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“Round-off errors arise because it is impossible to represent all real numbers exactly on a
finite-state machine (which is what all practical digital computers are).”

— Numerical Analysis entry in Wikipedia

“The discrepancy between the true answer and the answer obtained in a practical calculation is
called the truncation error. Truncation error would persist even on a hypothetical, “perfect”

computer that had an infinitely accurate representation and n roundoff error. As a general rule,
there is not much that a programmer can do about roundouff error, other than to choose

algorithms that do not magnify it unnecessarily (see discussion of “stability” below). Truncation
error, on the other hand, is entirely under the programmer’s control. In fact, it is only a slight

exaggeration to say that clever minimization of truncation error is practically the entire content
of the field of numerical analysis!”

— Numerical Recipes in C: The Art of Scientific Computing (Chapter 1, p. 30)

Lecture 1

ON NUMERICAL NONROBUSTNESS

This chapter gives an initial orientation to some key issues that concern us. What is the
nonrobustness phenomenon? Why does it appear so intractable? Of course, the prima facie
reason for nonrobustness is numerical errors. But this is not the full story: the key lies in
understanding the underlying geometry.

§1. What is Numerical Nonrobustness?

Nonrobustness of computer systems means different things to different people. Sometimes a computer
solution is described as “nonrobust” if it is non-scalable (i.e., as the problem size gets larger, the solution
becomes no longer practical) or non-extensible (i.e., when we make simple variations in the problem, the
solution could not be similarly tweaked). In this book, we are only interested in nonrobustness that can
be traced to errors in numerical approximations. For brevity, we simply say “(non)robustness” instead of
“numerical (non)robustness”.

This nonrobustness phenomenon is well-known and widespread. The fact is that most numerical quanti-
ties in computers are approximations. Hence there is error, which may be defined as the absolute difference
|x− x̃| between the exact1 value x and the computed value x̃. Most of the time, such errors are benign, pro-
vided we understand that they are there and we account for them appropriately. The phenomenon that we
call nonrobustness arises when benign errors leads a computation to commit catastrophic errors. There
is no graceful recovery from such errors, and often the program crashes as a result. Instead of crashing
dramatically, the program could also enter an infinite loop or silently produce an erroneous result. Note that
crashing may be preferred over a silent error that may eventually lead to more serious consequences. We
now illustrate how benign errors can turn catastrophic:

(A) Here is a robustness test that most current geometric libraries will fail: assume the library has primitives
to intersect lines and planes in 3-dimensional Euclidean space, and predicates to test if a point lies on
a plane. First, we construct a plane H and a line L. Then we form their intersection H ∩ L which is
a point q ∈ R3. Finally, let us call the predicate to test if q lies on the plane H. The predicate ought
to return “YES” meaning that q lies on H. But because of numerical errors, our predicate may return

1We initially assume that each quantity has a theoretically “exact” value. A more general setting allows values to be inexact
but quantifiably so. We will return to this later. The nonrobustness issue is already non-trivial in the exact setting.
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“NO”, which is what we call a catastrophic error. Alternatively, if errors such as |x− x̃| in computing a
number x are called quantitative errors, then catastrophic errors may be called qualitative errors.

For random choices of H and L, there is a high likelihood that the answer comes back as “NO”. For
instance, suppose H0 is the plane x + y + z = 1 and Li,j is the line through the origin and through
(i, j, 1). Thus the parametric equation of the line is Li,j(t) = (it, jt, t). We can implement all these
primitives using a straightforward implementation in IEEE arithmetic (see Exercise). For instance, H0

will intersect L1,1 in the point p = 1
i+j+1

(i, j, 1). An experiment in [23] performed a variant of this test
in 2-D for pairs of intersecting lines. With 2500 pairs of intersecting lines, this tests yields a failure
rate of 37.5% when implemented in the straightforward way in IEEE arithmetic.

The related problem of “line segment intersection” is a well-known in the literature on robustness, and
was first posed as a challenge by Forrest [14]. Although this challenge must have been taken up in
every geometric library implementation, no universally accepted solution is known. See Knott and Jou
[24] for a proposed solution.

(B) An important class of physical simulations involve tracking a “front”, which is just a triangulated
surface representing material boundary or the interface between two fluids such as oil and water. Such
a simulation might be useful to understand how an oil spill evolves under different conditions. This front
evolves over time, and a qualitative error arises when the surface becomes “tangled” (self-intersects),
and thus no longer divides space into two parts.

(C) Trimmed algebraic patches are basic building blocks in nonlinear geometric modeling. Because of
the high algebraic complexity, the bounding curves in such patches are usually approximated. This
approximation leads to errors in queries such as whether a ray intersects a patch, resulting in topological
inconsistencies and finally crashing the modeler. Visually, such errors are often seen as “cracks” in a
supposedly continuous surface.

(D) In mesh generation, an important primitive operation is to classify a point as inside or outside of a cell.
Typically a cell is a triangle in 2-D and a tetrahedron in 3-D. If we mis-classify a point, meshes can
become inconsistent, ambiguous or deficient. Current CAD systems will routinely produce such “dirty
meshes”. This is a serious problem for all applications downstream.

In recent years, several research communities have been interested in numerical robustness and reliability
in software: books, surveys, software, special journal issues, and special workshops have been devoted to this
area. Some of this information is collected at the end of this chapter, under the Additional Notes Section.
Connection between the viewpoints of different communities will be discussed. For instance, numerical
analysts have know for a long time the various “pitfalls” in numerical computations, but the critical missing
element in such discussions is the role of geometry as brought out by the above examples.

¶1. Book Overview. The purpose of this book is develop an approach to robust algorithms this is
now dominant in the Computational Geometry community. This approach is called Exact Geometric
Computation (EGC). It is now encoded in software such as CGAL, LEDA and Core Library. Most of these
results are obtained within the last decade, and we feel it is timely to organize them into a book form. The
book is written at an introductory level, assuming only a basic knowledge of algorithms. In brief, this is
what our book cover:

• We begin by introducing and analyzing the fundamental problem of nonrobustness in geometric soft-
ware.

• We briefly survey various approaches that have been proposed, including EGC.

• EGC can be seen as a new mode of numerical computation which need to be supported by critical
computational techniques: filters, root bounds, root finding, etc. The necessary algebraic background
will be developed.

• We will study in detail the application of EGC principles in several basic algorithms and geometric
primitives. These simple examples come from linear geometry (i.e., geometry that does not go beyond
basic linear algebra).
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• We also consider the application of EGC principles in non-linear geometry, such as in algebraic curves
and surfaces.

• We address three important topics related to EGC and robustness: data degeneracy, perturbation
techniques, and geometric rounding.

• Applications of EGC in areas such as theorem proving and software certification will be illustrated.

• We touch on the subject of non-algebraic computation, which lay at the frontier of current knowledge.

• Finally we describe a new theory of real approximation which is motivated by the practical development
in EGC. It points to an interesting complexity theory of real computation.

§1.1. Primitives for Points and Lines

We will now flesh out the 2-D version of example (A) from the introduction. Consider a simple geometry
program which uses a library with primitives for defining points and lines in the Euclidean plane. The library
also has primitives to intersect two lines, and to test if a point is on a line. Mathematically, a point p is a
pair (x, y) of real numbers, and a line ℓ is given by an equation

ℓ : ax + by + c = 0

where (a, b, c) are the real parameters defining ℓ. We write ℓ := Line(a, b, c) to indicated that the line
ℓ is defined by (a, b, c). Note that Line(a, b, c) is well-defined only if ab 6= 0; moreover, Line(a, b, c) =
Line(da, db, dc) for all d 6= 0. Thus each line can be viewed2 as a point in a peculiar homogeneous space.
Similar, p := Point(x, y) is a definition of the point p. If ℓ′ = Line(a′, b′, c′) is another line, then the
intersection of ℓ and ℓ′ is the Point(x, y) that satisfies the linear system

[
a b
a′ b′

](
x
y

)
= −

(
c
c′

)

which yields

(
x
y

)
=

1

∆

[
−b′ b
a′ −a

](
c
c′

)
(1)

where ∆ = ab′ − a′b is the determinant. In two exceptional cases, the intersection is not a point: (a)
when ℓ = ℓ′ (so there are infinitely many points of intersection) or, (b) when ℓ 6= ℓ′ and ℓ‖ℓ′ (the lines are
distinct and parallel, so there are no intersection points). In these cases, we assume that the intersection is
an “undefined value” (denoted ↑). So we define the operation Intersect(ℓ, ℓ′) to return the intersection
point (possibly ↑) of lines ℓ and ℓ′. This operation is easily implemented in any conventional programming
language using the formula (1). Similarly, it is easy to program the predicate OnLine(p, ℓ) which returns
True iff p lies on line ℓ, otherwise returns False. Note that p = Point(x0, y0) lies on ℓ = Line(a, b, c) iff
ax0 + by0 + c0 = 0.

CONVENTION: In general, geometric primitives (operations or
predicates or constructors) are partial functions, capable of return-
ing the undefined value, ↑. In particular, if any input argument is
undefined, then the result is undefined.

Consider the following expression:

OnLine(Intersect(ℓ, ℓ′), ℓ) (2)

2A homogeneous point (a, b, c) is defined up to multiplication by a non-zero constant, and is often written as a proportionality
(a : b : c). In standard homogeneous space, we exclude the point (0 : 0 : 0). But here, we exclude an additional point, (0 : 0 : c),
c 6= 0.
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Mathematically, the value of this expression is True unless Intersect(ℓ, ℓ′) is undefined. Yet, any simple
implementation of these primitives on a computer will fail this property. That is to say, for “most choices”
of ℓ and ℓ′, the expression will not evaluate to True. The reason for this is clear – computer arithmetic are
approximate. For most inputs, the expression (2) is sensitive to the slightest error in its evaluation.

An exercise below will attempt to quantify “most choices” in the above remark.
Operations such as line intersection form the basis of more complex operations in geometry libraries. If

such basic operations are nonrobust, applications built on top of the libraries will face the same nonrobustness
problem but with unpredictable consequences. So it is no surprise that applications such as geometric
modelers are highly susceptible to catastrophic errors.

The property of failing to return True when it should have, is a qualitative error, and this is a result of
some quantitative error. Numerical errors are, by nature, a quantitative phenomenon and they are normally
benign. But under certain conditions, they become a qualitative phenomenon. We need to understand when
such transitions take place, and to find measures either to detect or to avoid them. This is the essence of
the approach called Exact Geometric Computation.

§1.2. Epsilon Tweaking

A common response of programmers to this example is to say that the comparison “is ax+by+c = 0?” is
too much to ask of approximate quantities. Instead, we should modify the predicate OnLine(Point(x, y), Line(a, b, c))
to the following

“Is |ax + bx + c| < ε?” (3)

where ε > 0 is a small constant. This simple idea is general and widely used: every time we need to compare
something to 0, we will compare it to some small “epsilon” constant. There could be many different epsilons
in different parts of a large program. It is somewhat of an art to pick these epsilons constants, perhaps
chosen to avoid errors in a battery of test cases. In the programming world, the empirical task of choosing
such constants is called “epsilon tweaking”. We now try to analyze what epsilon tweaking amounts to.

Note that in our expression (2) above, if we make ε large enough, the predicate will surely return True

for all pairs of intersecting lines. This avoids the problem of false negatives, clearly it introduces many false
positives. We should understand that the introduction of ε changes the underlying geometry – we may call
this epsilon geometry. But what is the nature of this geometry? One interpretation is that we are now
dealing with lines or points that are “fat”. A point p = Point(x, y) is really a disk centered about (x, y) with
radius ε1 ≥ 0. Similar, a line ℓ = Line(a, b, c) really represents a strip S of region with the mathematical
line as the axis of S. The strip has some width ε2 ≥ 0. For simplicity, suppose ε1 = ε2 = ε/2. Then
the OnLine(p, ℓ) predicate is really asking if the fat point p intersects the fat line ℓ. This is illustrated in
figure 1.

p
ℓ

Figure 1: A fat point p intersecting a fat line ℓ.

This interpretation of equation (3) is justifiable after we normalize the equation of the line ax+by+c = 0
so that a2 + b2 = 1. To normalize the coefficients (a, b, c), we simply divide3 each coefficient by

√
a2 + b2.

The distance of any point (x, y) from the normalized Line(a, b, c) is given by |ax + by + c|. Thus the epsilon
test (3) amounts to checking if p is within distance ε from the line ℓ.

More important, we observe that by resorting to epsilon-tweaking, we have exchanged “plain old Euclidean
geometry” (POEG) for some yet-to-be-determined geometry. In a later chapter, we will look at some attempts

3
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ℓ
ℓ′

(b)(a)

Figure 2: (a) Intersecting two fat lines, (b) Fat line through two fat points.

to capture such kinds of novel geometries. Even if a consistent interpretation can be obtained, it is hard
to reason correctly with such geometries. For instance, what is the intersection of two fat lines? As we see
from Figure 2(a), it is not obvious how to interpret the diamond-shaped intersection as a fat point, unless we
further generalize the concept of a point to include diamond shapes. Again, we expect to be able to define a
fat line that passes through two fat points. In Figure 2(b), we see that fat lines might have to be generalized
to a double-wedge with non-linear boundaries.

Most of our intuitions and algorithms are guided by Euclidean geometry, and we will find all kinds of
surprises in trying to design algorithms for such geometries.

¶2. Interval Geometry. There is an alternative interpretation of the test (3). Here, we assume that
each point is only known up to some ball of radius ε. Then the test (3) is only useful for telling us if the
point definitely does not lie on the line. But the conditions for knowing if a point is definitely on the line can
only be determined with additional assumptions. We then proceed to a three-valued logic in our programs,
in which “partial predicates” gives answers of yes/no/maybe. This is basically the geometric analog of the
well-known idea of interval arithmetic. This is not unreasonable in some applications, but a common
problem is that the “maybe” answers might rapidly proliferate throughout a computation and lead to no
useful results. Alternatively, we might think of the “geometric intervals” (unknown region about a point or
a line) growing rapidly in an iterated computation.

Exercises

Exercise 1.1: (a) Write a simple planar geometry program which handles points and lines. An object
oriented programming language such as C++ would be ideal, but not essential. Provide the operations
to define points and lines, to intersect two lines and to test if a point is on a line. You must provide
for undefined values, and must not attempt any epsilon-tweaking.

(b) Conduct a series of experiments to quantify our assertion that the expression (2) will not evaluate
to True in a “large number” of cases. Assume that we implement the primitives in the straightforward
way, as outlined in the text, using IEEE double precision arithmetic. Assume that ℓ = Line(1, 1,−1)
and ℓ′ = Line(i, j, 0) where i, j = 1, . . . , 20. Estimate the percentage of times when the expression (2)
fails (i.e., the expression did not evaluate to the True). ♦

Exercise 1.2: (a) Extend the previous exercise to 3-D, so that you can also define planes.

(b) Repeat the experiment explained in Example (A) of §1: let H0 be the plane x + y + z = 1 and Li,j

denote the parametrized line Li,j(t) = (it, jt, t). Compute the intersection pij of Li,j with H0, and
then check of pij lies on the plane H0. Assume i, j = 1, . . . , 50. How many percent of the 2500 tests
fail? Does your experiment achieve the reported 37.5% failure rate as noted in the text? ♦

Exercise 1.3: Verify that for a normalized line ℓ = Line(a, b, c), the signed distance of p = Point(x, y) from
is ax + by + c. Interpret this sign. ♦

Exercise 1.4: We want to define the In() and Out() operations on convex pentagons. Let P be the convex
pentagon in Figure 3(a). The 5 diagonals of P intersect pairwise in 5 points. These points determine
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a

b

c
d

e

A

B

C

F

D

P

(a) Pentagon P = Out(Q) (b) Pentagon Q = In(P )

In(P )

Out(Q)

Q

Figure 3: Convex pentagon P and Q and their connection via In,Out

a convex polygon Q inside P , as in Figure 3(b). We define In(P ) := Q. Similarly, let Out(Q) denote
the convex pentagon P obtained by extending the edges of Q until they intersect; there are exactly
five intersection points, and these define P . It is easy to see that the following identity holds

P = Inm(Outm(P )) = Outm(Inm(P )) (4)

for any m ≥ 0, where Inm(· · · ) and Outm(· · · ) means applying the indicated operations m times. But
due to numerical errors, the identity Equation (4) is unlikely to hold. In this exercise, we ask you to
implement In(· · · ) and Out(· · · ), and check the identity (4) (for various values of m). You could try
more exotic identities like Inm(Out2m(Inm(P ))) = P for m ≥ 0. ♦

Exercise 1.5: If P is non-convex, and perhaps even self-intersecting, is there an interpretation of In(P )
and Out(P )? ♦

End Exercises

§2. Nonrobustness In Action

The previous section gives a hint of the potential problems with non-robust geometric primitives such as
line intersection. We now illustrate consequences of such problems at a macroscopic level.

§2.1. Nonrobustness of CAD Software

Most commercial CAD software can perform Boolean operation on planar polygons, and apply rigid
transformations on polygons. Boolean operations such as union, intersection and complement are defined
on polygons viewed as sets. By definition, rigid transformations preserve distance; examples are translations
and rotations. See Figure 4 where we rotate a square P about its center and then union this with P .

(c) P ∪ Q(a) P (b) Q = rotπ/4(P )

Figure 4: Rigid transformation and Boolean operations on polygons.
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SYSTEM n α TIME OUTPUT

ACIS 1000 1.0e-4 5 min correct
ACIS 1000 1.0e-5 4.5 min correct
ACIS 1000 1.0e-6 30 min too difficult!
Microstation95 100 1.0e-2 2 sec correct
Microstation95 100 0.5e-2 3 sec incorrect!
Rhino3D 200 1.0e-2 15 sec correct
Rhino3D 400 1.0e-2 – crash!

CGAL/LEDA 5000 6.175e-6 30 sec correct
CGAL/LEDA 5000 1.581e-9 34 sec correct
CGAL/LEDA 20000 9.88e-7 141 sec correct

Table 1: Boolean Operations on CAD Software

Consider the following test4 which begins by constructing a regular n-gon P , and rotating P by α degrees
about its center to form Q, and finally forming the union R of P and Q. For a general α, R is now a 4n-gon.
The following table shows the results from several commercial CAD systems: ACIS, Microstation95 and
Rhino3D.

The last three rows are results from the CGAL/LEDA software. In contrast to the other nonrobust
software, the CGAL/LEDA output is always correct. We shall describe CGAL/LEDA and similar software
later, as they embody the kind of solution developed in this book.

This last column in this table illustrates three forms of failures: program crashing, program looping (or
taking excessive time, interpreted as too difficult) or silent error. The last kind of failure is actually the most
insidious, as it may ultimately cost most in terms of programmer effort.

This table indicates just the tip of the iceberg. CAD software is widely used in automotive, aerospace
and manufacturing industry. The cost of software unreliability to the US automobile industry (alone) is
estimated at one billion dollars per year, according to a 2002 report [36] from National Institute of Standards
and Technology (NIST). Of course, this estimate combines all sources of software errors; it is a difficult task
to assign such costs to any particular source. But from a technical viewpoint, there is a general agreement
among researchers. In a 1999 MSRI Workshop on Mathematical Foundations of CAD, the consensus opinion
of the CAD researchers stated that “the single greatest cause of poor reliability of CAD systems is lack of
topologically consistent surface intersection algorithms”.

Nonrobust software has a recurring cost in terms of programmer
productivity, or may lead to defective products which have less pre-
dictable future cost.

§2.2. Nonrobustness of Meshing Software

A mesh is a data structure which represents some physical volume or the surface of such a volume using
a collection of interconnected “elements”. We call it a volume mesh or a surface mesh, respectively. The
mesh elements may be connected together regularly or irregularly. An example of a regular mesh is a square
grid. See Figure 5 for an example of irregular surface meshes.

Mesh generation is a fundamental operation in all of computational sciences and engineering, and in
many physical simulation areas. A typical operation is to create a surface meshes from, say, an implicit
description of a surface as an algebraic equation. For instance, the mesher might5 break down when one
tries to create surface mesh for the cylinder of unit radius centered about the z-axis.

4Mehlhorn and Hart, Invited Talk at ACM Symp. of Solid Modeling, Ann Arbor, June 2001.
5This is an actual experience with a meshing software that is part of a fairly widely distributed CFD system. The fix, it

turns out, was to perturb the axis slightly away from the z-axis.
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Figure 5: Surface Meshes from Dyer (SGP’07)

Quoting6 industry experts in the field of computational fluid dynamics (CFD) on a typical scenario: in
a CFD aircraft analysis with 50 million elements, we spend 10-20 minutes for surface mesh generation, 3-4
hours for volume meshing, 1 hour for actual flow analysis, and finally 2-4 weeks for debugging and geometry
repair.

Some explanation of this scenario is in order. The first phase (surface mesh) typically involves constructing
a triangulated closed manifold representing, say an aircraft wing. The second phase (volume meshing)
involves partitioning the space exterior to the triangulated closed manifold. This volume is of interest for the
study of air flow around the body. In other applications such as heat flows, we might be more interested in
the volume internal to closed manifold. The third phase (simulation) amounts to solving partial differential
equations in the volume. The final phase (debugging) arises when the simulation breaks down due to
inconsistencies in the data or model. Note that geometry repair logically belongs to the surface and volume
meshing phases. But in practice, errors are not immediately detected and these are caught when problems
develop further downstream, and are traced back to meshing errors.

The proportion of time spent for three phases of two such applications are shown in the next table, also
taken from Boeing Company:

Fly Back Vehicle Target for Computational
Electromagnetics

Geometry Fixup 66% 60%
Gridding 17% 25%
Solving 17% 15%

Meshing ought to be a routine step for many applications. But lacking robust meshing, an engineer be
in the loop to manually fix any problems that arise. In other words, this step cannot be fully automated.

Nonrobustness is a barrier to full automation in many industrial
processes. This has a negative impact on productivity.

§2.3. Testing Numerical Accuracy of Software

6Tom Peters (University of Connecticutt) and Dave Ferguson (The Boeing Company), talk at the DARPA/NSF CARGO
Kickoff Workshop, Newport RI, May 20-23, 2002.
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Mehlhorn [27] pose the “Reliable Algorithmic Software Challenge” (RASC). A critical component in the
solution to RASC is a new mode of numerical computation in which we can demand any á priori accuracy
of a numerical variable. We call this guaranteed accuracy computation [47]. Here we explore one class
of applications for this mode. In many areas of numerical computation, there are many commercial software
available. To evaluate their individual performance, as well as to compare these software, standardized test
suites have been collected. Very often test suites only contain input data (called benchmarks), and software
are compared in terms of their speed on these benchmarks (under a variety of platforms). But in numerical
software, the correctness of these software cannot be taken for granted – we need to also know the accuracy
of the software. To do this, each benchmark problem ought to come with model answers to some precision.
This would allow us to measure deviation from the model answers. But which software do we trust to
produce such model answers? This is one clear application for guaranteed accuracy computation. We look
at two such examples.

For our first example, consider linear programming, a major contender for the shortlist of most useful
algorithms. Linear programming can be defined as follows. Given vectors c ∈ Rn and b ∈ Rm (m > n),
and a matrix A ∈ Rm×n, to find a point x ∈ Rn which maximizes the dot product cT x subject to Ax ≤ b
Geometrically, the point x can be taken to be a vertex of the convex polyhedron defined by Ax ≤ b whose
projection onto the direction c is maximum. Because of its importance in the industry, many commercial
software standardized test suites are available. One of the most well-known software is called CPLEX, and
netlib is a popular collection of benchmark problems. The following table taken from [27] shows the
performance of CPLEX on 5 benchmark problems.

PROBLEM CPLEX Solution CPLEX Solution
Name m n # non-zeros RelObjErr ComputeTime Violations Opt? VerifyTime

degen3 1504 1818 26230 6.91e − 16 8.08s 0 opt 8.79s
etamacro 401 688 2489 1.50e − 16 0.13s 10 feas 1.11s
fffff800 525 854 6235 0.00e + 00 0.09s 0 opt 4.41
pilot.we 737 2789 9218 2.93e − 11 3.8s 0 opt 1654.64
scsd6 148 1350 5666 0.00e + 00 0.1s 13 feas 0.52s

For each problem, in this table, we not only give the dimension m × n of the matrix A, but column 4
also gives the number of non-zeros in the matrix A, as a better indication of the input size. The solution
from CPLEX is a basis of A. The relative error in the objective value of this basis is indicated. Using
guaranteed precision methods, the solution returned by CPLEX is checked. Thus, we find that two of these
solutions are actually non-optimal (etamacro and scsd6). The column labeled ‘Violations’ counts the number
of constraints violated by the basis returned by CPLEX. The time to check (last column) is usually modest
compared to that of CPLEX, but the benchmark problem ‘pilot.we’ is an obvious exception. does not always
produce the correct optimal answer. Such errors are qualitative, not merely quantitative.

Let us return to the problem of generating model answers for benchmark problems. As in linear pro-
gramming, the primary goal here is qualitative correctness. Next, we want to ensure certain bounds on
the quantitative error. We need software that can guarantee their accuracies in both these senses. In this
book, we will see techniques which produce such software. See [10] for the issues of certifying and repairing
approximate solutions in linear programming.

Another example is from numerical statistical computation [25]. Here, McCullough [9] address the
problem of evaluating the accuracy of statistical packages. At the National Institute of Standards and
Technology (NIST), such model answers must have 15 digits of accuracy, and these are generated by running
the program at 500 bits of accuracy. It is unclear how 500 bits is sufficient; but it is clear that 500 bits will
often be unnecessary. We would like software like LEDA Real [7] or Core Library [23] that can automatically
generate the necessary accuracy needed.

Essentially the same problem has been addressed by Lefévre et al [26], who posed the Table Maker’s
Dilemma, namely how to compute correctly rounded results from evaluation of transcendental functions.

The correct rounding problem is part of a larger, industry-wide concern about the reliability of computer
hardware arithmetic. Prior to the 1980’s there was widespread concern about the non-portability and
unpredictability of computer arithmetic across hardware vendors. The upshot of this is the IEEE standard
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on arithmetic which is now widely accepted. The paper [49] provides the foundations of exact rounding.

Software testing is a meta application where guaranteed quality of
numerical output is not an option.

§2.4. Accuracy as a Contractual Issue

Geometric tolerancing is one cornerstone of the manufacturing sciences. It provides the language of
specifying geometric shapes for the purposes of manufacture. As all manufacturing processes are inherently
inexact, part and parcel of this specification includes the acceptable deviation from the ideal shape.

2.99

1.952.05

3.01

2.99

1.952.05

3.01

3 ± 0.2

2 ± 0.1

(a) (c)(b)

Figure 6: Tolerance Geometry: (a) ideal, (b) zone, (c) actual.

For instance, suppose we wish to manufacture a 3′′ × 2′′ piece of metal plate (see Figure 6). We might
tolerance this as 3 ± 0.2′′ × 2 ± 0.1′′. The naive and highly intuitive understanding of this tolerance is that
any rectangular plate with dimension L′′ × W ′′ is acceptable as long as |L − 3| ≤ 0.2 and |W − 2| ≤ 0.1.
The problem is that no manufactured object is really a rectangle – it may not even have any straight edge
at all. The modern understanding is that the specification describes a tolerance zone (Figure 6(b)) and
an object is within tolerance if there is some placement of the object whose boundary lies inside this zone
(Figure 6(c)). Note that by “placement”, we mean a position of the object obtained by rotation and/or
translation.

The language and semantics of dimensioning and tolerance is encoded into industry standards (e.g.,
ANSI standard Y14.5M-1982 [45, 31]); its mathematical basis is similarly encoded [43]. There is a parallel
development at the International Standards Organization (ISO).

Beyond having a language to specify shape tolerances, we must have some attendant “assessment method-
ology” to measure the deviation of physically manufactured shapes, and to verify conformance. Such method-
ology can be regarded as a subarea of the much larger subject of metrology. We use the term dimensional
metrology to refer to its application in geometric tolerancing. Dimensional metrology is much less understood
than tolerancing itself [2]. In fact, this has precipitated a minor crisis [42]. The background of this crisis
comes from the proliferation of the coordinate measurement machine (CMM) technology in the 1980’s.
A CMM is a physical device that can be programmed to take measurements of a physical object and to
compute tolerance characteristics of the object using these measurements. Such machines represent a major
advancement over, say, traditional hard gauges (or calipers). While hard gauges give only a Boolean value
(go or no-go), the CMM computation returns “characteristic values” that may be used in other applications
of metrology such as process monitoring. Thus CMM is regarded as state-of-the-art in dimensional metrol-
ogy. Note that CMM’s are inherently coupled to computational power via embedded software. The problem
is that that there is no standard governing this software – different vendor software can give widely divergent
answers. This uncertainty could in principle force all government procurement services to come a grinding
halt! Imagine a scenario where a critical component of a jet engine is to be toleranced to within 0.001mm but
because of inaccurate software, it is really 0.01mm. This could give rise to contractual disputes, premature
mechanical failures, or worse. This was the situation uncovered by Walker [42] in 1988.

A basic shape for dimensional tolerancing is the circular disc. We might tolerance such a disc to have
radius 2 ± 0.05 cm. The “tolerance zone” semantics in this case is clear: we want the manufactured disc to
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have its boundary within an annular region whose inner and outer radii are 1.95−−2.05 cm. But what kind
of assessment method is available for this? The standard practice is to uniformly measure 5 − 10 points on
the boundary of the manufactured disc, and algorithmically decide if these points lie within the tolerance
zone. The justification of such a procedure is far from obvious (see [28]).

In summary, a major component of dimensional metrology revolves around the computational issues, or
what Hopp has termed computational metrology [21]. To be sure, the uncertainty in CMM technology is
grounded in the measurement hardware as well as the software. Modeling and compensating for hardware
biases is a major research area. But often, software errors can be orders of magnitude worse than hardware
uncertainty.

Dimensional metrology have many economic consequences that may not be obvious. Imagine that we
want to tolerance the roundness of a cylinder for a jet engine. If we over-tolerance, this may lead to
premature wear-and-tear, and possibly disastrous breakdown. If we under-tolerance, this can greatly add to
the cost and number of machining hours, without producing any appreciable benefits. There are limits to
how tightly we can tolerance parts, because of the inherent uncertainty in various processes, measurements
and computations. If we tolerance too close to this limit, the results are probably unreliable. Moreover,
manufacturing costs can increase dramatically as our tolerance approach this limit: the number of machining
hours will greatly increase, and The slightest mistake7 can lead to a rejection of expensive parts made of
special alloys.

We describe an anecdote from Hopp: in the aluminum can industry, the thickness of the top of the
pop-top cans has some physical limitations. It must be (say) not be thicker than 0.4mm, or else the pop-
top mechanism may not work (many of us knows this from first hand experience). It must not be thinner
than 0.3mm, or else the internal pressure may cause spontaneous explosion. Hence, we might tolerance this
thickness as 0.35 ± 0.05mm. Now, if manufacturing processes were more reliable, and our ability to assess
tolerance were more accurate, we might be able to tolerance this thickness as 0.32± 0.02mm. Such a change
would save the aluminum can industry multi-millions of dollars in material cost each year.

For a survey of the computational problems in dimensional metrology, see [13] or [1]; for a perspec-
tive on current dimensional theory, see Voelcker [41]. An NSF-sponsored workshop on manufacturing and
computational geometry addresses some of these issues [46].

§2.5. For Lack of a Bit

On 4 June 1996, the maiden flight of the8 Ariane 5 launcher in French Guiana ended in self-destruction.
About 40 seconds after initiation of the flight sequence, at an altitude of about 3700 m, the launcher veered
off its flight path, broke up and exploded. A report from the Inquiry Board located the critical events: “At
approximately 30 seconds after lift-off, the computer within the back-up inertial reference system, which was
working on stand-by for guidance and attitude control, became inoperative. This was caused by an internal
variable related to the horizontal velocity of the launcher exceeding a limit which existed in the software
of this computer. Approximately 0.05 seconds later the active inertial reference system, identical to the
back-up system in hardware and software, failed for the same reason. Since the back-up inertial system was
already inoperative, correct guidance and attitude information could no longer be obtained and loss of the
mission was inevitable.”

The software error began with an overflow problem: “The internal SRI software exception was caused
during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating
point number which was converted had a value greater than what could be represented by a 16-bit signed
integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were not
protected from causing an Operand Error, although other conversions of comparable variables in the same
place in the code were protected.”

There is a similar episode involving the Patriot Missiles in the 1990 Gulf War. We refer to Higham [18,
p. ???] for details.

Naturally, any major incident could be attributed to failures at several levels in the system. For instance,
the Inquiry Board in the Ariane incident also pointed at failure at the organizational level: “The extensive

7Such parts end up as $10,000 paper weights in some offices.
8Ariane is the French version of the Greek name Ariadne (in English!). In Greek mythology, Ariadne was the daughter of

King Minos of Crete.
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reviews and tests ... did not include adequate analysis and testing of the inertial reference system or of
the complete flight control system, which could have detected the potential failure.” Kahan and Darcy
[22] responded: “What software failure could not be blamed upon inadequate testing? The disaster can be
blamed just as well upon a programming language (Ada) that disregarded the default exception-handling
specifications in IEEE Standard 754.” The Ariane failure lost a satellite payload worth over half a billion
dollars. Other costs, including the potential loss of lives, are harder to quantify.

In mission-critical applications, less than fully robust software is
not an option.

§2.6. Human Failures

There are many other examples of the drastic consequences of unreliability of numerical computation:

• Intel Pentium chip floating point error (1994-5)

• North Sea Sleipner Class oil rig collapse (1991) due inaccurate finite element analysis,

• Among major engineering structures, bridges seem particularly prone to unpredictable errors. Three
modern examples are Tacoma Bridge, Washington, Auckland Bridge, and London Millennium Bridge.
Better computer simulations with improved accuracy in numerical simulation may have been able to
predict the problems.

• An incidence at the Vancouver Stock Exchange index, Jan 1982 to Nov 1983.

It should be stressed that although numerical errors are at the root of these examples, one could also point
to various human errors in these episodes. For instance, in the Ariane 5 failure, one can also point a
finger at imperfect software testing, at management lapses, etc. On the other hand, these failings of human
institutions would be irrelevant if the source of these problems (numerical errors) could be eliminated.

§3. Responses to Numerical Nonrobustness

The ubiquitous nature of numerical nonrobustness, would seem to cry out for a proper resolution. As
computers become more integrated into the fabric of modern society, this problem is expected9 to worsen.
The fact that we do not see a general declaration of war on nonrobustness (in the same way that computer
security has marshaled support in recent years) calls for explanation. Here are some common (non)responses
to nonrobustness:

¶3. Nonrobustness is inevitable. It is often stated in textbooks and popular science articles that com-
puter arithmetic is inherently inexact, and so exact computation is impossible. Whatever such a statement
means, it is wrong to conclude that numerical nonrobustness is unavoidable in software.

¶4. Nonrobustness is unimportant because it is a rare event. It is true that, for any given software,
the inputs that causes nonrobust behavior are in a certain sense “rare”. The problem is that these rare events
occur at a non-negligible frequency.

¶5. Nonrobust software is a mere inconvenience. When the productivity of scientists and engineers is
negatively impacted, this “inconvenience” becomes a major issue. A study from NIST [36] estimates the cost
of software unreliability in several industries including transportation (aircraft and automobile manufacture)
and financial services.

9Aided by the relentless progress of Moore’s law, we may experience nonrobustness more frequently in the following sense:
what used to fail once a month may now fail every day, simply because the same code is executed faster, perhaps on larger data
sets.
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¶6. Avoid ill-conditioned inputs. It is well-known that we can lose significance very quickly with
ill-conditioned inputs. One response of numerical analysts is to suggest that we should avoid ill-conditioned
inputs. For instance, if the input is ill-conditioned, we should first perform some random perturbation.
Unfortunately, we note that ill-conditioned inputs are often a deliberate feature of the input data. For
example, in engineering and architectural designs, multiple collinear points is probably a design feature
rather than an accident. So a random perturbation destroys important symmetries and features in the data.

¶7. Use stable algorithms. Stability is an important concept in numerical computation. The definition10

of what this means is usually informal, but see a definition in [40]. Higham [18, p.30] gives guidelines for
designing numerically stable algorithm. The problem is that stable algorithms only serves to reduce the
incidence of non-robustness, not eliminate it.

¶8. No one else can solve it either. This might be the response of software vendor, but it seems
that many users also buy into this argument. We believe that this response11 is increasingly weak in many
domains, including meshing software.

§4. Additional Notes

An early effort to address nonrobustness geometric algorithms resulted in a 2-volume special issue of ACM
Trans. on Graphics, Vol.3, 1984, edited by R. Forrest, L.Guibas and J.Nievergelt. The editorial deplores the
disconnect between the graphics community and computational geometry, and points out the difficulties in
implementing robust algorithms: “A Bugbear ... is the plethora of special cases ... glossed over in theoretical
algorithms”. “In practice, even the simplest operations such as line segment intersection... are difficult, if
not impossible, to implement reliably and robustly”. “All geometric modeling systems run into numerical
problems and are, on occasion, inaccurate, inconsistent, or simply break...”. This was in the early days of
computational geometry where the field has a bibliography with just over 300 papers at that time, and the
book of Shamos and Preparata was just out. See also [14].

In the literature, what we call “robustness” also goes under the name of reliability. The interest in
robust or reliable software appears in different forms in several communities.

• The area called validated computing or certified computing aims to achieve robustness by provid-
ing guaranteed error bounds. The techniques comes from interval arithmetic. There is active software
and hardware development, aimed to make interval (or enclosure) methods easily accessible to program-
mers. There are several key books in this area; in particular, [35] addresses problems of computational
geometry. The journal12 Reliable Computing from Kluwer Academic Publishers devoted to this
field; see also the special issue [34].

• The geometric design community is acutely aware of nonrobustness in CAD software. Hoffman [20, 19]
has been an advocate of efforts to address this problem. Farouki [12] looks at numerical stability
issues, especially in connection to the favorable properties of the Bezier representation. Patrikalakis
[32] surveys robustness issues in geometric modelling software. One of the key open problems in this
field is the development of fully reliable numerical algorithms for the surface-surface intersection (SSI)
problem.

• Nonrobustness in computer graphics might appear to be a non-issue if we think the main computational
issue is deciding how to turn on a pixel on the screen. But in reality, there is much geometric processing
before making this final decision. The book of Christer Ericson [11, Chap. 11] is devoted to numerical
robustness, presenting many of the issues that implementor of computer games face.

• There has been long-standing interest in theory of real computation. We mention two schools of
thought: one is the “Type Two Theory of Effectivity” (TTE Theory) [44], with roots in the classical

10We are indebted to Professor Michael Overton for this remark.
11We think CAD software vendors ought to be extremely interested in the current research development when confronted

with the data in Table 1.
12From 1991 to 1994, it was known as “J. of Interval Computations”.
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constructive analysis. The other school (BSS or Algebraic Theory) [6] is based on the uniform algebraic
models. The annual workshop Computability and Complexity in Analysis is representative of the TTE
approach. The Algebraic School is initiated by the work of Smale and his co-workers. Many interesting
connections with standard complexity theory has been discovered.

• Over the years, there has been several software developed to support real computation: these are
usually based on the lazy-evaluation paradigm, which provides more and more bits of accuracy on
demand. A recent system along this line is Mueller’s iRRAM [30]. The annual workshop “Real Numbers
and Computers” is representative of this community.

• Numerical analysts have long recognized the pitfalls associated with numerical computing [15, 38, 17].
Key topics here are numerical stability, accuracy and conditioning. A modern treatment of these
issues is Higham [18]. The book of Chaitin-Chatelin and Valérie Frayssé [8] addresses stability of
finite-precision computation. The key role of condition numbers have also been studied in the Smale
school.

• The meteorologist Edward N. Lorenz (1917-2008) accidentally discovered computational chaos in the
winter of 1961. He was running a weather simulation for a second time, but for a longer time period.
He started the second simulation in the middle, by typing in numbers that were printed from the first
run. He was surprised to see the second weather trajectory quickly diverge from the first. He eventually
realized that the computer stored numbers to an accuracy of 6 decimal places (e.g., 0.123456), but the
printout was shorted to 3 decimal places (e.g., 0.123). This discrepancy led to the diverging simulation
results. He published this finding in 1963. In a 1964 paper, he described how a small change in
parameters in a weather model can transform a regular periodic behavior into chaotic pattern. But it
was the title of his 1972 talk at the American Association for the Advancement of Science that entered
the popular imagination: “Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set Off a
Tornado in Texas?” This story in recounted in James Gleick’s book “Chaos”.

• Various workshops been devoted to robust computation, including: SIGGRAPH Panel on Robust
Geometry (1998), NSF/SIAM Workshop on Integration of CAD and CFD (1999), MSRI Workshop
on Foundations of CAD (1999), Minisymposium Robust Geometric Computation at Geometric Design
and Computing (2001), DIMACS Workshop on Implementation of Geometric Algorithms (2002).

• Reports in computing fields emphasize the challenges of robust computation: NSF Report on Emerging
Challenges in Computational Topology [3], Computational Geometry Task Force Report [5, 4], ACM
Strategic Directions Report [39].

• Special journal issues have address this topic. E.g., [16], [29], [33]. Two surveys on nonrobustness are
[37, 48]. Major software such as LEDA and CGAL have been highly successful in solving nonrobustness
in many basic problems of geometry.

§5. APPENDIX: General Notations

We gather some common notations that will be used in this book.
The set of natural numbers is denoted by N = {0, 1, 2, . . .}. The other systems of numbers are integers

Z = {0,±1,±2, . . .}, rational numbers Q = {n/m : n,m ∈ Z, n 6= 0}, real numbers R and complex numbers
C.

For any positive real number x, we write lg x and lnx for their logarithms to base 2 and the natural
logarithm, log2 x and loge x.

The set of m × n matrices with entries over a ring R is denoted Rm×n. Let M ∈ Rm×n. If the (i, j)th
entry of M is xij , we may write M = [xij ]

m,n
i,j=1 (or simply, M = [xij ]i,j). The (i, j)th entry of M is denoted

M(i; j). More generally, if i1, i2, . . . , ik are indices of rows and j1, . . . , jℓ are indices of columns,

M(i1..ik; j1..jℓ) (5)

denotes the submatrix obtained by intersecting the indicated rows and columns. In case k = ℓ = 1, we
often prefer to write (M)i,j or (M)ij instead of M(i; j). If we delete the ith row and jth column of M ,
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the resulting matrix is denoted M [i; j]. Again, this notation can be generalized to deleting more rows and
columns. E.g., M [i1, i2; j1, j2, j3] or [M ]i1,i2;j1,j2,j3 . The transpose of M is the n×m matrix, denoted MT ,
such that (MT )i,j = (M)j,i.
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It is better to solve the right problem the wrong way than to solve the wrong problem the
right way.

The purpose of computing is insight, not numbers.

– Richard Wesley Hamming (1915–1998)

Lecture 2

MODES OF NUMERICAL COMPUTATION

To understand numerical nonrobustness, we need to understand computer arithmetic. But
there are several distinctive modes of numerical computation: symbolic mode, floating point (FP)
mode, arbitrary precision mode, etc. Numbers are remarkably complex objects in computing,
embodying two distinct sets of properties: quantitative properties and algebraic properties. Each
mode has its distinctive number representations which reflect the properties needed for computing
in that mode. Our main focus is on the FP mode that is dominant in scientific and engineering
computing, and in the corresponding representation popularly known as the IEEE Standard.

§1. Diversity of Numbers

Numerical computing involves numbers. For our purposes, numbers are elements of the set C of complex
numbers. But in each area of application, we are only interested in some subset of C. This subset may
be N as in number theory and cryptographic applications. The subset may be R as in most scientific and
engineering computations. In algebraic computations, the subset might be Q or its algebraic closure Q.

These examples show that “numbers”, despite their simple unity as elements of C, can be very diverse in
manifestation. Numbers have two complementary sets of properties: quantitative (“numerical”) properties
and algebraic properties. Quantitative properties of numbers include ordering and magnitudes, while
algebraic properties include the algebraic axioms of a ring or field. It is not practical to provide a single
representation of numbers to cover the full range of these properties. Otherwise, computer systems might
as well provide a single number type, the complex number type. Depending on the application, different
aspects of quantitative properties or algebraic properties would be emphasized or supported. Over the
years, different computing fields have developed suitable number representation to provide just the needed
properties. Corresponding to these number representations, there also evolved corresponding modes of
numerical computation. We briefly review a few of these modes:

• The symbolic mode is best represented by computer algebra systems such as Macsyma, Maple or
Mathematica. In the present context of numerical computing, perhaps the most important subclass
of C in the symbolic mode is the algebraic numbers Q. A simple example of an algebraic number
is

√
2. Here, there are two common representations. A number α ∈ Q[β] ⊆ Q can be represented

by a polynomial A(X) ∈ Q[X] modulo B(X) where B(X) is the minimal polynomial of β. This
representation is useful if we are only interested in the algebraic properties of numbers. It is sufficient
to model the field operations and to check for equality. When α is real, and we are interested in the
quantitative properties of numbers, then the polynomial A(X) is inadequate. Instead, we can use the
isolated interval representation, comprising of a polynomial-interval pair (A(X), I) where α is the
only root of A(X) inside the interval I. For instance, if α =

√
2 then we could choose A(X) = X2 − 2

and I = [1, 2]. We can perform the arithmetic operations on such isolated interval representations. The
quantitative properties of numbers can be captured by the interval I, which can of course be arbitrarily
narrowed. Both representations are exact.

• The unquestioned form of numerical computing in most scientific and engineering applications involves
machine floating point numbers. We refer to this as the FP mode, standing for “floating point” or
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“fixed precision”, both of which are characteristic of this mode. Thus,
√

2 is typically represented by
64 bits in some floating point format, and converts to the printed decimal value of 1.4142135623731.
Algebraic properties are no longer universally true (e.g., x(y + z) 6= xy + xz, and xy = 0 even though
x 6= 0 and y 6= 0). In modern hardware, this format invariably conforms to the IEEE Standard [16].
The FP mode is very fast because of such hardware support. It is the “gold standard” whereby other
numerical modes are measured against. One goal of numerical algorithm design in the FP mode is
to achieve the highest numerical accuracy possible using machine arithmetic directly on the number
representation alone (perhaps after some re-arrangement of computation steps). Over the last 50 years,
numerical analysts have developed great insights into the FP mode of computation.

The characterization “fixed precision” needs clarification since all FP algorithms can be regarded as
parametrized by a precision number θ (0 ≤ θ < 1). Most algorithms will produce answers that converge
to the exact answer as θ → 0 (see Chaitin-Chatelin and Frayssé [7, p. 9]). In practice, FP algorithms
are “precision oblivious” in the sense that their operations do not adapt to the θ parameter.

• The arbitrary precision mode is characterized by its use of Big Number types. The precision of such
number types is not fixed. Because of applications such as cryptography, such number types are now
fairly common. Thus the Java language comes with standard Big Number libraries. Other well-known
libraries include the GNU Multiprecision Package gmp, the MP Multiprecision Package of Brent [5], the
MPFun Library of Bailey [3], and NTL from Shoup. Surveys of Big Numbers may be found in [11, 42].

The capabilities of Big Number packages can be extended in various ways. Algebraic roots are not
normally found in Big Number packages, but the PRECISE Library [21] provides such an extension.
Arbitrary precision arithmetic need not be viewed as monolithic operations, but can be performed
incrementally. This gives rise to the lazy evaluation mode [25, 4]. The iRRAM Package of Müller
[28] has the interesting ability to compute limits of its functions. The ability to reiterate an arbitrary
precision computation can be codified into programming constructs, such as the precision begin-end
blocks of the Numerical Turing language [15].

• The validated mode refers to a computational mode in which computed values are represented by
intervals which contain the “true value”. Properties of the exact answer can often be inferred from
such intervals. For instance, if the interval does not contain 0, then we can infer the exact sign of the
true value. This mode often goes by the name of interval arithmetic. It is orthogonal to the FP
mode and arbitrary precision mode, and thus can be combined with either one. For instance, the Big
Float numbers in Real/Expr [42] and also in PRECISE are really intervals. This amounts to automatic
error tracking, or significance arithmetic.

• The guaranteed precision mode is increasingly used by computational geometers working on robust
computation [41]. It is encoded in software libraries such as LEDA, CGAL and Core Library. In this
mode, the user can freely specify an á priori precision bound for each computational variable; the
associated library will then compute a numerical value that is guaranteed to to this precision. In its
simplest form, one simply requires the correct sign – this amounts to specifying one relative-bit of
precision [39]. Guaranteed sign computation is enough to achieve robustness for most basic geometric
problems. This mode is stronger than the validated mode because the precision delivered by a validated
computation is an á posteriori one, obtained by forward propagation of error bounds.

In this Chapter, we focus on the FP mode and briefly touch on arbitrary precision mode and validated
mode. The symbolic mode will be treated in depth in a later Chapter.

§2. Floating Point Arithmetic

It is important to understand some basic properties of machine arithmetic, as this is ultimately the
basis of most numerical computation, including arbitrary precision arithmetic. As machine floating-point
arithmetic is highly optimized, we can exploit them in our solutions to nonrobustness; this remark will
become clear when we treat filters in a later chapter. An excellent introduction to numerical floating point
computation and the IEEE Standard is Overton [30].
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We use the term fixed precision arithmetic to mean any arithmetic system that operates on numbers
that have a fixed budget of bits to represent their numbers. Typically, the number is represented by a fixed
number of “components”. For instance, a floating point number has two such components: the mantissa and
the exponent. Each component is described by a natural number. The standard representation of natural
numbers uses the well-known positional number system in some radix β ≥ 2. An alternative name for radix
is base. Here β is a natural number and the digits in radix β are elements of the set {0, 1, . . . , β − 1}. A
positional number in radix β ≥ 2 is represented by a finite sequence of such digits. For instance, humans
communicate with each other using β = 10, but most computers use β = 2.

We will call such numbers positional number systems. There are two main ways to represent positional
numbers on a computer, either fixed point or floating point.

¶1. Fixed Point Systems. A fixed point system of numbers with parameters m,n, β ∈ N comprises
all numbers of the form

±d1d2 . . . dn.f1f2 . . . fm (1)

and di, fj ∈ {0, 1, . . . , β − 1} are digits in base β. Typically, β = 2, 10 or 16. Fixed point systems are not
much used today, except for the special case of m = 0 (i.e., integer arithmetic).

It is instructive to briefly look at another class of fixed-precision arithmetic, based on rational numbers.
Matula and Kornerup [23] gave a study of such systems. In analogy to fixed point and floating point numbers,
we also fixed-slash and floating-slash rational numbers. In the fixed-slash system, we consider the set of
rational numbers of the form ±p/q where 0 ≤ p, q ≤ n for some n. The representable numbers in this system
is the well-known Farey Series Fn of number theory. In the floating-slash system, we allow the number of
bits allocated to the numerator and denominator to vary. If L bits are used to represent a number, then we
need about lg L bits to indicate this allocation of bits (i.e., the position of the floating slash). Matula and
Kornerup address questions of naturalness, complexity and accuracy of fixed-precision rational arithmetic in
their paper. Other proposed number system include Hensel’s p-adic numbers (e.g., [13, 20]) and continued
fractions (e.g., [6]). Note that in p-adic numbers and continued fractions, the number of components is
unbounded. For general information about about number systems, see Knuth [19].

All these alternative number systems ultimately need a representation of the natural numbers N. Besides
the standard β-ary representation of N, we mention an alternative1 called β-adic numbers. A digit in
β-adic number is an element of {1, 2, . . . , β}, and a sequence of such digits dndn−1, . . . , d1d0 represents the
number

∑n
i=0 diβ

i. This equation is identical to the one for β-ary numbers; but since the di’s are non-zero,
every natural number has a unique β-adic representation. In particular, 0 is represented by the empty
sequence. In contrast to β-adic numbers, the usual β-ary numbers are non-unique: .1 = 0.100 = 00.1.

¶2. Floating Point Systems. Given natural numbers β ≥ 2 and t ≥ 1, the floating point system
F (β, t) comprises all numbers of the form

r = m × βe−t+1 =
m

βt−1
βe (2)

where m, e ∈ Z and |m| < βt. We call β the base and t the significance of the system. The pair (m, e) is
a representation of the number r, where m is the mantissa and e the exponent of the representation.
When exponents are restricted to lie in the range

emin ≤ e ≤ emax,

we denote the corresponding subsystem of F (β, t) by

F (β, t, emin, emax). (3)

Note that F (β, t) is just the system F (β, t,−∞,+∞). When r is represented by (m, e), we may write

float(m, e) = r.

1There is a conflict in terminology here when numbers of the form m2n (m, n ∈ Z) are called dyadic numbers. Such
numbers are also known as binary floating point numbers.
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For instance, float(2t−1, 0) = 1 and float(2t−1, 2) = 4 in F (2, t).
Sometimes, e is called the biased exponent in (2) because we might justifiably2 call e − t + 1 the

“exponent”. Using the biased exponent will facilitate the description of the IEEE Standard, to be discussed
shortly. Another advantage of using a biased exponent is that the role of the t parameter (which controls
precision) and the role of emin, emax (which controls range) are clearly separated. Thus emax limits the
largest absolute value, and emin limits the smallest non-zero absolute value. The expression m/βt−1 in (2)
can be written as ±d1.d2d3 · · · dt where m is a t-digit number m = ±d1d2 · · · dt in β-ary notation. As usual,
di ∈ {0, 1, . . . , β − 1} are β-ary digits. The equation (2) then becomes

r = ±βe × d1.d2d3 · · · dt = float(m, e). (4)

In this context, d1 and dt are (respectively) called the leading and trailing digits of m. The number
±d1.d2d3 · · · dt = m/βt−1 is also called the significand of r.

In modern computers, β is invariably 2. We might make a case for β = 10 and some older computers do
use this base. In any case, all our examples will assume β = 2.

We classify the representations (m, e) into three mutually disjoint types:
(i) If |m| ≥ βt−1 or if (m, e) = (0, 0), then (m, e) is a normal representation. When m = 0, we just have
a representation of zero. Thus, the normal representation of non-zero numbers amounts to requiring d1 6= 0
in (4).
(ii) If e = emin and 0 < |m| < βt−1 then (m, e) is a subnormal representation. Note that when
emin = −∞, there are no subnormal representations since e and m are finite values (by assumption).
(iii) All other (m, e) are denormalized representations.

In the following discussion, we assume some F = F (β, t, emin, emax). Numbers in F are said to be
representable or floats. Normal and subnormal numbers refers to numbers with (respectively) normal
and subnormal representations.

We claim that every representable number is either normal or subnormal, but not both. In proof, first
note that the normal numbers and subnormal numbers are different: assuming emin > −∞, the smallest
non-zero normal number is float(βt−1, emin) = βemin , which is larger than the largest subnormal number
float(βt−1 − 1, emin). Next, consider any denormalized representation (m, e). There are two possibilities: (a)
If m = 0 then float(m, e) = 0 which is normal. (b) If m 6= 0 then |m| < βt−1. So the leading digit of m is
0. Let di = 0 for i = 1, . . . , k and dk+1 6= 0 for some k ≥ 1. Consider the representation (mβℓ, e − ℓ) where
ℓ = min{k, e − emin}. It is easy to see that this is either normal (ℓ = k) or subnormal (ℓ < k). This shows
that float(m, e) is either normal or subnormal, as claimed. The transformation

(m, e) −→ (mβℓ, e − ℓ), (5)

which is used in the above proof, is called normalization (even though the result might actually be sub-
normal).

We claim that normal and subnormal representations are unique and they can easily be compared. Sub-
normal representations are clearly unique. They are also smaller than normal numbers. To compare two
subnormal representations, we just compare their mantissas. Next consider two normal representations,
(m, e) 6= (m′, e′). We may assume that mm′ > 0 since otherwise the comparison can be based on the signs
of m and m′ alone. If e = e′ then clearly the comparison is reduced to comparing m with m′. Otherwise,
say e > e′. If m > 0 then we conclude that float(m, e) > float(m′, e′) as shown in the following:

float(m, e) =
m

βt−1
βe ≥ βe ≥ βe′+1 >

m′

βt−1
βe′

= float(m′, e′).

If m < 0, we similarly conclude that float(m, e) < float(m′, e′).

¶3. Resolution and Range. In the system F = F (β, t, emin, emax), there are two related measures of
the “finest resolution possible”. One is the machine epsilon, εM := β1−t, which may be defined to be the

2It is less clear why we use “e− t+1” instead of “e− t”. Mathematically, “e− t” seems preferable but “e− t+1” is a better
fit for the IEEE standard.
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distance from 1.0 and the next larger representable number, i.e., float(βt−1 +1, 0). More important for error
analysis is the unit roundoff, defined as

u := εM/2 = β−t. (6)

We wish to define the “range of F”. If y is normal then

βemin ≤ |y| ≤ βemax
(
β − β1−t

)
. (7)

Thus we define the normal range of F to be

(−β1+emax ,−βemin ] ∪ [βemin , β1+emax). (8)

The subnormal range is the open interval (−βemin , βemin). Note that 0 is normal but lies in the subnormal
range. The range of F is the union of the normal and subnormal ranges of S.

A striking feature of F is the non-uniform distribution of its numbers. Informally, the numbers in F
becomes more and more sparse as we move away from the origin. This non-uniformity is both a strength
and weakness of F . It is a strength because the range of F is exponentially larger than could be expected
from a uniformly distributed number system with the same budget of bits. It is a weakness to the extent
that algorithms and error analysis based on F are harder to understand.

To understand this non-uniform distribution, we need only consider the non-negative portion of the range
of F , [0, β1+emax). Subdivide this into half-open intervals of the form Ie := [βe, βe+1) for e ∈ [emin, emax],

[0, βemax) = I−∞ ⊎ Iemin
⊎ Iemin+1 ⊎ · · · ⊎ Iemax

where ⊎ denotes disjoint union and I−∞ is defined to be [0, βemin). Note that except for 0, the representable
numbers in I−∞ are precisely the subnormal numbers.

0.25 0.5 1.0 2.0 4.00

I1I∞ I−1I−2 I0

Figure 1: Non-uniform intervals in F (2, 3,−2, 1): normal numbers.

For the example in Figure 1, each interval Ie (for e ≥ emin) has exactly 4 normal numbers. In general,
each interval Ie contains all the normal representations of the form (m, e), with βt−1 ≤ m < βt. There are
exactly βt−1(β − 1) numbers in Ie (this is because in (4), there are β − 1 choices for d1 and β choices for
d2, . . . , dt). The numbers in interval Ie are uniformly spaced βe−t+1 apart; multiplying this by the number
of normal numbers in Ie, we obtain βe(β − 1), which is the width of the interval Ie.

¶4. Rounding. We are familiar with the concept of rounding to the nearest integer: for any real x, we
can round down to ⌊x⌋ (floor function) or round up to ⌈x⌉ (ceiling function).

To discuss rounding in general, we must first generalize the ceiling and floor functions so that the role
played by integers can be played by any closed set G ∈ R. Then ⌊x⌋G and ⌈x⌉G denotes the closest number
in G ∪ {±∞} such that

⌊x⌋G ≤ x ≤ ⌈x⌉G . (9)

Thus, x ∈ G if and only if ⌊x⌋G = ⌈x⌉G = x. Viewing G as the “rounding grid”, we are rounding to the
nearest grid value. We shall be using the floating point system F = F (β, t, emin, emax) as our rounding grid.

There are 7 major “rounding modes”. Each mode is identified by a particular rounding function,
fl : R → F . We have the general requirement that all rounding functions satisfy

fl(x) ∈ {⌈x⌉ , ⌊x⌋} ⊆ F ∪ {±∞}.

We have already seen the two rounding functions:

fl1(x) = ⌊x⌋ (10)

fl2(x) = ⌈x⌉ (11)
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Let us describe the remaining 5 rounding functions. The next two rounding modes are round towards
zero and round away from zero. These corresponds to the rounding functions

fl3(x) =

{
⌊x⌋ if x ≥ 0
⌈x⌉ if x < 0

. (12)

fl4(x) =

{
⌈x⌉ if x ≥ 0
⌊x⌋ if x < 0

. (13)

(14)

Another two rounding modes are round to even and round to odd, respectively. They depend on an
additional structure of F : each number y ∈ F is classified as even or odd, called the parity of y. Moreover,
two consecutive numbers in F have opposite parity. By convention, the parity of 0 is even, and this uniquely
fixes the parity of each number in F . This notion of parity generalizes the usual notion of even or odd
integers. Now we may define the corresponding rounding functions

fl5(x) =

{
x if x ∈ F
the value in {⌊x⌋ , ⌈x⌉} with odd parity

(15)

fl6(x) =

{
x if x ∈ F
the value in {⌊x⌋ , ⌈x⌉} with even parity

(16)

The last rounding mode is rounding to nearest, with rounding function denoted fl∗(x) or ⌊x⌉. This is
intuitively clear: we choose fl∗(x) to satisfy the equation

|fl∗(x) − x| = min {x − ⌊x⌋ , ⌈x⌉ − x} .

Unfortunately, this rule in incomplete because of the possibility of ties. So we invoke one of the other six
rounding modes to break ties! Write fl∗

i (x) (for i = 1, . . . , 6) for the rounding function where tie-breaking is
determined by fli(x). Empirically, the variant fl∗

6 has superior computational properties, and is the default
in the IEEE standard. Hence it will be our default rule, and the notation “⌊x⌉” will refer to this variant.
Thus, ⌊1.5⌉ = 2 and ⌊2.5⌉ = 2. Call this the round to nearest/even function.

Parity Again. We give an alternative and more useful computational characteri-
zation of parity. Recall that each number in F has a unique normal or subnormal
representation (m, e); we say float(m, e) is even iff m is even. Let us prove this
notion of parity has our originally stated properties. Clearly, 0 is even by this defi-
nition. The most basic is: there is a unique even number in the set {⌊x⌋ , ⌈x⌉} when
x 6∈ F . Without loss of generality, assume 0 ≤ ⌊x⌋ < ⌈x⌉ where ⌊x⌋ = float(m, e)
and ⌈x⌉ = float(m′, e′). If e = e′ then clearly m is even iff m′ is odd. If e = e′ − 1
then m = βt − 1 and m′ = βt−1. Again, m is even iff m′ is odd. There are two
other possibilities: ⌊x⌋ = −∞ or ⌈x⌉ = +∞. To handle them, we declare ±∞ to
be even iff β is even.

Let fl(x) be any rounding function relative to some floating point system F . Let us prove a basic result
about fl:

Theorem 1. Assume x ∈ R lies in the range of F and fl(x) is finite.
(i) Then

fl(x) = x(1 + δ), |δ| < 2u (17)

and
fl(x) =

x

1 + δ′
, |δ′| < 2u. (18)

(ii) If fl(x) = fl∗(x) is rounding to nearest, then we have

fl∗

(x)=x(1+δ), |δ|<u (19)

and
fl∗

(x)= x
1+δ′

, |δ′|≤u. (20)
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Proof. (i) Suppose x ∈ Ie for some e. If x = βe then fl(x) = x and the theorem is clearly true. So assume
|x| > βe. The space between consecutive representable numbers in Ie is βe−t+1. Writing ∆ = fl(x) − x, we
obtain fl(x) = x + ∆ = x(1 + ∆/x) = x(1 + δ) where

|δ| =

∣∣∣∣
∆

x

∣∣∣∣ <
βe−t+1

|x| < β−t+1. (21)

This proves (17) since u = β1−t/2. Note this bound holds even if fl(x) is the right endpoint of the interval
Ie. Similarly, if ∆′ = x − fl(x) then x = fl(x) + ∆′ = fl(x)(1 + ∆′/fl(x)) = x(1 + δ′) where

|δ′| =

∣∣∣∣
∆′

fl(x)

∣∣∣∣ <
βe−t+1

|fl(x)| ≤ β−t+1. (22)

(ii) This is similar to (i) applies except that |∆| ≤ u (not strict inequality). The analogue of (21) is |δ| < u,
but the analogue of (22) is |δ′| ≤ u (not strict inequality). Q.E.D.

Example 1 (The IEEE Floating Point Systems).
The IEEE single precision numbers is essentially3 the system

F (β, t, emin, emax) = F (2, 24,−127, 127)

with range roughly 10±38. The IEEE double precision numbers is essentially the system

F (β, t, emin, emax) = F (2, 53,−1023, 1023)

with range roughly 10±308. Note that emin = −emax in both systems. The unit roundoffs for these two
systems are

u = 2−24 ≈ 5.96 × 10−8(single); (23)

u = 2−53 ≈ 1.11 × 10−16(double). (24)

The formats (i.e., the bit representation) of numbers in these two systems are quite interesting because it
is carefully optimized. The bit budget, i.e., total number of bits used to represent the single and double
precision numbers, is 32 and 64 bits, respectively. In the double precision format, 53 bits are dedicated
to the mantissa (“significand”) and 11 bits for the exponent. In single precision, these are 24 and 8 bits,
respectively. We will return later to discuss how this bit budget is used to achieve the representation of
F (2, t, emin, emax) and other features of the IEEE standard.

¶5. Standard Model of Floating Point Arithmetic. Let ◦ be any basic floating point operation
(usually, this refers to the 4 arithmetic operations, although square-root is sometimes included). Let ◦′ be
the corresponding operation for the numbers in F . The fundamental property of fixed precision floating
point arithmetic is this: if x, y ∈ F then

x ◦′ y = fl(x ◦ y). (25)

This assumes ◦ is binary, but the same principle applies for unary operations. Let us call any model of
machine arithmetic that satisfies (25) the strict model. Thus, the strict model together with Theorem 1
implies the following property

x ◦′ y =

{
(x ◦ y)(1 + δ), |δ| < u,
(x◦y)
(1+δ′) , |δ′| ≤ u,

(26)

where u is the unit roundoff (see (6) and (23)). Any model of machine arithmetic that satisfies (26) is called
a standard model (with unit roundoff u). Note that if x◦y ∈ F , then the strict model requires that δ = 0;
but this is not required by the standard model. All our error analysis will be conducted under the standard

3The next section will clarify why we say this correspondence is only in “essence”, not in full detail.
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model. NOTATION: As an alternative4 to the notation x ◦′ y, we often prefer to use the bracket notation
“[x ◦ y]”.

We refer to [19, Chapter 4] for the algorithms for arithmetic in floating point systems, and about general
number systems and their history. Here is a brief overview of floating point arithmetic. It involves a generic
3-step process: suppose F = F (β, t) for simplicity, and we want to perform the binary operation x ◦′ y in F ,

1. (Scaling) First “scale” the operands so that they share a common exponent. It makes sense to scale up
the operand with the smaller magnitude to match the exponent of the operand with larger magnitude:
if x = m2e and y = n2f where e ≥ f , then scaling up means y is transformed to (n/2e−f )2e. The
scaled number may no longer be representable. In general, some truncation of bits may occur.

2. (Operation) Carry out the desired operation ◦ on the two mantissas. This is essentially integer arith-
metic.

3. (Normalization) Truncate the result of the operation back to t digits of precision. Normalize if necessary.

The Scaling Step is the key to understanding errors in floating point arithmetic: after we scale up the smaller
operand, its mantissa may require much more than t digits. All hardware implementation will simultaneously
truncate the scaled operand. But truncated to what precision? We might guess that truncating to t digits
is sufficient (after all the final result will only have t digits). This is almost right, with one exception: in
the case of addition or subtraction, we should truncate to t + 1 digits. This extra digit is called the guard
digit. Without this, the hardware will fail to deliver a standard model (26). This was a standard “bug” in
hardware before the IEEE standard (Exercise).

Lemma 2 (Sterbenz). Let a, b be positive normal numbers, and 1
2 ≤ a

b
≤ 2.

(i) a − b is representable.
(ii) If we perform subtraction of a and b using a guard digit, we get the exact result a − b.

Proof. Note that (ii) implies (i). To show (ii), let the normal representations of a and b be a = a1.a2 · · · at×
2e(a) and b = b1.b2 · · · bt × 2e(b), where a1 = b1 = 1 and e(a) denotes the exponent of the floating point
representation of a. Assume a ≥ b (if a < b, then the operation concerns −(b − a) where the same analysis
applies with a, b interchanged). Our assumption on a/b implies that e(a) − e(b) ∈ {0, 1}. Consider the case
e(a) − e(b) = 1. We execute the 3 steps of scaling, operation and normalization to compute a − b. To scale,
we rewrite b as 0.b1b2 · · · bt × 2e(a). This new representation needs t + 1 bits, but with the guard bit, we do
no truncation. The subtraction operation has the form

a1 . a2 · · · at 0
− 0 . b1 · · · bt−1 bt

c0 . c1 · · · ct−1 ct.
(27)

Thus a − b = c0.c1 · · · ct × 2e(a). It suffices to show that c0 = 0, so that after normalization, the non-zero
bits in c1 · · · ct are preserved. Note that a ≤ 2b; this is equivalent to a1.a2 · · · at ≤ b1.b2 · · · bt. Therefore
c0.c1 · · · ct = a1.a2 · · · at−0.b1b2 · · · bt ≤ 0.b1b2 · · · bt. This proves c0 = 0. Note that a−b might be a subnormal
number. The other possibility is e(a) = e(b). But this case is slightly simpler to analyze. Q.E.D.

Note that we cannot guarantee exact results when forming the sum a + b, under the assumptions of
Sterbenz’s Lemma. Complementing Sterbenz’s lemma is another “exact” result from Dekker (1971): let s̃ be
the floating point result of adding a and b where we make no assumptions about a/b. Dekker shows, in base
β = 2, the sum a + b can be expressed exactly as s̃ + ẽ where ẽ is another floating point number computed
from a, b. See Chapter 4.

We note that in general, the problem of exact rounding is a difficult problem. It is called the Table
Maker’s Dilemma [27, 22]. The foundations of exact rounding and its connection to Transcendental Number
Theory is given in [43].

Exercises

4In our notation, “fl(x ◦ y)” is not the same as “[x ◦ y]”. The former is simply applying the rounding operator fl(·) to the
exact value x ◦ y while the [· · · ◦ · · · ] refers to applying the floating point operation ◦′. The [· · · ◦ · · · ] is attributed to Kahan.
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Exercise 2.1: Unless otherwise noted, assume the F (2, t) system.
(i) Give the normal representations of −1, 0, 1.
(ii) Give the representations of the next representable number after 1, and the one just before 1.
(iii) Give the IEEE double formats of the numbers in (i) and (ii).
(iv) Give the binary representation of machine epsilon in the IEEE double format.
(v) True or False: for any x, ⌈x⌉ and ⌊x⌋ are the two closest representable to x. ♦

Exercise 2.2: Determine all the numbers in F = F (2, 3,−1, 2). What are the subnormal numbers? What
is u and the range of F? ♦

Exercise 2.3: Consider arithmetic in the system F (β, t).
(i) Show that the standard model (26) holds for multiplication or division when the scaled operand is
truncated to t digits (just before performing the actual operation).
(ii) Show that the standard model (26) fails for addition or subtraction when we truncate to t digits.
(iii) Give the worst case error bound in (ii).
(iv) Show that the standard model holds for addition and subtraction if we have a guard digit. ♦

Exercise 2.4: (i) Give an actual numerical example to show why the guard digit in the scaled operands is
essential for addition or subtraction.
(ii) State the error bound guaranteed by addition or subtraction when there is no guard bit. This
should be weaker than the standard model. ♦

Exercise 2.5: (Ferguson) Generalize the lemma of Sterbenz so that the hypothesis of the lemma is that
e(a − b) ≤ min{e(a), e(b)} where e(a) denotes the exponent of a in normal representation. ♦

Exercise 2.6: The area of a triangle with side-lengths of a, b, c is given by a formula

∆ =
√

s(s − a)(s − b)(s − c), s = (a + b + c)/2.

This formula was derived in Book I of Metrica, by Heron who lived in Alexandria, Egypt, from ap-
proximately 10 to 75 A.D.. If the triangle is needle-like (say, c is very small compared to a, b) the
straightforward evaluation of this formula using machine arithmetic can be very inaccurate.
(i) Give a straight forward C++ implementation of this formula. Use the input data found in the first
three columns of the following table:

No. a b c Naive Kahan’s

1 10 10 10 43.30127019 43.30127020
2 −3 5 2 2.905 Error
3 100000 99999.99979 0.00029 17.6 9.999999990
4 100000 100000 1.00005 50010.0 50002.50003
5 99999.99996 99999.99994 0.00003 Error 1.118033988
6 99999.99996 0.00003 99999.99994 Error 1.118033988
7 10000 50000.000001 15000 0 612.3724358
8 99999.99999 99999.99999 200000 0 Error
9 5278.64055 94721.35941 99999.99996 Error 0
10 100002 100002 200004 0 0
11 31622.77662 0.000023 31622.77661 0.447 0.327490458
12 31622.77662 0.0155555 31622.77661 246.18 245.9540000

Values in bold font indicate substantial error. Your results should be comparable to the results in the
first 4th column.
(ii) Now implement Kahan’s prescription: first sort the lengths so that a ≥ b ≥ c. If c − (a − b) < 0
then the data is invalid. Otherwise use the following formula

∆ =
1

4

√
(a + (b + c))(c − (a − b))(c + (a − b))(a + (b − c)).
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In these formulas, the parenthesis are significant. Compare your results with the 5th column of the
above table.
(iii) Convert your programs in both parts (i) and (ii) into CORE programs and run at level III, with
guaranteed precision of 64 bits. What conclusions do you draw?

NOTE: This problem is derived from5 Kahan’s paper “Miscalculating Area and Angles of a Needle-like
Triangle”, July 19, 1999. ♦

End Exercises

§3. The IEEE Standard

The official name for this standard is the “IEEE Standard 754 for Binary Floating-Point Arithmetic”
[16, 10]. There is a generalization called the IEEE Standard 854 (1987) which applies to any base and to
any word length. It is important to understand some basic properties of this standard because all modern
computer arithmetic subscribes to it. This standard was precipitated by a growing problem in numerical
computation in the 1980s. As FP computation grew in importance, hardware implementations of floating
point arithmetic began to proliferate. The divergence among these architectures caused confusion in the
computing community, and numerical software became largely non-portable across platforms. In 1985, the
IEEE established the said standard for hardware designers. See the book of Patterson and Hennessy [31]
for some of this history. We should properly understand the true significance of this standard vis-á-vis our
robustness goal.

• It ensures consistent performance across platforms. This is no mean achievement, considering the
confusion preceding its introduction and acceptance.

• Because of its rational design, it can reduce the frequency of nonrobust behavior. But we emphasize
that it does not completely eliminate nonrobustness.

• There are issues beyond the current standard that remain to be addressed. A key problem is high-
level language support for this standard [9]. The IEEE Standard is usually viewed as a hardware
standard. Most programming languages still do not support the IEEE standard in a systematic way,
or consistently across platforms.

In the previous section, we had presented the system F (β, t, emin, emax) that forms the mathematical
foundation of floating point arithmetic. But in an actual computer implementation, we need other features
that goes beyond mathematical properties. The IEEE standard provides for the following:

• Number formats. We already mentioned the single and double formats in the previous section. Another
format that is expected to have growing importance is the quadruple precision floating point
format that uses 128 bits (four computer words).

• Conversions between number formats.

• Subnormal numbers. When a computed value is smaller than the smallest normal number, we say
an underflow has occurred. Using subnormal numbers, a computation is said to achieves a gradual
underflow (see below). The older IEEE term for “subnormal numbers” is “denormal numbers”.

• Special values (NaN, ±∞, ±0). The values ±∞ are produced when an operation produces a result
outside the range of our system. For instance, when we divide a finite value by 0, or when we add
two very large positive values. The condition that produces infinite values is called overflow. But
operations such as 0/0, ∞−∞, 0×∞ or

√
−1 result in another kind of special value called NaN (“not-

a-number”). There are two varieties of NaN (quiet and signaling). Roughly speaking, the quiet NaN
represents indeterminate operation which can propagate through the computation (without stopping).
But signaling NaN represents an invalid operation (presumably this condition must be caught by the
program). Similarly, the zero value has two varieties ±0.

5Available from http://cs.berkeley.edu/~wkahan/Triangle.pdf. The CORE version of this program may be found with the
CORE distribution. The above table contains a small correction of the original table in Kahan. The bug was discovered by the
CORE program, and confirmed by Kahan.
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• Unambiguous results of basic operations (+,−,×,÷) as well as more advanced ones (remainder and√
). Transcendental functions are not in the standard per se. The basic rule is simple enough to

understand: if ◦′ is the machine implementation of a binary operation ◦, then let x ◦′ y should return
fl(x ◦ y), i.e., the correctly rounded result of x ◦ y. This applies to unary operations as well.

• Unambiguous results for comparisons. Comparisons of finite values is not an issue. But we need to
carefully define comparisons that involve special values. In particular, +0 = −0 and NaN is non-
comparable. For instance, NaN < x and NaN ≥ x and NaN = x are all false. This means that in
general, not(x < y) and (x ≥ y) are unequal. Comparisons involving ±∞ is straightforward.

• 4 Rounding modes: to nearest/even (the default), up, down, to zero. These have been discussed in the
previous section.

• 5 Exceptions and their handling: invalid result, overflow, divide by 0, underflow, inexact result. The
philosophy behind exceptions is that many computation should be allowed to proceed even when they
produce infinities, NaN’s and cause under- or overflows. The special values (±∞ and NaN) can serve
to indicate such conditions in the eventual output. On the other hand, if there is a need to handle
detect and handle such conditions, IEEE provide the means for this. A single arithmetic operation
might cause one or more of the Exceptions to be signals. The program can trap (catch) the signals if
desired. Interestingly, one of the exceptions is “inexact result”, i.e., when the result calls for rounding.

¶6. Format and Encoding. Let us focus on the IEEE double precision format: how can we represent
the system F (2, 53,−1023, 1023) using 64 bits? The first decision is to allocate 11 bits for the exponent and
53 bits for the mantissa. To make this allocation concrete, we need to recall that modern computer memory
is divided into 32-bit chunks called (computer) words; this is illustrated in Figure 2.

e[52 : 62]± f [51 : 32]

f [31 : 0]

31

63 62 52 51 32

0

Figure 2: Format of a Double Precision IEEE Float

This physical layout is important to understand if one were to program and manipulate such representa-
tions. Two consecutive words are used to represent a double precision number. The bits of a floating point
number f are indexed by 0, 1, . . . , 63. The 11 exponent bits are in f [52 : 62]. The remaining bits, f [0 : 51]
and f [63] are allocated to the mantissa. Bit f [63] represents the sign of the mantissa. Although this sign
bit logically belongs to the mantissa, it is physically separated from the rest of the mantissa.

We do not allocate any bits for sign in the exponent. So the 11 exponent bits represent an unsigned
integer f between 0 and 2047, but we view f as encoding the signed exponent e = f − 1023 (here 1023 is
called6 the exponent bias). By avoiding a sign for the exponent, we have saved a “half-bit” using this
exponent bias trick (Exercise). So e ranges from −1023 to +1024. We shall reserve the value e = 1024 for
special indications (e.g., representing infinity – see below). Hence emin = −1023 and emax = 1023.

Since one of the 53 bits in the mantissa is used for sign, we have only 52 bits to represent the absolute
value of the mantissa. Here, we use another trick to gain one extra bit: for normal numbers, the leading bit
of a 53-bit mantissa is always 1. So this leading bit does not need to be explicitly represented! But what
about subnormal numbers? In this case we declare the implicit bit to be 0. How shall we know whether
a number is normal or subnormal? IEEE standard declares that this is determined by the exponent e. A
number with exponent e is normal if e > −1023, and it is subnormal if e = −1023.

The preceding discussion can be directly transferred to the representation of F (2, 24,−127, 127) by the
IEEE single precision format: with a 32-bit budget, we allocate 8 bits to the exponent and 24 bits to the

6This is distinct from the “biased exponent” idea discussed in the representation (m, e) where e is called the biased exponent.
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mantissa. The unsigned exponent bits represents a number between 0 and 255. Using an exponent bias
of 127, it encodes an exponent value e between −127 and 128. Again, the exponent e = −127 indicates
subnormal numbers, and the value e = 128 is used for special indication, so emin = −127 and emax = 127.

Let us discuss how the special values are represented in the single or double precision formats. Note
that ±0 is easy enough: the mantissa shows ±0 (this is possible since there is a dedicated bit for sign), and
exponent is 0. The infinite values are represented as (±0, emax) Finally, the NaN values are represented by
(m, emax) where |m| > 0. If |m| ≥ 2t−1 then this is interpreted as a quiet NaN, otherwise it is interpreted as
a signaling NaN.

Let us briefly mention how bits are allocated in quad-precision floating point numbers: 15 bits for the
exponent and 113 bits for the mantissa. This is essentially the system F (2, 113,−16382, 16383). The IEEE
Standard also provide for extensions of the above types, but we shall not discuss such extensions.

¶7. Is the IEEE doubles really F (2, 53,−1023, 1023)? We had hinted that the IEEE double precision
may not correspond exactly to F (2, 53,−1023, 1023). Indeed, it is only a proper subset of F (2, 53,−1023, 1023).
To see this, we note that there are 253 numbers in F (2, 53,−1023, 1023) with exponent −1023. However,
there are only 252 numbers with exponent −1023 in the IEEE standard. What are the missing numbers?
These are numbers of the form float(m,−1023) where |m| ≥ 2−52. Why are these missing? That is because
of the implicit leading bit of the 53-bit mantissa is 0 when e = −1023. This means m must have the form
m = 0.b1b2 · · · b52. For instance, float(2−52,−1023) = 2−1023 is not representable.

In general, all the normal numbers with exponent emin are necessarily missing using the IEEE’s conven-
tion. This creates an undesirable non-uniformity among the representable numbers; specifically, there is a
conspicuous gap between the normal and subnormal numbers. But consider the alternative, where we get rid
of the special rule concerning the implicit bit in case e = emin. That is, we use the rule that the implicit bit
is 1 even when e = emin. The creates a different gap – namely, the gap between 0 and the next representable
number is 2emin . Thus, the special rule for implicit leading bit gives us 2−t+1 values to fill this gap. So,
this is where the missing numbers go! This tradeoff is apparently worthwhile, and is known as the graceful
degradation towards 0 feature of IEEE arithmetic. Why don’t we split the difference between the two
gaps? See Exercise.

Exercises

Exercise 3.1:
(i) What are the numbers in in F (2, 24,−127, 127) that are missing from the IEEE single precision
floats?
(ii) In general, what are the missing numbers in the IEEE version of F (2, t, emin, emax)?
(iii) Recall the two kinds of gaps discussed in the text: the gap G0 between 0 and the smallest
representable number, and the gap G1 between normal and subnormal numbers. The IEEE design
prefers to fill G0. This is called graceful degradation towards 0 policy. Why is this better than filling
in the gap G1?
(iv) But suppose we split the difference between G0 and G1. The numbers with exponent emin will be
split evenly between the two gaps. One way to do this is to look at the mantissa: if the mantissa is
odd, we let the implicit bit be 1, and if the mantissa is even, the implicit bit is 0. What are the pros
and cons of this proposal? ♦

Exercise 3.2: Refer to the example in Figure 1. The “missing numbers” under the IEEE scheme are those
in the interval I−2. The gradual underflow feature is achieved at the expense of moving these numbers
into the interval I−∞. The result does not look pretty. Work out a scheme for more uniform floating-
point grid near 0: the idea is to distribute 2−t+1 values uniformly in I−∞ ∪ Imin (say, filling in only
the even values) What are the gap sizes in this range? ♦

Exercise 3.3: By using the biased exponent trick instead of allocating a sign bit to the exponent, what
have we gained? ♦
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End Exercises

§4. Error Analysis in FP Computation

The ostensible goal of error analysis is to obtain an error bound. But [14, p. 71] (“The purpose of
rounding error analysis”) notes that the actual bound is often less important than the insights from the
analysis. The quantity denoted u from the previous section will be an important parameter in such analysis.
Without the right tool, bounding the error on the simplest computation could be formidable. The art in error
analysis includes maintaining the error bounds in a form that is reasonably tight, yet easy to understand
and manipulate.

¶8. Summation Problem. To illustrate the sort of insights from error analysis, we will analyze an
extremely simple code fragment which sums the numbers in an array x[1..n]:

s ← x[1];
for i ← 2 to n do

s ← s + x[i]

Let xi be the floating point number in x[i] and si =
∑i

j=1 xi. Also let s̃i be the value of the variable s
after the ith iteration. Thus s̃1 = x1 and for i ≥ 2,

s̃i = [s̃i−1 + xi]

where we use the bracket notation “[a ◦ b]” to indicate the floating operation corresponding to a ◦ b. Under
the standard model, we have

s̃i = (xi + s̃i−1)(1 + δi) (28)

for some δi such that |δi| ≤ u. For instance, s̃2 = (x1 + x2)(1 + δ2) and

s̃3 = ((x1 + x2)(1 + δ2) + x3)(1 + δ3).

One possible goal of error analysis might be to express s̃n as a function of sn, n and u. We shall see to what
extent this is possible.

The following quantity will be useful for providing bounds in our errors. Define for n ≥ 1,

γn :=
nu

1 − nu
.

Whenever we use γn, it is assumed that nu < 1 holds. This assumption nu < 1 is not restrictive in typical
applications. For instance, with the IEEE single precision numbers, it means n < 224 which is about 16
billion. Note that γn < γn+1. Another useful observation is this:

nu < 0.5 =⇒ γn < 2nu.

The following lemma is from Higham [14, p. 69]:

Lemma 3. Let |δi| ≤ u and ρi = ±1 for i = 1, . . . , n. If nu < 1 then

n∏

i=1

(1 + δi)
ρi = 1 + θn, (29)

where |θn| ≤ γn.

Before proving this lemma, it is worthwhile noting why the expression on left-hand side of (29) is of
interest: you can view this as the accumulated relative error in a quantity (e.g., in s̃i) that is the result of a
sequence of n floating point operations. Proof. We use induction on n. When n = 1, the lemma follows from

(1 + δ1) ≤ 1 + u <
1

1 + u
= 1 +

u

1 − u
= 1 + γ1
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and
(1 + δ1)

−1 ≤ (1 − u)−1 = 1 +
u

1 − u
= 1 + γ1.

Assuming the lemma for n ≥ 1, we will prove it for n + 1. We consider two cases. (1) If ρn+1 = 1, then we
have

(1 + θn)(1 + δn+1) = 1 + θn+1

where θn+1 = θn + δn+1θn + δn+1. Thus

|θn+1| ≤ γn + uγn + u

=
nu + nu2 + u(1 − nu)

1 − nu
≤ γn+1.

(2) If ρn+1 = −1, we have
1 + θn

1 + δn+1
= 1 + θn+1

where θn+1 = θn−δn+1

1+δn+1
. Thus

|θn+1| ≤ θn + u

1 − u

<
(n + 1)u

(1 − nu)(1 − u)
< γn+1.

Q.E.D.

Using this lemma, it is now easy to show:

Lemma 4.
(i) s̃n =

∑n
i=1 xi(1 + θn−i+1) where |θi| ≤ γi.

(ii) If all xi’s have the same sign then s̃n = sn(1 + θ) where |θ| ≤ γn.

Proof. (i) easily follows by induction from (28). To see (ii), we note that when xy ≥ 0 and α ≤ β, then

αx + βy = γ(x + y) (30)

for some α ≤ γ ≤ β. Thus x1(1+θ1)+x2(1+θ2) = (x1 +x2)(1+θ) for some min{θ1, θ2} ≤ θ ≤ max{θ1, θ2}.
The result follows by induction. Q.E.D.

What insight does this analysis give us? The proof of Lemma 4(i) shows that the backward error
associated with each xi is proportional to its depth in the expression for sn. We can reduce the error
considerably by reorganizing our computation: if the summation of the numbers x1, . . . , xn is organized in
the form of a balanced binary tree, then we can improve Lemma 4(i) to

s̃n =
n∑

i=1

xi(1 + θi) (31)

where each |θi| ≤ γ1+⌈lg n⌉. We leave this as an exercise.

¶9. Forward and Backward Error Analysis. Let y be a numerical variable. As a general notation,
we like to write ỹ for an approximation to y, and also δy for their absolute difference ỹ − y. Typically, ỹ is
some computed floating point number. There are two main kinds of error measures: absolute or relative.
Absolute error in ỹ as an approximation to y is simply |δy|. Relative error is defined by

ε(ỹ, y) =
|δy|
|y| .
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This is defined to be 0 if y = ỹ = 0 and ∞ if y = 0 6= ỹ. Generally speaking, numerical analysis prefers to
use relative error measures. One reason is that relative error for floating point numbers is built-in; this is
clear from Theorem 1.

In error analysis, we also recognized two kinds of algorithmic errors: forward and backward errors. Let
f : X → Y be a function with X,Y ⊆ C. Suppose ỹ is the computed value of f at x ∈ Y and y = f(x).
How shall we measure the error in this computation? Conceptually, forward error is simple to understand –
it measures how far off our computed value is from the true value. Again, this can be absolute or relative:
so the absolute forward error is |δy| and the relative forward error is ε(ỹ, y). The backward error is
how far is x from the input x̃ for which ỹ is the exact solution. More precisely, the absolute backward
error of ỹ is defined to be the infimum of |δx| = |x̃ − x|, over all x̃ such that ỹ = f(x̃). If there is no such
x̃, then the absolute backward error is defined to be ∞. The relative backward error of ỹ is similarly
defined, except we use ε(x̃, x) instead of |δx|.

In general, X,Y are normed spaces (see Appendix). The forward error is based on the norm in range space
Y , while backward error is based on the norm in domain space X. Consider our analysis of the summation
problem, Lemma 4. The computed function is f : Cn → C. Also, let take the ∞-norm in X = Cn. Part
(i) gives us a relative backward error result: it says that the computed sum s̃n is the correct value of inputs
that are perturbed by at most γn. Part (ii) gives us a forward error result: it says that the relative error
ε(s̃n, sn) is at most γn.

It turns out that backward error is more generally applicable than forward error for standard problems
of numerical analysis. Let us see why. Note that Lemma 4(ii) has an extra hypothesis that the xi’s have
the same sign. How essential is this? In fact, the hypothesis cannot be removed even for n = 2. Suppose we
want to compute the sum x + y where x > 0 and y < 0. Then we do not have the analogue of (30) in case
x + y = 0. Basically, the possibility of cancellation implies that no finite relative error bound is possible.

Less the reader is lulled into thinking that backward error analysis is universally applicable, we consider
an example [14, p. 71] of computing the outer product of two vectors: A = xyT where x, y are n-vectors and

A = (aij)i,j = (xiyj)i,j is a n × n-matrix. Let Ã = (ãij) be the product computed by the obvious trivial
algorithm. The forward analysis is easy because ãij = aij(1 + θ) where |θ| ≤ u. But there is no backwards

error result because Ã cannot be written as x̃ỹT for any choice of x̃, ỹ, since we cannot guarantee that Ã is
a rank-one matrix.

In general, we see that for problems f : X → Y in which the range f(X) is a lower dimensional subset of
Y , no backward error analysis is possible. Standard problems of numerical analysis are usually not of this
type.

We can combined forward and backward error analysis. In Lecture 3, we return to this issue.

Exercises

Exercise 4.1: The inequality |θn| ≤ γn in Lemma 3 is actually a proper inequality, with one possible
exception. What is this? ♦

Exercise 4.2: Extend the error analysis for summation to the scalar product problem: s =
∑n

i=1 xiyi. ♦

Exercise 4.3: Write a recursive program for summing the entries in the array x[1..n] so that the error
bound (31) is attained. Also, prove the bound (31) for your scheme. ♦

Exercise 4.4: We have noted that the relative forward error analysis for s =
∑n

i=1 xi is not possible in
general. Carry out the absolute forward error analysis. ♦

Exercise 4.5: Suppose we introduce a “composite” error combining relative with absolute. More precisely,
let ε(ỹ, y) = min{|y − ỹ|, |y − ỹ|/|y|}. Thus, in the neighborhood around y = 0, it is the absolute error
that takes effect, and in the neighborhood of |y| = ∞, the relative error takes effect. Show that we can
how provide a forward error analysis for the general summation problem. ♦

End Exercises

§5. Condition Number and Stability
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Despite its acknowledged importance in numerical analysis, the concept of “stability” has largely remained
an informal notion. The book of Higham [14], for instance, says [14, p. 8] that an algorithm for y = f(x)
is “backward stable” if the backward error ε(x̃, x) is “small” in some context-specific sense. The book
of Trefethen and Bau [37] devoted several chapters to stability, and offers the most explicit definition of
stability. This is reproduced below. Before delving into stability, let us consider a more primitive concept:
the condition number.

Suppose
f : X → Y (32)

where X,Y are normed spaces. If we want to distinguish between the norms in these two spaces, we may
write ‖ · ‖X and ‖ · ‖Y . But generally, we will omit the subscripts in the norms. For x ∈ X, we again use
our convention of writing x̃ for some approximation to x and

δx := x̃ − x.

The condition number of f at x ∈ X is a non-negative number (possibly infinite) that measures the sensitivity
of f(x) to x; a larger condition number means greater sensitivity. Again we have the absolute and relative
versions of condition number.

The absolute condition number is defined as

κA f(x) := lim
δ→0

sup
‖δx‖≤δ

‖f(x̃) − f(x)‖
‖δx‖ .

The relative condition number is defined as

κR f(x) := lim
δ→0

sup
‖δx‖≤δ

( ‖f(x̃) − f(x)‖
‖f(x)‖

/ ‖δx‖
‖x‖

)

:= lim
δ→0

sup
‖δx‖≤δ

(‖f(x̃) − f(x)‖
‖δx‖ · ‖x‖

‖f(x)‖

)
. (33)

When f is understood or immaterial, we may drop the subscripts from the κ-notations. For similar reasons,
we may also drop the superscript A or R and simply write ‘κ’. Viewing κ : X → R≥0 ∪ {∞} as a function,
we call κ the condition number function of f . REMARK: we could also consider how an absolute error
in X affects the relative error in Y , or how a relative error in X affects the absolute error in Y . This gives
rise to 2 additional concepts of relative error.

Suppose X ⊆ Cm, Y ⊆ Cn and f = (f1, . . . , fn) is differentiable. We write ∂if for the partial derivative
function ∂f

∂xi
, and write ∂if [x] for the value of this derivative at a given x ∈ Cm. Let Jf (x) be the Jacobian

of f at x: this is a n × m matrix whose (i, j)-th entry given by ∂jfi[x]. The norm ‖Jf (x)‖ on the Jacobian
will be that induced by the norms in X and Y , namely,

‖Jf (x)‖ = sup
x

‖Jf (x) · x‖Y

where x range over those elements of X satisfying ‖x‖X = 1. Then the absolute and relative condition
numbers are given by

κA f(x) = ‖Jf (x)‖ (34)

and

κR f(x) =
‖Jf (x)‖ · ‖x‖

|f(x)| . (35)

EXAMPLE 1. Let us give a proof of (35) for the case f : Cm → C. By Taylor’s theorem with remainder,

f(x + δx) − f(x) = Jf (x) ◦ δx + R(x, δx)

where ◦ denotes the dot product of Jf (x) = [∂1f [x], . . . , ∂nf [x]] with δx = (δx1, . . . , δxn) ∈ Cn. Also, we

have |R(x,δx)|
‖δx‖ → 0 as ‖δx‖ → 0. Taking absolute values and multiplying by ‖x‖

|f(x)|·‖δx‖ , we get

|f(x + δx) − f(x)|
‖δx‖ · ‖x‖

|f(x)| =
‖x‖
|f(x)|

(∣∣∣∣Jf (x) ◦ δx

‖δx‖

∣∣∣∣ +
|R(x, δx)|

‖δx‖

)
.
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Taking the limsup of the lefthand side as ‖δx‖ → 0, we obtain κR f(x). But the righthand side equals
‖x‖

|f(x)|‖Jf (x)‖, by definition of ‖Jf (x)‖. This completes our demonstration.

EXAMPLE 2. Let us compute these condition numbers for the problem f : C2 → C where f(x) = x1+x2

and x = (x1, x2)
T . The Jacobian is

Jf (x) =

[
∂f

∂x1
,

∂f

∂x2

]
= [1, 1]

Assume the norm on X = C2 is the ∞-norm, so ‖x‖ = max{|x1|, |x2|}. Thus ‖Jf (x)‖ = 2. From (34), we
obtain κA f(x) = 2. From (35), we obtain

κR =
2max{|x1|, |x2|}

|x1 + x2|
.

Thus κR = ∞ when x1 + x2 = 0.

¶10. Stability of Algorithms. Condition numbers are inherent to a given problem. But the concept of
stability depends on the particular algorithm for the problem. We may view an algorithm for the problem
(32) as another function f̃ : X ′ → Y ′ where X ′ ⊆ X and Y ′ ⊆ Y . In fact, we might as well take X ′ = fl(X)

and Y ′ = fl(Y ), i.e., the representable elements of X,Y . The stability of f̃ is the measure of how much f̃

deviates from f . Intuitively, we want to define κ̃f (x), the (relative or absolute) condition number of f̃ at
x. But we need to be careful since X ′ = fl(X), Y ′ = fl(Y ) are discrete sets. The stability of an algorithm
is clearly limited by the condition numbers for the problem. Ideally, a stable algorithm should have the
property that κ̃f (x) = O(κf (x)).

We now come to our key definition: an algorithm f̃ for f is stable if there exists nonnegative constants
C0, C1,u0 such that for all u (0 < u < u0) and all x ∈ X, and all7 x̃ ∈ X ′,

‖x̃ − x‖
‖x‖ ≤ C0u ⇒ ‖f̃(x) − f(x̃)‖

‖f(x̃)‖ ≤ C1u. (36)

According to Trefethen and Bau, the constants C0, C1 may not depend on x but may depend on f . In
practice, the requirement that u must be smaller than some u0 is not an issue. To understand this definition
of stability, let us explore some related concepts:

• The requirement (36) is a little subtle: for instance, it might be more obvious to require that for all
x̃ ∈ X ′,

‖f̃(x̃) − f(x̃)‖
‖f(x̃)‖ ≤ C1u. (37)

This would not involve x ∈ X \ X ′. Of course, (37) is the relative forward error in f̃(x). Indeed, this
constitutes our definition of forward stability.

• If, in the definition of stability above, the constant C1 is chosen to be 0, we say the algorithm f̃ is
backward stable for f . In other words, we can find x̃ subject to (36) and f̃(x) = f(x).

• In contrast to forward or backward stability, the view of (36) is to compare f̃(x) to the “correct solution
f(x̃) of a nearly correct question x̃”. So this concept of stability contains a mixture of forward and
backward error concepts.

• We may rewrite (36) using the standard big-Oh notations:

‖x̃ − x‖
‖x‖ = O(u) ⇒ ‖f̃(x) − f(x̃)‖

‖f(x̃)‖ = O(u).

7Our definition is at variance from [37, p. 104] because they require only the existence of ex ∈ X′, such that
‖ex−x‖
‖x‖

≤ C0u

and
‖ ef(x)−f(ex)‖

‖f(ex)‖
≤ C1u.
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In the big-Oh notations of equations (36) we view u as varying and approaching 0. As noted above,
the implicit constants C0, C1 in these big-Oh notations do not depend on x but may depend on f .
Typically, X ⊆ Cm for some fixed m. Thus the implicit constants C0, C1 are allowed to depend on
m. When X = ∪m≥1Cm, then it seems that we should allow the constant C0, C1 to have a weak
dependence of x: in particular, we would like C0, C1 to depend on size(x) where size(x)=m when
x ∈ Cm.

EXAMPLE 3: From Theorem 1, we conclude that the standard algorithms for performing arithmetic
operations (+,−,×,÷) are all stable.

EXAMPLE 4: Consider the problem of computing eigenvalues of a matrix A. One algorithm is to
compute the characteristic polynomial P (λ) = det(A−λI), and then find roots of P (λ). Trefethan and Bau
noted that this algorithm is not stable.

There is a rule of thumb in numerical analysis that says

Forward Error ≤ Condition Number × Backward Error.

Here is one precise formulation of this insight.

Theorem 5 ([37, p. 151]). If f̃ is a backward stable algorithm for f then the relative forward error satisfy

‖f̃(x) − f(x)‖
‖f(x)‖ = O(κf (x)u).

Proof. By definition of κ = κR f(x), for all ε > 0 there exists δ > 0 such that

sup
‖δx‖≤δ

(‖f(x + δ) − f(x)‖
‖δx‖ · ‖x‖

‖f(x)‖

)
≤ κ +ε. (38)

By definition of backward stability, for all u < u0 and all x ∈ X, there is δx such that

‖δx‖
‖x‖ = O(u) (39)

and
f̃(x) = f(x + δx). (40)

Plugging (40) into (38), we conclude

‖ ef(x)−f(x)‖
‖δx‖

‖x‖
‖f(x)‖ ≤ κ +ε

‖ ef(x)−f(x)‖
‖f(x)‖ ≤ O(κ)‖δx‖

‖x‖ (choose ε = O(κ))

= O(κu) (by (39)).

Q.E.D.

Corollary 6. If the condition number function of f : X → Y is bounded, and f̃ is a backward stable
algorithm for f , then f̃ is a forward stable algorithm for f .

Exercises

Exercise 5.1: Give the proof (35) in the general case of f : Cm → Cn. ♦

Exercise 5.2: (Trefethan and Bau) Compute κR f(x) for the following functions.
(i) f : C → C where f(x) = x/2.
(ii) f : R → R where f(x) =

√
x and x > 0.

(iii) f : R → R where f(x) = tan(x) and x = 10100. ♦

c© Mehlhorn/Yap Draft March 12, 2009



§6. Arbitrary Precision Computation Lecture 2 Page 19

Exercise 5.3: Compute the condition numbers of the following problems:
(i) Linear function x ∈ Rn 7→ Ax ∈ Rm where A is an m×n matrix (cf. Example 1). This is also called
the condition number of A.
(ii) Polynomial root finding: the function F : Cn → Cn where F (a0, . . . , an−1) = (α1, . . . , αn) where

xn +
∑n−1

i=0 aix
i =

∏n
i=1(x − αi) ♦

Exercise 5.4: Show that the above algorithm for eigenvalues in EXAMPLE 4 is not stable. HINT: it is
enough to show this for the case where A is a 2 × 2 matrix: show that the error is Ω(

√
u). ♦

End Exercises

§6. Arbitrary Precision Computation

In contrast to fixed precision arithmetic, we now consider number types with no á priori bound on its
precision, save for physical limits on computer memory, etc. We call8 this arbitrary precision compu-
tation (or “AP computation”) Arbitrary precision computation is becoming more mainstream, but it is
still a small fraction of scientific computation. Unlike the ubiquitous hardware support for FP computation,
AP computation is only available through software. It is the computational basis for the fields of computer
algebra, computational number theory and cryptographic computations. In our quest for robustness, AP
computation is one of the first steps.

Computer numbers with arbitrary precision are called Big Numbers and the software for manipulating
and performing arithmetic with such numbers are usually called Big Number Packages. There are many
kinds of Big Numbers. The simplest (and the basis for all the other Big Numbers) is the Big Integer. An
obvious way to represent a Big Integer is an array or a linked list of computer words. If each word is L bits, we
can view the list as a number is base 2L (typically, L = 32). The four arithmetic operations on Big Integers
is easily reduced to machine arithmetic on these words. The next kind of Big Number is the Big Rational.
A Big Rational number is represented by a pair of Big Integers (m,n) representing the rational number
m/n. Let us write m : n to suggest that it is the ratio that is represented. The rules for reducing rational
number computation to integer computation is standard. Big Integers are usually represented internally in
some kind of positional representation (so a Big Integer is represented by a sequence of digits a1a2 · · · an

where 0 ≤ ai < β for some natural number β > 1). The third type of Big Number is the Big Float: a Big
Float number can be viewed as a pair of Big Integers (m, e) representing the floating point number

mβe (41)

(where m is called the mantissa and e the exponent and β is the implicit base). In practice, it may be
unnecessary to represent e by a Big Integer; a machine long integer may be sufficient. Note that viewing
(m, e) as the number (41) is at variance with the system F (β, t) introduced in Lecture 2. If we want an
analogous system, we can can proceed as follows: assuming that m is also represented in base β, let us define

µ(m) ←
⌈
logβ(|m|)

⌉
. (42)

We can think of µ(m) as the position of the Most Significant Digit (MSD) in m. Then we can alternatively
view the pair (m, e) as the number

float(m, e) := βe−µ(m). (43)

Call this the normalized Big Float value. Since β−1 < mβ−µ(m) ≤ 1, this means the normalized value
lies in the interval (βe−1, βe]. The advantage of normalization is that we can now compare two Big Floats
(of the same sign) by first comparing their exponents; if these are equal, we then compare their mantissas.

Arbitrary precision arithmetic can also be based on Hensel’s p-adic numbers [12, 13, 8], or on continued
fractions. Unfortunately, these non-standard number representations are hard to use in applications where
we need to compare numbers.

8Alternatively, “multi-precision computation” or “any precision”. However, we avoid the term “infinite precision” since this
might be taken to mean “exact” computation.
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¶11. On Rationals versus Integers versus Big Floats. Conceptually, Big Rationals do not appear
to be different from Big Integers. In reality, Big Rational computations are very expensive relative to Big
Integer arithmetic. We view Big Integer arithmetic as our base line for judging the complexity of arbitrary
precision computation. One problem with Big Rational numbers, viewed as a pair (p, q) of integers, is
their non-uniqueness. To get a unique representation, we can compute the greatest common denominator
m = GCD(p, q) and reduce (p, q) to (p′, q′) where p′ = p/m and q′ = q/m. Without such reductions, the
numbers can quickly grow very large. This is seen in the Euclidean algorithm for computing the GCD of
two integer polynomials, where the phenomenon is called intermediate expression swell. Karasick et al [18]
reported that a straightforward rational implementation of determinants can cause a slow down of 5 orders
of magnitude. In their paper, they describe filtering techniques which finally bring the slowdown down to a
small constant. This is one of the first evidence of the importance of filters in geometric problems.

On the other hand, Big Float arithmetic is considerably faster than Big Rational arithmetic. Big Floats
recover most of the speed advantages of Big Integer arithmetic while retaining the ability of Big Rationals to
provide a dense approximation of the real numbers. We cannot always replace Big Rationals by Big Floats
since the latter represent a proper subset of the rational numbers. However, if approximate arithmetic can
be used, the advantages of Big Float should be exploited. This is discussed in Lecture 4.

Let us illustrate the relative inefficiency of rational computations as compared to floating point compu-
tation. This example is taken from Trefethen [36]. Suppose we wish to find the roots of the polynomial

p(x) = x5 − 2x4 − 3x3 + 3x2 − 2x − 1.

Let us use Newton’s method to approximate a root of p(x), starting from x0 = 0. With rational arithmetic,
we have the sequence

x0 = 0, x1 = −1

2
, x2 = −22

95
, x3 = −11414146527

36151783550
,

x4 = − 43711566319307638440325676490949986758792998960085536
138634332790087616118408127558389003321268966090918625 .

The next value is

x5 = − 72439147917682017612900138187892597303500388360475439311780411943435792601058027446962992288206418458567001770355199631665161159634363
229746023731575873333990816664320035147759847208021088660066874783249488750988451982247975822898447180846798325922571792991768547894449

45627352999213086646631394057674120528755382012406424843006982123545361051987068947152231760687545690289851983765055043454529677921
15362215689722609358654955195182168763169315683704659081440024954196748041166750181397522783471619066874148005355642107851077541250

.

The growth is the size of the xi’s is quite dramatic (that is exactly the point). Let the “size” of a rational
number p/q in lowest terms be the maximum number of digits in p and q. So we see that the sizes of
x2, x3, x4, x5 are (respectively)

2, 11, 54, 266.

Thus the growth order is 5. This might be expected, since the degree of p(x) is 5. The reader can easily
estimate the size of x6.

In contrast to rational numbers, suppose we use floating point numbers (in fact, IEEE double). We
obtain the following Newton sequence:

x0 = 0.00000000000000,

x1 = −0.50000000000000,

x2 = −0.33684210526316,

x3 = −0.31572844839629,

x4 = −0.31530116270328,

x5 = −0.31530098645936,

x6 = −0.31530098645933,

x7 = −0.31530098645933,

x8 = −0.31530098645933.

This output is clearly more useful. It also re-inforce our previous remark that it is important to have
number representation for which it is easy to compare two numbers (at least for input/output). Positional
number representations have this property (we can easily see that the sequence of xi’s is converging).
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¶12. The Computational Ring Approach. In general, we are interested in computing in a continuum
such as Rn or C. Most problems of scientific computation and engineering are of this nature. The preceding
example might convince us that floating point numbers should be used for continuum computation. But there
are still different models for how to do this. We have already seen the standard model of numerical analysis
(¶5). One of the problems with the standard model is that it is never meaningful to compute numerical
predicates, in which we call for a sharp decision (yes or no). Recall the dictum of numerical analysis – never
compare to zero. This is a serious problem for geometric computation. For this reason, we describe another
approach from [39]. Two other motivations for this approach is that we want to incorporate some algebraic
structure into numerical computation, and we want to exploit arbitrary precision (AP) computation.

We introduce numerical computation based on the notion of a “computational ring”. We say a set F ⊆ R

is a computational ring if it satisfies the following axioms:

• F is a ring extension of Z, and is closed under division by 2.

• F is dense in R

• The ring operations, x 7→ x/2 and exact comparisons in F are computable.

It is clear the set of dyadic numbers Z[1/2] is a computational ring, in fact, it is the unique the minimal
computational ring. On the other hand, Q, Z[1/2, 1/5], Q[

√
2] or the set of real algebraic numbers can also

serve as computational rings. The central questions of this approach is to show that various computational
problems defined over the reals are approximable, either in an absolute or relative sense. We will return to
this theory later.

The computational ring approach ought to be contrasted to the standard model of numerical analysis ¶5.
In particular, deciding zero is a meaningful question, unlike the standard model. This property is critical
for many basic problems.

Exercises

Exercise 6.1: Show that the behavior of Trefethan’s polynomial under Newton iteration is typical rather
than an anomaly. ♦

Exercise 6.2: Discuss the issues that might arise because of the choice of specific computational rings. ♦

End Exercises

§7. Interval Arithmetic

The above example leads us to the concept of significance arithmetic. Intuitively, when computing
the Newton sequence x0, . . . , x5 using rational arithmetic, we are propagating a lots of “insignificant dig-
its”. In contrast, computing the same sequence using floating point arithmetic allows us to keep only the
insignificant digits. Properly speaking, this notion of “significant digits” is only meaningful for positional
number representations, and not to rational number representations. We may regard the last digit in posi-
tional numbers as a rounded figure. Thus “1.2” ought to be regarded as a number between 1.15 and 1.25.
Informally, significance arithmetic is a set of rules for doing arithmetic with uncertain numbers such as 1.2.
For instance, the rules tell us (1.2)2 should not be 1.44 but 1.4, because there is no significance in the last
digit in 1.44, and we should not propagate insignicance in our answers. But we would be wrong to treat all
numbers as uncertain. Often, integers and defined conversion rates or units are exact: there are exactly 60
seconds in a minute and C = 5(F − 32)/9 is an exact temperature formula.

We can introduce a precise notion of significance arithmetic for floating point numbers. Assuming the
normalized Big Float system (43), we say that the big float number (m, e) has µ(m) significant digits
(see (42)). Instead of the above implied uncertainty in the last digit, we we now introduce an uncertainty
u ≥ 0 into this representation: the triple (m, e, u) represents the interval

[float(m − u, e),float(m + u, e)]. (44)
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In this case, the significance of (m, e, u) is defined to be µ(m) − µ(u). This means that we can only trust
the first µ(m) − µ(u) digits of float(m, e). Significance arithmetic is usually traced to the work of Metropo-
lis [2, 24]. In the original Core Library (known as Real/Expr), our BigFloat numbers are based on this
representation.

Significance arithmetic can be regarded as a special case of interval arithmetic, where we attempt to
only retain the uncertainty warranted by the input uncertainty. In interval arithmetic, each number x is
represented by an interval I = [a, b] that contains x. The usual arithmetic operations can be extended to
such intervals in the natural way (see below). The development and analysis of techniques for computation
with intervals constitute the subject of interval arithmetic. Taking a larger view, the subject is also9

known as validated computation. R.E. Moore [26] is the pioneer of interval arithmetic. The book of
Rokne and Ratschek [32] gives an excellent account of interval functions. Stahl [35] gives an comprehensive
treatment of interval arithmetic generally and interval functions in particular, including extensive experi-
mental comparisons of interval techniques. See [40, 29] for algorithms with a priori guaranteed error bounds
for elementary operations, using relative and absolute (as well as a composite) error.

A motivation for interval analysis is the desire to compute error bounds efficiently and automatically. In
[1], this is called the “näıve outlook”; instead, it is suggested that the proper focus of the field ought to be
about computing with inexact data (e.g., solving a linear system with interval coefficients) and, for problems
with exact data, the issues of algorithmic convergence when we approximate the computing using intervals.

¶13. For D ⊆ R, let ID or I(D) denote the set of closed intervals [a, b] with endpoints a, b ∈ D and
a ≤ b. Note that our definition does not insist that [a, b] ⊆ D. For instance, a very important example is
when D = F := {m2n : m,n ∈ Z}, the set of dyadic numbers. Then IF denotes the set of intervals whose
endpoints are dyadic numbers.

The n-fold Cartesian product of ID is denoted (ID)n or InD. Elements of InD are called boxes (or
n-boxes). A typical box B ∈ InD has the form B = I1 × · · · × In where the Ij are intervals, called the jth
projection of B. We also write Ij(B) for the jth projection. So intervals are just boxes with n = 1.

Let ℓ(I) and u(I) denote the lower and upper endpoints of interval I. So I = [ℓ(I), u(I)]. Sometimes, we
also write I and I for ℓ(I) and u(I). Let m(I) := (ℓ(I) + u(I))/2 and w(I) := u(I) − ℓ(I) denote, resp., the
midpoint and width of I. Two other notations are useful: the mignitude and magnitude of an interval
I is

mig(I) := min {|x| : x ∈ I} , mag(I) := max {|x| : x ∈ I} .

For an n-box B, let its ith component Ii be denoted Ii(B), and so B =
∏n

i=1 Ii(B). define its midpoint to be
m(B) := (m(I1(B)), . . . ,m(In(B))). We need several width concepts. First, let the i-th width be defined
as wi(B) := w(Ii(B)) (for i = 1, . . . , n). We may define the width vector by W (B) := (w1(B), . . . , wn(B)).
More useful for us is the width and diameter of B is given by

w(B) := min {w1(B), . . . , wn(B)} , d(B) := max {w1(B), . . . , wn(B)} . (45)

Thus, w(B) = d(B) if n = 1. When w(B) > 0, we call B a proper box; and when d(B) = 0, we call B a
point (or point box). So an improper box that is not a point must satisfy d(B) > 0 = w(B). We regard
Rn as embedded in InR by identifying elements of Rn with the point boxes.

The endpoints of an interval I is generalized to the corners of a box B: these are points of the form
(c1, . . . , cn) where cj is an endpoint of Ij(B). Thus, an n-box B has 2d corners for some d = 0, 1, . . . , n: if
B is proper, d = n and if B is a point, d = 0. Two of these corners are given a special notation:

ℓ(B) := B := (ℓ(I1(B)), . . . , ℓ(In(B))), u(B) := B := (u(I1(B)), . . . , u(In(B)))

and we continue to call ℓ(B), u(B) the “endpoints” of B.

9Instead of “validated”, such computations are also described as “certified” or “verified”, and sometimes “guaranteed”. The
error bounds in such computations are á posteriori ones. We prefer to reserve the term “guaranteed” for the stronger notion of
á priori error bounds.
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¶14. Metric and Convergence. We introduce the Hausdorff metric on IR by defining dH(A,B) =
max{|a − b|, |a′ − b′|} where A = [a, a′], B = [b, b′]. This is a metric because dH(A,B) ≥ 0 with equality iff
A = B, dH(A,B) = dH(B,A) and finally, the triangular inequality holds: dH(A,C) ≤ dH(A,B)+dH(B,C).

We extend this metric to InR where

dH(A,B) := max {dH(Ai, Bi) : i = 1, . . . , n} . (46)

Let B̃ = (B0, B1, B2, . . .) be an infinite sequence of n-boxes. We say that B̃ converges to a box B,
written limi→∞ Bi = B if limi→∞ dH(Bi, B) = 0. If, in addition, the sequence also has the property that

w(Bi) > 0 and Bi−1 ⊇ Bi, for all i, and limi→∞ d(Bi) = 0, then we say that B̃ is properly convergent to
B. In this case, B must be an point, i.e., d(B) = 0.

So B̃ can be improperly convergent in two basic ways: either limi→∞ d(Ii) = d0 > 0, or w(Bi) = 0 for
some i. The importance of proper convergence is discussed below in the context of box functions.

¶15. Representation of Boxes. The most obvious representation of boxes is the end-point represen-
tation, i.e., a box B is represented by the pair (ℓ(B), u(B)) = (B,B).

The mid-point representation of B is the pair (m(B),W (B)/2) where W (B) = (w1(B), . . . , wn(B))
is the width vector of B. If we think of a box as representation an unknown point p ∈ Rn, then m(B) is the
representative value of p and W (B)/2 is the uncertainty in our knowledge of p. This is reminescent of
the representation of bigfloats with error in (44). In general, the mid-point representation of an n-box B is
the pair of points (m(B),W (B)/2) where W (B) = (w1(B), . . . , wn(B)).

The mid-point representation is more compact than the end-point representation, since we generally use
fewer bits. The Big Float package implemented in our Real/Expr and Core Library (version 1) [42] uses
this representation. The down side of this is that arithmetic operations in this representation may be slightly
more complicated and its width increases faster. In practice, we may further restrict the uncertainty to a
fixed bit budget (see Exercise), adding a further need for “normalization” in the representation. Rump [33]
has pointed out that the midpoint representation is uniformly bounded by a factor of 1.5 in optimum radius
for the 4 basic arithmetic operations as well as for vector and matrix operations over reals and complex
numbers. Moreover, this can take advantage of vector and parallel architectures. We leave it as an exercise
to work out the implementation of arithmetic based on midpoint representations.

¶16. Interval Arithmetic. We now extend the basic operations and predicates on real numbers to
intervals. But it is useful to see them as special cases of definitions which apply to arbitrary sets of real
numbers. In the following, let A,B ⊆ R.

1. We can compare A and B in the natural way: we write A ≥ B to mean that the inequality a ≥ b holds
for all a ∈ A, b ∈ B. The relations A ≤ B, A > B and A < B are similarly defined. If A ≤ B or
A ≥ B, we say A and B are comparable; otherwise they are incomparable. If A ≤ B and B ≤ A,
then A = B is a point. Note that A < B implies A ≤ B and A 6= B, but the converse fails. In case
A,B are intervals, these relations can be reduced to relations on their endpoints. For instance, A ≤ B
iff u(A) ≤ ℓ(B).

2. If ◦ is any of the four arithmetic operations then A ◦ B is defined to be {a ◦ b : a ∈ A, b ∈ B}. It is
assume that in case of division, 0 6∈ B. In case A,B are intervals, it is easy to see that A ◦B would be
intervals. Moreover, A ◦ B can be expressed in terms of operations on the endpoints of A and B:

• A + B = [ℓ(A) + ℓ(B), u(A) + u(B)]

• A − B = [ℓ(A) − u(B), u(A) − u(B)]

• A · B = [minS,max S] where S = {ℓ(A)ℓ(B), ℓ(A)u(B), u(A)ℓ(B), u(A)u(B)}
• 1/B = [1/u(B), 1/ℓ(B)]

• A/B = A · (1/B)

c© Mehlhorn/Yap Draft March 12, 2009



§7. Interval Arithmetic Lecture 2 Page 24

¶17. Algebraic Properties. The set IR under these operations has some of the usual algebraic properties
of real numbers: + and × are both commutative and associative, and have [0, 0] and [1, 1] (respectively) as
their unique identity elements. An interval is a zero-divisor if it contains 0. Note that no proper interval I
has any inverse under + or ×. In general, we have subdistributivity, as expressed by the following lemma:

Lemma 7 (Subdistributivity Property). If A,B,C are intervals, then A(B + C) ⊆ AB + AC.

The proof is easy: if a(b + c) ∈ A(B + C) where a ∈ A, etc, then clearly a(b + c) = ab + ac ∈ AB + AC.
When is this inclusion an equality? To claim equality, if ab+a′c ∈ AB +AC, then suppose there is some

a′′ ∈ A such that a′′(b + c) = ab + a′c. Thus means a′′ = (ab + a′c)/(b + c). In case bc ≥ 0, then this means
a′′ is a convex combination of a and a′, and so a′′ ∈ A. This shows:

BC ≥ 0 =⇒ A(B + C) = AB + AC.

If bc < 0, the equality A(B + C) = AB + AC may be false. For instance, choose A = [a′, a], b = 2, c = −1.
Then (ab + a′c)/(b + c) = 2a − a′. Thus 2a − a′ > a andso (ab + a′c)/(b + c) 6∈ A. Thus we obtain a
counterexample with A = [a′, a], B = [2, 2], C = [−1,−1].

Note that the basic operations ◦ are monotone: if A ⊆ A′ and B ⊆ B′ then A ◦ B ⊆ A′ ◦ B′. This is
also called isotonicity.

¶18. Complex Intervals. Most of our discussion concern real intervals. There is the obvious and simple
of interval arithmetic for complex numbers: a pair [a, b] of complex numbers represents the complex “interval”
{z ∈ C : a ≤ z ≤ b} where a ≤ b means that Re(a) ≤ Re(b) and Im(a) ≤ Im(b). Many of our discussions
generalize directly to this setting. One generalization of the midpoint representation to complex numbers
introduces the geometry of balls: given z ∈ C, r ≥ 0, the pair (z, r) can be viewed as representing the ball
{w ∈ Z : |w − z| ≤ r}.

¶19. Real versus Dyadic Interval Functions. A function of the form

F : InR → ImR (47)

is called a interval function. Interval functions are the central implementation objects for exact numerical
algorithms. Unfortunately, the definition (47) is unsuitable for implementation. We cannot hope to imple-
ment functions that accept arbitrary input boxes from InR. What we could implement are functions that
take dyadic n-boxes and return dyadic m-boxes, i.e., interval functions of the form

F : InF → ImF. (48)

To emphasize that the difference between (47) and (48), we call the former real interval functions, and the
latter dyadic interval functions. Of course, F could be replaced by any computational ring. Note that it
is meaningful to speak of dyadic interval functions as recursive in the sense of being computable by halting
Turing machines; in contrast, it is non-obvious what “computability” means for real interval functions.

Let f : Rn → Rm be a real function. For any set S ⊆ Rn, let f(S) denote the set {f(a) : a ∈ S}. We can
think of f as having been “naturally extended” into a function from subsets of Rn to subsets of Rm.

A dyadic interval function F : InF → IF is called a dyadic interval extension of f : Rn → R if
f(B) ⊆ F (B) for every dyadic box B ∈ InF. A real interval extensions of f can be similarly defined. We
use the notation “ f” to denote a (real or dyadic) interval extension of f . We derive from f a real interval
function [[f ]] given by

[[f ]](B) := [[f(B)]]

where [[X]] ⊆ Rn is the smallest n-box containing a set X.

¶20. Box Functions. We come to a key definition in our development: a dyadic interval function F is
called a box function if there exists a real function f : Rn → n such that (1) F is an interval extension of f ,
and (2) for every properly convergent sequence (B0, B1, B2, . . .) of dyadic n-boxes with limi→∞ Bi = p ∈ Rn,
we have

lim
i

d(F (Bi)) = f(lim
i

Bi).

We also say F is a box function for f , and we usually write F = f .
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This use of proper convergence is critical in this definition because, these are only
kind we can implement. Suppose we allow any convergent sequence (B0, B1, . . .) in the
above definition of box functions. Then we see that the function f(x) = exp(x) cannot
have any box functions. Suppose F is a dyadic interval extension of f . If it is a box
function, then for any nonzero a ∈ F, we can choose (B0, B1, . . .) such that Bi = [a, a]
for all i. This sequence converges to a, and so by definition of a box function,
F ([a, a]) = exp(a). But this is impossible since exp(a) is transcendental for any non-
zero a. On the other hand, we can compute box functions F with the property that
for any properly convergent sequence (B0, B1, . . .) → p, limi F (Bi) = exp(p). This
tells us that we must distinguish between input boxes B where w(B) = 0 from those
where w(B) > 0. The behavior of F on points (i.e., B with w(B) = 0) is irrelevant
in the definition of box functions. The reason we disregard F (B) where B = p is a
point is because it may not impossible to compute an exact value of f(p). Instead
of exp(x), we could use

√
x as an example; but this requires a treatment of partial

functions which we were avoiding to keep this treatment simple.

We next discuss practical construction of box functions. As another example, the midpoint function
m : InF → F is a box function. In the Exercise, we will prove some closure properties of box functions.

Another commonly satisfied property of box functions is (inclusion) isotony: B ⊆ B′ implies f(B) ⊆
f(B). It is easy to check that the four arithmetic operations implemented in the standard way is inclusion

isotone. It follows that if f is defined by the interval evaluation of any rational expression defining f .

¶21. Examples of Box Functions. We consider the problem of constructing box functions. It is easy
to see that the basic arithmetic operations (±,×,÷) defined above are box functions. It follows that if f is
any rational function, and we define f(B) by evaluating a fixed rational expression for f , then the result is
a box function for f . Suppose f is a univariate polynomial, f =

∑m
i=0 aiX

i. Here are some possibilities.

• In most applications, we may restrict ourselves to intervals I ∈ IR with a definite sign: i.e., either
I = 0 or I > 0 or I < 0. Let us assume I > 0 in the following; the case I < 0 is treated analogously,
and the case I = 0 is trivial. We write f = f+ − f− where f+ is just the sum of those terms of f with
positive coefficients. Then we may define f− := f+ − f . If I = [a, b], then define the box function

1f(I) = [f+(a) − f−(b), f+(b) − f−a].

It is not hard to verify that 1f is a box function.

• We can also define box functions by specifying a fully parenthesized expression E for f . For instance,
Horner’s rule for evaluating f gives rise to the expression

E = (· · · ((amX + am−1)X + am−2X + · · · + a0).

Now, we can define the box function Ef(I) which returns the interval if we evaluate f on I using the
expression E. For instance, if f = 2X2−3X +4 then Horner’s expression for f is E = ((2X−3)X +4).
If I = [1, 2] then

Ef(I) = ((2I − 3)I + 4) = (([2, 4] − 3)[1, 2] + 4)

= ([−1, 1][1, 2] + 4) = [−2, 2] + 4] = [2, 6].

If E is Horner’s expression for f , we may write 0f instead of Ef .

• Consider a third way to define box functions, where E is basically the expression given by the standard
power basis of f : namely, we evaluated each term of f , and sum the terms. Call the corresponding
box function 2f . We can show that 2f is the same as 1f . Moreover, for all I ∈ IR,

0f(I) ⊆ 1f(I).

This follows from the subdistributivity property of interval arithmetic.
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In some applications, box functions suffice. E.g., Plantinga and Vegter (2004) shows that the isotopic
approximation of implicit non-singular surfaces can be achieved using box functions. Sometimes, we want
additional properties. For instance, the ability to specify a precision parameter p > 0 such that

f(B; p) ⊆ [[f(B) ⊕ Ep]]

where ⊕ is Minkowsky sum and En = 2−p[−1, 1]n.
EXAMPLE 1. Suppose we want to solve the equation AX = B where A = [a, a′] 6= 0. Define χ(A) = a/a′

if |a| ≤ |a′|, and χ(A) = a′/a otherwise. There is a solution interval X ∈ IR iff χ(A) ≥ χ(B). Moreover the
solution is unique unless χ(A) = χ(B) ≤ 0.

Under the Hausdorff metric, we can define the concept of continuity and show that the four arithmetic
operations are continuous.

Let f(x) be a real function. If X ∈ IR, we define f(x) = [a, a] where a = minx∈X f(x) and a =
maxx∈X f(x). Let E(x), E′(x) be two real expressions which evaluates to f(x) when the input intervals are
improper. The fact that certain laws like commutativity fails for intervals means that E and E′ will in
general obtain different results when we evaluate them at proper intervals.

EXAMPLE 2. Let the function f(x) = x − x2 be computed by the two expressions E(x) = x − x2 and
E′(x) = x(1−x). When x is replaced by the interval X = [0, 1] then f([0, 1]) = {x−x2 : 0 ≤ x ≤ 1} = [0, 1/4].
But E([0, 1]) = [0, 1] − [0, 1]2 = [0, 1] − [0, 1] = [−1, 1] and E′([0, 1]) = [0, 1](1 − [0, 1]) = [0, 1][0, 1] = [0, 1].

In fact, we have the following general inclusion:

f(X) ⊆ E(X)

for all X ∈ IR. In proof, note that every y ∈ f(X) has the form y = f(x) for some x ∈ X. But it is clear
that the value f(x) belongs to E(X), since it can be obtained by evaluating E(X) when every occurrence of
X in E(X) is replaced by x.

A simpler example is E(x) = x − x and f(x) = x − x. If X = [0, 1] then E(X) = [−1, 1] while f(X) = 0
(in fact, f(Y ) = 0 for any interval Y ).

¶22. Rounding and interval arithmetic. Machine floating point numbers can be used in interval
arithmetic provided we can control the rounding mode. In the following, assume machine numbers are
members of F (β, t) for some base β > 1 and precision t ≥ 1. We need 2 kinds of rounding: for any
real number x, let round up flup(x) and round down fldown(x) be the closest numbers in F (β, t) such that
fldown(x) ≤ x ≤ flup(x). Then A = [a, b] ∈ IR can be rounded as fl(A) = [fldown(a),flup(b)]. If we view
x ∈ R as an interval, we now have fl(x) = [fldown(x),flup(x)]. If x ∈ F (β, t) and the exponent of x is e then
the width of fl(x) is β−t+e. Rounding can be extended to the arithmetic operations in the obvious way: if
◦ ∈ {+,−,×,÷} and ◦′ is the interval analogue, we define A ◦′ B := fl(A ◦ B). Inclusion monotonicity is
preserved: If A ⊆ A′, B ⊆ B′ then A ◦′ B ⊆ A′ ◦′ B′.

In practice, it is inconvenient to use two rounding modes within a computation. One trick is to store
the interval A = [a, b] as the pair (−a, b) and use only round up. Then fl(A) is represented by the pair
(flup(−a),flup(b)).

¶23. Machine arithmetic. One class of results in interval analysis addresses the question: suppose we
compute with numbers in F (β, t). This is a form of idealized machine arithmetic in which we ignore issues
of overflow or underflow. How much more accuracy do we gain if we now use numbers in F (β, t′) where
t′ > t? If A = [a, b], let the width of A be w(A) := b − a. w(fl(x)) ≤ βe−t where e is the exponent. Any
real number x can be represented as

x = βe

(
∞∑

i=1

diβ
−i

)

with 0 ≤ di ≤ β−1. This representation is unique provided it is not the case that each digit di = β−1 for all

i beyond some point. Then fldown x = βe
(∑t

i=1 diβ
−i

)
and flup x ≤ fldown(x)+βe−t. Hence w(fl(x)) ≤ βe−t.

The following is a basic result (see [1, theorem 5, p.45]).
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Theorem 8. Let an algorithm be executed using machine arithmetic in F (β, t) and also in F (β, t′) for some
t′ > t. Assuming both computations are well-defined, then the relative and absolute error bounds for the
result is reduced by a factor of βt−t′ in the latter case.

¶24. Lipschitz Condition and Continuity. Let f : InD → R be a box function for some D ⊆ R, and
let r ≥ 1. We say f has convergence of order r if for every A ∈ InD, there exists a constant KA such
that for all B ∈ InR, B ⊆ A implies

d( f(B)) ≤ KAd(B)r. (49)

We say f has linear (resp., quadratic) convergence if r = 1 (resp., r = 2). When r = 1, the constants KA

are called Lipschitz constants for A, and f is also said to be Lipschitz. It is possible to choose global
constant K such that KA = K for all A ∈ InD.

E.g., the addition function f+ : I2R → IR given by

f+(A,B) = A + B

has a global Lipschitz constant K = 2:

d( f+(A,B)) = d(A + B) = (A + B) − (A + B) = w(A) + w(B) ≤ 2max {w(A), w(B)} = 2d(A,B).

Similarly the subtraction function has a global Lipschitz constant 2. However, the multiplication function
f× : I2R → IR where

f×(A,B) = A × B

is Lipschitz with no global Lipschitz constant:

d( f×(A,B)) = d(AB) ≥ AB − AB ≥ A(B − B) = Aw(B)

(assuming A,B > 0). We can choose A can be arbitrarily large such that d(A,B) = w(B).

¶25. Continuous Function. A box function f is continuous for any sequence (B0, B1, B2, . . .) of boxes
that converges to a box B, we have f(Bi) → f(B). For real functions, being Lipschitz is equivalent to
being continuous. This breaks down for box functions:

Lipschitz may not be continuous: suppose δ(x) = 1 if x > 0 and δ(x) = 0 otherwise. Let f : IR → IR be
given by f(B) = B + δ(w(B)). Then w( f(B)) = w(B), and we see that f has global Lipschitz constant
1. However, f is not continuous at 0 since the sequence Bn = [0, 1/n] converges to 0, but the sequence
f(Bn) converges to 1, which is not equal to 0 = f(0).

Continuous functions may not be Lipschitz: With B = [0, 1], let f : IB → IB be the function f(I) =
[0,

√
w(I)]. Then f is continuous but not Lipschitz in IB because the sequence of quotients

w( f(I))/w(I) =
√

w(I)/w(I) = 1/
√

w(I), w(I) 6= 0

is unbounded.

¶26. Centered Forms. We next seek box functions that has quadratic convergence, i.e., r = 2 in (49).
This can be attained by general class of box functions called centered forms. The basic idea of centered
forms is to use a Taylor expansion about the midpoint m(I) of the interval I argument. Moore originally
conjectured that the centered forms of f has quadratic convergence. This was first shown by Hansen and
generalized by Nickel and Krawcyk. Below, we shall reproduce a simple proof by Stahl [35]. The topic of
centered forms has been a key area of research in validated computing.

Let us begin with the simplest case, n = 1 and where f is a polynomial of degree d. Letting c ∈ R be
given. Then we can do the Taylor expansion of f about the point c:

f(x) = f(c) + f ′(c)(x − c) +
1

2
f ′′(c)(x − c)2 + · · · + 1

d!
f (d)(c)(x − c)d

= f(c) +

d∑

i=1

f [i](c)(x − c)i (50)
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where, for simplicity, we write f [i](x) for 1
i!f

(i)(x), called the normalized ith derivative of f .
We define f(I) to be the interval evaluation of the expression in (50), i.e.,

f(I) = f(c) + f ′(c)(I − c) +
1

2
f ′′(c)(I − c)2 + · · · + 1

d!
f (d)(c)(I − c)d. (51)

If I is given and we can freely choose c, then perhaps the most useful choice for c is c = m(I). This ensures
that the interval I − c is a centered interval, i.e., has the form [−a, a] for some a ≥ 0. For simplicity, we
shall write10 [±a] for [−a, a] if a ≥ 0, or [a,−a] if a < 0.

The interval evaluation of (51) can advantage of such centered intervals in implementations. We have
the following elementary properties of interval operations: let a, b, c ∈ R.

(a) c[±a] = −c[±a] = [±ca] = ca[±1]

(b) [±a] + [±b] = [±(|a| + |b|)]

(c) [±a] − [±b] = [±(|a| + |b|)]

(d) [±a] × [±b] = [±ab]

From (a), we conclude that all centered intervals can be expressed as a scalar multiple of the canonical
centered interval, [±1]. Basically, such centered intervals are parametrized by one real number, and we
need only one arithmetic operation to carry out any interval arithmetic operation. As consequence of these
elementary rules, we see that the sub-distributive law is really an identity:

[±c]([±a] + [±b]) = [±c][±a] − [±b][±b][±c][±a] + [±b][±b]

since both sides are equal to
c(|a| + |b|)[±1].

Consider shifts of centered forms, i.e., intervals represented as I = c± [±b]. Of course, this can represent
all intervals, but we are interested in basic properties of I in terms of c, b. In particular, we have m(I) = c.
We will shortly consider division by I, and we need the following property. Clearly,

0 ∈ I ⇔ |c| ≤ |b|.

Next, assume |c| > |b|. Hence 0 6∈ I and the expression [±a]/(c + [±b]) is well-defined. Then we have

[±a]

c + [±b]
=

[±a]

[c − |b|, c + |b|] =
[±a]

|c| − |b| . (52)

It follows that

w

(
[±a]

c + [±b]

)
=

2|a|
|c| − |b| . (53)

We are now ready to evaluate a polynomial expression f(x) =
∑d

i=0 cix
i at a centered interval [±a] where

a > 0. We have

d∑

i=0

ci[±a]i = c0 +

(
d∑

i=1

|ci|ai

)
[±1] (54)

= c0 + [±b] (55)

where b =
∑d

i=1 |ci|ai. Hence the basic algorithm for f([±a]) goes as follows:
1. Compute all the normalized Taylor coefficients at c = m(I), i.e., f [i](c) for i = 0, . . . , d.

2. Compute b =
∑d

i=1 |f [i](c)|ai (note the i in the summation begins with i = 1).
3. Return |f(c)| ± [±b].

10This notation is consistent with our convention for errors where we write “x ± ε” to denote a number of the form x + θε

for some θ ∈ [−1, 1]. Then [x ± ε] can denote the interval {y : x − ε ≤ y ≤ x + ε}. Centered intervals [±ε] corresponds to the
case x = 0.
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Moreover, it is clear that
m( f(I)) = f(c)

and

w( f(x)) = b =

d∑

i=1

|f [i](c)|ai.

Note that we can easily check if 0 ∈ f(I) since this amounts to |f(c)| ≤ b.

¶27. Quadratic Convergence of Centered Forms. The expression (50) for the function f : R → R

can be rewritten in the form
f(x) = f(c) + D(x, c)(x − c)

for some D : R2 → R. In the polynomial case (easily extended to analytic functions) we have

D(x, c) =

d∑

i=1

f [i](c)(x − c)i−1.

This can be generalized to the multivariate setting: if f : Rn → R and D : R2n → R satisfy

f(x) = f(c) + D(x, c) ◦ (x − c) (56)

for all x, c ∈ Rn and ◦ denotes scalar product, then we call D = Df a slope function for f .
A function

z : InR → Rn (57)

such that z(B) ⊆ B is called a centering function. For instance, we can define z(B) to be the midpoint
m(B). An Lipschitz function of the form

D : InR → InR (58)

is a slope extension of D relative to z if for all n-box B,

D(B, z(B)) ⊆ ID(B).

Then we call the interval function defined by

f(B) := f(z(B)) + D(B) ◦ (B − z(B)) (59)

a centered form function for f . Note that

f(B) ⊆ f(z(B)) + D(B, c)(B − z(B)) ⊆ f(z(B)) + D(B) ◦ (D − z(B)),

i.e., f is an inclusion function for f . Moreover, since each of the functions in this expressions are box
function, f is a box function.

We now present a simple proof of Stahl [35, Theorem 1.3.37] that centered form functions has quadratic
convergence. It is useful to introduce the signed mignitude function: for interval I, let

smig(I) :=





I if I < 0
0 if 0 ∈ I
I if I > 0.

For instance, smig([2, 3]) = 2, smig([−2, 2]) = 0, smig([−3,−2]) = −2. We extend this to boxes B =
I1 × · · · × In,

smig(B) = (smig(I1), . . . , smig(In)).

We have the following inclusion
B ⊆ z(B) + [−1, 1]w(B). (60)

It is enough to prove this for an interval: if z ∈ I then I ⊆ z + [−1, 1]w(I).
In (60), we can replace z(B) by smig(B) and thus obtain a ”big” interval that contains B. In contrast,

the next lemma shows that we can obtain an ”small” interval using smig that is contained in f(B). Both
these tricks will be used in the quadratic convergence proof.
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Lemma 9. For all n-boxes B,

f(z(B)) + smig( D(B)) ◦ (B − z(B)) ⊆ f(B).

We leave the verification of this lemma to an exercise.

Theorem 10 (Quadratic Convergence). The centered form f of f convergences quadratically: for all
A ⊆ InR, there is a constant KA such that if B ∈ InR, B ⊆ A, then

d( f(B)) ≤ KAd(B)2.

Proof. Let B = I1 × · · · × In be an n-box contained in some A ∈ InR, and let c = (c1, . . . , cn) = z(B).
Also, let D(B) = ( D1(B), . . . , Dn(B)). Recall that D is Lipschitz (see (58)) so there exists a constant
kA > 0 such that d( Di(B)) ≤ kAd(B). We make the argument by a sequence of elementary arguments:

f(B) = f(c) +
∑n

i=1 Di(B)(Ii − ci) (by Definition of f)
⊆ f(c) +

∑n
i=1 {smig( Di(B)) + [−1, 1]w( Di(B))} (Ii − ci) (by (60))

⊆ f(c) +
∑n

i=1 {smig( Di(B))(Ii − ci)} + {[−1, 1]w( Di(B))(Ii − ci)} (by subdistributivity)
⊆ f(B) +

∑n
i=1 {[−1, 1]w( Di(B))} (Ii − ci) (by Lemma 9)

= f(B) +
∑n

i=1[−1, 1]w( Di(B))w(Ii)
⊆ f(B) + [−1, 1]d(B)

∑n
i=1 w( Di(B)) (since w(Ii) ≤ d(B))

⊆ f(B) + [−1, 1]d(B)
∑n

i=1 kAd(B) (since D is Lipschitz)
= f(B) + [−1, 1]d(B)2(nkA) .

Thus w( f(B)) ≤ KAd(B)2 where KA = nkA. Q.E.D.

¶28. Box Rational Functions. We extend the previous development to rational functions. We begin
with the identity when f(x) = p(x)/q(x):

f(x) − f(c) =
p(x) − p(c) − f(c)(q(x) − q(c))

q(x)
. (61)

Then by Taylor’s expansion,

f(x) − f(c) =

∑
i≥1 p[i](c)(x − c)i − f(c)

∑
i≥1 q[i](c)(x − c)i

∑
i≥0 q[i](c)(x − c)i

=

∑
i≥1(p

[i](c) − q[i](c))(x − c)i

∑
i≥0 q[i](c)(x − c)i

=

∑
i≥1 ti(x − c)i

∑
i≥0 q[i](x − c)i

where
ti := p[i](c) − q[i](c) (62)

This last expression yields our standard center form for rational functions:

f(I) := f(c) +

∑
i≥1 ti(I − c)i

∑
i≥0 q[i](I − c)i

. (63)

Moreover, if c = m(I), then I − c is a centered interval and thus f(I) can be easily evaluated similar to the
polynomial case.

We can further generalize the preceding development in two ways. One direction of generalization is to
consider multivariate rational functions. A somewhat less obvious direction to consider the “higher order
centered forms”: for any k = 1, . . . , n, we may generalize (61) and the subsequent Taylor expansion to obtain:

f(x) −
k−1∑

i=0

f [i](c)(x − c)i =

∑
i≥k tk,i(x − c)i

∑
i≥0 q[i](x − c)i

(64)
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where

tk,i = p[i](c) −
k−1∑

j=0

(
i

j

)
f [j](c)q[i−j](c). (65)

Note that (62) is just the case k = 1.
If we replace x by I in the expression (64), we obtain the kth order centered form kf(I). Thus (63)

corresponds to k = 1. As shown in [32, Section 2.4], the higher order centered forms are at least as good
than lower order ones in the sense that

k+1f(I) ⊆ kf(I).

For a polynomial f , this inclusion is always an identity: kf(I) = 1f(I). But for non-polynomial f , the
inclusion is strict for general I.

¶29. Krawczyk’s Centered Form. The number of arithmetic operations to compute the above centered
forms for f = p/q is Θ(n2), where n = deg(p) + deg(q). Krwaczyk (1983) described another centered form
which uses only Θ(n) arithmetic operations.

Let f = f(X1, . . . ,Xm) be a rational function and B ∈ ImR is contained in the domain of f . We call
G ∈ IR an interval slope of f in B if

f(x) − f(c) ⊆ G · (x − c), for all x ∈ B

where c = m(B).
We provide a method to compute G from any straightline program S for f . Such a straightline program

is a finite sequence of steps. The ith step (i = 1, 2, . . . m) introduces a brand new variable ui. Each step is
an assignment statement, of one of the following type:

1. ui ← Xj (j = 1, . . . ,m)

2. ui ← c (c ∈ R)

3. ui ← uj ◦ uk (j < i, k < i and ◦ ∈ {±,×,÷})

So each ui represents a rational function in X1, . . . ,Xn. We say S computes the rational function represented
by um, the last variable. We convert S to S′ as follows:

• Gi ← 1 if the ith step is ui ← Xj

• Gi ← 0 if the ith step is ui ← c

• Gi ← Gj ± Gk if the ith step is ui ← uj ± uk

• Gi ← ... if the ith step is ui ← uj × uk

• Gi ← ... if the ith step is ui ← uj/uk

We leave it as an exercise to show that Gm is an interval slope for f .

Exercises

Exercise 7.1: Show that the following operations are box functions:
(a) Arithmetic functions
(b) The composition of two box functions.
(c) Any centering function z : InR → Rn where z(B) ⊆ B. ♦

Exercise 7.2: Consider interval arithmetic in the midpoint representation. Describe algorithms to perform
the 4 arithmetic operations, for each of the following forms of interval arithmetic.
(a) Assume that an interval is represented by a pair (x, u) of real numbers, with u ≥ 0, representing
the interval [x − u, x + u].
(b) Assume the interval is represented by triple (m, e, u) of integers, with u ≥ 0, representing the
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interval [(m − u)2e, (m + u)2e].
(c) Assume the same interval representation as in (c), but suppose u is required to be less than U (e.g.,
U = 232). You must now describe a normalization algorithm – how to convert (m, e, u) to a normalized
form where u < U . Discuss the tradeoffs for this restricted representations. ♦

Exercise 7.3: Prove the assertions in Example 1. ♦

End Exercises

§8. Additional Notes

Until the 1980’s, floating point arithmetic are often implemented in software. Hardware implementation
of floating point arithmetic requires an additional piece of hardware (“co-processor”), considered an add-on
option. Today, floating point processing is so well-established that this co-procesor is accepted as standard
computer hardware. The fact that the floating point numbers is now the dominant machine number repre-
sentation is, in retrospect, somewhat surprising. First note some negative properties of FP computation, as
compared to fixed point computation:

(1) Algorithms for FP arithmetic are much more complicated. This fact is obvious at the hardware level: an
examination of the physical sizes of computer chips for FP arithmetic units and for integer arithmetic
units will show the vast gap in their relative complexity.

(2) Error analysis for FP computation is much harder to understand. One reason is that spacing between
consecutive representable numbers is non-uniform, in contrast to fixed-point numbers. In addition,
around 0, there is further non-uniformity because 0 is a singularity for relative error representation.

Item (1) is an issue for hardware designers. This led the early computer designers (including von Neumann)
to reject it as too complicated. In contrast, fixed point arithmetic is relatively straightforward. Item (2)
contributes to the many (well-known and otherwise) pitfalls in FP computation. There are many anecdotes,
examples and lists of numerical pitfalls (sometimes called “abuses”) collected from the early days of numerical
computing. Most of these issues are still relevant today. (e.g., [38, 34]).

Despite all this, FP computation has become the de facto standard for computing in scientific and
engineering applications. Wilkinson, especially through his extensive error analysis of floating point compu-
tations, is credited with making floating point arithmetic better understood and accepted in main stream
numerical computing. First, let us note that criterion (1) is no longer an critical issue because the algorithms
and circuit design methodology for FP arithmetic are well-understood and relatively stable. Also, minimizing
hardware size is usually not the bottleneck in today’s world of very large scale integrated (VLSI) circuits.
But what are some advantages of FP computation? The first advantage is range: for a given budget of bits,
the range of numbers which can be approximated by floating point numbers is much larger than, say using
fixed point representation. This was critical in allowing scientific computations in many domains to proceed
(in the days of slower and clumsier hardware, this spell the difference between being able to complete one
computation or not at all). In some domains, this advantage is now less importance with advancing computer
speed and increasing hardware complexity. The second advantage is speed: the comparison here is between
floating point arithmetic with rational arithmetic. Both floating point numbers and rational numbers are
dense in the reals, and are thus useful for approximating real computation. The speed of floating point
arithmetic is reduced to integer arithmetic plus some small overhead (and integer arithmetic is considered to
be fast). In contrast to rational arithmetic is considerably slower than integer arithmetic, and easily suffer
from rapid growth in bit lengths. This phenomenon was illustrated at the end of ¶11.

§9. APPENDIX: Concepts from Numerical Analysis
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¶30. Norms. We assume vectors in x ∈ Cn (or Rn). In approximations and error analysis we need to
have some notion of size or magnitude of vectors. This is captured by the concept of a norm. A norm on
Cn is a function N : Cn → R such that for all x, y ∈ Cn,

• N(x) ≥ 0, with equality iff x = 0.

• N(αx) = |α|N(x) for all α ∈ C.

• N(x + y) ≤ N(x) + N(y)

The main example of norms are the p-norms for any positive integer p. This is denoted N(x) = ‖x‖p and
defined as

‖x‖p := p
√
|x1|p + · · · |xn|p

where x = (x1, . . . , xn)T . The special cases of p = 1 and p = 2 are noteworthy: ‖x‖1 =
∑n

i=1 |xi|,
‖x‖2 =

√∑n
i=1 |xi|2. The 2-norm is differentiable and invariant under an orthogonal transformation of the

space. We can also generalize this to p = ∞ and define

‖x‖∞ := max {|x1|, . . . , |xn|} .

A fundamental fact is that any two norms N and N ′ are equivalent in the following sense: there exists
positive constants c < C such that for all x ∈ Cn,

c · N(x) ≤ N ′(x) ≤ C · N(x).

To show this, it suffices to show that any norm N is equivalent to the ∞-norm. Write x =
∑n

i=1 xie
i where

ei is the ith elementary vector. Then

N(x) ≤
n∑

i=1

|xi|N(ei) ≤ ‖x‖∞
n∑

i=1

N(ei)

so it is sufficient to choose C =
∑n

i=1 N(ei). Now, consider the unit sphere under the ∞-norm, S = {x ∈
Cn : ‖x‖∞ = 1}. Since S is compact, the norm function N : S → R achieves its mininum value at some
x0 ∈ S. Let N(x0) = c. If ‖x‖∞ = b then we have

N(x) = N(b · x

b
) = bN(

x

b
) ≥ b · c = c‖x‖∞.

This completes the proof.
A vector space X with a norm ‖ · ‖ : X → R is called a normed space. An infinite sequence (x1, x2, . . .)

in X is Cauchy if for all ε > 0 there is an n = n(ε) such that for all i > n, ‖xi − xi+1‖ < ε. A normed
space X is complete if every Cauchy sequence x1, x2, . . . has a limit x∗ ∈ X, i.e., for all ε > 0, there is an n
such that for all i > n, ‖xi − x∗‖ < ε. A complete normed space is also called a Banach space.

¶31. Componentwise Error Analysis. A major use of norms is in error analysis. For instance, we can
quantify the difference between a computed matrix Ã and the corresponding exact matrix A by using norms:
the size of their difference can be given by ‖Ã − A‖. We call this normwise error.

However, we can also measure this error in a componentwise manner. For this, it is useful to introduce
a notation: if A = [aij ]i,j then |A| = [|aij |]i,j is obtained by replacing each entry of A by its absolute
value. Moreover, if A,E are two real matrices with the same dimensions, we can write A ≤ E to mean each
component of A is at most the corresponding component of E. We call E is a componentwise bound on
the error of Ã if |Ã − A| ≤ E. For instance, E can be the matrix whose entries are all equal to some value

u ≥ 0. In general, componentwise bounds is a refined tool for bounding errors of individual entries of Ã.
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¶32. Distance to the closest singularity. The numerical stabilty of a numerical problem is directly
influenced by its distance to the nearest singularity. We show the following result from Turing (and Banach
in the 1920s). It was first shown by Gastinel for arbitrary norms in 1966 [17]. For a non-singular square
matrix A, let

δT (A) := inf
S

{‖S − A‖
‖A‖

}

where S ranges all singular matrices. Thus δT (A) is the relative distance from A to the nearest singular
matrix S. The subscript T refers to Turing.

Theorem 11 (Turing).

δT (A) =
1

‖A−1‖‖A‖ .
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[22] V. Lefèvre, J.-M. Muller, and A. Tisserand. Towards correctly rounded transcendentals. IEEE Trans.
Computers, 47(11):1235–1243, 1998.

[23] D. W. Matula and P. Kornerup. Foundations of finite precision rational arithmetic. Computing,
Suppl.2:85–111, 1980.

[24] N. Metropolis. Methods of significance arithmetic. In D. A. H. Jacobs, editor, The State of the Art in
Numerical Analysis, pages 179–192. Academic Press, London, 1977.

[25] D. Michelucci and J.-M. Moreau. Lazy arithmetic. IEEE Transactions on Computers, 46(9):961–975,
1997.

[26] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

[27] J.-M. Muller. Elementary Functions: Algorithms and Implementation. Birkhäuser, Boston, 1997.
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Lecture 3

GEOMETRIC COMPUTATION, I

Among numerical software, those that might be described as “geometric” are notoriously non-
robust. Understanding geometric computation is key to solving the non-robustness problem. In
this chapter, we introduce the reader to some simple geometric problems related to the convex
hull. Various forms of non-robustness can be illustrated using such examples.

§1. Convex Hull of Planar Points

The prototype geometric objects are points and lines in the plane. We begin with one of the simplest
problems in geometric computing: computing the convex hull of a set of points in the plane. The one-
dimensional analogue of convex hull is the problem of computing the maxima and minima of a set of
numbers. Like sorting (which also has a geometric analogue in higher dimensions), our convex hull problem
has been extensively studied and there are many known algorithms known for the problem. This chapter will
introduce several such algorithms, to investigate their non-robustness properties. We first develop a convex
hull algorithm in a leisurely fashion.

p3

p1

p2

p4

p5

p6

p7

p8

Figure 1: Convex hull of a set of points

The computational problem is this: given a set S of points in the plane, compute its convex hull. Figure 1
displays the convex hull of the set S = {p1, p2, . . . , p8} of points. The output is essentially a convex polygon
determined by the five points p1, p6, p5, p4, p3. These points are said to be extreme in S (see the Appendix
of this Chapter for some the basic definitions).

The output needs to be specified with some care: we not only want to determine the extreme points in
S, but we also want to list them in some specific circular order, either clockwise or counter clockwise order.
For specificity, choose the clockwise order. Thus, for the input set in Figure 1, we want to list the output
set {p1, p6, p5, p4, p3} in a specific order (p1, p3, p4, p5, p6) or any cyclic equivalent, such as (p4, p5, p6, p1, p3).

A possible ambiguity arises. Are points on the relative interior of a convex hull edge considered “extreme”?
In Figure 1, the point p2 just inside the convex hull. But suppose p2 lies on the edge [p1, p3]: should it be
included in our convex hull output? According to our definition in the Appendix, points in the relative
interior of the edge [p1, p3] are not considered extreme. It is also possible to define our convex hull problem
so that such points are required to appear in our circular list.

c© Mehlhorn/Yap Draft March 25, 2009



§1. Convex Hull of Planar Points Lecture 3 Page 2

¶1. Checking Extremity of a Point. One approach to computing a convex hull of S is to reduce it to
checking if a point p ∈ S is extremal in S. We eventually show that if we retain some extra information in
extremity checking, we can link them into a circular list corresponding to a convex hull.

So how do we check if a point p is extreme in S? First we make a simple observation: it is easy to find
at least one extremal points: if pmin ∈ S is the lexicographically smallest point in S, then p is extremal. If
S has at least two points, then the lexicographically largest point pmax ∈ S is another extremal point.

X

q

θ(q)

r′

p

r

s

t
v

u

Figure 2: Circular sorting S about p.

In general, we can easily reduce the question of extremity of p in S to another problem: circular sorting
of S \ {p} about p. This is the problem where, for each point q ∈ S \ {p}, define θ(q) = ∠(Xpq) to be the

angle swept as the ray
−→
pX turn counter-clockwise to reach the ray −→pq. Here, X is any point to the right of

p (see Figure 2). The problem of circular sorting of S about the point p amounts to sorting the set

{θ(q) : q ∈ S \ {p}}.

For instance, sorting the set S in Figure 2 gives the output (q, s, r, r′, u, v, t). In case of ties for two points
(e.g., r, r′), their relative order is not important for our purposes (e.g., we could also output (q, s, r′, r, u, v, t)).

Let (p1, . . . , pn−1) be output of circular sorting S \ {p} about p. Then p is extreme iff there is some
1 ≤ i ≤ n such that

θ(pi)− θ(pi−1) > π. (1)

When i = 1, we must interpret θ(p0) in (1) as θ(pn)− 2π < 0.
Circular sorting has interest in its own right (see Graham scan below). But for the purpose of deciding

whether p is extreme, circular sorting is an overkill. Let us develop a simpler method.
Here is one approach, illustrated in Figure 3. Let p = (px, py) and S′ = S \ {p}. We split S′ into two sets

S′ = Sa ⊎ Sb where Sa comprise those points q ∈ S′ that lies above the X-axis: either qy > py or (qy = py

and qx > px). Similarly, Sb comprise those points q ∈ S′ lying below the X-axis. Thus, a point v on the
positive X-axis would belong to Sa while a point u on the negative X-axis would belong to Sb (see Figure 3).
Define

θ−a := min{θ(q) : q ∈ Sa}, θ+
a := max{θ(q) : q ∈ Sa}

When Sa is empty, θ−a = +∞ and θ+

b = −∞. Similarly let θ−b := min{θ(q) : q ∈ Sb} and θ+

b := max{θ(q) :
q ∈ Sb}. Note that 0 ≤ θ−a ≤ θ+

b < π if Sa is non-empty, and π ≤ θ−b ≤ θ+

b < 2π if Sb is non-empty. The
following is easy to see:

Lemma 1. Point p is extreme in S iff one of the following three conditions hold:
1. Sa or Sb is empty.
2. θ+

b − θ−a < π.
3. θ−b − θ+

a > π.

Based on this lemma, it is now easy to give an O(n) time algorithm to check for extremity:
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X

q

r′

p

Sa

Sb

u v

θ−a

2π − θ+
b

π − θ+
a

θ−b − π

r

Figure 3: Checking extremity of point p.

Extremity Test (Conceptual)
Input: A set of points S and p ∈ S.
Output: True if p is extreme in S and false otherwise.
1. θ−a ← θ−b ← +∞, θ+

a ← θ+

b ← −∞. ⊳ Initialization
2. for each q ∈ S \ {p} ⊳ Main Loop
3. if (q.Y > p.Y ) or (q.Y = p.Y and q.X > p.X)
4. then θ−a ← min{θ−a , θ(q)} and θ+

a ← max{θ+
a , θ(q)}.

5. else θ−b ← min{θ−b , θ(q)} and θ+

b ← max{θ+

b , θ(q)}.
6. if [(θ−a or θ−b is infinite) or (θ+

b − θ−a < π) or (θ−b − θ+
a > π)]

return True.
7. else

return False.

We leave the correctness proof to an Exercise. Note that this algorithm assumes the ability to compute
the angles θ(q) for q ∈ S. As discussed next, this is not a practical assumption.

Exercises

Exercise 1.1:
(i) Prove the correctness of Lemma 1.
(ii) Prove the correctness of the (Conceptual) Extremity Test. ♦

Exercise 1.2: Develop another conceptual Extremity Test in which we assume that the two extreme points
pmin and pmax have already been found, and we want to test another point p ∈ S \ {pmin, pmax} for
extremity. HINT: The idea is that having the extra information about pmin and pmax should simplify
our task. To further simplify the problem, you may assume that p lies below the line through pmin and
pmax. ♦

Exercise 1.3: Generalize Lemma 1 to three dimensions. Give a corresponding algorithm to check extremity
of a point in S ⊆ R

3, in analogy to the previous exercise. ♦

End Exercises

§2. Some Geometric Predicates
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We consider the above Extremity Test based on Lemma 1 to be a “conceptual” algorithm, not a practical
one. This is because the algorithm requires the computation of angles θ(q), which are transcendental1 quan-
tities. Thus, the computed angles are necessarily approximate, and it is non-trivial to turn this into an exact
algorithm. More generally, we must be wary of the Real RAM model often assumed in theoretical algorithms.
Real computational difficulties, including undecidable questions, might lurk hidden its abstraction. To avoid
the computation of angles, we now introduce an important low-level tool in Computational Geometry: the
signed area of an oriented triangle.

¶2. Signed Area. Let A,B,C be three points in the plane. The signed area of ABC is half of the
following determinant

∆(A,B,C) := det





a a′ 1
b b′ 1
c c′ 1



 (2)

= det





a a′ 1
b− a b′ − a 0
c− a c′ − a 0



 = det

[

b− a b′ − a′

c− a c′ − a′

]

(3)

where A = Point(a, a′), B = Point(b, b′), etc.

P
T1

T2R

T1

T2 R

(b, b′)

(c, c′)

c

c′

b′

b′

c b

c′

b

Figure 4: Area of parallelogram determined by vectors (b, b′), (c, c′).

To justify of this formula, we assume without loss of generality that a = a′ = 0. First assume that both
vectors (b, b′) and (c, c′) are in the first quadrant, with vector (b, b′) making a larger angle with the positive
x-axis than vector (c, c′). Referring to Figure 4, the area of the parallelogram P is equal to the area of the
enclosing rectangle (b + b′)(c + c′) minus the area of the two smaller rectangles 2R = 2bc′, minus the area of
the 4 triangles 2(T1 + T2) = bb′ + cc′. This yields

∆(A,B,C) = (b + b′)(c + c′)− (2bc′ + bb′ + cc′) = b′c− bc′.

The above figure assumes that the angle θ(B) ≤ θ(C). In case θ(B) > θ(C), we obtain the same area with
an negative sign. We leave it as an exercise to verify this formula even when the 2 vectors are not both in
the first quadrant.

This formula generalizes to volume in 3 and higher dimensions. For instance, the signed volume of the
tetrahedron defined by four points A,B,C,D ∈ R

3, given in this order, is

1

6
det









A 1
B 1
C 1
D 1









(4)

1A transcendental computation is one that involves non-algebraic numbers such as π. Assuming the input numbers are
algebraic, then θ(q) is generally non-algebraic. Algebraic and transcendental numbers will be treated in detail later in the book.
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where the row indicated by (A, 1) is filled with the coordinates of A followed by an extra “1”, etc. The factor
of 1/6 will be 1/d! in d-dimensions.

¶3. The Orientation Predicate. Using the signed area, we define several useful predicates. The orien-
tation predicate is defined as

Orientation(A,B,C) = sign(∆(A,B,C)).

Thus the orientation predicate is a three-valued function, returning −1, 0 or +1. In general, a predicate
is any function with a (small) finite number of possible outcomes. In case there are only two (resp., three)
possible outcomes, we call it a truth predicate (resp., geometric predicate). Truth predicates are well-
known and widely used in mathematical logic and computer science. Geometric predicates are perhaps less
well-known, but they arise naturally as in the following examples:

• Relative to a triangle, a point can be inside, outside, or on the boundary.

• Relative to an oriented hyperplane, a point can be left, right, or on the hyperplane.

• Two lines in the plane can be intersect in a single point, be coincident, or non-intersecting.

• Two triangular areas can be disjoint, have a containment relationship, or their boundaries may
intersect.

Geometric relations with more than 3 values are clearly also possible. E.g., the relation between two lines
in 3-D space is 4-valued because they are either co-planar (in which case we can classify them into the 3 cases
as above), or they can be skew. We also note that 3-valued predicates have a well-known non-geometric
application in which the 3 values are interpreted as true, false and unknown. It is then viewed as a
generalization of 2-valued logic.

What is the significance of the orientation predicate? One answer is immediate: when the output is 0,
it means that A,B,C are collinear since the area of the triangle is zero exactly in this case. For instance if
two of the points are coincident, then the output is 0. What about the non-zero outputs? Let us do a simple
experiment: let A = (0, 0), B = (1, 0) and C = (0, 1). Then we see that

∆(A,B,C) = det





0 0 1
1 0 1
0 1 1



 = 1.

Thus, if you look from the point (0, 0) towards the point (1, 0), then (0, 1) is to the left. In general:

CLAIM: If A,B,C are not collinear, and you look from point A to point B, then point C lies
to the left if and only if Orientation(A,B,C) = +1.

We argue as follows: fix A = (0, 0) and B = (1, 0) and let C vary continuously, starting from the position
(0, 1). As long as C does not enter the X-axis, the area ∆(A,B,C) remains non-zero. Since the area is a
continuous function, we conclude that area will remain positive, i.e., Orientation(A,B,C) = +1. By the same
token, as long as C lies strictly below the X-axis, the area remains negative and so Orientation(A,B,C) = −1.
Moreover, the area vanishes iff C lies on the X-axis. This proves our CLAIM when A,B are the special
points (0, 0) and (1, 0).

In general, if A,B,C is an arbitrary non-collinear triple, there is a unique a rigid transformation T that
transforms (A,B) to (T (A), T (B)) = ((0, 0), (1, 0)): first translate A to (0, 0), then rotate B to the positive
X axis, and finally scale B to (1, 0). A translation, rotation and scaling transformation is represented by a
3× 3 matrix with positive determinant (Exercise). Thus T has positive determinant. Moreover, we see that

∆(T (A), T (B), T (C)) = det(T )∆(A,B,C). (5)

Since det(T ) > 0, the transformation is orientation preserving. Finally, we note that (A,B,C) is a left-turn
(in the sense of the CLAIM) iff T (C) is in the upper half plane. Hence our CLAIM holds generally.
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¶4. Some Truth Predicates. The orientation predicate is a geometric (3-valued) predicate. We now
define several useful truth (2-valued) predicates from this single geometric predicate.

In the CLAIM above, we have already implicitly defined the left-turn predicate:

LeftTurn(A,B,C) ≡ “Orientation(A,B,C) > 0”.

Similarly, the RightTurn(A,B,C) predicate gives the truth value of “Orientation(A,B,C) < 0”.
Our goal is to reduce the Extremity Test to truth predicates such as LeftTurn. Unfortunately, LeftTurn

by itself is not enough in the presence of “degenerate” inputs. For our extremity problem, a set of points
is degenerate if three input points are collinear. We need new predicates to take into account the relative
disposition of three collinear points.

For instance, in Figure 2, when we discover that p, r, r′ are collinear, we want to discard r′ as non-extreme.
So we define a helper predicate, called Between(A,B,C), which evaluates to true iff A,B,C are collinear
with B strictly between A and C. We define

Between(A,B,C) ≡ “Orientation(A,B,C) = 0 and 〈A−B,C −B〉 < 0”

where 〈u, v〉 is just scalar product of two vectors. To see this, from elementary geometry, we see that
〈A− B,C − B〉 = ‖A− B‖ · ‖C − B‖ cos θ provided A 6= B and B 6= C and θ is angle between the vectors
A − B,C − B. Since 〈A − B,C − B〉 < 0, we know that A 6= B, B 6= C and cos θ < 0. Since A,B,C are
collinear, θ = 0 or θ = π. We conclude that θ must in fact be π; this proves that B lies strictly between A
and C.

Define the modified Left Turn Predicate as:

LeftTurn∗(A,B,C) ≡ “Orientation(A,B,C) > 0 or Between(C,A,B)”.

The modified Right Turn Predicate is similar,

RightTurn∗(A,B,C) ≡ “Orientation(A,B,C) < 0 or Between(C,A,B)”.

Note that in both calls to the Between predicate, the arguments are (C,A,B) and not (A,B,C).

¶5. Enhanced Extremity Test. We now return to our conceptual Extremity Test. Our plan is to
modify it into a practical algorithm by using the various predicates which we just developed.

Before installing the modified turn predicates, we make another adjustment: instead of computing the
angle θ−a , we only remember the point in Sa that determines this angle. This point is denoted p−a . Similarly,
we replace the other 3 angles by the points p+

a , p−b and p+

b . Initially, these points are initialized to the Null
value. Moreover, the LeftTurn∗(p, q, r) predicate always return true if any of the arguments is Null.

We also enhance our output as follows: if the point p is extreme in S, we output a triple (r, p, q) such
that p, q are also extreme in S and LeftTurn(r, p, q) = True. if the point p is non-extreme in S, we output
3 points u, v, w ∈ S \ {p} such that p in contained in the triangle (u, v, w) and LeftTurn(u, v, w). This is
captured by another truth predicate defined as follows:

Inside(p, u, v, w) ≡ LeftTurn∗(p, u, v) ∧ LeftTurn∗(p, v, w) ∧ LeftTurn∗(p,w, u). (6)

The above considerations finally lead to the following algorithm for the extremity test. It is best to
understand this algorithm as a refinement of the original Conceptual Extremity Test.
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Extremity Test
Input: A set of points S and p ∈ S. Assume |S| ≥ 2.
Output: If p is extreme in S, output (r, p, q) such that

r, q are extreme and LeftTurn(r, p, q) = True.
Else, output the points u, v, w ∈ S \ {p} such that
p lies inside triangle (u, v, w) and LeftTurn(r, p, q) = True.

1. ⊲ INITIALIZATION:
p−a ← p−b ← p+

a ← p+

b ← Null.
2. ⊲ MAIN LOOP:

for each q ∈ S \ {p}
3. if (q.Y > p.Y ) or (q.Y = p.Y and q.X > p.X)
4. then

if LeftTurn∗(p−a , p, q) then p−a ← q
if RightTurn∗(p+

a , p, q) then p+
a ← q

5. else

if LeftTurn∗(p−b , p, q) then p−b ← q
if RightTurn∗(p+

b , p, q) then p+

b ← q
6. ⊲ OUTPUT FOR EXTREME CASES:

if (p−a = Null) then return (p+

b , p, p−b ).
if (p−b = Null) then return (p+

a , p, p−a ).
if LeftTurn∗(p+

a , p, p−b ) then return (p+
a , p, p−b )

if LeftTurn∗(p+

b , p, p−a ) then return (p+

b , p, p−a )
7. ⊲ OUTPUT FOR NON-EXTREME CASES:

if Inside(p, p−a , p+
a , p−b ) then return (p−a , p+

a , p−b )
else return (p−a , p−b , p+

b )

Note that above algorithm uses only two kinds of predicates: the modified left- and right-turns.

Exercises

Exercise 2.1:
(i) Give the general formula for the 3× 3 matrix T that transforms any pair (A,B) of distinct points
to ((0, 0), (1, 0)).
(ii) What is T when (A,B) = ((−2, 3), (3, 2))? ♦

Exercise 2.2: A fundamental property of the left turn predicate is that

LeftTurn(A,B,C) ≡ LeftTurn(B,C,A) ≡ LeftTurn(C,A,B).

Kettner and Welzl [3] reported that for a randomly generated set of 1000 points in the unit box
[0, 1)× [0, 1), about one third of the

(

1000

3

)

triples (A,B,C) of points fails this identity when evaluated
in IEEE single precision coordinates. No failures were observed in IEEE double precision coordinates.
Please repeat their experiments. ♦

Exercise 2.3:
(i) Implement the Extremity Test algorithm.
(ii) Run your algorithm on the following input points taken from [2].

p1 = ( 7.30000 00000 00019 4, 7.30000 00000 00016 7),
p2 = (24.00000 00000 00068, 24.00000 00000 00061 ),
p3 = (24.00000 00000 0005, 24.00000 00000 00053 ),
p4 = ( 0.50000 00000 00016 21, 0.50000 00000 00012 43),
p5 = (8, 4),
p6 = (4, 9),
p7 = (15, 27),
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p8 = (26, 25),
p9 = (19, 11).

♦

Exercise 2.4: Develop an Extremity Test for 3 dimensional points. Fix a set S ⊆ R
3 and a point p ∈ S.

To see if p is extremal, you want to find two other points q, r such that relative to the plane H(p, q, r)
spanned by {p, q, r}, all the remaining points of S lies strictly to one side of this plane. ♦

End Exercises

§3. Simplified Graham Scan

There are probably a dozen known convex hull algorithms. One of the earliest algorithms is called the
“Graham Scan”, from Ron Graham (1975). The idea of Graham scan was to first perform an angular sorting
of the input set S about an arbitrary point p∗ 6∈ S (e.g., p∗ may be origin). If (p1, . . . , pn) is this sorted list,
we then incrementally compute the convex hull of the prefix (p1, . . . , pi) for i = 2, . . . , n. There is a very
simple stack-based algorithm to achieve this incremental sorting.

We now describe variant that is described by Kettner and Welzl [3] (it is a variant of what is known
as “Andrew Sort”). The basic idea is choose let (p1, . . . , pn) be the lexicographical sorting of S. This can
be interpreted as choosing p∗ sufficiently far to the west and south of S for the Graham scan; see Exercise.
Besides its simplicity, we will also use it to illustrate an algorithmic idea called “conservative predicates”.

Reducibility Among Some Geometry Problems: Convex hull in 1-D is
computing the max-min of a set of points. Convex hull in 2-D is rather
like sorting since a 2-D convex hull is almost like a linearly sorted list.
Indeed, this section shows how convex hull in 2-D can be reduced to
sorting in 1-D. Similarly, convex hull in 3-D can be reduced to sorting
in 2-D (there is a notion of “sorting points” in k-D). Another such
reduction is that Voronoi diagrams (which will be introduced later) in
k-dimensions and be reduced to convex hull in (k + 1)-dimensions.

It is a generally useful device to split the 2-D convex hull problem into two subproblems: computing an
upper hull and a lower hull. Recall that

pmin, pmax ∈ S

are two extremal points of the convex hull of S (assuming S has at least two points). Hence, we may relabel
the points on the convex hull so that

(pmin, p1, . . . , pk−1, pk, pmax, qℓ, qℓ−1, . . . , q1)

is the counter-clockwise listing of the convex hull of S. Here, k ≥ 0 and ℓ ≥ 0. Then we may call the two
subsequences

(pmin, p1, . . . , pk−1, pk, pmax), (pmin, q1, . . . , qℓ−1, qℓpmax)

the lower and upper hulls of S. See Figure 5 for an illustration.
By symmetry, it is sufficient to show how to compute the lower hull of S. Suppose we begin by computing

the lexicographic ordering of all the points in S, discarding any duplicates we find. Let this lexicographic
ordering be

L = (pmin, p1, p2, . . . , pm, pmax) (7)

where pi−1 <LEX pi for all i = 1, . . . ,m + 1, with p0 = pmin, pm+1 = pmax.
Clearly, the lower hull of S is a subsequence of L. In general, any lexicographically sorted sequence of

the form (7) that contains the lower hull as a subsequence, with the first and last elements pmin and pmax,
is called a liberal hull. Temporarily, we call a point “good” if it belongs to the lower hull, and “bad”
otherwise.

The idea of Kettner and Welzl is to begin with a liberal hull, and successively eliminate bad points. A
simple observation is this:
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pmax

q2

q3

p1

pmin

q1

Figure 5: Lower (pmin, p1, pmax) and upper (pmin, q1, q2, q3, pmax) hulls

Observation 1. Let (p, q, r) be 3 points in a liberal hull with p <LEX q <LEX r.
(a) If the predicate

LeftTurn(p, r, q)

holds, then q is bad.
(b) If q is bad, then there exists some p, r such that (a) holds.

So we can use this predicate to test the badness of any point q as long as q /∈ {pmin, pmax}. How can we
systematically apply this observation to eliminate bad points? It turns out that to test q = pi, it is enough
to choose (p, q, r) = (pi−1, pi, pi+1), provided we do this systematically.

Assume that the points are distinct and have been lexicographically sorted in an array P [0..n− 1], and
further p0 = pmin and pn−1 = pmax. Then one way to test for bad points is to go from left to right in
the array. Suppose that the subarray P [0..i− 1] has been tested, and all the good points have been moved
(left-shifted) into P [0..k] for some k ≤ i − 1 < m. Therefore P [0..k] is actually a lower hull for P [0..i − 1].
Since

P [0..k];P [i..n− 1] = P [0..k; i..n− 1]

is a liberal hull, we can use the above observation to test if P [k] is bad: if

LeftTurn(P [k], P [k − 1], P [i])

holds, then we can discard P [k] (this amounts to setting k ← k − 1). If P [k] is not bad, we extend our
induction hypothesis by incrementing k, and then moving P [i] to the kth array location:

k := k + 1; P [k]← P [i].

This can summarized be captured in the following algorithm:
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LowerHullScan(S)
Input: S is a set n > 1 points.
Output: k and array P [0..k] representing the lower hull of S.

⊲ Initialization
Compute the lexicographic sort of S.

Let the sorted sequence be P [0..m] with P [i− 1] <LEX P [i] (1 ≤ i ≤ m < n)
If m ≤ 1, return(m,P ).
k ← 1

⊲ Main Loop
for (i = 2; i ≤ m; i← i + 1)

⊲ Invariant: P [0..k] is a lower hull of P [0..i− 1].
while (k > 1 and LeftTurn(P [k], P [k − 1], P [i]))

k ← k − 1
k ← k + 1; P [k]← P [i]

P [k + 1]← P [m]; return(k + 1, P )

¶6. How to Use Conservative Predicates. Let us now add a new twist from Kettner and Welzl: sup-
pose we implement an imperfect predicate, LeftTurn′(A,B,C) with the property that for all points A,B,C,
we have

LeftTurn′(A,B,C)⇒ LeftTurn(A,B,C).

Then LeftTurn′ is called a conservative version of LeftTurn. In this setting, we may describe the original
predicate as exact.

In terms of discarding bad points, if we use LeftTurn′, we may sometimes fail to detect bad points.
But that is OK, because we are interested in liberal lower hulls. Of course, if we define LeftTurn′(A,B,C)
to be always false, this is not very useful. The point is that we can implement conservative predicates
LeftTurn′(A,B,C) which are (1) very efficient, and (2) agrees with the exact predicate most of the time. If
property (2) holds, we say the predicate is efficacious.

If we use a conservative version of LeftTurn in our LowerHullScan Algorithm above, we would have
computed a liberal lower hull. To compute the true lower hull, we proceed in three phases as follows:

• Sorting Phase: sort the points lexicographically.

• Filter Phase: run the while loop of the LowerHullScan Algorithm using a conservative LeftTurn′

predicate.

• Cleanup Phase: run the while loop again using the exact LeftTurn predicate.

As borne out by experiments [3], this can speedup the overall algorithm. This speedup may sound somewhat
surprising: logically speaking, the filter phase is optional. Nevertheless, filter phase is relatively fast when we
use an efficient conservative predicate. If the conservative predicate is not efficacious, then the filter phase is
wasted, and the algorithm is faster without it. But for a large class of inputs (especially randomly generated
ones) many bad points will be eliminated by the filter phase. This will greatly speed up the Cleanup phase,
and hence the overall algorithm.

This filter idea is a very general paradigm in exact geometric computation. There is another further idea:
sometimes, it is possible to “verify” if something is good more efficiently than calling the exact LeftTurn

predicate. In this case, the Clean Up phase call a “verify left turn predicate” first. Only when verification
fails, we will call exact predicate. We will encounter these ideas of filtering and verification again.

¶7. How to Construct Conservative Predicates Let us address the issue of constructing conservative
predicates which are efficient and efficacious. The general idea is to exploit fast floating point hardware
operations. There is a generally applicable method: implement the operations using interval arithmetic
based on machine doubles. This slows down the computation by a small constant factor.

Suppose we implement the left-turn predicate on (A,B,C) by first evaluating the determinant ∆(A,B,C) =
(b− a)(c′− a′)− (b′− a′)(c− a) where A = (a, a′), etc. This is done is machine double, and then we do some
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simple checks to be sure that the positive sign of the computed value D is trustworthy. If so, we can output
TRUE and otherwise FALSE. For instance, we can use Sterbenz’ Theorem from Lecture 2.

¶8. Conservative or Liberal? Many computations, like our convex hull computation, can be viewed as
an iterative process of accepting good points and rejecting bad points. There are two kinds of errors in such
a computation: rejecting a good point or accepting a bad point. We then classify algorithms that may make
mistakes into two camps: a liberal algorithm never erroneously reject a good point, while a conservative
algorithm never erroneously accept a bad point. But a liberal algorithm may err in accepting a bad point
while a conservative algorithm may err in rejecting a good point. This terminology was used in [5] for
discussing testing policies in computational metrology.

Kettner and Welzl focused on predicates. If P,Q are two predicates over a common domain, we say P is
a conservative version of Q if P (x) is true implies Q(x) is true. Similarly, P is a liberal version of Q if
P (x) is false implies Q(x) is false.

When we use a conservative version of a correct predicate to reject points, the resulting algorithm is
actually a liberal one! The converse is also true: using a liberal version to accept points will result in a
conservative algorithm. By this terminology, the Kettner-Welzl algorithm is liberal, not conservative.

§4. The Gift Wrap Algorithm

Using the modified extremity test, we could construct simple convex hull algorithm in two steps. (1)
First detect all extreme points, by going through each points of S. (2) Linking these extreme points into a
circular list, using the adjacency information provided by the extended Extremity Test. But we can combine
steps (1) and (2) into a more efficient algorithm. Suppose we have found a single extreme point using our
extended Extremity Test:

(p1, p2, p3)← Extremity Test(S, p).

Assuming p1 6= p3, we already have three extreme points to start our convex hull: CH = (p1, p2, p3). In
general, given the partial convex hull

CH = (p1, . . . , pi), i ≥ 3

we try to extend it by calling
(q1, q2, q3)← Extremity Test(S, pi). (8)

Note that q2 will be equal to pi. There are two possibilities: in case q3 equals p1, then the current convex
hull is complete. Otherwise, we extend the partial convex hull to CH = (p1, . . . , pi, q3).

A further improvement is to replace (8) by a more specialized routine:

q3 ←WrapStep(S, pi−1, pi). (9)

Here is the implementation of this specialized test. The name “Wrap Step” will be clear later.

WrapStep(S, p, q)
Input: S is a set n > 2 of points,

and for all s ∈ S, Orientation(q, p, s) ≥ 0.
Output: extreme point r ∈ S such that Orientation(q, p, r) ≥ 0.
1. r ← q.
2. for s ∈ S,

if LeftTurn∗(r, p, s) then r ← s.

To use the WrapStep primitive, we first find initial extreme point p1. We could obtain this using the
Extremity Test, but this can be avoided: among the subset of points in S whose y-coordinates are minimum,
we can pick p1 so that p1.X is maximum. Then we call WrapStep(S, p0, p1) where p0 is defined to be
p1 − Point(1, 0). Note that triple (S, p0, p1) satisfies the preconditions for inputs to WrapStep.

The resulting algorithm is presented here:
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Gift Wrap Algorithm
Input: A set S of n > 2 of points.
Output: The convex hull of S, CH(S)← (p1, . . . , ph), h ≥ 2.
1. FIND INITIAL EXTREME POINT:

Let p1 be any point in S.
for s ∈ S,

if (s.Y < p1.Y ) or (s.Y = p1.Y and s.X > p1.X)
then p1 ← s.

2. ITERATION:
CH ← () (empty list).
q ← p1 − (1, 0) and r ← p1.
do

Append r to CH.
p← q and q ← r.
r ←WrapStep(p, q).

while

r 6= p1.

What is the complexity of this algorithm? If h is the size of the convex hull, then this algorithm executes
the do-loop h times. Since each iteration takes O(n) time, the overall complexity is O(nh).

This algorithm is called the “Gift Wrap Algorithm” since it is analogous to how one wraps a gift item
(albeit in 3-dimensions).

REMARK: The gift wrap algorithm can even replace the initialization loop for finding the first extreme
point p1. If we know in advance any two points

p−1, p0 (10)

which are not in S, but guaranteed to form an edge in the convex hull of S ∪ {p−1, p0}, we could begin our
iteration with these two points. See Exercises.

¶9. Robustness Issues. Numerical nonrobustness problems in the Gift Wrap algorithm can arise from
the WrapStep primitive. Let (p1, p2, . . . , ph) is the true convex hull, with h ≥ 4. Let us examine the possible
ways that this can arise: assume the partial hull (p1, p2) has been computed correctly, but the next point
is wrongly computed to be q instead of p3. Evidently, p2, q, p3 must be nearly collinear. Assume that q is
further away from p2 than p3 is. This is illustrated in Figure 6.

[TAKE FROM ANATOMY PAPER...]
Next, suppose that p4 (the true 4th point on the convex hull) satisfies LeftTurn(p4, q, p2) = True. So it

is possible that our giftwrap algorithm produces the partial hull (p1, p2, q, p3). It is also possible that our
giftwrap algorithm produces (p1, p2, q, p3, p4).

We leave as an Exercise to construct an specific choice of the points S = {p1, p2, p3, p4, q} with exactly
this outcome, assuming all numbers are machine doubles and the arithmetic is computed using the IEEE
standard.

Exercises

Exercise 4.1: Verify the area formula for all possible disposition of the vectors (b, b′) and (c, c′). ♦

Exercise 4.2: Our extremity algorithm uses two kinds of predicates. Modify the algorithm so that only the
modified LeftTurn predicate is used. ♦

Exercise 4.3: Device another O(n) time extremity test, based on incremental insertion. Suppose you want
to test if p is extremal in S. Let Si = {p1, . . . , pi} for i = 1, . . . , n and Sn = S \ {p}. Suppose p is
extremal in Si, how do you check if p is extremal in Si+1? You will need to maintain some witness of
the extremity of p in Si. ♦
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p1

p2

q

p3

CHull(S)

p4

Figure 6: Error in Gift Wrap Algorithm

Exercise 4.4: Give a formula for the signed area of a simple polygon whose vertices are A1, A2, . . . , An (for
n ≥ 3). Let Ai = Point(xi, yi) for each i. ♦

Exercise 4.5: Prove the signed area of a tetrahedron in 3 dimensions. Extend this to the volume formula
for a d-dimensional simplex for d > 3. ♦

Exercise 4.6: Suppose we can easily find a pair of artificial points p−1 and p0 as in (10). Modify the Gift
Wrap algorithm to produce such an algorithm. Note that such a pair of points can be manufactured
easily if we admit symbolic (non-standard) numbers. ♦

Exercise 4.7: Is it possible to construct an example (assuming imprecise arithmetic) so that the Gift Wrap
Algorithm goes into an infinite loop? ♦

End Exercises

§5. Study of an Incremental Algorithm

We now describe an incremental algorithm for computing the convex hull of a point set. The robustness
issues here are more intricate because the algorithm is slightly more complicated than the previous one.

Nevertheless, its basic algorithmic idea is simple: assuming that we have computed the convex hull Hi

of the first i points, we now update Hi to Hi+1 by inserting the next point. The algorithm stops when we
reach Hn.

In general, the incremental paradigm for geometric algorithms is quite powerful. When combined
with randomization, this is often the method of choice in implementation. Indeed, randomization is often
trivial – it amounts to introducing the points (or more generally, geometric object) into the construction
in a random order. However, we will not dwell on this, but refer to excellent texts [1, 4]. The incremental
algorithm for convex hull in every dimension is called the Beneath-Beyond algorithm (see [Edelsbrunner,
page 147]).

THIS Lecture is taken from [2].

Exercises

Exercise 5.1: Assume the existence of a data type POINT and a predicate RightTurn(p, q, r). Use a doubly
linked list to represent L (e.g. the STL-data type XXXX). ♦
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End Exercises

§6. Other Convex Hull Methods

REMARK: The material from ”Classroom Examples” is to be integrated into this chapter!!
It is instructive to see several other algorithms for the convex hull of points.

¶10. Graham Scan. Another popular convex hull algorithm, in fact the earliest O(n log n) algorithm is
from R. L. Graham. The attractive feature here is the natural application of a standard data structure of
computer science – the pushdown stack. We first describe the original version of this algorithm.

1. The first step is to find the P = Point(x, y) which is lexicographically minimum (minimize x and then
minimize y). Let P0 = Point(x0, y0) be this point. Clearly, P0 is extremal be any definition of this
word.

2. Circular Sort the other points about P0, as explained earlier. If two points have the same angle, drop
the one which is closer to to P0. Let

P0, P1, . . . , Pn−1

be the list of sorted points. Note that Pn−1 is on the convex hull.

3. Create a stack S of points. Initials S with (Pn−1, P0). In general, if S = (Q0, Q1, . . . , Qk) were
k ≥ 2, then let top refer to Qk and next refer to Qk−1. To push an element Q onto S would make
S = (Q1, . . . , Qk, Q). Similarly, for popping an element.

4. We process the points Pi in the i-th stage. If Pi is to the left of the line from next to top then push(Pi).
Else, pop the stack.

A much more robust version of Graham scan is known as “Andrew’s Version”. In this version, we replace
circular sorting by lexicographical sorting of the points: p ≤lex q iff px < qx or (px = qx and py < qy). Since
this sorting does not require any arithmetic, it is fully robust. The resulting sequence is a x-monotone in a
saw-teeth fashion. We then compute the upper and lower hull of this sequence using the Graham scan.

[See paper of Kettner-Welzl]

¶11. Lower Bounds It can be shown that within a reasonable model of computation, every convex hull
algorithm requires Ω(n log n) steps in the worst case. In this sense, we usually call an algorithm with running
time O(n log n) an “optimal algorithm”. But witness the next result.

¶12. Ultimate Convex Hull Algorithm A remarkable algorithm was discovered by Kirkpatrick and
Seidel: their algorithm takes time O(n log h). Thus, it is simultaneously better than gift-wrapping and
O(n log n). Notice that we manage to beat other “optimal algorithms”. Of course, this is no contradiction
because we have changed the rules of the analysis: we took advantage of another complexity parameter, h.
This parameter h is a function of some output size parameter. Algorithms that can take advantage of the
output size parameters are said to be output-sensitive. This is an important algorithmic idea. In terms
of this h parameter, a lower bound of Ω(n log h) can be shown.

¶13. Randomized Incremental Algorithms We will return to this later, to introduce two other
important themes in computational geometry: randomization and incremental algorithms. Another direction
is to generalize the problem to the “dynamic setting”. Here the point set S is considered a dynamic point
set which can change over time. We can insert or delete from S. Incremental algorithms can be regarded
as the solution for the “semi-dynamic” case in which we can only insert, but not delete points. Yet another
direction is to consider the convex hull computation in higher (or arbitrary) dimensions.

Exercises

Exercise 6.1: Prove the correctness of Graham Scan. ♦
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Exercise 6.2: Implement the Andrew Scan. ♦

End Exercises

§7. APPENDIX: Convexity Concepts

We introduce some basic concepts of convexity in an Euclidean space R
d of dimension d ≥ 1. We will

mostly discuss d = 2 or d = 3.
If p, q ∈ R

d are two points, then the closed line segment joining them is the set of points of the form

λp + (1− λ)q

for 0 ≤ λ ≤ 1. This segment is denoted [p, q]. When λ is unrestricted, we obtain the line through p and q,
denoted p, q. If a0, . . . , ad ∈ R, then the set of points p = (p1, . . . , pd) ∈ R

d satisfying the linear equation

a0 +
∑d

i=1
aipi = 0 is called a hyperplane (for d = 2 and d = 3, we may simply call it a line or a plane,

respectively). A hyperplane H defines two open half-spaces, corresponding to those points p such that

a0 +
∑d

i=1
aipi > 0 or a0 +

∑d

i=1
aipi < 0, respectively. Let these be denoted H+ and H−, respectively.

The corresponding closed half-spaces are denoted H+

0 and H−

0 . A set R ⊆ R
d of points is convex if for all

p, q ∈ R, we [p, q] ∈ R. A point p is extreme in R if there is a hyperplane H containing p such that H+ or
H− contains R \ {p}. The point is weak extreme if there is a hyperplane H containing p such that H+

0 or
H−

0 containes R. A supporting hyperplane of R is any hyperplane H through a point of R such that R
lies in one of the two closed half-spaces defined by H.

We now define the convex hull of a set R ⊆ R
d to be the smallest closed convex set containing R.

We denote it by CHull(R). A convex polyhedron is a convex set R with a finite number of extreme
points. A convex polyhedron might be unbounded. If R is also bounded, it is called a convex polytope.
A polyhedron (resp. polytope) is a finite union of convex polyhedras (resp. polytopes). In 2-dimensions,
a polytope is call a polygon.

A convex polytope is completely determined by its set of extreme vertices. Thus we can regard the
output of our convex hull algorithm as a representation of a convex polygon. In our problem specification,
we demanded a little more: namely we want an explicit representation of the “adjacency relation” among
the extreme points. We say two extreme points p, q of a convex set R are adjacent if there is a hyperplane
H containing p, q such either H+ or H− contains the set R \ H. Thus, in the circular list (p1, p2, . . . , pk)
that is output by our planar convex hull algorithm, the point pi is adjacent to pi−1 and pi+1 where subscript
arithmetic is modulo k.
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“Accordingly, the defendant is found Not Guilty.
However, this Court is of the opinion that variable-precision floating point is perilous, and its

use should be restricted to qualified professionals.”

— Dirk Laurie
in “Variable-precision Arithmetic Considered Perilous — A Detective Story”

Electronic Trans. on Numerical Analysis, Vol. 28, pp. 168–173, 2008.

Floating point arithmetic has numerous engineering advantages: it is well-supported... the
Challenge is to demonstrate that a reliable implementation can result from the use of floating

point arithmetic.

– Steve Fortune

Lecture 4

ARITHMETIC TECHNIQUES

Since numerical errors are the cause of nonrobustness, it stands to reason that if we make
numerical computations more accurate, we improve the robustness of our programs. In this
section, we look at some techniques for improving numerical accuracy. In particular, we look at
floating point techniques to determine the correct sign of a sum, and also at robust rotations using
rational angles.

§1. More Accurate Machine Arithmetic

Since numerical error is the source of non-robustness, it is natural to try to improve upon the standard
floating point arithmetic. Can we improve on the conventional floating point arithmetic, which has already
reached a highly optimal design under the IEEE Standard? More generally, what techniques are available
in the FP mode of computation?

In conventional floating point systems, the number of bits allocated to the mantissa and the exponent are
fixed. Matsui and Iri [21] proposed a system where these can vary. But let us look at a remarkable proposal
of Clenshaw, Olver and Turner [5] called level-index arithmetic (LI).

First, any non-negative real number x is assigned a unique level ℓ(x) ∈ N defined by the property that

ln(ℓ(x))(x) ∈ [0, 1), where ln(n)(x) denotes n applications of the natural logarithm ln. The index of x defined

by i(x) := ln(ℓ(x))(x). The function ψ(x) = ℓ(x) + i(x) is called the generalized logarithm; its inverse
φ(x) is the generalized exponential defined by

φ(x) =

{
x if 0 ≤ x < 1
eφ(x−1) else.

Thus any real number x can be represented by a triple LI(x) := (s(x), ℓ(|x|), i(|x|)) where s(x) ∈ {±1} is
defined so that s(x) = +1 iff x ≥ 0.

The symmetric version of LI is called symmetric LI or SLI [6]. In SLI, a non-zero number x with
magnitude < 1 is represented by the level index representation of 1/x, otherwise it basically has the same
representation as before. More precisely, x ∈ R is represented by a quadruple

SLI(x) := (r(x), s(x), ℓ(|x|r(x)), i(|x|r(x))) (1)

where r(x) = ±1. We define r(x) = −1 iff (|x| < 1 and x 6= 0). Suppose SLI(x) = (r′, s′, ℓ′, i′). Then x = 0
iff i′ = 0. Assuming i′ 6= 0, the triple (s′, ℓ′, i′) is either LI(x) or LI(1/x) (depending on whether r′ = +1 or
−1).
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Now consider a fixed-precision version of the SLI representation: suppose we have a fixed budge t of bits to
represent a number x. We use two bits for r(x), s(x). It is suggested that, for all practical purposes, allocating

3 bits to ℓ(x) suffices. Indeed, with ℓ(x) = 5, x can reach numbers as high as 225,500,000

. Thus t− 5 bits are
available for representing the index, i(x). There are many remarkable properties of this representation: its
range is so hugh that perhaps only astronomers would fully appreciate it. The representable numbers have
gaps that are much more smoothly distributed than standard floating point representation. Overflow and
underflow are practically eliminated: assuming the 3-bit scheme and t < 5, 500, 000, there is no overflow or
underflow in the four arithmetic operations [20]. Nevertheless, the complexity of the algorithms for basic
arithmetic in LI/SLI, and their less familiar error analysis, conspire to limit its wider use. On the other hand,
in the early days of modern computing, that was exactly the same prognosis for floating-point arithmetic
vis-à-vis fixed-point arithmetic. Hence there is perhaps hope for SLI.

Another way to improve the accuracy of fixed precision arithmetic is to introduce some accurate primitives
for critical operations. One such critical operation is the scalar product

∑n

i=1 aibi of two vectors. In other
words, for n within a reasonable range, we would like this scalar product to yield the closest representable
number. The usefulness of such extensions for problems such as line segment intersection was pointed out in
[24]. In recent years, there has appeared in hardware an operation called FMA (fused multiply and add).
This is the ternary operation of FMA(a, b, c) = ab+ c. E.g., we can implement an accurate scalar product
operation using only n FMA’s.

Yet another direction is to go to arbitrary precision arithmetic (AP mode). In the AP mode, one can
either use arbitrary precision floating point numbers, or use arbitrary precision rational numbers. The former
is inherently an approximation-based computation while the latter is error-free when a computation uses
only the rational operations (±,×,÷). The last section of this chapter explores techniques for performing
rotations using arbitrary precision rational numbers.

The use of interval arithmetic or more generally, validated computation, [23, 1, 19] is also major
direction for achieving robustness. Interval arithmetic is independent of the FP mode: it is just as useful in
arbitrary precision computation. The interval bounds can rapidly increase, unless one counteracts this by
actively reducing these intervals, using increasing precision. In this sense, arbitrary precision computation
is a better setting for applications of interval arithmetic.

Software and Language Support. Ultimately any approach to robustness ought to be supported by
appropriate software tools, so that it is easy to implement robust algorithms using the particular approach.
For instance, to support interval methods, an extension of Pascal called Pascal-SC has been developed
[2]. This language supports validated arithmetic with facilities for rounding, overloading, dynamic arrays
and modules. Further extensions have been made in the languages PASCAL-XSC, C-XSC and ACRITH-XSC.
The language Numerical Turing [14, 15, 16] has a concept of “precision block” whereby the computation
within such a block can be repeated with increasing precision until some objective is satisfied. Despite the
success of the IEEE Arithmetic in hardware, it has yet to be fully at the level of of programming languages.
In particular, the proper treatment of arithmetic exceptions [8] is still lacking.

§2. Summation Problem

The previous section discuss some general proposals to use more general representations for a suitable
subsets of the real numbers. These ideas suggests that, for any given bit-budget, there are extensions
of the standard floating point representation that can increase the range and accuracy of the standard
representations.

In this section, we consider another line of attack: we focus on certain critical computations and see if we
can improve the accuracy of performing these operations in the standard model (Lecture 2, §5) of numerical
computation.

We focus on the summation problem, which is to compute the sum

S =

n∑

i=1

ai (2)
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of a sequence a1, a2, . . . , an of input numbers. Mathematically, summation is a triviality, but within FP
computation, this is1 no longer true. Such summations are central to more complex operations such as
matrix-vector multiplications or the scalar product of two vectors. At any rate, it is the simplest computation
with a cascaded sequence of primitive arithmetic steps which we can study. In Chapter 2, we already analyzed
the error for the obvious algorithm for this problem. Higham [13, chapter 4] treats this problem in detail.

In this section, we want to introduce a remarkable algorithm called “compensated summation”. By way
of motivation, consider the sum s̃ = [a+ b] where a, b are floating point numbers with |a| ≥ |b|. Here [a+ b]
uses the bracket notation to denote floating point arithmetic in the standard model discussed in Chapter 2.

a1 a2

b1 b2

a1

b1 0

b2 0

a

b

s̃ = [a + b]

s̃− a

e = b− (s̃− a)

a2 + b1

Figure 1: Estimated error, e = (b− ((a+ b)− a)).

In Figure 1, we have illustrated a sequence of three computational steps starting from a pair of floating
point numbers a, b:

s̃ := a+ b

t̃ := s̃− a
e := b− t̃

The results of these operations are aligned to give intuition to an error analysis of these steps. From studying
this figure, a reader might find it quite plausible that the computed quantity

e = (b− ((a+ b)− a)),

has the property that |e| is the error in s̃ as an approximation to a+ b. Indeed, this is a result of Dekker:

Lemma 1 (Dekker (1971)). Let |a| ≥ |b| and compute the expression

ẽ = [b− [s̃− a]] = [[a− [a+ b]] + b].

If the floating point arithmetic is in base 2, then

a+ b = s̃+ ẽ. (3)

In other words, |ẽ| is precisely the error in s̃.

This gives rise to the following summation algorithm.

Compensated Sum Algorithm

Input: Floating point numbers a1, . . . , an

Output: Approximate sum s =
∑n

i=1 ai

s← 0; e← 0;
for i = 1 to n

temp← s;
a← [ai + e]; ⊳ Compensated summand
s← [temp+ a]; ⊳ Cumulative sum
e← [[temp− s] + a]; ⊳ Error estimate

1This is true of many issues in FP computation: mathematical trivialities that aren’t.
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The idea is to estimate the error of the addition at each step, and to add this error back to the partial
sum. Note that this error estimate is not exact because Dekker’s analysis depends on the inequality |a| ≥ |b|
which we do not guarantee. Nevertheless, it can be shown (see [18, pp. 572–573] and [11]) that the computed
value is equal to

s̃ =

n∑

i=1

(1 + δi)ai, |δi| ≤ 2u+O(nu2). (4)

So the relative backwards error in each argument ai is about 2u. This is much better than the corresponding
error in our analysis in Lecture 2: we showed that the relative backwards error is γn−i+1 ≈ (n− i+ 1)u for
each ai (i = 1, . . . , n).

Exercises

Exercise 2.1:
(i) Implement the Compensated Sum Algorithm in same standard programming language.
(ii) Randomly generate sequences of floating point numbers in the range [−1, 1] and compute their sum
using three methods:
(A) the straightforward method in machine double precision,
(B) your compensated sum algorithm from (a), and
(C) an exact algorithm using BigFloats.

Use sequences of length 5, 10, 50, 100, 1000, and compute some statistics about their relative accuracy
and speeds. ♦

Exercise 2.2: Prove Dekker’s lemma. ♦

Exercise 2.3: Prove the error bound (4). ♦

Exercise 2.4: Let x1, . . . , xn be a sequence of numbers. Consider the following five strategies for forming
their sum:

• (O) Random reordering (if your input is randomly generated, you do not need to do anything).

• (A) Sort the numbers in non-decreasing order and add them in a simple loop.

• (B) As in (A), but first sort the numbers in non-increasing order.

• (C) Put the numbers in a min-priority queue, and at each iteration, extract two numbers, and
insert their sum back into the queue. We halt when there is only one number in the queue. [This
method is called “Psum” in [13, p. 90].

• (D) As in (C), except we use a max-priority queue.

(i) Experimentally, show that when the numbers are positive, (A) and (C) are superior to (B) and (D),
respectively.
(ii) Give examples in which (B) and (D) are better than (A) and (C).
(iii) Compare the performance of (A) and (C) for positive numbers. ♦

End Exercises

§3. Sign of Sum Problem

A simplification of the Summation Problem is the following Sign of Sum Problem (SoS Problem):
Given a sequence a1, a2, . . . , an of numbers, determine the sign of the sum S =

∑n

i=1 ai. An exact solution
for SoS can be used to solve the non-robustness of problems such as convex hulls. To see this, observe
that all convex hull algorithms ultimately depend on the predicate Orientation(p, q, r). According to the
principles of exact geometric computation (EGC), the convex hull would be computed exactly provided all
such predicates are evaluated without error. But the Orientation predicate can be reduced to the sign of a
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2 × 2 determinant, which is an expression of the form ad − bc; this is the SoS Problem with n = 2. For a
more accurate analysis, we should view it as a special 3× 3 determinant, which expands to

∆ = (b− a)(c′ − a′)− (c− a)(b′ − a′) = bc′ − ac′ − ac′ − cb′ + ab′ + ca′. (5)

This is SoS with n = 6.
Ratschek and Rokne [25] introduced an exact algorithm for SoS, called2 ESSA. But before going into the

details of ESSA, let us develop some intuitions. Suppose you are given a sequence of numbers, and you want
to determine the sign of its sum. How can you organize the arithmetic to improve its reliability over the
naive summation? The simplest idea is to break the sum into two parts, comprising the positive and negative
numbers. Assume the positive part is A =

∑k

i=1 ai (with ai > 0) and the negative part is B = −
∑n−1

j=1 bj
(where bj > 0). Then we just have to compare A and B.

We now focus on improving the summation process. We only need to focus on the first sum A. Suppose
the ai’s are sorted in increasing order and we form the cumulative sum from smallest to largest. The intuition
reason for this is clear – we are trying to minimize the truncation error by adding comparable size numbers
(recall that in floating point addition, we first align the two numbers at their binary point, truncate the least
significant bits of the smaller number, and then add). But this sorting is not optimal, and does not always
add two numbers that are as comparable as possible. To fix this, we next put all the ai’s into a min-priority
queue and at each step, pull two elements from the queue, add them, and insert the sum back into the queue.
Call this the priority queue SoS Algorithm.

The Priorty Queue SoS Algorithm seems pretty good. Of course, it is not exact. We now address the
ESSA Algorithm which is based on a similar idea, but it achieves exactness by tracking any truncation error.
We assume the arithmetic is in the floating point system F (2, t) (for some t) and

n ≤ 2t−1. (6)

Recall from Chapter 2 that F (2, t) comprise all numbers of the form b1.b2 . . . bt × 2e where bi ∈ {0, 1} and
e ∈ Z. The exponent does not overflow or underflow in F (2, t). By sorting the inputs in a preprocessing
step, we may further assume

a1 ≥ a2 ≥ · · · ak > 0 > ak+1 ≥ · · · ≥ an.

By renaming the negative inputs ak+i as −bi (i = 1, . . . , ℓ = n−k) the problem is now reduced to determining
the sum

S = A−B :=

k∑

i=1

ai −
ℓ∑

j=1

bj .

Let Ei be the exponent part of ai and Fj the exponent part of bj . Thus, 2Ei ≤ |ai| < 2Ei+1. The algorithm
goes as follows:

2ESSA stands for Exact Sign of Sum Algorithm. Beware that the other acronym “SoS” also refers to “Simulation of

Simplicity”, a technique for treating data degeneracies from Edelsbrunner and Muecke.
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ESSA

Input: ai, bj (i = 1, . . . , k, j = 1, . . . , ℓ) as above.
Output: The sign of S =

∑
i ai −

∑
j bj

1. (BASIS) Terminate with the correct output in the following cases:
1.1 If k = ℓ = 0 then S = 0.
1.2 If k > ℓ = 0 then S > 0.
1.3 If ℓ > k = 0 then S < 0.
1.4 If a1 ≥ ℓ2F1+1 then S > 0.
1.5 If b1 ≥ k2E1+1 then S < 0.

2. (AUXILIARY VARIABLES)
a′ = a′′ = b′ = b′′ = 0;

3. (PROCESSING THE LEADING SUMMANDS)
CASE E1 = F1:

If a1 ≥ b1 then a′ ← a1 − b1
Else b′ ← b1 − a1;

CASE E1 > F1:
u← 2F1+1;
a′ ← a1 − u, a′′ ← u− b1;

CASE E1 < F1:
v ← 2E1+1;
b′ ← b1 − u, b′′ ← u− a1;

4. (UPDATE BOTH LISTS)
Discard a1, b1 from list.
Insert a′, a′′ into the a-list (only non-zero values need to be inserted).
Insert b′, b′′ into the b-list (only non-zero values need to be inserted).
Update the values of k, ℓ and return to Step 1.

To see the correctness of this algorithm, we note the following properties:

• Basis. The correctness of Step 1 is easy. For instance, Step 1.4 is true because
∑ℓ

j=1 bj < ℓ2F1+1.

• Each arithmetic operation is error free. This concerns only Step 3: In case E1 = F1, the value
a′ ← a1 − b1 is computed exactly. In case E1 > F1, then a′′ ← u− b1 is exact because the exponent of
u is exactly one more than the exponent of b1 and so (because of the guard bit) the scaling of b1 before
the operation incurs no loss in precision. To see that a′ ← a1 − u is also exact, we use the fact that
the non-execution of Step (1.4) implies a1 < ℓ2F1+1 and hence by assumption (6), we have a1 < 2F1+t.
This implies E1 ≤ F1 + t− 1. In the operation a1− 2F1+1, we need to scale the operand 2F1+1 by right
shifting E1−F1−1 positions. Since E1−F1−1 ≤ t, and again because of the guard bit, no truncation
error occurs.

• Invariance of sum S. The main computation is represented by Step 3. At the end of Step 3, we verify
that the following invariant holds

a1 − b1 = (a′ + a′′)− (b′ + b′′).

This implies that updating the a- and b-lists in Step 4 preserves the value S = A−B where A,B are
the sum of the two lists.

• Partial Correctness. From the invariance of the sign, and the correctness of Step 1, this proves that
the algorithm is correct if it halts.

• Termination. This follows by observing that the largest element in either the a-list or the b-list is
reduced in each iteration.

Although termination is guaranteed but it may be slow in the worst case. In practice, this worst case
behaviour may be an issue. If we apply ESSA to our 2×2 determinant ad−bc, there are two places where the
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numbers may overflow or underflow in a finite precision number system (not F (2, t) but F (2, t, emin, emax)).
First the values a, b, c, d really arise as the difference of two floating point numbers So this may cause an
overflow or underflow in the values a, b, c, d. The possibility of overflow or underflow is reduced if we view
the problem as an ESSA problem with n = 6 as in (5). Each of the 6 terms is a produce of two floating
point numbers, and a potential overflow still exists; but there are well-known ways to handle this [25].

Exercises

Exercise 3.1:
(i) Complete the proof that the ESSA algorithm is correct.
(ii) Describe modifications to the algorithm when exponents are limited in the range [emin, emax]. ♦

Exercise 3.2: Consider the Priority Queue SoS Algorithm.
(i) Give examples where this algorithm is inexact.
(ii) Improve this algorithm by working on the priority queues for A and B at the same time. ♦

Exercise 3.3: Implement ESSA. Experimentally compare its performance against the following alternative
methods:
(E) Using ESSA
(N) Naive Method (no reordering), just add and compare.
(S) Separate the input numbers into positive and negative parts, and add them separately. Then
determine their sign.
(C) As in (S), but use the Compensated Sum method to add the separate positive and negative parts.

We want to use two classes of inputs:
(i) One class of inputs should be a random input sequences of numbers taken from the range [−1, 1].
Use sequences of length 5, 10, 50, 100, 1000.
(ii) The second class of inputs are those that sum to zero. For this, general sequences of numbers from
the range [0, 1], and then append the negation of the input. Then randomly permute the numbers
before feeding to your algorithms.

As usual, compute some statistics about their relative accuracy and speeds. ♦

Exercise 3.4: (i) Analyze the worst case behavior of ESSA.
(ii) Give numerical examples with this behavior. ♦

Exercise 3.5: Show that for all p ≥ 1, if 2−pb < a < 2pb then the error in computing a− b is at most p− 1
bits. ♦

End Exercises

§4. Evaluation Strategies for Orientation Predicate

In the previous two sections, we studied two numerical problems (Summation and Sign of Sum). In this
section, we focus on a more specifically geometric problem.

The orientation predicate is a critical one in many elementary problems of computational geometry. In
this section, we explore some heuristics for the accuracy of floating point evaluation of this predicate. Note
that even if we are ultimately interested in the exact sign of sum, it is useful to have heuristic techniques
which may not be always correct, but are usually correct. Such techniques, if they are efficient, can be used
as filters in exact computation.

There are essentially 3 evaluation strategies for the orientation predicate Orientation(p, q, r) (see Lecture
3,§4). We consider the strategies for choosing one of p, q or r as the pivot for forming the 2×2 determinant
ad− bc. For instance, if p is the pivot then the entries a, b, c, d are the coordinates of q − p and r − p:

a = q.x− p.x, b = q.y − p.y, c = r.x− p.x, d = r.y − p.y.

Which is the best choice of a pivot?
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Fortune [10] suggests to choose the pivot which minimizes

|ad|+ |bc|. (7)

If we interpret |ad| and |bc| as the area of suitable boxes involving the coordinates of p, q, r, than this amounts
to choosing the pivot whose corresponding boxes have least total area.

p p

(q2) (r2)(p2)

p

q

p

r

p

r

(q1)

q

(r1)

q

(p1)

p

r

r

q

r

q

r

q

Figure 2: Evaluation Strategies: pivots are indicated by the larger (blue) circles.

Let B be the smallest axes-parallel box containing p, q, r. In terms of pivot choices that depends on
|ad| and |bc|, there are basically two distinct configurations of p, q, r. These correspond to the two rows in
Figure 2: the top row corresponds to the case where two points (say p, r) are corners of B. The bottom row
corresponds to the case where only one point (say p) is a corner of B. In each row, we show the three possible
choice of pivots: p, q or r. The two boxes corresponding to |ad| and |bc| are drawn, and any overlap region
is shown in darker shade. It is clear from these pictures that in the top row, pivoting at q will minimize the
area (7); in the bottom row, the minimum is achieved by pivoting at q or r. Summarizing all these cases: the
minimum is achieved if we pivot at the points whose x-coordinate is the median among the x-coordinates of
p, q, r. Naturally, we could also use the y-coordinates.

How can we justify this heuristic? Recall (Chapter 2) that in the standard floating point model, each
machine operation ◦ ∈ {+,−,×,÷,√·} satisfy the following property:

[x ◦ y] = (x ◦ y)(1 + ε)

where |ε| ≤ u (the unit roundoff), and the bracket notation [· · · ◦ · · · ] indicates the machine operation
corresponding to ◦. The numbers a, b, c, d in the orientation predicate are not exact, but obtained as the
difference of two input numbers. Let the floating point results of these differences be a′, b′, c′, d′. Thus

a
′ = a(1 + εa), b

′ = b(1 + εb), c
′ = c(1 + εc), d

′ = d(1 + εd)

[a′

d
′] = ad(1 + εa)(1 + εd)(1 + εad)

[b′c′] = bc(1 + εb)(1 + εc)(1 + εbc)

[[a′

d
′] − [b′c′]] =

`

ad(1 + εa)(1 + εd)(1 + εad) − bc(1 + εb)(1 + εc)(1 + εbc)

´

(1 + εabcd),

= (ad)(1 + θ0) − (bc)(1 + θ1)

where each |εi| ≤ u and hence |θj | ≤ γ4 (where γ4 is defined in Chapter 2.4). Assuming that the εi’s are
independent, the worst case error absolute error is (|ad|+ |bc|)γ4. This error is minimized when we minimize
|ad|+ |bc|.

Let Orientation(p, q, r, k) be the evaluation of Orientation(p, q, r) using the k-th point as pivot. That is,
k = 1 means pivot at p; k = 2 means pivot at q, and k = 3 means pivot at r. The code goes like this:
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Fortune’s Pivoting Strategy

Input: point p, q, r
Output: approximate Orientation(p, q, r)
If (p.x < q.x) then

If (q.x < r.x) then k = 2,
Else if (p.x < r.x) then k = 3,
Else k = 1.

Else If (p.x < r.x) then k = 1,
Else (q.x < r.x) then k = 3,
Else k = 2.

Return(Orientation(p, q, r, k).

This is only a heuristic is because the errors (the various εi’s) are not really independent. So it is possible
that a deeper analysis will give a better worst case bound. The Exercises ask you to explore other heuristics
for choosing the pivot.

The above implementation was discussed and used in an stable algorithm of Fortune for maintaining
Delaunay Triangulations.

Exercises

Exercise 4.1: Conduct some experimental studies to investigate the effectiveness of Fortune’s pivoting
strategy. ♦

Exercise 4.2: Consider implementations of Fortune’s pivoting strategy, trying to minimize the number of
arithmetic operations:
(i) What is the maximum and minimum number of comparisons on any input p, q, r?
(ii) The goal is to determine the median value in p.x, q.x, r.x. An alternative strategy here is to begin
by computing the differences q.x− p.x and r.x− p.x. What does one do next?
(iii) Compare the approach in (ii) with the one in the text. ♦

Exercise 4.3: Extend the pivot-choice heuristic of Fortune to the 3-dimensional orientation predicate. Con-
duct some experiments to see the efficacy of your strategy. ♦

Exercise 4.4: Explore other pivot choice heuristics for Orientation(p, q, r). Experimentally compare For-
tune’s heuristic with the pivot corresponding to the smallest (or largest) angle in the triangle ∆(p, q, r).

♦

Exercise 4.5: Analyze more carefully the optimal choice of a pivot for the 2-dimensional orientation pred-
icate. In particular, do not assume that the round-off errors of the operations are independent. ♦

Exercise 4.6: Apply the same heuristic to the evaluation of the InCircle predicate. ♦

End Exercises

§5. Exact Rotation

So far, we considered arithmetic techniques based on fixed precision floating point arithmetic. This section
considers arbitrary precision arithmetic. One approach to nonrobustness is to require that all arithmetic
operations are performed exactly. The simplest class of problems where such exact arithmetic approach
is applicable is when our computation require only rational operations (±,×,÷), and the input numbers are
rational. For instance, computing the convex hull of a set of points can be treated by this approach.

But what if irrational operations are called for? One class of operations that is frequently desired
in geometric modeling is rigid transformations, defined to be transformations that preserve distance and
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orientation. In the plane, rigid transformations can be decomposed into a translation (x, y) 7→ (x+ a, y+ b)
where a, b ∈ R composed with a rotation, (x, y) 7→ (x, y) ·R(θ) where

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

is a 2× 2 matrix representing rotation by angle θ. The entries in R(θ) involve the transcendental functions
sin(θ), cos(θ). Such functions are a problem for exact computation. In this section, we look at some special
classes of angles for which sin(θ), cos(θ) can be computed exactly.

A number z ∈ C is algebraic if it is the root of a polynomial P (X) ∈ Z[X], P (z) = 0. For instance,
i =
√
−1 is algebraic as it is the root of P (X) = X2 + 1. A basic fact is that the algebraic numbers are

closed under the four arithmetic operations. If z ∈ C is not algebraic, it is transcendental. For instance,
π = 3.1415926 · · · and e = 2.718281828 · · · are transcendental. We recall a basic result from transcendental
number theory. Lindemann’s theorem says that if θ ∈ C is non-zero and algebraic, then eθ is transcendental.

Lemma 2. If θ ∈ R is non-zero then either θ or cos θ must be transcendental.

Proof. Clearly, for any θ, either both cos θ, sin θ are algebraic or both are transcendental. If θ is transcen-

dental, we are done. Otherwise, Lindemann’s theorem implies that eiθ is transcendental. Then the identity

eiθ = cos θ + i sin θ implies that cos θ and sin θ must be transcendental. Q.E.D.

We also recall the Gelfond-Schneider theorem: if a, b ∈ C such that b is algebraic, b 6∈ {0, 1}, and a is
algebraic and irrational, then ba is transcendental. Most of the “well-known angles” such at 45◦ or 60◦ have
the property that their sine or cosines are rational. Of course, these well-known angles are commensurable
with π. Two quantities a, b are commensurable means that a/b are rational. How general is this observation?
The following is from [4]:

Lemma 3. If cos θ and θ/π are algebraic, the θ and π are commensurable.

Proof. Write θ = απ for some α. By assumption, α is algebraic. But we must prove that it is, in fact,

rational. Since we assume cos θ is algebraic, so is eiθ = cos θ + i sin θ. Hence

eiθ = eiπα =
(
eiπ
)α

= (−1)α.

By Gelfond-Schneider, if α is irrational, then (−1)α is transcendental. But since (−1)α is algebraic, we
conclude that α is rational. Q.E.D.

We could carry out exact comparisons and the basic arithmetic operations exactly (without error) on
algebraic numbers; the same cannot be said for transcendental numbers. These ideas will be pursued in
later chapters. To ensure robustness in rigid transformations, we must therefore be more selective in the
set of angles for which we allow for rotation. Informally, call these the admissible angles. We note some
candidates for admissible angles:

(A) Restrict θ to be Pythagorean, i.e., both sin θ and cos θ are rational numbers.

(B) Restrict θ to be geodetic, i.e., the square of sin θ (equivalently cos θ) is rational.

(C) Restrict θ to be commensurable with π i.e., θ/π is a rational number. For short, we just say
“commensurable”.

(D) Restrict θ so that cos θ is algebraic.

Canny, Donald and Ressler [3] introduced the computational problem of approximating arbitrary angles
by Pythagorean angles. They did not explicitly define Pythagorean angles, but defined a rational sine to
be3 a rational solution s to the equation s2 + c2 = 1. In any case, the definition of Pythagorean angles

3They did not explicitly say whether c ought to be rational or not; but it is clear from their development that c is intended

to be rational. But if c is not required to be rational, this implicitly defines a class of angles that is between Pythagorean and

geodetic.
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deserves comment. For instance, a less restrictive notion of admissibility is to require only one of sin θ, cos θ
to be rational. Thus non-Pythagorean angles such as 30◦ and 60◦ would become admissible. But 45◦ would
still not be admissible. So we may further liberalize our notion of admissible to any angle θ where at least one
of sin θ, cos θ, tan θ is rational. This last class of admissible angles is clearly a subset of the geodetic angles.
It is even a proper subset because θ = arcsin(

√
2/
√

5) is geodetic but sin θ, cos θ, tan θ are not rational.
The definition of geodetic angles is from Conway et al [7]. They also call an angle mixed geodetic if it

is a rational linear combination of geodetic angles. For instance, 45◦ is geodetic but 75◦ = (30 + 45)◦ and
1◦ = (1/30)30◦ are mixed geodetic. The set of mixed geodetic angles forms a vector space over Q They [7]
constructed a basis for this vector space. From this, we achieve a classification of all rational linear relations
among mixed geodetic angles. An elegant notation comes out of this theory: for any real number x ∈ R,
define the angle ∠x as follows:

∠x =

{
nπ/2 = n90◦ if x = n ∈ Z

∠n+ arcsin(
√
x) if x = n+ r, 0 < r < 1, n ∈ Z.

(8)

Observe that if x is rational, then ∠x is a geodetic angle. For instance, ∠0 = 0◦,∠(1/4) = 30◦,∠(1/2) =
45◦,∠(3/4) = 60◦,∠1 = 90◦.

Commensurable Angles. Let us first show that commensurable angles have algebraic cosines. I.e., angles
that are admissible under (B) is admissible under (D). To see this, we use Chebyshev polynomials of the
first kind. These are integer polynomials Tn(X) of degree n (n ≥ 0) which are defined recursively by

Tn+1(X) = 2XTn(X)− Tn−1(X),

starting from T0(X) = 1 and T1(X) = X. The next few polynomials are

T2(X) = 2X2 − 1, T3(X) = X(4X2 − 3), T4(X) = 8X4 − 8X2 + 1,

T5(X) = X(16X4 − 20X2 + 5).

For any θ, we have
Tn(cos θ) = cosnθ. (9)

If θ is commensurable, then nθ is a multiple of π for some n. From (9), we conclude that Tn(cos θ) = cosnθ =
±1. This relation proves that cos θ is algebraic, as we claimed. But in fact, Jahnel [17] show the stronger
statement that 2 cos θ is an algebraic integer (Exercise).

Commensurable angles are clearly closed under addition, subtraction and multiplication by rationals.
We claim that angles with algebraic cosines have the same closure properties. Closure under addition and
subtraction from the usual formulas for cos(θ + θ′) and cos(θ − θ′). If p, q ∈ Z, q 6= 0, and cos θ is algebraic,
then the equation Tq(cos(θ/q)) = cos θ shows that cos(θ/q) is algebraic; also Tp(cos(θ/q)) = cos((p/q)θ)
shows that cos((p/q)θ) is algebraic.

Lemma 4 (Jahnel). The following are equivalent:
(i) The angle θ is commensurable and cos θ is rational.
(ii) 2 cos θ ∈ {0,±1,±2}.

Proof. Clearly, (ii) implies (i). To show that (i) implies (ii), note that

2 cos 2θ = (2 cos θ)2 − 2 (10)

is just the identity cos 2θ = 2 cos2 θ − 1 in disguise. Assume 2 cos θ = m/n where m,n ∈ Z, GCD(m,n) = 1
and n 6= 0. Substituting into (10), we get 2 cos 2θ = (m2 − 2n2)/n2. Note that GCD(m2 − 2n2, n2) = 1 for,
if p > 1 and p|(m2 − 2n2) and p|n2, then p|n and hence p|m, contradiction. Repeated application of the
transformation 2 cos θ 7→ 2 cos 2θ gives the sequence

2 cos 2θ, 2 cos 4θ, 2 cos 8θ, . . . , 2 cos 2kθ, . . . , (k ≥ 1).

Moreover, each 2 cos 2kθ = fk(m,n)/n2k

, for some integer function fk(m,n) that is relatively prime to n.
But, by the commensurablity of θ, there is some ℓ, j when 2ℓθ = 2jπ and hence cos 2ℓθ = cos 2jπ = 1. If
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n 6= ±1, then the denominator of cos 2kθ is growing arbitrarily large as k → ∞. This contradicts the fact
that cos 2ℓθ = 1 for some ℓ. Hence n = ±1. Therefore 2 cos θ = ±m. This implies m = 0,±1,±2. Hence
cos θ ∈ {0,± 1

2 ,±1}. Q.E.D.

Corollary 5. Let θ be Pythogorean. Then θ is commensurable iff θ 6∈ {90◦, 0◦, 180◦, 60◦, 120◦}.

Proof. Just note that the condition Lemma 4(ii) is equivalent to θ 6∈ {90◦, 0◦, 180◦, 60◦, 120◦}. Q.E.D.

For instance, this shows that arcsin(3/5) and arcsin(5/13) are incommensurable.

Theorem 6. Let θ be incommensurable. Then

Zθ := {(nθ)mod 2π : n ∈ Z}

is a dense subset of [0, 2π).

Proof. Given φ ∈ [0, 2π) and N ∈ N, we must find n ∈ Z such that

|φ− (nθ)mod 2π| < 2π/N. (11)

By the pigeonhole principle, one of the following N intervals

[0, 2π/N), [2π/N, 4π/N), [4π/N, 6π/N), . . . , [2(N − 1)π/N, 2π)

must contain two members a < b from the set {(iθ)mod 2π : i = 0, . . . , N} which has N +1 members. Then
0 < b − a < 2π/N . We claim that b − a ∈ Zθ. To see this, let a = iaθ − 2jaπ and b = ibθ − 2jbπ where
ia, ib = 0, . . . , N and ja, jb ∈ Z. Then b− a = (ib − ia)θ − 2(jb − ja)π ∈ Zθ. Let M = ⌈2π/(b− a)⌉. Clearly,
M > N . So there is a unique k ∈ {0, 1, . . . ,M − 1} such that k(b− a) ≤ φ < (k + 1)(b− a). Therefore, we
may choose n = k(ib − ia) to achieve the conclusion in (11). Q.E.D.

Thus, we can use the set Zθ to arbitrarily approximate any desired angle φ to within any desired error
bound.

Pythagorean Equation. In the following, we will study Pythagorean angles. Note that rotation by
Pythagorean angles preserves the rationality of input points. This problem was studied by Canny, Donald
and Ressler [3].

The Pythagorean equation is the equation

x2 + y2 = z2 (12)

to be solved in integers. Our goal is to characterize all solutions (x, y, z) to this equation. Since the signs
of x, y, z do not matter, let us assume they are non-negative: x ≥ 0, y ≥ 0, z ≥ 0. As the solutions (x, y, z)
where xyz = 0 are easily characterized, we further assume positivity: x ≥ 1, y ≥ 1, z ≥ 1. A solution (x, y, z)
such that GCD(x, y, z) = 1 is said to be primitive. We may restrict attention to primitive solutions.

It is now easy to see that we have a bijection between positive primitive solutions (x, y, z) to (12) and
Pythagorean angles θ (0 < θ < π/2), as given by

(sin θ, cos θ) = (x/z, y/z). (13)

Note that if d divides any two values in x, y, z then it divides the third. Hence primitivity is the same as
saying that any two components in (x, y, z) are co-prime. In particular, there is at most one even number
among x, y, z.

Claim: Exactly one of x or y is even. Note that the square of an odd number is congruent to 1 modulo
8, and the square of an even number is congruent to 0 modulo 4. If both x and y are odd, then x2 + y2 is
congruent to 2 modulo 8. But this cannot represent the square of any number. This proves our claim.

By symmetry, we assume solutions (x, y, z) in which y is even but x, z are odd. Since z+x and z−x are
even, let m′ := (z + x)/2, n′ := (z − x)/2. Note that GCD(m′, n′) = 1 because if k divides m′ and n′ then k
divides m′ + n′ = z and k divides m′ − n′ = x, we get a contradiction. If y = 2y′ then 4y′2 = (z + x)(z − x)
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and hence y′2 = m′n′. This implies m′ = m2 and n′ = n2 for some m,n and GCD(m,n) = 1. We conclude
the solution (x, y, z) we seek must have the form (x, y, z) = (m′ − n′, 2y′,m′ + n′), or

(x, y, z) = (m2 − n2, 2mn,m2 + n2) (14)

for some co-prime m,n ∈ N with m ≥ n. Conversely, it is easy to see that every co-prime m,n ∈ N gives
rise to a primitive solution of the desired form. Thus all positive, primitive solutions to the Pythagorean
equation is completely characterized by (14).

Pythagorean Angle Problem. Define the length of a rational number p/q in reduced form to be lg |q|
(roughly the bit length of q in binary notation). Canny, Donald and Ressler [3] posed and solved the following
problem: on input θ, ε, a rational number 0 < s ≤ 1 such that | arcsin(s) − θ| < ε and the length of s is as
short as possible. In practice, we might be happy if the length of s is within O(1) bits of the shortest.

Since the angle θ may be hard to specify exactly in the input, we prefer the alternative specification:
given an input interval I ⊆ [0, 1], to find a rational number 0 < s ≤ 1 such that s lies in the interval I, and
the length of s is shortest. We expect that I = [s, s] will have rational endpoints. Note that the set of angles
with rational sine does not include all angles with rational cosines. So an alternative formulation is: given
I ⊆ [0, 1], to to compute a rational number 0 < r < 1 such that r ∈ I or

√
1− r2 ∈ I, and the length of r is

shortest.
We now present one of their solutions: ...
In 3-dimensions, the generalization of the rotation matrix R(θ) is an orthonormal 3×3 matrix. Milenkovic

and Milenkovic [22] considered the 3-dimensional analogue of Pythagorean angles, i.e., orthonormal matrices
whose entries are rational numbers. They also show that such matrices are dense among orthonormal ones.

Exercises

Exercise 5.1: Given θ, suppose we computed some approximations s ≈ sin θ and c ≈ cos θ. In particular,

assume s2 + c2 6= 1. The rotation of a point p by angle θ is given by R · p where R =

[
c −s
s c

]
, and

treating p as a vector and R ·p as matrix-vector multiplication. Clearly, detR may not be 1 in general.
Discuss real applications where this is a problem, and where this is not a problem. HINT: problems
arise when you need to compute intersections of transformed and untransformed objects. ♦

Exercise 5.2: Let θ = arcsin(3/5). We want to use the set Zθ for approximation of angles. Given any real
interval I = [a, b] ⊆ [0, 2π), give an algorithm to find the smallest |n| such (nθ)mod 2π lies in I. ♦

Exercise 5.3: Improve Theorem 6.
(i) Can the |n| in (11) be upper bounded as a function of N?
(ii) Can you show that Nθ := {(nθ)mod 2π : n ∈ N} is dense? ♦

Exercise 5.4: Show that (B) and (C) are not comparable: there is a geodetic angle that is incommensurable,
and there is a commensurable angle that is not geodetic. ♦

Exercise 5.5: [12, p.237] Show that arccos(1/3) is incommensurable. NOTE: This angle is about 70◦31′44′′,
the dihedral angle of a regular tetrahedron. ♦

Exercise 5.6: (Jörg Jahnel) Let θ be commensurable.
(i) 2 cos θ is an algebraic integer, and all its conjugates have absolute value ≤ 2. HINT: This statement
is a generalization of Lemma 4. Indeed, the proof imitates the proof of Lemma 4, except that we must
decompose 2 cosα into a product of distinct ideals, and argue that none of the ideals has negative
exponent.
(ii) If x is a quadratic integer and |x| < 2 and |x| < 2 then x ∈ {±

√
2,±
√

3,± 1
2 ±
√

5}.
(iii) If cos θ is a quadratic irrationality, then 2 cos θ ∈ {±

√
2,±
√

3,± 1
2 ±
√

5}. Morover, all these values
are achievable:

(θ, 2 cos θ) = (45◦,
√

2), (135◦,−
√

2), (30◦,
√

3),

(150◦,
√

3), (36◦,
1

2
+

1

2

√
5), (144◦,−1

2
− 1

2

√
5),

(72◦,−1

2
+

1

2

√
5), (108◦,

1

2
− 1

2

√
5).
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(iv) If 2 cos θ is a cubic irrationality then its minimal polynomial x3 + ax2 + bx + c satisfies |a| <
6, |b| < 12, |c| < 8. Among these, there are exactly 4 irreducible polynomials: p1 : x3 − x2 − 2x + 1,
p2 : x3 + x2 − 2x− 1, p3 : x3 − 3x+ 1, p4 : x3 − 3x− 1.
(v) For each i = 1, . . . , 4, determine the angles αi, βi, γi such that 2 cosαi, 2 cosβi, 2 cos γi are the zeros
of pi. ♦

End Exercises

§6. Additional Notes

A clear expression of the goal of achieving robustness using fixed-precision arithmetic is stated in Fortune’s
paper [10].

“The challenge is to develop floating-point analyses of a wide variety of geometric algorithms. Such
analyses should lead to efficient, reliable, easily-implemented geometric algorithms.

A general theory, easily applicable to an arbitrary algorithm, appears to be a distant goal. An important
component of a general theory would be a way of transforming exact predicates into approximate predicates.
Such a transformation must have two properties: first, the truth of approximate predicates has to be testable
using floating-point arithmetic; second reasoning usng approximate predicates has to adequately mimic
reasoning using exact predicates. An example is the transformation of the 2-d incircle predicate into the D
predicate. This transformation satisfies the first property, since incircle can be used to test the D predicate;
it does not entirely satisfy the second property.

Many computational geometers attacking robust geometric computation in the early 1990’s assumed that
the solution must come from fixed-precision floating point computational models. This view is well-summed
up in Fortune’s introduction: “Floating point arithmetic has numerous engineering advantages: it is well-
supported... the Challenge is to demonstrate that a reliable implementation can result from the use of f.p.
arithmetic.”

Lindemann’s theorem is more general than stated in the text. It says that the following expression can
never hold:

c1e
a1 + c2e

a2 + · · ·+ cne
an = 0 (15)

where n ≥ 1, the ci’s and ai’s are algebraic, the ai’s distinct and the ci’s are non-zero. This implies
Hermite’s theorem that e is transcendental: if e is algebraic, then there is an integer polynomial A(X) such
that A(e) = 0. But A(e) has the form (15), contradiction. This also implies that π is transcendental because

of Euler’s identity eiπ + 1 = 0 has the form (15). Finally, this result about π is proof that the ancient quest
for squaring the circle is impossible. The quest ask for a ruler-and-compass construction of a square whose
area is that of a circle. Without loss of generality, let the circle have unit radius and hence area π. If we can
square the circle, we would have constructed a square whose side length is

√
π. But it is well-know that all

such lengths arising from ruler-and-compass constructions are “constructible reals” (and hence algebraic).
Thus, as a length of a square,

√
π must be algebraic. Thus π is algebraic, contradiction.

For a collection of papers on implementation issues, we refer to a special 2000 issue of Algorithmica [9].
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Lecture 5

GEOMETRIC APPROACHES

We look at some geometric approaches to nonrobustness. An in-
triguing idea here is the notion of “fixed precision geometry”. After
all, if nonrobustness is a geometric phenomenon, it makes sense to
modify the geometry to reflect the fixed precision we find in num-
bers. There are many ways to create such ersatz geometries, which
in various ways try to recover the basic properties of standard Eu-
clidean geometry. We shall illustrate several such geometries through
a discussion of “fixed precision lines”.

§1. What is a Finite Precision Line?

Since qualitative errors is geometric in nature, we can attempt to modify the
underlying geometry to be achieve robust behavior. E.g., with finite precision
arithmetic, it seems reasonable to replace standard Euclidean geometry by some
finite precision geometry. We have already met such a geometry in Chapter 1:
we interpreted the standard epsilon-tweaking trick as manipulating new kinds
of “points” and “lines”, namely, fat points and fat lines.

But there are many potential candidates for finite-precision geometries, even
for the simple concept of lines. We illustrate with some common answers [24].
to the question “what is a finite precision line?” Each answer can be viewed as
representative of a general approach to finite precision geometry.

• Interval Geometry: We use the term “interval geometry” to refer any
approach which replaces standard geometric objects by “fat geometric ob-
jects”. A “fat point” can be a disc, but it can be generally be any simply
connected bounded region. A “fat line” can be any region bounded by two
infinite polygonal paths (probably with other properties as well). This is
illustrated in Figure 1(a). This is the geometric analogue of interval arith-
metic, and has been proposed in many different settings, e.g., [18, 12].
Guibas and Stolfi [6] investigated a form of such geometry (“ε-geometry”)
by focusing on geometric ε-predicates that can have yes/no/uncertain val-
ues. Interval geometry is also attractive from another viewpoint: in the
field of mechanical design and manufacture, the tolerancing of geomet-
ric objects [23, 13] is a critical problem. The computational aspects of
this field is being pursued under the name of computational metrology
[9, 25, 14].

• Topologically Consistent Geometry: A line can be distorted into a curve,
which in practice would be a polyline. This is illustrated in Figure 1(b).
The goal of distortion is to preserve some desired topological property of
the original lines. For instance, polylines arising in when computing the
arrangements of lines aim to avoid introducing extraneous intersections.
Consider the following grid model studied by Greene and Yao [4]. Let G
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(a) (b)

(c) (d)

Figure 1: Finite Precision Line Geometry

be a grid, typically G = Z × Z. Assume the input are segments whose
end points lie on this grid. For each input pair (s, s′) of intersecting line
segments, we move the intersecting point to a close grid point p ∈ G.
The segment s, s′ are now converted into polysegments with the same end
points as before, but now passing through p. Greene and Yao require the
transition from s into a polysegment not to cross any gridpoint, leading
to polysegments with continued fraction type properties.

Sugihara and Iri [21, 22] propose topological consistency as a fundamental
principle for achieving robustness.

• Rounded Parameter Geometry: Assume our geometric objects live in some
parametric space. For instance, lines can be represented in the form
L = Line(a, b, c) as in Chapter 1. This corresponds to the Euclidean line
with equation aX + bY + c = 0. We want to round the line parameters
(a, b, c) to some (a′, b′, c′) where a′, b′, c′ comes from some finite set of rep-
resentable values (say L-bit integers). We call Line(a′, b′, c′) a rounded
line. Sugihara [19] [CHECK!] discusses several approaches to rounding
lines. For instance, we might like to restrict |a′|, |b′|, |c′| to lie in the range
[0, 2L). But in fact, it turns out that we get a “nicer class” of such rounded
lines is obtained if we let |c′| lie in the slightly larger range [0, 4L). Such
a set of lines is illustrated in Figure 1(c).

• Discretized Geometry: This is well-known in computer graphics: a line
is a suitable set of pixels on a finite screen. In contrast to the previous
rounding in parameter space, in discretized geometry we discretize the
underlying Euclidean space where the geometric object lives. Figure 1(d)
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illustrates a discretized line represented as a set of darkened pixels. This
is called a Bresenham line in computer graphics. In the field of image
processing, an area called “digital geometry” investigates properties of
such discretized representation of objects.

Software and Language Support. Regardless of the approach to robust-
ness, it is an important to provide software support for the particular approach.
Thus, the development of Pascal SC as an extension of Pascal for scientific
computation supports robust arithmetic with facilities for rounding, overload-
ing, dynamic arrays and modules [1]. These facilities have been extended and
made available in other languages: PASCAL-XSC, C-XSC and ACRITH-XSC. The
language Numerical Turing [8, 10, 11] has a concept of “precision block”
whereby the computation within such a block can be repeated with increasing
precision until some objective is satisfied. While there are well-known numerical
libraries such as LAPACK, newer efforts such as LEDA and CGAL aim to provide
robust primitives and basic algorithms and data structures as building blocks
for geometric applications. Important primitives that ought to be supported
by languages or libraries include scalar product [16] and accurate determinant
evaluation. More generally, we could extend programming languages to sup-
port geometric objects and their manipulation [17]. In the area of programming
languages, the proper treatment of arithmetic exceptions [2] ought to become a
standard part of high-level language support.

[NOTE: We should considerably expand the details in the four bullets.]

§2. Robust Line Segment Intersection

We consider another fundamental problem in computational geometry: given
a set S of line segments in the plane, we want to compute their arrangement.
This is a very basic problem that arises in VLSI circuit design, hidden line elim-
ination, clipping and windowing, physical simulations, etc. The arrangement
of S is a 1-skeleton (or network) determined by the line segments and their
intersections: a 1-skeleton is basically a graph that is embedded in the plane:
its vertices are the endpoints of segments and the intersection points. Its edges
are the open portions of segments bounded by two vertices. This is illustrated
in Figure 2.

Figure 2: 1-Skeleton of a set of line segments

There are several algorithms for this problem. The asyptotically best algo-
rithm is from Chazelle and Edelsbrunner, with running time O(k+n log n) where
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k is the number of intersection points and n is the number of segments. Here
k is the output parameter and ranges from 0 to n2. More practical algorithms
based on randomization have been given Clarkson and also Mulmuley. Algo-
rithms that takes into account robustness issues have been studied by Greene
and Yao [4], Milenkovic [15], and Sugihara [20]. The approach of Hobby [7],
Guibas and Marimont [5] and Goodrich, et al [3] are based on the concept of
“snap rounding”, which we will treat in detail.

Recently, Preparata et al considered another issue, namely modifying the
primitives using in these algorithms so that the algebraic degree is as small as
possible. Although this clearly can help FP computations, it is useful even in
AP computation.

Bentley-Ottman Algorithm. The classic algorithm for this problem is from
Bentley and Ottmann. This algorithm takes time O((n + k) log n), and is quite
easy to describe. Later we will implement Hobby’s snap rounding using this
algorithm as its basis [7].

Let us briefly review the Bentley-Ottmann algorithm. We assume a vertical
sweepline L with equation x = x0. The line sweeps from left to right (so x0 is
increasing). We have priority queue Q, the event queue, initialized to store
the end points of each input segment. Each point in Q represents an event.
An point (x, y) in Q has priority x. Initially, all the points are either start
events or stop events, corresponding to the leftmost or rightmost endpoints
of a segment. As L sweeps from left to right, we pull events from Q. At any
moment, we keep track of the set of segments that intersect L. These segments
are sorted by their the y-coordinate of their intersection with L. We store them
in a balanced binary tree T . Moreover, for each pair of adjacent segments in T ,
if they intersect at a point q to the right of L, then we insert q into Q. Such a
q represents the third kind of event, an intersection event.

Here is how we update T with each event point. If stop event, we delete
the corresponding segment from T If a start event, we insert the corresponding
segment into T If intersection event, we exchange the relative order of the two
intersecting segments in T .

Yao-Greene Grid Model. We consider the following finite-precision model
of plane geometry: let G2 = Z×Z be the (unit) grid. All representable points
must come from G2. Suppose s, s′ are two representable line segments (i.e., their
endpoints are in G2). If they intersect at a point p, this point is generally not
representable. So we must round it to some nearby grid point p′. If s = [a, b],
then p′ no longer lie on [a, b] – failing a fundamental identity we discussed in
Lecture 1:

OnLine(Intersect(s, s′), s)

is identically true whenever Intersect(s, s′) is defined. To restore this identity,
we now replace line segments with polysegments which is just a finite polyg-
onal path [a1, a2, . . . , an]. Thus s is now the polysegment [a, p′, b] and there is
a similar modification for s′. In general, for a polysegment s, we can “snap” a
point p in s to a grid point p′ and change s accordingly.

This defines our basic model, first studied by Greene and Yao for this prob-
lem. What are the issues?

• Unbounded Change: when an intersection point is snapped, other intersec-
tion points may move as a result. It is not hard to see that this movement
may be unbounded even if the snap distance is bounded.
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Figure 3: Issues in Snap Rounding

• Cascaded and New Intersections: when we snap a point, we may generate
new intersections. If we now snap these new intersections points, we may
obtain other new ones. Thus we have a cascading effect. How often do we
need to do this? Does this terminate?

• Drifting: Each time we modify a polysegment, the result may drift further
and further away from its original position. Is there a bound on this drift?
See Figure 3(a) for an illustration of drifting.

• Topological changes: See Figure 3(b) illustrates the possibility of a poly-
segment moving past an intersection point. We call this an “inversion”.
A milder version of topological change is to have two points collapse into
one (this is called “degeneration”).

• Braiding: Two segments intersect in a connected component. If our pol-
ysegments intersect is several connected components, we call this “braid-
ing”. Even if there were no inversion, braiding can happen.

This list of problems seems formidable [4]. So it is somewhat surprising to
see the simple solution described next.

What is an acceptable topological change? Topological change is in-
evitable in finite precision computation. But we distinguish between degener-
ation (which is acceptable) versus inversion (which is not). For instance, if an
edge in a planar arrangement of segments is collapsed to a point and it does not
affect other relations (except for the obvious ones forced by this collapse), this
is an acceptable “degeneration”. On the other hand, if a vertex inside a cell is
modify to lie outside the cell, this is an unacceptable “inversion”. In the presence
of degeneration, there is a trivial solution for any segment arrangement: collapse
everything to a point. So, our requirements ought to be supplemented by some
metric properties such as a bound of the amount of degeneration. Greene and
Yao imposed a very strong one, that the deformation of a segment must not
cross any grid point. The resulting polysegments has nice properties related to
the continued fraction process. We will study another approach from Hobby.

Snap Rounding. It is convenient to introduce the half-open interval R1 =
(− 1

2
, 1

2
]. Also let R2 = R1 × R1. Call R1 and R2 the rounding interval

or square, respectively. It defines the rounding model for us: a number x is
rounded to the unique integer (x + R1) ∩ Z, sometimes denoted ⌊x⌉. In other

c© Mehlhorn/Yap Draft October 5, 2004



§2. Line Segment Intersection Lecture 5 Page 6

words, we round up in case of ties: 2.5 rounds to 3. Similarly, a point p is
rounded to the unique point (p + R2) ∩ G2, also denoted ⌊p⌉. Note that “+”
here is the Minkowski sum.

We can view rounding from the view point of the grid: let R1 denote the
interval [− 1

2
, 1

2
) (thus, R1 = −R1). If i ∈ Z, then ⌊x⌉ = i iff x ∈ i + R1.

Similarly, we may define R2 = R1 × R1 and define the square of influence of a
grid point g ∈ G2 to be g + R2.

Let S be a set of segments, where each pair of segments intersect transversally
(we do not allow overlap). Define H to be the set comprising all the end points
of segments in S and also all intersection points. So H is finite. Let the rounded
point set ⌊H⌉: these are called the “hot points”.

s1

s2

s3

s4

s5

s6

s7

s1

s2

s3

s4

s5

s6

s7

0 1 2 3 4 5 6

0

1

2

3

4

Figure 4: Snap Rounding Based on Hot Points

A polysegment s is said to be near a point p if p + R2 ∩ s is non-empty.
If a polysegment s that passes near a hot point p, we snap s towards p. More
precisely, If q ∈ p+R2∩s, then we snap q to p (recall the definition of this snap
operation above). It is not hard to see that this does not depend on our choice
of q. But in the sequel, we will assume that q is the point in s closest to p. The
number of vertices in s increases by 1.

Hobby’s Theorem on Snap Rounding. Given a segment s ⊆ R
2, define the

map DT (s) to comprise all the segments [a, b] such that there exists [a′, b′] ⊆ s
such that

⌊H⌉ ∩ ([[a′, b′] + R2) = {a, b}.
If [a′, b′] is a maximal segment with this property, we call [a′, b′] the “preimage”
of [a, b]. Hence, each segment in DT (s) has at least one preimage in s. Below
we will prove that these preimages are very well-behaved (in particular, there is
a unique preimage for each segment in DT (s)).

Lemma 1 For any segment s there is a direction (1, δ) (where δ = ±1) such
that no two points in G2 ∩ (s + R2) have the same x + δy value.

Proof. If s has positive slope, let δ = +1 else δ = −1. Let (xi, yi) ∈ s for i = 1, 2,
and (⌊xi⌉ , ⌊yi⌉) ∈ (s + R2) ∩ G2. Then

⌊x1⌉ + δ ⌊y1⌉ 6= ⌊x2⌉ + δ ⌊y2⌉

unless the two rounded points are identical. To see this, suppose the slope is
positive and ⌊x1⌉ + ⌊y1⌉ = c for some c. If ⌊x2⌉ + ⌊y2⌉ = c, then it is easy to
see that they must be diagonal points of a grid square. Indeed, they must be
the NW and SE corners of some grid square. But this is impossible. Q.E.D.
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A collection S of segments are essentially disjoint if any pair are disjoint
or intersect at their end points only. We also write DT (S) for the set union of
DT (s), ranging over all s ∈ S.

Lemma 2 If S have endpoints in T and are essentially disjoint, then the set
DT (S) are also essentially disjoint.

Proof. Let s ∈ S. The previous lemma ensures that there is a coordinate system

(ξ, η) =

(

x + δy√
2

,
−δx + y√

2

)

such that the endpoints of segments in DT (s) all have all different ξ coordinates.
The transformation (x, y) 7→ (ξ, η) is given by

(

ξ
η

)

= M

(

x
y

)

, where M =
1√
2

[

1 δ
−δ 1

] (

x
y

)

.

Q.E.D.

The transformation is a rotation, i.e., detM = 1 and the inverse M−1 is
given by its transpose MT . E.g., if δ = 1, the points (±1, 1) map to (1/

√
2, 0)

and (0, 1/
√

2).

Lemma 3 The set of these preimages forms a cover of s. Each segment DT (s)
has a unique preimage.

Proof. The fact that they form a cover of s follows from the fact that if any
maximal open subsegment (a, b) ⊆ s that is dijoint from any preimages, then
there must be a preimage of the form [b, c] ⊆ s (for some c). This implies
that [a, c] is contained in a preimage, contradicting the assumption that [b, c] is
maximal. Uniqueness is trivial by the maximality requirement. Q.E.D.

Lemma 4 If the endpoints in DT (S) maps to q1 = (ξ1, η1), . . . , qm = (ξm, ηm),
and ξ1 < ξ2 < · · · < ξm, then they describe a monotonic piecewise linear func-
tion F on the interval [ξ1, ξm] given by

F (ξ) =
ηi(ξi+1 − ξ) + ηi+1(ξ − ξi)

ξi+1 − ξi

when ξi ≤ ξ ≤ ξi+1.

Proof. This follows from the fact that the preimages of [qi, qi+1] are ordered
along the segment s in the expected way. [Incomplete] Q.E.D.

If s′ ∈ S is a distinct segment, then a similar function F ′ based on DT (s′)
can be defined.

Note that the slope of s′ may be different from that of s. This will lead to
different coordinate systems for F and F ′. To fix this, we may first rotate the
coordinate system so that s and s′ have both positive slopes or both negative
slopes. It is easy to see this is always possible.

These functions approximate the lines ℓ and ℓ′ through s and s′ (respec-
tively).

Since s, s′ are essentially disjoint, we may assume THAT IN THE (ξ, η)-
coordinate system, wlog that s is below s′ whenever they intersect a common
vertical line ξ = ξ0. So it suffices to show that

F (ξ) ≤ F ′(ξ) (1)
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for all ξ ∈ {ξ1, . . . , ξm} ∪ {ξ′1, . . . , ξ′m′}.
Parametrize the lines ℓ so that (ξ, ℓ(ξ)) ∈ ℓ for all ξ. Similarly, assume

(ξ, ℓ′(ξ)) ∈ ℓ′. Since the segment in DT (s) ⊆ sj + R2, and similar for s′, the
difference F (ξ) − ℓ(ξ) is limited to the range of the η coordinates in R2. This
ranges over the intervals (− 1

2
, 1

2
) or [− 1

2
, 1

2
). [CHECK]

Then our assumptions that ℓ(ξ) ≤ ℓ′(ξ) for all ξ is the range of interest
implies that

F ′(ξi) ≥ ηi, if ℓ′(ξi) ≥ ηi +
1

2
.

Otherwise, ℓ′(ξi) ∈ ηi + R1 and the definition of DT forces F ′(ξi) ≥ ηi. incomplete
Similarly, we argue that F (ξ′j) ≤ η′

j . This proves equation (1).

Snap Rounding Based on Bentley-Ottmann’s Algorithm. For simplic-
ity, we may assume that the input segments are already representable.

STEP 1. We modify the Bentley-Ottman algorithm as follows. We first run
the original algorithm as a “first pass”. The intersection points are symbolically
represented (by the pair of defining segments). Let H be the set of all endpoints
and the intersection points found in this way.

STEP 2. Compute the set of hot points: ⌊H⌉.
STEP 3. Now we want to snap each segment s ∈ S to all the hot points

p that it is near to. More precisely, for each s we compute a set of pairs
{(qi, pi) : i = 1, . . . , k} (for some k) such that pi is a hot point that s is near to,
and qi is the point in s closest to pi. Then we snap qi to pi, in an natural order
determined by the qi’s along s. But how do we detect these pi’s? We can do
this by modifying the same sweepline algorithm of Bentley-Ottman: for each
hot point p, we add the four unit segments corresponding to the boundary of
p + R2 to the input set. Thus the segment s is near to p iff it intersects one of
these unit segments of p.

We can take advantage of the fact that these unit segments are horizontal
or vertical and in special positions relative to the grid G2. An efficient imple-
mentation (using the idea of batching, and keeping the unit segments separate
from the original segments) is given in the original paper of Hobby.

Figure 5: Braiding Behavior in Snap Rounding

Other Approaches. Yao and Greene’s. Milenkovic’s Sugihara’s.

Exercises
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Exercise 2.1:
(i) Complete the proof that the ESSA algorithm is correct.
(ii) Describe modifications to the algorithm when exponents are limited
in the range [emin, emax]. ♦

Exercise 2.2: Fix a precision t ≥ 1. Consider snap rounding in the following
“floating point grid” Gt

2 = F (2, t)×F (2, t). Show an example that shows
that the snap rounding theorem of Hobby fails in GF2. ♦

End Exercises
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You might object that it would be reasonable enough for me to try to expound the differential
calculus, or the theory of numbers, to you, because the view that I might find something of

interest to say to you about such subjects is not prima facie absurd; but that geometry is, after
all, the business of geometers, and that I know, and you know, and I know that you know, that I
am not one; and that it is useless for me to try to tell you what geometry is, because I simply do

not know.

— G.H.Hardy, in “What is Geometry?”

1925 Presidential Address to the Mathematical Association

Lecture 6

Exact Geometric Computation

We characterize the notion of “geometric computation” by pointing out some common features. Along
the way, we give one answer to the age-old question: what is geometry? This analysis will lead to a general
prescription for attacking nonrobustness in geometric computations.

Throughout the history of mathematics, different answers to this age-old question has been given. From
intuitive popular accounts of geometry [4] to quests for the scope and place of geometry [1, 6, 1] The geometric
vein is evident is almost every branch of mathematics. Although we begin with geometry, we are soon led
to algebra, and throughout the development of geometry, we see a strong interplay between geometry and
algebra. Geometry is highly intuitive, certainly much more than algebra. On the other hand, a purely
geometric approach cannot progress without a proper algebraic foundation. This is the impulse behind René
Descartes’ program to algebraize geometry. Once we introduce the Cartesian plane, the intuitive relationship
between points and lines can now be reduced to algebraic relations that are amenable to automatic proofs and
calculations. Further abstractions are possible: in Felix Klein’s Erlangen Program, the essence of geometry
is reduced to invariant groups. Modern algebraic geometry has taken this abstraction to yet another level;
the progression in these abstractions are described under different “epochs” by Jean Dieudonné’s [2].

There is a way to formalize the intuitive geometry without algebra, going back to Euclid. This culminated
in Hilbert’s axiomatic or formal mathematics. Hilbert also used geometry as the launching point for this
work. The formal (logical) approach and the algebraic viewpoints of geometry is given a new synthesis in
Alfred Tarski’s view of “elementary geometry and algebra”. But Tarski’s profound insight is the view that
real elementary geometry is first order theory of semialgebraic sets. Moreover, there is a decision procedure
for this theory based on a generalization of Sturm theory. In this lecture, we will review this aspect of
Tarski’s work and subsequent development by Collins.

We should mention another aspect of geometry: the combinatorial vein which is associated with the
name of Paul Erdös. This connection is important from the computational viewpoint: the complexity of
geometric algorithms are often intimately related to combinatorial bounds. The topological connection is
another mode of abstraction (again, algebraization will play a central role).

To all these insights about the nature of geometry, we now add the computational perspective.

§1. What is Geometry?

When is a computation said to be “geometric”? One answer is “when it involves geometric objects”. But
what are geometric objects? We begin with the uncontroversial remark that notions such as points, lines,
hyperplanes, polytopes, triangulated surfaces are geometric objects par excellence. We further observe
that the set of all points, the set of all lines, and other basic geometric objects show a common feature:
each set constitute a continuum of parametrized geometric objects of the same type. Our notation in the
introduction, Point(x, y) and Line(a, b, c), hints are this property. In general, we can view geometric objects as
OBJ(x1, . . . , xn) where x1, . . . , xn are numerical parameters. We might say this is Descartes’ general insight,
that geometric objects of a fixed type constitute a parametric space that can be investigated algebraically.
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Next, there is a sense of space in geometry. Geometric objects are located in space, and hence they
can be in in “spatial relationship” with each other. Thus, Point(x, y) and Line(a, b, c) each corresponds
to a suitable subset of R2. It is this embedding in a common substrate that allows spatial relationships
to be defined. Examples of spatial relationships include inside/outside, disjoint/intersecting, touching (or
incidence), neighborhood (or adjacency) sidedness, co-incidence or other syzyzetic relations. For instance:

• A point can be inside a polytope.

• A line can lie on a hyperplane or be parallel to it, or intersect it transversally.

• Three points may be collinear.

• In dimensions 3 or more, four points may co-coplanar; and when co-planar, they may also be co-circular.

• Two faces of a polytope may be adjacent to each other.

Such relationships are numerically defined, but more importantly, they are1 discrete. A collection of
geometric objects will define an implicit collection of such relationships; typically, these relationships can be
represented by combinatorial structures such as graphs with parametric labels on its vertices and edges (see
[9]). For instance, a collection of points define a convex polytope (i.e., its convex hull). This polytope has
facets of various dimensions which are in incidence (or adjacency) relationships. The incidence graph [3]
is then used to represent this relationship among the facets.

1

f2 f3 f4f1

e2 e3 e4e1

v

0

v

e1

e2 e3

e4

f1

f2

f3

f4

(a) Arrangement of 2 lines (b) Incidence Graph

Figure 1: Incidence Graph

Figure 1(a) shows a pair of lines in the plane, and the partition of the plane by these two lines into
subsets of dimension 0 (the point v), dimension 1 (the line segments ei’s) and dimension 2 (the faces fi’s).
These subsets are related in Figure 1(b) by an incidence graph.

More generally, let us define this concept for a collection H of n hyperplanes in d-dimensions: this
collection partitions space into pairwise disjoint regions called faces, where each face f has a dimension
dim(f) between 0 and d. Two faces f, g are incident (on each other) provided (1) |dim(f) − dim(g)| = 1
and (2) either f ⊆ g or g ⊆ f . Here, g denotes closure of a set g under the usual topology. The incidence graph
I(H) of H comprises a node n(f) for each face f , and an edge from n(f) to n(g) provided dim(f) = dim(g)+1
and f, g are incident. It is convenient to introduce two improper faces denoted 0 and 1 where dim(0) = −1
and dim(1) = d + 1. Moreover, every 0-dimensional face is incident on 0 and every d-dimensioan face is
incident on 1.

Thus, in general, we are dealing with collection of geometric objects in some special relations, which we
might term a “geometric complex” for lack of a better term. We continue to write OBJ(x1, . . . , xn) for such

1Hoffmann [5] calls them “symbolic”.
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an object. What is important to realize is that OBJ contains combinatorial data (like graphs) as well as
numerical parameters x1, . . . , xn. Moreover, the number of numerical parameters for a given class of objects
need not be fixed or bounded. This suggests the mnemonic,

GEOMETRIC = NUMERIC + COMBINATORIAL (1)

But the mere presense of numbers and combinatorial structures in a computation alone does not qualify a
computation to be called gemetric. This can be explained by way of two non-examples.
(a) Computing the determinant of a matrix M is non-geometric, even though the matrix structure is a
combinatorial structure (albeit very regular one) and there are numerical entries.
(b) Computing the shortest path in a graph with edge weights (say, using Djikstra’s algorithm) is likewise
non-geometric, even though it has a combinatorial structure (the graph) and numerical values (the weights).

What is implicit in the formula (1) is that there are certain consistency constraints that must hold
between the numeric and the combinatorial parts. In the extreme case, the numeric part completely deter-
mines the combinatorial part. In these two non-examples of geometric computation, there is no relationship
between the combinatorial and its numerical parts.

¶1. Remark. Euclidean geometry is the default “geometry” in our discussions. Robustness considerations
for other geometries studied in mathematics such as hyperbolic geometry, projective geometry, etc, should
have similar considerations as those in the Euclidean case.

§2. What Exact Geometric Computation?

The general outline is this:

• First we prescribe the Exact Geometric Computation (EGC) solution.

• Then we show how EGC is possible if we have computable zero bounds.

• Finally we outline an implementation technique called precision-driven evaluation.

¶2. The EGC Prescription. Having analyzed the concept of “geometry”, let us now see how it shows
up during a computation. For our purposes, we may view a computation as a possibly infinite rooted tree
T , with bounded branching at each step. Each non-terminal node of T will be classified as a construction
step if it has exactly one child, otherwise it is a branching step. An example of a construction step might
be

x ← x + 1;
x ← f(y, z);

As example of a branching step would be

if z ≥ 0 then goto L;
...
L : · · ·

where L is a label. A test value is any quantity z that appears in a branching step. In modern computer
languages, such “go-to” statements are packaged into case statements, while loops, and so on. The program
itself is a finite set of instructions. But when the all the loops and recursions a program is “unrolled”
into all possible computation paths, we obtain an infinite branching tree T . Although in principle, binary
branching suffices, it is most natural to consider three-way branching for geometric computation because
many geometric predicates are naturally 3-valued. E.g. is a point in/out/on a triangle? Is the area of a
triangle 0/positive/negative?

Many geometric computations may be classified into one of the following categories: (1) constructing
geometric complexes, (2) deriving geometric relationship among geometric complexes, and (3) searching in
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geometric complexes. Regardless of the category, our understand of geometry implies that the geometric
relationships of a particular input instance are encoded by branching choices during a computation.

Although T is infinite, a correct program must halt for any input instance. Halting computations
correspond to a path from the root to a leaf. Suppose our computation is to output a geometric ob-
ject OBJ(y1, . . . , yk) with parameters y1, . . . , yk. If the input has parameters x = (x1, . . . , xn) then each
yi = yi(x) is a function of the input numbers x1, . . . , xn. Thus, all inputs x that end up at a specific leaf
will yield the same parametrized object OBJ(y1(x), . . . , yk(x)). Although the parameters may vary with x,
the combinatorial structure of the output is invariant at each leaf. We come to this general conclusion: if
ensure that every branch is correct, we guarantee the correct combinatorial structure.

Here then is the prescription of the Exact Geometric Computation Approach (EGC): it is to ensure
that all branches for a computation path are correct.

¶3. The Zero Problem. This seems almost trivial, but what are the issues? We must not forget that
the computed values yi = yi(x) are all approximate. The EGC prescription does not explicitly tell us how
accurately to compute the yi’s. But it does tell us that the test values z = z(x) that appear in our branching
steps must be approximated to enough accuracy to determine its sign! Thus, we say that the central problem
of EGC is the sign problem, to determine the sign of a numerical constant z. Of course, this would be
trivial if z as given in an explicit form, say as machine number. Instead, z is given as an expression z(x) in
terms of the input parameters. Typically, we may reduce the sign problem to the simpler zero problem:
to decide if z(x) = 0. If z turns out to be non-zero, then assuming the ability to approximate z to any
precision, we can eventually decide whether z > 0 or z < 0. The zero problem is a very deep question in
mathematics, but in particular, it is intimately connected to questions in transcendental number theory.

For our purposes, we can pose the zero problem as follows. Fix a set Ω of real operators and let Expr(Ω)
denote the set of expressions over Ω. A typical example is

Ω1 = {±,×,÷} ∪ Z.

Note that the constants a ∈ Z are considered 0-ary operators. Thus each expression e ∈ Expr(Ω1) denotes
a rational number val(e) ∈ Q, if defined. The reason that val(e) may be undefined is because ÷ is a partial
operator (a ÷ b is undefined if b = 0). These expressions can be viewed as rooted trees, but in general, we
view them as directed acyclic graphs (DAG’s). In general, there is a natural evaluation function

val : Expr(Ω) → R

which is a partial function if Ω contains any partial function such as ÷.
So the question before us is this: given an expression e ∈ Expr(Ω), to decide if val(e) is defined and if

so, return its sign. If we can solve this problem for an algorithm whose numerical operators belong to Ω,
then we carry out the EGC prescription for this algorithm.

¶4. Precision-Driven Evaluation So, to achieve EGC, we need to determine the sign of each test value.
A simple solution is to determine the sign of all numerical values, regardless of whether it is a test value or
not. But wastefulness aside, we run into a more basic difficulty: what should be the precision to which each
numerical value z be approximated? We cannot tell in advance – it depends on subsequent use of z in the
evaluation of another value that depends on z!

To discuss errors/precision, it is useful to introduce this notation: let z, z̃, p ∈ R. An expression of the
form “z〈p〉” is a shorthand for “z(1 ± 2−p)”. Therefore

z̃ = z〈p〉 (2)

means that |z̃− z| ≤ |z|2−p, i.e., z̃ is a p-bit relative approximation of z. Similarly, “z[p]” is a shorthand
for “z ± 2−p”. Therefore

z̃ = z[p] (3)

means that z̃ is a p-bit absolute approximation of z.
In (2) and (3), should p be regarded as the precision or error in z̃ as an approximation to z? We will

make this distinction: if p is given a priori (before z̃ as computed), then we call it precision. But if p is
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computed a posteriori (from z and z̃), then we call it error. E.g., we might say all our computations are
carried out to “100 bits of relative precision”, and or we might say that a particular approximate value z̃
has “100 bits of absolute error”.

A basic observation (Exercise) is this:

Lemma 1. z̃ = z〈1〉 iff sign(z) = sign(z̃).

Thus, computing z to relative one-bit amounts to determining the sign of z. We propose a general
solution [10] that is akin to what is often called lazy evaluation in the computing milieu. We store the extire
expression z(x) for each numerical quantity z as a function of the input parameters x. When the sign of z
is actually needed, we will evaluate the expression for z to determine the sign. But how is this evaluation
carried out?

We will regard each node u in an expression as representing an (exact) numerical value val(u), and also

storing an approximate numerical values ṽal(u). (It is convenient to abuse notation and use u and val(u)
interchangeably.) In case u is an internal node, it also represents an operation op(u) and it will have a
number of children equal to the arity of op(u). E.g., if op(u) is a binary operation, it will have two children.
We illustrate this in Figure 2 for a node x In Figure 2(a), we show a multiplication node x (whose value is
denoted x, by our abuse of terminology). This node depends two other nodes y and z, and so we have the
relation x = yz.

z̃

〈6〉 〈7〉

〈5〉 (ỹ · z̃) = x〈5〉

ỹ

×

y z

x

Figure 2: Precision and error propagation at a node

Suppose we want to compute x to p-bits of relative precision. If we require p+1-bits of relative precision
from y and p + 2-bits of relative precision from z, then it is easy to see that an exact multiplication of the
approximate values will yield the desired result for x. In other words:

x = yz, ỹ = y〈n + 1〉, z̃ = z〈n + 2〉. ⇒ .ỹ · z̃ = x〈n〉. (4)

Giving a similar rule for multiplication with absolute error is slightly more involved. On the other hand, we
can give a similar rule for addition to absolute precision:

x = y + z, ỹ = y[n + 1], z̃ = z[n + 1]. ⇒ .ỹ + z̃ = x[n]. (5)

Giving a similar rule for addition with relative error is slightly more involved. We refer to [8] for this and
other rules for the common real operators

±,×,÷,
√
·, exp, log .

Suppose Ez is the expression for z. For simplicity, we imagine Ez to be a tree rooted at z. The leaves
of Ez contain the input parameters x = (x1, . . . , xn). At each node y of Ez, we store an arbitrary precision
(bigfloat) approximation ỹ for y.

§3. Algebraic Background

We assume some familiarity with the following tower of algebraic structures:

N ⊆ Z ⊆ Q ⊆ A ⊆ R ⊆ C.
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The prime example of a ring is Z (integers), and the rational numbers Q is our prime example of a field.
So we are mainly interested in computation over suitable subsets of the real numbers R, but ocassionally
the complex numbers C. Also, we write A for the set of real algebraic numbers. The set of all algebraic
numbers is therefore given by A[i].

We will try to state our results as concretely as possible. But student less familiar with abstract algebra
may you may substitute these prime examples whenever we say “ring” or “field”. Much of this material is
summarized from my book [7].

Let K be a field. If X is a variable, let K[X] denote the polynomial ring with coefficients in R. A typical
polynomial A = A(X) has the form

A(X) :=
m∑

i=0

aiX
i, am 6= 0

where each non-zero ai is called a coefficient of A. Here, am is called the leading coefficient and m
is called the degree of A(X). These are denoted lead(A) = am and deg(A) = m respectively. In case
A(X) = 0, we define2 lead(0) = 0 and deg(0) = −∞. If leadA = 1 then A is said to be monic. If α ∈ K
and A(α) = 0, we say α is a root of A(X). There are several ways to measure the size of polynomials that
takes into account its coefficients. For any number p ≥ 1, define the p-norm,

‖A(X)‖p := p

√√√√
m∑

i=0

|ai|p.

We can also define ‖A(X)‖∞ = maxm
i=0 |ai|, The case p = 2 and p = ∞ (respectively) are also called the

(Euclidean) length and height of A.
A pair of polynomials p, q ∈ K[X] defines a rational function in X which is usually denoted p/q.

Moreover, if p′/q′ is another rational function, then p/q and p′/q′ are declared to be equal if and only if
pq′ = p′q. The set of rational functions is denoted K(X).

In case K = C, we have the Fundamental Theorem of Algebra which says that every p(X) ∈ C[X] has
exactly deg(p) complex roots. A number α ∈ C is said to be algebraic if it is the root of a polynomial
p ∈ Z[X]. If further, p is monic, then α ia called an algebraic integer. This generalizes our usual concept
of integers.

¶5. UFD. Let R be a ring, a, b ∈ R. A domain is a ring in which ab = 0 implies a = 0 or b = 0. We say a
divides b if there is a c such that ac = b. If ab = 0 and b 6= 0 then we call a a zero-divisor. Thus a domain
is a ring whose only zero-divisor is 0. A unit a is an element that divides 1. Alternatively, the equation
ax = 1 has a solution x. E.g., Z is a domain in which the only units are ±1 In a field, all non-zero elements
are units. A unique factorization domain (UFD) is a domain in which every element a can be written

as a product a =
∏k

i=1 pi of irreducible elements pi; this product is unique up to units in the sense that

if a =
∏ℓ

i=j qj then k = ℓ and by suitable reordering, each pi = uiqi were ui are units. The Fundamental
Theorem of Arithmetic tells us that Z is a UFD. A basic result of Gauss says that if R is a UFD if and only
if R[X] is a UFD.

In a UFD, we can define the concept of a GCD of a set of elements. In the ring K[X] over a field K,
Euclid’s algorithm can be extended to compute the GCD of two polynomials.

¶6. Resultants. A basic tool in algebraic number theory is the concept of resultants. In the following,
assume D is a UFD. Given p, q ∈ D[X], we define their resultant res(p, q) ∈ D to be the determinant of the

2Sometimes, deg(0) is defined as +∞ instead of −∞. Both definitions have advantages, but neither seems superior: for
instance, exactly one of the following statements is true in either definition: (1) “the division algorithm for A, B produces Q, R

such that A = BQ + R with deg R < deg B”. (2) “Every complex polynomial of degree m has exactly m roots”. Of course, in
practice, we just have to add the qualification that A is non-zero. If we define deg(0) = +∞, then the condition “deg A ≤ d”
can be used to exclude the case A = 0, but then the condition “deg A > deg B” may produce some surprises. We have opted
to avoid surprises.
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Sylvester matrix S(p, q) of p, q. If m = deg p and n = deg q, then S(p, q) is a m + n square matrix whose
first n rows are filled with the coefficients of

Xn−1p,Xn−2p, . . . ,Xp, p

and the remaining m rows are filled with the coefficients of

Xm−1q,Xm−2q, . . . ,Xq, q.

If p =
∑m

i=0 piX
i and q =

∑n
j=0 qiX

j then

S(p, q) =




pm pm−1 · · · p0

pm pm−1 · · · p0

. . .
. . .

pm pm−1 · · · p0

qn qn−1 · · · q1 q0

qn qn−1 · · · q1 q0

. . .
. . .

qn qn−1 · · · q0




Xn−1p
Xn−2p
...
p
Xm−1q
Xm−2q
...
q

︸ ︷︷ ︸
Xm+n−1 Xm+n−2 · · · Xn Xn−1 · · · · · · X0

Note that Xip is a polynomial of degree m + i and its coefficients fill the ith row of S(p, q). The jth
column contains the coefficients of Xm+n−j , and thus the leading coefficient of Xip will be in the (i, n− i)th
entry of S(p, q). The first n rows will therefore contain the coefficients of p but each is a right-shift of the
previous row. The last m row is similarly filles with right-shifted coefficients of q.

We now prove a basic lemma:

Lemma 2. GCD(p, q) is a constant iff res(p, q) 6= 0.

Proof. Suppose res(p, q) = 0. This means det(S) = 0 where S = S(p, q). So a non-trivial linear
combination of the rows of S vanishes, i.e.,

w · S = 0 (6)

where
w = (un−1, un−2, . . . , u0, vm−1, vm−2, . . . , v0)

is a nonzero row vector of length m + n. If

x = (Xm+n−1,Xm+n−2, . . . ,X, 1)T

is a column vector of length m + n, then (6) is equivalent to

w · S · x = 0.

This latter equation can be re-written as the polynomial equation

U(X)p(X) + V (X)q(X) = 0 (7)

where U(X) =
∑n−1

i=0 uiX
i and V (X) =

∑m−1
j=0 ujX

j . Note that U and V has degree at most n − 1 and
m − 1, respectively, and since w is nonzero, we have V U 6= 0. Since D is a UFD, (7) implies that p(X)
divides V (X)q(X). Thus,

GCD(p(X), V (X))GCD(p(X), q(X)) = p(X)
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deg(GCD(p(X), V (X))) + deg(GCD(p(X), q(X))) = m = deg(p(X)).

But deg(GCD(p(X), V (X))) ≤ deg(V (X)) ≤ m − 1. Hence deg(GCD(p(X), q(X))) ≥ 1. This proves our claim
that GCD(p, q) is non-constant.

Conversely, suppose GCD(p, q) = g(X) is non-constant. Then, letting U(X) := q(X)/g(X) and V (X) :=
−p(X)/g(X), we see that (7) holds. This implies (6) holds for some non-zero w. This shows S is singular,
or res(p, q) = det(S) = 0. Q.E.D.

The concept of a resultant can be generalized to the the notion of subresultants. We state some basic
properties of resultants: let A,B be polynomials with deg A = m,deg B = n, leadA = a, leadB = b. Also
let the roots of A and B be α1, . . . , αm and β1, . . . , βn (resp.).

Lemma 3.
(i) res((X − α)p, q) = q(α)res(p, q).
(ii) res(A,B) = an

∏m
i=1 B(αi).

(iii) res(A,B) = (−1)mnbm
∏n

j=1 A(βj).

(iv) res(A,B) = anbm
∏m

i=1

∏n
j=1(αi − βj).

It is easy to show (ii)-(iv) from (i). The proof of (i) is somewhat involved, but can be achieved by a
direct computation. Also, we have

Lemma 4. Let A(α) = 0, B(β) = 0.
(i) If α 6= 0 then 1/α is a root of XmA(1/X).
(ii) β ± α is a root of resY (A(Y ), B(X ∓ Y )).
(ii) αβ is a root of resY (A(Y ), Y nB(X/Y )).

It follows from the above that the set of algebraic numbers forms a field. Moreover, the algebraic integers
forms a ring.

¶7. Root Bounds. There is a very large classical literature on root bounds. Here, we content ourselves
with a simple one.

Suppose p(X) =
∑m

i=0 aiX
i, and α 6= 0 is a root of p(X). Then we have the following bound of Cauchy:

|a0|
|a0| + H0

< |α| < 1 +
Hm

|am|
where H0 = max{|a1|, |a2|, . . . , |am|} and Hm = max{|a0|, |a1|, . . . , |am−1|}.

Let us first prove the upper bound. If |α| ≤ 1, the result is true. Otherwise, we have

|am| · |α|m ≤ Hm

m−1∑

i=0

|α|i

which leads to the stated bound. For the lower bound, consider the polynomial p(1/X)Xm instead.
We also have root separation bounds: this is slightly more involved to prove, and requires the concept of

discriminants. The discriminant of a polynomial A(X) is defined to be disc(A) := (−1)(
m

2 )(1/a)res(A,A′)
where a = leadA and A′ is the derivative of A. For instance if A(X) = aX2+bX+C then disc(A) = b2−4ac.
Two important properties of the discriminant are

• disc(A) ∈ D

•
disc(A) = a2m−2

∏

1≤i<j≤m

(αi − αj)
2

where α1, . . . , αm are all the roots of A(X) in the algebraic closure D of the domain D.

It follows from the second property that disc(A) vanishes iff A has multiple roots.
The following bound is from Mahler:
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Theorem 5. Let α, α′ be distinct roots of A(X) ∈ C[X]. Then

|α − α′| >
√
|disc(A)|‖A‖−m+1

2 m−(m+2)/2(
√

3.

Because of the presense of disc(A) in the right hand side, this bound is trivial if A has multiple roots. To
recover a useful bound, we can replace A by its square-free part (Exercise). There is a generalization due to
Davenport which gives a lower bound on a product of differences of roots of A.

¶8. Sturm Theory. Suppose A,B ⊆ R[X] and deg A > deg B ≥ 0. We define a generalized Sturm
sequence for (A,B) to be a sequence

A = (A0, A1, . . . , Ah)

where A0 = A,A1 = B and for i = 1, . . . , h − 1,

βiAi+1 = αiAi−1 + QiAi

where αi, βi ∈ R, Qi ∈ R[X] and αiβi < 0, and finally

Ah|Ah−1.

If B = A′ (the derivative of A) then we simply call A a Sturm sequence for A.
The “standard construction” of such a generalized Sturm sequence is where

Ai+1 = −(Ai−1 mod Ai)

where A mod B = R means that there exists Q ∈ R[X] such that A = QB + R where deg R < deg B.
By high school division of polynomials, it is seen that Q and R is uniquely determined by these conditions.
Moreover, in case A,B ∈ Z[X], the standard construction yields a sequence of polynomials where each
Ai ∈ Q[X]. As noted in [7], there are better methods than this standard construction in which the Ai’s are
computed as integer polynomials. In the following, it is convenient to assume some construction method so
that, once A,B are given, the rest of the sequence A is determined.

If a = (a0, a1, . . . , ah) is a sequence of real numbers, we define the sign variation Var(a) of a to be the
number of sign variations (i.e., transitions from + to − or + to −) after we omit all 0 values from the sequence.
E.g. Var(2, 0, 3.5,−1.2, 0,−10, 0, 0, 3) = 2. If A is a sequence of real polynomials (A0(X), . . . , Ah(X)) and
a ∈ R then define

VarA(a) := Var((A0(a), . . . , Ah(a))).

If A is a generalized Sturm sequence for A,B then we also write VarA,B(a) for VarA(a). This notation is
justified as it is easily shown (Exercise) that the sign variation does not depend on particular choice of A.
Moreover, when B = A′, we simply write VarA(a) instead of VarA,A′(a).

Theorem 6 (Sturm). Let A(X) ∈ R[X] have positive degree and A′(X) denotes its derivative. If a < b ∈ R

such that A(a)A(b) 6= 0 then the number of distinct real roots of A(X) in the interval [a, b] is equal to

VarA(a) − VarA(b).

Proof. Let (A0, A1, . . . , Ah) be the Sturm sequence of A. For a ≤ c ≤ b, define vi(c) := Var(Ai−1(c), Ai(c), Ai+1(c))
for i = 0, . . . , h (assume A−1(c) = Ah+1(c) = 0). We initially assume that C = GCD(A,A′) is constant (so
A,A′) has no common zero).

• For i = 1, . . . , h, if Ai−1(c) = Ai(c) = 0 then Ai−2(c) = Ai+1(c) = 0. Thus, if there are two consecutive
zeros in (A0(c), . . . , Ah(c)) then the entire sequence is 0.

• So Ah(c) 6= 0 (otherwise, Ah−1(c) = 0 by definition of h, and hence Ai(c) = 0 for all i; in particular c
is common zero of A,A′, contradiction)

• Call c a special value if there is some i ∈ {0, 1, . . . , h} such that Ai(c) = 0. There are finitely many
special values. Moreover, valA(c) is constant as c varies between two consecutive special values. In
other words, valA(c) can only change when c passes through a specail value. Thus, we next try to
understand how valA(c) changes at special values.
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• For any c, there exist a subset I ⊆ {0, 1, . . . , h} such that

VarA(c) =
∑

i∈I

vi(c). (8)

For instance, if valA(c) = (A0(c), A1(c), . . . , A6(c)) = (2,−1, 0, 1,−2, 3,−4) then some possible choices
of I are {0, 4, 6} or {1, 3, 5}. Moreover, we may choose I such that i ∈ I implies Ai−1(c)Ai+1(c) 6= 0
unless i = 0 or i = h. In the preceding example, the choice I = {0, 4, 6} has this property, but not
I = {1, 3, 5}.

• CLAIM: For all i ∈ I, we have (1) vi(c
−) − vi(c

+) = 1 if i = A0(c) = 0, and (2) vi(c
−) − vi(c

+) = 0
otherwise.

• To see (1), we consider two cases: either A0 is increasing at c or decreasing at c. If A0 is increasing
at c, then A′(c) > 0 and v0(c) increases by 1 as we pass through c. If A0 is decreasing at c, we again
conclude that v0(c) increases by 1 through c.

• To see (2), we consider two cases: If Ai(c) = 0, then i > 0 (because of (1)) and i < h (because
Ah(c) 6= 0). Then Ai−1(c)Ai+1(c) 6= 0. Then, regardless of the values of Ai(c

−) and Ai(c
+), the value

vi(c
−) − vi(c

+) is 0. If Ai(c) 6= 0, then by our assumption that Ai−1(c)Ai+1(c) 6= 0 unless i = 0 or
i = h, we conclude that vi(c

−) − vi(c
+) = 0 again.

• Our claim therefore implies that valA(c) is constant incrementing each time that c passes through a
real zero of A. Thus VarA(a) − valA(c) equals the number of real zeros of A in [a, b].

Finally, suppose deg(Ah) > 0. The sequence (A0/Ah, A1/Ah, . . . , Ah−1/Ah, 1) has the same properties as
what we proved in (i). Moreover, the sign variation of this modified sequence at any c, that is not a zero of
Ah, is equal to VarA(c) Q.E.D.

See [7, Theorem 7.3, p. 194] for a very general form of this basic theory of counting sign changes.

Exercises

Exercise 3.1: Prove that A[i] is the set of all algebraic numbers. ♦

Exercise 3.2: Let A be a generalized Sturm sequence for A,B. Show that the value VarA(a) does not
depend on the choice of A. ♦

Exercise 3.3: Let A(X) = X4 − 8X3 + 2X2 − 14 and B(X) = X3 + X3 − 7X2 + X − 1.
(i) Compute the standard Sturm sequence for A,B.
(ii) Compute the standard Sturm sequence for A.
(iii) Determine the number of real roots of A. ♦

End Exercises

§4. Exact Numerical Algebraic Number Computation

We now demonstrate that the set A of real algebraic numbers is a suitable domain for computation. More
precisely, our goals in this section are:

• To provide a representation for elements of A.

• To show that the operations ±,×,÷,
√· and comparisons on A can be carried out on such representa-

tions.
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¶9. Isolating Interval Approach. There are several known methods in computer algebrac for achieving
the above goals. A standard representation real algebraic numbers is called the isolating interval repre-
sentation. If α ∈ A, then such a representation of α is a pair (A(X), I) where A(X) ∈ Z[X] and I is an
isolating interval of A(X) containing α. Moreover, if w(I) > 0 then α lies in the interior of I. We will write

α ≃ (A(X), I) (9)

in this case. Here, “isolating interval” means that I contains a unique real root of A(X). Usually, we also
require that A(X) be square-free. The square-free part of A is defined as follows:

sqfr(A) =
A

GCD(A,A′)

where A′ is the derivative of A. If sqfr(A) = A, we say A is square-free.
Note that we can refine the interval I in (9) very easily: evaluate A(mid(I)). If this is zero, we can replace

I be [mid(I),mid(I)]. Otherwise, if A(mid(I))A(I) < 0, we replace I by [I,mid(I)]; otherwise, replace I by
[I,mid(I)]. This process can be repeated as often as we like to make w(I) as small as we wish.

Most computer algebra books will assume that the standard representation in the power basis, i.e., we
have a list of the coefficients of A(X). Therefore, when we want to compute a representation of

γ = α + β

where β ≃ (B(X), J). By the resultant results of the previous section, we know that C(X) = resY (A(Y ), B(X−
Y )) contains α+β as a root. We can replace C(X) by its square-free part if desired. Finally, we would hope
that I + J is an isolating interval of C(X). This can be checked using Sturm sequence of C(X). If so, we
can output

γ ≃ (C(X), I + J)

If I + J is not a isolating, we half the width of I and J using the refinement step above, and check again
if I + J is an isolating interval of C(X). We can repeat this until I + J is an isolating interval. We can
similarly perform the other arithmetic operations. We leave it as an exercise to compute

√
α.

Comparisons between α and β can be decided at once if I and J are disjoint. Otherwise, we can repeat
unte the root separation bound, and declare α = β.

¶10. Expression Approach. We now discuss a somewhat unconventional representation: we let A(X)
be an expression. In this case, the operations ±,×,÷ becomes trivial. E.g., to perform the operation

x ← y + z

we simply construct a new node for x and make the two children of this node to be the expressions for y
and z.

So the main issue is how to form comparisons. This, in turn, can be reduced to checking if a number is
zero. We use the method of constructive zero bounds: suppose there is a systematic method to attach
root bound B(u) > 0 to each node u in an expression e with the property that if val(u) 6= 0 then

|val(u)| ≥ B(u).

The construction of B is constructive in the following sense: we can maintain with each node u a fixed set
of numerical parameters, q1(u), q2(u), . . . , qk(u) such that (1),

B(u) = β(q1(u), . . . , qk(u))

where β is a computable function, and for each node u, we can compute its parameters qi(u) from the set of
parameters at its children. In a later section, we will give such a constructive zero bound.

Now, we can use our precision-driven evaluation mechanism on the expression e to approximate e to
absolute p-bits for p = 1, 2, 4, 8, . . . until such p where |ẽ| > 2−p or p = B(e). If ẽ| > 2−p, then the sign of e
is the sign of ẽ. Otherwise we conclude that e = 0.
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¶11. EVAL The root isolation problem is this: given a polynomial f(X), to compute an isolating
interval for each of the real zeros of f(X). A traditional approach is to use the Sturm sequence of f(X), as
we have seen in the previous section. But this turns out that more efficient methods are possible. In recent
years, the Descartes method (based on the Descartes Rule of Signs) has been popular. We now describe
an even simpler approach, based on interval evaluation. Like the Descartes Method, we require f(X) to be
square-free.

In fact, f need not be a polynomial. Let f : I0 → R be any real function on an interval I0 ⊆ R that
satisfies:

• The derivative f ′ is defined on I0.

• f has finitely many zeros in I0, and f(x) = 0 implies f ′(x) 6= 0.

• We can compute the box functions f(I) and f ′(I) where I ⊆ I0 are dyadic intervals.

• For any dyadic number x ∈ I0, we can determine the sign of f(x).

Any such f is said to belong to PV (I0) (or to PV if I0 = R). Then we have the following extremely easy
algorithm:

Eval(f, I0):
Input: f ∈ PV (I0) where I0 is a finite dyadic interval

whose endpoints are not roots of f .
Output: A list L of isolating intervals for each real root of f in I0

Initialize two lists, Q ← {I0} and L ← ∅
while Q is nonempty

Remove I from Q
if 0 6∈ f(I), discard I
elif 0 6∈ f ′(I)

if (f(I)f(I) < 0), L.append(I)
else

Insert I0 = [I,mid(I)] and I1 = [mid(I), I] into Q
if f(mid(I)) = 0, L.append([mid(I),mid(I)])

return(L)

§5. Cylindrical Algebraic Decomposition

Elementary Geometry usually associated with the study of geometric figures in 2 or 3 dimensions and
their relationships, as taught in high school. This tradition goes back to the Greeks as well as many ancient
civilizations. It is Descartes’ major innovation to consider geometric objects as parametric objects. This
allows us to reduce geometric questions to numerical computation.

To see the tremendous power of this approach, consider what the alternative might be. Indeed, historically
there is another development of geometry, alongside with the algebraization: this is based on the axiomatic
approach. We could not do any geometric computation in the usual understanding of geometric computation.
Instead, the computational focus in this parallel development is theorem proving. Here the idea is to encode
theorems as statements in first order logic, and to deduce them from the axioms. This turned out to be
notoriously difficult – only fairly trivial theorems could be proved by first order logic provers. Subsequent
clarification by Wu Wen-Tsun indicated why – most elementary theorems are true only “generically”, not
universally. Moreover, the algebraization approach was hugely successful. Nevertheless, there is an interesting
convergence of the logical approach with the algebraization approach in the work of Alfred Tarski. According
to Tarski, elementary geometry can be encoded in the first order theory of real closed fields. This turned out
to be extremely fruitful: it led to a decision procedure for this language. But in the hands of G.E.Collins,
this developed a more geometric viewpoint leading to a procedure to decompose Euclidean space into what
is now known as a Cylindrical Algebraic Decomposition (CAD). In some sense, this is the superalgorithm
which allows us to solve all questions of elementary geometry. Our goal in this section is to give the basic
elements of computing CAD.
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¶12. Sign-Invariant Decomposition. Consider the following a planar geometric figure consisting of a
line f = 0 and a circle g = 0 where

f = X − Y, g = (X − 1)2 + (Y − 1)2 − 1.

This is illustrated in Figure 3(a).

y

x

f < 0, g > 0

f > 0, g > 0

g = 0

f = 0

x1x0

f > 0, g < 0

f < 0, g < 0

x3x2

(a)

y

f < 0, g > 0

f > 0, g > 0

g = 0

x1x0

f > 0, g < 0

f < 0, g < 0

(b)

f = 0

x2

x

Figure 3: Sign-invariant regions of a line f = 0 and a circle g = 0.

The plane R2 is partitioned by these equations into connected subsets of dimensions, with the property
that the sign of Σ = {f, g} is invariant in each subset. We call such regions a sign-invariant region.
Consider the following four sign conditions:

{f < 0, g < 0} , {f < 0, g > 0} , {f > 0, g < 0} , {f > 0, g > 0} .

Each of them determine a unique 2-dimensional sign-invariant region. Next consider the following sign
conditions:

{f = 0, g < 0} , {f = 0, g > 0} , {f > 0, g = 0} , {f > 0, g = 0} .

The first condition again determines a unique sign-invariant region. However, because of the equality con-
dition, any sign regions is necessarily 1-dimensional. But the second condition {f = 0, g > 0} determines
two sign-invariant regions. The third and fourth conditions again determine a unique sign-invariant region.
Finally, there are two 0-dimensional sign-invariant regions corresponds to sign condition

{f = 0, g = 0}

They correspond to the two intersection points of the line and the circle.
In general, if F ⊆ R[X1, . . . ,Xn] = R[X] is a set of polynomials, we say a set R ⊆ Rn is F -invariant if

each polynomial in F has a definite sign throughout R. The partition of Rn into the collection of maximal
connected subsets that are F -invariant is called a F -invariant decomposition of Rn.

Thus, our example shows that the {f, g}-invariant decomposition of R2 has 11 sign-invariant regions.

¶13. Cylindrical Cell Decomposition. All the sign-invariant regions in the preceding example has an
additional property: they are each homeomorphic to Rd if the region is d-dimensional. Such regions will be
called cells or d-cells. In general, sign-invariant regions need not be cells, as we can easily imagine regions
that are non-simply connected for d ≥ 2. We will next subdivide these sign-invariant into smaller sets which
will always be cells.

First, we consider certain special values of x,

x0 < x1 < x2 < x3
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where each xi is the x-projection of the intersection of the two curves f = 0, g = 0, or the x-extremal points
of the curve g = 0. Note that f = 0 has no x-extremal point. We can define a point p to be x-extremal for
a general curve f = 0 if f(p) = fY (p) = 0 where fY = ∂f

∂Y .
We can say that these special values determine a cell decomposition of the x-axis (i.e., R) where the

cells are

CAD(∅) : {x < x0} , {x0} , {x0 < x < x1} , {x1} , {x1 < x < x2} , {x2} , {x2 < x < x3} , {x3} , {x3 < x} .
(10)

Note that these cells are ordered in a natural way, and their dimensions alternate between 1- and 0-dimension.
This pattern will be repeated.

Next, for each cell C ′ of (10), we consider the cylinder C ′ × R. We now look at the intersection of the
F -invariant regions with this cylinder. This will decompose C ′ × R into a sequence of cells. If case C ′ is a
0-cell, we obtain another sequence analoguous of (10). In case C ′ is a 1-cell, we obtain a sequence

CAD(C ′) : {y < g0(x)} , {g0(x) = 0} , {g0(x) < y < g1(x)} , {g1(x) = 0} , {g1(x) < y < g2(x)} ,

{g2(x) = 0} , {g2(x) < y < g3(x)} , {g3(x) = 0} , {g3(x) < y} . (11)

where we write “{gi(x) < y < gi+1(x)}” as shorthand for the set {(x, y) : x ∈ C ′, gi(x) < y < gi+1(x)}. Here,
each gi : C ′ → R is an implicit function locally determined by either f = 0 or g = 0 over the cell C ′. Note
that the dimension of the cells in (11) alternate between 2- and 1-dimensions.

The union of all the cells of in CAD(C ′) as C ′ range over CAD(∅) will constitute our desired decompo-
sition of R2. We will call this set of cells the F -cylindrical decomposition or a cylindrical algebraic
decomposition (CAD) of R2.

¶14. Tarski’s Theorem. To understand the significance of the cylindrical nature of a CAD, we return
to the logical roots of this definition. Consider the following first order sentence in the theory of closed real
fields:

φ1 : (∀X)(∃Y )[(X > Y ) ∧ ((X − 1)2 + (Y − 1)2 > 1)]. (12)

How can we check if this sentence is true? It is not that easy without some geometric insights! But suppose
we rewrite it in the following form:

φ1 : (∀X)(∃Y )[(f(X,Y ) > 0) ∧ (g(X,Y ) > 0)]

where f, g are the polynomials in our example of Figure 3(a). We will call

M(X,Y ) : (f(X,Y ) > 0) ∧ (g(X,Y ) > 0)

the matrix of this form of φ1. Then we begin to see this geometrically: it sufficies to search among the cells
of the CAD for {f, g}. Indeed, searching for all x amounts to scanning each cell C ′ of CAD(∅) of (10). For
each C ′, we want to know if there is a cell of CAD(C ′) for which f > 0 and g > 0. In each case, we can see
that there is such a cell. Hence φ1 is a valid.

To make the search more explicit, we write it as a doubly nested loop:

(∀X)(∃Y )[M(X,Y )]:

for C ′ ∈ CAD(∅)
Found ← false

for C ∈ CAD(C ′)
if (M(C))

Found ← true; Break;
if (not Found), return(false)

return(true)

In the inner for-loop, we write “M(C)” for the if-clause. This needs to be explained: recall that M(X,Y )
is (f(X,Y ) > 0) ∧ (g(X,Y ) > 0). Then M(C) is interpreted as the clause “(f(C) > 0) ∧ (g(C) > 0)”. More
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precisely, we can pick any (x0, y0) ∈ C and evaluate “(f(x0, y0) > 0)∧ (g(x0, y0) > 0)”. This outcome of this
predicate evaluation does not depend of the particular choice of (x0, y0) since M(X,Y ) is sign-invariant on
C.

Next, consider the following sentences:

φ2 : (∀X)(∃Y )[(f > 0) ∧ (g < 0)],

φ3 : (∃X)(∀Y )[(f > 0) ∧ (g > 0)],

φ4 : (∃X)(∀Y )[(f > 0) ∧ (g < 0)].

For φ2, our search in CAD(C ′) fails when C ′ = {x < x0}. Therefore φ2 is invalid. The previous doubly
nested loop can be used, except that we replace the if clause by (f(C) > 0)∧ (g(C) < 0). For φ3 and φ4, we
use a somewhat different doubly nested loop:

(∃X)(∀Y )[M(X,Y )]:

for C ′ ∈ CAD(∅)
Found ← true

for C ∈ CAD(C ′)
if not M(C)

Found ← false; Break;
if(Found) return(true);

A point α ∈ C is called a sample point of C. We see that in decision problem for sentences, the
availability of a sample point (x0, y0) ∈ C for each cell is extremely useful: the abstract predicate M(C) can
be replaced by the explicit predicate M(x0, y0). We shall see in our algorithms that such sample points can
be recursively constructed.

In general, for any sentence φ, we can put it into the prenex form:

(Q1X1)(Q2X2) · · · (QnXn)[M(X1, . . . ,Xn)] (13)

where all the quantifiers Q1, . . . , Qn appear as a prefix, followed by the matrix M(X1, . . . ,Xn). This matrix
is a Boolean combination of atomic formulas of the form

fi(X1, . . . ,Xn) ◦ 0, i = 1, . . . ,m

where fi is a polynomial and ◦ ∈ {<,>,=, 6=,≥,≤}. Let F = {f1, . . . , fm} be all these polynomials. Then
we can compute a F -cylindrical decomposition of Rn. The truth of φ can be reduced to a n-nested loop
to search the cells of the decomposition. Thus, being able to compute CAD’s will allow us to decide any
sentence of this theory. This is Tarski’s fundamental decidability result.

¶15. Resultants as Projection. We want to interpret Lemma 2 as saying that the resultant is a kind
of projection operator.

In general, if p, q are multivariate polynomials, we write resY (p, q) for the resultant in which we treat
p, q as univariate polynomials in one of the variables Y .

In the following two lemmas, let p, q ∈ Z[X,Y ], and

r(X) = resY (p, q) ∈ Z[X].

Moreover, let leadY (p), leadY (q) ∈ Z[X] denote the leading coefficients of p, q, viewed as polynomials in Y .
Before we apply Lemma 2, we prove a helper lemma:

Lemma 7. Set
p0(Y ) := p(α0, Y ), q0(Y ) := q(α0, Y )

for some α0 ∈ C. If leadY (p)(α0) 6= 0 or leadY (q)(α0) 6= 0, then

r(α0) = leadY (p)(α0)
mres(p0, q0) (14)

for some m ≥ 0.
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Proof. Wlog, assume leadY (p)(α0) 6= 0. Thus deg(p0) = degY (p). However, deg(q0) = degY (q) − m for
some m ≥ 0. Clearly, r(X) = detS(X) where S(X) is the Sylvester matrix of p, q. So r(α0) = detS(α0).
But res(p0, q0) = detS0 for another Sylvester matrix. Moreover, S0 is obtained from S(α0) by deleting the
first m rows and first m columns of S(α0). From the shape of the Sylvester matrices, our claim follows.

Q.E.D.

Lemma 8 (Projection Lemma). et α0 ∈ C and r(X) be non-vanishing. Then the following two statements
are equivalent:
(i) r(α0) = 0.
(ii) Either
(ii-a) there exists β0 ∈ C such that p(α0, β0) = q(α0, β0) = 0, or
(ii-b) leadY (p)(α0) = leadY (q)(α0) = 0.

Proof. (i)⇒(ii): Suppose r(α0) = 0. We may assume that (ii-b) does not hold, i.e., leadY (p)(α0) 6= 0 or
leadY (q)(α0) 6= 0. Otherwise, by Lemma 7, we see that r(α0) = 0 iff res(p0, q0) = 0. Hence res(p0, q0) = 0.
By Lemma 2, we further conclude that GCD(p0, q0) = g(Y ) for some polynomial g(Y ) with positive degree.
Thus, there exists β0 ∈ C such that g(β0) = 0. This implies p0(β0) = q0(β0) = 0. This implies condition (ii).

(ii)⇒(i): Conversely, suppose (ii) holds. As in the proof of Lemma 7, let S(X) be the Sylvester matrix
of p, q such that r(X) = detS(X). If leadY (p)(α0) = leadY (q)(α0) = 0, then it is clear that r(α0) =
det S(α0) = 0 since the first column of S(α0) is entirely zero. Hence, we may assume from (ii) that there
exists β0 ∈ C such that p0(β0) = q0(β0). This implies GCD(p0, q0) is non-constant. By Lemma 2, this means
res(p0, q0) = 0. Moreover, (14) implies that r(α0) = 0, as desired. Q.E.D.

The following corollary shows why this is called a projection lemma:

Corollary 9. Let p, q ∈ Z[X,Y ]. If resY (p, q) does not vanish, then the set Zero(resY (p, q) contains the
x-projections of Zero(p, q).

Proof. Suppose p(α0, β0) = q(α0, β0) = 0. Then GCD(p0, q0) has positive degree, and hence resY (p0, q0) =
0 Q.E.D.

Next assume resY (p, pY ) is non-vanishing. According to our corollary, Zero(resY (p, pY ) contains the
projections of all the x-extremal points of the curve p = 0.

REMARK: An important remark is that even if α0 is real, this lemma does not guarantee that β0 would
be real. For each real zero α0 of resY (p, q), we want to “lift” α0 to the real point (α0, β0) that satisfy
p = q = 0. To do this lifting process, we look at each real zero α0 of resY (p, q). However, many of these α0

do not lift to any real points! This can fail for two reasons: either it lift to a complex point (α0, β0) or this
α0 satisfy condition (ii-b).

¶16. Language of CAD. We now introduce some useful terminology, in order to give a general description
of CAD’s.

Let C ⊆ Rn−1 be any set. Then the cylinder over C is the set C × R ⊆ Rn. By a stack over C we
mean a decomposition of C × R into an odd number of cells,

C1 < C2 < · · · < C2m+1

where for each i = 1, . . . ,m:

• C2i is called a section and is the graph of a real function gi on C,

gi : C → R.

• C2i−1 is called a sector and is given by

{(p, y) ∈ Rn : p ∈ C, gi−1(p) < y < gi+1(p)}

For uniformity in notation, we may assume g0 = −∞ and g2m+2 = ∞ in this definition.
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(b)
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Figure 4: A Stack over C

Such a stack is illustrated in Figure 4.
We now define a cylindrical decomposition (CD) to be any finite partition D of Rn into a collection

of cells with the following properties. If n = 1, any finite partition of R into points and open intervals is a
CD. Recursively, for n ≥ 2, there exists a CD D′ of Rn−1 such that:

• For each C ∈ D, there exists a C ′ ∈ D′ such that C projects onto C ′, i.e., πn(C) = C ′.

• For each C ′ ∈ D′, the set of C ∈ D that projects onto C ′ forms a stack over C ′.

If πn(C) = C ′, we say C is a child of C ′. We call D′ a projection of D; conversely D is called an
extension of D′.

¶17. Projection Operator in the plane. Let F ⊆ Z[X1, . . . ,Xn], and D be a CD of Rn.
If each cell C of D is F -invariant, we call D a cylindrical decomposition for F . How shall we compute

D? If n = 1, this is easy (recall that we know how to isolate zeros of polynomials and represent them).
Assume n ≥ 2. The strategy is that we first construct another set PROJ(F ) ⊆ Z[X1, . . . ,Xn−1] such that
a cylindrical decomposition D′ for PROJ(F ) can be extended into a cylindrical decomposition D for F .

The property that makes this possible is the notion of “delineability”. We say a function f : Rn → R

is delineable over a set S ⊆ Rn−1 if the set of real zeros of f , restricted to the cylinder S × R define the
graphs of a finite number of functions of the form

gi : S → R (i = 1, . . . , k)

with the following properties:
(i) For p ∈ S,

g1(p) < g2(p) < · · · < gk(p).

(ii) For each i = 1, . . . , k, there is a positive integer mi such that gi(p) is a root of the polynomial f(p,Xn)
of multiplicity mi.

The graphs of the functions gi has the form {(p, gi(p)) : p ∈ S} and are called f-sections. These f -
sections partition the cylinder S × R into sets of the form

{(p, z) : gi(p) < z < gi+1(p)}

for i = 0, . . . , k. Here, we assume g0(p) = −∞ and gk+1(p) = +∞. We call these the f-sectors. Thus, the
cylinder S × R is partitioned into k sections and k + 1 sectors. If S is a (n − 1)-cell, then each section is an
(n − 1)-cell, and each sector is an n-cell.
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The order of a real analytic function f : Rn → R at a point p ∈ R is the least k such that some k-th
partial derivative of f does not vanish at p. If there is no such k, then the order is ∞. We say f is order
invariant on a set S ⊆ Rn if the order of f is constant for all p ∈ S.

Observe that the f -sections and f -sectors are automatically f -sign invariant. We have the following
theorem from McCallum:

Theorem 10 (McCallum). Let n ≥ 2 and X = (X1, . . . ,Xn−1). Let f(X,Xn) be a polynomial in R[X,Xn]
of positive Xn degree. Let D(X) be the discriminant of f(X,Xn) and D(X) is non-zero. If f is degree-
invariant and non-vanishing on S ⊆ Rn−1, and D is order-invariant on S, then f is delineable on S and
order-invariant on each f-section on S.

The use of order-invariance in this theorem is somewhat incompatible with the usual emphasis on
sign-invariance. Nevertheless, this theorem also shows that order-invariance can be propagated from sign-
invariance. Based on this theorem, we may define the following: let F be a squarefree basis in Z[X1, . . . ,Xn].
By squarefree basis, we mean that the polynomials have positive degree in Xn, are primitive, squarefree and
pairwise relatively prime. The projection of F is the set PROJ(F ) ⊆ Z[X1, . . . ,Xn−1] formed by the union
of the following three sets:
(i) coeff(F ) is the set of all non-zero coefficients of f ∈ F ,
(ii) disc(F ) is the set of all non-zero discriminants of f ∈ F ,
(iii) res(F ) is the set of all non-zero resXn

(f, g) for f, g ∈ F .

¶18. Additional Issues in CAD. This area has remained an active research area even today (2009).
One of the most pressing issue is to improve the complexity of CAD. The number of cells is easily seen
to be bounded by a double exponential in n, the number of variables. This double exponential complexity
is inherent [Davenport and Heintz, 1987]. Although the worst case complexity of CAD construction has
improved dramatically over the years, this is still a bottleneck for widespread applications. There are several
ways to improve the complexity. For instance, it is clear that the prenex form is in some sense the worst
way to decide sentences – most natural sentences have local structures that can be decoupled and solved
separately and combined in an effective way. A simple observation is that CAD size is double exponential,
not in n (number of variables), but in the number of alternations of quantifiers in the prenex sentence.
This means that, for instance, those with no alternation of quantifiers can be solved much faster (e.g., in
polynomial space). Another direction is the development of numerical techniques for CAD [Hong, Collins-
McCullum, etc]. The variables in a sentence are not completely independent – for instance, if we discuss
the geometry of n points in Euclidean d-space, there are nd variables. This fact can be exploited. In 1983,
Schwartz and Sharir applied CAD techniques to the problem of robot motion planning. This introduced an
additional issue in CAD construction: the need to determine adjacencies between cells. Note that in this
application, the sign-invariant regions are primary, and there is no need to have cylindrical decomposition.
This can reduce the number of regions to single exponential.

Exercises

Exercise 5.1: Consider the sentence φ in the prenex form of (13). Describe the n-nested loop to evaluate
the truth of φ given a CAD for the polynomials in the matrix of φ. ♦

Exercise 5.2: (Ellipse Problems) Consider the ellipse

E :
(X − c)2

a2
+

(Y − d)2

b2
= 1.

What are the conditions on a, b, c, d so that E is contained in the unit circle X2 + Y 2 = 1. This can
be formulated as the sentence

(∀X)(∀Y )[
(X − c)2

a2
+

(Y − d)2

b2
≤ 1. ⇒ .X2 + Y 2 ≤ 1].

Describe how we can use CAD to solve this problem.
NOTE: Lazard (1987) succeeded in solving this with the help of MACSYMA. This problem could not
be solved by the available CAD software at that time. ♦
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Exercise 5.3: In many applications, not all the real variables in a first order sentence are independent. The
most important situation is when the variables are naturally grouped into k-tuples. For instance, let
k = 2, and our sentence is about points in the plane. How can we take advantage of this in constructing
CAD? ♦

End Exercises

§6. APPENDIX: Subresultant Theory

In order to understand Collin’s theory of CAD, we will delve deeper into Sturm sequences. Indeed,
Tarski’s original decision procedure was viewed as a generalization of Sturm sequences. For computational
efficiency, we also need to delve into the theory of subresultants. For a more complete treatment, see [7].

A ring R is an ordered ring if it contains a subset P ⊆ R with the property that P is closed under
addition and multiplication, and for all x ∈ R, exactly one of the following three conditions hold:

x = 0, x ∈ P, −x ∈ P.

Such a set P is called a positive set of R. Then R is totally ordered by the relation x < y iff y − x ∈ P .
Throughout the following development, assume D is a UFD that is also ordered. For instance, D =

R[X1, . . . ,Xn] where R ⊆ R is a UFD. In this case, the positive set P ⊆ D can be taken to be those
polynomials whose leading coefficient is a positive number in D.

Why is efficiency a problem for computing the standard Sturm sequences in D[X]? The reason is that
such sequences assumes that D is a field. If D is not a field, we must replace D by its quotient field, Q(D).
In order words, when we compute the remainder of polynomials, A,B ∈ D[X], the result, rem(A,B) will in
general be an element of Q(D)[X], not of D[X]. E.g, from D = Z we must go to Q(D) = Q. This turns out
to be very inefficient [7]. We then proceed as follows:

Suppose A,B ∈ D[X]. If deg A ≥ deg B, let us define the pseudo-remainder of A,B to be the
remainder of bδ+1A divided by B, where b = lead(B) and δ = deg A − deg B, i.e.,

prem(A,B) := rem(bδ+1A,B).

It is not hard to see, by looking at the process of long division of polynomials, to see that prem(A,B) ∈ D[X].
If deg A < deg B, then prem(A,B) := A.

Given A,B ∈ D[X], we define a polynomial remainder sequence (PRS) of A,B to be a sequence of
polynomials

(A0, A1, . . . , Ah)

where A0 = A,A1 = B and for i ≥ 1,

βiAi+1 = αiAi−1 + QiAi (15)

for some βi, αi ∈ D and Qi ∈ D[X] and deg Ai−1 < deg Ai. Moreover, the termination of the PRS at Ah is
determined by the condition that Ah+1 = 0 where Ah+1 it is defined by (15) from Ah−1 and Ah. This h is
defined because the degree of the Ai is strictly decreasing.

There are many ways to form the PRS of A,B. One way is to use pseudo remainders is to choose (15)
to be:

Ai+1 = prem(Ai−1, Ai). (16)

This is called the Pseudo PRS of A,B. For D = Z, the pseudo PRS will contain generally exponentially
large coefficients, and this is not practical. So, instead, we can replace (16) by

Ai+1 = prim(prem(Ai−1, Ai)). (17)

Here, prim(A) is the primitive part of A, defined to be A/cont(A) where cont(A) is the GCD of all the
coefficients of A. This produces a PRS that is optimal in terms of coefficient sizes. However, computing
prim(A) is quite expensive.
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Let (β1, . . . , βh−1) where each βi ∈ D. We say that a PRS (A0, . . . , Ah) for A,B is based on (β1, . . . , βh−1)
if for i ≥ 1,

Ai+1 =
prem(Ai−1, Ai)

βi
. (18)

We will describe an algorithm for computing a PRS based on a suitable sequence of βi’s in which the βi’s
are easy to compute and the coefficients of the PRS remains polynomially bounded in terms of deg A0. See
[7] for proofs.

Here is the algorithm:

SubPRS Algorithm

Input A,B ∈ D[X], deg(A) ≥ deg(B) > 0
Output PRS (A0, . . . , Ah) for A,B
⊲ INITIALIZATION

A0 ← A; A1 ← B
a0 ← lc(A0); a1 ← lc(A1)
d1 ← deg(A0) − deg(A1)

ψ0 ← 1; ψ1 ← ad1

1

β1 ← (−1)d1+1

⊲ LOOP
for (i = 1; true; i++)

Ai+1 ← prem(Ai−1,Ai)
βi

⊳ Exact Division

ai+1 ← lc(Ai+1)
if (ai+1 = 0)

h ← i; break ⊳ Exit For-Loop
di+1 ← deg(Ai) − deg(Ai+1)

ψi+1 ← ψi

(
ai+1

ψi

)di+1

βi+1 ← (−1)di+1+1 (ψi)
di+1

ai
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Lecture 7

Voronoi Diagrams

We introduce a critical idea of EGC, the technique of root bounds. This will be addressed
through the study of Fortune’s algorithm for computing the Voronoi diagram of a set of points.
The algorithms is based on the plane sweep paradigm. But unlike the algorithms we have seen
until now, this one has an interesting twist – it requires the computation of square roots. Thus
the direct use of a Big Rational package will not necessarily give us the geometric exactness we
need. This leads us into the theory of constructive root bounds.

§1. Introduction

Consider a finite set S ⊆ R2. We define a certain skeleton (comprising a set of straightline segments)
called the Voronoi diagram of S. See Figure 1 for an example of such a diagram where |S| = 11. The most
striking feature of the diagram is the fact that it subdivides the plane into a set of |S| polygonal regions,
with each region containing a unique point s of S.

a

b

c

d

e

f

g

h i

j

k

Figure 1: Voronoi diagram of a set {a, b, c, . . . , j, k} of 11 points

We introduce some usual terminology. The points in S is called sites because in some applications, S
can be viewed as locations on a map. For instance, each site s ∈ S may be the location of a postoffice, and
the polygonal region containing s comprises those points q in the plane that are closest to this postoffice.
Then a basic computational problem is to construct a data structure D(S) that can quickly answer, for any
query point q ∈ R2, the post office s ∈ S that is closest to q. This is the well-known Post Office Problem.

The regions defined by the Voronoi diagram can be precisely discribed as follows: for p, q ∈ R2, let
d(p, q) =

√
(px − qx)2 + (py − qy)2 denote Euclidean distance between them. If p 6= q, let b(p, q) denote the

bisector line between p and q: this is the line that passes through the point (p + q)/2 and is normal to
the segment [p, q]. Also, let h(p, q) denote the open half-space bounded by b(p, q) and containing p. When
p = q, it is convenient to define h(p, q) to be the entire plane. So h(p, q) 6= h(q, p) unless p = q.

Although we have used R2 for illustration, these concepts are easily extended to any dimension. Fix a
non-empty finite set S ⊆ Rn. Define the the Voronoi region of s to be

V (s) = VS(s) :=
⋂

{h(s, s′) : s′ ∈ S}.
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Since V (s) is the intersection of half-spaces, it is is a convex polygonal set. It is non-empty since s ∈ V (s).
The corners of the boundary of VS(s) are called Voronoi vertices and the maximal open line segments
bounding VS(s) are called Voronoi edges. Note that a Voronoi edge can be a finite segment, a half-line or
a line. Let K0(S), K1(S) and K2(S) denote the set of Voronoi vertices, Voronoi edges and Voronoi regions,
respectively.

Let us analyze the Voronoi facets (i.e., vertices, edges, regions) which we just defined. For any point p, let
d(p, S) = min{d(p, q) : q ∈ S} and CS(p) denote the circle centered at p with radius d(p, S). We call CS(p)
the largest empty circle at p because the interior of CS(p) has empty intersection with S. On the other
hand, the set CS(p)∩S is non-empty, and the cardinality |CS(p)∩S| yields very important information: we
classify the point p according to this cardinality.

Lemma 1. Suppose p ∈ R2.

• If CS(p) ∩ S = {s} then p lies in the Voronoi cell VS(s).

• If CS(p) ∩ S = {s, s′} where s 6= s′ then p lies on a Voronoi edge. In fact, p ∈ b(s, s′).

• If |CS(p) ∩ S| ≥ 3 then p is a Voronoi vertex. In this case, p is the circumcenter of any three distinct
sites s, s′, s′′ ∈ CS(p) ∩ S.

We leave the proof as an Exercise.

Cell Complex. Voronoi diagrams are best viewed as a special kind of cell complex. A
d-cell is any subset of Rn that is homeomorphic to the open d-ball Bd =

{
p ∈ Rd : ‖p‖ < 1

}

(d ≥ 1); a 0-cell is just a singleton set. Also, the closure of Bd, the closed d-ball, is denoted

B
d
. Let K be any non-empty finite collection of pairwise disjoint cells. The support of K

is |K| := ∪K ⊆ Rn. We call K a cell complex if, for each d-cell C ∈ K, d ≥ 1, there is a

continuous function fC : B
d → |K| such that the restriction of fC to Bd is a homeomorphism

between Bd and C. It can be shown [6, p. 215] that this implies that fC(Ḃd) is equal to a
union of cells in K.

A cell complex K in which every 2-facet is a convex is called a convex subdivision.

Theorem 2. The union K(S) = K0(S) ∪ K1(S) ∪ K2(S) is a convex subdivision of the plane.

Proof. By the previous lemma, p lies in a Voronoi region or a Voronoi edge or a Voronoi vertex depending
on whether |CS(p) ∩ S| is 1, 2 or ≥ 3. These conditions are mutually disjoint. Hence K is pairwise disjoint.

By definition, the boundary of each Voronoi region is a union of Voronoi edges and Voronoi vertices.
Hence K is a complex.

Since each region is a convex, we conclude that K is a convex subdivision. Q.E.D.

In view of this theorem, K(S) is called the Voronoi complex of S. Each f ∈ K(S) is a Voronoi
facet. The skeleton K0(S) ∪ K1(S) of this complex is called the Voronoi diagram and denoted V or(S).
The Voronoi diagram can also refer to the support of this skeleton; this abuse of language should not cause
confusion.

Lemma 3. The following are equivalent for |S| ≥ 3:
(i) The Voronoi diagram of S is connected
(ii) S does not lie on a line.
(iii) Every Voronoi region has a connected boundary.

Proof. (iii) implies (ii): If S lies on a line, then the Voronoi diagram has no vertices and comprises |S|−1
parallel lines.

(ii) implies (iii): A Voronoi region V (s) is star-shaped with respect to s. If V (s) is bounded, then clearly
its boundary is connected. So let V (s) be unbounded. Since S does not lie on a line, there exists s′, s′′ ∈ S
such that (s, s′, s′′) that forms a non-degenerate triangle. Then h(s, s′) ∩ h(s, s′′) forms a wedge W which
contains V (s). Being star-shaped and unbounded, there is a non-empty maximal cone C ⊆ V (s) of rays
emanating from s. Thus C ⊆ W . [It is easy to argue that the union of set of rays from s must form a
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connected set.] It follows that if we shoot any ray from s in a direction outside this cone, the ray will hit a
boundary of V (s). Thus the boundary of V (s) is connected.

(iii) implies (i): Let p, q be two points of the Voronoi diagram. Consider the straightline from p to q.
It passes through an alternating sequence of Voronoi regions and points on the Voronoi diagram. Let this
alternating sequence be p0, R1, p1, R2, . . . , Rk, pk where p = p0 and q = pk. Since each Ri has connected
boundary, it means pi−1 is connected to pi. Thus p = p0 is connected to q = pk.

(i) implies (iii): If a Voronoi region V (s) does not have a connected boundary, then it must be bounded
by two parallel lines. These two lines determine two connected components of the Voronoi diagram of S.
Thus the Voronoi diagram is not connected. Q.E.D.

Theorem 4. Let |S| = n. The number of Voronoi vertices is at most 2n − 5 and the number of Voronoi
edges is at most 3n − 6.

For each n ≥ 3, these bounds can be achieved simultaneously by a single configuration.

Proof. If S lies on a line, the result is easy to see. Otherwise, we know that the skeleton is connected.
Let v be the number of Voronoi vertices, e the number of Voronoi edges.

Let C be a circle large enough to contain all the Voronoi vertices and sites. We create a new vertex
v∞ outside C, and redirect each infinite Voronoi edge so that, outside of C, they each connect to v∞ along
pairwise disjoint curvilinear paths. See Figure 2.

a

b

c

d

e
f

g

h i

j

k

v∞

Figure 2: Graph with new vertex v∞

This creates a connected graph G whose complement defines a set of connected regions. These regions
has a one-one correspondence with the Voronoi regions. We now use the Euler formula for a planar graph
embedded in the plane,

ν0 − ν1 + ν2 = 1 + β

where νi is the number of cells of dimension i and β the number of connected components. Since there are
n Voronoi regions, this means ν2(G) = n. Similarly, we have ν0(G) = v + 1 (because of the vertex v∞) and
ν1(G) = e (the new curves we added are considered part of the infinite edges which we modified). Finally,
since G is connected, β(G) = 1. Thus, the Euler formula becomes

(v + 1) − e + n = 2.

We need another relation between v and e to get bounds on v and e. Let us count the number I of (vertex,
edge) incidences. Counting from the viewpoint of edges, I = 2e since each edge contributes two incidences.
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Counting from the viewpoint of vertices, I ≥ 3(v +1) since each vertex yields at least three incidences. Thus
2e ≥ 3v + 3. Plugging this into the Euler formula, we can either eliminate e or v. The result are the bounds
on v and e claimed in this theorem.

We now show that the bounds of the theorem is tight. When n = 3, we let S comprise the vertices of an
equilateral triangle. Then v = 1 and e = 3 achieve the bounds of the theorem. Now we can incrementally
add successive sites to S so that each addition creates increases the number of Voronoi vertices by 2 and
increases the number of Voronoi edges by 3.

For instance, for n = 4, we can place the next vertex right at the location of the unique Voronoi vertex
(replacing it with 3 new Voronoi vertices), and adding three new Voronoi edges. Alternatively, the next
three sites (n = 4, 5, 6) can be placed so that these points form the vertices of regular hexagon. In either
case, the process can be continued indefinitely. Q.E.D.

§2. Fortune’s Linesweep

Fix a set S of sites. Again consider a horizontal line H(t) that sweeps from t = −∞ to t = ∞. The key
idea is to define a curve called the beach line B(t) of H(t): the set B(t) comprises those points p such that

d(p,H(t)) = d(p, S(t))

where S(t) denotes those points that has been swept by time t, i.e., points lying on or below H(t). This is
illustrated in Figure 3.

sea

beach

land

e1
e2

s4

s5
s6

H(t)

S(t) = {s1, s2, s3}
s1

s2

s3

Figure 3: Beach line defined by active sites s1, s2, s3

The next lemma will give a characterization B(t). For each site s ∈ S(t), define Bs(t) to be the parabola
defined by the line H(t) as directrix and s as focus. In Figure 3, the parabolas defined by s1, s2, s3 are
indicated.

Lemma 5. The beach line B(t) is the upper envelop of the set {Bs(t) : s ∈ S} of parabolas.

Proof. By a fundamental property of parabolas, Bs(t) is comprised of those points that are equidistant
from H(t) and s, i.e., d(p,H(t)) = d(p, s). The upper envelop of these parabolas are therefore those points
p which achieve d(p,H(t)) = d(p, S(t)). Q.E.D.

Thus the beach line is a union of a number of parabolic arcs. Each arc is associated with a site s ∈ S; by
definition, such sites are said to be active. Active sites may become inactive when they no longer define
arcs on the beach line. Points on the beach line where two consecutive arcs meet are called breakpoints.
This beach line divides the plane into an upper part called land and a lower part called sea. The land itself
is divided into two parts: the beach which lies between H(t) and the beach line, and the dry land which
lies above H(t). The sites are thus classified as wet or dry depending on whether they are on dry land or
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in the sea; there are no sites on the beach. Thus, active sites lies in the sea. These concepts are illustrated
in Figure 3. As we sweep, we maintain the part of the Voronoi diagram restricted to the sea. This partial
Voronoi diagram need not be connected even if the overall Voronoi diagram is connected. E.g., the partial
diagram in Figure 3 is comprised of the two disconnected edges e1 and e2.

We next examine some basic properties of the beach line. Our main goal is to understand how the beach
line transforms as t → ∞. We are interested in the critical moments when B(t) change combinatorially.

P1 The beach line is x-monotone, and its vertical projection covers the entire x-axis. This follows from the
basic properties of parabolas.

As corollary, we can represent B(t) as a concatenation of parabolic arcs,

B(t) = (α1;α2; · · · ;αm) (1)

listed in order of increasing x. Suppose αi is part of the parabola defined by si ∈ S. Combinatorially,
the beach line can be represented by the sequence

(s1, s2, . . . , sm) (2)

of active sites. It is important to realize that a site s may appear more than once in this sequence.
However, for each pair s, s′ of distinct sites, these sites can be adjacent in (2) at most twice (once in
the order s, s′ and once in the reverse order s′, s). That is because the parabolas defined by s and s′

can intersect at most twice. We shall next see how this active sequence can change.

P2 The sea is monotonically advancing with t. To see this, let L be any vertical line. Then the intersection
B(t) ∩ L moves monotonically upward with time.

P3 Every point p in the sea is closer to some wet site s than to any dry site s′. In proof, let the line segment
[p, s′] intersect the beachline at some point p′. Note that p′ may not be unique. There is an active site
s that is closest to p′. Then

d(p, s′) = d(p, p′) + d(p′, s′) > d(p, p′) + d(p′,H(t)) = d(p, p′) + d(p′, s) ≥ d(p, s).

P4 Each break point q moves along a Voronoi edge (hence in straight lines). In proof, let q be the common
endpoint of the arcs generated by the active sites s and s′. To show that q lies on a Voronoi edge
determined by s and s′ we show that d(q, s) = d(q, s′) ≤ d(q, s′′) for any other site s′′. If s′′ is on the
dry land, this follows from P4. If s′′ is in the sea, consider the intersection q′ between the vertical line
L through q and parabola generated by the sweepline H(t) and s′′. Note that q′ lies below q, since
B(t) is the upper envelop. Then d(q′, s′′) = d(q′,H(t)) > d(q,H(t)) = d(q, s′). This proves s′′ is not
closer than s′ to q.

P5 Each point q on an arc of the beach line belongs to the Voronoi region of the cell that generates the arc.
By a similar argument to the one for P4.

P6 Consider three consecutive arcs α, α′, α′′ separated by two consecutive breakpoints p and q. Let s, s′, s′′

be the sites that generates these arcs. If α, α′′ are part of the same parabola (i.e., s = s′′), then p, q
will be diverging with t. Hence α′ cannot disappear. This property is clear from the geometry.

P7 When an arc α′ contracts, the first time when it becomes a point v, there are three distinct sites, s, s′, s′′

such that v is the Voronoi vertex defined by s, s′, s′′. This is called the circle event parametrized by
(s, s′, s′′). This terminology will become clearer below. In proof, by P6, we know that s 6= s′′. By P4,
we know that the instant α′ disappears, it is simultaneously closest to s, s′, s′′.

P8 When a new site first becomes wet, it is active and it defines a degenerate arc that is just a line segment
(or a ray, in case this is the first site). This is called the site event parametrized by s.
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P9 The beach line can change combinatorially only with a site event or a circle event. Pf: By P7 and P8, we
know that these events can cause combinatorial change in the beach line. We must exclude all other
possibilities of creating new arcs in the beach line. Suppose at time t, a new arc appears at position
p on some arc define by an active site s. This new arc must come from some wet site s′. Let L be
the vertical line through p. Let the parabola Bs(t) intersects L at the point p(t), and similarly, let
p′(t) = Bs′(t) ∩ L. At time t−, p(t−) is above p′(t−) but at time t+, p(t−) is below p′(t−). This is
impossible (details omitted).

P10 A site is initially dry, then active (thus wet). Finally it becomes inactive (still wet). Pf: in other
words, inactive sites do not become active again. After it becomes inactive, its Voronoi region is now
contained in the sea. It will remain this way since the sea is advancing monotonically.

P11 A parabola can contribute up to n arcs on the beach line. Such examples are easy to generate.

P12 The beach line has at most 2n − 1 arcs. Pf: this is because the only way that new arcs appear is
through a site event, and there are n such events. Each such event increase the number of arcs by 2
(except the first site event increases the number by 1).

¶1. The Algorithm. As usual, we sweep the horizontal line H(t) from t = −∞ to t = +∞. Call t a
critical moment if there is a site event or a circle event. If t is non-critical, then the beach line B(t) is
a sequence of arcs as in (1). The combinatorial part of this information (i.e., (2)) will be represented by a
balanced binary tree T .

We need to detect the successive critical moments using a priority queue Q. Initially, Q stores all the
site events. Circle events are added to Q as they arise (see below). Using Q, we can correctly update T .

Finally, we must represent the known portion V ort(S) of the Voronoi diagram: this is just the part of
V or(S) that lies below B(t) which we called the partial Voronoi diagram. We will use a half-edge data
structure D.

We next consider these three data structures, T,Q,D in detail.

¶2. The Priority Queue Q. We have two kinds of events stored in Q: either a site event s with priority
s.y = sy, or a circle event (s, s′, s′′) with priority equal to the y-coordinate of the highest point of the
circumcircle of s, s′, s′′. Initially, Q contains all the site events. We must discuss how to add circle events
into Q. If (2) is the active sequence of sites, then we maintain the invariant that every consecutive triple
(si−1, si, si+1) that can generate a circle event is already in Q. Hence, whenever T is modified we need to
check to detect any new circle event that is formed, and to insert it into Q. If the priority of the triple is
greater than the current time t, it is inserted into Q. A basic property to show is this: Every circle event
of priority t will placed in Q before time t.

¶3. The Balanced Binary Tree T . If the arcs and active sites in B(t) are represented as in (1) and
(2), then T will have m nodes, where each node stores site. But what is the key value for searching the
tree T? Clearly, the x-coordinates of these sites are inapproriate because a site may occur more than once
in the sequence. Rather, we use the x-coordinates of the breakpoint defined by any two consecutive sites,
si, si+1. This breakpoint must be defined as a function of t: let bt(si, si+1) denote this x-coordinate at time
t. For brevity, we may also write xi(t) for bt(si, si+1). Also, let x0(t) = −∞ and xm(t) = +∞. Note that in
general, two sites s, s′ determine up to two breakpoints since two parabolas with the same directrix intersect
in one or two points. If s.y = s′.y, then there is a unique break point. Otherwise, we distinguish these two
breakpoints by writing bt(s, s

′) and bt(s
′, s) such that

bt(s, s
′) < bt(s

′, s)

provided s.y < s′.y. Below, we show how to compute bt(s, s
′).

An interesting issue arises in application of binary search trees. In general, there are two ways to store a
set of items in a binary search tree. We can either store them exclusively in the leaves, or we can store them
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in the internal nodes as well well as the leaves. We call1 the former exogenous and the latter endogenous
trees. Since keys xi(t) depends on two consecutive sites, it seems more natural to store the sites only in
the leaves. We assume that T is a full-binary tree (i.e., each node has two children) and each node u of
the tree stores a pointer to its successor u.next and predecessor and u.prev. If u is an internal node, then
u.next and u.prev are both leaves. If u is a leaf, then we see that u.next2 = u.next.next is the next leaf, and
u.prev2 = u.prev.prev is the previous leaf. The leaves therefore stores the sequence (s1, . . . , sm) of active
sites.

Note that maintaining all these pointers are straightforward and standard. Moreover, if T is a balanced
tree (e.g., an AVL Tree), there will be rotation operations to maintain balance. Such pointers are unaffected
by rotations.

We now consider insertion into and deletions from T . These are determined by the site and circle events:

• Site Event s: This amounts to insert a new site s into T using s.x as key and using t = s.y as the current
time. Let u be initially the root of T . If u is not a leaf, we compute the breakpoint bt(u.prev, u.next).
If s.x ≥ bt(u.prev, u.next), we set u to the right child of u, else u is set to the left child of u. We
continue this process until u is a leaf. Assume that u contains the site si. It follows that that

xi(t) ≤ s.x < xi+1(t).

Let us first assume the non-degenerate situation where xi(t) 6= s.x. The sequence (2) is thereby
transformed to

(s1, . . . , si, s, si, . . . , sm)

In terms of modifying the tree T , we create a subtree of u with three new leaves. We store s in the
middle leaf and store separate copies of si in the other leaves. This is illustrated in Figure 4.

si

si

si

u

u

s

insert(s)

Figure 4: Inserting s into leaf u containing si

We must next check if the new consecutive triples (si−1, si, s) and (s, si, si+1) define circle events in
the future (time > t). If so, these events are inserted into Q. If xi(t) = s.x, then we only need to
create two new leaves as children of u, one storing si and the other storing s. We leave the details to
the reader.

• Circle Event (si−1, si, si+1): this amounts to deleting the event si from T . Note that si−1 6= si+1 in
this case. Therefore, we obtain a new break point defined by bt(si−1, si+1). We must also check if
(si−2, si−1, si+1) and (si−1, si+1, si+2) define circle events in the future (at time > t). If so, we insert
them into Q.

1Our definition of exogenous/endogenous is slightly different than the literature. We think of each item as a pair,
item=(data,key). Clearly, each internal node of a binary search tree must store a key. The question is where is the data
stored? In the literature, endogenous tree is when each tree node directly stores the data associated with the key; it is
exogenous when we only store a pointer to the data.
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¶4. The Half-Edge Datastructure D. Note that the partial Voronoi diagram Kt(S) at time t may not
be connected even if K(S) is connected. This is seen each time we initiate a site event, at which time an
isolated partial edge appears, growing in both directions. To make the partial complex connected, we include
the beach line in its representation. Then we can represent the sea as a cell complex whose boundaries are
either edges in Kt(S) or arcs from the beach line B(t). Although Kt(S) and B(t) changes continuously with
t, the combinatorial structure is unchanged except at an event. One classic representation of such a complex
is the half-edge data structure. This structure is illustrated in Figure 5.

v1

v2

h1

h5

h4

h3

h2

h6

v3

v4

v5

R

R′

Figure 5: Half-edge data structure

A half-edge data structure D represents an planar graph embedded in the plane. It contains three
lists, representing the sets of regions, half-edges and vertices (respectively). The unique feature of this
representation is that it stores not “edges” but half-edges. Each half edge h is regarded as a directed edge
from a start vertex h.start to a stop vertex h.stop. E.g., in Figure 5, the half edge h1 is a directed edge from
v1 to v2.

Moreover, h has a twin h′ which is another half-edge, directed from h.stop to h.start. Thus,

h.start = h.twin.stop, h.stop = h.twin.start.

In Figure 5, the twin of half edge h1 is h6. We can think of the pair {h, h′} = {h, h.twin} as an edge e.
Why this redundancy? The reason is that each edge e is incident on two regions R and R′. We think of
the two two half-edges that represent e as represening the (e,R) and (e,R′) incidences. Thus, for each half
edge h, we store a field h.region with value R if h represents the incidence between the underlying edge with
R. Moreover, we orient the half-edges that are incident on a given region R in a counter-clockwise manner.
More precisely, each half-edge h has a field h.next which is another half edge with the property that

h.region = h.next.region, h.stop = h.next.start.

In this way, by repeated application of the .next field, we can go around the boundary of the .region. In
Figure 5, the region R has 5 incident half-edges h1, . . . , h5, and we have hi−1.next = hi for i = 1, . . . , 5 (and
h0 = h5).

Each vertex stores its (x, y) coordinate, and also one of the half-edges that points away from the vertex.
In some applications, we do not even need the list of regions and may omit the field h.region. However,
for our Current application, we can store with each region the unique site the determines the corresponding
Voronoi region. The boundary edges of regions need not be straightline segments (in this sense, Figure 5
is somewhat misleading). Indeed, for our regions, these edges might be (temporarily) parabolic arcs. With
arcs, it makes sense to have regions that have only two bounding half-edges. Indeed, when we insert a new
region into D with each site event, the region will initially have only two bounding edges. The reader will
find it instructive to carry out the details of creating a new region during a site event.

It is clear that this data structure D stores most of its the information in half-edges. Using D, for
instance, we can list the set of regions that are clockwise around a given vertex in linear time. There is
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also no need to store the inverse of .next because we can also use the available fields to get to the previous
half-edge in constant time. We leave these as Exercises.

§3. Algebraic Details

In order to perform the arithmetic operations correctly according to the principles of EGC, we need to make
comparisons of numbers accurately. In Fortune’s algorithm we encounter irrational numbers for the first
time. These numbers involve square roots. Let us investigate this in some detail.

Suppose p, q, r are three sites and c is their circumcenter. If (x, y) is a point on this circle, we have

(x − cx)2 + (y − cy)2 = ρ2 (3)

where ρ is the radius. Plugging p = (px, py) into this equation, we get (px−cx)2 +(py −cy)2 = ρ2, re-written
as

2pxcx + 2pycy + (ρ2 − c2) = p2

where c2 = c2
x + c2

y and p2 = p2
x + p2

y. We can similarly plug q and r into (3) to get two more equations.
Writing these 3 equations in the matrix form,




px py 1
qx qy 1
rx ry 1







2cx

2cy

ρ2 − c2


 =




p2

q2

r2




Rewriting and solving, we obtain

cx =
1

2∆

∣∣∣∣∣∣

p2 py 1
q2 qy 1
r2 ry 1

∣∣∣∣∣∣

cy =
1

2∆

∣∣∣∣∣∣

px p2 1
qx q2 1
rx r2 1

∣∣∣∣∣∣

∆ =

∣∣∣∣∣∣

px py 1
qx qy 1
rx ry 1

∣∣∣∣∣∣
. (4)

The priority of the circle event (p, q, r) is therefore

cy + ρ

where

ρ =
√

(px − cx)2 + (py − cy)2.

In the following, we assume that the input points p, q, r have L-bit integer coordinates. It follows from
(4) that the center c has coordinates whose numerator and denominators are 3L + O(1) and 2L + O(1)-bit
integers (respectively). We can rewrite the priority as a number of the form

cy + ρ =
A +

√
B

D
(5)

where A,B,D are integers with 3L+O(1), 6L+O(1) and 2L+O(1) bits respectively. In fact, we can choose
D = ∆.
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p

q

c

r

Figure 6: Circle event c generated by sites p, q, r

The λ-notation. If x is a rational number of the form p/q, and p, q are integers with
lg |p| ≤ m and lg |q| ≤ m, then we call x an (m : n)-bit number, and write

λ(x) = (m : n). (6)

For instance, if x is an integer, then λ(x) = (m : 0) for any m ≥ lg |x|.
Like the standard big-O notation, the λ-notation is an upper bound notation. Thus the
equality in (6) is not standard equality, but a form of “≤”. In particular, if λ(x) = (m : n)
holds, then λ(x) = (m′ : n′) holds for all m′ ≥ n and n′ ≥ n. We can thus use big-
O expressions in the righthand side of (6). E.g., λ(x) = (O(L2) : 2L + O(1)). But it
would not make sense to insert lower bound expressions into the righthand side. E.g.,
“λ(x) = (Ω(L) : 0)” is nonsense.

For rough estimates, we can ignore the O(1) terms and simply say that the coordinates of c are (3L : 2L)-
bit rational numbers. Nevertheless, in our implementation, we need to know explicit bounds on these O(1)
terms. Here are the explicit constants for the numbers derived in (4) and (5), collected here for future
reference:

λ(px) = (L : 0) (7)

λ(p2) = (1 + 2L : 0) (8)

λ(∆) = (4 + 2L : 0) (9)

λ(cx) = (4 + 3L : 4 + 2L) (10)

λ(D) = (4 + 2L : 0) (11)

λ(A) = (4 + 3L : 0) (12)

λ(B) = (11 + 6L : 0) (13)

In our priority queue operations, we must compare the priorities of events. Priority of site events are
L-bit integers while circle events have priority given by (5). Hence the most complicated comparisons are
between the priorities of two circle events,

A +
√

B

D
:

A′ +
√

B′

D′
(14)

where A,A′ are 3L bits, etc. How can we make such comparisons exact?

¶5. Method of Repeated Squaring. We can use the well-known method of repeated squaring. This
method seems quite reasonable for (14) if we only want to determine equality or inequality. But we need to
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know more: in case of inequality, we must know which is bigger. We now demonstrate that in this case, the
method of repeated squaring is considerably more involved to implement.

We may reduce the desired comparison to the simpler case of checking whether α + β
√

n ≥ 0 where
α, β ∈ R, n ∈ N. This is equivalent to the following three disjunctions:

(α ≥ 0, β ≥ 0) ∨ (15)

(α ≥ 0, β ≤ 0, α2 − β2n ≥ 0) ∨ (16)

(α ≤ 0, β ≥ 0, α2 − β2n ≤ 0). (17)

Recursively, if α, β are integer expressions involving other square-roots then we must further expand on each
of the predicates α ≥ 0, β ≥ 0, α2 − β2n ≥ 0.

Let us apply this remark to the original comparison (14), but first rewriting it as D′(A +
√

B) ≥ D(A′ +√
B′) or,

(I) : D′
√

B ≥ D
√

B′ − E

where E = DA′ −D′A. First, let us only assume D,D′ 6= 0. Then (I) is equivalent to the disjunction of the
following three conjuncts:

(II) : (D′ ≤ 0), (D
√

B′ − E ≤ 0), (D′2B ≤ (D
√

B′ − E)2).

(III) : (D′ ≥ 0), (D′2B ≥ (D
√

B′ − E)2).

(IV ) : (D′ ≥ 0), (D
√

B′ − E ≤ 0).

These can ultimately be expanded into a Boolean function of the sign of the following 6 expressions:

D,D′, E, (18)

D2B′ − E2, (19)

D′2B − D2B′ − E2, (20)

4D2E2B′ − (D′2B − D2B′ − E2)2. (21)

Alternatively, we can expand (II)∨(III)∨(IV ) into a disjunction of 18 conjuncts involving these expressions.
Let us make a useful observation. The last expression represents a number with 20L + O(1) bits. Thus

we conclude:

Lemma 6. The method of repeated squaring, applied to the comparison of the priorities of two circle events
can be reduced to the computation of integers that are at most 20L + O(1) bits long.

In our application, it is reasonable to assume D,D′ to be positive. Then the test (I) is equivalent to the
disjunction (III)∨ (IV ). But we still have to evaluate a Boolean function of the sign of all the expressions,
except D and D′, in (18). Thus the 20L + O(1) bits bound of Lemma 6 cannot be improved. Below we will
derive a true improvement.

¶6. Method of Root Bounds. Another way to do the comparison is to compute α = (A +
√

B)/D and
α′ = (A′ +

√
B′)/D′ to sufficient accuracy to distinguish them. Basically, we need a lower bound on |α−α′|.

Consider the integer polynomials:

P (X) = (D · X − (A +
√

B))(D · X − (A −
√

B)) (22)

= D2X2 − 2DA · X + (A2 − B), (23)

P ′(X) = D′2X2 − 2D′A′ · X + (A′2 − B′). (24)

Then α and α′ are roots of

Q(X) = P (X)P ′(X)

= (DD′)2X4 − 2DD′(DA′ + D′A)X3

+(D2(A′2 − B′) + D′2(A2 − B) + 4AA′DD′)X2

−2(AD(A′2 − B′) + A′D′(A2 − B))X

+(A2 − B)(A′2 − B′).
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Note that coefficients of Xi has (12− i)L + O(1) bits (i = 0, . . . , 4). Thus lg ‖Q‖∞ = 12L + O(1). The root
separation bound of Mahler (see Lecture 6 and also [12, Corollary 32, Chap. VI]) applied to the square-free
polynomial Q(X) of degree m says that

− lg(|α − α′|) < (m − 1) lg(‖Q‖2) + (m + 2)(lg m)/2.

Since m = 4,
− lg(|α − α′|) = 36L + O(1).

We can improve this using another approach: form the resultant of P (X) and P ′(X +Y ) with respect to X,

R(Y ) = ResX(P (X), P ′(X + Y )).

Note that α − α′ is a root of R(Y ). From [12, Lemma 35, Chap. VI], we conclude that

− lg(|α − α′|) = 24L + O(1).

¶7. Repeated Squaring again, but for Root Bounds. We further improve our bound by using a
trick2 which superficially look like repeated squaring. Suppose we have an expression

∑n
i=1 ai

√
bi whose

sign we want to determine. Here ai ∈ Q and bi ∈ N. We introduce a new variable ε via the equation
ε =

∑n
i=1 ai

√
bi. By repeated squaring, we eventually obtain an integer polynomial equation,

P (ε) = 0.

Now we can apply the zero bound for ε.
Applying this idea to the critical comparison in Fortune’s algorithm, we have

ε =
A +

√
B

D
− A′ +

√
B′

D′
(25)

By repeated squaring, we finally obtain the polynomial equation

0 = P (ε) =

m∑

i=0

biε
i.

How large are the coefficients bi? From the discussion of repeated squaring leading to Lemma 6, we conclude
that each bi has at most 20L + O(1) bits. Using Cauchy’s bound, we conclude that

|ε| >

(
1 +

max{|b1|, |b2|, . . . , |bm|}
|b0|

)−1

≥ (1 + max{|b1|, |b2|, . . . , |bm|})−1

− lg |ε| < 1 + lg(max{|b1|, |b2|, . . . , |bm|})
= 20L + O(1). (26)

¶8. Improved Bound and Explicit Constants. If we are implementing this algorithm, the additive
constant “+O(1)” in (26) must be known. So let us explicitly compute it:

ε = A+
√

B

D
− A

′+
√

B′

D′ (definition of ε)

DD′ε = D′(A +
√

B) − D(A′ +
√

B′) (clearing denominators)√
D2B′ =

√
D′2B + (E − δ) (put E = D′A − DA′, δ = DD′ε)

D2B′ = D′2B + (E − δ)2 + 2(E − δ)
√

D′2B (squaring)

2(E − δ)
√

D′2B = (D2B′ − D′2B) − (E − δ)2 (rearranging)
= F − (E − δ)2 (put F = D2B′ − D′2B)

4(E − δ)2D′2B = F 2 + (E − δ)4 − 2F (E − δ)2 (squaring)
(E − δ)4 = 2(E − δ)2(F + 2D′2B) − F 2 (rearranging)

= 2(E − δ)2G − F 2 (put G = D2B′ + D′2B)

2We are indebted to K. Mehlhorn for pointing out this.
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Rewriting the last equation as the polynomial equation Q(δ) = 0, we get

Q(δ) = δ4 − δ3[4E] + 2δ2[3E2 − G] − 4δ[E(E2 + G)] + [E4 − 2E2G + F 2].

P (ε) = Q(DD′ε)

=
4∑

i=0

biε
i.

Since
lg |D| ≤ 4 + 2L, lg |A| ≤ 4 + 3L, lg |B| ≤ 11 + 6L.

(see (7)), we conclude that

lg |E| ≤ 9 + 5L, lg |F | ≤ 20 + 10L, lg |G| ≤ 20 + 10L.

We can now read off the coefficients of P (ε):

b4 = (DD′)4 (so lg |b4| ≤ 32 + 16L)
b3 = −4(DD′)3E (so lg |b3| ≤ 35 + 17L)
b2 = 2(DD′)2(3E2 − G) (so lg |b2| ≤ 38 + 18L)
b1 = −4DD′E(E2 + G) (so lg |b1| ≤ 40 + 19L)
b0 = E4 − 2E2G + F 2 (so lg |b0| ≤ 41 + 20L)

From (26), we finally obtain the following:

Lemma 7. If the input numbers are L-bit integers, then the priorities α, α′ of any two events in Fortune’s
algorithm must have a gap of at least

− lg |α − α′| < 41 + 19L.

This is a sharpening of Lemma 6. More importantly, it can be directly used in an implementation of
Fortune’s algorithm. We compute an approximate priority α̃ with absolute precision 43 + 19L bits, i.e.,

|α̃ − α| ≤ 2−43−19L.

Similarly, α̃′ is a 43 + 19L bit approximation of α′. Then we compare α : α′ using the following procedure:

COMPARISON PROCEDURE

Input: 43 + 19L-bit approximations α̃ and α̃′.
Output: The outcome of comparison α : α′

1. Compute ε′ = α̃ − α̃′.
2. If ε′ > 2−42−19L, return(“α is larger than α′”).
3. If ε′ < −2−42−19L, return(“α is smaller than α′”).
4. Return(“α is equal to α′”).

Justification: assume α = α̃ + e and α′ = α̃′ + e′ where |e| and |e′| is at most 2−43−19L. If ε′ > 2−42−19L

then

α − α′ = (α̃ + e) − (α̃′ + e′)

= ε′ + (e − e)′

> 2−42−19L − |e| − |e′|
≥ 0.

The case ε′ < −2−41−19L is similarly justified. The final case is |ε′| ≤ 2−42−19L.

|α − α′| = |(α̃ + e) − (α̃′ + e′)|
≤ ε′ + |e| + |e′|
≤ 2−42−19L + 2−43−19L + 2−43−19L

≤ 2−41−19L.

This implies α = α′.
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¶9. Discussion. The advantage of repeated squaring is that only integer operations are used. The
disadvantage for using this for determining signs of expressions involving square roots is the need to evaluate
a large Boolean function of many smaller predicates.

On the other hand, as first observed in [3], the existence of such root bounds shows that approximate
square-roots can be used to make such comparisons. Note that the complexity of approximate square-
roots is as fast as multiplication (both in theory and in practice). A bonus of our root bounds is that, we
manipulated 19L + O(1) bit approximations, not 20L-bit integers. But the most important advantage of
using approximate square-roots seems to be this: suppose our priorities are αi (i = 1, 2, . . .). Then for all
i < j, the repeated squaring method requires the evaluation of 20L-bit expressions that depend on both i
and j. There could be O(n log n) such expressions to evaluate, assuming an O(n log n) time implementation
of Fortune’s algorithm. In contrast, when we use approximate arithmetic we only need to compute 20L-bit
approximate values for O(n) expressions. Thereafter, all comparisons require no arithmetic, just a straight
comparison of two 20L-bit numbers. A further improvement to 15L-bits was achieved by Sellen and Yap.

§4. A Practical Implementation

Fortune gave an implementation of his algorithm in the C langauge. We have converted this program into
a Core Library program by introducing the minimal necessary changes. The program can output postscript
scripts (to display images) or combinatorial structure of the Voronoi diagram.

Fortune’s algorithm is practical and dispenses with the balanced binary tree T . Instead, it uses a
bucketing scheme. An empirical study of Delaunay Triangulation algorithms, Drysdale and Su [10] found
that for uniformly randomly generated points, the use of an O(log n) priority queue in Fortune’s algorithm
did not improve upon the bucketing scheme for less than 217 points. At 217 points, there was a 10%
improvement.

The original implementation, assuming machine arithmetic, do not explicitly handle degenerate data:
for instance, it assumes that all Voronoi vertices have degree 3. To investigate its behavior with respect to
degeneracies, we compute the Voronoi diagram of a set of points on the uniform grid. SHOW RESULTS!

§5. Voronoi Diagram of Line Segments and Circular Arcs

The definition of Voronoi diagrams is capable of many generalizations. We consider the generalization
where S is now a set of x-monotone curve segments. The reason for monotonicity property is that we wish
to preserve the linesweep paradigm in our algorithm. We assume these segments are either line segments or
circular arcs.

To understand this, consider the generalized parabola Bs(t) where s is either a line segment or a circular
arc. Note that H(t) can now intersect s over a range of values: in other words, instead of a “site event” we
have “start site” and “stop site” events.

Given a site s, we introduce the lines through the endpoints of s which are normal to s. When s is a
line segment, this divides the plane into 4 zones, corresponding to the influence of the various features of
the line segment. See Figure 7(a). Zones z0 and z1 comprise those points that are (respectively) closest to
one of the two “sides” of s. Zones zℓ and zr comprise those those points that are (respectively) closest to
the two endpoints of s. When s is a circular arc, we introduce a similar set of zones. In this case, the side
of the arc containing the center of the circle will have a bounded zone z0, as seen in Figure 7(b). In either
case, there is a left and right zone zℓ, zr corresponding to the left and right endpoints of the arc.

Let us consider the beach line of a line segment s: this is basically the bisector b(s,H(t)) comprising
all points that are equidistant from s and H(t). Assume s is non-horizontal with endpoints p and q. In
Figure 8(a) we show three arcs α, α′, α′′ of the bisector. These arcs are part of the bisectors of H(t) with
(respectively) q, ℓ(s) and p. Here ℓ(s) is the line defined by s.

It turns out that unless s is a horizontal segment, there are two more arcs α′′′ and α′′′′ which may not
be easy to see if s is close to horizontal. Altogether b(s,H(t)) has 5 arcs, where the arcs alternate between
straight and parabolic. To see the existence of α′′′, we need to show that the parabola α′′ intersects the
normal through the endpoint p of the segment s (see Figure 9). The parabola will intersect the normal line
at p at the point c which is the center of a circle through p and tangent to the current sweepline H(t). It is
clear that c exists. Hence α′′′ exists, and is the angle bisector of the lines ℓ(s) and H(t). So α′′′ is a straight
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Figure 7: Zones of (a) Line Segment and (b) Circular Arc

(a)

α
′

α

α
′′

(b)

α

α
′

H(t)

s

H(t)

s

α
′′

Figure 8: Beachline of a line segment s

s c

p

α
′′′

α
′′

α
′

Figure 9: The existence of arc α′′′
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line segment. But α′′′ will intersect the normal line through the other endpoint of s, thereby ensuring that
α′′′′ exists. Here α′′′′ is a parabolic segment with focus q and directrix H(t).

Another possibility is for H(t) to intersect s as in Figure 8(b). In this case, we are only interested in
the part of this bisector that lies below H(t). If H(t) intersects s at some point q, then there are two angle
bisectors emanating from q. To see that b(s,H(t)) will comprise of 4 arcs note that at the moment H(t)
touches s, the beach line generated by s is a half-ray emanating southward from s, representing a degenerate
parabola, as in the case of point sites. But immediately after this, this parabola would be split into two
parts, and joined by two straight line segments. This gives us the 4 arcs illustrated in Figure 8(b). Note
that this is the case even when s is vertical.

We can extend this analysis to the case where H(t) has swept past the other endpoint of s. At that
moment, the two straightline segments become separated by a new parabolic arc generated by the second
endpoint of s.

Next, we consider bisectors b(s,H(t)) between a circular arc s and the sweepline H(t). Initially, assume
H(t) does not intersect s. The arc is either a cap or a cup (convex upwards or downwards). If the circular
arc is a cap, the bisector Bs(t) has a parabolic part separating two linear parts. The focus and directrix of
the parabola are (respectively) the center of the arc and the displaced sweepline H(t + r), where r is the
radius of the arc. If a cup-arc, then again we have a parabolic arc with directrix H(t − r) and focus at the
center of the arc. The parabolic arc is confined to the bounded zone z0 of the arc Figure 7(b). Outside,
the zone, we have parabolic arcs determined by the endpoints of the arc. Note that if H(t) intersects s, the
bisector b(s,H(t)) ough to be limited to the half-space below H(t). These curves are essentially restrictions
of the curves explained as below.

What about circle events? Now we can have Voronoi vertices generated by i linesegments and 3 − i
endpoints, for any i = 0, 1, 2, 3. Call this a i-circle event. The original circle event corresponds to a 0-circle
event. See Figure 10.

THIS IS A PLACE HOLDER – NO FIGURE YET

Figure 10: Four kinds of Circle Events

We can now modify the original algorithm of Fortune so that instead of site events, we now have start
event and stop event corresponding to the first and last encounter of a site. At a start event, we insert
four arcs as in Figure 8(b). At a stop event, we insert one more arc into (whatever remains of) the original
four.

The modification for the rest of the algorithm is left as an exercise. The analysis of the geometry and
algebraic root bounds, together with implementation, have been carried out by Burnikel [1] in his PhD Thesis
(University of Saarbrücken, 1996).

Exercises

Exercise 5.1: Prove Lemma 1. ♦

Exercise 5.2: Describe some concrete ways in which the algorithm of Fortune can fail because of numerical
errors in deciding the priority of events. You must provide concrete numerical examples to illustrate
how it fails. HINT: think of very degenerate inputs where 4 or more points are co-circular so Voronoi
vertices are very close to each other. ♦

Exercise 5.3: Re-derive our root bounds for Fortune’s algorithm if the input numbers are binary floats
with L-bit mantissas and exponents at most E. ♦

Exercise 5.4: Here are some generally open questions for exploration with Voronoi diagrams:
(i) Given n ≥ 1, to find a set S with n sites which is the optimal location for n post offices. Various
optimality criteria can be studied. For instance, assume S is restricted to the interior of a simple
polygon P , and we want to minimize the area of the largest Voronoi region of S within P .
(ii) Suppose S is given, and we want to locate a new site s so that S ∪ {s} will optimize the criteria of
(i). ♦
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Exercise 5.5: Show how to do basic operations using the half-edge data structure: (i) getting to the previous
half-edge in constant time, (ii) listing all the regions around a vertex in linear time. ♦

Exercise 5.6: Work out the other predicates needed for Fortune’s sweep, and compute their corresponding
root bounds. ♦

Exercise 5.7: Suppose the input numbers are IEEE Machine doubles. What is the corresponding bound
in Lemma 7? ♦

Exercise 5.8: (i) Give the minimal polynomials P2(X) and P3(X) for the following numbers: α2 =
√

A +√
B, α3 =

√
A +

√
B +

√
C for positive but indeterminate integers A,B,C.

(ii) The constant terms of these polynomials are squares. Is this true for Pn(X) for all n? ♦

Exercise 5.9: If p, q, p′, q′ ∈ R2 are points whose coordinates are IEEE machine single precision floats (i.e.,
numbers of the form m2e−23, |m| < 224 and |e| ≤ 127) we want a separation bound on

δ = ‖p − q‖ − ‖p′ − q′‖

where ‖p − q‖ =
√

(px − qx)2 + (py − qy)2. In fact, show that if δ 6= 0 then

|δ| > 2431.

HINT: Apply Cauchy’s bound to the polynomial P2(X) obtained in the previous exercise. ♦

Exercise 5.10: The circle through three points p, q, r has equation C(X,Y ) = 0 where

C(X,Y ) = det




X2 + Y 2 X Y 1
p2 px py 1
q2 qx qy 1
r2 rx ry 1


 (27)

♦

Exercise 5.11: Suppose p, q, p′, q′ ∈ R2 are points whose coordinates are represented by machine floats (i.e.,
IEEE single precision floating point numbers). For this question, they are just numbers of the form
x = m2e−23 where m, e are integers satisfying |m| < 224 and |e| ≤ 127. Let

δ = ‖p − q‖ − ‖p′ − q′‖ (28)

where ‖p − q‖ =
√

(px − qx)2 + (py − qy)2. We want a separation bound on |δ|.
(i) Let ∆ = Mδ where M is the smallest positive integer such that Mδ is equal to

√
A−

√
B for some

integers A,B. Give upper bounds on M , A and B.
(ii) Give a polynomial P (X) such that P (∆) = 0, written in terms of A,B.
(iii) Apply Cauchy’s bound to conclude that if δ 6= 0 then |δ| > 2−431.
(iv) Extra Credit: Give an actual numerical example that comes as close to your lower bound as
possible. ♦

Exercise 5.12: Let e(x) = f where x = m2f−23 is a IEEE single precision float, with |m| < 224 and |f | ≤
127. In the previous question, suppose e0 = min{e(px), e(py), e(qx), e(qy), e(p′x), e(p′y), e(q′x), e(q′y)} and
e1 = max{e(px), e(py), e(qx), e(qy), e(p′x), e(p′y), e(q′x), e(q′y)}. Redo parts (i) and (iii) of the question,
where e0 and e1 are taken into account. ♦

End Exercises

§6. Additional Notes
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The book of Okabe, Boots and Sugihara [9] is devoted to Voronoi diagrams, their generalizations and
applications. We follow the site/circle event terminology of Guibas and Stolfi [5]. The beachline terminology
is from [4]. The detailed analysis of the root bounds necessary for Fortune’s algorithm is from Dubé and
Yap [3]. This seems to be the first time3 when it was realized that numerical approximations could be
used to solve geometric computation problems in the “exact geometric sense”. The retraction approach
to motion planning was first applied to a disc in O’Dunlaing and Yap [8]; this can be extended to other
kinds of motion planning problems [7, 11, 2]. Yap had obtained the first correct O(n log n) algorithm for
Voronoi diagrams for line segments and circular arcs using a divide-and-conquer algorithm. Unlike Fortune’s
linesweep approach, it is based on divide and conquer paradigm, and it can be used in parallel algorithms
as well as for constrained Voronoi diagrams.
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A foolish consistency is the hobgoblin of little minds

— Ralph Waldo Emerson

Lecture 8

DEGENERACY AND PERTURBATION

The central concern of theoretical algorithms is to understand the inherent complexity of computational
problems. As such, most algorithms on paper are formulated to facilitate their analysis, not meant to
be literally implemented. In computational geometry, the reader will often encounter qualifications of the
following sort:

“Our algorithm accepts an input set S of points. For simplicity, we assume that the points in
S are distinct, no 2 points are co-vertical, no 3 points are collinear, no 4 points are co-circular,
etc. The reader can easily extend our algorithm to handle inputs that fail these assumptions.”

The inputs that satisfy these assumptions may be said to be non-degenerate; otherwise they are
degenerate. Implementors are left to their own devices to handle degenerate cases. Some papers may not
even list the degenerate inputs. Thus, Forrest [2] deplores the “plethora of special cases ... glossed over
by theoretical algorithms”. Forrest, and also Sedgewick [6], calls this the “bugbear” of geometric algorithm
implementation.

In this lecture, we explore some general techniques that can help bridge this particular gap between
theoretical algorithms and their implementation. Notice we do not address other possible gaps, such as the
under-specification of data representation.

§1. A Perturbation Framework

Given an algorithm, let us assume that there is a notion of valid inputs. Generally speaking, we expect
it to be easy to verify if a given inputs are valid. Among the valid inputs, certain inputs are defined as
degenerate. Let us call an algorithm generic if it works correctly only for non-degenerate inputs; it is
general if it works correctly for all valid inputs, degenerate or not.

As a simple example, suppose the valid inputs are any sequence of points. If there are n points, p1, . . . , pn,
we view the input as a sequence

a = (x1, y1, x2, y2, . . . , xn, yn) ∈ R
2n

where pi = (xi, yi). Thus the set of valid inputs can be identified with R
2n (for each n). But in many

algorithms, we assume the input points are distinct. In this case, the valid inputs of size n would be

R
2n \ {a : (∃i, j)[i 6= j, xi = xj , yi = yj} .

Checking valid inputs in this case is relatively easy, though still non-trivial. Alternatively, the algorithm
may detect this error and reject during computation.

The gap between theoretical algorithms and implementable algorithms amounts to converting generic
algorithms into general algorithms. Of course, one way to bridge this gap is to explicitly detect all the
degenerate cases and handle them explicitly. There is a practical problem with this suggestion:

(B) The number of degenerate cases can be overwhelming and non-trivial to exhaustively
enumerate.

Roughly speaking, the number of special cases for handling degeneracies increases exponentially with the
dimension d of the underlying geometry (e.g., S ∈ R

d). So the explicit treatment of degeneracies can increase
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the size of the code by a large factor: we end up with a program where, say 10% of the code uses 90% of
the machine cycles, with a large portion of the remaining code rarely executed if at all. This makes the
automatic generation of this 90% of the code an attractive goal, if it were possible.

Some feel that the degenerate cases are rare. This is true in some measure-theoretic sense, but ignoring
these cases is not an option if we want a robust implementation. Another impulse is to require the algorithm
designer to supply details for the degenerate cases as well. Indeed, this has been suggested as a standard for
publications in algorithms. This is1 neither desirable nor enforceable. Such details may not make the most
instructive reading for non-implementors. In short, the gap between theoretical algorithms and practical
algorithms will not go away: the literature will continue produce some algorithms spelled out in detail, and
others less so. What should implementors do?

In many applications situations, the user would not mind if their input is slightly perturbed (this is clearly
acceptable if the inputs are inexact to begin with). What does perturbation mean? Recall geometric objects
live in a parametrized space, and the input is just the set of parameters (associated with some combinatorial
structure). If G is the combinatorial structure (e.g., a graph) and x = (x1, . . . , xn) are the parameters, then
the object is G(x). In general, only certain choices of parameters x are consistent with G. For any ε > 0,
we define an ε-perturbation of G(x) to be another object of the form G(x′) where ‖x− x′‖ < ε. Note that
G(x′) shares the same combinatorial structure (G) with G(x), and and x′ must be consistent with G. In
numerical analysis, this ε is called backwards error bound.

So we want to exploit this freedom to do perturbation. In particular, we would like to consider automatic
tools to choose some G(x′) that is non-degenerate. The framework is as follows:

Begin with a generic algorithm A for a problem P . We provide schemes for transforming A into a general
algorithm A′ for P . But what is A′? It cannot really be a full-fledged algorithm for P since, by definition,
it does not really handle degenerate cases. Yet as a general algorithm it does produce an output, even
when the input is degenerate. We call this output a “perturbed output”. Perturbation calls for another
postprocessing algorithm B. The algorithm B is supposed to fixed the perturbed output so that it is
the correct output for the unperturbed input. This framework is illustrated in figure 1.

The simplistic view of perturbation is to add a small non-zero value to each numerical parameter (within
some ǫ > 0 bound). We call this real perturbation. But we can also use infinitesimal perturbation
which can be viewed as perturbation that is smaller than any real perturbation ǫ > 0. This notion can be
justified using the theory of infinitesimal numbers. We will consider both these kinds of perturbations.

Generic Algorithm General Algorithm

General Input

Postprocessor

Correct Output

A A
′

B

transformation

Perturbed Output

Figure 1: Generic to General Transformation

1The algorithmic activity, like all human activity, is multifaceted and serves no single overriding concern. In theoretical

papers, implementation details are usually of secondary interest.
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¶1. Example. Let us illustrate infinitesimal perturbation with the problem of computing the Voronoi
diagram of a point set S. The input S is degenerate if any four points of S are cocircular. If A is a generic
algorithm, what does the transformed A′ compute? Well, in case a, b, c, d are cocircular (in this order)
about an empty circle C of S, then the output of A′ will include two Voronoi vertices, say v(a, b, c) and
v(c, d, a), which are connected by a Voronoi edge of zero length. Then the postprocessor B has to detect
such zero-length edges and remove them.

¶2. Discussion. It has been pointed out that handling degeneracies explicitly may be a good thing
(e.g. [1]). This is based on two facts (i) programming the degenerate cases may not be onerous, and (ii)
perturbation can increase the run-time of specific instances by an exponential amount. A simple example is
the convex hull of a set of n points in d dimensions. If all n points are coincident, the runtime is constant,
but the convex hull of n points in general position is Θ(n⌊d/2⌋).

Such examples supply some caution when using the generic perturbation framework. On the other hand,
examples of complete handling of degeneracies in algorithms are not common and there has been no evidence
that they scale easily to harder problems. As for the potential of increasing the worst case cost dramatically,
it is clear that such examples (all points coincident) are special. It is possible that general techniques may
be developed to automatically reduce such complexity.

The examples do not negate the fact that generic algorithms are much easier to design and code than
general algorithms. So when perturbations are acceptable, and there are general tools to cross the chasm
from generic to general, users ought to consider this option seriously. A more potentially more serious
objection arises: by not constructing a general algorithm in the first place, aren’t we doing more work in
the end? Instead of one general algorithm, we need to construct a generic A, transform it to A′ and finally,
provide a postprocessor B. We see in some examples that this is not necessarily harder. First of all, the
transformation A 7→ A′ may be quite simple. Basically the idea is to perturbed any input so that it looks
nondegenerate. Second, in view of the possible code bloat in a general algorithm, the work involved in
constructing A′ is negligible. An example of this is the problem of constructing hyperplane arrangements
(see below). Finally, the postprocessing algorithm B in these examples turns out to be relatively simple.
More importantly, B is not specific to A′, but can be used with any other algorithm for P . For instance, if
P is computing Voronoi diagrams of a point set, then B amounts to detecting Voronoi edges of length 0 and
collapsing their end points. Thus B is not specific to A or A′.

¶3. An Example. It is instructive to work out the degenerate cases of some of the algorithms we have
encountered so far in these lectures. These are not too difficult, but it can also serve to indicate the kind of
tedium that our propose framework can eliminate.

Let us begin with the Bentley-Ottmann algorithm.

Exercises

Exercise 1.1: Take any Voronoi diagram algorithm for a point set (e.g., Fortune’s sweep).
(a) Describe the generic version of this algorithm.
(b) Discuss how the possibility of zero-length edges would affect how the arithmetic is implemented.
One basically has to beware of dividing by zero. ♦

Exercise 1.2: The exercise will help you appreciate the practical difficulties of enumerating all combinatorial
cases, including degenerate cases. In each part (a)-(e) of this question, we consider the combinatorial
intersection patterns involving two simple geometric objects, s and t in R

d (d = 2 or 3). A segment
is represented by a pair of distinct points in R

d, and a triangle is represented by three non-collinear
points in R

d. In each case, you need to do three things:
(1) Classify all non-degenerate (s, t)-intersection patterns.
(2) Classify all degenerate (s, t)-intersection patterns. Do not forget that, for instance, if s, t are both
triangles, they might be identical. Summarize your classifications in (1) and (2) by filling in the Table 1.
(3) Give a classification algorithm which, given s and t, will correctly classify the intersection patterns.
This classification algorithm must detect non-intersection as well, and must be “parsimonious”. A
parsimonious (or non-redundant algorithm) is one that does not any comparisons that could have been
deduced from earlier comparisons. ♦
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Dim Type of s Type of t No. Nondegen. No. Degenerate

(a) 2 segment segment
(b) 2 segment triangle
(c) 2 triangle triangle
(d) 3 segment triangle
(e) 3 triangle triangle

Table 1: Intersection patterns of simple objects

Exercise 1.3: Classify the combinatorial intersection pattern for three intersecting triangles in space. As
in the previous exercise, list (1) the non-degenerate cases (2) the degenerate cases, and (3) give a
parsimonious classification algorithm. ♦

Exercise 1.4: Work out the degenerate cases for for the problem of constructing a hyperplane arrangement.
♦

Exercise 1.5: Work out the degenerate cases for the beneath-beyond algorithm for 3-D convex hull. ♦

Exercise 1.6: Fix any given combinatorial structure G, and suppose R
n is the set of valid parameters for

G, and there is a polynomial p(x1, . . . , xn) such that for all x = (x1, . . . , xn) ∈ R
n, if x is degenerate

for G then p(x) = 0. Prove that for any ε > 0 and any x ∈ R
n, we can always x′ ∈ R such that

‖x− x′‖ < ε which is non-degenerate. ♦

End Exercises

§2. Model of Degeneracy

Our definition of degeneracies in Section 1 ought to called algorithm-induced degeneracies. In
contrast, an input is inherently degenerate if it is degenerate for all algorithms for the problem. An
example is an input set S of points for the convex hull problem. If three of the points in S are collinear and
they lie on the boundary of the convex hull of S, we would say that S is inherently degenerate because any
convex hull algorithm must be able to detect and handle this degeneracy. However, if S has three collinear
points but all such triples do not on the convex hull of S, then S is not inherently degenerate. S may still be
degenerate for some algorithms (e.g., an incremental algorithm might see such a collinear triple). We focus
on algorithm-induced degeneracy, as this is more important in practice.

In the introduction, we described some typical non-degeneracy assumptions on input points (coincident
points, covertical pairs, collinear triples, cocircular quadruples, etc). Here are more examples of such as-
sumptions, in case the input is a set of lines:

• a vertical line

• 2 parallel lines

• 2 perpendicular lines

• 3 concurrent lines

• 2 intersecting lines (when the lines are embedded in dimension greater that 2)

• the intersection points defined by pairs of lines satisfy the degeneracy conditions specified for point
sets.

In case the input set is a set S of points and a set T of lines, we may introduce more such assumptions: (1)
an input point lying on an input line, (2) an input line parallel to the line through 2 input points, (3) an
input line perpendicular to the line through 2 input points, etc.
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¶4. Computational Model. Our algorithm is essentially a Real RAM whose instructions are classified
into one of two types: comparison steps or construction steps. A typical comparison step has the form

if (P (y1, . . . , ym))then goto L (1)

where P (y1, . . . , ym) is a predicate of the variables y1, . . . , ym, and L a label of an instruction. If P is true,
the the next instruction has label L, otherwise it will be the instruction following the current one in the
program. But we also consider a sign comparison step of the form

OnSign(g(y1, . . . , ym)) goto (g−, L0, L+) (2)

where g is a real function applied to variables y1, . . . , ym. Depending on the sign of g(y1, . . . , ym), the next
instruction will be labeled by one of L−, L0, or L+. A construction step has the form

y ← g(y1, . . . , ym) (3)

where yi are variables and g is some function. Construction steps do not cause any branching.
Note that assume the variables of our RAM are of various types that include reals, integers, Booleans,

and possibly other types. We allow algorithm-dependent predicates (e.g., P in (1)) and functions (e.g., g in
(3)) to be used directly in our RAM programs.

Assume that the input is a geometric object of the form G(x) where x ∈ R
n and G is a directed graph.

Our algorithm will have programming variables, and these are of two kinds: real variables that depend on
x are critical, and all others are non-critical. How do we determine if a real variable y is critical? Each of
the input variables x1, . . . , xn are critical. If y ever appears as the right hand side of a construction step as
in (3) where any of the variables y1, . . . , ym is critical, then y is critical. A comparison step of the form (2)
where any y1, . . . , ym is critical is called a critical comparison. The input is deemed degenerate if the
algorithm takes any zero-branch in any critical comparison. The g used in a critical comparison of the form
(2) is called a critical function.

¶5. Precise Problems for Imprecise Points. It should be emphasized that inputs are assumed to be
exact whenever we discuss perturbation methods. In any case, what do we mean that an input is “imprecise”?
What is the algorithm supposed to compute?

Suppose we want to compute the convex hull of a set of “imprecise points”. The input is a set S of
points together with an ε > 0 parameter. What we want to output is the precise convex hull of any set S′

of points such that each point in S′ is within ε distance from a corresponding point in S. We see that this
new problem is as precise as anything we have considered so far. So in some sense, there is really no such
thing as an “imprecise input”. In any case, we can solve the (precise) problem of computing the convex hull
of “imprecise points” just by computing the convex hull S. Of course, we now have the option of not doing
so (Exercise).

Note that all such degeneracy conditions can be specified as a polynomial p(x1, . . . , xm) vanishing on
some of the input parameters. We may call these á priori degeneracy conditions. Usually, these á
priori conditions are meant to prevent the occurrence of algorithm induced degeneracies (i.e., á posteriori
degeneracies). Informally, á priori and á posteriori degeneracies is analogous to compile-time and run-time
errors.

Exercises

Exercise 2.1: Provide polynomials whose vanishing corresponds to each to the degeneracy condition listed
above. ♦

Exercise 2.2: Discuss how we can solve the (precise) problem of computing the convex hull of imprecise
points by taking advantage of the ε parameter. Is it true that a generic convex hull algorithm can
always solve such a problem? ♦

End Exercises
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§3. Black Box Perturbation Scheme

A critical value is the value of a critical variable. The depth of a critical value y is inductively defined:
the value of an input parameter x1, . . . , xn has depth 0. The depth of a value y is 1 more than the maximum
depth of y1, . . . , ym where y = g(y1, . . . , ym). Note that we use the same symbol ‘y’ to denote a programming
variable as well as its value which is time-dependent – the context should make it clear which is intended.
If the values y1, . . . , ym in a critical comparison (3) is never more than d, we say the algorithm has depth
of d.

We will first describe a scheme described in [8] which works under the following conditions:

• The critical functions are polynomial.

• The test depth is 0.

Later we note possibilities to relax some of these conditions. The idea is to construct a “black box” which,
given any non-zero polynomial p = p(x1, . . . , xm) and any sequence of depth 0 parameters b = (b1, . . . , bm),
to output a non-zero sign

sign
b
(p) ∈ {−1,+1}.

Note that a depth 0 sequence b is essentially a subsequence of a in (??). Moreover, if p(b) = p(b1, . . . , bm)
is non-zero, then sign

b
(p) is just the sign of p(b). Thus, the interesting case happens when p(b) = 0: in

effect, we are computing a “signed zero”, +0 or −0.

¶6. Using the Black Box. As in figure 1, we begin with a generic algorithm A. We construct the general
algorithm A′ by replacing each polynomial-test p(b) in A with a call to this black box. The algorithm then
continues with the positive or negative branch after the test, depending on sign

b
(p). Even if the input is

degenerate, no zero-branch is ever taken.
Before describing our solution, consider the following possible approach. Randomly perturb the inputs

b to some b′ (with ‖b−b′‖ < ε) and evaluate the sign of p(x′). With high probability, p(b′) is non-zero, as
desired. But what if the result is zero? Perturb again. Unfortunately, we need to make sure that the new
perturbation preserves the signs of all previously evaluated polynomials. This seems hard. Moreover, we
must ensure that the perturbation b′ is sufficiently small that it does not change the sign of any non-zero
p(b). We abandon this approach for now, although the idea of numerical perturbation can be made to work
under special conditions (see Section 4 below).

¶7. Admissible Black Box Schemes. Our scheme is based on the concept of “admissible orderings”
which originally arose in Gröbner bases theory.

Let x = (x1, . . . , xn) be real variables (corresponding to the input parameters (??)). Let PP = PP(x1, . . . , xn)
denote the set of all power products over x1, . . . , xn. Thus a typical power product has the form

w =

n
∏

i=1

xei

i , ei ≥ 0

where the ei are natural numbers. Note that 1 ∈ PP corresponding to e1 = e2 = · · · = en = 0. If
e = (e1, . . . , en) we also write w = xe. The degree of xe is

∑n
i=1 ei, also denoted |e|. We say a total ordering

≤A on PP is admissible if for all u, v, w ∈ PP, (1) 1 ≤A w, and (2) u ≤A v implies uw ≤A vw.
There are infinitely many admissible orderings, but the two most familiar ones are (pure) lexicograph-

ical ordering ≤LEX and total degree ordering ≤TOT. These are defined as follows: let w = xe and v = xd

where e = (e1, . . . , dn) and d = (d1, . . . , dn).

• w ≤LEX v iff either e = d or else ei < di where i is the first index where ei 6= di.

• w ≤TOT v iff |e| < |d| or else w ≤LEX v.

Notice that both of these orderings depend on a choice of an ordering of the variables x1, . . . , xn. So there
are really n! lexicographical (resp. total degree) orderings.
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Now let p(x) ⊆ R[x] be a real polynomial. For w ∈ PP, we let ∂w(p) denote the partial derivative of p(x)
with respect to w. More precisely, if w = xe and e = (e1, . . . , en) then

∂w(p) :=
∂|e|p

∂e1x1∂e2x2 · · · ∂enxn
.

For instance, w = x3yz3 (we typically let x = x1, y = x2, z = x3) then ∂w(p) := ∂6p
(∂x)3(∂y)(∂z)2 . If p(x, y, z) =

2x2z3 − 7xy + y5 + 10 then ∂x(p) = 4xz3 − 7y, ∂xy(p) = 7, ∂z2(p) = 24xz, ∂xyz(p) = ∂yz2(p) = 0.
Fix any admissible ordering ≤A. We describe a blackbox sign function corresponding to ≤A. The ordering

≤A gives an enumeration
(w0, w1, w2, . . .), wi ≤A wi+1

of all power products in PP. Clearly, w0 = 1. Define the sequence of polynomials

∂(p) := (∂w0
(p), ∂w1

(p), · · · ).

If a = (a1, . . . , an) then define
∂(p;a) := (∂w0

(p)(a), ∂w1
(p)(a), · · · ).

So ∂(p;a) is an infinite sequence of numbers obtained by evaluating each polynomial of ∂(p) at a. We
finally define our “black box sign” sign

a
(p) to be the sign of the first non-zero value in ∂(p;a). Note that

if p 6= 0 then ∂wi
(p) is a non-zero constant for some a. Hence sign

a
(p) is well-defined for all non-zero p. By

definition, sign
a
(p) = 0 when p is the zero polynomial. Also write

sign≤A,a(p) (4)

for sign
a
(p) to indicate the dependence on ≤A. We will call sign≤A,a an admissible sign function.

Let us first give two actual examples of perturbation that can be understood as special cases of our
blackbox scheme.

¶8. Example: SoS Scheme of Edelsbrunner and Mücke. Suppose H is a set of n lines in the plane.
Each hi ∈ H (i = 1, . . . , n) has the equation y = aix+bi. Thus the input parameters are (a1, b1, a2, b2, . . . , bn).
The problem is to compute the arrangement of cells defined by these lines: each cells has dimensions 0, 1
or 2 where 0-cells are just points of intersection defined by the lines, 1-cells are open line segments bounded
by 0-cells, and 2-cells are the open connected polygonal regions bounded by the lines. The algorithm for
computing an arrangement is fairly easy in the generic case. But dealing with degeneracies is complicated,
and it gets much worse in higher dimensions. Hence there is strong motivation to use a generic algorithm,
and to perturb the input to ensure non-degeneracy. Suppose 3 distinct lines hi, hj , hk are concurrent (passes
through a common point). This is a degeneracy. It amounts to the vanishing of the following determinant:

δijk = det





ai bi 1
aj bj 1
ak bk 1



 . (5)

We say H is simple if no 3 distinct lines are concurrent. We want to perturb the input parameters so that
H is simple. For this purpose, let ε > 0 be a small value (to be clarified) and define hi(ε) with equation

y = ai(ε)x + bi(ε),

ai(ε) = ai + ε22i

,

bi(ε) = bi + ε22i−1

.
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The corresponding determinant, expanded as a polynomial in ε is given by

δijk(ε) = det





ai(ε) bi(ε) 1
aj(ε) bj(ε) 1
ak(ε) bk(ε) 1





= det





ai bi 1
aj bj 1
ak bk 1





−ε22i−1

det

[

aj 1
ak 1

]

+ε22i

det

[

bj 1
bk 1

]

+ε22j−1

det

[

ai 1
ak 1

]

+ε22j−1+22k−1

+ · · · .

The key observation is that each coefficient of this polynomial is a subdeterminant of ∆. Moreover, if ε is
sufficiently small, and i < j < k, then the sign of δijk(ε) is obtained by evaluating these coefficients in the
order shown above (in order of increasing power of ε). The first term is therefore ∆. We stop at the first
non-zero coefficient, as this is the sign of the overall polynomial.

This ε-scheme is called Simulation of Simplicity (SoS) and clearly works in any dimension. We leave
it as an exercise to show that SoS amounts to an admissible sign function, based on a suitable lexicographic
ordering ≤LEX.

¶9. Example: Euclidean Maximum Spanning Tree. The second example arises in the computation
of Euclidean maximum spanning tree [5]. Given n points p1, . . . , pn where pi = (xi, yi), we want to totally
sort the set

{Dij : i, j = 1, . . . , n, (i 6= j)}

where Dij = ‖pi − pj‖
2 = (xi − xj)

2 + (yi − yj)
2. When Dij = Dkℓ, Monma et al [5] break ties using the

following rule: let i1 = min{i, j, k, ℓ} and relabel {i, j, k, ℓ} \ {i1} as {j1, i2, j2} such that

{{i1, j1}, {i2, j2}} = {{i, j}, {k, ℓ}}.

There are two cases:
(A) If i1 6∈ {i, j} ∩ {k, ℓ} then make Di1,j1 > Di2,j2 iff xi1 ≥ xj1 .
(B) If {i1} = {i, j} ∩ {k, ℓ} then, without loss of generality, assume i1 = i2. Make Di1,j1 > Di2,j2 iff
2xi1 ≥ xj1 + xj2 .

Let us define the function σ which assigns to polynomials of the form p = Dij−Dkℓ a sign σ(p) ∈ {−1,+1}.
The above scheme amounts to defining σ(Dij − Dkℓ) = +1 iff Dij > Dkℓ (breaking ties as needed). An
exercise below shows that σ arises from an admissible sign function.

¶10. Issues In the next sections, we address three key issues:

• The sign(p(x),b) must satisfy some notion of consistency. What is it?

• How should we interprete the output from the generic algorithm when the input is degenerate?

• How can we implement such a black box?

The answer to the first question is that, for any finite set of polynomials A ⊆ R[x], and for any b ∈ R
n

and ε > 0, there exists b′ ∈ R
n such that ‖b− b′‖ < ε such that sign(p(x),b) = sign(p(b′)). This proves

that the sign function sign(p(x),b) is “consistent”.

Exercises
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Exercise 3.1: Show that the sign given to ∆ijk(ε) is exactly the sign given by a suitable admissible sign
function. In fact, the admissible ordering is ≤LEX for a suitable ordering of the input parameters. ♦

Exercise 3.2: Generalize the SoS scheme to the computation of the sign of any n × n determinant. Show
that this generalization of SoS is again case of our black-box sign, under a suitable ≤LEX ordering. ♦

Exercise 3.3: In the above analysis, we assumed that lines has the form y = ax + b. Suppose we now
assume lines have equations ax + by + c = 0, with a2 + b2 > 0. What has to be modified in the SoS
scheme? ♦

End Exercises

§4. Implementation Issues

We consider the implementation of Black Boxes. Such a scheme would be of general utility. For instance,
it could have been used in place of SoS for perturbing sign of determinant, and in the Euclidean Maximum
Spanning Tree application. An example from Paterson shows not all perturbation schemes arise from black
boxes (Exercise).

One way to implement our black box is to choose a particular admissible ordering, and implement the
corresponding black box. For instance, the SoS Scheme has been implemented by Mücke. If we choose
the lexicographic ordering ≤LEX, we would have a generalization of Mücke’s implementation. However, we
now want to motivate the need for a more general implementation. This example is suggested by the
experience of F. Sullivan and I. Beichl (at the Center for Computing Sciences, Bowie, Maryland) with using
the SoS scheme on points on a regular three dimensional grid. The symbolic perturbation may cause our
triangulation algorithm to behave very badly. What do we mean by badly? Ideally, we want the triangles to
have no sharp angles. For instance, any triangle formed by 3 points in a row of the grid is degenerate, and
should be avoided. But our greedy algorithm (guided by any symbolic perturbation scheme) may not know
how to avoid such situations.

We first need to fix the algorithm for triangulation. For the present study, assume the the greedy
algorithm: given a set S of n points, form all m =

(

n
2

)

edges from pairs of points in S. Sort these edges by
non-decreasing order of their lengths:

e1, e2, . . . , em

where |ei| ≤ |ej |. We go through this list in order, and put ei into our triangulation T as long as ei does
not intersect any of the previously picked edges. To break ties, we use our blackbox with pure lexicographic
ordering. Consider the performance of the greedy algorithm on the following input sequence

(x1, y2, x2, y2, . . . , x25, y25)

representing the points pi = (xi, yi) (i = 1, . . . , 25). Suppose the points lie on the 5× 5 grid:

p1 = (1, 1), p2 = (1, 2), p3 = (1, 3), p4 = (1, 4), p5 = (1, 5)

p6 = (2, 1), p7 = (2, 2), · · · p10 = (2, 5)

p11 = (3, 1), p12 = (3, 2), · · · p15 = (3, 5)

p16 = (4, 1), p17 = (4, 2), · · · p20 = (4, 5)

p21 = (5, 1), p22 = (5, 2), · · · p25 = (5, 5).

Figure 2 shows the result of applying the pure lexicographic perturbation. It is not a good triangulation by
any measure.

THIS IS A PLACE HOLDER – NO FIGURE YET

Figure 2: Triangulation of points on a grid
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p1 p2 p3 p4 p5

Figure 3: Schematic triangulation of a set of points on a line.

To understand analytically this behavior, let us analyze the output when there is only one row of points
p1 = (1, 1), p2 = (1, 2), . . . , pn = (1, n). Let dij be the distance between pi and pj . Clearly, dij = |i − j|.
What is the result of comparing di,i+2 : dj,j+2?

So we would like to have general orderings at our disposal. It turns out that there is a beautiful theory
of admissible orderings that can help us do this.

Another way to prevent triangulations such as Figure 2 is to use randomization. Suppose we use lexico-
graphic ordering, but we first randomly reorder the variables first.

Exercises

Exercise 4.1: Assume the total degree ordering. How can the successive evaluations of a polynomial be
sped up at the cost of some space (to store intermediate results)? Quantify this speedup. ♦

Exercise 4.2: (Paterson) Give an example of a perturbation scheme that does not arise from our black box.
♦

End Exercises

§5. Algebraic Consistency

We address the consistency of admissible sign functions. We will use an algebraic approach here.
Let R be any commutative ring with unit 1. For instance, R = Z or R = R. A function σ : R →

{−1, 0,+1} is called a sign function for R provided it satisfies these 4 axioms. For all a, b ∈ R:

(A0) σ(a) = 0 iff a = 0.

(A1) σ(−a) = −σ(a).

(A2) σ(a) > 0 and σ(b) > 0 implies σ(a + b) > 0.

(A3) σ(ab) = σ(a)σ(b).

If σ is a sign function for R, then it induces a total ordering <σ on R where

a <σ b⇒ σ(a− b) = −1.

It is easy to verify that <σ is indeed a total ordering: if a, b are distinct elements in R, then a <σ b or b <σ a,
by (A0). Moreover, (A1) says that only one of a <σ b or b <σ a must hold. Transitivity follows from (A2).

We need the following lemma about admissible orderings ≤A:

Lemma 1. Let u, v, u′, v′ ∈ PP and either u 6= u′ or v 6= v′. Then uv ≤A u′v′ implies u <A u′ or v <A v′.

See [8] for a proof. The next theorem constitute our “algebraic consistency” claim.

Theorem 2. Let R be any ordered ring and S = R[x1, . . . , xn]. Fix a = (a1, . . . , an) ∈ Rn and any admissible
ordering ≤A. Let σ = σ≤A,a be the function that assigns to each polynomial p ∈ S the sign sign≤A

(p;a)
(see (4)). Then σ is a sign function for S.
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Proof. Recall that for a non-zero p ∈ S, our black box sign, σ(p), is the first non-zero value in the sequence
∂(p;a). Axiom (A0) is immediate. Axiom (A1) comes from the fact that ∂(−p;a) is obtained from ∂(p;a)
by negating every value. Axiom (A2) comes from the fact that ∂(p+q;a) = ∂(p;a)+∂(q;a) (componentwise
addition). To show (A3), let the first non-zero entry of ∂(p;a) be ∂u(p)(a) and the first non-zero entry of
∂(q;a) be ∂v(q)(a), for some u, v ∈ PP. Then

∂uv(pq) =
∑

u′

∂u′(p)∂v′(q)

where u′ ∈ PP ranges over all divisors of uv and v′ = uv/u′. But the previous lemma, unless u = u′ and
v = v′, u′v′ ≤A uv implies u >A u′ or v >A v′. Hence ∂u′(p)(a) = 0 or ∂v′(p)(a) = 0. This proves

∂uv(pq)(a) = ∂u(p)(a)∂v(q)(a).

The same argument shows that for all w <A uv,

∂w(pq)(a) = 0.

Thus, the first non-zero entry of ∂(pq;a) has the sign ∂u(p)(a)∂v(q)(a) = σ(p)σ(q), as desired. Q.E.D.

¶11. Geometric Consistency. To motivate the need for a geometric notion of consistency, suppose that
we have n collinear points, q1, . . . , qn ∈ R

2. Let ∆ijk denote determinant whose sign is the LeftTurn(qi, qj , qk)
predicate (Lecture II.1). Since the lines are collinear, ∆ijk = 0 for all i, j, k. On the other hand, our black
box will assign a non-zero sign sijk ∈ {−1,+1} to ∆ijk. The geometric consistency question asks to know
if there is an actual perturbation of q1, . . . , qn which achieves these sijk’s. This question is answered in the
affirmative in [7].

It is a consequence of the next theorem. For δ > 0 and a,a′ ∈ R
n, we say a′ is a δ-perturbation of a if

a = (a1, . . . , an) and a′ = (a′
1, . . . , a

′
n) and |a′

i − ai| ≤ δ for all i = 1, . . . , n.

Theorem 3. Let σ be any black box sign function for R[x1, . . . , xn] (based on some admissible ordering
and a choice of a ∈ R

n). For any finite set P ⊆ R[x1, . . . , xn] of polynomials and any δ > 0, there exists
a′ = (a′

1, a
′
2, . . . , a

′
n), a δ-perturbation of a, such that for all p ∈ P ,

σ(p) = sign(p(a′)).

In other words, the signs assigned by our black box to any finite set P of real polynomials can be achieved
by an actual perturbation. Suppose A′ is the transformed algorithm in figure 1, and a is any input for A′.
Consider the branching (computation) path π through A′ that is taken by input a. This result shows that
there is an arbitrarily small perturbation a′ of a such that a′ is non-degenerate for A′ and a′ would exact
the same path π.

Exercises

Exercise 5.1: Show the following properties of <σ where σ is a sign function on R. For all a, b, c, d ∈ R:
(a) a <σ b implies a + c <σ b + c.
(b) a <σ b, σ(c) > 0 implies ac <σ bc.
(c) If b−1, a−1 exists, then a <σ b iff b−1 <σ a−1.
(d) a + b <σ c + d implies a <σ c or b <σ d.
(e) σ(a) = σ(b) = +1 and ab <σ cd implies a <σ c or b <σ d. ♦

Exercise 5.2: Show that the function σ defined by the Monma, et al, scheme arises from an admissible sign
function. ♦

End Exercises

§6. Perturbation Framework
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Following Seidel, we define a problem to be a partial function f : X → Y with suitable topologies on
the input X and output Y spaces. We write f(x) ↓ and f(x) ↑ depending on whether f(x) is defined or not.
Typically, X = R

nd (a set of n points in d dimensions, with the usual Euclidean topology, and Y = D × R
where D is a finite set with the discrete topology and R is a direct union of real spaces with the Euclidean
topology. The domain of f is dom(f) := {x ∈ X : f(x) ↓}. We say f is generic if the closure dom(f) = X.

Let us give two examples: (1) Convex hull volume and (2) Convex hull facet structure. In both cases,
X = R

nd, In (1), Y = R. In (2), Y = D × R where D is the finite set of all the labeled combinatorial
structures that may be output. Also, R can be empty, or for our purposes below, we can let R denote the
k-dimensional volume of each k-dimensional face of the output. In this way, problem (1) is can be embedded
in problem (2). It is imporant to note that the structures are labeled by the index of input points.

Let z be a set of nd variables (called input variables). A branching straightline program (BSLP)
A = A[z] is a rooted tree in which each non-branching node computes a value (using an input variable or
previously computed values) or evaluates a predicate p on the input and then performs a three-way branch
according to the sign of p(x). Each non-branching node is associated with a (programming) variable. Note
that we assume that predicates p directly operates on the input x. For any input x, the computation on x
is a path that is either non-terminating or terminates at a leaf which by definition is a non-branching node.
The output of A on x, denoted A(x), is undefined if the path taken by x is non-terminating, and otherwise
is the value computed at last node of the path. We say A is an algorithm for f if for all x ∈ X, A(x) = f(x).
An algorithm is generic if is an algorithm for a generic problem. It is general if it defines a total function
on X.

If x ∈ X, a perturbed instance of x is a curve x∗ rooted at x: x∗ : R≥0 → X such that x∗(0) = x. A
perturbation scheme Q defines a perturbed instance for each x ∈ X. Once the perturbation is fixed, any
problem f is transformed into a perturbed problem

f∗ : X → Y

where f∗(x) = limn→∞ f(x(1/n)) where f∗(x) may be undefined if the limit does not exist. We say that the
perturbation scheme Q is valid for f if f∗(x) is defined for all x ∈ X and is non-zero.

We similarly say Q is valid for A if p∗(x) = limn→∞ p(x(1/n)) is defined and non-zero for all predicates
in A. If Q is valid for A, we can transform A to some A∗ in the obvious way.

Theorem: Let A be an algorithm for f . Assume Q is valid for f and for algorithm A. Then A∗ solves f∗

and for each x ∈ X, if f is continuous at x then A∗(x) = f(x). Moreover, A∗ is a general algorithm.
Pf: Since Q is valid for f , the problem f∗ is total. Also, f∗ must be computed by A∗. If f
We can reformulate the above theorem in terms of R(Ω) where R(Ω) = R(ω), ω is an infimaximal.

§7. Numerical Perturbation

We present some efficient numerical schemes for perturbation. In particular, we are interested in numerical
linear perturbations: x 7→ x + εx∗ where x∗

§8. Perturbing towards Non-Degenerate Instances

A fundamentally different idea for perturbation is proposed by Raimund Seidel: for any problem P and
for each input size n, suppose we can find a non-degenerate instance Gn. Then for any input instance I of
size n, we want to use the perturbed instance

I + εGn

where ε > 0 is a small constant.
Recall that one of our basic goals figure 1 is to transform a generic A to a general A′. In this case, we

need to be able to generate Gn on the fly. This turns out to be easy in some problems. Consider the problem
P of computing the convex hull of points in R

d. For each n, there are well-known constructions for a set Gn

of n points in general position. Basically, Gn can be any n distinct points chosen on the moment curve,

C = {(t, t2, . . . , td) : t ∈ R}

c© Mehlhorn/Yap Draft April 29, 2009



§8. Non-Degenerate Instance Lecture 8 Page 13

Another direction in perturbation research is known as “controlled perturbation”, as opposed to random
perturbation (or perturbation where we don’t care how the perturbation behaves as long as it is bounded).
An example of why we want this is in the intersection of two convex polyhedron. We want the perturned
polygons to grow outwardly, so that any tangential intersection between a vertex and a face can be detected.
In random perturbation, we may not see such tangential intersections.

Removing Degeneracies: Gomez et al [4, 3] consider algorithms for finding orthogonal and perspective
projections (respective) to remove degenaracies in point sets.
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Lecture 10

NUMERICAL FILTERS

This theme of this chapter is the certification of approximate
computation. This is best exemplified by a numerical program P
that uses machine floating-point arithmetic. How do we certify that
the output of P has certain properties? Conceptually, let us think of
the certifier C as a program which, given the output of P , will always
answer YES or MAYBE. We see that certification is a “partial pred-
icate”: it does not have to answer NO. So the MAYBE output could
be produced even when the correct answer is YES. Certifiers are very
important for the ultimate practical efficiency of EGC algorithms.

§1. Numerical Filters

An avenue to gain efficiency in EGC computation is to exploit machine
floating-point arithmetic which is fast and highly optimized on current hardware.
The idea is simply this: we must “check” or “certify” the output of machine
evaluation of predicates, and only go for the slower exact methods when this
fails.

In EGC, certifiers are usually (numerical) filters. These filters certify
property of computed numerical values, typically its sign. This often amounts
to computing some error bound, and comparing the computed value with this
bound. When such filters aim to certifying machine floating-point arithmetic,
we call them floating-point filters. We can also consider a cascade of certifiers
of increasing effectivity for the problem. Such cascades can be quite effective
[?, ?, ?]. There is an obvious connection between the notion of certifiers and
the area of program checking [?, ?]. It is also worth mentioning that similar
techniques have later been used on large determinant sign evaluations based on
distance to the nearest singularity [?].

There are two main classifications of numerical filters: static or dynamic.
Static filters are those that can be computed at compile time for the most part,
and they incur a low overhead at runtime. However, static error bounds may
be overly pessimistic and thus less effective. Dynamic filters exhibit opposite
characteristics: they have higher runtime cost but are much more effective (i.e.,
fewer false rejections). We can have semi-static filters which combine both
features.

Certifiers can be used at different levels of granularity: from individual ma-
chine operations (e.g., arithmetic operations for dynamic filters), to subroutines
(e.g., geometric predicates [?]), and to algorithms (e.g., [?]). See Funke et al.
[?] for a general framework for filtering each “step” of an algorithm.

Computing upper bounds in machine arithmetic. In the implementa-
tion of numerical filters, we need to compute sharp upper bounds on numerical
expressions. To be specific, suppose you have IEEE double values x and y. How
can you compute an upper bound on |z| where z = xy? We first compute

z̃ ← |x| ⊙ |y|. (1)
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Here, | · | is done exactly by the IEEE arithmetic, but the multiplication ⊙ is
not exact. One aspect of IEEE arithmetic is that we can change the rounding
modes [?]. Thus changing the rounding mode to round towards +∞, we will
have z̃ ≥ |z|. Otherwise, we only know that z̃ = |z|(1 + δ) where |δ| ≤ u. Here
u = 2−53 is the “unit of rounding” for the arithmetic. We will describe the way
to use the rounding modes later, in the interval arithmetic section. But here,
instead to avoid rounding modes, we further compute w̃ as follows:

w̃ ← z̃ ⊙ (1 + 4u). (2)

It is assumed that overflow and underflow do not occur during the computation
of w̃. Note that 1+4u = 1+2−51 is exactly representable. Therefore, we know
that w̃ = z̃(1 + 4u)(1 + δ′) for some δ satisfying |δ′| ≤ u. Hence,

w̃ = z(1 + δ)(1 + δ′)(1 + 4u)

≥ z(1 − 2u + u2)(1 + 4u)

= z(1 + 2u − 7u2 + 4u3)

> z

Note that if any of the operations ⊕, ⊖ or ⊘ is used in place of ⊙ in (1), the
same argument still shows that w̃ is an upper bound on the actual value. We
summarize this result:

Lemma 1 Let E be any rational numerical expression and let Ẽ be the approx-
imation to E evaluated using IEEE double precision arithmetic. Assume the
input numbers in E are IEEE doubles and E has k ≥ 1 operations.
(i) We can compute an IEEE double value MaxAbs(E) satisfying the inequality
|E| ≤ MaxAbs(E), in 3k machine operations.
(ii) If all the input values are positive, 2k machine operations suffice.

(iii) The value Ẽ is available as a side effect of computing MaxAbs(E), at the
cost of storing the result.

Proof. We simply replace each rational operation in E by at most 3 machine
operations: we count 2 flops to compute z̃ in equations (1), and 1 flop to compute
w̃ in (2). In case the input numbers are non-negative, z̃ needs only 1 machine
operation. Q.E.D.

0.1 Static Filters

Fortune and Van Wyk [?] were the first to implement and quantify the efficacy
of filters for exact geometric computation. Their filter was implemented via the
LN preprocessor system. Let us now look at the simple filter they implemented
(which we dub the “FvW Filter”), and some of their experimental results.

The FvW filter. Static error bounds are easily maintained for a polynomial
expression E with integer values at the leaves. Let Ẽ denote the IEEE double
value obtained by direct evaluation of E using IEEE double operations. Fortune
and Van Wyk compute a bound MaxErr(E) on the absolute error,

|E − Ẽ| ≤ MaxErr(E). (3)

It is easy to use this bound as a filter to certify the sign of Ẽ: if |Ẽ| > MaxErr(E)

then signẼ = signE. Otherwise, we must resort to some fall back action. For
simplicity, assume this action is to immediately use an infallible method, namely
computing exactly using a Big Number package.
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Expr E MaxLen(E) MaxErr(E)

Var x MaxLen(x) given max{0, 2MaxLen(E)−53}
F ± G 1 + max{MaxLen(F ), MaxLen(G)} MaxErr(F ) + MaxErr(G) + +2MaxLen(F±G)−53

FG MaxLen(F ) + MaxLen(G) MaxErr(F )2MaxLen(G) + MaxErr(G)2MaxLen(F )

+2MaxLen(F G)−53

Table 1: Parameters for the FvW filter

Let us now see how to compute MaxErr(E). It turns out that we also need
the magnitude of E. The base-2 logarithm of the magnitude is bounded by
MaxLen(E). Thus, we say that the FvW filter has two filter parameters,

MaxErr(E), MaxLen(E). (4)

We assume that each input variable x is assigned an upper bound MaxLen(x)
on its bit length. Inductively, if F and G are polynomial expressions, then
MaxLen(E) and MaxErr(E) are defined using the rules in Table 1.

Observe that the formulas in Table 1 assume exact arithmetic. In imple-
mentations, we compute upper bounds on these formulas. We assume that the
filter has failed in case of an overflow; it is easy to see that no underflow occurs
when evaluating these formulas. Checking for exceptions has an extra overhead.
Since MaxLen(E) is an integer, we can evaluate the corresponding formulas using
IEEE arithmetic exactly. But the formulas for MaxErr(E) will incur error, and
we need to use some form of lemma 1.

Framework for measuring filter efficacy. We want to quantify the ef-
ficacy of the FvW Filter. Consider the primitive of determining the sign of
a 4 × 4 integer determinant. First look at the unfiltered performance of this
primitive. We use the IEEE machine double arithmetic evaluation of this deter-
minant (with possibly incorrect sign) as the base line for speed; this is standard
procedure. This base performance is then compared to the performance of some
standard (off-the-shelf) Big Integer packages. This serves as the top line for
speed. The numbers cited in the paper are for the Big Integer package in LEDA

(circa 1995), but the general conclusion for other packages are apparently not
much different. For random 31-bit integers, the top line time yields 60 time
increase over the base line. We will say

σ = 60 (5)

in this case; the symbol σ reminds us that this is the “slowdown” factor. Clearly,
σ = σ(L) is a function of the bit length L as well. For instance, with random
53-bit signed integers, the factor σ becomes 100. Next, still with L = 31, but
using static filters implemented in LN, the factor σ ranges from 13.7 to 21.8,
for various platforms and CPU speeds [?, Figure 14]. For simplicity, we say
σ = 20, for some mythical combination of platforms and CPUs. Thus the static
filters improve the performance of exact arithmetic by the factor

φ = 60/20 = 3. (6)

In general, using unfiltered exact integer arithmetic as base line, the symbol φ
(or φ(L)) denotes the “filtered improvement”. We use it as a measure of the
efficacy of filtering.

The above experimental framework is clearly quite general, and estimates
the efficacy of a filter by a number φ. The framework requires the following
choices: (1) a “test algorithm” (we picked one for 4 × 4 determinants), (2) the
“base line” (the standard is IEEE double arithmetic), (3) the “top line” (we
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picked LEDA’s Big Integer), (4) the input data (we used random 31-bit integers).

Another measure of efficacy is the fraction ρ of approximate values Ẽ which
fail to pass the filter. In [?], a general technique for assessing the efficacy of an
arithmetic filter is proposed based on an analysis which consists of evaluating
both the threshold value and the probability of failure of the filter.

For a true complexity model, we need to introduce size parameters. In EGC,
two size parameters are of interest: the combinatorial size n and the bit size L.
Hence all these parameters ought to be written as σ(n,L), φ(n,L), etc.

Realistic versus synthetic problems. Static filters have an efficacy factor
φ = 3 (see (6)) in evaluating the sign of randomly generated 4-dimensional
matrices (L = 31). Such problems are called “synthetic benchmarks” in [?]. It
would be interesting to see the performance of filters on realistic benchmarks,
i.e., actual algorithms for natural problems that we want to solve. But even
here, there are degrees of realism. Let us1 equate realistic benchmarks with
algorithms for problems such as convex hulls, triangulations, etc. The point
of realistic benchmarks is that they will generally involve a significant amount
of non-numeric computation. Hence the φ-factor in such settings ought to be
different from (in fact, less than) the synthetic setting. To quantify this, suppose
that a fraction

β (0 ≤ β ≤ 1) (7)

of the running time of the algorithm is attributable to numerical computation.
After replacing the machine arithmetic with exact integer arithmetic, the overall
time becomes (1 − β) + βσ = 1 + (σ − 1)β. With filtered arithmetic, the time
becomes 1 + (σ − 1)βφ−1. So “realistic” efficacy factor φ′ for the algorithm is

φ′ :=
(1 + (σ − 1)β

1 + (σ − 1)β/φ
.

It is easy to verify that φ′ < φ (since φ > 1). Note that our derivation assumes
the original time is unit! This normalization is valid in our derivation because all
the factors σ, φ that we use are ratios and are not affected by the normalization.

The factor β is empirical, of course. But even so, how can we estimate
this? For instance, for 2- and 3-dimensional Delaunay triangulations, Fortune
and Van Wyk [?] noted that β ∈ [0.2, 0.5]. Burnikel, et al. [?] suggest a
simple method for obtaining β: simply execute the test program in which each
arithmetic operation is repeated c > 1 times. This gives us a new timing for
the test program,

T (c) = (1 − β) + cβ.

Now, by plotting the running time T (c) against c, we obtain β as the slope.
Some detailed experiments on 3D Delaunay triangulations have been made

by Devillers and Pion [?], comparing different filtering strategies; they conclude
that cascading predicates is the best scheme in practice. Other experiments on
interval arithmetic have been done by Seshia, Blelloch and Harper [?].

0.2 Dynamic Filters

To improve the quality of the static filters, we can use runtime information
about the actual values of the variables, and dynamically compute the error
bounds. We can again use MaxErr(E) and MaxLen(E) as found in Table 1 for
static error. The only difference lies in the base case: for each variable x, the
MaxErr(x) and MaxLen(x) can be directly computed from the value of x. It is

1While holding on tightly to our theoretician’s hat!
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possible to make a dynamic version of the FvW filter, but we will not detail it
here due to lack of space.

The BFS filter. This is a dynamic filter, but it can also be described
as “semi-static” (or “semi-dynamic”) because one of its two computed param-
eters is statically determined. Let E be a radical expression, i.e., involving
+,−,×,÷,

√·. Again, let Ẽ be the machine IEEE double value computed from
E in the straightforward manner (this time, with division and square-roots). In
contrast to the FvW Filter, the filter parameters are now

MaxAbs(E), Ind(E).

The first is easy to understand: MaxAbs(E) is an upper bound on |E|. The
second, called the index of E, is a natural number whose rough interpretation
is that its base 2 logarithm is the number of bits of precision which are lost (i.e.
which the filter cannot guarantee) in the evaluation of the expression. Together,
they satisfy the following invariant:

|E − Ẽ| ≤ MaxAbs(E) · Ind(E) · 2−53 (8)

The value 2−53 may be replaced by the unit roundoff error u in general. Table 2
gives the recursive rules for maintaining MaxAbs(E) and Ind(E). The base case
(E is a variable) is covered by the first two rows: notice that they distinguish
between exact and rounded input variables. A variable x is exact if its value is
representable without error by an IEEE double. In any case, x is assumed not
to lie in the overflow range, so that the following holds

|round(x) − x| ≤ |x|2−53.

The bounds are computed using IEEE machine arithmetic, denoted

⊕, ⊖, ⊙, ⊘, e
√
·.

The question arises: what happens when the operations lead to over- or under-
flow in computing the bound parameters? It can be shown that underflows for
⊕, ⊖ and e

√· can be ignored, and in the case of ⊙ and ⊘, we just have to add a
small constant MinDbl = 10−1022 to MaxAbs(E).

Expression E MaxAbs(E) Ind(E)

Exact var. x x 0
Approx. var. x round(x) 1
E = F ± G MaxAbs(F ) ⊕ MaxAbs(G) 1 + max{Ind(F ), Ind(G)}
E = FG MaxAbs(F ) ⊙ MaxAbs(G) 1 + Ind(F ) + Ind(G)

E = F/G
| eE|⊕(MaxAbs(F )⊘MaxAbs(G))

(| eG|⊘MaxAbs(G))⊖(Ind(G)+1)2−53 1 + max{Ind(F ), Ind(G) + 1}

E =
√

F


(MaxAbs(F ) ⊘ eF ) ⊙ eE if eF > 0
ep
MaxAbs(F ) ⊙ 226 if eF = 0

1 + Ind(F )

Table 2: Parameters of the BFS filter

Assuming (8), we have the following criteria for certifying the sign of Ẽ:

|Ẽ| > MaxAbs(E) · Ind(E) · 2−53 (9)

Of course, this criteria should be implemented using machine arithmetic (see

(2) and notes there). One can even certify the exactness of Ẽ under certain
conditions. If E is a polynomial expression (i.e., involving +,−,× only), then

E = Ẽ provided
1 > MaxAbs(E) · Ind(E) · 2−52. (10)
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Finally, we look at some experimental results. Table 3 shows the σ-factor
(recall that this is a slowdown factor compared to IEEE machine arithmetic)
for the unfiltered and filtered cases. In both cases, the underlying Big Integer
package is from LEDA. The last column adds compilation to the filtered case.
It is based on an expression compiler, EXPCOMP, somewhat in the spirit of
LN (see Section 0.3). At L = 32, the φ-factor (recall this is the speedup due
to filtering) is 65.7/2.9 = 22.7. When compilation is used, it improves to φ =
65.7/1.9 = 34.6. [Note: the reader might be tempted to deduce from these
numbers that the BFS filter is more efficacious than the FvW Filter. But the
use of different Big Integer packages, platforms and compilers, etc, does not
justify this conclusion.]

BitLength L Unfiltered σ BFS Filter σ BFS Compiled σ

8 42.8 2.9 1.9
16 46.2 2.9 1.9
32 65.7 2.9 1.9
40 123.3 2.9 1.8
48 125.1 2.9 1.8

Table 3: Random 3 × 3 determinants

While the above results look good, it is possible to create situations where
filters are ineffective. Instead of using matrices with randomly generated integer
entries, we can use degenerate determinants as input. The results recorded
in Table 4 indicate that filters have very little effect. Indeed, we might have
expected it to slow down the computation, since the filtering efforts are strictly
extra overhead. In contrast, for random data, the filter is almost always effective
in avoiding exact computation.

BitLength L Unfiltered σ BFS Filter σ BFS Compiled σ

8 37.9 2.4 1.4
16 45.3 2.4 1.4
32 56.3 56.5 58.4
40 117.4 119.4 117.5
48 135.2 136.5 135.1

Table 4: Degenerate 3 × 3 determinants

The original paper [?] describes more experimental results, including the
performance of the BFS filter in the context of algorithms for computing Voronoi
diagrams and triangulation of simple polygons.

Dynamic filter using interval arithmetic. As mentioned, a simpler and
more traditional way to control the error made by floating-point computations is
to use interval arithmetic [?, ?]. Some work has been done by Pion et al. [?, ?, ?]
in this direction.

Interval arithmetic represents the error bound on an expression E at runtime
by an interval [Em;Ep] where Em, Ep are floating-point values and Em ≤ E ≤
Ep. Interval operations such as +,−,×,÷,

√
can be implemented using IEEE

arithmetic, exploiting its rounding modes. Changing the rounding mode has a
certain cost (mostly due to flushing the pipeline of the FPU), but the remark
has been made that it can usually be done only twice per predicate: at the
beginning by setting the rounding mode towards +∞, and at the end to reset
it back to the default mode. This can be achieved by observing that computing
a+ b rounded towards −∞ can be emulated by computing −((−a)− b) rounded
towards +∞. A similar remark can be done for −,×,÷. Therefore it is possible
to eliminate most rounding mode changes, which makes the approach much
more efficient.
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Most experimental studies (e.g. [?, ?]) show that using interval arithmetic
implemented this way usually induces a slowdown factor of 3 to 4 on algorithms,
compared to floating-point. It is also noted that interval arithmetic is the most
efficacious dynamic filter, failing rarely. This technique is available in the CGAL
library, covering all predicates of the geometry kernel.

0.3 Tools for automatic generation of code for the filters

Given the algebraic formula for a predicate, it is tedious and error-prone to
derive the filtered version of this predicate manually. Therefore tools have been
developed to generating such codes.

We have already mentioned the first one, LN, which targets the FvW filter
[?]. This tool does not address the needs of more complex predicates, which may
contain divisions, square roots, branches or loops. Another attempt has been
made by Funke et al. [?] with a tool called EXPCOMP (standing for expression
compiler), which parses slightly modified C++ code of the original predicate, and
produces static and semi-static BFS filters for them.

The CGAL library implements filtering using interval arithmetic for all the
predicates in its geometry kernel. The filtered versions of these predicates used
to be generated by a Perl script [?, ?], but the current approach uses template
mechanisms to achieve this goal entirely within C++. The advantage of dynamic
filters is that the code generator need not analyze the internal structure of the
predicate.

Most recently, Nanevski, Blelloch and Harper [?] have proposed a tool that
produces filters using Shewchuk’s method [?], for the SML language, from an
SML code of the predicate.Seeing these past and ongoing works, it seems im-
portant to have general software tools to generate such numerical code. Such
work is connected to compiler technology and static code analysis.
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§2. EXTRA NOTES for Filters

Model for certifying and checking. We give a simple formal model for
certifying (filtering) and checking. Assume I and O are some sets called the
input and output spaces. In numerical problems, it is often possible to
identify I and O with suitable subsets of R

n or ∪n≥1R
n. A computational

problem is simply a subset π ⊆ I × O. For simplicity, we assume that for all
x ∈ I, there exists y such that (x, y) ∈ π (for most problems, this condition can
be artificially enforced without changing the overall complexity). A program
is a pair (P,CP ) where P : I → O is a partial function and CP : I → R≥0

is its complexity function. Thus P on input x ∈ I takes time CP (x). Note
that even if P (x) ↑, the time taken is CP (x). We usually refer to P as “the
program” and leave its complexity function implicit. As a partial function, P (x)
may be undefined at x, written P (x) ↑; otherwise we write P (x) ↓. We say P
is a partial algorithm for π if for all x ∈ I, if P (x) ↓ then (x, P (x)) ∈ π. An
algorithm A for π is a partial algorithm that happens to be a total function.
Informally, we say a partial program P is “efficacious” if for “most” x ∈ X,
P (x) ↓.

A pair (P,A) is an anchored algorithm for π if P is partial algorithm for π
and A is an algorithm for π. This pair (P,A) represents a new algorithm for π in
which, for each input x, we first compute P (x); if P (x) ↓ then output P (x) and
otherwise we compute and output A(x). Logically, the algorithm (P,A) could
be identical to A. It is the complexity considerations that motivates (P,A). We
have

C(P,A)(x) = CP (x) + δ(x)CA(x)

where2

δ(x) =

{
0 if P (x) ↓,
1 else.

Thus the algorithm (P,A) could be more efficient than A when P is efficacious
and more efficient than A.

How do we obtain partial algorithms for π? Let P be an arbitrary total
program. A certifier for P (relative to π) is a program that computes a total
function F : I × O → {0, 1} such that for all x ∈ X, if F (x, P (x)) = 1 then
(x, P (x)) ∈ π. A checker C for P (relative to π) is a certifier for P (relative to π)
such that if C(x, P (x)) = 0 then (x, P (x)) 6∈ π. Thus a checker is3 a certifier, but
not necessarily vice-versa. We call the above pair (P, F ) a certified program
for π. Thus (P, F ) is seen as a new program PF , such that on input x, we first
compute P (x) and certify that F (x, P (x)) = 1; if certified, we output P (x) and
otherwise PF (x) ↑.

The main examples we have in mind is when P is the machine-arithmetic
implementation of a mathematically valid algorithm for π, so the output of
P is not always correct. In many situations, we can construct a certifier F
that knows about the operations of P and can certify most outputs of P . An
example is where π = πasd is the problem of “approximate signed determi-
nant”. For any input matrix x, and for any real number y, let (x, y) ∈ πasd iff
signdet(x) = signy. Note that we do not care whether y is even close to the
true determinant of x, as long as y has the right sign. Let P be some standard

2Unlike in recursive function theory, our model assumes that we can detect in a finite
(namely, CP (x)) amount of time whether P (x) ↑ In this example, after detecting P (x) ↑, we
simply call A(x).

3To be certified in our sense is similar to passing a driver’s test. As in real life, having a
driver’s certificate meant that one can drive, but not having one does not mean one cannot
drive.
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algorithm to compute determinants, implemented in machine-arithmetic. In
this case, a certifier F (x, y) for P (relative to πasd) can compute the standard
error bound b(x) > 0 on the output P (x), and output 1 iff b(x) < |P (x)|. The
pair (P, F ) is thus a certified program for π. It turns out that more efficacious
certifiers F ′ based on distance to the nearest singularity can be constructed (Pan
and Yu [?]). Note that we could insist that F be a checker, in order to increase
the efficacy of (P, F ). Unfortunately, this may be too strong a requirement. In
the case of πasd, we know of no non-trivial checker F that does amount to actu-
ally computing the determinant exactly. This would defeat the whole purpose
of certifying.

The intuitive idea is easy: we must “verify”, “check” or “certify” the out-
put of useful programs. We will make a formal distinction among these three
concepts. They are ordered in a hierarchy of decreasing difficulty, with verifi-
cation having the most stringent requirement. The verification procedure takes
as input a program P and some input-output specification S. The goal is to
determine whether or not P has the behavior S. A checking procedure (say,
specialized to a behavior S) takes an input-output pair (I,O) and will deter-
mine whether or not (I,O) ∈ S. This checker does not care how this (I,O)
pair is produced (in practice it probably comes from running some program P ).
Finally, a certifying procedure (again, specialized to S) takes the same input
pair (I,O) and again attempts to decide if (I,O) ∈ S. If it says “yes” then
surely (I,O) ∈ S. If it says “no”, it is allowed to be wrong (we call this false
rejections). Of course, a trivial certifier is to say “no” to all its inputs. But
useful certifiers should certainly do more than this. The main tradeoff for de-
signing certifiers is between efficacy (the percentages of false rejections) and
efficiency of the procedure.

The area of program checking [?, ?] lends some perspective on how to do this.
The related area of program verification requires all code to be proved correct.
This requirement is onerous as it is, and is the reason why verification was
abandoned. But imagine verifying numerical code. Presumably we must take
into account the numerical accuracy issues. But if so, practically all numerical
code will fail the program verification process! Program checking from the 1990s
takes a more realistic approach: it does not verify programs, it basically checks
specific input/output pairs. This ought to be called “problem checking”. In
program checking, one wants to do more than problem checking, by actually
calling the program as a blackbox. This requires additional properties such as
self-reducibility.

But our main emphasis in EGC is certifiers which turns out to be very
useful in practice. The term filters here is used as an alternative terminology
for certifiers. A filter not have to recognize that any particular input/output
pair is correct – to be useful, it only needs to recognize this for a substantial
number of such pairs. Thus, filters are even easier to construct than checkers.
Ultimately, filters are used for efficiency purposes, not for correctness purposes.

§2.1. Static Filters for 4-Dimensional Convex Hulls

To see static filters in action in the context of an actual algorithm, we follow
a study of Sugihara [?]. He uses the well-known beneath/beyond algorithm for
computing the convex hull of a set of 4-dimensional points, augmented with
symbolic perturbation techniques. By using static filters, Sugihara reported a
100-fold speedup for non-degenerate inputs, and 3-fold speedup for degenerate
inputs (see table below).

Let us briefly review the method: let the input point set be S and suppose
they are sorted by the x-coordinates: P1, . . . , Pn. Let Si be the set of first i
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points from this sorted list, and let CH(Si) denote their convex hull. In general,
the facets of the convex hull are 3-dimensional tetrahedra. The complexity of
CH(S) can be Θ(n2). Since this beneath/beyond algorithm is O(n2), it is
optimal in the worst case. We begin by constructing CH(S5). In general, we
show how to transform CH(Si−1) to CH(Si). This amounts to deleting the
boundary tetrahedra that are visible from Pi and addition of new tetrahedra
with apexes at Pi.

The main primitive concerns 5 points A,B,C,D,E in R
4. The sign of the

following 5 × 5 determinant

D =




1 Ax Ay Az Au

1 Bx By Bz Bu

1 Cx Cy Cz Cu

1 Dx Dy Dz Du

1 Ex Ey Ez Eu




determines whether the tetrahedron (A,B,C,D) is visible from E. Of course,
this is the primitive for all standard convex hull algorithms, not just the be-
neath/beyond method. If the coordinates are L bit integers, Hadamard bound
says that the absolute value of the determinant is at most 25

√
524L, and thus a

6 + 4L bit integer. If L = 28, it suffices to use 4 computer words. Using IEEE
64-bit doubles, the mantissa is 53 bits, so δ the relative error in a number, is at
most 2−53 < 4 × 10−15.

The determinant can be evaluated as a 4 × 4 determinant A = (aij) with
4! = 24 terms. Let us define

d := max
i,j,k,ℓ

|a1ia2ja3ka4ℓ|

where i, j, k, ℓ range over all permutations of {1, 2, 3, 4}. The computed deter-
minant det(A′) is only an approximation to the true determinant det(A), where
A′ is some perturbed version of A. It can be shown that if we define

∆ :=
24

1015
d

then
|det(A′) − det(A)| ≤ ∆.

Thus, if the absolute value of det(A′) is greater than ∆, we have the correct
sign.

[Display table of values from Sugihara here]

...

[COMPUTE the PHI factor]

Exercise 2.1: Determine the value of β for any realistic algorithm of your
choice. Does this β depend on the size of the input? ♦

0.4 Dynamic Filters

The following idea is important in practice: many numbers, at run time, have
much smaller value than the worst case bounds. It is important to exploit this
but it can only be done at run time.

Suppose we have a predicate P (x1, . . . , xn). Typically, we use a sin-
gle parameter function B(L) such that if each xi has at most L bits then
|P (x1, . . . , xn)| > B(L) when non-zero. If we have different estimates (or exact
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bounds as in dynamic filters) for each of the xi’s then we would like some easy-
to-compute function B(L1, . . . , Ln) such that |P (x1, . . . , xn)| > B(L1, . . . , Ln) if
non-zero. We have seen this in our static analysis of Fortune’s Voronoi diagram
algorithm.

Dynamic version of the FvW filter. It is easy enough to convert the FvW
filter into a dynamic one: looking at Table 1, we see that the only modification
is that in the base case, we can directly compute MaxLen(x) and MaxErr(x) for a
variable x. Let us estimate the cost of this dynamic filter. We already note that
MaxLen(E) can be computed directly using the formula in Table 1 since they
involve integer arithmetic. This takes 1 or 2 operations. But for MaxErr(E),
we need to appeal to lemma 1. It is easy to see that since the values are all
non-negative, we at most double the operation counts in the formulas of Table 1.
The worst case is the formula for E = FG:

MaxErr(E) = MaxErr(F )2MaxLen(G)+MaxErr(G)2MaxLen(F )+2MaxLen(FG)−53.

The value 2MaxLen(FG)−53 can be computed exactly in 2 flops. There remain
4 other exact operations, which require 2 × 4 = 8 flops. Hence the bound here
is 10 flops. Added to the single operation to compute MaxLen(F ) + MaxLen(G),
we obtain 11 flops. A similar analysis for E = F + G yields 8 flops.

After computing these filter parameters, we need to check if the filter pred-
icate is satisfied:

|Ẽ| > MaxErr(E).

Assuming Ẽ is available (this may incur storage costs not counted above), this

check requires up to 2 operations: to compute the absolute value of Ẽ and to
perform the comparison. Alternatively, if Ẽ is not available, we can replace Ẽ
by 2MaxLen(E). In general, we also need to check for floating-point exceptions at
the end of computing the filter parameters (the filter is assumed to have failed
when an exception occurred). We may be able to avoid the exception handling,
e.g., static analysis may tell us that no exceptions can occur.

Fortune and Van Wyk gave somewhat similar numbers, which we quote: let
fe count the extra runtime operations, including comparisons; let fr count the
runtime operations for storing intermediate results. In the LN implementation,
12 ≤ fe ≤ 14 and 24 ≤ fr ≤ 33. The 36 ≤ fe + fr ≤ 47 overhead is needed
even when the filter successfully certifies the approximate result Ẽ; otherwise,
we may have to add the cost of exact computation, etc. Hence fe +fr is a lower
bound on the σ-factor when using filtered arithmetic in LN. Roughly the same
bound of σ = 48 was measured for LEDA’s system.

Other ideas can be brought into play: we need not immediately invoke the
dynamic filter. We still maintain a static filter, and do the more expensive
runtime filter only when the static filter fails. And when the dynamic filter
fails, we may still resort to other less expensive computation instead of jumping
immediately to some failsafe but expensive big Integer/Rational computation.
The layering of these stages of computations is called cascaded filtering by
Burnikel, Funke and Schirra (BFS) [?]. This technique seems to pay off espe-
cially in nearly degenerate situations. We next describe the BFS filter.

Exercise 2.2: Implement and perform a direct comparison of the FvW Filter
and the BFS Filter to determine their efficacy (i.e., their φ-factors) for
sign of small determinants. ♦
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0.5 Sign Determination in Modular Arithmetic

Modular arithmetic (i.e., residue number systems) is an attractive method of
implementing arithmetic because it allows each digit to be computed indepen-
dently of the others. That is, is avoids the problem of carries, and thus is
amenable to parallel execution in machine precision (assuming each digit fits
into a machine word). Unfortunately, determining the sign of a number in mod-
ular representation seems to be non-trivial. We describe a solution provided by
Brönnimann et al. [?].

§2.2. Partial Compilation of Expressions

Sometimes, part of the arguments of an expression are fixed while others are
vary. We can exploit this by constructing “partially compiled expressions”. To
see an example of this phenomenon, we look at the Beneath-Beyond Algorithm
for convex hulls.

See [Page 147ff in Edelsbrunner].
Let S be a set of points in d dimensions. FOR SIMPLICITY, ASSUME

GENERAL POSITION. We sort the points by their first coordinate, and add
them in this order. The method (called Beneath-Beyond) begins with a d + 1
simplex. At each step, we add a new point p to the current hull H:
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Lecture 12

CONSTRUCTIVE ZERO BOUNDS

This chapter describes some effective methods for computing lower bound on algebraic ex-
pressions. Two particular methods will be developed in detail: the measure bound and BFMSS
bound.

§1. An Approach to Algebraic Computation

Algebraic numbers that arise in practice are represented by expressions such as
√

2 +
√

3−
√

5 + 2
√

6 or
1− 100 sin(1/100). The critical question is to determine the sign of such expressions, or to detect when they
are undefined. Assume we can approximate any well-defined expression e to any desired absolute precision,
i.e., for all p ∈ N, we can compute an approximate value ẽ such that |e − ẽ| ≤ 2−p. If e 6= 0, then we can
compute ẽ for p = 1, 2, 3, . . . until |ẽ| > 2−p. At this point, we know the sign of e is that of ẽ. The problem
is that when e = 0, this iteration cannot halt. But suppose we can compute some bound B(e) > 0 with the
property that if e 6= 0 then |e| > B(e). In this case, we can halt our iteration when p ≥ 1 − lgB(e), and
declare that e = 0. In proof,

|e| ≤ |ẽ+ 2−p ≤ 21−p ≤ B(e)

implies e = 0.
In general, an expression is a rooted DAG over some set Ω of real algebraic operators. A typical set is

Ω = {±,×,÷} ∪ Z. Note that constants such as n ∈ Z are regarded as 0-ary operators, and these appear at
the leaves of the DAGs. Let Expr(Ω) denote the set of expressions over Ω. There is a natural evaluation
function val : Expr(Ω) → R such that val(e) is the value denoted by e. In general, val is a partial function,
since some operators in Ω (like ÷) may be partial. We write val(e) =↑ in case val(e) is undefined; otherwise
we write val(e) =↓. A function B : Expr(Ω) → R≥0 is called a zero bound function if for all e ∈ Expr(Ω),
if val(e) =↓ then |val(e)| ≥ B(e). Since the lower bound is only in effect when val(e) =↓, we may call B(e)
a “conditional” lower bound.

We generalize the above observations to a general computational paradigm. This is basically the method
encoded in the Core Library. Each algebraic operation in Ω = {+,−,×,÷,√·, . . .} is regarded as the
construction of a root of a DAG whose leaves are (say) integers. Thus, each node u of the DAG has an
implicit real value val(u) (which may be undefined). Moreover, assume that we store two quantities at
every node u of the DAG: a precision parameter pu ∈ N and a bigfloat interval Iu ∈ Z[12 ] (possibly Iu is
undefined). Inductively assume that val(u) ∈ Iu and w(Iu) ≤ 2−pu . Moreover, we assume algorithms which
can approximate each operation in Ω to whatever precision we wish. Suppose we want to approximate a
given expression e to some absolute precision p. Assume e = e′⋄e′′ where ⋄ ∈ Ω. The lazy approach says that
we just compute (using interval arithmetic) the value Ie := Ie′ ⋄Ie′′ and see if w(Ie) ≤ 2−pe . If not, we refind
the intervals Ie′ and Ie′′ and repeat. But in Core Library, we do this iteration more actively, by computing
the precision pe′ , pe′′ in e′ and e′′ that will ensure that Ie has precision pe. This is called “precision-driven
computation”. All this computation is relatively straightforward in interval arithmetic. What makes our
system unique is that we also compute a zero bound B(e) for each expression, and this allows us to decide
the sign of e. When w(Ie) ≤ B(e)/2, and 0 ∈ Ie, we conclude that e is zero.

We now focus on how to compute such B(e) bounds. Using the theory of resultants, we can define a
suitable zero bound function for expressions over Ω = {±,×,÷,√·} ∪ Z. For instance, if e = e1e2, then we
know from resultants that a defining polynomial A(X) for e can be obtained from the definition polynomials
Ai(X)’s for ei (i = 1, 2). Moreover, if ht(ei) = hi then

ht(e) ≤ h := hm2

1 hm1

2

where mi = deg(Ai). From Cauchy’s bound (see previous Chapter), it is clear that we can define B(e) =
(1 + h)−1. There are similar relations for e = e1 ± e2, e = e1/e2, e = k

√
e1. Thus, if we maintain recursively,
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for each node in e, an upper bound on the height and degree of the corresponding algebraic number, we can
recursive compute B(e) for any expression e. This is the degree-height bound, implemented in the first
system for such kind of numerical algebraic computation, Real/Expr [16] (cf. [15, p. 177]).

In this chapter, we describe several other zero bound functions in detail. The general feature of such
constructive bounds is illustrated by the degree-height bound. Two ingredients are needed: first, we need
a set of recursive rules to maintain a set

p1(e), . . . , pt(e)

of numerical parameters for an expression e. In the degree-height bound, t = 2 where p1(e) is a height
bound and p2(e) is the degree bound. The second ingredient is a zero bound function B(e) that is computed
obtained as a function β of these parameters, B(e) = β(p1(e), . . . , pt(e)). In the degree-height bound,
β(p1, p2) = (1 + p1)

−1.
Such recursive rules apply to a suitable set Expr(Ω) of expressions. For these notes, we mainly focus on

the following set
Ω2 := {±,×,÷,

√
·} ∪ Z.

We can slightly extend Ω2 to allow k
√· for integers k ≥ 2.

Let B(e) = β(p1(e), . . . , pt(e)) be a constructive zero bound over a class K of expressions. Suppose we
have another constructive zero bound C(e) = γ(q1(e), . . . , qu(e)) over K which is based on a different set of
parameters q1(e), . . . , qu(e) and bounding function γ(q1, . . . , qu). We would like to compare C(e) and B(e):
we say B is as efficient than C if for every e ∈ K, the time complexity of maintaining the parameters
p1(e), . . . , pt(e) and computing the function b(p1, . . . , pt) is order of the corresponding complexity for C. But
there is another way to compare B(e) and C(e): we say B(e) dominates C(e) if for all e ∈ K, B(e) ≥ C(e).
For instance, the degree-measure bound, to be described, dominates the degree-height bound. At least for
known constructive bounds, the efficiency issue is less important than having as large a lower bound as
possible. Hence we mainly compare zero bounds based on their domination relationship.

Degree Bound for Expressions. In all the zero bounds, we need to maintain an upper bound D(e) on
the degree of val(e). Consider an expression e having r radical nodes with indices k1, k2, . . . , kr. Then we
claim that the degree of e is at most

D(e) =

r∏

i=1

ki. (1)

In proof, suppose we topologically sort the nodes in e, beginning with a leaf node and ending in the node e.
Let the sorted list be (v1, v2, . . . , vs). Inductively, define d1, . . . , ds where d1 = 1 and di+1 is equal to kdi if
vi+1 is k-th root, and otherwise di+1 = di. It is clear that ds = D(e). Now it is clear that, by induction,
deg(vi) ≤ di. This proves our claim. It is also not hard to compute D(e). This method of bounding degree
extends to the “RootOf” operator (below) which introduces arbitrary real algebraic numbers.

§1.1. The Mahler Measure bound

Every algebraic number α has a unique minimal polynomial Irr(α) ∈ Z[X]. We can factor Irr(α) over C

as Irr(α) = a
∏m

i=1(X−αi) with a a positive integer. We may assume α = α1; each αi is called a conjugate
of α. Mahler’s measure of α is defined as

M(α) := a ·
m∏

i=1

max{1, |αi|}.

For instance, M(
√

2) = 2 because the minimal polynomial of
√

2 is X2 − 2 = (X −
√

2)(X +
√

2) and a = 1.
On the other hand, M(1 +

√
2) = 1 +

√
2 which is irrational.

In the following, it is convenient to define for any complex z,

max1(z) := max{1, |z|}. (2)
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In general, if A(X) =
∑m

i=0 aiX
i ∈ C[X] is any polynomial, we define its measure as

M(A) := |am| ·
m∏

i=1

max1(αi),

where αi’s are the complex roots of A(X). This definition might appear unnatural but in fact M(α) can
also be defined by a natural integral (Exercise). In case A(X) ∈ Z[X], we see that M(A) ≥ 1.

In particular, M(α) ≥ 1 for non-zero algebraic α. It is also easy to see that if A(X), B(X) ∈ Z[X] then

M(AB) = M(A)M(B) (3)

and hence we conclude that
M(A) ≤M(AB).

The basis for the degree-measure bound is the following theorem:

Lemma 1.
(i) |α| ≤M(α).
(ii) If α 6= 0 then M(1/α) = M(α).
(iii) |α| ≥ 1

M(α) .

Proof. (i) is immediate from the definition of measure. For (ii), we observe that if the minimal polynomial
of α is A(X) =

∑m
i=0 aiX

i = am

∏m
i=1(X − αi) then a0 6= 0 and

B(X) = XmA(1/X) = a0

m∏

i=1

(X − 1/αi)

is (up to sign) the minimal polynomial of 1/α. Further,

a0 = am

m∏

i=1

αi (4)

Hence
M(1/α) = |a0|

∏
i max1(1/αi)

= |am|∏i |αi| · max1(1/αi) ( by (4))
= |am|

∏
i max1(αi)

= M(α).

Finally, (iii) follows from (i) and (ii): 1/|α| ≤M(1/α) = M(α). Q.E.D.

In other words, if e is any expression, and we maintain an upper bound m(e) on it’s Mahler measure,
then the B(e) ≥ 1/m(e). Let us now see how we can maintain such an upper bound. As in the case of
height, we see that we need to also maintain an upper bound on the degree of e. Such bounds were first
exploited by Mignotte [9] in the problem of identification of algebraic numbers.

In the following, we use the following elementary relations:

max1(αβ) ≤ max1(α)max1(β), (5)

max1(α± β) ≤ 2max1(α)max1(β). (6)

The first inequality (5) is trivial in case |αβ| ≤ 1. Otherwise,

max1(αβ) = |α| · |β| ≤ max1(α)max1(β).

The second inequality is trivial in case |α± β| ≤ 2. Otherwise, let |β| ≥ |α| and

max1(α± β) ≤ |α| + |β| ≤ 2|β| ≤ 2max1(α)max1(β).

We have the following relations on measures [10]:
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Lemma 2. Let α and β be two nonzero algebraic numbers of degrees m and n respectively. Let k ≥ 1 be an
integer.

(o) M(p/q) ≤ max |p|, |q|, p, q ∈ Z, q 6= 0
(i) M(α× β) ≤ M(α)nM(β)m

(ii) M(α/β) ≤ M(α)nM(β)m

(iii) M(α± β) ≤ 2dM(α)nM(β)m, d = deg(α± β)
(iv) M(α1/k) ≤ M(α)
(v) M(αk) ≤ M(α)k

Proof. For (o), it sufficient to assume p, q are relatively prime so that the minimal polynomial of p/q is
qX − p. Then M(()p/q) = |q|max1(p/q), which we can verify is equal to max |p|, |q|.

Let the minimal polynomials of α, β be A(X) = a
∏m

i=0(X−αi) and B(X) = b
∏m

j=0(X−αj), respectively.
For (i), we use the fact that the minimal polynomial of αβ divides anbm

∏
i

∏
j(X − αiβj) which we saw is

the resultant resY (A(Y ), Y nB(X/Y )). Hence, by (3),

M(αβ) ≤ anbm
∏m

i

∏n
j max1(αiβj)

≤ an
∏

i b
∏

j max1(αi)max1(βj)

= an
∏

i max1(αi)
n
[
b
∏

j max1(βj)
]

= an
∏

i max1(αi)
nM(β)

= M(β)man
∏

i max1(αi)
n

= M(β)mM(α)n.

Part (ii) follows from (i), using the fact that M(1/β) = M(β) and deg(1/β) = n.
For (iii), we use the fact that the minimal polynomial of α± β divides anbm

∏
i

∏
j(X − αi ∓ βj) which

we saw is the resultant resY (A(Y ), B(X ∓ Y )). Let I ⊆ {1, . . . ,m}× {1, . . . , n} such that the conjugates of
α± β is given by the set {αi ± βj : (i, j) ∈ I}. So deg(α± β) = |I|.

M(α± β) ≤ anbm
∏

(i,j)∈I max1(αi ± βj)

≤ anbm
∏

(i,j)∈I 2max1(αi)max1(βj)

= 2|I|anbm
∏

(i,j)∈I max1(αi)max1(βj)

≤ 2|I|anbm
∏

i

∏
j max1(αi)max1(βj).

The rest of the derivation follows as in part (i).
For (iv) and (v), use the facts that the minimal polynomials of α1/k and αk (respectively) divide A(Xk) =

a
∏

i(X
k − αi) and A(X)k. Q.E.D.

Using this lemma, we give a recursive definition of a function m(e), as shown in Table 1 under the column
with the heading “m(e)”. Thus is an upper bound on measure

M(e) ≤ m(e).

Hence we conclude from from Lemma 1 that the function

B(e) = 1/m(e)

is a root bound function.
Sekigawa [13] gave a refinement of these rules in the case an expression e is division-free. Let M0(A)

denote the leading coefficient of A, and define M1(A) by the equation

M(A) = M0(A)M1(A).

In case e is an expression and A is the minimal polynomial of val(e), we write M0(e) and M1(e) for M0(A)
and M1(A) (resp.). Sekigawa gave recursive definitions of two functions m0(e) and m1(e) which are upper
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e m(e) m1(e) m0(e)

1. rational p/q max{|p|, |q|} max1(p/q) |q|
2. e1 ± e2 2d(e)m(e1)

nm(e2)
m m1(e1)

nm1(e2)
m 2d(e)m0(e1)

nm0(e2)
m

3. e1 × e2 m(e1)
nm(e2)

m m1(e1)
nm1(e2)

m m0(e1)
nm0(e2)

m

4. e1 ÷ e2 m(e1)
nm(e2)

m — —
5. k

√
e1 m(e1) m1(e1) m0(e1)

Table 1: Measure Bound Rules, including Sekigawa’s refinement

bounds on M0(e) and M1(e), respectively. These definitions shown in the last two columns of Table 1. Note
that we do not have rules for division. Thus, for division free expressions, the function

B(e) =
1

m0(e)m1(e)

serves as a root bound function.
The rules shown here is actually a slightly simplified version of his rules.

An Example. Consider the expression

e =
√
x+

√
y −

√
x+ y + 2

√
xy (7)

where x = a/b, y = c/d and a, b, c, d are L-bit integers. Assume that
√
xy is computed as (

√
x)(

√
y). We will

determine the Measure Bound on − lg |e| (expressed in terms of L). We call any upper bound for − lg |e| a
zero bit-bound for e, because − lg |e| is the number bits of absolute precision that suffices to determine if
e = 0.

We fill in the entries of the following table, using our rules for bounding measure. Ignore the last column
for lgM0(e) for now. It is usually simpler to maintain bounds on lgM(e) instead of M(e) directly – so that
is what we show in the table. The first entry for lgM(x) is justified in an exercise: M(a/b) ≤ max{|a|, |b|}
for a, b ∈ Z.

No. e d(e) lgM(e) lgM0(e)

1 x, y 1 L L
2

√
x,

√
y 2 L L

3 x+ y 1 2L 2L
4

√
x
√
y 4 4L 4L

5
√
x+

√
y 4 4L+ 4 4L

6 2
√
xy 4 4L+ 4 4L

7 x+ y + 2
√
xy 4 12L+ 8 12L

8
√
x+ y + 2

√
xy 8 12L+ 8 12L

9
√
x+

√
y +

√
x+ y + 2

√
xy 8 80L+ 64 80L

Since |e| ≥ 1/M(e), we conclude that − lg |e| ≤ lgM(e) ≤ 80L + 64. In line 4, the degree
√
x
√
y of 4 is

obtained from our rules, but it is clearly suboptimal.

Exercises

Exercise 1.1: (i) We have a rule for the measure of rational numbers p/q, and this is clearly tight in case p, q
are relatively prime. But show that our measure bound (using the multiplication rule) is sub-optimal
for rational input numbers.
(ii) Refine our measure rules for the special case of the division of two algebraic integers, similar to the
rule (i). ♦
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e U(e) L(e)

1. rational a/b a b
2. e1 ± e2 U(e1)L(e2) + L(e1)U(e2) L(e1)L(e2)
3. e1 × e2 U(e1)U(e2) L(e1)L(e2)
4. e1 ÷ e2 U(e1)L(e2) L(e1)U(e2)

5. k
√
e1

k

√
U(e1)

k

√
L(e1)

Table 2: BFMS Rules for U(e) and L(e)

Exercise 1.2: Determine those algebraic numbers α whose Mahler measure M(α) are not natural numbers.
♦

Exercise 1.3: Determine the Mahler Bound for the expression in Equation (7) where x and y are L-bit
rational numbers (i.e., the numerator and denominators are at most L-bit integers). ♦

Exercise 1.4: (i) Determine the Degree-Measure bound for the expression (a +
√
b)/d where a, b, d are

(respectively) 3L-bit, 6L-bit and 2L-bit integers.
(ii) Do the same for the difference of two such expressions. ♦

End Exercises

§1.2. The BFMS bound

One of the best constructive zero bounds for the class of radical expressions is from Burnikel et al [5].
We call this the BFMSS Bound. However, we begin with the presentation of the simpler version known
as the BFMS Bound [4]. The bound depends on three parameters, L(e), L(e),D(e) for an expression e.
Since D(e) is the usual degree bound, we only show the recursive rules for L(e), L(e) in Table 2.

Conceptually the BFMS approach first transforms a radical expression e ∈ Expr(Ω2) to a quotient of
two division-free expressions U(e) and L(e).

If e is division-free, then L(e) = 1 and val(e) is an algebraic integer (i.e., a root of some monic integer
polynomial). The following lemma is immediate from Table 2:

Lemma 3. val(e) = val(U(e))/val(L(e)).

Table 2 should be viewed as transformation rules on expressions. We apply these rules recursive in a
bottom-up fashion: suppose all the children vi (say i = 1, 2) of a node v in the expression e has been
transformed, and we now have the nodes U(vi), L(vi) are available. Then we create the node U(v), L(v) and
construct the correspond subexpressions given by the table. The result is still a dag, but not rooted any
more. See Figure 1 for an illustration in case the operation at v is +.

The transformation e ⇒ (U(e), L(e)) is only conceptual – we do not really need to compute it. What
we do compute are two real parameters u(e) and l(e) are maintained by the recursive rules in Table 3. The
entries in this table are “shadows” of the corresponding entries in Table 2. (Where are they different?)

To explain the significance of u(e) and l(e), we define two useful quantities. If α is an algebraic number,
define

MC(α) :=
m

max
i=1

|αi| (8)

where α1, . . . , αm are the conjugates of α. Thus MC(α) is the “maximum conjugate size” of α. We extend
this notation in two ways:
(i) If e is an expression, we write MC(e) instead of MC(val(e)).
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L(e1)

L(e2)U(e2)

U(e1)e1

e

e2

U(e) L(e)

×
√
·

× ×

+

×+

√
·

× ×

√
·

Figure 1: Transforming an expression e to L(e), U(e).

e u(e) l(e)

1. rational a/b |a| |b|
2. e1 ± e2 u(e1)l(e2) + l(e1)u(e2) l(e1)l(e2)
3. e1 × e2 u(e1)u(e2) l(e1)l(e2)
4. e1 ÷ e2 u(e1)l(e2) l(e1)u(e2)

5. k
√
e1

k

√
u(e1)

k

√
l(e1)

Table 3: BFMS Rules for u(e) and l(e)

(ii) If A(X) is any polynomial, we write MC(A(X)) for the maximum of |αi| where αi range over the zeros
of A(X). For instance, we have this connection with Mahler measure:

M(α) ≤M0(α)MC(α)d

where d = deg(α). Using MC(α) and M0(α), we obtain a basic approach for obtaining zero bounds:

Lemma 4. If α 6= 0 and then
|α| ≥M0(α)−1MC(α)−d+1

where d = deg(α).

Proof. Let d = deg(α). If the minimal polynomial of α is a
∏m

i=1(X − αi) then we have a
∏

i |αi| ≥ 1.
Thus, assuming α = α1,

|α| ≥ 1

a
∏d

i=2 |αi|
≥ 1

aMC(α)d−1
.

Q.E.D.

The following theorem shows the significance of u(e), l(e).

Theorem 5. Let e ∈ Expr(Ω2). Then u(e) and l(e) are upper bounds on MC(U(e)) and MC(L(e)),
respectively.

Proof. The proof amounts to justifying Table 3 for computing u(e), l(e). The base case where e is a
rational number is clear. In general, U(e) and L(e) are formed by the rules in Table 2. Consider the case
e = e1 ± e2 so that

U(()e) = U(()e1)L(()e2) ± L(()e1)U(()e2).
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From the theory of resultants, we know that if α = β ◦ γ (◦ ∈ {±,×,÷}) then every conjugate of α has the
form β′ ◦ γ′ where β′, γ′ are conjugates of β, γ (resp.). Thus,

MC(U(()e)) = MC(U(()e1))MC(L(()e2)) +MC(L(()e1))MC(U(()e2)).

By induction, MC(U(()ei)) ≤ u(ei) and MC(L(()ei)) ≤ l(ei) (i = 1, 2). Hence, MC(e) ≤ u(e1)l(e2) +
l(e1)u(e2) = u(e). This justififies the entry for u(e) on line 2 of Table 3. Similarly, we can justify each of the
remaining entries of Table 3. Q.E.D.

Finally, we show how the BFMS Rules gives us a zero bound. It is rather similar to Lemma 4, except
that we do not need to invoke M0(e).

Theorem 6. Let e ∈ Expr(Ω2) and val(e) 6= 0. Then

(u(e)D(e)2−1l(e))−1 ≤ |val(e)| ≤ u(e)l(e)D(e)2−1. (9)

If e is division-free,
(u(e)D(e)−1)−1 ≤ |val(e)| ≤ u(e). (10)

Proof. First consider the division-free case. In this case, val(e) = val(U(e)). Then |val(e)| ≤ u(e) follows
from Theorem 5. The lower bound on |val(e)| follows from lemma 4, since M0(e) = 1 in the division-free
case.

In the general case, we apply the division-free result to U(e) and L(e) separately. However, we need to
estimate the degree of U(e) and L(e). We see that in the transformation from e to U(e), L(e), the number
of radical nodes in the dag doubles: each k

√· is duplicated. This means that deg(U(e)) ≤ deg(e)2 and
deg(L(e)) ≤ deg(e)2. From the division-free case, we conclude that

(u(e)D(e)2−1)−1 ≤ |val(U(e))| ≤ u(e).

and
(l(e)D(e)2−1)−1 ≤ |val(L(e))| ≤ l(e).

Thus |val(e)| = |val(U(e))/val(L(e))| ≥ (l(e)u(e)D(e)2−1)−1. The upper bound on |val(e)| is similarly
shown. Q.E.D.

Example. Consider the expression ek ∈ Expr(Ω2) whose value is

αk = val(ek) = (22k

+ 1)1/2k − 2. (11)

Note that ek is not literally the expression shown, since we do not have exponentiation in Ω2. Instead, the
expression begins with the constant 2, squaring k times, plus 1, then taking square-roots k times, and finally

minus 2. Thus u(ek) = (22k

+ 1)1/2k

+ 2 ≤ 5. The degree bound D(ek) = 2k. Hence the BFMS Bound says

|αk| ≥ u(ek)1−2k ≥ 51−2k

.

How tight is this bound? We have

(22k

+ 1)1/2k − 2 = 2
(
1 + 2−2k

)1/2k

− 2

= 2 · e2−k ln(1+2−2
k

) − 2

≤ 2 · e2−k2−2
k

− 2

≤ 2
(
1 + 2 · 2−k2−2k

)
− 2

= 22−k−2k
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e mc(e) m0(e) REMARK

(i) a ∈ C mc(a) m0(a)

(ii) e′ ± e′′ mc(α) +mc(β) m0(e
′)d′′

m0(e
′′)d′

deg(e′) ≤ d′

(iii) e′ × e′′ mc(α)mc(β) m0(e
′)d′′

m0(e
′′)d′

deg(e′′) ≤ d′′

(iv) k
√
e′ k

√
mc(e′) m0(e

′)

Table 4: Measure-BFMS Rules using mc(e) and m0(e)

using ln(1 + x) ≤ x if x > −1 and e2 ≤ 1 + 2x if 0 ≤ x ≤ 1/2. We also have

(22k

+ 1)1/2k − 2 = 2 · e2−k ln(1+2−2
k

) − 2

≥ 2 · e2−k2−2
k
−1 − 2

≥ 2
(
1 + 2−k2−2k−1

)
− 2

≥ 2−k−2k

using ex ≥ 1 + x. Hence αk = Θ(2−k−2k

). This example shows that the BFMS bound is, in a certain sense,
asymptotically tight for the class of division-free expressions over Ω2.

§1.3. Improvements on the BFMS bound

The root bit-bound in (9) is quadratic in D(e), while in (10) it is linear in D(e). This quadratic factor
can become a serious efficiency issue. Consider a simple example: e = (

√
x+

√
y) −

√
x+ y + 2

√
xy where

x, y are L-bit integers. Of course, this expression is identically 0 for any x, y. The BFMS bound yields a
root bit-bound of 7.5L+O(1) bits. But in case, x and y are viewed as rational numbers (with denominator
1), the bit-bound becomes 127.5L + O(1). This example shows that introducing rational numbers at the
leaves of expressions has a major impact on the BFMS bound. In this section, we introduce two techniques
to overcome division.

The Measure-BFMS Bound. The first technique applies division-free expressions, but where the input
numbers need not be algebraic integers (we can think of this as allowing division at the leaves). For instance,
the input numbers can be rational numbers.

The basic idea is to exploit Lemma 4. Hence we would like to maintain upper bounds on MC(α) and
M0(α). Let

Ω = {±,×, k
√
·} ∪ C (12)

where C is some set of algebraic numbers. Suppose e is an expression over Ω; so e is division-free. However C
may contain rational numbers that implicitly introduce division. We define the numerical parameters mc(e)
and m0(e) according to the recursive rules in Table 4.

Table 4, gives the recursive rules for computing mc(e),m0(e). Note that as the base case, we assume the
ability to compute upper bounds on MC(a) and M0(a) for a ∈ C.

Lemma 7. For any expression e over {±,×, k
√·} ∪ C, we have MC(e) ≤ mc(e) and M0(e) ≤ m0(e) where

mc(e) and m0(e) are given by Table 4.

Proof. We justify each line of Table 4. Line (i) is immediate by definition.
(ii) Let the minimal polynomial for α, β be a

∏m
i=1(X − αi) and b

∏n
j=1(X − βj), respectively. Then the

minimal polynomial of α ± β divides R(X) = anbm
∏

i

∏
j(X − αi ∓ βj). Thus each conjugate ξ of α ± β

has the form αi ± βj for some i, j. Thus |ξ| ≤ |αi| + |βj |. This proves MC(α ± β) ≤ mc(α) +mc(β). The
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inequality M0(α ± β) ≤ anbm ≤ m0(α)nm0(β)m follows from the fact that the leading coefficient of the
minimal polynomial divides the leading coefficient of R(X).

The same proof applies for e = e1e2. For (iii), if A(X) is the minimal polynomial for α then the minimal
polynomial for k

√
α divides A(Xk), so MC(α) ≤ MC(A(Xk)). However, MC(A(Xk)) = k

√
MC(A(X)) =

k

√
MC(α). Finally, we have M0( k

√
α) ≤ a ≤M0(α). Q.E.D.

By Lemma 4, we conclude that

e 6= 0 ⇒ |e| ≥ 1

M0(e)mc(e)D(e)−1
. (13)

Such a bound has features of Measure Bound as well as of the BFMS Bound; so we call it the “Measure-BFMS
Bound”.

The BFMSS Bound. Returning to the case of radical expressions, we introduce another way to improve
on BFMS. To avoid the doubling of radical nodes in the e 7→ (U(e), L(e)) transformation, we change the rule
in the last row of Table 3 as follows. When e = k

√
e1, we use the alternative rule

u(e) = k

√
u(e1)l(e1)k−1, l(e) = l(e1). (14)

But one could equally use

u(e) = u(e1), l(e) = k

√
u(e1)k−1l(e1).

Yap noted that by using the symmetrized rule

u(e) = min{ k

√
u(e1)l(e1)k−1, u(e1)}, l(e) = min{l(e1), k

√
u(e1)k−1l(e1)},

the new bound is provably never worse than the BFMS bound. The BFMSS Bound also extends the rules
to support general algebraic expressions (Ω4 expressions). NOTE: in the absence of division, the BFMSS
and BFMS rules coincide.

Comparison. We consider expressions over a division-free set Ω of operators, as in (12). Two important
examples are:

• Expressions can have rational input numbers (in particular binary floats or decimal numbers). See
[Pion-Yap].

• Expressions where the leaves could have RootOf(P, i) operators. This is the case with Core Library
Version 1.6.

It follows that Theorem 5 is still true. However, what is the replacement for Theorem 6? Using Lemma 4
and Lemma 7 we can obtain more effective bounds.

Let us see how BFMS, BFMSS and Measure-BFMS Bounds perform for the expression (7). In Table 3,
we show the parameters u(e), l(e) as defined for the BFMS Bound. In the next two columns, we show their
variants (here denoted uu(e) and ll(e)) as defined for the BFMSS Bound.

The BFMS Bound gives

− lg |e| ≤ (d(e)2 − 1) lg u(e) + lg l(e) = 63(5L+ 4)/2 + 5L/2 < 160L+ 126.

But the BFMSS Bound gives

− lg |e| ≤ (d(e) − 1) lg uu(e) + lg ll(e) ≤ 7(4L+ 2) + 4L = 32L+ 14.
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No. e d(e) lg u(e) lg l(e) lg uu(e) lg ll(e) mc(e)

1 x, y 1 L L L L L
2

√
x,

√
y 2 L/2 L/2 L L L/2

3 x + y 1 2L + 1 2L 2L + 1 2L L + 1
4

√
x
√

y 4 L L 2L 2L L
5

√
x +

√
y 4 L + 1 L 2L + 1 2L (L + 2)/2

6 2
√

xy 4 L + 1 L 2L + 1 2L L + 1
7 x + y + 2

√
xy 4 3L + 2 3L 4L + 2 4L L + 2

8
p

x + y + 2
√

xy 8 (3L + 2)/2 3L/2 2L + 1 2L (L + 2)/2
9

√
x +

√
y −

p

x + y + 2
√

xy 8 (5L + 4)/2 5L/2 4L + 2 4L (L + 4)/2

Table 5: BFMS and BFMSS on example

To apply the Measure-BFMS rule, we could use the fact that

MC(e) ≤ u(e) ≤ (5L+ 2)/2

(by first column of Table
M0(e) ≤ 80L

(by last column of table in (i)). Hence

− lg |e| ≤ 7(5L+ 2)/2 + 80L = 97.5L+ 7.

But we can directly compute an upper bound on MC(e) using the rules in Table 3. This is shown in the
last column of Table . This gives MC(e) ≤ mc(e) ≤ (L+ 4)/2. Then

− lg |e| ≤ 7(L+ 4)/2 + 80L = 83.5L+ 3.5.

In the next section, we consider the Conjugate Bound which is an extension of the Measure-BFMS approach:
for this example, it yields − lg |e| ≤ 28L+ 60.

Exercises

Exercise 1.5: Show an expression e involving L-bit integers where the application of Theorem 5 is asymp-
totically better than that of measure or BFMSS bounds. ♦

Exercise 1.6: Prove that the BFMSS Bound is never smaller than BFMS Bound. ♦

End Exercises

§1.4. Eigenvalue Bound
This bound adopts an interesting approach based on matrix eigenvalues [12]. Let Λ(n, b) denote the set of
eigenvalues of n×n matrices with integer entries with absolute value at most b. It is easy to see that Λ(n, b)
is a finite set of algebraic integers. Moreover, if α ∈ Λ(n, b) is non-zero then |α| ≥ (nb)1−n. Scheinerman
gives a constructive zero bound for division-free radical expressions e by maintaining two parameters, n(e)
and b(e), satisfying the property that the value of e is in Λ(n(e), b(e)). These recursive rules are given by
Table 6.

Note that the rule for
√
cd is rather special, but it can be extremely useful. In Rule 6, the polynomial

P (x) is given by
∑d

i=0 |ai|xi when P (x) =
∑d

i=0 aix
i. This rule is not explicitly stated in [12], but can be

deduced from an example he gave. An example given in [12] is to test whether α =
√

2 +
√

5 − 2
√

6 −
√

3
is zero. Scheinerman’s bound requires calculating α to 39 digits while the BFMS bound says 12 digits are
enough.
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e n(e) b(e)

1. integer a 1 |a|
2.

√
cd 2 max{|c|, |d|}

3. e1 ± e2 n1n2 b1 + b2
4. e1 × e2 n1n2 b1b2
5. k

√
e1 kn1 b1

6. P (e1) n1 P (n1b1)

Table 6: Eigenvalue Rules

§1.5. Conjugate Bound

The “conjugate bound” [8] is an extension of the Measure-BFMS bound above expressions with division.
This approach can give significantly better performance than BFMS in many expressions involving divisions
and root extractions. Because of division, we also maintain upper bounds tc(e), M(e) on the tail tail(e)
and M(e). Here the tail coefficient tail(e) is defined as the constant term of the irreducible polynomial
Irr(e).

Table 7 gives the recursive rules to maintain M0(e), tc(e) and M(e).

e lc(e) tc(e) M(e)

1. rational a
b |b| |a| max{|a|, |b|}

2. Root(P ) |leadP | |tailP | ‖P‖2

3. e1 ± e2 lcD2

1 lcD1

2 MD2

1 MD1

2 2D(e) MD2

1 MD1

2 2D(e)

4. e1 × e2 lcD2

1 lcD1

2 tcD2

1 tcD1

2 MD2

1 MD1

2

5. e1 ÷ e2 lcD2

1 tcD1

2 tcD2

1 lcD1

2 MD2

1 MD1

2

6. k
√
e1 lc1 tc1 M1

7. ek
1 lck

1 tck
1 Mk

1

Table 7: Recursive rules for lc(e) (and associated tc(e) and M(e))

The upper bounds on conjugates, MC(e), are obtained through resultant calculus and standard interval
arithmetic techniques. It turns out that it is necessary to maintain a lower bound ν(e) on the conjugates at
the same time. The recursive rules to maintain these two bounds are given in Table 8.

e MC(e) ν(e)

1. rational a
b |ab | |ab |

2. Root(P ) 1 + ‖P‖∞ (1 + ‖P‖∞)−1

3. e1 ± e2 MC(e1) +MC(e2) max{M(e)−1, (MC(e)D(e)−1lc(e))−1}
4. e1 × e2 MC(e1)MC(e2) ν(e1)ν(e2)
5. e1 ÷ e2 MC(e1)/ν(e2) ν(e1)/MC(e2)

6. k
√
e1

k

√
MC(e1)

k

√
ν(e1)

7. ek
1 MC(e1)

k ν(e1)
k

Table 8: Recursive rules for bounds on conjugates

Finally, we obtain the new zero bound as follows: Given an Ω3-expression e, if val(e) ↓ and e 6= 0, then
we obtain the lower bound from Lemma 4. This bound was implemented the Core Library and experiments
show that it can achieve significant speedup over previous bounds in the presence of division [8].
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§1.6. The Factoring Method for Root Bounds

Pion and Yap [11] introduced a root-bound technique based on the following idea: maintain zero bounds
for an expression e in the factored form, b = b1b2 where bi (i = 1, 2) is a zero bound for ei and e = e1e2.
If bi is obtained using method X (X being one of the above methods), and the factorization is carefully
chosen, then b1b2 could be a better bound than what X would have produced for e directly. The catch is
the method has no advantage unless such a factorization for e exists and can be easily found. Fortunately,
there is a class of predicates for which this approach wins: division-free predicates (e.g., determinants) in
which the input numbers are k-ary rationals, i.e., numbers of the form nkm where n,m ∈ Z. This is an
important class as the majority of real world input numbers are k-ary rationals for k = 2 or k = 10. For
such expressions, we maintain bounds for the factorization e = e1e2 where e1 is division-free (but may have
square roots) and e2 = kv for some v ∈ Z. Our technique is orthogonal to the various zero bounds which we
already discussed because each of the root bounds can, in principle, use this factorization technique. This
has been implemented in the Core Library for the BFMSS Bound and the Measure Bound, resulting in
significant improvement for zero bounds in, for instance, determinants with k-ary rational inputs.

§1.7. Comparison of Bounds

Comparisons between various constructive zero bounds can be found in [4, 8]. In general, a direct
comparison of the above zero bounds is a difficult task because of the different choice of parameters and
bounding functions used. Following the tact in [8], we compare their performance on various special subclasses
of algebraic expressions. We should note that there are currently three zero bounds, the BFMSS, Li-Yap
and Measure Bounds, that are not dominated by any other methods. In particular, these three are mutually
incomparable.

1. For division-free radical expressions, the BFMS bound is never worse than all the other bounds.
Moreover, for this special class of expressions, Li-Yap bound is identical to the BFMS bound.

2. For general algebraic expressions, in terms of root bit-bound, Li-Yap bound is at most D ·M where
D is the degree bound, and M is the root bit-bound from the degree-measure bound.

3. Considering the sum of square roots of rational numbers (a common problem in solving the shortest
Euclidean path problem), it can be shown that each of Li-Yap bound and the degree-measure bound can
be better than the other depending on different parameters about the expressions. But both of them are
always better than the BFMS bound.

4. Given a radical expression e with rational values at the leaves, if e has no divisions and shared radical
nodes, Li-Yap bound for e is never worse than the BFMS bound, and can be better in many cases.

5. A critical test in Fortune’s sweepline algorithm is to determine the sign of the expression e = a+
√

b
d −

a′+
√

b′

d′
where a’s, b’s and d’s are 3L-, 6L- and 2L-bit integers, respectively. The BFMS bound requires

(79L+30) bits and the degree-measure (D-M) bound needs (64L+12) bits. Li-Yap root bit-bound improves
them to (19L+9) bits. We generate some random inputs with different L values which always make e = 0, and
put the timings (in seconds) of the tests in Table 9. The experiments are performed on a Sun UltraSPARC
with a 440 MHz CPU and 512MB main memory.

L 10 20 50 100 200
NEW 0.01 0.03 0.12 0.69 3.90
BFMS 0.03 0.24 1.63 11.69 79.43
D-M 0.03 0.22 1.62 10.99 84.54

Table 9: Timings for Fortune’s expression

c© Mehlhorn/Yap Draft November 15, 2006



§1. An Approach to Algebraic Computation Lecture 12 Page 14

§1.8. Treatment of Special Cases

Root separation bounds. In both the Core Library and LEDA, the comparison of two expressions α
and β is obtained by computing the zero bound of α − β. However, more efficient techniques can be used.
If P (X) ∈ C[X] is a non-zero polynomial polynomial, sep(P) denotes the minimum |αi − αj | where αi 6= αj

range over all pairs of complex roots of P . When P has less than two distinct roots, define sep(P) = ∞.
Suppose A(X) and B(X) are the minimal polynomials for α and β, then |α− β| ≥ sep(AB). If we maintain
upper bounds d, d′ on the degrees of A and B, and upper bounds h, h′ on the heights of A and B, a root
separation bound for A(X)B(X) (which need not be square-free) is given by

|α− β| ≥
[
2(n+1)/2(n+ 1)hh′

]−2n

(15)

where n = d + d′ (see Corollary 6.33 in [15, p. 176,173] and use the fact that ‖AB‖2 ≤ (n + 1)hh′). The
advantage of using (15) is that the root bit bound here is linear in d+ d′, and not dd′, as would be the case
if we use resultant calculus. We compute α and β to an absolute error < sep(AB)/4 each, then declare them
to be equal iff their approximations differ by ≤ sep(AB)/2 from each other. Otherwise, the approximations
tell us which number is larger. Note that this approach not fit into our recursive zero bound framework (in
particular, it does not generate bounds for a new minimal polynomial).

Zero test. Zero testing is the special case of sign determination in which we want to know whether an
expression is zero or not. Many predicates in computational geometry programs are really zero tests (e.g.
detection of degeneracy, checking if a point lies on a hyperplane). In other applications, even though we need
general sign determination, the zero outcome is very common. For instance, in the application of EGC to
theorem proving [14], true conjectures are equivalent to the zero outcome. In our numerical approach based
on zero bounds, the complexity of sign determination is determined by the zero bound when the outcome is
zero. Since zero bounds can be overly pessimistic, such tests can be extremely slow. Hence it is desirable to
have an independent method of testing if an expression is zero. Such a zero test can be used as a filter for
the sign determination algorithm. Only when the filter detects a non-zero do we call the iterative precision
numerical method.

Yap and Blömer [3] observed that for expressions of the form e =
∑n

i=1 ai

√
bi (ai ∈ Z, bi ∈ N), zero testing

is deterministic polynomial time, while the sign determination problem is not known to be polynomial time.
Blömer [3, 1] extended this to the case of general radicals using a theorem of Siegel; he also [2] gave a
probabilistic algorithm for zero test. When the radicals are nested, we can apply denesting algorithms [6, 7].
Note that these methods are non-numerical.

Exercises

Exercise 1.7: Let a > 0. Show that amax{1, 1/a} = max{1, a} and (1/a)max{1, a} = max{1, 1/a} ♦

Exercise 1.8: Show the conjugates of α are distinct. ♦

Exercise 1.9: Show that M(A) = exp
[∫ 1

0
log |A(e(θ))|dθ|

]
. ♦

End Exercises
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Lecture 13

NUMERICAL ALGEBRAIC COMPUTATION

We introduce the numerical algebraic mode of computation.

This can be viewed as a third form of computing with algebraic num-

bers. The main features of this computation is that we avoid all

explicit manipulation of the polynomials that underlie algebraic num-

bers. Instead, we only use a numerical approximation. To recover

the algebraic properties of the exact numerical values, we only use

the theory of zero bounds as developed in the previous chapter.

In general, the numerical algebraic mode leads to more efficient

and practical algorithms. The complexity of numerical algebraic

computation is adaptive, making it useful for applications.

§1. What is Numerical Algebraic Computation?

We have described two standard views of algebraic computation: manipulat-
ing algebraic relations in Q(α) and real algebraic computation via Sturm theory.
We now describe the third approach, based on numerical approximations.

Although it has some similarities to isolating intervals, the key difference is
that we never explicit compute defining polynomials. Instead, we maintain some
suitable bounds on algebraic quantities related to our numbers, and remember
the construction history (which is an expression). Using such bounds, we can
carry out exact comparisons of our algebraic numbers.

What exactly do we need? Suppose we want to compare two numbers, e.g.,

√
2 +

√
3 :

√
5 + 2

√
6.

These two values are the same, and so regardless of how accurately we ap-
proximate the quantities, we cannot decisively conclude that the numbers are
equal!

Our premise for this mode of computation goes as follows. Like Kronecker1,
we assume that the original numerical inputs are Z; all other numbers must be
explicitly constructed by application of a suitable operator. This is formalized
as follows.

Let Ω be a set of algebraic operators. We restrict ourselves to real operators,
and so each f ∈ Ω is a partial function f : Rn → R for some arity n = n(f).
Let Ω(n) ⊆ Ω denote the set of operators of arity n. Thus Ω(0) are the constant
operators of Ω. representing the constant operators (i.e., f with n(f) = 0). Let
Ω0 = Z ∪ {±,×}. We assume that Ω0 ⊆ Ω.

1We are misappropriating Leopold Kronecker’s famous statement, “Die ganzen Zahlen hat
der liebe Gott gemacht, alles andere ist Menschenwerk” [God made the whole numbers, all else
are man-made]. This statement appeared in H. Weber’s memorial article (1892) on Kronecker,
and which Weber attributes to a 1866 speech by Kronecker.
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Remark: The choice of Ω(0) can have significant impact on the efficiency
of our algorithms. In the simplest case, we have Ω(0) = Z. But other natural
choices are Ω(0) = Q or Ω(0) = F = {n2m : n,m ∈ Z} (floats).

The class of algorithms we study is intuitively easy to understand, for it
resembles programs in modern high-level computer languages. We have basic
data types like Booleans, integers and also real numbers. Here “real” numbers
really do refer to elements of R. However, the input numbers are restricted to Z
(or Q or F). In computer languagues, these input numbers are sometimes called
literals. You can perform basic arithmetic operations using the operators in Ω,
and you can compare any two real numbers. Basic data structures like arrays
and control structures for looping and branching will be available. The loops
and branches are controlled by comparisons of real numbers. It is possible to
formalize this class of algorithms as the algebraic computation model [3].

Our algorithm therefore manipulates real numbers which can be represented
by expressions over Ω. Let Expr(Ω) denote the set of such expressions. Note
that each e ∈ Expr(Ω) is either undefined or denotes a real algebraic number.
We shall write val(e) for the value of e (val(e) =↑ when undefined). When we
write expressions, we often view them as rooted oriented dags (directed acyclic
graphs), with each node labeled by an operator in Ω of the appropriate arity.
For instance, all the leaves of the dag must be elements of Ω(0).

[FIGURE of an EXPRESSION]
CONVENTION: It is convenient to write a plain “e” instead of “val(e)”

when the context is clear.

§1.1. Relative and Absolute Approximations

Since we will be using approximations extensively, it is good to introduce
some convenient notations. We are interested in both relative and absolute
approximations. Indeed, the interaction between these two concepts will be an
important part of our algorithms.

For real numbers x and p, let Rel(x, p) denote the set of numbers x̃ such
that |x − x̃| ≤ 2−p|x|. Any value y in Rel(x, p) is called a relative p-bit
approximation of x. Similar, let Abs(x, p) denote the set of all x̃ such that
|x−x̃| ≤ 2−p, i.e., the set of absolute p-bit approximations to x. In practice,
p will be an integer.

Example. Consider a binary floating point number, x̃ = m2n ∈ F. If m 6= 0
is a p-bit integer, then x̃ = ±(bpbp−1, . . . , b1)2 where bi ∈ {0, 1} and bp = 1.
Assume x̃ is an approximation to some value x in the interval [(m− 1)2n, (m +
1)2n]. So |x| ≥ (m − 1)2n ≥ (2p−1 − 1)2n. Assume p ≥ 2. Then |x| ≥ 2p−2+n,
or

|x − x̃| ≤ 2n ≤ |x|2p−2.

Hence x̃ has p − 2 relative bits of precision.
Instead of writing “x̃ ∈ Rel(x, p)”, we also use the alternative notation,

x̃ ∼ x (Rel[p]). (1)

Similarly, we write x̃ ∼ x (Abs[p]) instead of “x̃ ∈ Abs(x, p)”. Note that y ∼
x (Rel[p]) is not equivalent to x ∼ y (Rel[p]), but y ∼ x (Abs[p]) is equivalent
to x ∼ y (Abs[p]). Generally, we define concepts using relative approximations,
leaving to the reader the task of extend the definition to the absolute case.

We note the following basic relationship:

Lemma 1 If x̃ ∼ x (Rel[1]) then sign(x̃) = sign(x). In particular, x = 0 iff

x̃ = 0.
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The proof is left as an exercise.
We are interested in approximating numerical functions. If f : Rn → R is a

numerical function, we call a function f̃ : Rn+1 → R a relative approximation
of f if for all x1, . . . , xn, p ∈ R, we have that

f̃(x1, . . . , xn, p) ∈ Rel(f(x1, . . . , xn), p).

Moreover, f̃(x1, . . . , xn, p) is undefined iff f(x1, . . . , xn) is undefined. In general,
we write R(f) or Rf to denote any function that relative approximation of f .
Similarly, we can define the notion of absolute approximation function, and use
the notation A(f) or Af for any function that absolute approximation of f .

§2. Approximate Expression Evaluation

The central computational problem of numerical algebraic computation can
be posed as follows: given an expression e ∈ Expr(Ω) and a p, to compute an
approximate value ẽ ∼ e (Rel[p]).

The basic method is to propagate the precision p to all the nodes in E using
suitable inductive rules. In the simplest case, this propagation may proceed
only in one direction from the root down to the leaves. Then, we evaluate
the approximate values at the leaves and recursively apply the operations at
each node from the bottom up. In implementations, the approximate values at
each node is a float. Algorithms to propagate composite precision bounds are
described in [2, 4, 1, 3].

Complications arise when the propagation of precision requires bounds on
the magnitude of the values at some nodes. This is where the zero bounds
become essential. This topic is taken up in the next lecture but for now, we
make a definition:

A total function B : Expr(Ω) → R≥0 is called a zero bound function for
expressions over Ω if for all e ∈ Expr(Ω), if val(e) is defined and non-zero, then

|val(e)| > B(e).

For example if B(e) = 0 for all e, then we call B(e) a trivial bound. An-
other equally useless zero bound function is B(e) = |val(e)| whenever val(e)
is defined (and otherwise 0). It is useless because such a function cannot be
effectively computed. In the following, we will assume the existence of some
easy to compute zero bound function.

A well-known technique in the literature called “lazy evaluation” has simi-
larities to precision-driven computation. The lazy evaluation typically “pumps”
increasingly precise values from the leaves to the root, and simply tracks the
forward error. If this error is larger than the desired precision at the root, the
process is iterated. In other words, the lazy approach typically has only the up-
ward phase of precision-driven computation. Such iterations alone is insufficient
to guarantee the sign of an expression, which is another essential ingredient of
the precision-driven approach.

Most Significant Bit (msb). Zero bounds aim to bound |val(e)| away from
0. We will also need to bound |val(e)| from above. If ÷ ∈ Ω, these two types
of bounds are essentially interchangeable. Since |val(e)| can be very large or
very small, and these bounds need not be very accurate in practice, it is more
efficient to bound only the bit size, i.e., lg |val(e)|. Define

µ(e) := lg |val(e)|. (2)
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We write µ+(e) and µ−(e) for any upper and lower bound on µ(e). Note that
µ+(e), µ−(e) are not functional notations (the value the denote depends on the
context). In a sense, relative approximation of x amounts to computing the µ(x),
plus an absolute approximation of x. For, x̃ ∈ Rel(x, p) iff x̃ ∈ Abs(x, p−µ(x)).

Closely related to µ(e) is the most significant bit function: for any real
number x, let msb(x) := ⌊lg |x|⌋. By definition, msb(0) = −∞. Thus,

2msb(x) ≤ |x| < 21+msb(x).

If x in binary notation is · · · b2b1b0.b−1b−2 · · · (bi = 0, 1) then msb(x) = t iff
bt = 1 and bi = 0 for all i > t.

§2.1. Propagating Precision in Basic Operators

Let Ω be a set of operators and f ∈ Ω where f : Rn → R. We assume the
existence of algorithms to compute f(x1, . . . , xn;π) where π = Rel[p] or Abs[p].
Such algorithms are given and analyzed by Ouchi[2] for the rational operators
and square root. The question we now address is the following: suppose we
want to compute f(x1, . . . , xn; Abs[p]). But xi are not explicitly known, and our
goal is to determine n + 1 parameters

q1 = q1(p), . . . , qn = qn(p), q = q(p)

such that if
wtxi ∼ xi (Abs[p]) (i = 1, . . . , n) (3)

then
f(x̃1, . . . , x̃n; Abs[q]) ∼ f(x1, . . . , xn) (Abs[p]). (4)

This relation for the operator + is visually illustrated in Figure 1

fx2

(fx1fx2)p+1

fx1

Abs[max{a1, p + 1 + µ
+

2
}] Abs[max{a1, p + 2 + µ

+

2
}]

Abs[p]

×

x2

x

x1

Figure 1: Propagation Rules for Absolute Precision Multiplication

Note that q1, . . . , qn, q can be negative. Also, the problem is trivial when
n = 0 (just choose q = p). The following table summarizes the results:

The proofs can be found in [3]. We could have given this table in terms of
relative error bounds although the entry for ln(e1) cannot be filled. Even more
generally, we can consider composite precision bounds [2]. But it seems that
propagating absolute error bounds leads to a nice isolation of the “crucial issue”
in approximation of expressions, as we will point out below.

The upward rules in Table 1 are straightforward and uniform: assuming
each operator f ∈ Ω computes the value of f(x̃1, . . . , x̃n) to at most p + 1 bits
of absolute precsion. The downward rule can be view as
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e Downward Rules Upward Rules
e1 ± e2 q1 = p + 2, q2 = p + 2 ẽ = (ẽ1 ± ẽ2)p+1

e1 × e2 q1 = max{a1, p + 1 + µ+
2 },

q2 = max{a2, p + 1 + µ+
1 }

where a1 + a + 2 = p + 2

ẽ = (ẽ1 × ẽ2)p+1

e1 ÷ e2 q1 = p + 2 − µ−
2 ,

q2 = max{1 − µ−
2 , p + 2 − 2µ−

2 + µ+
1 }

ẽ = (ẽ1/ẽ2)p+1

k
√

e1 q1 = max{p + 1, 1 − (µ−
2 /2)} ẽ = ( k

√
ẽ1)p+1

exp(e1) q1 = max{1, p + 2 + 2µ
+

1
+1} ẽ = exp(ẽ1; Abs[p + 1])

ln(e1) q1 = max{1 − µ−
1 , p + 2 − µ−

1 } ẽ = ln(ẽ1; Abs[p + 1])

Table 1: Downward and Upward Rules for Absolute Precision

§2.2. Precision-Driven Approximation Algorithm

Let us consider the problem of guaranteeing absolute error bounds. We as-
sume the availability of interval arithmetic for all our basic operators. That
is, for any f ∈ Ω, if interval arguments are given to f , then it can compute a
reasonably tight interval output. To be specific, suppose f is a binary opera-
tor. Write x ± 2p for the interval [x − 2p, x + 2p]. approximations of f , then
f(xπ2py , yπ2py ) ∈ f(x, y)π2pz where pz is as small as possible.

The rules to propagate αE to the children of E are presented in column 2 of
Table 2. If E1, E2 are the children of E, we want to define αEi

(i = 1, 2) in such

a way that if Ẽi satisfies |Ei − Ẽi| ≤ αEi
then Ẽ satisfies |E − Ẽ| ≤ αE . For

simplicity, we write αEi
for αi. Here, Ẽ is obtained by applying the operator

at E to Ẽ1, Ẽ2, computed to some specified precision. The rule for computing
this approximation is given in column 3 of Table 2. A notation used in column
3 is that, for any real X and α > 0, (X)α refers to any approximation X̃ for X

that satisfies the bound |X − X̃| ≤ α.
In summary, column 2 tells us how to propagate absolute precision bounds

downward towards the leaves, and column 3 tells us how to compute approxi-
mations from the leaves upward to the root. At the leaves, we assume an ability
to generate numerical approximations to within the desired error bounds. At
each node F , our rules guarantee that the approximate value at F satisfies the
required absolute precision bound αF . Since we only propagate absolute pre-
cision, and not composite precision, the underlying algorithms for each of the
primitive operations (+,−,×,÷,

√
, etc) is greatly simplified (cf. [2]).

Note that for the addition, subtraction and multiplication operations, the
computation of Ẽ can be performed exactly (as in [1]). But the present rules
no longer require exact computation, even in these cases. The new rule is
never much worse than the old rule (at most one extra bit at each node), but is
sensitive to the actual precision needed. In fact, for all operations, we now allow
an absolute error of αE

2 . Let us briefly justify the rule for the case E = E1 ×E2

in Table 2. The goal is to ensure |E − Ẽ| ≤ αE . Since |Ẽ − Ẽ1Ẽ2| ≤ αE/2

by our upward rules, it is sufficient to ensure that |E − Ẽ1Ẽ2| ≤ αE/2. But

|E − Ẽ1Ẽ2| ≤ α1|E2| + α2|E1| + α1α2 ≤ αE

c
+ αE

c
+

α2
E

c2 . So it is sufficient to

ensure that αE

c
+ αE

c
+

α2
E

c2 ≤ αE/2. Solving for c, we obtain c ≥ 2 +
√

4 + 2αE .
See [1] for justifications of the other entries.

Column 2 is not directly usable in implementation; the formulas for αi (i =
1, 2) are expressed in terms of |E1| and |E2| to make the formulas easier to
understand. Since it is generally neither possible nor desirable to compute |Ei|
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E Downward Rules Upward Rules

E1 ± E2 α1 = α2 = 1
4αE Ẽ = (Ẽ1 ± Ẽ2)αE

2

E1 × E2 Let c ≥ 2 +
√

4 + 2αE , and
α1 = αE

c
min{1, 1/|E2|},

α2 = αE

c
min{1, 1/|E1|}.

Ẽ = (Ẽ1 × Ẽ2)αE
2

E1 ÷ E2 α1 = αE |E2|/4, α2 = αE |E2|
4|E|+2αE

Ẽ = (Ẽ1 ⊘ Ẽ2)αE
2

k
√

E1 α1 = αE
k
√
|E1|k−1/2 Ẽ = (

k̃

√
Ẽ1)αE

2

Table 2: Rules for (1) Propagating absolute precision αE and (2) Approximation

Ẽ

exactly, we will replace these by upper or lower bounds on |Ei|. We next address
this issue.

If αE = 0, the rules in Table 2 propagates this zero value to all its children.
This is not generally impossible in our implementation model, where Ẽ is as-
sumed to be a big float value. Although it is possible to generalize this to allow
exact representation at a hugh cost in efficiency, we prefer to simply require
αE > 0.

§3. Bounds on the Magnitude of Expressions

In Real/Expr and Core Library, expression evaluation begins by comput-
ing bounds on the absolute value of each node (see [2]). We need such bounds
for two purposes: (1) propagating absolute precision bounds using the rules in
Table 2, and (2) translating a relative precision bound at root into an equivalent
absolute one.

We review this magnitude bounds computation. For any expression E, we
define its most significant bit msb(E) to be ⌊lg(|E|)⌋. Intuitively, the msb of
E tells us about the location of the most significant bit of E. By definition, the
msb(0) = −∞. For efficiency purpose in practice, we will compute a bounding
interval

[
µ−

E , µ+
E

]
that contains msb(E), instead of computing its true value.

The rules in Table 3 are used to maintain this interval.

E µ+
E µ−

E

rational a
b

⌈
lg(a

b
)
⌉ ⌊

lg(a
b
)
⌋

E1 ± E2 max{µ+
E1

, µ+
E2

} + 1 ⌊lg(|E|)⌋
E1 × E2 µ+

E1
+ µ+

E2
µ−

E1
+ µ−

E2

E1 ÷ E2 µ+
E1

− µ−
E2

µ−
E1

− µ+
E2

k
√

E1

⌈
µ+

E1
/k

⌉ ⌊
µ−

E1
/k

⌋

Table 3: Rules for upper and lower bounds on msb(E)

The main subtlety in this table is the entry for µ−
E when E = E1 ± E2. We

call this the special entry of this table because, due to potential cancellation,
we cannot derive a lower bound on msb(E) in terms of the bounds on E1 and E2

only. If the MSB bounds cannot be obtained from the fast floating-point filtering
techniques, there are two possible ways to determine this entry in practice.
First, we could approximate E numerically to obtain its most significant bit, or
to reach the root bound in case E = 0. Thus, this method really determines
the true value of msb(E), and provides the entry ⌊lg |E|⌋ shown in the table.
This numerical approximation process can be conducted in a progressive and
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adaptive way (e.g., doubling the absolute precision in each iteration, until it
finds out the exact MSB, or reaches the root bit-bound). The second method
is applicable only under certain conditions: either when E1 and E2 have the
same (resp., opposite) sign in the addition (resp., subtraction) case, or their
magnitudes are quite different (by looking at their msb bounds). In either
case, we can deduce the µ−

E from the bounds on E’s children. For instance, if
µ−

E1
> µ+

E2
+ 1 then µ−

E1
− 1 is a lower bound for µ−

E . This approach could
give better performance if the signs of both operands are relatively easier to be
obtained.

In the current implementation, we assume µ−
E and µ+

E are machine integers.
Improved accuracy can be achieved by using machine doubles. Furthermore, we
could re-interprete µ−

E and µ+
E to be upper and lower bounds on lg |E| (and not

⌊lg |E|⌋). Note that |µ+
E −µ−

E | ≤ 2m where m is the number of operations in E.

§4. The Approximation and MSB Algorithms

Two key algorithms will be derived from the above tables: one is APPROX(E,αE)
which computes an approximation of E to within the absolute precision αE .
The other algorithm is ComputeMSB(E), which computes upper and/or lower
bounds for msb(E), following the rules in Table 3. A third algorithm of interest
is sign determination for an expression E. Although this can be reduced
to APPROX(E, β(E)/2) where β(E) is the root bound, such bound can be
overly pessimistic. Instead, we note below how to incorporate the sign deter-
mination algorithm into ComputeMSB. The original algorithms for APPROX
and ComputeMSB in Core Library require the sign of every node in the ex-
pression to be determined first. This is no longer required in the algorithm to
be presented.

It should be noted that APPROX and ComputeMSB are mutually recur-
sive algorithms: this is because ComputeMSB will need to call APPROX to
compute the special entry (for µ−

E1±E2
) in Table 3. Clearly, APPROX needs

ComputeMSB for the downward rules (except for addition or subtraction) in
Table 2. It is not hard to verify that this mutual recursion will not lead to
infinite loops based on two facts: (1) the underlying graph of E is a DAG,
and (2) for the addition/subtraction node, the ComputeMSB may need to call
APPROX, while the APPROX will not call ComputeMSB at the same node
again. Although it is conceivable to combine APPROX and ComputeMSB into
one, it is better to keep them apart for clarity as well for as their distinct roles:
ComputeMSB is viewed as a one-time pre-computation while APPROX can be
repeatedly called.

APPROX The APPROX algorithm has two phases: (1) distributing the pre-
cision requirement down the DAG, and (2) calculating an approximate value
from leaves up to the root. Step (2) is straightforward, as it just has to call
the underlying algorithms for performing the desired operation (+,−,×, etc) to
compute the result to αE/2, the desired absolute precision. We refer the reader
to Koji [2] for implementation of these underlying algorithms – it amounts to a
multiprecision library with knowledge of precision bounds. As for step (1), we
see from Table 2 that we need both upper bounds and lower bounds on msb .
However, these are not required by every operation. Instead of computing both
the upper and lower msb bounds at every node, we propose to compute them
as needed. The following is immediate from column 2 of the Table 2:

• Addition and subtraction E = E1 ± E2. No msb bounds on E1, E2 are
needed to propagate precision bounds.
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• Multiplication E = E1 × E2. Only the µ+’s of E1, E2 are needed.

• Division E = E1 ÷ E2. Only the bounds µ+
E1

and µ−
E2

are needed.

• Root extraction E = k
√

E1. Only µ−
E1

is needed.

Briefly, APPROX(E,αE) proceeds as follows. It first checks to see if there
is already a current approximation to E, and if so, whether this approximation
has error less than αE . If so, it immediately returns. Otherwise, depending
on the nature of the operator at E, it checks to see if it already the current
upper and/or lower bounds on |Ei| (where Ei are the children of E). This
follows the rules noted above. If any of these bounds are not known, it will call
ComputeMSB(E, b, b′, false) where b, b′ are the appropriate Boolean flags (see
below). When this returns, it can compute αi and recursively call APPROX(Ei,

αi) for the ith child. Finally, it takes the approximate values Ẽi available at its

children and computes Ẽ from them using the upward rules.

ComputeMSB We describe a refined ComputeMSB algorithm that take
three additional arguments: ComputeMSB(E, needUMSB, needLMSB,
needSIGN) where the need-variables are Boolean flags. The needUMSB (resp.,
needLMSB) flag is set to true when an upper (resp., lower) bound on msb(E)
is needed. The meaning of needSIGN is clear. We see that in all but one case,
the sign of E is completely determined by the signs of E’s children. Hence we
just have to propagate needSIGN to the children. The exception is when E is
a ±-node. So we could now define getSign(E) ≡ ComputeMSB(E, false,

false, true).
In the algorithm, we prevent re-computation of bounds or signs by first

checking whether it has been computed before. This is important as nodes are
shared. We simply present a self-explanatory ComputeMSB algorithm here with
a C++-like syntax:

Algorithm

ComputeMSB(E, needUMSB, needLMSB, needSIGN) {

// Check if any requested computation is necessary:

if (E.umsb was computed) needUMSB = false;

if (E.lmsb was computed) needLMSB = false;

if (E.sign was computed) needSIGN = false;

if (needUMSB or needLMSB or needSIGN)=false return;

switch (E.operation_type) {

case ’constant’:

if (needUMSB) E.umsb = ceilLog(E.value));

// ceilLog is ceiling of log_2

if (needLMSB) E.lmsb = floorLog(E.value));

if (needSIGN) E.sign = sign(E.value));

break;

case ’+’ or ’-’:

if (needLMSB or needSIGN) { // some optimization omitted

for (i=1; i<= ceilLog(E.root_bound) ; i++) {

APPROX(E, 2^{-i}); // adaptive precisio

if (log_2 (|E.approx|) < -i)

E.sign = sign(E.approx).

}

E.lmsb = floorLog(E.value);
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E.umsb = ceilLog(E.value);

E.sign = sign(E.value);

} else {

ComputeMSB(E.first, true, false, false);

ComputeMSB(E.second, true, false, false);

E.umsb = max{E.first.umsb, E.second.umsb} + 1;

}

break;

case ’*’:

ComputeMSB(E.first, needUMSB, needLMSB, needSIGN);

ComputeMSB(E.second, needUMSB, needLMSB, needSIGN);

if (needUMSB) E.umsb = E.first.umsb + E.second.umsb;

if (needLMSB) E.lmsb = E.first.lmsb + E.second.lmsb;

if (needSIGN) E.sign = E.first.sign * E.second.sign;

break;

case ’/’:

ComputeMSB(E.first, needUMSB, needLMSB, needSIGN);

ComputeMSB(E.second, needLMSB, needUMSB, needSIGN);

if (needUMSB) E.umsb = E.first.umsb - E.second.lmsb;

if (needLMSB) E.lmsb = E.first.lmsb - E.second.umsb;

if (needSIGN) {

if (E.second.sign=0) E.sign = undefined;

else E.sign = E.first.sign * E.second.sign;

}

break;

case ’k-th root extraction’:

ComputeMSB(E.first, needUMSB, needLMSB, needSIGN)

if (needUMSB) E.umsb = E.first.umsb / k;

if (needLMSB) E.lmsb = E.first.lmsb / k;

if (needSIGN) E.sign = E.first.sign;

if (needSIGN) {

if (E.first.sign = -1) E.sign = undefined;

else E.sign = E.first.sign.

}

break;

} //switch

} //ComputeMSB

This completes our description of a precision-driven evaluation. It should
be noted that on top of this evaluation mechanism, the Core Library also has
a floating-point filter. This, plus several other minor improvements, have been
omitted for clarity. for instance, to get the sign of E1E2, we first determine the
sign of E1. If E1 = 0, we do not need the sign of E2. While our new design
is an improvement over an older one [2], it still seems to be suboptimal. For
instance, to determine the sign of E1E2, we always determine the sign of E1.
This is unnecessary if E2 = 0. One possibility is to “simultaneously determine”
the signs of E1 and E2, stopping this determination when either one returns a
0. The idea is to expend equal amounts of effort for the 2 children, but this
may be complicated to implement in the presence of shared nodes.

In summary, we pose as a major open problem to design some precision-
driven evaluation mechanism which is provably optimal, in some suitable sense.

Using the results there, we have a new table for downward propagation.
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Lecture 20

CURVES

This chapter study algebraic curves.

§1. Plane Algebraic Curves

Curves are fairly complex mathematical objects. There are two main mathe-
matical approaches to curves: from the viewpoint of differential geometry [3] or
from the viewpoint of algebraic geometry [7]. The former view is more general
but less constructive than the latter. We basically take the algebraic viewpoint,
but we shall emphasize the computational aspects of curves. We focus mainly
on plane algebraic curves. Bruce-Giblin [3] and Fulton [7] are excellent introduc-
tion to the differential and algebraic geometric viewpoints, respectively. Other
references include [6, 2, 1].

What is a Curve? We all have intuitive ideas about curves because of their
striking visual nature. Naively, a curve C is just a set L(C) of points in some
topological space S. We call L(C) the locus of C. We are most interested in
the case where S is the Euclidean plane, L(C) ⊆ R

2. To say that the curve C
is “algebraic” means L(C) is the zero set of some non-zero polynomial

L(C) = Zero(A), A(X,Y ) ∈ Z[X,Y ].

We also refer to C as “the curve A(X,Y ) = 0” or simply, C : A(X,Y ) = 0.
We call A(X,Y ) the defining polynomial of the curve. Moreover, defining
polynomials are considered equivalent up to multiplication by a non-zero scalar:
A(X,Y ) and cA(X,Y ) are considered the same defining polynomial for c 6= 0.
The equation A(X,Y ) contains more information than its locus L(C). For
instance, if B(X,Y ) = A(X,Y )2, then the curve C ′ : B(X,Y ) = 0 and the curve
C : A(X,Y ) = 0 have the same locus. But algebraically, they are different: the
curve C ′ is equal to two copies of the curve C. Equivalently, each point p in
the locus L(C ′) as multiplicity 2. These concepts will be made precise using
algebraic tools. The choice of the space S is also important: thus equation
X2 + Y 2 = 0 gives a “curve” in S = R

2 is just a single point at the origin, but
in S = C

2 consists of two lines (Y = ±iX). We prefer R
2 whenever possible,

but it is often convenient to consider C
2. There is a natural notion of points in

S satisfying a polynomial equation A(X,Y ) = 0; the zero set ZeroS(A(X,Y ))
is just the set of points in S which satisfy A(X,Y ) = 0.

To summarize, a plane algebraic curve C is given by its defining poly-
nomial A(X,Y ) and the underlying space S. Its locus L(C) is the zero set
ZeroS(A(X,Y )) ⊆ S. We often refer to C as “the curve A(X,Y )” when S is
understood.

We see the first divergence between the algebraic viewpoint and the naive
view of curves: most applications of curves are only interested in the locus L(C),
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and do not care about multiplicity of points in the locus. Fortunately, there is
an easy way to remove multiplicities: if the polynomial A(X,Y ) is square-free,
then all but finitely many points in L(C) has multiplicity 1. Such curves are
said to be reduced. Note that if the curve C intersects itself, then at the point
p of self-intersection, p has multiplicity greater than 1. To admit such curves,
we do not insist that every point in L(C) have multiplicity 1.

We can simplify our study of curves by observing that if

A(X,Y ) = A1(X,Y )A2(X,Y )

then the curve A = 0 is the union of two curves A1 = 0 and A2 = 0. We say the
curve A = 0 is reducible if it is the union of two curves A1 = 0 and A2 = 0
where deg(A1) deg(A2) > 0; otherwise, the curve is irreducible. Irreducible
curves are reduced, but not conversely. It is mathematically appealing to focus
on irreducible curves, but this may not always be desirable. One problem is
that factorization is quite non-trivial (even though it is in polynomial time).
Second, factorization depends on the coefficient domain: even though A(X,Y ) ∈
Z[X,Y ], but we can consider its factors in D[X,Y ] for various D (Z ⊆ D ⊆
C). In contrast to factorization, the concept of square-freeness (i.e., of reduced
curves) is intrinsic to A(X,Y ): A is square-free iff GCD(A,A′) = 1, and the
concept of GCD is defined in Z[X,Y ].

Another area where the algebraic notion of curves diverge from practical
applications is that in practice, we are only interested in some subset of L(C)
(usually a connected finite part of L(C)). The algebraic theory does not handle
this refinement. We need semi-algebraic techniques or other methods which
are common in geometric modeling. To see some issues arising from handling
curve segments, consider the nodal cubic curve Y 2 −X2 −X3 = 0 illustrated in
Figure 1. Consider the portion of the locus indicated by the thick curve: it is a
connected set, but in the topology of the curve, the set is actually disconnected.
This is related to the issue of curve tracing: we need to be able to “trace” a curve
through singularities (such as self-intersection points) in order to properly order
points along the curve. But how do we distinguish this computationally? One
way is to introduce semi-algebraic geometry, namely geometry that are defined
by polynomial inequalities as well as equalities. For example, in Figure 1, we
can specify the desired portion by restricting the curve to the rectangular box
indicated by dashed lines: i.e., (x, y) such that a ≤ x ≤ b and 0 ≤ y ≤ c.
This introduces a new level of sophistication into the computational aspects of
curves. In short, we need to be aware of gaps between the purely mathematical
investigation of curves, and their computational feasibility.

Projective Space. We discuss the topological space S where L(C) lives. We
had defined L(C) to be the set {(x, y) ∈ R

2 : A(x, y) = 0}, i.e., we assumed
S = R

2. This is the real affine locus of the curve C : A(X,Y ) = 0, and R
2 is

the real affine plane. If we consider the complex affine space S = C
2, then

the corresponding complex affine locus is given by {(x, y) ∈ C
2 : A(x, y) = 0}.

Unless otherwise stated, let L(C) refer to the complex affine locus; the real affine
locus is just L(C) ∩ R

2.
In general, for any field K, we can denote the affine field Kn by the more

fancy notation, A
n(K). To understand the behaviour of curves at infinity,

we must go to projective spaces P
n(K). In general, the points of P

n(K) are
the equivalence classes over the set Kn+1 \ {0} where 0 = (0, 0, . . . , 0) and
the equivalence relations have the form (x0, x1, . . . , xn) ≡ (cx0, cx1, . . . , cxn),
for all c ∈ K \ {0}. Thus a projective point is the equivalence class of
(x0, x1, . . . , xn) ∈ Kn+1 \ {0}, and we denote this point by (x0 : x1 : · · · : xn).
The tuple (x0, x1, . . . , xn) is called a set of homogenous coordinates for
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B A

a b

c

Figure 1: Nodal Cubic curve Y 2 − X2 − X3 = 0.

(x0 : x1 : · · · : xn). In case n = 2, we have the projective plane P
2(K) over

K. We use K = R and K = C.
Given A(X,Y ) ∈ Z[X,Y ], there is a standard way to define a homogeneous

polynomial Â(W,X, Y ) ∈ Z[W,X, Y ] of the same degree. The homogeneous

polynomial Â(W,X, Y ) is characterized by the equation

Â(W,X, Y ) = W dA(X/W,Y/W )

where d = deg(A). For instance, if A(X,Y ) = X2Y 2 + X2 + XY − 3Y + 5

then Â(W,X, Y ) = X2Y 2 + X2W 2 + XY W 2 − 3Y W 3 + 5W 4. Thus W is the
homogenization variable. It follows that

Â(1,X, Y ) = A(X,Y ). (1)

If H(W,X, Y ) is any homogeneous polynomial, we can define the polynomial

Hv(X,Y ) to be H(1,X, Y ). Thus, (Â(X,Y ))v = A(X,Y ) for all A(X,Y ).
We define the projective locus of A(X,Y ) in P

2(K) to be

{(w : x : y) ∈ P
2(K) : Â(w, x, y) = 0}.

This definition requires justification since we have used an arbitrary set of ho-
mogeneous coordinates (w, x, y) from projective point (w : x : y). However,
the justification is easy because a polynomial H(W,X, Y ) is homogeneous iff
H(w, x, y) = 0 iff H(cx, cy, cw) = 0 for all c 6= 0. Hence, the locus of A(X,Y )
in P

2(K) is well-defined.

The Four Loci for a Curve. We are interested in the projective locus of the
curve A(X,Y ) = 0 in two cases: K = R and K = C (real and complex projective
loci, respectively). Thus we have define four loci for the curve A(X,Y ). How
are they related? The relationship between

A
n(R) ⊆ A

n(C)

is immediate since R ⊆ C. We also have the relationship between

A
n(K) ⊆ P

n(K) (2)

is achieved via the identification (x1, . . . , xn) ∈ A
n(K) iff (1 : x1 : · · · : xn) ∈

P
n(K). We call x0 the homogenization coordinate. We call points of A

n(K) the

c© Mehlhorn/Yap Draft October 5, 2004



§2. Singular Points and Multiplicity Lecture 20 Page 4

finite points of P
n(K), and the rest are the infinite points, having the form

(0 : x1 : · · · : xn). The set of these infinite points corresponds to the hyperplane
defined by the equation x0 = 0. Thus P

n(K) is simply A
n(K) adjoined with the

hyperplane x0 = 0. Summarizing, we have the following of lattice of inclusions:

A
n(R) ⊂ A

n(C)
∩ ∩

P
n(R) ⊂ P

n(C).
(3)

Focusing on n = 2 again, consider the affine and projective loci of a curve
C : A(X,Y ) = 0. Let L(C) ⊆ K2 and L̂(C) ⊆ P

2(K). We characterize the

extra points in L̂(C)\L(C) as follows: for any polynomial A(X,Y ), let Ai(X,Y )
denote the homogeneous part of A(X,Y ) of degree i. Then, if d = deg(A), we
have

A = Ad + Ad−1 + · · · + A0. (4)

For instance, if A(X,Y ) = X2Y 2 +X2 +XY −3Y +5 then A0 = 5, A1 = −3Y ,
A2 = X2 + XY , A3 = 0, A4 = X2Y 2 and Ai = 0 for i ≥ 5.

Lemma 1 If d = deg(A(X,Y ) ≥ 1 then

L̂(C) \ L(C) = {(x : y : 0) : Ad(x, y) = 0}.

If case L̂(C) ⊆ P
2(C), it has exactly d infinite points.

Proof. In proof, from (4) we have

Â = Ad + WAd−1 + · · · + W dA0. (5)

But (x : y : 0) is a point of L̂(C) iff Â(x, y, 0) = 0. But (5) shows that

Â(x, y, 0) = 0 iff Ad(x, y) = 0, as claimed. In case we consider the complex
projective plane, Ad(X,Y ) factors into exactly d factors,

Ad(X,Y ) = c
d∏

i=1

(aiX − biY )

and so (bi : ai : 0) (for i = 1, . . . , d) are the points at infinity in this locus. Of
course, this means that there are at most d such points in P

2(R). Q.E.D.

Ultimately, we are interested in real affine locus but the other loci often yield
additional information and permits more elegant mathematical treatment. We
shall freely move among the four spaces of (3) as convenient.

Although we focus on plane curves, in general, we can study 1-dimensional
varieties in n-dimensional space. These might be called “space curves”, to em-
phasize that they are not necessarily in the plane. It is known that space curves
are birationally equivalent to a plane curve – so, up to birational equivalence,
the restriction to plane curves is justified.

Exercises

Exercise 1.1: What are the points at infinity of the curve F (X,Y ) = 0?
(i) F (X,Y ) = X2 + Y 2 − 1.
(ii) F (X,Y ) = Xk+1 − Y k (k ≥ 1).
(iii) F (X,Y ) = XY − 1.
(iv) F (X,Y ) = Xk + bY k − 1 (b > 0 and k even) ♦

End Exercises
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§2. Singular Points and Multiplicity

Consider the curve C : A(X,Y ) = 0 in some affine space S. For any point
p = (a, b) ∈ S, consider the Taylor expansion of A(X,Y ) at p:

A(X,Y ) =
∑

i≥0

∑

j≥0

(
i + j

i

)
Ai,j(a, b)(X − a)i(Y − b)j

= A(a, b) + A1,0(a, b)

where Ai,j = ∂i+jA
∂Xi∂Y j . We say p has multiplicity m if the partial derivatives

Ai+j(a, b) vanish for all i + j ≤ m − 1 and some Ai+j(a, b) does not vanish for
some i+ j = m. For instance, if m = 0 it means that A(a, b) 6= 0 and so p is not
in the locus of C. If m = 1, then p is a simple point of C. If m ≥ 2, then p is
a singular point. Alternatively, p is a singular point iff A1,0(p) = A0,1(p) = 0.
Alternatively,

∂A

∂X
=

∂A

∂Y
= 0.

Write multp(C) for the multiplicity of p in the curve C. Suppose multp(C) =
m. Then consider the homogeneous function,

r∑

i≥0

(
r

i

)
Ai,r−i(a, b)(X − a)i(Y − b)r−i.

This equation, in S = C
2, factors into m linear factors. Clearly, the lines passes

p, and are called the tangent lines at p. If there are m distinct lines, we call
this an ordinary point, otherwise an non-ordinary point.

Example: Consider A(X,Y ) = Y 2 − X2 − X3 = 0 (see Figure 1). We have
A1,0(X,Y ) = −2X − 3X2 and A0,1(X,Y ) = 2Y . The origin 0 is a singular
point since A1,0(0, 0) = A0,1(0, 0) = 0. Since A0,2(X,Y ) = 2, the origin have
multiplicity 2. The tangent lines are the linear factors of

A2,0(0, 0)X2+2A1,1(0, 0)XY +A0,2(0, 0)Y 2 = −2X2+2Y 2 = 2(Y −X)(Y +X).

These are the lines Y = X and Y = −X. Hence the origin is an ordinary
singularity.

A basic inequality on multiplicity is this: for a projective irreducible curve
C, ∑

p

multp(C)(multp(C) − 1) ≤ (d − 1)(d − 2). (6)

or if C is a reduced curve, then

∑

p

multp(C)(multp(C) − 1) ≤ d(d − 1). (7)

The proof goes as follows...

§3. Curve Transformation

A transformation is an invertible function between two spaces, S and S′.
In the following, assume S = S′ = K2 (e.g., K = R or K = C). Call S
the (X,Y )-space and S′ the (U, V )-space, where X,Y,U, V are indeterminates.
This naming convention allows us to distinguish points in S from S′: a point
(a, b) ∈ K2 will be called an (X,Y )-point when viewed as a member of S, and
a (U, V )-point when viewed as a member of S′.
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A transformation takes each point (a, b) ∈ S to some point (a′, b′) ∈ S′ ∪
{∞} using some rule. We need ∞ in the range in case the transformation
is undefined at (a, b). The simplest transformations are linear transformations.
More generally, consider transformations specified by a pair of rational functions,
U(X,Y ), V (X,Y ) ∈ K(X,Y ). Thus,

T : (a, b) 7→ (a′, b′) = (U(a, b), V (a, b)).

Such transformation T is called a birational map if it is invertible and the
inverse T−1 is also given by a pair of rational functions, X(U, V ), Y (U, V ) ∈
K(U, V ). Thus,

T−1 : (a′, b′) 7→ (a, b) = (X(a′, b′), Y (a′, b′))

where
X(U(a, b), V (a, b)) = a, Y (U(a, b), V (a, b)) = b (8)

provided each function is defined at their arguments.
Suppose F (X,Y ) = 0 defines a curve C in S. Applying the birational

transformation to each point (a, b) on F (X,Y ) = 0, we obtain the collection of
points (a′, b′) ⊆ S′. Do these points define the locus of some curve in S′? The
answer is yes: (a′, b′) are points on the curve C ′ : F ′(U, V ) = 0 where

F ′(U, V ) = F (X(U, V ), Y (U, V )).

To see this, if (a′, b′) ∈ T (Zero(F )), then

F ′(a′, b′) = F (X(a′, b′), Y (a′, b′))
= F (X(U(a, b), V (a, b)), Y (U(a, b), V (a, b)))
= F (a, b)
= 0

i.e., T maps each point in Zero(F ) into a point in Zero(F ′). Conversely, More-
over, every point (a′, b′) on F ′ = 0 is the image of a point (X(a′, b′), Y (a′, b′))
on F = 0. We say that the map (U(X,Y ), V (X,Y )) transforms the curve
F = 0 into the F ′ = 0. Two curves are birationally equivalent if there is a
birational map that transforms one to the other.

Example: consider the nodal cubic F (X,Y ) = Y 2−X2−X3. Let U(X,Y ) =
X,V (X,Y ) = Y/X. Thus, V (a, b) is undefined iff a = 0. This specifies a
birational map since it is invertible and its inverse transform is X(U, V ) = U
and Y (U, V ) = UV . Note that

F ′(U, V ) = F (X(U, V ), Y (U, V ))

= F (U,UV )

= (UV )2 − U2 − U3

= U2(V 2 − 1 − U).

The curve F ′ = 0 is the union of the line U = 0 and the parabola U = V 2 − 1.
Thus, by a suitable transformation, we “reveal” the true nature of the original
curve; it is a revelation in the sense that we have transformed it into familiar
or “canonical” curves we already know. This idea is expressed in the theory of
canonical forms for curves.

§4. Curve Parametrization
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One extremely useful property for curves is parametrization. Sendra [5] is a
reference for this.

A real affine curve F (X,Y ) = 0 is said to be parametrized by the functions
X = X(t) and Y = Y (t) if (1) for almost all t ∈ R, F (X(t), Y (t)) = 0. and
(2) for almost all points (x, y) in the locus, there exists some t ∈ R such that
(x, y) = (X(t), Y (t)). Here “almost all” means with finitely many exceptions.
In case X(T ), Y (T ) ∈ R(T ) for some indeterminate T , we say (X(T ), Y (T ))
is a rational parameterization of F . Only irreducible curves are rationally
parametrizable.

Equivalent formulations (see Sendra).

(X, Y ) = (cos 2θ, sin 2θ)

θ 2θ

A

Figure 2: Parametrization of the unit circle

Example: the parabola F (X,Y ) = Y − X2 is rationally parametrizable
because if X(t) = t and Y (t) = t2 then F (X(t), Y (t)) = 0 holds for all t. In
fact, we see that the parabola is even polynomially parametrizable. On the
other hand, the circle X2 + Y 2 = 1 cannot be polynomially parametrized. It
has the rational parametrization

X(t) =
1 − 2t2

1 + t2
, Y (t) =

2t

1 + t2
.

Referring to Figure 2, this parametrization is easily understood as followings.
Originating from the point A = (−1, 0), we have rays R(θ) making angle θ
with the positive X-axis. For θ ∈ (−π/2, π/2], the ray R(θ) intersects the
circle at a unique point (cos 2θ, sin 2θ). Recall the half-angle formulas, we have

cos 2θ = 1−2t2

1+t2
and sin 2θ = 2t

1+t2
where t = tan θ.

Not all curves are rational. E.g., for instance the cubic Y 2 −X(X2 − 1) = 0
has no singular points, and hence is not rational.

On the other hand, at any non-singular point (x, y) of F , the curve F = 0
can be locally parameterized in the following sense:

Application. Parametrizable curves simplify many computational tasks. For
instance, consider the problem of curve display: given F (X,Y ), a rectangle
R ⊆ R

2, and ε > 0, to produce a finite set T ⊆ R
2 that is an ε-cover for the

curve F (X,Y ) = 0 restricted to R. I.e., for every point p ∈ R ∩ Zero(F ), every
point of the curve either lies outside R or else lies within distance ε from some
point of T . To solve this problem, we proceed as follows: assume that we can
determine an interval [t0, t1] such that for t outside this interval, (X(t), Y (t))
lies outside R. Write p(t) for the point (X(t0), Y (t0)). Initially, assume that
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the points p(t0) and p(t1) are already added to our set T . In general, we have
an interval [t′, t′′] and p(t′), p(t′′) ∈ T . We perform a distance test on an
interval [t′, t′′]: that is, we “certify” whether for all t in [t′, t′′], p(t) is within ε
distance from p(t′) or p(t′′). If this test succeeds, we are done. If not, we add
into T the point p(t′′′) where t′′′ = (t′ + t′′)/2, and recursively perform distance
tests for the intervals [t′, t′′′] and [t′′′, t′′]. This test is called a certification.
Alternatively, it is called a “conservative predicate” or a “one-sided predicate”.
With reasonable implementation, this procedure should terminate.

1. So we would like to know when a curve is rationally parametrizable.
We say F (X,Y ) is said to be X-regular if Xd appears in F (X,Y ) and d =
deg F . Y -regular is similarly defined. Note that the equation F (X,Y ) is not
Y -regular. For any degree 2 curve F = 0 that is not regular in one of its
variables, we can apply the following general parametrization: without loss
of generality, say F is a second degree equation that is not Y -regular. Then
F (X,Y ) = Y · (aX + b) + (cX2 + dX + e) for some a, b, c, d, e ∈ Z. Then we
choose the rational parametrization

X = t, Y = (ct2 + dt + e)/(at + b).

2. What if F (X,Y ) is regular in both X and Y ? In this case, we would
like to use a “shear transformation”, that is, replace X by X + αY for some
α ∈ R. We just have to see what happens to the homogeneous part Fd(X,Y )
where d = deg F . Fd(X,Y ) = aX2 + bXY + cY 2. Then Fd(X + αY, Y ) =
Y 2(aα2 +bα+c)+ lot(Y ). So we only need to choose α so that aα2 +bα+c = 0.
This amounts to solving a quadratic equation.

3. What if α turns out to be complex? This happens when b2 < 4ac.
For instance, for the circle F (X,Y ) = X2 + Y 2 − 1, we get α2 + 1 = 0 or
α = ±

√
−1. This forces us to consider a more general transformation than

shears: linear fractional transformations.
UNCLEAR FROM ACCOUNT OF ABHYANKAR...
Remark: shears and linear fractional transformations are special cases of the

transformation
(X ′, Y ′, Z ′) = (X,Y,Z) · A + (a, b, c)

where A is an invertible 3 × 3 matrix and (a, b, c) ∈ R
3.

The above outline can be turned into an algorithm for computing a rational
parametrization of a conic or a cubic: we leave this

§5. Linear Systems of Curves

We consider the set of all curves of a fixed degree n ≥ 1. A bivariate
polynomial A(X,Y ) ∈ K[X,Y ] of degree n has up to

(
n+2

2

)
coefficients in some

field K ⊆ C. As these coefficients are distinguished up to multiplication by a
non-zero constant, we can view such a curve C as a point in N -dimensional
projective space P

N (K) where

N = N(n) =

(
n + 2

2

)
− 1 = n(n + 3)/2.

For instance, N(2) = 5 and N(3) = 9. Thus the space of conics and cubics are
5- and 9-dimensional, respectively.

Corresponding to a curve C ∈ P
N (K), let A(X,Y ) ∈ K[X,Y ] be its defining

polynomial. There is also the homogeneous polynomial Â(X,Y,W ] ∈ K[X,Y,W ].
For q ∈ P

2(C), we will write “C(q)” to denote the evaluation of the defining

polynomial Â(X,Y,W ) at the point q. The locus L(C) of C is then

L(C) = {q ∈ P
2(C) : C(q) = 0}.
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If λ is a variable λ then the linear polynomial

P (λ) = λC + (1 − λ)C ′

is called the pencil generated by C,C ′. For each a ∈ K, P (a) represents a curve.
We usually prefer to write Pa instead of P (a). The family is {Pa : a ∈ K} is
called a curve pencil. The pencil is trivial when1 C = C ′, viewed as projective
points in P

N (K). Alternatively, triviality happens exactly when P (λ) can be
factored as (a + bλ)C for some a, b ∈ K. Pencils are useful for studying the
intersection properties of the curves. Call L(C)∩L(C ′) the base of this pencil.
The reason is the following observation:

Lemma 2 Let P (λ) be a non-trivial pencil. Let a, b ∈ K, a 6= b.
(i) We have Pa 6= Pb. Thus, there are infinitely many curves in the curve pencil.
(ii) Also L(Pa) ∩ L(Pb) is the base of the pencil P (λ).

Proof.
(i) If Pa = Pb this means aC +(1− a)C ′ = bC +(1− b)C ′. This means C = C ′,
contradiction.
(ii) If q ∈ L(Pa) ∩L(Pb) then aC(q) + (1− a)C ′(q) = 0 = bC(q) + (1− b)C ′(q).
This easily implies C(q) = C ′(q) = 0. Q.E.D.

Here is an interesting theorem which can be proved using pencils:

Theorem 3 (Generalized Pascal Theorem) et C,C ′ be projective plane
curves of degree n. If C,C ′ intersect in n2 distinct points and there is another
curve D of degree m ≤ n that passes through nm of these points, then there is
third curve D′ of degree n − m that is disjoint from D and passes through the
remaining n(n − m) of these points.

Proof. Let I be the set of mn points in L(C) ∩ L(C ′). Choose any point q on
L(D) \ I. We claim that q lies in some curve Pa = aC + (1− a)C ′ of the pencil
P (λ) = λC+(1−λ)C ′. This amounts to choosing a so that aC(q)+(1−a)C ′(q) =
0. By the previous lemma L(Pa) contains the I. Thus L(Pa) ∩ L(D) ≥ mn + 1
since we also have q ∈ L(Pa)∩D. By Bezout’s theorem, Pa and D must share a
common component (otherwise their intersection must have at most mn points).
Since D is assumed to be irreducible, we must have L(D) ⊆ L(Pa), or viewing
D and Pa as polynomials,

D|Pa.

Alternatively, there is another curve E of degree n − m such that Pa = DE.
Clearly, L(E) contains all the remaining n(n − m) points of I. Q.E.D.

A special case of this theorem is the following: let (p0, q0, p1, q1, p2, q2) be any
sequence of 6 distinct points on an ellipse, and consider the three lines Li : piqi,
i = 1, 2, 3. Pascal’s theorem says that the three points

r0 = L1 ∩ L2, r1 = L2 ∩ L0, r2 = L0 ∩ L1

are collinear. To deduce this from the generalized Pascal’s theorem, we con-
sider the cubic curve C comprising the three lines piqi for i = 0, 1, 2 and the
cubic curve C ′ comprising the three lines qipi+1. They intersect in the 9 points
{pi, qi, ri : i = 0, 1, 2}. Now, 6 of these points lies on a conic. Hence the
remaining three lies on a line.

Exercises
1When C, C′ are represented by two sets of homogeneous coordinates, then the equality

“C = C′” amounts to aC = C′ for some non-zero a ∈ K.
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Exercise 5.1: Any second degree curve is birationally equivalent to a line.
Conclude that any two second degree curve is birationally equivalent. ♦

Exercise 5.2: Give another concrete application of the Generalized Pascal the-
orem. ♦

Exercise 5.3: (Abhyankar) Let C be a rationally parametrizable curve. Then
C is polynomially parametrizable iff it has one place at infinity. NOTE:
“places” are generalizations of points. ♦

End Exercises

§6. Intersection of Curves

We have already defined the multiplicity of a point P on a curve f = 0,
multP (f).

We now define the multiplicity multP (f, g) of a point P = (Px, Py) in the
intersection of two curves f = 0, g = 0. There are several ways to do this,
but computationally, the best approach is to use the resultant formulation: the
naive idea is to simply define multP (f, g) as the multiplicity of Px as a root
of R(X) = resY (f, g). The main problem is that we have not used the other
component Py in this definition; this definition may give a larger multiplicity
than we want when there is another point Q with the same X-coordinate as P .
To get around this, we consider the (horizontal) shear transform,

(X,Y ) 7→ (X + tY, Y ).

Let Rt(X) = resY (f(X + tY, Y ), g(X + tY, Y )) and let m(t) is the multiplicity
of 0 as a root of Rt(X). Let P = (0, 0) be the origin. If f(0, 0) = g(0, 0) = 0,
then the multiplicity of intersection multP (f, g) is defined to be mint m(t).

Theorem 4 he definition of multP (f, g) is invariant.

Theorem 5 (Bezout) Two projectives curves f, g of degrees m and n intersect
in exactly mn points, counting multiplicities. More precisely,

∑
P multP (f, g) =

mn.

§7. Rational Curves

Do the basic idea about base points of curves and parametrizability of
curves...

§8. Properties of Curves in Parametric Form

We now describe the basic properties of curves which are given in the para-
metric form.

REFERENCES: The following is from Myung-Soo’s paper with In-Kwon
Lee [4], and also Notes of Jan Stevens at Chalmers (see /prob/curves).

1. Difference between parametric representation and implicit representation:
E.g. The tangent to A(x, y) = 0 at point p(x, y) is ... But the tangent to

C(t) at point p = C(t0) is...
The following is from Myung-Soo’s paper with In-Kwong Lee (from postech):
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Lemma 6 Let C(t) = (c1(t), c2(t)) be a parametric curve and p = C(t).
(i) p is a non-self-intersecting singular point iff c′1(t) = c′2(t) = 0
(ii) p is a non-singular x-extreme point iff c′2(t) = 0 and c′1(t) 6= 0.
(iii) p is a non-singular y-extreme point iff c′2(t) 6= 0 and c′1(t) = 0.
(iv) p is an inflexion point iff c′1(t) · c′′2(t) − c′2(t) · c′′1(t) = 0
(v) convex...
(vi) concave...

Lemma 7 Let C be the implicit curve f(x, y) = 0 and f(p) = 0.
(i) p is a singular point iff f = fx = fy = 0
(ii) p is a non-singular x-extreme point iff f = fx = 0 and fy 6= 0
(iii) p is a non-singular y-extreme point iff f = fy = 0 and fx 6= 0
(iv) p is an inflexion point iff f = fxx · f2

y − 2fxy · fxfy + fyy · f2
x = 0.

(v) If C has no inflexion point then C is convex iff fxx ·f2
y −2fxy ·fxfy+fyy ·f2

x >
0.
(vi) If C has no inflexion point then C is concave iff fxx·f2

y−2fxy·fxfy+fyy·f2
x <

0.

Tangent, Hessian of a curve Intersection Multiplicity: we define this so
that Bezout’s theorem is a trivial consequence of the definition!

Following Jan Stevens:
Assume F (X,Y,Z), G(X,Y,Z) have no common component. Let R(Y,Z)

be their resultant w.r.t. X. This is non-zero and homogeneous of degree mn.
Choose a point P not on F = 0 or G = 0, and outside all lines connecting

two common zeros of F and G. Taking new coords, P = (1 : 0 : 0).
Let Q = (α : β : γ) be a common zero of F,G. By construction, this is the

only point on the line γY − βZ = 0. Define the intersection multiplicity
multQ(F,G) of F and G at Q to be the multiplicity of (β : γ) as a zero of
R(Y,Z).

THEOREM: Bezout is true, trivially (?)
Clean up operation:

Tangent, Hessian of a curve Let Fd(X0,X1,X2) be the equation of a curve
C and P = (p0 : p1 : p2) be a point on C. The tangent line at P is given by
the equation

∂F

∂X0
(P )X0 +

∂F

∂X1
(P )X1 +

∂F

∂X2
(P )X2 = 0, (9)

provided ∂F
∂Xi

(P ) 6= 0 for some i = 0, 1, 2. I.e., provided P is not a singular
point.

There are several ways to understand (9):

• In affine coordinates, f(x1, x2) = F (1,X1,X2), and p = (p1, p2) this equa-
tion becomes ∂f

∂x1
(p)(x1 − p1) + ∂f

∂x2
(p)(x2 − p2) = 0.

By Euler’s formula, etc (see Jan Steven Notes)

Let L be a tangent line L to a curve C at the point P . We call L an
inflexional tangent (or a flex for short), and P an inflexion point, if the
intersection multiplicity of L and C at P is at least 3.

Definition: The Hessian HF of F is the curve with equation

det

(
∂2F

∂Xi∂Xj

)
= 0.
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§9. Jacobi Curves and Generalizations

The following is adapted from Nicola Wolpert’s thesis.
In this section, assume f, g ∈ Z[X,Y ] are both normal with respect to X and

Y . Suppose p = (a, b) ∈ ZERO(f, g) where p is not a singularity of f or g. Let
B = [xmin, xmax]× [ymin, ymax] be an “isolating box” meaning that [xmin, xmax]
is an isolating interval for resY (f, g) and [ymin, ymax] is an isolating interval for
resX(f, g). We are interested in methods for detecting (f, g) intersection inside
B. Note that such a procedure will output either YES or NO, since there can
be at most one intersection inside B.

[FIGURE: isolating box]
In case p is a transversal intersection, there is a simple “box hitting” method

to detect p. So assume p = (a, b) is a tangential intersection, i.e., the Jacobi
curve

h = gXfY − gY fX (10)

passes through p. Now, if h intersects f (and hence g) transversally, we can
reduce the problem to the detection of (f, h) intersection inside B, and also of
(g, h) intersection inside B.

Exercise: device a detection method in case where, if there is an intersection
point p, then either the (f, g) or (f, h) intersection is transversal.

[EXPAND: Simple Hitting Box Method]
But if h and f intersect at p tangentially, we can try to see if the “next”

Jacobi curve hXfY −hY fX passes through p transversally. This process can be
repeated several time. Our goal is to how to do this decisively.

From now on, assume that

fY (p) 6= 0. (11)

If this is false, we can carry out the analogous argument with fX(p) 6= 0 (recall
that p is non-singular point of f = 0.) We also assume

h(p) = 0, (12)

i.e., f and g intersect tangentially at p. Then we claim that

gY (p) 6= 0.

To see this, suppose gY (p) = 0. Then gX(p) 6= 0. But 0 = h(p) = gX(p)fY (p)
implies fY (p) = 0, contradiction. Wow inductively define h0 = g and for i ≥ 0,

hi+1 = (hi)X − (hi)Y

fX

fY

. (13)

Note that hi(p) is well-defined since fY (p) 6= 0. In fact, fY h1 is the Jacobi curve
h, and we also have h0(p) = 0 and h1(p) = 0.

Since fY (p)gY (p) 6= 0, by the Implicit Function Theorem, there are analytic
functions F (X), G(X) such that in a neighborhood of X = a, we have

f(X,F (X)) = 0, g(X,G(X)) = 0.

By differentiating f(X,F (X)), we get

fX(X,F (X)) + fY (X,F (X))F ′(X) = 0

and hence

F ′(X) = −fX(X,F (X))

fY (X,F (X))
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Similarly, G′(X) = − gX(X,G(X))
gY (X,G(X)) .

To understand the behavior of the curves hi(X,Y ) at the point (a, b), we
also define for i ≥ 0,

Hi(X) = hi(X,F (X)). (14)

We already know that H0(a) = 0 and H1(a) = 0. Differentiating with respect
to X,

(Hi(X))′ = (hi)X(X,F (X)) + (hi)Y (X,F (X))F ′(X)

= (hi)X(X,F (X)) − (hi)Y (X,F (X))
fX(X,F (X))

fY (X,F (X))

= hi+1(X,F (X))

= Hi+1(X).
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Lecture 21

SURFACES

This chapter focus on two important and practical classes of surfaces: quadric surfaces and
NURB surfaces.

§1. Quadric Surfaces

The zero set of a polynomial P (X) = P (X1, . . . ,Xn) ∈ Q[X1, . . . ,Xn] is a hypersurface in n-dimensional
affine space (either real or complex). When P (X) is homogeneous, it is called a form and defines a hy-
persurface in (n − 1)-dimensional projective space. When deg(P ) = 2, the polynomial is quadratic and
the corresponding hypersurface is quadric. We shall reserve the term “surface” for 3-dimensional affine or
projective hypersurfaces. When the context is clear, we will say “quadric” for quadric surfaces. Quadric
surfaces are thus the simplest nonlinear non-planar geometry we can study.

The intersection of two quadric surfaces is a key problem in computer graphics and geometric modeling.
Levin [7] initiated a general approach of reducing such intersection to finding a ruled quadric in the pencil of
the input quadrics. Many recent papers have expanded upon this work, e.g., [6, 10, 4]. A general reference
is Wenping’s survey [5, Chap. 31].

Consider the quadratic polynomial

P (X,Y,Z) =

aX2 + bY 2 + cZ2 + 2fXY + 2gY Z + 2hZX + 2pX + 2qY + 2rZ + d.

This polynomial can be written as a matrix product:

P (X,Y,Z) = XT ·A ·X = 0 (1)

where X = (X,Y,Z, 1)T and A is the symmetric 4× 4 matrix,

A =




a f h p
f b g q
h g c r
p q r d


 . (2)

The principal 3 × 3 submatrix of A which is indicated in (2) is conventionally denoted Au, and called the
upper submatrix of A.

NOTATION: For any n×n matrix A, and X = (X1, . . . ,Xn)T , let1 QA = QA(X) denote the quadratic
form

QA(X) = XTAX (3)

associated with A. For n = 4, we usually write X = (X,Y,Z,W )T . The notation in (3) is also used in
the affine case, in which case X = (X1, . . . ,Xn−1, 1)T and QA(X) = QA(X1, . . . ,Xn−1). The corresponding
quadric surface (affine or projective) is denoted QA(X) = 0.

Classification of Quadrics in An(R). Classification of quadric surfaces is a highly classical subject (see
[2]). There are four versions of this problem, depending on whether we consider the real R or complex C

field, and whether we consider the affine An or projective Pn space. We focus on the real affine case. Our
approach follows Burington [3] For instance, for n = 2, there is the well-known classification of conics. The
classification for n = 3 is shown in Table 1. The main thrust of this section is to prove the correctness of
this table.

Various invariants of the matrix A can be used in making such classifications. Some candidates to consider
are:

1More generally, if Y = (Y1, . . . , Yn) then QA(X,Y) = X
T AY is a bilinear form.
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ρ rank of A
ρu rank of Au

∆ determinant of A
∆u determinant of Au

sign(∆) sign of ∆
sign(∆u) sign of ∆u

∆ and ∆u are called the discriminant and subdiscriminant of the quadric. But there are other pos-
sibilities. For instance Levin [7] uses an oft-cited table from Breyer [1, p. 210–211], based on a different
set of invariants: ρ, ρu, sign(∆), k. Here k = 1 if the non-zero eigenvalues of Au have the same sign, and
k = 0 otherwise. The exact constitution of such a classification varies, depending on which “degenerate”
cases are omitted (published classifications have 17, 18 or 19 classes, and if the imaginary ones are omitted,
correspondingly smaller number is obtained). Our classification in Table 1 do not omit degenerate classes
and has 20 classes.

The notion of invariance depends on the choice of the class of transformations, and whether we consider
projective or affine space, and whether we consider the complex or real field. The most general transformation
considered in this chapter are those defined by an arbitrary non-singular n × n real matrix M . These are
called (real) projective transformations, and they transform space under the action

X 7→MX.

We also say that they transform polynomials under the action

P (X) 7→ P (MX). (4)

Suppose a quadratic polynomial QA(X) = XTAX is transformed to QB(X) = QA(MX), for some matrix
B. Thus XTBX = (MX)TA(MX) = XT (MTAM)X. Hence

B = MTAM. (5)

Using the same terminology, we say that M transforms A to MTAM . Two matrices A and B related
as in (5) via some non-singular matrix M are said to be congruent, or A 7→ MTAM is a congruence
transformation. Further, when A = AT , we have

(MTAM)T = MTATM = MTAM

This proves that symmetric matrices are closed under congruence transformation. It is easy to see that
matrices, including symmetric ones, are thereby partitioned into congruence classes. If Mi transforms Ai to
Ai+1 for i ≥ 1, then M1M2 · · ·Mi transforms A1 to Ai+1. Thus the composition of transformations amounts
to matrix multiplication.

The ranks ρ, ρu are clearly invariants of A under congruence transformations. Also, sign(∆) is an
invariant since det(A) = det(B) det(MTM) = det(B) det(M)2. But ∆ = det(A) is not invariant unless
|det(M)| = 1.

The (real) affine transformations, are those projective transformation represented by real matrices M
of the form

M =

[
Mu t
0 d

]
(6)

where d 6= 0, Mu is any invertible matrix and t is a (n− 1)-column vector. Two matrices A,B are affinely
congruent if there is an affine transformation M such that A = MTBM . Affine transformations treats
the last (homogenization) coordinate as special. The rigid transformation are affine transformations with
det(Mu) = ±1 and d = ±1. Rigid transformations preserve distances between pairs of points, and are
exemplified by rotation, translation or reflection. Thus ∆ and ∆u are invariants under rigid transformations.
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Name Canonical Equation σ σu Notes

Nonsingular Surfaces

1 Imaginary Ellipsoid X2 + Y 2 + Z2 = −1 (4,0) (3,0) (**)
2 Ellipsoid X2 + Y 2 + Z2 = 1 (3,1) (3,0) R0, C

3 Hyperboloid of 2 sheet X2 + Y 2 − Z2 = −1 (3,1) (2,1) R0, C

4 Hyperboloid of 1 sheet X2 + Y 2 − Z2 = 1 (2,2) (2,1) R2, C

5 Elliptic Paraboloid X2 + Y 2 − Z = 0 (3,1) (2,0) R0

6 Hyperbolic Paraboloid X2 − Y 2 − Z = 0 (2,2) (1,1) R2, L

Singular Nonplanar Surfaces

7 Imag. Elliptic Cone (Point) X2 + Y 2 + Z2 = 0 (3,0) (3,0) (*)
8 Elliptic Cone X2 + Y 2 − Z2 = 0 (2,1) (2,1) R1

9 Elliptic Cylinder X2 + Y 2 = 1 (2,1) (2,0) R1

10 Imag. Elliptic Cylinder X2 + Y 2 = −1 (3,0) (2,0) (**)
11 Hyperbolic Cylinder X2 − Y 2 = −1 (2,1) (1,1) R1, L

12 Parabolic Cylinder X2 = Z (2,1) (1,0) R1, L

Singular Planar Surfaces

13 Intersecting Planes X2 − Y 2 = 0 (1,1) (1,1)
14 Intersect. Imag. Planes (Line) X2 + Y 2 = 0 (2,0) (2,0) (*)
15 Parallel Planes X2 − 1 = 0 (1,1) (1,0)
16 Imag. Parallel Planes X2 + 1 = 0 (2,0) (1,0) (**)
17 Single Plane X = 0 (1,1) (0,0)

18 Coincident Planes X2 = 0 (1,0) (1,0)
19 Invalid 1 = 0 (1,0) (0,0) (**)
20 Trivial 0 = 0 (0,0) (0,0) (*)

Table 1: Classification of Quadric Surfaces in A3(R)

We emphasize that Table 1 is a classification for affine and real space. For instance, the elliptic cylinder
and elliptic cone has, as special case, the usual cylinder and cone. In projective space, there would be no
difference between a cone and a cylinder (e.g., Rows 8 and 9 would be projectively the same). Similarly,
there would be no distinction between an imaginary and a real ellipsoid in complex space (i.e., Rows 1 and
2 would collapse).

Under “Notes” (last column) in Table 1, we indicate by (∗∗) those surfaces with no real components, and
by (∗) those “surfaces” that degenerate to a point or a line or fills the entire space. It is convenient2 to call
those quadrics in Table 1 that are starred, either (*) or (**), as improper; otherwise they are proper. We
indicate by R1 the singly ruled quadric surfaces, and by R2 the doubly ruled quadric surfaces. Also R0 is
for the non-ruled quadric surfaces. The planar surfaces are automatically ruled, so we omit any indication.
The letter L are the parameterization surfaces used in Levin’s algorithm. The letter C indicate the so-called
central quadrics.

Non-singular Quadrics. To gain some insight into Table 1, we consider the non-singular quadrics. In
general, a surface P (X) = P (X1, . . . ,Xn) = 0 is singular if it contains a singular point p, i.e., one in which
P (p) = 0 and (∂P/∂Xi)(p) = 0 for i = 1, . . . , n. Otherwise the surface is non-singular. Non-singular
quadrics are those whose matrix A have rank 4 (Exercise). In Table 1, these are represented by the first 6
rows. These can further be grouped into three pairs: 2 ellipsoids, 2 hyperboloids and 2 paraboloids. In the
following discussion, we assume the reader is familiar with the basic properties of conics (ellipses, hyperbolas
and parabolas).

1. There is nothing to say for the imaginary ellipsoids. The real ellipsoids is possibly the easiest quadric
to understand, perhaps because it is the only bounded surface in our shortlist. Ellipsoids are basically
squashed spheres. But in our canonical equation X2 + Y 2 + Z2 = 1, it is just a regular sphere.

2. The hyperboloids (either 1- or 2-sheeted) have equations X2 + Y 2 − Z2 = ±1. The Z-axis is an
axis of symmetry in this canonical form: for any value of Z = z0, the (X,Y )-values lies in the circle3

X2 + Y 2 = z2
0 ± 1. In A3(R), the circle X2 + Y 2 = Z2 − 1 would be purely imaginary for |Z| < 1. Hence

this quadric surface is clearly divided into two connected components (separated by the plane Z = 0). Thus

2This is not standard terminology. See, e.g., [5, p.778, Chap. 31].
3In general, we would have an ellipse (aX)2 + (bY )2 = (cz0)2 ± 1, and hence these hyperboloids are also known as elliptic

hyperboloids.
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it is “two sheeted”. On the other hand, X2 + Y 2 = Z2 + 1 has solutions for all values of Z and it is clearly
seen to be a connected set, or “one sheeted”.

3. Finally, consider the paraboloids: in the elliptic case X2 + Y 2 = Z is clearly confined to the upper
half-space Z ≥ 0. In the hyperbolic case, we see a hyperbola X2 − Y 2 = z0 in every plane Z = z0. When
z0 > 0, the hyperbola lies in a pair of opposite quadrants defined by the pair of lines X + Y = 0 and
X − Y = 0. When z0 < 0, the hyperbola lies in the other pair of opposite quadrants. At z0 = 0, the
hyperbola degenerates into the pair of lines X + Y = 0,X − Y = 0. It is easy to see a saddle point at the
origin.

The Inertia Invariant. The reader will note that Table 1 did not use the invariants ρ, ρu, sign(∆), sign(∆u).
These information are implicit in σ, σu, defined to be the inertia of A and Au. We now explain this concept.

Let A be any real symmetric matrix A of order n. It is not hard to see that rank and sign of determinants
are invariants of the congruence relation. But they are only partial invariants in that they do not fully
characterize congruence. Instead, we let us look at the eigenvalues of A. The eigenvalues of A are all real. It
is easy to see that these eigenvalues (like the determinant) are not preserved by congruence transformations.
But the number of positive and negative eigenvalues turns out to be invariant. This is the substance of
Sylvester’s law of inertia.

Let σ+ = σ+(A) and σ− = σ−(A) denote the numbers of positive and negative eigenvalues of A. The
pair

σ = σ(A) = (σ+(A), σ−(A))

is called the inertia of A. Note that rank of A is given by ρ = σ+ + σ−.

Theorem 1 (Sylvester’s Law of Inertia). Let A,A′ be real symmetric matrices. Then A and A′ are congruent
iff σ(A) = σ(A′).

We shall prove a generalization of this theorem. Note that the diagonal sign matrix

diag(1, . . . , 1︸ ︷︷ ︸
σ+

,−1, . . . ,−1︸ ︷︷ ︸
σ−

, 0, . . . , 0)

has inertia (σ+, σ−). Hence the inertia theorem implies that every real symmetric matrix is congruent to
such a sign diagonal matrix. Note that this theorem applies only to symmetric matrices. For instance, the

matrix

[
1 2
0 1

]
is not congruent to any diagonal matrix (Exercise).

On the other hand:

Corollary 2. Inertia is a complete set of invariants for congruence: A,B are congruent iff they have the
same inertia.

Proof. If they are congruent, then they have the same inertia. Conversely, suppose A,B have the same
inertia (s, t). Then it is easy to see that they are each congruent to diag(a1, . . . , as, b1, . . . , bt, 0, . . . , 0) where
ai = 1 and bj = −1 for all i and j. Since congruence is an equivalence relation, this shows that A and B are
congruent. Q.E.D.

Since our surface is unaffected if A is multiplied by any non-zero constant, and as the eigenvalues of −A
are just the negative of the eigenvalues of A, we regard the inertia values (s, s′) and (s′, s) as equivalent. By
convention, we choose σ+ ≥ σ−. For instance, for rank 4 matrices, we have the following possible inertia:
(4, 0), (3, 1), (2, 2).

We should note that, in fact, A is never congruent to −A except for the trivial case A = 0. This remark
is depends on our assumption that only real matrices are used in the definition of congruence. If we allow
complex matrices then A = MT (−A)M with the choice M = iI.

c© Mehlhorn/Yap Draft December 19, 2006



§1. Quadric Surfaces Lecture 21 Page 5

Canonical Equation. In Column 3 of Table 1, we see the canonical equation for each type of surface. We
shall show that these are canonical forms for affine transformations. Most, but not all, canonical equations
are diagonal, i.e., have the form

QA = aX2 + bY 2 + cZ2 + d = 0. (7)

It is well-known that quadratic equation can be made diagonal by applying a projective transformations (this
is shown in the next section). If we require |det(M)| = 1 for our transformation matrices, then a, b, c, d would
be general real numbers. For instance, if a, b, c,−d are all positive, then we often see this in the equivalent
form (X/α)2 +(Y/β)2 +(Z/γ)2 = r2, representing an ellipsoid. But with general projective transformations,
we can further ensure that a, b, c, d ∈ {−1, 0,+1}. Such are the canonical equations in Table 1.

From the canonical equations in Column 3, we can almost read off the inertia values σ, σu. There is an
observation that will help our reading. Consider the hyperbolic paraboloid X2 − Y 2 − Z = 0 in Row 6. Its
equation is not diagonal (7). The matrix for this quadric is A0, implicitly defined by the following equation.
The matricies M0 and A1 are also implicitly defined:

MT
0 A0M0 =




1
1

e −e
e e







1
−1

−1
−1







1
1

e e
−e e


 (8)

=




1
−1

1
−1


 = A1, e =

1√
2
. (9)

Since A0 is the matrix of the hyperbolic paraboloid, and A1 has inertia (2, 2), this proves that inertia σ is
(2, 2) as given in Row 6. The same trick enables us to determine σ for all the other cases. Note the inverse
of M0 is its transpose: M−1

0 = MT
0 and M0 is not an affine transformation.

Projective Classification. The classification of surfaces in projective space P3(K) (for K = R or K = C)
is relatively simple. In the projective case, we replace the equation in (7) by

aX2 + bY 2 + cZ2 + dW 2 = 0 (10)

where W is the homogenizing variable. In projective space, the W -coordinate is no different than the other
three coordinates. If K = C, then we can choose complex transformations so that each a, b, c, d are either
0 or 1. Hence, the rank ρ of the matrix A is a complete set invariant for complex projective surfaces. Next
consider the case K = R. In this case, we can make a, b, c, d ∈ {0,±1}. Consider the classification for
non-singular surfaces under general projective transformations. Non-singular means abcd 6= 0. Then there
are three distinct values for the inertia σ:

• σ = (4, 0). This is purely imaginary.

• σ = (3, 1). One has opposite sign than the others. Wlog, let d = −1 and the others positive. We get
the equation of the ellipsoid

X2 + Y 2 + Z2 = W 2.

• σ = (2, 2). Say a = d = +1 and b = c = −1. Then the canonical equation becomes X2−Y 2 = Z2−W 2

or
(X + Y )(X − Y ) = (Z +W )(Z −W ). (11)

Note that (11) gives rise to an alternative canonical form for such surfaces: X ′Y ′ − Z ′W ′ = 0.
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In contrast to the projective classification, the affine classification in Table 1 makes a distinction between
the X,Y,Z-coordinates and the W -coordinate. This introduces, in addition to σ, another invariant σu. In
analogy to Corollary 2, we have:

Theorem 3.
(i) The pair (σ, σu) is a complete set of invariants for real affine transformations.
(ii) This set of four numbers σ+, σ−, σ+

u , σ
−
u is minimal complete: if any of the numbers is omitted, then the

resulting set is not complete.

Proof. (Partial) (i) One direction is trivial: if A,B are affine congruent, then they clearly have the same
inertia pair (σ, σu). We will defer the proof of the other direction until we have have introduced the affine
diagonalization algorithm.

(ii) It is enough to look at Table 1. If any of the four numbers are omitted, we can find two rows in the
table which agree on the remaining three numbers but differ on the omitted number. We can even restrict
our rows to the proper quadrics for this purpose. Q.E.D.

We are now ready to prove the main classification theorem.

Theorem 4. The classification of quadrics under real affine transformations in Table 1 is complete and
non-redundant.

Proof. In view of Theorem 3, this amounts to saying that the list of inertia pairs (σ, σu) in Table 1 is
complete and non-redundant. Non-redundancy amounts to a visual inspection that the inertia pairs in the
table are distinct. As for completeness, we need to show that there are no other possibilities beyond the
20 rows displayed. For instance, the pair (σ, σu) = ((3, 1), (1, 0)) is absent from the table, and we have to
account for such absences. Our plan is to examine the possible σu associated with each value of σ. Assume
that our quadratic polynomial QA(X,Y,Z,W ) is equivalent to (10) under some projective transformation.

• σ = (4, 0): clearly, σu = (3, 0) is the only possibility.

• σ = (3, 1): In this case, we can have d > 0 or d < 0. This corresponds to σu = (2, 1) or σu = (3, 0). But
in any case, we can apply the transformation matrix M0 in (8) to create the matrix with σu = (2, 0),
illustrated as:

MT
0 AM0 =




1
1

e −e
e e







1
1

1
1







1
1

e e
−e e




=




1
1
−1

1


 , e =

1√
2
.

Such application of the matrix M0 has the effect of annhilating one of the diagonal entries of Au. All
three values of σu appear in Table 1 (Rows 2,3,5).

• σ = (2, 2): Note that if the inertia of A is (2, 2) then the inertia of Au must be (2, 1) (Row 4). But we
can also apply M0 to annihilate one diagonal entry of Au, giving σu = (1, 1) (Row 6).

• σ = (3, 0): The inertia of Au is either (3, 0) or (2, 0) when inertia of A is (3, 0). This is shown in Rows
7, 10. In this case, no application of M0 is possible.

• σ = (2, 1): Without applying the M0, we get σu = (2, 1), (2, 0) or (1, 1) (Rows 8,9,11). Using M0, we
get σu = (1, 0) (Row 12).
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• σ = (2, 0): The only possibilities are σu = (2, 0), (1, 0), (Rows 14,16).

• σ = (1, 1): The possibilities are σu = (1, 1), (1, 0), (0, 0) (Rows 13,15,17).

• σ = (1, 0): The possibilities are σu = (1, 0), (0, 0) (Rows 18,19).

• σ = (0, 0): The possibilities are σu = (0, 0) (Row 20).

Q.E.D.

Examples. Let us see some simple techniques to recognize the type (i.e., classification) of a quadric.

• Consider the quadric surface whose equation is

QA(X,Y,Z) = X2 + Y Z = 0. (12)

What is the type of this surface? Similar to the transformation (8), if we set

X = X ′, Y = Y ′ − Z ′, Z = Y ′ + Z ′ (13)

the equation is transformed to

QA′(X ′, Y ′, Z ′) = X ′2 + Y ′2 − Z ′2 = 0. (14)

Thus σ = σu = (2, 1), and so our surface is an elliptic cone (row 8, Table 1). Actually, we ought to
verify that (13) is invertible. See Exercise.

• Consider next the quadric X2 + Y 2 + Y Z = 0. To determine its type, use the substitution

X = X ′, Y = Y ′, Z = Z ′ − Y ′

to transformed this quadric to the form X ′2 + Y ′Z ′ = 0. The later has already been shown to be an
elliptic cone.

• What if there are linear terms? Consider X2 + Y + Z = 0. Linear terms do not affect σu (since they
live outside the upper submatrix), and so we can read off σu = (1, 0). To determine σ, we view the
equation projectively as X2 + (Y + Z)W = 0. This can first be transformed to X2 + Y ′W = 0 for
some new variable Y ′. Then, using the projective transformation as in (8), the equation is further
transformed to to X2 + Z ′2 −W ′2 = 0. Thus σ = (2, 1). Thus the surface is a parabolic cylinder.

• A key trick is to “complete the square” to kill off off-diagonal terms. Consider X2 + 2XY − 2XZ +
Y 2− 2Z2 = 0. Here, we have a square term (X2) as well as linear terms (2XY − 2XZ) in the variable
X. Collecting these terms in X together, we rewrite it as

X2 + 2XY − 2XZ = (X + (Y − Z))2 − (Y − Z)2 = X ′2 − (Y − Z)2.

We rename X + (Y −Z) as X ′. This is called completing the square for X. The original equation
becomes

X ′2 − (Y − Z)2 + Y 2 − 2Z2 = X ′2 − 2Y Z − 3Z2 = 0.

Completing the square for Z,

3Z2 + 2Y Z = 3[Z2 + (2/3)Y Z] = 3[(Z + Y/3)2 − Y 2/9] = 3(Z + Y/3)2 − Y 2/3

The original equation now becomes X ′2− 3Z ′2 +Y 2/3 = 0. Since we only used affine transformations,
we see that σ = σu = (2, 1), and the surface is an elliptic cone.
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• What if there constant terms? Consider X2 + Y 2− 2Z = 1. As far σu is concerned, the constant term
has no effect. In this case, we can just read off σu = (2, 0) immediately. To compute σ, the constant
term amounts to the introduction of W 2. The equation becomes X2 + Y 2 − 2ZW −W 2 = 0. But we
can complete the square for W to get X2 + Y 2 − (W + Z)2 + Z2 = 0. Thus σ = (3, 1). We conclude
that the surface is an elliptic paraboloid.

Exercises

Exercise 1.1: Prove that A =

[
1 2
0 1

]
is not congruent to a diagonal matrix. Suppose A = MTBM

where M =

[
a b
c d

]
and B is diagonal. Then, by suitable modification of M , we can assume that

B = diag(1,±1). But in fact, B = diag(1,−1) leads to a contradiction: for any non-zero vector
v = (x, y), we have f(x, y) = vTAv = (x+ y)2 > 0. But we can choose v such that Mv = (0, 1). Then
f(x, y) = (Mv)TB(Mv) = −1 < 0. So we may assume B = diag(1, 1) = I. Then MTBM = MTM =
is a symmetric matrix, and this cannot be equal to A which is non-symmetric. ♦

Exercise 1.2: (a) Verify the transformation (13) is invertible.
(b) Show that the following transformations (X,Y,Z) 7→ (X,X,Z) and (X,Y,Z) 7→ (X + Y + Z,X −
Y − Z, Y + Z) are not invertible.
(c) Show that Xi 7→ cXi and Xi 7→ Xi + cXj (for c 6= 0 and i 6= j) are invertible. In this notation, it
is assumed that Xk (k 6= i) is unchanged. Call these transformations elementary.
(d) Show that every invertible transformations is a composition of elementary operations. HINT: view
transformations as matrices, and give a normal form for such matrices under elementary transforma-
tions. ♦

Exercise 1.3: What is the real affine classification of the following surfaces?
(a) X2 + Y 2 − 2X = 0
(b) X2 + Y 2 − 2X +XZ = 0
(c) X2 + Y 2 − 2X +XY = 0
(d) X2 + Y 2 − 2X +XY = 1
(e) X2 + Y 2 − 2X +XY + Y Z = 0
(f) X2 − Y 2 − 2X + Y + Z = 1
(g) X2 − Y 2 − 2X +XY + Z = 0 ♦

Exercise 1.4: In the previous exercise, construct the transformation matrices that bring each of quadric
into its normal form. ♦

Exercise 1.5: Let Q(X) = XTAX = 0 be a quadric hypersurface where X = (X1, . . . ,Xn−1, 1) and
A = (aij)

n
i,j=1 is symmetric. Prove that the hypersurface is singular iff det(A) = 0. ♦

Exercise 1.6: Show that a non-singular quadric surface QA(X,Y,Z) = 0 is elliptic, hyperbolic, parabolic
iff det(Au) > 0, < 0,= 0 (respectively). ♦

Exercise 1.7: Let A =

[
Au t
tT c

]
be the matrix for a central quadric. Show that the eigenvectors of Au

gives the three axes of the quadric. Also, the center of the quadric is −(Au)−1t. ♦

Exercise 1.8: Extend our classification of quadrics in A3(R) to A4(R). ♦

End Exercises
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§2. Projective Diagonalization

The last section gave some ad hoc tricks for recognizing the type of a quadric. To do this systematically,
we need an algorithm to diagonalize quadratic polynomials. Note that it is a small step to move from a
diagonal form to the canonical quadrics. In some applications, we want something more: not only do we
want to know the type, we actually need to know the transformation matrix M that transforms a quadric
QA(X) into a diagonal form QA(MX). For instance, it is easy to parametrize the canonical quadrics, and
knowing M , we can convert this into a parametrization of the original quadric. We now provide such an
algorithm.

In fact, we shall describe a diagonalization algorithm for a quadratic form in any dimension n,

QA(X) = QA(X1, . . . ,Xn) =

n∑

i=1

n∑

j=1

aijXiXj

where aij = aji and X = (X1, . . . ,Xn)T . Although we may think of Xn as the homogenization variable, but
the present algorithm makes no such distinction. There are two simple ideas in this algorithm:

• Completing the Square for a Diagonal Term: if QA(X) contains a diagonal term a11X
2
1 (a11 6= 0)

then we can transformation QA(X) to QA(MX) = cX2
1 +QB(X2, . . . ,Xn) for some c 6= 0 and QB .

• Elimination of a Hyperbolic Term: if QA(X) contains a hyperbolic term a1jX1Xj (1 6= j, a1j 6= 0)
then we can transform QA(X) to QA(MX) = cX2

1 +QC(X1,X2, . . . ,Xn) for some c 6= 0 and QC . In
this case, QC may contain terms in X1. But, if a11 = 0 in the first place, then QC has only terms that
are linear in X1. Therefore, we have introduced a diagonal term in X1, which can be completed by the
previous method.

The input of our algorithm is the real symmetric matrix A. The output is a pair (M, diag(a1, . . . , an))
of real matrices where M is invertible satisfying

A = MTdiag(a1, . . . , an)M (15)

and all elements in M and the ai’s belong to the rational field generated by elements of A. This field will
be denoted Q(A). We shall use induction on n to do this work. All the computation can be confined to a
subroutine which takes an input matrix A, and outputs a pair (M,B) of real matrices such that A = MTBM
where

QB(X) = QA(MX)

= a1X
2
1 +QB′(X2, . . . ,Xn), (16)

for some real a1. Here, as a general notation, B′ is the submatrix of B obtained by deleting the first row
and first column. Call this subroutine Diagonalization Step. Using such a subroutine, we construct the
recursive diagonalization algorithm:

Projective Diagonalization Algorithm

Input: A real symmetric matrix A of order n
Output: Pair of matrices (M,B) where B = diag(a1, . . . , an)

and A = MTBM .
1. Call Diagonalization Step on input A.

This returns a pair (M1, B1).
2. If n = 1, we return (M1, B1).
3. Recursively call Projective Diagonalization with matrix B′

1.
This returns a pair (M2, B2) of (n− 1)× (n− 1) matrices.
Suppose the top-left entry of B1 is a.

Let B3 =

[
a

B2

]
, and M3 =

[
1

M2

]
.

4. Return (M,B) = (M3M1, B3).
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The correctness of this algorithm is straightforward. We only verify that step 4 returns the correct value
(M3M1, B3):

B1 =

[
a

B′
1

]

=

[
1

MT
2

] [
a

B2

] [
1

M2

]
.

= MT
3 B3M3

A = MT
1 B1M1

= (M3M1)
TB3(M3M1)

This last equation is just the specification for diagonalizing A.

Diagonalization Step. This is a non-recursive algorithm. It maintains a pair of two matrices (M,B)
which satisfies the invariant A = MTBM . We initialize M = 1 (identity matrix) and B = A. Thus,
(M,B) satisfies the invariant A = MTBM initially. Our algorithm consists of applying at most three
transformations of the pair (M,B) by some invertible N as4 follows:

(M,B) 7→ (NM,N−TBN−1) (17)

It is easy to verify that our invariant is preserved by such updates. The transformation (17) amounts to
transforming the quadric QB(X) to QC(X) where QC(NX) = QB(X) or NTCN = B. Thus QA(X) =
QB(MX) = QC(NMX). Let B = (bij)

n
i,j=1.

The algorithm consists of the following sequence of steps, which we have organized so that it can be
directly implemented in the order described.

STEP 0 If n = 1 or if b12 = b13 = · · · = b1n = 0, we can return (M,B) = (1, A) immediately. So assume
otherwise. If b11 = 0, go to STEP 1; else, go to STEP 3.

STEP 1 We now know b11 = 0. First the first k > 1 such that bkk 6= 0. If such a k is not found, we go
to STEP 2. Otherwise, we transpose the variables X1 and Xk. This amounts to applying the matrix
Pk = (pij)

n
i,j=1 which is the identity matrix except that p1i = pi1 = 1 and also p11 = pii = 0:

Pk =




0 · · · 1
1

...
. . .

...
1

1 · · · 0
1

. . .

1




. (18)

Note that Pk is its own transpose and its own inverse. Thus Pk transforms QB(X) to QC(X) =
QB(PkX) whose associated matrix

C = Pk ·B · Pk

simply interchanges the 1st and kth rows, and also the 1st and kth columns. We update the pair
(M,B) by the matrix N = Pk as in (17). Go to STEP 3.

4Note that we write N−T as shorthand for (N−1)T = (NT )−1.
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STEP 2 We now know that b1k 6= 0 for some k ≥ 2, and moreover b11 = bkk = 0. Our goal is to create a
non-zero diagonal term from a hyperbolic term b1kX1Xk. Putting

Y1 = (X1 +Xk)/2, Yk = (X1 −Xk)/2, (19)

we have 2X1Xk = Y 2
1 − Y 2

k , X1 = (Y1 + Yk) and X2 = (Y1 − Yk). We use the convention that

“(X1 . . . X̂k . . . Xn)” indicates the absence of Xk in the sequence (X1, . . . ,Xn). Then

QB(X) = 2b1kX1Xk + 2X1

0
@

nX

j=2;j 6=k

b1jXj

1
A + 2Xk

0
@

nX

j=2;j 6=k

bkjXj

1
A + QB′′ (X2, . . . , cXk, . . . , Xn)

= b1k(Y
2

1 − Y
2

k ) + 2(Y1 + Yk)

0
@

nX

j=2;j 6=k

b1jXj

1
A + 2(Y1 − Yk)

0
@

nX

j=2;j 6=k

bkjXj

1
A + QB′′

= QC(Y1, X2, . . . , Xk−1, Yk, Xk+1, . . . , Xn) (implicit definition of QC)

The coefficients of Y 2
1 and Y 2

k are non-zero in QC(Y1,X2, . . . ,Xk−1, Yk,Xk+1, . . . ,Xn). The transfor-
mation (19) is given by the matrix Rk = (rij)

n
i,j=1 which is similar to the identity matrix except that

r11 = r1k = rk1 = e and rkk = −e where e = 1/2:

Rk =




e · · · e
1

...
. . .

...
1

e · · · −e
1

. . .

1




. (20)

The inverse R−1
k is obtained from Rk by replacing each occurence of e by 1 (and −e becomes −1). Also,

theRk andR−1
k are their own transposes. Observe thatRkX = (X1+X2

2 ,X2, . . . ,Xk−1,
X1−X2

2 ,Xk+1, . . . ,Xn)T

and R−1
k X = ((X1 + X2),X2, . . . ,Xk−1, (X1 − X2),Xk+1, . . . ,Xn)T . Hence QB(X) = QC(RkX), or

QB(R−1
k X) = QC(X). We may therefore update (M,B) with the matrix N = R1 as in (17). Go to

STEP 3.

STEP 3 At this point b11 6= 0. All the previous steps are preparations to arrive at this point. The basic
idea is to “complete the square” for X1. We have

QB(X) = b11X
2

1 + 2X1

 

n
X

j=2

b1jXj

!

+ QB′(X2, . . . , Xn)

=
1

b11

 

b11X1 +

 

n
X

j=2

b1jXj

!!

2

−
1

b11

 

n
X

j=2

b1jXj

!

2

+ QB′(X2, . . . , Xn)

=
1

b11

Y
2

1 + QC′(X2, . . . , Xn) (C′ implicitly defined here with Y1 =
Pn

j=2
b1jXj )

= QC(Y1, X2, . . . , Xn) (QC implicitly defined here).

Thus, with the matrix

T =




b11 b12 · · · b1n

1
. . .

1


 . (21)
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then QC(NX) = QB(X). Hence QC(X) = QB(N−1X) = X2
1 +QC(X2, . . . ,Xn). The inverse N−1 is

easy to describe:

N−1 =




1/b11 −b12/b11 · · · −b1n/b11
1

. . .

1


 .

So we update (M,B) using the matrix N as in (17). This concludes the description of Diagonalization
Step.

Sign Diagonalization. In general, let us call a matrix a sign matrix if every entry of the matrix is a
sign (i.e., 0,±1). In particular, the matrix diag(a1, . . . , an) is a sign diagonal matrix if each ai ∈ {0,±1}.
Let (M,B) be the output of our diagonalization algorithm where B = diag(a1, . . . , an). Thus, A = MTBM
where the entries of B and M belongs to Q(A) (rational in entries of A).

We can modify this output so that B is a sign diagonal matrix as follows: let ci =
√
|ai| for i = 1, . . . , n.

Define S = diag(1/c1, . . . , 1/cn) and S−1 = diag(c1, . . . , cn). Then the output (S−1M,SBS) would have
the desired property. Let

√
Q(A) denote those elements that are square roots of elements in Q(A). Thus

the elements of S belong to
√

Q(A). We do not build this “sign diagonalization” into the main algorithm
because of its need for square roots. Further more, if we allow

√
−1, then we can make all the signs to be

positive or 0. Thus, we have given a constructive proof of the following theorem.

Theorem 5. Let A be a symmetric real matrix.
(i) There exists an invertible matrix M whose elements belong to Q(A) such that MTAM is diagonal.
(ii) There exists an invertible matrix M whose elements belong to

√
Q(A) such that MTAM is sign diagonal.

(iii) There exists an invertible matrix M whose elements belong to C such that MTAM is non-negative sign
diagonal. In particular if A is non-singular, MTAM = 1.

§3. Affine Diagonalization

The canonical form for symmetric matrices under projective transformations is the diagonal matrix.
What is the corresponding canonical form under affine transformations? We observe that diagonal matrices
may not be achievable: e.g., the canonical hyperbolic paraboloid X2 − Y 2 − Z = 0 cannot be diagonalized
using affine transformations. Part of our task is to determine what the “affine canonical form” take.

We shall describe the diagonalization process for a quadratic polynomial in n− 1 dimensions,

QA(X1, . . . ,Xn−1, 1) = XTAX

where A is n× n and X = (X1, . . . ,Xn−1, 1)T , n ≥ 2. As usual, the (i, j)th entry of A is denoted aij . The
two techniques of projective diagonalization still works, but a third technique is needed.

• Completing the square can be extended to the affine case. Let

QA(X) = a11X
2
1 + 2X1

(
n−1∑

i=2

a1iXi

)
+ 2X1a1n +QB(X2, . . . ,Xn−1)

Completing the square for X1, we get

QA(X) =
1

a11

(
a11X1 +

(
n−1∑

i=2

a1iXi

)
+ a1n

)2

+QC(X2, . . . ,Xn−1)

where

QC(X2, . . . ,Xn−1) = − 1

a11

(
a1n +

n−1∑

i=2

a1iXi

)2

+QC(X2, . . . ,Xn−1)
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• Hyperbolic terms can again be eliminated by reduction to square terms: assuming a11 = a22 = 0 and
a12 6= 0, we have

QA(X) = 2a12X1X2 + 2X1

(
n−1∑

i=3

a1iXi

)
+ 2X2

(
n−1∑

i=3

a2iXi

)
+QB(X3, . . . ,Xn−1).

Then putting X1 = (X ′
1 +X ′

2) and X2 = (X ′
1 −X ′

2), we get

QA(X) = 2a12(X
′2
1 −X ′2

2 )

+2(X ′
1 +X ′

2)

(
n−1∑

i=3

a1iXi

)
+ 2(X ′

1 −X ′
2)

(
n−1∑

i=3

a2iXi

)
+QB(X3, . . . ,Xn−1).

Thus we can now complete the square for either X ′
1 or X ′

2.

• Consolidation of Linear and Constant Terms: if a11, a12, . . . , a1,n−1 = 0 and a1n 6= 0, then we have no
technique for eliminating the linear term a1nX1. We shall live with such terms. The key observation
is that we do not more than one such term. Suppose that we can no longer apply any of the above
transformations. Then QA(X) is equal to a linear term in some variables (say) X1, . . . ,Xk, plus the
sum of squares in the remaining variables, Xk+1, . . . ,Xn−1:

QA(X) = ann + 2

(
k∑

i=1

ainXi

)
+

n∑

i=k+1

aiiX
2
i

where ann is arbitrary but ain 6= 0 for each i = 1, . . . , k. There are two possibilities: if k = 0 then
there are no linear terms. This gives the affine diagonal form,

QA(X) = ann +
n∑

i=1

aiiX
2
i

Otherwise, suppose k ≥ 1. Then by the substitution

X1 =
1

2a1n

(
X ′

1 − ann − 2

k∑

i=2

ainXi

)

we obtain the almost diagonal form,

QA(X) = X ′
1 +

n∑

i=k+1

aiiX
2
i

Note that the above transformations are affine. We have thus proved:

Theorem 6. Every quadratic polynomial QA(X1, . . . ,Xn−1) can be transformed by a rational affine trans-
formation to an affine diagonal form

QB(X1, . . . ,Xn−1) = an +

n−1∑

i=1

aiX
2
i (22)

or an almost diagonal form

QC(X1, . . . ,Xn−1) = Xn−1 +
n−2∑

i=1

aiX
2
i . (23)

Using transformation matrices whose elements come from
√

Q(A), we can make the ai’s to be signs.
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The matrices B and C corresponding to the quadratic polynomials (22) and (23) are

B =




a1

. . .

an−1

an


 (24)

and

C =




a1

. . .

an−2
1
2

1
2



, (25)

respectively. Also, a quadratic polynomial is said to be in canonical affine form if it is in either of these
forms. If we are willing to use square-roots, then we can make each ai into a sign (0,±1); such are the
canonical equations shown in Table 1.

Lemma 7. Let A and Au have rank r and ru, respectively. The following are equivalent:
(i) A is affine congruent to an almost diagonal matrix.
(ii) r − ru = 2.
Similarly, the following are equivalent:
(i)′ A is affine congruent to a diagonal matrix.
(ii)′ r − ru ≤ 1.

Proof. By Theorem 6, A is affine congruent to B where B is either diagonal or almost diagonal.
(a) (i) implies (ii): Suppose B is almost diagonal. Then ru = rank(Au) = rank(Bu) = rank(Buu) where
Buu is the upper submatrix of Bu. Further r = rank(A) = rank(B) = rank(Buu)+2. This shows r−ru = 2.
This proves (i) implies (ii).
(b) (i)′ implies (ii)′: If B is diagonal, then r = rank(B) ≤ rank(Bu) + 1 = ru + 1. Thus r − ru ≤ 1.

To show the converse of (a), suppose suppose (ii) holds. So (ii)′ does not hold. Then (b) says that (i)′

cannot hold. Hence (i) must hold. A symmetrical argument shows the converse of (b). Q.E.D.

The conditions (ii) r−ru ≤ 1 and (ii)′ r−ru = 2 characterize the diagonal and almost diagonal matrices.
Since these two conditions are mutually exclusive, we have shown:

Corollary 8. A diagonal matrix and an almost diagonal matrix are not affine congruent.

We can now complete a deferred proof. Our proof of Theorem 3 was incomplete because we did not prove
the following result:

Lemma 9. If A,B have the same inertia pair (σ, σu), then A and B are affine congruent.

Proof. We may assume that A,B are already in affine canonical form. By Lemma 7, either A and B are
both diagonal, or they are both almost diagonal. By a further transformatiom, we can assume A and B are
sign matrices. Let σ = (σ+, σ−) and σu = (σ+

u , σ
−
u ). Recall that we distinguish matrices up to multiplication

by a non-zero constant.
CLAIM: There is a choice of B ∈ {A,−A} such that (a) B has exactly σ+ positive entries, and (b) Bu

has exactly σ+
u positive entries. Proof: If A is diagonal, and σ+ > σ−, then we choose B such that it has

exactly σ+ positive diagonal entries. If σ+ = σ−, then we pick B such that the last diagonal entry in B is
negative or zero. If B is almost diagonal, then we pick B such that that B has σ+ positive diagonal entries.
This proves our claim.

First assume A,B are diagonal. Since Bu and Au have the same number of positive and same number of
negative entries, and they are sign matrices, we can find an affine permutation transformation M such that
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(B)u = (MTAM)u. But since A and B have the same rank, we conclude that, in fact, B = MTAM . This
proves that A and B are affine congruent.

If A,B are almost diagonal, the proof is similar. Q.E.D.

Affine Diagonalization Algorithm. We consider the affine analogue of the projective diagonalization
algorithm. The state of our algorithm is captured, as before, by the pair of matrices (M,B) that will
eventually represent our output. Again (M,B) is initially (1, A) and we successively transform (M,B) by
“updating with an invertible matrix N”, as in (17).

In addition, we keep track of a pair of integers (s, t) initialized to (1, n) and satisfying 1 ≤ s ≤ t ≤ n.
The shape of the matrix B has the following structure:

B =




D 0 0 0
0 C 0 c
0 0 0 d

0 cT dT e


 , where






D = diag(a1, . . . , as−1), ai’s arbitrary
C = (t− s)× (t− s),
c = (t− s)× 1,
d = (dt, . . . , dn−1)

T , each dj 6= 0
e ∈ R.

(26)

Intuitively, the first s − 1 variables (X1, . . . ,Xs−1) have already been put in diagonal form; last n − t
variables (Xt, . . . ,Xn−1) are known to be linear. The variable Xs is the current focus of our transformation.

Note that when s = t, the matrix C and vector c are empty. In that case

QB(X) =

t−1∑

i=1

aiX
2
i + 2

n−1∑

j=t

djXj + e

where d = (dt, dt+1, . . . , dn−1)
T . With at most one more transformation, we would be done. More precisely:

(a) If t = n, B is diagonal.

(b) If t ≤ n− 1 then we apply the transformation Xn−1 7→ 1
2dn−1

(
2X ′

n−1 − e− 2
∑n−2

j=t djXj

)
or 2X ′

n−1 7→
e+ 2

∑n−1
j=t djXj . This transforms

QB(X) =
t−1∑

i=1

aiX
2
i + 2

n−1∑

j=t

djXj + e 7→
t−1∑

i=1

aiX
2
i + 2X ′

n−1 = QC(X1, . . . ,Xn−2,X
′
n−1).

Denoting the transformation matrix by

T =




1t−1

1n−t−1

dt dt+1 · · · dn−2 dn−1 e/2
1


 (27)

where 1m is the m × m identity matrix. Thus QB(X) = QC(TX) where QC(X1, . . . ,Xn−1) is almost
diagonal.
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Affine Diagonalization Algorithm

Input: A real symmetric matrix A of order n
Output: Pair of matrices (M,B) where B = diag(a1, . . . , an)

and A = MTBM .
INITIALIZATION:

(M,B)← (1, A) and (s, t)← (1, n).
– so B initially has the form of (26) –

MAIN LOOP:
while (s < t) do

1. If bss 6= 0, complete the square for Xs.
Update (M,B) (as in Equation (21)).
s← s+ 1. Break.

2. Else if (∃k = s+ 1, . . . , t− 1) with bkk 6= 0 then
Apply the matrix Ps,k (as in (18)) to exchange the Xs and Xk. Break.

3. Else if (∃k = s+ 1, . . . , t− 1) with bsk 6= 0 then
Apply the matrix Rs,k (as in (20)) to remove the cross term XsXk. Break.

4. Else (we know bsi = 0 for i = s, . . . , n− 1)
Set t := t− 1, and if s < t then apply the matrix Ps,t to exchange Xs and Xt. Break.

CONSOLIDATING LINEAR AND CONSTANT TERMS:
If (t = n or (t = n− 1 and e = 0)) then return (M,B).
Else apply the matrix (27).

Example: Find the affine canonical form for the following quadratic polynomial:

Q(W,X, Y, Z) = WX − 2W + 2Y − 2Z + 1. (28)

For simplicity, we omit the tracking of the matrix M . Eliminating the hyperbolic term WX gives

(W ′2 −X ′2)− 2(W ′ +X ′) + 2Y − 2Z + 1.

Completing the square for W ′ gives

W ′′2 −X ′2 − 2X ′ + 2Y − 2Z.

Completing the square for X ′ gives
W ′′2 −X ′′2 + 2Y − 2Z + 1.

Simplifying linear and constant terms,

W ′′2 −X ′′2 + 2Y ′ = 0.

REMARKS:
1. Note that we classify only real matrices A since we use inertia of A in our classification. But we could
generalize A to be Hermitian, i.e., complex matrices satisfying A = A∗ (its conjugate transpose). In this
case, the eigenvalues of A are still real, and we again have the law of inertia.
2. The affine diagonalization algorithm contains the projective diagonalization algorithm as a subalgorithm:
all one has to do is to ignore the part that has to do with the last homogenization component.

Exercises

Exercise 3.1: Give the matrix M that transforms QA(W,X, Y, Z) in (28) to QB(W,X, Y, Z) = W 2−X2 +
2Y . ♦
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Exercise 3.2: Find the affine canonical form of XY +Y Z+2X +2Y +2Z = 1. Also determine the matrix
which achieves this transformation. ♦

Exercise 3.3: Refine our algorithm so that we keep track of three integers, 1 ≤ r ≤ s ≤ t ≤ n. With s, t as
before, we want r− 1 to be the number of identically zero rows in B. Moreover, we assume that these
corresponds to the variables X1, . . . ,Xr−1. Thus, the diagonal entries arr, . . . , as−1,s−1 are non-zero.

♦

Exercise 3.4: Extend the affine diagonalization process to Hermitian matrices. ♦

Exercise 3.5: Suppose our transformations M are restricted to be upper block diagonal of the form




M11 M12 · · · M1k

M22 · · · M2k

. . .

Mkk




where each Mii is an invertible ni×ni matrix. Give a complete set of invariants under such congruence.
♦

End Exercises

§4. Parametrized and Ruled Quadric Surfaces

A surface S with locus L(S) ⊆ R3 is rational if there exists a function

q : R2 → L(S) ∪ {∞}, q(U, V ) = (X(U, V ), Y (U, V ), Z(U, V ))T (29)

where X(U, V ), Y (U, V ), Z(U, V ) ∈ R(U, V ) are rational functions, and with finitely many exceptions, each
point in L(S) is given by q(U, V ) for some U, V . We call q a rational parametrization of S. We are
concerned here with a special kind of rational surface, one that is swept by a line moving in space. More
precisely, a ruled surface is one with a rational parametrization of the form

q(U, V ) = b(U) + V d(U). (30)

Here, b ∈ R(U, V )3 is called the base curve and d ∈ R(U, V )3 is called the director curve. Observe that
for each u ∈ R, we have a line {b(u) + vd(u) : v ∈ R}, called a ruling. In general, a ruling for a surface is a
family of lines whose union is the locus of the surface, and with finitely point exceptions, each point in the
surface lies on a unique line. The Gaussian curvature5 is everywhere non-positive on such a surface. Two
special cases may be mentioned:
(1) When the base curve degenerates to a single point b0 ∈ R3: b(u) = b0 for all u ∈ R. The ruled surface
is a cone pointed at b0.
(2) When the director curve degenerates to a single point d0 ∈ R3: d(u) = d0 6= 0 for all u ∈ R. The ruled
surface is a cylinder whose axis is parallel to d0.

A surface is singly-ruled (resp., doubly-ruled) if there is a unique set (resp., exactly two sets) of
rulings. For instance, the cylinder is singly-ruled. But a plane has infinitely many sets of rulings. The
1-sheeted hyperboloid X2 + Y 2 − Z2 = 1 has 2 ruled parametrizations,

q(θ, V ) =




cos θ
sin θ

0



+ V




± sin θ
∓ cos θ

1



 . (31)

5The Gaussian curvature at a point p of a differentiable surface is given by κ1κ2 where κ1, κ2 are the principal curvatures
at p.
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It has no other sets of rulings (Exercise), so it is doubly-ruled. To see that equation (31) is a rational
parametrization, we replace cos θ and sin θ by the rational functions,

cos θ =
1− U2

1 + U2
, sin θ =

2U

1 + U2
, (U ∈ R). (32)

X

Y

−45◦

(c, c)

Lc(V )

Figure 1: Rulings of the Hyperbolic Paraboloid projected to the (X,Y )-plane.

The hyperbolic paraboloid X2 − Y 2 − Z = 0 also has 2 ruled parametrizations

q(U, V ) =




U
±U
0



+ V




1
∓1
4U



 . (33)

This case is important in Levin’s algorithm, so let us understand the parametrization. Assume q(U, V ) =
(U + V,U − V, 4UV ) (the other parametrization q(U, V ) = (U + V,−U + V, 4UV ) is similarly treated).
Observe that for each c ∈ R, the projection of the ruling {q(c, V ) : V ∈ R} into the (X,Y )-plane is a line
Lc(V ) passing through the point (c, c) with a constant slope −45◦. Since the lines Lc(V ) are parallel and
pairwise disjoint, we conclude that the rulings are pairwise disjoint.

Table 2 gives a list of 10 quadric surfaces. These are all ruled quadrics, as demonstrated by the ruled
parameterization given in the last column. The proper quadrics which are not accounted for by Table 2 are
the ellipsoid, 2-sheeted hyperboloid and the elliptic paraboloid.

Let us prove that these 3 quadrics are non-ruled. The ellipsoid is clearly non-ruled, since it is bounded
and cannot contain any line. The 2-sheeted hyperboloid X2 + Y 2 − Z2 = −1 has parametrization

[sinhU cosV, sinhU sinV, 1± coshU ]

but this is not a ruled parametrization. In fact, this surface also cannot contain any line: This surface
is disjoint from the plane Z = 0. So if it contain any line at all, the line must lie is some plane Z = c
(|c| ≥ 1). But our hyperboloid intersects such a plane in an ellipse, which also cannot contain any line.
A similar argument proves that the elliptic paraboloid X2 + Y 2 − Z = 0 (which has a parametrization
[V cosU, V sinU, V 2]) cannot contain any line. Combined with the parametrized quadrics listed in Table 2,
we have proved:
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Name Equation σ σu Ruled Parametrization

Nonsingular Surfaces

1 Hyperboloid of 1 sheet X2 + Y 2 − Z2 = 1 (2,2) (2,1) [cos θ ± V sin θ, sin θ ∓ V cos θ, V ]
2 Hyperbolic Paraboloid X2 − Y 2 − Z = 0 (2,2) (1,1) [U + V,±(U − V ), 4UV ]

Singular Nonplanar Surfaces

3 Elliptic Cone X2 + Y 2 − Z2 = 0 (2,1) (2,1) [V cos θ, V sin θ, V ]
4 Elliptic Cylinder X2 + Y 2 = 1 (2,1) (2,0) [cos θ, sin θ, V ]
5 Hyperbolic Cylinder X2 − Y 2 = −1 (2,1) (1,1)

ˆ
1
2
(U − 1

U
), 1

2
(U + 1

U
), V

˜

6 Parabolic Cylinder X2 = Z (2,1) (1,0)
ˆ
U, V, U2

˜

Singular Planar Surfaces

7 Intersecting Planes X2 − Y 2 = 0 (1,1) (1,1) [U, U, V ]
8 Parallel Planes X2 − 1 = 0 (1,1) (1,0) [1, U, V ]
9 Coincident Planes X2 = 0 (1,0) (1,0) [0, U, V ]
10 Single Plane X = 0 (1,1) (0,0) [0, U, V ]

Table 2: Ruled Quadric Surfaces

Theorem 10.
(i) A proper quadric is non-ruled iff it does not not contain a real line, and these are the ellipsoid, 2-sheeted
hyperboloid and elliptic paraboloid.
(ii) Table 2 is a complete list of all proper ruled quadrics.

We now address the form of the ruled parametrizations (30). In particular, what kind of functions
arise in the definition of the base curve b(U) and director curve d(U)? Each is a vector function, e.g.,
b(U) = (X1(U),X2(U),X3(U)) where the Xi(U)’s are rational functions, i.e., Xi(U) = Pi(U)/Qi(U) where
Pi(U), Qi(U) are relatively prime polynomials. The degree of b(U) is the maximum of the degrees of the
polynomials Pi(U), Qi(U), (i = 1, 2, 3). Similarly for the degree of d(U). There are three steps in this
determination:
1. By an examination of Table 2, we see that in the base curve b(U) and director curve d(U) of canonical
quadrics are quadratic rational functions of U . Quadratic means the degree is at most 2. Note that the
appearance of cos θ, sin θ in the table should be interpreted as the rational functions in (32).
2. We now examine the transformation from QA(X) to the canonical form QC(X) where C is a sign matrix
that is either diagonal or almost diagonal. We want to determine the transformation matrix N such that

QA(NX) = QC(X). (34)

By applying our algorithm to A, we obtain (M,B) such that

A = MTBM, B = diag(a1, . . . , an) or diag(a1, . . . , an−2; d).

Let
S = diag(c1, . . . , cn)

where ci =
√
|ai| for i = 1, . . . , n. In case of the almost diagonal matrix, we use cn−1 = cn =

√
|d| instead.

Then we have B = SCS where C = diag(s1, . . . , sn) or C = diag(s1, . . . , sn−2; s) is a sign matrix. Thus
A = (SM)TC(SM) and we can choose N = SM in (34).
3. Suppose that x = (x(U, V ), y(U, V ), z(U, V ))T is a parametization of the canonical quadric QC(X,Y,Z) =
0. From C = S−1(M−1)TAM−1S−1, we see that

q(U, V ) = M−1S−1 · x

is a parametrization for the quadric QA(X,Y,Z) = 0. Thus:

Theorem 11. Every ruled quadric QA(X,Y,Z) in real affine space has a rational quadratic parametrization

q(U, V ) = (X(U, V ), Y (U, V ), Z(U, V ))T

of degree 2.
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EXAMPLE: Give the ruling for the quadric

QA : XY + 2Y Z + Z − 2 = 0. (35)

We first analyze QA: with
(X,Y ) 7→ (X ′ + Y ′,X ′ − Y ′) (36)

we obtain
X ′2 − Y ′2 + 2X ′Z − 2Y ′Z + Z − 2 = 0.

With
(X ′, Y ′) 7→ (X ′′ − Z, Y ′′ − Z) (37)

we obtain
X ′′2 − Y ′′2 + Z − 2 = 0.

With
Z 7→ −Z ′ + 2 (38)

we obtain
X ′′2 − Y ′′2 − Z ′ = 0.

Hence QA is a hyperbolic paraboloid. One ruled parametrization of the canonical hyperbolic paraboloid is



X ′′

Y ′′

Z ′



 = q(U, V ) =




U
U
0



+ V




1
−1
4U



 . (39)

From (36), (37) and (38), we see that

X ′′ = (X + Y + 2Z)/2

Y ′′ = (X − Y + 2Z)/2

Z ′ = −Z + 2

Thus

U + V = (X + Y + 2Z)/2

U − V = (X − Y + 2Z)/2

4UV = −Z + 2

or 


X
Y
Z



 =




2U + 8UV − 4

2V
2− 4UV



 (40)

Exercises

Exercise 4.1: Consider the surface X2 + Y + Z = 1. Determine the ruling of this surface. ♦

Exercise 4.2:
(i) Show that ruled parameterizations (31) are the only rulings of the canonical hyperboloid of 1-sheet.
(ii) Do the same for ruled parameterizations (33) of the canonical hyperbolic paraboloid. (i) To see
that this is indeed a ruling, we note that for each V X = cosU −V sinU , Y = sinU +V sinU lies on a
circle of radius 1 + V 2 in the plane Z = U . So if V 6= V ′ then the points q(U, V ) and q(U, V ′) lies on
different circles. For fixed V , we also see that (X,Y ) corresponds to distinct points on the circle. (ii)
We must show that if L is a line in the hyperboloid, then L is one of the rulings in our two families.

♦
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Exercise 4.3: The following is another parametrization of the hyperboloid of 1 sheet: [U + V,UV − 1, U − V,UV + 1].
What is the relation to the ruled parameterization in our table? ♦

Exercise 4.4: Consider the intersection of two orthogonal right-circular cylinders along the Y - and Z-axes:

Q0 = X2 − Y 2 − 1, Q1 = Z2 +X2 − 1

Compute the projecting cone of their intersection. ♦

Exercise 4.5: Write a display program to visualize parametric space curves. For instance, display the curve
given by (40) and (44). ♦

End Exercises

§5. Parametrization of Quadric Space Intersection Curves

Consider the intersection of two quadrics:

Q0 = XTA0X = 0, Q1 = XTA1X = 0, (41)

with X = (X,Y,Z, 1)T . They intersect in a space curve that is known6 as a quadric space intersection
curve (QSIC). This is a quartic, i.e., degree 4 curve. By definitely, the degree of a space curve is the
maximum number of intersection points with any plane. In this section, we describe a well-known method of
parametrizing a QSIC from Levin (1976). There are some subtleties in this parametrization, however, which
we will point out.

The classification of QSIC is a classic problem. We have three general binary criteria for this classification:

• A QSIC is reducible if it contains a component of degree 3 or less; otherwise it is irreducible. The
linear or quadratic components can be complex, but cubic components are always real.

• A QSIC can be planar or nonplanar. A planar QSIC lies in one or two planes, and such QSIC’s are
necessarily reducible.

• A QSIC is singular if it contains a singular point. Reducible QSIC’s must be singular. An irreducible
and singular QSIC has one double singular point that may be classified as acnode, crunode or cusp.
Such a curve is rationally parametrizable. An acnode may be the only real point of the QSIC.

A QSIC that is non-singular and irreducible is non-degenerate and otherwise degenerate. A complete
classification for P3(C) may be based on the Segre characteristic [6]. This classification scheme does not
differentiate important morphological features in P3(R). This is addressed in [11, 6]. Tu et al [9] considered
the classification in P3(R) by analysing the Jordan Canonical form of the pencil matrix.

If λ is a real variable, a matrix pencil has the form

R(λ) :=(1− λ)A0 + λA1 (42)

where A0, A1 are symmetric real matrices. Thus, R(λ) is a symmetric matrix whose elements are linear in
λ. The parametrized family {XTR(λ)X = 0 : λ ∈ R} of surfaces is called a surface pencil. We say the
pencil is trivial if there is a constant matrix R0 such that R(λ) = λR0. When R(λ) is trivial, its surface
pencil has only one surface, XTR0X = 0.

Let C be the QSIC of the two surfaces (41). In A3(R), C may have empty locus. When it is non-empty, it
also known as the base curve of the corresponding pencil. Every member of the surface pencil contains the
base curve: for if X ∈ C then XTAiX = 0 for i = 0, 1 and so XT ((1− λ)A0 + λA1)X = 0. The intersection
of any two distinct surfaces in the pencil is equal to C (Exercise).

6It seems as reasonable to read “QSIC” as quadric surface intersection curve.
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Can C be empty in A3(C)? To understand this, we consider a new diagonalization problem. We say
that a pair (A0, A1) of symmetric matrices is simultaneously diagonalizable if there exists an invertible
matrix M such that

MTA0M = 1, MTB0M = diag(λ1, . . . , λn) (43)

for some λ1, . . . , λn.

Theorem 12. Let A0, A1 be symmetric matrices of order n. If A0 is non-singular and det(zA0−A1) has n
distinct roots λ1, . . . , λn, then (A0, A1) is simultaneously diagonalizable.

Proof. By Theorem 5, we can choose M0 such that MT
0 A0M0 = 1. The matrix M0 may be complex.

Then MT
0 (zA0 −A1)M0 = z1−A′

1 where A′
1 = MT

0 A1M0. But

det(z1−A′
1) = det(MT

0 (zA0 −A1)M0) = det(M0)
2 det(zA0 −A1)

and thus the eigenvalues of A′
1 are the roots of det(zA0 − A1). These are, by assumption, are distinct and

equal to λ1, . . . , λn. Let x1, . . . ,xn be the associated eigenvectors: A′
1xi = λixi and we may assume the

scalar product xT
i xi = 1 for all i. Putting M1 = [x1| · · · |xn], we obtain A′

1M1 = M1diag(λ1, . . . , λn). Note
that

λix
T
i xj = xT

j (λixi)

= xT
j A

′
1xi

= (xT
j A

′
1xi)

T

= xT
i (A′

1)
T xj

= xT
i (A′

1xj)

= λjx
T
i xj .

If i 6= j, the equality λix
T
i xj = λjx

T
i xj implies that xT

i xj = 0. Thus MT
1 M1 = 1, and MT

1 A
′
1M1 =

diag(λ1, . . . , λn).

MT
1 M

T
0 (zA0 −A1)M0M1 = MT

1 (z1−A′
1)M1

= z1− diag(λ1, . . . , λn).

The matrix M = M0M1 achieves the desired simultaneous diagonalization of (A0, A1). Q.E.D.

The approach of Levin can be broken into two observations:

• The first observation is that it is easy to intersect a ruled quadric with a general quadric. We just
plug in a ruling b(U) + V d(U) of the ruled quadric into the general quadric Q(X,Y,Z) = 0 to obtain
Q′(U, V ). Since Q′ is of degree 2 in V , we can solve for V in terms of U . Thus the QSIC is parametrized
by U .

• The second observation is that in any non-trivial pencil there is a ruled quadric surface.

EXAMPLE. To illustrate the first observation, recall the hyperboloid paraboloid (35) whose ruled
parametrization is given by (40). Suppose we want to intersect the ruled surface with the sphere,

QB : X2 + Y 2 + Z2 − 3 = 0.

We might observe that this intersection is non-empty since (−1, 1, 1) lies on both quadrics. Plugging the
ruled parametrization into the second quadric:

X
2

+ Y
2

+ Z
2 − 3 = (2U + 8UV − 4)

2
+ (2V )

2
+ (2 − 4UV )

2 − 3

= 4U
2

+ 64U
2
V

2
+ 16 + 32U

2
V − 16U − 64UV + 4V

2
+ 4 − 16UV + 16U

2
V

2 − 3

= (80U
2

+ 4)V
2

+ (32U
2 − 80U)V + (4U

2 − 16U + 17)

= 4(20U
2

+ 1)V
2

+ 16(2U
2 − 5U)V + (4U

2 − 16U + 17)

= 0.
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Solving for V :

V =
1

4(20U2 + 1)

„
8(5U − 2U

2
) ±

q
82(2U2 − 5U)2 − 4(20U2 + 1)(4U2 − 16U + 17)

«

=
1

2(20U2 + 1)

„
4(5U − 2U

2
) ±

q
16(2U2 − 5U)2 − (20U2 + 1)(4U2 − 16U + 17)

«

=
1

2(20U2 + 1)

“
4(5U − 2U

2
) ±

p
−16U4 + 56U2 − 16U + 17

”
(44)

To prove the second observation, we follow the “geometric argument” in [11, Appendix]. In fact, this
argument is quite general and applies to a quadric in any dimension. We first do this argument in projective
space.

There is a preliminary concept. By definition, the locus of a line L in Pn(C) is a set of points of the
form {aX0 + bX1 : (a, b) ∈ P1(C)} where X0,X1 ∈ Pn(C) are distinct points. We say the line is real
if the restriction of its locus to An(R) is a line in the usual sense. For instance, if X0 = (i, 0, 1, 1)T and
X1 = (1, 1, 0, 1)T then L is not a real line: we may verify that aX0 + bX1 is non-real for all a, b ∈ C \ {0}.

Theorem 13. If R(λ) = λA0 + (1− λ)A1 is a non-trivial pencil, there exists a λ0 ∈ R such that the R(λ0)
is a ruled quadric surface.

Proof. Our first task is to find a real line L that passes through two points X0,X1 (not necessarily real)
in the intersection of the quadrics. If the intersection has two real points then the line passing through them
will be our L. Suppose the intersection does not have two real points. Pick a complex point X0 = U+ iV in
the intersection such that U,V are distinct real vectors. Then X1 = U− iV is also in the intersection (using
the fact that for any real polynomial Q(X,Y,Z), we have Q(x, y, z) = 0 iff Q(x, y, z) = 0 where x, y, z ∈ C

and x = u − iv is the complex conjugate of x = u + iv. But note that the line L through X0,X1 contains
two real points U = (X0 + X1)/2 and V = (X0 −X1)/(2i). We conclude L is a real line.

Next pick a real point X∗ = aX0 + bX1 on L that is distinct from U,V. We may assume a = b = 1. Our
goal is to show that X∗ lies on some surface QS = 0 where S = λ0A0 + λ1A1 and λ0, λ1 ∈ R. Observe that

X∗T (λ0A0 + λ1A1)X
∗ = XT

0 (λ0A0 + λ1A1)X1 + XT
1 (λ0A0 + λ1A1)X0

= λ0(X
T
0 A0X1 + XT

1 A0X0) + λ1(X
T
0 A1X1 + XT

1 A1X0)

= λ0d0 + λ1d1.

If d0 = d1 = 0 then X∗ lies on the surface QS = 0 for for all λ0, λ1 ∈ R. Otherwise, say d1 6= 0, and we may
choose

(λ0, λ1) = (1,−d0/d1).

We need to verify that λ0, λ1 are real. It suffices to show that d0, d1 are real. This is clear when X0,X1 are
real; otherwise, it follows from

di = (X0 + X1)
TAi(X0 + X1) = (2U)TAi(2U).

The surface QS = 0 thus contains three points X0,X1,X
∗ of the line L. The intersection of any quadric

with a line has at most two points, unless the line is contained in the quadric. We conclude that the surface
R contains L. By Theorem 10, QS is ruled. Q.E.D.

This general theorem gives us more than we need: in case the two surfaces has no real intersection,
our application do not really care to find a ruled surface in the pencil. But we can obtain more restrictive
conditions on the nature of the ruled quadric in the pencil, essentially in the form that Levin actually proved
[7, Appendix]:

Theorem 14. The intersection of two real affine quadric surfaces lies in a hyperbolic paraboloid, a cylinder
(either hyperbolic or parabolic), or a degenerate planar surface.
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In outline, Levin’s method first finds a ruled quadric S in the pencil of A0, A1. The points of S are
rationally parametrized by q(U, V ) ∈ R3. For any fixed u0, q(u0, V ) is a line parametrized by V . Plugging
q(u0, V ) into one of the input quadrics, say Q0(X,Y,Z), we obtain a quadratic equation in V . Solving this
equation, we obtain v0 = V (u0) as an closed expression involving a square root. Thus we have found one
point q(u0, V (u0)) (possibly an imaginary one) on the intersection curve. Note that this method is suitable
for display of the intersection curve. Thus, the QSIC is parametrized by the U -parameter. We shall show
that the parametrization of the QSIC takes the form:

p(U) = a(U)± d(U)
√
s(U) (45)

where the bold face letters indicate vector valued polynomials and s(U) is a degree 4 polynomial.
Any ruled surface S in a pencil is called parametrization surface of the pencil. It has the parameter-

ization S = {q(u, v) : u, v ∈ R} given by

q(u, v) = b(u) + vd(u)

where b(u) is the base curve and d(u) the director curve. Recall that we showed for a ruled quadric, b(u)
and d(u) are rational functions of degree ≤ 2 in u. Levin calls u the primary parameter and v the secondary
parameter. For a fixed u0, q(u0, v) is a line in S. Thus the intersection of S with the surface Q0 = 0 is
reduced to the intersection of a ruling q(u0, v) with the surface Q0 = 0. [If S coincides with Q0, then use
Q1 instead.] As noted in the outline above, this intersection can be solved numerically by plugging q(u0, v)
into the quadratic equation Q0 = 0, yielding a quadratic equation in the secondary parameter. Solving, we
obtain a value v = v(u0). But we can also find v symbolically, simply by plugging q(u, v) into the equation
Q0 = 0. This gives

c2v
2 + 2c1v + c0 = 0 (46)

where
c2 = c2(u) = d(u)TA0d(u), c1 = c1(u) = b(u)TA0d(u), c0 = c0(u) = b(u)TA0b(u)

Let

v0(u) =
−c1 ±

√
s

c2

where s = c21 − c2c0. Thus we obtain
p(u) = q(u, v0(u))

which has the form (45) above. This point p(u) might be imaginary and there are also two possible values
for v(u0).

The algorithm [7, p. 560] goes as follows: first compute the real roots λi (i = 1, 2, 3, 4) of the equation
R(λ) = det(A0 − λA1) = 0. If for any i, R(λi) is improper, then there is no intersection. Otherwise, R(λi)
corresponds to a ruled surface for some i. We may now proceed to intersect this surface with one of the
original surface. Since λi is an algebraic number, this computation will require careful approximation in the
sense of Exact Geometric Computation. Details of this process has not been analyzed.

Exercises

Exercise 5.1: If λ 6= λ′ then the intersection of the surfaces XTR(λ)X = 0 and XTR(λ′)X = 0 is equal to
the base curve. ♦

Exercise 5.2: Let C be the intersection of the quadrics in (41). Assume A0, A1 have rank 3 or 4. For each
of the spaces S = P3(C),P3(R),A3(C),A3(R), either show that C is non-empty, or give an instance
where C is empty. ♦

Exercise 5.3: Show that the line L with locus {aX0 + bX1 : a, b ∈ P1(C)} where X0 = (i, 0, 1)T and
X1 = (1, 1, 0)T is not a real line. ♦
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Exercise 5.4: Give an algebraic version and proof of Theorem 13. HINT: The roots of the pencil R(λ) are
continuous function of λ. ♦

End Exercises

§6. Morphology of Degenerate QSIC

We now describe the approach of Farouki, Neff and O’Connor [6]. Their focus is on how to parametrize
the degenerate QSIC. This decision is reasonable because in the non-degenerate case, Levin’s method is
adequate.

If the QSIC is a non-singular irreducible QSIC, we say it is non-degenerate; all other cases are degen-
erate. The degenerate QSIC’s are of 5 types:

1. a singular quartic space curve

2. a cubic space curve and a straight line

3. two irreducible conic curves

4. an irreducible conic curve and two straight lines

5. four straight lines

The first case is irreducible, but the rest are reducible. In any case, we have

Theorem 15. A QSIC is rationally parametrizable iff it is degenerate.

Hence, it is useful to detect degeneracy and to exploit this parametrization property.
For any pencil R(λ) = λA0 + (1− λ)A1, let

∆(λ) = det(R(λ)) =

4∑

i=0

∆iλ
i

be the determinant of the pencil R(λ). Recall that the discriminant of any univariate polynomial p(X) is
denoted disc(p) and it defined as a resultant

disc(p) := res(p(X), p′(X))

where p′(X) indicates differentiation by X. The discriminant of the pencil R(λ) is defined to be disc(∆(λ)).

Lemma 16. A QSIC is degenerate iff disc(∆(λ)) vanishes.

Proof. Q.E.D.

For a generic point X = (X,Y,Z)T , and real variable t, consider the parametric line tX = (tX, tY, tZ)T

that passes through the origin and X. If tX lies on the quadric Qi, then we have Qi(tX, tY, tZ) = 0. Now
consider the surface defined by

R(X,Y,Z) = rest(Q0(tX), Q1(tX)) = 0. (47)

By the usual interpretation of resultants, this means for any point P = (X,Y,Z)T in the surface R(X,Y,Z) =
0, there exists a t ∈ R such that tP lies in the QSIC. In view of this, R(X,Y,Z) is called the projection
cone of the QSIC.

EXAMPLE. Compute the projection cone in the case of a sphere

Q0 : X2 + Y 2 + Z2 = 4
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and a cylinder
Q1 : X2 + Y 2 = 2X.

R(X,Y,Z) = det




X2 + Y 2 + Z2 −4
X2 + Y 2 + Z2 −4

X2 + Y 2 −2X
X2 + Y 2 −2X




= −4 det




X2 + Y 2 + Z2 −4
X2 + Y 2 −2X

X2 + Y 2 −2X





= −4[4X2(X2 + Y 2 + Z2)− 4(X2 + Y 2)2]

= 16[Y 4 +X2Y 2 −X2Z2]. (48)

In this example from Farouki et al [6], the QSIC is a figure-of-8, which is singular at the point (2, 0, 0) where
the two loops of the ”8” meet.

Lemma 17. R(X,Y,Z) ∈ R[X,Y,Z] is homogeneous of degree 4.

Proof. The proof is like in the proof of Bezout’s theorem. Introduce a new variable s as follows:

R(sX, sY, sZ) = det




s2a2 sa1 a0

s2a2 sa1 a0

s2b2 sb1 b0
s2b2 sb1 b0




s2R(sX, sY, sZ) = det




s3a2 s2a1 sa0

s2a2 sa1 a0

s3b2 s2b1 sb0
s2b2 sb1 b0




= s6 det




a2 a1 a0

a2 a1 a0

b2 b1 b0
b2 b1 b0


 .

From R(sX, sY, sZ) = s4R(X,Y,Z), we conclude that R is homogeneous of degree 4. Q.E.D.

Suppose the plane curve R(X,Y, 1) = 0 has a rational parametrization. If (X(U), Y (U)) is a parametriza-
tion of the plane curveR(X,Y, 1), then we can obtain a parametrization of the QSIC by plugging (tX(U), tY (U), t)T

into any one of the original curve, say QA(X) = 0. This gives a quadratic polynomial in t, which we can
solve, say t = t(U). This gives a parametrization of the QSIC of the form

(t(U)X(U), t(U)Y (U), t(U))T .

We should also find a parametrization of the plane curve R(X,Y, 0) and repeat this procedure to get a
complete parametrization of the QSIC.

EXAMPLE (contd). In the projection cone R(X,Y,Z) = Y 4 +X2Y 2 −X2Z2 = 0 from (48), we prefer
to set Y = 0 and Y = 1. The curve R(X, 1, Z) has parametrization Z = ±X

√
X2 + 1) I.e., we plug Errors! Also,

set Z = 1 is
OK

(tU, t,±U
√
U2 + 1)T into the cylinder X2 + Y 2 = 2X to get

t2U2 + t2 = 2tU

thus t = 2U/(1 + U2). Thus the QSIC becomes

(2U2/(1 + U2), 2U/(1 + U2),±U
√
U2 + 1)T
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Similarly, the curve R(X, 0, Z) has parametrization Z = ±X
√
X2 − 1). Then t = 2/U , and the QSIC is

(2, 2/U,±U
√
U2 − 1)T

ALTERNATIVE APPROACH: The sphere is

QA : X2 + Y 2 + Z2 = 4

but we may reexpress the cylinder QB : X2 + Y 2 = 2X as

QB : (X − 1)2 + Y 2 = 1

The ruled parametrization of QB is (X,Y,Z) = (1+cos θ, sin θ, V ). So plugging into QA, we get 2X+Z2 = 4
or V =

√
2− 2 cos θ. Let

P (θ) = (1 + cos θ, sin θ,±
√

2− 2 cos θ)T .

E.g. P (0) = (2, 0, 0). This is a singular point of the QSIC.
Since R is homogeneous, it is basically equivalent to the bivariate polynomial

f(X,Y ) = Φ(X,Y, 1).

We can now factor f(X,Y ) using elementary techniques. First consider what the linear factors of f(X,Y )
give us: ...

§7. Approach of Dupont, Lazard, et al

The ruled quadrics are given one of the canonical forms:

Equation Parametrization

(2,2) aX2 + bY 2 − cZ2 − dW 2 = 0
[

u+av
a

, uv−b
b
, u−av√

ac
, uv+b√

bd

]

(2,1) aX2 + bY 2 − cZ2 = 0
[
uv, u2−abv2

2b
, u2+abv2

2
√

bc
, s
]

(2,0) aX2 + bY 2 = 0 [0, 0, u, v]
(1,1) aX2 − bY 2 = 0

[
u,±ab

b
u, v, s

]

(1,0) X2 = 0 [0, u, v, s]

REMARKS: An different approach to intersecting quadrics is proposed in [8]: by the simultaneous
transformation of two quadrics into a canonical form in which their intersection is easily computed. See [5,
Chapter 31] for discussion of this approach.

§8. Steiner Surfaces

A rational parametrization of a surface S is a map q : R2 → R3 of the form

q(U, V ) = (x(U, V ), y(U, V ), z(U, V ))T

where x, y, z rational functions in U, V such that the locus of S is, with finitely many exceptions, equal to
{q(U, V ) : U, V ∈ R}. The degree of this rational parametrization is the maximum degree of the rational
functions. The rational parametrization is faithful if, with finitely many exceptions, q(U, V ) is 1-1 on the
surface.

A surface with rational parametrization of degree 2 is called a Steiner surface. Such surfaces are a
generalization of quadrics, since we know that every quadric has a rational paramerization of degree 2. It is
to see that Steiner surfaces have algebraic degree at most 4: consider the polynomials,

x1(U, V )X − x2(U, V ), y1(U, V )Y − y2(U, V ), z1(U, V )Z − z2(U, V )

where x(U, V ) = x1(U, V )/x2(U, V ), etc, and the xi(U, V ), etc, are polynomials of degree ≤ 2.

Exercises
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Exercise 8.1: The Segre Characteristic is based on the theory of invariants. Suppose λi (i = 1, . . . , k) are
the distinct complex eigenvalues of a matrix Q. Let λi have multiplicity µi ≥ 1. We can refine this
notion of multiplicity as follows: let λi have multiplicity µi,j in... ♦

Exercise 8.2: A set of real symmetric matrices {Ai}i is simultaneously diagonalizable by an orthogonal
matrix iff they are pairwise commutative, AiAj = AjAi. ♦

End Exercises

§9. Cut Curves of Quadric Surfaces

Consider the surfaces defined by p, q ∈ Z[X,Y,Z] where

p = Z2 + p1Z + p0

q = Z2 + q1Z + q0

where pi, qi ∈ Z[X,Y ]. In case of quadric surfaces, deg(pi) = 2− i, but part of this analysis does not require
this restriction.

The cut curve of these two surfaces is the plane curve defined by the polynomial

f = resZ(p, q) (49)

=




1 p1 p0 0
0 1 p1 p0

1 q1 q0 0
0 1 q1 q0


 (50)

= (p0q1 − p1q0) · (q1 − p1) + (p0 − q0)2 (51)

= (p0q1 − p1q0) · psc1(p, q;Z) + (p0 − q0)2 (52)

Our main goal is to analyze the singular points of this curve.
Let (a, b) ∈ Zero(f). We call this a top/bot point if there exist c 6= c′ such that {(a, b, c), (a, b, c′)} ⊆

Zero(p, q). We call it a genuine point if there exist c such that (a, b, c) is a tangential intersection of p = 0
and q = 0.

Theorem 18. (i) Every singularity of f = 0 is either a top/bot point or a genuine point.
(ii) Conversely, every top/bot point or genuine point is a singularity of f = 0.

Proof. (i) Without loss of generality, assume the singularity of f is 0 = (0, 0).
Note that if psc1(p, q;Z)(0) = 0, then p(0, 0, Z) and q(0, 0, Z) has at least two roots in common, and so

0 is a top/bot singularity. Hence assume psc1(p, q;Z) = (q1 − p1) does not vanish at 0.
To show that 0 is genuine amounts to showing that the tangent planes

pX(0)X + pY (0)Y + pZ(0)Z = 0, qX(0)X + qY (0)Y + qZ(0)Z = 0

are the same. [Note 0 here is (0, 0, 0).] This amounts to

0 = (pY qZ − pZqY )(0) = (pXqZ − pZqX)(0) = (pY qX − pXqY )(0). (53)

We check that

p0 = p|Z=0, p1 = pZ |Z=0,

q0 = q|Z=0, q1 = qZ |Z=0
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Therefore

f = resZ(p, q)

= (pqZ − pZq)|Z=0psc1(p, q;Z) + (p− q)2|Z=0

Now, using the fact that (pX)|Z=0 = (p|Z=0)X , we can compute

fX = ((pqZ − pZq)X)|Z=0psc1(p, q;Z) + (pqZ − pZq)|Z=0(psc1(p, q;Z))X + (2(p− q) · (pX − qX)|Z=0

= ((pqZ − pZq)X)|Z=0psc1(p, q;Z)

= (pXqZ − pZqX)|Z=0psc1(p, q;Z).

By assumption, fX(0) = 0 and so we conclude that

(pXqZ − pZqX)|Z=0(0) = 0.

This is the same as
(pXqZ − pZqX)(0) = 0,

as required by (53). In the same way, we show

(pY qZ − pZqY )(0) = 0.

There is one more case in (53), namely

(pY qX − pXqY )(0) = 0.

This requires a slightly different argument, left as an exercise.
(ii) Now we show that if p is a top/bot point, then it is a singularity of f = 0. Again we assume p = (0, 0).

Q.E.D.

Singularities of Projection of QSIC Note that none of the arguments so far required any bounds on
the degrees of pi, qi’s. The following arguments will now use the fact that p and q are quadratic. Again, let
f be their cut curve.

Assume f is square free and generally aligned (i.e., its leading coefficients in X and in Y are constants).
Then we claim that the cutcurve f = 0 has at most 2 top/bot points and at most 4 genuine points.

Theorem 19. There are at most two top/bot points. We can compute two quadratic polynomials t ∈ Z[X]
and b ∈ Z[Y ] such that the top/bot points lies in the grid of zeros of t, b.
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