence of complex and diverse landscapes’ (Xu et al. 1993). Clarke 
(1988) smoothed DEMs using several first terms of two-dimensional Fou-
rier series and added various proportions of an artificial ‘fractal’ surface to 
this smooth one. His results (3D map images) were recognizable by geo-
morphologists only when these additions were smaller than 10%. He con-
cluded that fractal models of topography are unrealistic. Evans and 
McClean (1995) noted that such uni-fractal models of topography result in 
pits (closed depressions) being as frequent as summits, in contradiction to 
the result of Shary et al. (2005) in which the ratio of sums of hill to pit 
volumes is highly terrain-specific, and may vary from 0.6 to 10,000. 

The essence of this criticism was that after sub-dividing a contour line 
(or land surface) into two parts, the fractal dimensions of these parts do not 
necessarily coincide. Continuing this process, one may conclude that the 
fractal dimension should vary along a given contour line (or along the land 
surface), so that a single fractal dimension cannot properly describe a con-
tour line or land surface. Evans and McClean (1995) described land sur-
face as multi-fractal, but this concept was rather opposed to the uni-fractal 
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model, and no substantiated multi–fractal models were suggested in the lit-
erature. 

Attempts to use mathematical models of topography, such as based on 
Fourier or other orthogonal series, resulted in essential artefacts related to 
the land surface non-smooth nature. Some general features of non-smooth 
models of topography, such as resulting from Gibbs-like phenomena, are 
discussed later in this chapter. 

In summary, land surface is a complicated surface that demonstrates sta-
tistical predictability of local landforms, and may exhibit lineation or 
directedness in some regions (such as drumlin fields), with regular spac-
ings of highs and lows. Land surfaces are therefore best summarized in 
terms of process-related topographic variables, rather than variables of, for 
example, fractal, spectral, Fourier, or polynomial models, which provide 
poor fits to any extensive land surface. It is dangerous, therefore, to use 
such models in digital terrain analysis, because such models ignore essen-
tial features of topography. 

2 Digital Elevation Models 

In computer science, land surface is commonly presented by Digital Eleva-
tion Models, which are discrete representations of topography. Indeed, all 
DEMs fall into two groups: regular and irregular DEMs (e.g. Li et al. 
2005), and any type of DEM must store points with known elevations, so 
that any DEM can be transformed into a point DEM composed of a finite 
set of points (x,y,z), where x and y are plan coordinates, and z is elevation. 

Irregular DEMs may use smaller spacing between points for areas with 
high relief, and a greater one with low relief, so that with the same number 
of points they may describe geological faults and other sharp elevation 
changes more accurately than grids. Original data of ground geodetic sur-
veys are irregular point DEMs, contour lines are added only to final docu-
ments (such as topographic maps) under the following criterion: the accu-
racy of a topographic map is 2/3 of the contour interval (this proportion 
slightly depends on national traditions). Contour DEMs contain informa-
tion on contours and separate points, and elevation values in them are 
stored one time for a whole contour. 

For specific purposes, such as transformation of irregular to regular 
DEMs (e.g. Akima, 1978), triangulation may be used. This consists of calcu-
lating triangles with apices at given points under the Delauney criterion of 
triangles to be most close to those that have equal angles (Peuquet 1984). 
Delauney triangulation is complementary to Voronoi (1907) tessellation. In 
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Figure 5. Delauney triangles (solid) as complementary to Voronoi tiles (dashed). 

Circles are irregular DEM points. 

The triangulation process (e.g. Akima 1978) results in Triangulated Ir-
regular Networks (TINs) that are based on point DEMs, to which data on 
triangle parameters are added. TINs may be drawn in plan, and may be 
generalized to 3D-structures (‘curved TINs’) by adding elevation to each 
triangle apex. TINs need a smaller number of points to describe sharp ele-
vation changes, because they are irregular DEMs to which triangles are 
added. The only purpose to considering triangulation and tessellation 
herein is to clarify that TINs and Voronoi’s tiles can be transformed into a 
point DEM. 

Regular DEMs are essentially elevation grids (known also as gridded 
DEMs, or elevation matrices) that need no plan coordinates (x,y) of each 
point to be stored, because they can be calculated ‘on-the-fly’ due to the 
regular spacing of grid points. Most applications of topography in DTA are 
based on gridded DEMs. 

The main advantages of gridded DEMs are as follows. 
 Grids use a spatially uniform smallest characteristic size, grid mesh, 

thus making variables from different grid points comparable. 
 Grids are more compact, because plan coordinates are not stored in 

them. 
 Calculation of variables using grids is essentially faster (other kinds 

of DEM may be used also). 

Models of Topography 

Figure 5, Delauney triangles are solid, Voronoi tiles are dashed, and circles 
are irregular DEM points. Every location within a Voronoi tile is closer to 
the point about which that cell is drawn than it is to any other point. 
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The main disadvantages of grids are as follows. 
 Re-projecting of a grid is slow, because the initial grid looses its 

regular structure in a new projection, and should be re-calculated (us-
ing an interpolation) for this reason. 

 Grids cannot represent features smaller than the grid mesh, which 
can result in artefacts, such as that shown in Figure 6. 

 

 
Figure 6. A scheme of a pseudo-depression (dashed), the origin of which is due to 
that information in given grid was lost because two grid points are at the opposite 

sides of a river-bed. 

Pseudo-depressions are essential for hydrological modelling in DTA. 
Martz and de Jong (1988) introduced two kinds of catchment (upslope) 
area: minimal (‘local’) catchment area, NCA, and maximal (‘global’) 
catchment area, MCA. NCA is characterized by flow interrupts in each lo-
cal elevation minimum; that is, in each depression or pseudo-depression. 
Pseudo-depressions randomly appear in elevation grids thus making values 
of NCA arbitrary. In contrast, MCA values are not arbitrary, because all 
depressions and pseudo-depressions are filled to the elevation value of 
their lowest outlet, resulting in continuous flows without interrupts (Shary 
et al. 2002). This is important, because many ‘morphometric’ software 
packages in fact calculate NCA. 

2.1 Gibbs’ and Gibbs-like phenomena 

As stated above, non-smooth models of topography are of value for correct 
description of the land surface. In practice, smooth models of topography 
are used to deduce formulae of local topographic variables in partial  
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Gridded DEMs are often generated from contour DEMs by constructing 
some smooth mathematical surface using something like a Fourier series 
or splines (at a given scale). Although such smooth interpolators seem 
good for building land surface models, they can lead to serious artefacts. 
For example, the value of Fourier series 1 )sin(i iia  (or any other or-

thogonal series) at a point of discontinuity of the function it represents is 
not equal to the value of this function at the same point thus resulting in ar-
tificial peaks or overshoots near such points (Figure 7). This is known as 
Gibbs’ phenomenon (e.g. Clarke 1988). 

 

 
Figure 7. Gibbs’ phenomenon: plots for a discontinuous function composed of pe-
riodically repeated straight lines (y = x for –  < x  ) and its partial Fourier sum 

n
i iia1 sin . Even the Fourier series is not equal to the value  in its point of 

discontinuity x = , where the peak is 1.089 . 

Note that the limit of this function as n  , x  1 does not exist, be-
cause it depends on a path in (n,x) space. To study Gibbs’ phenomenon 
(first discovered empirically by J.W. Gibbs in 1898), one should consider a 
path that refers to the maximal value of the peak in Figure 7, that is, the 
limit of the function as n  , xn  1, where xn corresponds to the maxi-
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derivatives, but after that special algorithms are used to calculate these 
variables using a DEM for the non-smooth land surface. Such algorithms 
should at least take into account Gibbs-like phenomena and spatial averag-
ing. Consider these important concepts. 

mum of the partial Fourier sum. A complete mathematical study of this 
function (and the general case) is given by Nikol’sky (1975), and this 
limit is equal to 1.089490⋅π. Since Gibbs’ phenomenon is essential for 
partial sums of any orthogonal series, its suppression is important in both 
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Gibbs’ phenomenon is observed near elevation discontinuities or sharp 
elevation changes, and it may result in artificial depressions or peaks near 
such locations. Besides artefacts from this phenomenon, other artefacts are 
observed in grids interpolated from contour DEMs that result from discon-
tinuities in slope or from some other reasons. They are (conditionally) re-
ferred to as ‘Gibbs-like phenomena’ (e.g. Gousie and Franklin 2005), 
(Figure 8). 

 

 
Figure 8. A scheme illustrating Gibbs-like phenomena. Thick lines show the land 

surface, thin curves illustrate an interpolated surface. (a) Positive and negative 
curvature of straight slopes, (b) negative curvature of straight slopes, (c) variations 

in curvature sign of straight slopes. 

Although a cubic spline will demonstrate negative curvature for the 
polyline shown in Figure 8(b), this may be not so (Figure 8(c)) for an in-
terpolated surface when contour line twisting is essential, and the distance 
between contour lines is much greater than the grid mesh. Such artefacts 
are characteristic of wiggly contour lines, because they result in interpo-
lated smooth surface flattening (smaller gradient) near contours and 
steeper slopes between contours. With triangulation-based interpolators 
(e.g. Akima 1978), all apices of several triangles may have equal elevation 
values, introducing artificial flat areas at high contour curvature radius be-
cause they appear on the same contour line. As a result, profile curvature 
oscillates with zero values in the middle of each contour and halfway be-
tween adjacent contours (see Figure 9). 

This effect is essentially weaker after replacing wiggly contours with 
smoothed ones, as in Figure 10. Gousie and Franklin (2005) noted that 
manual adding of contour lines diminishes artefacts in similar situations. 
Favalli and Pareshi (2004) suggested a solution based on a modified De-
launey triangulation algorithm ‘DEST’ to avoid Gibbs-like phenomena. 
These authors tested their algorithm using both DEMs and model surfaces 
with discontinuous slopes, and compared the results from DEST and those 
from TOPOGRID interpolation. They concluded that DEST provides bet-
ter interpolation because it diminishes artificial flat areas where contour 
lines demonstrate high curvature. 
 

algorithms of topographic variables, and in transformations of contour 
DEMs to gridded DEMs. 
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Figure 9. Effects of Gibbs-like phenomena that result in artificial terraces deline-
ated by profile curvature near contour lines (white) in relatively flat terrain por-

tions, grid mesh 60 m). (a) – artificial terraces associated with contour lines,  
(b) – no artificial terraces are observed when SRTM grid is used for the same  

terrain at the same grid mesh. 
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Figure 10. Replacing of wiggly contour lines (left) with smoothed ones dimin-
ishes regular artefacts from Gibbs-like phenomena (right). Light colours refer to 

positive profile curvature, dark ones – to negative values. 

Popular algorithms to calculate local topographic variables (described in 
the next section) normally do not use a single surface, but rather ‘sheets’ of 
smooth surface pieces that are not connected at their boundaries (Dikau 
1988). 

2.2 Spatial averaging 

A gridded DEM is a set of regularly spaced (in plan) points with elevations 
ascribed to each (Figure 11). Grid points are discrete, so that partial deriva-
tives of z = f(x,y) are not defined; instead finite differences are used (Evans 
1972). 

A simple example of a finite difference at the central (5-th) point is 

w

zz
p

2
46

5 ; 

for a smooth surface, the value of p5 should tend to partial derivative p5 = 
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smooth models of topography. To apply spatial averaging, one may use the 
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This is the case of Evans–Young and some other algorithms used to cal-
culate local variables described below in this section. 
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Figure 11. A sub-grid 3  3 of a regular grid of grid mesh w, axes, locations and 

numbers of points. Elevation values at points are z1 to z9. 

Local variables are described by their formulae for a smooth model of 
the land surface, to which an algorithm is applied that takes the non-
smooth nature of topography into account. Such algorithms are based 
mostly on the fitting of some polynomial by the least squares method to 
nine grid points of a sub-grid 3  3, and its partial derivatives are used to 
calculate local variables at the central point of this sub-grid. Then the sub-
grid moves to the next grid point, and this is repeated many times to com-
pute values of local variables for all grid points. Schmidt et al. (2003) and 
Sousa et al. (2003) noted that the most popular algorithms are Evans–
Young (Evans 1972), Shary (1995), Zevenbergen–Thorne (Zevenbergen 
and Thorne 1987), and the modified Evans–Young (Shary et al. 2002) 
methods. 

A first such algorithm, known as Evans–Young (Evans 1972; Young 
1978, see also Pennock et al. 1987), consists of the following. The second 
order polynomial 
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where p, q, r, s, t, z0 are coefficients to be defined, is fitted by the least 
squares method to the sub-grid 3  3, with grid mesh w and elevations in 
nodes z1,…,z9 (Figure 11). 

This gives the following formulae for coefficients p, q, r, s, t, z0 of the 
polynomial: 
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See Young (1978), and Pennock et al. (1978) for the derivation of these 
formulae. In accordance with the polynomial formula, coefficients 
p, q, r, s, t approximate the following partial derivatives: 
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The Evans–Young polynomial does not necessarily pass through all the 
nine original elevations; its elevation at the central point is given by z0. 

In the algorithm of Shary (1995), the following polynomial is used: 
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where p, q, r, s, t are coefficients to be defined that approximate the partial 
derivatives (2); its elevation at the central point is z5. Fitting by the least 
squares method to the sub-grid 3  3, one obtains: 
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This differs from the Evans–Young algorithm in that this polynomial 
passes through the central point but is close to Evans–Young one (Schmidt 
et al. 2003), with differences only in r and t. 

In the Zevenbergen–Thorne algorithm (Zevenbergen and Thorne 1987) 
the following polynomial is used: 

DqypxtysxyrxCxyyBxyAxz
2

2

2

22222 , 

where A, B, C, D, p, q, r, s, t are coefficients. Here there are nine coeffi-
cients and nine elevations, so that coefficients of this Lagrange polynomial 
are: 
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where p, q, r, s, t approximate the same partial derivatives (2). 
Schmidt et al. (2003) experimentally compared these three algorithms. 

These authors used plots with curvature values on both axes that were cal-
culated using different algorithms. They noted also that the modified Ev-
ans–Young algorithm (Shary et al. 2002) diminishes grid bias in maps of 
curvatures. Their conclusion was that the Evans–Young and Shary algo-
rithms provide close results for curvatures (i.e. smallest deviations from 
straight lines at their plots), in contrast to Zevenbergen–Thorne. Florinsky 
(1998) compared the same algorithms theoretically. He assumed that de-
viations in topographic variables can be described by the first term of a 
polynomial series, and used Root Mean Square Error (RMSE) criterion to 
compare the algorithms. But he did not evaluate the remaining terms of the 
series, which may not be small. On this assumption, he concluded that the 
accuracy in second derivatives determining these algorithms is diminishing 
in the following order: Zevenbergen–Thorne, Evans–Young, Shary. 

The Evans–Young and Shary algorithms use additional internal smooth-
ing of the land surface in contrast to the Zevenbergen–Thorne algorithm. 
The latter is based on the simplest form of finite difference; the former use 
averaged finite difference. For example, the simplest finite difference 
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found in the Zevenbergen–Thorne algorithm (4) is replaced with the aver-
age of the three finite differences along the axis x, 
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in both the Evans–Young (1) and Shary (3) algorithms. 
A grid bias may appear essential in the case of curvatures (Shary et al. 

2002). In this regard, Shary et al. (2002) have suggested a modified Ev-
ans–Young algorithm that consists of the following. A smoothing filter is 
used that obeys the following criteria: 

 an inclined plane piece of surface is transformed into the same plane, 
 the smoothing filter is isotropic, 
 filter weights decrease linearly with the distance from the centre of 

the sub–grid. 
This results in the following formula for the filter (Shary et al. 2002): 
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where k is the smoothing parameter. Its value of 1/5 provides good results, 
so that 
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where elevation z5 at the central point is replaced with the new value z5*. 
After all the nine elevations of the sub-grid 3  3 are replaced with their 
smoothed values, the original Evans–Young algorithm is applied to calcu-
late the derivatives p, q, r, s, t. The modified Evans–Young algorithm is 
based on 5  5, rather than 3  3, sub-grids. 

So, the averaging in 3  3 sub-grids in these algorithms increases in the 
following order: 

 Zevenbergen–Thorne, 
 Evans–Young and Shary, 
 modified Evans–Young. 

Tomer and Anderson (1995) noted that the land surface is considered to 
be composed of deterministic (smooth) and noisy (non-smooth) compo-
nents. This is a conceptual remark, not a mathematical one, because it is 
difficult to sub-divide topography into these components as they have 
similar internal properties. 

The sensitivity of local topographic variables to the noisy DEM compo-
nent (and dependence of variables on grid mesh) increases in the following 
order (Shary et al. 2002): 

1. functions of first derivatives (slope steepness, aspect, and insola-
tion), 

2. linear functions of second derivatives (simple curvatures), 
3. square functions of second derivatives (total curvatures). 

Functions of higher order derivatives may encounter major problems 
due to their excessive sensitivity to DEM noises. 

2.3 Two concepts of scale 

Traditional topographic maps are corresponding images printed on a sheet 
of paper, to which information on scale is added; for example, 1:100,000 
indicates the ratio of length on this paper to the corresponding length in the 
terrain (in plan). This is a geographical concept of scale. When an eleva-
tion grid is measured, the geographical scale appears arbitrary (it depends 
on screen pixel size and map image magnification), but now the grid mesh 
describes the detail concept of scale. Any change of given topographic 
map does not change the contour interval, so that measures like grid mesh 
or contour interval remain constant as the geographical scale changes. 

Understanding of interrelationships between these two concepts of scale 
is of value because it permits the deduction of the minimal grid mesh from 
a given contour DEM. 
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2.3.1 Minimal grid mesh 

Grid mesh is a basic concept of a gridded DEM or a regular point DEM. A 
gridded DEM with any grid mesh may be obtained from a contour or ir-
regular point DEM using an interpolation process (e.g. Akima 1978). In 
practice, there is no way to restore information on the shapes of ant hills 
using 1:250,000 scale topographic maps, because they are out-of-scale. 
This is because geodetic surveys use an agreement specifying some stan-
dardized contour intervals for use for each geographical scale (e.g. about 
20 metres for 1:250,000 scale). Such practices result in some interdepend-
ence between geographical and detail scale concepts. Considering these 
practices, it is possible to deduce a formula of minimal grid mesh for trans-
formations of contour DEMs into gridded DEMs. 

There exists some minimal grid mesh that corresponds to a given eleva-
tion data resolution. Indeed, sufficiently small landforms, of size w0 in 
plan, are not described at the given elevation data detail, so that values of 
grid mesh w smaller than w0 do not provide new information. One may use 
w values greater than w0, with some loss of information on smaller land-
forms. 

When contour lines are digitized, an operator records points on each 
contour line, the distance between which is greater in straight portions of 
contour line and smaller in their curved portions. A grid is calculated only 
from these and separate points, with the total number of points being N. 
The size of the study area is always known (X along the x–axis, and Y 
along the y–axis), so that each point occupies an average area equal to 
XY/N, with the average distance between points equal to L = (XY/N)1/2. 
Since L is greater for spatially dense contour lines and smaller in the oppo-
site case, it may be used for automated minimal grid mesh w0 determina-
tion using the formula 

N
YX

w0 , (6) 

where X, Y, w0 are in the same units of length, and  is a dimensionless 
empirical coefficient. In the author’s experience,  = 2.5 is a reasonable 
choice for most cases. As explained above, any kind of DEM can be trans-
formed into an irregular point DEM, so that Equation (6) is applicable to 
any irregular DEM, excluding cases describes below. 

Some examples of elevation data result in artificial terrain features that 
are due to regular or discontinuous features of the given terrain (Figure 9). 
This problem is not a subject of algorithms for computing local topog-
raphic variables, but rather of the algorithms for the transformation of 
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cases. For example, when distance between points is relatively small in 
each of the parallel lines, but is much greater between these lines, one may 
add points of an intermediate elevation between adjacent lines to diminish 
artefacts in the resulting grid. In fact, it is not clear which landforms are in 
areas with no elevation data, so that attempts to restore out-of-scale land-
forms do not produce information on them. In such cases, one may replace 
w0 calculated from Equation (6) with some greater value. 

3 Regional Topographic Attributes 

To calculate derivatives or finite differences at a given point, one needs 
only a restricted vicinity of this point, so that the formula Variable = 
f(p,q,r,s,t) may represent only local (derivative-based) topographic vari-
ables. To describe the relative position of a given point in the landscape, 
one should use integrals or sums, that is, to test extended surroundings of 
this point defined by corresponding terrain features (Speight 1974). For 
example, catchment area at a given point needs to sum inputs from all up-
slope portions of a basin that may lie up to thousands of kilometres from 
this point. Correspondingly, formulae are used only for local variables; to 
compute regional variables, one needs to use algorithms instead of formu-
lae (Shary et al. 2002). In general, algorithms to describe regional vari-
ables need program codes (such as those of Martz and de Jong (1988) and 
Freeman (1991) for catchment area). For this reason, algorithms of re-
gional variables are not described here. 

The tendency of local variables to depend on grid mesh may appear not 
to be characteristic of some regional variables resulting in so-called scale-
free variables (in contrast to scale-specific ones) that tend towards limit 
values as the grid mesh tends to zero (Shary et al. 2002, 2005). For exam-
ple, the calculated depth of the Lake Baikal at a given point tends to the 
value one can measure from a boat (this is the limit value) as grid mesh 
tends to zero; note that corresponding regional variable is the depression 
depth, and that direct measurements from a boat are impossible for dry de-
pressions (or for not completely filled ones, such as the Caspian depres-
sion) characteristic, for example, of large deserts (Shary et al. 2005). 

3.1 Kinds of topographic attributes and landforms 

Some topographic variables describe water flow (e.g. catchment area) and 
therefore need the gravitational field to be used; others describe thermal 

irregular point DEMs to grids. There is no general rule for all such special 
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regimes of slopes and need solar irradiation to be taken into account; and 
yet others describe the land surface itself, thus ignoring all geophysical 
vector fields. Only the latter are studied in differential geometry of sur-
faces (Koenderink and van Doorn 1994). In other words, these variables 
fall into two non–intersecting groups, one of which describes the system 
‘land surface + vector field’, and another describing the land surface itself. 
On the other hand, all variables fall into two other non-intersecting groups 
(Speight 1974), one describing the ‘local geometry’ of land surface (local 
variables), and others describing the relative position in the landscape (re-
gional variables). Regional variables need integrals or sums for their de-
termination. This leads to a classification of all (both discovered and not) 
topographic attributes into several non-intersecting classes (Shary 1995; 
Shary et al. 2002), shown in Table 1. 

Shary et al. (2002) have also introduced two global (planetary) classes 
of topographic attributes and landforms that are not considered here be-
cause no variables are currently introduced in these classes (Shary 2006a). 
The list of local variables is mostly complete (Shary 1995), while regional 
topographic variables are not yet fully described (Shary et al. 2002, Shary 
2006a). 

In contrast to local landform classifications, regional ones (see MacMil-
lan and Shary 2007) include integral-based landforms, such as non-
intersecting closed depressions, hills (mountains), and saddles, and the cor-
responding natural hierarchy of these landforms, such as first and higher 
continental (or island’s) level and landform scale–free characteristics (see 
Section 3.2 for the meaning of the ‘scale–free’ term), such as boundaries, 
area, volumes, some others (Shary et al. 2005). 

Table 1. The four non-intersecting classes of topographic attributes and land-
forms. 

Topographic attributes Local Regional 
Field-specific Local field-specific 

(class A) 
Regional field-specific 
(class B) 

Field-invariant Local field-invariant 
(class C) 

Regional field-invariant 
(class D) 

 

3.2 Scale-specific and scale-free topographic attributes 

Results in Figures 3 and 4 demonstrate that local topographic attributes 
and landforms may be scale-specific, and that curvature-sign-based land-
form classifications appear to be statistically predictable. This may not be 
the case for regional attributes and landforms, because they are based on 
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integrals that may exist even for non-smooth surfaces. The scale-free prop-
erties of some regional landforms were shown experimentally in Shary et 
al. (2002, 2005). 

According to the definitions in these papers, scale-free topographic vari-
ables are interpreted not as variables that do not depend on scale (e.g. on 
grid mesh), but rather as variables that have limit values as scale becomes 
finer (e.g. grid mesh diminishes). Such topographic attributes do exist; ex-
amples are maximal catchment area in thalwegs (where it is an integral 
value), closed depression volume, and the maximal value of maximal 
catchment area that is reached at grid boundaries (Shary et al. 2005). 

In contrast to statistically predictable local landforms, regional land-
forms appear terrain-specific; that is, their characteristics cannot be pre-
dicted in advance (MacMillan and Shary 2007), so that, for example, the 
ratio of sums of hills’ / mountains’ volumes to those of depressions are 
changed from 0.6 to 10,000 depending on the geological terrain features 
(Shary et al. 2005). Currently, we have only a few regional variables in 
contrast to local ones (Shary 2006a), so that most variables of general 
geomorphometry are local and demonstrate an essential dependence on 
scale. Even ‘secondary’ regional variables (i.e. composed by basic vari-
ables (Wilson and Gallant 2000), which are essentially variables of spe-
cific geomorphometry) demonstrate scale-specific behaviour (Shary et al. 
2002). 

4 Discussion 

The non-smooth model of topography means that the land surface cannot 
be considered as smooth, not just at separate breaks or points, but rather at 
almost any point. There are many consequences from this model for local 
derivative-based topographic variables and landforms that demonstrate 
scale-specific behaviour with no ‘reference’ values at fine resolutions. In 
contrast, regional integral-based variables and landforms may have limit 
values as grid mesh tends to zero. On the other hand, the set of local vari-
ables is almost completed (Shary 1995, Shary et al. 2002), in contrast to 
the regional variables that are not yet fully described (Shary 2006a). 

Correspondingly, there is a set of unsolved tasks in geomorphometry, 
mostly in the regional classes (Shary 2006b), such as the absence of sub-
stantiated regional slope profile descriptions that are very important in 
such DTA applications as predictive soil and vegetation mapping based on 
multiple regression models (e.g. Scull et al. 2003), or the problem of quan-
titative description of open depressions (Shary 2006b). 
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The statistical predictability of local landforms results in a stable belief 
that any process or phenomenon in landscape is best described at its own 
scale or grid mesh defined by the characteristic size of that process or phe-
nomenon (e.g. Klemeš 1983, Phillips 1988). However, this is not so with 
regional integral-based variables and landforms that are best described at 
fine resolutions. For example, volume and area of a closed depression (e.g. 
of a lake) tend to their limit values as grid mesh diminishes (Shary et al. 
2005). Regional integro-differential variables (i.e. based on both integrals 
and derivatives), such as maximal catchment area, form an intermediate 
case. Here, the non-smooth nature of the land surface results in water di-
vides not being lines, but rather bands that may be determined at some 
probability level, and they usually have greater widths in gently sloping 
terrain than in mountains. 

Several authors consider multiple flow-lines branching and confluence 
as resulting from discrete land surface representation in gridded DEMs 
(e.g. Tarboton 1997), but this phenomenon is a generalization obtained 
from direct observation in landscapes, where grids are absent. Shary et al. 
(2005) concluded that multiple flow branching and confluence is a physi-
cal phenomenon that is independent of DEMs, so that corrections to 
catchment area suggested by several authors (e.g. Freeman 1991) describe 
essential physical properties of terrain rather than simply efforts to dimin-
ish the grid bias. 

Also, land surfaces demonstrate natural hierarchies in landform ar-
rangement in regional classes, so that hills or mountains of the first conti-
nental (or island’s) level of hierarchy essentially differ from those of the 
second and higher levels. In DTA, this results in an ambiguous meanings 
of the same concept, and even in some discussions around the questions 
‘What is a mountain?’ or ‘Do mountains exist?’ (e.g. Smith and Mark 
2003, Mark and Smith 2004). In regional class B, they may be described as 
closed depressions of an inverted surface (for which elevations Z are re-
placed with –Z). This definition applied to a continent results in all the 
continent being a single ‘hill’ of the zero hierarchical level surrounded by 
a closed contour line. The first continental level is defined by the largest 
closed contour lines inside the continent (normally hills and mountains of 
this level have geographical names). Continuing this process, one may cal-
culate nested hills/mountains of 2-nd, 3-rd,… hierarchical levels. It is im-
portant that these landforms are integral-based, and therefore have limit 
(reference) values at large scales (Shary et al. 2005). Boundaries of closed 
depressions, hills/mountains, and saddles (i.e. the remaining area) cannot 
have intersections (ibid.), thus providing a stable regional hierarchical 
landform classification. 
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Geomorphometry of regional variables is still at its beginning, but it 
demonstrates limit (reference) values of its variables and terrain-specific 
landforms, even for the non-smooth models of topography. In contrast to 
predictable areas, curvature-sign-based landform patterns appear not to be 
predictable because they are considered as regional entities in human per-
ception, and might therefore be generalized to regional entities in a similar 
way as maximal catchment area generalize the concept of flow-line con-
vergence/divergence by tangential or plan curvature. 
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LI Zhilin  

Abstract 

Scale is one of the most important but unsolved issues in various scientific 
disciplines. This chapter tackles systematically the issues related to scale in 
terrain modelling and analysis. It starts with some discussions on the no-
tions of scale and multi-scale. Then three approaches for the multi-scale 
representation of terrain surface are presented, i.e. critical-points-based, 
smoothing-based, and scale-driven. Principles are explained and algo-
rithms presented. Two issues of multi-scale terrain analysis are discussed, 
i.e. the modelling of multi-scale effects, and the optimization of scale. Ex-
amples are given to illustrate the concepts and principles discussed. Fi-
nally, some concluding remarks are made. 
 
Keywords: scale, multi-scale, multi-resolution, variable resolution, terrain 
representation, terrain analysis, scale effect, optimization. 

1 Introduction 

The depiction of terrain surface with accuracy has always been a challenge 
for scientists and engineers in geography, geomorphology, civil engineer-
ing, geology, and surveying. The terrain surface can be represented in dif-
ferent ways. A painting (or drawing) (e.g. Figure 1) is perhaps the oldest 
way of terrain representation. Such a representation looks intuitive but of-
fers very low metric quality (accuracy). 

A development from the simple drawing is the shading technique. Two 
types of shading are available, i.e. oblique (hill) and vertical (slope). In 
oblique shading, those surface facets that are facing the light source are 
depicted with lighter tones, while those facing away from the light source 
are drawn with darker tones. In slope shading, the darker tone is used to 
depict those facets with steeper slopes. Hachuring is another technique to 
depict the terrain slope with line symbols. 
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Figure 1. A map of Luoyang County (China) (produced in 1403-1407) with the 

terrain surface represented by simple drawing. 

A topographic map with contour (level set, isopleth, isoline, isogram, or 
isarithm) lines is perhaps the most popular way of representation since its 
invention in 1701, as such a map offers high metric quality (Wikipedia, 
http://en.wikipedia.org/wiki/Contour_line#History). However, such maps 
do not look very intuitive to many users. To produce a better visual effect, 
inclined contours, shadowed contours, and illuminated contours have been 
proposed. Hypermetric tints (using colour layers) have been widely used. 

A physical model of the terrain surface is perhaps the most intuitive rep-
resentation. Such a model could be made in clay or plastic. However, it is 
time-consuming to build such a model. A digital terrain model (DTM), 
since its introduction in 1958 (Miller and Laflamme 1958), has found wide 
application, as it offers great flexibility in many ways. It has been utilized 
for terrain analysis, such as the computation of slope and aspect, area and 
volume, roughness parameters and hydrological parameters, the derivation 
of viewsheds and the analysis of inter-visibility between points on terrain 
surfaces. A volume with a collection of articles on DTM-based terrain 
analysis has been edited by Wilson and Gallant (2000). 

A DTM, like a topographic map, is associated with scale, though many 
researchers have argued that there is no scale with digital data sets. Then 
there is a scale issue in the representation and analysis of terrain surfaces. 

Scale is an old issue in geo-sciences. In cartography, maps are produced 
at certain scales, e.g. 1:10,000 and 1:100,000. At different scales, the level 
of detail represented on a map is different. The derivation of smaller-scale 
maps from larger-scale maps through some operations is a multi-scale is-
sue and is called “map generalization”. In geography, there is a similar 
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And in some applications, such data need to be aggregated to a larger 
enumeration unit. However, the statistical results will be different when 
the aggregation is carried out in different ways. This issue is called the 
“modifiable areal unit problem” (MAUP) (Openshaw 1994), although 
some researchers have reservation on this issue (Tobler 1989). Indeed, 
there is a similar issue in all geo-sciences, such as geomorphology (e.g. de 
Boer 1992), oceanography (e.g. Stommel 1963), soil science (e.g. Hillel 
and Elrick 1990), biology (e.g. Haury et al. 1977), biophysics (e.g. Friedl 
1997), social sciences (e.g. Dovers 1994), hydrology (e.g. Blöschl and 
Sivapalan 1995), environmental sciences (e.g. Bian 1997), etc. Indeed, the 
issue of scale has attracted great attention from the geoscience communi-
ties. As a result, a number of books on scale issues have recently been pub-
lished, including Scaling Up in Hydrology Using Remote Sensing edited by 
the Institute of Hydrology and Stewart (1996), Scale in Remote Sensing 
and GIS edited by Quattrochi and Goodchild (1997), Scale Dependence 
and Scale Invariance in Hydrology edited by Sposito (1998), Modelling 
Scale in Geographical Information Science edited by Tate and Atkinson 
(2001) and Algorithmic Foundation of Multi-Scale Spatial Representation 
authored by Li (2007). 

In spite of international efforts for many years, scale is a still major un-
solved issue in geographical information related sciences. This chapter will 
address two scale issues, i.e. multi-scale digital terrain representation and 
multi-scale digital terrain analysis. 

2 Basic Concepts of Scale and Multi-Scale 

In order to facilitate the discussion on multi-scale terrain modelling and 
analysis, some basic concepts need to be clarified. 

2.1 The concept of scale 

Scale is a term not well defined. “Of all words that have some degree of 
specialized scientific meaning, ‘scale’ is one of the most ambiguous and 
overloaded” (Goodchild and Quattrochi 1997). 
There is a spatial scale and a temporal scale. In both domains, the scale 
may range from micro to macro (see Figure 2) and may be in different lev-
els of measurement (i.e. nominal, ordinal, interval and ratio). In this chap-
ter, only spatial scale is discussed. 

issue. Normally, geographical data are sampled in small enumeration units. 
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Terrain specialists are not interested in reality at either the micro or mi-
cro scales. Instead, they are interested in the middle part of the scale spec-
trum, i.e. the geo-scale. 
 

Macro scale

Geo-scale

Micro scale

Astro-physics

Space science

Meteorology

Geo-sciences

Biology

Nucleus physics

Macro scale

Geo-scale

Micro scale

Astro-physics

Space science

Meteorology

Geo-sciences

Biology

Nucleus physics
 

Figure 2. Spectrum of spatial scale, from micro to macro. 

In different contexts, the term scale may mean different things. From a 
dictionary, one could find nearly 20 different meanings. In digital terrain 
analysis, scale may mean: 

 degree of abstraction,  
 degree of detail,  
 ratio of distance (cartographic ratio), and 
 magnitude of the study area. 

Many researchers insist that “digital data sets do not have any scale but 
have only resolution”. This is true in a sense that digital data sets can be 
plotted (and manipulated) at any scale one wishes. However, scale is also 
implied by the accuracy level of the digital data sets. For example, the 
height accuracy of the 1:50,000 DEM of China is expected to range from 4 
m (flat areas), 7 m (hilly areas), 11 m (mountainous areas) to 19 m (highly 
mountainous areas). On the other hand, accuracy is affected by resolution. 
For example, the resolution of the 1:50,000 DEM of China is 25 m. If the 
resolution is too coarse, then the accuracy cannot be guaranteed. There-
fore, the scale of a set of DEMs should be defined by a set of parameters, 
possibly: 

 magnitude of study area (or cartographic ratio),  
 accuracy, and 
 resolution. 
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2.2 The concept of multi-scale scale 

Multi-scale is also a term that is not well defined. By this term one may 
mean different things such as multi-resolution, multi-ratio (cartographic ra-
tio), variable ratio and variable resolution. In addition, level of details 
(LoD) is another term used for multi-scale. It is therefore essential to clar-
ify these terms. 

For a single presentation, it is possible to use the following four combi-
nations (Figure 3): 

 Uniform cartographic ratio with uniform resolution, 
 Uniform cartographic ratio but with multi-resolution, 
 Variable cartographic ratio but with uniform resolution, and 
 Variable cartographic ratio with variable resolution. 

 
 

(a) Uniform ratio & uniform resolution (b) Uniform ratio but variable resolution 

(c) Variable ratio but uniform resolution (d) Variable ratio & variable resolution 

 
Figure 3. Combinations of cartographic ratio and resolution 

For multiple presentations, cartographic ratio and resolution are still the 
two parameters to be considered. As in the case of single representation, 
resolution could be varied or uniformly changed (i.e. finer or coarser) and 
cartographic ratio could also be varied or uniformly changed (i.e. enlarged 
or reduced). As a result, there are nine possible types of changes for any 
given representation, as shown in Figure 4: 

1. Same cartographic ratio and same resolution (i.e. as the original), 
2. Same cartographic ratio but with different (but uniform) resolu-

tion, 
3. Same cartographic ratio but with variable resolution, 
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4. Different (but uniform) cartographic ratio but with same resolu-
tion, 

5. Different (but uniform) cartographic ratio with different (but uni-
form) resolution, 

6. Different (but uniform) cartographic ratio with variable resolution, 
7. Variable cartographic ratio with same resolution, 
8. Variable cartographic ratio with different (but uniform) resolution, 

and 
9. Variable cartographic ratio with variable resolution. 

 
 

(a) Same ration &  
      same resolution 

(b) Same ratio &  
      finer resolution 

(c) Same ratio & 
     variable resolution 

(f) Reduced ratio &  
     finer resolution 

(e) Variable ratio & 
same resolution 

(g) Variable ratio & 
      finer resolution 

(h) Variable ratio & 
     variable resolution 

(d) Reduced ratio &  
      same resolution 

(i) Reduced ratio &  
      variable resolution 

R
atio 

varied 
R

atio 
changed 

Resolution 
changed 

Resolution 
varied 

 
Figure 4. Nine types of possible scale changes for a representation. 

A representation with variable cartographic ratio is normally generated 
for visualization with a perspective view and not for numerical analysis. 
Variable resolution is usually employed to represent different levels of de-
tail, if there is a need. However, the most commonly used multi-scale rep-
resentation for terrain analysis is either “different (but uniform) carto-
graphic ratio with different (but uniform) resolution”, or “different (but 
uniform) cartographic ratio with variable resolution”. 
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3 Multi-Scale Terrain Representation (Modelling) 

Based on different kinds of philosophy, three types of approach can be 
identified to the generation of multi-scale representations for a given 
DTM, i.e. critical-points-based, smoothing-based, and scale-driven. 

3.1 Critical-points-based multi-scale representation 

The critical-points-based approach is built upon the assumption that some 
points on a terrain surface are more important than others and the fidelity 
of the terrain surface is largely preserved even if only those important 
points are kept. The resultant data set may not be in a regular grid any-
more. Another reason behind this approach is that some height values 
(such as the peaks of hills) are not allowed to change in some types of ter-
rain analysis. A critical-points-based approach will produce a data set with 
variable resolution. 

To detect critical points, some kind of significance measures should be 
used. Various parameters such as length between two points, perpendicular 
distance to a line, angle between two lines, local maxima and minima in 
height, curvature, and so on have been used. 

Those algorithms developed for the detection of critical points along a 
line (e.g. Douglas and Peucker 1973, Li 1988, Visvalingham and Whyatt 
1993) can be used to detect critical points along terrain profiles. In this 
case, the profiles in both X and Y directions (and along diagonals) should 
be examined. 

The popular Douglas-Peucker algorithm makes use of perpendicular dis-
tance as a criterion. It means that if the perpendicular distance from a point 
under consideration to a line joining two already selected points is smaller 
than the criterion, then this point can be neglected. The working principle 
is illustrated in Figure 5. It starts from two end points and always com-
pares the maximum perpendicular distance (among all possible perpen-
dicular distances) with the given criterion. In the end, a set of points at dif-
ferent levels (e.g. four levels in Figure 5) of significance will be selected. 

The Douglas-Peucker algorithm is computationally expensive. Li (1988) 
made efforts to improve the speed. He suggested that critical points be de-
tected simply by selecting local maxima and minima in height. After the 
first round selection, those already selected points will be used to establish 
new local coordinate systems. Through a coordinate rotation, new local 
maxima and minima at the next level can then be selected. Figure 6 shows 
the principle. If the values of local maxima or minima are smaller than a 
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criterion, then the point is not selected. Alternatively, one could specify the 
number of rounds for selection. 
 

 

2 

1 

1 

3 3 4 
4 

 
Figure 5. Douglas-Peucker algorithm based on perpendicular distance. 

 
 (maxima) 

(minima) (new 
minima) 

(new  
maxima) 

 
Figure 6. Li algorithm based on local minima and maxima. 

It has also been found that large distortion may be caused by using the 
points selected by the Douglas-Peucker algorithm. Visvalingham and 
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Whyatt (1993) suggested making use of area as a criterion to minimize 
shape distortion. The principles of the Visvalingham-Whyatt algorithm and 
many other algorithms have been explained in a recent book by Li (2007). 

Chen and Guevara (1987) designed a so-called VIP (very important 
points) procedure for the selection of critical points in a regular grid form. 
They made use of the sum of the second differential values at a point in all 
four directions to represent the degree of significance for the point. Sup-
pose the height (H) of a point along a profile is a function of its position 
(x), as shown in Figure 7. The horizontal distance between 1iX , iX  and 

1iX  is equal because of the regular grid. Let the mathematical function of 
this profile be 

xfH  (1) 

then its second differential value at point iX  is  

2
2 11

1
"

2

2
ii

ii
XfXfXfXf

dX
Hd  (2) 
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Xi-1 X 
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H 

Xi+1  
Figure 7. A terrain profile and its second differential value. 

The distance AC in Figure 7 is the second differential value at point iX , 
although they made use of CB. In their procedure, the number of points to 
be selected is specified first and then those points with greatest signifi-
cance are selected. However, Li (1990) and Li et al. (1998) have argued 
that the selection of points should be related to the required accuracy of the 
resulting DTM, instead of a pre-defined number of points. They investi-
gated the relationship between the degree of significance ( ThresholdSig ) 
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used as threshold and the resultant DTM accuracy loss ( loss ) after VIP 
selection and found: 

3
Threshold

loss
Sig

 (3) 

Suppose that the required accuracy of the final DTM (after the VIP se-
lection) in terms of variance is 2

after  and the accuracy of initial DTM (be-

fore the VIP selection) is 2
before , then 

222
lossbeforeafter  (4) 

By combining Equations (3) and (4), the relationship between the 
threshold for VIP selection and the final DTM accuracy is as follows: 

2233 beforeafterlossThresholdSig  (5) 

3.2 Smoothing-based multi-scale representation 

The smoothing-based approach is built upon the assumption that small 
variations are the high-frequency parts of the terrain surface. Therefore, 
filtering techniques can be used to filter out the high-frequency parts. Al-
ternatively, a smooth surface may be fitted to the original data points to 
represent the terrain surface. These two techniques will not change the 
resolution of the original DTM. If there is a need to change the resolution, 
then another two techniques are available, i.e. aggregation and resampling. 

For the generation of a smooth surface, the polynomial function (Table 
1) is the basis (Petrie and Kennie 1990). Normally, in order to avoid un-
predictable oscillation, second and third order polynomial functions are the 
best choices. A least squares solution is obtained when the number of ref-
erence points used is larger than the number of coefficients in the polyno-
mial function. Wavelets and other methods have also been in use. 

A least squares solution defines the surface that makes the sum of all the 
square errors ( 2e ) (residuals) at the reference points the smallest among 
all possible surfaces. Mathematically, 

min
1

2
n

i
ie  (6) 



69 

Table 1. Polynomial function used for surface reconstruction. 

Individual Terms Order Descriptive 
Terms 

No. of 
Terms 

Z = a0 Zero Planar 1 
   + a1X + a2Y First Linear 2 
   + a3XY + a4X2 + a5Y2 Second Quadratic 3 
   + a6X3 + a7Y3 + a8X2Y + a9XY2 Third Cubic 4 
   + a10X4 + a11Y4 + a12X3Y  
     + a13X2 Y2 + a14XY3 Fourth Quartic 5 

   + a15X5 + a16Y5 + …… Fifth Quintic 6 
 

Using the second-order polynomial for illustration:  

2nd order polynomial: 
2

5
2

43210),( yaxaxyayaxaayxfz  (7) 

where 5210 ,,, , aaaa  are the six coefficients. They need to be deter-
mined by making use of reference points. If there are n (>6) reference 
points, then there are n equations as follows: 
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The error functions can be written as follows: 
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and simplified as  

11661 nnn
ZAXV  (10) 

According to the least squares solution,  
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After the coefficients are computed, the height pz  of any point P at lo-
cation ),( yx  can be obtained by substituting yx,  into Equation (7). 

The commonly used filtering techniques are low-pass filters. Simple av-
eraging is the simplest and perhaps most efficient filter, and is thus most 
commonly used. Figure 7 illustrates the principle of a moving-averaging 
low-pass filter. In the filtering processing, a template (e.g. a 3 x 3 window) 
is moved over the DTM cells one by one in the row and column directions, 
the average of the heights within the template is used to represent the 
height value at this position in the output DTM. For example, if the points 
in a 3 x 3 window centred at P are selected for averaging, their heights are 
9, 9, 9, 8, 7, 9, 4, 3 and 6, then the average is 7. 
 

Figure 7. Moving averaging as low-pass filter for smoothing a DTM surface. 

A median filter is also effective, but is much less efficient. The working 
principle of a median filter is similar to that of a low-pass filter except that 
the median filter takes the median of the values in the window (instead of 
the average). Other more complicated filters, such as the Kalman filter, 
have also been used. 

To make a change in resolution, aggregation and resampling techniques 
can be employed. Aggregation makes multiple cells (e.g. a 2 x 2 window) 
into a new cell. Figure 8 shows the working principle. In this case, a 3 x 3 
window is aggregated into a new cell. Simple averaging is most widely 
used to estimate the value for the new cell, which in fact may take the 
mode or median within the window. It is also possible to select only the 
pixels at the nth row and column from the original DTM grid. Polynomial 
functions may even be used for estimation if the window is very large. 

Sometimes, the required new resolution is not an integral times the 
original resolution (e.g. 2 m to 3 m); therefore, one cannot use aggregation. 
In that case, resampling is the choice. Figure 9 illustrates the sampling of a 
3 x 3 DTM into a 2 x 2 DTM. In this case, both nearest neighbour and 
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Figure 8. Aggregation for smoothing a DTM surface. 

Figure 9. Resampling for smoothing a DTM surface. 

3.3 Scale-driven multi-scale representation 

In the case of smoothing, there is a need to determine the window size. In 
other words, the window size is not directly related to the scales. To solve 
this problem, Li and Openshaw (1993) formulated a Natural Principle for 
objective generalization, which objectively links the window size to the 
source (input) data scale and result (output) data scale. 

Li and Openshaw (1993) made use of the terrain surface viewed from 
different height levels as an example to illustrate the Natural Principle. If 
one views the terrain surface from the moon, all terrain variations disap-
pear. If one views the terrain surface from a satellite, then the terrain sur-
face becomes very smooth. When one views the terrain surface from an 
aircraft, small details do not appear but the main characteristics of the ter-
rain variations are very clear. This is also due to the limitation in the reso-
lution of the human eye. When the viewpoint is higher, the ground area 
corresponding to the human eyes’ resolution becomes larger, thus the 
ground surface appears to be more abstract. These examples underline a 
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bilinear interpolations have been employed. Indeed, aggregation might be 
regarded as a special case of resampling. 
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universal principle, a natural principle, according to Li and Openshaw 
(1993). It can be stated as follows: 

For a given scale of interest, all details about the spatial variations of 
geographical objects (features) beyond a certain limitation cannot be 
presented and can thus be neglected. 
It follows, therefore, that a simple corollary to this process can be used 

as a basis for the transformations in scale. The corollary can be stated as 
follows: 

By using a criterion similar to the limitation in resolution of the human 
eye and neglecting all the information about the spatial variation of 
spatial objects (features) beyond this limitation, zooming (or generaliza-
tion) effects can be achieved.  
Li and Openshaw (1992) also term such a limitation as the smallest visi-

ble object (SVO), or smallest visible size (SVS) in other literature. Figure 
10 illustrates the natural principle to generalize a 3-D surface. In this case, 
a piece of 3-D terrain surface within SVS is represented by a voxel. 
 

 

 
Figure 10. The natural principle: Spatial variations within a smallest visible size 

(SVS) to be neglected. 

Figure 11 illustrates the working example of applying this natural prin-
ciple to a terrain surface. Figure 11a shows the view of a terrain surface at 
two different heights, resulting in representations at two different scales. 
Figure 11b shows the result viewed at level AL  and Figure 11c shows the 
result viewed at level BL . In these two figures, the generalization effects 
are very clear. 

To apply this natural principle, the critical element to be considered is 
the value of this “certain limitation” or the value of SVS, beyond which all 
spatial variations (no matter how complicated) can be neglected. Li and 
Openshaw (1992, 1993) suggested the following formula:  
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Figure 11. The natural principle applied to a terrain surface (Li and Openshaw 

1993). 

T

S
T S

S
SkK 1  (12) 

where TS  and SS  are the scale factors of the target and source data, re-
spectively; k is the SVS value in terms of map distance on target scale. 
Through intensive experimental testing, Li and Openshaw (1992) found 
that a value between 0.5 mm and 0.7 mm will enable them to produce gen-
eralization results similar to that by manual generalization. Therefore, it is 
recommend that 
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mmmmk 7.0,5.0  (13) 

In carrying out the scale-driven generalization, the K value is first com-
puted and then this value is used to determine the window size. The rest is 
similar to low-pass filtering. 

4 Multi-Scale Terrain Analysis 

In multi-scale terrain analysis, two main types of research have been un-
dertaken. The first is to model the effect of scale (resolution) on the analy-
sis results and the second is to find an optimum scale (or resolution) for a 
given analysis. 

4.1 Multi-scale effects in terrain analysis 

The modelling of scale (resolution) effect has been a major topic in digital 
terrain analysis (Gallant 2006). The normal strategy is  

 to resample original data into a series of new sets with different reso-
lutions,  

 to perform terrain analysis with these sets of data, and  
 to find some relationship between resolution and analysis results. 

The analysis could be carried out for the accuracy of DTM, the parame-
ters computed from DTM, the features extracted from DTM, and the 
DTM-based application models.  

A typical example of accuracy analysis was conducted by Li (1990, 
1992). Figure 12 shows his experimental results, which illustrate the rela-
tionship between the grid interval (d) (resulting from regular-grid sam-
pling) and the accuracy of the final DTM ( ) in terms of standard devia-
tion, for three different test areas. It is clear that the relationship is linear 
for composite data (i.e. grid plus feature data, including peaks, pits, break 
lines, ridge lines, and ravines) as shown in the right column but is second 
order for regular grids only as shown in the left column. Mathematically, 
the relations could be written as follows (Li et al. 2005): 

For composite data, dkk DatacDTM 21  (14) 

For grid data only, 2
321 dkdkk DatagDTM  (15) 

where Data is the accuracy of measured data points and ki is a coefficient. 
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Figure 12. Variation of DTM accuracy with sampling interval (Li 1990, 1992). 

k2 is related to the slope angle of the terrain. The estimation of these pa-
rameters was addressed in detail by Li (1990, 1992). Similar mathematical 
models have also been derived through theoretical analysis by Li (1990, 
1993) (also see Li et al. 2005). 

In a similar way, the effect of DEM resolution on the various terrain pa-
rameters and DTM-based applications have been investigated, e.g. on 
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slope (Chen et al. 2006), on a number of terrain parameters and attributes 
(Gao 1998, Albani et al. 2004, Zhu 2006, Deng et al. 2007), on watershed 
model (Wolock and Price 1994), on digital soil mapping (Zhu 2006), on 
the accuracy of a distributed rockfall model (Dorren and Heuvelink 2004), 
and on terrain classification (Cheng et al. 2004). Figure 13 shows the rela-
tionship between DTM resolution and four terrain parameters (i.e. slope, 
wetness index, profile curvature, and plan curvature), which was obtained 
by Deng et al (2007). It was concluded that: 
 

 
 

Figure 13. Relationship between DTM resolution and four terrain parameters 
(Deng et al. 2007). 

 Terrain attributes respond to resolution change in characteristically 
different ways, especially when the resolution is coarsened in the 
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range 5–50 m. Plan and profile curvatures are the most sensitive 
among these parameters, whereas slope is the least sensitive; and 

 Consistently smaller correlations were observed across all terrain at-
tributes when the pairs of DEM resolution compared were increas-
ingly distant from each other. 

These conclusions were obtained from a study in the eastern Santa 
Monica Mountains, California, in an area of 962 km2. The original grid in-
terval (resolution) was 5 m, thus resulting in 38,484,560 cells. 

Figure 14 shows the relationship between DEM resolution and terrain 
classification results, which were reported by Cheng et al. (2004). They 
tested the fuzzy classification of morphological objects, i.e. foreshore 
(lower than -6.0 m), beach (-6.0 ~ -1.1 m) and fore-dune (-1.1~ +2 m), us-
ing Ameland Island of the Netherlands as a test area. The original DEM 
was in a 60 m x 60 m grid. They aggregated data using a series of window 
sizes (i.e. 3 x 3, 5 x 5, …, 25 x 25). They found that it was difficult to ac-
curately predict the effect of scale on fuzzy spatial objects, although the 
change with the scale exhibits a linear relationship in some statistical indi-
cators. 
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Figure 14. Effect of resolution on the classification of fuzzy objects (in terms of 

area) (Cheng et al. 2004). 
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4.2 Optimization of scale in terrain analysis 

As one can understand, it is not enough to model the scale effects. Indeed, 
it would be more desirable to find an optimum scale (resolution) for a par-
ticular analysis or application, if it exists. This could be carried out through 
experimental testing or through theoretical analysis. 

In experimental analysis, one could first make a systematic classifica-
tion of terrain types, then conduct terrain analysis with DTM data resam-
pled into various resolutions, and finally compare all these results with a 
benchmark. The best result will correspond to the optimum resolution. For 
example, Florinsky and Kuryakova (2000) produced the variation of corre-
lation coefficients between terrain attributes (slope, aspect, curvature, etc.) 
and targeted biophysical properties (e.g. soil moisture) and considered the 
resolution range where such a variation was relatively stable as the opti-
mum resolution. In this way, some empirical models may be obtained. 
Currently, however, no such empirical models have been established, al-
though a number of empirical studies have been carried out (see previous 
section). 

This process could also be made self-adaptive. This means that the re-
sampling and analysis will automatically stop when certain conditions are 
met. These conditions could be the maximization and/or minimization of a 
parameter or some parameters, or the difference between a parameter or 
some parameters obtained in this round and in the previous round being 
within a given range. 

Of course, it would be more desirable to have theoretical models to de-
termine the optimum scale (resolution) for a given application. Many ap-
proaches have been suggested, such as fractal dimension (Xia and Clarke 
1997) and variograms (Oliver 2001). However, perhaps the most interest-
ing one is the so-called “local variance method”, which was proposed by 
Woodcock and Strahler (1987). The working principle is illustrated in Fig-
ure 15. The procedure is as follows: (a) plot local variance as a function of 
resolution; and (2) find the resolution with maximum variance and regard 
it as the optimum resolution for this set of data. 

The local variance is defined as the average of the variances within a 
moving window passing through the entire area. The reason behind this 
method is that if the spatial resolution is considerably finer than the objects 
in the area, most of the measurements will be highly correlated with their 
neighbours and thus the local variance will be low. On the other hand, if 
the objects studied approximate the size of the resolution, the values tend 
to be different from each other and therefore the local variance increases. 
(Cao and Lam 1997).  
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Figure 15. Data variability for the determination of optimum resolution. 

This method was originally used for remote sensing image data and it 
should be equally applicable to DTM data. However, this method can only 
indicate the scale range of the terrain properties but not the optimum reso-
lution for the analysis of a given terrain parameter. In this respect, the 
“Natural Principle” for objective generalization by Li and Openshaw 
(1993) might be customized for this purpose in different applications.  

5 Concluding remarks 

“Scale is a confusing concept, often misunderstood, and meaning different 
things depending on the context and disciplinary perspective” (Quattrochi 
and Goodchild 1997, p395). In this chapter, a number of issues on multi-
scale modelling and analysis have been tackled. First, a discussion on the 
concepts of scale and multi-scale was conducted. Second, three approaches 
for the multi-scale representation (modelling) of terrain surfaces are pre-
sented, i.e. critical-points-based, smoothing-based and scale-driven. Then, 
two issues on multi-scale analysis are examined. The first issue is the 
modelling of scale effect and the other is the optimization of scale. Hope-
fully, the confusing concepts scale and multi-scale have been clarified 
somehow. 

“Scale is undoubtedly one of the most fundamental aspects of any re-
search” (Quattrochi and Goodchild 1997). Cola (1997) argues that scale is 
such a pervasive issue in the analysis of spatial data as to require it to be at 
the level of a basic dimension, along with space, time and theme. This 
view is similar to the view previously expressed by this author (Li 1994, Li 
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1996), but from different angles. Indeed, Quattrochi and Goodchild (1997) 
in their Epilogue also re-iterated a similar view: “Scale is a fundamental 
and inescapable dimension of geographic data”. Therefore, scale is not 
only an issue in digital terrain modelling and analysis but also a fundamen-
tal dimension in all types of spatial modelling and analysis. Indeed, scale is 
everywhere in science like God in religion. The optimization of scale is an 
issue of some urgency. 
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A Seamless and Adaptive LOD Model 

ZHAO Xuesheng, BAI Jianjun and CHEN Jun  

Abstract  

In this paper, a new seamless and adaptive LOD (Level of Details) model-
ling method of global terrain based on the QTM (Quaternary Triangular 
Mesh) is described. Our approach starts with QTM tessellation based on 
the WGS84 ellipsoidal surface. Thus, the global terrain can be represented 
by an array of elevation values of QTM vertices. Next, an adaptive idea of 
a Binary Triangle Tree is inserted in this QTM model to form an adaptive, 
continuous, and uniform LOD triangular mesh in the DEM grids and their 
vertices completely coincide with the vertices of QTM. The experiment 
and analysis are carried out with the global terrain data, GTOPO30. The 
results illustrate that: (1) the global DEM model based on QTM is seam-
less, hierarchical, and regular over the whole Earth, and the dataset occu-
pies only about half of its initial size; (2) an adaptive LOD (Level of De-
tails) model of the DEM data blocks is constructed and the problem of 
discontinuity in different subdivision levels is overcome; and (3) the num-
ber of the triangles in this adaptive LOD model decreases greatly as their 
error tolerances increase, but there is no obvious change in the results. 
 
Keywords: global terrain, QTM, adaptive partition, LOD. 

1 Introduction 

The representation of the physical surface of the Earth in digital systems is 
a subject of considerable current attention. As the area of coverage of such 
systems increases, it becomes necessary to provide methods to model very 
large, continuous surface conglomerates in a manner that does not violate 
surface integrity. The regular or irregular Digital Elevation Model (DEM) 
grids based on the idea of map projections are effective traditional methods 
for modelling the terrain on the local or small-scale spherical surfaces as a 
flat surface, and many corresponding algorithms have been presented over 
the last decade (Lindstrom et al. 1996, Lindstrom and Pascucci 2002, 
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Duchaineau et al. 1997, Kolar 2004). However, a spherical surface is not 
topologically equivalent to planar Euclidean space in geometry. Although 
the traditional DEM grid may support an individual project or small area 
terrain visualization modelling, they do have some significant drawbacks 
for modelling large areas or the whole Earth surface, such as geometric 
distortions, data discontinuity, space inefficiency, and difficulties with data 
sharing between projects caused by a lack of good global representation 
schemes (Lukatela 2000). 

The Quaternary Triangular Mesh (QTM), first proposed by Dutton 
(1989), is a tessellation of the Earth’s surface with non-overlapping (or 
broken) triangular cells. In QTM partition, an octahedron is used as a ba-
sis. It can be readily aligned with the conventional geographic grid consist-
ing of longitude and latitude. When this is done, QTM vertices occupy 
cardinal points and their edges assume cardinal directions, following the 
equator, the prime meridian, and the 90th, 180th and 270th meridians, mak-
ing it simple to determine in which facet a point on the planet is located. It 
can simulate the surface of the Earth when it is recursively partitioned to a 
certain degree. In addition, the QTM grid structure is seamless, hierarchi-
cal, and numerically stable everywhere on the spherical surface. Its hierar-
chical grid structure can be used to efficiently manage multi-resolution 
global data, and it allows spatial phenomena to be studied at different lev-
els of detail in a consistent fashion across extensive regions of the sphere 
(Lee and Samet 2000, Chen et al. 2003). It is possible to resolve problems, 
such as geometric distortions, spatial data overlapping (or breaking), and 
space inefficiency in managing the global multi-scale spatial data by using 
QTM instead of the raster mode on a planar surface (Dutton 1999). How-
ever, it cannot preserve continuity between different resolutions if the ele-
vations of these vertices are taken into account and, as a result, a uniform 
adaptive LOD (Level of Details) model of the global terrain, which is very 
important in multi-resolution operations and realistic visualization, cannot 
be constructed using a QTM directly. 

To overcome these deficiencies, a new seamless and adaptive LOD 
modelling method of the global terrain based on the idea of the Binary Tri-
angle Tree will be introduced in this chapter. Following this introduction is 
a section critically reviewing current methods of modelling and visualiza-
tion of the global DEM. Then, a hierarchical and seamless modelling 
method of the global terrain, based on QTM, is demonstrated. This is fol-
lowed by the presentation of an adaptive simplification rule of hierarchical 
triangles in Diamond data blocks, after which the GTOPO30 data of the 
whole Earth and STRM data in some regions are used to test the methods 
and algorithms presented in this chapter. Finally, conclusions and recom-
mendations for future work will be presented. 
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2 A Critical Examination of Related Works 

A number of approaches to subdividing the surface of the Earth in a con-
tinuous and hierarchical way for global terrain visualization have been 
suggested. The approaches can be classified as regular latitude and longi-
tude grids, adjusted latitude and longitude grids, and adaptive subdivision 
grids. 

Regular latitude & longitude grids. The familiar latitude/longitude 
grid is the most common basis for global DEMs in use today, such as 
GTOPO30 and ETOPO5 data (supplied by the US Geological Survey), and 
the JGP95E5' data (compiled by The Defence Mapping Agency and 
NASA/Goddard Space Flight Centre). Elevation values may be associated 
with points spaced at equal-angle intervals of latitude and longitude (for 
example, the 30"  30" spacing of the GTOPO30 global elevation data sets 
and the 5'  5' in the ETOPO5). In February 2000, the Shuttle Radar To-
pography Mission (SRTM) successfully collected Interferometric Syn-
thetic Aperture Radar (IFSAR) data over 80% of the landmass of the Earth 
between 60ºN and 56ºS latitudes and SRTM-1 values are spaced at 3". The 
2.5-dimensional Earth terrain is expressed using JGP95E 5' data (Sun et al. 
2000). In Gerstner (2003), the regular grid DEM data, subdivided by lati-
tude and longitude, can be compressed and used for interactive visualiza-
tion of the whole globe. The global DEMs based on the latitude/longitude 
graticule have numerous practical advantages and have been used to de-
velop sound survey sampling designs on the Earth’s surface. These are 
based on a 2-dimensional Cartesian coordinate system and such systems 
have long been a foundation of scientific inquiry on spatial domains. Such 
square-based grids can also be easily mapped into common display de-
vices. The latitude/longitude system itself has been used extensively since 
well before the computer era and is therefore the basis for a wide array of 
existing data sets, processing algorithms, and software. 

But the latitude/longitude grids become increasingly distorted in area 
and/or shape as one moves north or south from the equator (Sahr et al. 
2003). The grid cells of the north and south poles are in fact triangles, not 
“squares” as appear elsewhere. These polar singularities have forced 
global visualization modelling to make use of special grids for the polar 
region. Another defect is that DEMs based on the latitude/longitude grid 
do not have equal area cells, which is important for many applications and 
much redundancy of data occurs near the poles. For example, the elevation 
value of one pole point is repeated 43,200 times in the GTOPO30 data file. 

Adjusted latitude and longitude grids. In order to tessellate the 
spherical surface into approximately equal area grids with latitude and 



88 

longitude, another set of attempts based on adjusted latitude and longitude 
grids have been made in recent years (NIMA 2003, Bjørke et al. 2004). 
For example, DTED data (supplied by US National Imagery and Mapping 
Agency) keeps the latitude space constant (3"), and the longitude space is 
changed from equator to pole, such that the longitude space is 3" in lati-
tudes 0º–50º, 6" in latitudes 50º–70º, 9" in latitudes 70º–75º, 12" in lati-
tudes 75º–80º, and 18" in latitudes 80º–90º (NIMA 2003). Bjørke et al. 
(2004) presented a similar grid tessellation method in which the grid areas 
are almost equal. Compared to regular latitude and longitude grids, the ad-
justed latitude and longitude grids are almost equal in area and the amount 
of redundant data occurring near the poles is decreased greatly. However, 
these schemes achieved more regular grid areas at the cost of more irregu-
lar grid shapes and more complex cell adjacencies (Sahr et al. 2003). 

Adaptive subdivision grids. Lukatela (1987, 2000) constructed seam-
less global triangular networks in the Hipparchus System similar to the 
planar TIN commonly used to facilitate terrain modelling and volumetric 
analysis. This is based on global coordinates and a planetary surface tessel-
lation using spherical Voronoi polygons. The Hipparchus System makes 
no attempt to produce a “regular” grid. Instead, the grid is designed so that 
any particular implementation of the grid can match the density of the data 
that inhabits it, and accepts this “irregular” nature while attempting to 
make computations based on it as fast and as precise as possible. Kolar 
(2004) presented a solution of subdivision grids in order to deal with pos-
sibly huge amounts of terrain data with multiple LOD. The geographic in-
dex (geoindex) of subdivision grids is based on Voronoi grids on the 
sphere, providing multiple levels of the division scheme. Each level of 
geoindex is given by a set of centroids distributed semi-regularly around 
the unit sphere. The division scheme is composed of cells. The cells are 
defined by a set of points with radial distances to a particular centroid 
lower than to any other centroid. However, in these irregular grid systems, 
the hierarchy of space is created by grouping and organizing spatial objects 
according to some pre-defined relations. In this case, changes are referred 
to spatial objects themselves and the hierarchy of the spatial object is 
maintained using explicitly defined relations among spatial objects instead 
of recursive decomposition of space. When a spatial process results in 
changes to spatial objects at one particular level, these changes cannot be 
propagated to its adjacent levels (Pang and Shi 1998). Hence, these irregu-
lar grid systems are difficult to manage with the large volume of global 
DEM data and cannot manipulate multi-resolution data visualization effi-
ciently. It would be desirable to have grids consisting of highly regular re-
gions with evenly distributed elevation points. 

ZHAO Xuesheng, BAI Jianjun and CHEN Jun 
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In this chapter, the global DEM data are assigned according to the ver-
tex positions of QTM triangles and elevation points are arrayed at regular 
and almost equal space intervals everywhere on the globe. For the seam-
less and efficient construction of a global DEM, the idea of the Binary Tri-
angle Trees is inserted into the QTM structure. A seamless and adaptive 
LOD modelling method of global terrain visualization and the correspond-
ing algorithms will be given in detail in the following sections. 

3 A Seamless QTM Tessellation on an Ellipsoidal Surface 

Our approach starts with an extension method from the traditional QTM, 
i.e. the global tessellation is based on the WGS84 ellipsoidal surface in-
stead of a spherical surface. Meanwhile, the distortion of areas and lines of 
triangles at different levels between the ellipsoidal QTM and spherical 
QTM are compared. The elevation values of the ellipsoidal QTM vertices 
are obtained through the method of double linear interpolation (Li & Zhu 
2000) from the DEM data expressed by longitude and latitude grids. 

3.1 QTM partition on an ellipsoidal surface 

The QTM structure used in Fekete (1990), Dutton (1989, 1999), and 
Goodchild and Yang (1992) are all based on inscribed octahedra. The rea-
son is that it can be readily aligned with the conventional geographical grid 
of longitude and latitude. Here, the ellipsoidal surface of WGS84 is tessel-
lated by 8 triangles, which is the same as the initial partition in QTM (see 
Figure 1). Its vertices occupy cardinal points and its edges assume cardinal 
directions, following the equator, the prime meridian, and the 90th, 180th 
and 270th meridians, making it simple to determine which facet a point on 
the planet occupies. In addition, each facet is a right spherical triangle and 
one subdivision line of each face is parallel to the equator. When a triangle 
is subdivided, the latitude/longitude pairs of any two of its three vertices 
are averaged to yield edge midpoint locations. Clearly after each level of 
subdivision, the triangles become smaller, and at the 21st level of subdivi-
sion, their size is approximately 1 m, going down to 1 cm at the 28th level. 
Figure 1 illustrates subdivisions at levels 1, 2 and 3. 

The vertices, which make up QTM, are called QTM vertices whose posi-
tion can be identified by latitude/longitude coordinates. In term of the 
regularity of the subdivision, the QTM structure has several attractive 
properties, for example, the topology of the QTM makes neighbour search 
easy, and the tessellation is regular, i.e. the coordinates of the points can be 
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implicitly figured out according to their storage location and the levels of 
the subdivision. Thus, the global terrain can be represented by the array of 
elevation values of the vertices. 

 

   
(a) Level 1 (b) Level 2 (c) Level 3 

Figure 1. QTM partition of spherical facet based on octahedron (Dutton 1989). 

3.2 Approximate calculations of area and length 

The precise calculations of area and length of triangles on the ellipsoidal 
surface are more complex. In this section, in order to analyse the distribu-
tion of distortion in the triangular grid, the approximate calculation of area 
and length is both simple and sufficient. The details are as follows. 

P1(u1, 1), P2 (u2, 2) are two different points on the ellipsoidal surface, 
the distance S between these two points can be calculated by (Bian et al. 
2005)  
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in the QTM triangles 
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where 1 and 2 can be calculated by 

022

011

cos/sinsin
cos/sinsin

Au
Au

 

In order to calculate the triangular area on an ellipsoidal surface, the tri-
angle is partitioned into many long and narrow strips according to latitude 
lines (see Figure 2). 

 

 
Figure 2. Recursive calculation of the triangle area on ellipsoidal surface. 

The area of each strip can be calculated by the following formula:  

1

2
)sin1(2

sin
2

)sinarctan(
22

2
B

BBe
B

e
BeLbZ    (2) 

where b is the polar radius, e is the flattening of the ellipsoid, and L is the 
longitude interval. Here the precision of S and Z can be controlled by n 
(the number of strips). 

3.3 Distortion of triangles in the recursive subdivision 

The area and length of the QTM triangles can be approximately calculated 
by Equations (1) and (2). From the results in Table 1, it can be seen that 
the ratios of Smax/Smin and Lmax/Lmin become larger with increasing partition 
level, but the increment becomes less and less, at last converging to 1.73 
and 1.89, respectively. This means that the triangles are almost the same in 
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size and shape, which is very useful in the hierarchical index and extended 
operations on global data. In addition, the distortion of the ellipsoidal tri-
angles is almost equal to that of the spherical triangles at every level (see 
Figure 3). 

 

 
(a) Ratio of Smax/Smin (b) Ratio of Lmax/Lmin 

Figure 3. Distortion comparison between ellipsoidal triangle and spherical triagle. 

4 An Adaptive Simplification Method of DEM Data Block 

In order to improve the efficiency in visualization, the DEM data blocks 
located in the memory need to be simplified to multi-resolution triangle 
grids based on the terrain properties, i.e. any triangle region in QTM, 
whose elevation error exceeds a given tolerance value, is split into four 
smaller triangles, and so on. Then, a multi-hierarchy triangle model is con-
structed based on the terrain properties. 
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4.1 Diamond data organization based on QTM 

White (2000) notes that pairs of adjacent triangle faces may be combined 
to form a Diamond, and this Diamond may be recursively sub-divided in a 
fashion analogous to the square quadtree subdivision. According to this 
idea, the whole Earth surface can be represented as a quadtree with the 
root having four child nodes (four base-Diamonds as seen in Figure 4), and 
the interior node has four child nodes (four child-Diamonds). Each Dia-
mond is assigned a quadcode, and the leaf nodes can be labelled according 
to the Z space-filling curve. The global DEM data is organized on levels of 
Diamond subdivision as the basic storage unit, which correspond to differ-
ent resolutions of traditional mapping. In the file system, these are the bi-
nary terrain data files in which the height values of the QTM vertices 
within the Diamond region are stored in Binary Large Objects (BLOB). 

 

 
Figure 4. The DEM data organizing based on the levels of Diamonds. 

In QTM, each triangle can be divided into four smaller triangles by 
breaking each edge into 2 pieces and connecting the midpoints with lines. 
Like the quadtree subdivision of the square, each base Diamond in the oc-
tahedron can be divided into four smaller Diamonds (see Figure 5). These 
two kinds of subdivision are essentially the same tessellation and they 
share the same vertices in the spherical surface, so the QTM can be re-
garded as Diamond meshes. 
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Figure 5. QTM and the Diamond tessellation at the third level. 

4.2 The dynamic paging method of diamond blocks 

As the dataset is too large to be stored in the main memory at one time, 
within the hierarchical operations of terrain data only a few Diamonds in a 
given level of data are paged in according to the proportion between the 
screen space distance and its corresponding object space distance. When 
the project area of given objects on the screen is larger, the object space 
distance per pixel is smaller; thus higher resolution data is needed, or vice 
versa. The Diamond-cell interval required is selected by calculating the 
object space distance per pixel according to a projection relationship in the 
visualization, thus the level of data to page in can be determined. 

For all Diamonds located in the same level, only the Diamonds inside 
the view-frame are added, while the Diamonds located outside the view 
are not required for efficient rendering. Diamonds are chosen as the active 
areas based on considerations of PC memory availability and the desired 
range of view. This controls the amount of terrain data in the main mem-
ory at any given time and available for operations. When the operation al-
gorithm is initialized, the viewpoint is centred on the four Diamonds. A 
bounding box is established around the screen centre as shown in Figure 6. 
When the user reaches the bounding box in any direction, memory space is 
freed in the direction opposite of travel, Diamonds terrain is paged in the 
direction of travel, and the bounding box moves. The dynamic algorithm 
of paging Diamonds data in the database is as follows: 

 The required QTM cell resolution is calculated according to the pro-
jection relationship, and then the level of Diamond is determined in 
the visualization. 
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 For the level of Diamond, the bounding box and the scope of the 
Diamonds is compared, to determine which Diamonds should be 
added. 

 With the changing of viewpoint and angle of view, some Diamonds 
far from the bounding box are removed and other Diamonds near the 
bounding box are added. 

 

 
Figure 6. The dynamic adding or removing of Diamonds. 

4.3 Data discontinuity in different subdivision levels 

This mode cannot preserve the continuity of the terrain surface along the 
edges between the different subdivision levels (see Figure 7). Tradition-
ally, the continuity of the terrain can be kept by tessellating the triangles to 
a higher level (see Figure 8). 
 

 
Figure 7. Hierarchical QTM and the crack caused by different subdivisions. 
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Figure 8. Eliminating cracks by splitting the triangle in a higher level. 

However, the traditional method has some deficiencies. Firstly, the sub-
divisions need to be controlled manually and the operation can be done 
only when the difference between the adjacent levels are no larger than 
one. Secondly, the regularity of tessellation grids cannot be preserved, in 
which case some grids are QTM and others are irregular. In order to over-
come this problem, an adaptive idea of a Binary Triangle Tree (Lindstrom 
and Pascucci 2002) is introduced in the next section. 

4.4 An adapting multi-hierarchy grids based 
 

There are two triangles in one diamond. For each initial triangle, the pole 
and the midpoint of its subtense are connected to generate two smaller tri-
angles (the latitude-edge is bisected). Next, in every subdivision, the sub-
tense of the newly generated vertex is bisected. In one triangle, the edge 
that needs to be subdivided is called the base edge, the two triangles that 
share the same base edge are made up of a pair of triangles (shown as tri-
angle a and b in Figure 9a). The simplification principle of the adapting 
grid is as follows (see Figure 9): 
 

on Binary Triangle Tree
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(a) (b) 

Figure 9. Bisecting partition of triangles. 

Step 1. The triangle is part of a Diamond---the triangle and its Base 
Neighbour is split simultaneously, such as triangle a and b in Fig-
ure 9a.  

Step 2. The triangle is not part of a Diamond--- Firstly, its Base Neighbour 
is split and then do step 1. For example, in Figure 9b, if triangle c 
is to be split, its base neighbour d must be split into d1, d2 and then 
the triangle c and d2 are split simultaneously.  

Step 3. The process is to be done recursively until its error exceeds the tol-
erance value. 

By recursive subdivision based on the Binary Triangle Tree, an adapt-
ing, continuous, and hierarchical triangular mesh is formed in the data 
blocks and their vertices coincide with the vertices of QTM exactly. The 
problem of discontinuity between different subdivision levels is overcome 
and the number of triangles of paged diamond in the visualization is 
greatly reduced. 

5 Experiments and Analysis 

The experimental results of the hierarchical algorithm for global terrain 
visualization are analysed in this section. The computations were per-
formed on a processor 2.2 GHz Pentium IV PC, with 512MB of RAM and 
64M GeoForceIV graphics. 

Each triangle vertex can be determined by its longitude/latitude coordi-
nates. The elevation values of the ellipsoidal QTM vertices are obtained 
through the method of double linear interpolation from the DEM data ex-
pressed by GTOPO30 (see Figure 10). P is a grid point of QTM, and A, B, 
C, D are interpolation points which are nearest point P. Let the function of 
double linear interpolation be 
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XYaYaXaaZ 3210  (3) 

 

 
Figure 10. Elevation data conversion from GTOPO30 to QTM grids. 

In order to be organized into a Diamond based file, the GTOPO30 data-
set (Courtesy of US Geological Survey) had to be translated into a QTM 
data structure before the visualization operation. It is interpolated into 4 
Diamond, 16 Diamond, 64 Diamond and 256 Diamond datasets; each in-
cludes 2,049 × 2,049 grid vertices. The four Diamond dataset levels make 
up a multi-resolution pyramid, each marked by a Diamond code. Each ele-
vation value in the Diamond file represents the height value in metres 
above sea level and is stored using 2 bytes as a signed integer. Ocean areas 
are marked by no data values. Compared to the GTOPO30 Data, the vol-
ume of the QTM based DEM data is reduced to about half of its initial 
volume. This is illustrated by Equation (4) (Q is the volume of the QTM-
based DEM data, G is the volume of the GTOPO30 DEM data, while n = 
2m + 1, m is the partition levels): 
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The number of triangles on the Earth is N = 33,445,532 before simplifi-
cation and this number decreases greatly by using different error tolerances 
 i ( i = 1, 2, 3) (see Table 2). The corresponding visualized results are 

shown as Figure 11 (ocean area are not displayed). From the results, it can 
be seen that the number of triangles is decreased greatly (left figures of 
Figure 11a and 11b) with their error tolerances increasing, but the visualized 
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Table 2. The number of triangles at different tolerances .. 

i 0 =0 1 =0.5 2 =1 3 =2 
N 33,554,432 99,529 70,912 33,786 
Ni / N0 ( )  0.30 0.21 0.10 

 

6 Conclusions 

A global multi-resolution Digital Elevation Model and a feasible solution 
for its visualization and management remains a challenging vision. Real-
time and realistic visualization of the Earth’s terrain is one of the funda-
mental problems in Geography and Spatial Information Science. In this 
chapter, a seamless and adaptive LOD model of the global terrain based on 
QTM is presented.  

In this model, the DEM grids are tessellated on an ellipsoid directly 
without any cartographic projection and its regularity makes it convenient 
for data organization and compressed storage. Not only the deficiencies of 
data overlapping (or breaking) caused by traditional DEM are overcome, 
but the distortion in area and/or shape and much of the redundant data 
found in the latitude/longitude grids are avoided as well. Compared with 
the GTOPO30 Data expressed in longitude/latitude coordinates, the vol-
ume of the QTM-based DEM data is about half of its original volume. 

Another contribution of this chapter is the presentation of an adaptive 
simplification model of hierarchical triangles in DEM data blocks based on 
the Binary Triangle Tree. This adaptive triangular mesh is regular and uni-
form. The problem of discontinuity between different subdivision levels is 
overcome, greatly reducing the number of triangles required for visualiza-
tion, and ensuring that triangle vertices coincide with the vertices of QTM 
exactly. Our analysis indicates that the QTM approach with LOD model 
provides an efficient, smooth and acceptable representation of global 

 
terrain. 

results show no obvious changes (right figures of Figures 11a and 11b). 
That is to say, in order to improve visualized efficiency, a simplified 
model can be applied by selecting a suitable error tolerance τ. 
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(a)   = 0.5  N=99 529 

  
(b)  =1;   N=70 912 

  
  (c)  =2;  N=33 786 

 
Figure 11. The visualization of global DEMs at four different error tolerances 

(left: triangulation grid map, right: shaded map). 
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Landform Classification of the Loess Plateau 
Based on Slope Spectrum from Grid DEMs 

TANG Guo-an and LI Fayuan 

Abstract 

This chapter proposed a new method for landform classification of the 
Loess Plateau based on grid DEM data and the GIS method. The slope 
spectrum, as well as corresponding indices, was first extracted from 5 m 
resolution DEMs. Then, 13 slope spectrum index layers were integrated 
into a comprehensive layer, on which were based a series of unsupervised 
classifications applied to landform classification. Experimental results 
show that the slope spectrum is appropriate for describing the spatial dis-
tribution of the loess landform and the automatic classification of loess 
landform types is realizable through an integrated analysis of the slope 
spectrum. Furthermore, the method pays more attention to the spatial dis-
tribution of the terrain at a global level and is more fitted to loess landform 
classification at the regional scale. It is also of great significance in extend-
ing the application of DEMs and it improves the methodology of digital 
terrain analysis. 
 
Keywords: landform classification, Loess Plateau, slope spectrum, DEM. 

1 Introduction 

The Loess Plateau is a hot research topic because of its unique and peculiar 
landforms, its serious soil erosion, and its unique and specific land use. 
Landform classification of the Loess Plateau has attracted world-wide in-
terest from many geomorphologists as well as geologists since the 1950s. 
Luo (1956), Yang et al. (1957), Qi and Wang (1959), Chen (1984), Chen 
(1956), Zhang (1986) and Wu et al. (1991) investigated the landform clas-
sification of the Loess Plateau based on different classification principles 
and field investigations, all of which proved the need for further research. 
However, due to the lack of an effective methodology for collecting and 
processing the vast amount of geo-related data necessary, these qualitative 
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researches need to be advanced to a new and higher quantitative level 
based on modern GIS methods.  

DEM data availability and different state-of-the-art analysis technolo-
gies have extended the use of DEMs in many ways (Richard 2000). DEMs 
can contain so much information on surface landforms; that is why numer-
ous researchers have suggested that indices computed from DEMs might 
help define landform units by automated procedures based on computer-
assisted terrain analysis (Kühni and Pfiffner 2001, Miliaresis and Argialas 
2002, Argialas and Tzotsos 2003, MacMillan et al. 2004). Taking the 
Loess Plateau in north Shaanxi province as the study area, this chapter 
proposes a new method of landform classification based on slope spec-
trum. 

2 Slope Spectrum 

Slope is one of the most important terrain factors in representing ground 
surface properties and is commonly applied in geographical research and 
land use planning. However, the slope derived from DEMs at local grid 
cell level is incapable of revealing comprehensive terrain features. Al-
though mean slope is widely accepted as a terrain index revealing the 
roughness of the true surface at regional level, it cannot be employed as a 
unique factor in the classification of terrain type. Hence, it is an obvious 
limitation in the classification of landforms and other more complicated 
analyses. In 2003, slope spectrum was first proposed, and defined as a sta-
tistical model of surface gradient composition in a certain area. Previous 
research on slope spectrum showed that: (1) slope spectrum can reflect re-
lief type more effectively than any single terrain variable; (2) transition of 
slope composition from positive to negative skewness is governed by a 
dimensionless uplift number that reflects the balance between processes of 
relief generation and denudation, and the slope distributions provide a use-
ful tool to explore hillslope processes (Wolinsky and Prason 2005, Mont-
gomery 2001); (3) rock units can be classified by the shape of the slope 
spectrum on stable slopes (Iwahashi et al. 2001); and (4) slope spectrum 
can be used to characterize sections of non-homogeneous topography ef-
fectively (Smith and Shaw 1989). 

Tang (2003) also proposed that the slope spectrum analysis method 
should be a new and effective methodology in revealing the macroscopical 
landform features via a microcosmic surface index. Any landform type can 
find its corresponding slope spectrum, which exists uniquely and stably 
only if the test area is larger than the statistical critical area (Figure 1). 
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Hence, slope spectrum could be used to describe corresponding landform 
types. Previous research on the spatial distribution of slope spectrum in the 
Loess Plateau showed that slope spectrum was capable of depicting the 
spatial variance of loess landforms quantitatively; every quantitative index 
of the slope spectrum can depict the landform features from different as-
pects. So the automatic classification of loess landform types is realizable 
through an integrated analysis of slope spectrum. 
 

 
Figure 1. Slope spectrum of northern Shaanxi. 

3 Method 

3.1 Test area and data 

1,040 set DEMs with 25 m grid size were selected as test data. The origi-
nal elevations were obtained from digitized contour maps that cover the 
whole northern Shaanxi of the Loess Plateau (Figure 2). 
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Figure 2. Sampling positions in the test area. 

3.2 The extracting of slope spectrum 

Figure 3 shows a procedure for extracting slope spectrum from DEMs. 
There follows a few key points in this process. 

(1) 5 m resolution with a 3 degree gradient grading scheme proved to 
be suitable for describing and analysing surface features and con-
structing slope spectrum (Tang 2003). 

(2) A key step is to determine a critical area for a stable slope spec-
trum. Figure 4 shows that if the test area is too small, it will be im-
possible to get a stable slope spectrum. Hence, an area that could 
guarantee the existence of a stable slope spectrum is defined as the 
critical area for slope spectrum in this test area. 
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Figure 3. Procedure for extracting a slope spectrum. 

Figure 4. Slope spectrum becoming stable when the sampling area is over critical 
area. 

The critical area for a stable slope spectrum is calculated by continuously 
extending the sampling windows. The area will be recorded and defined as 
the critical area of this terrain type when the slope histogram remains rela-
tively unchanged when the sampling window size is increased. 

The critical area is tightly correlated with landform type, sample posi-
tion and the constrain condition for stable slope spectrum (Figure 5). In a 
certain area, a minimum critical area can be calculated when the sample 
area is able to represent whole geomorphic feature. 
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Figure 5. Critical Area for Slope Spectrum in north Shaanxi. 

3.3 Landform classification 

Principle  

A basic principle underlying geomorphometrics is that there exists a rela-
tionship between landform and the numerical parameters used to describe 
it (Andrea et al. 2005). Since the same landform will show the greatest 
similarities and the smallest differences and different landforms will show 
the smallest similarities and the greatest differences, the integrated charac-
teristics of the slope spectrum derived from the same landforms behave 
similarly, and the integrated characteristics of the slope spectrum derived 
from different landforms will be different. This resemblance and differ-
ence could be regarded as the rule for landform classification. 

Assuming that there is a group of terrain parameters totalling n, and 
each is regarded as a single band image, the normalization value of any 
point (i, j) on the Earth’s surface for every band can make up a vector X = 
(x1, x2, L, x3) T. X is the feature value of the point (i, j). The n-
dimensional space containing X is called the feature space. Then any point 
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on the Earth’s surface can be represented by a point in the n-dimension 
feature space. Usually, the more similar the terrain parameters derived 
from the same landform, the more concentrated is the distribution of the 
corresponding points in the n-dimension space. Different landforms will 
form different point-sets. The aim of landform classification is to search 
for some curves or some curved surfaces in feature space and using these 
curves or curved surfaces to separate point-sets. The core of landform clas-
sification is then to determine a discriminant algorithm and its correspond-
ing rules. 

The above principle has proved to be effective in the classification of 
landforms (Bue and Stepinski 2006, Daniel et al. 1998, Liu et al. 1999, Liu 
and Liu 1991). However, this process takes DEM cells as a basic unit for 
analysis, but pays less attention to the spatial distribution of terrain at the 
global level. Hence, an ameliorated method is put forward in this chapter. 
The procedure in this experiment can be described as follows: (1) extract-
ing slope spectrum from the corresponding DEMs; (2) extracting a series 
of quantitative indices based on the spectrum; (3) building continuous sur-
faces in the test area based on the extracted quantitative factors of the spec-
trum by the mathematical interpolation method; (4) treating these factor 
layers as a single-band image and combined them into an integrated one 
via the image integrating method; (5) generating classified layers after 
decorrelation analyses; (6) unsupervised classification; and (7) verifying 
the classification result (Figure 6). 
 

normalization of the factors
multi-band integration 
unsupervised classification

Slope spectrumSlope spectrum

selecting classification factors
interpolation process

Feature surface of the spectrum factorsFeature surface of the spectrum factors

Information integrated matrixInformation integrated matrix

Classification after-treatment
Thematic map output

Loess landform mapLoess landform map

normalization of the factors
multi-band integration 
unsupervised classification

Slope spectrumSlope spectrum

selecting classification factors
interpolation process

Feature surface of the spectrum factorsFeature surface of the spectrum factors

Information integrated matrixInformation integrated matrix

Classification after-treatment
Thematic map output

Loess landform mapLoess landform map
 

Figure 6. Procedure for landform classification. 
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Slope spectrum indices 

Based on research by Li (2007), 13 indices from the slope spectrum are se-
lected as basic factors for landform classification. These are slope spec-
trum entropy (H), skewness of the slope spectrum (S), mean elevation, 
hypsometric integral, slope-area integral, slope variability (SOS), mean 
plane curvature, mean profile curvature, mean patch area (AREA_MN), Pe-
rimeter-Area Fractal Dimension (PAFRAC), Contagion Index (CONTAG), 
Interspersion and Juxtaposition Index (IJI), Patch Cohesion Index 
(COHESION). Calculation methods for the indices are listed in Table 1. 

Table 1. Algorithms for the calculation of slope spectrum indices. 

Classifica-
tion index Calculation Remark 

Slope spec-
trum entropy 
(H) 

m

i
ii PPH

1
ln

 

m: number of 
slope class, 
Pi: denotes fre-
quency of each 
slope class 

Skewness of 
the slope spec-
trum (S) 

m

i

i pp
m

S
1

3

6
1

 

p : mean fre-
quency 
: standard devia-

tion 
Slope Vari-
abiity (SOS) first derivative of slope  

Slope-area in-
tegral 

m

i
ii PP

1
ln

 

m: number of 
slope class, 
Pi: cumulated fre-
quency of each 
slope class 

Mean patch 
area 
(AREA_MN) i

n

j
ij naMNAREA

1
_  aij: area (m2) of 

patch ij, 
ni: patch number. 

Perimeter-
Area Fractal 
Dimesion 
(PAFRAC) 

2

1 1

2

1 11

)ln()ln(

)ln()ln()ln(ln

2

n

j

n

j
ijiji

n

j

n

j
ijij

n

j
ijiji

ppn

apapn
PAFRAC

 

pij: perimeter (m) 
of patch ij. 
ni: number of 
patches in the 
landscape of patch 
type (class) i. 

Contagion In-
dex 
(CONTAG) 

100
)ln(2

)ln()(

1 1

1

1

1

m

g

gP
g

gP

CONTAG

m

k
ik

ik
i

m

k
m

k
ik

ik
i

m

i

 

Pi: proportion of 
the landscape oc-
cupied by patch 
type (class) i. 
gik: number of ad-
jacencies (joins) 
between pixels of 
patch types 
(classes) i and k 
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based on the dou-
ble-count method. 
m: number of 
patch types 
(classes) present 
in the landscape, 
including the 
landscape border 
if present. 

Interspersion 
and Juxtaposi-
tion Index (IJI) 

100
)1ln(

ln

1

1

11

m

e

e

e

e

LJI

m

k
m

k
ik

ik
m

k
ik

ik
 

eik: total length 
(m) of edge in 
landscape between 
patch types 
(classes) i and k. 
m: number of 
patch types 
(classes) present 
in the landscape, 
including the 
landscape border, 
if present. 

Patch Cohe-
sion Index 
(COHESION) 

100111
1

1

1

Aap

p
COHESION

ij

n

j
ij

n

j
ij  

pij: perimeter of 
patch ij in terms of 
number of cell 
surfaces. 
aij: area of patch ij 
in terms of num-
ber of cells. 
A: total number of 
cells in the land-
scape. 

 

4 Experimental results and discussion 

4.1 Spatial distribution of the slope spectrum 

Based on the slope spectrum of 1,040 test areas, 13 indices are derived, 
which reflect the properties of the slope spectrum. Then, the spatial distri-
bution layers of these indices are constructed with the ArcGIS geostatisti-
cal analysis tools. The process can be depicted as follows: 

(1) Exploring the data distribution: if the data is not normally distrib-
uted, a transformation process should be carried out to bring it to a 
normal distribution pattern; 
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(2) Identifying global trends: the trends will be removed when model-
ling; 

(3) Calculating distance and semi-variance between all sampling pairs 
and determining rational lag size; 

(4) Establishing best-fit semi-variance /covariance modelling; 
(5) Calculating the semi-variance of each pair of points and that be-

tween each observation and prediction value; then a matrix of 
these semi-variance values can be built; 

(6) Calculating the weight of the measured points around the predic-
tion point; 

(7) Multiplying the weight for each measured value times the value, 
and adding the products together to calculate the prediction value; 

(8) Applying cross-validation to evaluate prediction accuracy. The 
evaluation standard is as follows: Mean Error (ME) and Mean 
Standardized Error (MSE) should be close to zero, Average Stan-
dardized Error (ASE) should be close to the Root Mean Square Er-
ror (RMSE) and the Root Mean Square Standardized Error 
(RMSSE) close to unity. 

Furthermore, to avoid the influence of different dimensions, all of the 
terrain factors should be normalized according to Equation (2). 

255
minmax

min,
, xx

xx
x ji

ji

 (2) 

where x is the attribute value; i j are the number of rows and columns of 
the interpolated surface; xi,j

’ denotes the normalization value. 
Each normalized terrain derivative is treated as a single-band image and 

they are put into 13 channels for the integration process in the following 
order: slope spectrum information entropy, skewness of the slope spec-
trum, mean elevation, hypsometric Integral, slope-area integral, slope vari-
ability, mean plane curvature, mean profile curvature, mean patch area, Pe-
rimeter-Area Fractal Dimension, Contagion Index, Interspersion and 
Juxtaposition Index and Patch Cohesion Index. Then, a comprehensive 
multi-band image can be obtained by an integrating process of the 13 sin-
gle-band images, which will be the basis for landform classification. 

Actually, not every band is suitable and available for the above process. 
Some bands are highly correlated. Since the classification accuracy will 
not be affected if these bands are not used, they can be thrown out selec-
tively. The band or band combinations used for classification are called the 
“features”. Feature selection is the process of choosing characteristic to be 
used for classification and feature extraction picks up a group of new char-
acteristics, which best reflects the different classes. There are usually two 
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methods for feature selection: Correlation Matrix and Optimum Index Fac-
tor (OIF). The method of Correlation Matrix is used in this experiment. 
This method calculates the correlation coefficient matrix of every slope 
spectrum index, and the one with the lowest correlation will be the candi-
date index for the classification. 

Covariance and correlation coefficients between any two band images 
are calculated to examine the correlatability of different terrain derivatives. 
The terrain derivatives with high correlatability can be put into one group. 
In Tables 2 and 3, 13 slope spectrum indices were classified into five 
groups according to their correlatability. The first group includes slope 
spectrum information entropy, slope-area integral, mean slope variability, 
mean plane curvature, mean profile curvature, Perimeter-Area Fractal Di-
mension and Juxtaposition Index. The second group includes skewness of 
the slope spectrum, Contagion Index, Interspersion, Patch Cohesion Index. 
Mean elevation, hypsometric integral, mean patch area are taken inde-
pendently as the remaining three groups. To enhance the efficiency of the 
process, principal component analysis is applied to eliminate correlatabil-
ity between the factors. With Principal Components Analysis (PCA), the 
data in the first and second groups are integrated. Finally, a multi-band im-
age with comprehensive terrain information can be derived using an inte-
grating process with above data sets. 

4.2 Classification of landform 

The ISODATA (Iterative Self-Organizing Data Analysis Technique) was 
applied in the landform classification. This method includes three steps: 
(1) clustering analysis, (2) split of assemblage, and (3) merge of assem-
blage. The mechanism of ISODATA is a process of automatic iterative 
clustering. Split and merge can run automatically; the operator can deter-
mine model parameters in the process of continuous clustering, so as to 
construct finally the best fitted discriminant function. It is also a process of 
adjustment and training of the discriminant function using statistical fea-
tures of the optical spectrum. 

Under the environment of ERDAS 8.5, some controlling parameters 
should be appointed first: 

(1) Number of class. This number is often appointed twice as the ul-
timate number of classes. 

(2) Maximum iteration: cycle number of clustering, to avoid lengthy 
processing or dead cycles in running the program. 
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(3) Convergence threshold: maximum percentage of pixels that re-
mains unchanged between two classifications. 

In this research, the number of classifications is set at 30, maximum it-
erations as 24, and the convergence threshold as 0.95. 

4.3 After-treatment of classification result 

Because clustering analysis of ISODATA is virtually based on the optical 
spectrum features of the image, many small patches will be generated in 
the process. Hence, an after-treatment is necessary to eliminate these 
patches in order to obtain a desirable thematic map. This process can be 
realized with ERDAS 8.5 software with the following steps: (1) producing 
a primary classification image (Figure 7); (2) eliminating the patches with 
the functions of [Clump] and [Eliminate] in ERDAS 8.5; (3) determining 
of the attributes of the thematic map derived in the above process; and (4) 
recoding to the images after the after-treatment process. Within the proc-
ess, the thematic attributes of each primary class were determined, based 
mainly on the Geomorphology Sketch Map of the Loess Plateau (Meng 
1996) as well as the 1:500,000 scale Geomorphology Map of the Loess 
Plateau (Zhang 1986). 

The primary image can be split into nine classes; they are meadow-
basin, loess-low-hill, gorge-hill, middle-low-mountain, loess-hill-and-loess 
hill-ridge, loess-yuan-ridge, loess-platform-yuan, loss-ridge-low- moun-
tain, and loess yuan (Figure 8). 

4.4 Verification of classification result 

To verify the classification, field exploration and comparison were 
adopted. A series of test sites was selected along a north to south profile in 
northern Shaanxi, which represented almost all the relief types in the Loess 
Plateau. Then, the results at these field investigation points were compared 
with the automatic-classified results to test the correctness of the classifi-
cation. 

The experiment showed that the correct result was obtained at 28 out of 
the 34 points. The classification method has proved to be credible, al-
though more work is needed to perfect the theory and the method. 
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Figure 7. Map of primary classification. 

5 Conclusion 

The geographic significance of slope spectrum is emphasized through 
landform classification. Any geomorphic type can find its corresponding 
slope spectrum, which exists uniquely and is stable only if the test area is 
larger than the statistical critical area. Slope spectrum is appropriate for 
describing the spatial distribution of the loess landform. 

The method provides a new link between remote sensing and digital ter-
rain analysis by treating each layer of slope spectrum indices as a single-
band image. Our classification process pays more attention to the spatial 
distribution of terrain at the global level and is more fitted to loess land-
form classification at the regional scale. It is also of great significance in 
extending the application of DEMs and it improves the methodology of 
digital terrain analysis. 
 

Landform Classification of the Loess Plateau 
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Figure 8. Map of landform classification of the Loess Plateau in north Shaanxi 

province. 
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Segmentation-based Terrain Classification 

Josef STROBL 

Abstract 

Terrain analysis is based on a set of methods and techniques developed 
since the 19th Century addressing a broad range of application domains. 
Classification is a key scientific approach to extracting information and ul-
timately knowledge from data collections. Terrain classification prepares 
information from digital terrain models for various application scenarios. 
Spatial segmentation is a relatively novel approach based on classification 
and regionalization. 

This chapter is intended as a review of current practice with an emphasis 
on providing the basic conceptual foundations for segmentation in terrain 
analysis. It starts by linking segmentation approaches to basic geographical 
concepts such as spatial categories vs. regions, the process of regionaliza-
tion, concepts of scale, interfacing with human perception, and physical 
spatial processes. 

Segmentation attempts to combine powerful characteristics from the 
continuous field view with spatial object/topographic type/landscape unit 
views. With an ever increasing number of sensors and terrain data acquisi-
tion technologies, terrain analysis should no longer be driven by traditional 
data-centric approaches, but rather by semantics-centred concepts from the 
respective application domains. Only by identifying and delineating ele-
mentary spatial units independently from data sources, can physical mod-
els become truly interoperable and transferable across different types of 
terrain data sets. 

1 Introduction 

Due to the controlling effect of terrain shapes and terrain configurations on 
many physical processes, and because of interest in terrain shape as the 
key indicator for landscape evolution, the description, classification, and 
analysis of terrain goes back to the roots of geomorphology in pre-digital 
times (Penck 1894). Back then researchers already attempted to identify 
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‘typical’ landforms as basic building blocks of complex landscapes, attrib-
uting certain formative processes to these landforms. 

With the emergence of quantitative methodologies and digital process-
ing, the atomic unit for analysis went from landform units to smaller regu-
lar (raster) or irregular (e.g. triangles) geometric objects. More powerful 
processing and data acquisition techniques (e.g. early photogrammetric 
stereocorrelation, see Kelly et al. 1977) reduced the spatial resolution and 
increased data volume exponentially. This led to pseudo-realistic display 
options, and to analytical tools exploring new levels of detail. Data acqui-
sition and analysis in many respects converged with remote sensing based 
image analysis toolsets, sometimes unfortunately discarding the distinction 
between radiometric image (pixel) data and thematic (point, lattice) data 
sets. 

In this process, the semantic meaning of more complex landform units 
was essentially lost, with combinations of simple topographic descriptors 
(like slope, aspect, curvature) serving as proxy indicators for process-
oriented analysis. Interestingly, due to the toolset convergence between 
image processing and terrain analysis, the technique of image segmenta-
tion (Haralick and Shapiro 1985, Pal and Pal 1993) began to be explored 
independently by several groups of researchers for applications in terrain 
analysis (e.g. Dragut and Blaschke 2006). 

Essentially, this means going back ‘full circle’ to much earlier concepts 
using landform units as building blocks for landscape-scale process mod-
els. Spatial segmentation aggregates high resolution samples into homoge-
neous and contiguous patches, which in turn are considered semantic ob-
jects according to the respective application domain’s ontology. 

While ‘patches’ had been considered a terrain modelling tool for dec-
ades (see Mark 1979), segments are semantically identified 2D shapes pro-
jected onto 2.5D surfaces, which can be flexibly attributed by statistical, 
geometrical, and topological descriptors other than the former concept of 
patches as mere geometrical surface approximations (e.g. as piecewise 
splines). 

Due to the semantics-driven generation and use of spatial segments, 
there is a clear linkage to natural language and visual perception, and thus 
potential use throughout user interfaces. This altogether paves the way to-
wards a more application-centric language, an analytical approach, a proc-
essing logic and end user communication in terrain analysis, moving from 
highly abstract formal indicators towards ontologically founded analysis 
based on functional or homogeneous terrain units. 

This review chapter starts from the above outlined situation and pursues 
three objectives: 
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 Makes explicit the transition of segmentation from an image proc-
essing methodology into a thematic spatial data aggregation 
method, discussing constraints and limitations; 

 Relates segmentation methodology to established geographical 
concepts and methodologies, such as numerical taxonomy and re-
gionalisation; and 

 Discusses the distinction of data-centric analysis of sampled data 
vs. semantics-oriented analysis of elementary spatial units based 
on suitable application logic. 

2 Segmentation and Classification 

The term ‘segmentation’ is widely used for a loosely defined set of meth-
ods related to classification. Taxonomic classification attempts to group 
objects into a set of categories (‘classes’) based on object properties. 
Classes are intended to be internally homogeneous, with maximum separa-
tion between classes. Classification implements the principle of generaliza-
tion in order to focus on broader, more general insights into an empirical 
or conceptual domain.  

Generalization is a synthetic, bottom-up approach and can essentially be 
considered an abstraction operation, focused on what features have in 
common. As an example in a terrain context, an elongated set of low ele-
vation points surrounded by higher elevation points on two or more sides 
is generally considered a ‘valley’. Individual valleys come in different 
shapes and are distinctly different from each other, but share common 
2.5D characteristics, helping us to recognize and identify them as some 
kind of ‘valley’. 

Aggregative classification in a geospatial context starts from sets of in-
dividual observations such as points or pixels, looks at their characteristics 
(attribute values) and attempts to group them into classes based on similar-
ity. (In contrast, divisive techniques follow a top-down logic only men-
tioned here for completeness, but not further considered in this chapter.) 
Resulting classes can either be organized in a flat schema or as a hierarchy 
where broader, more general classes contain multiple specialized classes 
more similar to each other than to sub-classes from another super-class. 

Classification can be based on a single attribute (elevation zones, slope 
categories) or simultaneously use multiple attributes, leading to multivari-
ate classification. The latter are well established in all sciences using tax-
onomies (biology, anthropology, etc.) and have been brought into the geo-
spatial sciences through image processing and analytical techniques in 
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regional sciences. Based on multivariate statistical techniques, a broad 
range of classification techniques has been developed over several decades 
and is implemented in readily available software tools. 

The simplest, uni-variate classification technique is thresholding at ei-
ther regular or distribution-dependent irregular intervals (e.g. at histogram 
minima). This basic approach to categorization is widely used in cartogra-
phy as well as in many other applications where simplification is desired.  

Segmentation as a trivial concept, e.g. in marketing (Steenkamp and Ter 
Hofstede 2002), demographics, or simplistic image processing, follows ex-
actly the same strategy of thresholding along one or over several metric 
dimensions in order to break a continuous set of elements into discrete 
groups. Such distinct subsets of the entire domain of study are supposed to 
display similar behaviour and homogeneous characteristics. 

Frequently, segmentation of a domain (like a population or an image of 
an area’s land cover) aims at identifying ‘types’. Types are considered 
named categories or classes based on common characteristics (see above) 
and are understood to exhibit unique behaviour. Types like other generali-
zations are an important concept in scientific research, and ‘terrain types’ 
will be discussed below.  

Obviously, as a broad concept, the idea of segmentation cannot be 
strictly distinguished from classification. In some disciplines and for cer-
tain techniques, these terms are used interchangeably. For further discus-
sion, it therefore is critical to constrain terminological semantics to ‘spatial 
segmentation’, with the understanding that spatial position and/or relations 
(like distance) are always considered. As a spatial analytical technique, a 
purely statistical, non-spatial approach to segmentation would not generate 
any added value; it thus is imperative to discuss segmentation from an ex-
plicitly spatial perspective. 

Image segmentation is mostly implemented (see Appendix A) as tech-
niques considering similarities in pixel values as well as proximity be-
tween pixels. Resulting aggregates therefore are not only classes (when 
mapped to a spatial view class members can be scattered all over the study 
area), but are spatially contiguous clusters of pixels. Translating this con-
cept to terrain segmentation, the results are patches of similar surface char-
acteristics. 

Following the general, higher level objectives of classification, the gen-
eralization of individual objects or measurements like pixels or terrain ele-
vation points into classes or spatial segments is an indispensable tool for 
scientific enquiry, needed for conceptualization, understanding, and com-
munication of the respective study matter. Studies of terrain stand to bene-
fit substantially from this kind of otherwise mostly continuous phenomena, 
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but are frequently carried out without a solid conceptual underpinning. 
Discussing the latter is the main objective of this chapter. 

3 The Concept of Regionalization 

Focusing on spatial segmentation as outlined above, segmentation actually 
is not only rooted in classification, but just as much in regionalization. As 
a general geographical concept, regionalization refers to the process and 
techniques of delineating contiguous regions on the Earth surface, either 
by aggregating elementary units or by dividing larger entities. Regions are 
either identified based on homogeneity, or on relations or flows (functional 
region). A uniformly plane slope would be a homogeneous region; a wa-
tershed is considered a functional region. 

Classification of spatial data and regionalization therefore are closely re-
lated techniques. Classification will lead to spatial types or zones accord-
ing to map algebra terminology (Tomlin 1990), with a zone consisting of 
many spatially disjoint patches belonging to the same class. Precisely the 
same classification technique could then be used for regionalization, re-
quiring an additional spatial constraint: objects are only combined into one 
class if they meet similarity criteria AND if they are adjacent.  

Unfortunately, few software tools offering multi-variate statistical clas-
sification support a regionalization option (i.e. an added contiguity con-
straint) as well. One of the few exceptions is the Clustan package (Wishart 
1987) controlling cluster analysis with a contiguity matrix to join opera-
tional taxonomic units only when their areas are spatially adjacent. Result-
ing regions are comparable to results from current segmentation proces-
sors, even though fewer control parameters regarding region shape, 
hierarchies, etc. are available. 

As attribute and spatial constraints are employed to delineate homoge-
neous regions, it might be of interest to consider briefly spatial-constraint-
only techniques. Essentially, these would result in something like Thiessen 
polygons based on proximity only (Gold 1989). From a terrain analysis 
perspective, this is of particular interest as Thiessen polygons can be con-
sidered a dual structure to Triangulated Irregular Networks (TINs), which 
are frequently used for terrain representation and surface analysis. Spatial 
segmentation therefore covers the middle ground between purely attribute-
based classification and an exclusively spatially oriented Thiessen tessella-
tion. 

A tessellation or tiling of any space is considered a plan structuring of a 
study area without gaps or overlaps. Frequently a regionalization results in 

Segmentation-based Terrain Classification
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a tessellation, i.e. leads to an exhaustive and mutually exclusive spatial 
pattern (like a puzzle game ‘tiling’ a study area). A spatial segmentation 
therefore will in most cases deliver a tessellation of the study area. 

Another core concept of classification and regionalization, and thus 
segmentation as well, is working with hierarchies. Again we need to dis-
tinguish between categorical (subclass – superclass) and spatial hierarchies 
(subregion – superregion). Hierarchies are closely linked to region size and 
thus scale. Region growing algorithms typically stop even before meeting 
other regions’ boundaries when reaching thresholds of internal heterogene-
ity or size. A size or total-number-of-regions factor therefore terminates 
the aggregation process just like the statistical generation of clusters. By 
combining several adjacent, relatively similar regions into larger entities, 
hierarchical structures of higher level objects are constructed; multi-level 
or multi-scale segmentation is a frequently implemented tool to achieve 
this aim. 

Spatial hierarchies are not necessarily based on similarity, but frequently 
occur when elementary objects ‘belong together’ and combine into an on-
tological feature (see above, ‘functional regions’). This could be various 
slopes forming a river catchment, facets combined into a building on a 
digital surface model (Miliaresis and Kokkas 2007), or simply the brightly 
lit plus shaded sides of a hill. Building up these types of feature representa-
tions is beyond segmentation and requires semantics-rich spatial process-
ing in order to bridge the gap between segments and ontological features. 

Based on the concepts discussed above, a well-founded approach to 
segmentation-based terrain analysis can now be pursued. Even though 
segmentation is generally considered to have evolved out of computer vi-
sion and image processing (e.g. Shapiro and Stockman 2001, Shi and 
Malik 1997) it is important to recognize that the fundamental concepts of 
spatial classification and regionalization provide critical insights into the 
use of segmentation for thematic geospatial datasets like terrain surfaces. 

4 Segmentation and Terrain  

Terrain surfaces are a particular type of spatial entity, where it is important 
to understand the key pertinent characteristics before selecting analytical 
approaches and methods:  

 Terrain is generally considered a spatially continuous phenome-
non, requiring discretization and adequate data modelling (Kemp 
1997 a, b). 
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 Continuous surfaces are treated as single-valued surfaces, often re-
ferred to as 2.5D entities. 

 When using a raster/grid model to represent terrain, it is important 
to consider this as a regular point sample (‘lattice’) and not a cell 
grid; this is a key distinction for image data types where segmenta-
tion has originated. 

 The presence, shape, and characteristics of terrain features depend 
heavily on resolution and scale; terrain models from different ac-
quisition techniques and resolutions should not be mixed. 

 Terrain characteristics are highly spatially autocorrelated; this is 
an essential prerequisite for spatial segmentation. 

 Although terrain is generally modelled as 2.5D, most measures are 
treated as planar attributes. For example, slopes are represented as 
two independent attributes (slope angle, azimuth), and it is not yet 
well understood how this might affect multi-variate analyses. 

 Most terrain representations are not built on original elevation 
measurements, but rather on interpolated or resampled values. 
Again, this affects subsequent processes, e.g. by systematic 
smoothing of edges. 

 True vertical faces (or even more so, overhangs) are not properly 
represented in 2.5D data structures. This increasingly is becoming 
an issue with very high density data acquisition over built-up areas 
and for work with digital surface models. 

 Generally speaking, terrain segmentation aims at transforming a 
quasi-continuous terrain representation (like a regular lattice) into 
a discrete and adaptive representation of terrain units. 

There is an extensive body of literature about delineating terrain units 
and using them as a basis for physical models as well as for visualization, 
both looking at homogeneous units (like uniform slope) and functional 
units (basic hydrological entities) - see Lane et al. (1998), Wilson and Gal-
lant (2000), Bue and Stepinski (2006). 

Terrain and other surface representations only rather recently were 
based on the data- and computation-intensive very dense sampling facili-
tated by automated, remote sensing supported acquisition. Before that, 
most analytical work could not adequately deal with terrain as a contin-
uum, but rather had to use ‘terrain units’ as a basic entity. Due to this long 
tradition, the concept of terrain units is firmly established across several 
disciplines. It was therefore considered a boon to ultimately – via segmen-
tation – be able to replace the laborious, subjective process of delineating 
terrain units with sets of automatic algorithms. 

Segmentation-based Terrain Classification
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4.1 Issues with terrain segmentation 

It needs to be stressed, though, that while terrain segmentation holds prom-
ise and potential to abstract terrain analysis from the vagaries of different 
source data and more tightly connect modelling and simulation with appli-
cation domains’ ontologies, there are numerous unresolved conceptual as 
well as algorithmic issues that at least need to be acknowledged. 

First, segmentation processes tend to exhibit unstable behaviour; seg-
mentation results can vary widely with only little change to the underlying 
data sets or even by just shifting the extent of a study area. It should be ex-
pected that similar segments are derived from different data sets represent-
ing the same terrain, as long as parameters controlling the processing are 
stable. 

This generally is not the case, due to several reasons. Even though open 
source implementations are available, algorithms for segmentation are not 
fully published, they tend to obviously vary considerably, and thus lead to 
variable results. Beyond that even the control (input) parameters differ, 
with multiple approaches controlling attribute homogeneity, size, shape, 
and uniformity. As opposed to, for example, multi-variate statistical meth-
ods, segmentation frequently is implemented as a black box where users 
need to resort to learning from experimentation and experience. 

Segmentation has been related above to cluster analysis. As in aggrega-
tive clustering, the issue of where to start the clustering process, how to 
initiate ‘seeding’ of a cluster, is a core methodological issue having a huge 
impact on outcomes. Implementations range from random seeding to using 
centroids of highly homogeneous neighbourhoods to stochastic optimiza-
tion. In some cases it might be desirable to control these starting locations, 
which generally is not foreseen in software implementations. One example 
might be the use of particular points in a hydrographic network (pour 
points, confluence points) to make sure that such key locations control the 
segmentation process.  

Overall, spatial segmentation today is still far removed from a mature 
methodology with implementations reaching from trivial thresholding to 
proprietary, copyrighted and non-disclosed algorithms. Only when the 
methodology becomes fully documented and a consensus converges on 
types of implementations will segmentation techniques find their way into 
the standard toolset for the analytical spatial sciences. 

Finally, it needs to be pointed out that segmentation does not necessarily 
aim to be a one-step process leading from dense sampling data to semantic 
objects (Argialas and Miliaresis 2000). As briefly pointed out above, seg-
ments are homogeneous and/or functional units, and quite frequently ob-
jects are built from different, potentially very dissimilar segments. Therefore 
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5 Why Terrain Segmentation? 

Before going any deeper, this question should be addressed briefly. We are 
moving to ever more detailed and accurate representations of terrain and 
other physical surfaces; why do we want to ‘return’ to characterizing 
coarse patches of terrain? Why look at larger area entities, when we can 
easily inspect every bit of detail? Being able to dynamically change scales, 
to look at detail without losing the wider context, to analyse the big picture 
and still be able to drill down to the local scale is essential for most ana-
lysts. 

This issue on first sight is closely related to a discussion around ‘multi-
resolution terrain models’ in the late 1990s (see e.g. de Floriani et al. 
2000). Still, the focus at that time was on supporting dynamic visualization 
across many different scales, and multi-resolution storage like pyramids 
and other hierarchical structures were considered essential to achieving the 
desired visual performance. 

The above stated question is aiming beyond real-time visualization, 
though. And there is likely more than one answer, and not only one single 
motivation to consider segmentation: 

Interpretation and identification of landforms is inherently multi-scalar. 
A small local minimum might be an artefact, or ‘surface roughness’, or 
part of a much larger depression. This is about seeing the forest for the 
trees, about interpreting local surface attributes in a wider context. Larger 
units provide this kind of indispensable context. 

Standard topographic attributes are by default determined in a local 
neighbourhood, like a 3 by 3 kernel or within a search radius of 12 points. 
With changing data sources and increasing resolutions, these neighbour-
hood definitions are not stable, but change scale as well. In order to allow 
stable parameterization, larger units related to process modelling scale in-
stead of data acquisition scale need to be identified. 

Many physical processes operate at a different order of magnitude, and 
depend on a wider framework than local landform. Those higher orders of 
magnitude cannot easily be derived from local detail. Wind-exposed ridges 
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‘object building’ (sometimes misleadingly termed ‘classification’) is used 
as a second processing phase. In this stage, segment characteristics based 
on attribute statistics, geometry, topology, and hierarchy are used by crisp 
or fuzzy rule sets to construct features representing real world entities from 
the basic segmentation results. 
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and low wetlands are features that require the identification of landforms at 
scales related to the respective processes. 

From a broader perspective, we aim at distinguishing measurement and 
sampling from semantics-driven analysis and modelling. Currently, most 
analyses are directly tied to the respective data model, which in turn in 
most cases is (for good reason) driven by a data acquisition technique. As 
elevation data today are derived from many different sources and tech-
nologies, a direct link between data sources and processing methodology 
would compromise the transferability and general applicability of models: 
e.g. a landslide susceptibility model would work well with the NEXTMap 
radar elevation data sets it has been developed for, but would not yield 
useful results with Lidar data, photogrammetric elevation data, etc. 

Facing various and continuously changing data acquisition technologies, 
different sampling resolutions and levels of accuracy, there is a clear need 
for achieving interoperability between, for example, process models and 
terrain elevation data sets. Introducing terrain units as a semantics-based 
interface, built on the domain ontology of a given research discipline, 
might provide a future-proof solution to this problem. Terrain segmenta-
tion then will be the toolset to translate sampling data into domain infor-
mation by building semantics into the terrain representation. 

6 Towards a Unified Terrain Representation (?) 

Digital terrain modelling uses a rather stable set of conceptual data models 
(Mark 1979), only recently extended to accommodate high volume eleva-
tion mass points as generated through large-area Lidar campaigns in com-
mercially available geodatabase models.  

Over several decades technologies for terrain data acquisition and the 
resulting quantities and qualities of elevation data have changed consid-
erably, though. From arc-seconds and deka-metre resolutions, frequently 
derived as secondary data from contour maps, technology has progresses 
to high resolution elevation data acquisition based on remote sensing 
methods like photogrammetry, radar interferometry, and laser scanning. 
Spatial resolutions frequently exceed one point per square metre. 

Although resolution therefore has improved by several orders of magni-
tude, the set of methods for terrain analysis have by and large remained 
stable. As already indicated above, neighbourhood-based topographic at-
tributes are inherently unstable with changing resolution. In order to pro-
ceed from the traditional data-driven approaches to analysis towards a 
more stable semantics-oriented definition of terrain units, segmentation has 
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the potential to help with defining semantically defined objects, essentially 
de-coupling terrain-based physical process or evaluation models from 
changing data sources. This in turn is a key step towards interoperability 
and moving away from stovepipe-style models, where terrain data feed di-
rectly into the application logic. 

This is a fundamental change in the processing logic of terrain analysis. 
And, it needs to be recognized that there is no simple or singular way to 
identify ‘natural’ terrain units. Therefore, just like with other approaches to 
classification, it is not feasible to start with delineating topographic fea-
tures ‘per se’ from a terrain data set, but as different application domains 
will have very different views and demands, the starting point needs to be 
the respective application logic. 

Most terrain modelling applications are based on physical spatial proc-
esses, and different types of processes interact very differently with terrain. 
Some major process categories are: 

 Radiative, line-of-sight processes: solar irradiation, intervisibility, 
etc. 

 Advective or convective flow processes: e.g. wind field simula-
tion, exposure. 

 Gravity-induced processes: surface runoff, fluvial erosion, poten-
tial energy. 

 Centrifugal diffusion: like accessibility, contamination, fire, etc. 
Due to the large volume of published work, special emphasis is fre-

quently put on geomorphological, actually geomorphogenetical, analysis. 
While this set of processes of course is primarily controlled by gravita-
tional forces as well, it serves the purpose of explaining the genesis of 
landscapes per se. 

Geomorphological landscape research (Lane et al. 1998) therefore has 
produced typologies of landforms and slopes (headslope, toeslope, 
noseslope, sideslope, backslope … and many more) primarily defined by 
dominance of different geomorphological processes along a gravity-
controlled sequence and described by typical topographic landform pa-
rameters (like e.g. curvature). Geomorphology therefore has for a long 
time seriously worked towards defining ‘landscape units’, but it needs to 
be acknowledged that these ‘natural units’ help to explain the genetical as-
pects for today’s morphology, but are largely irrelevant for current proc-
esses on a much shorter temporal scale. 

Segmentation-based Terrain Classification

As indicated above, it therefore is indispensable to first study the proc-
ess-oriented application logic of a physical process to be analysed in a 
given application context. Depending on whether researchers are inter-
ested in predicting soil erosion, analysing surface runoff patterns, studying 
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This in turn means that different terrain ontologies are required for dif-
ferent application domains (Miliaresis et al. 2005, or Miliaresis and Kok-
kas 2007). In one early paper, Kemp and Vckovski (1998) explored gen-
eral ontologies of ‘fields’. Subsequently, starting from a wider framework 
of ontology research, Mark and Smith (2002) developed a framework for a 
terrain ontology primarily based on topographic mapping (i.e. mid-scale 
general visualization purposes). Beyond that, little work has been done in 
the area of explicit application-specific terrain ontologies (e.g. for soil ero-
sion, visible exposure, wind impact, etc.), identifying this clearly as an 
area of high research demand and potential. 

Finally, it shall be pointed out that terrain units, depending on applica-
tion logics, are not necessarily expected to be exhaustive, mutually exclu-
sive tessellations of space. Rather, terrain units can just as well overlap and 
leave gaps, therefore not always fitting into simple, topologic polygonal 
data models. This will apply especially whenever terrain units are linked to 
natural language communication, where the identification of landform 
elements is not at all considered a neat spatial subdivision of a larger land-
scape. 

7 Outlook 

Looking back at the initially outlined objectives, it has been demonstrated 
that the transition of a method originally developed for multispectral image 
analysis into the multi-faceted thematic domains of terrain analysis is be-
yond the trivial and involves explicit referencing with established concepts 
for spatial modelling and analysis. 

The application of segmentation techniques for thematic data is not yet 
fully understood and requires additional research in several directions. It 
has become clear, though, that the potential for more semantically oriented 
processing and a closer connection with the domain logic in various appli-
cation areas hold considerable promise and make further research defi-
nitely worthwhile. 

With higher and higher resolution sensors, data volumes continue to ex-
pand exponentially; this increases the attractiveness of data reduction tech-
niques. Essentially, segmentation can be considered a data mining and in-
formation extraction tool, translating data into domain specific information.

vegetation distribution according to solar input and wind exposure, model 
snowmelt patterns, or estimate hydropower potentials, very different sets 
of ‘landform units’ will be suitable as a basis for the process models. 
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It is anticipated that segments/patches/regions will play an important 
role in future terrain analysis. In order to leverage this potential, several 
requirements have to be met: (a) application domains need to define ex-
plicit terrain ontologies; (b) segmentation techniques need to develop from 
a loosely defined set of related approaches into a sound methodology with 
results reproducible across implementations, and (c) clear conceptual link-
age with geographical concepts like regions, hierarchies, scale, and process 
modelling. 

Appendix 1: Software references 

Statements and assessments regarding the state of technology in spatial 
segmentation methods made in this review chapter are based on the au-
thor’s experience with particular software products. Other implementations 
might yield different insights and conclusions; therefore the ‘implicit 
background’ software products are mentioned below in alphabetical order: 
 
Definiens professional – Understanding Images - Munich, Germany 
http://www.definiens.com/ 
GeoAIDA (Geo Automatic Image Data Analyser) Hannover University 
http://www.tnt.uni-hannover.de/project/geoaida/ 
SAGA – System for Automated Geographical Analysis – Göttingen Uni-
versity 
http://www.saga-gis.uni-goettingen.de/ 
TNTmips The Map and Image Processing System – Lincoln, Nebraska 
http://www.microimages.com/ 
 

References 

Segmentation-based Terrain Classification

Argialas, D.P., and Miliaresis, G.CH., (2000), Physiographic Region Interpreta-
tion: Formalization With Rule Based Structures and Object Hierarchies, Int. 
Archives of Photogrammetry & Remote Sensing (ISPRS), Vol. XXXIII, Part 
B4: 91–98. 

Baatz, M., and Schaepe, A., (2000), Multi-resolution segmentation. An 
optimization approach for high-quality multiscale image segmentation, In 
Strobl, J., Blaschke, T. and Griesebner, G. (eds.): Angewandte Geographische 
Informationsverarbeitung XII, Heidelberg: Wichmann Verlag: 12–23. 

Blaschke, T., Burnett, C. and Pekkarinen, A., (2004), New contextual approaches 
using image segmentation for object-based classification, In De Meer, F. and 



 

 

 

 

 

This page intentionally blank



138 Josef STROBL 

de Jong, S. (eds.): Remote Sensing Image Analysis: Including the spatial do-
main, Dordrecht: Kluver Academic Publishers: 211–236.  

Bue, B.D. and Stepinski, T.F., (2006), Automated classification of landforms on 
Mars, Computers and Geosciences, 32: 604–614. 

Burrough, P.A., van Gaans, P.F. and MacMillan, R.A., (2000), High resolution 
landform classification using fuzzy k-means, Fuzzy Sets Systems, 113, 37–52. 

Buttenfield, B. P., and McMaster, R.B. (eds.), (1991), Map Generalization: 
making rules for knowledge representation, New York: John Wiley and Sons. 

Campbell, J., (2001), Map Use and Analysis (4th ed.), New York: McGraw Hill. 
Dragut, L. and Blaschke, T., (2006), Automated classification of landform 

elements using object-based image analysis, Geomorphology, 81: 330–344. 
de Floriani, L., Magillo, P. and Puppo, E., (2000), A library for multiresolution 

modeling of field data in GIS, Int. Workshop on Emerging Technologies for 
Geo-Based Applications, Lausanne: Swiss Federal Institute of Technology: 
133–151. 

Gold, C., (1989), Voronoi diagrams and spatial adjacency, Proceedings G.I.S. - 
challenge for the 1990s, Ottawa, Canada: 1309–1316. 

Haralick, R. and Shapiro, L., (1985), Survey: image segmentation techniques, 
Computer Vision, Graphics, and Image Processing, 29: 100–132. 

Irvin, B.J., Ventura, S.J. and Slater, B.K., (1997), Fuzzy and isodata classification 
of landform elements from digital terrain data in Pleasant Valley, Wisconsin, 
Geoderma, 77: 137–154. 

Kelly, R.E., McConnell, P.R. and Mildenberger, S.J., (1977), The Gestalt 
photomapping system, Photogrammetric Engineering and Remote Sensing, 
(43)11: 1407–1417. 

Kemp, K.K., (1997a), Fields as a framework for integrating GIS and 
environmental process models. Part one: Representing spatial continuity, 
Transactions in GIS, (1)3: 219–234 and (1)4: 335.  

Kemp, K.K., (1997b), Fields as a framework for integrating GIS and 
environmental process models. Part two: Specifying field variables, 
Transactions in GIS (1)3: 235–246. 

Kemp, K.K. and Vckovski, A., (1998), Towards an ontology of fields, In 
Proceedings of the Third International Conference on GeoComputation, 
Bristol, UK, (CD-ROM). 

Lane, S., Richards, K. and Chandler, J., (1998), Landform Monitoring, Modelling 
and Analysis, John Wiley & Sons. 

Mark, D.M., (1979), Phenomenon-based data-structuring and digital terrain 
modelling, Geo-Processing, 1: 27–36. 

Mark, D.M., and Smith, B., (2002), Do mountains exist? Ontology of landforms 
and topography, In Environment & Planning B, From: <http://wings.buffalo. 
edu/philosophy/faculty/smith/articles/Mountains.htm>. 

Miliaresis, G., Sabatakakis, N. and Koukis, G., (2005), Terrain pattern recognition 
and spatial decision making for regional slope stability studies, Natural 
Resources Research, 14: 91–100. 



139 Segmentation-based Terrain Classification

Miliaresis, G. and Kokkas, N., (2007), Segmentation & object based classification 
for the extraction of building class from LIDAR DEMs, Computers and Geo-
sciences, 33: 1076–1087. 

Pal, R. and Pal, K., (1993), A review on image segmentation techniques, Pattern 
Recognition, 26, 1277–1294. 

Penck, A., (1894), Orometrie und Morphologie der Erdoberfläche, Vol. 2, 
Stuttgart: J. Engelhorn: 339–343 (in German). 

Pike, R.J., (1988), The geometric signature - Quantifying landslide - terrain types 
from digital elevation models, Mathematical Geology, 20: 491–511. 

Senin, N., Ziliotti, M. and Groppetti, R., (2007), Three-dimensional surface 
topography segmentation through clustering, Wear, 262: 395–410. 

Shapiro, L. and. Stockman, G., (2001), Computer Vision, New Jersey: Prentice-
Hall. 

Shi, J. and Malik, J., (1997), Normalized Cuts and Image Segmentation, IEEE 
Conference on Computer Vision and Pattern Recognition: 731–737. 

Steenkamp and Ter Hofstede (2002), International market segmentation: issues 
and perspectives, Intern. J. of Market Research, 19: 185–213. 

Tang, G., (2000), A research on the accuracy of digital elevation models, Beijing, 
New York: Science Press. 

Tomlin, C.D., (1990), Geographic Information Systems and Cartographic 
Modeling, Englewood Cliff, NJ: Prentice Hall. 

Wishart, D., (1987), Clustan User Manual, University of Edinburgh. 
Wilson, J. and Gallant J., (2000), Terrain Analysis, Principles and Applications, 

John Wiley & Sons. 
 



Terrain Segmentation and Classification 

Lucian D. DR GU

Abstract  

The main objective of this chapter is to segment and classify Shuttle Radar 
Topography Mission (SRTM) data into specific landforms. Based on the 
results of previous research (Dr gu  and Blaschke 2006), a classification 
system of landform elements was improved and adapted for SRTM 3 arc 
second data. Terrain derivatives such as elevation, slope gradient, slope 
aspect, profile curvature, and plane curvatures were classified in a multi-
resolution object-oriented approach comprising four different scale levels. 
We carried out object-based image analysis, using a software program 
called eCognition Professional 4.0, to segment terrain derivatives into rela-
tively homogeneous objects, which were further classified using fuzzy 
logic rule sets. Special emphasis was put on the accuracy assessment of the 
results as well as on the transferability of the procedure between study ar-
eas. We classified two SRTM datasets comprising a rolling hill landscape, 
which covers small areas of the states of Arkansas, Missouri and Okla-
homa, USA, and a high mountain area of 50 square km around Hochkalter 
Peak, Berchtesgaden National Park, Germany. Results were visually com-
pared and accuracy assessments using fuzzy classification options and an 
error matrix were performed. The classification system proved to be trans-
ferable between hilly and high mountain areas, its outcomes being satisfac-
torily accurate. 
 
Keywords: terrain segmentation; SRTM; accuracy assessment; fuzzy 
logic; geomorphometry. 

1 Introduction 

The ability to recognize landforms and to infer processes from them is an 
important skill in geomorphology (Goudie 2002). Although some reluc-
tance to abandon the qualitative approach to landform description was no-
ticed (Pike 1995), landform quantification and classification have been 
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gaining increasing interest due to practical needs. Topography of various 
types and scales can be fingerprinted by computer analysis of DTMs (Pike 
1988), thus increasing tremendously the versatility, speed, and accuracy of 
geomorphic applications. As mapping and assessing landforms and erosion 
is essential in order to understand landscape denudation and complex 
feedback mechanisms, the development and evaluation of new approaches 
in remote sensing and geomorphometry is required (Bishop et al. 2003). 

Many planning applications and a majority of research topics concern-
ing environmental processes and environmental management do need a 
dissection of the continuous surface of the Earth into ‘tangible objects’. 
Such ‘landscape units’, ‘facets’, or ‘patches’ are certainly imperfect gener-
alizations of the reality but they are needed in daily life. Any discrete zon-
ing decision may be better expressed by gradients of functions but when 
DTM information supports spatially explicit decisions we need to discre-
tize continuous surfaces or pseudo-continuous representations, respec-
tively, into relatively homogeneous zones. As landscape ecology theory 
tells us, there will never be the one and only dissection of the real world 
into pieces. This is a fundamental and well known discussion in cartogra-
phy. In geomorphology, we hypothesize that we need such a dissection of 
the real world or its representation (Blaschke and Strobl 2001). As well as 
applications in Earth sciences, new requirements from industrial engineer-
ing and planetary sciences stimulate research on terrain classification. 
Techniques from geosciences are adapted to the partitioning of the three-
dimensional micro and nano topography of engineered surfaces (Senin et 
al. 2007) or to the classification of landforms on Mars (Bue and Stepinski 
2006). Thus, numerous systems for automated classification of topography 
from DTMs have been proposed during the last two decades (see Iwahashi 
and Pike (2007) for a review). Latest technical developments in this field 
include land surface segmentation, which has recently started being con-
solidated theoretically (Minár and Evans 2007). 

An important question related to the classification of spatial entities is 
how reliable the outputs are. While accuracy assessment is standard in 
classification of remotely sensed data, ‘objective’ methods for validating 
terrain classification beyond visual inspection have not yet been proposed. 
Within this chapter, we aim at exploring innovative ways of plausibility 
checks and accuracy assessment. This is especially important in the light 
of increased data availability and the increased transferability of the land-
scape classification procedures as introduced by Dr gu  and Blaschke 
(2006). 

With the advent of the SRTM data, which covers almost 80% of the 
Earth surface, new avenues are open to digital terrain modelling appli-
cations. In spite of the relatively coarse spatial resolution (90 m), the 
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This work forms part of a project called ‘Complex Landscape Units for 
Environmental Assessment and Modelling’ (CLUE), which aims at devel-
oping and testing a new methodology for the integration of landform ele-
ments within the landscape definition, using geographic information sys-
tems (GIS), object-based image analysis, digital terrain models (DTM), 
and satellite imagery. In this approach, terrain information would bring the 
third dimension in landscape structure assessment as an alternative to cur-
rent two-dimensional methods developed in landscape ecology (Blaschke 
and Dr gu  2003).This chapter reports on the first step of the CLUE ap-
proach, namely the classification of landform elements. Based on the 
methodology developed by Dr gu  and Blaschke (2006), a classification 
system of landform elements was improved and adapted for SRTM 3 arc 
second data. Although developed independently, this classification system 
is in compliance with the requirements of maximizing internal homogene-
ity and external differences (Minár and Evans 2007). Within this chapter, 
special emphasis is placed on the accuracy assessment of the results. 

2 Methods 

The workflow includes two main steps, namely terrain analysis and object-
based image analysis. We carried out object-based image analysis using a 
software program called eCognition Professional 4.0 (Definiens Imaging, 
GmbH, München, Germany). For the first step, several data layers were 
produced from SRTM data: elevation, profile curvature, plan curvature, 
slope aspect, and slope gradient. As basic attributes of the land surface at a 
point, these derivatives ‘form a coherent system for its description and 
analysis’ (Evans 1998). Second, relatively homogenous objects were de-
lineated at several levels through an image segmentation technique. Image 
segmentation is not new (see Haralick and Shapiro 1985). Several compre-

availability of this data set fosters both development of (semi)-automated 
and transferable applications. Moreover, the results of DTM modelling ap-
plications are more comparable between various geographic areas than in the 
past. Among the most promising applications are recognition and quantifica-
tion of landforms, which are some of the main tasks of geomorphometry 
(Rasemann et al. 2004). In the future, we will see many more applications 
dealing with landform classification and quantification for large regions. 

hensive reviews exist, e.g. Pal and Pal (1993). Until some years ago, seg-
mentation techniques were mainly used to produce image objects, which 
were then either extracted or classified. In recent years, segmentation is  
increasingly used as a first step in image analysis and the results serve as 
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For a general discussion on segmentation approaches applied to geo-
graphical data – as opposed to industrial image processing where similar 
algorithms are often used but the application contexts are very different – 
see Blaschke et al. (2004). In brief, one main obstacle with remote sensing 
and DTM derived raster information is its multi-scale nature. Industrial 
image processing has a clear level and image scale. For instance, the veri-
fication of bank notes, the recognition of human faces or fingerprints, and 
similar applications are clearly defined in terms of typical object sizes. For 
the delineation of landforms, this is less intrinsically defined. Depending 
on the application, one can be interested in delineating ‘mountainous’ ar-
eas from a world wide data set. Another application may aim for micro-
relief in a terrace-dominated fluvial landscape. Some years ago, these ex-
tremes had their very different data sources. No high-resolution data sets 
were available over large areas. Therefore, the described micro-relief stud-
ies were only undertaken for specifically derived local data sets. Only re-
cently have high resolution DTMs been created for large areas, e.g. 
through airborne laser scanning. Methodologically challenging is then the 
fact that one can be interested in both fine scale objects and large, over-
view-like or overarching forms within the same data set. This is one of the 
reasons why we build on a multi-scale object-based image analysis meth-
odology as suggested by Burnett and Blaschke (2003). 

In the methodology developed by Dr gu  and Blaschke (2006), object 
primitives were classified as landform elements using a relative classifica-
tion model. The model builds both on the surface shape (Dikau 1989) and 
on the altitudinal position of objects. As described before, it is acknowl-
edged that one resolution dependent parameterization may not be sufficient 
to describe surface form (Wood 1996), at least not application-
independent. Our classification system is built on four hierarchical levels, 
the lowest one being designed for representation at the landscape scale (cf. 
Phillips 2005). The classification at this level was preset to nine classes: 
peaks and toe slopes (defined by the altitudinal position or the degree of 
dominance), steep slopes and flat/gentle slopes (defined by slope gradi-
ents), shoulders and footslopes (defined by profile curvatures), head 
slopes, side slopes and nose slopes (defined by plan curvatures). Classes 
are defined using flexible fuzzy membership functions (Dr gu  and 
Blaschke 2006). Fuzzy logic seems to be more suitable than crisp classifi-
cation methods in the attempts to delineate terrain units that have vague 
spatial extents (Irvin et al. 1997, Lagacherie et al. 1997, Burrough et al. 
2000, Fisher et al. 2004, 2005). This property arises ‘from the continuity 
of the classified objects in space, i.e. the land surface forms a continuous 

inputs for modelling and complex object based image analysis (OBIA); see 
Hay & Castilla (2006). 
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field’ (Minár and Evans 2007). While one can recognize the occurrence of 
a specific landform, e.g. peak, its spatial extent is not so obvious (see 
Smith and Mark 2003). Thus, we can imagine a model of ‘core’ landforms 
separated by ‘transitional’ units, which allows for a complete, exhaustive 
classification of a study area into a finite number of classes. Considering 
the preset classes as ideal landform elements, we can express the degree of 
affiliation of an object primitive to these classes through fuzzy member-
ship values. Therefore, a high degree of membership will indicate that an 
object represents a ‘core’ landform, while a low degree of membership 
means that the object belongs to a transition area. A ‘transitional’ object 
typically has multiple membership values, carrying the degrees of mem-
bership to different classes. Fuzzy logic also allows for the integration of a 
wide spectrum of different characteristics, such as spectral values, form, 
texture (Bolongaro-Crevenna et al. 2005), and neighbourhood relation-
ships. 

Including slope aspect into the classification system gives rise to some 
problems related to the circular particularity of the data (e.g. 0 equals 360 
degrees) (Evans 2006), especially when processed in an object based im-
age analysis (OBIA, see Hay and Castilla 2006) environment. Since the 
segmentation algorithm of the software used (eCognition) relies on the 
“spectral” distance among pixel values (Baatz and Schäpe 2000), the dif-
ference between 1 and 359 degrees is a natural threshold in the process of 
object generation. No other derivative layer shows such a high difference 
between neighbour pixels so that the threshold above mentioned will pre-
vail over all other break lines in terrain attribute data. As a result, North-
facing slopes are systematically divided. Another problem is segmentation 
along centrelines of valleys and ridges, as adjacent slopes have opposite 
aspect values. To overcome these drawbacks, we reclassified the slope as-
pect data on eight directions and used this layer to perform a second seg-
mentation, this time classification based. Following the first run of the 
classification, all classes apart from ‘Peak’ and ‘Toeslope’ were grouped 
and a second segmentation was performed on objects belonging to the 
group. Consequently, the delineation of objects based on aspect values was 
applied only at the level of slopes. In this way, classes ‘Peak’ and 
‘Toeslope’ remain untouched in the second segmentation process. Other 
solutions, like cos/sin disaggregation were not used in our methodology 
since they would increase the number of layers without avoiding segmen-
tation along centrelines of valleys and ridges. 

It has to be emphasised–again–that slope aspect was not used in the 
definition of the classification system in order to create a better visualiza-
tion of landform classification. Nevertheless, adding slope aspect into the 
segmentation leads to more realistic shapes of the emerging objects. The 
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resulting mean object values of this parameter additionally reflect changes 
in slope aspect, which may be of importance in various ecological applica-
tions.  

We ran the new classification system on two very different areas: first, it 
was applied on a SRTM dataset that covers small areas of the states of Ar-
kansas, Missouri, and Oklahoma (Figure 1). The second test run was upon 
an area of approximately 50 sq km around the Hochkalter Peak, in the Na-
tional Park Berchtesgaden, Germany (Figure 2). The aim was to assess the 
applicability of the method to two different areas in terms of terrain char-
acteristics: a rolling landscape and a high mountain area, respectively. The 
accuracy assessment and classification interpretation were conducted at the 
smallest or ‘operational’ level. Maps of the results were prepared with Ar-
cGIS version 9.2 software. 

3 Accuracy Assessment 

The greatest problem at the moment is the lack of quantitative methods for 
assessing the accuracy of DTM based classifications. As long as this is not 
solved, many geomorphologists and planners will be sceptical about the 
relevance of DTM classification results in general, including those of our 
segmentation based classification approach. 
 

 
Figure 1. Location of the American study area. A indicates the subset used for 

visualization and interpretation of the results. 
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Figure 2. Location of the Hochkalter area. 

Therefore, a significant amount of work was dedicated to (a) the identi-
fication of potential methods and (b) empirical work on the two case stud-
ies. The accuracy assessment was performed using fuzzy classification 
tools and (for the Hochkalter area only) a ‘classic’ error matrix. For the 
first approach, two of eCognition’s tools, namely ‘Classification stability’ 
and ‘Best classification result’, were applied. Classification stability evalu-
ates the differences in degrees of membership between the best and the 
second best class assignments of each object. The smaller the value of an 
object/class, the more ambiguous its classification is. ‘Best classification 
result’ assesses how the objects of a class fulfil the class description. Re-
sults in both study areas are very close to each other (Table 1). It is argu-
able whether these methods really fall under ‘accuracy assessment’ or 
should be called ‘consistency checks’ since they do not use independent 
external data sets. 

These two assessments show that classification is ambiguous, particu-
larly for the classes ‘Head slope’ and ‘Nose slope’ (Table 1). Mean and 
maximum values reveal a systematic tendency of objects belonging to 
these classes to overlap the definition of other classes. This is particularly 
true for confusions between these two classes and the classes ‘Footslope’ 
and ‘Shoulder’, respectively. This may relate to the way one variable, pro-
file curvature, is used in both their definitions. While the classes ‘Foot-
slope’ and ‘Shoulder’ were defined by profile curvature only (negative and 
positive, respectively), the classes ‘Head slope’ and ‘Nose slope’ addition-
ally include plan curvature in their definition. To avoid arbitrary assign-
ments of objects among these classes, we set up priority rules in the fuzzy 
classification system. 
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Table 1. Statistics of ‘Classification stability’ and ‘Best classification result’ as-
sessment. 

 
The assessment ‘Best classification result’ indicates that the objects ful-

fil their class descriptions to high degrees (Table 1). This is particularly 
suggested by high mean values of the membership degree across all ob-
jects of a particular class. 

As Fisher et al. (2005) pointed out “landscape morphometric units have 
a vague spatial extent, which may be modelled by fuzzy sets” (p. 209). In 
such a fuzzy approach, objects may have membership degrees in more 
than one class. Thus, modelling with fuzzy logic implies finding a trade-
off between classification stability and assigning all objects a membership 
to (at least) one class. The results of the accuracy assessment illustrate that 
our classification rules are flexible enough to allow all objects to be classi-
fied, although the classification is ambiguous for some classes. Reducing 

 ‘Classification 
stability’ 

‘Best classification 
result’ 

Class Objects Mean StdDev Mean StdDev 

Fayetteville 
Head slope 3,347 0.04 0.12 0.83 0.17 
Nose slope 8,001 0.02 0.08 0.93 0.12 
Side slope 350 0.16 0.2 0.72 0.14 
Footslope 6,037 0.33 0.39 0.88 0.14 
Shoulder 6,966 0.27 0.35 0.93 0.12 
Flat  6,126 0.18 0.18 0.85 0.13 
Peak 10,658 0.8 0.28 0.89 0.14 
Toeslope 13,589 0.73 0.29 0.85 0.14 
Hochkalter area 
Head slope 53 0.014 0.10 0.83 0.17 
Nose slope 80 0.004 0.04 0.97 0.08 
Footslope 61 0.362 0.46 0.87 0.15 
Shoulder 31 0.385 0.46 0.95 0.09 
Steep slope 140 0.678 0.38 0.94 0.13 
Peak 35 0.664 0.45 1.00 0.00 
Toeslope 46 0.614 0.35 0.84 0.17 
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the ambiguity would mean making the classification rules more specific. 
But in this case some objects would hardly fulfil a class definition, thus be-
ing left unclassified, which is undesirable. Rather, our goal is a complete 
‘wall to wall’ classification without gaps or holes in the sense of a ‘tessel-
lation’. 

However, these two assessment tools represent relative qualities. They 
do not indicate how much the classification outputs match the real land-
scape. Hence, thematic accuracy (Rossiter 2001) is not evaluated. For this 
reason, a ‘classic’ accuracy assessment (Congalton 1991) was applied for 
the Hochkalter area. The resulting error matrix scores an overall accuracy 
of 75.8 % (Table 2). Producer’s accuracy ranges between 60 % (class 
‘Footslope’) and 100 % (class ‘Toeslope’). But user’s accuracy, which al-
lows for identifying confusions between classes (Congalton 1991, Lille-
sand et al. 2004), is more relevant. The lowest user’s accuracy is assigned 
to the class ‘Toeslope’ (55.1 %), mostly due to the confusion with ‘Foot-
slope’, while the class ‘Steep slope’ scored the highest percentage (87.8 
%).  

Nevertheless, these values should be viewed critically, since the applica-
tion of the error matrix on DTM based classification revealed some associ-
ated shortcomings. Apart from typical and well known sources of confu-
sion in remotely sensed data (Congalton and Green 1993), we identified 
two main limitations in our attempt to transfer the error matrix method to 
terrain data: (1) suitability of the terrain itself for collecting reference data; 
and (2) the subjective nature of reference data acquisition.  

The first limitation is related to error propagation during DTM produc-
tion. As a result, DTMs and real surfaces might be different, consequently 
leading to biased results compared with reference data collected on the 
ground. This problem is particularly valid for SRTM data in high mountain 
areas because of the large gaps in the original data. The third version has 
these gaps filled in to provide continuous elevation surfaces (CGIAR-CSI 
2004) but important mismatches between interpolated surfaces and the real 
terrain were still identified. Figure 3 depicts such a situation. Contour lines 
derived from the SRTM data were draped on a 5 m DTM, which is dis-
played using a hillshading effect. One of the most obvious mismatches be-
tween the two surfaces is visible inside the white box on the top-right 
graphic. The area corresponding to the upper part of a glacial valley (de-
picted by the hillshaded DTM in the background) is represented on the 
SRTM data as a complex surface including a saddle and a nose slope (de-
picted by the contour lines). This limitation, together with limited accessi-
bility in the study area, forced us to assign values to reference points 
through visual interpretation of aerial photographs draped on the DTM in a 
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3D view. 50 samples per class were randomly generated and then inter-
preted. 
Table 2. Error matrix comparing classified landform elements to the photo inter-
preted reference data sites in Hochkalter area, Berchtesgaden National Park, Ger-

many. 

Photo interpreted reference data sites 
  

Head Foot-
slope Nose Peak Shoulder Steep Toe-

slope 
Head 38 6 4 1 0 1 0 
Footslope 2 39 7 0 0 2 0 
Nose 2 1 41 0 0 5 0 
Peak 3 0 1 34 6 6 0 
Shoulder 0 7 0 1 41 1 0 
Steep 3 0 3 0 0 43 0 

Classified 
landform 
elements 

Toeslope 5 12 4 0 0 1 27 
 Total 53 65 60 36 47 59 27 
 
User's accuracy Producer's accuracy 
Head = 76.00%  Head = 71.70%  
Negative = 78.00%  Negative = 60.00%  
Nose = 83.67%  Nose = 68.33%  
Peaks = 68.00%  Peaks = 94.44%  
Shoulder = 82.00%  Shoulder = 87.23%  
Steep = 87.76%  Steep = 72.88%  
Toeslope = 55.10%  Toeslope = 100.00%  

Overall 
accuracy = 
75.79% 
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The second limitation is due to difficulties of interpreting point locations 
on continuous surfaces (the terrain itself or its model, e.g. the DTM). In a 
mathematical sense, a point basically cannot have a geomorphology since 
it is one-dimensional. Even the attempt to quantify individual parameters is 
problematic because of the lack of ground truth data for geomorphologic 
features beyond altitude and slope gradient. Assigning a class value to a 
sample is still more difficult under these circumstances. Reference data ob-
tained in a field survey or through visual interpretation of the model itself 
is prone to subjective errors, as transitions between ‘core’ classes are typi-
cally soft and points from the continuous surfaces obviously do not belong 
to a single landform class (Fisher et al. 2005). Moreover, the accuracy of 
interpretation depends on the operator’s ‘feeling of scale’. All these 
sources of errors might have impacted the accuracy assessment of terrain 
classification in the Hochkalter area. 

4 Results and Discussions 

In addition to the results of the accuracy assessment, visual interpretation 
(Figures 3 and 4) and class statistics (Table 3) also indicate that landform 
elements, as defined by their morphometric parameters, are generally well 
delineated. Mean values of slope aspect were excluded from the table, 
since their interpretation does not make sense, as Evans (2006) pointed 
out. 

The class ‘Steep slope’ is not represented in the American study area, as 
the values of slope gradient range between 0 and 26o. On the contrary, this 
class is very representative for the German study area, which in turn 
misses the class ‘Flat/gentle slopes’ and also the class ‘Side slope’. These 
differences emphasize particular terrain characteristics. Mean class values 
fit the class definitions and mean elevation values agree with the normal 
position of classes in the landscape for both areas (e.g. maximum mean 
elevation is for the class ‘Peak’, followed by ‘Shoulder’, etc., and mini-
mum mean elevation is for the class ‘Toeslope’). While the highest values 
of mean plan and profile curvatures were expected for the class ‘Peak’, 
they surprisingly occur for the class ‘Toeslope’ (with negative signs). As-
sociated with the confusion between classes ‘Toeslopes’ and ‘Footslope’ 
(Table 2), this situation leads to the preliminary conclusion that the scale 
parameter was too high for the objects belonging to the class ‘Toeslope’, 
thus including portions of lower slope areas. This can also explain the un-
usual distribution of mean slope gradient values between the two classes in 
the Hochkalter area (Table 3). Tackling this problem is relatively easy and 
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does not require changing the classification system. It requires differential 
segmentation parameters for the class ‘Toeslope’ only, e.g. a finer segmen-
tation followed by the reconstruction of meaningful objects, which is pos-
sible with the new version of Definiens Professional 5 (Tiede and Hoff-
mann 2006). Mean slope gradient is distributed according to our 
expectations, with highest values attached to slope categories, excepting 
the class ‘Flat/gentle slopes’ that has the minimum value. 
 

 
Figure 4. Classification results on a small subset within the town of Fayetteville, 

Arkansas, USA. 

As expected, the method reaches its limits in flat regions, at least at this 
level of representation. In the North-Western corners of the maps in Figure 3,
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classification does not match the DTM very well. However, at higher 
levels, this area is classified as flat, since in a multi-scale approach each 
location has multiple feature attributes (Wood 1996). 

Table 3. Class statistics. 

Class Objects Objects 
(%) 

Mean ele-
vation (m)

Mean plan 
curvature 

Mean pro-
file curva-

ture 

Mean 
slope 

(0) 
Fayetteville 
Head  3,347 6.08 339.570 2.759 -3.470 3.994 
Nose  8,001 14.53 343.362 3.145 3.321 4.212 
Side  350 0.64 341.329 -0.006 -0.003 2.289 
Footslope 6,037 10.96 336.602 -0.199 -3.369 4.159 
Shoulder 6,966 12.65 344.819 0.844 2.656 3.289 
Flat  6,126 11.12 337.733 0.016 -0.009 1.063 
Peak 10,658 19.35 346.568 3.149 4.463 2.748 
Steep  0 0.00 n/a n/a n/a n/a 
Toeslope 13,589 24.67 326.402 -3.025 -5.083 2.655 
Hochkalter area 
Head  53 11.88 1467.78 -13.37 -22.66 29.07 
Nose  80 17.94 1618.44 28.03 35.18 30.36 
Side  0 0 n/a n/a n/a n/a 
Footslope 61 13.68 1419.17 -9.61 -20.59 27.43 
Shoulder 31 6.95 1700.91 7.86 20.71 30.69 
Flat  0 0 n/a n/a n/a n/a 
Peak 35 7.85 1999.19 161.41 219.27 36.46 
Steep  140 31.39 1686.23 -0.55 -18.78 51.78 
Toeslope 46 10.31 1373.62 -32.36 -72.04 28.59 
 
This work tested the applicability of a general system for two very differ-
ent terrains. Geomorphologists working with landform models predomi-
nantly seek to obtain better and better approximations of physical reality. 
In the research described in this chapter, we are rather aiming for a method 
to be able to map landforms based on SRTM data (semi)automatically. 
The near worldwide availability of such data allows researchers to obtain 
geometric characteristics, including numerical descriptions of topographic 
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forms of the Earth, at several scales. In this context, breadth of applicabil-
ity could be defined spatially (e.g. how suitable a method is across differ-
ent terrain characteristics) or in terms of application purposes (e.g. how 
suitable a method is for modelling similar phenomena). Here we discuss 
the first part of the definition. In this respect, extent of applicability can be 
increased through a system built on morphometric parameters rather than 
on morphogenetic description. Since values of morphometric parameters 
(apart of elevation) fall within expected ranges (e.g. slope gradient and as-
pect) or signs (e.g. curvatures), they allow for the creation of logical rules 
to separate surfaces with expected attributes, which potentially describe 
any terrain. This represents a possible way of transferring geomorphomet-
ric parameters from points (as information carried by cells of a DTM, in-
cluding elevation derivatives) to objects (Schmidt and Dikau 1999). Ob-
ject-based image analysis is an appropriate framework to accomplish this 
goal. 

As Minár and Evans (2007) pointed out ‘the basic geomorphological 
goal of land surface segmentation should be to distinguish segments (ele-
ments) that are homogeneous genetically and therefore also morphologi-
cally’. However, as the authors explained, the link between form and proc-
esses that created it is not always straightforward. Among other reasons, 
this relationship is problematic because of equifinality, e.g. ‘similar land-
forms might arise as a result of quite different sets of processes and histo-
ries’ (Beven 2006). The problem is even more complicated through scale 
issues. Thus, the traditional concept of ‘landform’ is difficult to transfer 
fully to automatic classification approaches. While landform geometry can 
be classified straightforwardly using computer techniques, as in our ap-
proach, landform morphogenesis and morphology are rather in the realm 
of human interpretation. Therefore, the attempts at building an automatic 
and transferable system for landform classification should limit the con-
cept ‘landform’ to its morphometric dimension, or restrict the approach to 
the recognition of specific forms, e.g. terraces (see Demoulin et al. 2007). 

As stated in Section 3, one main remaining task is the assessment of 
how well the landforms match ‘reality’. Since there is not one specific 
measure for landform assessment, methodologies vary. The concept of 
landform is essentially an idealized one and every human interpreter will 
end up with different results. We therefore started recently to develop a 
methodology for this accuracy assessment. First results of the accuracy as-
sessment are promising, particularly since the classification system is not 
site specific. We are currently working toward an integration of the result-
ing shapes of the delineated two-dimensional landform objects in the accu-
racy assessment process.  
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Modelling Terrain Complexity 

LU Huaxing  

Abstract 

Terrain complexity is an important terrain feature in digital terrain analy-
sis; however, unlike aspect or slope, terrain complexity is an ambiguous 
terrain feature that until now has had no optimal index to quantify it. The 
traditional terrain complexity definitions can be classified as statistical, 
geometrical, and semantic indices. These indices evaluate terrain complex-
ity only from one perspective of geomorphometry, and will cause more or 
less prejudice when modelling the real world. This chapter wants to seeks 
an optimal terrain complexity index (TCI) based grid DEM. Firstly, we se-
lect four traditional indices (total curvature, rugosity, local relief, local 
standard deviation) that can easily be evaluated by a local kernel window, 
then deduce the compound terrain complexity index (CTCI) using the 
normalization factor. In order to validate the CTCI, four study areas with 
typical terrain characteristics of plane, gully, hill and hybrid landforms are 
selected for experimentation. The results show CTCI to be a sound terrain 
parameter to evaluate terrain complexity. Terrain complexity is a regional 
feature, while CTCI is a local index, so the statistics (Mean CTCI, Maxi-
mum CTCI, and SD CTCI) are proper indicators to statistically evaluate 
terrain complexity. 
 
Keywords: DEM, terrain complexity, terrain complexity index. 

1 Introduction 

Digital terrain data are useful for all kinds of applications in digital terrain 
analysis (DTA). Recently, terrain feature extraction methods have gener-
ally been based on grid DEMs because most terrain data are organized in a 
raster format. Terrain complexity, which describes turbulence and com-
plexity of the terrain surface, is not only an important terrain parameter in 
digital terrain analysis, but also widely applied in the fields of reduction of 
topographic data, terrain classification and visualization, mapping and 
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Terrain complexity is involved to varying extents in many studies. For 
example, Chou et al. (1999) discuss the reduction of topographic data 
based on terrain complexity. Gao (1998) studied the sampling intervals on 
the reliability of topographic variables from DEMs with terrain complexity 
of valleys, peaks, and ridges. Jie et al. (2003) studied the accuracy of the 
digital elevation model in terms of topographic complexity. Parth and Mu-
kunda (2005) analysed the relationship of the biological richness with ter-
rain complexity in the eastern Himalayas. Cary et al. (2006) studied the 
sensitivity of areas burned to variations of landform (flat, undulating and 
mountainous). Fesquet et al. (2006) studied the impact of terrain heteroge-
neity on near-surface turbulence. In these studies, terrain complexity was 
only regarded as an influencing factor or analysis condition. Only in the 
research by Hsu (2002) was the indicator of the terrain complexity dis-
cussed quantitatively. Unfortunately, the indicator of terrain complexity is 
still a statistical model (single value). 

So far, there exist many semantic ideas about terrain complexity, such 
as roughness, relief and rugosity. These concepts may be prejudiced and 
often misapplied. What the terrain complexity really is and how to de-
scribe it quantitatively is a key task in surveying and mapping, and in 
geomorphology fields, especially in GIS and terrain analysis based on 
DEM. 

The objective of this study is to: 
 Discuss the definition of terrain complexity from the viewpoint of 

ontology, and 
 Model a quantitative index of terrain complexity based on grid 

DEM. 

2 Terrain Complexity: Definition and Indices 

Terrain complexity has a widely semantic implication and is often used to 
describe the variability of the terrain surface. Up to now, the existing ter-
rain indices could be classified into three types: statistical sense, geometri-
cal sense, and semantic sense. 

In the statistical sense, the terrain complexity is described by the statis-
tics of one or more terrain parameters such as elevation, slope, aspect, and 
curvature. For example, variance or standard deviation of elevations, ter-
rain relief, and contour density within a unit area are used to describe the 

surveying, landuse, soil erosion, surface turbulence and biological richness 
assessment, and DEM accuracy modelling. 
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complexity of valleys, peaks, and ridge (Gao 1998).The commonly used 
statistical indices of terrain complexity are: 

 Variance or standard deviation of elevations (Hsu 2002, Zhang et 
al. 1999); 

 Autocorrelation of elevation (Li and Zhu 2003); 
 Relief (Gao 1998): arithmetic disparity between the maximum and 

minimum elevations: Hmax- Hmin; 
 Contour density (Byers 1992): the ratio of contour line length to 

planar area: Lc/Ap, where Lc is total length of contour and Ap is 
the projected area within a unit area; 

 Mean slope or mean aspect (Tang 2000); and 
 Drainage density (Tucker and Bras 1998). 

Many studies consider the terrain surface in the real world as a constant 
surface. Hu et al. (2004) thought of the Earth surface as being a complex 
sphere, but still a constant surface, not a stochastic field. Terrain surfaces 
simulated by specific mathematical surfaces are also involved in many 
studies; Liu (2002) assessed the accuracy of different slope and aspect al-
gorithms based on the Gauss synthesized curve, inversed ellipsoid, elliptic 
dome, saddle surface, and Tsai (1994) and Yanalak (2003) used trigono-
metric function surfaces to assess the accuracy of interpolation algorithms. 
Holmgern (1994) thought the land surface should be simulated by compli-
cated mathematical surfaces rather than simple ones when evaluating flow 
algorithms. So terrain complexity in the geometrical sense is to depict the 
shape of the landform surface or cross section, such as: 

 Rugosity (Hobson 1967, 1972): the ratio of surface area to planar 
area: As/Ap, here As and Ap are terrain surface and planer area, 
respectively; 

 Shape complexity index (Hengl et al. 2003): which is defined as 
how oval/dissected is a contour line: P/sqrt(A/3.1415)) where P is 
the perimeter of contour line, A is the area of the contour line cir-
cle; 

 Curvatures (Shary et al. 2002); 
 Fractal dimension: fractal box dimension (Zhou and Long 2006); 
 Slope or slope change (Jie et al. 2003, Tang 2000); and 
 Aspect or aspect change (Shary 2006, Tang 2000). 

Terrain complexity can be described as “The terrain is very complex”, 
“How rough the landform surface is!”, “This is a mountainous area, not a 
gully area”, and so on. These are qualitative sentences and often reflect the 
image in the human mind; we call these the semantic sense, and this sense 
is the first-hand criteria to evaluate terrain surfaces. 
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According to the indices mentioned above, terrain complexity is basi-
cally depicted as the topographic turbulence and roughness. For example, 
curvature is the derivative of specific points on the mathematical curve, 
used to depict how fast the angle of a tangent that moves over a given arc 
to the length of the arc. In fact, aspect or aspect change, and the shape 
complexity index mentioned above, are equivalent to the plan curvature, 
and slope and slope change are equivalent to the profile curvature, the only 
difference between these geometrical indices is direction, while rugosity is 
a special type of roughness measure describing how wrinkled a surface is. 

Homoplastically, variance, relief, standard deviation or autocorrelation 
of elevation represent the scope or skewness of elevations, while mean 
slope, mean aspect, contour or drainage density are trends to give a single 
value for the whole map, which is relatively difficult to evaluate for a hy-
brid landform that has spatially-distributed terrain complexity. 

The terrain complexity index (TCI) based on curvature has been pro-
posed. The slope change (Jie et al. 2003), the aspect change, the slope of 
slope (SOS) and the slope of aspect (SOA) (Tang 2000), contour curva-
ture, and so on are indices only describing the curvature from the profile 
direction or plan direction, which cannot evaluate the anisotropy terrain. 
Shary (2006) proved that mean curvature, maximal curvature, minimal 
curvature and total Gaussian curvature are irrelevant to coordinate sys-
tems, meaning that values of these curvatures keep constant no matter how 
the x axis or y axis rotate. But these curvatures may generate negative or 
positive values, depending on whether the terrain is concave or convex, so 
they are not suitable for evaluating terrain complexity. 

Fractal dimension is not a traditional spatial morphological index; it 
lacks theoretical principle, cannot be validated, and it can only give a sin-
gle value for a specific area. Terrain simulations based on fractals find it 
difficult to depict the terrain geomorphological structure and features (Hsu 
2002). What’s more, Mendicino and Sole (1997) utilized the entropy the-
ory for the estimation of topographic index; information content here can 
be considered as a terrain complexity index. 

The question is whether terrain complexity exists; what is the essence of 
terrain complexity? The sense of terrain complexity may vary with differ-
ent principles: geology may be interested in the change of geological struc-
ture, hydrography may be interested in the drainage density, ecology may 
require the slope or aspect change. It may be that for many specific pur-
poses, a different number is likely to be required. Evans (1990) thought 
one number could not suffice to summarize surface roughness; he consid-
ered the terrain profile as a wave, and tried to depict the wave from five 
perspectives: amplitude, wavelength (Figure 1.a), massiveness, homogene-
ity, and asymmetry (Figure 1.b). He also considered absolute altitude 
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above sea level as important in geomorphology, because, in a constant am-
plitude and wavelength, a greater proportion of the profile can be concen-
trated either at high or at low heights. 
 

 
 

(a) (b) 

Figure 1. Variables of terrain profile (Evans1990). (a) Amplitude and wavelength.  
(b) Massiveness, homogeneity and asymmetry. 

Shary (2006, personal communication) thought that experts in a given 
discipline try to describe terrain complexity for their own purposes. One 
example is the sum of gully lengths per square kilometre to evaluate or 
map water erosion (note that they should have a definition of a gully to 
automate the approach in digital terrain analysis). So there may be numer-
ous approaches to the same problem of deciding what terrain complexity 
is. A researcher already working in a given discipline (e.g. in water ero-
sion) is free to introduce measures or indices that are specific for that dis-
cipline. 

But there might be a general study of the complexity that is not related 
to any specific discipline. Such a study may concentrate on general proper-
ties of complexity, and try to sub-divide it into a few components that may 
or may not be present in specific approaches. In other words, such a study 
might introduce concepts that appear mutual for all specific approaches, 
and may therefore serve as a basis for many other approaches. The rela-
tionship between general and specific approaches is common for knowl-
edge differentiation; compare this sub-division of geomorphometry with 
general and specific (Evans 1972): “General geomorphometry as a whole 
provides a basis for the quantitative comparison even of qualitatively dif-
ferent landscapes, and it can adapt methods of surface analysis used out-
side geomorphology. Specific geomorphometry is more limited; it involves 
more arbitrary decisions, and leaves more room for subjectivity in the 
quantification of its concepts”. 

Modelling Terrain Complexity 
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Shary thought one general study of terrain complexity might be based 
on profile (Figure 2a, Figure 2b) and contour line (Figure 2c, Figure 2d) on 
land surfaces, representing horizontal and vertical dimensions, respectively 
(Figure 2), and these two dimensions are independent of each other. 
 

  
(a) (b) 

  
(c) (d) 

Figure 2. Terrain complexity in two dimentions (Shary 2006, personal communi-
cation). (a) Simple profile line.  (b) Complex profile line. (c) Simple contour lines. 

(d ) Complex contour lines. 

Terrain complexity evaluated only from a profile (Evans 1990) and con-
tour line (Shary 2006) still strongly depends on direction, which is some-
what difficult to evaluate in anisotropy terrain, so we need to combine all 
indices listed above as a compound terrain complexity index (CTCI). But 
how to select it and what are the criteria? Firstly, according to the Shary’s 
viewpoint, the candidate indices must be independent of any other, that is 
one is irrelevant to all others. Secondly, the candidate indices must be very 
easy to calculate when quantifying the local terrain complexity. 

3 Modelling Terrain Complexity 

Although the indices listed above can roughly represent terrain complex-
ity, they are somewhat unreasonable since they only describe one aspect of 
the landform shape and always fail to estimate terrain complexity; for the 
real world is difficult to depict by a simple mathematical formula. For  
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(a) (b) 

Figure 3. Different terrain complexity with the same index. (a) Plane slope. (b) 
Pleated slope 

Since different indices depict terrain complexity from different aspects, 
their synthesis may be the optimal solution. We investigate the candidate 
indices that were easily evaluated by a local moving window (Figure 4), 
then we find the total curvature (Wilson et al. 2000), rugosity, local relief, 
and local standard deviation that coincide with the criterion. Because total 
curvature will also generate a negative value, it needs to change to be a 
constant positive index. 
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Figure 4. 3 × 3 local moving window. Figure 5. Rugosity estimation. 

 
The positive form of total curvature is expressed as: 

1/ 22 2 22c r s t
 (1) 

where: 

Modelling Terrain Complexity 

example, suppose there are two kinds of landform (Figure 3), one represents 
a plain slope (Figure 3a) and the other represents a pleated slope (Figure 3b). 
They may generate the same value according to the formulae above, but 
actually they are of totally different shapes (Zhou and Long 2006). 
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Rugosity is the ratio of surface area to planar area: As/Ap, where As and 
Ap are the areas of terrain surface and plan cells, respectively. Rugosity 
can be estimated in a 3 × 3 local moving window (Figure 5, Jenness 2002). 
A triangular area is created for each of the cells surrounding the central 
cell. Next, the triangle is truncated so that only the portion of the triangle 
that covers the central cell is used, and the portion of the triangle that cov-
ers cells adjacent to the central cell is discarded. So rugosity is the ratio of 
the total area of 8 triangles to the total area of 4 cells that were covered by 
the triangles in the 3 × 3 local moving window. Since the nodes of trian-
gles are the centre points of cells, the area of each triangle can be calculate 
by the Helen method. 

Local relief and local standard deviation can be easily calculated within 
the local moving window. The next question is: Is CTCI just the sum of 
the four indices? Generally, local relief is much higher than total curvature, 
so the sum of indices is not reasonable. In order to balance all the indices, 
we need to normalize them to the range of 0 to 1 (Equation 2), then com-
pute the average value of all indices (Equation 3); thus CTCI is also in the 
normal index range of 0 to 1. The equations are: 

NTCI = (TCI – minTCI) / (maxTCI – minTCI) (2) 

where NTCI is normalized TCIs, minTCI and maxTCI are minimal and 
maximal of TCIs.  

CTCI = ( Ntc + Nre + Nru + Nsd ) / 4 (3) 

where Ntc, Nre, Nru, Nsd are the normal index of total curvature, local relief, 
rugosity, local standard deviation, respectively. CTCI here is estimated by 
Evans methods (Evans 1980) in a 3 × 3 local moving window, because the 
Evans method is the most accurate algorithm (Florinsky 1998). 

4 Methodology 

CTCI weights four indices that depict terrain complexity from different 
perspectives; it is a positive variable. Utilizing modular GIS analysis, we 
can easily derive the CTCI. 
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4.1 Data 

The study area is one of the most fluctuating and fractured landforms with 
elevations ranging from 233 metres to 3546 metres, located in the Shaanxi 
Loess Plateau, North-West China (Figure 6). Three point dataset DEMs 
(randomly distributed elevation datasets, RDED) that were digitized from 
topographic maps at a scale of 1:50,000 were selected as the test area. The 
test data are typical landforms: Shenmu (gully landform, Figure 6a) with 
elevations ranging from 1,232.0 metres to 1,740.8 metres, Xi’an (plain 
landform, Figure 6b) with elevations ranging from 378.9 to 559.6 metres, 
and Qinling (hill landform, Figure 6c) with elevations ranging from 
1,042.2 metres to 2,652.7 metres. 
 

 
Figure 6. The three typical experiment areas in the Loess Plateau in Shaanxi, 

China. (a) Gully area; (b) Plain area; (c) Hill area; (d) Background map, Shannxi. 

The reason that these test areas were selected followed semantic sense 
or common sense: the plain area represents low TCI, the hill area repre-
sents high TCI, and the gully area is in the middle.  

Modelling Terrain Complexity 
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4.2 Extract CTCI and statistics 

Utilizing the tools of ESRI ArcGIS, we can convert RDED DEM to TIN 
(triangular irregular network), then derive grid DEMs with 25 m grid cell 
size utilizing the TIN to Raster tool. Then we can derive the different TCIs 
(total curvature, local relief, local standard deviation, rugosity) for each 
grid DEM, and calculate the normal TCIs (Ntc, Nre, Nru, Nsd). Lastly, we ob-
tain the statistics of each TCI, as well as the CTCI, and analyse the statis-
tics of TCIs (Figure 7). Considering the boundary influence, we need to 
remove the boundary cells from the result data when executing the kernel 
window analysis. 
 

 
Figure 7. Flow chart for the experiment. 

Results (Table 1, Figure 8, 9 and 10) show that the statistics of TCIs 
(max TCI, mean TCI, standard deviation of TCIs) coincide with the se-
mantic sense or common sense. The CTCI (underlined values in Table 1) 
also prove it is true. 

5 Model Validation 

CTCI is a synthetical index modelled by the four different indices; its fea-
sibility needs to be validated. The method for validation is based on the 
semantic sense: comparing the CTCI with the hillshade of the original 
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DEM, because we can visually judge where it is complex and where it is 
simple in the hillshade map. If the CTCI is relatively high in mountainous 
areas compared with that in plain areas, it means that the CTCI is a sound 
index to quantify terrain complexity. Although this visualization compari-
son is not so rigid, it coincides with the definition from the semantic sense. 

Table 1. Statistics of TCIs (cell size: 25 m). 

 Maximum Minimum Mean SD 
Xi’an 
Rugosity                1.083949 1 1.005267 0.005017 
Total Curvature 0.024886 0 0.000181 0.000417 
Local SD 7.908564 0 0.187605 0.320762 
Local relief 21.09998 0 0.564413 0.986082 
CTCI 0.113561 0 0.002409 0.004194 
Qinling 
Rugosity 2.503333 1 1.232323 0.134085 
Total Curvature 0.117671 0 0.013202 0.008533 
Local SD 45.64762 0 13.75478 4.899303 
Local relief 146.1 0 42.81402 15.42477 
CTCI 0.788611 0 0.216059 0.078247 
Shenmu 
Rugosity 1.948476 1 1.124266 0.082245 
Total curvature 0.06425 0 0.011144 0.0072 
Local SD 32.26643 0 9.590529 3.812486 
Local relief 100.5 0 29.39271 11.63341 
CTCI 0.588669 0 0.147977 0.056732 
 

An equivalent method for validating CTCI is by comparing the contours 
and drainage density of the topographic map with the CTCI, because again 
it is common sense: where there is high CTCI, there must be high contour 
density and drainage density. 

Unlike mean density, local contour density and local drainage density 
are somewhat difficult to quantify. The spatial analysis module in ArcGIS 
provides a tool to calculate the contour density. The principle is similar to 
the calculation of point density. The contour density is strongly dependent 
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on the size of the kernel window and data quality, namely noise (see discus-
sion). The drainage density extraction is involved in a series of procedures, 
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Figure 8. CTCI of Qinling area (cell size = 25 m, rows = 761, cols = 943). 

 
Figure 9. CTCI of Shenmu area (cell size = 25 m, rows = 761, cols = 943). 

The test area is located in ShanXi, China, a typical hybrid landform 
(Figure 11a). The data is produced by the Provincial Bureau of Surveying 
and Mapping; the data format is a grid DEM that was derived from topog-
raphic maps at a scale of 1:10,000; the cell size is 5 metres. 

We extract the contour line base on the grid DEM, with the interval of 
10 metres in elevation. CTCI is extracted according to the flow chart 

namely pit removing and parameter input, which will introduce prejudice 
to the model validation. So here we validate the CTCI by comparing the 
CTCI and the original contour line attached hillshade map as background. 
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transparent (grey colour) 
e. Lastly, we overlay 

 

 
Figure 10. CTCI of Xi’an area (cell size = 25 m, rows = 765, cols = 913). 

Judging from the three layers (Figure 11b), the CTCI can roughly dif-
ferentiate the contour lines where there is cliff and dense contours, and 
where they are smooth and sparse, just as beforehand, where the terrain is 
complex and where it is simple (Figure 2). That also proves that the CTCI 
covers the function of contour density in evaluating terrain complexity; 
that is, the index of contour density is not independent of the CTCI. 

The quantitative validation may investigate the correlation between the 
CTCI and contour (or drainage) density utilizing the regression model. 

6 Discussion 

6.1 CTCI and scale effect 

Terrain complexity is an inherent attribute of terrain surface; like other ter-
rain variables, it will change with different scales, which was known as 
scale effect. But relatively little literature involves the relationship between 
DEM scales and TCIs. Different DEM variables have different effects, and 
scale effects based on a grid DEM also have two types: the first is analysis 

(Figure 7). We classify the CTCI into 3 classes (Figure 11b, legend): red 
areas represent high terrain complexity and 
represents low, and the blue area is in the middl
contour lines and the CTCI on the hillshade map (Figure 11b). 

Modelling Terrain Complexity 
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scale, also the size of the local moving window, as it will definitely influ-
ence variables such as local relief, local standard deviation, and the choice 
of analysis scale depends on variables and applications. The second is 
DEM resolution. We can generate DEMs with different cell sizes utilizing 
the GIS tools. Lu et al. (2007) found the statistics of total curvature have 
strong correlation (negative correlation by a power function, y = axm, 
where m < 0) to the DEM resolution; the correlation coefficient is com-
monly higher than 0.96. 
 

a

b

a

b
 

Figure 11. CTCI and contour line (1:10,000). (a) Test area; (b) CTCI and contour 
line (local view). 
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6.2 CTCI and DEM local accuracy 

DEM accuracy has a strong correlation with local morphometric variables. 
Fisher (1998) found significant correlation between DEM errors and slope 
angle. Gao (1997) observed that DEM errors seem lower in less complex 
terrain. Hunter and Goodchild (1997) stated that DEM error is probably re-
lated to slope steepness. Ehlschlaeger and Shortridge (1997) reported that 
empirical studies have shown DEM error to be related to gradient and pro-
pose that it may also be related to other elevation derivatives. Kyriakidis et 
al. (1999) found that DEM error is correlated with terrain ruggedness, with 
the correlation coefficient being up to 0.64. Guth (1992) found DEM error 
to be highly correlated with gradient, aspect and satellite image reflectance 
values. Tang (2000) proposed a representation error and deduced the em-
pirical linear formulae for different landforms. 

According to the above-mentioned literature, higher DEM errors always 
occur in the more complex landforms, so terrain complexity can be as-
sumed as some combination of terrain variables that have strong correla-
tion with DEM error. Carlisle (2005) modelled spatial-distributed DEM er-
ror using multi-variable regression, finding an empirical formula that had 
strong correlation with DEM error. For this application, CTCI will serve as 
a useful index in modelling local DEM accuracy. But DEM accuracy may 
not rely on terrain complexity for the pixels nearby the original points that 
are used for interpolating the grid DEM, so this factor must be taken into 
account when modelling DEM accuracy. 

As to applications, CTCI can be applied to mapping of terrain classifica-
tions and can also be used as a criterion in data generalization to indicate 
where the redundant data should be removed and where it should be re-
tained. 

7 Conclusion 

Unlike slope and aspect, terrain complexity is ambiguous in itself, at least 
in the sense that it can be considered in the vertical and horizontal direc-
tions: local relief and local standard deviation are characteristics of vertical 
complexity, while aspect change and contour shape index are of horizontal 
ones. These characteristics are independent; that is, total curvature may be 
large even if local relief is small. So their synthesis is a reasonable method. 

Terrain complexity is a regional feature, although we calculate with a 
local window and model it spatially, so the statistics (max, min, standard 
deviation) should be taken into account. The local variables are always too 
sensitive to DEM noise and scale effects. The statistics of the CTCI are the 

Modelling Terrain Complexity 
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reasonable solution for evaluating terrain complexity for the whole map. 
Different indices have different value ranges (rugosity is always higher 
than total curvature) but the solution to this problem is to weight each of 
the indices by a normalized transform. 

Under the same DEM resolution, plain areas have a very low Max 
CTCI, Mean CTCI and SD of CTCI compared with hilly areas, and the 
gully areas are in the middle. Utilizing visualization, we can validate that 
the CTCI is a sound model, but further experimentation is needed to test 
whether it is universal to any landform, and the issues for ontology of ter-
rain complexity still need further research. 
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DEM-based Analysis of Local Relief 

LIU Aili 

Abstract  

Local relief (LR) mainly describes the complexity of the Earth’s surface at 
large spatial scales and reflects the degree to which the Earth’s surface is 
incised by exogenic agents. This chapter probes the methodology of ex-
tracting LR from a 1-km DEM and discusses the large-scale geomor-
phological characteristics of China. It proves that the optimum unit for 
measuring LR is 42.25km2. Analyses of the LR map show that most areas 
in China have mountainous relief (200 < LR < 600m), and the higher the 
LR, the lower the proportion of the national territory. From space, LR 
shows obvious differences from East to West and from NE to SW. More-
over, the spatial distribution of LR exhibits three wavy levels from North 
to South and four wavy levels from SE to NW. Compared with the mor-
phological classes of a published geomorphologic map, LR exhibits simi-
larly in Highest mountain, High mid-mountain and High mountain areas. 
Additionally, the LR values in the Loess Plateau change between values in 
Low-middle mountain and values in Low mountain. This study shows that 
the geomorphologic characteristic of the whole of China could be well rep-
resented by the LR derived from the DEM. It carries sufficient physi-
ographic information and can provide an important basis for further quan-
titative classification of relief forms. 
 
Keywords: Local relief, DEM, China. 

1 Introduction 

Local relief (LR) is an important quantitative topographical parameter and 
was introduced from the International Organization of Geomorphologic 
Mapping in the 1970s as a means of giving expression to the new concept 
of relief forms (Chen et al. 1993). This parameter is also called amplitude 
of relief (Demek and Embleton 1989, Tu and Liu 1990, 1991, Centamore 
et al. 1996, Hurtrez and Lucazeau 1999, Kühni and Pfiffner 2001) or rela-
tive relief (Chai 1983, Vogt et al. 2003, Sreedevi et al. 2005). It is similar 
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to but different from the former concept of relative height. The relative 
height represents an elevation difference between points on the ground and 
local datum, while the local relief does not have a necessary relationship 
with relief form evolution and is usually calculated in a smaller area than 
relative height (Li 1982). As for the definition of LR, we do not have a 
uniform one at present. In Mapping Criteria and Standard of Geomorpho-
logic Maps of 1:1,000,000 in China, LR is defined as the elevation differ-
ence from a ridge (or a peak) to the place of intersection of the closest river 
(conflux area is greater than 500 km2) or the closest wider plain or mesa 
down slope (Institute of Geography, CSA 1987). In the Geomorphological 
map of China and its Adjacent Areas (1:4,000,000), it is defined as the 
maximal elevation difference of the datum plane from the vertex of a ridge 
to the first infall of the downstream closest river (Chen et al. 1993). Addi-
tionally, Kühni and Pfiffner (2001) regarded LR as the elevation difference 
from the peak of the highest mountain to the valley bottom in a region. 
Montgomery and Brandon (2002) defined the parameter as the difference 
between the elevation of one point and the mean elevation in a given area. 
Tu and Liu (1991) believed that not only relief amplitude but also relative 
height should be considered in the definition of LR, since one feels relief 
fluctuating both looking up and down. Despite all these definitions, LR is 
usually measured as an elevation difference on some length scale (Sum-
merfield 1991). 

LR describes the complexity of the Earth’s surface at large spatial scale 
and reflects the degree to which the Earth’s surface is incised by exogenic 
agents, for instance, wind or river. Hurtrez and Lucazeau (1999) calculated 
LR for three basins and studied the relationship between lithologies and 
LR. Kühni and Pfiffner (2001) analysed the dependence of Alpine topog-
raphy on bedrock lithology by means of numerical analysis of the mor-
phometry, such as LR, mean elevation, etc. Montgomery and Brandon 
(2002) investigated the global relation between LR and erosion rate for 
tectonically active mountain ranges using the 30 arc-second GTOPO30 
digital elevation model. In addition, LR also plays an important role in de-
scribing regional relief characteristics (Bishop et al. 2003) and classifying 
relief forms (Brown et al. 1998, Miliaresis and Argialas 2002, Gallant et 
al. 2005). However, as a snapshot of the constant competition between tec-
tonics and erosion through space and time, LR is usually difficult to ex-
plain (Kühni and Pfiffner 2001). 

In the past, limited topographic data and technical conditions made the 
acquisition of LR difficult. But with the rapidly increasing availability of 
digital elevation data and GIS-assisted processing of DEMs, geomorphol-
ogy has been promoted and in recent years some attempts have been made 
to develop automated mapping routines for LR from DEMs. One method 
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of numerical analysis uses a moving n × n window (or n-diameter circle 
window) for calculating LR by determining the maximum change in eleva-
tion within the window. Ahnert (1984) showed a non-linear relationship 
between the window and LR by examining a variety of mountain belts. But 
a unit area of 16 km2 was still used as an experiential value for LR in the 
International Geomorphological Map of Europe (1:2,500,000) (Demek and 
Embleton 1989). Furthermore, the window can also be obtained by fuzzy 
mathematics (Tu and Liu 1990). Apparently, LR is mainly dependent on 
the window over which elevation is measured. Another method for calcu-
lating LR is by subtracting base-level map elevations from summit-level 
map elevations (Kühni and Pfiffner 2001). The base-level map is interpo-
lated by a standard Kriging method with all the lowest points in a unit area. 
The summit-level map is derived from all the highest points. Unfortu-
nately, no reports have been seen on the comparative analysis of the two 
methods. These two methods are applicable to large-scale DEMs, but other 
approaches (Zhu 2003, Sreedevi et al. 2005) have measured LR in a drain-
age basin (the least area of the catchment basin usually being larger than 
500 km2) mainly for small-scale DEMs. 

China has one of the most complicated landforms in the world, exhibit-
ing great relief amplitude differences in each of the three terrace planes. 
According to statistical analysis, the average altitude above sea level of 
China’s entire territory is about 1.8 times the world average. In addition, 
China possesses a higher than world average ‘Relief degree of land sur-
face’ (Niu and Harris 1996). Since LR is an expression of incision by riv-
ers and glaciers and is often used to describe the characteristics of geo-
morphological forms, it is significant that LR can reveal geomorphologic 
features and regional relief distribution and variation patterns in China. In 
the early 1990s in China, Liu et al. (1990) first used the DEM from the 
State Bureau of Surveying and Mapping of China for preliminary quantita-
tive analysis and mapping of LR of China. Later, LR was applied in soil 
and water loss assessment based on DEMs by Liu et al. (2001). Compared 
with research on the micro-scale, geomorphological analysis is still poor 
on the macro-scale. 

The aim of this chapter is to probe the methodology of extracting LR 
from DEMs, and to analyse geomorphologic features and regional relief 
distribution and variation patterns in China based on the results. 
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2 Materials and Methods 

The data used in this study was a 1-km DEM of China. From it, we calcu-
lated LR by determining the maximum change in elevation within a mov-
ing rectangular window. Here the window size is very important and, ac-
cording to previous research, two principles should be followed. The 
window size should meet the integrality of the mountains and adapt to any 
relief form. So we sampled 800 points randomly on mountains and, based 
on window size-LR broken-line graphs, 42.25 km2 was found to be the op-
timum unit for deriving LR from the 1-km DEM. 

2.1 Data 

The DEM of China with a horizontal grid spacing of 1km (Figure 1) is 
available from the National Geomatics Center of China at a global scale, 
providing a digital representation of Chinese relief at a sampling interval 
of 28.125" (longitude difference) × 18.750" (latitude difference). It is 
based on elevation data derived from 8,740 1:50,000 scale topographic 
map sheets and 3,861 1:100,000 scale topographic map sheets. The vertical 
error of the data is 10–20m. Mean square errors (MSE) of any point inter-
polated with the data model are showed in Table 1 and the accuracy of in-
terpolation is in conformity to the standard of the 1:1,000,000 scale topog-
raphic maps.` 

Table 1. Mean square errors of the 1-km DEM of China. 

 
At the same time, various digital processes are applied in order to auto-

mate the quantitative analysis and interpretation of terrain features, i.e. the 
DEM is resampled to 1,000m in both the x and y directions, converted to a 
conical equal-area projection, and finally rectified (Table 2). Because of 
the high sampling accuracy of the DEM, landform characteristics of the 
whole of China could be well represented by the DEM at a large scale. 
Moreover, the DEM can be used as a basic spatial information source for 
research into macro relief characteristics, regional planning, protection and 
development of the ecologic environment, and so on. One of the objectives 
of this study is to investigate the availability of this DEM, which has been 
an issue of concern in China for many years. 
 

Landform name High mountain Low mid mountain Hill Plain 
MSE (m)  70 41 20 1 
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Figure 1. Digital Elevation Model of China with a horizontal grid spacing of 1 km 
(size: 6,835 columns and 4,681 rows). The elevation values (minimum 0m, maxi-
mum 8,848m) were rescaled to the interval 0–255 (the lighter a pixel, the higher 

its elevation). 

 
Table 2. Basic parameters of the 1-km DEM of China. 

Scale 1: 1,000,000 Min 0m 

Projection conical equal-area pro-
jection Max 8,848.0m 

Horizontal grid 
dimensions 1 × 1km Mean 1,832.0m 

Number of 
rows/columns 4,681/6,835 Std. Dev. 1,741.3m 
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2.2 Methods 

By using ArcGIS® (version 9.0), a commercial GIS software, the DEM 
was parameterized in a given statistical unit (window size) calculated with 
Equation (1): 

minmax uuu ZZLR  (1) 

where LR is the abbreviation for local relief; Z stands for the elevation; u is 
a natural number and represents the statistical unit over which LR is meas-
ured. 

Obviously, an optimum unit must be determined first. According to the 
reports of Liu et al. (1990), two principles should be upheld in the experi-
ment. The first is to keep the integrality of the mountain in the statistical 
unit. Former researchers have shown that with the statistical unit (which is 
centred on a point on any mountain) increasing, elevation changes in the 
unit enlarge at the beginning. At this time, the unit just covers one part of 
the mountain. But when the statistical unit reaches a certain area (just cov-
ering the whole hill), elevation changes converge to a constant value. This 
area is usually called the optimum unit for calculation of LR (Tu and Liu 
1990, 1991, Liu et al. 1990, Liu et al. 2001, Wang and Wang 2004, Gal-
lant et al. 2005). The second principle is that the statistical unit should 
adapt to any relief form. 

To determine the optimum unit, we took the ‘Geomorphologic Map of 
China and Its Adjacent Areas’ (1:4,000,000) as reference, and sampled 100 
points randomly on each relief form’s mountaintops. These relief forms in-
cluded highest mountain (elevation > 5,500m), high mountain (elevation 
3,000–5,500m), high mid-mountain (elevation 2,000–3,000m), low mid-
mountain (elevation 800–2,000m), low mountain (elevation 500–800m and 
LR > 150m), hill (elevation < 500m; elevation > 500m and LR 20–150m), 
the Loess Plateau and the Sichuan basin of China. For each sampled point, 
we calculated 25 pairs of window size-LR data, and plotted broken-line 
graphs in which the x-axis denotes the window size and the y-axis denotes 
the corresponding elevation changes (LR). From the graphs, we could pick 
up one window size in which LR tended to become constant. And that 
window will be regarded as the best window for the point. Thus, for all 
sampled points, the best window, which appeared most frequently, is the 
optimum analysis window adapted to all landforms. It is worth noting that 
if we sampled at the hillside, LR will tend to be stable earlier, before the 
statistical unit covers the whole mountain. Therefore, sampling at the hill-
side will not meet the principle of mountain integrity. Additionally, in or-
der to avoid the analysis windows increasing rapidly, the DEM was previ-
ously resampled to 500m in both x and y directions and rectangular 
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windows were used in the experiment. Finally, a 13 × 13 window size ap-
peared most frequently and the area of S = 2 (13 × 0.5) = 42.25 km2 is re-
garded as the optimum unit (Figure 2). The results for LR are shown in 
Figure 3. 
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Figure 2. Number of samples in a series of windows in which LR is nearly con-

stant. These samples are located in different relief forms. 

3 Discussion 

3.1 Statistical characteristics of the LR in the whole of China 

Figure 4 shows that in China the higher the LR, the lower is the proportion 
of national territory. The proportions of LR to the national territory are 
enumerated as: 0 < LR < 100m, 30.71%; 0 < LR < 200m, 46.18%; 1,000m 
< LR, 7.34%. Furthermore, most areas in China are mountainous. By 
adopting the 5-class system of the published 1:4,000,000 scale Geomor-
phologic Map of China, the proportions of LR classes to the national terri-
tory are enumerated as: faint relief (0 < LR < 20m), 10.04%; low relief (20 
< LR < 75m), 15.34%; moderate relief (75 < LR < 200m), 21.09%; moun-
tainous relief (200 < LR < 600m), 33.22% and high-mountain relief (600m 
< LR), 20.31%. All of the above show that China possesses a high degree 
of relief in its land surface. And the highest LR appears in the Hengduan 
Mountains, located in the South West of China. 

DEM-based Analysis of Local Relief 
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Figure 3. Map of LR of China (minimum 0m, maximum 3,456m, mean 356.88m, 
Std. Dev. 380.66m). The LR value is rescaled to the interval 0–255 with an equali-

zation stretch applied to the histogram (the lighter a pixel, the higher its value). 
Straight solid lines are the traces of six cross-sections. 

 

 
Figure 4. Frequency distribution of LR. 
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3.2 Spatial distribution characteristics of the LR 

From space, the LR over the whole of China exhibits significant differ-
ences. 

 LR spatial distribution shows obvious differences in the West to East 
and NE to SW orientation (Figure 3, Figure 5). Lower LR mainly oc-
curs in the east, while higher LR occurs in the southwest. Lower LR 
mainly occurs in the north, while higher LR mainly occurs in the 
south. 

 From the west to the east, LR shows a descending trend with two ter-
race plains (Figure 5a). The division belt extends through the middle 
of China, mainly in the Helan mountain of Inner Mongolia, the Liu-
pan mountain, Sichuan basin and the Yunnan-guizhou plateau. The 
same also occurs from SW to NE, with the division belt in the Yin-
shan mountain, Loess Plateau, Wudang mountain, the middle-lower 
reach of the Yangtze River Plateau, and Wuyi mountain (Figure 5b). 

 Moreover, from space, LR from the north to the south exhibits three 
wavy levels (Figure 5a). The peak values of LR in the first level are 
distributed in areas of the Tianshan mountain, Kunlun mountain, and 
Altun mountain; the peaks value in the second level is in the area of 
the Hengduan mountain; and the peak values in the third level is 
found in Hainan island. In the SE-NW direction, values of LR show 
four wavy levels (Figure 5b). From SE to NW, the peak values of LR 
in the first level locates in Tianshan mountain and Kunlun mountain. 
The highest LR in the second level is in Hengduan mountain. The 
highest LR in the third stands in the Wuyi mountain and the Nanling 
area. The highest LR of the fourth level lies in Taiwan Island. As a 
whole, LR shows a descending trend both from the West to the East 
and from the SW to NE. LR exhibits wavy spatial distributions both 
in the N–S orientation and in the NW–SE orientation. 

 

  
 

Figure 5. Trend analysis of LR in China. 

in the whole of China 
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3.3 Characteristics of LR compared with the elevation 

To further investigate the LR features in China, this factor is also com-
pared to the elevation from six traverses. The locations of the traverses are 
given in Figure 3. Traverse (a), (b) and (c) are in the east-west direction 
and traverse (d), (e) and (f) are in north-south direction. 

Figure 6 shows the results using the profile method. Each black line cuts 
out of the LR map along each profile. Then, elevation data (grey lines) are 
projected along these profiles onto the black lines. As can be seen, most of 
the LR profiles are spatially rugged. From the traverse (a) to (c) and from 
the traverse (f) to (d), LR tends to fluctuate strongly. The cross-section (a) 
spans the smallest difference, while the cross-section (c) spans the largest 
difference. This observation is due to the Hengduan Mountains coexisting 
with the Sichun basin and the middle-lower reach of the Yangtze River 
plain along the traverse (c). 

Inflexions of LR profiles are found with higher values in boundaries of 
different landforms, especially for mountains and plains. As compared to 
elevation lines, these LR traverses indicate that higher elevation does not 
necessarily mean higher LR. For example, LR in the Qinghai-Tibet plateau 
and Loess Plateau in Shaaxi province show small differences. 

In Figure 7, the elevation data is divided into six classes, which basi-
cally correspond to seven relief forms: plain and hill, low mountain, low 
mid-mountain, high mid-mountain, high mountain and highest mountain. 
Then, in each elevation belt, the frequency of LR is calculated with the 5-
class system just like before. As can be seen, the proportions of the former 
four LR classes (i.e. faint relief, low relief, moderate relief and mountain-
ous relief) in the 0–500m elevation belt are dominant and very close. In the 
500–800m elevation belt, mountainous relief is dominant. In the 800–
2,000m elevation belt, moderate relief and mountainous relief are found 
dominant, while in the three behind mountainous relief and high-mountain 
relief are found absolutely dominant. Generally speaking, statistically 
lower LR mainly locates in lower elevation regions and higher LR mainly 
locates in higher regions. In addition, mountainous relief is most widely 
distributed in space. 
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Figure 6. Comparison between profiles of LR and elevation in China. 
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Figure 7. Frequency distribution of LR in different elevation belts. 

3.4 Characteristics of LR in different landforms of China 

We analysed LR in different relief forms based on the morphological clas-
sifications of the published geomorphologic map of China. Figure 8 shows 
the results. 

 LR in plains is similar to that in deserts, ranging from 0 to 75m. 
 LR wave crests move to a smaller value gradually from highest 

mountain, high mountain, high mid-mountain, low mid-mountain, 
low mountain, hill, plain to desert. That decreasing trend shows co-
herence with elevation variation. For each relief form, the dominant 
LR class is: plain and desert 20–75m (33%), hill 100–200m (33%), 
low mountain 100–200m (32%), low mid-mountain 200–300m 
(19%), high mid-mountain 400–500m (11%), high mountain 300–
400m (10%), highest mountain 500–600m (11%). 

 Since the LR frequency distributions of highest mountain and high 
mid-mountain are most similar, the index is not suitable for classify-
ing these two relief forms. 

 The LR value in the Loess Plateau ranges between low mid-
mountain and low mountain. 
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Figure 8. Frequency distribution of LR in different geomorphological areas of 
China (x-axis denotes the LR (m) and y-axis denotes numbers of raster cells). 

4 Conclusions 

In this paper, we probe the method of extracting LR from a 1-km DEM of 
China. Then, based on numerical analysis of the LR map, the large-scale 
geomorphological features of China are discussed. The results of this study 
show that: 
(1) The 1-km DEM of China is of practical significance and potential in 
macroscopic geomorphological feature analysis. 
(2) The experiment shows that the optimum unit for measuring LR in the 
1-km DEM is 42.25km2, based on theories of geomorphological develop-
ment and numerical analysis.  
(3) The LR map in our experiment is not absolutely accurate. It is influ-
enced by the location of the optimum unit. But it still could reveal the 
large-scale characteristics of relief forms in China. Analysing the LR map 
shows that: 

 Most areas belong to mountainous relief (200<LR<600m) in China. 
 From space, LR shows obvious differences from East to West and 

from NE to SW. Moreover, the spatial distribution of LR exhibits 

DEM-based Analysis of Local Relief
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three wavy levels from North to South and four wavy levels from SE 
to NW.  

 Higher elevation does not necessarily mean higher LR. 
 Compared with the morphological classes of a published geomorpho-

logic map of China, LR exhibits a descending trend from highest 
mountain, high mountain, high mid-mountain, to plain and desert. 
Statistically, LR shows a resemblance to the altitude, and since LR in 
Highest mountain, High mountain and High mid-mountain are simi-
lar, the index may not be suitable for classifying these three land 
types. Additionally, LR values in the Loess Plateau change between 
the values of low mid-mountain and low mountain. 

 In conclusion, the geomorphologic characteristics of the whole of 
China can be well represented by the LR derived from the 1-km DEM. It 
carries sufficient physiographic information and can provide an important 
basis for further quantitatively classification of relief forms in China. 
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Re-Scaling Lower Resolution Slope 

YANG Qinke, David JUPP, LI Rui and LIANG Wei 

Abstract  

Slope is a key parameter for regional scale hydrology, soil erosion, and 
relevant land surface process modelling. Slope information is usually ex-
tracted from moderate and lower resolution DEMs because of time and fi-
nancial limitations. But research has shown that the slope will become flat-
ter as the resolution of the DEMs becomes coarser. That is, slope reduction 
(SR) has occurred. Due to the reduction of slope as the DEM resolution 
becomes coarser, the slopes from coarser DEMs have to be re-scaled, 
firstly in order to represent terrain accurately and secondly to directly sup-
port the environmental modelling mentioned above. A transform approach 
by slope histogram matching is suggested in this chapter. A case study in a 
loess hill area shows that a coarser resolution slope histogram (derived 
from a 1:250,000 topographic based DEM), can be successfully re-scaled 
into the slope histogram at a finer resolution (using a 1:100,000 topog-
raphic based DEM). The transformed slope surface has been improved as 
an estimate of the finer resolution DEM slope in comparison with the 
coarser resolution DEM, the statistical results are similar to those from the 
finer resolution DEM in the loess hill area, and little new distortion has 
been introduced. 
 
Keywords: Loess plateau, DEM, change in scale, histogram matching. 

1 Introduction 

Slope is a key parameter for environmental modelling, especially for mod-
elling hydrology and soil erosion processes. At the field scale of soil and 
soil erosion survey and soil conservation planning, slope can be obtained 
by measuring in the field, or by mapping based on large scale topographic 
maps, e.g. 1:10,000 in China (Tang et al. 2002), or 1:24,000 in USA (Mar-
tin et al. 2002). At the regional scale, the only practical way to obtain slope 

by Histogram Matching 

variables is based on existing moderate to coarser resolution DEMs 
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coarser. That is, slope reduction (SR) will occur (Gao 1997, Yin and Wang 
1999, David and McCabe 2000, Thompson et al. 2001, Armstrong and 
Martz 2003, Tang et al. 2003, Wu et al. 2003, Hao et al. 2005). Because 
the reduced slope does not represent the relief sufficiently, it is therefore 
difficult to extract the terrain variables for hydrological and regional soil 
erosion models (Thompson et al. 2001, Hao et al. 2005), limiting the accu-
racy of modelling (Zhang et al. 1999, Wu et al. 2003, Cochrance and 
Flanagan 2004, Ren et al. 2004, Liu 2007). 

To meet the needs for slope maps in regional soil erosion modelling, a 
number of approaches have been explored by researchers. One is to de-
velop an alternative, or substitute, parameter, e.g. elevation difference 
(ED) in specified analysis windows. This has been done by Liu et al. 
(2001) and Zhao (2007). Another strategy is to transform the coarser slope 
distribution. Tang et al. (2001) and Chen et al. (2004) have attempted to 
transform coarser resolution slope by analysing the spectrum of slope 
(similar to a histogram) and constructing a transform table (TT). Finally, 
Zhang et al. (1999) suggested a method based on fractal analysis (Zhang et 
al. 1999). As it is difficult to define a relationship between ED and real 
slope, because TT does not represent the spatial pattern of slope surface in 
the current stage and because of limitations to the general application of 
Zhang’s approach that were recognized by the authors, the subject of 
coarser resolution slope (CRS) re-scaling or transform is still not opera-
tional and is therefore an important topic for research. 

In this chapter, an approach of re-scaling the coarser resolution slope by 
histogram matching is introduced aimed at practical support for hydrology, 
erosion, vegetation suitability mapping at regional scale, and to help un-
derstand issues of SCALE in geography, as well as the use of coarser reso-
lution DEM resources. 

2 Methodology Description 

2.1 Principles of CRS in geomorphology and cartography  

The capacity to depict the higher spatial frequencies (or fine scale patterns) 
of terrain in a topographic map becomes weaker as the cartographic scale 
becomes smaller due to the map generalization (e.g. from 1:10,000 to 
1:50,000) (Yang et al. 2006). At the same time, specific lines/points of 

(Martin et al. 2002, Armstrong and Martz 2003). But research has shown 
that the slope will become flatter as the resolution of the DEMs become 
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landforms (e.g. stream networks, ridges, saddles, etc.) remain and are 
sometimes enforced during the map generalization process according to 
the topographic cartography (Wang 1993). Meanwhile, the elevation will 
not be generalized; therefore the overall elevation and relief will not be 
generalized, so that despite the slope reduction created by the reduction in 
higher spatial frequencies, a significant amount of geomorphologic struc-
ture, or pattern, still remains in moderate or smaller scale topographic 
maps, or in coarser resolution DEMs that are based on smaller scale topog-
raphic maps (Yang et al. 2006). This characteristic is displayed clearly in 
Figure 1. In Figure 1a, a DEM based on a 1:100,000 scale map (SLP10) has 
been colour coded according to the slope ranges shown below. In Figure 
1b, the same table is applied to slopes extracted from a DEM based on a 
1:250,000 scale map (SLP25). The slope reduction is clearly visible. How-
ever, by comparing the most common values in the reduced slope image 
corresponding to each of the ranges in the DEM based on the small scale 
map, it is possible to redefine the ranges with the result that much of the 
colour classification of the original image is retrieved. In Figure 1c, SLP25 
is displayed with the reclassified slope categories and looks steeper than 
the slope gradient in Figure 1b. This illustration suggests that if a look-up 
table (LUT) for the slope transformation of the original and reclassified 
cases can be built, the slope reduction can theoretically be resolved. 
 

(a) finer resolution slope 
(SLP10) 

(b) coarser resolution slope
(SLP25) 

(c) reclassification of SLP25 

 
Slope (deg.)  0-1 1-2.5 2.5-5.0 5.0-

10.0 
10.0-
15.0 

15.0-
20.0 

20.0-
25.0 

25.0-
35.0 >35.0 

Reclassified slope (°)  0-0.4 0.4-0.9 0.9-1.7 1.7-3.5 3.5-6.5 6.5-
10.5 

10..5-
16.0 

16.0-
30.5 

30.5-
48.0 

Legend          

Figure 1. Reduction and reclassification of lower resolution slope (SLP25). 

 
Following effective DEM interpolation, elevation and its derivative 

(slope) can be treated as properties of spatially continuous surfaces with 
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similar spatial properties to those of the original maps (Hutchinson 2000). 
So for slope gradient values of s1, s2, …, sn, the frequency distribution (or 
density function) of slope can be estimated from the slope surface obtained 
from DEM interpolation of different scale maps. For an area with specific 
spatial landform properties, the slope characteristics, including the surface 
and its histogram, exist and are unique. According to the methodology of 
histogram modification for digital remotely sensed images (Hummel 1975, 
Harrison and Jupp 1990, Gonzalez and Woods 1992), if one matches the 
histogram of the coarser slope to the finer one, the slope from coarser reso-
lution DEM, which has had slope value reduction, can be rescaled, with 
the result that it becomes similar in its statistical and spatial pattern charac-
teristics to the finer slope image. This is the method of rescaling the slope 
of the coarser slope by matching histograms of slope frequency. 

0
( ) ( )

s
F s f s ds   (1) 

In Figure 2, F (S) is the cumulative distribution function as a function of 
S as defined in Equation (1), f (S) is the density function of a continuous 
random variable S (slope). The transformation function that modifies the 
coarser resolution slopes so that the histogram of the data following trans-
formation matches that of the finer slopes is sometimes represented as a 
“look-up” table or LUT. In this form, it is well-known as a method for en-
hancing digital images for display (Gonzalez and Woods 1992) and match-
ing sensors in image calibration (Horn and Woodham 1979). Here it is 
shown to be useful for retrieving data scaled in a way that is appropriate 
for many models. 
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Figure 2. Rescaling coarser resolution slope by histogram matching. 
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2.2 Datasets and processing 

(1) Research site: The research site is located in the loess hilly area of 
northern Shaanxi province, People’s Republic of China. Landforms here 
are hills and gullies with severe soil erosion. The area with greater than 25 
degree slope is more than 50% of the total area (Zhao 1989). The runoff, 
soil erosion, and land use patterns are all impacted strongly by slope gradi-
ent. In the training area (the dark box in Figure 3; 17 by 15km), the slope 
transform model will be derived and in the test area, the Baota Area (an 
administrative unit of Yan’an City; 3,549km2), which is lightly shaded in 
Figure 3 and includes the training area, the model will be validated. 
 

 

 
Figure 3. Research Site. 

 
(2) Datasets: This study is based on topographic maps at scales of 
1:100,000 and 1:250,000 including contours, spot heights, and stream net-
works. The basic information for the input datasets is shown in Table 1. 
The DEMs are interpolated with the maps and ANUDEM software (Hut-
chinson 1989, Hutchinson 2004). The effective grid cell resolution for the 
two datasets would be 20 and 50m, respectively, according to a previous 
study (Yang et al. 2005, Yang et al. 2006). Considering that the slope re-
duction is mainly due to the generalization of the topographic map and for 
ease of matching the frequency distributions and undertaking error analysis 
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of the transformation, a common cell size of 25m is used for the two 
DEMs. This is valid as long as the interpolation method does not add fre-
quency components in this process that were not in the original map. 
ANUDEM, by minimizing curvature, will not do this. The DEMs are de-
noted by DEM25 and DEM10. As shown in Figure 1 and Figure 2, although 
the cell size is the same, the pattern and capacity to depict the higher spa-
tial frequencies in the two DEMs and slope surfaces are clearly different, 
and the slope in SLP25 has generally reduced. 

Table 1. Description of input data. 

items riv10 riv25 cntrs10 cntrs25 pnts10 pnts25 
No 10 9 1226 285 83 11 
Length (m) 29,570 30,059 4,580,968 1,436,907 n/a n/a 
Elevation 
range n/a n/a 1,080-

1,400 
1,100-
1,400 

1,255-
1,442 

1,391-
1,434 

CI n/a n/a 40 100 n/a n/a 
Note: riv10—1:100,000 rivers; riv25—1:250,000 rivers; cntrs10—1:100,000 con-
tours; cntrs25—1:250,000 contours; pnts10—1:100,000 spot heights; pnts25—
1:250,000 spot heights; CI—contour interval. 
 
(3) Frequency histogram of slope: Slopes were extracted from the two 
DEMs with the slope function in the ARC/INFO system based on 
Burrough’s algorithm (Burrough 1986), and the results are denoted by 
SLP25 and SLP10. The former is the CRS to be transformed, and the latter 
is the reference slope. The frequency tables and histograms were created 
using Equation (2), and the slope interval scheme is listed in Table 2. The 
slope range is not constant because we have observed that the slope reduc-
tion mainly occurs in gentler slope situations. The column headed SI in the 
table records the slope interval. 

( ) 100 mf s
N

  (2) 

where N is the total number of cells in the slope surface, and m is the cell 
number with specified slope range. 

Table 2. Slope Interval (SI) for statistics. 

slope range SI  slope range SI 
0.00 — 1.00 0.05   5.00 — 50.00 1.0 
1.00 — 2.00 0.1  50.0 — 70.00 2.5 
2.00 — 5.00 0.5   70.0 — 90.00 5.0  
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2.3 The method of CRS transforming 

(1) Co-register slope: Referring to Figure 2, for each CRS value SLPi, 
find the cumulative frequency value in the coarser slope frequency line, 
move to the finer slope line horizontally (with the same cumulative fre-
quency value), then move down to the x-axes and read a new slope value, 

25
cSLP  (Table 3). Define the ratio of 25

cSLP / 25SLP  to estimate index 

( 25
eSLP ) (bold dark in Table 3). Because the lines of 25

eSLP  -- 25SLP  rep-
resent the relative amount of slope correction, they are used to decide how 
to model and represent the function that has been created by this process. 
Columns 25SLP and 25

cSLP  in Table 2 provide a slope scaling ‘look up’ ta-
ble (LUT). 

Table 3. Slope, slope frequency, estimated slope and estimated index. 

slope frequency (%) slope (°) 

25( )SLP  
finer reso-

lution 
coarser reso-

lution 

Estimated Slope (°)

25( )cSLP  

Estimated index 
25( )eSLP  

0.10 0.0005 0.0051 0.215 2.150 
0.15 0.0022 0.0193 0.342 2.280 
0.20 0.0056 0.0399 0.487 2.435 
0.25 0.0095 0.0664 0.618 2.472 
0.30 0.0146 0.0988 0.775 2.583 
0.35 0.0202 0.1424 0.915 2.614 
0.40 0.0273 0.1971 1.064 2.660 
0.45 0.0339 0.2545 1.185 2.633 
… … … … … 
48 0.0925 0.7136 61.5 1.281 

 
(2) Transformation model: To apply the change in slope to any value in 
the range, a set of regression equations for CRS and 25

eSLP  could be built 

according to the relationship between 25SLP -- 25
eSLP  (Figure 4), and in this 

study the equations are defined as a piecewise analytic model to operate in 
sections defined by non-overlapping ranges of slope. The analytic models 
enable the use of map algebra operations with the independent variable x 
in the models being the coarser DEM slope surface. For each of these sec-
tions, modelled values ( 25

mSLP ) of slope can be predicted and errors (abso-
lute and relative) calculated using Equations (3) and (4). Three sections 
(with ranges of slope  1.6 degrees, 1.6 < slope  40 degrees and slope > 
40 degrees, respectively) were selected based on error analysis. Table 4 
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shows that the absolute error is less than 2 degrees, and the relative error 
less than 10%, and we believe the models are satisfactory for this example. 

25 25
m cEa SLP SLP  (3) 

25 25

25

100
m c

c

SLP SLPEr
SLP

 (4) 
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y = 0.1627x2 + 2.74x - 0.0757
R2 = 0.9992
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Figure 4a. Slope - estimated slope and 

slope estimated index. 
Figure 4b. Fitted model for gentler 

slope. 

y = -2E-05x4 + 0.0021x3 - 0.1027x2 + 2.6977x + 0.9174
R2 = 0.9997
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Figure 4c. Fitted model for moderate 

slope. 
Figure 4d. Fitted model for steep 

slope. 

 
 (3) Slope transformation: Using the model listed in Table 4 and map al-
gebra operations in ARC/INFO, SLP25 can be transformed for each of the 
three slope sections, resulting in intermediate outputs slpt_01, slpt_02, slpt_03, 
which can then be integrated into one surface SLPt with the con function in 
an ARC/INFO grid session (see Appendix A where the specific AML code 
used here is listed). The result is a new surface of slope. 
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(4) Validation & application: Models listed in Table 4 were used to 
transform coarser resolution slopes in the Baota area (the light grey shade 
in Figure 3); the slope is from DEM25, which covers the entire Baota area. 
The results were compared to the slope map from SLP10, which also covers 
the entire Baota area. 

Table 4. Transform models and the error analysis. 

no models R2 suitable 
slope 

absolute 
errors 

relative 
errors 

1 y = 0.1627x2 + 2.74x - 0.0757 0.9992 0-1.6 0.00114 1.53998 

2 y = -2E-05x4+0.0021x3-
0.1027x2+2.6977x+0.9174 0.9997 1.6-40 0.16029 8.67463 

3 y = 2.5415x - 58.961 0.9736 >40 1.16828 3.87033 
 

3 Results and Analysis 

3.1 Reduction characteristics of SLP25 

First looking at the training area, the difference image of SLP25 and SLP10 
(SLP25-SLP10, Figure 5) shows that the values in the surface are mainly 
negative, although there are some positive ones. This means that overall 
the slope has been reduced. The mean slope value decreases from 20.636 
in SLP10 to 12.799 in SLP25 (Table 5). The number of cells with a negative 
value is 314,565, which is 77% of total cells and are mainly at the tops of 
hills with gentler slope gradients in SLP25, and the cells with positive val-
ues are distributed in gullies with steeper slope gradients in SLP25. The 
maximum decrease and increase is -52.6 and 40.8, respectively, and means 
that overall the slope surface becomes gentler. 

Table 5. Statistics of slope reduction. 

slope surface Statistics parameter 
SLP10 SLP25 

DLP25 – SLP10

max 0.031 0.015 -52.647 
min 60.858 48.000 40.751 
mean 20.636 12.799 -7.837 
std 8.429 8.109 10.363 
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-52.6--20 -20--1 -1-1 1-5 5-20 

Figure 5. Spatial pattern of slope reduction from SLP10 to SLP25. 

3.2 Transformed slope surface  

Compared to SLP25, the statistical parameters of the transformed slope 
listed in Table 6, the maximum, the mean slope, and range of slope, all in-
crease, and are close to those of SLP10 (Table 6, and Figure 6). The area of 
gentler slope decreases and steeper slope increases. The range of slope and 
the scales of slope all increase. The pattern of the slope distribution is the 
same as in the field, being steeper in the gully areas and gentler on hill 
tops. Slope of slope (curvature) is calculated by the ARC/INFO slope 
function (Figure 6). A larger value of the curvature surface means the 
ground is in gullies, and otherwise on the tops of hills. Slope surfaces be-
fore and after transformation (Figure 6b) show that the main patterns of 
terrain and slope remain, without significant distortion being introduced. 
The main changes are the range of curvature and cells with higher curva-
ture values are increased, and the mean relief also increases. 

3.3 Spatial characteristics of slope changes 

In Figure 7, the difference image (SLP10 - SLPt) shows that the transforma-
tion between images is not complete when looked at in the spatial extent. 
The differences between SLP10 and SLPt come from the generalization of 

during transformation 
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the topographic map. The value of the differences is larger on the hill tops 
and smaller in the gullies. Differences between the images based on SLPt 
and SLP25 indicate that the rescaling of slope from SLP25 to SLPt mainly 
occurred in flatter areas in relative values (Figure 7c), and in the area be-
tween hill tops and gullies where the absolute values increase and relative 
values decrease (Figure 7b). There are only 19 cells in the difference im-
age with negative values, indicating that the general change is to become 
steeper during slope transformation. 

Table 6. Statistics of transformed slope surface. 

Statistics parameter SLP25 SLPt SLP10 SLPt – SLP25 

min 0.015 0.011 0.031 -0.038 
max 48 63.031 60.858 15.031 
mean 12.799 19.583 20.636 6.785 
std 8.109 8.387 8.429 1.888 
 

Figure 6. Slope and curvature before and after scaling: (a) rescaled slope; (b) be-
fore rescaling (0.003-39.4); (c) after rescaling (0.006-42.02). 

3.4 Histogram of slope before and after transforming  

Histograms of SLP25, SLP10 and SLPt (Figure 8a and b share the common 
legend in Figure 8b) indicate that the peak in the frequency moves right, 
and cells with larger slope values increase. Lines of frequency and the cu-
mulative frequency for SLPt are all close to that in SLP10. The transforma-
tion down-scales the data and the slope properties of the higher resolution 
slope have been recovered to a greater extent. 
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Figure 7. Spatial pattern of re-scaled slope surface: (a) SLP10-SLPt; 
(b) SLPt-SLP25; (c) 100 (SLPt-SLP25/SLPt) 
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Figure 8. Frequency distribution of original and scaled slopes: (a) historgram; (b) 
cumulative frequency. 

3.5 Brief assessment of the transformation 

The model was then used in the whole of the Baota area to transform CRS 
(based on the 1:250,000 topographic map interpolated DEM). The results 
in Table 7 are similar to the slope from the finer slope DEM (based on 
1:100,000 topographic maps). The results are therefore satisfactory when 
the transformation is extended to a much larger but similar area that con-
tains the training area. We believe that based on this approach, not only 
can slopes with finer resolution slope accuracy and relief representation 
power be obtained, but also the requirement for having higher resolution 
DEMs and associated computations may be decreased greatly as well. 
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Table 7. Validation of rescaling. 

Before scaling After scaling Finer slope Slope class 
RS BT RS BT RS BT 

<3 9.08 14.00 1.53 2.87 1.43 2.81 
3 – 7 19.69 20.52 6.70 10.04 5.19 7.29 

7 – 15 35.79 30.50 22.59 23.51 19.88 20.61 
15 – 25 26.50 23.07 40.54 34.25 40.36 35.03 

>25 8.93 11.90 28.63 29.33 33.14 34.26 
Note: SA: sampling area, BT: Baotao area 
 

In the future, we propose to divide a large area (such as the one illus-
trated in Figure 9) into a series of transforming areas (TA) and have 2–3 
sampling areas in each TA, which can be used to develop a model, and 
then use the models to predict the higher resolution slope in each of the 
TAs. Let us say for TA2, which we have already studied, we have S-21 
and S-22, and maybe then have 6 models for gentler, moderate and steep 
slopes, and then use the combined models to scale the slope for the entire 
TA2 (Figure 9). 
 

 
Figure 9. Proposed transforming areas (TA) in the Loess Plateau. 
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4 Discussion and Conclusions 

There are two methods of studying slope: one is slope mapping based on 
topographic maps, which records the classification code of slope, and the 
other is to extract slope surfaces based on DEMs and then compute statis-
tics and/or make a map of slope classification or retain the map in raster 
format and use GIS tools (Tang 1987). These approaches meet the de-
mands for scientific use and policy-making, but have limitations requiring 
deeper understanding and study of slope issues, especially for slope reduc-
tion. In this study, the DEMs and slopes are all regarded as being spatially 
continuous surfaces that have continuous values and histograms. Based on 
these ideas, some theories and techniques for digital remote sensed image 
processing and digital map manipulation, such as histograms, map algebra, 
etc., can be applied. This is an innovative idea for slope study and also for 
scaling in geography (Zhang et al. 2002, Li and Cai 2005). 

In this study, a transformation function has been built by histogram 
matching. With this approach, the lower resolution slope (LRS) can be 
transformed, and the resultant will have the major terrain characteristics of 
the histogram and partial surface pattern from finer resolution DEMs 
(training area), and therefore depict the land surface more accurately. After 
transformation, the cells with larger slope values become more common, 
the overall slope becomes steeper, and the slope range become larger. For 
a large area, the requirement for higher resolution DEMs and computations 
has been decreased greatly as well. 

The principal innovation of this study is its pragmatic and computational 
approach and the integration of methods of image processing, map algebra, 
and digital map manipulation, so that the transformation is from a slope 
surface with lower local relief (CRS) to a new slope surface with higher 
local relief. The resultant surface can be used as an input for a regional 
scale distributed hydrology and erosion model without the need to develop 
a different model at a finer scale. Such high resolution data may not al-
ways be available. It is also important for researchers and managers in de-
partments concerned with geo-infrastructure to use DEM resources effi-
ciently. 

We have to stress that the study has not had sufficient application with 
large catchment hydrologic and regional soil erosion models to test its re-
sult in applications, although some of the results have been used as sup-
porting information for vegetation suitability mapping (Li et al. 2005, 
McVicar et al. 2005, Zhang et al. 2006).  

Although the method is very promising, it is far from perfect. Questions 
that should be studied further include: (1) the underlying mechanism of 
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slope reduction, based on the theory of geomorphology, cartography, geo-
statistics, and fractal mathematics; (2) how to modify and extend the mod-
els by exploring the histogram matching approach for multiple resolutions 
and identifying the scale ranges that can be transformed meaningfully; 
then investigating how to use terrain statistics to recognize areas as similar 
in the way they scale and the mechanism of scaling using the coarse level 
data; (3) how to divide the slope sections, or alternative ways to make the 
transformation function continuous; (4) application and testing of the re-
sults in operational hydrology and erosion modelling. 

Despite the amount of work to be done, the objective has very practical 
and useful applications and addresses a current and serious problem for the 
practical use of existing topographic data in hydrology and erosion appli-
cations. 

Appendix A 

The AML code used here to transform slope in an ARC/INFO 
GRID session 

slp01 = 0.1627 * pow (SLP25,2) + 2.74 * SLP25 - 0.0757 
slp02 = -0.00002 * pow (SLP25,4) + 0.0023 * pow (SLP25,3) - 0.0998 *  

pow (SLP25,2) + 2.5795 * SLP25 + 0.4602 
slp03 = 2.5415 * SLP25 - 58.961 
if (SLP25 <= 1.6) then SLPt = slp01 

else if (SLP25 > 1.6 && SLP25 <= 40) then SLPt = slp02 
else SLPt = slp03 

endif 
kill slp01 all; kill slp02 all; kill slp03 all 
 
Note: pow is power function in ARC/INFO GRID session; SLP25 refers to 
coarser resolution slope, so pow (SLP25,2) means 2

25SLP . 
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Water in the Landscape: A Review of 
Contemporary Flow Routing Algorithms 

John P. WILSON, Graeme AGGETT, DENG Yongxin and Christine S. LAM 

Abstract  

This chapter reviews the various flow routing algorithms that simulate the 
distribution and flow of water across landscapes. The distinguishing char-
acteristics of nine such algorithms and the experiments that have been 
conducted to evaluate their performance over the past 15 years are dis-
cussed. From there, we consider three sets of enduring challenges: (1) the 
role of scale and feedback between soil and water, and the need to consider 
these issues when characterizing the properties of both; (2) the need for 
dynamic flow routing algorithms and related indices in many landscapes; 
and (3) some of the as yet unrealized opportunities for treating space and 
time as continuous variables in the representation of soil water properties. 
The chapter concludes by noting the current state-of-the-art and where we 
might go from here. 
 
Keywords: DEMs, flow routing algorithms, soil water relationships. 

1 Introduction 

A growing body of literature from the 1990s illustrates how flow routing 
measurements and related topographic attributes can be used in modelling 
key hydrologic processes controlling the spatial distribution of soil mois-
ture, runoff, and soil erosion in a simplified but realistic manner (e.g. Band 
1989, Moore et al. 1993, Abbott and Refsgaard 1996, Cluis et al. 1996, 
Maidment 1996, Da Ros and Borga 1997, Beven 1998, Storck et al. 1998). 
The identification of drainage pathways and runoff contributing areas 
based on DEMs, together with their coupling with hydrological models 
(e.g. Beven et al. 1994, Lee and Chu 1996), provides the means to param-
eterize spatially distributed, physically-based models, which themselves 
represent a major approach for incorporating spatial heterogeneity. Digital 
terrain analysis provides a quantitative and consistent approach to generat-
ing inputs for applications of these models as discussed below. 
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The elevation, slope, and aspect of an area have a strong influence on its 
microclimate due to insolation and other effects, and topography has a ma-
jor impact on the hydrological, geomorphological, and biological proc-
esses active in landscapes (Moore et al. 1993, Dymond et al. 1995, Cluis et 
al. 1996, Pickup and Chewings 1996). Geomorphometric parameters de-
rived from DEMs can be used to determine where in a watershed various 
slope processes, such as landslides and runoff, take place (Montgomery et 
al. 1998). At the local scale, primary geomorphometric parameters can be 
extracted using standard GIS tools in order to investigate morphometric in-
fluences on hydrologic variables such as overland flow depth and velocity. 
For example, the widely used hydrologic model TOPMODEL is based on 
the concept of variable source areas contributing to runoff production 
through saturated overland flow (Beven et al. 1994). Formation of the con-
tributing area is related to the topographic index ln(As/tan ), where As is 
the upslope area drained per unit contour length and  is the slope angle. 
Model inputs are the frequency distribution of ln(As/tan ), daily precipita-
tion and evapotranspiration time series, and several lumped soil and flow 
routing parameters. Model outputs include the runoff hydrograph, water 
balances, and contributing areas. Developments in hydrologic models have 
been greatly facilitated by GIS, which supports the spatial data models that 
have enabled earth scientists to construct more distributed representations 
of space than previously possible. Using GIS to parameterize such models 
has enabled their application across local, watershed, and regional scales, 
facilitating more realistic model assessment and more accurate process 
modelling. 

The strong influence of elevation and watershed morphology on precipi-
tation, water movement, and slope stability means that DEMs serve as one 
of the basic building blocks of many environmental model parameteriza-
tion efforts, and the enhancements made to flow routing measurements 
have enhanced this capacity. The increasing availability of DEMs, re-
motely-sensed data, and a dramatic increase in desktop computing power 
over the past decade have accelerated these developments, enabling re-
searchers to link their chosen process-based model(s) to a spatial database 
contained within a GIS. 

This chapter reviews the most popular flow routing algorithms and what 
is known about their performance. The choice of algorithm is critical given 
the key contribution of water distribution and flow in soil development, 
land cover, soil redistribution, and various forms of mass movement. The 
remainder of this chapter is divided into three sections. The distinguishing 
characteristics of nine such algorithms – the D8 (O’Callaghan and Mark 
1984), Rho8 (Fairfield and Leymarie 1991), FD8 (Quinn et al. 1991), Lea 
(1992), DEMON (Costa-Cabral and Burgess 1994), ANSWERS (Beasley 

John P. WILSON, G. AGGETT, DENG Y. and C.S. LAM 



A Review of Contemporary Flow Routing Algorithms 215 

and Huggins 1978), flux decomposition (Desmet and Govers 1996), D  
(Tarboton 1997), and MFD-md (Qin et al. 2007) algorithms – are first out-
lined. We then review the continued importance of source data, interpola-
tion algorithms, and the experiments that have been conducted to evaluate 
their performance over the past 15 years in Section 3. Three groups of 
studies – those focused on inputs and/or decision rules and those focused 
on the ability of one or more of the aforementioned algorithms to repro-
duce the drainage structure or some relevant landscape properties with and 
without the assistance of field observations – are discussed. The last sec-
tion concludes by noting the current state-of-the-art and where we might 
go from here. 

2 Basic Characteristics of Flow Routing Algorithms 

The automated extraction of surface channel networks from DEMs has 
grown in popularity during the past 20 years as the availability and resolu-
tion of DEMs, as well as the quality of hydrologic modelling tools, has 
improved. Identifying channel networks and their initiation points is cen-
tral to hydrology and geomorphology because of the control exerted by 
climate, topography, soil properties, and other environmental attributes on 
surface flow paths and erosion potential within a drainage basin (Knighton 
1998). The characteristics of a channel network heavily depend on the 
identification of channel source cells from the digital landscape, and can 
greatly affect the delineation of catchments or drainage basins (Garbrecht 
et al. 2001). The closer the channels begin to the drainage divide, the 
greater the number of channels that can occupy a watershed (Montgomery 
and Dietrich 1988). DEMs generally cannot capture all topographic varia-
tions that occur within the landscape, especially if the features are finer 
than the DEM resolution, and these shortcomings may cause discrepancies 
between the precise positioning of stream channels in digital landscapes 
and the real world (Garbrecht et al. 2001). 

Flow routing algorithms have been used to predict the channel source 
cells as well as the movement of water, sediment, and nutrients to lower 
adjacent points or areas in a landscape (e.g. Desmet and Govers 1996). 
Fundamentally, a flow routing algorithm determines the way in which the 
outflow from a given cell will be distributed to one or more neighbouring 
downslope cells. The choice of flow routing algorithm is important as it af-
fects the calculation of the upslope contributing area, the prediction of 
flow accumulation, and several other topographic and hydrologic attrib-
utes. The derivation of these attributes relies on digital elevation source 
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data. Square-grid DEMs are a popular choice for flow routing due to their 
visual simplicity and ease of computer implementation (Moore et al. 1991, 
Wise 1998a, b, Wilson and Gallant 2000). All nine of the flow routing al-
gorithms discussed below utilize square-grid DEMs as their primary input 
data, and calculate flow directions and upslope contributing areas using a 3 
x 3 moving window. 

The D8 (deterministic eight-node) single-flow-direction (SFD) algo-
rithm directs flow from each grid cell to one of eight nearest neighbours 
based on slope gradient (O’Callaghan and Mark 1984). The aspect  
(measured in degrees clockwise from north) marks the direction of steepest 
descent for each grid cell or point in a catchment, and is the direction in 
which water would flow from that grid cell or point. Most implementations 
of D8 utilize the primary flow direction for water moving over the land 
surface as an approximate replacement for aspect (Moore 1996). The sim-
plest method of calculating primary flow direction is to determine the 
slope (Si) to each neighbour and set it to the direction for which Si is great-
est (Gallant and Wilson 2000). The upslope contributing area is the num-
ber of cells whose flow reaches the cell of interest multiplied by the cell 
area, while specific catchment area is the upslope contributing area divided 
by the contour width, which is assumed to equal the "width" of a grid cell. 
Some implementations of D8 utilize the grid spacing for both cardinal and 
diagonal flow assignments, while others, such as TAPES-G (Gallant and 
Wilson 1996), assume that the grid cell width is a good estimate for flow 
width in the cardinal directions and that the cell width multiplied by 2 is 
the best estimate of the flow width for flow assignments to diagonal cells. 
However, there is little theoretical or empirical evidence to support either 
option (Gallant et al. 2000). 

The Rho8 (random eight-node) SFD algorithm developed by Fairfield 
and Leymarie (1991) introduced a degree of randomness to break up the 
parallel flow paths that D8 tends to produce on planar surfaces (Wilson 
and Gallant 2000). This algorithm starts by identifying all the neighbour-
ing downslope cells, then calculates the slope gradients in each of these di-
rections, and finally extracts random numbers from a table to direct the 
flow to one of these candidate cells. The random numbers are allocated on 
a slope-weighted basis such that the potential flow paths with the steepest 
gradients have the greatest probability of being selected, and the overall 
flow pattern more or less matches the one produced with D8. The upslope 
contributing and specific catchment areas are calculated using the flow 
width and flow accumulation approaches adopted for D8; however, a dif-
ferent flow network will be produced each time the algorithm is used be-
cause of the random assignment of flow among multiple downslope cells 
(Wilson et al. 2000). 

John P. WILSON, G. AGGETT, DENG Y. and C.S. LAM 



217 

The FD8 multiple flow direction (MFD) algorithm developed by Quinn 
et al. (1991) directs water to every adjacent downslope cell on a slope-
weighted basis. The slope gradients, slope lengths, and two weights – 0.5 
and 0.35 for cardinal and diagonal directions, respectively – are used to di-
rect the flow from the centre cell to each downslope cell in a 3 x 3 moving 
window. Each cell receives a fraction of the discharge from each upslope 
cell, and therefore, the upslope contributing area of the receiving cell is 
typically composed of partial contributions from many different cells. Spe-
cific catchment area is calculated as the sum of the contributing areas from 
upslope cells divided by the cell width for the cardinal flow directions, and 
by the cell width multiplied by 2 for diagonal flow directions (similar to 
D8 and Rho8 in TAPES-G). The user can set a maximum cross-grading 
area threshold in the TAPES-G implementation of FD8 to switch to the D8 
algorithm. This approach means that flow dispersion will be terminated 
whenever the upslope contributing area exceeds this user-specified thresh-
old (Gallant and Wilson 1996, Wilson and Gallant 2000). 

Lea’s (1992) flow routing algorithm relies on the calculation of the as-
pect vector and a surface fitting scheme. He argued that flow moves across 
a planar surface in the direction of the steepest slope, or aspect angle , 
similar to a “rolling ball”. The approach has two parts. First, planes are 
constructed to represent the surface of each cell using estimated elevations 
at the four corners of each cell. Successively larger windows can be im-
plemented to minimize the occurrence of flat areas (i.e. surface pits). The 
aspect vector is calculated during the second step in 1° increments (in con-
trast to the 45° increments used for many implementations of D8) and is 
utilized to route flow across individual cells. Flow paths are constructed by 
the repeated application of the algorithm until the catchment outlet is 
reached or a topographic hollow prevents the continued progress of flow. 
The contributing area is calculated as the number of flow paths passing 
through that cell multiplied by the grid cell area, and an arbitrary threshold 
is utilized to dictate the number of flow paths that need to converge on a 
pixel for it to be classified as a stream path. 

The fifth algorithm called DEMON (Digital Elevation Model Network) 
was developed by Costa-Cabral and Burgess (1994) and determines flow 
direction based on the local aspect angle similar to Lea (1992). However, 
the flow generated over a cell is directed downslope over a two-
dimensional flow strip. These flow strips partition catchments into irregu-
larly shaped elements that are defined by pairs of orthogonals and equipo-
tential lines (contour lines). The width of the flow strips increases over di-
vergent topography, decreases over convergent topography, and remains 
constant over planar surfaces. The flow across each cell is the amount of 
flow entering that cell plus the flow generated by the cell itself. When flow 
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reaches an edge of a grid cell at a cardinal direction, then all flow is di-
rected to the single neighbour. In other cases, the flow is split amongst the 
cardinal neighbours. The upslope contributing area for each cell in 
DEMON is computed by successive addition of the cell areas in each 
stream tube entering every pixel in the DEM, and the specific catchment 
area is computed by dividing the upslope contributing area by the flow ma-
trix width. A modified version of DEMON is implemented in TAPES-G in 
which the nodes of the DEM define the centre of the cells instead of the 
entire cell area, and the flow direction of a stream tube is defined by the 
aspect. The upslope contributing and specific catchment areas are calcu-
lated in the same way as in the original version of DEMON in TAPES-G 
(Gallant and Wilson 2000). 

The ANSWERS (Areal Nonpoint Source Watershed Environment Re-
sponse Simulation; Beasley and Huggins 1978) non-point source pollution 
model describes the runoff, infiltration, subsurface drainage, erosion, and 
drainage across a watershed during and following single storm events. The 
watershed is divided into grid cells with parameters provided for each cell, 
and the continuity equation is used with a stage-discharge curve to calcu-
late the amount of flow that would cross each cell. The cells are split into 
two parts by a line through one of the cell corners and oriented in the as-
pect direction of the cell, and the relative proportions used to divide and 
direct the flow of water into the neighbouring downslope cardinal cells. 
This algorithm was implemented as a FORTRAN program and coupled 
with IDRISI (Eastman 1992) by Desmet and Govers (1996) as part of a 
study comparing the performance of flow routing algorithms in a small 
catchment near Flanders, Belgium. Two modifications were made to the 
original ANSWERS algorithm by Desmet and Govers (1996) to solve spe-
cific problems such that: (1) flow was assigned to just one of the two car-
dinal cells when flow was directed to grid points of equal or even higher 
height; and (2) flow was switched to the D8 steepest descent algorithm 
(i.e. the diagonal path in a 3 x 3 moving window) when both of the two re-
ceiving cells were higher than the central point. 

Desmet and Govers (1996) also proposed a new flow routing algorithm 
based on the decomposition of the flux vector. The flux vector was split 
into two ordinal components with the magnitude of each component pro-
portional to the sine or cosine of the aspect value. The magnitudes of the 
two components were normalized by dividing each by the sum of the abso-
lute values of the sine and cosine of the aspect value, and the two modifi-
cations noted above for the ANSWERS flow routing algorithm were 
adopted as a part of this algorithm as well. This algorithm splits the up-
slope contributing area between two cardinal neighbours and the calcula-
tion of specific catchment area is similar to that of D8, FD8 and Rho8 in 
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TAPES-G, where the contributing area is divided by the effective contour 
length. The major difference between the ANSWERS and flux decomposi-
tion algorithms concerns the routing of flow to the two cardinal 
neighbours. Beasley and Huggins (1978) chose to divide grid cells based 
on which cardinal neighbour received flow lines parallel to the aspect di-
rection, whereas Desmet and Govers (1996) relied on the sine and cosine 
of the aspect vector values to direct flow to these candidate cells. 

The D  algorithm proposed by Tarboton (1997) incorporates several 
ideas from DEMON to assign multiple flow directions to selected cells. 
The flow direction follows the path of steepest descent and is represented 
as a continuous angle between 0 and 2  radians. Special rules are included 
to: (1) force flat cells to drain to a neighbour that ultimately drains to a 
lower elevation; and (2) eliminate loops in the flow direction angles. Grid 
cells that are flat took flow direction from the D8 method in the original 
D  code, but the latest version uses the method of Garbrecht and Martz 
(1997) to assign flow directions in flat areas. This algorithm returns 
NODATA for flow direction in grid cells classified as pits. The upslope 
area of each cell is taken as its own area plus the fractional areas of up-
slope neighbours that drain into the cell of interest, similar to FD8 and 
DEMON. If the angle falls on a cardinal or diagonal direction, then the 
flow from each cell drains to one neighbour. If the flow direction falls be-
tween the direct angles to two adjacent neighbours, the flow is apportioned 
between the two cells according to how close the flow direction angle is to 
the direct angle for those cells. 

The final MFD-md algorithm proposed by Qin et al. (2007) utilizes lo-
cal topographic conditions to partition the flow between downslope 
neighbouring cells. This algorithm modifies the flow partition approach of 
Quinn et al. (1991) by utilizing the maximum downslope gradient to 
model the impact of local terrain on the flow partitioning predicted at each 
cell. The maximum slope gradient was chosen for inclusion in this algo-
rithm over the minimum and mean downslope gradients because: (1) it is 
less sensitive to variations in DEM error; and (2) the new algorithm will 
behave like D8 in steep terrain (Qin et al. 2007). The MFD-md flow parti-
tioning scheme uses an exponent that takes values between 1.1 and 10 to 
model divergent (small flow partition exponent values) and convergent 
flow (large exponent values) across the landscape (similar to the schemes 
proposed by Freeman 1991, Holmgren 1994, and Quinn et al. 1995). 

This proliferation of flow routing algorithms raises an important ques-
tion; namely, whether one or more of these algorithms performs better than 
the others in specific landscapes and/or applications. Figure 1 builds on the 
approach of Qin et al. (2007) and shows the routing of flow from the cen-
tre cells in three hypothetical DEMs to one or more downslope neighbours 
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for the nine aforementioned flow routing algorithms. These relatively sim-
ple examples show how different flow routing algorithms can generate 
substantially different estimates of upslope contributing area and related 
attributes (specific catchment area, topographic wetness index, etc.). The 
major findings from published studies comparing the performance of two 
or more of these flow routing algorithms are taken up and discussed in 
more detail below. 
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Figure 1. Flow partitioning schemes for nine flow routing algorithms and the 
three sample DEMs. 
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Figure 1. (Continued)
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3 Comparisons of Flow Routing Algorithms 

The evaluation of flow routing algorithm performance is tricky because of 
the importance of the underlying source data and the difficulty of separat-
ing the impact of the flow routing algorithms from that of the underlying 
data when reviewing their performance. The elevation data may take one 
of three forms (square-grid, triangulated irregular, and contour-based net-
works) although the proliferation of digital elevation sources and preproc-
essing tools means that the initial choice of data structure is not as critical 
as it once was (Kemp, 1997a, b). Numerous methods have been proposed 
to convert digital elevation data from one structure to another, but care 
must still be exercised with each of these methods to minimize unwanted 
artefacts (e.g. Krajewski and Gibbs 1994). 

Hutchinson (2007) recently documented a 20-year trend of shifting spa-
tial scales – from continental and regional scales (e.g. major drainage divi-
sions), to the mesoscale (e.g. surface climate), and then to the toposcale 
(e.g. soil properties) – in hydro-ecological applications of topographic 
data. These scale transitions have mirrored advances in DEM resolutions 
and improvements in representing local terrain shape and structures. This 
focus on local details has allowed landforms and hydrological patterns to 
be differentiated within small watersheds (e.g. 1–100 km2 in size) and hill-
slopes (e.g. 100–1,000 m in length). However, larger quantities of data do 
not necessarily produce better results: Eklundh and Martensson (1995), for 
example, used ANUDEM (Hutchinson 1989) to derive square grids from 
contours and demonstrated that point sampling produces faster and more 
accurate square-grid DEMs than the digitizing of contours. Similarly, Wil-
son et al. (1998) used ANUDEM to derive square grids from irregular 
point samples and showed that many of the x, y, z data points acquired 
with a truck-mounted GPS were not required to produce satisfactory 
square-grid DEMs. ANUDEM calculates ridge and streamlines from 
points of maximum local curvature on contour lines and incorporates a 
drainage enforcement algorithm that automatically removes spurious sinks 
or pits in the fitted elevation surface (Hutchinson 1989). ANUDEM is one 
of several programs of this type (see Maidment 1996 and Hellweger 1996 
for other examples) that modify a DEM to reflect known hydrology, and 
there are many other methods that have been proposed over the years to 
automatically extract drainage networks and ridgelines from digital eleva-
tion data (e.g. Qian et al. 1990, Smith et al. 1990).   

This proliferation of digital elevation data sources and preprocessing 
tools is to some extent problematic given the task at hand. Carrara et al. 
(1997), for example, compared several methods for generating DEMs from 
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contour lines and concluded that the range of terrain types, sample struc-
tures, and modelling routines is so great that attempts to make generaliza-
tions about "best" models is tremendously difficult. Similarly, Callow et 
al. (2007), for example, examined three different algorithms that modify a 
DEM to reflect known hydrology and showed that these methods perma-
nently altered the source DEM and a variety of computed topographic at-
tributes. Some of the interpolation methods that have been proposed are 
difficult to use and as a consequence Eklundh and Martensson (1995) rec-
ommended that less experienced users focus on the quality of the input 
data instead of learning sophisticated interpolation methods. Simpler inter-
polation methods will give satisfactory results so long as the input data are 
well sampled and sophisticated algorithms are likely to produce unsatisfac-
tory results if applied to poor data (e.g. Wilson et al. 1998).   

It is perhaps not surprising given this background that many modellers 
accept the DEMs they work with uncritically despite an ever-increasing 
literature describing the causes of systematic and random errors in DEMs, 
and their effects on morphometric and hydrologic parameter estimation 
(e.g. Lagacherie et al. 1996, Lopez 1997, Murillo and Hunter 1997, Wise 
1998a, b). If undetected and uncorrected they may propagate into the proc-
ess models they are used to parameterize, causing considerable uncertainty 
in the reliability of their simulations. Small errors in elevation or strange 
behaviour by an interpolator can produce large errors in surface derivatives 
such as gradient, and topographic surfaces used to define boundary condi-
tions in environmental modelling applications will contain error (Desmet 
1997, Liu and Jezek 1999).  

Numerous studies have attempted to evaluate the performance of two or 
more flow routing algorithms notwithstanding the complications intro-
duced by the choice of source data and/or interpolator and the presence of 
systematic and/or random errors. These studies can be grouped into three 
sets and their results are discussed in some detail below. The first two 
studies have examined the sensitivity of flow routing predictions to one or 
more of the decision rules embedded in the chosen flow routing algo-
rithms. 

Wilson et al. (2000) examined the effect of DEM source, grid resolu-
tion, and choice of flow routing algorithm on three primary and two sec-
ondary topographic attributes for a large forested catchment in southwest 
Montana. The comparisons showed that the D8 and Rho8 SFD algorithms 
initiated flow from 30–40% of the cells and produced much higher propor-
tions of cells with small upslope contributing areas compared to the FD8 
and DEMON MFD algorithms. The results also showed that the choice of 
cross-grading area threshold, which is utilized in TAPES-G to switch from 
FD8 to D8, produced very small differences (<5%) in upslope contributing 
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and specific catchment area values. Overall, the results showed that the 
two MFD algorithms agreed with each other in 71% of the grid cells and 
that the other algorithms agreed with each other in 49–57% of the pairwise 
comparisons. 

Chirico et al. (2005) evaluated several different methods for defining 
flow width on grids when computing SCA in the second study. Five ap-
proaches – D8 with flow width equal to grid size regardless of cell flow di-
rection; modified D8 (D8_v1) with flow width equal to grid size for cardi-
nal flow directions and grid size times 2 for diagonal flow directions; 
modified D8 (D8_v2) with flow width equal to grid size for cardinal flow 
directions and grid size times 1 2 for diagonal flow directions; D  with 
flow width equal to grid size regardless of cell flow direction; and modi-
fied D  (D _v1) with flow width varying as a function of flow direction – 
were tested on sloping planes, inward and outward cones and then com-
pared with theoretical SCA values. Two dimensionless parameters – the 
global resolution, defined as the ratio of a characteristic length of the study 
area to the grid size, and the upslope area resolution, defined as the ratio of 
the local theoretical SCA to the grid size – were used to evaluate the per-
formance of the five approaches. The results, cast in terms of the pattern of 
errors (i.e. absolute bias, mean absolute error, and local relative error) 
across different grid sizes indicated that D8 and D  performed better than 
the modified D8 and D  algorithms in calculating SCAs. 

The second group of studies comparing the performance of two or more 
of the flow routing algorithms examined their ability to reproduce the 
drainage structure and/or some other topographic attribute. Desmet and 
Govers (1996), for example, evaluated six flow routing algorithms in terms 
of their ability to: (1) reproduce the main structure of the catchment; and 
(2) predict the location of ephemeral gullies. The D8 and Rho8 SFD rout-
ing algorithms produced different spatial and statistical patterns from each 
other and two pairs of MFD algorithms – the MFD algorithms of Quinn et 
al. (1991) and Freeman (1991), both of which allocate flow to up to eight 
neighbouring cells, and the ANSWERS (Beasley and Huggins 1978) and 
flux decomposition (Desmet and Govers 1996) algorithms, which allocate 
flow to one or two downslope neighbours – for their small study site in 
Flanders, Belgium. The MFD algorithms produced much smoother images 
compared to the SFD algorithms (similar to Wolock and McCabe 1995) 
and taken as a whole, Desmet and Govers (1996) favoured the two algo-
rithms that allowed flow to only one or two downslope neighbours because 
they (visually) produced a stronger correlation with the main drainage 
lines. The main structure of the catchment (i.e. the interfluves and main 
drainage lines) was identified by all six flow direction algorithms and most 
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of the variability occurred in higher elevation areas (based on the maps re-
produced in the manuscript).  

Desmet and Govers (1996) also examined the effect of the choice of 
flow direction algorithm on the prediction of ephemeral gullies identified 
using the methodology of Moore et al. (1988). Their results showed that 
the MFD algorithms were able to identify areas where ephemeral gully 
erosion is likely, but they could not predict the precise location of the gul-
lies (which never exceeded half the width of the grid cells for this particu-
lar study area). The SFD algorithms predicted ephemeral gullies to start 
higher on the slopes but the correspondence with observed patterns was er-
ratic because these algorithms were very sensitive to small elevation er-
rors. 

Zhou and Liu (2002) computed "true" SCAs for ellipsoid, inverse ellip-
soid, saddle, and planar simulated surfaces and compared these values to 
the SCAs derived from the D8, Rho8, Freeman (1991), DEMON, and D  
flow routing algorithms. The accuracy and spatial distribution of residuals 
were also analysed by calculating the Root Mean Square Error, mean error, 
and standard deviation. They found that DEMON generated the lowest 
randomly distributed error values across all surfaces. Qin et al. (2007) used 
the same simulated surfaces and statistics to compare the performance of 
their new MFD-md algorithm with D8 and a derivative of the MFD algo-
rithm of Quinn et al. (1991). Their results showed that MFD-md produced 
the lowest error amongst the three algorithms across all four simulated sur-
faces. 

Wilson et al. (2007) compared the performance of pairs of SCA grids 
computed from five flow routing algorithms (D8, Rho8, FD8, DEMON, 
and D ) across six user-defined fuzzy landscape classes. Table 1a lists the 
basic SCA statistics by flow routing algorithm. The minimum values var-
ied because different rules were used to direct flow from each source cell 
to one or more adjacent downslope cells. The maximum values are similar 
because they represent watershed outlets at the coast. The mean values 
varied from a low of 3,429 m2m-1 (DEMON) to a high of 4,356 m2m-1 
(FD8), a difference of 27%. Table 1b partitions SCA into a series of 
classes and indicates the percentage of cells for each flow routing algo-
rithm that was assigned to each class. These results show that D8 and 
Rho8, and to a lesser extent D , have many more "low flow" cells (i.e. 
SCA  10 m2 m-1). The same pattern is repeated for the second class al-
though the magnitude of the differences is reduced. The largest number of 
cells in classes 3 through 6 was generated with different flow routing algo-
rithms – D  for class 3, DEMON for class 4, and FD8 for the fifth and 
sixth classes – although the differences are relatively small. 
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Table 1. (a) Specific catchment area (m2 m-1) statistics for study area, and (b) per-
centage of cells per specific catchment area class. 

(a) Number of 
cells Minimum Maximum Mean Standard 

Deviation 
D8 1,263,296 7.07 2237670.25 3715.27 60584.28 
Rho8 1,263,296 7.07 2236030.25 3714.18 60469.64 
D  1,263,296 10.00 2236762.00 3934.18 61469.07 
FD8 1,263,296 2.56 2341777.00 4355.83 69911.69 
DEMON 1,263,296 7.07 2214353.00 3428.91 55657.18 
 
(b) SCA Classes (m2m-1) 
  1 

( 10.0) 
2 

(10.1-
20) 

3 
(20.1-

40) 

4 
(40.1-

70) 

5 
(70.1-
100) 

6 
(100.1-
1000) 

7 
(>1000) 

D8 12.8 18.5 26.9 16.3 7.2 13.3 5.1 
Rho8 13.4 21.6 25.0 14.3 6.7 14.0 5.1 
D  7.6 12.9 29.9 20.1 7.9 16.0 5.7 
FD8 4.5 12.1 24.5 20.7 10.0 23.2 5.2 
DEMON 2.7 12.2 29.3 23.6 9.6 17.6 5.0 
 

Table 2 summarizes several noteworthy features about the distribution 
of low flow cells predicted with the five flow algorithms across the six 
landscape classes. First, the number of low flow cells predicted with the 
five flow routing algorithms varied from 169,171 (Rho8) to 33,756 
(DEMON). Second, the percentage of low flow cells in the hill-
top/ridgeline class varied by a factor of five, from a low of 9% for 
DEMON to a high of 45% for D8. In general, these percentages indicate 
the presence of a series of broad hilltops and ridgelines in the study area. 
Third, Rho8 predicted > 5,000 low flow cells in five of the six landscapes 
and D8 predicted > 5,000 low flow cells for steep north-facing slopes. Nei-
ther of these results is realistic. Overall, the results show that D , FD8, 
and DEMON performed better than D8 and especially Rho8 – the latter al-
gorithm, in particular, had large numbers of low flow cells scattered across 
most of the fuzzy k-means landscape classes – and that the algorithms pro-
duced different results in different parts of the catchment. 

The final pair of studies that comprise the third group are noteworthy 
because they compared the performance of the flow routing algorithms to 
observations of soil wetness and overland flowpaths. Fried et al. (2000) es-
timated the topographic wetness index with four flow routing approaches 
(static D8 and DEMON, as described in the previous section, and two 
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quasi-dynamic versions of D8, one with dynamic uniform soils and the 
other with dynamic variable soils) and evaluated the resultant models us-
ing field data collected during a post-storm event GPS survey of ponded 
storm flow accumulations and concentrated storm flow discharge sites for 
a small first-order catchment in Michigan. The results showed that the 
quasi-dynamic versions of D8 calculated with DYNWET (Barling et al. 
1994; see next section for additional discussion of this approach) per-
formed best and that the areas of greatest disagreement were relatively flat, 
lending credence to the conventional wisdom that flowpath determination 
by any method is especially challenging in areas of low relief (see Callow 
et al. (2007) for additional insights). 

Table 2. Distribution of source cells (SCA  10 m2m-1) by landscape class. 

Percentage of Cells with SCA  10 m2m-1 Topo-climatic 
Class 

Number of 
Cells D8 Rho8 D  FD8 DEMON 

114,186 79,789 64,966 39,215 23,583 Hilltops/ 
ridgelines 256,012 

(44.6%) (31.2%) (25.4%) (15.3%) (9.2%) 

1,686 25,568 481 107 91 Steep south-
facing slopes 323,989 

(0.5%) (7.9%) (0.1%) (0.0%) (0.0%) 

5,630 18,584 331 72 86 Steep north-
facing slopes 231,180 

(2.4%) (8.0%) (0.1%) (0.0%) (0.0%) 

37 8,245 175 15 9 Moderately 
steep lower 
valley slopes 

169,173 
(0.0%) (4.9%) (0.1%) (0.0%) (0.0%) 

39,893 36,526 28,995 16,709 9,960 Coastal plains 
/gentle slopes 177,787 

(22.4%) (20.5%) (16.3%) (9.4%) (5.6%) 

35 459 94 62 27 Stream 
channels 103,888 

(0.0%) (0.4%) (0.1%) (0.1%) (0.0%) 

161,467 169,171 95,042 56,180 33,756 
Total Area 1,262,029 

(12.8%) (13.4%) (7.5%) (4.5%) (2.7%) 
 

Endreny and Woods (2003) compared the spatial congruence of ob-
served overland flow paths with those delineated using the D8, FD8, 2D-
Lea, 2D-Jensen (Jensen 1996), and D  algorithms on agricultural hill-
slopes in New Jersey. Four new algorithms were created to determine 
whether the congruence between observed and simulated flow networks 
improved with changes in the method for allocating flow about the path of 
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steepest descent. D8-buf allowed flow to disperse into all adjacent 
downslope cells inside a user-specified buffer; D8-2x allowed flow to be 
split between two downslope cells at the source pixel and then each flow 
path followed the path of steepest descent; whereas MF(5) and MF(3) con-
strained the eight possible flow paths available in the FD8 algorithm to the 
five and three adjacent downslope cells with the steepest gradients, respec-
tively. The results suggest using flow routing algorithms that disperse flow 
to two or three neighbouring cells when routing runoff across the land-
scape. The favoured algorithms included D8-buf and MF(3) along with the 
more sophisticated 2D-Lea, 2D-Jenson, and D  algorithms since all five 
of these algorithms produced the best spatial congruence and kept the 
commission and omission errors at very low levels. 

4 Discussion and Conclusions 

It is clear from the aforementioned evaluations that the nine flow routing 
algorithms produce different results from one another and that the differ-
ences can be expected to vary in different parts of the landscape. The nine 
algorithms take different approaches to fitting a surface to the square-grid 
DEMs and in terms of the rationale and number of cells to which flow is 
apportioned. These algorithms all treat flow routing as a function of the to-
pographic surface despite the likelihood that this is only true in a series of 
relatively rare special cases (i.e. when a land surface is impermeable). The 
evaluations are noteworthy in that only two studies compared the perform-
ance of these algorithms to observations. Both of these studies relied on 
visual (i.e. qualitative) assessments and recommended using specific algo-
rithms based on “goodness-of-fit” without resort to any theory or knowl-
edge of the soil water relationships that help to direct runoff across the 
landscape. This is a fundamental shortcoming because the successful de-
ployment of these flow routing algorithms in watershed modelling applica-
tions depends ultimately on the amount of spatial variability they are able 
to reliably measure or account for (Western et al. 1999). 

Various authors have identified the influence of interpolation errors in 
DEMs and their propagation through the computation of flowpaths and to-
pographic indices to model output (Desmet 1997, Heuvelink and Good-
child 1998, Holmes et al. 2000, McMaster 2002, Van Niel et al. 2004). 
However, while terrain and errors in modelled terrain play an important 
role in the spatial distribution of surface processes, the spatial patterns of 
these processes may vary substantially because of the variability of soil 
and land cover characteristics. Mitas and Mitasova (1998), for example, 
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found that borders between different land cover types (e.g. bare soil and 
dense grass) caused abrupt changes in flow velocities as well as in trans-
port and detachment capacities, creating effects important for erosion pre-
vention. Management actions may also modify flowpaths since cross-slope 
furrows tend to channel overland flow directly into concavities, leading to 
significant flow convergence at points upslope of those that would be iden-
tified on the grounds of topography alone (Brown and Quine 1999). There 
is clearly a need to consider the spatial variability of numerous factors in 
addition to terrain shape, as illustrated by the example below. 

Zhu and Mackay (2001) investigated the effect of using detailed SoLIM 
spatial soil data in place of traditional soil map data as an input to both 
lumped and spatially distributed runs of the RHESSys model (Tague and 
Band 2001). RHESSys is designed to represent surface soil, topographic, 
and vegetation patterns along with certain hydro-ecological processes at 
the landscape level, so that the necessary parameters can be realistically 
estimated to reproduce the dominant patterns of hydro-ecological dynam-
ics (e.g. surface runoff, evapotranspiration, canopy photosynthesis) over 
the landscape (Band et al. 1993). The SoLIM result map described the spa-
tial variation of hydraulic conductivity by identifying contrasts between 
north and south facing slopes, and between high and low elevations due to 
the level of soil profile development, thereby providing details that were 
not visible on traditional soil maps. 

The implications of ineffective representation of the spatial details of 
soil depth and hydraulic conductivity were highlighted when Zhu and 
Mackay (2001) ran various hydro-ecological models within RHESSys us-
ing the detailed (SoLIM) and conventional soil data as input. Underestima-
tion of solum depth using the traditional soil map led to the soils respond-
ing quickly and abruptly to precipitation events, producing a rapidly 
changing and generally unrealistic hydrograph. The soil profile was thus 
predicted to saturate with less precipitation, while overestimation of hy-
draulic conductivity simulated water to move too rapidly through the soil 
column. In the SoLIM scheme, however, soil conditions on side slopes and 
their deviation from the dominant soil type were considered in model 
parameterization, and as a result the peaks of the simulated hydrograph 
were lower and more sensibly characterized the hydrologic response. In-
terestingly, the simulated streamflow between the two different soil land-
scape parameterization schemes was small under the distributed approach. 
Zhu and Mackay (2001) argue this is due to local variation of soil proper-
ties (solum depth and hydraulic conductivity) being expressed by the de-
tailed description of other landscape parameters in the distributed ap-
proach, particularly the spatial covariation of local topography (elevation 
and slope gradient) and drainage area on a hillslope. 
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The spatial variability of soil and land cover characteristics is important 
because the location and extent of variable source areas is determined by 
the antecedent soil water content and its spatial distribution within the 
catchment in many environments (e.g. Walter et al. 2007). We therefore 
need to be able to characterize the spatial variability of soil water content 
in a simple, yet physically realistic way to generate meaningful hydrologic 
predictions at the catchment scale (Moore et al. 1993). Most models and 
applications rely on the topographic wetness index (ln(As/tan )) to charac-
terize the soil water distribution, although this form of the wetness index 
will only serve as a good predictor of soil water content if the drainage 
flux has reached steady state (i.e. if every point is experiencing drainage 
from its entire upslope contributing area) (Barling et al. 1994). 

This last assumption is not true in many watersheds for at least part of 
the year because the velocity of subsurface flow is so small that most 
points in a catchment only receive contributions from a small part of their 
total upslope contributing area and the subsurface flow regime is in a state 
of dynamic non-equilibrium. Barling et al. (1994) proposed a quasi-
dynamic wetness index (ln(Ae/tan )), where Ae is the effective specific 
catchment area and  is the slope angle, and showed that this approach was 
a better predictor of soil water content for a small catchment near Wagga 
Wagga in New South Wales, Australia. This approach, which requires the 
user to specify drainage times and two soil properties (saturated hydraulic 
conductivity and drainable porosity), is novel because they considered soil 
properties in addition to the shape of the topographic surface. 

More work along these lines is needed because hydrologic applications 
utilize flow routing algorithms to connect the precipitation falling on the 
land surface with the hydrologic response of the catchment. This work will 
require a greater investment in fieldwork and data modelling than is evi-
dent from the flow routing papers published during the past two decades. 
We need better data models to get the runoff from the land surface to the 
stream networks (see Kim and Lee 2004 for one such example) and most 
important of all, we will need field observations in a variety of landscape 
settings to improve our characterization of the role of topography, soil, and 
land cover in shaping the hydrologic response of catchments. 
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An Integrated Raster-TIN Surface Flow Algorithm 

Petter PILESJÖ 

Abstract 

In this chapter, an alternative surface flow algorithm is presented. The ba-
sic idea behind the algorithm is the use of the advantages of TIN-based al-
gorithms within a raster based environment. A gridded raster DEM is used 
to create a ‘regular TIN’, over which surface flow is estimated. Since each 
facet in the TIN has a constant slope and slope direction, the estimations 
of, for example, flow velocity and diversion/convergence are less compli-
cated compared to traditional ‘cell based’ solutions. The flow is treated as 
‘water packages’, given specific (point) positions on the surface. The 
number of water packages per cell is initially set to eight, but this number 
can be increased or decreased. After each time step, the water packages 
have moved a certain distance (depending on slope and water depth), and 
new water packages have been created due to precipitation. In order to 
keep the number of water packages constant (to reduce memory and com-
puter time), all water packages within a TIN facet are merged after each it-
eration. Parameters in time and space, e.g. precipitation, infiltration, vege-
tation and elevation, can all be loaded into the software. 
 
Keywords: DEM, TIN, surface flow, topographical modelling, hydrologi-
cal modelling. 

1 Introduction and Background 

Catchment topography is critical for models estimating distributed hydro-
logical processes. The key parameter in catchment topography is flow dis-
tribution, which tells us how overland flow is distributed over the catch-
ment area. Slope controls flow pathways for surface as well as near surface 
flow, and influences the sub surface flow pattern substantially. 

Flow distribution over a land surface is a crucial parameter in hydro-
logical modelling. The use of Digital Elevation Models (DEM) has made it 
possible to estimate flow on each location over a surface. Based on the 
flow distribution estimation on each location represented by a DEM, the 
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drainage pattern over an area, as well as various other hydrological pa-
rameters such as catchment area and up-stream flow accumulation, can be 
modelled. 

Generally, surface flow and flow accumulation are estimated by the use 
of two different types of raster algorithms, either approximating to single, 
or multiple, flow directions. If working with raster data, multiple flow al-
gorithms assume transport to more than one adjacent cell, while a single 
flow algorithm only distributes water to one neighbour cell at a time in the 
raster. In many cases, single directional flow algorithms produce satisfac-
tory results over concave surfaces, while it is often more appropriate to di-
vide the flow into two or more directions if the surface is flat or has a con-
vex form. Combinations of the two types are often preferred when 
modelling water flow over natural surfaces (Pilesjö et al. 1998). 

However, the raster algorithms mentioned are often not optimal, and 
need extensive calibration, mainly due to the problem of how to weight the 
influence of slope when splitting flow between neighbouring cells (see e.g. 
Olsson and Pilesjö 2002). Estimation of flow over surfaces with a constant 
slope and a constant slope direction, like a facet in a TIN, would consid-
erably improve the accuracy of the analysis. On a facet, a one directional 
flow algorithm is the obvious choice (if the surface is planar the flow does 
not diverge). However, since a majority of available topographical data is 
stored in raster format, TIN based algorithms are not widely used. In this 
chapter, we present an algorithm making it possible to adopt the advan-
tages of TIN modelling in a raster environment. The program produced is 
able to estimate drainage area/flow accumulation as well as water distribu-
tion/Hortonian overland flow at a certain time t. Variables and constants 
like rainfall intensity, infiltration capacity, elevation, and time step can be 
specified and incorporated by the user. 

2 Existing Flow Algorithms 

As indicated above, a number of different methods exist for the estimation 
of flow and flow accumulation. Some of these estimate contributing areas 
(up-slope) as well as dispersal areas (down-slope). A few of the commonly 
used methods are presented below. 

2.1 The single flow – D8 algorithm 

This algorithm was described by O’Callaghan and Mark (1984). It assumes 
that flow follows only the steepest downhill slope. Using a raster DEM, 
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implementation of this method results in the hydrological flow at a point 
only following one of the eight possible directions corresponding to the 
eight neighbouring grid cells (Mark 1984, O’Callaghan and Mark 1984, 
Band 1986, ESRI 1991). Here we call this approach a ‘single flow’ algo-
rithm. However, for the quantitative measurement of the flow distribution, 
this over-simplified assumption must be considered as illogical and would 
obviously create significant artefacts in the results, as stated by Freeman 
(1991), Holmgren (1994), Wolock and McCabe (1995), and Pilesjö and 
Zhou (1996). More complex terrain is supposed to yield more complicated 
drainage patterns. 

The D8 algorithm allows flow from each cell to discharge to only one 
receiving neighbour. The origin of the flow on the cell is the centre; hence 
it is treated as a point source. The flow down-slope is described as a one 
dimensional line. This way of approximating a surface to a point, and a 
two-dimensional flow tube into a line is, of course, a generalization. The 
larger the cells and the more undulating the terrain, the larger will be the 
errors. Also, the fact that only one neighbouring cell can receive water 
from an out-flow cell is a limiting factor. A flow direction in either a car-
dinal or diagonal direction does not always reflect reality. For example, 
parallel flow will only be correctly estimated if the flow direction is a mul-
tiple of 45 degrees. The one directional flow problem becomes even more 
evident in convex terrain, where flow is supposed to diverge. In concave 
terrain, where flow is supposed to converge, it is less pronounced. This 
can, for example, be shown by the modelling of water over a circular cone 
mountain surface and a circular cone crater surface, respectively (see e.g. 
Costa-Cabral and Burges 1994, Pilesjö and Zhou 1997). 

2.2 The Rho8 algorithm 

The difference between the D8 algorithm and the Rho8 algorithm, pre-
sented by Fairfield and Leymarie (1991), is that the Rho8 also includes a 
stochastic variable. Water from a cell is discharged to one of its eight 
neighbours, but the choice of the cell is made stochastically. Depending on 
slope direction, the probability values of two adjacent cells can be any-
thing between fifty-fifty (0.5 – 0.5, e.g. if the slope direction is 22.5 de-
grees) and one to zero (e.g. if the slope direction is 0 degrees). The ran-
domness in the method can possibly yield problems like convergence and 
divergence where flow is supposed to be parallel, as well as “wiggling” 
patterns over well defined surfaces. The fact that this stochastic method 
cannot be reproduced with the same result over the same surface is some-
times also considered unfavourable. 
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2.3 Multiple-direction algorithms 

Attempts to solve the problems connected with the ‘single flow’ algo-
rithms have led to several proposed ‘multiple flow direction’ algorithms 
(see e.g. Freeman 1991, Quinn et al. 1991, Holmgren 1994, Pilesjö 1994, 
Pilesjö and Zhou 1996). These algorithms estimate the flow distribution 
values proportionally to the slope gradient, or risen slope gradient, in each 
direction. Holmgren (1994) summarizes some of the algorithms as 
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where i,j = flow directions (1…8), fi = flow proportion (0…1) in direction 
i, tan ßi = slope gradient between the centre cell and the cell in direction i, 
and x = variable exponent. 

By changing the exponent (x) in Equation (1), two extreme approaches 
to estimating flow distribution can be observed. While x = 1, flow will be 
distributed to downhill neighbouring cells proportionally to the slope gra-
dients, as suggested by Quinn et al. (1991). The other extreme is when x 

 , which will approach the ‘single flow’ drainage distribution men-
tioned above. Holmgren (1994) suggested an x value between 4 and 6. 
This gives a result between a very homogeneous flow distribution when x 
= 1, and a distinctive flow, which occurs when x becomes greater than 10. 

Pilesjö and Zhou (1997) used mathematical surfaces (a cone, a hemi-
sphere, and an inverse hemisphere) to test different x values. They con-
cluded that an x value of 1 was optimal, especially on convex surfaces. 
Freeman (1991) proposed an x value of 1.1 after testing for flow over a 
right circular cone. 

One of the problems with the ‘standard’ multiple-direction algorithm, 
independent of the value of the exponent x, is the diverging flow over pla-
nar surfaces where we expect the flow pattern to be parallel. Depending on 
aspect, the flow from one cell is almost always (if slope direction is not 
equal to 0, 90, 180, or 270 degrees) discharged into at least three 
neighbouring cells down-steam. This results in diverging flow patterns, 
which is not a correct image of reality. Also, over concave surfaces, where 
we expect the flow to converge, this problem is evident. The contributing 
area becomes discontiguous, since cells (too) far away are included. The 
results are also affected by boundary (to the water divide) proximity. 
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2.4 A form-based algorithm 

This solution, sometimes referred to as the Pilesjö-Zhou algorithm, was 
presented by Pilesjö et al. (1998). Given the limitations and problems of 
the algorithms presented above, a ‘multiple flow direction’ approach based 
on analysis of the form of individual 3 x 3 cell surface facets was pro-
posed. It was assumed that flow diverges over convex surfaces, and con-
verges over concave surfaces. There is no absolute way to determine con-
vexity and concavity of the centre cell in a 3 x 3 cell facet. The possible 
complexity of the surface often implies approximations. One way to ap-
proximate, used in the form-based algorithm, is to employ a trend surface 
based on the elevation values of all nine cells in the facet. When the topog-
raphic form of the centre cell in the facet is judged as concave, the flow is 
distributed fully to the main drainage direction. If the main drainage direc-
tion is not equal to the direction to one of the eight neighbouring cells, the 
flow distribution has to be split between two cells. This is done by splitting 
the drainage vector into two diagonal (i.e. 45  apart) vectors. When the to-
pographic form of the centre cell in the facet is judged as convex, the flow 
is distributed according to Equation (1). 

2.5 The DEMON algorithm 

The DEMON algorithm was presented by Costa-Cabral and Burges 
(1994). In order to eliminate the problem with the one-dimensional flow 
present in the other algorithms, DEMON uses two-dimensional flow tubes 
in order to trace flow up-stream and down-stream. The direction of flow 
over each cell is approximated to the aspect value. By connecting (flow) 
lines, parallel to the aspect values, from the corner points of a cell receiv-
ing water, a flow tube can be estimated. In Figure 1, cell 4;3 (row; column) 
receives water from the cells 4;2, 3;1, 3;2, 3;3, 2;1, 2;2, 2;3, 1;1 and 1;2. 
The flow is tracked down-stream until it leaves the DEM or enters a sink. 

Unlike most other flow algorithms, DEMON does not distribute flow di-
rectly to diagonal neighbour cells. This is explained by the fact that the 
contact with these neighbours is through a point, which has no width. 
However, this distribution sometimes causes problems. In the example 
presented in Figure 2 below, we intuitively assume that water from the up-
per left cell should flow into the lower right cell. Using DEMON, this will 
not be the case. The reason for this is actually that all cell surfaces are ap-
proximated to first order (planar) surfaces. This often results in ‘gaps’ be-
tween individual surfaces, i.e. a discontinuous surface, which is unrealistic. 
Costa-Cabral and Burges (1994) also write that some problems connected 
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to the method ‘can be avoided only if a curved rather than a planar surface 
is fitted to each pixel’. 
 

 

Figure 1. Illustration of how DEMON es-
timates flow. Modified from Costa-Cabral 

and Burges (1994). 

Figure 2. Using the DEMON algo-
rithm, the lower right cell will not be 

estimated as receiving water from 
the upper left cell. 

 

2.6 Discussion 

The disadvantages of the single flow algorithms are obvious. Directing 
flow in only one direction from a cell is a strong over-simplification, yield-
ing unreliable results. Also the limitations of the ‘standard’ multi-
directional algorithms are problematic. Estimated contributing drainage ar-
eas are discontiguous, and the result is dependent on boundary proximity. 
Another important source of error, both for single and multiple flow algo-
rithms (including the form-based one), is the point source assumption. De-
pending on terrain complexity in relation to cell size, this is more or less 
pronounced. The DEMON algorithm, not based on a point source assump-
tion, may yield significant errors on concave or convex hill-slopes that are 
large relative to cell size. 

Another problem in flow modelling is how to treat sinks and flat sur-
faces. Sinks are minor depressions in the terrain, creating small drainage 
areas that sometimes are filled up by water. Flat areas are problematic 
since all algorithms presented above do not model flow over these, even if 
most cases seem logical. Water always flows down-slope, and if a flat area 
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borders one or several lower (in elevation) cells we expect water to flow in 
these direction/directions. The sink problem can be dealt with by eliminat-
ing all sinks with an area (or depth) exceeding a defined threshold, or by 
letting the sinks be filled up with water and then ‘spill over’. How to as-
sign flow directions over flat surfaces has been proposed by Pilesjö et al. 
(1998). The method is based on defined flow distribution values in the sur-
roundings. The flow distribution from a cell on a flat area is estimated by 
vector addition of defined flow directions of the neighbours. If a flat area 
consists of more than one surface facet, the order of the estimation is re-
lated to the number of neighbours with defined flow distribution values. 
The flat facet with the highest number of defined neighbours is treated 
first, then the one with the second highest number of neighbours, and so 
on, until the flow distributions for all the facets on the flat areas have been 
defined. If the flat area turns out to be a bottom of a sink, the centre cell of 
the flat area is not allocated any drainage direction. No contradictory 
drainage directions are ever allowed. 

For the proposed algorithm presented in this chapter, we try to keep, and 
possibly develop, as many as possible of the strengths present in the algo-
rithms presented above, but still keep to an algorithm that is usable in prac-
tice. Too complicated models, with a high demand of input data, are often 
not practical. The main strengths to take charge of, based on the models 
presented above, are to: 

 keep a multiple-flow approach, 
 keep a form-based approach, 
 model flow over a continuous surface where slope as well as as-

pects influence the flow, 
 try to eliminate or limit the weaknesses connected to point-based 

solutions, and 
 treat flat surfaces in an appropriate way. 

Apart from this, we have tried to develop an algorithm that can help us 
to make estimations of the actual flow (speed as well as amount) at a cer-
tain time. It was considered valuable not only to estimate drainage areas, 
but also the amount of water in time and space. In order to do this, we have 
to include a number of variables, like precipitation and infiltration. We 
have also decided to modify but keep the point-based approach by extend-
ing the number of point sources in a cell to (at least) eight. By doing this 
we have the possibility of tracing water packages down-stream, and at any 
time checking the amount of water in the different cells. The proposed al-
gorithm estimates flow over a gridded DEM, used as a continuous surface 
by creating triangular facets (i.e. a ‘regular TIN’) between the cell centres. 
This ‘TIN approach’ eliminates gaps between adjacent cells/facets. 

An Integrated Raster-TIN Surface Flow Algorithm 
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3 Method 

In this section, the different methodological steps of the algorithm will be 
presented, from the construction of the TIN to the estimation of the water 
flow in individual cells. 

3.1 TIN construction 

In a raster DEM, the cell values represent the elevation in the centre of the 
cell. Let us imagine that we create triangular facets in a raster DEM by let-
ting the centre point of each cell become a corner in a triangular facet (see 
Figure 3). 
 

Figure 3. A ‘regular TIN’ can 
be created by constructing fac-
ets (dashed lines) between the 
cell centres in the raster DEM. 
Numbers represents elevation 

values of the cell centres. 

When creating this ‘regular TIN’, an ob-
vious question is how to perform the trian-
gulation. Since the grid is regular, with equal 
distances between cells, Delaney triangula-
tion cannot be used. One alternative is to 
link the two diagonal points (cell centres) 
that have ‘the most equal’ elevation values. 
This means that we assume a ridge between 
two cells with equally high elevation values 
(left example in Figure 3), a valley between 
two cells with equally low elevation values, 
or ‘a more or less horizontal break line’ of 
slope along a slope if the two points with the 
most equal values are in between the maxi-
mum and the minimum value of the cells 
(right example in Figure 3). 

 
However, since four elevation points only give us limited knowledge about 
the terrain form, it was decided to expand the window and examine a 4 x 4 
cell facet. The idea was to estimate the elevation value in the centre of the 
facet (where two possible diagonals between the four centre cells in the 4 x 
4 cell facet meet) and use this as a help in the triangulation. 

One way of approximating the form of the surface (in this case, a 4 x 4 
cell facet) is to use a trend surface (TS) based on the elevation values of all 
cells in the facet. Here a method based on a least squares approximated 
third-order trend surface is proposed. The first step is to determine the 10 
constants in Equation (2) (see below) explaining the surface by the use of 
the 16 known elevation values in the 4 x 4 cell window. Then the elevation 
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value at the centre of the surface can be computed. To determine the con-
stants, an over-determined equation system needs to be solved. Since the 
equation system is over-determined, there is no ‘true’ solution. True in this 
sense implies that the elevation values for the 16 points lie on the trend 
surface. The residuals are the discrepancies between the given elevation 
values from the DEM and the corresponding elevation values computed 
from the trend surface. The ‘optimal’ solution minimizes these discrepan-
cies according to a certain criterion. In this study, the least squares method 
was used to determine the constants of the third-order trend surface. 

2
9

2
8

3
7

3
65

2
4

2
3210),(TS
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where 
16,...,1i  The index numbers of the 16 cells. 

90 ,..., aa  The constants for the third-order trend surface. 

ii yx ,  The cell coordinates in a local system. 
When the constants are estimated and the centre point calculated, the 

elevation value of this point is compared to the four surrounding elevation 
values. The absolute difference between the calculated value and the aver-
age of two diagonal elevation values will decide how to perform the trian-
gulation. The two diagonal elevation points (cell centres) with the least dif-
ference to the calculated value will be linked. This approach increases the 
chances of not interrupting natural valleys and ridges. A screen dump from 
the developed software, where the cells as well as the facets can be seen, is 
presented in Figure 4. 

When the TIN is defined, the slope and aspect values for each facet can 
be calculated according to Equations (3) and (4) below. In Figure 5, the 
slope and slope direction of every facet in the DEM is illustrated.  
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where a1 and a2 are coefficients for the plane. 
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Figure 4. A screen dump from the developed software. In this example, the DEM 

consists of 10 x 10 cells, coloured differently according to elevation. The TIN 
structure is superimposed on top. Note that only half (or ¼ in the corners) of the 

border cells are covered by TIN facets. 

3.2 Basic flow estimation 

When the TIN is created, the next step is to estimate flow over the surface. 
The basic idea for doing this is to divide each cell into 8 (or more, or less, 
depending on the desired accuracy) equally sized areas. The number of ar-
eas reflects the level of accuracy in the following flow estimations. The 
more areas, the more detailed flow estimation, since the area represents the 
smallest unit over which flow direction and velocity are considered (see 
below). Each area is represented by a point with a fixed position (at the 
centre of gravity in each area, see Figure 6). Note that no area can be split 
by a TIN facet border (compare Figures 4 and 5 above) and consequently 
no point falls on a border between two facets. The reason for using points 
in individual areas is that we want to estimate flow by using ‘water 
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Figure 5. An illustration of a DEM, the TIN structure, slope gradient (propor-

tional to the lengths of the slope vectors), and aspect at every facet. 

 
The flow directions are the 

same for the four points falling 
in one facet (the size of a facet 
is always half the cell size). By 
drawing all flow directions from 
all points, we obtain an impres-
sion of the flow pattern over the 
surface (Figure 7).  

Figure 6. Each cell is divided into eight ar-
eas, represented by points with fixed posi-
tions at the centre of gravity of each area. 

 

An Integrated Raster-TIN Surface Flow Algorithm 

packages’, and we want these water packages to have defined positions 
(point locations) in space. 
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Figure 7. The flow pattern over the surface can be detected by combining flow di-
rections from all initial points (8 in each cell). Note that the flow sometimes fol-

lows a valley between two facets. 

At time t = 0, no flow is present over the surface, and the amount (of 
water) is equal to an initially given value at every point (and consequently 
in all areas) in the DEM. At time t = 1, the flow has started and mainly the 
topography (slope and slope direction) has redistributed the water over the 
surface. Every point is treated as a volume of water, moving in the same 
direction as the slope direction (aspect) of the facet on which it is situated. 

3.3 Flow velocity 

The velocity of the overland flow depends on the slope of the surface, the 
surface roughness (symbolized by a friction factor, f), and the water depth 
(Bengtsson 1997). The relationship between flow velocity, surface rough-
ness, flow depth, and slope can be expressed by Manning’s equation: 

2/13/2 IRMv  (5) 
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where v is the water flow velocity, M is Manning’s number describing the 
surface roughness, R is water flow depth, and I is slope.  

M varies with different water depth, especially for limited depths on 
vegetated surfaces (Bengtsson 1997). If the vegetation cover on the surface 
is known (e.g. by importing a raster file to the program), M can be read 
from a raster file or a table. R is estimated by summation of water on a 
facet, and I is known on each facet. 

3.4 Infiltration and evaporation 

Water loss due to infiltration and evaporation can also be estimated. If we 
do not estimate flow over long periods of time (e.g. years), loss of flowing 
surface water due to evaporation is normally negligible. Infiltration, how-
ever, normally expressed as infiltration capacity (mm/h), is of high impor-
tance for the estimation of Hortonian overland flow. Preferably, infiltration 
capacity is imported as a raster file to the program. Then the amount of in-
filtrating water can be subtracted from the water packages, and the Horto-
nian overland flow can be estimated at every facet. 

3.5 Flow over more than one facet 

The simplified flow process presented in this chapter can be looked upon 
as volumes of water (located at points in order to make it simpler) moving 
over the surface. Depending on slope and vegetation, the velocity, and 
hence the travel distance of a water volume over a certain time period, of 
water varies. Whenever we want we can stop or pause the modelling and, 
by summarizing the points (water volumes) in each cell, obtain informa-
tion regarding flow as well as flow accumulation. 

Depending on flow velocity and time step (i.e. number of seconds, min-
utes, hours or days) the travel distance of a water package will either not 
be long enough to ‘leave’ the facet, or reach the border to another, adja-
cent, facet. If a water package reaches the facet border, it can either flow 
into the adjacent facet or follow the facet border. In the latter, case the 
border line represents a valley. 

If a water volume flows into another facet, the speed as well as the flow 
direction will normally change (if the adjacent facet does not have equal 
slope, aspect, and roughness as the one the water package has left). Also if 
it reaches a horizontal facet (i.e. a flat surface) the speed of the water flow 
will be influenced. Velocity of water will then be more (relatively) influ-
enced by the energy potential between the elevation of the flat surface and 

An Integrated Raster-TIN Surface Flow Algorithm 
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the water depth, while the direction will be determined using surrounding 
facets with defined flow directions (see section 2.6 above). 

3.6 Iterative flow estimations 

After each time step, the number of water packages (simplified to be lo-
cated at individual points) in each facet on the surface has either increased, 
decreased or stayed the same. Note that water added to a facet from above 
(i.e. precipitation) will be located at the centre of gravitation of each area 
(covering 1/8 of a cell). If a facet is located in a valley, we can expect the 
number of water packages to increase as long as the input (precipitation) 
does not stop. The number of water packages on hill slopes is also ex-
pected to increase since eight new water packages will be created in every 
cell at each time step t (if the input is not equal to 0). When the input (pre-
cipitation) ends, the number of packages will decrease, starting in the high-
lands and following the drainage network. 

This means that the number of water packages (n) over the surface, as 
long as the input is not equal to 0, equals: 

118 nrowsncolstn  (6) 

where t is the number of time steps and ncols and nrows equal the number 
of columns and rows in the DEM. 

The subtraction of one from the number of columns as well as rows is 
due to the fact that TIN facets cannot be created along the border of the 
DEM (see Figure 4). If the time step is small (e.g. one minute), the area is 
large (e.g. 10x10km), the cell size is small (e.g. 10x10m), and we run the 
program for a long time (e.g. one week), this results in a huge number of 
water packages (in this case more than 8×1010) that significantly influences 
the processing time and computing resource. In the present practice, it is 
impossible to store and track this amount of data. 

In order to solve this problem, all water packages on a facet are merged 
after each iteration. The water volumes are merged into one new position, 
depending on the amounts of water and positions for the merged volumes. 
The new position is obtained by weighted average interpolation (see e.g. 
Burrough and McDonell 1998), where the weighting is proportional to the 
amount of water in each water volume at each location. The amount of wa-
ter at the new location is equal to the sum of the merged water volumes. If 
wanted, water packages on parts of facets (e.g. ¼ instead of a whole facet) 
can be merged. This increases accuracy in the estimations. 

By adding the water volumes in each cell at a certain time t, the amount 
of surface water over the area can be estimated. If the total amount of  
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3.7 Sinks and diverting valleys 

One common problem in flow estimation is the presence of sinks, defined 
as depressions in the terrain without an outflow. At this stage of develop-
ment of the software, sinks have not been treated individually. This means 
that a sink will accumulate water until the inflow ends, or until the model-
ling is stopped. However, in the next version of the program spill-over 
from sinks will be possible. When the water depth of a sink (consisting of 
one or more cells) has reach the difference in elevation between the sink 
and its lowest ‘water blocking’ neighbour cell, additional water will spill 
over and flow into that cell. 
 

 
Figure 8. Sinks and valleys can be highlighted using the software. 

An Integrated Raster-TIN Surface Flow Algorithm 

incoming water is set to 1 unit per cell (i.e. 1/8 at every point), no new in-
coming water is added, and the amount of water passing (or staying in) 
each cell is summarized, the result will show the drainage area (in number 
of cells) to each cell in the DEM. 
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Apart from sinks, diverting valleys are an important topic to discuss. 
When flow diverts (i.e. following borders between facets that continue 
down-slope in more than one direction), it has to be decided how to divide 
the flow between the alternative paths. This has been done according to 
Equation (1), with an x value of 1. This means that flow has been judged to 
be directly proportional to slope gradient. The sinks and valleys can also 
be highlighted using the software (see Figure 8). 

4 Results 

In order to make a first test of the algorithm, estimations were performed 
on a natural surface. In Figure 9, a DEM from an agricultural field in cen-
tral Sweden, with a resolution of 1 metre, is presented. For a detailed de-
scription of the DEM, see Persson (2004). A relatively large number of 
sinks are present in the DEM, and along the edges there are disturbances 
probably related to interpolation errors. 

 
Figure 9. The topography of the test surface. Swedish reference system RT90. 

Coordinates in metres. 

The algorithm was run on the test surface, with constant precipitation 
and infiltration capacity. The estimated flow accumulation is presented in 
Figure 10. 
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Figure 10. The result of a test run of the algorithm. The figure illustrates flow ac-

cumulation (0–1,000 cells). Flow exceeding 1,000 units was set to 1,000. The 
darker the tone, the higher the flow accumulation. Swedish reference system 

RT90. Coordinates in metres. 

5 Discussion 

The algorithm and software presented above give an alternative way of es-
timating surface flow over digital elevation models. The program enables 
us to perform estimations in space as well as in time. Input parameters can 
be both time and space dependent (like precipitation and evaporation), 
only space dependent (like a static vegetation cover/surface roughness), or 
only time dependent (like precipitation in a smaller and less documented 
area). 

An Integrated Raster-TIN Surface Flow Algorithm 
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A visual validation of the test run unveils disturbances in flow in the pe-
ripheral parts of the DEM. However, these disturbances are also present in 
the DEM, and can be explained by interpolation errors and/or a large num-
ber of sinks and terraces in the terrain. 

It is too soon to say if this way of estimating surface flow surpasses e.g. 
the form-based algorithm, the DEMON algorithm, and/or other algorithms 
estimating multiple flow directions from a gridded DEM. A statistical 
validation of the result is definitely needed to answer this question. How-
ever, the algorithm presented is relatively simple and seems to produce ro-
bust results. The software codes are available from the author upon request 
to colleagues who provide an e-mail address. 
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DEM-based Modelling and Simulating of Modern 
Landform Evolution of Loess 

TIAN Yuan, WU Lun, GAO Yong, WANG Daming and ZHANG Yi 

Abstract 

Form and process are the most important contents of geomorphology. For 
quantitative analysis of form and process, there are respectively methods 
of statistical analysis and mathematical modelling. At present, the focus 
and difficulty for modern geomorphology is to establish process-oriented 
mathematic models based on dynamics and to simulate landscape evolu-
tion. This chapter first describes the quantitative analysis method for small 
catchments, and is divided into three levels, namely form analysis, land-
form evolution statistical analysis and geomorphological process model-
ling. And then the Modern Catchment Landform Evolution Model 
(MCLEM) is presented by which the processes of tectonic elevation, 
weathering, hillslope and fluvial transport can be described and simulated. 
Lastly, an experiment is used to demonstrate the advantages of MCLEM. 
  
Keywords: small catchment, quantitative geomorphological analysis, 
landform evolution, DEM. 

1 Introduction 

The dynamic changes in the erosion environment of the Loess Plateau, es-
pecially in the foothill and ravine regions, are very severe. These changes 
are both macroscopic and microscopic, just as many other geographic phe-
nomena, and are caused by many different factors, long-term and short-
term, natural and artificial. They are extremely difficult to measure by 
regular statistical methods, which are typically static, quantitative, and 
simple. By employing geographic information systems (GIS), it is now 
necessary and possible to make a DEM (digital elevation model) -based 
quantitative landform analysis and to establish a process-oriented landform 
evolution model, by which we can simulate the modern loess landform 
evolution and make a more effective study of its laws. 
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Table 1. The characteristics of some typical landform evolution models since 
1990s. 

Name Processes  DEM 
Type 

Spatial 
Scale 

Time 
Scale 

Flow Di-
rection Al-
gorithm 

Transport 
Rule 

Hydro-
logy 
Model 

SIBERIA 
(Willgoose 
et al. 1991)  

tectonic, 
slope, 
stream 

grid N/A N/A single flow 
direction 

confined to 
transit rule  

Precipiton 
model 
(Chase 
1992)  

tectonic, 
slope, 
stream 

grid N/A 
Geolog-
ical pe-
riod 

Cascade confined to 
transit rule 

Random 
rainfall 

Detachment 
limited 
model 
(Howard 
1994)  

tectonic, 
slope, 
stream 

grid N/A 
Geolog-
ical pe-
riod 

single flow 
direction 

confined to 
both transit 
and detach-
ing rules 

 

GOLEM 
(Tucker and 
Slingerland 
1994)  

tectonic, 
stream grid 

Region 
(103) 
drainage 
(50m)  

Geolog-
ical pe-
riod 
(106 - 
107 
years)  

single flow 
direction 

confined to 
both transit 
and detach-
ing rules 

 

CASCADE 
(Braun and 
Sambridge 
1997)  

tectonic, 
slope, 
stream 

TIN region 
(103m)  

Geolog-
ical pe-
riod 
(106 
years)  

Bucket 
Passing 
Algorithm 

confined to 
both transit 
and detach-
ing rules 

 

CAESAR 
(Coulthard 
et al. 1998)  

slope, 
stream grid 1-50m 10 - 104 

years 
multi flow 
direction  

driven by 
rainfall 
events 

ZSCAPE 
(Densmore 
et al. 1998)  

tectonic 
elevation, 
form and 
transfer of 
weathered 
rock, bed-
rock slide, 
stream 

grid 
mountain 
102 -104 
m)  

104 - 
106 
years 

single flow 
direction 

confined to 
both transit 
and detach-
ing rules 

 

CHILD 
(Tucker et 
al. 1999)  

tectonic, 
slope, 
stream 

TIN drainage 
103 - 
106 
years 

Cascade 

confined to 
both transit 
and detach-
ing rules 

(exagger-
atedly) 
driven by 
rainfall 
events  
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Many researchers have developed different landform evolution models, 
with various theoretical structures and goals. The characteristics of some 
typical landform evolution models are listed in Table 1. 

This chapter begins with a description of the quantitative methods of 
analysis on small catchments in Section 2, which can be divided into three 
parts: form analysis, landform evolution statistical analysis, and geomor-
phological process modelling. Based on these studies, a Modern Catch-
ment Landform Evolution Model (MCLEM) is described in Section 3, by 
which the processes of tectonic elevation, weathering, hillslope, and fluvial 
transport can be described and simulated. Section 4 gives the details of the 
outcomes of MCLEM simulation and compares these outcomes with cor-
responding observation results. We discuss some observations and inter-
pretations arising from the use of the model in Section 5 and draw some 
conclusions in Section 6. 

2 Quantitative Methods of Analysis of Drainage 

Quantitative drainage methods use single-phase or multi-phase DEMs to 
investigate the spatial changes of the form, process of the drainage, and the 
relations between them, and then predict future changes of the form. A 
single-phase DEM just represents the landform at the time when the DEM 
data was collected, but multi-phase DEMs, composed of several successive 
single-phase DEMs, represent not only the landform at a single time but 
also the changes in the landform. At present, the development of the tech-
nologies of high resolution DEMs and high performance computers offers 
good opportunities for these quantitative methods. 

The changes in the spatial process can be represented by form analysis, 
which offers information on the basic process. Much attention is focused 
on the effects of form on geomorphological processes. What are repre-
sented by the basic differential equations of the landform changes are the 
processes determined by the geomorphological forms themselves (Shreve 
1972). DEMs can be used to identify places where different hillslope proc-
esses occur (Dietrich and Dunne 1993), where hillslope processes change 
to ravine processes (Tribe 1992), and where bedrock ravines change to de-
positional ravines (Montgomery and Dietrich 1994), etc. However, the 
problem is that the distribution of the effects of the process on the form 
also changes the form, as well as the form controlling process. The form is 
not only an outcome of the past process, but also a factor which affects the 
current erosion, so that the current form affects the future form. This feed-
back is an important factor in landform evolution. Additionally, the effects 
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of the historic geomorphological process and the geomorphological form 
conditions are both emphasized in current research (Lane and Richards 
1997) (see Figure 1). Hence, the contents and the methods of research on 
quantitative analysis on drainage should be analysing the distribution and 
speed of the spatial process from the form information and predicting the 
changes in the landform according to the effects of the spatial process on 
that landform. 
 

 
Figure 1. Geomorphology – process feedback and geomorphological condition ef-

fects. 

The continuous distribution of the landform on the Earth surface offers 
rich information for quantitative analysis. Regarding current research 
methods, modern quantitative landform research includes statistical land-
form analysis and dynamic morphology (Wu 1990). This chapter focuses 
on the difference between single-phase DEMs and multi-phase DEMs, and 
divides quantitative methods of landform analysis into landform analysis 
and landform evolution analysis. Moreover, three levels of quantitative 
landform analysis on small catchments are defined. They are form analy-
sis, landform evolution statistical analysis, and geomorphological process 
modelling (see Figure 2). 

In form analysis, the factors of the form, such as gradient, aspect, curva-
ture, etc., are first extracted from a single-phase DEM. These factors have 
significant geomorphological and hydrological meanings. Although these 
factors do not describe all the features of the form, they are necessary to 
characterize the important features of the form. Based on form analysis, we 
can go on to analyse the relations among these basic factors, to reveal the 
laws of the landform, and to some degree, the geomorphological process of 
the form. 
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Figure 2. Three levels of the quantitative landform analysis of small catchment. 

(A) Form analysis; (B) Landform evolution statistical analysis; (C) Geomor-
phological process modelling. 

Landform evolution statistical analysis attempts to quantitatively de-
scribe intensity and frequency of geomorphological processes. Successive 
maps of the geomorphological factors that vary temporally are generated 
from multi-phase DEMs during landform evolution statistical analysis, 
such as an Elevation Area Curve Map or a Ravine Density Changes Map. 
Research on this issue is rarely developed by the geomorphologists due to 
the lack of multi-phase DEM data of the same drainage. Most geomor-
phological laws obtained from landform evolution statistical analysis are 
qualitative. Little information about the future development and feedback 
is available by using geomorphological methods at this level. Further re-
search methods, which focus on predicting future landforms, should there-
fore be developed. 

Geomorphological process modelling is to predict landform change 
based on process-oriented mathematical models. The former result is used 
as a key input to predict the next form. Consequently, an iterative simulat-
ing model can be established to predict dynamically the change of the 
landform. The Modern Catchment Landform Evolution Modelling in the 
next section gives an example of this kind of model. 

Modelling and Simulating of Modern Landform Evolution 



262 

3 Modern Catchment Landform Evolution Modelling 

Based on the above study, a Modern Catchment Landform Evolution 
Model (MCLEM) is developed, by which the processes of tectonic eleva-
tion, weathering, hillslope, and fluvial transport can be described and 
simulated. 

3.1 Hypothesis 

Geomorphological processes are so complicated that no single geomor-
phological model can describe all of them. The proposed model is based 
on the following two hypotheses: 

1. Physical erosion, rather than chemical erosion, dominates the 
processes in a small catchment. 

2. The processes of tectonic elevation, weathering, hillslope, and flu-
vial transport are taken into account; while other geomorphologi-
cal processes, of relatively less importance, are not considered. 

3.2 Objectives 

According to the problems of existing models and the quantitative land-
form analysis theory, the objectives of this model are listed below: 

1. The model should represent a whole small catchment rather than a 
cross-section of the river or a section of the river. 

2. Fluvial processes are the most important ones and should be repre-
sented as accurately as possible. 

3. The hillslope processes, such as shallow-focus landslides, should 
be sufficiently considered. 

4. The processes that are limited by transport, detachment, or weath-
ering, should be taken into account synthetically. 

5. Modularized programming methods should be employed so as to 
integrate the other processes, e. g. glacial erosion. 

6. The model should be general rather than specific. The different 
geomorphology of different small catchments and environments 
should be able to be represented by changing input parameters. 

3.3 Modelling 

Figure 3 depicts the framework of MCLEM. The small catchment is di-
vided into a series of square cells by finite element and finite difference 
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methods. A group of initial attribute values is assigned to each cell, includ-
ing elevation, water flow, confluence area, sediment yield, etc. These val-
ues are recalculated according to geomorphological processes and relations 
with the surrounding cells during every iteration step. Five geomor-
phological processes are considered in the model: 

1. The process of hillslope; 
2. The process of sediment transferring in the fluvial ravine; 
3. The process of erosion of the bedrock; 
4. The process of weathering; and 
5. The process of tectonic elevation. 

 

 
Figure 3. Framework of MCLEM. 

Some main and important equations of MCLEM are as follows: 
The height of one cell is the sum of the depth of its bedrock and the 

depth of its weathered rock (see Figure 4): 

CRh  (1) 

Modelling and Simulating of Modern Landform Evolution 
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h is the height of one cell, R is the depth of bedrock, C is the depth of 
weathered rock. 
 

 
Figure 4. Conservation of mass in MCLEM. 

The equation to describe the height of the bedrock is: 

EU
t
R

 (2) 

U is the speed of tectonic elevation,  is the decrease in height caused by 
weathering of the bedrock surface, E is the erosion speed of the fluvial 
process of bedrock ravine. 

In MCLEM, the bedrock lithology is describes by four attributes: R, 
bK , wK , tS (see below). By assigning different values for these four at-

tributes, different lithologies of bedrock are taken into account. 
The equation to describe the depth of the weathered rock is: 

ms qQ
t
C

 (3) 

Qs is the sediment transport speed of ravine, qm is sediment transport speed 
on the slope within a unit width. 
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Three probability density functions are used to describe the rainfall 
(Tucker and Bras 2000, Tucker and Whipple 2002). 
(1) The probability density function of rainfall intensity is: 

)exp(1)(
P
P

P
Pf  (4) 

P is the rainfall intensity. 
(2) The probability density function of rainfall duration is: 

)exp(1)(
r

r

r
r T

T
T

Tf  (5) 

Tr is the rainfall duration. 
(3) The probability density function of rainfall interval is: 

)exp(1)(
b

b

b
b T

T
T

Tf  (6) 

Tb is the rainfall interval. 
MCLEM offers three different methods to calculate the ground runoff 

rate: 
(1) Horton runoff equation(runoff yield under excess infiltration): 

cIPR , cIP  (7) 

( )cQ RA P I A  (8) 

R is runoff rate, P is rainfall intensity, Ic is the loss of rainfall caused by 
soil infiltration, crown interception, etc., Q is the amount of runoff, A is 
the catchment area. 
(2) Dunne runoff equation (runoff yield under excess infiltration). 

r

srr

T
DPT

R , srr DPT  (9) 

Q=RA  (10) 

Dsr is the depth of reservoir of crown, soil and land surface. 
(3) Saturated surface runoff 

D
Q

q sub
sub  (11) 
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DqPADqPAQ subsub ,  (12) 

Qsub is the runoff in the shallow soil, D is the length of the contour line, 
depth of reservoir of crown, soil and land surface 

The equation to describe weathering processes is: 

))exp()exp(( 2211 CKCK ww  (13) 

and it is simplified to: 

Ravine
HillslopeCK w

0
)exp(

 (14)  

Kw, Kw1, Kw2 are the weathering process speeds of the bedrock surface, , 
1, 2 are constants dependent on the lithology of weathered rock. 

The equation to describe hillslope processes is: 

mdiffusion q
t
h

 (15) 

s
SS

KSKq
t

fdm 1
/1

1)(  (16) 

SS tan  

qm is the transport speed of movable weathered rock on the slope, S is the 
gradient, tS  is the critical gradient, Kd and Kf are constants, s is the unit 
vector in the direction of the aspect. 

The equation to describe fluvial processes of depositional ravines is: 

s
alluvial

q
t
h

 (17) 

p
cfs WKQ )(  (18) 

b
cQKW  (19) 
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qs is the sediment transport speed on the slope within a unit width, Qs is 
the sum of sediment transport, Q is the amount of runoff, W is the width of 
ravine, is the shear stress, c is the critical shear stress, p and b and Kc 
are constants. 

In order to make the mode more flexible, three methods of calculating 
sediment transport process are offered in MCLEM: 

(1) A general model: 
nm

t SQK  (20) 

p
c

nm
tcfs SQKQKKQ )(2/1  (21) 

Kt, m, n are constants. 
(2) Bridge-Dominic equation (Tucker and Slingerland 1997): 

))((
)(

2/12/1
2/1 cc

t
s g

Wa
Q  (22) 

g is the acceleration due to gravity, t is a constant, is the density of 
mud and sand,  is the density of water. 

(3) Meyer-Peter and Mueller equation: 
2/32/1 )( cms QaQ  (23) 

m is a constant. 
The equation to describe fluvial processes of bedrock ravines is: 

u
cb

bedrock

K
t
h )(  (24) 

3/22/1
3/13/2

2
SQ

K
fg
c

 (25) 

Kb is the erosion index of the bedrock, u is a constant. 
The equation used to determine the initial origin of the ravine is: 

crASA 2tan  (26) 

A is the area of the catchment of the current cell. S is the gradient of the 
current cell. Acr is a threshold of area. One cell that meets the requirement 
will be taken as the initial origin of the ravine, when all the cells in the 
downriver direction will belong to the ravine. 

Modelling and Simulating of Modern Landform Evolution 
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3.4 Advantages of MCLEM 

From the above equations, a group of equations was deduced to satisfy the 
requirements of MCLEM. The MCLEM has several advantages. 

1. It differentiates between soil and bed rock. It also differentiates be-
tween different lithologies of bedrock by assigning different pa-
rameters. 

2. It considers and deals with the temporal variability in rainfall and 
runoff based on the Poisson pulse rainfall model, whereas these 
were often neglected in the previous models. MCLEM provides 
three different methods to calculate the ground surface runoff. 

3. An explicit differentiation between the hillslope and the channel is 
made, the transport processes of which are also different. 

4. In this model, the growth of the channel network is controlled by a 
threshold that is nonlinearly dependent on runoff and slope. 

5. It can process both the erosional and depositional systems simulta-
neously and differentiates between the alluvial channel and bed-
rock channel, which can be converted into each other, whereas 
most previous models could not. 

6. It uses a multiple-flow-direction method to determine the flow di-
rections and designs a multiple-landslide-direction algorithm to 
simulate landslide processes, whereas most of the previous models 
used single-flow-direction methods, which do not fit the simula-
tion based on high-resolution DEM data. 

7. Most previous models can only give simulation results of the bal-
ance state, but applying MCLEM allows researchers to obtain 
simulation results in any supposed phase. 

With these advantages, the MCLEM can be used to predict the short-
term and successive form changes, taking the factual form data as initial 
conditions. The MCLEM can also be implemented as a universal software 
tool, which provides a quantitative simulation environment to explore the 
possible consequences of different hypotheses, parameters, and boundary 
conditions. This will definitely help to deepen our understanding of the ef-
fects of different weather, form, and surface conditions on landform evolu-
tion. 

4 The Simulation Experiment 

As part of this research, a simulation experiment on the geomorphology 
evolution of a small catchment was made in the rainfall simulator hall of 
the State Key Laboratory of Soil Erosion and Dryland Farming on the 
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Loess Plateau (Table 2). Some statistical and dynamic-change-mapping 
analyses were used to extract the features of the small catchment. At the 
same time, the MCLEM was also used to extract the same features in order 
to make qualitative and quantitative comparisons and to verify the validity 
of MCLEM. The results proved a close match between the observation re-
sults and the MCLEM-simulated results. 
Table 2. Original landform features of the simulated small catchment (Cui 2002). 

Proj-
ected 
Area 

Catch-
ment 
Length 

Catch-
ment 
Width 

Catch
-ment 
Peri-
meter 

Catch-ment 
Height Dif-
ference 

Longit-
udinal 
River 
Slope 

Average 
Gradient 

Ravine 
Classes 

Branches 
Ratio 

32.67 
m2 9.1 m 5.8 m 23.3 

m 2.57 m 28.24% 150 2 4 

 

4.1 Simulation experiment in the rainfall simulator hall 

In the experiment, a fixed-intensity rainfall was simulated as the main 
driving force of the geomorphology evolution (Table 3). Nine high resolu-
tion DEM data sets were gathered by close range photogrammetry in dif-
ferent phases of the experiment. The horizontal resolution of each data set 
was 1 mm. These DEM data revealed the changes in the ground surface in 
the experiment very precisely. Based on the DEM data, the law of geo-
morphology evolution of small catchments was analysed by making statis-
tical and dynamic-change-mapping analysis on hypsometry-catchment 
area curves (see Figure 5), slope-catchment area curves (see Figure 6), ac-
cumulative catchment area distribution (see Figure 7), and width functions 
(see Figure 8). 

4.2 Simulation by MCLEM 

Considering the factual status of the Loess Plateau, the MCLEM was cus-
tomized, where the sediment outflow ratio, hypsometry-catchment area 
curve, and slope-catchment area curve were elements to be focused on and 
several parameters were calibrated according to previous research results 
and observation results. Then, MCLEM was programmed on a GIS plat-
form. Taking the original form data and the rainfall intensity of the rainfall 
experiment as initial conditions, the MCLEM was run to simulate the 
geomorphological processes taking place in the rainfall experiment to get 
landform DEMs of all the 8 phases. 

Modelling and Simulating of Modern Landform Evolution 



270 

Table 3. Features of simulated rainfall (Cui 2002). 

No. Date 
Designed 
Rainyness 
(mm/min) 

Rating 
Rainyness 
(mm/min) 

Duration of 
Rainfall (min) 

Quantum of 
Rainfall 

(mm) 

Sediment 
Runoff (kg) 

1 2001.7.30 0.5 0.54 90.5 48.915 144 
2 2001.8.1 0.5 0.52 89.5 46.54 106 
3 2001.8.3 0.5 0.49 89.9 44.051 203.5 
4 2001.8.5 1.0 1.18 47.52 63.939 277.8 
5 2001.8.8 1.0 1.21 45.86 65.05 623.9 
6 2001.8.14 2.0 2.41 30.53 73.58 768.5 
7 2001.8.17 1.0 1.19 46.17 53.75 624.7 
8 2001.8.20 0.5 0.57 90.18 51.528 829.5 
9 2001.8.22 0.5 0.59 61.95 36.167 473.2 
10 2001.8.28 1.0 1.2 47.92 55.704 819.6 
11 2001.8.31 2.0 2.15 31.17 65.36 1,066.2 
12 2001.9.3 0.5 0.52 62.94 31.896 311.1 
13 2001.9.5 0.5 0.58 61.53 35.96 353.2 
14 2001.9.7 0.5 0.56 60.83 34.29 247.7 
15 2001.9.11 1.0 1.12 46.82 52.438 500.4 
16 2001.9.14 1.0 1.08 45.83 49.896 432.4 
17 2001.9.17 1.0 0.98 47.02 46.256 365.5 
18 2001.9.20 1.0 1.04 45.37 47.18 282.4 
19 2001.9.24 2.0 2.12 30.37 64.384 493.9 
20 2001.9.27 2.0 1.98 34.35 67.736 452.2 
21 2001.9.30 0.5 0.53 91.27 48.373 265.1 
22 2001.10.9 0.5 0.55 90.6 49.83 225.5 
23 2001.10.11 0.5 0.60 89.72 53.832 246.6 
24 2001.10.15 1.0 1.05 61.35 64.417 313.6 
25 2001.10.18 2.0 2.03 31.65 64.249 314.8 

 

4.3 Comparisons of the observation results and MCLEM results 

By respectively comparing hypsometrical features, hypsometry-catchment 
area curves (see Figure 5), slope-catchment area curves (see Figure 6), ac-
cumulative catchment area distribution figures (see Figure 7), and width 
functions (see Figure 8) of each observation DEM and its corresponding 
simulation result, the MCLEM was tested, both qualitatively and quantita-
tively. The comparison proved that the MCLEM could simulate the 
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Figure 5. Hypsometry–area curves of observation DEMs and corresponding simu-

lation DEMs of 8 phases. 

4.3.1 Qualitative comparison 

The comparison of the observation DEM and corresponding MCLEM-
simulated DEMs (see Figure 9) demonstrated a quite good qualitative 
match between MCLEM simulation and the rainfall experiment: 

 MCLEM could simulate the formation, position, and development of 
the ravine quite well. 

 The erosion speed calculated by the MCLEM was faster than the ob-
servation result and consequently the ravines that were generated by 
MCLEM were deeper than the ones generated from the rainfall ex-
periment. 

 The ravines that were generated from MCLEM were narrower than 
the ones which were generated from the simulation experiment. 

Modelling and Simulating of Modern Landform Evolution 

landform evolution of loess quite well. After adjusting a few parameters 
accordingly, the MCLEM was re-run. The result of the later simulation 
was more precise than the first one. It proved that MCLEM is an effective 
and powerful tool for future research, though it does not simulate the geo-
morphology evolution without any error. 
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Figure 6. Slope–catchment area curves of observation DEMs and corresponding 

simulation DEMs of 8 phases. 

 
Figure 7. Accumulative catchment area distribution of observation DEMs and 

corresponding simulation DEMs of 8 phases. 
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Figure 8. Width function of observation DEMs and corresponding simulation 

DEMs of 8 phases. 

 

  
a) 3D display of the observation DEMs b) 3D display of the 8 MCLEM- simu-

lating DEMs 

Figure 9. Qualitative comparison between observation DEMs and corresponding 
simulation DEMs of 8 phases. 
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4.3.2 Quantitative comparison 

Hypsometry-catchment area curves (see Figure 5), slope-catchment area 
curves (see Figure 6), accumulative catchment area distribution (see Figure 
7), and width functions (see Figure 8) were chosen to prove the quantita-
tive match of the results of observation DEMs and corresponding 
MCLEM-simulating DEM. The comparisons indicated the validity of the 
MCLEM quantitatively. Moreover, all four comparisons could quantita-
tively support the three conclusions in the qualitative comparison. 

5 Discussion 

The following observations and interpretations arose from the use of the 
model: 

 The impact of rainfall on landform varies very much in different 
phases of a geomorphology process. In the initial phase, the erosion 
impact caused by rainfall becomes stronger along with the geomor-
phology process and the ground becomes more and more frag-
mented. However, it becomes weaker along with the geomorphology 
process, especially in the last phase. 

 The erosion impacts taking place in the upriver, midriver and down-
river are very different in different phases of a geomorphology proc-
ess. In the initial phase, erosion mostly happens in the midriver and 
downriver; while upriver is the main erosion area in the last phase. 

 The change of deposition speed depends most on the geomorphology 
process itself, when the sediment transport speed and width function 
are determined by both the phase of the geomorphology process and 
the intensity of rainfall. 

 The width function is also dependent on the phase of the geomor-
phology process and the rainfall intensity. In the initial phase, the 
value of the width function increased at a fluctuating rate, but it de-
creased in the last phase. It is the change of intensity of rainfall that 
causes the fluctuation. 

 Along with the geomorphology process, one ravine may expand 
gradually at a decreasing speed. The main branch of one ravine al-
ways expands prior to the other minor branches. In the initial phase, 
the branches in downriver areas expand more rapidly than upriver 
branches. However, in the last phase, upriver branches expand more 
rapidly. 

 MCLEM does have a cell-size dependence, caused by the framework 
of MCLEM and some of the equations. This could have brought the 
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errors that can be found easily in Figure 9. Further research should 
address this problem to make MCLEM more precise. 

6 Conclusion 

By bringing forward and testing the MCLEM, this chapter deepens the un-
derstanding of geomorphological processes, especially the erosion proc-
esses, in small catchments and other analogous processes. The research 
outcome can be used to predict the possible landform evolution in some 
small catchments where the situation of water and soil loss is severe, 
which are necessary conditions of making successful plans for water and 
soil conservation and land use. 
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Assessing Uncertainties in Derived Slope 

ZHOU Qiming and LIU Xuejun 

Abstract 

Digital elevation data are the most frequently used for computer-based ter-
rain analysis and they form an integral part of today’s GIS data analysis 
capability. For most GIS-based environmental studies, primary topog-
raphic parameters such as slope, aspect, and drainage network are often re-
quired for specific environmental models. While derived from digital ele-
vation data, particularly the grid-based Digital Elevation Models (DEM), 
the parameters often display noticeable uncertainties due to errors (a) in 
the data, (b) inherent to the data structure, and (c) created by algorithms 
that derive the parameters from the DEM. Some contradictory results have 
been reported in evaluating the results of various terrain analysis algo-
rithms, largely because of the variety in the assessment methodologies and 
the difficulties in separating errors in data from those generated by the al-
gorithms. 

This chapter reports on an approach to the assessment of the uncertain-
ties in grid-based Digital Terrain Analysis (DTA) algorithms used for de-
riving slope and aspect. A quantitative methodology has been developed 
for objective and data-independent assessment of errors generated from the 
algorithms that extract morphologic parameters from grid DEMs. The ge-
neric approach is to use artificial surfaces that can be described by mathe-
matical models; thus the ‘true’ output value can be pre-determined to avoid 
uncertainty caused by uncontrollable data errors. Tests were carried out on 
a number of algorithms for slope and aspect computation. The actual out-
put values from these algorithms on the mathematical surfaces were com-
pared with the theoretical ‘true’ values, and the errors were then analysed 
statistically. The strengths and weaknesses of the selected algorithms are 
also discussed. 
 
Keywords: digital terrain analysis, uncertainty, error model, DEM deriva-
tives, slope, aspect. 

and Aspect from a Grid DEM 
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1 Introduction 

One critical spatial data set required for digital terrain analysis (DTA) is 
the surface elevation, which is modelled in GIS as discrete samples for the 
specific land surface. Although there have been numerous models devel-
oped for this purpose, such as Triangulated Irregular Network (TIN), 
TOPOG model (O'Loughlin 1986) and digital contours, the grid Digital 
Elevation Model (DEM) has been the most commonly used data source for 
DTA because of its simple structure, ease of computation, and compatibil-
ity with remotely sensed and digital photogrammetry data (Gao 1998, 
Tang 2000). 

For most GIS-based environmental studies, primary topographic pa-
rameters such as slope, aspect, catchment area, and drainage network are 
often required for specific environmental models. When derived from grid-
based DEMs, these derivatives often display noticeable uncertainties be-
cause of: 

1. the data accuracy of the DEM itself including sample errors, inter-
polation errors, and representation errors (Bolstad and Stowe 
1994, Florinsky 1998, Walker and Willgoose 1999, Tang 2000); 

2. the spatial data structure of the DEM such as data precision, grid 
resolution, and orientation (Zhang and Montgomery 1994, Gao 
1998, Zhou and Liu 2004b); and 

3. the mathematical models and algorithms employed (Holmgren 
1994, Desmet and Govers 1996, Zhou and Liu 2002, 2004a). 

The focus of this study is on Components 2 and 3 – the uncertainty gen-
erated in the implementation of mathematical models and algorithms with 
the impact of DEM data properties. Although the mathematical definitions 
of these parameters are quite clear and well reported in the literature (Li et 
al. 2005), their implementation based on grid-based DEMs has varied. 
Since a grid DEM itself is an approximation to the real-world continuous 
surface using regularly spaced samples that are restricted by, for example, 
scale and measurement errors, the implementation of terrain analysis mod-
els on it, to derive slope, aspect, curvature, and catchment area, is also rep-
resented as an approximation to reality. In practice, numerous assumptions 
and optimization about the mass transportation and movement on a spe-
cific local surface (often represented as a 3  3 window) have to be made 
in order to establish a workable mathematical model (Holmgren 1994), re-
sulting in significantly different approaches and methodologies towards 
terrain analysis modelling (Wilson and Gallant 2000). The variation in 
such implementation would only present minor problems in applications 
such as surface visualization and classification, but its impact on terrain 
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analysis based on quantitative models could be very significant (Zhou and 
Liu 2002). 

This study focuses on a data-independent approach for assessing uncer-
tainties in DEM derivative algorithms such as for slope and aspect compu-
tation. The theoretical analyses on error components in the DEM deriva-
tives are discussed first and the results are then tested using the data-
independent error assessment method. Analyses are also focused on the 
impact of data properties and terrain complexity on the selected algo-
rithms. Comparison between algorithms is also made to specify their suit-
ability for various applications and their sensitivity to the properties and 
quality of data. 

2 The Data-Independent Approach 

2.1 The need for data-independent experiments 

A common approach for error assessment in digital terrain analysis was to 
apply proposed algorithms on a ‘real-world’ DEM. The results from the 
simulation were then visually or statistically examined against ‘common 
knowledge’ on what should be expected, or digital data derived from car-
tographic resources (maps or aerial photographs) (Band 1986, Skidmore 
1989, Garbrecht and Martz 1994, Wolock and Price 1994, Zhang and 
Montgomery 1994, Desmet and Govers 1996, Tang 2000). This approach, 
however, is challenged by the fact that no real world DEM is perfect so 
that errors inherent in the DEM largely remain unknown. The conclusion 
of the assessment therefore can always be questioned because of the uncer-
tainty in the data. 

From the point of view of error assessment, there are at least three short-
falls in this evaluation approach. 

1. The evaluation results are related to the actual topography. The re-
sults derived from one particular landform may be unsuitable for 
others. 

2. The accuracy of the DEM is often difficult to quantify. Thus, the 
uncertainty in the DEM itself often masks the inherent errors of 
the models and algorithms, resulting in improper, sometimes con-
troversial, assessment and analytical results (Florinsky 1998). 

3. The comparison between different models and algorithms on a 
real-world DEM can only present their relative accuracy and error 
distribution (should be termed as ‘difference distribution’). Since 
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the ‘true’ value is unknown, it is uncertain and subjective to judge 
the correctness and quality of the models. 

Freeman (1991) presented an alternative method that used an artificial 
surface – a cone – to assess divergent flow simulation algorithms. The re-
sults were assessed using the pattern of catchment area that follows a theo-
retical expectation. Although it is arguable as to whether a cone surface is 
realistic for real-world cases, this method eliminated the uncertainty in the 
data and gave more convincing test results. 

2.2 The test design 

A quantitative, data-independent method for analysing and objectively as-
sessing errors generated from DTA algorithms has been reported by Zhou 
and Liu (2002, 2004a). The generic approach is to establish a mathematical 
model to distinguish components of uncertainties and then to conduct tests 
using artificial surfaces, which can be described by mathematical formu-
lae; thus the ‘true’ output value can be pre-determined to avoid uncertainty 
caused by uncontrollable data errors (Jones 1998). Based on this approach, 
analyses have been reported on the uncertainties caused by data and data 
processing in derived hydrological parameters (Zhou and Liu 2002), slope 
and aspect (Zhou and Liu 2004a), the influence of DEM data properties 
such as precision, resolution, and orientation (Zhou and Liu 2004b), and 
the impact of terrain complexity (Zhou et al. 2006). 

The data independent approach is to employ mathematical surfaces in a 
similar way to Hodgson (1995) and Jones (1998), but with a complexity 
that represents a closer approximation to the actual land surface. For this 
purpose, we have selected an inverse ellipsoid (Equation 1) and a Gauss 
synthetic surface (Equation 2) to define the surfaces and have generated 
DEMs for a given resolution (Figure 1 and Figure 2). 
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where A, B and C are parameters determining surface relief, and M, N in 
Equation (2) are the parameters controlling the spatial extent of the sur-
face. The ‘true values’ of slope and aspect can be computed using mathe-
matical inference. 
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Figure 1. Surface defined by an inverse ellipsoid (A = 400, B = 300 and C = 300). 
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Figure 2. A Gauss synthetic surface (A = 3, B = 10, C = 1/3, –500  X, Y  500). 

On the DEM generated from the above surfaces, the selected algorithms 
have been applied to compute slope and aspect values and statistics were 
then generated to compare RMSEs between results derived by different al-
gorithms. 

Depending on the purpose of the test, alterations on the test surfaces 
need to be undertaken. 

 For analysing the impact of DEM data error, some ‘noise’ (i.e. 
random errors) has been added to the generated DEM to simulate 
DEM data error. 

 For testing the sensitivity of the selected algorithms to data preci-
sion and resolution, the surfaces have been altered with different 
grid cell sizes with various precisions at 0.001 m, 0.01 m, 0.1 m, 
and 1 m levels. 
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 For assessing the influence of grid orientation, the surfaces have 
been rotated with an increment of 15  to establish a series of 
DEMs at directions of 15 , 30 , …, and 345 . 

 For evaluating the impact of terrain complexity, the surfaces have 
been modified with various parameters to create a series of sur-
faces with various slopes and local relief. 

The generic procedure of the data-independent method can be outlined 
as below: 

1. analysing error components on the DEM derivatives; 
2. designing and establishing mathematical test surfaces; 
3. computing theoretical values for the DEM derivatives using the 

mathematical formulae of the test surfaces; 
4. computing DEM derivatives using the algorithms being evaluated; 

and 
5. comparing the results from mathematical inference and DTA 

simulation. 

3 Uncertainties in Slope and Aspect Algorithms 

Slope and aspect have been regarded as two of the most important geo-
morphic parameters, as they not only efficiently describe the relief and 
structure of the land surface, but are also widely applied as vital parame-
ters in hydrological models (Band 1986, Moore et al. 1988, Quinn et al. 
1995, Pilesjö et al. 1998), landslide monitoring and analysis (Duan and 
Grant 2000), mass movement and soil erosion studies (Dietrich et al. 1993, 
Mitasova et al. 1996, Biesemans et al. 2000) and land use planning 
(Stephen and Irvin 2000). 

Numerous studies have been reported that analyse the uncertainties gen-
erated by the slope and aspect algorithms with a variety of approaches and 
methods. One approach emphasizes errors in the DEM while paying little 
attention to the models themselves (e.g. Skidmore 1989, Hunter and Good-
child 1997), while some other approaches focus on mathematical models 
while ignoring DEM errors (e.g. Hodgson 1995, Jones 1998). The conclu-
sions from these studies have been quite different, sometimes contradic-
tory. For example, on the spatial distribution of errors, Chang and Tsai 
(1991) reported that aspect errors are mostly shown in flat areas while 
slope errors are mainly concentrated in steeper areas. In another study, 
Carter (1992) stated that both slope and aspect errors occur in flat areas. 
Davis and Dozier (1990) presented yet another result showing that larger 
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errors in derived slope and aspect would appear in locations where slope 
and aspect have sudden changes. 

Using an analytical approach, Florinsky (1998) developed a test for the 
precision of four methods for computing partial derivatives of elevations, 
and produced formulae for root mean square errors (RMSE) of four local 
topographic variables including slope and aspect. He also used a real-
world DEM to map the error distribution for visual analysis, but the con-
tribution from the DEM data error largely remained unknown. 

3.1 Slope and aspect algorithms 

At a given point on a surface defined by function yxfz , , slope (S) 
and aspect (A) can be represented as its rate of change along the E–W and 
N–S directions, i.e. 

22arctan qpS  (3) 

p
p

p
qA 90arctan180  (4) 

where p and q are the gradients at W–E and N–S directions, respectively, 
and defined as: 

x
ffp x , and 

y
ffq y . 

 
From Equations (3) and (4), it is clear 

that the key to the computation of slope 
and aspect at a given point on a surface is 
the solution of p and q. On a grid DEM, 
the land surface is represented by discrete 
sample points and the surface function is 
usually unknown; thus the computation of 
p and q often relies on approximations us-
ing a moving window (e.g. 3  3 window) 
to derive finite differentials or local sur-
face fitting polynomials for the calcula-
tion (Figure 3). 
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Figure 3. A 3  3 window. 

 

Assessing Uncertainties in Derived Slope and Aspect from DEM 



286 

There are numerous methods available in the literature to derive the so-
lution of p and q. However, most of them vary in their assignment of the 
coefficients of the implementing formula, and thus only affect the magni-
tude of errors in slope and aspect computations (Zhou and Liu 2004a). 

Considering the popularity and the use of different algorithms, we have 
selected six commonly employed algorithms for testing. Letting g denote 
the grid cell size (i.e. the spatial resolution of the grid), the selected algo-
rithms can be expressed as below: 

 Second-order finite difference (2FD – Fleming and Hoffer 1979, 
Zevenbergen and Thorne 1987, Ritter 1987): 

28,
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(where subscript “g” denotes grid spacing of g) 
 Third-order finite difference (3FD – Sharpnack and Akin 1969, 

Horn 1981, Wood 1996): 

321987,

741963,

3
1

3
1

2
1

3
1

3
1

2
1

zzzzzz
g

fq

zzzzzz
g

fp

gyg

gxg

 (6) 

 Third-order finite difference weighted by reciprocal of squared 
distance (3FDWRSD – Horn 1981): 
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 Third-order finite difference weighted by reciprocal of distance 
(3FDWRD – Unwin, 1981): 
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 Frame finite difference (FFD – Chu and Tsai 1995): 

3197,

7193,

2
1

2
1

2
1

2
1

2
1

2
1

zzzz
g

fq

zzzz
g

fp

gyg

gxg

 (9) 

 Simple difference (SimpleD – Jones 1998): 
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3.2 Error components 

The accuracy of slope and aspect computations is directly related to the 
partial derivatives in the X and Y directions, p and q, which are estimated 
by numerous proposed methods. Taking the second-order finite difference 
(2FD) as an example, let (x, y) denote the coordinates of the centre cell in a 
3  3 window, and g denote the DEM spatial resolution (i.e. grid cell size), 
the partial differentials can be expressed as: 

g
dzdzxqxqgdq

g
dzdzypypgdp

yy

xx

22
,,

6

22
,,

6

46
2

28
2

 (11) 

The first term represents the errors caused by the uncertainty of mathe-
matical model implementation and x , y , x , and y  are dependences 

of f , gxxx , , gyyy , , xgxx ,  and 
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ygyy , . Since the relationships between these variables and x and 
y are usually not clear, it is difficult to define their values in applications. 
Thus, it is common to set the upper limits for f  instead. Letting Mx and 
My be the upper limits of f  in terms of x and y, respectively, Equation 
(11) can be altered to: 

g
dzdzMgdq

g
dzdzMgdp

y

x

26

26

46
2

28
2

 (12) 

The second term in the equations represents the DEM data error (includ-
ing data precision). 

In Equation (12), Mx and My are estimated based on the ‘worst scenario’, 
usually representing much larger estimates than the actual case, with a 
given distribution of probability. Let the root mean square error (RMSE) 
of Mx and My equal M, and m denote the RMSE of the DEM. We then 
have: 

2

2
2

22
22

26 g
mMgmm qp  (13) 

Deriving the differentials of slope and aspect equations (Equations (1) 

and (2)), and considering 22arctan qpS  and 222tan qpS , 
we have: 
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Referring to Equation (13), RMSE of slope ( Sm ) and aspect ( Am ) can 
therefore be expressed as: 
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Note that Equation (15) is for the second-order finite difference method. 

Letting 2

6
1 ga  and 1

2
1 gb , Equation (15) can then be expressed 

in a general form as: 

SmbMam

SmbMam

A

S

cot

cos
2222

22222

 (16) 

Similar to the above procedure and referring to Equations (6) to (10), we 
can derive the RMSE for each selected algorithm as shown in Table 1. 

Table 1. The RMSE for selected slope and aspect algorithms. 

Algorithm Coefficient a of M Coefficient b of m 
2nd order finite differ-
ence 

2

6
1 g

 

1

2
1 g

 
3rd order finite differ-
ence 

2

6
1 g

 

1

6
1 g

 
3rd order finite differ-
ence weighted by recip-
rocal of squared distance 

2

6
1 g

 

1

33.5
1 g

 
3rd order finite differ-
ence weighted by recip-
rocal distance 

2

6
1 g

 

1

83.5
1 g

 

Frame finite difference 2

6
1 g

 
1

2
1 g

 

Simple difference g
2
1

 
12g  

 
Equation (16) and Table 1 show that the overall errors of derived slope 

and aspect come from three sources: 
1. Algorithm errors: caused by approximation and sampling of con-

tinuous surfaces (variable M in Equation (16)); 
2. DEM data errors: caused by DEM data capture and generation 

(variable m in Equation (16)); and 
3. DEM spatial resolution (i.e. the grid cell size – variable a and b in 

Equation (16), defined in Table 1). 
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Note here that the coefficient b of m for 2FD and 3FD confirms the re-
sults reported by Florinsky (1998), which represent special cases for the 
selected algorithms. 

By examining Equations (15) and (16), we understand that for a given 
DEM spatial resolution (g), the accuracy of derived slope and aspect is re-
lated to the errors of the algorithm that derives p and q (M), and the DEM 
error (m). The overall accuracy of slope and aspect depends upon whether 
M or m dominates the analysis. When analysing the algorithms using a 
real-world DEM (e.g. Skidmore 1989, Chang and Tsai 1991, Bolstad and 
Stowe 1994), the DEM error (m) would cause much greater error than that 
due to the algorithm, so that the method would be more appropriate for 
analysing the impact of data error on derived slope and aspect values. On 
the other hand, using a DEM defined by mathematical surfaces (Hodgson 
1995, Jones 1998, Carter 1992) would eliminate data error; thus the ob-
served errors would only be caused by algorithms. Since the error sources 
could not be defined, the results of the studies appear inconclusive. 

3.3 Test results and discussion 

Tables 2 and 3 summarize RMSE comparison results between the selected 
six algorithms on two surfaces (inverse ellipsoid and Gauss synthetic sur-
face) with no added error (i.e. DEM data error = 0). 

Table 2. Statistics of derived slope with no data error (Unit: degrees). 

RMSE Standard Error Mean Error 

Frequency of 
positive and 

negative errors 
(%) Algorithm 

Ellip-
soid Gauss Ellip-

soid Gauss Ellip-
soid Gauss Ellip-

soid Gauss 

2FD 0.216 0.003 0.189 0.002 0.104 -0.002 100 / 0 15 / 85 
3FD 0.409 0.004 0.003 0.320 0.178 -0.003 100 / 0 9 / 91 
3FDWRSD 0.358  0.004 0.345 0.160 -0.003 100 / 0 8 / 92 
3FDWRD 0.384  0.004 0.459 0.170 -0.003 100 / 0 9 / 91 
FFD 0.507   0.003 0.214 -0.003 100 / 0 10 / 90 
SimpleD 1.295 0.046 1.292 0.046 0.078 -0.002 51 / 49 49 / 51 
 

By analysing Tables 2 and 3, it is seen that on a DEM with high accuracy, 
the error of derived slope and aspect is sourced from the estimates of par-
tial derivatives p and q and sampling errors. In this case, the second-order 
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Table 3. Statistics of derived aspect with no data errors (Unit: degrees). 

Algorithm RMSE Standard Error Mean Error 

Frequency of 
positive and 

negative errors 
(%) 

 Ellip-
soid Gauss Ellip-

soid Gauss Ellip-
soid Gauss Ellip-

soid Gauss 

2FD 0.133 0.117 0.133 0.117 0.000 -0.008 52 / 48 45 / 55 

3FD 0.197 0.130 0.197 0.130 -0.001 0.000 52 / 48 51 / 49 

3FDWRSD 0.122 0.118 0.122 0.118 -0.001 -0.002 52 / 48 48 / 52 

3FDWRD 0.160 0.124 0.160 0.124 -0.001 -0.001 52 / 48 50 / 50 

FFD 0.342 0.167 0.342 0.167 -0.002 0.004 52 / 48 52 / 48 

SimpleD 20.76 15.13 20.63 15.13 2.347 -0.340 50 / 50 52 / 48 

 
In Equation (16), if we ignore the algorithm error (i.e. the first term), we 

then derive the Florinsky’s (1998) RMSE formulae in general terms: 

SbmmS
2cos  and SbmmA cot  (17) 

Equation (17) suggests that the influence of DEM data error (m) relates 
to slope (S) and coefficient b, which is determined by grid cell size g. Re-
ferring to Table 1, the third-order finite difference methods appear to be 
less sensitive to data errors for any given g and S. 

Algorithm error and DEM data error influence the accuracy of derived 
slope and aspect differently. In general, all the third-order finite difference 
methods have applied some smoothing effect on the local data window in 
order to avoid local relief extremes (Burrough and McDonnell 1998) for 
better computation results of the surface parameters. On the other hand, the 
second-order finite difference and simple difference methods only utilize a 
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finite difference method provides a better result than the third-order finite 
difference methods. For the six algorithms tested, the order from the best 
to worst is the second-order finite difference (2FD), third-order finite dif-
ference weighted by reciprocal of squared distance (3FDWRSD), third-
order finite difference weighted by reciprocal of distance (3FDWRD), 
third-order finite difference (3FD), frame finite difference (FFD), and sim-
ple difference (SimpleD). 
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part of the samples in the local window, so that they are more sensitive to 
the data error. 

The results also confirm the test results reported by Jones (1998). When 
using an error-free synthetic, trigonometrically defined surface (Morri-
son’s surface III), the 2FD method gave the “best” results for both gradient 
and aspect. Using a real-world DEM, where data errors were unavoidable, 
the 3FD performed best. 

4 The Impact of Properties of DEM Data 

Numerous studies have been reported on the accuracy analysis of slope 
and aspect algorithms in relation to DEM data errors (Zhou and Liu 
2004a), data precision (Theobald 1989), grid resolution, or grid cell size 
(Chang and Tsai 1991, Garbrecht and Martz 1994, Hodgson 1995, Florin-
sky and Kuryakova 2000, Tang 2000) and grid orientation (Jones 1998, 
Zhou and Liu 2004b). Although the errors caused by data precision, grid 
resolution, and orientation are usually not a concern for the visualization of 
a 3-dimensional surface, they could create significant impact on the de-
rived surface parameters, such as slope and aspect, which are also largely 
related to the utilized algorithms. 

4.1 The impact of data precision 

DEM data precision is indicated by the number of significant digits used 
for DEM data. In many real-world cases, the DEM precision is defined at 
the level of one metre, such as the USGS 30 m DEM (Theobald 1989, 
Carter 1992). In some cases, this precision is required to higher levels, e.g. 
China’s 1:50,000 DEM requires a precision level of 0.1 m (Li et al. 2005). 

Usually the DEM error caused by the data precision level is quite mini-
mal, except in flat areas where rounding errors could be significant. One 
test result shows that the RMSE of a DEM is less than one metre at the 1-
m precision level. When the precision level is raised to centimetres, the 
RMSE of the DEM is close to zero (Zhou and Liu 2004b). 

The influence of data precision on derived slope and aspect is highly re-
lated to the grid resolution. When using a high resolution DEM (e.g. 1 m 
grid resolution), the influence of data precision becomes quite significant 
(Figure 4). 
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(a) RMSE of derived slope and aspect on an ellipsoid surface 

(A = 100, B = C = 60, DEM resolution: 1, Unit: metres) 
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(b) RMSE of derived slope and aspect on a Gauss synthetic surface 

(A = 3, B = 10, C = 1/3, DEM resolution: 1, Unit: metres) 

3FD
3FDWRD
3FDWRSD
FFD
2FD
SimpleD  

 

Figure 4. The influence of DEM data precision on derived slope and aspect by se-
lected algorithms. The values of RMSE of slope and aspect have been transformed 

using the formula: y = ln(x  1000) for illustration. 

As illustrated by Figure 4, when the data precision level is reduced from 
0.001 to 0.01 m, the change of RMSE of the DEM itself is minimal. Fur-
ther generalization, however, would cause a much more significant in-
crease in the RMSE. For derived slope and aspect, the SimpleD algorithm 
tends to create a much greater RMSE than the others with high precision 
data. On the other hand, the RMSEs of all other algorithms seem to in-
crease constantly with decreasing precision, with 2FD showing the most 
rapid rate of change. When reaching the precision level of one metre, all 
algorithms show very similar levels of RMSE, with SimpleD just showing 
a slightly higher error level than the others. 
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The results show that data precision may only play a significant role in 
algorithm performance while the precision level is high. When the preci-
sion level is reduced, its influence on different algorithms becomes less 
important. In reality, errors may occur during different stages of DEM 
generation, such as data capture, sampling, and interpolation. Compared to 
these errors, the rounding errors from reducing data precision can be ne-
glected (with an exception in flat areas). In this case, the number of sig-
nificant digits should not be considered as critical. When DEM data accu-
racy is higher than the precision, on the other hand, the data precision error 
must be considered when selecting algorithms. 

4.2 The Impact of grid resolution 

DEM resolution determines the level of details of the surface being de-
scribed. It naturally influences the accuracy of the derived surface parame-
ters. In this study, we focus on two questions: 

1. Does a high resolution DEM lead to more accurate estimation of 
slope and aspect? 

2. How can we determine an appropriate grid resolution in relation to 
slope and aspect computation for a given application? 

Referring to Equation (16) and Table 1, the overall errors of derived 
slope and aspect come from three sources, namely, algorithm errors (M) 
caused by approximation and sampling of continuous surfaces, DEM data 
error (m) caused by DEM data capture and generation, and DEM spatial 
resolution (g, i.e. grid cell size). When DEM resolution tends to zero (i.e. g 

 0), a  0, so that the algorithm error will also tend to zero, while the 
influence of the DEM error (m) will tend to infinity (+ ). In other words, 
for slope and aspect computation, the impact of the algorithm error is posi-
tively proportional to DEM resolution, while the influence of the DEM er-
ror is negatively proportional to DEM resolution. With a higher DEM 
resolution, the level of detail is increasing (i.e. the surface is better repre-
sented), but the influence of data error is also increased at the same time. 
With a lower DEM resolution, the impact of any data error is decreased, 
but algorithm errors will cause more significant error on the derived re-
sults. 

When ignoring algorithm error M, we can determine an appropriate 
DEM resolution according to the known DEM error (m) and the average 
slope (S) of the region: 

S
m
bmg

S

2cos180
 (18) 
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Table 4 illustrates the computed DEM resolution for DEMs with various 
error levels (specified by m – RMSE of DEM data). To consider the influ-
ence of DEM resolution on selected algorithms, we have conducted tests to 
analyse the relationships of slope and aspect errors and DEM resolution, 
with and without DEM data error. The test results show that when DEM 
data error is minimal, the RMSE of slope and aspect increases with lower 
resolution (i.e. larger grid cell size), regardless of which algorithm is used. 
The RMSE of the derived slope and aspect is positively proportional to 
grid resolution. When DEM data error is significant, the RMSE of the de-
rived slope and aspect decreases with lower resolution, showing a negative 
proportional relationship to the DEM resolution. 
Table 4. Computed DEM resolution using RMSE of DEM data and average slope. 

m (m) Test surface RMSE of slope 
( ) Mean slope ( ) Computed DEM 

resolution (m) 

Ellipsoid 1.0 37.0 9.0 0.6 
Gauss 1.4 1.1 9.9 
Ellipsoid 3.2 37.0 9.8 2.1 Gauss 6.1 1.1 8.2 
Ellipsoid 9.2 37.0 10.7 6.6 Gauss 19.4 1.1 8.0 
Ellipsoid 12.4 37.0 11.4 9.5 Gauss 26.4 1.1 8.5 
Ellipsoid 18.0 37.0 12.5 15.1 Gauss 37.4 1.1 9.5 
Ellipsoid 21.3 37.0 13.6 19.5 Gauss 44.0 1.1 10.4 

 
The test results confirm the relationship described by Equation (16). We 

therefore conclude that a high-resolution DEM does not assure higher 
slope and aspect accuracy. Better results may only be possible with high 
DEM data accuracy. In reality, DEM data often contain significant levels 
of error. It is therefore argued that a higher resolution DEM does not lead 
to higher accuracy of estimated slope and aspect. Rather, the accuracy of 
the derived slope and aspect is increasing with lower DEM resolution. 

4.3 The impact of grid orientation 

At any given point on a surface, slope and aspect are constant parameters, 
which do not change with grid orientation. However, as a DEM organizes 
ground elevations using regularly distributed sample points, different grid 
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orientations may result in errors in computing partial derivatives for slope 
and aspect computation. 

The selected algorithms have been applied to the rotated surfaces as de-
scribed in Section 2 to derive a graphical representation of the test results, 
from which the following findings are revealed (Zhou and Liu 2004b): 

1. DEM orientation has greater influence on third-order finite differ-
ence algorithms (including 3FD, 3FDWRD and 3FDWRSD) than 
other algorithms (2FD, FFD and SimpleD). 2FD, FFD and Sim-
pleD have shown almost constant error levels in all directions, 
while the 3FD series has shown great changes in association with 
directions. 

2. All algorithms show extreme values at 45   k (k = 0, 1, …, 7), i.e. 
demonstrating the octant pattern in directional distribution. 

3. Errors in slope and aspect synchronize with each other and reach 
the extreme values with the same directional pattern. This is be-
cause the errors in slope and aspect are related to slope itself, as 
described by Equation (16). 

5 The Impact of Terrain Complexity 

From Equation (16), we understand that the uncertainties of derived slope 
and aspect may also be significantly influenced by the slope (S), which we 
refer to here as an indicator of terrain complexity. Terrain complexity is 
defined using Gauss synthetic surfaces defined by Equation (4) with varied 
coefficients to simulate land surfaces with various mean slopes and curva-
tures (Zhou et al. 2006). The third-order finite difference algorithm (3FD) 
is used to generate slope and aspect from the test surfaces and its results 
are then compared to the theoretical ‘true values’ inferred from the surface 
formulae. 

Referring to Equation (16) and Table 1, the RMSE of slope ( Sm ) and 
aspect ( Am ) of the 3FD method can therefore be expressed as: 

S
g

mmS
2cos

6
 and S

g
mmA cot
6

 (19) 

From Equation (19), it is clear that for a given grid resolution (g) and 
RMSE of DEM data (m), the RMSE of derived slope ( Sm ) and aspect 
( Am ) is positively correlated with slope (S). As slope values range within 
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0 – 90 , S2cos  and Scot  will always be greater than 0. Taking the ratio 
of Sm  and Am , we have: 

Sm
m

S

A

2sin
2

 (0 < S  45º) (20) 

Referring to Figure 5 and considering Equations (19) and (20), it is 
known that: 
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Figure 5. Relationships between slope (S), S2cos  and Scot . 

 
 The larger is S, the smaller are the Sm  and Am values and vice 

versa; and 
 Am  is much more sensitive than Sm , but its impact is much 

greater when the S value is small. 
The above characteristics explain that the errors of the derived slope and 

aspect occur mainly in flatter areas. Moreover, since Scot  has a faster de-
creasing rate with increasing slope than that of S2cos , in a flatter area 
even a small change in slope will lead to a great change of Scot . We 
therefore conclude that the error in the derived aspect is more sensitive to 
relief change than that of slope. 

To investigate the impact of changing slope on errors in the derived 
morphological parameters, a flattening rate of the ellipsoid (E), which is 
defined as the ratio of the vertical axis (C) over the long horizontal axis 
(A), is used. Referring to Figure 6, by varying E from 0.1 to 4.0, on a DEM 
with 10 m resolution, the average slope increased from 8  to 74 , while the 
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RMSE of derived slope and aspect decreased from 10.4  to 1.9 , and from 
130.8  to 19.3 , respectively. This suggests that on a simple surface, the 
derived slope and aspect tend to contain greater uncertainty with decreas-
ing slope. 
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Figure 6. RMSE of derived slope and aspect corresponding to the flattening rate 

of an inverse ellipsoid (DEM resolution 10 m, RMSE of DEM data 4.56 m). 

Using the above flattening rate is adequate to describe the impact of sur-
face complexity on a simple surface. However, on a more complex sur-
face, as we usually find in the natural world, more parameters need to be 
used for better simulation. Gao (1998) proposed the use of local relief (i.e. 
the difference between local highest and lowest points), standard deviation 
of elevation, and contour density of unit area (i.e. total length of contour 
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lines over area) to describe surface complexity. This method, however, 
presented some limitations, as acquisition of total contour length is not 
only related to computation algorithms, but also influenced by the map 
scale and DEM resolution. Besides, the use of relief and standard deviation 
alone may be too simplistic and would produce too much bias for a satis-
factory description of surface complexity. 

In this study, we propose to use relief, standard deviation, and slope fre-
quency for the description of surface complexity. By changing the parame-
ters of the Gauss Synthetic surface (Equation (2)), a series of simulated 
surfaces were created for the test as described by Zhou et al. (2006). Based 
on these surfaces, parameters for describing surface complexity were com-
puted and listed in Table 5. Corresponding slope frequency was also de-
rived and presented in Figure 7. 
Table 5. The complexity parameters of Gauss Synthetic surfaces (DEM resolution 

10 m). 

Surface Average slope (  ) Relief (m) Standard deviation 
(m) 

G1 6.3 20.4 3.4 
G2 12.1 152.1 26.3 
G3 20.5 298.5 52.4 
G4 28.0 444.9 78.5 
G5 34.2 591.3 104.7 
G6 39.5 737.5 131.2 
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Figure 7. Slope frequency on different Gauss Synthetic surfaces (DEM resolution 

10 m). 

Referring to Figure 7 and Table 5, it is known that surface G1 has the 
simplest and flatter form with the smallest relief (20.4 m) and standard de-
viation (3.36 m), with slopes mainly falling in the range of 0 – 8  (70%). 
Surfaces G2 and G3 have a moderate complexity with slopes of 3 – 25 . In 
contrast, surfaces G4, G5 and G6 represent rather rugged terrain with 
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slopes greater than 25 . For the extreme case, G6 has a relief of 737.5 m 
and standard deviation of 131.2 m. It can therefore be considered that the 
surface series G1 to G6 represent an increasing complexity of surface 
morphology. 

Based on the surface series, statistical analysis of error distributions re-
lated to slope has been conducted and the result is shown in Figure 8, 
where surface slopes are divided in slope bands (classes) and the RMSE of 
derived slope and aspect for each slope band has been computed for sur-
faces with different complexities. Within each surface, Figure 8 shows a 
general tendency for both the RMSE of slope and aspect to decrease with 
increasing slope, and the RMSE of aspect to be more sensitive (i.e. de-
creases more rapidly) than that of slope. 
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Figure 8. Error distribution related to slope bands on different Gauss Synthetic 

surfaces (DEM resolution 10 m). 

Comparing difference surfaces, the experiment results also show a gen-
eral tendency for both the RMSE of slope and aspect to decrease with in-
creasing complexity. When the surface series changes from a simple sur-
face (G1) to the most complex surface (G6), we observed the RMSE of 
slope and aspect decreasing from 6.1  4.5  4.1  3.7  3.4  3.0  
and 95.6  46.7  29.4  21.9  17.5  14.5 , respectively. This 
means that the more complex the land surface, the more accurate is the de-
rived slope and aspect from a grid-based DEM. The result also shows that 
when the surface becomes more complex, the RMSE of derived parame-
ters tends to be stable. For example, when surface G1 to G6 with increas-
ing complexity defined by a 25% increase of relief and standard deviation 
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(Table 5), the corresponding increments of RMSE of slope and aspect are -
25%  -9%  -9%  -9%  -9% and -50%  -37%  -26%  -20% 

 -17%, respectively. From this we can further confirm the relationships 
shown by Equation 6, namely, that both RMSE of slope and aspect are 
mainly distributed in flatter areas, and aspect is more sensitive than slope 
on the impact of surface complexity. 

The results from the experiment can be further illustrated by a test using 
a real-world DEM. Figure 9 shows the test results. On the DEM repre-
sented by Figure 9a, a slope map has been derived (Figure 9b). An analysis 
of the results of the RMSE of surface derivatives including slope and as-
pect are shown in Figure 9c (RMSE of slope) and Figure 9d (RMSE of as-
pect). The results also confirm those from the experiment based on 
mathematical surfaces, as higher RMSE values are observed in the flatter 
areas for both slope and aspect and the magnitude of increase for the as-
pect RMSE is much greater than that of the slope RMSE. 

Figure 9. Error distribution on a real-world DEM. (a) The original DEM (RMSE 
= 20 m, grid resolution = 60 m); (b) derived slope; (c) RMSE of derived slope; (d) 

RMSE of derived aspect. 

6 Conclusions 

Assessing Uncertainties in Derived Slope and Aspect from DEM 

Slope and aspect are two of the most frequently utilized variables in GIS-
based terrain analysis and geographical modelling. There have been 
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6.1 The general nature of uncertainties in DEM derivatives 

1. It is important to identify the sources and nature of errors of de-
rived slope and aspect in order to evaluate algorithms and mathe-
matical models. 

2. Evaluation of algorithms and models must be based on an objec-
tive, data-independent methodology so that a ‘fair’ comparison be-
tween selected algorithms can be made. 

3. On a DEM with high accuracy, the error of derived slope and as-
pect is sourced from the estimates of the partial derivatives p and q 
and sampling errors. In this case, the second-order finite difference 
method provides a better result than the third-order finite differ-
ence methods. 

4. In reality, the influence of DEM data error is, in general, much 
larger than the algorithm errors; thus it suggests that the third-
order finite difference method would be more appropriate for ap-
plications since it is least sensitive to the DEM data error. 

6.2 The impact of DEM data characteristics 

1. Algorithm choice is important when data precision is high. When 
the precision level is reduced, its influence on different algorithms 
becomes less important. When the error level in a DEM is high, 
the round-up errors due to reduced data precision can be neglected. 

2. A high-resolution DEM does not assure higher slope and aspect 
accuracy. Better results may only be possible with high DEM data 
accuracy. In reality, where DEM data often contains errors, the ac-
curacy of derived slope and aspect increases with lower DEM 
resolution. 

numerous analyses on the accuracy of these variables derived from grid-
based DEMs. The reported findings, however, did not always agree and 
sometimes they were controversial. This study attempts to evaluate the is-
sues and establish a ‘fair’ quantitative measure for assessing various slope 
and aspect algorithms, the impact of data properties including precision, 
resolution and orientation, as well as the impact of terrain complexity. 
From the findings of this study, we can draw the following conclusions. 

3. Grid orientation does cause directional bias on derived slope 
and aspect, and the third-order finite difference algorithm series 
has shown the most significant errors due to the change of grid 
orientation. 
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6.3 The impact of terrain complexity 

1. The RMSE of derived slope and aspect is negatively correlated 
with slope steepness. 

2. The RMSE of derived aspect is more sensitive to terrain complex-
ity than that of derived slope. 

3. The errors in derived slope and aspect tend to be found in flatter 
areas, and decrease with increasing terrain complexity. 

In general, when the terrain is rugged with steep slopes, the error of de-
rived parameters is quite minimal. In a flatter area, the derived parameters, 
particularly the aspect, may contain considerable errors, causing signifi-
cant limitations in applying the analytical results. 

6.4 The evaluation of the approach 

In this study, we have argued that although primary surface parameters can 
be well defined mathematically, the implementation of those mathematical 
models in a GIS environment may generate considerable errors related to 
DEM data quality, algorithm selection, DEM data properties such as preci-
sion, resolution and orientation, and terrain complexity. 

This study has shown that using a selection of mathematical surfaces 
with controlled parameters and data errors, digital terrain analysis algo-
rithms can be objectively compared and evaluated, independently from the 
data and the bias of the human analyst. It is also shown that the impact of 
individual factors can be independently examined by this approach so that 
appropriate justification can be made according to the application require-
ments and data characteristics. 

It should be noted that the study attempts to assess the uncertainty of 
slope and aspect from DEM via a simple simulation defined by mathe-
matical surfaces. The real-world slope may present much more compli-
cated features such as micro-relief, which closely relates to the scale of to-
pography being studied. When applying the test results to real-world 
problems, variation between the artificial and real-world slopes must be 
considered. Further studies also aim to analyse the uncertainties in other 
DEM derivatives, such as slope profile and curvature, catchment areas, 
drainage networks, and other derived geomorphic parameters. Real-world 
tests are also needed to compare with the findings of theoretical analysis. 
Based on these analyses, the ultimate goal is to set a conclusive guideline 
for deriving geomorphic parameters from DEM for a given application 
project. 

Assessing Uncertainties in Derived Slope and Aspect from DEM 
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Accuracy Assessment of DEM Slope Algorithms 
Related to Spatial Autocorrelation of DEM Errors 

LIU Xuejun and BIAN Lu 

Abstract 

Digital elevation models (DEM) are representations of topography but 
with unavoidable inherent errors, which result in DEM uncertainty. Enti-
ties are spatially dependent and with autocorrelation related to distance. 
The spatial autocorrelation of the DEM error will systematically affect the 
result of terrain analysis. It should be taken into account when calculating 
slope from a grid-based DEM. The effect of the accuracy of slope calcula-
tion models on terrain analysis based on quantitative models could be very 
significant. DEM uncertainty and error propagation is hard to describe 
with a single, fixed and analytical error based on spatial databases. The 
Monte Carlo simulation technique is an effective method to simulate error 
fields and can be used to research the DEM error’s spatial autocorrelation 
and DEM uncertainty. The accuracy of slopes is studied and four com-
monly used slope algorithms, namely, the 2nd Finite Difference, 3rd order 
Finite Difference, 3rd order Finite Difference Weighted by Reciprocal of 
Squared Distance, and 3rd order Finite Difference Weighted by Reciprocal 
of Distance, are compared theoretically in this paper based on the error be-
ing spatially dependent and autocorrelated. The theoretical results are con-
firmed by Monte Carlo simulation experiments using three digital eleva-
tion model data sets. 
 
Keywords: DEM, slope algorithm, accuracy, spatial autocorrelation. 

1 Introduction 

Digital Elevation Models (DEM) are representations of topography with 
unavoidable inherent errors, which result in DEM uncertainty. The use of 
DEMs as the principal database for deriving geomorphic parameters such 
as slope, aspect, curvature, and hydrological features has been well docu-
mented by several authors (Moore et al. 1991, Fisher 1994). 
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Slope, which has been regarded as the most important geomorphic pa-
rameter, does not only efficiently describe the relief and structure of the 
land surface, but is also widely applied as a vital parameter in hydrological 
models, landslide monitoring and analysis, mass movement and soil ero-
sion studies, and land use planning. Today in GIS software and most ap-
plications, slope is often derived from a grid-based DEM with some nu-
merical algorithms such as difference, surface fitting, and vector 
techniques. It is well known that unavoidable DEM errors have serious ef-
fects on slope and many studies have been conducted to analyse these. In 
effect, the slope algorithms can also influence the slope itself for its im-
plementation based on grid-based DEM can be varied, since some assump-
tions must be made on how the continuous surface is approximated by dis-
crete sample points (i.e. grid cells). The variation in the implementation 
would only present minor problems in applications such as surface visuali-
zation and classification, but its impact on terrain analysis based on quanti-
tative models could be very significant (Zhou and Liu 2002). It was 
pointed out that the selection of algorithms could be a critical factor that 
might create a major impact on the results of the analysis (Moore 1996, 
Burrough and McDonnell 1998). 

Some studies have been made to analyse the errors created by the slope 
algorithms with a variety of approaches and methodologies. Liu (2002), 
through a data-independent error analysis of DEM interpretation, stated 
that from the existing slope algorithms the third-order finite difference 
(3FD) method (Horn 1981) can give more accurate slope estimations on 
real DEMs. Unfortunately, Liu (2002), as most current studies related to 
DEM error, neglected the spatial autocorrelation of the DEM error.  

The first law of geography points out that “Everything is related to eve-
rything else, but near things are more related than distant things”. Entities 
in space are spatially dependent and autocorrelated. A familiar example of 
spatial autocorrelation is that of house price. The location of the house has 
a major effect on the price of the house. This is true for elevation data, as 
well as for errors in elevation data. Therefore, the DEM error is also spa-
tially dependent and autocorrelated in the interpolation method used in 
DEM creation. In effect, Hunter and Goodchild (1997) pointed out that ne-
glecting the error’s spatial autocorrelation leads to a “worst-case scenario” 
in spatial analysis. They also derived analytical equations describing the 
slope variance with RMSE and the correlation coefficient of the DEM er-
ror. Later work is contributed by Florinsky (1998a), Ehlschlaeger (1998), 
Wechsler (1999) and Oksanen and Sarjakoshi (2005). Florinsky (1998a) 
described the analytical propagation analysis of DEM, in which he derived 
a number of variance equations for different calculations of slope and cur-
vature. The weakness of that work was that the DEM error was assumed to 



be uncorrelated. Ehlschlaeger (1998) pointed out near entities are more re-
lated to each other than those further away and this is spatial autocorrela-
tion in nature. Wechsler (1999) presented a methodology for simulating 
the DEM error correlation though the Monte Carlo simulation method, and 
evaluated the effects of DEM error correlation on elevation and three de-
rived parameters that are often used in hydrological analyses. Recently, 
Oksanen and Sarjakoshi (2005) reported their study on error propagation 
of DEM based surface derivatives with Monte Carlo simulation and ana-
lytical methods. It should be made clear that the above studies have em-
phasized the DEM error’s spatial autocorrelation model and its effect on 
derivatives, such as slope, aspect, and curvature derived from the DEM. 

DEM uncertainty refers to a lack of knowledge about specific factors, 
parameters, or models, and includes the parameter uncertainty, model un-
certainty, and scenario uncertainty. It is hard to describe DEM uncertainty, 
error spatial autocorrelation and the law of error propagation with single, 
fixed or analytical errors during the handling of spatial databases. Simula-
tion error technique is one effective method to study error distribution and 
the law of error propagation. The Monte Carlo simulation analytical tech-
nique is a commonly used simulation method. Stochastic simulation is a 
generalized and flexible technique for modelling uncertainty in the output 
of any spatial analysis (Openshaw et al. 1991). Many scholars (Fisher 
1991, Lee et al. 1992, Lee 1996, Liu 1994, Ehlschlaeger and Shortridge 
1996, Heuvelink 1998) have researched DEM uncertainty with the Monte 
Carlo simulation method. Fisher (1991) estimated the effect of DEM error 
on viewshed analysis with the Monte Carlo simulation method. Lee (1992) 
and Lee et al. (1996) simulated errors in a grid DEM and determined that 
small errors introduced into the database significantly affect the quality of 
extracted hydrological features. Liu (1994) utilized the Monte Carlo 
method to simulate errors in DEM to evaluate uncertainty in a forest har-
vesting model. Ehlschlaeger and Shortridge (1996) stochastically simu-
lated error in a DEM to evaluate the impact of DEM uncertainty on a least-
cost-path application. Heuvelink (1998) analysed accuracy of two slope 
algorithms with Monte Carlo simulation. 

With DEM error being independent, Liu (2002) discussed the rank of 
the DEM slope algorithms. The ranking of slope algorithms is third-order 
finite difference (3FD), (Sharpnack and Akin 1969, Horn 1981, Wood 
1996), third-order finite difference weighted by reciprocal of squared dis-
tance (3FDWRSD), (Horn 1981), third-order finite difference weighted by 
reciprocal of distance (3FDWRD), (Unwin 1981) and second-order finite 
difference (2FD), (Fleming and Hoffer 1979, Zevenbergen and Thorne 
1987, Ritter 1987). The remaining question is whether this ranking stays 

 Impact of Spatial Autocorrelation of DEM Error on Slope Algorithms 309 

unchanged if the DEM error is spatially autocorrelated? This paper estimates 
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2 Error analysis 

At a given point on a surface z = f(x, y), the slope (S) is defined as a func-
tion of gradients at X and Y (i.e. N–S and W–E) directions, i.e.: 

22 qparctgS  (1) 

where p and q are the gradients at N–S and W–E directions, respectively. 
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Figure 1. 3  3 local moving win-
dow. 

From the above equation, it is clear that 
the key step for slope computation is to 
calculate p and q. Using a grid-based 
DEM, the common approach is to use a 
moving 3  3 window (Figure 1, point O is 
the given point, g is the resolution of the 
grid) to derive finite differentials or local 
surface fitting polynomials for the calcula-
tion (Skidmore 1989, Florinsky 1998a, b). 
Table 1 shows the four selected slope 
methods commonly utilized and found in 
the literature and the GIS software that is 
used to calculate slope and a comparison 
of the accuracy in this investigation. 

 
From Table 1, we know that p and q are functions of neighbouring 

points (zi, i=1,…,8) at the given point (O). Although the slope algorithms 
have different expressions with p and q, they can be written uniformly as 
follows: 

p

q

p LK Z
q LK Z

 (2) 

the accuracy of these four slope algorithms when the error is spatially 
autocorrelated. To prove the veracity of the ranking of slope algorithms, 
this paper designed a Monte Carlo simulation experiment and validated the 
results with three sets of DEM data. 
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where Z=(z1, z2, z3, z4, z5, z6, z7, z8)T, Kp and Kq are coefficient matrixes, L is 
a constant that lies on slope models. For example, in the 2FD slope algo-
rithm, the coefficient matrix (Kp) of p is (0,1,0,0,0,0,-1,0), the coefficient 
matrix (Kq) of q is (0,0,0,0,-1,1,0,0) and L =1/(2g). Table 2 shows the coef-
ficient matrix Z of p and q and constant L of the four slope algorithms. 

Table 1. Slope Algorithms (zi denotes elevation value of grid point). 

Slope algorithms p q 
2nd Finite Difference (2FD: 
Fleming and Hoffer 1979, 
Zevenbergen and Thorne 
1987, Ritter 1987) 

g
zz

2
72  

g
zz

2
45  

3rd order Finite Difference 
(3FD: Sharpnack and Akin 
1969, Horn 1981, Wood 
1996) 

g
zzzzzz

6
837261  

g
zzzzzz

6
684513  

3rd order Finite Difference 
Weighted by Reciprocal of 
Squared Distance 
(3FDWRSD: Horn 1981) 

g
zzzzzz

8
2 837261  

g
zzzzzz

8
2 684513  

3rd order Finite Difference 
Weighted by Reciprocal of 
Distance (3FDWRD: Un-
win 1981) 

g
zzzzzz

224
2 837261  

g
zzzzzz

224
2 684513  

 
Table 2. Coefficient matrix Z of p and q & constant L. 

Coefficient matrix Z Slope algorithms 
z1 z2 z3 z4 z5 z6 z7 z8 

Constant L 

p 0 1 0 0 0 0 -1 0 2FD 
q 0 0 0 -1 1 0 0 0 g2

1

 
p 1 1 1 0 0 -1 -1 -1 3FD 
q -1 0 1 -1 1 -1 0 1 

g6
1

 

p 1 2 1 0 0 -1 -2 -1 3FDWRSD 
q -1 0 1 -2 2 -1 0 1 

g8
1

 

3FDWRD p 1 2  1 0 0 -1 2  -1 g)224(
1

 
 

Considering that p and q are independent of each other, 
22 qparctgS and 222 qpStg , the variance of slope (ms

2), ac-
cording to the general law of propagation of variance, can be derived as: 
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Stg
mqmp

m qp
S 2

2222
2  (3) 

where mp
2 is the variance of p and mq

2 is the variance of q. 
Supposing the Root Mean Square Error (RMSE) of DEM is mi and the 

covariance of two points (i and j) is ij , mp
2 and mq

2 can be expressed as 
follows: 

2

2

T
p p Z P

T
q q Z q

m K D K

m K D K
  (4) 

where DZ is the variance-covariance matrix of Z in the calculation window, 
which here is the neighbourhood of 3 × 3 elevation points (see Figure1). 
The variance-covariance matrix of Z can be expressed as follows: 
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 (5) 

Generally, the DEM error is often assumed as a second-order stationary 
Gaussian random field and the covariance is only dependent on the dis-
tance between two locations. The covariance of two locations decreases as 
the distance increases. Therefore, the Exponential, Gaussian and linear 
spatial autocorrelation models are often selected to represent the correla-
tion structure of the DEM error. Considering that the aim of this paper is to 
investigate the accuracy of slope algorithms under different spatial auto-
correlation circumstances, the linear and Gaussian spatial autocorrelation 
models are used to test the slope algorithms. The expressions for two spa-
tial autocorrelation models are: 

2 2
ij

ij

ij k d

C kd Linear Function model

Ce Gaussian Funtcion model
 (6) 
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where C and k are constant, dij is the horizontal distance between the two 
locations that can be regarded as the distance between two grid points (i 
and j) in the DEM. 

Since the DEM error was assumed to be isotropic and the variance of 
each grid point is m2, the variance-covariance DZ is also a symmetrical ma-
trix, the equation of the variance for both p and q are equal, and thus the 
equations can be expressed by only mp

2 or mq
2: 

Smm

mm

pS

qp

422 cos
    (7) 

So Equation (7) is the accuracy model of slope derived from grid DEM. 
From Equation (7) and Table 1, we know that different slope algorithms 

have different variances of p. The variance of p, mp
2, can be regarded as an 

indicator for assessing the slope algorithms. The key for calculating mp
2 is 

Equations (5) and (6). From Figure 1, there exist five different distances 
between two grid points (i and j) in a 3 × 3 local moving window, and they 
can be summarized as shown in Table 3. 

Table 3. Distances of two grid points in 3 × 3 local moving window. 

Distance Corresponding grid points (see Figure 1) 
g (1,2) (1,4) (2,3) (3,5) (4,6) (5,8) (6,7) (7,8)  
2g  (2,4) (2,5) (4,7) (5,7)  

2g  (1,3) (1,6) (2,7) (3,8) (4,5) (6,8)  
5g  (1,3) (1,5) (1,7) (2,6) (2,8) (3,4) (4,8) (5,6)  
8g  (1,8) (3,6)  

 
According to the linear and Gaussian spatial autocorrelation model 

shown in Equation (6) and the distance between two points (i and j) listed 
in Table 3, the variance-covariance matrices of Z of linear and Gaussian 
spatial autocorrelation can be expressed by Equations (8) and (9), respec-
tively, as follows: 

2

2

2

2

2

2 5 2 5 8

2 2 5 2 5

2 5 8 5 2

2 5 2 2 5

5 2 2 5 2

2 5 8 5

Z

m C kg C kg C kg C kg C kg C kg C kg

C kg m C kg C kg C kg C kg C kg C kg

C kg C kg m C kg C kg C kg C kg C kg

C kg C kg C kg m C kg C kg C kg C kg
D

C kg C kg C kg C kg m C kg C kg C kg

C kg C kg C kg C kg C 2

2

2

2

5 2 5 2 2

8 5 2 5 2

kg m C kg C kg

C kg C kg C kg C kg C kg C kg m C kg

C kg C kg C kg C kg C kg C kg C kg m

 (8) 
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2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 4 5 4 5 8

2 2 2 5 4 5

4 2 5 8 5 4

2 5 2 4

k g k g k g k g k g k g k g

k g k g k g k g k g k g k g

k g k g k g k g k g k g k g

k g k g k g

Z

m Ce Ce Ce Ce Ce Ce Ce

Ce m Ce Ce Ce Ce Ce Ce

Ce Ce m Ce Ce Ce Ce Ce

Ce Ce Ce m Ce
D

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 5

5 2 4 2 5 2

4 5 8 5 2 4

5 4 5 2 2 2

8

k g k g k g k g

k g k g k g k g k g k g k g

k g k g k g k g k g k g k g

k g k g k g k g k g k g k g

k

Ce Ce Ce

Ce Ce Ce Ce m Ce Ce Ce

Ce Ce Ce Ce Ce m Ce Ce

Ce Ce Ce Ce Ce Ce m Ce

Ce
2 2 2 2 2 2 2 2 2 2 2 2 2 25 4 5 4 2g k g k g k g k g k g k gCe Ce Ce Ce Ce Ce m

 (9) 

According to the coefficient matrix Z of p and q and the constant L 
shown in Table 2, the distances between the two locations shown in Table 
3 and the Equation (7), (8) and (9), the accuracy models of the selected 
slope algorithms can be described as shown in Table 4. 

Table 4. Accuracy model of slope algorithms. 

Slope algo-
rithms 

Spatial auto-
correlation 
models 

mp
2=mq

2 

Linear  20.5 0.5m C gk  2FD 
Gaussian 2 22 40.5 0.5 k gm ce  
Linear  gkCm 7.0167.0167.0 2

 3FD 
Gaussian 2 2 2 2 2 2 2 22 4 5 80.167 0.222 0.056 0.222 0.111k g k g k g k gm ce ce ce ce  
Linear  20.188 0.188 0.738m C gk  3FDWRSD
Gaussian 2 2 2 2 2 2 2 22 4 5 80.188 0.25 0.125 0.25 0.063k g k g k g k gm ce ce ce ce  
Linear  20.172 0.172 0.728m C gk  3FDWRD 
Gaussian 2 2 2 2 2 2 2 22 4 5 80.172 0.234 0.086 0.234 0.086k g k g k g k gm ce ce ce ce  

 
Since C, k and g are constant, the accuracy of the selected slope algo-

rithms can be assessed by comparing the coefficient of equations in Table 
4. Some results are: 

 The ranking of the DEM slope algorithms with the DEM error’s 
spatial autocorrelation is the same as that with the DEM errors un-
correlated (Liu 2002); that is the 3rd order Finite Difference (3FD) 
slope algorithm can get more accurate slope estimations than any 
other slope algorithm. Then follow the 3rd order Finite Difference 
Weighted by Reciprocal of Distance (3FDWRD) and the 3rd order 
Finite Difference Weighted by Reciprocal of Squared Distance 
(3FDWRSD). The 2nd Finite Difference (2FD) gives the least ac-
curate estimation. 
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 The structure of the spatial autocorrelation models of the DEM er-
ror, whether exponential, Gaussian, or linear, has no effect on the 
ranking of the slope algorithms. 

 The number of grid points neighbouring the centre point has an ef-
fect on the accuracy of slope estimation. For example, in the 3 × 3 
local moving window, the 3FD, 3FDWRSD, 3FDWRD used the 
eight points of the centres to calculate the centre slope, so those 
algorithms can estimate slope more accurately than that obtained 
by 2FD, which only uses four points. 

 With the same number of points neighbouring the centre, such as 
3FD, 3FDWRSD, and 3FDWRD slope algorithms, the accuracy of 
the slope depends on the weight used in p and q (see Table 1). For 
terrain surfaces assumed with the characteristics of self-similarity 
and isotropy, equal-weight in p and q estimation is more appropri-
ate than unequal weight. The 3FD obtains the best accuracy esti-
mation, followed by 3FDWRD and 3FDWSRD. 

3 Experiments and results  

Theoretical conclusions will be confirmed by experiments utilizing Monte 
Carlo stochastic simulation techniques. Wechsler (1999) introduced four 
methods, which are neighbourhood autocorrelation, mean spatial depend-
ence, weighted spatial dependence, and interpolated spatial dependence to 
generate spatial autocorrelation error fields and this chapter adopts the 
neighbourhood autocorrelation method, which can generate spatial auto-
correlation errors reliably. The neighbourhood autocorrelation method in-
creases the spatial autocorrelation of the random error field by passing a 
mean low pass filter in a 3 × 3 (or 5 × 5, 7 × 7, … , n × n) neighbourhood 
over the error field surface (See Figure 2). Each cell in the random field is 
replaced by the mean of the random values in the surrounding nine cells. 
This method increases the spatial autocorrelation of the random surface 
and decreases the standard deviation of the values. 

Figure 2 shows the procedure of the Monte Carlo simulation experi-
ment. Firstly, a random error field is generated by Monte Carlo simulation 
according to relief type of the selected study areas Secondly, spatial auto-
correlation error fields are created by the neighbourhood autocorrelation 
method. The output DEMs are generated by adding spatial autocorrelation 
error fields to the original DEMs. Thirdly, four selected slope algorithms 
are used to calculate slope mapping on the output DEM. All the above ap-
proaches are executed N times. Measurement of vertical accuracy in DEMs 
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is usually represented statistically in the form of the Root Mean Square Er-
ror (RMSE) (Equation 10). 

1

1

N

i t
i

z z
RMSE

N
  (10) 

where zi is the observed elevation, zt is the true elevation, and N is the 
number of sample points. This paper regards the Root Mean Square Error 
(RMSE) as the estimation standard of the accuracy of the four slope algo-
rithms. Therefore, the last step is the calculation of the RMSE values. 

 

Figure 2. Procedures of Monte Carlo simulation experiment. 

The process in the Monte Carlo simulation experiment shown on the left 
in Figure 2 is used to derive slopes from DEMs with stochastic error fields. 

Three DEMs of study areas were selected to analyse the accuracy of the 
selected slope computation models. To validate that the theoretical conclu-
sion has high reliability, these DEMs have different scales, different grid 
resolutions, different hypsography and belong to different terrain type (Ta-
ble 5 gives their particulars). Figure 3 shows the DEMs of the study areas. 

Neighbourhood
autocorrelation

Spatial autocorrelation 
error fieldsStochastic error fields

Original DEM

Four slope 
algorithms

Spatial autocorrelation 
error fields + original DEM

Stochastic error fields + 
original DEM

Calculate slope Calculate slope

Statistics slope N times Statistics slope N times

N times N times++

Neighbourhood
autocorrelation

Spatial autocorrelation 
error fieldsStochastic error fields

Original DEM

Four slope 
algorithms

Spatial autocorrelation 
error fields + original DEM

Stochastic error fields + 
original DEM

Calculate slope Calculate slope

Statistics slope N times Statistics slope N times

N times N times++
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Table 5. Description of study areas. 

Study area Scale Grid resolution 
of DEM 

Hypsography ex-
tent Terrain type 

Study area 1 1:50,000 30 m 410 m–1,990 m Mixed 
Study area 2 1:10,000 5 m 894 m–1,185 m Hilly country 
Study area 3 1:50,000 25 m 973 m–2,725 m High mountain 
 

  
Study area 1 Study area 2 Study area 3 

Figure 3. DEMs of study areas. 

Statistics of stochastic error fields and spatial autocorrelation error fields 
of these study areas are shown in Table 6. The standard deviation (SD) of 
stochastic simulation error fields is given when generating them. Accord-
ing to the DEM grid resolutions and terrain types of the selected study ar-
eas, the SD of study area 1 is 7 metres, SD of study area 2 is 3.5 metres 
and SD of study area 3 is 11 metres. These stochastic error fields are non-
spatially autocorrelated. To obtain the spatial autocorrelation error fields, 
an n × n local moving window is used when dealing with stochastic error 
fields and the spatial autocorrelation error fields are generated using 
neighbourhood autocorrelation introduced by Wechsler (1999). In this 
chapter, a 3 × 3 local moving window is adopted to filter study areas 1 and 
3 and a 5 × 5 local moving window is adopted to filter for study area 2. 

Here Moran’s I, which is an index that assesses the intensity of spatial 
autocorrelation, is used to assess the level of spatial autocorrelation gener-
ated by neighbourhood autocorrelation at different local moving windows. 

Table 6 clearly shows Moran’s I derived from spatial autocorrelation er-
ror fields to be higher than the Moran’s I derived from stochastic error 
fields. This is because the former take the effect of neighbourhood points 
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on the centre point into account and the latter is generated stochasti-
cally. The local moving window sizes used in generating neighbourhood 
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Table 6. Statistics of error fields of study areas. 

Error fields Study area 
1 

Study area 
2 

Study area 
3 

MIN -30.2699 -15.4060 -47.9298 
MAX 30.5959 15.1985 48.2075 
MEAN 0.0048 0.0020 -0.0009 
SD 7.0257 3.5128 11.0474 

Stochastic error fields 

Moran’s I 0.0022 -0.0006 0.0001 
MIN -11.4059 -3.7466 -17.5982 
MAX 11.6661 3.5866 17.8861 
MEAN 0.0052 0.0021 -0.0017 
SD 2.3505 0.7050 3.6928 

Spatial autocorrelation 
error fields 

Moran’s I 0.6669 0.7995 0.6673 
 

The output DEMs are of two kinds; one is with stochastic error fields 
and the other is with spatial autocorrelation error fields. The method of 
generating these DEMs is by adding the stochastic error fields and spatial 
autocorrelation error fields to the original DEMs, respectively. And then 
the slope derived from either DEMs can be calculated using the four se-
lected calculation models. Figure 4 provides a visual comparison of RMSE 
of slope. From Figure 4 some results are: 

1. The ranking of the RMSE of slope is the same as the result shown 
in Table 4 whether the DEM error field is stochastic or is spatial 
autocorrelation. The 3FD can produce the most accurate estima-
tion, followed by 3FDWRD and 3FDWRSD. The 2FD gives the 
lowest accuracy. 

2. The RMSE of slope derived from a DEM with the error spatially 
autocorrelated is better than that from a DEM with the error uncor-
related. The Standard Deviation of the error field is obviously de-
creased by neighbourhood autocorrelation. The gap between the 

autocorrelation will affect the intensity of spatial autocorrelation of the 
study areas. Study area 2, which used a 5 × 5 local moving window, got 
more spatial autocorrelation than the other two study areas using a 3 × 3 
local moving window. The neighbourhood autocorrelation increased the 
spatial autocorrelation and decreased the standard deviation of the values. 
This method can generate spatial autocorrelation fields steadily and these 
spatial autocorrelation error fields can be used reliably in the experiment. 
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third-order finite difference and the second-order finite difference 
is smaller after neighbourhood autocorrelation. 

3. For the same DEM, the difference of RMSE derived from the four 
slope algorithms when the error field is spatially autocorrelated is 
smaller than when it is not spatially autocorrelated. 

Figure 4. RMSE of slope derived from four slope algorithms. 

4 Conclusions 

Slope is the most frequently utilized derivation in GIS-based terrain analy-
sis and geographical modelling. The slope algorithm can influence slope in 
different ways by its implementation based on grid-based DEM and its im-
pact on terrain analysis based on quantitative models can be very signifi-
cant. DEM error has serious effects on slope; thus choosing an appropriate 
and accurate slope algorithm could be a critical factor that might create 
significant impact on the analysis results. 

 Impact of Spatial Autocorrelation of DEM Error on Slope Algorithms

 

 
(a) DEM with stochastic error fields. 

 
(b) DEM with spatial autocorrelation error fields. 
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This paper analysed the effect of error spatial autocorrelation on the ac-
curacy of the four selected slope algorithms and assessed the accuracy of 
slope algorithms when the error is spatially autocorrelated. From the find-
ings of this study, we can draw the following conclusions: 

(1) The conclusion derived from theoretical deduction accords with the 
result gained from the Monte Carlo simulation experiment. The 3rd order 
Finite Difference (3FD) slope algorithm can estimate slope more accu-
rately than any other slope algorithm under any circumstance, whether 
with spatial autocorrelation or not, followed by the 3rd order finite differ-
ence weighted by the reciprocal of distance (3FDWRD) and the 3rd order 
finite difference weighted by reciprocal of squared distance (3FDWRSD). 
The 2nd Finite Difference (2FD) gives the lowest accuracy estimation of 
slope. 

The number of grid points neighbouring the centre point has an effect on 
the accuracy of slope estimation. For example, in the 3 × 3 local moving 
window, the 3FD, 3FDWRSD, and 3FDWRD used eight points round the 
centre to calculate the centre slope, so those algorithms can estimate more 
accurate slope values than those obtained by 2FD, which only uses four 
points. 

With the same number of points neighbouring the centre, such as with 
the 3FD, 3FDWRSD, and 3FDWRD slope algorithms, the accuracy of the 
slope depends on the weight used in p and q. For the terrain surfaces with 
the characteristics of self-similarity and isotropy, equal weights in p and q 
estimations are more appropriate than unequal weights. The 3FD can de-
liver the best accuracy estimation, followed by 3FDWRD and 3FDWSRD. 

(2) The structure of the spatial autocorrelation models of the DEM error 
is not the key for assessing the accuracy of the slope algorithms. The rank-
ing of the four selected slope algorithms is the same whether the DEM er-
ror is exponential, Gaussian, or a linear function. 

(3) Neighbourhood autocorrelation can generate reliable spatial autocor-
relation error fields and can decrease the standard deviation of the spatial 
autocorrelation error fields. By this method, the intensity of spatial auto-
correlation is related to the window size passing a mean low pass filter in a 
3 × 3 (or 5 × 5, 7 × 7, … , n × n) neighbourhood over the error field sur-
face. The larger the window size, the higher the intensity of the spatial 
autocorrelation. The accuracy of slope estimation from DEMs whose er-
rors are spatially autocorrelated is better than that from DEMs with errors 
uncorrelated. 

Further study will focus on the character of spatial autocorrelation DEM 
error and how it affects slope. 
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Modelling Slope Field Uncertainty Derived 

DENG Fengdong, WANG Lili, ZHUO Jing and LIU Anlin 

Abstract 

This chapter explains how land use in the Loess Plateau area was classified 
using TM (Thematic Mapper) remote sensing data. Slope fields were ex-
tracted from DEMs (Digital Elevation Models) at different scales and the 
effects of different scales on slope field precision were also analysed. Re-
sults show that a DEM with a scale of 1:50,000 (with a resolution of 25 m) 
was basically sufficient to extract slope fields with the required precision. 
Although the accuracy of slopes extracted from a scale of 1:10,000 is 
higher than DEMs of other scales, the detailed land appearance did not 
show obvious improvement on the slope field precision because of the 
special land use in the studied area, especially the considerable effect of 
land use type on plantation layout (plantations focused on Loess Mao of 
small slopes and large areas). Furthermore, with the constraints of using 
the resolution of 30 m for the land use, DEMs with the scale of 1:10,000 
could not show its advantage of high precision and increased the redun-
dancy and computing load; thus it was not appropriate for obtaining slope 
fields of large areas. The DEM with a scale of 1:250,000 could not be used 
to extract slope field graphs effectively either, because of its large gener-
alizations over the study area. 
 
Keywords:  Loess Plateau, slope field, DEM, uncertainty, remote sensing. 

1 Introduction 

A DEM (Digital Elevation Model) is convenient for representing the con-
tinuously varying topographic surface of the Earth, together with common 
terrain attributes that are readily computed from a DEM including slope 
gradient, slope aspect, slope curvature, upslope length, specific catchment 
areas (upslope contributing area divided by the grid cell size), and the 
compound topographic index (CTI – a hydrological based index that is re-
lated to zones of surface saturation; Moore et al. 1993). In recent years, 

From DEM in the Loess Plateau 



324 DENG Fengdong, WANG Lili, ZHUO Jing and LIU Anlin 

DEMs have been widely accepted and applied in ecology environmental 
investigations (Bolstad and Stowe 1994). As the development of research 
into DEMs, especially the theory concerning uncertainty of DEM and 
DEM-derived quantities, has greatly improved, the accuracy of DEMs be-
came increasingly important as  the application of DEM were extended for 
slope farmland extraction and ecosystem environmental investigations. 
The accuracy of the DEM and the DEM-derived products depend on (i) the 
source of the elevation data, including the techniques for measuring eleva-
tion, either on the ground or remotely, the locations of samples, and the 
density of samples; (ii) the methods used to create the DEM from this ele-
vation data; (iii) the data model, or structure of the elevation data grid, 
contour, triangular irregular network; (iv) the horizontal resolution and 
vertical precision at which the elevation data is represented; (v) the topog-
raphic complexity of the landscape being represented:  and (vi) the algo-
rithms used to calculate different terrain attributes (Theobald 1989, Chang 
and Tsai 1991, Florinsky 1998). 

Measurement of errors in DEMs is often impossible because the true 
value for every geographic feature or phenomenon represented in a geo-
graphic data set is rarely determinable (Goodchild et al. 1994, Hunter et al. 
1995).Uncertainty, instead of error, should be used to describe the quality 
of a DEM or DEM-derived product. One critical aspect of any DEM un-
certainty study is how the resolution of the DEM impacts the accuracy of 
information derived from the DEM (Tang Guoan 2000). Commonly, the 
higher resolution DEMs have more information, and can describe the sur-
face of the Earth more precisely; but on the other hand, as the resolution of 
the DEM increases, the volume of spatial data increases sharply, data re-
dundancy increases also, and the cost of analysis will become greater 
(Tang Guoan 2001). It is especially difficult if a large area is investigated 
for slope farmland extraction. Remote sensing technologies are used to ob-
tain the land use information of large areas; LANDSAT TM-5 images 
were used to classify the larger study site, for example the Loess Plateau of 
Northern Shaanxi Province, into different land use types, and the slope 
farmland areas were calculated employing land use data and DEMs. The 
object of this chapter mainly focuses on the uncertainty of the process 
through which the slope farmlands are calculated by slope gradient derived 
from different resolution DEMs and land use information classified from 
the TM-5 data with a spatial resolution of 30 m. 

The Loess Plateau, in the Northern part of Shaanxi, is an area of serious 
soil erosion and the ecological environment has been destroyed through 
the long-time activity of humans. It has been discovered that 90% of farm-
land in this area is slope farmland (Deng Fengdong 2002). To restructure 
the ecosystem of this area and realize sustainable development, the local 
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government must take a set of measures. A project, named ‘Return the 
farmland back to woodland or pasture’, was put into practice. 

One object of this project is to decrease the areas of farmland with slope 
gradients higher than 25%. High resolution land use investigation is im-
possible for such a large area; therefore the extent of sloping farmland was 
calculated by land use data and DEMs were very helpful in this project. 

Table 1. Major topographic variables of study site. 

Area (km) Mean Elevation 
(m) Gradient (°) Curvature (°) Ground 

Roughness 

10 × 10 1,127.69 27.10 31.27 1.1902 

 

2 Research Sites and Data Source 

The two 10 km × 10 km study sites were selected in the Loess Plateau of 
northern Shaanxi province (Figure 1). The altitude of the area is between 
968 m and 1,336 m, maximum slope gradients are approximately 73% (Ta-
ble 1). 
 

 

Figure 1. The location of research 
sites.  

Landuse data were classified into 
twelve different land use types by a 
series of procedure:  image correcting, 
image enhancement, ground investi-
gation, supervised classification, re-
sults verified. According to the result, 
approximate 27% of the area is farm-
land. The Landsat TM5 images were 
obtained in the summer of 2003, and 
the investigation of the whole Loess 
Plateau was finished. The accuracy of 
the result has been checked; the over-
all accuracy reached 85.47%, kappa = 
0.817 (Figure 2). 

 
DEMs data used in the research included three different scale level data:  

1:10,000, 1:50,000, 1:250,000. The DEM of 1:10,000 scale was digitized 
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from the topographic map of the same scale, and the contours were inter-
polated to improve the resolution of the DEM to 5m to satisfied the needs 
of analysis in this hilly region. DEMs of 1:50,000 and 1:250,000 scale lev-
els were both obtained from the National Geomantic Centre of China 
(NGCC), the spatial resolution being 25 metres and 90 metres (Figure 3). 
The method of slope-derivation is the windows differential coefficient 
method researched by Burrough (1986). The method is integrated within 
the ARCGIS software. The method calculates the output slope value for 
each cell location based on the value from the DEM for the location and 
the values identified in a 3 x 3 cell rectangular shape called the neighbour-
hood; as the neighbourhood moves cell by cell, the DEM based slope ex-
traction is processed. The slope was divided into a set of levels:  0°–3°, 3°–
5°, 5°–8°, 8°–15°, 15°–25°, 25°–35°, 35°–45°, 45°–60°, 60°–90°, a total of 
nine levels. According to this principle, the slope maps, accordingly, could 
have been extracted from DEMs of different spatial scales (1:10,000, and 
1:50,000, 1:250,000). Slope farmland extraction is based on the overlay 
analysis method. In the process, to make the data easy for statistical com-
parison, the DEMs was interpolated to have the same spatial resolution of 
5 m, and then an overlay of the slope map and the land use map which was 
classified using the remote sensing images was used to calculate sloping 
farmland. 

3 Accuracy of Land Use Classification 

Two methods are frequently employed for assessing the accuracy of classi-
fications:  the method based on pixels and the method based on features. 
The first method samples the classified result map with equal intervals, 
then makes a comparison with the reference data to find the true land use 
type, to obtain the accuracy of the classification. The second method con-
centrates on the differences between various feature structures in the clas-
sification result and the real world feature structures to estimate the accu-
racy. Most classifications are based on pixel computing procedures, so the 
first method was always used to calculate the accuracy. 

A confusion matrix lists the values for known types of reference data in 
the columns and for the classified data in the rows. The main diagonal of 
the matrix lists the correctly classified pixels. The overall accuracy can be 
calculated from the confusion matrix. If there are X types in the classifica-
tion, then overall accuracy is:  
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where r is the count of classification type, N is the total number of sam-
ples. 

Another accuracy assessing method is also based on the confusion ma-
trix; it can assess the quality of the classifier. The Kappa coefficient is 
conventionally employed to assess the accuracy of classification results 
calculated by remote sensing. It takes the non-diagonal elements into ac-
count. Actually, every value in the confusion matrix is used in the Kappa 
coefficient. The Kappa coefficient can be calculated by:  
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where 
r = number of rows and columns in the error matrix, 
N = total number of observations, 
Xii = observation in row i and column i, 
Xi+ = marginal total of row i, and 
X+i = marginal total of column i. 
In practice, the follow equation is used to calculate the kappa coeffi-

cient:  
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647 sampling units were used to assess the accuracy of the map derived 
from remote sensing in this research; among these sampling units, 497 
were obtained by random sampling and the others were selected from a 
QuickBird image (spatial resolution 61 cm). The confusion matrix is listed 
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below (Table 2). According to the confusion matrix, the overall accuracy 
reached 85.47%, and the kappa coefficient is 0.817. 

4 Research Result and Analysis 

(1) Slope extraction obviously changed as DEMs of different scales were 
used. The resolution of DEMs impacts the accuracy of slope extraction in 
three ways. First, in the zone of 0–5 degrees, the accuracy of slopes de-
rived from DEMs changes little, with the results processed with the 
1:10,000 DEM being close to the results processed with the 1:50,000 
DEM. Secondly, in the zone of 5–25 degrees, slope had a definite change 
as the resolution of the DEM changed; the lower resolution of DEMs used, 
the larger the gradient derived from the DEMs. In the zone of 5–15 de-
grees, the change of slope gradient is great; there are two reasons for this:  
one is that the areas with 15–25 degree slopes were a great proportion of 
the total area of the research site. On the other hand, DEMs with lower 
spatial resolution will smooth the small relief features (for example, there 
are many valleys of 15–30 m in width in the Loess Plateau that can hardly 
be surveyed by the DEM with a spatial resolution of 25 m), leading to a 
greater area of slope being calculated in the zone. Thirdly, in the zone of 
slopes larger than 25 degrees, the area definitely decreased as the slope 
gradient increased (Figure 4). 

Table 2. The confusion matrix of the classification result in the Loess Plateau. 

Reference data Classified data 
V FL F SH O G B I P C SD W 

Total 

Vegetable (V) 2 0 0 0 1 0 0 0 0 0 0 0 3 
Farmland (FL) 1 205 0 2 2 4 0 2 0 0 1 2 219 
Forest (F) 0 2 75 1 2 3 0 2 0 1 0 0 86 
Shrub (SH) 0 1 12 20 3 5 2 0 0 0 0 0 43 
Orchard (O) 0 1 4 2 49 2 2 3 0 0 0 1 64 
Grass (G) 0 4 1 1 2 143 0 3 0 0 0 2 145 
Bare rock (B) 0 0 0 0 0 2 4 0 0 0 0 0 6 
Industry (I) 2 2 0 0 0 5 0 34 0 0 0 1 48 
Paddy field (P) 0 0 0 0 0 0 0 0 2 0 0 0 2 
Coniferous forest (C) 0 0 0 0 0 0 0 0 0 1 0 0 1 
Sand (SD) 0 0 0 0 0 0 0 0 0 0 3 0 3 
Water (W) 0 0 0 1 0 0 0 0 0 0 0 15 13 
Total 5 215 92 27 59 164 8 44 2 2 4 25 647 
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Figure 2. Land use map of study site. Figure 3. Hillshading with 5 m         
resolution 

 

 
Figure 4. A comparison of gradient derived from DEMs of different resolution 

(2) The impact of DEMs with different spatial resolutions on the slope 
farmland. According to the research results, it can be concluded that the er-
ror of slope farmland derived from the DEMs with the scale of 1:250,000 
is too great to be used, and comparing the slope farmland derived from 
DEMs of the scale 1:10,000 with that of the scale 1:50,000, the main dif-
ference is seen if one focuses on the zone of 15–25 degrees and the zone of 
slopes larger than 35 degrees. 30% of the total farmland derived from the 
1:10,000 DEM has slope gradients larger than 35 degrees, and also ap-
proximately 7% of total farmland is slope farmland with slope gradients 
larger than 60 degrees. But according to the ground investigations of the 
study site, the soil is very loose in this region and there is little farmland on 
slopes greater than 60 degrees because of the serious soil erosion. As the 
project ‘Return the farmland back into woodland or pasture’ was put in 
practice, the slope farmland with gradients larger than 25 degrees de-
creased sharply; there is not much farmland left and so there must be some 
errors in the slope farmland derived from the DEMs with a scale of 
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1:10,000. The error is mainly because the land use map with a resolution 
of 30 m cannot provide as many details about the surface of the Earth as 
DEMs with resolutions of 1:10,000 and there are many sub-pixels that 
cannot be classified by the land use map, but the distribution of real slopes 
has great impact on the real distribution of farmland (Figure 5). 
 

 
Figure 5. A comparison of slope-farmland derived from DEMs of different scale. 

(3) Statistical data were collected to check the accuracy of slope farmland 
derived from DEMs of different scales (Table 3). Correlation coefficients 
between the slope farmland and the statistical data were calculated. It was 
found that the correlation coefficient of the 1:50,000 DEM is the highest 
one, reaching 0.92, very close to the distribution in the real world. Com-
paring the statistical data with calculated results, the area of slope farmland 
derived from the DEM of 1:50,000 scale is similar to the statistical data 
(Figure 6), and the area of slope farmland derived from the DEM of 
1:10,000 scale is less precise than that derived from the DEM of 1:50,000 
scale; the spatial resolution of the DEM of 1:250,000 is too low to calcu-
late slope farmland. 
 

 
Figure 6. The ratio of slope farmland derived from different DEMs. 
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Table 3. The comparison of statistical data and slope farmland derived from 
DEMs. 

 < 2 2-6 6-15 15-25 > 25 correlation 
coefficient 

statistical data 8.82 9.73 16.21 36.19 29.04 1 
1:10,000 1.40 6.32 12.84 24.19 55.24 0.73 
1:50,000 2.90 6.03 16.82 33.62 40.64 0.92 
1:250,000 2.20 12.45 38.42 31.71 15.22 0.42 
 

5 Conclusion 

Results showed that the DEM with a scale of 1:50,000 (with a resolution 
of 25 m) was basically enough for extracting slope fields with the required 
precision when Landsat TM5 was used for land use classification in the 
large areas of slope farmland. Although the accuracy of slope extracting 
with the scale of 1:10,000 is higher than other scale DEMs, the detailed 
land appearance descriptions did not show obvious improvements in the 
slope field precision because of the special land use of the studied area, es-
pecially the effect of land use type on plantation layout (plantation focused 
on Loess Mao with small slopes and large areas). Furthermore, with the 
constraints of using the resolution of 30 m for the land use, DEMs with the 
scale of 1:10,000 could not show its advantage of high precision, and with 
increased redundancy and computing load was not appropriate for obtain-
ing slope farmland of large areas such as the Loess Plateau of northern of 
Shaanxi province. The DEM with a scale of 1:250,000 could not be used to 
extract slope fields effectively either because of its large generalization 
over the land layout of the studied area. 

Although the DEMs with the scale of 1:50,000 can satisfy the needs of 
slope farmland investigations of large areas, to obtain more precise slope 
farmland maps, the land use result must be detailed and higher spatial reso-
lution remote sensing images should be used to classify the land use types 
more precisely; for example, Quickbird images would be a good data 
source. If the resolution of the land use map can be improved to 5 m or 
better, higher DEM resolution is also needed, and in that case, the DEM 
with a scale of 1:10,000 will show its advantage of higher precision and 
more detailed features. On the other hand, it is feasible that DEMs with a 
scale of 1:10,000 could be used to improve the supervised classification. 
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The Impact of Neighbourhood Size on Terrain 
Derivatives and Digital Soil Mapping 

ZHU A-Xing, James E. BURT, Michael SMITH, WANG Rongxun 

Abstract 

Slope gradient, slope aspect, profile curvature, contour curvature, and 
other terrain derivatives are computed from digital elevation models 
(DEMs) over a neighbourhood (spatial extent). This chapter examines the 
combined effect of DEM resolution and neighbourhood size on computed 
terrain derivatives and its impact on digital soil mapping. We employed a 
widely used regression polynomial approach for computing terrain deriva-
tives over a user-specified neighbourhood size. The method first fits a least 
squares regression polynomial to produce a filtered (generalized) terrain 
surface over a user defined neighbourhood (window). Slope gradient, slope 
aspect, profile, and contour curvatures are then computed analytically from 
the polynomial. To examine the effects of resolution and neighbourhood, 
we computed terrain derivatives using various combinations of DEM reso-
lution and neighbourhood size and compared those values with corre-
sponding field observations in two Wisconsin watersheds. In addition, we 
assessed the effects of resolution and neighbourhood in the context of 
knowledge-based digital soil mapping by comparing soil class (series) pre-
dictions with observed soils. Our results show that a neighbourhood size of 
100 feet produces the closest agreement between observed and computed 
gradient values, and that DEM resolution has little impact on the agree-
ment. Both profile curvature and contour curvature are more sensitive to 
neighbourhood size than slope gradient, and sensitivity is much higher at 
small neighbourhood sizes than at large neighbourhood sizes. Because of 
the importance of terrain derivatives in the knowledge base, predictive ac-
curacy using a digital soil mapping approach varies strongly with 
neighbourhood size. In particular, prediction accuracy increases as the 
neighbourhood size increases, reaching a maximum at a neighbourhood of 
100 feet and then decreases with further increases in neighbourhood size. 
DEM resolution again does not seem to impact the accuracy of the soil 
map very much. This study concludes that, at least for knowledge-based 
soil mapping, DEM resolution is not as important as neighbourhood size in 
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computing the needed terrain derivatives. In other words, assuming the 
DEM resolution is sufficient to capture information at the optimum 
neighbourhood size, there is no predictive advantage gained by further in-
creasing DEM resolution. 
 
Keywords: slope gradient, DEM, SoLIM, digital soil mapping, 
neighbourhood size, DEM resolution. 

1 Introduction 

Terrain derivatives, such as slope gradient, slope aspect, profile curvature, 
and contour curvature computed from digital elevation models (DEM), are 
among the key inputs to many geographic analyses using geographic in-
formation systems (GIS). These terrain derivatives are computed over a 
neighbourhood (spatial extent) and are certainly impacted by the size of 
neighbourhood used. The most popular method for computing terrain 
characteristics is perhaps the 3 x 3 roving window method used in popular 
software such as ESRI ArcGIS and TAPES (Moore 1992). It computes ter-
rain attribute values over a 9 pixel square area with 3 pixels on each side; 
thus the spatial extent over which the values are computed is tied to the 
resolution of the DEM and changes as the resolution changes. As the reso-
lution increases, the neighbourhood size decreases. Thus, terrain attribute 
values derived using such methods will change when the DEM resolution 
changes. The effect of DEM resolution (as a surrogate to neighbourhood 
size) on the spatial pattern of terrain derivatives has been studied by many 
authors (Chang and Tsai 1991, Wolock and Price 1994, Zhang and Mont-
gomery 1994, Gao 1997, Goyal et al. 1998, Chaplot et al. 2000, Schoorl et 
al. 2000, Wilson et al. 2000, Thompson et al. 2001, McMaster 2002). 
These studies have generally concluded that as cell size increases, slope 
gradients tend to decrease, ranges in curvatures decrease, flow-path lengths 
tend to decrease and the accuracy of terrain attributes at particular loca-
tions tends to decrease. 

There is an obvious problem with tying neighbourhood size directly to 
DEM resolution (Hodgson 1995, Wood 1996). There is no physical proc-
ess based significance behind using a 3 x 3 window or any other particular 
number of cells for computing terrain attributes. For example, when the 
resolution of the DEM is 0.5 metre, there is no a priori reason for the slope 
gradient and aspect to be computed over a 1.5 by 1.5 metre area. Further-
more, when field natural scientists (such as soil scientists, geomorpholo-
gists and ecologists) are asked to define the slope gradient at a location for 



a particular phenomena, the slope gradient is often estimated over some 
characteristic distance, which the field scientist believes to be significant to 
the process under study, and in effect smoothes short-scale terrain com-
plexity. Thus, it may be a mistake to compute terrain attributes over a 
neighbourhood tied to DEM resolution because the neighbourhood used by 
domain experts for slope gradient may be very different from that of the 
DEM resolution. Wood (1996) proposed calculating terrain derivatives us-
ing a varying window size that can be changed based on scale of interest. 
In other words, for a given DEM resolution, various neighbourhood sizes 
can be used to compute terrain derivatives depending on the scale of inter-
est. Subsequently, several researchers have examined the effects of 
neighbourhood size on computed terrain derivatives and the application of 
varying neighbourhood size as a means of studying geomorphic features at 
multiple scales (Fisher et al. 2004, Schmidt and Hewitt 2004, Schmidt and 
Andrew 2005, Smith et al. 2006). 

The work reported here investigates two suppositions. First, we believe 
that when terrain derivatives are used in GIS-based analysis, one needs to 
match the neighbourhood size, not the DEM resolution, with the scale of 
the physical process or phenomenon of interest. For example, if one has a 
1-metre DEM, one should not necessarily compute derivatives on a metre 
scale. If the relevant physical processes are known to operate on a scale of 
100 metres, the optimum neighbourhood will be of that size, not 1 metre. 
Second, we expect that if the neighbourhood is set appropriately, similar 
terrain values will be obtained from DEMs of any resolution up to the 
neighbourhood size. Thus if the appropriate neighbourhood is 100 metres, 
one would hope that DEM resolutions of 1 m, 5 m, 10 m … 100 m would 
give approximately the same results. Both of these conjectures (an opti-
mum neighbourhood size and insensitivity to DEM resolution) are exam-
ined in what follows. Our goals are: (1) to examine the effect of 
neighbourhood size and DEM resolution on terrain derivatives computed 
from a DEM; and (2) to evaluate the impact of neighbourhood size on digi-
tal soil prediction as an example of an application that relies heavily on 
digital analysis of terrain. Section 2 describes the method used for comput-
ing the terrain derivatives, which is followed by the experimental design 
for our study. Section 4 describes the study area and the data sets used. 
Section 5 presents the results and discussion of these results. Section 6 
summarizes the findings of this study. 
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2 Methods 

For this study, we employed a least squares regression polynomial ap-
proach for computing terrain derivatives over a user-specified neighbour-
hood size as described in Wood (1996). The method first creates a least 
squares regression polynomial to produce a filtered (generalized) terrain 
surface over a user defined neighbourhood (window) (see Shary et al. 
(2002) and Schmidt et al. (2003) for discussions on polynomial methods). 
As is standard practice, a 2nd degree polynomial is used here (Evans 1980): 

z = rx2 + ty2 +  sxy + px + qy + u (1) 

The coefficients p,r,s …u are found by moving a window of user-
specified size across the DEM and minimizing the squared difference be-
tween the polynomial and the elevation values within this window (or 
neighbourhood area). This procedure is repeated for every elevation point, 
and thus z is considered a local polynomial. At every point, the polynomial 
is differentiated analytically to obtain slope, curvatures, and any other re-
quired values. This technique suppresses short-range variation at spatial 
scales smaller than the neighbourhood size, regardless of DEM resolution. 
Permitting the user to specify the neighbourhood size provides for control 
over the amount of short-scale variation in the analysis. In this implemen-
tation, the neighbourhood size is defined as the distance from the centre of 
the central pixel to the window edge (in some way it is like a radius, not a 
diameter). Other studies have shown that this method produces more accu-
rate terrain derivatives than other common methods (e.g. Florinsky 1998). 

3 Experimental Design 

To investigate the effect of neighbourhood size and DEM resolution on 
terrain derivatives, we computed the slope gradient, profile curvature, and 
contour curvature using the above method at different neighbourhood sizes 
(from 10 ft to 300 ft) for DEM resolutions of 10 ft, 20 ft, 30 ft, 40 ft and 50 
ft. Obviously, the DEM resolution defined the smallest possible 
neighbourhood for that DEM. Thus 20 ft neighbourhoods were possible 
only with DEM resolutions of 10 and 20 ft; the 30 ft and larger resolutions 
do not permit a neighbourhood of 20 ft. Field measurements of slope gra-
dient for 81 sites were made by local soil scientists as part of another 
study. The field measurements were compared to the computed slope gra-
dient values at these sites to examine the effect of neighbourhood size on 
computed terrain derivatives. 
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The computed terrain attributes (slope gradient, profile curvature, and 
contour curvature) were used together with other environmental variables 
related to soils (such as geology) as inputs to a knowledge-based digital 
soil mapping approach, the Soil Land Inference Model (SoLIM) (Zhu et al. 
2001), for soil mapping. For a given location, the SoLIM approach com-
bines information on soil environmental conditions (e.g. terrain deriva-
tives, remote sensing data, and geology information) for a location with the 
knowledge of soil-environment relationships to predict the soil conditions 
at the location. To examine the impact of neighbourhood size on digital 
soil mapping, we held constant both the knowledge-base and the non-
terrain data. We changed only neighbourhood size, which in turn gave 
varying terrain derivatives. Thus with each neighbourhood size for each 
DEM resolution, we obtain a version of the soil map using the SoLIM ap-
proach based on terrain that has been generalized at that neighbourhood 
size. For this exercise, we employed neighbourhood sizes ranging from 10 
ft to 180 ft for DEM resolutions of 10 ft, 15 ft, and 30 ft. Field soil samples 
were collected on a hillslope in Dane County, Wisconsin to assess the ac-
curacy of SoLIM-predicted soils under each neighbourhood size. In this 
way we obtained information about the impact of neighbourhood size on 
the accuracy of digital soil mapping. 

The current implementation of SoLIM requires knowledge of the soil-
environment relationships to be manually translated into a digital represen-
tation (Smith et al. 2006, Liu and Zhu accepted). The translated knowledge 
needs to be verified, which is achieved through subjective verification of 
preliminary inference results by soil scientists. If changes are suggested by 
soil scientists, the translated knowledge is revised based on their sugges-
tions. The purpose of this validation is to ensure that the knowledgebase 
used for prediction agrees with the scientists’ conception of soil-
environment relations. This process continues until the soil scientists are 
satisfied with the preliminary inference result. In this study, we used re-
sults from the 10 ft DEM with 10 ft neighbourhood size for verification. 
Although the field validation data set is not used in the verification proc-
ess, it is expected that predictions using the 10 ft DEM will be more accu-
rate than those based on other DEM resolutions. 

4 Study Area and Data 

The study was conducted at two sites for which field data were available. 
Both sites are located in Dane County, Wisconsin, USA (Figure 1). The 
sites are in the “Driftless Area” of Wisconsin. The Driftless Area is part of 
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Wisconsin that did not experience direct glacial till deposition during 
Laurentide Ice Sheet advances. The landscape of the Driftless Area is 
characterized by plateaus or erosional remnants of dolostone (the Galena 
Formation) overlying sandstone scarps (the St. Peter Formation), which 
together form a branching network of valleys and ridges (Clayton and At-
tig 1997). Elevations over these sites range from 250 m in the bottomland 
drainage-ways to about 350 m on the upland ridge tops. Slope gradient 
ranges from 0–1% for summits and bottomlands to near 25% on the back 
slopes. Watershed 58, about 12,000 acres, is undergoing a detailed valida-
tion test for soil survey at 1:24,000 scale. Ultimately, about 500 field 
measurements of slope gradient will be collected. At the time of this study, 
81 points were already available and form the basis for the analysis that 
follows. The slope gradients measured in this watershed were compared 
with the computed slope gradient values. A detailed soil survey (about 
1:12,000 scale) using the SoLIM approach was completed for the Thomp-
son Farm (about 160 acres) and soil information at 43 field sites was ob-
tained for validation. Unfortunately, the slope gradient values at these 43 
sites were not accurately measured. Thus, this site was used only for exam-
ining the impact of neighbourhood size on the accuracy of digital soil 
mapping. 
 

Thompson Farm Site

Dane County, Wisconsin, USADane County, Wisconsin, USA

Watershed 58 Site

Thompson Farm Site

Dane County, Wisconsin, USADane County, Wisconsin, USA

Watershed 58 Site

Thompson Farm SiteThompson Farm Site

Dane County, Wisconsin, USADane County, Wisconsin, USA

Watershed 58 SiteWatershed 58 Site

 
Figure 1. Locations of the study sites. 
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The 10 ft DEMs for both sites were derived from air photography of 
Dane County flown in 2000. The 15 ft DEM was created by resampling 
the 10 ft DEM using the nearest neighbour approach while the 20 ft, 40 ft 
and 50 ft DEMs were derived by resampling the 10 ft DEM through aver-
aging. The 30 ft DEM was derived from 1995 air photography of Dane 
County. The quality of the 30 ft DEM is much better than the 10 metre 
DEM produced by the U.S. Geological Survey owing to the addition of ex-
tra spot elevations in the DEM generation process. 

5 Results and Discussion 

5.1 Comparison with field observation 

In examining the effect of neighbourhood size on the computed terrain de-
rivatives, we compute the RMSE (root mean squared error) between the 
computed slope gradient values and the observed slope gradient values at 
the 81 sites for each neighbourhood size. We then plot the RMSE against 
the corresponding neighbourhood size for each DEM resolution as seen in 
Figure 2. Two important points can be made from this figure. First, the 
RMSE is smallest for a neighbourhood size between 100 ft and 110 ft. 
This suggests that in investigating soil properties and conducting soil sur-
vey in the Driftless area, soil scientists seem to use a neighbourhood size 
about 100 ft. This confirms our supposition that for a given application one 
should not blindly accept DEM resolution as the best choice for 
neighbourhood size. The optimum value can be quite different, as seen in 
the figure. The optimum value is no doubt application-specific. Table 1 
shows the ME (Mean Error) and RMSE for the slope gradient computed 
using ArcGIS (neighbourhood size tied to resolution) and for slope gradi-
ent computed using a neighbourhood size close to the optimum. It is 
clearly seen that fixed neighbourhood approaches (such as that used in Ar-
cGIS) for computing slope gradient over-estimate the slope gradient values 
for applications at 1:24,000 scale. 

We must emphasize that this comparison implies that physically mean-
ingful slope gradient values are scale-specific and are sensitive to 
neighbourhood size. We are not concluding that using a neighbourhood 
size based on resolution will always produce “wrong” slope gradient val-
ues, nor are we implying that the optimum neighbourhood is always 100 ft. 
Rather, we argue that tying neighbourhood size to DEM resolution cannot 
guarantee that computed slope gradients are optimum. In this example, for 
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soil mapping at 1:24,000 scale, the optimum value is about 100 ft over this 
area with moderate relief, but other applications at other scales might have 
very different optima. 

The second point is that the resolution of the DEM does not seem to 
have much impact on the RMSE for the resolutions examined. This could 
have significant implication for digital soil survey because this suggests 
that the resources used to obtain finer DEMs may not be cost-effective af-
ter achieving resolution able to resolve features at the optimum neighbour-
hood scale. For example, if processes occurring at scales smaller than 100 
ft do not affect the phenomenon of interest, there is no advantage in using 
a DEM with 10 ft, 20 ft or other similarly high resolution. 
 

 
Figure 2. RMSE between field measured slope gradient and the computed slope 

gradient at different neighbourhood size. 

Table 1. Comparison of fixed neighbourhood approach (ArcGIS) and the variable 
neighbourhood size approach. 

DEM Reso-
lution 10 feet 20 feet 30 feet 

Method ArcGIS Variable 
at 100 feet ArcGIS Variable at 

100 feet ArcGIS Variable at 
90 feet 

ME 0.94 0.075 0.923 0.041 0.864 0.197 
RMSE 3.422 2.726 3.188 2.764 3.28 2.739 
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5.2 Sensitivity to neighbourhood size 

To further examine the neighbourhood size sensitivity and to compare the 
sensitivity among different variables (slope gradient, profile curvature, 
contour curvature), we will use two concepts: “standardized magnitude” 
and “relative change”. The standardized magnitude concept measures indi-
vidual deviations from the mean using the ratio of the individual value to 
the mean. For example, the standardized magnitude for slope gradient at a 
given point for a given neighbourhood size is the ratio of the gradient 
value at that point for the current neighbourhood size over the mean of the 
slope gradient values at that point for all neighbourhood sizes. Values of 
standardized magnitude far from unity mean greater deviation from the 
mean. Because standardized magnitude is dimensionless, values for one 
terrain variable can be compared with those of other terrain variables, 
which provides a way to assess relative sensitivity of different terrain de-
rivatives to neighbourhood size. We must point out that standardized mag-
nitude may not be appropriate for locations where the mean value ap-
proaches zero. The “relative change” concept measures the difference in 
standardized magnitude between two neighbourhood sizes at a point. It 
therefore provides an alternative way to characterize the sensitivity across 
neighbourhood size. In other words, it allows us to identify neighbourhood 
sizes to which the terrain conditions are more or most sensitive. 

Figure 3 shows the standardized magnitudes for the three terrain vari-
ables across the neighbourhood sizes examined at two field points. This 
figure clearly shows that curvature measures are much more sensitive to 
neighbourhood size than slope gradient. At some neighbourhood sizes, the 
computed curvature values are a few times more than the overall mean 
while the computed gradient values are about the same as the overall 
mean. Although there is variability in sensitivity from location to location, 
the fact remains that curvature measures are more sensitive to neighbour-
hood size than slope gradient. 

Terrain variables are more sensitive to neighbourhood size at small 
neighbourhood sizes than at large neighbourhood sizes. This is seen in 
Figure 4, which shows the relative change across different neighbourhood 
sizes for the two field points. The figure has two important features. The 
first is that the sensitivity is much stronger at small neighbourhood sizes 
and generally decreases as neighbourhood size increases. The second is 
that relative change for the two curvature variables fluctuates much more 
than that for slope gradient across neighbourhood size. However, the gen-
eral pattern of sensitivity across neighbourhood size is that terrain vari-
ables are more sensitive to neighbourhood size when neighbourhood size 
is small and less sensitive when neighbourhood size is large. This makes 

Impact of Neighbourhood Size on Terrain Derivatives 



342 

the neighbourhood size selection for applications that require terrain in-
formation over small spatial scale (large map scale) much more critical. To 
obtain a good approximation of terrain information at a small spatial scale, 
one almost needs an exact match between the neighbourhood size used and 
the desired spatial scale. At large spatial scales, this exact match may not 
be necessary. 
 

 
Figure 3(a) 

 
Figure 3(b) 

Figure 3. Standardized magnitude across neighbourhood size (with DEM resolu-
tion fixed at 10 ft): (a) for Field Point 49; (b) for Field Point 105. 
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(a) 

 
(b) 

Figure 4. Relative change in standardized magnitude across neighbourhood size 
(with DEM resolution fixed at 10 ft): (a) Field Point 49; (b) Field Point 105. 

With a variable window approach, terrain variables are less sensitive to 
DEM resolution. Figure 5 shows the computed slope gradient and curva-
ture values at neighbourhood size about 150 ft across DEM resolution. As 
can be seen from Figure 5, the standardized magnitude is much closer to 
unity across all resolutions than what was observed with neighbourhood 
size (Figure 4). As before, we see that the deviation for the curvature vari-
ables is higher than for slope gradient. Another observation is that there is 
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seemingly no consistent trend in how the standardized magnitude changes 
with DEM resolution. This, along with the evidence seen in Figure 2, leads 
us to believe that when a varying window approach is used for computing 
terrain derivatives, DEM resolution does not play a major role as long as 
the resolution of the DEM is within the physically appropriate scale. 
 

 
Figure 5(a) 

 
Figure 5(b) 

Figure 5. Standardized magnitude values across DEM resolution (with 
neighbourhood size controlled around 150 ft): (a) Field Point 49; (b) Field Point 

105. 
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5.3 Impact on Digital Soil Mapping 

The relationship between the accuracy of digital soil predictions and 
neighbourhood size is shown in Figure 6. It is clear that neighbourhood 
size has profound impact on the accuracy of the soil map. The difference 
in accuracy between different neighbourhood sizes can be quite substan-
tial, with the accuracy at one neighbourhood size perhaps double that at 
another. It is important to note that the most accurate soil map is not ob-
tained at the smallest neighbourhood size. The accuracy peaks at the 
neighbourhood size around 100 feet. Note that the somewhat high accu-
racy for the 10 ft DEM at the 10 ft neighbourhood size is related to the 
verification process. Still, this accuracy is lower than that using a 100 ft 
neighbourhood size. The finding here further suggests that removing cer-
tain fine scale variations in the DEM is important for digital soil mapping 
because these fine scale details do not contribute to the differentiation of 
soil at the scale of interest to the soil scientists. This finding confirms what 
has been reported by Smith et al. (2006). 

The difference in accuracy among the different DEM resolutions is very 
small. This suggests that DEM resolution does not have significant impact 
on the accuracy of soil maps. This can be easily understood from what was 
discovered above. As shown in the slope gradient analysis, DEM resolu-
tion does not have much impact on the slope gradient value and it therefore 
cannot have significant impact on the accuracy of the soil map. A minor 
observation can be made about the pattern present in Figure 6. Although 
the DEM does not seem to have significant impact on the accuracy of the 
soil map, the coarse DEM seems to have higher accuracy than the finer 
DEM for neighbourhood sizes below the optimal neighbourhood size. The 
reason is that the coarse DEM smoothes out the fine details, which are not 
important to soil formation at the scale under study. 

6 Conclusions 

This study examines the effect of neighbourhood size on terrain deriva-
tives computed from DEMs and its impact on the accuracy of digital soil 
mapping. Although the study is conducted at two different sites with dif-
ferent foci, similar findings were obtained. First, slope gradient is less sen-
sitive to neighbourhood size than the two curvature variables. Second, ter-
rain derivatives are more sensitive to neighbourhood size when 
neighbourhood size is small and the sensitivity decreases as neighbour-
hood size increases. Third, terrain derivatives are less sensitive to DEM 
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Figure 6. Accuracy of digital soil mapping and neighbourhood size. 
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Abstract 

Digital elevation models (DEM) are one of the most important data 
sources for Land Use-Land Cover (LULC) and Predictive Vegetation 
Mapping (PVM). A number of indices are derived from DEMs and their 
use depends on the nature of the classification problem and the tool being 
employed. In some cases it is the practice to pre-classify these prior to 
modelling. This chapter examines the impact of doing this on the produc-
tion of a LULC classification, and on the production of a surface, or field, 
prediction of a single species. Secondly, the error in classification resulting 
from error in the original DEM is examined to give some comparison. We 
show that, contrary to widespread practice, leaving the input variables in 
an unprocessed form is clearly better than almost any of the ‘improve-
ments’ usually made. This applied to both classification of LULC and to 
the prediction of a surface, or field, representing a single species. As ex-
pected, forest type mapping is likely to be quite sensitive to some level of 
DEM error. We can see that the DEM error has an uneven impact on the 
different forest types. Importantly, when increasing the level of DEM er-
ror, we found a non-linear decrease in classification performance.  

1 Introduction 

1.1 Land use and land cover classification  

Land use and land cover classification (LULC) is a common practice. 
Land cover is a critical component of climate and global change models 
(Brown et al. 1993, Wilson and Henderson-Sellers 1985) and land cover 
changes may be as important as climate change when assessing total hu-
man biome impacts (Chapin et al. 2000). As a result, global land cover 
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data and databases have been developed (Defries and Townshend 1994, 
Skole 1994). Digital Elevation Models (DEMs) are a fundamental data 
source for land use and land cover classification, with DEM derived topog-
raphic indices often being used in conjunction with remotely sensed data. 
The numerous ways of extending point or line data using predictive model-
ling are reviewed in the comprehensive work by Guisan and Zimmerman 
(2000). Most use spatial estimates of physical environment variables, 
based on the assumption that the physical environment controls, at some 
level, land cover distributions. Many of these predictor variables are either 
elevation itself, or are derived from a DEM, including slope, aspect, net 
solar radiation, temperature, and precipitation (see Franklin (1995) for a 
listing of commonly used measures). 

These variables are modelled transformations, derived from data that 
have some degree of error. We know that this error will be propagated 
through any subsequent data development and modelling process such as 
predictive land cover classification and vegetation modelling (Goodchild 
1989, Richards 1993, Unwin 1995, Holmes et al. 2000, Van Niel et al. 
2004). However, the way in which these variables are transformed before 
inclusion in the modelling process also generates an error that is propa-
gated to the subsequent classification or prediction (Lees 1996). 

1.2 Aim 

In this chapter we look at both of the cases described above, using the 
same data set to give some comparison of the effects. This study tries to 
answer the questions: (1) while categorizing input data may reduce error in 
some cases, what is the overall impact of this process on the models? (2) 
How sensitive is the same land cover classification to the error and uncer-
tainty of input data? 

We looked at three things: 
1. The impact of transforming or categorizing a single DEM-derived 

variable on a decision tree model of forest types is investigated. 
2. The impact of categorizing a DEM-derived variable for modelling 

a single forest tree species using GAM and GLM analysis is ex-
plored. 

3. The impact of varying degrees of DEM error on a decision tree 
model of forest types. 
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2 Analyses 

For all analyses, the DEM used was part of the Kioloa GLCTS Pathfinder 
Site data set (Lees 1999). This is a complex land cover data set of 15.75 
km by 15.75 km, with 275,000 pixels (Lees and Ritman 1991). The DEM 
was developed by digitizing elevation contours (10 m interval), stream 
lines and spot heights from 1:25,000 scale topographic maps of the region 
then interpolating the data using IDW. The resolution is 30 m. Van Niel et 
al. (2004) determined that the level of error in the DEM was comparable to 
DEM error levels found in USGS and British Ordnance Survey DEMs. 

The classification scheme consists of seven forest types and two other 
land cover classes (cleared and ocean) (Table 1). Details of the data set and 
study location are given in Lees and Ritman (1991) and Huang and Lees 
(2004; 2005). 

2.1 Impact of categorical data on categorical outcomes 

The first analysis examines the impact on a forest type decision tree model 
of transforming or categorizing predictor variables developed from a 
DEM. The predictor variable chosen was Flow Length, a measure gener-
ally used as a surrogate for soil wetness. Each test of the model used varia-
tions in this single input variable along with a well-tried suite of compan-
ion variables; TM Bands 2, 4 & 7, Elevation, Geology, Slope, Aspect, and 
Flow Accumulation. Flow Length is roughly analogous to ‘position on 
slope’, and Flow Accumulation is roughly analogous to ‘catchment’; both 
have been estimated using the D8 algorithm implemented in ArcMap 9.0. 

Table 1. Land use class types and frequencies in the base forest type data set. 

Class Forest type Cell count 
1 Dry Sclerophyll 76,315 
2 E. botryoides 7,375 
3 Lower slope wet forest 6,588 
4 Wet E. maculata 46,364 
5 Dry E. maculata 15,501 
6 Rainforest Ecotone 11,568 
7 Rainforest 14,063 
8 Cleared land 20,213 
9 Ocean 77,638 

 
The histogram of Flow Length has large numbers of cells at low wetness 

values with low numbers of cells at high values. This is usually interpreted 
as a transition from hillslope drainage to in-channel drainage. Intuitively, it 
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would seem sensible to compress this long tail of high values as it would 
appear likely to have little impact on our analysis, possibly even improving 
our discrimination of the hillslope values. In this case, a histogram stretch 
would be the normal procedure before grey scaling the data for analysis 
with values assumed to be ‘in-channel’ saturated at the point at which the 
histogram levels. 

The forest types were then modelled using a decision tree with the pre-
dictor variables described above along with Flow Length: (1) without 
modification, (2) stretched and saturated at 1000 m, (3) stretched and satu-
rated at 300 m, (4) split into six categories defined using equal intervals, 
and (5) with a histogram stretch and then split into six categories defined 
using equal intervals. Table 2 shows that all of the changes to Flow Length 
described above decrease the accuracy of the models. 
Table 2. Using the Lees & Ritman (1991) LX930 dataset in a DTA with field data 
automatically broken into 10 intervals. Correlates DEM and FLOWACC are pre-

sent. Training and test data sets held constant. Training ‘n’ = 1000, Test ‘n’ = 600. 
Stopping ‘n’ = 40. The effect of stretching the data can be seen to degrade the ac-
curacy from 81.8% to 72.3%. Using categorical descriptions of ‘position on slope’ 

has a similar negative impact. 

Degree of pre-processing Accuracy (%) 
No modification 81.8 
Flowlength saturated at 1,000 m 72.3 
Flowlength saturated at 300 m 72.3 
Flowlength as 6 classes 73.3 
Flowlength (stretched) as 6 classes 73.0 

 
This demonstrates that the form in which the DEM derivatives are pre-

sented to the LULC classification model is very important to model out-
comes, and that further processing of the predictor variable in every case 
reduced the model accuracy.   

2.2 Impact of categorical data on field models 

The question arising from the previous test is, of course, is this effect algo-
rithm specific? Would we find a similar effect using GAM and GLM mod-
els of a single tree species that produces a field output (field surface)? 

Again, Flow Length is categorized and tested against the field data to 
compare modelling outcomes. In this analysis, we model the pres-
ence/absence response of a single tree species (Acmena smithii) in the 
study area using a generalized additive model (GAM). There is a strong  
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The categories were: (1) Flow Length without modification, as in the 
control used in the first test, (2) split into three categories, (3) split into 
five categories, and (4) split into seven categories. The categories were de-
fined using equal intervals as before, natural breaks and quartiles 
(Zimmermann 2000). In GAMs, classified data should be modelled as fac-
tors because it is not continuous. However, in the literature, indices in 
GAMs are often modelled with smoothing splines so, despite our reserva-
tions about the procedure, we ran both to show the differences. Models 
were built using all of these alternatives to demonstrate the effect of the 
variable classification procedures. 

70% of the data were used for the model development and a randomly 
selected 30% were reserved for testing. Analyses were conducted in SPlus. 

The results (Table 3) once again show that there is a decreasing effec-
tiveness of the variable with increasing generalization. When modelled ap-
propriately (as factors rather than as splines), accuracy stays the same or 
degrades. Despite one classified dataset (NB 7) having a better percentage 
correctly classified (%CC) and area under the curve (AUC), it is clear that 
the best result is with the variable unclassified. 

These results make sense when one considers that, on topography with a 
typical length of slope of 300 metres for example, the ‘crest’ might occupy 
~100 metres, the ‘upper slope’ ~70 metres , the ‘mid-slope’ ~70 metres, 
the ‘lower slope’ ~70 metres, and the ‘flat’ ~100 metres. The actual transi-
tion between forest types here can be over a distance of less than 10 metres 
and so the ‘real’ uncertainty is magnified seven fold by the use of a cate-
gorical hill slope position. Clearly, the solution is to simply use downhill 
distance in metres. 

2.3 Field data for categorical outputs 

Finally, we conducted a sensitivity analysis to see how the degree of error 
in the original DEM data impacts the results. We used the C4.5 decision 
tree algorithm (Quinlan 1993). In the classification process, 80% of sam-
ples were used for training. This tree was used for all the sensitivity analy-
ses in this study. The remaining 20% of samples were used for testing 
classification accuracy of the base data set and the results of sensitivity 
analyses. The overall accuracy of the base data set is 0.651. 
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relationship between topographic position and Acmena smithii, a Gond-
wanan relic occurring in gullies. 
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Table 3. Examining the impact of categorizing the DEM-derived predictor vari-
able topographic position on GAM and GLM models of a single tree species. 

Again, the variable in question is subjected to different categorization processes, 
and tested against the field data to compare modelling outcomes. Four tests were 
carried out. Column three shows the change in model deviation, column four is 

chi-squared, column five is Kappa, column six is the percentage correctly classi-
fied and column seven is the area under the curve. We should emphasize that it is 
bad practice to process classified data in a spline, but as this appears in the litera-

ture we show it. 

Model Change in model 
Deviance P(Chi) p-kappa % Correctly 

Classified AUC 

Unclassified 94.9 0.00001 0.615 87.1 0.869 
Equal interval 7 87.8 0.00001 0.458 76.1 0.808 
Equal interval 5 79.1 0.78050 0.553 83.9 0.782 
Natural breaks 7 77.4 0.00576 0.691 90.3 0.897 
Natural breaks 5 85.0 0.00074 0.558 85.8 0.811 
Quantile 7 94.9 0.00001 0.553 83.9 0.842 

Smoothing  
spline 

Quantile 5 99.4 0.00001 0.484 79.4 0.801 
Equal interval 7 87.8 NA 0.458 76.1 0.808 
Equal interval 5 79.2 NA 0.553 83.9 0.782 
Natural breaks 7 78.6 NA 0.615 87.1 0.821 
Natural breaks 5 85.1 NA 0.558 85.8 0.811 
Natural breaks 3 76.5 NA 0.536 82.6 0.775 
Quantile 7 96.5 NA 0.553 83.9 0.842 
Quantile 5 99.4 NA 0.484 79.4 0.801 

As factors 

Quantile 3 79.4 NA 0.372 70.3 0.738 

 
In this study, we assumed the DEM error is stochastic in nature but with 

a spatially autocorrelated distribution (Van Niel et al. 2004). Also, the 
DEM error was assumed to be directly associated with (therefore a small 
percentage of) the nominal elevation value. For an error model, a Monte 
Carlo simulation approach was used as it is more readily applied to the 
C4.5 decision tree classifier than mathematical methods such as the Taylor 
series (e.g. Crosetto et al. 2000, Crosetto and Tarantola 2001, Canters et 
al. 2002, Davis & Keller 1997). It is not possible to build a mathematical 
error model for a land cover classification process that is not continuously 
linearly differentiable so we chose the one-at-a-time design (Hamby 1994, 
Crosetto et al. 2000). The one-at-a-time approach is not only simple but 
also very appropriate for this study. 

The approach used in a Monte Carlo analysis is to perturb one or more 
of the input datasets at some chosen level of random error to generate a 
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different realization of the original dataset. We used 1000 iterations to en-
sure convergence on a stable solution (Heuvelink 1998), while random 
values were generated using the Mersenne Twister pseudo-random number 
generator, as recommended by Van Niel and Laffan (2003). 

The sensitivity analysis in this study was conducted by perturbing the 
DEM using five levels of spatially autocorrelated random error. The five 
levels are ±2%, ±4%, ±6%, ±8% and ±10% of individual elevation values. 
The general Monte Carlo procedure used involves the following steps. 

1. Extract the elevation values of 1000 randomly selected pixels from 
the DEM data (this is an average spacing of approximately 17 cells 
for this data set). 

2. Randomly generate error values for the 1000 selected pixels, cal-
culated as a percentage of each elevation value. The percentage is 
within the chosen error level (e.g. ±2%).  

3. Generate a spatially autocorrelated error surface from the 1000 
pixels using Kriging interpolation.  

4. Generate a perturbed realization of the DEM by adding the error 
surface to the original DEM.  

5. Generate derivative data sets (slope and aspect) from the perturbed 
DEM.  

6. Generate a perturbed forest type map using the previously trained 
C4.5 decision tree with the perturbed DEM, slope and aspect, and 
the original geology and Landsat datasets. 

Three criteria were used to evaluate the results. We first assessed the 
overall test accuracy difference between each of the 1000 forest type maps 
and the base forest type map (the accuracy criterion), and secondly we as-
sessed the number of pixels in the perturbed classification that changed 
their classes when compared to the base forest type map (the pixels 
changed criterion). Thirdly, a spatial assessment of the change in pixels 
was also generated by calculating the frequency with which each pixel 
changed across all iterations for each error level. To assess the conver-
gence on a stable solution, the mean and standard deviation of the accuracy 
criterion were assessed as the number of iterations increased. 

Figure 1 and Table 4 clearly indicate the magnitude of the mean overall 
accuracy reduction and that its standard deviation increases with increasing 
error levels. However, the effect is not linear and becomes more prominent 
when the uncertainty level increases. Of note, the convergence line of the 
uncertainty level of ±10% is clearly separate from those of the other four 
uncertainty levels (Figure 1A and Figure 2). The range of the mean differ-
ences over all error levels is less than 0.01. 

Figure 3 and Table 5 show the proportion of pixels that change their ini-
tial class assignments because of the errors. As expected, the magnitude of 
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the mean number of pixels and its standard deviation increases with in-
creasing error levels, although the mean change is close to 10% for each 
error level. 

Table 4. Summarized results of the sensitivity analyses. 

DEM Error Level ±2% ±4% ±6% ±8% ±10% 
Mean difference of overall test 
accuracy -0.0263 -0.0265 -0.0268 -0.027 -0.0281 

STD of overall test accuracy dif-
ference 0.0046 0.0053 0.0061 0.0067 0.0071 

Mean number of pixels changed 26925 27016 27414 28038 28807 
STD number of pixels changed 371 368 403 461 556 
 

 
(A) 

 
(B) 

Figure 1. Convergence of the sensitivity analysis for the test accuracy criterion 
over the 1000 iterations. (A) Mean difference, (B) STD. 
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As for the accuracy criterion, the effect is not linear, and becomes more 
prominent when the uncertainty level increases. The convergence lines in 
Figure 1A and box plots in Figure 2 show that the uncertainty levels of 
±2% and ±4% are very similar, but that there is an increasing difference as 
the uncertainty level increases to ±10%. 

 
Figure 2. Boxplots for the accuracy criterion. 

 
Figure 3. Boxplots for the pixels changed criterion. 
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While the impact of random DEM error on the results of forest type 
mapping is not surprising, we do now have an assessment of the extent to 
which this occurs. For example, the DEM error we used caused approxi-
mately 10% of all pixels to change their initial class assignment in each 
perturbed classification. Additionally, for the ±10% level of error, 36% of 
all pixels changed at least once across all perturbations, 16% changed 100 
or more times, and 13% changed 200 or more times (Table 5). A spatial 
assessment of the pixel changes indicates that their distribution is primarily 
within the forest classes (Figure 4), for which non-parametric classifiers 
like decision trees are most needed. 
 

 
Figure 4. Spatial assessment of pixels changed with the ±10% DEM uncertainty 

level. 

3 Discussion  

Error is generated through the models both by the way the elevation data is 
presented and by the propagation of error in the elevation data itself. The 
nature of error propagation in an analysis depends both on the primary data 
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set error and on the type of analysis employed. We have shown how a sin-
gle variable—topographic position—can be a source of error depending 
upon the way it is presented to the model. 

Table 5. Number of class changes for cells in each land cover class when using 
the ±10% DEM uncertainty level, summarized by class. 

Class Min Max Mean STD 
Cells 

changed 
once (%) 

Cells changed 
>100 times 

(%) 

Cells changed 
>200 times 

(%) 
1 0 1,000 203 346 67.0 30.4 24.4 
2 0 1,000 566 417 89.7 69.1 65.1 
3 0 1,000 348 442 63.1 42.3 39.0 
4 0 1,000 36 149 34.6 6.8 4.7 
5 0 1,000 108 257 55.9 18.8 14.6 
6 0 1,000 167 315 50.7 26.6 21.6 
7 0 1,000 74 167 41.7 19.0 13.4 
8 0 867 7 60 3.9 1.7 1.3 
9 0 542 5 50 1.8 1.1 1.0 

 
The use of categorical labels for phenomena with monotonically varying 

characteristics is an obstacle to both classification and (machine) learning. 
A little thought shows that such a mismatch between data model and data 
structure is clearly a potential source of error. For a more obvious exam-
ple, the relationships between North, South, East and West are not inher-
ently apparent to a machine learning system or classifier. However, re-
coding the directions as degrees makes the relationships clear. It also 
allows intermediate values to be fitted into the schema. This is one of the 
considerable advantages that the ratio and interval data types have over the 
nominal data type in learning systems. However, merely reclassing nomi-
nal data to ratio or interval data is not a solution. 

The nominal data type tends to be associated with the entity data model. 
This often means that real spatial variation within the bounds of the entity 
has been suppressed in order to simplify the representation. Reclassing the 
nominal label to a ratio value using some external source of knowledge 
cannot recover the suppressed variation. The solution to this starts in the 
field. If field data collection procedures allow the observer to subjectively 
classify the data, prior to recording it, everything that follows is degraded 
as a result. If instead of, say, recording the distance down-slope in metres 
and the local slope in degrees, the field data collector recorded the position 
as ‘mid-slope’, and the slope as ‘moderately inclined’, the field notes could 
be deciphered using Speight (1984) as being located ‘not adjacent above a 
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flat or depression’ and ‘not adjacent below a crest or flat’, and between 
5o45' and 18o slope. However, the degree of uncertainty that has been in-
troduced already is significant. Certainly, treating these as fuzzy values in 
later analyses would help, but this chapter suggests that avoiding the crea-
tion of uncertainty is probably better. 

Decision tree classifiers claim to be more error tolerant than traditional 
statistical models in classification (Quinlan 1986). Nevertheless, the results 
of the sensitivity analysis indicate that the decision tree forest type map-
ping is quite sensitive to DEM error. With as small as a ±2% DEM error 
level, the overall test accuracy was reduced by more than 2%. More sig-
nificantly, the same uncertainty level has caused nearly 10% of the study 
area to change its initial class assignment. The forest type mapping became 
more sensitive with the increase of the DEM uncertainty level, and the ef-
fect is not linear. The pixels changed criterion and the accuracy criterion 
have different implications for critical uncertainty levels. However, the ac-
curacy criterion is not as reliable as the pixels changed criterion, as it is 
based on only a limited number of test samples dispersed across the study 
area. The assessment of changing class assignment indicates that most of 
the pixel changes occurred within particular forest classes. This confirmed 
the findings of Huang and Lees (2004) that Forest type 2 and Forest type 3 
are more difficult to classify in this study site. 

4 Conclusions 

From the above analyses of the results, we can derive the following gen-
eral conclusions. Firstly, contrary to widespread practice, leaving the DEM 
derivatives input to a model in an unclassified form was clearly better than 
almost any of the ‘improvements’ made. This applied to both classification 
of LULC and to the prediction of a surface, or field, representing a single 
species. This is an important message. 

Secondly, as expected, forest type mapping is likely to be quite sensitive 
to some level of DEM error. We can see that the DEM error has an uneven 
impact on the different forest types. However, when increasing the level of 
DEM error, we can expect to see a non-linear decrease in classification 
performance. 
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Abstract 

In the past few decades, there have been proposals suggesting that hidden 
global linear (helical) structures exist, which are tectonically and topog-
raphically expressed. In this study, this hypothesis was checked using digi-
tal terrain modelling. The study was based on a 30 arc-minute gridded 
global digital elevation model. Eighteen topographic variables were for the 
first time calculated and mapped for the entire surface of the Earth. Digital 
terrain analysis provided support for the existence of global lineaments: on 
maps of specific catchment area, it was possible to detect five mutually 
symmetrical pairs of helical structures encircling the Earth from pole to 
pole. The structures are topographically expressed by patterns of the global 
ridge network. They are apparently associated with traces of the torsional 
deformation of the planet: two double helices are in reasonable agreement 
with theoretically predicted traces of shear fractures, while another two 
double helices are in reasonable agreement with ideal traces of cleavage 
cracks. Geological phenomena observed along the structures are discussed 
(i.e. fracturing, faults, crystal, and ore deposits). It is probable that double 
helices are relict structures similar to a planetary network of helical linea-
ments on Venus. 
 
Keywords: tectonics, geological structure, catchment area, helix, planet. 

1 Introduction 

Lineaments are commonly recognized as linear surface manifestations of 
geological features of various origin, age, depth, and size (Hobbs 1904, 
O’Leary et al. 1976, Makarov 1981). They are usually associated with 
fracture zones, faults, folds, other linear features, and their sequences. 
Lineaments, as a rule, are topographically expressed, and can be observed 
on maps and remotely sensed images at a wide range of scales. At a re-
gional scale, one can treat lineaments geometrically as planar straight 
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lines. At continental and global scales, they should be considered as spatial 
curves. 

Much attention has been paid to planetary systems of lineaments. There 
have been three groups of investigations: (a) detection of regularities in the 
global distribution and direction of lineaments by analysing physiographic 
and geological maps and then developing models for the regularities ob-
served (Chebanenko 1963, Moody 1966, Katterfeld and Charushin 1973, 
Besprozvanny et al. 1994); (b) development of a physical-mathematical 
model of a global tectonic process causing an ideal planetary network of 
lineaments and then comparison of the ideal and actual lineament networks 
(Vening Meinesz 1947, Dolitsky and Kiyko 1963, Chebanenko and Fe-
dorin 1983); and (c) laboratory simulation of a global lineament network 
using rotatable spheres (Knetsch 1965, Cherednichenko et al. 1966). The 
origin of global lineament systems was usually associated with rotation-
derived forces. 

Rance (1968) developed a physical-mathematical model of the torsional 
deformation of a sphere. The torsion was attributed to an action of possible 
mantle convection currents on the crust. According to the model, there are 
two systems of traces of torsional failure surfaces on the surface of the 
sphere: shear fractures and cleavage cracks (Rance 1967). Geometrically, 
traces of torsional deformation constitute two systems of double helices 
encircling the sphere from pole to pole (Figure 1a). The traces vary in in-
clination at the equator: pairs of mutually symmetrical helices tracing 
shear fractures are inclined at 15° to 18° and 165° to 162°, and other pairs 
of helices tracing cleavage cracks are inclined at 56° to 62° and 124° to 
118°. A search for actual global helical tectonic features resulted in the de-
tection of several relatively small lineaments referring to faults, trenches, 
ridges, fracture zones, and seamount chains in basins of the Pacific and In-
dian Oceans (Rance 1967, Rance 1969). 

O’Driscoll (1980) detected two global topographically and tectonically 
expressed double helical zones by a visual analysis of physiographic maps. 
The zones had the same inclination at the equator: about 32° and 160° 
(Figure 1b). O’Driscoll believed that these are fundamental structural belts 
governing the global deformation network and the planetary evolution. 
Volkov (1995) reported six global double helical structures also detected 
by a visual analysis of physiographic maps. At the equator, three of them 
were inclined at about 12° and 168°, and the other three structures were in-
clined at about 22° and 158° (Figure 1c). Volkov presumed that these are 
traces of tidal effects within the Earth-Moon resonance system of past 
ages. 
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Figure 1. Global helices. (a) Theoretical traces of torsional deformation (Rance 

1967): shear fractures (black) and cleavage cracks (grey). (b) Axes of double heli-
cal zones (O’Driscoll 1980). (c) Six double helices (Volkov 1995): lines of differ-
ent style show different structures. The Mercator projection was originally used. 

The Plate Carrée projection is used here. 

Although much attention has been paid to global lineaments, their exis-
tence is still questionable. This is because of (1) the qualitative character of 
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topographic, physiographic, and geological maps analysed in previous 
works; (2) inaccurate presentation of seafloor bathymetry on those maps 
produced before reasonably accurate bathymetric data became available; 
(3) impossibility of considering all natural conditions in a mathematical 
model; (4) obvious differences between the Earth’s rotation and its labora-
tory simulation; and (5) a basic conflict between the plate tectonic theory 
and the possibility of the existence of global topographic and tectonic 
structures. 

Technical flaws can be obviated using quantitative descriptions of 
global topography, a digital elevation model (DEM), and methods of digi-
tal terrain modelling (Moore et al. 1991, Florinsky 1998a). Topography, 
resulting from the interaction of endogenous and exogenous geophysical 
processes of different spatial and temporal scales, carries information on 
both surface processes and tectonic features. Thus, if global helical struc-
tures really exist, there is a good chance that they are manifested in relief. 

DEMs have been used to detect lineaments at regional scales 
(Schowengerdt and Glass 1983, Florinsky 1996, Chorowicz et al. 1999) 
and continental scales (Moore and Simpson 1983, Florinsky 2005). Al-
though some phenomena have been modelled and explored with DEMs at 
the global scale, such as mantle convection (Cazenave et al. 1989), the 
Earth’s crust (Mooney et al. 1998), hydrological processes (Coe 1998, 
Renssen and Knoop 2000), and statistical characteristics of relief 
(McClean and Evans 2000, Vörösmarty et al. 2000, Kazanskii 2005), 
DEMs have not been used to study global lineaments. In this chapter, hid-
den, topographically expressed global lineaments are detected and inter-
preted using methods of digital terrain modelling. 

2 Materials and Methods 

The study was based on a 30 arc-minute gridded global DEM assembled 
from several sources. Elevations of the land topography were derived from 
GLOBE, the 30 arc-second gridded global DEM (GLOBE Task Team 
1999). Most of the seafloor topography was taken from ETOPO2, the 2 
arc-minute gridded global DEM (U.S. Department of Commerce 2001). 
Bathymetry of the Antarctic Continental Shelf, Caspian Sea, and some 
large lakes was digitised using topographic maps. The DEM consisted of 
721 columns by 361 rows. For Antarctica and Greenland, GLOBE in-
cludes elevations of ice surfaces rather than subglacial topography (Hast-
ings and Dunbar 1998). These areas were included in the DEM to retain a 
united configuration of data. 
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Global DEMs include high frequency noise (Coe 1998, Hastings and 
Dunbar 1998, Arabelos 2000) leading to the derivation of useless, noisy 
digital models and unreadable maps of secondary topographic variables 
(Florinsky 2002). The problem can be partially resolved by DEM smooth-
ing. To denoise the DEM, one, two, and three iterations of smoothing were 
applied to the DEM using a 3 × 3 kernel with linear inverse distance 
weights. 

This study was the first application of digital terrain modelling to reveal 
lineaments at the global scale. Topographic attributes a priori ‘effective’ 
for this purpose were unknown. It was reasonable to use a representative 
set of variables. DTMs of the following local topographic attributes were 
derived from the smoothed DEMs: twelve curvatures (i.e. horizontal, ver-
tical, accumulation, difference, ring, minimal, maximal, mean, Gaussian, 
unsphericity, horizontal excess, and vertical excess curvatures), slope 
steepness, slope aspect, rotor, and a model of accumulation zones. DTMs 
of two regional topographic variables were derived from the smoothed 
DEMs: specific catchment area and specific dispersive area. Definitions, 
formulae, and interpretations of the variables can be found elsewhere 
(Shary et al. 2002). Local variables were calculated by the method de-
signed for a spheroidal trapezoidal grid (Florinsky 1998b). Regional vari-
ables were derived by a single flow direction algorithm including prelimi-
nary filling of sinks (Martz and de Jong 1988) adapted to a spheroidal 
trapezoidal grid. 

The parameters of the Krassovsky ellipsoid, as well as formulae for 
lengths of meridian and parallel arcs and area of a spheroidal trapezium 
(Morozov 1979), were employed to calculate changing sizes and area of a 
spheroidal trapezoidal moving window (Florinsky 1998b) during the DEM 
smoothing and the derivation of topographic variables. The DEM was 
processed as a virtually closed spheroidal matrix of elevation values. As a 
result, there was not the usual loss of border columns and rows due to the 
application of moving windows. All DTMs produced had a resolution of 
30 arc-minutes, and consisted of 721 columns by 361 rows. 

To gain a better representation and understanding of global patterns of 
topographic attributes (Figure 2), their values were transformed as follows 
(Shary et al. 2002): 

)101ln(sign' TTT m , (1) 

where T is an attribute, m = 0 for slope steepness, aspect, and regional 
variables, m = 16 for accumulation, ring, and Gaussian curvatures, and m = 
9 for other variables. Specific catchment and dispersive areas were also 
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mapped classifying their values into two levels (Figure 3). The Plate 
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Maps of topographic variables were visually examined in detail. Atten-
tion was paid to lineaments running over the entire globe or a hemisphere. 
Contrary to many lineaments of regional and continental scales, global 
lineaments are not manifested as uninterrupted linear patterns of the map 
image or sequences of such lines. A global lineament may be visually de-
tected due to traits of the image texture strung out along some direction 
along a line running over the Earth (Figure 4). Structures detected were 
mapped using the Plate Carrée projection for the entire Earth, and polar 
stereographic projections for the Northern and Southern hemispheres (Fig-
ure 5) with ArcView GIS 3.0 (© ESRI, 1992–1996). 
 

 
Figure 2 (a-b). Global maps of topographic variables derived from the 3-times 

smoothed DEM. (a) Horizontal curvature. (b) Vertical curvature. 

 

Carrée projection was used to map topographic variables. DTM treatment 
was accomplished with LandLord 4.0 (Florinsky et al. 1995). 
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Figure 2 (c-d). Global maps of topographic variables derived from the 3-times 

smoothed DEM. (c) Minimal curvature. (d) Maximal curvature. 

3 Results and Discussion 

Global maps of topographic variables represent peculiarities of the Earth’s 
mega-relief in different ways, according to the physical and mathematical 
sense of a particular variable. For example, horizontal curvature (Figure 
2a) delineates areas of flow divergence and convergence (positive and 
negative values, respectively. These areas correspond to spurs of valleys 
and ridges (dark and light coloured patterns of the map image, respec-
tively), which form so-called flow structures. At this generalization level, 
flow structures are most pronounced in ocean basins. Vertical curvature 
(Figure 2b) is a measure of relative acceleration and deceleration of flows 
(positive and negative values, respectively). Among other features, the 
map of vertical curvature shows ‘mega-scarps’, such as edges of continents 
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and mountains. Low negative values of minimal curvature delineate 
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High positive values of maximal curvature show ridges, while negative 
values show ‘mega-depressions’ (Figure 2d). Catchment area measures an 
upslope area, which is potentially drained through a given point on the 
land surface. At the global scale, low values of specific catchment area 
(Figure 2e) delineate land and oceanic ridges as black lines (e.g. the An-
des, Alps, mid-ocean ridges), while its high values show land and oceanic 
valleys as white lines and depressions as light coloured areas (e.g. the 
Mediterranean Sea, Gulf of Mexico, Angola Basin). Dispersive area meas-
ures a downslope area, which may be potentially exposed by flows passing 
through a given point on the land surface. At this generalization level, high 
values of specific dispersive area (Figure 2f) delineate mountain systems 
and highlands as light coloured areas (e.g. the Himalayas, Urals, Ethiopian 
Highlands) as well as land and oceanic ridges as white lines. 
 

 
Figure 2 (e-f). Global maps of topographic variables derived from the 3-times 

smoothed DEM. (e) Specific catchment area. (f) Specific dispersive area. 

valleys and troughs, while positive values delineate ‘mega-hills’ (Figure 2c). 
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Figure 3. Global maps of catchment area classified into two levels. (a) 1-time 

smoothing. (b) 2-times smoothing. (c) 3-times smoothing. 

Maps of specific catchment area with values classified into two levels 
(Figure 3) were best suited to detect global lineaments. These maps display 
the ridge network of the planet. The greater the number of DEM smooth-
ing, the more generalized picture of the network is mapped. Analysing 
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these maps (Figure 4), it was possible to detect five mutually symmetrical 
pairs of global lineaments, viz. five double helices encircling the Earth 
from pole to pole (Figure 5). The structures revealed are helical zones 
rather than simply lines. Each double helix is named after the area(s) of in-
tersection(s) of its arms (Table 1). Arms running clockwise upward and 
counter-clockwise upward (dextral and sinistral helices) are called right 
and left arms, respectively. Each helical zone transgresses plate boundaries 
and regions dissimilar in respect to their tectonic origin, rock composition, 
and age. 
 

 
Figure 4. Visual detection of global helical structures on the three-fold map of 

specific catchment area derived from the 2-times smoothed DEM. Ten pairs of ar-
rows show proposed positions of ten helical arms. Structures are indicated by la-
bels: C = Caucasus-Clipperton, B = Biscay-Santa Cruz, M = Marcus, D = Dakar, 

and P = Palawan. Subscripts: r = right arm, l = left arm. 

The global lineaments revealed cannot be artefacts due to DEM errors, 
the DEM treatment, or the DEM grid geometry (Florinsky 2005). First, 
noise and errors usually have a random distribution in DEMs. Second, 
smoothing and derivation of topographic variables were carried out using 
local filters (n × n moving windows). Third, the grid geometry may am-
plify its own preferential directions: orthogonal (north-south, east-west) 
and diagonal (northeast-southwest, northwest-southeast). However, the 
structures detected have (a) the global character relative to the DEM; and 
(b) directions distinct from orthogonal and diagonal ones. The subjective 
character of a visual analysis remains the only cause of possible artefacts. 

Notice that some visually recognizable artefacts are typical for Polar 
Regions on all maps produced (Figures 2 and 3). They were caused by too 
low accuracy of initial cartographic sources used to compile the related 
portions of ETOPO2 and GLOBO. There are also computational artefacts 
on maps of specific catchment and dispersive areas, which are manifested 
as straight parallel lines located predominantly in the Polar Regions (Fig-
ure 2e, f). They are well known artefacts of single flow direction algo-
rithms common for flat slopes. However, the artefacts did not influence the 
detection of global helical structures since the artefacts are situated within 
limited zones of the maps. 
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Table 1. Parameters of the global topographic helices. 

Left arm Right arm 

Structure Lengths 
(km) 

Inclination 
at the equa-

tor (°) 

Lengths 
(km) 

Inclination 
at the 

equator (°)

Geograph-ical 
coordinates of 

the arm intersec-
tion(s) 

Caucasus-
Clipperton 55,800 167.5 31,500 12.5 46.4°N, 44.81°E; 

5.9°N, 134.7°W 
Biscay-
Santa Cruz 39,600 162.2 29,800 17.5 44.4°N, 7.3°W; 

12.9°S, 171.4°E 
Marcus 26,500 150.6 24,900 29.7 21.4°N, 157.5°E 
Dakar 17,700 126.9 17,200 53.3 14.9°N, 16.0°W 
Palawan 15,400 121.3 15,300 59.5 9.9°N, 119.1°E 

 
The Caucasus-Clipperton double helix (Figure 5a) coincides with one of 

the structures reported by Volkov (1995) (Figure 1c). The left arm of the 
Biscay-Santa Cruz structure (Figure 5b) partly agrees with the left arm of 
one of the helices detected by O’Driscoll (1980) (Figure 1b). A compari-
son of inclination angles of theoretical traces of torsional deformation 
(Section 1, Figure 1a), and that of the double helices revealed (Table 1) 
shows that the Caucasus-Clipperton and Biscay-Santa Cruz structures can 
be assigned to traces of shear fractures, while the Dakar and Palawan 
structures can be assigned to traces of cleavage cracks. The mean deviation 
of inclination angles of the structures from the theoretical values is 2.8°. 
Of the five double helical structures detected, four have inclination angles 
fitting theoretical values. This suggests that one may consider topographi-
cally expressed helical structures as fracture traces of global torsion. There 
are several deviations from the theory, such as: (a) arms of each double he-
lix meet off the equator; and (b) there is the Marcus double helix with ‘ab-
normal’ inclination. The discrepancies might be in part attributed to the 
deviation of the Earth’s shape from a sphere, as assumed in the model of 
Rance (1968). 

The polar stereographic map of the Northern hemisphere presents the 
Caucasus-Clipperton structure (Figure 5a) as a nearly ideal plane two-arm 
Archimedean spiral (Fikhtengolts 1966, p. 520). Away from the pole, it is 
approximated by the equation: 

ar  (2) 

where r is a radius,  is an angle, and a is a constant; a = 1.01. The left arm 
of this structure is explicitly described as a spherical Archimedean spiral 
(Klíma et al. 1981): 

Global Lineaments: Application of Digital Terrain Modelling 
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20R  (3) 

where  is a length of a meridian arc between the pole and a point on the 
spiral ( , ), R is a radius of the sphere, 0 is a value by which  changes 
if  changes by 2 , 5.0 ,  is the latitude, and  is the longitude; 

0 = 79.55°. Volkov (2006, personal communication) supposed that all 
lineaments delineated by him (Figure 1c) are spherical Archimedean spi-
rals. This issue needs further investigation. 
 

 
Figure 5. Double helical structures for the entire Earth and the Northern and 

Southern hemispheres. (a) Caucasus-Clipperton. (b) Biscay-Santa Cruz. (c) Mar-
cus. (d) Dakar (D) and Palawan (P). 

Literature provides evidence for shears and increased fracturing along 
double helices. In particular, the left arm of the Caucasus-Clipperton struc-
ture (Figure 5a) within Europe was associated with a strike-slip fault sys-
tem (Moody 1966). Within the Pacific Ocean basin, the left arm of the 
Biscay-Santa Cruz structure (Figure 5b) was also interpreted as a system of 
strike-slip faults (Moody 1966). This helix is coaxial with a zone of planetary 
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Intensive crystallo- and metallogeny are observed along both arms of 
the Caucasus-Clipperton helix (Figure 5a). Evseev (1989) reported finds of 
large crystals of viterite and strontianite along a line coaxial with the left 
arm of the structure in Europe, from Scotland to the Caspian Sea. Along 
the right arm of the structure in Siberia, between 70°E and 170°W, there 
were numerous finds of unique large crystals including amethyst, aquama-
rine, axinite, azurite, beryl, calomel, calcite, charoite, diopside, fluorite, 
garnet, hematite, magnetite, pegmatite, smoky and green quartz, spinel, 
spherulite, topaz, tourmaline, etc. (Evseev 1993). Large iron and gold ore 
deposits of endogenic and metamorphic origin are located along both arms 
of this helix in Eurasia, Central and South America (Volkov 1995). It is 
common knowledge that lineaments of the regional and continental scales 
may control ore deposits since an increased fracturing of the crust along 
lineaments, especially at sites of their intersection, is favourable to mag-
matic intrusions (Favorskaya 1977, O’Driscoll 1986). This may explain the 
occurrence of crystal and ore deposits along helical structures. 

Global helical topographic structures are not unique to the Earth. Slyuta 
et al. (1989) discovered a dense, regular network of dextral and sinistral 
spiral structures on radar scenes of the Northern hemisphere of Venus 
(Figure 6). These planetary structures are wound around the axis of rota-
tion of Venus. They are topographically manifested as troughs, scarps, and 
depressions. Slyuta et al. (1989) believed that strong rotational forces had 
formed the network during the deceleration of Venus’s rotation. They sug-
gested that the helical network is a relict feature, an ‘imprint’ of ancient ro-
tational stress fields, because the current rotation velocity of Venus is quite 
slow. The low intensity of erosion has allowed relict helical structures to 
persist on the Venusian surface. This author supposes that double helices 
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fracturing within Eurasia (Miroshnichenko et al. 1984). Along this zone, 
there is a belt of intensive rock fracturing 3,000 km wide, including right-
lateral strike-slip faults along the northern border of the belt (Poletaev 
1986). Relatively small strike-slip faults southward of Madagascar and 
northward of New Guinea (Moody 1966) seem to be parts of the right arm 
of the Marcus structure (Figure 5c). Fragments of the right arm of the Da-
kar structure (Figure 5d) were associated with shear systems (Vening 
Meinesz 1947), strike-slip faults (Moody 1966), and fracture zones  
(Miroshnichenko et al. 1984). The left arm of the Dakar double helix is 
coaxial with a zone of planetary fracturing (Miroshnichenko et al. 1984). 
Between Indonesia and the Philippines, a fragment of the right arm of the 
Palawan double helix (Figure 5d) was interpreted as a system of strike-slip 
faults (Chebanenko 1963, Moody 1966). In Australia, the left arm of the 
Palawan structure and the right arm of the Biscay-Santa Cruz structure 
were also associated with strike-slip faults (Chebanenko 1963). 
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of the Earth are also relict features. Strong erosion led to their hidden 
manifestation in modern topography (Figure 4). 
 

 

Figure 6. Spiral structures of the 
Northern hemisphere of Venus (after 
Slyuta et al. 1989, Figure 2, © Plenum 
Publishing Corporation, 1990; repro-
duced with kind permission of 
Springer Science and Business Me-
dia). 

 
Contrary to regional lineaments and some structures of the continental 

scale clearly recognizable on the maps of specific catchment area (e.g. 
mountain chains, mid-ocean ridges, and ocean troughs), double helical 
structures are not in harmony with the plate-tectonic theory. Notice that the 
existence of transcontinental and planetary lineaments was one of the main 
geological and geomorphic facts contradicting the plate-tectonic ideas (Fa-
vorskaya 1977, Pavlenkova 1995, Pratt 2000, Smoot 2001). To link these 
facts with possible continental drift, seafloor spreading, and subduction, 
some modifications of the plate-tectonic hypothesis have been proposed. 
For instance, Moody (1966) proposed that continental drift is a movement 
of crustal blocks along major lineament zones with relatively stable mantle 
roots. Besprozvanny et al. (1994) suggested that regularities in the global 
lineament network are caused by dissipative structures of the upper core. 
Once again, our results set one to think about a tectonic paradigm more 
adequately depicting the actual structure and evolution of the Earth. 

4 Conclusions 

The application of digital terrain modelling provided support for the hy-
pothesis for the existence of double helical structures of the Earth, which 
are topographically expressed and possibly associated with the torsional 
deformation of the planet. To understand fully the origin and properties of 
helical structures, comprehensive studies should be conducted. A quantitative 
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Eighteen topographic variables were for the first time calculated and 
mapped for the entire surface of the Earth, including both land and seafloor 
topography. To produce readable and interpretable global maps of topog-
raphic attributes, DEM denoising was the key step in data processing. This 
paper focused on lineaments, but global maps of topographic variables can 
be useful to study other problems of tectonics and geophysics (ring struc-
tures, lithospheric strain, etc.). These maps can be integrated into virtual 
geological and geomorphic globes (Rundquist et al. 2002, Tooth 2006). 
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Modelling Channelling and Deflection of Wind 

John B. LINDSAY and James J. ROTHWELL 

Abstract 

Topographic indices have been used extensively in the past to model wind-
related phenomena such as soil erosion, snow redistribution, and atmos-
pheric deposition of contaminants. A new index of exposure/sheltering to 
wind, the channelling/deflection index (CDI), is presented and evaluated in 
this chapter. Unlike existing windiness indices, most of which are based on 
ray-tracing algorithms, the CDI is capable of modelling channelling and 
deflection of flowlines, as well as wind shadowing. The CDI is a measure 
of how much more or less windy a location is as a result of the influence of 
upwind topography. The method for calculating the CDI applies a flow 
routing algorithm to model airflow patterns. Like all topographic indices 
involving the analysis of extended neighbourhoods, the CDI is affected by 
edge contamination; the location of digital elevation model (DEM) edges 
can significantly influence the CDI pattern estimated for an area. Analyses 
showed that edge effects can be diminished by using an appropriately sized 
buffer of elevation data in the windward direction. A 4 km buffer was 
found to be sufficient to accurately model the CDI in five study areas of 
varying topography, based on DEM data with a 10 m grid resolution. 
 
Keywords: wind modelling, exposure, sheltering, topographic index, 
DEM. 

1 Introduction 

The partial control that topography has over many environmental phe-
nomena largely occurs for two reasons. Firstly, slope gradient, slope orien-
tation, and relative landscape position affect the flow paths taken by runoff 
and therefore the abundance of near-surface water at a location. Secondly, 
these topographic attributes also influence climatic variables such as tem-
perature, solar radiation, and exposure to wind. Each of these environ-

by Topography 

mental conditions (i.e. the abundance of water, energy, heat, wind, etc.)  
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chapter is concerned with the association between topography and wind 
exposure. Topography affects local windiness by deflecting and channel-
ling moving air (Böhner and Antoni  in press). In extreme cases of wind 
deflection, topography can act as an obstacle or barrier resulting in wind 
sheltering, also known as wind shadowing. The degree to which a location 
is exposed or sheltered influences evaporation processes, and therefore the 
abundance of soil water and vegetation patterns, as well as the potential for 
aeolian transportation and deposition of fine sediment, soil, snow, and par-
ticulate contaminants. 

Computational fluid dynamics (CFD) can be used to map the pattern of 
airflow over a surface by solving the Navier-Stokes equations, a series of 
differential equations used to describe fluid motion, for a given boundary 
condition (Girault and Raviart 1986). Although this is an extremely com-
putationally demanding task requiring specialized modelling software and 
expert knowledge (Chaderjian et al. 2006), it is possible to create an air-
flow model for complex topography (Uchida and Ohya 1999). For applica-
tions requiring continuous, instantaneous airflow data, the physically based 
approach of CFD is needed. However, for applications that require infor-
mation about the spatial variation in longer-term site windiness, other sim-
pler approaches may be more suited. Terrain analysis and the derivation of 
simple topographic indices of exposure from DEMs have been used in the 
past to measure longer-term site windiness. Terrain analysis is the field of 
study or analytical approach that uses the direct and indirect control that 
topography has on process functioning to gain understanding of various 
phenomena in a landscape. This approach takes advantage of the fact that 
often terrain attributes, such as slope, aspect, and landscape position, are 
much easier to measure than the spatial and temporal distributions of other 
controlling factors (Wilson and Gallant 2000). Terrain analysis relies on 
the use of DEMs to represent topography. Considerable work has taken 
place over the last two decades to develop simple topographic indices de-
rived from DEMs to act as surrogates for other more difficult to measure 
phenomena (e.g. Moore et al. 1991, Wilson and Gallant 2000). Research-
ers have proposed several DEM-derived indices for evaluating the spatial 
pattern of wind exposure/sheltering (e.g. Murakami and Komine 1983, 
Lapen and Martz 1993, Antoni  and Legovi  1999, Winstral and Marks 
2002). These indices are by their nature simplifications of a complex dy-
namic system, removed from the governing process equations and other 
controlling factors such as roughness due to land cover. Nonetheless, ex-
posure/sheltering indices have been used successfully to model the spatial 
patterns of snow depths (Lapen and Martz 1993, Winstral and Marks 2002, 

affects soil development, the distributions of flora and fauna, and the flux 
of fine sediment, essential nutrients, and contaminants in catchments. This 
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Erickson et al. 2005), soil loss (Chappell 1996), vegetation patterns 
(Huang 2002), and concentrations of atmospherically-deposited contami-
nants (Antoni  and Legovi  1999). In this chapter, we (1) evaluate the 
suitability of existing DEM-derived exposure/sheltering indices, and (2) 
present a new index that incorporates topographic channelling and deflec-
tion of wind. 

2 Topographic Indices of Exposure to Wind 

Numerous topographic indices of site windiness exist. Relative terrain as-
pect is perhaps the simplest measure of topographic exposure, taking into 
account land-surface orientation only. Relative terrain aspect is the angle 
between the land-surface aspect and the wind direction (Antoni  and Le-
govi  1999, Böhner and Antoni  in press). It is calculated respecting the 
circularity of angular measures and is bound between 0°, indicating a loca-
tion that is oriented in a windward direction (i.e. exposed), and 180°, indi-
cating a leeward orientation (i.e. sheltered). In application, the specified 
wind azimuth is usually assumed to represent a regional wind direction. 
Figure 2A shows the pattern of relative terrain aspect for a part of the 
Bleaklow plateau in the southern Pennines, UK, based on a 10 m DEM 
(Figure 1) derived from laser altimetry (LiDAR). As relative terrain aspect 
is calculated solely using information about topography within a small 
neighbourhood of 3 × 3 grid cells, local-scale topographic variation is well 
represented in Figure 2A. It is apparent from this image, however, that 
relative terrain aspect does not account for distant topographic obstacles 
that cause sheltering effects. For example, a site oriented towards the wind 
flux that is behind a wind-sheltering hill would be considered to be ex-
posed in a relative terrain aspect image despite the obstacle. This is clearly 
a limitation of the index. 

There are several topographic indices that use ray-tracing, i.e. querying 
elevations along a search path in a specified direction, to account for the 
influence of distant topographic obstacles on exposure/sheltering. For ex-
ample, horizon angle (Antoni  and Legovi  1999), also referred to as 
maximum upwind slope (Winstral et al. 2002, Erickson et al. 2005), is 
commonly used as an exposure/sheltering index (Figure 2B), although it is 
also frequently applied to solar radiation modelling (Dozier et al. 1981). 
The usefulness of horizon angles for assessing local windiness was recog-
nized long before automated estimation from DEMs was possible, e.g. the 
field-based, empirical TOPEX index refined by Wilson (1984). Horizon an-
gle is defined as the maximum elevation angle along a ray in the direction 
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Figure 1. A 10 m resolution LiDAR digital elevation model of the Bleaklow pla-

teau, southern Pennines, UK. Contours are drawn at a 20 m interval. 

 

of the hypothetical wind flux (Antoni  and Legovi  1999). Winstral and 
Marks (2002) refer to the grid cell with the maximum elevation angle in a 
search path as the shelter-defining cell. The distance between a grid cell 
and its shelter-defining cell is usually small enough that Earth curvature 
can be ignored in estimating the horizon angle. An assumption is made that 
large positive values of horizon angle indicate areas that are relatively 
sheltered from wind in a specified direction (Böhner and Antoni  in press). 
Locations with negative horizon angles (declinations) are located above 
their horizon and are therefore relatively exposed. Antoni  and Legovi  
(1999) recommend setting all declinations to zero, recognizing that the ex-
posure of a site located above its horizon is often affected to a greater ex-
tent by altitude. This same approach to handling declinations was also used 
to derive the TOPEX index. 

John B. LINDSAY and James J. ROTHWELL 
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Figure 2. Various topographic indices of exposure/sheltering derived for the Li-
DAR DEM, including (A) relative terrain aspect, (B) horizon angle, (C) exposure 
towards the wind flux, (D) openness, (E) directional relief, and (F) fetch. Each im-
age is based on a hypothetical wind direction of 225° (i.e. a wind from the south-
west), except for openness (D), which is derived from data in all eight main com-
pass directions. Distance values for the fetch image (F) have been log-transformed 

to enhance visualization.  

Horizon angle is frequently calculated using a maximum search dis-
tance. This can significantly reduce the computational effort required to 
calculate the index, something that can be problematic when analysing 
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large DEMs. There may also be sound theoretical reasons for this practice 
in addition to the computational benefits. Böhner and Antoni  (in press) 
argue that whilst for solar radiation modelling an infinite search distance 
(implying that the ray-tracing procedure always terminates at the DEM 
edge) is preferred, for modelling exposure/sheltering to wind, large search 
distances can ignore the adaptability of airflow to terrain, i.e. topographic 
deflection of winds. In their study of snow redistribution depths in a head-
water catchment in south-western Idaho, Winstral et al. (2002) also con-
cluded that a distance-limited estimation of horizon angle is preferred. This 
results in greater weight being applied to the effects of local topography. 
Unfortunately, a method for establishing an appropriate maximum search 
distance remains a challenge and it is often determined through trial-and-
error optimization. Furthermore, not all researchers have found the need 
for a maximum search distance. Wörlen et al. (1999), for example, found a 
strong relationship between measured wind speeds and horizon angles es-
timated without a maximum search distance. In addition to the ambiguity 
involved in selecting an appropriate search distance, there is also the prob-
lem that, being based on ray-tracing, horizon angle does not account for 
topographic deflection of wind. Winstral and Marks (2002) suggest aver-
aging horizon angle values across a range of directions (e.g. every 5° over 
a 30° window centred on the desired wind direction) as a means of increas-
ing the robustness of the index to deviations from the hypothetical regional 
wind direction. Although averaging over a range of directions does im-
prove results, it does not actually compensate for upwind channelling by 
topography. 

Openness (Yokoyama et al. 2002) is a topographic index of expo-
sure/sheltering that is related to horizon angle (Figure 2C). To the authors’ 
knowledge, openness has never been applied as an index of expo-
sure/sheltering to wind, although it is very similar to the field-based 
TOPEX index described by Wilson (1984). Openness is defined as the av-
erage zenith angle (i.e. 90° minus the horizon angle) in the cardinal and di-
agonal directions along a distance-limited search path. Therefore, unlike 
other DEM-derived exposure indices, openness is directionally independ-
ent. This characteristic, however, means that openness, like the TOPEX 
index, is perhaps less suited to measuring wind exposure in areas where 
there is a dominant wind direction or local channelling of air (Quine and 
White 1994). 

In addition to relative terrain aspect and horizon angle, Antoni  and Le-
govi  (1999) and Böhner and Antoni  (in press) identify a third DEM-
derived topographic index for modelling wind exposure/sheltering. Expo-
sure towards the sloped wind flux (Figure 2D) combines relative terrain 
aspect and horizon angle in a single index. This terrain attribute accounts 
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for land-surface orientation relative to the wind and the shadowing effects 
of distant topographic obstacles. Exposure towards the sloped wind flux 
(cos ) can be conceptualized as the angle between a plane orthogonal to 
the wind and a plane that represents the local topography at a grid cell 
(Böhner and Antoni  in press) and is calculated as follows: 

coscossinsincoscos  (1) 

where μ is the terrain slope,  is the terrain aspect,  is the azimuth of the 
wind flux, and  is the horizon angle in the wind direction (Antoni  and 
Legovi  1999). Notice that cos(  - ) is equivalent to the relative terrain 
aspect. If the horizon angle is set to zero, Equation (1) yields the exposure 
toward the horizontal component of the wind flux. Equation (1) is com-
monly used for topographic solar radiation modelling (Böhner and Antoni  
in press) where  is the solar illumination angle for a given surface, de-
fined by μ and . Exposure towards the wind flux has also been found to 
be one of the most useful indices for explaining spatial variability in vari-
ous atmospherically-deposited contaminants (Antoni  and Legovi  1999). 

In an early paper on the subject, Lapen and Martz (1993) described two 
DEM-derived measures of wind exposure/sheltering: directional relief and 
fetch. Directional relief (Figure 2E), like the horizon-angle based indices 
described above, is a measure of the degree to which a site is located above 
or below its surroundings in a specified direction. The main difference, 
however, is that directional relief is not an angular measure but rather an 
altitudinal difference. It is calculated by subtracting the elevation of a 
DEM grid cell from the average elevation of the grid cells that lie between 
it and the edge of the DEM in a specified direction (Lapen and Martz 
1993). Thus, positive values indicate that a grid cell is lower than the aver-
age elevation of the grid cells in a direction (i.e. relatively sheltered) and a 
negative directional relief value indicates that the grid cell is higher (i.e. 
relatively exposed). The calculation of directional relief is therefore simi-
larly based on a ray-tracing procedure. 

Figure 2F shows the Lapen and Martz’s (1993) measure of fetch, i.e. the 
distance of unobstructed airflow, for the Bleaklow LiDAR DEM. The 
Lapen and Martz (1993) fetch algorithm searches each grid cell along a ray 
in a specified direction until either the DEM edge is encountered or the fol-
lowing condition is met: 

IDZZ coretest  (2) 

where Zcore is the elevation of the grid cell at which fetch is being deter-
mined, Ztest is the elevation of the grid cell being tested as a potential to-
pographic obstacle, D is the distance between the two grid cells in metres, 
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and I is the height increment in m·m-1 (notice I is effectively unitless). If 
the search does not identify an obstacle grid cell before the edge of the 
DEM is reached, the distance between the DEM edge and Zcore is entered. 
Based on the Lapen and Martz (1993) procedure, edge distances are as-
signed negative values to differentiate between these artificially truncated 
fetch values and those for which a valid topographic obstacle is identified. 
For the purpose of effective visualization, Figure 2F shows the logarithm-
transformed, absolute fetch values rather than the original distances meas-
ured by the fetch algorithm. In Equation (2), I is essentially the minimum 
tangent of the slope between Zcore and Ztest needed for the test grid cell to be 
considered a significant topographic barrier to wind. Lapen and Martz 
(1993) suggest values for I in the range of 0.025 to 0.1 based on their study 
of snow distributions in low-relief agricultural landscapes of the Canadian 
Prairies. Fetch analysis, based on Equation (2), has been applied to the 
study of patterns of tree species in Taiwan (Huang 2002). 

Most of the existing exposure/sheltering indices focus on identifying ar-
eas of wind shadow that result from topographic obstacles. A common 
problem with these indices is their inability to incorporate the channel-
ling/deflection of wind by topography. This is a limitation of the ray-
tracing procedure on which most of these indices are based. The main 
drawback to using ray-tracing in wind modelling applications is that mov-
ing air and light do not behave similarly. Whereas a ray of light ends when 
it encounters a barrier (except for back-scatter), a flowline of air will be 
deflected around the obstacle, altering its flow direction. That is, wind is 
capable of being deflected from its path by topographic features. Evi-
dently, the channelling and deflection of near-surface winds by topography 
is not adequately modelled by existing wind exposure/sheltering indices. 
In the following section, we describe a simple topographic index that can 
be used to simulate channelling and deflection of winds by topography. 

3 The Channelling/Deflection Index 

DEM-based flow routing algorithms have been used extensively to model 
the flow of surface and near-surface water (e.g. O’Callaghan and Mark 
1984, Freeman 1991, Tarboton 1997). These algorithms are used to 
simulate the spatial patterns of flow directions and contributing area (A), 
or flow accumulation, for a given surface. Water and air are both fluids. 
One of the most significant differences between these two fluids is the 
fact that airflow can occur in an uphill direction whilst water only flows 
downhill. We propose a method, described below, for modelling wind 
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where Aij is the upwind source area for grid cell (i, j), P is a grid of a planar 
surface representing the wind strength and direction, and C is a grid de-
rived by the combination of the streamlined DEM, S, and a planar surface 
representing the hypothetical wind characteristics. C can be conceptualized 
as the surface that results from streamlining the DEM and tilting it down-
wards in the direction of the wind flux by an amount that is proportional to 
wind speed. C and P are calculated as: 

ijijij PSC  (4) 

kYXP jiij costansintan  (5) 

where Sij is the elevation of grid cell (i, j) in the streamlined DEM,  is the 
gradient of the plane in the wind direction , Xi is the x co-ordinate of the 
ith column in the grid, Yj is the y co-ordinate of the jth row in the grid, and 
k is a constant. It should be noted that the contributing area function, Aij, is 
dependent on both slope and aspect of the surface to which it is applied 
and not on the actual values of the surface at a specific location. The actual 
values of C and P therefore have no effect on Aij. Thus, the value of k does 
not influence CDIij and can be set to zero or any other desired value. For 
example, k could be set to a high positive or negative number if there were 
an algorithmic limitation on the range of values contained in C and P—the 
Xi and Yj terms in Equation (4) can otherwise yield very large positive or 
negative values. 

The DEM is not directly used to model the spatial pattern of wind chan-
nelling and deflection. Instead a streamlined version of the terrain model is 
applied. This accounts for the fact that (1) a zone of reduced wind speed 
and turbulence extends for some distance in the leeward direction of an 
obstacle, and (2) air starts to rise some distance before it reaches an obsta-
cle due to a wedge of high pressure located in the windward direction. A 
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channelling/deflection that is based on applying a flow routing algorithm 
to a surface that combines topography and information about regional 
wind speed and wind direction. This technique effectively compensates for 
the downhill-only nature of DEM-based flow algorithms by altering the 
DEM. The upwind source area that results from this analysis is the area 
from which the wind flux passing through a location originates. The chan-
nelling/deflection index (CDI) can be calculated as follows: 
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streamlined terrain model, S, which incorporates these wind zones, can be 
calculated as follows: 

IIDZ
IZ

IS
ijcd

ijij
ijij tan       

tan                  
,  (6) 

where grid cell (c, d) is the first grid cell encountered in a ray extending 
from grid cell (i, j) in direction  that satisfies the condition tan ij < I. I is 
the same height increment described in Equation (2) and is specified by the 
user. Equation (6) is first used to model the wind shadow in the leeward di-
rection. In a second step, horizon angle is calculated using the leeward 
streamlined DEM and a wind direction of  -180. Equation (6) is then used 
a second time to create the final streamlined DEM, i.e. the terrain model 
that incorporates both the leeward wind shadow and the windward high-
pressure ‘ramp’. The leeward effects of an obstacle on airflow extend over 
a much greater distance than the windward effects, implying that Ileeward < 
Iwindward. Research suggests that the effect of an obstacle on wind patterns 
can be observed for a distance of 10 to 40 times the obstacle height on the 
leeward side and approximately two times the obstacle height on the 
windward side (Lapen and Martz 1993, Huang 2002). This implies values 
of Ileeward and Iwindward of 0.025–0.1 and 0.5, respectively, although these are 
approximations. Figure 3 shows the effect of using Equation (6) to stream-
line the Bleaklow LiDAR DEM. An algorithm for streamlining terrain 
based on Equation (6) has been implemented in TAS GIS, a freely distrib-
uted software package for spatial analysis and environmental modelling 
(Lindsay 2005). 
 

 
Figure 3. Shaded relief images derived from (A) the Bleaklow DEM, and (B) the 
streamlined DEM resulting from the application of Equation (6) to the DEM (Fig-

ure 1) with a hypothetical wind direction of 225° and Ileeward and Iwindward 
values set to 0.067 (i.e. a slope of 1:15) and 0.5, respectively. 
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Equation (4) describes the local balance between the force of gravity 
pulling a parcel of air downslope, and the horizontal pressure gradient 
force pushing the parcel in the direction of the regional wind. P can be 
thought of as a plane describing the spatial pattern (gradient and aspect) of 
atmospheric pressure. Thus,  is directly proportional to the horizontal 
pressure gradient force and therefore also to wind speed. Increasing , ef-
fectively increasing wind speed, reduces the relative influence of topogra-
phy, or gravitational force, on the airflow pattern resulting from Equation 
(3) (Figure 4). This implies that stronger winds are deflected, in the hori-
zontal plane, by topographic obstacles to a lesser extent than gentler winds, 
due to increased momentum. In actuality the horizontal pressure gradient 
force is usually much smaller than the force of gravity. In fact, if a typical 
value for the horizontal pressure gradient (a tangent slope of approxi-
mately 0.01 Pa·m-1) were used for , Equation (3) would be heavily 
weighted towards the influence of the gravitational force. The resulting 
modelled airflow pattern would suggest that air drained from a landscape 
towards the nearest downslope topographic low. Clearly this is unrealistic. 
The answer to this problem lies in the fact that Equation (4) represents the 
relative balance of all the forces acting on an air parcel. Although the 
gravitational force is relatively large, it is severely dampened by the nearly 
equivalent, though variable, vertical pressure gradient force. This can be 
accounted for either by including a vertical pressure gradient term in Equa-
tion (4) by the addition of a weighting parameter, or equivalently, by en-
suring that  is sufficiently large to give the necessary relative weighting to 
the horizontal pressure gradient. We prefer the latter approach because it 
provides a simpler model (recalling that the actual values of P need not 
represent realistic values of atmospheric pressure), and because in most 
applications we are less concerned with the airflow pattern at a specific 
wind speed than we are with the pattern resulting from a range of typical 
wind speeds. This can be achieved by averaging CDIij over a range of  
values ( min to max), yielding the pattern of wind channelling/deflection 
over a range of wind speeds. As guidance, it is reasonable that tan min  
Iwindward, implying that air is capable of flowing over obstacles to an extent. 
At very steep gradients (e.g.  > 80°) the effective wind speed is so high 
that the pathways of individual flowlines are hardly influenced by topog-
raphy. Thus the value of max can be set accordingly. 
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Figure 4. The implications of increasing the plane gradient, , (i.e. increasing 

wind speed) on the modelled pattern of the topographic deflection index (CDI). 
The regional wind direction is constant for each simulation and assumed to be 

225° (i.e. a wind from the south-west). 

It may not be readily apparent why Aij(C) is normalized by Aij(P) in 
Equation (3). Edge effects are not usually problematic for surface water 
applications of flow routing algorithms so long as the DEM edges do not 
intersect significant catchment divides. However, in the airflow model  
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The normalization of the upwind source area (Equation (3)) also pro-
vides a convenient interpretation of the CDI: grid cells with CDI values 
less than unity are predicted to experience sheltering by upwind topogra-
phy due to deflection and values greater than unity experience upwind 
channelling, i.e. relative exposure (Figure 5C). CDIij can therefore be con-
ceptualized as a measure of how much larger or smaller the upwind source 
area is for a location as a result of the influence of topography. Also note 
that the CDI is a unitless index. Because the CDI is intended to be an index 
of near-surface exposure/sheltering, it is useful to modify Equation (3) to 
account for areas where the streamlined DEM and the original DEM are 
not equal (i.e. wind shadows in Figure 6), such that: 

ijij
ij

ij

ijij

ij ZS
PA
CA

ZS

CDI
          

                  0

 (7) 
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described above, all flowlines continue without terminating from one edge 
of the DEM to the opposite edge; it is impossible to define meaningful 
flow boundaries from the monotonic surfaces C and P. Therefore, esti-
mates of Aij are severely impacted by edge contamination and the pattern 
of upwind source area is heavily influenced by the extent of the DEM. Di-
viding Aij(C) by Aij(P) normalizes the pattern of upwind source area, effec-
tively removing much of the edge contamination (Figure 5). Normalization 
compensates for the fact that individual flowlines do not have start points, 
or rather their start points are unlikely to coincide with the windward edges 
of the DEM. Even after normalisation, however, locations nearest the edge 
in the windward direction will suffer from a degree of edge contamination. 
As such, in estimating the pattern of the CDI for a site, it would be advis-
able to buffer the area with digital elevation data in the upwind direction. 
The sensitivity of the CDI to edge contamination is examined further in 
Section 4. 
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Figure 5. (A) The spatial pattern of upwind contributing area derived from a sur-

face combining the LiDAR DEM and regional wind characteristics, (B) the pattern 
of upwind contributing area derived from a plane describing wind characteristics, 
and (C) the pattern of the topographic deflection index (CDI) resulting from the 

ratio of (A) to (B). The regional wind direction is assumed to be 225° (i.e. a wind 
from the south-west). 
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Figure 6. The CDI image that results from the use of the script (described in text) 
to derive the pattern of CDI for the Bleaklow study area. The CDI has been aver-

aged across a range of  values from 20° to 70°. 

The choice of an appropriate algorithm to estimate A is an important 
consideration. There are at least six different flow routing algorithms that 
are commonly used to estimate contributing areas. Details on individual 
algorithms can be found in the excellent review by Gallant and Wilson 
(2000). Each flow algorithm differs in essentially two ways: (1) in the 
method used to calculate flow direction, and (2) in the scheme used to di-
vide the flow entering a grid cell to one or more of its neighbours (Lindsay 
2003). Probably the most fundamental difference among flow routing al-
gorithms is the way in which they handle flow divergence. Algorithms that 
send all of the flow entering a grid cell to one neighbour are sometimes 
called single flow direction (SFD) algorithms. In contrast, algorithms that 
are capable of representing flow divergence are often referred to as multi-
ple flow direction (MFD) algorithms because they disperse the flow enter-
ing a grid cell to two or more neighbouring cells (Wolock and McCabe 
1995). Wind is dispersive and therefore it is necessary to use an MFD type 
flow routing algorithm to estimate the CDI (Equation (3)). Several MFD 
flow algorithms exist including FD8 (Freeman 1991, Quinn et al. 1991), 
DEMON (Costa-Cabral and Burges 1994), and D  (Tarboton 1997). Each 
of these algorithms can be used to estimate the CDI. D , the least disper-
sive of the MFD algorithms, is perhaps the most widely available because 
of theoretical advantages, its robustness against directional biases caused 
by the grid structure of data, and its relative simplicity. With greater flow 
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dispersion than D , controlled by a user-specified dispersion parame-
ter, FD8 can also produce realistic flow patterns. The flow-tube based  
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In addition to flow routing algorithm considerations, it is also necessary 
to select a method of removing depressions and forcing small gradients 
across any flat areas in C. This is a pre-processing step that ensures the 
proper functioning of the flow algorithm. Flow algorithms are incapable of 
modelling flow paths out of depressions and across flat areas; modelled 
flowlines terminate in these features (Jenson and Domingue 1988). Notice 
that this issue is only relevant when  is sufficiently small to allow depres-
sions to occur in the combined surface, C. That is, when the gradient of P, 
which does not contain depressions, is much larger than the gradients of S, 
depressions are unlikely to occur in C. Several algorithms have been de-
veloped to remove depressions and flats from DEMs, which can be catego-
rized as depression filling, depression breaching, and combination algo-
rithms (Lindsay and Creed 2005). For this application, depression filling 
methods (e.g. the efficient algorithm described by Planchon and Darboux 
2001) are probably the most appropriate. It should be noted that depres-
sions in C are likely areas of flow separation. 

The CDI can be calculated in most GIS packages that possess an appro-
priate flow routing algorithm. The following code is a TAS GIS script that 
can be used to estimate an average CDI image from a DEM over a range of 
 values: 

 
Total CDI='S'*0 //Initialise a grid the same size 
as the DEM 

startLamda='S'*0+20 //Initialise a second grid 

REPEAT 6 TIMES 

 tanLamda=tan((LOOPCOUNT-1)*10+'startLamda') 
 P='tanLamda'*sin(225)*'X'+'tanLamda'*cos(225)*'Y' 

 C='S'+'P' 

 C filled=DEPFILL('C',1,true) 

 A1=CONTAREA('C filled',Dinf,SCA,1,true,false) 

 A2=CONTAREA('P',Dinf,SCA,1,true,false) 

 CDI='A1'/'A2' 
 Total CDI='Total CDI'+'CDI' 

END REPEAT 

CDI 225=('Total CDI'/7)*('S'='DEM') 

In the above script,  is 225° (a south-west regional wind direction) and 
 ranges from 20° to 70°, calculated using a 10° step. The final image 

approach used in DEMON is well suited to modelling airflow; however, 
the algorithm’s complexity is such that very few analysis packages have 
implemented the scheme. 
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‘CDI 225’ (Figure 6) is averaged over the range of  values and locations 
within the wind shadows are assigned null values. 

4 Sensitivity to Edge Contamination 

Edge contamination occurs in the CDI for two main reasons. First, topog-
raphic features beyond the windward edges of the study area can cause 
wind shadows that extend into the site, i.e. the streamlined DEM could fail 
to incorporate important distant features. The likelihood of this occurring 
is largely dependent on the local relief characteristics. Secondly, in the 
method described above there is an implicit assumption that grid cells 
along the windward edges of the study site have equal upwind source ar-
eas. In actuality, however, the upwind source areas of edge grid cells will 
be preconditioned by distant, unmodelled topography. Therefore, airflow 
can be channelled before it enters the site, with implications for the within-
site airflow pattern. This unknown boundary condition will not be incorpo-
rated into the modelled airflow pattern. As an MFD flow algorithm is 
needed to estimate Aij, however, distant topography will impact CDIij to a 
lesser degree than nearer topography. This characteristic will reduce edge 
contamination in a CDI image. 

So then, how large of an upwind buffer is needed to ensure that the CDI 
image is sufficiently unaffected by edge contamination? To evaluate the 
sensitivity of the pattern of the CDI to edge contamination British Ord-
nance Survey Land-Form PROFILE 1:10,000 10 m DEMs (interpolated 
from contours) were obtained for five randomly selected 3 km × 3 km ar-
eas in the UK. The five study areas demonstrated a range of topographic 
settings with varying relief from 117 m to 351 m and average slopes 
among the sites varying from 7.5° to 12.9°. The CDI was first estimated 
for each study area using a random wind direction. The D  routing algo-
rithm was used to estimate upwind source areas and Ileeward and Iwindward 
were set to 0.067 and 0.5, respectively. The CDI estimates were repeated 
another 12 times per site, increasing the windward buffer of elevation data 
by 1 km with each model run. Therefore, the maximum buffer width that 
was used was 12 km beyond the windward edges of each study area. The 
pattern of the 12 km buffered CDI image served as the reference image for 
comparisons. The 12 CDI images with buffer widths ranging from 0 km 
(i.e. the DEM of the study site with no buffer) to 11 km were then corre-
lated with the reference image. Comparisons were restricted to the 9 km2 
study areas and did not include data within buffer areas. 
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Figure 7 shows the relation between buffer width and the correlation co-
efficient, r, measured between the CDI image derived using a particular 
buffer width and the reference image. The findings illustrate that for each 
site r increased rapidly with buffer widths from 0 km to 4 km and levelled 
off with values above 0.9 for buffer widths greater than this threshold. 
Therefore, the pattern of the CDI for an area derived using a buffer width 
of 4 km was found to be very similar to the pattern that was calculated us-
ing a 12 km buffer width. Thus, the vast majority of the spatial variation in 
airflow patterns within a site can be accounted for by the influence of to-
pography within 4 km in the upwind direction, with between 6% and 52% 
of the pattern accounted for by the topographic variation directly within 
the site (i.e. r values of images with no buffers ranged from approximately 
0.24 to 0.73). Despite possessing a range of topographic characteristics, 
each of the five study areas demonstrated remarkably similar patterns, par-
ticularly with respect to the levelling off of r values with more extensive 
buffers. However, because topographic indices involving slope and aspect 
demonstrate a strong dependency on DEM grid resolution, the specific 
value for the buffer threshold (here interpreted to be approximately 4 km) 
may actually be dependent on the spatial resolution of the DEM used in the 
analysis. Nonetheless, this analysis demonstrates that (1) a buffer is re-
quired to minimize the effects of edge contamination on CDI images, and 
(2) the buffer needs not be excessively wide when compared to the overall 
extent of the site over which the CDI is being modelled. 

5 Discussion and Conclusions 

A review of DEM-derived indices of local exposure/sheltering to wind re-
vealed that most existing indices adequately represent wind shadowing by 
barriers but are incapable of modelling topographic channelling and de-
flection of winds. This was viewed as a major limitation to the application 
of these topographic indices to the study of erosion of fine sediment and 
soil, snow accumulation, vegetation patterns, deposition of atmospheric 
contaminants, and other wind-related phenomena. A new expo-
sure/sheltering index, the channelling/deflection index (CDI), was pro-
posed to compensate for the shortcomings of existing measures of local 
windiness. The CDI accounts for topographic shadowing, through the in-
corporation of a ‘streamlined’ DEM, as well as the influences of channel-
ling and deflection by topographic obstacles, through application of the 
same flow routing methods that are commonly used to simulate the over-
land flow of water. The topographic index is a relative measure of how 
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windy a location is expected to be, over a range of atmospheric conditions 
focused in a particular direction, compared with a featureless surface. The 
CDI reduces a complex dynamic system to a simple index with only five 
significant adjustable parameters ( , Ileeward, Iwindward, min, max). With the 
exception of the derivation of a streamlined DEM, which required the de-
velopment of a specialized (though publicly available) algorithm, the CDI 
is estimated using spatial analysis functions that are commonly available in 
GIS packages. 
 

 
Figure 7. The relation between buffer width and the association (strength of the 

Pearson’s correlation co-efficient, r) between the derived CDI pattern and the ref-
erence image, derived using a 12 km buffer width. 

Because DEM edges are arbitrary with respect to wind flow boundaries, 
the CDI inherently suffers from a degree of edge contamination. Edge ef-
fects are somewhat diminished through normalization of the upwind 
source area by the equivalent value derived from a featureless surface, and 
by the need for a divergent flow routing algorithm. Some degree of edge 
contamination can however remain. As such, in application the CDI should 
always be estimated using an upwind buffer of elevation data. An analysis 
of five study sites possessing a range of topographic characteristics 
showed that a buffer of elevation data of approximately 4 km width in the 
upwind direction (based on 10 m grid resolution elevation data) was suffi-
cient to accurately replicate the pattern of the CDI derived using a much 
more extensive buffer. 
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The method of calculating the CDI described in this chapter uses a pla-
nar surface to direct winds across a landscape (i.e. analogous to a pressure 
surface). A planar surface is suitable for relatively small areas but for lar-
ger extents the influence of the Coriolis Effect on wind directions would 
need to be taken into account. This could be accomplished by using a 
curved surface, instead of a plane. Earth curvature would also have to be 
accounted for when modelling flow patterns over more extensive areas, 
which could be challenging given that most existing GIS packages are lim-
ited to operations on rectangular co-ordinate systems. In light of the above 
discussion, the CDI can be thought of as a framework for incorporating 
channelling/deflection effects into a topographic index rather than a rigid 
procedure. In application, individual researchers may choose to modify 
various components of the method described here, e.g. in the use of a non-
planar surface or in the incorporation of roughness effects in the flow rout-
ing method. 

Whilst the method described in this chapter for modelling the influence 
of topography on site windiness is sensible and robust, the utility of CDI 
for analysing wind-related phenomena has yet to be demonstrated. Ongo-
ing research will evaluate the usefulness of the CDI for modelling spatial 
patterns of atmospherically-deposited contaminants in moss species (bio-
indicators) and for explaining variations in the erosion of exposed peat 
soils by wind. 
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List of Symbols and Abbreviations 

 Sloped wind flux or solar illumination angle 
 Horizon angle in the wind direction 
 Terrain aspect 
 Azimuth of wind flux 
 Gradient of a plane representing a wind force 
min Lower range of plane gradients used to calculate the CDI 
max Upper range of plane gradients used to calculate the CDI 

μ  Terrain slope 
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A Contributing area (flow accumulation) grid 
c Column of grid cell (c, d) 
C Grid derived by the addition of S and P  
CDI Channel/deflection index 
CFD Computational fluid dynamics 
D Distance between two grid cells 
d Row of grid cell (c, d) 
DEM Digital elevation model 
i Column of cell (i, j) 
I Height increment (m·m-1) 
j Row of cell (i, j) 
k Constant value used to calculate P 
MFD Multiple flow direction 
P A planar surface grid representing a hypothetical wind characteris-

tics 
S Streamlined DEM 
SFD Single flow direction 
X The x-coordinate of a column in a grid 
Y The y-coordinate of a row in a grid 
Zcore Elevation of a grid cell at which fetch is measured 
Ztest Elevation of a grid cell being tested as a potential topographic ob-

stacle to wind 
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Spatial Correlation of Topographic Attributes 

Abstract  

As one of the important parts of Digital Terrain Analysis (DTA), spatial 
correlation analysis of topographic attributes (TAs) is an effective method 
of analysing the topographical environment. This chapter proposes a spa-
tial correlation model for nine selected TAs, providing an effective method 
for quantitative DTA research and landform recognition. Forty seven dif-
ferent loess landforms were selected as test areas and their corresponding 5 
m grid cell DEM data as test data. With grey correlation analysis, spatial 
correlations for these TAs were analysed and the TAs’ correlation model 
built. Furthermore, the variations of the correlation curves are discussed. 
Results show that (1) TA correlation curves are similar to the spectrum, 
which provides a means of modelling the natural environment; (2) the cor-
relation curve changes with the topographical area; and (3) the correlation 
curve reflects the landform and evolution pattern of the sample area. 
 
Keywords: Loess plateau, DEM, topographic attribute, correlation. 

1 Introduction 

Terrain analysis is an important method of analysing the natural topog-
raphical environment. Traditional terrain analysis based on topographical 
maps, which deeply affect our life, is ineffective. DEM data, because of 
their availability and GIS-assisted processing, have taken the place of the 
topographical map in many aspects of terrain analysis. As the basic infor-
mation source not only can DEMs be used for computing topographic at-
tributes (TAs), but can also be employed in data mining at a profound 
level. 

in Loess Plateau 

The analysis of TAs is the basis of digital terrain analysis based on a 
DEM. Correlation and variation laws of multiple TAs express the form 
and the evolution processes of the physical environment. In practice, the 
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At present, digital terrain analysis mainly includes algorithm research 
and quantitative analysis of TAs, extracting and recognizing topographical 
structure lines and landform units, research on soil erosion, the simulation 
of drainage basin characteristics, and geological calamity prevention in 
loess areas, etc. (Tang 1991, 2003). Up to now, various types of topog-
raphical parameters based on DEMs have been extracted to describe the 
terrain features. Research on the algorithms and the expression of individ-
ual TAs based on DEMs is comparatively mature. But the analysis of the 
relevance of these TAs is limited to aspects connected with social, eco-
nomic, or hydrological parameters (Keck et al. 1993, Garner 1998, Giles 
and Franklin 1998, Yue 1998, Western et al. 1999, Li 2000, Da Silva and 
Alexandre 2005, Shary et al. 2002, Shary and Sharaya in press). System-
atic research on the correlation among numerous TAs is absent. Therefore, 
it is important to conduct research on the correlation and the laws govern-
ing the relation between attributes and their spatial locations, in particular 
on the quantitative model within TAs based on DEMs of high accuracy 
and a spacing of 5 m. However, little work has been done on the correla-
tion between multiple TAs and their spatial variance, and this is essential 
for quantitative geomorphology research. The objective of this chapter is 
to investigate this topic. 

2 Experiment Foundation 

2.1 Research area and data 

The research area is located in northern Shaanxi province in the Loess Pla-
teau (see Figure 1). The landform in the research area contains most of the 
representative landscapes of the Loess Plateau (Gan 1990, Luo 1988, Zou 
1985) such as loess Yuan, loess Liang and loess Mao. Interestingly, land-
forms in the research area vary with the spatial location according to a cer-
tain law. From north to south, landforms vary from loess low-hill to loess 
Mao, then gradually to loess Liang, until areas around Luochuan and 
Huangling that contain fragmentary loess Yuan. Then coming to the south, 
fragmentary loess Yuan is replaced by loess Yuan in Tongchuan, and then 
comes the terrace of the Weihe River. This area therefore favours topog-
raphical research on the laws governing landform and spatial location. It 
makes full consideration of the effect and the relation among materials, 

relationship between TAs appears to be of more importance than the TAs, 
particularly with reference to the surface. 
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and energy and time in the landform evolution process as well. Forty seven 
test areas were selected according to typicality, data availability, and integ-
rity. Corresponding 5 m grid cell DEM data, produced according to the na-
tional standard of China, are selected as test data. 
 

sample 

China

2448m

323m

river

100 50 0 100km

sample 

China

2448m

323m

river

100 50 0 100km

 
Figure 1. Distribution of the sample areas. 

2.2 Selection of TAs 

Three aspects were considered in choosing suitable TAs: (1) the landform 
shape should be fully expressed; (2) every selected TA should be inde-
pendent of others; (3) the selection should be the most effective one to re-
veal the law governing the relation among them. 

Any landform, no matter whether plain, hill or high mountain, is formed 
by different slope surfaces (Zou 1985). Any change of landform actually 
results from a change of slope surface. That is to say, every complicated 
area can be divided into many tiny slope surfaces. Every slope surface re-
flects the degree of undulation through its slope gradient. And the transi-
tion and turning between different slope surfaces can be reflected by pro-
file curvature and plan curvature. Therefore, slope, profile curvature, and 
plan curvature are selected to express the undulation and change of land-
form surfaces. 
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Water erosion is a serious problem in the Loess Plateau, and the integral 
value of an Area-Altitude curve is a TA reflecting the stage of basin evolu-
tion. It reflects the extent to which the basin landform has been eroded and 
represents the stage of landform evolution. The elevation difference is the 
essential feature of the landform. Several TAs portray different landform 
characteristics from different aspects, and are relatively independent. 
Therefore, all of them could be regarded as independent factors in the cor-
relation model. 

2.3 Experimental Method 

The measurement of the correlation between two TAs can be expressed by 
the grey correlation degree in grey systematic theory (Deng 1987, 1988, 
Liu 1999, Zhao 1997). Grey correlation analysis is a quantitative analysis 
of the developmental trend of a dynamic process presented by Deng (1987, 
1988). This method analytically compares the geometrical shape of curves 
that change with time and assumes that the more similar the geometrical 
shape, the more close the trend, and the larger the degree of correlation. 
Therefore, the correlation degree can be used to evaluate the difference be-
tween the geometrical shapes of curves. 

Grey correlation degree analysis includes the following steps: (1) inde-
pendent and dependent sequences; (2) dimensionless data; (3) correlation 
coefficient; (4) correlation degree; and (5) the correlation sequence. 

3 The Correlation Model for TA 

3.1 Conceptual model 

There is special meaning only when TAs are concretely combined with 
landforms. Different TAs can express different aspects of the landform, so 
it is very difficult to make sure that there is a clear correlation among TAs 
from their algorithms. In some landforms, the trend of sub-sample values 
for two or more TAs may be very close. But this trend may be a totally in-
dependent relationship in another landform. These phenomena are inherent 
representations of the fact that correlation of TAs is not same as data corre-
lation in mathematics. The variation of this correlation can reflect the vari-
ant characteristics of landforms to a certain extent. Hence, we can con-
clude that when one or several TAs are evaluated in some landform, the 
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value of another TA corresponding to them varies around a definite value 
over a short space according to a certain law. This kind of relationship 
among TAs is defined as TA correlation with uncertainty in this concrete 
landform. The correlation among TAs changes according to the landform. 

The functional relationship and relevancy relationship among TAs in a 
concrete landform can exchange in certain situations. The functional rela-
tionship among TAs may change into a relevancy relationship when there 
is an observation error. And correlation among TAs may also be trans-
formed into function relationship by applying all the related factors in the 
equation as variables. By this method, the correlation could be described as 
a type of functional form. 

Correlation does not mean causality. Causality can be established from 
professional knowledge or previous considerations or theories instead of 
by statistics. Correlation makes preparation for causality. It may be direct 
causality, indirect causality, or only a relationship in statistics among the 
variables for remarkable correlation (Wei 2005). Only after understanding 
the correlation in the systems or among the factors can there be a thorough 
understanding of the system, allowing the determination of the leading fac-
tor or potential factor, and knowing which is superior or inferior. It is the 
first step of system analysis to find correlation in the data and calculate the 
value of the correlation degree. This is the basis of factor discrimination, 
predominance analysis, validation of prediction precision and system deci-
sion, etc. 

According to different classified symbols, the correlation among TAs 
can be shown in different forms. It can be divided into significant correla-
tion, partially significant correlation, and insignificant correlation accord-
ing to the degree of correlation; it also can be divided into positive correla-
tion and negative correlation according to relevant directions; linear 
correlation and non-linear correlation according to the relevant form; sim-
ply correlation, compound correlation, and partial correlation according to 
the number of variables concerned. 

3.2 Applicable condition 

There is a most suitable circumstance for every model. In this situation, the 
model runs steadily and its result is credible. This condition of applicabil-
ity includes sampling and modelling. 

The propinquity among all factors of the system is qualitatively esti-
mated by correlation analysis so that the characteristic of correlation val-
ues sequence is discovered by comparing the independent factors with the 
dependent factors of the system. As the sequence of correlation degree is 
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even more important than the value itself in correlation analysis, whether 
the correlation value can keep in the sequence gained by different models 
is a basic prerequisite and an important part of correlation analysis. Corre-
lation coefficients of every sub-sample are the foundation of factors corre-
lation calculation, whereas the distribution of the correlation coefficient is 
affected by many factors. 

Different formulae for the correlation coefficient take on different char-
acteristics in keeping the sequence of correlation values. A comparison is 
drawn between these formulae and it is known that Equation (1) does bet-
ter in keeping the sequence of correlation values (Zhao 1997). Therefore, it 
is adopted in the following study. 

ba
bk

k i
i

)(
)(                  (1) 

where kXkXa iki 0minmin , 

kXkXb iki 0maxmax  

kXkXk ii 0 , 

1,0 . 
 is the recognition differential and ki is the relative difference be-

tween Xi (comparing series, i=1, 2, …, n) and X0 (reference array), which 
is also called the correlation coefficient at the k-th point. 

kXkX ik 0min  represents the minimum absolute difference be-

tween Xi and X0, whereas kxkx iki 0minmin  refers to the minimum 

among all the kxkx ik 0min , i.e. minimum absolute differences be-

tween reference array (X0) and comparing series v(Xi, i=1, 2, …, n). 
In many cases, because of the huge extent of the population, it is not 

possible to examine all of the population. Accordingly, sampling is neces-
sary and then the characteristic of the population can be acquired by gen-
eralizing the result of sampling. That is to say, the sampling methods, area, 
and number of samples have a great influence on the credibility and stabil-
ity of the model. Every sample area will be randomly sampled 20 times; 70 
subsamples are sampled each time and the size of each sub-sample is 3  3 
km. The results of the 20 samples were analysed. If the results are stable, 
the average value of these results will be accepted as the mean trend of this 
area. 
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Due to the algorithm, the analysis windows of slope, plan curvature, and 
profile curvature are focal widows, while the analysis windows of eleva-
tion difference and integral value of the Area-Altitude curve are extended 
to the whole area. That is to say, the analysis windows of the selected five 
TAs are inconsistent. Therefore two statistic variables, i.e. mean and stan-
dard deviation, are selected to express the overall characteristics of these 
three factors (slope, plan curvature, and profile curvature) so that the 
analysis windows of all factors can be unified over the entire extent of the 
sample area. Eight TAs are selected for inclusion in the correlation model. 

If there are two factors, one of which shows close correlation with an-
other one in different areas, i.e. this factor can be substituted by another 
one, it needs to be eliminated from the eight selected factors in order to re-
duce the workload of the operations that follow. Accordingly, each two 
factors are analysed and compared by simple correlation analysis in the 47 
sample areas. The results are: (1) a constant, close correlation does not ex-
ist between every pair of factors from the eight selected in various sample 
areas; (2) a significant degree of correlation varies with different topog-
raphical areas. Based on all the above, the eight selected TAs could be in-
cluded in the following calculations of the correlation model. 

3.3 Correlation Analysis 

3.3.1 The dependent variable for correlation 

There is a need to select a dependent variable as a reference one in multi-
variable analysis, to express the characteristic of landform evolution in the 
sample area with the help of correlation between dependent variables and 
other variables. The dependent variable should reflect the compound char-
acter of the landform for the sample area and express the current character-
istic of the landform and the potential trend of the evolution process to a 
certain extent. According to the above, gully density was selected as the 
dependent variable for the following correlation analysis. 

Gully density, also named valley density or channel density, means the 
total length of gullies in a unit area. It is a factor to reflect the extent of 
ground fragmentation, split by channels. The higher the value of gully den-
sity, the more fragmented is the ground. The more fragmented the ground, 
the more significantly undulating are the slopes. The higher the value of 
gully density, the faster is the surface runoff, soil erosion, and the devel-
opment of gully erosion. Therefore, gully density is an important character 
of landform evolution, precipitation, the ability of soil infiltration, and the 
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resistance to erosion of surfaces, and is also a compound reflection of cli-
mate, topography, lithology, vegetation, and some other ingredients. 

3.3.2 Correlation Analysis of TA 

3.3.2.1 Correlation Analysis in single sample area 

The sample area of Yijun was taken to analyse the correlation among 
slope, plan curvature, profile curvature, elevation difference, integral value 
of Area-Altitude curve, and gully density. Figure 2 is the average correla-
tion chart of 20 stochastical sampling results from the Yijun sample area. 

As is shown in Figure 2, the mean profile curvature shows the most sig-
nificant correlation with gully density, followed by mean plan curvature 
and mean slope in sequence. The slope standard deviation and integral 
value of Area-Altitude curve are the two most highly correlated factors. 
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Figure 2. Average correlation chart of 20 stochastic sampling results in the sam-
ple area of Yijun. 

The sample distributions of these three TAs are extraordinarily close to 
the one of gully density in the Yijun area, whereas the other five TAs go 
further. Figure 3 is the sample distribution and scatter diagram of mean 
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slope and integral value of the Area-Altitude curve corresponding to gully 
density. 
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(a) The sample distribution of mean 
slope corresponding to gully density. 

(b) The scatter diagram of mean slope 
corresponding to gully density. 
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(c) The sample distribution of integral 

value of Area-Altitude curve corre-
sponding to gully density. 

(d) The scatter diagram of integral value 
of Area-Altitude curve corresponding to 

gully density. 

Figure 3. The sample distribution and scatter diagram of compared factors corre-
sponding to gully density. 

With the comparison in Figure 3, the mean slope shows a significant 
correlation with gully density. Namely, when one increases, the other one 
shows the same tendency, and the distribution characteristics of their sam-
ples are the same. However, there are no correlations between the integral 
value of the Area-Altitude curve and gully density, and the distribution 
characteristic of their samples is inconsistent, namely when one of them 
increases, the another might not vary with it. The same is true for the other 
TAs. 

As for the whole process of loess landform evolution, the sample area of 
Yijun is in the early stage of development. Its erosion relies mainly on 
ditch erosion; the depth of ground incision is shallow, and ground erosion 
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is in the horizontal direction. The TAs reflecting landform changes in the 
horizontal direction are related closely to gully density. There is also great 
potential to cut down to the erosion datum in the Yijun area. Correlation of 
the mean profile curvature and the mean slope to gully density just reflect 
this potential. Namely, the surface is comparatively smooth, with gullies 
not developing completely and the extent of erosion is weak. Therefore, 
these three factors, i.e. mean profile curvature, mean plan curvature, and 
mean slope, are significantly related to gully density. But it is less signifi-
cant with slope and standard deviation of profile curvature in the vertical 
direction. 

The integral value of Area-Altitude curve reflects the potential for ero-
sion in the area and the development stage. At the same time, the integral 
value of Area-Altitude curve could not reflect the trend developing in the 
horizontal direction Therefore the correlation between integral value of 
Area-Altitude curve and gully density is the least significant in Yijun. 

3.3.2.2 Spatial dependence of the correlation for TAs  

The correlation model is applied in the other 46 sample areas. A compari-
son shows an interesting phenomenon, namely a spatial dependency of 
TAs according to landforms and spatial location. 

Eight representative samples have been selected to analyse the spatial 
variation law from north to south. They are the sample areas of Shenmu, 
Suide, Yanchuan, Yan’an, Ganquan, Yijun, Changwu, Chunhua from 
north to south, and the corresponding landforms are loess low-hill, loess 
Mao, loess Mao-hill, loess hill-Mao, loess hill, loess fragmentation Yuan, 
loess Yuan, and loess table Yuan, respectively. 

The tendency charts of correlation are calculated from the eight sample 
areas (Figure 4). The curve formed by the correlation is called the correla-
tion curve or correlation spectrum of TAs. Figure 4 shows: 
(1) The correlation among TAs varies according to the landform and spa-
tial location. The correlation will be different when obtained from different 
landforms or different spatial locations. For example, the correlation re-
sults in sample areas Suide and Yanchuan are different; although the land-
form is similar, their locations are different. 

The undulation of the correlation curve increases gradually when the 
landform varies from loess low-hill (such as Shenmu) to loess Mao (such 
as Suide) then to loess Mao-hill (such as Yanchuan), whereas it becomes 
smoother in loess hill-Mao (such as Yan-an, Ganquan). Subsequently, it 
becomes steeper when the landform transits to loess hill and fragmentary 
loess Yuan (such as Yijun, Changwu). 
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There are still some differences between the two correlation curves in 
Suide and Yanchuan, where the landforms are similar. This phenomenon is 
due to the characteristics of the landforms. The landform of sample area 
Suide is loess Mao, whereas the one in Yanchuan is loess Mao-hill. The 
landform in Suide is more seriously eroded, more fragmented on the 
ground, more dispersed on the curvature of the contour, more uniform in 
gully distribution, and less dispersed on slope distribution than the one in 
Yanchuan. There is the common characteristic, which determines the simi-
larity of their correlation curves. However, the unique characteristics of 
their own landforms are the cause of the difference in their correlation 
curves. 
(2) The definition, algorithm, and the geographical meanings of TAs fully 
depict the landform in different aspects and the correlation and their se-
quence among these TAs also depict the landform in different aspects. 
Moreover, correlation values and their sequences vary depending on land-
form and the spatial location. 
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Figure 4. The correlation curves of eight typical sample areas from north to south. 

Every factor fully depicts the sample landform from a different aspect, 
but there are differences in proximity between these TAs and gully density 
For example, slope shows the undulation of the ground in the vertical di-
rection, which is an important factor in water and soil erosion, and is also 
an important controlling ingredient in the flow of substance and the energy 
slope surface. Its average value shows the intermediate level of ground un-
dulation in the sample area, and its standard deviation reflects the variation 
in the degree of ground undulation in the sample area. 

As mentioned above, correlation values and their sequence are different 
according to landform and spatial location. Interestingly, the correlation 
value of mean slope, mean profile curvature, and integral value of Area-
Altitude curve do not change much. Slope is the important motive force in 
water erosion, which is serious in the landform evolution in the loess 
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The correlation between mean plan curvature and gully density is rela-
tively high at the primary stage of landform evolution when the develop-
ment of gullies is incomplete, the deepness of surface incisions are rela-
tively shallow, and the surface erosion is comparatively high in the 
horizontal direction, such as in Chunhua and Changwu, while at the mature 
landform evolution stage, there is violent water and soil erosion, a suffi-
ciently developed gully network and deep incision of the surface, and the 
erosion on the surface is comparatively high in the vertical direction. Con-
sequently, the distribution of plan curvature and gully density in subsam-
ples is inconsistent, and the correlation value and its order reduce greatly. 

In the primary stage of landform evolution, the gully network does not 
develop completely; the riverbed undercuts, side erosion is violent, and 
land between ditches is relatively smooth and wide. Accordingly, there are 
few transitional places from flat places to gullies, and the distribution of 
slope is relatively dispersed, which makes the subsample distribution of 
slope standard deviation and profile curvature standard deviation, apart 
from those of gully density and the correlation, relatively low (such as 
Chunhua and Yijun), while at the mature stage of landform evolution, the 
correlation is relatively significant. 

The plan curvature standard deviation mainly reflects the distribution of 
the turnings of contours and its expression on landform, especially on the 
status of erosion, and is not nearly so good as mean slope and mean profile 
curvature. In Shenmu especially, erosion is not only by water but also by 
wind. There are pieces of loess Mao-hill distributed in the area, covered 
with dune or a thin layer of sand, with 317 m of absolute difference in ele-

Spatial Correlation of Topographic Attributes in Loess Plateau 

plateau of northern Shaanxi Province. And the correlation between slope 
and gully density is relatively high in every case. It is particularly special 
for the mean slope in Yan’an and Ganquan. In these two areas, the differ-
ence between the two correlation values is not obvious, but the correlation 
of standard deviation of profile curvature, which could reflect the disper-
sion extent of changes in the vertical direction, increases suddenly so that 
the correlation orders of other TAs decline to various extents and tend to 
balance and the correlation order of mean slope drops slightly. Mean pro-
file curvature, having significant correlation to gully density, also ex-
presses the importance of water and soil erosion. The integral value of the 
Area-Altitude curve can only reflect the potential of the ground to be 
eroded, and is not good at expressing the current landform. Therefore, its 
correlation order is always located in the position with minimum influence. 
In the sample areas of Suide and Yanchuan, correlation of mean plan cur-
vature reduces greatly. Therefore, the correlation order of integral value of 
Area-Altitude curve rises a little. 

vation. Therefore, the surface erosion is comparatively high in the horizontal 
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3.3.2.3 Analysis of mixed geomorphology  

Based on the analysis of variations in the trends from the eight representa-
tive samples from north to south, the sample area of Ansai with mixed 
landforms has been chosen to validate the law. This area extends from 
109°00'00"E to 109°07'30" E, from 37°10'00" N to 37°15'00" N, and lies 
near to the Yanhe River in Ansai county. Figure 5 is the surface shaded re-
lief map. 

Figure 5. The hill shaded map of the sample area in Ansai. 

As is shown in the chart, the mostly asymmetric erosion happens in this 
area and the surface is fragmented. Landforms in the southwest corner are 
mainly loess Mao, with loess hill in the northeast corner, i.e. landform in 
this area is heterogeneous. Accordingly, the correlation curve might be dif-
ferent from the one of simply loess Mao landform or loess hill landform. 

Figure 6 depicts the correlation percentage and sequence after the sort-
ing of all factors. Comparing Figures 6 and 4, the following observations 
can be summarised: 

direction and the correlation order of the plan curvature standard deviation 
increases accordingly. Whereas in Yan’an, with loess hill landforms and a 
sufficient gully network with 368 m of absolute elevation difference, the 
dispersion of surface transitions is not obvious in either the vertical or 
horizontal directions. So the correlation of its plan curvature standard de-
viation and profile curvature standard deviation are relatively significant. 
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 (1) The correlation curve of the Ansai area possesses the same characteris-
tics as not only the one of loess Mao but also of loess hill. The form of the 
curve corresponds to its landform. 

The reason is that this sample area is located in the continuing part of 
Baiyu Mountain and close to the Yanhe River and its surface erosion is ac-
celerating. Consequently, landforms in this area are heterogeneous, i.e. 
there is a wide extent of loess Mao as well as beam shaped loess hills. The 
landforms determine the distribution of TAs, the ultimate characteristics of 
correlation among TAs, and then the form of the correlation curve. 
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Figure 6. The correlation curve of TAs in the Ansai sample area. 

 (2) In this area, the correlation of the TAs expressing the change on the 
surface in the vertical direction is relatively significant, while the one in 
the horizontal direction is further correlated. Among these factors, mean 
profile curvature shows the most significant correlation to gully density, 
followed by slope standard deviation and mean slope in sequence, while 
elevation difference shows the least correlation. 

The landform of the sample area is the ultimate reason for this kind of 
correlation curve. The heavy erosion, especially in the vertical direction, 
leads to the significant correlation of these TAs, which can reflect the 
changes in the vertical direction (such as mean profile curvature, slope 
standard curvature, etc.), while the relatively insignificant correlation of 
those TAs reflects the small changes in the horizontal direction (such as 
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mean plan curvature and plan curvature standard deviation). The correla-
tions of elevation difference and elevation curve integral are the two far-
thest for the heterogeneity of the landform because of the heterogeneity of 
the landform which leads to the asymmetric distribution of their value in 
sub-samples, are the two of the least significant correlated. 
(3) Figure 6 has validated the results in representative sample areas, and it 
also confirmed that the correlation curve changes along with the landform, 
different forms of curve indicating different landforms, and similar corre-
lation curves indicating similar landforms. 

4 Conclusions 

In this chapter, we proposed a novel correlation model, and the correlation 
characteristic and its variation laws for TAs have been discussed. Several 
conclusions can be drawn. 

1. TA correlation curves can identify landforms. For the same terrain 
type, the correlation curve varies within a certain range, and takes 
on a curve band instead of a single value. This is because the na-
ture of surface erosion and the thickness of loess are different 
within each landform. 

2. The correlation curve changes according to the landform. That is 
to say, the correlation values and their order vary according to the 
landform. The root cause of the dissimilarity is the difference of 
dominance mentioned in (1). The variation in the correlation spec-
trum reflects the essence of the dissimilarity.  

3. The topographical area and evolution pattern of the test areas can 
be expressed by the TA correlation spectrum perfectly. A new idea 
and method are proposed for geomorphology research on the 
Loess Plateau. 

This work could be helpful for landform recognition research in the 
Loess Plateau, because correlation curves are sensitive to the landform and 
evolution pattern. Future work may focus on the mechanism of the correla-
tion characteristics of TAs, combining with parameters such as manner of 
erosion on the surface and thickness of loess, etc., and the relationship be-
tween these parameters and the correlation value of TAs is also an interest-
ing research topic. 
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Terrain-based Revision of an Air Temperature 
Model in Mountain Areas 

Abstract 

The estimation of air temperature in mountainous areas at a local scale is 
of great significance in both agriculture and local climate investigation. 
However, because of the lack of sufficient field observed data, the tem-
perature at each spatial site is always difficult to estimate. Based on digital 
elevation models (DEMs) of 25 metre resolution, a terrain reversed tem-
perature model is constructed, with which spatial estimation of tempera-
ture is realized in detail by simulating insolation in each grid unit. Then 
two comparisons between the new model and the traditional model, the es-
timated temperature and the radiation temperature from a Landsat The-
matic Mapper thermal infrared image (TM6), are conducted to validate the 
new model. An experiment in Yaoxian County, part of the Loess Plateau 
of China, shows that the new model estimated a refined and accurate tem-
perature in detail at local scale under the conditions of very little observed 
data. The model is effective and available for use in those mountainous ar-
eas where there is a lack of observed data or where it is difficult to obtain 
enough observed data. 
 
Keyw ords: DEM, solar radiation, temperature, simulation. 

1 Introduction 

Mountain terrain is characterized by irregular and rapid changes in eleva-
tion over short distance. The air temperature in mountainous areas varies 
widely in spatial distribution. As it is well known, air temperature in 
mountainous areas is influenced by many factors such as altitude, latitude, 
distance to large water bodies and mountain structure. However in certain 
local regions the impact of terrain on air temperature (called local factors 
including slope gradient, aspect, terrain shading and character of land 
cover) is rather obvious (Fu et al. 1996, Weng et al. 1990).  In practical 
terms, due to insufficient climate observation data, the temperature could 
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not be estimated accurately in detail at local scale. The global and compre-
hensive data cannot meet the needs of precision agriculture and local cli-
mate exploration. 

Spatial interpolation is the traditional method for estimating air tempera-
ture in rugged areas (Fu et al. 1996, Weng et al. 1990, Pan et al. 2004). 
With a small number of observed data, those precise interpolation methods 
such as the Inverse Distance Weighting approach (IDW), the Spline 
method, and the Kriging method, etc, are usually not available and suitable 
for obtaining a correct and refined result.  Statistical regression is usually 
employed to estimate the air temperature (Ouyang et al. 1996, Collins and 
Bolstad 1996, Oleg 2001, Pan et al. 2004). Even so, the results can only re-
flect the global trend of temperature in spatial distribution that varies with 
altitude, latitude and longitude. It is still hard to obtain the detailed and re-
fined temperature in each grid unit at higher resolution. 

In recent years, with the development of digital terrain analysis methods 
and multi-scale national DEM databases, more research in applying DEMs 
to simulate the surface temperature of rugged areas has become possible 
(Li et al. 1999). Zhang (2002) introduced topographic factors into a regress 
model to simulate the temperature in the area of Qinghai Lake, Qinghai 
province of China. The estimated result is coarse and it cannot reflect the 
topographical impact on land surface temperature. An even more compli-
cated model was brought forward in which more factors, such as field 
measured temperatures and remote sensing images are required in the 
simulation (Wilson and Gallant 2000). As a matter of fact, there are quite a 
few weather stations located in China, but sometimes there has been only 
one station for a county, which is insufficient to acquire enough field in-
formation to estimate a refined result. Because of these limitations, some 
complicated temperature models that call for much factual data are not ap-
plicable in a large area with high resolution simulation. Therefore, a new 
method is put forward to estimate temperature with some higher accuracy 
under the condition of limited field measurement of temperature data. 

2 Test area and data 

2.1 Test Area and Data 
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Yaoxian County, located in the centre of Shaanxi Province (108°34 –
109°6 E and 34°50 –35°20 N), in the southern part of the Loess Plateau (see 
Figure 1), was chosen as the test site because of its ideal terrain conditions 
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Figure 1. Location of Yaoxian County and its topographic hillshade map. 

and research basis. Yaoxian County has three landform regions: low hill, a 
gully-hill region, and the loess tableland, with a total area of 1,613 km2. 
Along the N-S direction, elevation reduces gradually, ranging from 1,713 
to 543 metres above sea level, with a mean elevation of 1,114 metres. The 
relief is complex and with many steep gradients. The gradient slope ranges 
from 0 to 68 degrees with the mean value of 16.8 degrees. Yaoxian County 
lies in the warm temperate zone with a continental semi-humid, semi-dry 
monsoon climate, with low rainfall and rich solar radiation. From north to 
south, the temperature decreases gradually. Owing to the lower relative 
height, the regional wind advection has less influence on the local tem-
perature. Thus, this chapter focuses mainly on the impact of slope gradient, 
aspect, and the terrain shadings on the local surface temperature distribution. 
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2.2 Experimental Data 

DEMs, observed climate data, and remote sensing images are used in this 
study. DEMs were generated by digitizing contour lines from 10 sheets of 
1:50,000 scale topographic maps and interpolating in a regular grid mesh 
of 25 metres. 

Climate data was provided by the Shaanxi Meteorological Bureau. The 
average temperature per month is recorded from 1970 to 2000 at 15 
weather stations around Yaoxian County. Figure 2 shows the location of 
weather station sites, which are Yijun, Baishui, Yongshou, Pucheng, Dali, 
Weinan, Gaoling, Jingyang, Qianxian, Binxian, Xunyi, Tongchuan, Chu-
hua, Fuping, and Yaoxian. 
 

 
Figure 2. The location of weather station sites 

A remote sensing image was used to validate the simulated result. The 
image is from the Shaanxi Remote Sensing Information Centre for Agri-
culture. The Landsat Thematic Mapper (TM) image of Yaoxian County 
was generated on May 28th 1997. The thermal infrared image of TM (band 
6, also called TM6) with a resolution of 120 m was prepared for the com-
parison with the simulated result of the new model after a series of image 
processing techniques had been carried out, including geometric correc-
tion, image matching, re-sampling, and normalization. In order to match 
with the results of new model, the resolution of the image was converted to 
25 metres by re-sampling. 
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3 Models 

3.1 Traditional models  

Various interpolation methods are used to estimate the spatial distribution 
of temperature. Many of them, such as Inverse Distance Weighting (IDW), 
Spline and Kriging interpolation, etc., need enough sampling points to ac-
quire an exact and refined result. Therefore, statistical regression of tem-
perature against altitude, latitude and longitude (see Equation 1) is usually 
applied. 

HaaaaT 3210  (1) 

where, , , H denote temperature, latitude, longitude, and altitude of the 
observation point, respectively, and parameters a0, a1, a2, a3 are the regres-
sion coefficients. In this model, the latitude, longitude, and altitude reflect 
the change of temperature from the equator to the two poles, from ocean to 
inland, and from sea level to high mountains, respectively. Although the 
model could give a comprehensive figure in revealing temperature distri-
bution at the regional scale, it still fails to reveal the difference of tempera-
ture at the local scale. 

Although the former temperature model had contained ‘elevation’, one 
factor of topography, the estimated result for temperature is still coarse. In 
order to improve the simulation result, some models have also integrated 
other topographic factors, such as slope and aspect, directly into the re-
gression model (Zhang et al. 2002). However, it is known that many 
weather stations are located in flat areas where they suffer little terrain in-
fluence. Thus, it is hard to import topographical factors into models di-
rectly when the statistical data of the regression model come from such 
weather stations. 

As we all know, solar radiation is the greatest thermal energy source. 
The more insolation, the higher is the temperature (Weng 1997). Some 
studies introduce insolation and vegetation index (e.g. NDVI index) into 
the temperature model to achieve a more accurate result. However, it is not 
applicable in areas where there is a lack of many field measurements, e.g. 
temperature, the amount of cloud cover, etc. and RS data that provides the 
required dataset for the temperature model. 

Therefore, a simple and effective terrain based revision of the tempera-
ture model is put forward in this chapter. In this model, a refined result of 
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temperature distribution is estimated by only a few observed field tempera-
ture data. 

3.2 Revised temperature model based on terrain 

The idea of this improved temperature model is to introduce insolation as a 
coefficient, which is the ratio between insolation from an inclined surface 
and insolation from a plane surface. The improved model is put forward as 
follow: 

TTT  (2) 

where, T’ is the revised air temperature. T is the temperature calculated by 
formula (1), T is the temperature difference between the inclined surface 
(named ‘slope unit’) and the correlated plane surface (named ‘flat unit’). 

T presents the local temperature difference with the scale of each grid 
unit.  

When the astronomical parameters, atmospheric circulation and geo-
graphical factors are similar in a certain area at a large scale, the influence 
of slope gradient, aspect, and terrain shadings are relatively obvious at the 
local scale. However, it is very difficult to introduce these topographic fac-
tors directly into the temperature model. As mentioned above, weather sta-
tions are usually located in flat areas, or on the tops of hills where the ter-
rain is very similar in these sites. So the impact of terrain on temperature is 
counteracted when statistical regression is built (Ouyang et al. 1996). In 
order to better reflect the influence of terrain on land surface air tempera-
ture, total insolation is introduced to the traditional temperature model. As 
is well known, solar radiation is the main source of land surface tempera-
ture. Total radiation received by the land surface can reflect the influence 
of terrain on temperature synthetically. Many researches have shown that 
insolation and temperature have a close relationship (Tan et al. 2001). 
Weng (1997) proved that a linear relationship exists between air tempera-
ture and total insolation, and indicated that the discrepancy of surface tem-
perature results from the diversity of solar radiation received. Fu and Rich 
(2002) also proved that there are linear relationships between the maxi-
mum and minimum soil temperatures and solar insolation. Therefore, the 
relationship between temperature in the slope unit and flat unit, as well as 
total insolation in slope unit and flat unit, can be expressed as follows: 

T
T

Q
Q

flat

slope  (3) 
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where, Qslope and Qflat stand for global radiation amounts (MJ/m2) at each 
slope unit and flat unit, respectively. T’ is the temperature in the inclined 
surface (the temperature after revision by Equation (2)). Hence, according 
to Equation (2), the temperature difference T between each slope unit and 
flat unit is: 

T
Q

QQ
T

flat

flatslope  (4) 

where T is the mean temperature per month, calculated by Equation (1). 
Qflat denotes total insolation in each flat unit. Qflat reflects the impact of 
those global factors on temperature. Qslope is the total insolation in each 
slope unit, which can reflect the impact of local terrain factors on tempera-
ture. 

In rugged areas, total insolation is the sum of direct insolation, sky dif-
fuse insolation, and reflected insolation, which is part of the solar short 
wave radiation from terrain reflection. The reflected radiation is less than 
5% of the others, which is small enough to be ignored in mountains with-
out snow (Li et al. 1988). Under the same climate conditions in the loess 
hill area, the proportion of the direct insolation is relatively larger than the 
diffuse insolation. The spatial distribution character of total insolation is 
dominated by direct insolation. Furthermore, the spatial distribution of di-
rect solar radiation is dominated by astronomical radiation. 

As a result, the ratio of total insolation from each slope unit to each 
plane unit is approximately equal to the ratio of astronomical radiation 
from each slope unit to each plane unit under the same climatic conditions. 

flat

slope

flat

slope

S
S

Q
Q

0

0  (5) 

where, S0slope is the astronomical radiation in each slope unit, S0flat is the as-
tronomical radiation in each flat unit (projected plane of the real surface in 
each grid unit) so that the terrain based revised model for estimating air 
temperature can be expressed as follows:  

Haaaa
S
S

T
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slope
3210

0

0  (6) 
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where E0 is the revised factor of Earth orbit; I0 is the solar constant (4.9212 
MJ/m2·h); T is the time period of a day (24 hours);  is the solar declina-
tion angle; n is the dispersed number of insolation-duration; r,i and s,i  
are sunrise hour angle and sunset hour angle on the slope incline in ith dif-
ferential time units, (it is zero at noon and positive before noon); gi is the 
terrain shading, which reflects the impact of the terrain on the insolation-
duration; s is the sunset hour angle in plane. E0 and I0 are the periodic 
function of t. Their Fourier progression expression is as follows (Zuo et al. 
1991): 

2sin000079.02cos000768.0
sin001472.0cos033494.0000109.10E

 (10) 

2sin00089.02cos006799.0
sin07207.0cos399494.0006894.0

 (11) 

where  is called the day angle. 

t
2422.365

2
 (12) 

1Nt  (13) 

where N is accumulation date. It is the arranged number of a date in a year. 
The above equations show that only several field observed temperatures 

are needed in the new temperature model. All of the other factors could be 
generated from DEM data. 
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4 Methods 

There are two major processes to realize the temperature estimation. One 
is statistical regression of climate observed data, which are needed to fix 
the parameters of the models. Equation (14) is the regression equation of 
the annual mean temperature using the monthly mean temperature infor-
mation collected from 15 weather stations.  

HYXT 366 1088.4107.4100.1456.2  (14) 

In this equation, X is the distance to east (metres), Y is the distance to 
the north (metres), the role of X, Y is same as ,  of Equation (1). H 
stands for the elevation (metres). The multiple correlation index (R) is 
0.97, and it passed the significance test when F is 0.01. 

The other process is the simulation of solar radiation on both flat and 
slope areas based on the DEM. The technology for this has already come 
to maturity (Dozier and Frew 1990, Corripio 2003, Wilson and Gallant 
2000, Yang et al. 2004, Zeng et al. 2003). 
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Figure 3. Procedure for the temperature simulation. 

Figure 3 shows the procedure of the temperature simulation. Key prob-
lems in the realization of the estimation of air temperature are the simula-
tion of astronomical radiation on both slope and flat surfaces. In rugged ar-
eas, the exact sunshine hours on each grid unit are most important for the 
correct simulation. For the convenience of integral computing, the duration 
of insolation on each DEM grid cell is dispersed. Along with the shift of 
solar position, the reachable sunlight is deduced for every differential time 
unit by considering the terrain factors. The effective sunshine hours in a 
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day in every single grid cell is calculated by summing up every differential 
time unit. Solar simulation is realized with the support of Arc/Info AML 
(Arc Macro Language) language. The simulation process is as follows: 

1. Extracting slope gradient and aspect based on DEM in ArcGIS 
software. 

2. Calculating the sunrise hour angle and sunset hour angle on each 
specific day and giving the dispersed number of durations of inso-
lation for 36 differential times. 

3. Calculating the sunrise angle hour ri and sunset angle hour si  
for each differential time, and calculating the corresponding solar 
altitude angle and solar azimuth angle in each solar position. 

4. Simulating the terrain shadings in each differential time. 
An illumination tracking algorithm is employed to calculate terrain 

shading (see Figure 4). Searching all grids along the projected line of solar 
position, which is the solar azimuth angle at ith time, 0 is set as grid cell-
value, namely 0id , under the condition that the angle ( 2), being the 
elevation angle between current grid position (A), and others grid (B) is 
greater than solar altitude angle ( 1); otherwise, 1id . If the grid value is 
0, it means that it is covered by neighbouring cells, and with no solar illu-
mination at that moment. Conversely, a value of 1 means it is irradiated. 
The value of di should be calculated in each differential moment respec-
tively. Terrain shadings coefficient gi in Equation (6) denotes whether a 
grid cell is illuminated in every interval time. Its value is decided as fol-
lowing: 
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Figure 4. Concept of terrain shadings di. 
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The above equations indicate that the illumination of a cell is controlled 
by the illumination of two ends of a interval time from the hour angle of 

i-1 to i. If both i-1 and i are illuminated, the whole time of the interval 
is illuminated. If one of them is illuminated, then half of the whole interval 
time is illuminated. 

The daily astronomical solar radiation is available by accumulating the 
solar radiation in each differential time. A month’s radiation is the sum of 
the daily radiation. 

After the simulation of plane astronomical radiation and slope astro-
nomical radiation, the revised coefficients could be decided and a cell by 
cell revised surface temperature matrix could be achieved. 

5 Results 

5.1 Simulation result and comparison with traditional model 

The annual mean temperature of Yaoxian County is mapped and compared 
with that from the traditional model (statistical regression). Experimental 
results (see Figure 5) show that the new model (terrain based revision) is 
more reasonable in expressing the characters of land surface air tempera-
ture. It shows that the spatial distribution of air temperature has a strong 
relationship with relief. The traditional model can present the general trend 
of temperature along with latitude and altitude. From North to South the 
grey colour of the map changes from dark to light, which shows the air 
temperature increases gradually. Even more details could be found in the 
map of temperature after terrain revision. Table 1 shows that the range and 
standard deviation of annual mean temperature are becoming larger after 
terrain revision. This reflects the greater diversity and more differences are 
appearing in the map after terrain revision. The temperature in northern 
low hill areas falls greatly and the minimum value changes from 7.32°C to 
1.41°C. This is mainly because in some shady areas, which hardly receive 
direct insolation, the insolation is relatively small and causes the decrease 
in the revised coefficient of the new model. Therefore the temperature in 
this area is correspondingly low. 

A comparison of annual mean temperature histograms (see Figure 6) be-
tween the two temperature methods shows that the temperature ranges 
from 6 divisions to 13 divisions. The diversity of the temperature distribu-
tion is enhanced in the model of terrain based revision. 
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(a) Temperature before terrain-
based revision (traditional model)

(b) Temperature after terrain-
based revision

(a) Temperature before terrain-
based revision (traditional model)

(b) Temperature after terrain-
based revision  

Figure 5. Comparison of temperature map between traditional model (a) and ter-
rain based revised temperature model (b). 

Table 1. Comparison of simulated temperature. 

Items Max Min Rang Mean Std dev. 
Before terrain revised 12.86 7.32 5.54 10.22 1.17 
After terrain revised 13.08 1.41 11.67 9.25 1.52 
 

Figure 7 shows that temperatures fall quickly with the increase of slope 
gradient in the model of terrain based revision; a trend cannot be found in 
the traditional model. 

Figure 8 shows that the trend of simulated annual mean temperature af-
ter terrain revision varies with slope aspect in a rather regular pattern. The 
temperature is higher in sunny slopes than in shady slopes, which seems 
quite balanced in eastern and western oriented slopes. The statistical result 
shows that the mean temperature in sunny exposed slopes (South, Southeast 
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Figure 6. Comparison of simulated annual mean temperature. 
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Figure 7. Temperature against slope 
before and after terrain revision. 

Figure 8. Temperature against aspect 
before and after terrain revision. 

 
After terrain based revision, temperature becomes lower (see Table 1, 

Figure 7 and Figure 8). It is mainly due to the revised coefficient. The ratio 
of astronomical insolation between plane and slope units is different from 
the ratio of total insolation between plane and slope units. The gird unit 
shadowed by terrain usually has a smaller astronomic insolation, causing 
the decrease in the revised coefficient. 
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(North, northwest and northeast slope). 
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5.2 Comparison and validation with TM6 image 

In order to validate the accuracy of the simulated result, this chapter also 
reports a comparison between the simulated temperatures and the radiation 
temperature from the Landsat TM6 thermal infrared image. This image 
(see Figure 9b) contains the ground surface heat information, which is 
compared with the result from the terrain based revised temperature model. 
The grey tones of the TM6 image reflect the land surface temperature. The 
brighter grey tones mean higher temperatures (Tan et al. 2001). The annual 
mean temperature in May (see Figure 9a) was simulated, which corre-
sponds closely with the time of the TM image. Although there are some 
differences in the time of the estimated temperature and TM image, some 
similarities still exist in the spatial distribution of temperature because the 
temperature through the grey value of the image can be accepted as a con-
sequence of the heat accumulated for that period of time. 
 

(a) (b)(a) (b)

 
Figure 9. A comparison between average temperature simulated on May (a) and 

TM6 thermal infrared image and location of test section plane (b). 

A few pre-processes, i.e. geometry adjustment, re-sampling, and stan-
dardization are carried out to make the TM6 image match the simulated 
temperature. Both the simulated temperature data and grey value of the 
image are standardized by normalization. The normalization equation is: 

minmax ZZ
ZZZ meani

i  (15) 
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where iZ  is the new value after standard, Zi is the old value,  Zmax, Zmin and 
Zmean are the maximum, minimum and mean value of the simulated tem-
perature and TM6 image grid layer. 

Figure 9 shows a majority of similarity between the spatial distribution 
of land surface heat from estimated temperature and the temperature from 
the TM6 image. It is clear that the relief plays a very important role in the 
land surface heat redistribution process on a local scale. There still are 
some differences of temperature on the sites of different land cover, as 
shown in the following profiles. 

Several typical profiles are selected in the test area, located in different 
landforms of Yaoxian County (see Figure 9b). 

Figure 10 makes a comparison between the simulated temperature and 
the TM measured one along four profiles. Profile 1 goes from north to 
south in Yanxian County and across three different landforms. Profile 2, 3 
and 4 are located in low hill region, gully-hill region and loess tableland, 
respectively. A general similarity could be found in their distribution pat-
tern, except for some specific land cover areas, i.e. a reservoir and river 
can lead to the falling of temperature (see A in profile 1, C to G in profile 
4), and an urban heat island effect will increase temperature (see B in Pro-
file 2). Owning to the instantaneous nature of satellite data, some errors 
also appear caused by the time differences. 
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Figure 10. A comparison of temperature between DEM simulated temperature 
and TM6 radiation temperature. 
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The result proves that the terrain based revision of the temperature 
model has more reasonable results than the traditional one in low hill, 
gully-hilled loess regions. In the loess tableland, the errors are relative 
large because of the complexity of land use and land cover in this area. 

6 Conclusions and Discussions 

Terrain based revision of the temperature model can present the spatial dis-
tribution of temperature in detail. Taking insolation as an adjusted coeffi-
cient of temperature can overcome the difficulty of integrating terrain fac-
tors into a statistical regression model and it can also improve the precision 
of temperature estimation. Although the model is simpler than some com-
plex temperature models, the simulated result for temperature is valid and 
refined. It can be widely and effectively used in the rugged area without 
much observed temperature data. 

The improved models involve local terrain factors such as slope gradi-
ent, aspect and terrain shadings. The obstructing effect of the terrain to at-
mosphere advection is not within the scope of this research. In some high 
mountains, wind is blocked off by terrain and causes great differences in 
temperature between windward slopes and leeward slopes (Fu et al. 1996). 
Therefore, in high mountain areas, the influence of terrain obstructing 
warm or cold advection should be considered. 

In this model, the revised coefficient, the ratio of astronomical radiation 
from slope to flat areas, is not as exact as the ratio of global radiation from 
slope to flat areas. In the Loess Plateau area, clouds are always rare. The 
proportion of diffuse radiation in global radiation is relatively small. 
Therefore, the error of revising the coefficient by replacing total radiation 
by astronomic radiation can be ignored. In hill and mountain areas, gener-
ally lacking in adequate observed data, the revised model is valid and re-
fined enough to estimate land surface air temperature. 

Compared with the TM6 image, the new model can achieve reasonable 
results in low hill and gully regions, while exhibiting large differences in 
the loess table land. Most differences are due to the different land covers, 
such as vegetation, water bodies, and urban land, etc. The impact of land 
use should be taken into consideration in further research to improve the 
veracity of the temperature model. More investigation, both theoretical and 
practical, should be carried out to perfect the model and simulation 
method. 
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National Mapping of Landform Elements in 
Support of S-Map, A New Zealand Soils Database 

James R.F. BARRINGER, Allan E. HEWITT, Ian H. LYNN 

Abstract   

This paper describes an application of terrain analysis where a national 
dataset of landform elements derived from a 25 m resolution national digi-
tal terrain model has been used to underpin soil-landscape modelling in the 
complex steepland terrain of New Zealand. This research supports S-map, 
a new initiative to improve New Zealand’s soil databases. Landform ele-
ments are derived from a fuzzy classification based on local geometry 
(curvature and slope) and landscape context, and provide a primary foun-
dation for mapping soil distribution in steepland land systems, which sig-
nificantly improves knowledge of soil distribution on hillslopes in complex 
landscapes, and over a wide range of land systems. So far, land elements 
and soil-landscape models have been used to model soil distribution in 
more than 10 distinct land systems (covering over 10% of New Zealand’s 
total steeplands area). 
 
Keywords: Digital Elevation Model (DEM), landform elements, stee-
plands, soil mapping. 

1 Introduction 

Soil survey/mapping in New Zealand has a history, in common with many 
countries, of polygon-based mapping at multiple scales with publication of 
paper maps and associated reports dating from the 1930s to 1990s. Recent 
demand for more quantitative soil data to support environmental simula-
tion and production models with comprehensive national coverage has 
highlighted the need for national consistency in scale, soil correlation, and 
data standards. For example, coverage of current spatial data is patchy in 
its distribution, scale, and quality. Better data exist for arable lowlands, but 
lack of data for non-arable hill and mountain lands is limiting sustainable 
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development plans, ecosystem studies (Leathwick et al. 2003), and hydro-
logical modelling. 

The need for new soils data to better meet this demand has been recog-
nized, but to generate new and improved soils data using traditional map-
ping techniques based on aerial photograph interpretation and extensive 
field survey is constrained by limited resources. In addition, traditional 
methods involve elements of subjectivity that can make results inconsistent 
and hard to reproduce. Over the last decade studies, both internationally 
(Gessler et al. 1995, Wilson and Gallant 2000, Grunwald 2006), and in 
New Zealand (Dymond et al. 1995, McLeod et al. 1995, Harmsworth et al. 
1995), have shown the utility of digital terrain analysis to complement 
manual soil survey. This applies in particular to steepland and hill soils, 
where soil hydrology and soil physical properties are controlled by topog-
raphic variation such as changes in slope, aspect, and elevation. With me-
dium to higher resolution digital elevation models (DEMs) now readily 
available over large areas, terrain analysis methods are being used exten-
sively in digital soil mapping (e.g. McBratney et al. 2003). 

2 S-Map 

New Zealand’s response to the demand for improved soil data is called S-
Map (Lilburne et al. 2004). Completion of S-Map will for the first time 
provide consistent and comprehensive national soil data layers to support 
applications at local, regional, and national scales. It builds on previous 
soil mapping by filling gaps with new mapping and upgrading the informa-
tion content and associated database to meet a new national standard. The 
S-Map database will have national coverage and contain predominantly 
new digital data at a scale that will resolve hill slopes (1:50,000 scale). 

The vision for S-Map is to provide excellent access to relevant soil in-
formation through the Internet, with consistent soil map scale, key soil at-
tributes derived for all soils, centralized curation and quality assurance, 
ease of integration of soil with other data sets/models, and application 
from field to national scales. 

The primary map layer of S-Map consists of soil classes, i.e. polygons 
that are labelled with the taxonomic family of the soil. Each soil family is 
defined as a unique combination of attributes at the New Zealand Soil 
Classification (NZSC) soil form level (Hewitt 1998, Clayden and Webb 
1994). Attributes included are the NZSC Order, Group and Subgroup, par-
ent material, rock class, dominant texture, and permeability class. Soil 
classes are further characterized as siblings according to their depth to 
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rock, stoniness, drainage, texture, and functional horizons (Webb 2003). 
The uncertainty of each of these family and sibling attribute classes is 
specified. 

Associated with this soil class layer are additional map layers compris-
ing base properties developed from expert knowledge and derived soil 
properties based on a model or pedotransfer function. The base soil prop-
erty layers are depth to contrasting material (diggability), depth to slowly 
permeable layer, rooting depth, rooting barrier, horizon thickness, stoni-
ness, clay and sand content, and a set of up to five functional horizons that 
best describe soil morphology vertically (Webb 2003). The derived soil 
layers are generated from a variety of models from simple lookup tables 
that depend only on the soil class to more complex mathematical models 
that combine soil, land use, vegetation, climate, or topographic attributes. 
Derived layers will include available water (mm), macroporosity, water re-
tention, bulk density, total carbon, total nitrogen, phosphorus, calcium, 
cation exchange capacity, pH and phosphorus retention. 

The S-Map methodology differs depending on which of two major land-
scape types are being mapped. 

1. Lowlands, dominantly flat to rolling land. Landforms are of such 
low relief that DEMs (based on current 20 m contour data) cannot 
be used for soil-landscape modelling. Soil mapping uses conven-
tional methods, based on air photo interpretation and free survey 
techniques. 

2. Uplands, dominantly hill and mountain terrain. Relief allows ap-
plication of soil-landscape modelling based on DEMs and other 
spatial information. The actual modelling used will depend on the 
land system and the sampling cost and availability of data. The 
predominant technique will be to derive soil distribution rules 
from available data, literature, and new sampling from representa-
tive windows, and apply these to modelled landform elements. 

Our chapter focuses on progress in mapping and presenting soil classes 
and soil properties in upland environments based on DEM analysis of 
landform elements and soil-landscape modelling of soils and soil proper-
ties. 

3 Derivation of Landform Elements 

The mapping method in upland landscapes also has two components 
(Schmidt et al. 2005). The first component involves analysing the DEM to 
delineate landform elements that occur within the land system being 
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Figure 1. Schema defining 15 local landform elements based on classification of 

local slope and curvature (after Schmidt and Hewitt 2004). 

For classifying the land surface, we used a combination of the ap-
proaches described by Dikau (1989) and Wood (1996), which describe 
curvature for sloping and for low-gradient/flat areas (Figure 1). For sloping 
areas, profile curvature and tangential curvature are used to classify nine 
form elements (Figure 1a). Curvature is classified according to three 
classes: concave, straight, and convex. For flat areas, maximum and mini-
mum curvatures (Shary et al. 2002) are used to describe six fundamental 
form elements (Figure 1b). The final classification results in 15 elements, 
which can be defined by geomorphographic terms as shown in Figure 1 
(after Schmidt et al. 2003). 

Landform elements are strongly scale-dependent, and the calculation of 
curvature derivatives at varying window sizes is available in our model, 
based on Wood (1996) and Schmidt et al. (2003). However, attempts to 
utilize multi-scale analysis (Schmidt and Andrew 2005) have tended to 
show that significant landform elements at within-hillslope scale will be 
ignored in favour of larger-scale forms. We found swale and hollow terrain 
at a scale of 10s to 100s of metres was often ignored in favour of the ridges 
and valleys in which they are set, which have spatial scales in the order of 
100s to 1,000s of metres. For our initial national land element analysis, we 
therefore chose to use a fixed kernel size for curvature calculations of 7
25 m DEM cells, measuring curvature over a spatial scale of 175 m. 

7,

modelled and the second places these landform elements in terrain context 
(Schmidt and Hewitt 2004). 
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Because the “form elements” defined by this analysis are subject to con-
siderable uncertainty (fuzziness), particularly in terms of the DEM deriva-
tives we use to describe them, we have applied a fuzzy classification sys-
tem. The rules defining a form element (Figure 1) can then be 
implemented by applying a fuzzy classification model with a mini-
mum/maximum classifier and AND/OR connections. These algorithms 
generate membership-value maps for each of the 15 form elements, which 
can be used to derive a map of form elements from the maximum member-
ship value for each cell. Additionally, uncertainty in the classification can 
be quantified by the derived maximum membership value, the “confusion 
index” (Burrough et al. 1997), or entropy values (Wood 1996). These 
maps express the uncertainty of the classification for each classified unit 
(e.g. raster cell). 

The classification of form elements, based on fuzzy local curvature and 
gradient characteristics, must also be placed within a terrain context. To do 
this, a model for terrain position was implemented based on a second, 
higher-scale landform classification. The BLACK TOP HAT approach 
(Rodriguez et al. 2002) was extended to produce fuzzy membership values 
for grid cells in a DEM, which are a measure for landscape position 
(Schmidt et al. 2003). The algorithm requires three global (spatially ho-
mogeneous) parameters: two window sizes identifying the horizontal spa-
tial scales of valleys and hills and an elevation threshold defining the 
minimum magnitude for valleys and hills (i.e. how much hills/valleys are 
exposed-above/submerged-below the surrounding area). These measures 
can be estimated from the DEM. In similar fashion to the form elements 
analysis, the membership functions are mapped (i.e. hills, hillslopes, and 
valleys) and a combined surface based on the maximum membership of 
each of these three landscape contexts derived. 

This approach worked very well in experimental areas, but presents is-
sues of variable landform scale, as well as being a significant performance 
bottleneck when mapping larger areas. The TOPHAT measure is quite spa-
tially coarse, and certainly does not require a particularly high resolution 
DEM to acquire satisfactory results. Experiments with a variety of resam-
pled DEMs indicated that a resolution of 100 m, as opposed to 25 m, gave 
results that were effectively indistinguishable, while the performance gain 
achieved by reducing the number of cells in the TOPHAT neighbourhood 
analysis by a factor of 16 was substantial. During processing the 25 m 
DEM is resampled to 100 m, TOPHAT is run, and then the result is inter-
polated back to a 25 m grid. For our initial national scale analysis, we 
chose to fix the three global parameters to the following values (hill radius 
= 1.5 km, valley radius = 1.5 km and elevation threshold = 20 m) rather 
than attempting to implement spatially varying scale parameters. 

Mapping of Landform Elements in Support of S-Map 
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The final step in the landform element classification is to combine the 
higher-scale, landscape position, TOPHAT model with the form element 
model. Planar, flat landform elements can occur on ridges, backslopes (as 
terrace treads), and in valley bottoms (both as valley bottom and as pro-
nounced terrace treads). These significantly different landscape units are 
not distinguished by the form element model alone. The solution lies in the 
consideration of the higher-scale landscape context: a flat, planar area on a 
hilltop, for example, would be a ridge, or in the case of more extensive ar-
eas, a plateau. Utilizing the landscape position model and form element 
model provides up to 45 different combinations of position and element (3 

 15). In reality the soil scientist cannot deal with this level of differentia-
tion in landform elements, so a rule set is used to derive a final set of land-
form elements simplifying this complexity down to 10 classes by combin-
ing similar landform elements. This rule set can of course be modified 
according to need. 

For the current S-Map project, we have initially used a 25 m resolution 
national DEM for New Zealand (Barringer et al. 2002) to generate a na-
tional coverage of landform elements (Figure 2). Although a fixed spatial 
scale approach has limitations, the scale chosen broadly matches the scale 
at which soil scientists are currently most confident at large-scale delinea-
tion of soil variability in hilly and steepland terrain. This process is carried 
out in a series of embedded Arc Macro Language (AML) scripts using 
workstation Arc/Info version 9.1 (© Environmental Systems Research In-
stitute), which divides New Zealand into tiles of 30 km by 40 km accord-
ing to the map sheet layout of the 1:50,000 scale 260 series topographic 
map sheets (Land Information New Zealand). Once the processing for each 
main island is completed, the tiles are reconstructed into a single Arc/Info 
Grid for each of the North and South islands of New Zealand. 

4 Linking Soils to Landscapes 

The final phase of the soil-landscape modelling process involves linking a 
set of soil-landscape rules for each land system with the landform element 
map to derive a spatial representation of soil classification. This is 
achieved in ArcGIS in grid (raster) format using a simple coding/lookup 
classification system. But, in order to achieve compatibility with the S-
Map data structure for the traditionally polygon-based mapping of low-
lands, ArcGIS “focal majority” and “gridpoly” functions are applied to the 
soil classification grid to produce a vector (polygon) soil class map. The 
distribution of soil attributes is then derived from their association with 
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soil classes or by soil pedotransfer functions. Derived soil information may 
include soil classification (family, sibling, New Zealand Soil Classifica-
tion); physical properties such as soil depth, texture and soil water storage 
capacity; classification of functional horizons; chemical properties, and 
soil fertility. 

Currently, soil-landscape models are being derived based on conceptual 
modelling as used in traditional soil survey. This practice relies heavily 
upon expert pedological knowledge. It is currently the primary methodol-
ogy because in almost all cases there are insufficient measured soil data 
from the field to drive empirical modelling systems. 
 

Figure 2. Left - Part of the national landform element map of New Zealand. The 
Benmore Range is a dry greywacke landscape, and the landform elements shown 
are based on the combined TOPHAT landscape position model and form element 
model (local slope and curvature). The final set of landform elements contains 10 
classes describing the most common landform features. Right - The landform ele-

ments for the South Island of New Zealand based on the combined TOPHAT 
landscape position model and form element model (local slope and curvature) 

with the Benmore Range arrowed. 
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5 Results 

We discuss the results of mapping soils for two land systems. One is a 
relatively simple steep mountain land with simple geology (dry greywacke 
mountains) and approximately 125 soil sample points. The other is a mix-
ture of steepland and hill country with complex geology and significant 
climatic and topographic variation containing some seven land systems. Of 
these, one has 65 sample points, another 25 sample points, but the remain-
der have less than 10 soil sample points per land system. However, previ-
ous published and unpublished work has been used to derive soil-
landscape relationships, which are used in turn in constructing soil distri-
bution rules. 

5.1 Simple dry greywacke mountainous terrain 

In the dry greywacke mountains where rainfall is less than 700 mm, the 
landscape is dominated by a repeating pattern of angular ridges with long 
planar slopes, sharp crests, and narrow valley floors. The soil pattern was 
determined from a stratified sampling programme focusing on four aspects 
(magnetic North, South, East, and West), at low, medium, and high alti-
tudes (c. 650 m, 985 m, 1,260 m). Variation in leaching and weathering 
drives the major variation in soil properties with more developed and 
deeper soils on shady aspects, and with increasing elevation on all aspects 
(McIntosh et al. 2000). 

Although 20 soil series are recognized in the Benmore Range model es-
tablishment area, these were amalgamated into four clearly defined soil 
families. These are based on profile depth, texture, stoniness, degree of pe-
dological development, and trends in base saturation and phosphate reten-
tion, and are more appropriate for pragmatic extrapolation to areas where 
data are scarce or absent. In this land system, concave profile footslopes 
are rare, shoulder slope components are generally of restricted extent, and 
the area of low-gradient slope components is also limited; hence the DEM-
derived “backslope” and “footslope” landform elements were combined to 
distinguish “backslopes”; and all “ridge”, “shoulder” and “spur” landform 
components were combined to distinguish “ridges” (Tables 1 and 2, and 
Figure 3). 
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Table 1. Soil-landscape model for dry greywacke steepland land system (Ben-
more Range). See Table 2 for soil details. 

Backslopes and Footslopes on elevations less than 750 m 
South Tg (80%) + Om (20%) 
North, West, East Om (65%) + Tg (35%) 
Backslopes and Footslopes on elevations between 750 and 1,100 m 
North Tg (70%) + Om (30%) 
East Tg (60%) + Bm (40%) 
South Bm (90%) + Tg (10%) 
West Bm (70%) + Tg (30%) 
Backslopes and Footslopes at elevations above 1,100 m 
North Br (50%) + Om (25%) + Bm (25%) 
South Bm (45%) + Tg (45%) + Br (10%) 
West + East Bm (60%) + Br (25%) + Om (15%) 
Ridge sites at all elevations 
All aspects Om (85%) + Tg (15%) 
Easy rolling plateau 
All aspects Bm (100%) 
 
Table 2. Explanation of soil classification and soil characteristics for soils of the 

dry greywacke steepland land system. 

Soil 
code 

Series name Characteristics NZSC classi-
fication 

Soil taxon-
omy 

Om Omarock Shallow, high base satura-
tion, low P retention 

Typic Rocky 
Recent 

Orthents, 
Haplustrepts 

Tg Tengmeyer Deep, fertile, high base 
saturation, low P retention 

Typic Imma-
ture Pallic 

Haplustrepts 

Bm Benmore 
Acid 

Deep, acid, low base satu-
ration, moderate-to-high P 
retention, low fertility 

Acid Orthic 
Brown 

Dystrudepts 

 
Preliminary testing of the soil-landscape relationships on the adjacent 

Kirkliston Range, and the <750 m elevation component on the Doctors 
Range, and in the Wadsworth Stream catchment (Figure 3), 200 and 300 
km north of the model establishment area, respectively, show good agree-
ment, giving confidence that the model developed near the southern ex-
tremity of the dry greywacke land system can be extrapolated to the whole 
land system (Lynn et al. 2002). 
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Figure 3. Left - The distribution of soils based on landform elements and a soil-

landscape model for the Benmore Range (dry greywacke landscape). Right - 
Shows the extent of this land system (1.1 million ha), which represents approxi-

mately 4% of the total land area of New Zealand. 

5.2 Mountainous terrain with multiple parent materials 

The overall landscape in the Nelson-Motueka region is much more com-
plex, ranging from high mountains in the west and south through to hill 
country and rolling hills nearer the coast. There is a steep rainfall gradient 
from less than 950 mm to greater than 3,500 mm over a distance of about 
30 km near the main ranges. Parent materials range from early Permian ul-
tramafic and indurated sandstones, siltstones and argillites and Devonian 
and Cambrian marbles, limestones, greywackes, argillites and schist in the 

and variable climate 

mountains, to younger Cretaceous but deeply weathered and highly erodible 
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Land systems are defined by grouping rock types of similar composi-
tions, induration, and erosion pattern. Within each land system, a soil-
landscape model is derived by grouping landform elements with similar 
soil associations. The models take the form of lookup tables that relate 
grouped landform elements to soil associations. The soils in these associa-
tions are described in detail in the S-map database. 

Because tectonic uplift rates are generally high in the western moun-
tains, soil distribution is strongly related to erosion patterns. This means 
that the soils are strongly related to land surface form, and the soil patterns 
that can be resolved at a scale of 1:50,000 are readily related to the land 
units delineated by the national map of landform elements. Grouping of 
landform elements differs between land systems, which reflects differences 
in the dominant soil-landscape processes. Within the granite land system, 
for example (Adams 1970, Chittenden et al. 1966), the soil distribution is 
mapped by only two groups of landform elements, but divided further by 
slope, lithology, and degree of weathering between Separation Point Gran-
ites and Separation Point Granodiorites (Tables 3 and 4). 
Table 3. Soil-landscape model for granite steepland land system (Motueka catch-

ment). See Table 4 for soil details. 

Land element Soils map unit label 
Granite – Rolling and low hills – very strongly weathered and leached soil 
Steep slopes (>25 deg) PoP (80%) + PoS (20%) 
Crest, ridge, spur,  shoulder, plateau KaP (60%) + KaD (40%) 
Side slope and hollow KaD (70%) + KaP (30%) 
Granite  - Dominantly steeplands – rainfall > 1,400 mm per year 

Crest, ridge, spur, shoulder, plateau PoP (60%) + PoS (20%) + PoD 
(20%) 

Side slope, hollow, terrace PoD (70%) + PoP (30%) 
Granodiorite  - Dominantly steeplands – rainfall less < 1,400 mm per year 
Very steep slopes (> 35 deg) NgL (80%) + OrP (20%) 
Crest, ridge, spur, plateau OrP (60%) + OrD (40%) 
Side slope, hollow, terrace OrD (70%) + OrP (30%)   

 
The relatively simple soil pattern in the granite landscape contrasts with 

a more complex pattern of the adjacent marble karst land system (Bell 
1973), which uses three groupings of landform elements, slope, and three 
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soil moisture regimes to map soil distributions, which includes associa-
tions of up to five soils occurring together within a single mapping unit. 
Table 4. Explanation of soil classification and soil characteristics for soils of the 

granite steepland land system. 

Symbol Soil Characteristics NZ Soil Classification Soil Taxonomy 

KaD Kaiteriteri 
deep Deep colluvium Typic Yellow Ultic Hapludalt 

KaP Kaiteriteri 
sap 

Moderately deep 
saprolite Typic Yellow Ultic Hapludalt 

OrD Oronoko 
deep Deep colluvium Typic Orthic Brown Hapludalf 

OrP Oronoko 
sap 

Moderately deep 
saprolite Typic Orthic Brown Hapludalf 

NgL Ngatimoti 
lithic 

Thin colluvium 
on rock Typic Orthic Brown Dystrudept 

PoD Pokororo 
deep Deep colluvium Acidic Orthic Brown  Dystrudept 

PoS Pokororo 
stony 

Deep stony col-
luvium  Acidic Orthic Brown  Dystrudept 

PoP Pokororo 
sap 

Moderately deep 
saprolite Acidic Orthic Brown  Dystrudept 

 

6 Discussion 

Our aim is to establish a structure within which to update and express spa-
tially our national soils knowledge. This is a daunting task for a small 
group of pedologists and spatial modelling staff. The limited resources 
available mean that it will be many years before S-Map is completed. 
Therefore, we need to construct a database structure and modelling system 
that will provide a sound foundation for the future. That structure also 
needs to be pragmatic, so that we can make useful progress with limited 
knowledge now, while also being flexible and “automated” (as far as pos-
sible) so that structural improvements, new input layers, improved model-
ling processes or methods, or improved soil-landscape models can all be 
utilized to easily upgrade existing S-map data. In this context, we have 
recognized the (current) ad hoc approach to constructing soil-landscape 
rule sets and models. We have investigated modelling approaches such as 
EXPECTOR (Lilburne et al. 1998) and SOLIM (Zhu et al. 2001). In most 
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land systems, we fall well short of having sufficient data points to drive 
geostatistical analysis techniques or similar data-driven analytical ap-
proaches. Approaches that utilize a more objective approach to rule-based 
modelling such as SOLIM are attractive since they offer a more repeatable, 
transparent and robust approach to deriving soil-landscape models. Such 
approaches are also more likely to lead to more consistent model struc-
tures, which will assist in automation of soil-landscape model implementa-
tion, both for new land systems and for improved/updated existing models. 
It is also important to recognize that the need for a flexible approach to 
soil-landscape modelling will not change over time, since for more remote 
mountainous areas, particularly in the South Island, it is unlikely that there 
will, in the foreseeable future, be sufficient justification to collect the sort 
of raw data required to implement rigorous geostatistical analyses. 

With respect to DEM terrain analysis, we have recognized some poten-
tial problems. Terrain parameters are sensitive to the algorithm used in 
DEM analysis and the quality of DEM data (Schmidt et al. 2003). There is 
also a strong dependency of terrain features on the scale of observation 
(Schmidt and Hewitt 2004). For example, a particular point in the land-
scape can be part of a backslope, a small hill, and a larger valley all at the 
same time, depending on the scale of observation. This means in order to 
model landform features fully we need to consider the multi-scale charac-
ter of landscapes (Schmidt and Andrew 2005). However, up to the present, 
none of the potential innovations that we have investigated have resulted in 
an improved solution over the basic land element analysis described in this 
chapter. Attempts to determine a dominant landscape scale have so far 
tended to recognize the larger features as dominant, and resulted in over-
simplification of the landform elements on hillslopes (spurs, hollows, etc.) 
that have been recognized as significant features at the nominal 1:50,000 
scale of S-map soil-landscape modelling. 

Notwithstanding the comments above, we have found that mapping 
landform elements at a fixed scale has been a useful advance in depicting 
soil variation across complex landforms. Even where there appear, at least 
qualitatively, to be clear changes in overall landscape scale (e.g. rolling 
hills to steep hills to mountains) the scale-invariant landform elements 
seem to provide a useful and consistent view of landform elements at all of 
these scales. 

Landform elements have thus proven useful for grouping similar areas 
of landscape with similar soils into aggregated mapping units (e.g. ridges, 
shoulders, and spurs) for mapping soil distribution within land systems. At 
the same time, landform elements permit us to map soil distribution at a 
scale that effectively disaggregates what would have been homogeneous 
soil mapping units (polygons) in conventional soil surveys. This means 
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that using landform elements as a primary carrier of soils information pro-
vides significantly improved knowledge of soil distribution on hillslopes in 
complex landscapes, and over a wide range of land systems in New Zea-
land. 

Acknowledgments  

The authors would like to thank Linda Lilburne, Trevor Webb and David 
Pairman for the comments on drafts of this chapter, and Christine Bezar 
for editorial checking and corrections. The research described here is sup-
ported by the New Zealand Government through the Foundation for Re-
search, Science and Technology under contract C09X0306. 

References  

Adams, J.A., (1970), A study of soil sequences in relation to the growth of Pinus 
radiata in Nelson, unpublished PhD thesis, Lincoln University, Canterbury, 
New Zealand. 

Barringer, J.R.F., McNeill, S. and Pairman, D., (2002), Progress on assessing the 
accuracy of a high resolution digital elevation model for New Zealand, Pro-
ceedings 5th International Symposium on Spatial Accuracy Assessment in 
Natural Resources and Environmental Data, 10–12 July, (2002), Melbourne: 
187–195. 

Bell, C.J.E., (1973), Mountain soils and vegetation in the Owen Range, Nelson. 1. 
The soils, New Zealand Journal of Botany, 11: 49–72. 

Burrough, P.A., van Gaans, P. and Hootsman, R.J., (1997), Continuous classifica-
tion in soil survey: spatial correlation, confusion and boundaries, Geoderma, 
77, 115–135. 

Chittenden, E.T., Hodgson, L. and Dodson, K.J. (1966), Soils and agriculture of 
Waimea County, New Zealand, Soil Bureau Bulletin 30, Wellington: DSIR. 

Clayden, B. and Webb, T.H., (1994), Criteria for Defining the Soilform - the 
Fourth Category of the New Zealand Soil Classification, Landcare Research 
Science Series No. 3. 

Dikau, R., (1989), The application of a digital relief model to landform analysis in 
geomorphology, In Raper, J. (ed.): Three Dimensional Applications in Geo-
graphical Information Systems, London: Taylor and Francis. 

Dymond, J.R., De Rose, R.C. and Harmsworth, G.R. (1995), Automated mapping 
of land components from digital elevation data, Earth Surfaces Processes and 
Landforms, (20)2: 131–137. 

Gessler, P.E., Moore, I.D., McKenzie, N.J. and Ryan, P.J., (1995), Soil-landscape 
modelling and spatial prediction of soil attributes, International Journal of 
Geographical Information Systems, (9)4: 421–432. 

James BARRINGER, A.E. HEWITT, I.H. LYNN and J. SCHMIDT 



457 Mapping of Landform Elements in Support of S-Map 

Grunwald, S. (ed.) (2006), Environmental Soil–Landscape Modelling: Geographic 
Information Technologies and Pedometrics, London: Taylor & Francis. 

Harmsworth, G.R., Dymond, J.R. and McLeod, M., (1995), Automated mapping 
of soils in hilly terrain using DTMs: a New Zealand example, ITC Journal, 2: 
87–94. 

Hewitt, A.E., (1998), New Zealand Soil Classification, Landcare Research Sci-
ence Series No. 1, Lincoln: Manaaki Whenua Press. 

Leathwick, J., Wilson, G., Rutledge, D., Wardle, P., Morgan, F., Johnston, K., 
McLeod, M. and Kirkpatrick, R., (2003), Land Environments of New Zealand, 
Ministry for the Environment, Auckland: David Bateman.  

Lilburne, L., Hewitt, A.E., McIntosh, P.D. and Lynn, I.H., (1998), GIS-driven 
models of soil properties in the high country of the South Island, Proceedings 
of the 10th Colloquium of the Spatial Information Research Centre, University 
of Otago, New Zealand: 173–180. 

Lilburne, L., Hewitt, A.E., Webb, T.H. and Carrick, S., (2004), S-map : a new soil 
database for New Zealand, Proceedings of SuperSoil (2004): 3rd Australian 
New Zealand Soils Conference, Sydney, Australia. 

Lynn, I.H., Lilburne, L.R. and McIntosh, P.D. (2002), Testing a soil–landscape 
model for dry greywacke steeplands on three mountain ranges in the South  
Island, New Zealand, Australian Journal of Soil Research, 40: 243–255. 

McBratney, A.B., Mendonça Santos, M.L. and Minasny, B., (2003), On digital 
soil mapping, Geoderma, 117: 3–52. 

McIntosh, P.D., Lynn, I.H. and Johnstone, P.D., (2000), Creating and testing a 
geometric soil–landscape model in dry steeplands using a very low sampling 
density, Australian Journal of Soil Research, 38: 101–112. 

McLeod, M., Rijkse, W.C. and Dymond, J.R., (1995), A soil-landscape model for 
close-jointed mudstone, East Cape, North Island, New Zealand, Australian 
Journal Soil Science, (33)3: 381–396. 

Rodriguez, F., Maire, E., Courjalt–Rade, P. and Darrozes, J., (2002), The Black 
Top Hat function applied to a DEM: a tool to estimate recent incision in a 
mountainous watershed (Estibere Watershed, Central Pyrenees), Geophysical 
Research Letters, (29)6: 91–94. 

Schmidt, J., Evans, I.S. and Brinkmann, J., (2003), Comparison of polynomial 
models for land surface curvature calculation, International Journal Geo-
graphical Information Science, (17)8, 797–814. 

Schmidt, J. and Hewitt, A.E., (2004), Fuzzy land element classification from 
DTMs based on geometry and terrain position, Geoderma, 121: 243–256. 

Schmidt, J., Tonkin, P. and Hewitt, A.E., (2005), Quantitative soil-landscape 
models for the Haldon and Hurunui soil sets, New Zealand, Australian Jour-
nal Soil Research, 43: 127–137. 

Schmidt, J. and Andrew, R., (2005), Multi-scale landform characterization, Area, 
(37)3: 341–350. 

Shary, P., Sharaya, L.S. and Mitusov, A.V., (2002), Fundamental quantitative 
methods of land surface analysis, Geoderma, 107: 1–32. 



458 

Webb, T.H., (2003), Identification of functional horizons to predict physical prop-
erties for soils from alluvium in Canterbury, New Zealand, Australian Journal 
Soil Research: 1005–1019. 

Wilson, J.P. and Gallant, J.C. (eds.) (2000): Terrain Analysis: Principles and Ap-
plications, New York: John Wiley. 

Wood, J., (1996), The geomorphological characterisation of digital elevation 
models, Ph.D. Thesis, Department of Geography, University of Lancaster, 
United Kingdom. 

Zhu, A.X., Hudson, B., Burt, J., Lubich, K. and Simonson, D., (2001), Soil map-
ping using GIS, expert knowledge, and fuzzy logic, Soil Science Society 
America Journal, 65: 1463–1472. 

 

James BARRINGER, A.E. HEWITT, I.H. LYNN and J. SCHMIDT 



Concluding Remarks 



Progress in Digital Terrain Analysis 

Brian G. LEES 

We have been very fortunate to have been able to put together a volume 
with a wide range of international expertise. I note with interest that the 
TADTM initiative was the first of a number of similar projects that have 
revitalized interest in digital terrain analysis. Digital elevation modelling 
was one of the earliest application areas of GIS and it is still one of the 
most important. The growth of digital terrain analysis, as distinct from 
digital elevation modelling, highlights the difference, so long ignored, be-
tween a DEM and a DTM. 

George Miliaresis’ generous linking of his geomorphometry group to 
the TADTM community (geomorphometry@yahoogroups.com) means 
that, in parallel with this publication, there is an ongoing, and very vital, 
exchange of ideas in this field. This means that my concluding remarks 
here are not a static milepost along the road to the next physical meeting of 
researchers interested in digital terrain analysis, but one item in a continu-
ing discussion. Whilst discussing that, it is worth mentioning Peter Shary’s 
(http://www.giseco.info/) research homepage with its wealth of resources. 
We are extremely fortunate to have the introductory chapters in the book 
from these two eminent researchers. 

So, what has preparing this volume shown us? Importantly, it demon-
strates the massive movement into the international research community of 
our Chinese colleagues. The very significant commitment to research and to 
higher education in China is becoming evident in the size and quality of the 
postgraduate research population. This, coupled with the contribution from 
more senior researchers who originated in China, but now help staff research 
centres and universities world wide, gave TADTM a distinct flavour. 

Not only that, but a keen interest in environmental problems and the 
management of the environment, has brought a strong practical focus to 
the volume. Most of the theory discussed is related to practical applica-
tions. This makes the volume an extremely valuable resource. 

It is appropriate at this point in the volume to consider what lies ahead; at 
least to see what the current state-of-the-art as presented here suggests might 
lie ahead. Several chapters dealt with the SRTM-3 globally available data 
and the modifications necessary to make it useable at the scales we believe 
necessary for vegetation and erosion modelling. Other papers discussed 
other approaches to global data sets. A clear message is that many of the 
problems we face, both environmental and social, need higher resolution 
data over more extensive areas. Why is this? With an increasing population 
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to feed, we need to manage our environments carefully. I also suspect that 
the next series of reports by the Intergovernmental Panel on Climate 
Change will firm their views on sea level rise, rainfall intensity, and cy-
clone/typhoon intensification. Let’s consider these in some detail. 

It is self-evident that we need much better elevation data to predict the 
impacts of sea level rise. As the various feed-back mechanisms start to cut 
in, and become measurable and predictable, estimates of sea level rise will 
almost certainly increase from the modest IPCC (2007) predictions of up 
to 0.59 m by 2099, which policymakers clearly believe not to be a signifi-
cant threat, to possibly an order of magnitude greater over time. Once 
IPCC forecasts start to include future dynamical changes in ice flow, poli-
cymakers will be knocking on our doors wanting to know if we can show 
them where the impacts will fall. At present, with current data sets, we are 
unable to do this with any precision. 

Similarly, modelling the impacts of more frequent, and more intensive, 
cyclones/typhoons really requires better digital elevation data and better 
models of how inundation works as a process. Simply raising sea level, 
digitally, and colouring it blue is not an adequate solution when millions of 
people are at risk. 

The other phenomenon I mentioned above, erosion, also changes with 
changes in climate. Most of the models of climate change predict an inten-
sification of rainfall events. More rainfall, falling in a shorter period of 
time, is going to have significantly more effective erosional and transport-
ing power. Hillslopes will be affected, as will river channels. A steepening 
and shortening of the flood hydrograph will, in many places, make occupa-
tion of river floodplains untenable. Increased levee rupturing and crevasse 
splays will sterilize valuable cropland. 

All of these processes are processes which we, as a group, model with a 
greater or lesser degree of success. Social expectations of our ability to 
provide useful predictions for planning and policymakers are certain to 
rise. There is a lot to do to meet these expectations. Crude modelling, such 
as the USLE or RUSLE, will not suffice beyond the initial reconnaissance 
level. Neither will crude estimates of inundation. These things are not be-
yond us. We saw, at the meeting, colleagues discussing global data sets of 
various sorts. A decade or so ago such widespread access to DEM data 
was only a dream. Now that it is becoming a reality we can move forward 
to apply our craft to giving those who fund us the support and information 
they expect in dealing with the serious problems which confront us all. 

 
Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The 

Physical Science Basis; Summary for Policymakers, IPCC Secretariat, c/o WMO, 
7bis, Avenue de la Paix, C.P. N° 2300, 1211 Geneva 2, SWITZERLAND. 18p. 
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