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Preface

Coastal areas, by virtual of their position at the interface between truly terres-
trial ecosystems and aquatic systems, belong to the most dynamic and fascinat-
ing ecosystems on Earth. They are among the most productive ecosystems on our
home planet, providing numerous ecological, economic, cultural, and aesthetic ben-
efits and services. Meanwhile, they are also the foci of human settlement, industry,
and tourism. Because of large population and intense development, global coastal
ecosystems are under strain as never before and there is a strong need for environ-
mental monitoring and assessment in order to manage and protect these sensitive
areas more effectively. This in turn requires reliable information bases and capable
analytical techniques. Conventional field-based survey and mapping methods are
still vital but often logistically constrained. Because of cost-effectiveness and tech-
nological soundness, remote sensing and geospatial technologies have increasingly
been used to develop useful sources of information that support decision making as
related to many coastal applications. But coastal areas comprise complex, dynamic
landscapes, thus challenging the applicability and robustness of these methods and
technologies. Encouragingly, recent innovations in data, technologies, and theories
in the wider arena of remote sensing and geospatial technologies have provided
scientists with invaluable opportunities to advance the studies on the coastal envi-
ronment.

Within the above context, a book on coastal ecosystems is timely. This book
focuses on the development of remote sensing and related geospatial technologies
for monitoring, synthesis and modeling in the coastal environment. The book is
divided into three major parts. The first part examines several conceptual and tech-
nical issues of applying remote sensing and geospatial technologies in the coastal
environment. The second part showcases some latest development in the use of
remote sensing and geospatial technologies for coastal ecosystem assessment and
management with emphasis on coastal waters, submerged aquatic vegetation, ben-
thic habitats, shorelines, coastal wetlands and watersheds. The last part details a
watershed-wide synthetic approach that links upstream stressors with downstream
responses for integrated coastal ecosystem assessment and management.

v



vi Preface

This book is the result of an extensive research by interdisciplinary experts, and
will appeal to students and professionals dealing with not only remote sensing,
geospatial technologies and coastal science but also oceanography, ecology, envi-
ronmental science, natural resources management, geography and hydrology in the
academic, governmental and business sectors. The Editor is grateful to all the con-
tributing authors and anonymous reviewers for their time, talents and energies and
for keeping to a strict timeline and to staff at Springer-Verlag, especially Agata
Oelschlaeger and Christian Witschel, for their encouragement, patience and sup-
port. Acknowledgements are due to Tingting Zhao and Libin Zhou for manuscript
proofreading and to my wife Xiaode Deng and my son Le Yang for their patience
and love. Lastly, the Editor would like to dedicate this book to the late Professor
C. P. Lo who offered brilliant guidance and boundless encouragement over many
years of my professional career.

Tallahassee, Florida Xiaojun Yang
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Chapter 1
Remote Sensing, Geospatial Technologies
and Coastal Ecosystems

Xiaojun Yang

This introductory chapter defines the rationale and motivation leading to the devel-
opment of remote sensing and related geospatial technologies for coastal ecosystem
research and management. The chapter begins with a discussion on the motivation
of this book project. It then reviews several major types of coastal ecosystems, fol-
lowed by a discussion on the benefits and possible challenges of using remote sens-
ing and geospatial technologies for coastal ecosystem research and management.
Moreover, it provides an overview on the book structure with a chapter-by-chapter
outline. Finally, the chapter highlights several areas that need further research.

1.1 Introduction

Coastal areas, by virtual of their position at the interface between truly terrestrial
ecosystems and aquatic systems, belong to the most dynamic and productive ecosys-
tems on Earth (Yang 2008). They are among the most important ecosystems, pro-
viding numerous ecological, economic, cultural, and aesthetic benefits and services.
With only 20% of all land area, coastal areas are now the home of nearly half of
the global population (Burke et al. 2001). Increased coastal population and intense
development threaten and degrade global coastal ecosystems, placing an elevated
burden on organizations responsible for the planning and management of these sen-
sitive areas (Hobbie 2000, Hinrichsen 1998, National Research Council 1994, 2000,
Small and Nicholls 2003, Selman et al. 2008).

Coastal ecosystem management involves the procedures of monitoring and mod-
eling which require reliable information base and robust analytical technologies.
Conventional field-based mapping methods can be still vital but often logisti-
cally constrained. Remote sensing and geospatial technologies, given their cost-
effectiveness and technological soundness, are increasingly being used to develop
useful sources of information supporting decision making for a wide array of coastal

X. Yang (B)
Department of Geography, Florida State University, Tallahassee, FL 32306, USA
e-mail: xyang@fsu.edu

X. Yang (ed.), Remote Sensing and Geospatial Technologies for Coastal Ecosystem 1
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DOI 10.1007/978-3-540-88183-4 1, c© Springer-Verlag Berlin Heidelberg 2009



2 X. Yang

applications (Yang et al. 1999, Yang 2005a,b). But the coastal environment, because
of its complex and dynamic landscapes, challenges the applicability and robustness
of remote sensing and geospatial technologies. Encouragingly, recent innovations in
data, technologies, and theories in the wider arena of remote sensing and geospatial
technologies have permitted scientists with invaluable opportunities to advance the
studies on the coastal environment.

Within the above context, a book on coastal ecosystems is timely. Designed for
both the academic and business sectors, this book is dedicated to the development
of remote sensing and related geospatial technologies for monitoring, synthesis, and
modeling in the coastal environment. Specifically, this book concentrates on the
following aspects:

• Reviews the principles and methods of remote sensing and geospatial technolo-
gies as applied in the coastal environment;

• Examines some latest development in the use of remote sensing and geospatial
technologies for coastal ecosystem assessment with emphasis on coastal waters,
submerged aquatic vegetation, benthic habitats, shorelines, coastal wetlands and
watersheds; and

• Highlights a watershed-wide synthetic approach that links upstream stressors
with downstream responses for integrated coastal ecosystem assessment.

In addition to scientific research, the book has incorporated a management com-
ponent that can be found in some major chapters. Cutting-edge research based on
remote sensing and geospatial technologies helps improve our understanding of the
status, trends and threats in coastal ecosystems; such knowledge is critical for for-
mulating effective strategies in future management and sustainable coastal ecosys-
tem planning.

Unlike most edited books that are largely based on paper presentations at a spe-
cific theme conference, this book features the research conducted by a selected
group of interdisciplinary scholars:

• Researchers affiliated with the Estuarine and Great Lakes (EaGle) research pro-
gram (http://es.epa.gov/ncer/centers/eagles/) that was established by US Envi-
ronmental Protection Agency (EPA) partnered with National Aeronautics &
Space Administration (NASA);

• Researchers who present a scholarly paper in a special paper session on estu-
arine and coastal ecosystem analysis we organized at the Annual Meetings of
Association of American Geographers (AAG) since 2003;

• Some active researchers largely identified from their presentations at several
other premier conferences (e.g. annual meetings of American Geophysical Union-
AGU or American Society for Photogrammetry and Remote Sensing-ASPRS) in
recent years; and

• A small number of other world-level scholars in remote sensing, GIS, and coastal
science.

A total of 44 authors from USA, Canada, UK, Holland, Russia, Argentina, and
Barbados contribute to this book. Although most of the chapters are authored by US
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scholars and with a clear focus on a study site in USA, the knowledge gained from
this region can be applied to other coastal ecosystems globally.

1.2 Major Types of Coastal Ecosystems

There is no single definition on the coastal zone. Here we consider the coastal zone
as a physical region extending from the edge of the continental shelf to the intertidal
and near-shore terrestrial area. Globally, this physical region includes a wide array
of near-shore terrestrial, intertidal, benthic and pelagic marine ecosystems (Burke
et al. 2001). More comprehensive discussions on these ecosystem types are given
elsewhere (e.g. Mann 2000, Beatley et al. 2002). Our current discussion limits to
several coastal ecosystems including estuaries, coastal marshes, mangroves, sea-
grass systems and benthic systems because they are among the major chapter sub-
jects in this book. Note that these ecosystems are largely recognized according to
the main primary producer with the exception of estuaries; as a rather large ecosys-
tem, estuaries can include the other four as subsystems but the latter may also occur
outside an estuary.

Estuaries are a partially enclosed body of coastal waters typically found where
freshwater from rivers meet with saltwater from the ocean. As the tidal mouths of
rivers, estuaries and the surrounding lands are places of transition from land to sea.
They are often known as bays, lagoons, harbors, inlets, sounds, or fjord. Estuar-
ies are important ecosystems, providing goods and services that are ecologically,
economically, and culturally indispensible. Ecologically, estuaries are not only the
‘nurseries of the sea,’ providing habitats for many marine organisms, such as fish,
mammals, birds, and other wildlife, but also serve as a natural buffer that filters
out much of the sediments and pollutants carried in by terrestrial runoff, creating
cleaner water that eventually benefits both human and marine life. Economically,
estuaries support significant fisheries, tourism, and other commercial activities and
the development of important public infrastructure, such as harbors and ports vital
for shipping, transportation, and industry. Culturally, estuaries are often the focal
points for recreation, commerce, scientific research and education, and aesthetic en-
joyment. The major threats to estuaries are from human activities as more than two
thirds of the global large cities are based on estuaries (Ross 1995). Stresses caused
by excessive use of the natural resources and unchecked watershed land use prac-
tices have resulted in water quality degradation, harmful algal blooms, unproductive
fisheries, loss of biodiversity, and many other human health and natural resource
problems.

Coastal marshes are a sensitive, dynamic, and productive ecosystem. They are
predominately grasslands that are periodically flooded by tides in the intertidal re-
gions. The salinity from salt or brackish tidal waters creates a salt-stressed aquatic
environment where halophytic plants thrive. Coastal marshes may be classified as
salt marshes, brackish marshes and freshwater tidal marshes. They may be associ-
ated with estuaries, and are also along waterways between coastal barrier islands
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and the inner coast. Coastal marshes are of great ecological values because they
serve as the nursery grounds for fish, habitats for a wide variety of wildlife, and the
buffer zones to protect water quality. The major disturbances and threats to coastal
marshes largely come from human activities, such as draining, filling, ditching, and
waste dumping, although natural processes like sea-level changes can also affect the
areal distribution of coastal marshes.

The mangrove ecosystem is commonly found in tropical and subtropical tide-
lands throughout the world. The mangrove family of plants dominates this coastal
wetland ecosystem due to their ability to thrive in the saline coastal environment.
The three mangrove species grown in the United States are red, black, and white
mangroves. The term mangroves can narrowly refer to these species but most com-
monly refers to the habitat and entire plant assemblages, for which the term man-
grove swamp or mangrove forest is often used. Because mangroves are constantly
replenished with nutrients, they sustain a huge population of organisms that in turn
feed fish and shrimp, which support a variety of wildlife; their physical stability help
prevent shoreline erosion, shielding inland areas from damage during severe storms
and waves. The major threats to mangroves are mostly related to human impacts
from dredging, filling and diking, oil spills, herbicide and urban waster runoff.

Seagrasses are aquatic flowering plants that live fully submerged in the saline
coastal environment, and are also called ‘submerged aquatic vegetation.’ Seagrasses
can form extensive beds or meadows, dominated by one or more species. They are
distributed worldwide in soft sediments from mean low tide level to the depth limit
determined by the penetration of light that permits seagrass plants to photosynthe-
size. Seagrass beds are a highly diverse and productive ecosystem, and they al-
most always support more invertebrates and fish than the adjacent areas lacking
seagrasses (Mann 2000). Seagrass beds provide coastal zones with a number of
ecosystem goods and services, such as fishing grounds, wave protection, oxygen
production and protection against coastal erosion. Disturbances and threats to sea-
grasses include natural processes, such as grazing, storms, ice-scouring and desic-
cation; but human activities, such as entrophication due to excessive nutrient inputs,
mechanical destruction of habitat, and overfishing, are considered to be the major
stressors.

The benthic system is the community of organisms living on the bottom of oceans
in areas not colonized by macrophytes (Mann 2000). Benthic habitats are virtually
bottom environments with distinct physical, chemical, and biological characteris-
tics. They vary widely depending upon their location, depth, salinity, and sediment.
Benthic habitats in areas with depth of larger than 200 m have been much less com-
monly observed and mapped. Estuarine and nearshore benthic habitats can be highly
diverse, including submerged mudflats, rippled sandflats, rocky hard-bottom habi-
tats, shellfish beds, and coral reefs. Note that seagrass beds can be described as a
benthic system but they are treated separately (see the above paragraph). In terms
of ecological functioning, the benthic system serves as the site of nutrient regenera-
tion and the site of considerable secondary production that is utilized by important
predators, such as bottom-feeding fish and crustaceans (Mann 2000). The major dis-
turbances and threats to the benthic system are similar to those listed for seagrasses.
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1.3 Remote Sensing and Geospatial Technologies

Remote sensing is the science and art of acquiring information by a recording device
that is not in physical contact with the object under investigation. The technology
of modern remote sensing began with the invention of camera more than 150 years
ago, and by now many different remote sensing systems have been developed to
detect and measure energy patterns from different portions of the electromagnetic
spectrum. Remote sensing and related geospatial technologies can help improve
our understanding of the coastal ecosystems in several ways, although the realistic
potential for making these improvements are often challenged by the complexity in
the coastal environment.

Remote sensing and related geospatial technologies (such as geographic infor-
mation system and spatial analysis) provide at least five major benefits for coastal
studies. Firstly, perhaps the largest benefit of remote sensing is its capability of ac-
quiring photos or images that cover a large area, providing a synoptic view that
allows us to identify objects, patterns, and human-land interactions. This unique
perspective is highly relevant to the ecosystem approach we advocate to study the
coastal environment in this book since many coastal processes are operating over
a rather large area; failure in observing the entire mosaic of a coastal phenomenon
may hinder our ability to understand the potential processes behind the observed
patterns.

Secondly, remote sensing provides additional measures for coastal studies.
Coastal researchers frequently use data collected from field surveys and measure-
ments. This way of data collection is considered to be accurate but can introduce
potential errors due to the bias in sampling design (Jensen 2007). Field measure-
ments can become prohibitively expensive over a large area. Remote sensing can
collect data in an unbiased and cost-effectiveness fashion. Moreover, remote sensors
can measure energy at wavelengths which are beyond the range of human vision;
remote sensor data collected from the ultra-violet, infrared, microwave portions of
the electromagnetic spectrum can help obtain knowledge beyond our human visual
perception. Data fusion from different sensors can improve coastal mapping and
analysis.

Thirdly, remote sensing allows retrospective viewing of the Earth surface, and
time-series of remote sensor data can be quite useful to develop a historical perspec-
tive of a coastal phenomenon or process, which can help examine significant human
or natural processes that act over a long time period. Examples in this book include
time-series data on chlorophyll (chl-1) and primary productivity that helped exam-
ine climate contribution in spatio-temporal dynamics of phytoplankton in Chesa-
peake Bay (Chap. 6); declining of submerged aquatic vegetation that was linked
with increased nutrient and sediment discharges into Chesapeake Bay (Chap. 10);
and marshland conversion into other habitat types driven by hydrological modifica-
tions and off-farm sedimentation (Chap. 21).

Fourthly, remote sensing can help make connections across levels of analysis
for coastal studies. Coastal science disciplines and subdisciplines have their own
preferred levels of analysis and normally do not communicate across these levels.
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For example, coastal biologists tend to work with individual organisms and popula-
tions; oceanographers and coastal ecologists tend to work at higher levels defined by
oceanographical features or ecological units; while geographers and coastal planers
tend to work at community and ecosystem levels. On the other hand, the temporal
scales used by these different coastal researchers vary greatly, from hourly, daily,
weekly, monthly, seasonally, to annual or decadal basis. Remote sensing provides
essentially global coverage of data with individual pixels ranging from sub-meters to
a few kilometers and with varying temporal resolution; such data can be combined
to allow work at any scales or levels of analysis, appropriate to the coastal process
or phenomenon being examined (Millennium Ecosystem Assessment 2003). There-
fore, remote sensing offers the potential for promoting coastal researchers to think
across levels of analysis and to develop theories and models to link these levels.

Lastly, remote sensing integrated with other relevant geospatial technologies,
such as geographic information systems, spatial analysis and modeling, offers an
indispensible framework of monitoring, synthesis and modeling for the coastal en-
vironment. Such frameworks support the development of a spatio-temporal perspec-
tive of coastal processes or phenomena across different scales and the extension of
historical and current observations into the future. They can also be used to relate
different human and natural variables for developing an understanding of the indi-
rect and direct drivers of changes in ecological services and the potential feedbacks
of such changes on the drivers of changes in the coastal environment.

On the other hand, coastal environments are characterized by erratic climate con-
ditions and complex ecosystem types, challenging the applicability and robustness
of remote sensing and geospatial technologies. The high humidity in coastal ar-
eas makes difficult to obtain cloud-free images. The complex optical properties in
coastal waters dilute the effectiveness of many algorithms for retrieving water qual-
ity parameters that were originally developed for open-ocean waters. The complex
spectral signatures in coastal aquatic systems make difficult to map and classify ben-
thic habitats. The presence of complex urban impervious materials and croplands,
along with a variety of wetlands and vegetation cover, causes substantial inter-pixel
and intra-pixel scenic changes, thus complicating the classification and characteri-
zation of coastal landscape types. Moreover, it is always difficult to organize field
campaigns in coastal areas to acquire sufficient ground-truth data for model devel-
opment and verification.

1.4 Overview of the Book

With a total of 22 chapters, this book is divided into three major sections (Fig. 1.1).
The first section includes the first five chapters that examine a set of core concep-
tual and technical issues. The second section consists of 15 chapters that showcase
some latest development in remote sensing of the coastal ecosystems with empha-
sis on coastal waters, submerged aquatic vegetation populations, benthic habitats,
shorelines, coastal wetlands and watersheds. The last major section comprises the
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Fig. 1.1 A graphical overview of the book structure

two remaining chapters highlighting a watershed-wide synthetic approach that links
upstream stressors with downstream responses for integrated coastal ecosystem as-
sessment and management.

In terms of the writing style and contents, this book contains at least three types
of chapters. The first type is predominately an overview on one or more major
conceptual or technical issues. There are three chapters falling into this category:
a generic discussion on the rationale behind the development of remote sensing
and related geospatial technologies for coastal ecosystem research and manage-
ment (Chap. 1), a review on the advances in sensor design and related field ob-
servation techniques that are relevant to coastal studies (Chap. 2), and a review on
the utilities of geographic information systems and spatial analysis as applied in
the coastal environment (Chap. 3). The second type of chapters examines a sig-
nificant coastal research topic, such as fuzzy approach for integrated coastal zone
management (Chap. 4), coastal spatial data infrastructure (Chap. 5), airborne re-
mote sensing of chlorophyll (ch-a) in Chesapeake Bay (Chap. 6), remote sensing
of bio-optical properties of Chesapeake Bay waters (Chap. 7), remote sensing of
submerged aquatic vegetation (SAV) populations in Chesapeake Bay (Chap. 10),
shoreline mapping and change analysis (Chap. 13), remote sensing of tidal wet-
land vegetation (Chap. 15), LIDAR remote sensing of coastal-plant communities
(Chap. 16), and remote sensing and spatial analysis of watershed and estuarine
processes in Elkhorn Slough (Chap. 21). The last type of chapters discusses a
specific research or application: coral reefs and associated benthic habitat map-
ping (Chap. 8), benthic habitat mapping (Chap. 9), submerged aquatic vegetation
mapping and change analysis (Chap. 11), marine macrophyte mapping (Chap. 12),
coastal mangrove species discrimination (Chap. 14), barrier island marshes map-
ping and change analysis (Chap. 17), reed mudflat characterization (Chap. 19),
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coastal landscape pattern characterization (Chap. 20), and land use and water quality
(Chap. 22). The following paragraphs provide a chapter-by-chapter overview.

As an introduction to the entire book, Chap. 1 discusses the rationale and motiva-
tion leading to the development of remote sensing and related geospatial technolo-
gies for coastal ecosystem assessment and management. It reviews the major types
of global coastal ecosystems, discusses the major benefits and possible challenges
of using remote sensing and geospatial technologies for coastal ecosystem research
and management, and previews the book structure with a chapter-by-chapter outline.
The chapter concludes by highlighting some areas that deserve further research.

Chapter 2 reviews the advances in remote sensor design and related field observa-
tion techniques that are appropriate for coastal ecosystem research and management.
It covers a variety of remote sensors, such as multispectral and hyperspectral im-
agers, thermal infrared scanners, radar imagers, scatterometers, altimeters, and
LIDAR. The discussion on the sensor development is closely tied with specific
coastal and marine applications that characterize the physical and chemical prop-
erties of coastal waters, bathymetry or coastal land cover. It emphasizes not only the
integration of data acquired from both satellite and airborne platforms to provide
sufficient spatial, spectral, radiometric and temporal resolutions but also the incor-
poration of a reliable field data collection approach to acquire sufficient in situ mea-
surements that are used to calibrate and validate the remotely sensed information.

Chapter 3 provides an overview on the utilities of geographic information systems
(GIS) and spatial analysis techniques in the context of coastal and marine appli-
cations. It reviews several GIS data models that can be used to represent spatio-
temporal information in digital environment and the four major groups of spatial
analysis techniques, namely, basic spatial analysis, spatial pattern analysis, statisti-
cal spatial analysis and spatial modeling. These techniques are especially suitable
for characterizing patterns, relationships, and trends in geographically referenced
data that can help improve our understanding of the natural and social processes at
work and make better decisions for coastal ecosystem planning and management.
The chapter concludes by emphasizing technology integration that is needed to deal
with the complex and dynamic coastal environment.

Uncertainties exist among almost all the activities in integrated coastal zone man-
agement (ICZM), from problem formulation, data collection, analysis and model-
ing, to decision making and implementation. Chapter 4 details a fuzzy approach to
integrated coastal zone management by using the isle of Ameland in the Netherlands
as a case study. It discusses the indeterminate nature of coastal landscape units and
how they can be represented as fuzzy spatial objects in GIS. It further identifies the
dynamic processes and investigates the changes of these fuzzy objects and uncer-
tainties. It finally applies this fuzzy approach to characterize the dynamic changes
of sediments along the Dutch coast.

Building a spatial data infrastructure (SDN) for coastal ecosystem assessment
and management is critical yet quite challenging. Chapter 5 discusses use of the
‘data portal’ as the primary means for search, discovery and download of spatial
data, one of the most important and intuitive aspects of an SDN. It discusses some
of the most pressing challenges to effective implementation of portals within a broad
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context of an SDI and explores the potential solutions by using two major case stud-
ies that demonstrate innovation, implementation, and practice. At the end, the chap-
ter highlights the importance of partnerships behind the portals with a consideration
of virtual communities as an emerging necessity.

Chapter 6 describes airborne remote sensing of phytoplankton dynamics in
Chesapeake Bay, the largest estuary in the USA. The high-resolution data obtained
in more than 400 flights are synthesized to document the strong role of climate
in driving spatial and temporal variability of chlorophyll (chl-a) and primary pro-
ductivity (PP) in the Bay. The climate-induced change is further separated from
secular change due to nutrient overenrichment. The chapter further discusses the
development of water quality ‘criteria’, including chl-a as an indicator of ecosys-
tem responses to nutrient loading, which requires to consider climatic forcing of
phytoplankton dynamics.

Remote sensing of water quality and biogeochemical processes largely depends
on the accuracy and consistency of the in-situ data used in the calibration and val-
idation of satellite signals and in algorithm development. Chapter 7 discusses how
remote sensing of water quality in optically complex environments can be improved
by integrating optical measurements and radiative-transfer model calculations. The
approach is illustrated with recent findings on the bio-optical characteristics of
Chesapeake Bay waters, including measurements of the magnitude and spectral
characteristics of particulate backscattering. It then discusses progress on optical
closure studies in coastal regions and proposes bio-optical relations for remote sens-
ing retrieval of water quality indicators in the Chesapeake Bay ecosystem.

Remote sensing of benthic habitats is challenged by the confounding influence
water column attenuation on substrate reflectance. Chapter 8 reports a research ef-
fort that aims to resolve this confounding influence. High-resolution multispectral
satellite imagery and airborne hyperspectral imagery are used as inputs in semi-
analytical models to derive water depth and water column optical parameters which
are further used in various bio-optical algorithms to deduce bottom albedo and to
map benthic habitats along the north shore of Roatan Island, Honduras. The hyper-
spectral data are found to consistently outperform the high spatial-resolution mul-
tispectral imagery in terms of classification accuracy but both show similar accu-
racies at the coarse classification level. This study suggests the need of data fu-
sion from high spectral and spatial resolution sensors for accurate benthic habitat
mapping.

Chapter 9 describes an effort to map benthic habitats within the Kaloko- Honoko-
hau National Historic Park, Hawaii, USA, by combining color aerial photography,
high-resolution bathymetrical data, and georeferenced underwater video and still
photography. Individual habitat polygons are classified and several derivative data
concerning seafloor morphology are also generated. It is found that benthic habitat
and seafloor morphology vary greatly throughout the study area and the underlying
geologic framework and morphology of the submerged volcanic flows provide the
primary control on benthic habitats within the park. The habitat maps and associ-
ated data can be used as a stand-alone product or in a GIS to provide useful baseline
information to coastal scientists and managers.
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Chapter 10 reports airborne remote sensing of submerged aquatic vegetation
(SAV) populations in Chesapeake Bay. The aerial mapping program began in 1978
and has continued on an annual basis since 1984; currently173 flight lines are pho-
tographed and mapped for SAV each year. Aerial mosaics are produced and the SAV
beds are delineated in a GIS environment. The SAV photo-interpretation results are
further verified by using extensive ground survey data. A composite historical SAV
coverage is also developed by using archival aerial photographs that date back to the
1930s. Comparisons of current SAV populations with historical restoration targets
are used annually to provide important indexes of bay condition and trends that are
further used to assess the effectiveness of nutrient and sediment reduction strategies
for the Bay and its associated watershed.

Chapter 11 discusses the spatio-temporal change of SAV populations in the
Hudson River estuary, New York, USA, by using remote sensing, GIS and statis-
tical analysis. The SAV populations show obvious change but are always present
in some areas; these persistent SAV beds serve as indicators of overall estuarine
health and provide clues to the driving forces responsible for the observed changes
in the Estuary. The tidal fresh and oligohaline zones support the greatest abundance
of SAV per unit area while the mesohaline zone supports the least. Salinity, light
availability, and turbidity are found to affect the SAV distribution. At the end, the
chapter discusses how the SAV mapping and change detection information has been
used to better protect SAV habitats in the Hudson River estuary.

In many coastal areas, rich marine macrophytes grow to form subaquatic ‘forests’
that are of great industrial values. Chapter 12 describes an effort aiming to map the
marine macrophytes along the intertidal zones in the eastern coast of Tierra del
Fuego, Argentina, by using satellite imagery from Landsat, SAC-C, Aster, Radarsat
and QuickBird, as well as aerial photographs and maps. These data layers are co-
registered before actual mapping the algae distribution. The final maps illustrate
the algae distribution and temporal change, which can be useful for improving the
management of coastal environment and resources in the study area.

Chapter 13 discusses algorithms and methods for shoreline extraction from re-
mote sensor imagery and LIDAR elevation data. The shoreline extraction method
from remote sensor data consists of preprocessing, segmentation and classification,
and post-processing. Two methods are used for automated shoreline delineation
from LIDAR data. The first method consists of contouring, line selection with a
length threshold, and line smoothing and generalization; and the second one is based
on LIDAR DEM segmentation. These methods are used to process multi-temporal
digital orthorectified aerial photographs, Landsat imagery, and airborne LIDAR data
in the upper Texas Gulf coast. The shorelines delineated from a time series of re-
mote sensor images and LIDAR DEMs are further compared in GIS environment
for coastal change analysis.

Mangroves are of great ecological and economic values and mangrove mapping
can help derive vital information for developing a mangrove management plan.
Chapter 14 discusses remote sensing based methods for mangrove species discrim-
ination. Two IKONOS scenes acquired during dry and wet seasons are used to map
mangrove species through a Clustering-Based Neural Network (CBNN) classifier.
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CBNN is found to outperform two other conventional classifiers, namely, Back-
Propagation Neural Networks classifier (BPNN) and Maximum Likelihood Classi-
fier (MLC), when using textural information; rainy season is better than dry season
for mangrove species classification. This chapter also examines the capability of
hyperspectral data for distinguishing mangrove species.

Chapter 15 reviews the spatial and temporal patterns of tidal wetland vegeta-
tion and the ecosystem services these systems provide and examines how remote
sensing has been used to map and monitor tidal wetlands. This is accompanied by
examples from the authors’ actual research and from the published literature. At
the end, the chapter discusses some of the remaining technical challenges facing
wetland managers and scientists who wish to study tidal marshes by remote sens-
ing. The discussion is grounded in recent work in the San Francisco Bay area, but
lessons learned can be applied to other estuarine systems globally.

Chapter 16 reviews airborne LIDAR technology and assesses the capabilities and
limitations of LIDAR instruments available from research and commercial sources.
The focus is on the extraction of canopy height of short shrubs, marsh, grass, and
other vegetation found in the littoral zone. The accuracy in determining the height of
low vegetation is considerably improved when using a small-footprint, waveform-
resolving LIDAR system. The integration of spectral imagery and LIDAR has
the potential of significantly improving the classification and structural mapping
of coastal-plant communities. This chapter also identifies several technical chal-
lenges in LIDAR remote sensing. Overall, the chapter demonstrates that LIDAR
remote sensing is a cost-effective and reliable tool for the quantitative assess-
ment of vegetation habitats on barrier islands, wetlands, and other coastal-plant
communities.

Chapter 17 reports a change analysis of back-barrier land cover types at Topsail
Island in southeastern North Carolina, USA, by using historical aerial photography
and GIS. Spatial analysis of land cover types indicates that when upland gains, it
replaces marsh; when upland loses, marsh replaces it; when marsh gains, it replaces
upland; when water loses, marsh replaces it; and there was no clear pattern for what
transitions when marsh is lost. A series of tests are conducted to verify the accuracy
of aerial photo rectification, digitizing and change detection. In addition, a fuzziness
test is used to identify true changes in the marsh habitats versus positional changes
(or sliver polygons). Results indicate that rectification, interpretation and digitizing
of historical aerial photography can be done with reasonable accuracy that warrants
meaningful change analysis of back-barrier land cover types.

Chapter 18 focuses on the development of remote sensing methods to detect,
inventory and monitor burnt marshes. Two very different coastal marshes in terms
of seasonal biomass turnover pattern are monitored with aerospace remote sensing
and ground measurement of canopy structure and optical reflectance. The seasonal
maidencane marsh produces a very different temporal response to burning than the
non-seasonal black needlerush saline marsh does. A vegetation indicator derived
from optical data is used to monitor the black needlerush marsh burn, and the use of
SAR data further extends the time-since-burn to approximately 900 days. Multi-date
TM data in combination with ground measurements are used to monitor the full burn
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history of the maidencane marsh. This study indicates that it is possible to monitor
marsh recovery history and predict burn history by using optical and radar data.

Chapter 19 examines the response of the Kalmykian coastal zone and the Ural
River delta to sea level fluctuations by using a time series of optical and radar im-
ages. Photo-interpretation of optical data and digital analysis of radar images indi-
cate that the reed mudflats have played a very important role in the coastal zone
dynamics. When the Caspian Sea level rose, the shoreline began to change not from
the front reed-belt bound but from the rear bound; when the sea level declined, the
rear bound moved seaward faster than the front bound. The ecological niche for reed
growth is further determined by constructing a series of profiles along the Ural River
delta. Overall, this study shows the usefulness of satellite imagery for the study of
coastal zone dynamics in the context of global changes.

Chapter 20 illustrates the utilities of integrating remote sensing and geospatial
technologies for coastal landscape pattern characterization. Central to this study
is the two satellite images that have been used to extract land cover information
through hierarchic classification and spatial reclassification techniques. To suppress
the information redundancy and improve the manageability, the initial landscape
metrics derived from the land cover information are then reduced to a core set by
using landscape ecology principles and multivariate statistical techniques, which
are further used to examine the spatio-temporal pattern of landscape. This research
demonstrates the integration of remote sensing and other geospatial technologies
(such as GIS, landscape metrics and multivariate statistical analysis) has mutually
reinforced their utilities effective for coastal landscape pattern characterization.

Chapter 21 discusses the roles of remote sensing and spatial analysis of water-
shed and estuarine processes for conservation planning in Elkhorn Slough, a coastal
watershed in central California. The use of archival aerial photographs helps iden-
tify significant trends of marshland conversion to other habitat types, mainly due
to hydrological modifications and off-farm sedimentation. Remote sensing research
addressing nutrient and sediment runoff demonstrate the potential to correlate estu-
arine disturbance and response to watershed inputs or properties. Despite some chal-
lenges, remote sensing and spatial analysis, especially when applied for salt marsh
vegetation change detection and bathymetric change detection, help identify areas
for conservation; GIS-based watershed management continues to improve estuarine
conditions, as restoration and erosion control are underway to reduce nutrient and
sediment discharge.

Chapter 22 examines the impacts of land use upon surface water and seawa-
ter quality for a coastal watershed draining into the Holetown Lagoon, Barbados.
Surface water quality was poorer in the sub-basin with the highest proportion of de-
veloped land; nutrient concentrations at the watershed outlet were quite high, sug-
gesting overfertilization of agricultural lands and nutrient enrichment from urban
impervious surfaces. Runoff discharge into the nearshore zone causes plumes with
excessive turbidity and nutrients dispersing towards the Bellairs Reef, contribut-
ing to the chronic effects of eutrophication and sedimentation. It further recom-
mends several remedy strategies, including improved farming practices for reduc-
ing the use of fertilizer quantities, enlargement of sewerage treatment facilities for
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accommodating the Island’s increasing local and tourism population and phasing
out the use of soaps and detergents containing phosphates.

1.5 Conclusions

This chapter discusses the rationale and motivation behind the development of re-
mote sensing and related geospatial technologies for coastal ecosystem research and
management. It reviews several types of coastal ecosystems that are the major chap-
ter subjects in this volume and discusses the major benefits and possible challenges
of using remote sensing and related geospatial technologies for coastal studies. It
also provides an overview on the book structure and a chapter-by-chapter preview.

While some significant progresses have been made in remote sensing of the
coastal ecosystems, as discussed in this volume, there are several major areas that
deserve further research. Firstly, the current ocean color scanners are basically de-
signed for offshore waters, and they are of little use for optically complex near-shore
waters. Further research is needed to help design future ocean color radiometers ap-
propriate for shallow coastal waters. Secondly, most of the algorithms for retrieving
water quality measures were originally designed for open-ocean waters, and a sig-
nificant area for continuing research is the fundamental understanding of the func-
tional linkage between water constituents and remote reflectance for coastal waters.
Thirdly, more research is needed to advance the fundamental understanding of the
relationship between the volumetric reflectance, the canopy density of submerged
aquatic vegetation (SAV) populations, water depth, and bottom reflectance param-
eters. This will help develop more realistic volumetric reflectance models, thus in-
creasing the likelihood of accurate SAV mapping. Fourthly, there is an increased
research demand to develop improved methods and technologies for resolving the
spectral confusion between different land cover classes from middle-resolution im-
agery (such as SPOT HRV and Landsat TM/ETM+ data) and for incorporating
image spatial characteristics and ancillary data to improve land cover classification
from high-resolution imagery. Fifthly, continuing research efforts are needed to help
acquire good and sufficient in situ data for building comprehensive spectral libraries
of different coastal plant species and for calibrating remote sensor signals and veri-
fying information extraction algorithms for the coastal environment. Lastly, data in-
tegration plays a key role in coastal studies, and more research is needed to develop
innovative data models used for representing dynamic processes and to identify im-
proved methods and technologies that can be used to deal with data incompatibility
in terms of parameter measuring and sampling schemes.

Finally, this volume promotes a watershed-wide synthetic approach for coastal
ecosystem assessment and management that is based on the understanding of the
entire ecosystem as a whole and the linkage between upstream stressors and down-
stream responses. The success of implementing this approach depends upon not only
technological soundness in remote sensing but also intensive research collaboration
from interdisciplinary experts and broad partnerships including virtual communities
as well.
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Part I
Conceptual and Technical Issues



Chapter 2
Sensors and Techniques for Observing
Coastal Ecosystems

Victor V. Klemas

This chapter reviews the advances in sensor design and related field techniques that
are particularly appropriate for coastal ecosystem research and management. Multi-
spectral and hyperspectral imagers are available for mapping coastal land cover and
concentrations of organic or inorganic suspended particles and dissolved substances
in coastal waters. Thermal infrared scanners can map sea surface temperatures accu-
rately and chart coastal currents, while microwave radiometers can measure ocean
salinity, soil moisture and other hydrologic parameters. Radar imagers, scatterom-
eters and altimeters provide information on ocean waves, ocean winds, sea surface
height and coastal currents. Using airborne LIDAR one can produce bathymetric
maps, even in moderately turbid coastal waters. Since coastal ecosystems have high
spatial complexity and temporal variability, they frequently have to be observed
from both, satellites and aircraft, in order to obtain the required spatial, spectral and
temporal resolutions. A reliable field data collection approach using ships, buoys,
and field instruments with a valid sampling scheme is required to calibrate and
validate the remotely sensed information.

2.1 Introduction

To understand and manage ecosystems, one must monitor and study their biologi-
cal/physical features and controlling processes. However, obtaining this information
for coastal ecosystems is quite challenging since they exhibit extreme variations in
spatial complexity and temporal variability. Also, the influence of coastal ecosys-
tems extends well beyond the local scale, and the only realistic means of obtaining
data over such large areas is by remote sensing. To accomplish such monitoring
accurately and cost-effectively, the design of the monitoring approach must make
integrated use of remote sensing and field techniques (Kerr and Ostrovsky 2003).
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Advances in technology and decreases in cost are now making remote sensing
(RS) and geographic information systems (GIS) practical and attractive for use in
coastal ecosystem management. They are also allowing researchers and managers
to take a broader view of ecological patterns and processes. Landscape-level envi-
ronmental indicators that can be detected by remote sensors are available to provide
quantitative estimates of coastal and estuarine habitat conditions and trends. Such
indicators include watershed land cover, riparian buffers, wetland losses and frag-
mentation, marsh productivity, invasive species, beach erosion, water turbidity and
chlorophyll concentrations, among others. New satellites, carrying sensors with fine
spatial (1–4 m) and spectral (200 narrow bands) resolutions are being launched, pro-
viding a capability to more accurately detect changes in coastal habitat and wetland
health. Advances in the application of GIS help incorporate ancillary data layers to
improve the accuracy of satellite land-cover classification. When these techniques
for generating, organizing, storing, and analyzing spatial information are combined
with watershed and ecosystem models, coastal planners and managers have a means
for assessing the impacts of alternative management practices.

In Sects. 2.2 and 2.3 of this chapter, the reader is introduced to those airborne
and spaceborne remote sensors and techniques which are cost-effective for studying
and monitoring coastal ecosystems. In Sects. 2.4 and 2.5, case studies are used to
illustrate the application of selected remote sensors and techniques to monitor en-
vironmental indicators related to coastal wetland health and estuarine water quality.
Section 2.6 describes the most important field techniques required for coastal re-
mote sensing projects. Section 2.7 summarizes the main points followed by a list of
carefully selected references.

2.2 Remote Sensors

Aerial photography started approximately in 1858 when the famous French photog-
rapher, Gaspard Tournachon, obtained the first aerial photographs from a balloon
near Paris. Since then, aerial photography has advanced, primarily during war times,
to include color infrared films (for camouflage detection) and sophisticated cameras.
Aerial photography and other remote sensing techniques are now used successfully
in agriculture, forestry, land use planning, fire detection, mapping wetlands and
beach erosion, oceanography and many other applications. For instance, in agri-
culture they have been used for land-use inventories, soil surveys, crop condition
estimates, yield forecasts, acreage estimates, crop insect/pest/disease detection, irri-
gation management, and more recently, precision agriculture (Jensen 2007).

A major advance in aerial remote sensing has been the development of digital
aerial cameras (Al-Tahir et al. 2006). Digital photography is capable of deliver-
ing photogrammetric accuracy and coverage as well as multispectral data at any
user-defined resolution down to 0.1 m ground sampling distance. It provides pho-
togrammetric positional accuracy with multispectral capabilities for image analy-
sis and interpretation. As no chemical film processing is needed, the direct digital
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acquisition can provide image data in just a few hours compared to several weeks
using the traditional film-based camera. Another advantage over the traditional film
is the ability to assess the quality of data taken directly after the flight is completed.
Two examples of digital mapping cameras, ADS40 by Leica Geosystems and DMC
from Z/I Imaging, were first presented to the market in 2002 to address require-
ments for extensive coverage, high geometric and radiometric resolution and accu-
racy, multispectral imagery, and stereo capability (Leica 2002).

Since the 1960s, remote sensing has progressed to include new techniques of
information collection that include aircraft and satellite platforms carrying electro-
optical and antenna sensor systems (Campbell 2007). Up to that time, camera sys-
tems dominated image collection, and photographic media dominated the storage
of the spatially varying visible (VIS) and near-infrared (NIR) radiation intensities
reflected from the Earth. Beginning in the 1960s, electronic sensor systems were
increasingly used for collection and storage of the Earth’s reflected radiation, and
satellites were developed as an alternative to aircraft platforms.

Advances in electronic sensors and satellite platforms were accompanied by an
increased interest and use of electromagnetic radiant energy not only from the VIS
and NIR wavelength regions, but also from the thermal infrared (TIR) and mi-
crowave regions. For instance, TIR is used for mapping sea surface temperature and
microwaves (e.g. radar) are used for measuring sea surface height, currents, waves
and winds on a global scale (Martin 2004).

While most geologists, geographers, and other earth scientists are familiar with
aerial photography techniques (Sabins 1978, Avery and Berlin 1992), relatively few
scientists have had the opportunity to use thermal infrared, radar, and LIDAR data.
Since the TIR radiance depends on both the temperature and emissivity of the target,
it is difficult to measure land surface temperatures, because the emissivity will vary
as the land cover changes. On the other hand, over water the emissivity is known
and nearly constant, 98%, approaching the behavior of a perfect blackbody radiator
(Ikeda and Dobson 1995). Thus the TIR radiance measured over the oceans will
vary primarily with the sea surface temperature (SST) and allow one to determine
the SST accurately (±0.5◦C), with some atmospheric corrections (Martin 2004,
Elachi and van Ziel 2006).

Radar images represent landscape and ocean surface features that differ signifi-
cantly from those observed by aerial photography or multispectral scanners. A Side-
looking Airborne Radar (SLAR) irradiates a swath along the aircraft flight direction
by scanning the terrain with radar pulses at right angles to the flight path. Thus
the radar image is created by pulse energy reflected from the terrain and represents
primarily surface topography. Since radar images look quite different from visible
photographs, they require specialized interpretation skills. Radar pulses penetrate
only a few wavelengths into the soil, depending on soil moisture, salinity, surface
roughness, etc. The range resolution of SLAR depends on the length of the radar
pulse which can be made quite short with new electronic techniques. However, the
azimuth resolution is limited by the antenna size and altitude, thus preventing SLAR
systems to be used on satellites.
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Synthetic Aperture Radar (SAR) was specifically developed to provide high res-
olution images from satellite altitudes. SAR employs the Doppler shift technique to
narrow down the azimuth resolution even with a small antenna. Thus range and az-
imuth resolutions of the order of 10 m are obtainable with SAR mounted on satellite
platforms (Radarsat, ERS-2). In oceanography, radar is used not only for imaging
the sea surface but also as altimeters to map sea surface height; scatterometers to de-
termine sea surface winds; etc. (Ikeda and Dobson 1995, Martin 2004). Radar can
penetrate fog and clouds, making it particularly valuable for emergency applications
and in areas where cloud cover persists. Passive microwave radiometers are becom-
ing important for measuring sea surface salinity, soil moisture and a wide range of
hydrology related parameters (Burrage et al. 2003, Parkinson 2003).

Airborne LIDAR (Light Detection and Ranging) has become quite useful for
topographic and bathymetric mapping. Laser profilers are unique in that they confine
the coherent light energy in a very narrow beam, providing pulses of very high peak
intensity. This enables LIDARS to penetrate moderately turbid coastal waters for
bathymetric measurements or gaps in forest canopies to provide topographic data
for digital elevation models (Brock and Sallenger 2000). The water depth is derived
by comparing the travel times of the LIDAR pulses reflected from the sea bottom
and the water surface.

As shown in Table 2.1, remote sensors can be classified by application, wave-
length or active/passive mode. Under applications we have imagers, which produce
two-dimensional images and can be used for map-making. Radiometers measure
the radiant energy in a few specific bands, while spectrometers provide the energy
distribution across a spectral continuum or many spectral bands. Profilers, such as
radar and LIDAR, measure the distance to features, allowing us to determine the
topography or bathymetry of an area. Radar and LIDAR are primarily active de-
vices, while most other sensors are passive. The passive sensors operate in three
major wavelength regions, the visible, infrared and microwave (Fig. 2.1). In electro-
optical multispectral sensors, the visible region is divided into many bands, whereas
aerial photography uses blue, green and red bands, plus one reflected band in the
near-infrared. Figure 2.2 illustrates different types of visible and infrared imaging

Table 2.1 Classification of remote sensors

Application Wavelength Mode

Imagers (Mappers) Visible
Photographic (Film) Near infrared (Reflected) Active
Multispectral (Array) Thermal Infrared (Emitted) Lidar
Radar (SAR & SLAR) Microwave Radar
Side-scanning sonar∗ Sound Waves∗ Sonar∗

Radiometers Seismic Waves∗

Spectrometers

Profilers (Rangers) Passive
Lidar Visible
Radar (Altimeter) Infrared
Echo Sounder∗ Microwave

∗Not electromagnetic (EM) waves.
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Fig. 2.1 Electromagnetic spectrum (Jensen 2007)

sensors, including a framing camera; two types of multispectral scanners, the cross-
track or whisk-broom and the along-track or push-broom type; a hyperspectral area
array; and a digital framing camera. After being focused by a mirror system, in a
typical multispectral imager the radiation from each imaged pixel is broken down
into spectral bands with one image being produced in each spectral band. The ther-
mal infrared uses primarily the 10μm atmospheric window. The microwave region
contains active radar and passive microwave radiometers (see Fig. 2.1).

2.3 Airborne and Satellite Systems

Which remote sensing platform and sensor data are used depends on the mission
requirements. These can be broken down into spatial, spectral, radiometric and tem-
poral. Spatial requirements include the ground resolution (minimum mapping unit)
and coverage (swath-width). Spectral requirements include the location, width and
number of the spectral bands. For radiometry we must choose the suitable dynamic
range and the number of quantization (grey) levels. There are usually between 256
(8-bit) and 4096 (12-bit) quantization levels. The temporal resolution is determined
by the required frequency of coverage (i.e. hourly, daily, seasonal), cloud cover, sun
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Fig. 2.2 Remote sensing systems used to collect multispectral and hyperspectral imagery (Jensen
2007)

angle and tidal conditions. The general requirements for open ocean, coastal and
upland remote sensing are summarized in Table 2.2. As shown, the spatial, spec-
tral, radiometric and temporal resolution requirements are quite different for each
of these applications and depend on the specific problem to be solved (Bissett et al.
2004, Jensen 2007).

Remote sensing aircraft are usually flown at high, medium, or low altitudes, de-
pending on the resolution and coverage requirements. High altitude flights covering
large regions are normally performed by government agencies, whereas medium
altitude flights are often provided by private companies. Low altitude flights may in-
volve small aircraft, sometimes used to supplement field data collection. The trade-
offs one must make in selecting flight altitudes and imaging systems are outlined in
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Table 2.2 Remote sensing requirements

Open ocean Estuaries Land

Spatial Resolution 1–10 km 20–200 m 1–30 m
Coverage Area 2000×2000km 200×200km 200×200km
Frequency of Coverage 1–6 days 0.5–6 h 0.5–5 years
Dynamic Range Narrow Wide Wide
Radiometric Resolution 10–12 bits 10–12 bits 8–10 bits
Spectral Resolution Multispectral Hyperspectral Multispectral (Hyperspectral)

Fig. 2.3. For instance, spatial resolution can be traded off for coverage (swath width)
by varying the flight altitude or the focal length of the camera’s lens system.

There are about 29 civil land imaging satellites in orbit and 34 more are planned.
Among these are 18 high-resolution (0.5–1.8 m) and 44 mid-resolution (2–36 m)
systems. A list of the more relevant satellites is shown in Table 2.3. Most of these
satellites are in polar, sun-synchronous orbits. As the Earth rotates beneath the polar
orbiting satellite, its sensors eventually are able to observe and map every part of the
globe. The satellite’s orbit can also be adjusted to be sun-synchronous, repeating its
passes over a site during the same time of day (or same solar illumination angle).
Geostationary orbit satellites are stationed above a fixed point on the equator, having
the same angular velocity as the Earth, and thus continuously observe the same one
third of the Earth’s surface. Geostationary satellites provide less spatial resolution

Fig. 2.3 Aerial photography trade-offs



24 V.V. Klemas

Table 2.3 Coastal zone related sensors on satellite platforms

Satellite Sensor Spectral band
(μm)

Resolution
(m)

Cycle
(days)

Swath
width
(km)

Landsat MSS 4 0.5–0.6 80 18 180
1, 2, 3 5 0.6–0.7

6 0.7–0.8
7 0.8–1.1

Landsat TM 1 0.45–0.52 30 band 1–6 16 180
4, 5 2 0.52–0.60 120 band 7

3 0.63–0.69
4 0.76–0.90
5 1.55–1.75
6 2.08–2.35
7 10.40–12.50

Landsat 7 TM 1 0.450–0.514 30 band 1–7 16 180
2 0.525–0.605 60 band 6
3 0.630–0.690 15 band 8
4 0.750–0.900
5 1.55–1.75
6 10.40–12.50
7 2.08–2.35
8 (Pan) 0.52–0.90

SPOT HRV 1 0.50–0.59
2 0.61–0.68 20 band 1–3 26 (daily if camera 60
3 0.79–0.89 10 band 4 tilted)
4 0.51–0.73

IKONOS 1 0.45–0.52
2 0.52–0.60 4 band 1–4 < 3 days 11
3 0.63–0.69 1 band 5
4 0.76–0.90
5 (Pan) 0.45–0.90

NOAA AVHRR 1 0.58–0.68
2 0.725–1.1 1,100 2/day 2,400
3 3.55–3.93
4 10.5–11.3
5 11.5–12.5

Orbview 2 SeaWiFS 1 404–422
2 433–453 1,100 Daily 2,800
3 480–500
4 500–520
5 545–565
6 660–680
7 745–785
8 845–885
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(4–8 km), but have the short repeat cycles needed for tracking storms and weather
fronts (every 15–30 min) (Lillesand and Kiefer 1994, Jensen 2007).

Two of the more common medium-resolution satellites for mapping coastal land
cover on a regional scale have been the U.S. Landsat and French SPOT (Le Systeme
pour l’Observation de la Terre). As shown in Table 2.3, the satellites have multispec-
tral scanners which provide spatial resolutions of 10–30 m and cover swaths from
60 km to 180 km wide. Their repeat cycle, even without cloud cover, is only every
16–26 days. SPOT has the ability to tilt its camera, resulting in a daily repeat cycle
and stereo mapping capability.

The medium resolution data from the Landsat and SPOT systems provide infor-
mation for local or regional studies, but are not quite suitable for investigations at
global scales, because of cloud cover and differences in sun angle which prevent
convenient comparisons and mosaicking of many scenes into a seamless data set
covering a large area.

For global land cover mapping, the NOAA-AVHRR sensors seem to be more
efficient, having 2,400 km swath widths and 1.1 km spatial resolutions. Vegetation
indices derived from the NOAA-AVHRR sensor have been employed for both qual-
itative and quantitative studies of forest, desert and other ecosystems, including
the contraction and expansion of the Sahara desert, Sellers and Schimel (1993),
the calculation of biophysical parameters for climate models, etc. An overview of
these studies is given by Prince and Justice (1991), Tucker et al. (1991), and Kogan
(2001).

In the late nineties, private satellite companies started collecting high-resolution
remote sensing data. The satellites from Space Imaging (IKONOS), Digital Globe
(QuickBird) and Orbimage (Orbview-3) are already in orbit capturing imagery at
down to 0.6 m resolution. Table 2.4 lists specific information about these satellite
systems, including ground resolution, swath width and spectral coverage (Al-Tahir
et al. 2006).

Table 2.4 Satellite parameters and spectral bands (Space Imaging 2003, Digital Globe 2003,
Orbimage 2003)

Ikonos QuickBird OrbView-3

Sponsor Space Imaging Digital Globe Orbimage

Launched Sept. 1999 Oct. 2001 June 2003

Spatial Panchromatic 1.0 0.61 1.0
Resolution (m) Multi-Spectral 4.0 2.44 4.0

Spectral Range Panchromatic 525–928 450–900 450–900
(nm) Blue 450–520 450–520 450–520

Green 510–600 520–600 520–600
Red 630–690 630–690 625–695
Near Infrared 760–850 760–890 760–900

Swath width (km) 11.3 16.5 8

Off nadir pointing ±26◦ ±30◦ ±45◦

Revisit time (days) 2.3–3.4 1–3.5 1.5–3

Orbital Altitude (km) 681 450 470
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As shown in Table 2.4, these systems share several common specifications with
respect to spectral and spatial resolution as well as orbital details. (Space Imag-
ing 2003, Digital Globe 2003, Orbimage 2003) Their 11-bit dynamic range allows
greater detail to be extracted from scenes that are very dark (e.g. shadows) or very
washed out due to excessive sun reflectance. Also, one-meter color imagery can be
created using a pan-sharpening process that combines the high spatial resolution
of the panchromatic image with the spectral information of the multispectral bands
(Read et al. 2003, Souza and Roberts 2005).

In the early 1990s NASA developed a program to acquire the environmental data
needed to address specific questions posed by concerns over global environmental
change, called Earth Science Enterprise. This initiated a long-term effort to study
the total Earth system and the effects of natural and anthropogenic changes on the
global environment. One program component is an integrated system of satellites,
the Earth Observing System (EOS), designed to provide a continuous stream of data
with instruments tailored to answer specific questions for a better understanding
of the nature, rates, and consequences of global environmental change (Campbell
2007).

The EOS plan has included over 30 instruments designed to monitor physical
and biological components of the Earth. One example of such a satellite mission is
Aqua, a satellite launched in 2002. This satellite carried six distinct Earth-observing
instruments to measure numerous aspects of the Earth’s atmosphere, land, oceans,
biosphere, and cryosphere, with a focus on water in the Earth system. The six instru-
ments include the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave
Sounding Unit (AMSU-A), the Humidity Sounder for Brazil (HSB), the Advanced
Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate-Resolution
Imaging Spectroradiometer (MODIS), and the Cloud’s and Earth’s Radiant Energy
System (CERES). Each instrument has unique characteristics and capabilities, and
all six serve together to form a powerful package for Earth observations. (Parkinson
2003). The first satellite in the EOS series, Terra, was launched by NASA in 1999
to analyze the dynamic processes of Earth’s land, sea and atmosphere. Several of
Terra’s key sensors, such as the MODIS, are described in Table 2.5.

2.4 Remote Sensing of Coastal Wetlands and Land Cover

Most coastal watershed models require land cover or land use as an input. Know-
ing how the land cover/use is changing, these models, together with a few other
inputs like slope and precipitation, can predict the amount and type of run-off into
rivers, bays, and estuaries (Donato and Klemas 2001, Jensen 2007). The Landsat
Thematic Mapper (TM) has been a reliable source for land cover data. Its 30 m res-
olution and spectral bands have proven adequate for observing land cover changes
in large coastal watersheds (e.g. Chesapeake Bay). Other similar satellites with
medium resolution imagers can also be used, as shown in Table 2.5. The classifi-
cation schemes used, usually employ the Anderson USGS land cover classification
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Table 2.5 Characteristics of some current and scheduled satellite remote sensing systems (From Donato and Klemas 2001)

Satellite/Sensor Spectral range Bands GSD Revisit time Swath width Application

AVHRR NOAA 15/16 580–12500 nm 6 1.1 km −12h 2400 km SST, Turbidity, Circulation

SeaWIFS 402–885 nm 8 1.1 km daily 2800 km Ocean Color, Red Products

MODIS Terra/Aqua 620–14385 nm 16VNIR
4SWIR
16TIR

250m−1km daily

−12h

2330 km SST, Turbidity, Circulation, Ocean
Color

MISR Terra (9 Camera
angles)

425–886 nm 4 275 m 9d 360 km Ocean Color, Circulation

ASTER Terra 520–11650 nm 3VNIR
6SWIR
5TIR

15 m
30 m
90 m

16d 60 km Bathymetry, Vegetation, Land Use,
Change Detection, Circulation,
Geomorphology

LANDSAT-7 450–2080 nm 6VNIR 30 m 16d 180 km
10420 nm 1TIR 60 m

1 Pan 15 m

SPOT 1-2-4-5 500–890 nm 3MS 20 m 26d 60 m
1 Pan 10 m daily

IKONOS 450–750 nm 4MS
1 Pan

4 m
1 m

1–3d 13 km Bathymetry, Vegetation, Littoral
Processes, Digital Elevation
modelsQuick Bird 2 450–900 nm 4MS 4 m < 3d 22 km

1 Pan 1 m

Orbview 3 450–900 m 4MS 4 m < 3d 8 km
1 Pan 1 m

Orbview 4 450–2500 nm 200HS 8 m < 3d 5 km
450–900 nm 4MS 4 m

1 Pan 1 m
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Table 2.5 (continued)

Satellite/Sensor Spectral range Bands GSD Revisit time Swath width Application

ALIEO-1 400–2400 nm 9MS
1 Pan

30 m
10 m

19d 37 km Bathymetry, Vegetation, Land Use,
Change Detection, Circulation,
Geomorphology

Hyperion EO-1 400–2400 nm 220 30 m 16d 8 km Bathymetry, Vegetation, Littoral
ProcessesNEMO/COIS 400–2500 nm 210 30 m

MERIS ENVISAT-1 290–1040 15 300 m < 3d 1150 km Ocean Color, Circulation

ASAR ENVISAT-1 C-band 4 pol 2 30 m < 3d 50–100 km Circulation, Waves
AMI ERS-2(SAR) C-band V pol 1 25 m 28d 100 km
RADARSAT-1 (SAR) C-band H pol 1 6–100 m 1–4 20–500 km
RADARSAT-2 (SAR) C-band HV pol 1 3–100 m 20–500 km
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system (Anderson et al. 1976) for the top level, and develop their own classifica-
tion for the more detailed levels, such as the C-CAP Classification System (Klemas
et al. 1993, Dobson et al. 1995). A very detailed wetlands classification system is
the one developed by Cowardin et al. (1979). However, this classification system
proved to be too complex for satellite remote sensing. Some of the ecosystem health
indicators that can be observed by remote sensors include percent of impervious
areas, natural vegetation cover, buffer degradation, wetland loss and fragmentation,
wetland biomass change, invasive species, etc. (Odum 1993, Lathrop et al. 2000,
Klemas 2005).

There are numerous approaches to computer-aided image classification (Jensen
1996). A typical digital image analysis approach for classifying coastal wetlands
or land cover is shown in Fig. 2.4. Before analysis, the multispectral imagery must
be radiometrically and geometrically corrected. The radiometric correction reduces
the influence of haze and other atmospheric scattering particles and any sensor
anomalies. The geometric correction reorients the image to compensate for the
Earth’s rotation and for variations in the position and attitude of the satellite. Image
segmentation simplifies the analysis by first dividing the image into ecologically
distinct areas. Then training sites are identified for supervised classification and in-
terpreted via field visits or other reference data, such as aerial photographs. Next, an

Fig. 2.4 Typical image analysis procedure
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unsupervised classification is performed to identify variations in the image not con-
tained in the training sites. Training site spectral clusters and unsupervised spectral
classes are then analyzed using cluster analysis to develop an optimum set of spec-
tral signatures. Final image classification is then performed to match the classified
themes with the project requirements. (Lachowski et al. 1995, Jensen 1996). Texture
analysis is quite useful, but more difficult to automate and is best performed visually
(Sabins 1978, Purkis 2005). Note that throughout the process, ancillary data is used,
whenever available (e.g. aerial photos, maps, field data, etc.).

When studying critical wetland sites or small watersheds one can use aircraft
or high resolution satellite systems. Airborne digital cameras, providing color and
color infrared digital imagery are particularly suitable for mapping or validating
satellite data. Such digital imagery can be integrated with GPS information and used
as georeferenced layers in a GIS for a wide range of modeling applications (Lyon
and McCarthy 1995). Small aircraft flown at low altitudes (e.g. 500 m) can be used
to supplement field data. High resolution imagery (0.6–4 m) can also be obtained
from satellites, such as IKONOS and QuickBird (see Table 2.4). The cost becomes
excessive if the site is larger than a few hundred square kilometers. Wetland species
identification is difficult; however, some progress is being made using hyperspectral
imagers (Schmidt et al. 2004, Porter 2006).

For looking at coastal land cover changes or beach erosion over long time pe-
riods, it is important to review historical airphotos, held by local, state and federal
agencies. The U.S. Geological Survey and the USDA Soil Conservation Service
have useable aerial photos of the coast dating back to the 1930s. They also have var-
ious maps, including planimetric, topographic, quadrangle, thematic, orthophoto,
satellite and digital maps (Rasher and Weaver 1990, Lachowski et al. 1995). For in-
stance, to map long-term changes of the shoreline due to beach erosion, time series
of aerial photographs are used. The shoreline is divided into segments which are
uniformly eroding or accreting. Then the change in the distance of the waterline is
measured in reference to some stable feature like a coastal highway (Jensen 2007).

The actual beach profile can be obtained with low altitude LIDAR flights. Optical
water clarity is the most limiting factor for LIDAR depth detection. Therefore, it is
important to conduct the LIDAR overflights during tidal and current conditions that
minimize the water turbidity due to sediment resuspension and river inflow. The
LIDAR system must have a kd factor large enough to accommodate the water depth
and water turbidity at the study site (k = attenuation coefficient; d = water depth).
For instance, if a given LIDAR system has a kd = 3 and the turbid water has an
attenuation coefficient of k = 1, the system will be effective only to depths of about
3 m. Beyond that depth, one may have to use acoustic echo-sounding techniques
(Brock and Sallenger 2000).

Mapping submerged aquatic vegetation (SAV) and coral reefs requires high res-
olution (1–4 m) imagery (Mumby and Edwards 2002, Purkis 2005). Coral reef
ecosystems usually exist in clear water and can be classified to show different forms
of coral reef, dead coral, coral rubble, algal cover, sand lagoons, different densities
of seagrasses, etc. SAV may grow in more turbid waters and thus is more difficult
to map. High resolution (e.g. IKONOS) multispectral imagers have been used in the
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past to map SAV and coral reefs; however, hyperspectral imagers should improve
the results significantly (Maeder et al. 2002, Mishra et al. 2006).

Digital change detection using satellite imagery can be performed effectively
by employing one of several techniques, including post-classification comparison
and temporal image differencing (Dobson et al. 1995, Jensen 1996, Lunetta and
Elvidge 1998). Post-classification comparison change detection requires rectifica-
tion and classification of the remotely sensed images from both dates. These two
maps are then compared on a pixel-by-pixel basis. One disadvantage is that every
error in the individual date classification maps will also be present in the final change
detection map.

Temporal image differencing minimizes this problem by performing the tradi-
tional classification of only one of the two time-separated images. One band from
both dates of imagery is then analyzed to find differences. Pixel intensity differ-
ence values exceeding a selected threshold are considered as changed. A change/no
change binary mask is overlaid onto the second date image and only the pixels clas-
sified as having changed are classified in the second date imagery. This method
usually reduces change detection errors and provides detailed from-to change class
information (Jensen 1996). As shown in Fig. 2.5, change analysis results can be fur-
ther improved by including probability filtering, allowing only certain changes and
forbidding others (e.g. urban to forest).

Fig. 2.5 Change detection using probabilities
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Biomass and vegetation indices have long been used in remote sensing for mon-
itoring the health and temporal changes associated with wetland or other vegeta-
tion (Goward et al. 1991, Lyon and McCarthy 1995). The spectral bands used for
biomass mapping are primarily the red band, which is absorbed by the chlorophyll in
the upper leaf layers, and a near-infrared band, which is reflected from the inner leaf
structure, yet still penetrates several leaf layers and thus provides information on the
canopy thickness and density. These spectral bands are combined in the Normalized
Difference Vegetation Index (NDVI) to provide an estimate of above-ground wet-
land plant biomass in grams dry weight per square meter. The NDVI consists of the
difference of the near-infrared and red band radiances (digital numbers) divided by
their sum (Hardisky et al. 1984, Gross et al. 1987).

A particularly effective method for remotely sensing wetland changes uses
biomass as an indicator. To detect biomass changes the Modified Soil Adjusted
Vegetation Index (MSAVI) is used with red and near-infrared reflectances derived
from Landsat/TM images (Qi et al. 1994). This biomass algorithm is applied to a
time series of Landsat/TM images and used with selected thresholds to detect wet-
land changes. To minimize natural variations between images in the time series
(e.g. atmospheric, annual, seasonal, etc.) it is assumed that the relative distribution
of biomass in each sub-basin will remain essentially constant over time. Wetland
pixels whose MSAVI deviation from the sub-basin mean changes from its previous
deviation by more than a selected threshold value are considered as having changed.
Threshold selection determines whether many small changes or only the more sig-
nificant ones are detected. To minimize data costs, only changed sites “flagged”
by Landsat/TM are studied in more detail with high-resolution systems, such as
IKONOS or airborne scanners (Porter 2006, Klemas 2007).

2.5 Remote Sensing of Coastal and Estuarine Waters

In the open ocean, biological productivity can be estimated by measuring the
chlorophyll-a concentration. It is the primary substance determining the color of
so-called Case 1 waters, i.e. waters whose color is determined primarily by the
chlorophyll concentration, shifting from blue towards green as that concentration
increases. Several satellites with multispectral imagers, such as the Coastal Zone
Color Scanner (CZCS) and NASA’s Sea-viewing Wide Field-of-view Sensor (Sea-
WiFS), were specifically designed to map ocean color and sea temperatures on a
global scale (Martin 2004, McClain et al. 2006). With the help of calibration data
from buoys and ships, these satellites have been able to determine chlorophyll con-
centrations in the open ocean. Typical ocean color products provided by these and
more recent satellites and sensors, such as MODIS, MERIS and AQUA, are shown
in Table 2.6 (Arnone and Parsons 2004, Bissett et al. 2004).

The purpose of NASA’s Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is
to provide quantitative data on global ocean bio-optical properties to biological and
physical oceanographers. Subtle changes in ocean color signify various types and
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Table 2.6 Ocean color products (Arnone and Parsons 2004)

Chlorophyll concentration Biological processes such as algal (harmful and
non-harmful) blooms and decay

Spectral backscattering coefficient bb(γ) 90–180◦ particle scattering linked to concentration,
composition, index of refraction of organic
(marine) and inorganic (terrigenous) particles,
resuspension

Spectral absorption coefficient a(λ ) Total absorption, changes in water quality

Spectral absorption colored dissolved
organic matter a(CDOMλ )

Conservative tracer of river plumes, linked with
coastal salinity, photo-oxidation processes

Spectral particle absorption coefficient
a(pλ )

Particle composition, (organic and inorganic
particles)

Spectral phytoplankton absorption
coefficient a(φλ )

Absorption linked to differences in chlorophyll
packaging within phytoplankton cells

Remote sensing reflectance RRS(λ ) Spectral absolute water color and water signature

Diffuse attenuation coefficient
(k532, k490)

Light penetration depth, light availability at depth

Aerosol concentration – Epsilon Type and distribution, affects visibility, Atmospheric
correction methods

Beam attenuation coefficient – c(λ ) Total light attenuation using a collimated beam

Diver visibility Horizontal visibility, average target size, target
contrast, solar overhead illumination

Laser penetration depth Underwater performance of lasers (imaging or
bathymetry systems)

quantities of marine phytoplankton, the knowledge of which has many scientific and
practical applications. The ability to map the color of the world’s oceans has been
used to estimate global ocean productivity (Longhurst et al. 1995, Behrenfeld and
Falkowski 1997), aid in delineating oceanic biotic provinces (Longhurst 1998), and
study regional shelf break frontal processes (Ryan et al. 1999, Schofield et al. 2004).
As shown in Table 2.5, SeaWiFS has eight spectral bands which are optimized for
ocean chlorophyll detection and the necessary atmospheric corrections. The spatial
resolution is 1.1 km and the swath width 2,800 km. Due to the wide swath width, the
revisit time is once per day. Data in the form of analyzed sea surface temperature
and chlorophyll charts are provided daily to the fisheries and shipping industries
over Marine Radio Networks. Because certain species of commercial and game fish
are indigenous to waters of a specific temperature, fishermen can cut fuel costs and
time by being able to locate areas of higher catch potential (Cracknell and Hayes
2007).

Wind-induced upwelling in coastal regions brings nutrients to the surface, cre-
ating zones of high biological productivity, accompanied by high concentrations of
chlorophyll and phytoplankton, which can be detected by color sensors on satellites.
The waters off Peru and California are good examples, where long term upwelling
events influence the abundance of fish over periods of months. When wind patterns
over the Pacific Ocean change, warm waters from the Western Pacific shift to the
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Eastern Pacific and the upwelling of nutrient-rich cold water off the Peruvian coast
is suppressed, resulting in well-recognized “El Nino” conditions (Yan et al. 1993).
Such upwelling areas and their condition can be observed by satellites with thermal
infrared imagers, such as NOAA’s AVHRR, or ocean color sensors, such as Sea-
WiFS (Schofield et al. 2004, Martin 2004).

As one approaches the coast and enters the bays and estuaries, the water be-
comes quite turbid and contains suspended sediment, dissolved organics and other
substances, in addition to chlorophyll. To identify each substance in this complex
mixture of Case 2 waters requires hyperspectral sensors and more sophisticated al-
gorithms than the empirical regression models (Sydor 2006, Cannizzaro and Carder
2006) used in Case 1 waters in the open ocean (Ikeda and Dobson 1995, Bukata
2005). Neural network approaches have been used to map chlorophyll and sus-
pended sediment concentrations in Delaware Bay and other estuaries (Keiner and
Brown 1999, Dzwonkowski and Yan 2005a). Neural networks, however, require ex-
tensive calibration with coincident ship and satellite observations of radiance, and
shipboard measurements of chlorophyll and sediment concentrations.

There are many other coastal and estuarine pollutants and ecosystem health in-
dicators that can be sensed by remote sensors. However, to fully understand the
behavior and environmental impact of water pollutants such as oil spills or chemical
dumps, one usually needs to measure the following parameters:

• source (point, distributed, surface, subsurface)
• location (within permit zone)
• movement (currents, wind, waves, etc.)
• dispersion (density, thermocline, currents, waves, wind, etc.)
• identity (spectral signature)
• condition (weathering, decomposition, etc.)
• concentration (ambient, source, surface, subsurface, etc.)
• environmental impact (animals, plants, beaches, water quality, etc.)

Most of these pollution characteristics can be sensed remotely, especially if hyper-
spectral imagers having adequate spatial resolution are employed.

High concentrations of nutrients exported from agriculture or urban sprawl in
coastal watersheds, or produced by coastal upwelling, are causing harmful algal
blooms in many estuaries and coastal waters. Algal blooms are harmful in that they
cause eutrophic conditions, depleting oxygen levels needed by organic life and lim-
iting aquatic plant growth by reducing water transparency. Most algal blooms can
be observed from satellites, due to their distinct color, location or repetitive sea-
sonal appearance (Ruddick 2001). Furthermore, hyperspectral sensors with spectral
bands fine-tuned for specific pigment analysis allow detection and analysis of algal
taxonomy. This can be accomplished because the species-specific algal accessory
pigments produce unique spectral signatures. Remote sensing data can complement
the monitoring networks existing in many parts of the world to get data on nutrient
loading and algal growth to provide better insights into overall water quality, dis-
tribution of toxin-producing algae, and aquatic biogeochemical cycling (Gitelson
1993).
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Table 2.7 Water quality levels

Water quality Chl-a concentration
Oligotrophic < 8μg/L
Mesotrophic 8–25μg/L
Eutrophic > 25μg/L

Water quality Total Suspended Sediment (TSS)
Clear 0–10 mg/L
Moderately turbid 10–50 mg/L
Highly turbid > 50mg/L

Examples Delaware Bay is mesotrophic and moderately to highly turbid
Chesapeake Bay is mesotrophic to eutrophic and moderately turbid

Concentrations of chlorophyll-a (chl-a) and total suspended sediments (TSS) can
be sensed remotely and used as indicators of the severity of eutrophication and tur-
bidity, respectively. If such general criteria, as shown in Table 2.7, are used to com-
pare estuarine water quality, it is possible to get satisfactory results with sensors
having fewer spectral bands and lower signal to noise ratios than the hyperspectral
imagers needed for measuring precise concentration levels (Chipman et al. 2004).

Most riverine and estuarine plumes and some ocean-dumped waste plumes can
be detected remotely due to their strong surface signatures caused by high turbid-
ity. The drift and dispersion of coastal plumes and ocean dumped waste have been
tracked with satellite imagery. (Klemas and Philpot 1981, Dzwonkowski and Yan
2005b, Thomas and Weatherbee 2006). To study the dynamics of such plumes one
can use a small number of multispectral bands. However, to detect the composition
and concentration of their content is difficult, even with hyperspectral images.

Some studies of coastal ecosystems require physical data as well as biological
information. As shown in Table 2.8, radar and thermal infrared sensors are avail-
able on aircraft and satellites for measuring and mapping the physical properties of
coastal and estuarine waters. Surface and internal wave fields as well as oil slicks
can be mapped with radar imagers, such as the Synthetic Aperture Radar (SAR)
mounted on satellites. Radar altimeters provide accurate sea surface height as well

Table 2.8 Space-borne ocean-sensing techniques

Sensing technique Environmental parameters

Color Scanner – Ocean Color (chlorophyll concentration, suspended sediment,
attenuation coefficient)

Infrared Radiometer – Sea surface temperature (surface temperature, current patterns)

Synthetic Aperture Radar – Short surface waves (swell, internal waves, oil slicks, etc.)

Altimeter – Topography and roughness of sea surface (sea level, currents,
wave height)

Scatterometer – Amplitude of short surface waves (surface wind velocity,
roughness)

Microwave Radiometer – Microwave brightness temperature (salinity, surface temp.,
water vapor, soil moisture)
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as wave amplitude information. Radar scatterometer data can be analyzed to extract
sea surface winds. (Martin 2004, Elachi and van Ziel 2006). The two passive de-
vices, microwave radiometers and thermal infrared scanners can sense sea surface
salinity and temperature, respectively. Microwave radiometers can also measure a
wide range of climate related parameters, such as soil moisture (Parkinson 2003,
Burrage et al. 2003).

Oil spills are best detected by imaging radars, such as SAR on satellites, because
oil slicks dampen small surface wavelets, which otherwise backscatter a strong radar
return signal. Small aircraft can be used to verify oil spill drift and dispersion mod-
els by tracking the movement and spreading of oil slicks in coastal waters and their
interactions with fronts. A typical estuarine front may be caused by flooding higher
density ocean water gliding under the lower density, lower salinity river water and
thus causing a strong convergence zone, which may be marked by a foam line and
color line. Estuarine fronts are narrow features, quite dynamic and have high con-
vergence velocities (Sarabun 1993). Coastal and estuarine fronts can concentrate
nutrients, pollutants and capture oil slicks causing their paths to deviate from drift
and dispersion model predictions (Klemas 1980). To study frontal dynamics and
track oil slicks one needs spatial and temporal resolutions of 10–50 m and 0.5–3 h,
respectively.

Currents and breaking waves strongly affect coastal ecosystems, especially in the
nearshore, which is an extremely dynamic environment. Currents influence the drift
and dispersion of various pollutants, and together with breaking waves mobilize
and transport sediments, resulting in erosion and morphological evolution of natural
beaches. Changes in the underlying bathymetry in turn affect the wave and current
patterns, resulting in a feedback mechanism between the hydrodynamics and mor-
phology. The ability to monitor these processes is necessary in order to understand
and predict the changes that occur in the nearshore region. Arrays of current meters,
acoustic Doppler velocimeters, and pressure sensors are not very effective for de-
termining surface currents and waves over large coastal regions, since these sensors
measure currents at a point and are expensive, when large numbers of sensors have
to be deployed.

Shore-based high frequency (HF) and microwave Doppler radar systems are used
to map currents and determine swell-wave parameters in coastal waters with con-
siderable accuracy. (Paduan and Graber 1997, Graber et al. 1997, Bathgate et al.
2006). The surface current measurements use the concept of Bragg scattering from
a slightly rough sea surface, modulated by Doppler velocities of the surface cur-
rents. Extraction of swell direction, height and period from HF radar data is based
on the modulation imposed on the short Bragg wavelets by the longer faster moving
swell. HF radars can determine coastal currents and wave conditions over a range
of up to 200 km. (Cracknell and Hayes 2007). While HF radar provides accurate
maps of surface currents and wave information for large coastal areas, their spatial
resolution, which is about 1 km, is more suitable for measuring mesoscale features
than small scale currents. On the other hand, shore-based microwave X-band and
S-band radars have resolutions of the order of 10 m, yet have a range of only a few
kilometers.
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Estimates of currents over large coastal areas, such as the continental shelf, can
also be obtained by tracking the movement of drogues, dyes or natural surface fea-
tures which differ detectably in color or temperature from the background waters
(Davis 1985, Breaker et al. 1994). Examples of such features include sediment or
chlorophyll plumes, patches of different water temperature, surface slicks, coastal
fronts, etc.

Large ocean internal waves on continental shelves strongly influence acoustic
wave propagation; submarine navigation; mixing nutrients to euphotic zone; sed-
iment resuspension; cross-shore pollutant transport; and coastal engineering and
oil exploration. Internal waves move along pycnoclines, which are surfaces that
separate water masses of different densities. The water column is frequently not
homogeneous, but stratified, containing thermoclines and pycnoclines that mark
boundaries between water masses. The periods of internal waves are measured in
minutes, rather than in seconds, and their wavelengths in kilometers rather than in
tens of meters. Furthermore, the larger internal waves can attain heights of 100 m
(Alford 2003). The period of the internal wave packets approximates the period
of the tides, suggesting a cause-and-effect relationship. Internal waves can be de-
tected visually and by radar since they cause local currents which modulate surface
wavelets and slicks (Zhao et al. 2004).

Oil tankers, cargo ships, pleasure craft and military vessels navigating in bays
such as Delaware Bay or Chesapeake Bay and further north, require information
on the extent and type of ice cover during winter months. Types of ice cover may
include fast ice, pack ice, large drift ice, small drift ice, etc. Radar and multispectral
visible bands can provide such information.

The devastating effects of Atlantic hurricanes and tsunamis in the Indian Ocean
bring out the need for timely monitoring of coastal flooding. There are many other
storm events, such as Nor’easters, that impact the Atlantic coast more frequently
than hurricanes. A good example of a major coastal flooding event is the Nor’easter
storm of 1962 (Mather et al. 1967). The waves and storm surge broke through the
dune line, flooded the entire coastal zone and damaged boardwalks and homes in
settlements along the mid-Atlantic coast. The extensive damage and flooding along
the coast was captured in aerial photographs after the storm.

Obtaining images before and after the landfall of hurricane Katrina in New
Orleans in 2005, Landsat TM effectively showed the wetland losses and inunda-
tion over the entire region at 30 m resolution, while high resolution satellites, like
IKONOS and QuickBird, documented the details, including actual breaks in the
levees protecting the city. However, more frequent repeat cycles would have been
useful for emergency operations. Only SAR could penetrate the clouds to observe
coastal inundation conditions during the time of the hurricane’s landfall. Radar can
detect flooded coastal marshes because they usually provide a weaker radar return
than non-flooded ones. The marsh grasses may calm the water surface accentuating
specular reflection (Ramsey 1995). The radar return from flooded forests is usually
enhanced compared to returns from nonflooded forests. The enhancement is due to
the double bounce mechanism where the signal penetrating the canopy is reflected
off the water surface and subsequently reflected back toward the sensor by a second
reflection off a tree trunk (Hess et al. 1990).
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2.6 Field Data

Field or ship data need to be collected for developing a spectral “signature library”
for supervised classification of land cover, calibrating remotely sensed data or train-
ing neural networks. Field checks may also have to be conducted in order to guide
the interpreters during the image classification stage. Finally, field data is gathered
at the end of a project to validate the remotely sensed products (e.g. wetland maps)
and assess their accuracy.

Training sites for supervised classification of coastal land cover must meet well-
defined criteria. They should be homogeneous with regard to vegetation/land cover
and in accessible areas. They should be large enough so they can be located on
satellite images, but small enough to minimize within-site variation (10–25 pixels
in size). Multiple training sites for each category of the classification scheme are
required. (e.g. 10 sites).

To determine the reflectance characteristics of a land surface, a goniometer can be
used to measure the Bidirectional Reflectance Distribution Function (BRDF). This
is a tedious procedure, requiring that the irradiance and radiance be measured at all
sensor positions and all solar angles. A more practical way is to compare the site’s
reflectance with that of a Lambertian white panel (diffuse reflector) made of special
materials, such as Halon, having controlled reflectivities from 95% to 99% (McCoy
2005, Jensen 2007). To convert ground reflectances to at-satellite-reflectances, one
can use large white canvas sheets or natural targets large enough to be identifiable
in the satellite imagery and having reflectances covering the entire range of the
reflectances of the land cover sites to be mapped. (e.g. a corn field, a large lawn, a
field of dry soil, etc.). By measuring the reflectances of these targets on the ground
and at the satellite, and comparing them with the Lambertian white (Halon) panels,
one can calibrate the satellite sensor so it could measure the reflectances of all the
pixels in the scene (Gross et al. 1987).

To validate the remote sensing results and determine their accuracy, a statisti-
cally valid sampling scheme should be selected. For instance, for land cover maps a
systematic unaligned sampling pattern is frequently used. On the other hand, some
situations may require a clustered or stratified random sampling pattern. Tests by
various researchers have shown the simple random and stratified random patterns
both give satisfactory results. However, the stratified random approach requires
some advance knowledge of where the land cover boundaries are located (McCoy
2005).

The accuracy of completed map products can be expressed in terms of an error
matrix for land cover mapping applications and as percentage error for water quality
studies. Furthermore, a Kappa coefficient can be calculated to show how much better
the map results are than a totally random labeling of the pixels in the image (Jensen
1996, Campbell 2007).

Instrumented ships, buoys, and ocean gliders are used to calibrate and validate
chlorophyll-a and total suspended sediment maps obtained with multispectral ocean
color sensors. Some typical ship or buoy measurements are shown in Table 2.9. In
coastal and estuarine waters this data must frequently be obtained very close to the
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Table 2.9 Remote sensing related ship measurements

Direct measurements
Temperature, Salinity, Secchi Depth, pH, Attenuation Coefficient, Spectral Reflectance

(Radiance and Irradiance)

Water sample analysis
Chl-a, TSS, Nitrogen, Phosphorus

Ship data acquisition
Water samples obtained from upper 0.5 m of water column; Ship data obtained within 20 min of

satellite overpass; GPS used for sample site location

satellite overpass time and be statistically representative of prevailing conditions.
The water samples are usually taken from the upper half meter of the water column.
Sites for calibrating remotely sensed data, such as chlorophyll concentrations in
coastal waters, must be located at well-known points representing the entire range
of variables to be measured.

2.7 Summary and Conclusions

Since the early 1970s, civilian remote sensing satellites have made major contri-
butions to our understanding of the Earth’s ecosystems and warned us of critical
natural and man-made changes taking place, such as deforestation, desertification
and shrinking glaciers in Greenland and the Antarctic. In the open ocean, satellites
have tracked storms and major oil spills. They have also monitored fisheries-related
chlorophyll concentrations, algal blooms and sea surface temperatures. However,
obtaining this information for coastal and estuarine ecosystems is more challeng-
ing, since they exhibit extreme variations in spatial complexity and temporal vari-
ability. After several decades of improvements, it now appears that remote sensing
needs, cost and technology are converging in a way that will prove practical and
cost-effective for coastal managers and ecosystem researchers. A few specific con-
clusions and recommendations are outlined below:

• As shown in Table 2.2, remote sensing of coastal ecosystems requires high spa-
tial, spectral, and temporal resolution.

• Aerial photography of coastal ecosystems is usually performed at medium al-
titudes with color film, color infrared film and digital cameras at scales of
1:1,200–1:24,000. Large coastal regions can be mapped from high altitudes
(scale 1:100,000), while low altitude flights (scale 1:600) can be used in support
of field data collection (Jensen 2007, Campbell 2007).

• Georeferenced orthophotos, topographic maps and land cover maps represent
good base maps for creating a multi-layer GIS database. Digital camera images
are especially suited for use with GIS databases and for interpreting land cover
maps derived from satellite imagery (Porter 2006).
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• To keep costs reasonable, large coastal watersheds should be studied with medium
resolution satellite sensors (e.g. 30 m Landsat TM) and only small areas and crit-
ical sites mapped with airborne or high resolution satellite sensors (e.g. 1–4 m
IKONOS).

• For detecting changes of coastal land cover, including tidal marshes, in a time-
series of images, post-classification comparison, image differencing and biomass
change techniques can be used. To determine man-made changes, the images
must be corrected for natural variations such as atmospheric, inter-annual, sea-
sonal, and tidal differences (Lunetta and Elvidge 1998).

• On land, field data are often collected along transects using systematic random
sampling. The sampling scheme should be optimized for each type of image
classification approach, e.g. supervised, unsupervised, etc. (McCoy 2005, Jensen
1996).

• Mapping wetlands, coral reefs and submerged aquatic vegetation requires high
resolution (1–4 m) imagery. Wetland species identification is possible only with
hyperspectral sensors and large amounts of field data (Klemas 2005, Mumby and
Edwards 2002, Schmidt et al. 2004).

• Airborne LIDAR is effective for near-shore bathymetry, but in turbid waters
when the kd product exceeds the vendor specified value, acoustic echo sound-
ing techniques must be used (k = attenuation coefficient; d = depth) (Brock and
Sallenger 2000).

• Coastal and estuarine waters contain a complex mixture of chlorophyll, sus-
pended sediments, dissolved organics, and other substances. Therefore, hyper-
spectral imagers, calibrated ship data and advanced algorithms or neural network
methods are required to map the concentrations of these substances (Ikeda and
Dobson 1995).

• Approximate concentrations of chl-a and total suspended sediments can be ob-
tained with multispectral scanners and a small number of ship samples.

• Ship samples and water reflectances must be gathered very close to satellite over-
pass times. Spotter planes can be used to guide the research vessels to water
features of interest.

• Thermal infrared radiometers or imagers, such as the AVHRR on NOAA satel-
lites, can map sea surface temperature to within 0.5 ◦C accuracy.

• Radar altimeters, scatterometers and SAR imagers can be used for mapping sea
level height, sea surface winds, waves and currents (Ikeda and Dobson 1995,
Martin 2004).
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Chapter 3
Geographic Information Systems and Spatial
Analysis for Coastal Ecosystem Research
and Management

Jialing Wang, Libin Zhou and Xiaojun Yang

This chapter is designed to review the utilities of geographic information sys-
tems (GIS) and spatial analysis techniques that are particularly relevant for coastal
ecosystem research and management. While remote sensing provides a primary
source of data for mapping physical and cultural attributes (see Chap. 2), GIS pro-
vides a platform for data integration, synthesis, and modeling to support decision
making, essential in many coastal applications. This chapter first reviews GIS data
models that can be used to represent spatial or temporal information in digital en-
vironment. It then examines a variety of spatial analysis techniques suitable for the
study of patterns, relationships, and trends in geographically referenced data that
help understand the natural and human-dimensional processes at work, make better
decisions for planning and management of the coastal ecosystems. It is concluded
that most of the coastal applications need to combine several techniques and no
single technique could handle all the problems in such a complex environment.

3.1 Introduction

Coastal areas are by location across two distinct systems, land and ocean. The
land-ocean interaction creates unique ecosystems supporting many different habitat
types, such as freshwater and salt marshes, sandy beaches, rocky shores, mangrove
forests, river deltas, tidal pools, and forest swamps. These habitats provide home to
a great diversity and abundance of plant and wildlife species. Coastal areas are also
the foci of human settlement, development, and tourism, and thus under constant
pressure from human-induced as well as natural stressors. To manage the impacts
of development and other activities, it is necessary to monitor and characterize every
aspect in coastal ecosystems.

Coastal studies address many different aspects, such as mapping of the distri-
bution of plant and wildlife species (Garibaldi and Caddy 1998); change detection
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of land use/cover, landscape, or ecosystems (Wilcock and Cooper 1993, Kastler
and Wiberg 1996, Yang and Liu 2005a,b); monitoring of water distribution, quality,
and pollution (Hedger and Malthus 2001); monitoring of the distribution of sedi-
ments and suspended particulates in coastal water (Brown et al. 2006); monitoring
of coastal hazards (Pérez-Maqueo et al. 2007); and examining of coastal morpholog-
ical change, shoreline erosion, or dune field evolution (Siddiqui and Maajid 2004).
These specific applications require the integration and synthesis of a variety of in-
formation concerning biophysical and socio-economic characteristics, which fur-
ther justify the use of geographic information systems (GIS) and spatial analysis
techniques.

The purpose of this chapter is not to offer a comprehensive review on GIS and
spatial analysis since readers can easily find such information from any premier
GIS textbooks, such as Lo and Yeung (2007) and Chang (2008). Instead, this chap-
ter focuses on the utilities of GIS and spatial analysis that are particularly rele-
vant for coastal ecosystem research and management. It begins with the GIS data
models that can be used to represent spatio-temporal information in digital envi-
ronment. The chapter then moves to the four groups of spatial analysis techniques:
basic spatial analysis (e.g. buffering, neighborhood functions, overlay, and distance
modeling), spatial pattern analysis (e.g. spatial autocorrelation, quadrat analysis,
nearest-neighbor analysis, landscape metrics, and spatial interpolation), statistical
spatial analysis (e.g. descriptive statistics, regression, clustering analysis, principal
component analysis, artificial neural networks, and fuzzy logic systems), and spa-
tial modeling (e.g. statistical models, cellular automata models, and agent-based
models) (Table 3.1).

3.2 Digital Representations of Spatio-Temporal Data

Building a digital database to represent spatial and temporal information is a pre-
requisite to GIS-based spatial analysis. This section briefly reviews several popular
GIS data models that can be used to represent environmental and social information
concerning the coastal environment.

3.2.1 Spatial Data Models

Field-based and feature-based models are two fundamental models used to represent
spatial data in digital environment. Field-based models depict the real world phe-
nomena as continuous surfaces, while feature-based ones represent the real world
phenomena as discrete objects. Both are useful for the coastal environment and thus
have been incorporated into ESRI’s Arc Marine Data Model (Wright et al. 2007).

Raster data model is a very important field-based data model. It uses a regular
grid of cells to represent the entire study area. Each cell has a single value of a
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Table 3.1 List of selected spatial analysis techniques appropriate for coastal ecosystem research

Major Techniques Sample Applications Examples

Basic Spatial Analysis
Buffering Water distribution, quality, and pollution Basnyat et al. 1999,

McLaughlin et al.
2003

Neighborhood Function Coastal geomorphology Marfai and King 2008
Map Overlay Landscape change Ayad 2005, Basnyat

et al. 1999
Distribution of plant and wildlife species Berberoglu et al. 2004,

Karthik et al. 2005
Habitat change Green and Ray 2002

Distance Modelling Landscape change, habitat change Ayad 2005, Lirman and
Fong 2007

Spatial Pattern Analysis
Spatial Autocorrelation Distribution of sediments and suspended

particulates in water
Raaphorst et al. 1998

Landscape, land use, ecosystem, or
habitat change

Kitsiou et al. 2001

Distribution of plant and wildlife species Laiker et al. 2005
Quadrat Analysis Distribution of plant and wildlife species Fonseca et al. 2008
Nearest-Neighbor Analysis Distribution of plant and wildlife species Desmet and Cowling

1999
Landscape Metrics Distribution of plant and wildlife species Jackson et al. 2006
Spatial Interpolation Distribution of sediments and suspended

particulates in water
Raaphorst et al. 1998

Statistical Spatial Analysis
Basic Statistical Analysis Water distribution, quality, and pollution Hedger and Malthus

2001
Coastal geomorphology and hydrology Ari et al. 2007, Li et al.

2007
Regression Analysis Natural hazards Pérez-Maqueo et al.

2007
Landscape, land use, ecosystem, or

habitat change
Koneff and Royle 2004

Clustering Analysis Landscape, land use, ecosystem, or
habitat change

Isacch et al. 2006, Li
et al. 2007

Distribution of plant and wildlife species Fuller et al. 2005
Principal Component

Analysis
Distribution of plant and wildlife species Soletchnik et al. 2007

Artificial Neural Networks Water distribution, quality, and pollution Schiller and Doerffer
1999

Fuzzy Logic System Water distribution, quality, and pollution Ghayoumian et al. 2007

Spatial Modeling
Statistical Models Habitat suitability analysis Hamer et al. 2008
Cellular Automata Models Distribution of plant and wildlife species Huang et al. 2008
Agent-Based Models Landscape, land use, ecosystem, or

habitat change
Sperb et al. 2006
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given attribute. Cell size defines the data spatial resolution. Remotely sensed im-
agery and digital elevation model (DEM) are often represented into rasters. The
former typically includes aerial photography and satellite imagery. Orthophotos are
orthorectified aerial photographs that combine the image characteristics of a photo-
graph with the geometric characteristics of a map; they can be used as base images
onto which other maps may be overlaid. Satellite imagery with different resolu-
tions can be used to support various coastal applications. For example, high spatial-
resolution (e.g. Quickbird) or spectral-resolution (e.g. Hyperion) satellite data have
been used to map mangroves (Saleh 2007) and other types of coastal wetlands
(Pengra et al. 2007). Low and medium resolution data (e.g. Landsat MSS, TM, and
ETM+) have been used to detect coastal landform changes (Siddiqui and Maajid
2004), monitoring tidal wetlands (Nayak et al. 1989), mapping coastal water pol-
lution (Ahn et al. 2006), modeling rates of coastal ecosystem recovery (Viedma
et al. 1997), and analyzing coastal forest dynamics (Baskent and Kadiogullari
2007). A digital elevation model (DEM) is a raster representation of landscape
topography. DEM data are widely used in 3D visualization of coastal landscape
(Brown 2006), determining coastal area erosion (Euán-Avila et al. 2004), evaluat-
ing morphometric change (Austin and Rehfisch 2003), assessing debris-flow runout
paths (Miller and Burnett 2008), modeling coastal floodplain inundation (Benavente
et al. 2006), predicting precipitation (Marquinez et al. 2003), mapping coastal
soil types (Carre and Girard 2002), and measuring basin depths (Johansson et al.
2001).

In addition to square, other shapes, such as hexagon, triangles, and octagons, can
be used in field-based models to represent the real world. An example is a triangu-
lar irregular network (TIN) model that uses a set of irregular triangles covering an
entire landscape; the size of these triangles can be adjusted according to sampling
density to reflect the complex elevations. Makiaho (2007) estimated the ancient and
future shoreline positions using DEM and TIN models respectively, and found that
the TIN-based technique provided more detailed information about the shoreline
features.

A typical example of the feature-based data model is the vector data model,
which represents each feature as a row in a table and define feature shapes by x,y
locations in space; features can be discrete locations or events, lines, or polygons.
Topology defines the spatial relationships between features. The use of vector data
models is very important because many data for coastal studies are vector data, such
as plant information recorded for small plots as point features, rivers as line features,
and forest cover as area features.

Recently, object-oriented data models are receiving more attention. An object-
oriented data model comprises geographic objects and relationships among the ob-
jects. Different from raster and vector data models that organize data on the base
of geometric shapes, an object-oriented data model organizes data by geographic
objects each of which consists of geometry, properties, and methods. Geographic
objects of the same type are grouped into object classes. Each object class is stored
in GIS as a database table with rows corresponding to an object and columns to
its properties. The geometric shape is treated as an attribute of an object. Within
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the same object class, every object has some type of relationship to other objects.
A good example of object-oriented data model is ESRI’s geodatabase data model
(Zeiler 1999).

3.2.2 Spatio-Temporal Data Models

Temporal dimension is an essential property of the coastal environment due to its
high dynamics by nature. Conventional GIS limits to static representation of real-
ity and is difficult to investigate dynamic processes. In recent years, many efforts
have been made to develop spatio-temporal data models to represent the temporal
dimension in GIS, which shed light on modeling and visualizing coastal dynamics.
Based on data organizational bases, spatio-temporal data models can be classified
into four approaches: location-based, entity-based, time-based, and combined ap-
proaches (Peuquet 1999).

A location-based approach organizes data by documenting changes for a given
location at given time points. An example of this approach is a snapshot model that
uses different timestamped layers to represent changes through time (Armstrong
1988, Langran and Chrisman 1988). The snapshot model is the simplest spatio-
temporal data model. However, it suffers from data redundancy and inexplicit tem-
poral relationships of changes (Yuan 1996, Peuquet 1999, Pelekis et al. 2004). To
overcome the above drawbacks, the raster-based snapshot model was modified to
store only the changes related to specific locations (Langran 1993, Peuquet 1999).

An entity-based approach records changes of specific geographical entities at
given time points. For example, the space-time composite model (STCM) suggested
by Langran and Chrisman (1988) records changes through time as new attributes in
the database. If spatial changes of geographical entities are involved, the geomet-
rical and topological relationships among the original geographical entities need to
be regenerated and the database needs to be reconstructed accordingly with new at-
tributes. Another attempt based on entity is a spatio-temporal object model (STOM)
(Worboys 1994). In this model, the real world is considered as a set of discrete
objects consisting of spatio-temporal atoms that are the largest homogeneous units
holding specific properties in space and time (Yuan 1996). Different from a STCM,
a STOM does not need to reconstruct databases. However, both models only repre-
sent sudden changes instead of gradual changes.

Time-based approaches use time as the organizational base to facility time-based
queries. Peuquet and Duan (1995) applied such an approach to an event-based
spatio-temporal data model (ESTDM). An ESTDM is a raster based approach that
groups timestamped layers to show observations of a single event in a temporal
sequence (Pelekis et al. 2004). This model includes a header file containing infor-
mation about its thematic domain, a pointer to a base map describing the initial
state of a geographic area, and pointers to the first and last event lists consisting of
event components to indicate changes in space and time. The ESTDM overcomes
the redundancy of snapshot models by only storing changes from previous state.



50 J. Wang et al.

Combined approaches consider two or more organizational bases in a single
model framework. An attempt in this approach is the domain oriented spatiotem-
poral data model (Yuan 1994, 1996). This three-domain model includes three sepa-
rate domains, semantics, space, and time. Locational-centered, entity-centered, and
time-centered perspectives are used to dynamically link objects of the three do-
mains. This model outperforms many existing models in that it is able to handle
changes and movements as well (Pelekis et al. 2004). Claramunt and Thériault
(1995) provided an alternative three-domain model that focuses on spatio-temporal
events. In addition to spatial and temporal domains, this model also includes a
thematic domain to describe the state of a spatio-temporal object. Due to its first
successful attempt to record individual descriptive characteristics of dynamic ob-
jects, this model is considered as a revolution in the development of spatio-temporal
database (Pelekis et al. 2004).

3.3 Basic Spatial Analysis

While GIS offers a rich pool of tools for basic spatial analysis to support many
different applications (see Lo and Yeung 2007, Chang 2008), some tools are quite
relevant to address a range of coastal research questions. This section focuses on the
four major techniques, namely buffering, neighborhood functions, map overlay, and
distance modeling.

3.3.1 Buffering

A very important objective of coastal ecosystem assessment and management is
to consider the possible influence areas of specific human activities, which can be
identified by using buffering analysis. Buffering analysis is to identify areas within a
specified distance of an existing geographic feature. It is one of the most useful GIS
functions and is usually associated with proximity analysis. Buffering can be used
to depict zones of influence or to define zones of protection. To describe zones of
influence is to identify nearby places that are more impacted by a given phenomenon
than other places; while to define zones of protection is to find out areas that are
protected from the impact of a given phenomenon. Buffering can be employed in
both raster and vector data models. In vector data model, buffer operation results in a
new feature or features that are within a user-defined distance of the original feature
(point, line, or area); in raster data model, buffer can be thought of as spreading a
feature by a given distance. It reclassifies cells into three groups: cells of original
feature, cells inside the buffer, and cells outside the original feature and buffer.

Buffering analysis is very useful for coastal studies. For example, Basnyat et al.
(1999) defined buffer areas around each questioned stream to examine the relation-
ships between water characteristics and nonpoint source pollution inputs to coastal
estuaries. McLaughlin et al. (2003) used a 1.5-degree buffer around the central point



3 GIS and Spatial Analysis for Coastal Ecosystem Research and Management 51

of the high runoff coastal cells to study the relation between occurrence of coral
reefs and runoff effects. Green and Ray (2002) used buffering analysis to select
suitable artificial reef siting. Bourcier (2001) created buffer zones around routeways
adjacent to the Natural Reserve of the Seine Estuary to evaluate the impacts of traffic
noise on bird lives.

3.3.2 Neighborhood Functions

One of the important dynamic properties in coastal areas is the tidal and wave move-
ment, which can cause inundation. Neighborhood functions can be used to simulate
tidal and wave dynamics and subsequent coastal flood spreading. These operations
generate a new value for each cell based on the original values of the cell and its
neighborhood. The operation requires users to define a neighborhood and a statistic
used to calculate new values. Neighborhood shapes could be rectangle, circle, annu-
lus, and wedge. Statistics mainly include majority, maximum, mean, median, mini-
mum, minority, range, standard deviation, sum, and variety. Neighborhood functions
mainly includes overlapping neighborhoods or non-overlapping neighborhoods. For
overlapping neighborhood, a moving window is used for every grid cell to get the
new value based on the values in the window; while for non-overlapping neighbor-
hood, a specified block is used to calculate the new value for all the cells in the
block. An example of applying neighborhood functions was presented by Marfai
and King (2008). In their studies, a model to simulate the coastal inundation area
was established based on elevation using overlapping neighborhood operation and
iterative calculation.

3.3.3 Map Overlay

Coastal studies and management often require the analysis of many different fac-
tors, which is greatly benefited from GIS overlay analysis. Overlay enables users to
integrate spatial data and attributes from different sources to produce a composite
map and to analyze how these attributes relate to each other. Overlay can be applied
on both vector data and raster data. Data layers to be overlaid must be spatially
registered to the same coordinate system. Vector overlay uses the geometry and at-
tributes of input layer and overlay layer to create an output layer with new geometry
and combined attributes, while raster overlay uses arithmetic or Boolean operators
to combine grid cell values in all input layers to produce a new value in the output
composite map. Note that raster overlay also allows zonal statistics and weighted
overlay.

There are many examples of applying GIS overlay for coastal studies. For in-
stance, Basnyat et al. (1999) used vector overlay to derive the area of each land
use/cover category within each nutrient and nonpoint pollutant contributing zone
of each stream. Ayad (2005) overlaid the raster layers of the degree of natural-
ness, land cover diversity, topographic variety, and shoreline proximity to calculate
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a composite visual index for each grid cell, which was used to assess the visual
changes in a rapidly developing coastal landscape of Egypt. Berberoglu et al. (2004)
overlaid a land cover map with plant and bird survey maps to study the linkage be-
tween plant and bird diversity and different wetland and terrestrial habitats. Karthik
et al. (2005) used weighted overlay method to delineate the potential areas of shrimp
farming in Maharashtra, India.

3.3.4 Distance Modeling

Distance modeling is to determine the distance between two locations on the earth’s
surface. In general, distance modeling includes measuring Euclidean distance, Man-
hattan distance or network distance (Wang 2006). Euclidean distance is the straight-
line distance between two points. Manhattan distance is the sum of the changes in
the horizontal direction and in the vertical direction between two locations. Net-
work distance is the distance between two locations along actual travel routes (road
network). The consideration of other factors, such as travel-time, cost, or energy, in
distance modeling will result in weighted distance.

A very common application of distance modeling in coastal areas is proxim-
ity analysis. For example, Ayad (2005) selected proximity to the shoreline as one
of the visual attributes to indicate the attraction of different locations in the study
area. The straight-line distances between the grid cells and the shoreline were calcu-
lated and coded into five categories from 5 being the closest to 1 being the furthest.
Lirman and Fong (2007) investigated the relationship between proximity to land-
based sources of coral stressors and risks to coral reefs by measuring the straight-
line distances to shore and tidal creeks. Their study concluded that proximity to
potential sources of stressors might not necessarily lead to potential risks to reef
health.

3.4 Spatial Pattern Analysis

An important aspect of coastal studies is to uncover spatial patterns of specific phe-
nomena and to link patterns to possible processes. This section reviews five com-
monly used techniques for spatial pattern analysis, namely spatial autocorrelation
analysis, quadrat analysis, nearest-neighbor analysis, landscape metrics, and spatial
interpolation.

3.4.1 Spatial Autocorrelation Analysis

Spatial autocorrelation is the formal property that measures the degree to which
near and distant things are related. In other words, it is a term referring to the
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degree of dependency among observations in a geo-space. It can be measured by
using semivariogram, Geary’s index (C), Moran’s index (I), or general G-statistics.
Semivariogram analysis uses a visual plot of structure function to describe the
relationship between measured points and distance. Raaphorst et al. (1998) used
semivariogram to study spatial distribution of suspended particulate matter (SPM)
in the North Sea. They created several semivariograms using SPM concentrations
over different periods. The scattered semivariograms indicated that the SPM con-
centrations were poorly correlated ever at short distance over short periods of obser-
vation time. But when using long-term data, the results indicated a strong correlation
for stations less than 50 km from each other. Another application was reported by
Kitsiou et al. (2001) who used semivariogram to assess and select optimal sampling
sites in a coastal area.

Both Moran’s I index and Geary’s C index are quantitative approach to measure
spatial autocorrelation. They are similar to a non-spatial correlation coefficient ex-
cept that these two consider spatial context. Moran’s I compares the value at any one
location with the values at all other locations. Geary’s C index uses the deviations in
intensities of each observation with one another. It is more sensitive to differences
in small neighborhoods. Although these two indices were originally developed for
area objects, they can also be applied to analyze the spatial pattern of points, lines,
and raster objects (Lo and Yeung 2007). Moran’s I and Geary’s C have been applied
to study the spatial distribution of marine species and their genetic structures (Laiker
et al. 2005).

A problem associated with Moran’s I and Geary’s C is that both indices are global
indices without considering location-specific spatial patterns. To address this issue,
several local indicators of spatial association (LISA) have been developed, such as
local Moran’s I, local Geary’s C, and G-statistics (Gi and G∗

i ). Local Moran’s and
local Geary’s C are created by disaggregating global Moran’s I and global Geary’s
C to produce a LISA measure. G-statistics is another way to measure local pat-
tern. Different from local Moran’s I and local Geary’s C, G-statistics, Gi and G∗

i ,
were developed to describe the local relationship between particular observations
and their neighbors (Getis and Ord 1996). Gi does not include the target observation
i itself and G∗

i includes the target observation i in the sum. A cluster of observa-
tions with high G∗

i values indicates positive location spatial autocorrelation, and
vice versa.

3.4.2 Quadrat Analysis

Many phenomena can be perceived as point features. Point patterns are usually clas-
sified as random, uniform, or clustered. Quadrat analysis can be used to quantify
spatial point pattern. A quadrat is a well defined area in a region of interest. The
shape of a quadrat can be circular, rectangular, square, hexagon, or any other de-
fined shape. The number of points (events) in each quadrat, or sometimes the per-
cent of area covered or the biomass, is counted or measured and is used to generate
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a variance. The variance compares the number of points in each quadrat with the av-
erage number of points over all the quadrats. The variance is then compared with a
random distribution variance. If the two variances are the same, it indicates that the
interest point features have a random distribution. Otherwise, it is a non-random dis-
tribution. Further analysis may be needed to identify the potential processes leading
to the non-random distribution. An example of applying quadrat analysis to study
the spatial organization of seagrasses is reported by Fonseca et al. (2008).

Quadrat analysis has two major limitations. First, it can be affected by the quadrat
size. To address this issue, some rules have been developed to determine an appro-
priate quadrat size. For example, ecologists consider the size to be twice of the mean
area per point, while some geographers suggest the size as the mean area per point.
Also, it is suggested to test different quadrat sizes in order to determine the effects
of sizes on results. The other problem is that quadrat analysis is actually the mea-
sure of dispersion rather than pattern because it is based on the density of points
in quadrats without considering the spatial arrangement of points in relation to one
another.

3.4.3 Nearest-Neighbor Analysis

Nearest-neighbor analysis is another well-known method to study point spatial pat-
tern. To avoid the problems of quadrat analysis, nearest-neighbor analysis uses dis-
tance between sample points and their nearest neighboring points as the measure-
ment basis. The mean distance observed is then compared with the expected distance
that would occur if the distribution is random. If the two distances are the same, it
indicates a random distribution in the interest phenomenon. Otherwise, it indicates
a non-random distribution of the interest point phenomenon. Desmet and Cowl-
ing (1999) examined the relationship between the occurrence of plants and burrow
mounds by measuring the nearest-neighbor distances between all burrow entrances
and their nearest plant neighbors for each of the nine 5× 5 quadrats. The cumula-
tive distribution of these nearest-neighbor distances was compared to that of point-
plant distances in each quadrat. A Kolmogorov-Smirnov test was then used to test
whether the cumulative frequency distribution of the above two were significantly
different.

A problem associated with nearest-neighbor analysis is the edge effect of study
area. Boundaries have to be decided to measure the mean nearest-neighbor distance
within the study area. Some points may be very close to the boundaries and their
nearest neighbors may be located outside of the boundaries. If only those nearest
neighbors within the study area are considered, the nearest-neighbor distance mea-
sured may be greater than the actual distance for points located near the boundaries.
Some methods are used to overcome this weakness. For example, a buffer area is
constructed inside the boundaries of the study area. Points located within the buffer
area will not be considered in the distance measurement. Another method is to as-
sume that the study area is a torus. The bottom edge is connected to the top edge
and the right edge is joined to the left edge.



3 GIS and Spatial Analysis for Coastal Ecosystem Research and Management 55

3.4.4 Landscape Metrics

Landscape metrics are algorithms to quantify spatial patterns based on categorical
maps (McGarigal et al. 2002). Numerous landscape metrics have been developed
in the last two decades. They are used to quantify the composition and config-
uration of a landscape. Landscape composition refers to features associated with
the variety and abundance of patch types within the landscape, but without con-
sidering the spatial attributes (Gustafson 1998). Landscape configuration refers to
the spatial characteristics of individual patches and the spatial relationships among
multiple patches within the class or landscape (McGarigal et al. 2002). Landscape
metrics can measure landscape patterns at three levels: patch level, class level and
landscape level. A problem associated with landscape metrics analysis is that this
method based on categorical maps cannot consider the transitional areas between
adjacent habitats. Many computer algorithms have been developed to calculate land-
scape metrics. Some of these programs are directly combined with GIS software or
image processing software, while others are separately applied. Landscape metrics
analysis has been used to measure spatial patterns of coastal landscapes (Yang and
Liu 2005b). Jackson et al. (2006) selected several landscape metrics to quantify the
configuration and habitat characteristics of eight seagrass beds. Their study con-
cluded that more fragmented seagrass beds supported lower numbers of fish species
than more homogenous seagrass landscapes did.

3.4.5 Spatial Interpolation

A direct implementation of Tobler’s First Law of Geography, spatial interpolation
is a procedure of estimating the attribute values at the unsampled, missing, or ob-
scured locations, given a set of measured values at some sites. It can be used to
create a continuous surface from the measured points, lines, or polygons, which
is useful for data exploration, spatial analysis, and environmental modeling (Yang
and Hodler 2000). The measured point dataset can be either site-specific data or
the aggregate data over basic spatial units. Contour map is an example of the mea-
sured polyline dataset. DEM data can be derived from contour maps or scattered
point samples by using spatial interpolation. Many different algorithms have been
developed for spatial interpolation (Bailey and Gatrell 1995), and some commonly
used interpolators include inverse distance weighting, kriging, Thiessen polygons,
radial basis functions, polynomial regression, triangulation, among others (Yang and
Hodler 2000). Spatial interpolation has been quite effective but it has some limita-
tions. It can not effectively model a sudden interruption in the value of properties.
Furthermore, most interpolators attempt to underestimate the variability in the prop-
erties. Thus, we must objectively estimate the reliability of the results and use them
with caution.

An example of applying spatial interpolation in the coastal environment is
given by Raaphorst et al. (1998). They developed three models to predict the
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concentrations of suspended particulate matter in the North Sea by interpolating
the in situ data. The first model used a distance-weighted interpolation algorithm
with the in situ data as the input data; the second model interpolated the ratios be-
tween the in situ data and reflectance in the NOAA/AVHRR imagery; and the third
model used a distance-weighted algorithm with an addition weight factor indicating
local difference of the reflectance. The results show that the last two models that
incorporated satellite signals performed better.

3.5 Statistical Spatial Analysis

Statistical spatial analysis employs statistical methods to interrogate spatial data to
determine whether the data are ‘typical’ or ‘unusual’ relative to a statistical model
(O’Sullivan and Unwin 2002). This section specifically examines six commonly
used methods for statistical spatial analysis, namely basic statistical analysis, re-
gression analysis, clustering analysis, principal component analysis, artificial neural
networks, and fuzzy logic system.

3.5.1 Basic Statistical Analysis

Basic statistical analysis is a basic procedure of data analysis, which includes de-
scriptive statistics for the distribution of one variable, statistics for the relationship
between two variables, hypothesis testing, and visualization. Descriptive statistics
adopt a series of indicators to describe the general properties of one variable. For
example, the central tendency of the data can be measured using mean, median,
and mode. The dispersion of data values can be quantified using range, percentiles,
standard deviation, and variance. The relationship between two variables can be
measured by some conventional statistical parameters, such as coefficient of corre-
lation (CC) and Chi-square. These parameters indicate whether the development of
one phenomenon depends on the other phenomenon. Statistical hypothesis testing
is an important way to lead to a conclusion from an uncertain hypothesis through its
observable consequences.

Basic statistical analysis has been widely used to describe the distribution and
level of variables in the coastal environment. For instance, the basic statistical anal-
ysis of the long-term wind direction and speed and wave height has been used to de-
termine the level and reasons of the longshore sediment transport (Ari et al. 2007).
Li et al. (2007) examined chemical properties of soil samples across each manage-
ment zone by using variance analysis to investigate the statistical differences in each
defined management zone in a coastal saline land. Basic statistical analysis can also
be used to compare two features based upon a large amount of samples, such as a
comparative analysis of lakes and basins regarding object size, goodness of elliptic
fit, shape complexity, shape asymmetry, and orientation of the major axis (Hinkel
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et al. 2005). Also, the cross-correlations between the same size areas in two tem-
poral images can be used to measure the surface water velocity fields in an estuary
(Hedger and Malthus 2001).

3.5.2 Regression Analysis

Regression analysis is a technique used to model and analyze numerical data com-
prising values of a dependent variable and of one or more independent variables.
By using regression analysis, the dependent variable is modeled as a function of the
independent variables, corresponding constants, and an error term. The constants
are normally estimated using the least squares or other robust methods; the error
term represents unexplained variation in the dependent variable. Many efforts have
been made to expand the capability of regression analysis from modeling linear re-
lationships to non-linear relationships through the use of higher orders of variables
or log-transformed variables instead of original variables.

Regression analysis can be used to identify relationships among various coastal
phenomena or to predict the occurrence or development of a particular phenomenon.
For example, Pérez-Maqueo et al. (2007) used a stepwise linear regression model to
predict the mortality rate caused by hurricanes, with the use of such explanatory
(independent) variables as hurricane frequency, natural ecosystems, semi-altered
ecosystems, croplands, urban lands, life expectancy, adult literacy, GDP (Gross Do-
mestic Product), liberty, press freedom, and equality. All variables were transformed
to a natural logarithm scale to standardize the data before actual statistical modeling.
They found that the mortality rate was significantly affected by hurricane frequency,
percentage of area covered by semi-altered ecosystems, GDP, and liberty. Basnyat
et al. (1999) adopted a multivariate regression analysis to model the effects of the
spatial pattern of land use/cover on water quality in an estuarine area.

3.5.3 Clustering Analysis

Clustering analysis allows to statistically group the observations through the mea-
surement of their similarities using distance measurement algorithms or similar-
ity coefficients. This can be implemented by using either a hierarchical or a non-
hierarchical strategy. The hierarchical strategy conducts the grouping process by
either merging from bottom to top or dividing from top to bottom. This strategy has
several limitations. It is quite sensitive to data noise; the item allocation done at an
early stage can not be adjusted later; and the actual computation process can be quite
time consuming since the similarities of each individual item need to be dealt with.
The non-hierarchical clustering strategy uses the seed points or the randomly parti-
tioned groups as the initial clusters, and then add or remove the observations from
the clusters by measuring the similarities changes (Johnson and Wichern 2002). It
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does not need to compute the similarities of each individual item, and therefore can
be used for working with large datasets.

Many coast-related studies involve the use of clustering analysis. For example,
Isacch et al. (2006) grouped three distinct salt marsh habitats by using a Euclidean
distance algorithm. Li et al. (2007) delineated the management zones based on a
series of concerned factors using fuzzy clustering analysis. Moreover, the applica-
tion of clustering analysis has been extended into the measurement of statistically
significant relationships among two or more phenomena. For example, Fuller et al.
(2005) used multivariate K-means clustering method to link the field-observed bird
species and the remote sensing derived coastal habitats.

3.5.4 Principal Component Analysis

Principle component analysis (PCA) orthogonally transforms the original data to a
new coordinate system such that the greatest variance by any projection of the data
comes to lie on the first coordinate (namely the first principal component), the sec-
ond greatest variance on the second coordinate, and so on. PCA can be useful to
reduce data redundancy, suppress data noise, or enhance some particular patterns. It
is important to note that the proportions of variability explained by principal compo-
nents only reflect their statistical importance. In some cases, subject-matter knowl-
edge may also be required to justify the important components. Furthermore, the
results of PCA are affected by many factors, such as the quality of original data,
the standardization of samples, and data scales. It is better to apply PCA on differ-
ent data samples to test the consistency of the results, or to compare the solutions
obtained by different methods.

PCA is a well-known tool for data exploration and usually serves as the prelim-
inary step of data analysis. The transformed components can be used as inputs for
further statistical analysis, such as clustering analysis and multivariate regression
modeling. It can be very useful for coastal applications. For example, Yang and Liu
(2005b) used PCA to help select a small set of core landscape metrics from a large
number of initial metrics, which were further used to quantify the spatio-temporal
patterns of the landscape in a coastal watershed. In a project examining oyster mor-
tality patterns along the coasts of France, Soletchnik et al. (2007) used PCA to
identify environmental factors that had significantly affected oyster mortality, and
then investigated the oyster mortality patterns by using these factors.

3.5.5 Artificial Neural Networks

Artificial neural networks (ANNs) are a mathematical model of theorized mind
and brain activity, attempting to parallel and simulate the powerful capabilities
for knowledge acquisition, recall, synthesis, and problem solving of the human
brain. Theoretically, ANNs are highly robust in data distribution and can handle
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incomplete, noisy and ambiguous data. They are well suited for modeling complex,
nonlinear phenomena. Among the types of neural networks available, the multi-
layer-perceptron (MLP) neural networks are most popular largely due to their eas-
iness to understand and implement. A typical MLP neural network is a layered
structure with interconnected, weighted neurons. These neurons are very simple
processing elements that individually handle pieces of a big problem. A train-
ing procedure is normally used to determine the weights. ANNs can be superior
to conventional statistical methods only through careful parameterization (Yang
2008).

ANNs have been used to address a number of problems concerning the coastal
environment. For example, Schiller and Doerffer (1999) parameterized a MLP feed-
forward neural network model with two hidden layers to predict the concentrations
of water constituents from remotely sensed data. ANNs are also useful for measur-
ing the coastal bathymetry (Sandidge and Holyer 1998), submarine and subaerial
sandy substrate (Conger et al. 2005), wave predictions (Makarynskyy et al. 2004),
wind and wave parameters derivation (Kalra et al. 2005, Kalra and Deo 2007), estu-
arine ecological variable (Miller and Burnett 2008), among others.

3.5.6 Fuzzy Logic System

Many algorithms tend to ignore or simplify the problem of uncertainty and vague-
ness that occur in reality more often than the crisp phenomena. Fuzzy logic sys-
tem offers an effective way to represent environmental phenomena that cannot be
properly described using conventional hard algorithms (e.g. Boolean logic). Math-
ematically, fuzzy logic system defines the membership of a fuzzy set ranging from
0 to 1 to describe the support for the potential classes by using a set of fuzzy rules.
Defining fuzzy rules normally involves the use of human expert knowledge or other
advanced techniques, such as ANNs. With the rules, the membership of the fuzzy
set for each unit can be measured.

Fuzzy logic system can be used to represent environmental variables. For exam-
ple, Ghayoumian et al. (2007) used the membership of a fuzzy logic set to measure
the potential of the geomorphologic factors in certain unit areas for artificial ground-
water recharge in a coastal aquifer. They further adopted the fuzzy algebraic product
to synthesize the overall suitability that can be compared to justify the optimal dis-
charge area. Fuzzy logic system has been also used in such applications as land
cover classification (Filippi and Jensen 2006) and coastal hazard management (Liu
and Wirtz 2007).

Furthermore, fuzzy logic system has been often integrated with other techniques,
such as clustering and ANNs. For instance, Li et al. (2007) combined fuzzy logic
with clustering techniques to help delineate site-specific management zones in a
coastal area. Several other coastal applications involved the use of a neuro-fuzzy
system that integrated the advantages of ANNs and fuzzy logic system (Mas 2004,
Kazeminezhad et al. 2005, Filippi and Jensen 2006).
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3.6 Spatial Modeling

A group of important activities in coastal studies is to understand coastal dynamics
and to predict future consequences of physical processes and human activities. This
section briefly reviews several spatial modeling techniques that can be used for the
above purposes. They include statistic modeling, cellular automata modeling, and
agent-based modeling.

3.6.1 Statistical Models

Statistics models are empirical models by nature and include both linear and logis-
tic regression models that relate a dependent variable to one or more independent
variables, which can be further used for prediction and simulation. Linear regres-
sion model is used when both dependent and independent variables are numerical
(see Sect. 3.5.2). Logistic regression should be used when the dependent variable is
categorical and independent variables are numerical, categorical, or both. Although
having the identical form as linear regression, logistic regression uses the natural
logarithm of the odds as the dependent variable. Logistic regression does not require
linear relationships between the dependent and the independents, but does assume a
linear relationship between the logit of y and the independents. In this sense, logistic
regression is still intrinsically linear (Yang 2008).

Statistical regression models have been developed to support coastal ecosystem
research and management. For example, Kovacs et al. (2001) built a logistic regres-
sion model to assess the hurricane-induced damage to the mangrove forests of the
Teacapan-Agua Brava Lagoon System of Mexico. Specifically, the logistic model
was used to examine the predicted outcome, vegetation condition by species, main
stem condition and diameter at breast height. They found that the probability of
a mangrove being found in a dead condition as compared to a well-vegetated one
is significantly influenced by the diameter and main stem condition but not by the
species. Gibson et al. (2004) developed a logistic regression model for predicting ru-
fous bristlebird habitat in order to identify critical areas requiring preservation, such
as corridors for dispersal. Hamer et al. (2008) created a logistic regression model
for predicting occupancy of a forest patch by marbled murrelets (a small Pacific
seabird) by using a suite of forest structural characteristics. They found that the use
of predictive models could help identify the forest area with higher probability of
use as murrelet nesting habitat.

3.6.2 Cellular Automata Models

A cellular automaton (CA) is a discrete model that can be used to model and predict
many environmental and social processes. It generally comprises a fixed grid of
cells, cell states, cell neighborhood, and transition rules. Cell states correspond to
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the potential values of the interested geographic variable, such as land cover classes.
Each cell is initialized with one of the cell states. The development of the variable
can be simulated by using transition rules that dictate the state of a cell based on the
states of its neighborhood. As time goes on, spatial patterns emerge as cells change
states; this alters the conditions for future time periods. CA models have the strong
ability to replicate real-world spatial form, especially fractal structures. They can
be used to model some complex behaviors, such as self-organization, emergence,
multiple interactions, spatio-temporal dynamics, and feedbacks.

CA models have been applied to study the ecological problems in coastal areas.
For example, Huang et al. (2008) developed a CA model, coupling with remote
sensing, to simulate and predict the biological invasion at the Yangtze River estuary,
China. In their study site, biological invasion has been characterized by the spatial
interactions between exotic species and native plants. Local spatial process plays a
significant role in the expanding of invasive species. The authors derived salt marsh
vegetation information from remotely sensed images, including non-native species
and native species. They used this information to initialize a CA model and further
assess the simulation accuracy. They also predicted the distribution of salt marshes
in a future year by using the CA model. By visualizing the CA model outputs, they
demonstrated the progressive process of biological invasion in their study area.

3.6.3 Agent-Based Models

An agent-based model (ABM) comprises a collection of autonomous decision-
making agents, a network through which agents can react, interact and modify their
environment while seeking their goals, and rules governing the actions of the agent.
Unlike the cells in cellular automata, agents can be mobile with respect to space.
The agents make choices based on their limited knowledge about the environment
and feedbacks obtained by them (Parker et al. 2003). An example of applying the
agent-based modeling approach is reported by Sperb et al. (2006). They used an
agent-based model, coupling with fuzzy logic, to simulate the interactions between
land cover change and people’s spatial perception and behavior in a coastal area.
Their study demonstrates the capability of the agent-based model for predicting
land occupation in the coastal environment.

Cellular automata and agent-based modeling are divergent yet complimentary
modeling strategies; they can be integrated into a common geographic automata
system where some agents are fixed while others are mobile.

3.7 Summary and Conclusion

The geographical location determines the uniqueness of coastal ecosystems that are
affected by both land and sea, and by human and nature as well. Coastal ecosystem
research and management requires the integration of many different datasets. GIS
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offers a platform for data integration, synthesis, and modeling to support decision
making, which is critical in many coastal applications.

This chapter discusses the utilities of GIS and spatial analysis in the context
of coastal applications. It has begun with the GIS data models for representing
spatial and temporal information in digital environment, including field-based and
feature-based models for representing spatial information; time-based, location-
based, entity-based, and combined approaches for representing the temporal di-
mension in GIS. These spatio-temporal data models, although still at the stage of
development, will soon find their way to apply in the coastal environment. The dis-
cussion has expanded to review the four groups of spatial analysis techniques that
are particularly relevant to coastal studies. Techniques used in basic spatial anal-
ysis include buffering, map overlay, neighborhood function, and distance model-
ing. Techniques suitable for spatial pattern analysis include spatial autocorrelation
analysis, quadrat analysis, nearest-neighbor analysis, landscape metrics, and spa-
tial interpolation. Techniques used in statistical spatial analysis involve basic statis-
tic analysis, regression, clustering analysis, principal component analysis, artificial
neural networks, and fuzzy logic system. Spatial modeling techniques include statis-
tic models, cellular automata models, and agent-based models.

It is worth to point out that coastal studies often involve the use of more than
one spatial analysis technique and none of the methods discussed in this chapter
would be sufficient to handle all the problems encountered. Each method has its ad-
vantages and disadvantages. This chapter provides a brief review only on the tech-
niques commonly used in the coastal environment. Besides these major methods,
there are some other techniques that may have been adopted or developed to sup-
port coastal applications. Because of the space limit, this chapter does not include
some other technical issues, such as data quality and error propagation, which can
also be critical for coastal studies; in any case, readers can always refer to some pre-
mier GIS textbooks (Lo and Yeung 2007). Finally, with the advanced development
of computational facilities and the growth of human knowledge abut the world, more
techniques and methods are expected to be available to monitoring and modeling the
coastal environment in the near future.
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Chapter 4
Fuzzy Approach for Integrated Coastal
Zone Management

Tao Cheng, Martien Molenaar and Alfred Stein

Integrated Coastal Zone Management (ICZM) is “a dynamic, multi-disciplinary
and iterative process to promote sustainable management of coastal zones” (ICZM
2008). It covers the full cycle of information collection, planning, decision making,
management and monitoring of the implementation. Uncertainties, however, exist
in almost all the activities in this cycle. This chapter presents the isle of Ameland
as the case study area where uncertainties in ICZM can be identified, which pro-
vides a direct impression of the problems to be solved. The indeterminate nature of
coastal zones and landscape units and associated uncertainties are discussed. This
is followed by a discussion of formal fuzzy spatial object models, serving as the
basis for representating fuzzy coastal landscape units. It then discusses the dynamic
processes and their interactions of these landscape units that can be derived from
the temporal series data. A further discussion on the change in area and volume of
beach is given. The final Section concludes with the major findings and suggestions
for further research.

4.1 Introduction

Coastal zones are the primary interface for the exchange of natural and man-made
materials between territorial and coastal ecosystems. Such areas are important for
living, fishery, agriculture, and tourism, etc. The growing concentration of popu-
lation and socio-economic activities puts increasing pressure on coastal ecological
systems, which at same time are threatened by inundation, coastal erosion, increased
flooding, and loss of freshwater reserves and arable land, particular due to rising sea-
levels. To sustain development and to minimize loss from possible natural disasters
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in these areas, ongoing developments and their consequences have to be guided and
monitord.

Integrated Coastal Zone Management (ICZM) is “a dynamic, multi-disciplinary
and iterative process to promote sustainable management of coastal zones” (ICZM
2008). ICZM aims to balance between economic development, coastal area preven-
tion, and public access. It covers the full cycle of information collection, planning,
decision making, management and monitoring of the implementation. Uncertain-
ties, however, exist in almost all the activities in this cycle. During information
collection, sampling and measurement usually contain erros, whereas during plan-
ning and decision making, the definition of objects and critiria are usually uncer-
tain. The concept of “beach”, for example, commonly refers to the sandy area that
separates the sea from the land. Definition of the boundary of a beach is difficult,
because of tidal changes, ambiguous transition zones and different concepts in us-
ing it.

In this study we distinguish two types of uncertainty in the ICZM: data un-
certainty and uncertainty in object/criteria definition. Data uncertainty means that
the true value of a measurement is unknown. We are unsure of what exactly we
are observing or measuring. It usually includes sampling and measurement errors.
Because of its random nature, probability theory can be applied to handle this
type of uncertainty. Uncertainty in the object and criteria definition refers to un-
sure knowledge such as how to define beach precisely. Mathematically, probabil-
ity density function and membership functions are in the essence of “probability”
and “fuzziness,” respectively (Chang 2005). Applications have emerged in environ-
mental risk analyses based on probability theory and fuzzy sets theory, respectively
(Chang 2005). Combination of the two would exhibit a synergistic effect in sys-
tems analysis, e.g. for illustrating interactive sources of uncertainty (Cheng et al.
1997).

Since Zadeh (1965) proposed fuzzy sets theory, its applications have flourished,
varying from solving the inherent problem of uncertainty in natural resources as-
sessment to accommodating vagueness and complexities of modeling environmental
systems (see also Robinson 2003). This chapter discusses uncertainties of fuzziness
involved in integrated coastal zone management. The fuzzy approach is still un-
mature, especially for coastal zone studies, although data uncertainties have been
extensively studied.

The chapter is organized into seven sections. After the introduction, we present
the isle of Ameland as the case study area where uncertainties in ICZM can be
identified. This provides a direct impression of the problems to be solved. The in-
determinate nature of coastal zones and landscape units and associated uncertain-
ties are discussed in Sect. 4.3. This is followed by a discussion of formal fuzzy
spatial object models in Sect. 4.4, serving as the basis for representating fuzzy
coastal landscape units. Section 4.5 discusses the dynamic processes and their
interactions that can be derived from the temporal series data. A further discus-
sion on the change in area and volume of beach is given in Sect. 4.6. The fi-
nal Section concludes with the major findings and with suggestions for further
research.
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4.2 The Case – Changing Beach of Ameland

4.2.1 General Description of the Case Study Area

Ameland, one of the six Dutch barrier islands, is situated north of the coast of the
Netherlands (Fig. 4.1). Length in the East–West direction is approximately 24 km,
and varies in the North–South from 1.5 to 4 km. It consists of three dune complexes:
the Hollum-Ballum complex in the west, the Nes-Buren complex in the center, and
the Oerderduinen complex in the east. These three dune complexes were originally
separated from by tidal inlets, but they are connected today by sand dikes, as such
forming one island (Van Zuidam et al. 1994, 1998). The test area is the right window
in Fig. 4.1 and it occupies 54×60 grids in the 60-m DEM.

Processes influencing landscape units of Ameland can be divided into two types:
erosion in the middle and southern parts of the western end due to shifting inlets by
marine current and sedimentation in the northwest. To predict future development,
we have to understand the various processes, their interaction and their effect on
the development of the island. The results of the geomorphological processes can
be measured qualitatively and quantitatively. Qualitative results can be identified by
the erosion or accumulation of the landscapes, whereas quantitative results emerge
from estimating (or calculating) volume changes. Such information is important for
optimizing costly coastal defense works, e.g. beach nourishment or replantation of
vegetation. This study mainly focuses on sediment transport at the land–sea inter-
face as a result of erosion and sedimentation. To do so, the morphodynamically most
active area in the northwest section of the island (the area in the small rectangle in
the northwest) was selected as the test site.

Fig. 4.1 Test site – Ameland, The Netherlands (after Cheng and Molenaar 1999b)

4.2.2 Definitation of the Geomorpholical Lansacpe Units

Traditionally, the effect of erosion and accretion is estimated using annual measure-
ments in the form of coastal profile. Erosion and accumulation are identified by
comparing the same profile for two different time horizons. Changes in volume of
sand sediments are calculated. From these calculations, inferences of the changes
in profiles over the years can be obtained. Some geomorphologists, however, try to
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analyze the development trend of the landscape units. To do so, the geomorphologic
processes, particularly the erosion and accumulation of sediments, should be distin-
guished through interpretation of changes in the landscape units, i.e. the foreshore,
beach and foredune areas. Therefore, to monitor these geomorphologic processes it
is necessary to identify these landscape units and trace their changes by field obser-
vations.

The landscape units – foreshore, beach and foredune – have specific character-
istics in terms of altitude, slope, roughness, size, material, composition of min-
eral elements, compaction, humidity, and vegetation/land cover, etc. The defini-
tions of these landscape units usually differ from surveyor to surveyor, from case
to case and from time to time. Among other ways, the landscape units may be de-
fined based upon altitude of terrain surface according to different water lines. Van
Heuvel and Hillen (1994) considered that the area beneath the high-tide line (HT)
and above the low-tide line (LT) is foreshore; the area beneath the very high-tide
(VHT) and above the HT is beach, and the area above the VHT and below the foot
of dune is foredune. Others, however, consider that the foreshore is the area above
the closure depth (Ruessink and Kroon 1994) and beneath the low-water line (De
Graaff 1977), that beach is the area above the low-water line and beneath dune foot
(Reineck and Singh 1980), and that the foredune is the first row of dunes inland from
dune foot. Furthermore, the values for these water lines are not fixed. Ruessink and
Kroon (1994) used −6m to represent the closure depth in the years 1965–1984 and
in year 1989, and used −8m to represent the closure depth in the years 1985–1988
and 1990–1993. De Ruig and Louisse (1991) used −6m to represent it in all these
years. Therefore, there is no invariable and fixed definition of the landscape units.
Figure 4.2 illustrates one set of definitions of the landscape units.

Fig. 4.2 Landscape units are defined by the closure depth, low water line and dune foot (Cheng
and Molenaar 1999b)

4.2.3 Data

Since the mid – 1800s, the location of the foot of dune, the high-water line
and low-water line along the Dutch coast have been measured each year. These
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measurements are carried out along defined sections, each demarcated by beach
posts. These posts are encountered on the beach along the entire North Sea coast,
with distances of 200–250 m between each of them. Since 1963, the coastal profile
has been measured every year in each section. This includes that the heights/depths
are determined up to a distance of about 800 m to seaward of the posts, and up to
some 200 m landwards of the first line of dunes. Once every three years the profiles
are extended up to 2–3 km to seaward (Van Heuvel and Hillen 1994). The inaccuracy
of the height/depth measurements is between 0.1 m and 0.2 m and the inaccuracy in
the horizontal position is up to 10 m.

The annual coastal measurements are interpolated along the profile with 10–20 m
intervals. They are further interpolated into a height raster of (60m×60m) grids to
obtain a complete coverage of the test site (as shown in Fig. 4.1). The accuracy of
the heigh on grid is 0.2 m (Van Heuvel and Hillen 1994).

4.2.4 Summary

To summarize, there are several issues in the study of the change of coastal
landscape units in Ameland: (i) the definition of the landscape units are highly sub-
jective; (ii) the definition of the landscape units changes with time; and (iii) the
measurements of the profiles of coastal zones contains errors, so does the DEM
derived from them.

The first and second points are the uncertainties associated with the definitions
of landscape units, we will discuss in detail in the following sections. The third
point, however, is the uncertainty associated with the data (observation), which we
will not discuss further. The reason is that research on uncertainties has been well
documented in this aspect (Fisher 2003, Zhang and Goodchild, 2002). Data uncer-
tainties, however, affect the classification accuracy when the data are applied for
further analysis (Cheng et al. 1997). A vast body of research is included in this
heading, looking at both positional and thematic accuracy and the consequences of
error (Leung et al. 2004, Heuvelink et al. 2006a,b) based upon probability theories.
Such research is usually under the assumption that the spatial objects can be defined
precisely and identified crisply.

4.3 Indeterminate Nature and Associated Uncertainties
of Coastal Landscape Units

Definitions of coastal landscape units are variant. This inherently results from the
indeterminate nature of natural objects. These natural phenomena are distributed
continuously in space, leading to a transitional boundary between these objects.
When we delineate them from remotely sensed images, the boundary may even be
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drawn in a subjective way, i.e. different from one person to another (Lowell et al.
2000). Also spatial objects as such may be heterogeneous or may be mixed with
each other. The mixture of trees and grass or of several types of trees is common in
forests (Brown 1998, Foody 1999). Further, most geographical entities are dynamic
and change with time. It is hard to measure them accurately since they change af-
ter the measurement. With geographical entities, taking more observations in the
boundary zone does not necessarily resolve the “boundary” but reveals new details
of variation in that zone (Burrough 1996). Therefore the “boundary” of dynamic
entities is not fixed such as the coastline. Furthermore, definition of geographical
entities is also scale- and context-dependent. Increasing the level of resolution often
results in identification of new areas or classes, particularly in the border areas of
the higher aggregation level (Burrough 1996). The measured lengths of coasts and
frontiers depend on the scales at which they are measured (Mandelbrot 1983). What
is a beach, and what are the boundaries of the beach, are both scale- and context-
dependent.

The continuity, heterogeneity, dynamics and scale-dependence cause uncertain-
ties when we model and represent natural phenomena as spatial objects (Fisher
2000, Cheng 2002).

Due to the continuity and heterogeneity of natural phenomena, the central or
core concept of classes of a phenomenon of study (vegetation and vegetation class)
can be clearly and explicitly described and defined in categorical terms, but the
boundary conditions between one core class and another are problematic (Fisher
2003, Robinson 2003). This is vagueness in class definition.

Ambiguity is usually resulted from the scale issues in geographical analysis. It
arises when we have very well defined conceptualizations of categories in which
we are interested, but categorization process has multiple equally valid correct out-
comes at different scales which are, however, contradictory.

Discord is when one investigator uses one classification scheme, and a second
uses a non-overlapping classification. For example, Ahlqvist et al. (2000, 2003) ex-
amined contradictory classifications of vegetation of the same area resulted from
remote sensing imagery and from wetness of soils. Furthermore, the core con-
cept of spatial objects might change with time; dynamics of reality will also cause
discord.

Therefore, when we model coastal landscapes, these units are intuitively uncer-
tain. There are vagueness, ambiguity and discord in the definition. Many ways of
handling uncertain spatial data due to indeterminate categories have been proposed.
For examples, fuzzy set theory has been applied to handle the vagueness in class
definition; rough set theory has been adopted to model the ambiguity due to scale
change and the discord in classification. Each of these theories has been largely
developed independently of the others, but with the same goal of addressing the
problems inherent in uncertainty. Among others, fuzzy set theory is far more pop-
ular and successful. In the next section, we will apply fuzzy approach to model the
coastal landscape units.
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4.4 Fuzzy Modeling and Representation of Coastal
Landscape Units

4.4.1 Fuzzy Landscape Classification/Definition

Following Sect. 4.2.2 landscape units should be clearly identified, in order to un-
derstand the erosion and accumulation of geomorpholical process. Due to their
inderterminate nature, however, it is difficult to have a crip definition to classify
the foreshore, beach and foredune areas. Hereby we adopt a fuzzy approach to de-
fine them.

Fuzzy sets are sets or classes that for various reasons cannot, or do not, have
sharply defined boundaries (Zadeh 1965), e.g. the “class of all real numbers which
are much greater than 1”, or “the class of beautiful women”, or “the class of tall
men”. If Z denotes a space of objects, then the fuzzy set A in Z is the set of or-
dered pairs

A = {z,MFA(z)} z ∈ Z

where the membership function MFA(z) represents the “grade of membership of z in
A” and z∈ Z means that z is contained in Z. Usually MFA(z) is a number in the range
[0, 1], with 0 representing non-membership and 1 representing full membership of
the set.

Usually there are two ways to define the fuzzy membership function, either on
the basis of expert knowledge or by using methods of numerical taxonomy. The
semantic import model (SIM) is used when users have a more or less clear idea
to group the data in a qualitative way, i.e. the central concept of the class is clear,
but for various reasons the exact boundary can only be approximated. The fuzzy
membership function is defined by adapting a crisp classification, e.g. extending the
crisp boundaries into a transition zone. Therefore, fuzzy sets can be characterized by
the boundaries (b1 and b2) plus the transition zones (d1 and d2). For mathematical
description, the fuzzy membership function can be a linear, a curved, or an S-shaped
function (Robinson 2003). For example, Burrough (1989) used this approach for soil
evaluation. A symmetric membership function was chosen to distinguish “deep” soil
from “shallow” and from “very deep” soils. Other application of SIM in GISs can
be widely found in literature, such as the definition of sharpness of boundaries in
Wang and Hall (1996), an air pollution danger zone around a city in Usery (1996).

Opposite to the subjective approach of SIM, the fuzzy c-means (FCM) approach
tends to be an objective approach. It is analogous to cluster analysis and numer-
ical taxonomy in that the value of the membership function is computed from a
set of attribute data. In such a way, an individual sample may have memberships
of multi-classes. FCM is usually used in image classification (Bezdek et al. 1984,
Chi and Yan 1995). Furthermore, other objective methods are applied to derive
fuzzy membership values, such as self-organizing maps (Chi et al. 1995), fuzzy
supervised classification (Mannan et al. 1998) and neural network (Sun and Jang
1993).
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Table 4.1 Fuzzy definition for coastal landscape units (after Cheng and Molenaar 1999b)

ClassId Landscape 
Unit 

b1 (m) b2 (m) d1(m) d2 (m)

1 Foreshore –6.0 –1.1 2.0 0.5 
2 Beach –1.1 2.0 0.5 0.5 
3 Foredune 2.0 25.0 0.5 3.0 

1.0

0.5

MF(z)

z

d d

bb

1

1

2

2

Note: b1 and b2 represent the boundaries of the landscape units; d1 and d2 represent the half width
of the transition zone.

Here we took the SIM approach and defined the coastal landscape units by mod-
ifying the crisp definition in Fig. 4.2. The transition zones between these landscape
units are defined as in Table 4.1. b1 and b2 represent the boundaries of the land-
scape units; d1 and d2 represent the half width of the transition zones. For example,
if a region belongs to the foreshore then the height value of the region should be
between −6.0m and −1.1m. As most experts take −6m to be the closure depth,
we could consider −6m to be the boundary between foreshore and deep sea, but
sometimes others take −8m to be the closure depth. We use −8m to be the outmost
boundary of the foreshore. Thus the transition zone between foreshore and deep sea
has a height range of about 4 m and d1 has a value of 2 m (half width). The height
range of transition zone from foreshore to beach is 0.5 m, from beach to dune 0.5 m,
and from foredune to dune 3 m. In order to reveal the vagueness of definitions for
the landscape units, we adopt a trapezoidal membership function to represent the
fuzzy semantics.

We classify the grid cells of the case study area (Fig. 4.1) into classes of land-
scape units. As shown in Fig. 4.3(a) (b) and (c), each pixel has three membership
values to three classes of landscape units.

Fig. 4.3 Fuzzy classification results of Ameland (Cheng 1999): (a) Membership value of belong-
ing to foreshore; (b) Membership value of belong to beach; and (c) Membership value of belonging
to foredune (darker means lower membership)

4.4.2 Fuzzy Spatial Representation of Coastal Landscape Units

Figure 4.3 shows that the uncertainties in the specification of the spatial extent of ob-
jects are in this case due to fuzzy thematic classification of the raster cells. Although
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the uncertain classification is primarily considered to be thematic, it will lead to the
geometry vagueness. For example, during image classification the certainty that a
pixel belongs to a thematic class might be expressed through a likelihood func-
tion, which is evaluated in the classification process (Lillesand and Kiefer 1994).
Image segments can then be formed of contiguous sets of pixels falling under the
same class. If these segments represent the spatial extent of objects then the uncer-
tainty of the geometry of these objects is due to the fact that the value of the like-
lihood function varies per pixel (Canters 1997, Wickham et al. 1997). Therefore,
the thematic uncertainty is transferred to geometric uncertainty after segmentation
(Molenaar 1998, Cheng and Molenaar 1999a). This section discusses how to repre-
sent coastal landscape units as fuzzy spatial objects.

The estimation of the spatial extent of objects from these fuzzy classifications
is related to the interpretation of fuzziness of the objects and their topological re-
lationship, as is their representation. In general, four views are applied to represent
the fuzzy objects (Cheng 2002):

• Fuzzy – fuzzy area: This representation is intuitively coming from the fuzzy
classification result. Spatial objects can be extracted from these classification
results with image segments consisting of contiguous sets of pixels, or grid cells,
belonging to one class. The objects of one class can then be represented as a
layer of the raster, so that layers of objects will be formed, each consisting of
fuzzy regions (Molenaar 1998). If each region represents the spatial extent of
an object, the object is called a fuzzy-fuzzy object (FF-Object), where the first
“fuzzy” means that its spatial extent is fuzzy and the second “fuzzy” means that
its thematic interior is fuzzy, because it contains cells that have been assigned
to the thematic class of the region with a certainty less than 1 (see Fig. 4.4a).
The representation of FF-objects is apparently similar to the fully-fuzzy area
concept proposed by Foody (1999). The fully-fuzzy area is, however, still a direct
representation of the fuzzy classification result. This means that thematic data is
represented per cell (or pixel). The information has not been aggregated to an

Fig. 4.4 Four ways to represent fuzzy objects (Cheng 2002): (a) Fuzzy-fuzzy areas; (b) α-cut
boundaries; (c) Conditional boundaries; and (d) Core-transition zones
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object level so that the uncertainty of the spatial extent of objects does not play a
role in the analysis.

• ααα-cut boundary: If we define a threshold value α , for the classification for each
layer of the fuzzy-fuzzy areas, an α-cut boundary will be formed (Fig. 4.4b). In
this case, the segments of each layer will have α-cut boundaries.

• Conditional boundary: In other applications, area objects are defined as being
spatially disjoint in space (in single context), i.e. they do not overlap such that
each grid cell belongs in principle to one object. If the objects form a spatial par-
tition then each cell should belong to exactly one object, as in the case study of
coastal zone, where foreshore, beach and foredune are considered to be spatially
disjoint objects. Although the boundary between beach and foredune cannot be
located very crisply, the conceptual model suggests that a specific location should
either belong to beach or foredune, but not to both. In this case it is necessary to
combine the objects of different layers into one layer and to form a complete spa-
tial partition of the area, which can be further differentiated into two classes of
objects. One case is that a boundary has to be set to define explicitly the spatial
extent of any object by assigning each grid cell to exactly one object. In such
cases criteria (conditions) have to be applied to assign a cell to a specific class.
After segmentation, the spatial extents of objects are identified and the bound-
aries between them are apparent automatically (Fig. 4.4c). These boundaries are
called conditional-boundaries since they are based upon conditions (or criteria,
Cheng et al. 2001).

• Core-transition zone: Another case is that a clear boundary cannot be defined,
but that there are transition zones between the objects. In the transition zones,
no decision is made about which object the grid cells might belong to. Similarly,
certain criteria are applied to assign the cell to the core of the objects or to the
transition zones (Fig. 4.4d).

To differentiate between the last two situations, we call objects with conditional
boundaries as crisp-fuzzy objects (CF-Object, see Fig. 4.4c), which means that the
conditional boundaries between objects are crisp but the interiors of the objects are
fuzzy. We call objects with core-transition zones as fuzzy-crisp objects (FC-Object,
see Fig. 4.4d), where fuzzy means that their spatial extents (transition zones) are
fuzzy and crisp means that their interiors (cores) are certain. Therefore, we call
the objects based upon fuzzy-fuzzy areas and α-cut boundaries as FF-objects and
αF-objects, respectively. The conventional objects with crisp boundary and crisp
interiors are called CC-objects (see also Table 4.2).

Table 4.2 Different views of objects and their characteristics (Cheng 2002)

Type∗ Boundary Interior Transition

CC Crisp Crisp /
FF Fuzzy Fuzzy Fuzzy
αF Crisp(α) Fuzzy Fuzzy
CF Crisp(c) Fuzzy /
FC / Crisp(c) Fuzzy

∗Refer to Fig. 4.4 for the definition of each type of fuzzy object representation.
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How to derive the fuzzy spatial objects from fuzzy classification please refer to
Cheng et al. (2001) for details. The next subsection shows the results of Ameland
case under different fuzzy spatial object models.

4.4.3 Modeling Results of Ameland

Here we present the spatial representation of the landscape units under four fuzzy
object models:

Fig. 4.5 Fuzzy modeling results of Ameland (Cheng 1999). Results from the FF-objected mod-
eling are represented by (a): FF-objects belong to foreshore∗; (b): FF-objects belong to beach∗;
(c): FF-objects belong to foredune∗; (d): (a) FF-objects belong to foreshore with fuzziness; (e):
FF-objects belong to beach with fuzziness; and (f): FF-objects belong to foredune with fuzziness.
Results from the FC-object modeling are represented by (g): Cores of FC-objects; (h): Transition
zones of FC-objects; and (i) FC-objects with fuzziness. Results from the CF-Object modeling are
shown in (j): CF-object model; (k): Certainty of cells belonging to objects; (l): Objects with un-
certainty; and (m): Conditional boundaries between regions. Note that the threshold value (∗) used
was 0.2 and darker means greater uncertainty
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• Modeling by fuzzy-fuzzy object model: The modeling results by FF-object model
are shown in Fig. 4.5(a–f). The edges of the outmost grid cells of each object are
the conditional boundaries, with a threshold of 0.2. Figure 4.5(a–c) each repre-
sents a layer with objects of one type. When these layers are overlaid, it is clear
that these regions overlap. The fuzzy spatial extent of the objects is shown in
Fig. 4.5(d–f).

• Modeling by fuzzy-crisp object model: Figure 4.5(g–i) represents the core of the
FC-objects. Figure 4.5g represents the cells with values approximately equal to 1,
which represent transition zones among FC-objects. By combining Fig. 4.5(g,h),
FC-objects are shown in Fig. 4.5i.

• Modeling by crisp-fuzzy object model: The modeling results of the CF-object
model are shown in Fig. 4.5(j–m). Figure 4.5j shows the spatial extent of CF-
objects. Figure 4.5k represents the uncertainty of cells belonging to the objects.
The transition boundaries among objects (belonging to three classes) are shown
in Fig. 4.5l.

4.5 Dynamic Process of Fuzzy Coastal Landscape Units

When fuzzy regions are extracted from field observation data, a further step is
needed to identify the objects that are represented by these regions. Conventionally,
this step is based on interpretation by domain experts or by a field check. After-
wards, changes in objects are detected by comparing their states at different epochs.
The experts then analyze the processes the objects have undergone by linking the
lifeline the regions at different epochs to form lifelines of the objects (Cheng 1999).
This section, however, proposes a method for analyzing the relationships of regions
and for identifying objects and their processes automatically.

This can be realized based on the assumption that natural phenomena are chang-
ing gradually, especially the change of coastal zone can be regarded as a gradual
continuous process (Galton 1997), so the objects are considered to be rather stable.
This implies that if two regions are the spatial extents at two subsequent epochs of
one and the same object, their overlap should be larger than their overlaps with the
region of any other object. Under this assumption we can find the successor of a re-
gion at epoch tn by calculating its spatial overlaps with all the regions that appeared
at epoch tn+1. The one that has maximum overlap will be identified as the successor
(Cheng and Molenaar 1999b).

4.5.1 Linkage Between Epochs

Let μs denote the membership of a grid cell belonging to the region S, and μs′ the
membership to the region S′. Then μS∩S′ = Min(μs,μS′) denotes the membership to
the overlap between S and S′.
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Assuming that Size(P(i, j)) = 1, then μs(i, j) ·Size(P(i, j)) = μs(i, j). Further, let
Size(S) = ∑

(i, j)
μs(i, j) be the integral of the membership function associated to the

region S, over the spatial domain. Then Size(S∩ S′) = ∑
(i, j)

μs∩S′(i, j) is the integral

of the membership function associated to the overlap between S and S′.
Based upon the spatial overlap between regions, we can match the regions that

are spatially related. Let R1 be the set of regions at epoch Ti and R2 the set of regions
at epoch Ti+1. Further, let S ∈ R1 and S′ ∈ R2. The following indicators can be used
to evaluate the types of relationship between regions at two epochs.

The relative fuzzy overlap between two regions can be defined as (Molenaar
1998)

ROverl(S′|S) =
Size(S∩S′)

Size(S)
(4.1)

ROverl(S|S′) =
Size(S∩S′)

Size(S′)
(4.2)

where ROverl(S|S′) represents the ratio of the overlap to the size of S (relative fuzzy
overlap to S); ROverl(S′|S) is the ratio of the overlap to the size of S′ (relative fuzzy
overlap to S′).

The similarity of two fuzzy regions can be defined as (Cheng and Molenaar
1999b)

Similarity(S,S′) =
Size(S∩S′)

√
Size(S) ·Size(S′)

(4.3)

4.5.2 State Transitions

Using these indicators, object state transitions can be identified between two epochs.
Seven fundamental cases are shown in Table 4.3. The combinations of indicator
functions behave differently for these seven cases. State transitions can be identified
by the following process:

For all S′ ∈ R2 compute Size (S ′)
For all S ∈ R1 do
>compute Size (S)

For all S ′∈ R2

>compute Size(S∩S′)
>compute Roverl(S′ | S), Roverl(S′ | S), Similarity(S′ | S)
>evaluate shi f t(S; S′), expand(S; S′), shrink(S; S′)

>evaluate split(S; . . .S′, . . .), appear(S′)
>evaluate merge(. . . ,S, . . . ,S′), disappear(S)

Evaluation is done by identifying the type of state transition between S and S′

based upon the indicators according to the situations indicated in Table 4.1. For
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Table 4.3 Identification and presentation of state transition (Cheng1999)

Regions at T1 Regions at T2 Overlay 
Indicators 

Rovelap(Sb|Sa) Rovelap(Sa|Sb) 
Similarity 
Rovelap(Sc|Sa) /Rovelap(Sa|Sc) 

State Transition Symbol 

Large 
– 

Large 
– 

High 
– 

shift(Sa;Sb) 

Small 

Small 

Large 

Large 

Low 

Low 
split(Sa;Sb,Sc) 

Small 

Small 

Large 

Large 

Low 

Low 

merge(Sb,Sc; Sa) 

Large 
– 

Small 
– 

Low 
– 

expand(Sa;Sb) 

Small 
– 

Large 
– 

Low 
– 

shrink(Sa;Sb) 

– 
– 
– 

– 
– 

– 
– 

appear(Sb) 

– – 
– 
– 

– 
– 

– 
– 

disappear(Sa) 

B A 
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example, the split process implies that one region S ∈ R1 splits in two or more re-
gions S′ ∈ R2 and the merge process implies that two or more regions S ∈ R1 merge
into one region S′ ∈ R2. Here we illustrate how the indicators could be used to de-
tect the state transitions. Threshold vales have been chosen intuitively based on ex-
pert knowledge. Further research is required to establish threshold values for these
indicators.

The fuzzy sizes of these regions and the fuzzy overlap of regions of successive
years are shown in Table 4.4. The indicators of Sect. 4.5.1 can now be evaluated;
with these we can link the regions (as shown in Table 4.4) which indicate that the
linked regions are most likely the representations of the spatial extent of an object
in successive years. For example, region 1 has been linked with 4, 4 with 8, 8 with
11; region 3 has been linked with region 6, 6 with 10, 10 with 14. We also found
that there is a new region in 1990 (Region 7). By checking the overlap of this region
with the regions at 1989 and 1991, we found it has overlap with region 3 and 10;
these regions are linked by a line too.

Table 4.4 Fuzzy overlaps and links between fuzzy regions (Cheng and Molenaar 1999b)

Year Region Area Overlap with regions in next year Class Type

1989/1990 4 5 6 7

 1 1108.1 937.5   81.8    0.0  0.0   Foreshore 

 2 1246.8 106.3 1104.8   9.2  0.0   Beach 

 3  644.3  0.0  12.7 572.5 27.5   Foredune 

1990/1991  8 9 10   

 4 1138.7 975.0  76.0     0.0    Foreshore 

 5 1229.7   76.0 1129.5     2.6    Beach 

 6 586.8    0.0   0.0    64.3    Foredune 

 7 28.0    0.0   0.0    26.3    Beach 

1991/1992  11 12 13 14  

 8 1101.3 862.7 116.9     6.4  0.0   Foreshore 

 9 1260.1   87.3 1146.6     0.0  0.5   Beach 

 10 609.8    0.0   3.3     0.0  605.7   Foredune 

1992/1993  15 16 17 18  

 11 1004.9 751.5   6.8     0.0    0.0   Foreshore 

 12 1288.7 119.3 1101.1    38.9    2.8   Beach 

 13   6.4     0.0    1.6     4.6    0.0   Foreshore 

 14 625.7     0.0    2.7     0.0  604.4   Foredune 

4.5.3 Lifelines of Dynamic Objects

The procedure of the previous section identified possible dynamic relationships be-
tween regions at two different epochs. Regions thus related can be linked to form
lifelines of objects that may have “shifted”, “expanded” or “shrunk” between two
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Fig. 4.6 Identified fuzzy objects and processes (Cheng 1999)

successive epochs. The regions that appeared at a specific moment represent a new
object, and regions that disappeared at some moment represent disappearing objects.
Furthermore, “merging” and “splitting” objects can be identified (See Fig. 4.6). The
objects are finally identified and are represented in Fig. 4.7a.

Recently Guilbert and Lin (2007) used snake algorithm to detect the change of
cloud for weather forecasting, which is quite similar to the method proposed here.
It implies that the method proposed is also applicable for crisp objects.

4.6 Change in Area and Volume of Beach

4.6.1 Change of Shape and its Uncertainty

By comparing the spatial extents of an object in two successive years we can derive
the change of shape. This can be done through a simple spatial overlay operation.
The uncertainty of change can be derived from the classic intersection of the un-
certainty of the grid cells belonging to the object’s extent for each year (Molenaar
1998, Cheng 2002)

μ p
Sa;Sb

= MIN(μ(P,Sa)t1 ,μ(P,Sb)t2) (a �= b) (4.4)

where μ p
Sa;Sb

is the uncertainty of the change of a grid cell P which belongs to
Object Oa at t1 and Object Ob at t2; Sa is the spatial extent of Oa at t1, Sb is the
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(a)

(b)

Fig. 4.7 (a) Dynamics of fuzzy objects (after Cheng 1999) (the top three rows): the top row for
identified fuzzy-crisp regions, the second row for fuzzy objects without showing uncertainties,
and the third row for fuzzy objects showing uncertainties; (b) Change of beach during 1989–1991
(Cheng 2002) (the bottom row)

spatial extent of Object Ob at t2; μ(P,Sa)t1 represents the uncertainty of P belonging
to Sa at time t1; μ(P,Sa)t2 represents the uncertainty of P belonging to Sb at time t2.

For example, a grid cell belonged to foreshore (Object Oa) in year 1989 with
certainty value μ(P,Sa)t1 = 0.65. It belonged to beach (Object Ob) in year 1990
with certainty value μ(P,Sb)t2 = 0.78. Therefore, the uncertainty of change of this
cell according to Eq. (4.4) is then,

μp
Sa;Sb

= MIN(0.65,0.78) = 0.65.

The changes of extent of these landscape units of 1989–1990 and 1990–1991 are
presented in Fig. 4.7b. It can be seen that the foreshore and beach were very active,
but the foredune was quite stable. The changes of the foreshore and the beach were
normally opposite to each other. It was also found that the certainties of change of
the cells close to the center of the changed area were higher than those close to the
edge of the changed area. This is due to the fact that the cells closer to the edge of
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the changed area are closer to one of the edges of the two objects, which are less
certain than the cells closer to the centers of the objects.

Based upon this analysis, the developing trends of these landscape units can be
analyzed qualitatively. Moreover, based upon this result, the changes of the land-
scape units can be calculated at different certainty levels. The changes of foreshore
and beach (1989–1990) at different certainty levels are reported in Table 4.5. The
number of cells falls with the increasing level of certainty. It implies that only defi-
nite changes from foreshore to beach (accumulation) fare in 25 pixels and beach to
foreshore (erosion) are in a different 25 cells.

Based upon the change map of Fig. 4.7b, a series of change maps for different
α-cuts (certainty levels) was derived in Fig. 4.8.

Table 4.5 Changes between foreshore and beach at different certainty levels (Cheng 2002)

Certainty level ≥ 1.0 0.9 0.8 0.7 0.6 0.5

Foreshore to beach∗ 25 58 67 75 87 94
Beach to foreshore∗ 25 77 92 102 110 121

∗Number of grid cells.

Fig. 4.8 Change between foreshore and beach at different certainty level (1989–1990) (Cheng
2002)

4.6.2 Changes of Area and Volume

In the crisp object model, the area of an object O is

Area(O) = ∑
P∈0

Size(P) (4.5)
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The area of a fuzzy object O is then defined as (Molenaar 1998)

FArea(O) = ∑
P∈S

μ(P,S)∗Size(P) (4.6)

where S is the fuzzy spatial extent of O, μ(P,S) is the uncertainty that grid cell P
belongs to S, and in our case Size(P) = 60×60 (m2).

Calculating the volume of a fuzzy object is similar to calculating its area. In both
case uncertainties of the grid cells belonging to the objects have to be taken into
account.

FVolume(S) = ∑
P∈S

μ(P,S)∗Size(P)∗hP (4.7)

where hp is the height of the grid cell with respect to a reference level and it is −20m
in our case, since some points on the test area are lower than sea level, e.g., −16m.
Other symbols refer to Eq. (4.4).

The area and volume of the landscape units are presented in Fig. 4.9, which
shows that the fuzzy area of the whole region is not constant. This is because the
certainties of the spatial extents of the landscape units varied from year to year.
The total volume of sediment in the test field is decreasing which indicates general
erosion. This information can be used to guide the coastal defense works such as
beach nourishment that needs high investments.

Fig. 4.9 Dynamic changes of area and volume of fuzzy objects (after Cheng 2002)

4.6.3 Discussion

4.6.3.1 Two Ways of Calculating Change of Beach

Two ways were proposed to calculate the change of beach area. In the first approach
the changes are based upon the areas of beach in the consecutive years. The cells of
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the whole area of beach, including the unchanged part, are considered for the calcu-
lation. Therefore, in this case, the calculation is related to cells in the changed areas
and to their certainties of belonging to the areas. It is also related to the change of
certainty in the unchanged area (Cheng 2002). In the second approach, only cells in
the changed area are considered for the calculation. In this case study, the calculation
is related to the certainties of the cells in the changed areas, which are related to both
the certainties the cells belonging to foreshore, beach and foredune in two years.

The first approach has been based on the changes of the certainties of cells be-
longing to beach in two consecutive years, while the second approach has been
based only on the areas of the change. Which method should be chosen for fuzzy
objects depends on the specific case. It is important to understand and analyze the
uncertainty behind the calculations in order to provide accurate information to de-
cision makers. In the first case the area is predefined, the uncertainty is related to
the whole area. The change of area also considers the uncertainty of the whole area.
In the second case, uncertainty is considered only for the changed area which im-
plies a specification of the type of change. Therefore, when we want to measure
the change related to a landscape unit, the first approach should be taken. When
we want to measure the change as an interaction between two landscape units, the
second approach should be taken. Generally Fig. 4.7b provides a more accurate and
efficient way of representing the change, since the maps in Fig. 4.8 could be derived
from it (Cheng 2002).

4.6.3.2 Fuzzy and Crisp Approaches

In order to estimate the consequence of the uncertainties in object definition and
field observation data, we derive crisp objects by using crisp object definition and
without considering the uncertainty of object identification. The spatial extents of
crisp objects are similar to fuzzy objects. However, the area and volume of crisp
objects are different, they are larger (please refer to Cheng (2002) for details). The
differences between these imply the influences of uncertainties. The foreshore area
has the most obvious difference because its fuzzy definition has a wider transition
zones (2.0 m) than beach (0.5 m) and foredune (0.5 m). The change of beach derived
from crisp approach is similar to the result derived from fuzzy approach 1 since they
apply similar approach i.e. consider the whole area of beach for calculation (Cheng
2002).

4.6.3.3 Prediction of Changes

To model and predict changes of coastal landscape units, we analyzed the station-
arity of change over a period of 7 years (1989–1995) by both crisp and fuzzy
approaches. This study extends previous work on fuzzy Markov chains by Dilo
(2006, Chap. 7). For the fuzzy approach, the changes of objects under the CF model
have been discussed above (as shown in Fig. 4.9). We also analyzed the interac-
tive changes between Foreshore, Beach, Foredune and undecisive areaes for the αF
model (Table 4.2) with α at 0.25, 0.5, 0.75 and 1, respectively.
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1. The results of the CF model are similar to those for α is at 0.25 or 0.5, but they
are quite different from the results for α is at 0.75 or 1. These results clearly
confirm the fuzzy nature of these coastal landscape units and that a crisp or a
slightly fuzzified approach does not give very realistic results.

2. We further see that the average interactive changes for α at 0.25, 0.5 are the same
as those for the CF model:

• the average percentages of the beach area changing into respectively fore-
shore, foredune, undecisive areas are 9.8%, 1.2%, 0%, and

• the average percentages of respectively forshore, foredune and undecisive ar-
eas changing into beach are 4.8%, 2.8% and 0%.

This indicates the whole case study area has been eroded over this period of seven
years since there is a dominant change from beach to foreshore and from foredune to
beach. This is also shown in our results, only 89% of the beach area remains beach
in the consecutive years.

3. In most years, at almost all levels of α, undecisive areas change into foreshore,
whereas only a small part changes to beach for α > 0.5. This implies that the
foreshore area is fuzzy indeed, with low membership values. Those areas might
have height < −6.0m, indicating erosion in the area, which is mainly changing
into foreshore. That also indicates a general erosion of this coastal area, with a
dominant change from beach to foreshore.

4.6.3.4 Other Approaches

Fuzzy area estimation is also discussed in Woodcock and Gopal (2000), but their
analysis is based upon fuzzy classes, not fuzzy objects. Although they also intended
to estimate the area of a class as a function of levels of fuzzy membership, they cal-
culated the area of a class meeting certain criteria, i.e. membership levels. The class
proportions have to be calculated for each class at different membership levels. In
our case, the membership function per cell belonging to an object (the spatial ex-
tent) is considered in the calculation of the area of the fuzzy object. We cannot tell
which method is better, but the method proposed here is quite simple and straight-
forward. However, the author agrees with Woodcock and Gopal (2000, p. 171) to
that to determine areas meeting various conditions, questions of the sum equaling
unity are irrelevant. Since the problem of area estimate is viewed from fuzzy set
theory, this assumption of unity for the sums of the areas of map categories also
becomes irrelevant. It also applies to the fuzzy areas that change with time.

4.7 Conclusion

This chapter presents a systematic discussion of fuzzy approach for integrated
coastal zone management. It discussed the indeterminate nature of coastal landscape
units and how they are represented as fuzzy spatial objects in GIS. Furthermore, the
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identification of dynamic process and the change of these fuzzy objects and uncer-
tainties are investigated. An example of the dynamic changes of sediments along
the Dutch coast is applied to illustrate the methodology. The method is also appli-
cable in monitoring geographical entities such as natural vegetation units or land
use areas.

By comparing the results mapped by the crisp object model and the fuzzy ob-
ject model, it was revealed that uncertainties in object definition and in field mea-
surements have obvious influences on change detection of geometric attributes of
geographical entities. It is important to study these influences to provide accurate
information to decision makers. The changes of uncertainty for an object imply its
potential change in future. Exploring these changes is essential for the prediction of
the potential development of geographical entities; this will be the future direction
of this research. Moreover, this chapter only discussed the situation that fuzzy classi-
fication is due to multiple criteria of object definition and errors in the measurement.
How to handle other situations, such as the definition of objects changing with time,
will be another topic for future research (Van de Vlag and Stein 2006). Furthermore,
the uncertainties resulted from multi-scale definitions needs further investigation
and further reading can be found at (Cheng et al. 2004, Fisher et al. 2007).
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Chapter 5
Spatial Data Infrastructures for Coastal
Environments

Dawn J. Wright

Central to this chapter is a review and discussion of the “data portal” as the primary
means for search, discovery and download of spatial data. Discussed are some of the
most pressing challenges to effective implementation of portals within the broader
context of a spatial data infrastructure or SDI. Potential solutions are featured via
two major case studies of interest to practitioners in coastal ecosystem assessment
and management. While there are numerous projects that can be pointed to as suc-
cessful case studies to emulate, the projects highlighted, along with related efforts
and initiatives, are significant demonstrations of innovation, implementation, and
practice, from which lessons can be learned. And finally, as critical as a data por-
tal may be to successful SDI implementation, so too are the partnerships behind
the portals, which are discussed at chapter’s end with a consideration of virtual
communities as an emerging necessity.

5.1 Introduction: The Continuing Challenge of Data

This chapter is about the effective sharing of digital data sets for practitioners in
coastal and estuarine ecosystem assessment and management. Digital data sets con-
tinue to grow exponentially worldwide, especially with recent launches of high-
resolution satellite systems (e.g., Carlson and Patel 1997, UÇa et al. 2006, Zibordi
et al. 2006) and the increasing ease with which digital imagery, video, and sound
are delivered over the Internet. Digital libraries have largely achieved the initial vi-
sion of enabling 24-h access to digital papers, journals, books, and data (Buttenfield
and Goodchild 1996, Buttenfield 1998, Beard 2007). And with the steady rise in
the adoption and use of remote sensing and geographic information systems (GIS),
there continues to be a proliferation of digital geospatial data available, along with
a considerable increase in the number of users and producers of these data, mak-
ing access and effective integration a very difficult challenge (e.g., Nedovic-Budic
2002).
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Indeed, our entire society has changed from being data-poor to data-rich, but
our ability to derive knowledge and management decisions from all of these data in
an analytical context remains poor. This is especially problematic in the dynamic
zones of coasts and estuaries where it can be difficult to capture features accurately
in both space and time or to adequately monitor and manage resources (Kracker
1998, Cimino et al. 2000, Wright and Bartlett 2000, Valavanis 2002, Paul et al.
2003). Government agencies, businesses, academic institutions, and even non-profit
organizations all have a tremendous stake in the development and management of
geospatial data resources, especially in the coastal zone where, worldwide, 20% of
humanity lives less than 25 km away from the coast, and 39%, or 2.2 billion people,
live within 100 km of the coast (World Resources Institute 2000). Any problems
that remain in finding data are now compounded by the additional challenge of ef-
fectively filtering through large volumes of them in order to find meaningful knowl-
edge. From an organizational perspective, although geospatial data sets are legion,
there has been a general inability and often unwillingness to exchange data across
boundaries, exacerbated by low levels of coordination (Mapping Science Commit-
tee 2001, Nedovic-Budic 2002, de Man 2007).

Several nationwide partnerships have been launched in order to build a spatial
data infrastructure or SDI, defined in U.S. Presidential Executive Order 12906 as,
“the technologies, policies, and people necessary to promote sharing of geospatial
data throughout all levels of government, the private and non-profit sectors, and the
academic community” (www.archives.gov/federal-register/executive-orders/pdf/
12906.pdf). A similar definition may be found in Masser (2007) or Craglia and
Annoni (2007) on behalf of the Infrastructure for Spatial Information in Europe
(INSPIRE): “both technical and non-technical issues, ranging from technical stan-
dards and protocols, organizational issues, data policy issues including data access
policy and the creation and maintenance of geographical information for a wide
range of themes”; or in Nebert (2000) on behalf of the Global Spatial Data Infras-
tructure (GSDI): “the relevant base collection of technologies, policies and insti-
tutional arrangements that facilitate the availability of and access to spatial data”
(www.gsdi.org/pubs/cookbook/).

In the U.S., federal and state governments, commercial entities, universities,
and non-governmental organizations have all worked to create searchable metadata
catalogs that enable users to search descriptions of geospatial datasets as con-
tained in web-based clearinghouses. Notable efforts in the U.S. include the Fed-
eral Geographic Data Committee (FGDC, www.fgdc.gov), the Geospatial One-Stop
(GOS) Initiative (gos2.geodata.gov), and The National Map (nationalmap.gov), all
of which share the goal of building the U.S. National Spatial Data Infrastructure
(NSDI) (Mapping Science Committee 2001, Nedovic-Budic 2002, DeMulder et al.
2004, Crompvoets and Bregt 2007). Other large initiatives include the National Bi-
ological Information Infrastructure (NBII, nbii.gov), a coastal NSDI coordinated
largely by the NOAA Coastal Services Center (www.csc.noaa.gov/shoreline/cnsdi.
html), and the Geography Network of the Environmental Systems Research Institute
(ESRI, geographynetwork.com). In Canada, there is a Canadian Geospatial Data In-
frastructure (CGDI, cgdi.gc.ca), and in Europe past notable efforts include CORINE
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(Coordination of Information on the Environment), NATURA 2000 (in support of
natural habitat conservation) (see more descriptions in Masser 1998). The European
Commission of the European Union has recently established the ambitious INSPIRE
(eu-geoportal.jrc.it). And further international cooperation is now being facilitated
by the GSDI (gsdi.org), particularly where the developing world is concerned. Both
INSPIRE and the GSDI will be revisited near the end of the chapter.

Coastal and marine data have many unique requirements that warrant special
consideration within an SDI (e.g., the dynamic complexity of this geography as an
interface between land and ocean, the multiple jurisdictional issues, the cultural nu-
ance of coastal space, etc.). The reader is referred to the very complete reviews by
Lockwood and Fowler (2000), Bartlett et al. (2004) and Canessa et al. (2007), which
define and discuss all the essential components of coastal SDIs for the U.S., Europe,
and Canada respectively (e.g., framework and specialized datasets of coasts and es-
tuaries, metadata, clearinghouses, standards, policies, partnerships at all levels, cul-
tural issues, etc.). This chapter does not attempt to revisit the excellent background
already covered by these works, but rather focuses on one of the most important and
intuitive aspects of an SDI: the search, discovery and download of spatial data via a
clearinghouse (also known as and hereafter referred to as “data portal”). Here I de-
fine a data portal as an Internet environment (large web site or content management
system) that features some kind of metadata catalogue with descriptions of available
data sets and imagery. The portal may be rich in content itself, but more often than
not serves as a focal point linking many networked servers distributed over a large
geographic area (these being invisible to the user if need be). In addition to spatial
data, content available to the user also includes documents, web sites addresses, and
even software applications. In addition, registered map services allow users to build
online maps using data within the portal. Another critical ingredient is Internet map
service technology allow users to visually browse and query individual or multiple
data sets in order to determine whether a download is necessary. Once downloaded,
the data may then be viewed in other software or analyzed using a GIS or image pro-
cessing package. Canessa et al. (2007) describes the evolution of coastal and marine
infrastructure in Canada as a progression from hardcopy atlases in the 1970s and
1980s to information systems in the 1980s, to integrated, distributed networks and
portals that emerged in the 1990s. A modern, present-day data portal may encom-
pass digital versions of all of these.

5.1.1 Limitations of Past Approaches

The national efforts mentioned in the previous section, including a National
Academy of Science study (Mayer et al. 2004), have all called for or involved the
development of data portals (often with the inclusion of an Internet map service) in
order to connect the variety of spatial data producers with their users. Again, this has
normally involved government at all levels, the private sector, and academic insti-
tutions. However, as reported by Sarkar (2003), despite the expense and energy de-
voted to information sharing initiatives, governments at all three levels (local, state,
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and federal) are left to wonder if it really knows how to implement them success-
fully. The pieces are out there, but they still haven’t been applied well to large-scale
efforts (e.g., nationwide scale). Communication about the availability or the need
for data is also lacking (caused usually by the lack of proper metadata in order to
properly assess geographic coverage, quality, accuracy, point of contact for access,
etc.), and thus the duplication of data sets is still a huge problem.

In the state of Oregon for example, even experienced users of geospatial data
with some GIS sophistication working in state agencies and local governments con-
tinue to have a serious problem finding natural resources data. They can locate bits
and pieces here and there via portals but, over time as they locate a data type (e.g.,
a digital elevation model for a landslide susceptibility study along the Oregon coast
or stream data for evaluating sediment load delivered to estuaries from surrounding
watersheds), they end up finding several different versions of the same in varying
degrees of completeness or update, and some or most of which may be poorly docu-
mented. If they do find a completed data set, how do they know it is the best or most
up-to-date data set available? Are there any policy restrictions or proprietary holds
that would prevent access? What if they decide to create a data set and then later
find out that another agency has already created such a data set? And as a related
issue, what if they find an ecosystem assessment tool developed by a university sci-
entist to work with the data but it only runs with software X and their agency uses
software Y? How easy will it be to integrate these newly obtained data with existing
data? Workers in different agencies and regions around the state experience these
problems, where different data sets are obtained in order to solve the same natural
resource problems, but integration or analyses may yield different answers.

5.2 Successful Partnerships and Portals

Fortunately, there are efforts underway that are addressing problems with sharing
and finding geospatial data and are thus contributing greatly to the development of
coastal SDIs (important background discussions can be found in Katz et al. 1991,
Masser 1998, Lockwood and Fowler 2000, Gärtner et al. 2001, Miller and Han
2001, Bartlett et al. 2004, Canessa et al. 2007). Toward this end, there has been a
steady advancement over the last decade in the design and effective implementa-
tion of data portals specifically for coastal data. The key to this success has been
comprehensive partnerships that ascribe to the vision and principles of an SDI.
Without these partnerships, the proliferation of data portals can become as prob-
lematic as the duplication of individual data sets (i.e., the duplication of portals
adding to the confusion – which portal to use and why). Regional partnerships that
seek to guide and/or influence coastal resource planning and management for ex-
ample, have been identified as critical not only for data solutions but for enabling
creative solutions to broader environmental and socio-economic problems, for eco-
nomic development, community service, and even emergency and disaster response
(Nedovic-Budic 2002, Eleveld et al. 2003, Sietzen 2003, Asante et al. 2007). While
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there are numerous projects that can be pointed to as successful case studies to emu-
late, three projects are highlighted here as significant demonstrations of innovation,
implementation, and practice. These are projects that are within the realm of the
author’s experience and participation.

5.2.1 The Oregon Coastal Atlas

In coastal and estuarine ecosystem assessment and management, computer applica-
tions are often developed expressly for the benefit of decision-makers, at all levels of
government and in various non-governmental organizations. As alluded to already,
there are still many challenges faced by these practitioners, including gaps in data,
effective data integration, data presentation, how to turn existing data products and
information management tools into useful information products, and how to use or
create appropriate indicators of varying types (e.g., hazard, health, suitability, etc.).
In Oregon, effective coastal management relies largely on the outcome of resource
decisions made at the local level, by local officials and ordinary citizens (e.g., Smith
2002, Wood and Good 2004).

Resource decisions are problematic, however, because they implicitly require
that accurate and appropriate resource status information be available in a usable
form and manner that are timely to the decision process. In the absence of such
information, the possibility exists that resource decisions may not adequately or
efficiently protect systems of value to the community. In answer to these needs, a
partnership was formed between the Oregon Coastal Management Program (OCMP,
state government), the Davey Jones Locker Seafloor Mapping/Marine GIS Labora-
tory at Oregon State University (OSU, academic), and Ecotrust (one of the largest
non-profit environmental conservation organizations in the Pacific Northwest and
headquartered in Portland, Oregon). These organizations came together in order to
allocate resources, conduct individual work programs, and share the effort needed to
design, build, test and deploy a new portal to support data sharing, spatial analysis
for statewide coastal management, and resource decision making.

A primary driver for the portal effort was the need to integrate the data distribu-
tion efforts of the OCMP with complementary data emerging from federal agencies,
academic research institutions, and local government/volunteer organizations. The
OCMP is a state-networked program whose data products are distributed free of
charge to the public and local governments. The primary user group for OCMP data
products are agency program partners (e.g., the Oregon Division of State Lands,
Oregon Department of Fish and Wildlife, Oregon Department of Environmental
Quality, Oregon Department of Geology and Mineral Industries), academic partners
(e.g., OSU Geosciences, OSU College of Oceanic and Atmospheric Science, Ore-
gon Sea Grant, the University of Oregon’s Institute of Marine Biology), and coastal
county and city planners. The intent is that easy access to up-to-date information
about coastal resources will lead to improved resource management decisions in the
coastal zone.
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Fig. 5.1 (a) Opening page of the Oregon Coastal Atlas (OCA), with tabbed navigation at the top
(circled in red) guiding users to the four main sections of the atlas, “Maps”, geospatial “Tools”,
“Learn”, and “Search” (for GIS data and remotely-sensed images archived in the atlas). There is
also a wealth of background information on the project, and related links; (b) Hazard mapping
portion of the OCA, resulting from a user navigating to the “Hazards” coastal topic within the
“Learn” section of the atlas, and then choosing a coastal site and hazards data layers from that
section to map out in the Maps section

The portal itself is called the Oregon Coastal Atlas (OCA; www.coastalatlas.net;
Fig. 5.1a). Powered by the open source Minnesota MapServer (mapserver.gis.umn.
edu) and hypertext processor (PHP) scripting, it provides background information
on different coastal systems, access to interactive mapping, online geospatial analy-
sis tools, and direct download access to an array of natural resource data sets with as-
sociated metadata related to Oregon coastal zone management. The Oregon coastal
zone is loosely defined as extending from the crest of the Oregon Coast Range to
its territorial sea boundary 3 nautical miles offshore. Embedded in the OCA is the
Oregon Coast Geospatial Clearinghouse, a node of the NSDI that aids in advertising
OCA metadata well beyond Oregon by way of the Geospatial One-Stop. A typical
session within the OCA includes (Fig. 5.1b):

• selecting a region of interest from a map of the Oregon coastal zone;
• enlarging the selected region and specifying an environment such as rocky or

sandy shore;
• exercising an option to display one or more layers (e.g., swash zones, land use

zones, recreational areas, watershed boundaries, rivers, etc.);
• viewing and printing more detailed data related to specific layers;
• linking to an OCA metadata table, glossary definition, scientific document, or

additional resources located elsewhere on the web; and
• downloading simple, generic spatial tools based on the user’s selections and/or

criteria, in order to solve a coastal management or scientific problem.
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The OCA is indeed somewhat unique in that it couples up-to-date, interdisci-
plinary resource data along with several online tools for coastal decision-making.
These include a coastal erosion suite that calculates dune overtopping, dune under-
cutting or bluff recession based on the foredune erosion models of Marra (1998)
and Ruggiero et al. (2001), as well as traditional ground survey beach elevation data
(Haddad et al. 2005). A watershed assessment tool provides the necessary GIS data,
instructions, and an Internet map service to facilitate watershed assessment and miti-
gation according to the Oregon Watershed Enhancement Board (OWEB) assessment
manual (Haddad et al. 2005). A coastal inundation tool uses an Internet map services
to help users visualize near real-time coastal storm flooding near Tillamook, Oregon
and project potential wave inundation for that region. Emergency response agencies
and coastal planners can then establish appropriate setback distances along the coast
in order to protect the built environment.

The OCA has grown to a catalogue of over 3380 data layers, having served over 3
million hits in the last 2 years to over 35,000 unique visitors (it “went public” in De-
cember 2002). In the last year, average daily visits have grown from ∼100 to ∼200.
January 2005 was the all-time highest traffic volume month ever, attributable (based
on items downloaded) to users seeking maps and information about the potential
effects of a tsunami on coastal communities, after hearing about the December
2004 Sumatra earthquake. It has received considerable interest and advocacy by
the Oregon Ocean Policy Advisory Council (an advisory board appointed by the
Governor of Oregon), the Oregon Department of Geology and Mineral Industries,
the Oregon Geospatial Enterprise Office, the Oregon Coastal Program Network of
Local Planners, the Oregon Shores Conservation Coalition, and the Oregon Land
Conservation & Development Commission, as well as feature coverage in Oregon’s
top newspaper, The Oregonian. Beyond Oregon, it has received advocacy from the
NOAA Coastal Services Center (South Carolina), the NOAA Pacific Services Cen-
ter (Hawaii), and the Federal Geographic Data Committee.

5.2.1.1 Next Stage: Improving the Search for Data

The OCA is established, well used, and decision-makers and general citizenry are
accessing the data and metadata. It is now at the stage where the coordinating part-
ners seek to better understand how decision makers use its data. In order to do that,
the partners seek to improve the use of the metadata, and to understand how the
quality of both the metadata and data should evolve over time, even after initial
publication. While much of the information technology and social science research
needed to solve these kinds of problems is similar to ongoing research in other do-
mains, there are some issues unique to SDI research (e.g., Dawes and Pardo 2002, de
Man 2007). For instance, in addressing the needs of government decision-makers,
there must be a recognition of the need to combine quantitative information with
qualitative, the social and economic value associated with these decisions, and the
risk involved in using information technology to make resource management and en-
vironmental decisions that could have significant impacts on public health or must
stand up in a court of law (Cushing et al. 2005).
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Fig. 5.2 Current search interface for the Oregon Coastal Atlas (OCA), incorporating text menu
choices or entry of text keywords

Metadata is at the heart of any search for data within a portal, and searching is
the critical first step in the ultimate completion of a task or the making of a decision.
Such improvements are also needed in the search mechanism of the OCA (Fig. 5.2).
For example, a keyword search in the OCA for “shoreline” returns 197 data sets,
but a search for “coastline” returns no data sets. In order to more effectively search
among the existing 3380+ data sets in the OCA, we need to incorporate innovative
changes to our metadata catalogs. Needed also are updates and additions to the
existing toolset, as it does not cover the full range of functions needed by coastal
decision-makers. Specific research questions to be addressed in the next phase of
work to devise an improved search mechanism include:

• The OCA was designed as a scalable system, and given the usage to this point, as
well as anticipated future use, how should we scale in terms of additional data,
tools, and educational modules?

• The text-based (keyword) search and downloadable data approach has been suc-
cessful but is still limited. What are the best ways of improving searches within
a portal, and in presenting the results of those improved searches to the user
(beyond just a laundry list)?
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• As improved search must start with existing metadata (e.g., Wright et al. 2003),
what are the practical advantages of having a controlled vocabulary in an ontology
(i.e., a dictionary of categories and properties arising from a systematic study
of how knowledge is structured), in addition to a database of existing metadata
records? What are the best ways to structure a coastal resource decision-making
portal, in terms of descriptive elements in text, data properties in numbers,
and relationship properties (data derived from? entered by whom? best com-
bined with?).

• Are existing ontologies, such as SWEET (Semantic Web for Earth and En-
vironmental Terminology; http://sweet.jpl.nasa.gov) sufficient for research that
uniquely combines physical science with social science and decision-making?

By way of further clarification, it is useful here to include more formal defini-
tions of the terms ontology and controlled vocabulary (after the Marine Metadata
Interoperability (MMI) project, marinemetadata.org/guides):

An ontology may include a catalog (list of terms), glossary (list of terms with defi-
nitions), thesaurus (list of terms with definitions and synonyms), and a more formal
ontology (list of terms with definitions, synonyms, and other relationships between
terms). An ontology therefore provides the structure of the controlled vocabulary
similar to a dictionary or a thesaurus (i.e., an ontology could be construed as in-
cluding the entire spectrum of controlled vocabularies). A controlled vocabulary
can be defined as a set of restricted words, used by an information community when
describing resources or discovering data. The controlled vocabulary prevents mis-
spellings and avoids the use of arbitrary, duplicative, or confusing words that cause
inconsistencies when cataloging data. The vocabulary agreed to by a community is
the expression of concepts (i.e. mental abstractions) of their domain. Since a con-
cept can be expressed in different ways and differ in meaning from one person to
another, the controlled vocabulary helps to solve semantic incompatibilities.

Data portals have been criticized as providing data descriptions only at the most
basic level, making it difficult for both users and providers to interpret or represent
the applicable constraints of data, including the related inputs and outputs of analy-
ses or decisions (e.g., Cabral et al. 2004). A semantic approach has been shown to
provide higher quality and more relevant information for improved decision-making
(Helly et al. 1999, Sheth 1999, Cabral et al. 2004). Associating formal terms and
descriptions captures semantics (e.g., “shoreline” vs. “coastline”), thereby making
cross-disciplinary connections between them, in order to attach well-defined mean-
ing to data and to other web resources. In this way, the quality of data retrieval or
integration are greatly increased, based on meaning, instead of on mere keywords
(Berners-Lee et al. 2001). Basic semantic web research has only recently started to
address the support for spatial data and information (Fonseca and Sheth 2002 and
references therein, Shi 2005), which is a clear focus of the OCA archive, composed
primarily of GIS shapefiles, coverages, raster grids, and images. In order to improve
the results of queries for information stored in geographic databases it is necessary
to support better definition for spatial concepts and terms used within a discipline
such as ocean and coastal management (Eleveld et al. 2003). Equally important is
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the development of multiple spatial and terminological ontologies to define and op-
erationalize meanings and formal descriptions (Egenhofer 2002, Goodchild 2003).
Building the necessary tools to define, verify and deliver these ontologies is a sig-
nificant research challenge, as well as understanding the gaps and inconsistencies
in ontologies, trust and verification of the content of ontologies, and understanding
and handling changes in the material represented by ontologies, all in ways that go
beyond simple versioning (e.g., Cushing et al. 2005).

To implement an effective semantic web resource, a data set’s ontology should
include a controlled vocabulary, ultimately revealing which data sets are interoper-
able and how. Ontologies can act both as registration mechanisms for vocabularies,
and as a means of mapping vocabularies to each other using defined relations. For
example, if relations such as “shoreline same as coastline” or “SST same as sea
surface temperature” or “seafloor same as seabed” are used to map vocabularies,
the results (which can be stored in a collected ontology) can be translated between
co-vocabularies, and can also generate other inferences about the relationships be-
tween the different vocabularies and their terms. This is the approach that the OCA
is building upon, with the expected benefits of:

• better/more complete discovery and filtering of data;
• clearer, more precise, more computable characterization of data;
• contextualization of information, so that it is provided in the right format, place,

and language;
• semantic value, where human users but also computerized inference engines and

harvesters can make better use of information;
• better display of search results, where terms can be substituted if they are equiv-

alent; and
• integration into additional tools for the OCA, which will then immediately be

working with more appropriate data sets.

5.2.1.2 A Solution Via Controlled Vocabularies and Ontologies

The diversity of data sources and data types resident within the OCA are reminis-
cent of the situation faced at the advent of the SIOExplorer project a few years ago.
SIOExplorer is a digital library project of the Scripps Institution of Oceanography
(SIO; Miller et al. 2001, Helly et al. 2003, SIOExplorer.ucsd.edu). It sprung from
an initial effort to open access to more than 700 SIO expeditions for both research
and education. The effort was then formalized by a group of investigators at SIO,
the San Diego Supercomputer Center and the University of California-San Diego
Libraries as a fully searchable digital library within the National Science Digital Li-
brary (NSDL; www.nsdl.org). The collection is rich in complexity with data, images
and documents in a wide variety of formats, drawn from 100 years of documents and
50 years of data. General-purpose tools automate collection development, includ-
ing the harvesting of data and metadata from highly diverse disciplines and three
separate data publishing organizations. This collection with approximately 150,000
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items, requires 1 Tb of storage, and is growing at about 200 Gb per year. It now con-
sists of five federated collections, and new collections from various disciplines are
added each year as other funded projects commence.

The technology underlying SIOExplorer has recently been leveraged to create a
comprehensive information system for several other communities, thus demonstrat-
ing that a similar transformation can be accomplished for portals such as the OCA.
For example, SIOExplorer has been implemented at the National Institute of Wa-
ter and Atmospheric Research (NIWA) in New Zealand. This includes a portable
stand-alone version of SIOExplorer, called “Digital Library in a Box,” which op-
erates in real-time aboard the R/V Tangaroa. It is based entirely on public domain
code, e.g., using PostgreSQL instead of Oracle. SIOExplorer technology is also be-
ing used for managing multibeam holdings at the Center for Ocean and Coastal
Mapping (CCOM) at the University of New Hampshire, and plans are underway
to implement it at the Monterey Bay Aquarium Research Institute (MBARI). SIO-
Explorer components are being re-used for hydrological community information
within the Hydrologic Information System (cuahsi.sdsc.edu), part of the Consor-
tium of Universities for the Advancement of Hydrological Sciences, Inc. (CUAHSI;
www.cuahsi.org) initiative. CUAHSI is planning a distributed data network over 24
hydrological observatories across the country with real-time radar feeds, as well as
stream and precipitation gauges, remote sensing images, and access to USGS and
NOAA archives. Collaborators at University of Texas, Drexel and Virginia Tech are
building user-oriented tools based on the flexible SIOExplorer metadata architec-
ture. A number of convenient tools for mapping to FGDC and ISO standards, and
for working with controlled vocabularies, will soon be available for download.

By drawing upon the expertise and facilities of the SIOExplorer Digital Library,
the OCA partners are moving toward the implementation of a similar, semantically
interoperable data archive. The key to the SIOExplorer success was the definition
of a Canonical Cruise Data Structure (CCDS), encompassing the scope of all the
various data types, valid over the 50 years of the collection. The structure was im-
plemented as a set of nine data directories, plus a few sub-directories. The flexibility
and scalability were derived from a template-driven, rules approach that allowed a
processing script to harvest data and metadata from arbitrary original data struc-
tures in a staging area, and store them in a simple CCDS. A similar approach for
the OCA would be to define a Canonical Coastal Atlas Data Structure (CCADS)
with a hierarchy of data objects appropriate for the existing OCA data archive, in-
cluding vector files, digital orthophotoquads, digital raster graphics, and new satel-
lite grids and images. A CCADS also translates the CCDS structure into an XML,
OWL-based ontology (OWL Web Ontology Language), thus exposing relationships
and dependencies between data sets, science themes, decision-making themes, and
geographic locations. OWL is a powerful language that allows the user to encode
vocabularies in a way that web browsers and software packages can understand
(www.w3.org/TR/owl-features). OWL also supports the creation of relationships
among vocabularies more easily than most other formats.

In order to arrive at the final ontology, it will be important to follow the recom-
mendations of the international Marine Metadata Interoperability initiative (MMI;
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www.marinemetadata.org) in order to create initial markup vocabularies that specify
the content of OCA data sets and records (i.e., by reading in the current metadata).
MMI is a virtual community of marine scientists and engineers led by the Mon-
terey Bay Aquarium Research Institute (MBARI, www.mbari.org), and with a host
of U.S. and international partners that provide the coastal/marine community with
guidance, background information, tools, standards, cookbooks, vocabulary and on-
tology tool development (Fig. 5.3), as well as working examples of marine meta-
data. This is also done in consultation with the ocean observatory community (e.g.,
the Integrated Ocean Observing System or IOOS at www.ocean.us, and the Ocean
Research Interactive Observatory Networks or ORION at www.orionprogram.org).
Existing data markup vocabularies (such as the British Oceanographic Data Centre
vocabulary for marine applications, www.bodc.ac.uk/data/codes and formats) pro-
vide a means for replacing the cryptic and often meaningless strings used for spread-
sheet column headings and data channel labels with clearly defined terms that have
the potential to carry metadata rich enough to support true data interoperability

Fig. 5.3 Example screenshot from the Vocabulary Integration Environment (VINE) Tool devel-
oped by MMI to map terms from vocabularies that are represented in ontologies, in the Web On-
tology language (OWL) format (from marinemetadata.org/fordevelopers)
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(www.marinemetadata.org/vocabularies, O’Neill et al. 2003). This allows for the
automatic generation of a discovery vocabulary, which then leads to improved data
search, discovery, documentation, and accessibility.

5.2.1.3 The Final Ingredient: Style Sheets

A successful search would display all the viewable data types listed in the OCA,
along with the underlying, well-defined vocabularies powering the searches. How-
ever, that successful search might return twice the number records to a user than
before, a case of “too much of a good thing.” A style sheet must be developed to
sort search results for the user, broken out by data set type (e.g., vectors, grids, or
satellite images from the existing GIS archive, photos from the new photobase in
development or documents/journal references), and by category (e.g., biological,
environmental quality, infrastructure, geomorphology). Sorting of records in vari-
ous ways must be experimented with, based on user feedback (i.e., which categories
are most useful?), and input must be sought from state government agencies such
as Geospatial Enterprise Office (Oregon’s statewide service center for GIS) or the
Oregon Watershed Enhancement Board.

5.2.2 DISMAR/DISPRO

Another example of a successful SDI implementation is the web-based component
of the Data Integration System for Marine Pollution and Water Quality (DISMAR).
DISMAR was initiated through a partnership of seventeen organizations from six
countries (Norway, Germany, Italy, France, the United Kingdom, and Ireland) and
is focused on improving the management of pollution crises in the coastal and
ocean regions of Europe. DISMAR supports public administration and emergency
services responsible for prevention, mitigation and recovery of crises such as oil
spill pollution and harmful algal blooms (HAB). A prototype decision-support sys-
tem component of DISMAR (named DISPRO) was developed for the integration
and distribution of multi-source data, as well as results from ocean numerical mod-
els (Hamre et al. 2005). DISPRO is a product of the Coastal and Marine Resources
Centre in Cork, Ireland (http://dispro.ucc.ie/apps/dismar), and serves as a portal to
distributed marine pollution data servers across Europe. Its architecture is therefore
consistent with INSPIRE’s general model of an SDI (Hamre et al. 2005).

Similar to the OCA, DISPRO uses the open source web mapping code of Min-
nesota MapServer. However, additional map services of the Open Geospatial Con-
sortium (OGC, www.opengeospatial.org) are more at the heart of its approach. A
web mapping service (WMS) produces a digital raster image of a geospatial data
set (not the dataset itself), and is thus quickly transferable and readable in a web
browser. In addition, maps may be requested from different servers, enabling the
creation of a network of distributed map servers from which users may build cus-
tomized maps (www.opengeospatial.org/standards/wms). Users do not necessarily
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need specialized software on their desktop, only a web browser. However, if they are
in fact users of powerful desktop software such as ArcGIS, they can easily connect
to a WMS from right within ArcGIS and load data on the fly. In addition, web feature
services (WFS) enable the transfer of actual vector data sets, along with attribute and
topology information, and a web coverage service (WCS) will enable the transfer of
the actual raster data. By establishing these implementation specifications, the OGC
has removed barriers to sharing/exchanging data related to proprietary data formats
and communication protocols.

DISPRO is very effective because, by using a WMS, users are able to build a
single map from multiple servers (Fig. 5.4) so that they are not restricted to using
data from a single server (as is the case with the OCA). As long as the requested map
images are in the same projection and cover the same geospatial extent, DISPRO
can overlay the images to make a synthetic map using data from many different
sites (Fig. 5.5). There are many advantages to this approach, including:

• much easier search and retrieval of data across a distributed network. Instead of
a data set being hidden on someone’s computer, it is selectable via WMS/WFS/
WCS. These services combine the ease of file transfer protocol (FTP) with the

Fig. 5.4 Architecture diagram for DISPRO showing the centrality of OGC web mapping services
and web servers (note that the “xN” signifies that any number of these servers and services may
be employed across Europe), as well as the configuration of related catalogues, geoprocessing
services, and viewers for maps, data, documents, and news items. Diagram by E. Ó Tuama and
reproduced by permission of the Coastal and Marine Resources Centre, University College Cork,
Ireland
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Fig. 5.5 Screen snapshot of a typical session in DISPRO showing the map viewer controls and
the many layers available for browsing and query from INSPIRE datasets. Shown are coastlines,
wind vectors, satellite overlays, and temperature data for monitoring harmful algae blooms along
northern European coasts. Screen snapshot by E. Ó Tuama and reproduced by permission of the
Coastal and Marine Resources Centre, University College Cork, Ireland

added ability to actually see what the data will look like in mapped form. It is
also possible to transfer whole directories of data, which is not easy with FTP.

• advantages for datasets that are frequently updated or edited (as opposed to static
files). The current practice of mapping a drive allows read-only access, which is
fine for a situation where a dataset does not change very often. But if a dataset is
consistently updated, a WMS solution is much more efficient.

• With existing data scattered across servers in different counties, states or coun-
tries, this approach takes advantage of a distributed network rather than having
to have copies of datasets all in one place or having people download duplicate
copies from many different places excessively.

5.2.3 Other Portals

In addition to the “case studies” discussed above, there are a number of other coastal
data portals that have reached a mature or near complete stage, including the Ma-
rine Irish Digital Atlas or MIDA (mida.ucc.ie), funded by Ireland’s Higher Educa-
tion Authority under the Irish National Development Plan, and in Northern Ireland
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by the Department of the Environment’s Environment and Heritage Service. MIDA
has recently emerged as the one of the most comprehensive portals to the coastal and
marine regions of Ireland. It is currently the only data portal in Ireland that brings
together data from many organizations, and it has thus been identified a key part of
Ireland’s SDI (Strain et al. 2006, O’Dea et al. 2007). Other examples include the
North Coast Explorer of the Oregon Institute for Natural Resources (northcoastex-
plorer.info), and the Pacific Coastal Resources Atlas of Canada (www.shim.bc.ca).
Similar efforts were discussed at length during the CoastGIS ’05, the 6th Interna-
tional Symposium on Computer Mapping and GIS for Coastal Zone Management,
where the theme was “Defining and Building a Marine and Coastal Spatial Data
Infrastructure (www.abdn.ac.uk/∼geo466). All of the aforementioned portals have
been built and maintained as a result of significant financial and human resource
investment as a result of very strong regional partnerships between universities and
government agencies. Many technological challenges have been met along the way
to provide web-based mapping solutions that meet with end user requirements.

A series of recent workshops (Trans-Atlantic Workshops in Coastal Mapping and
Informatics, workshop1.science.oregonstate.edu) has examined some of the signif-
icant developments in the emergence of these web-based coastal data portals, as
well as related issues in coastal/ocean informatics (the general study of the applica-
tion of computer and statistical techniques to the management of coastal and ocean
data and information, including data/metadata vocabularies and ontologies, meta-
data creation/extraction/cross-walking tools, geographic and information manage-
ment systems, grid computing) (Wright et al. 2007). Funding was obtained from the
National Science Foundation (NSF) to support U.S. participation at two joint work-
shops designed to identify common research priorities, and focused on specific areas
of research collaboration. European efforts were funded in part by the Marine Insti-
tute of Ireland’s Marine Research, Technology, Development and Innovation (RTDI)
Networking and Technology Transfer Initiative under Ireland’s National Develop-
ment Plan. The main objectives of these workshops were to:

• quantify and qualify the strengths and weaknesses of coastal data portals as de-
cision support systems for the integrated coastal zone management process;

• further refine a geo-spatial framework for the coastal zone;
• describe novel and innovative activities in the uptake of geo-spatial tools by

coastal managers;
• develop and publish guidelines to the coastal/marine research community and

resource decision makers on the development of coastal data portals (including
usability of coastal web atlas interfaces, map design, data content and display,
attribute tables, and metadata formats, soliciting user feedback, etc.); and

• develop common vocabularies and ontologies to facilitate database searches with
coastal data portals of Europe and North America.

The first workshop was held in Cork, Ireland in the summer of 2006, under the
theme of “potentials and limitations of coastal web atlases” (O’Dea et al. 2007), and
the second was held in Corvallis, Oregon in the summer of 2007, under the theme
of “coastal atlas interoperability” (i.e., building a common approach to managing
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and disseminating coastal data, maps and information). Both workshops brought
together key experts from Europe, both coasts of the United States, and Canada to
examine state-of-the-art developments in web-based coastal mapping and informat-
ics, along with future needs in mapping and informatics for the coastal practitioner
community. These workshops were intended to advance research in the field by pro-
viding recommendations for best practices in coastal web mapping (including the
effective translation of science to coastal decision-making). Another goal is to de-
velop a cadre of scientists who will play a leadership role in forging international
collaborations of value to the participating nations, especially within the context of
the U.S. Coastal SDI and the European INSPIRE.

Another outcome of the workshop series is the formation of the International
Coastal Atlas Network (ICAN), a new virtual community of over thirty organiza-
tions from ten nations, and growing. The strategic aim of ICAN is to share expe-
riences and to find common solutions to coastal web atlas development (where a
coastal web atlas is a special kind of data portal focused solely on the coast), while
ensuring maximum relevance and added value for the end users. An initial project
of ICAN is the development of a prototype (Wright et al. 2008 and ican.ucc.ie)
to demonstrate initial interoperability between the OCA and MIDA, with plans to
expand the interoperability among all the organizations of ICAN, thereby provid-
ing a common point for access and exchange of data instead of having to search
aimlessly through each individual portal. The prototype employs a semantic media-
tion approach (where ontology relationship rules are used order to rewrite the user’s
query into queries over several distributed information systems, all of which will re-
turn more meaningful results), within the interface framework of an OGC catalogue
services for the Web (CSW). ICAN activities will be ongoing and progress may be
followed at workshop1.science.oregonstate.edu/join.

5.3 Conclusion

One may look at an SDI in many different ways and try to separate it into compo-
nents, but a portal actually integrates many of those separate components (metadata
based on standards, data, clearinghouse, all results from good partnerships). This
chapter has focused on the portal as the primary means for search, discovery and
download of spatial data. It has attempted to lay out some of the most pressing chal-
lenges to effective implementation, and then to describe the case studies of interest
to practitioners in coastal and estuarine ecosystem assessment and management (i.e.,
the OCA and DISMAR/DISPRO), along with related efforts and initiatives, all of
which might emulated.

It has been argued here that partnerships are absolutely critical for success (“suc-
cess” being defined, in one sense, as users being able to find what they are searching
for – in the form of original data and derived products–to judge the quality of what
they have acquired, and what limitations apply to its use). As evidenced by the case
studies, successful partnerships involve a variety of players (e.g., government with
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academia with non-profit), all of whom ascribe to the vision and principles of an
SDI (e.g., use of standards and protocols, allocation of resources to fulfill responsi-
bilities of metadata and data stewardship, development of strategies for advancing
geospatial information activities at all levels, etc.). Partnerships also help to reduce
the duplication of data through communication and collaboration. And they always
bring to bear considerable resources, while still efficiently dividing the labour, and
sharing the efforts needed to perform the complex series of tasks required to design,
build, test and operate a portal. But one issue for further thought is, if a partnership
makes a portal successful, what can help to make a partnership more successful?

In a recent vision document on the closely-related issue of cyberinfrastructure
(NSF 2007), the National Science Foundation highlighted what it calls “virtual or-
ganizations” for distributed virtual communities, which help to step scientists and
social scientists through the nuts-and-bolts of participating in a cyberinfrastruc-
ture. The virtual community can show users why their participation is worth the
effort, and how it will, in the end, optimize their ability to do their research ef-
fectively, to answer scientific questions, or to make decision. I suggest here that
virtual communities can have the same positive effect on the partnerships be-
hind the portals. The communities may not be the actual builders of a data por-
tal, but provide the building materials and the know-how. The MMI is one such
virtual community as it “promotes the exchange, integration and use of marine
data through enhanced data publishing, discovery, documentation and accessibil-
ity” (from www.marinemetadata.org) for a distributed community of coastal and
ocean scientists, to enable them to recognize the benefits of a marine SDI, and to
actually use an SDI. This virtual community provides guides, cookbooks, tools,
case studies, and online discussion forums, but perhaps more importantly, hands-
on workshops that feature web applications and stand-alone tools that partners can
immediate build upon in their own work. It currently enjoys the support and en-
dorsement of the NOAA Coastal Services Center, which shepherds the U.S. Coastal
SDI (www.csc.noaa.gov/shoreline/cnsdi.html). The MMI is one virtual community
that practitioners in coastal and estuarine ecosystem assessment and management
should keep abreast of or consider joining. ICAN, though just beginning, will likely
develop along a similar trajectory, though with a more specific focus on coastal web
atlases and a more targeted audience of coastal zone managers. The International
Hydrographic Organization (IHO, www.iho.int) may be considering a similar effort
(Maratos 2007).

Given the emphasis in this chapter on domain-specific SDIs for the coastal zone,
one must also recognize a shift from SDIs for these specific areas (vertical) to more
integrated horizontal approaches. Bartlett et al. (2004) have already argued con-
vincingly that it is not possible to develop a coastal SDI in isolation from broader
regional, national, and global initiatives. These broader initiatives may connect the
coast to the deep ocean, connect science to resource management and policy, bring
in the consideration of communities and infrastructures of the built environment, or
makes connections between all aspects of the global natural environmental (land,
sea, and air). As such, we need to keep looking at efforts within the coastal realm,
but most certainly outside of it as well. In this vein it will be important to keep
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abreast of the NSDI in the U.S., INSPIRE in Europe, and the GSDI Association.
The reader is also directed to the new International Journal of Spatial Data Infras-
tructures Research (IJSDIR, ijsdir.jrc.it), which covers the full range of research
experiences that advance the theory and practice of SDI development.
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Chapter 6
Airborne Remote Sensing of Chlorophyll
in Chesapeake Bay, USA

Lawrence W. Harding, Jr. and W. David Miller

Climatic forcing dominates phytoplankton dynamics in Chesapeake Bay, generat-
ing high spatial and temporal variability of chlorophyll (chl-a) and primary pro-
ductivity (PP) in the largest estuary in the USA. Shipboard monitoring of the Bay
dates back five decades, providing a long-term context to assess secular change due
to nutrient overenrichment. These data lack sufficient coverage, however, to sepa-
rate change from variability imposed by climate. We have addressed this problem
by obtaining data at high resolution to quantify variability of phytoplankton chl-a
and PP, including drought-flood cycles and event-scale perturbations outside the
scope of traditional approaches. Our methods consist of new technologies using
aircraft remote sensing since the late 1980s, generating observations for a broad
range of conditions. This chapter describes the Chesapeake Bay Remote Sensing
Program (CBRSP) and presents results obtained in >400 flights. We analyze and
synthesize these data to document the strong role of climate in driving variability
of chl-a and PP in the Bay. Our findings are discussed with respect to developing
water quality ‘criteria’, including chl-a as an indicator of ecosystem responses to
nutrient loading, that requires consideration of climatic forcing of phytoplankton
dynamics.

6.1 Introduction

6.1.1 Overenrichment of Chesapeake Bay

Estuaries are rich aquatic ecosystems where high phytoplankton biomass and
primary productivity support food chains leading to robust fisheries. One such
ecosystem, Chesapeake Bay, has been renowned for its large stocks of crabs, clams,
oysters, and finfish since colonial settlement in the 17th century. In the past 40–50
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years, however, the ‘health’ of the Bay has declined, precipitating intense study of
the ecosystem. Excessive inputs of nitrogen (N) and phosphorus (P) stimulated an
overabundance of phytoplankton, leading to a degradation of water quality (D’Elia
et al. 1986, Correll 1987, Fisher et al. 1992, Harding 1994, Boynton et al. 1995,
Malone et al. 1996, Kemp et al. 2005). Similar to land-sea linkages in other coastal
ecosystems, the Bay’s degraded water quality traces to landscape changes in an ex-
tensive 165,000km2 watershed (cf. Bricker et al. 1999, Curtin et al. 2001). Forests
once covered >90% of the area surrounding the Bay, but land clearing follow-
ing European colonization in the 1600s reduced forest cover to 40% by the late
1800s. A significant increase of the human population has led to increased nu-
trient loading from point and non-point sources, amounting to a 6-fold increase
of N and a 17-fold increase of P (Boynton et al. 1995). The increased phyto-
plankton biomass resulting from overenrichment provides excess organic material
to fuel recurrent summer hypoxia, and reduces light penetration affecting habitat
suitability for submerged aquatic vegetation (SAV). As a consequence, the Bay
has undergone a significant ‘state shift’ from an ecosystem formerly dominated
by large, benthic producers and consumers to one dominated by smaller, plank-
tonic producers and consumers (Cooper and Brush 1991). Notable changes in the
ecosystem include: (i) widespread hypoxia or anoxia in bottom waters (Officer
et al. 1984, Hagy et al. 2004); (ii) reduced SAV coverage (Orth and Moore 1983);
(iii) declines of oysters by overfishing, disease, and habitat destruction (Rothschild
et al. 1994); (iv) fluctuations or declines of important finfish stocks (Richkus et al.
1992).

Two highly responsive indicators of overenrichment are chlorophyll (chl-a) as
a measure of phytoplankton biomass, and photosynthetic carbon assimilation as a
measure of primary productivity (PP). An analysis of long-term chl-a data reveals a
significant increase of phytoplankton biomass since the 1950s that is most strongly
expressed in the mid- and lower regions of the Bay that are highly sensitive to sea-
sonal N-depletion (Harding and Perry 1997). Scientists and managers have reached
a consensus agreement that increased N and P loadings support the increase of chl-a
(Fisher et al. 1992, Malone 1992, Harding et al. 2002), culminating in present-day
concentrations that are indicative of a highly eutrophic ecosystem. Annual loadings
of total N and P to the Bay and its tributaries are approximately 14g N m−2 yr−1 and
1.1g P m−2 yr−1, respectively, with a 2.5-fold increase of total N from the Susque-
hanna River between 1945 and 1990 that has abated only slightly in recent years
(Boynton et al. 1995).

6.1.2 Management Perspective

Resource managers use chl-a and PP as indicators of ecosystem ‘health’ because
both respond positively to increased nutrient loading. Tools to measure these prop-
erties on spatial scales from meters to 100s of kilometers and temporal scales from
hours to years are essential, yet rarely applied in estuarine and coastal waters.
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Instead, we have relied for the most part on traditional approaches to measure wa-
ter quality using in-situ sampling from ships that are both resource-intensive and
provide limited coverage. Both chl-a and PP can now be retrieved using satellite in-
struments (Sea-viewing Wide Field-of-view Sensor, SeaWiFS; Moderate Resolution
Imaging Spectroradiometer, MODIS), but unfortunately the geographic dimensions,
high phytoplankton biomass, spatial and temporal variability, and complex bio-
optical characteristics of Case 2 waters that are typically found in estuaries com-
plicate this approach. Some progress has been made to obtain chl-a in the Bay using
SeaWiFS since its launch in 1997 (Magnuson et al. 2004, Harding et al. 2005),
and these advances have aided development of time-series of chl-a using SeaWiFS
and Aqua-MODIS (Werdell et al. 2007). The main source of remotely sensed chl-a
for the Bay, however, is airborne remote sensing on low-altitude overflights using
ocean color sensors mounted on light aircraft. This long-term program provides a
unique data set to complement intensive shipboard monitoring of the Bay. Airborne
measurements have advantages in spatial resolution that are not matched by current
satellite instruments, and have the operational flexibility to attain repeat coverage of
short-lived events such as phytoplankton blooms.

6.1.3 Chesapeake Bay Remote Sensing Program

Our group has conducted airborne remote sensing of ocean color on Chesapeake
Bay since 1989 when we started the Chesapeake Bay Remote Sensing Program
(CBRSP – http://www.cbrsp.org) (Fig. 6.1). The motivation for this program was to
quantify spatial and temporal variability of phytoplankton biomass as chl-a in the
main stem Bay, focusing on the spring and summer seasons when chl-a and PP reach
their respective annual maxima. We conduct Bay-wide flights deploying visible ra-
diometers to measure the spectral quality and quantity of light reflected from the
water. The strengths of airborne remote sensing are high spatial and temporal reso-
lution, careful calibration of instruments, generation of local algorithms and models,
and independent validation using data from a variety of sources. We estimate the
distribution of chl-a in the Bay on 20–30 flights per year, totaling >400 flights (to
date). The technology for these measurements has evolved from the NASA Ocean
Data Acquisition System (ODAS), a three-waveband instrument we used initially,
through two generations of instruments manufactured by Satlantic, Inc. of Halifax,
Nova Scotia, the SeaWiFS Aircraft Simulator (SAS II, III). We currently use SAS
III to collect data at 13 wavebands in the ultraviolet, visible, and near-infrared, in-
cluding some specific sensors to match capabilities of satellite instruments. CBRSP
outputs include interpolated maps of chl-a and sea surface temperature (SST). Data
are made available to multiple users via the CBRSP web site (url above), and sup-
port assessments of water quality using chl-a criteria that are now being developed
by the EPA Chesapeake Bay Program (CBP).

Since CBRSP began, we have documented variability of chl-a on a range of spa-
tial and temporal scales, including strong seasonal and interannual variability of
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Fig. 6.1 Flight tracks occupied in the main stem of Chesapeake Bay using airborne remote sensing
of ocean color

chl-a in the mid- and lower Bay that appears coupled to freshwater flow. Low-flow
years are characterized by reduced spring biomass, whereas high-flow years typ-
ically have high biomass extending toward the mouth of the Bay. The complete
time-series of chl-a data from airborne remote sensing has been used to create
‘climatologies’ for a variety of phytoplankton properties, including surface chl-a,
euphotic-layer chl-a, water-column chl-a, total chl-a, and PP. These long-term data
have supported development of predictive models for these key ecosystem proper-
ties (cf. Miller and Harding 2007).
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6.1.4 Organization of this Chapter

In this chapter, we present milestones and results achieved using airborne remote
sensing to study phytoplankton dynamics in Chesapeake Bay. Main elements in-
clude: (1) programmatic details of the instrumentation, flight operations, data pro-
cessing, and derived products; (2) lateral and along-axis spatial variability of chl-a;
(3) short-term variability of chl-a associated with events; (4) seasonal and interan-
nual variability of chl-a; (5) PP derived from models and remotely sensed measure-
ments; (6) satellite retrievals and future directions.

6.2 Methods and Materials

6.2.1 Airborne Surveys

Airborne surveys of Chesapeake Bay have been used to measure surface chl-a
(mg m−3) for nearly twenty years with multispectral radiometers mounted on light
aircraft. These instruments include ODAS, SAS II, and SAS III. All three instru-
ments consist of nadir-viewing sensors deployed on a set of ∼40 flight tracks to
provide lateral and along-axis coverage of the Bay (Fig. 6.1). ODAS consists of
three radiometers (460, 490, and 520 nm) with 15 nm bandwidths and 2◦ field-of-
view, and was used from 1989 to 1995. SAS II and III consist of seven and 13
radiometers, respectively, with 10 nm bandwidths, and 3.5◦ field-of-view (SAS II –
412, 443, 490, 510, 555, 670, and 683 nm; SAS III – 380, 400, 412, 443, 470, 490,
510, 555, 670, 685, 700, 780, and 865 nm). SAS II was used from 1995 to 1996 and
SAS III from 1997-present. Geo-referenced data (GPS) are collected on flights at an
altitude of 500 ft (150 m) and an airspeed of 100 nautical miles h−1 (∼50m s−1).
Flights are conducted from February through November, with particular emphasis
on spring and summer. In-situ observations of chl-a for ground-truth of remotely-
sensed estimates of chl-a are obtained from shipboard sampling on CBP cruises
(1989-present), successive NSF programs on Land-Margin Ecosystem Research
(LMER) (1989–2000), NASA programs on ocean color and sensor intercompar-
isons for Case 2 waters, EPA and NASA programs to develop ecological indicators
in estuaries (1997–2004), and a NSF Biocomplexity program (2001–2004).

6.2.2 Retrievals of chl-a

We use matching data from airborne remote sensing and shipboard monitoring to
develop relations between the output of a spectral curvature algorithm, − log10 G,
applied to water-leaving radiances in the blue-green region of the visible spec-
trum (Grew 1981, see Campbell and Esaias 1983) and surface chl-a (cf. Harding
and Itsweire 1991, Itsweire et al. 1991, Harding et al. 1992, 1994, 1995, 2001).
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A ‘match’ for validation purposes is defined as ±12h on the same day, ±0.01◦ lat-
itude, and ±0.005◦ longitude. Regression equations retrieve log10 chl-a with a root
mean square error (RMSE) of 0.21 (log10 units), and validation is updated regularly
with the addition of ground-truth data from subsequent years. Radiometric calibra-
tions are made annually by NASA or Satlantic, Inc. for all sensors. Drift over the
course of a flight season is typically <2%. Raw data from ODAS, SAS II, and SAS
III are processed using a UNIX workstation (Silicon Graphics, Inc.) or a PC with
MATLAB. The sequence of processing steps applies radiometric calibrations, in-
corporates navigational data, screens for sun glint, and uses regional algorithms to
compute chl-a and SST. Surface chl-a and SST are gridded and contoured using a
two-dimensional, octant search with inverse-distance-squared weighting to generate
interpolated map products (Harding et al. 1992). Derived chl-a products presented in
this chapter represent airborne measurements as one- or five-second averages, giv-
ing along-track resolutions of 50 and 250 m, respectively, whereas gridded outputs
are at a spatial resolution of 1km2 to define major features and trends.

6.2.3 Derived Products

Time-series of surface chl-a obtained from airborne remote sensing and several
derived products have been generated for all flights. The primary product is sur-
face chl-a (mg m−3). We combine data on surface chl-a with euphotic-layer depth
(Zp) to compute euphotic-layer chl-a (mg m−2) as the product of surface chl-a
and Zp, with Zp estimated as the 1% isolume using Secchi depth readings from
CBP monitoring cruises. Significant log-log relationships of depth-weighted inte-
gral chl-a and surface chl-a using vertical profiles from CBP monitoring cruises
are used to compute integral, water-column chl-a (mg m−2) (cf. Harding et al.
1994). Analysis of variance (ANOVA) shows significant differences in the slopes
of regressions for different years, thus we apply equations specific to each year
to estimate depth-weighted integral, water-column chl-a from remotely sensed chl-
a. Back-transformed values are combined with water-column depth from a digital
bathymetry to give integral, water-column chl-a. All three biomass measures – sur-
face chl-a, euphotic-layer chl-a, and integral, water-column chl-a – are log-normally
distributed, such that log10-transformed data are used in all analyses. A time-series
of total phytoplankton biomass as metric tons of chl-a is computed as the sum of
integral, water-column chl-a for three regions in the main stem Bay defined by lat-
itude and average salinity and for the Bay as a whole (Harding 1994, Harding and
Perry 1997).

6.2.4 Primary Productivity (PP)

Gross PP is estimated using a depth-integrated model (DIM) for the Bay (cf.
Harding et al. 2002), modified from the Vertically Generalized Productivity Model
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(VGPM) of Behrenfeld and Falkowski (1997). This model, the Chesapeake Bay
Productivity Model (CBPM-2), is a log-transformed version of VGPM that allows
derivation of locally calibrated coefficients for each independent variable. CBPM-2
embeds a model of the ‘phytoplankton physiology’ term, PB

opt, making it applicable
to remotely sensed data lacking independent measurements of this term. CBPM-2
is calibrated with shipboard measurements collected over 17 years (1982–1998),
and produces estimates of PP with RMSE of 49.7%. Validation with data from
1999 to 2000 that were omitted from model calibration produces PP estimates
with RMSE of 47.6%. The independent variables in the model include: surface
chl-a (mg m−3), photosynthetically-available radiation, E0 (E m−2 d−1) applied as
tE0 = (E0/(E0 + 4.1)) to describe the saturating effect of E0, Zp (m) estimated as
the 1% isolume, daylength, Dirr (h), and SST (◦C).

We compute daily PP by applying CBPM-2 to data from each flight. Data sources
for independent variables are: (1) chl-a and SST from airborne remote sensing; (2)
Zp from bi-weekly to monthly monitoring CBP cruises (http://www.chesapeakebay.
net); (3) E0 from a LiCor model 192 2π sensor at the Smithsonian Environmen-
tal Research Center (SERC, Edgewater, Maryland, USA); (4) Dirr calculated from
latitude and day-of-year. All data are mapped onto a common 1km2 grid, produc-
ing approximately 7000 grid cells for each flight/cruise. Combined data from 18
to 37 flights and cruises per year support computation of PP for 1990–2004. The
number of flights varies with weather, instrument function, and aircraft availability.
Shipboard chl-a were used in place of remotely sensed chl-a in 1996 due to instru-
ment malfunctions. Time integrals are obtained by converting irregularly spaced PP
outputs to a daily frequency using linear interpolation. Outputs are summed to pro-
duce monthly, seasonal, and annual estimates, including summer integral production
(SIP) and annual integral production (AIP).

6.3 Results

6.3.1 Products

The distribution of phytoplankton expressed as surface chl-a from airborne remote
sensing shows high variability in Chesapeake Bay on a range of spatial and temporal
scales. This variability is evident in maps of surface chl-a for a sequence of six
flights in spring 2000, showing the progression of a well-developed spring bloom
(Fig. 6.2). The spring bloom usually consists of large, centric diatoms and is the
most prominent feature of the annual phytoplankton cycle in the Bay (cf. Malone
1992, Adolf et al. 2006, Miller and Harding 2007). High biomass develops between
March and May as phytoplankton draw on ample nutrients to generate particulate
organic matter. This material of phytoplankton origin serves to fuel the Bay’s food
web, but also underlies deleterious effects of nutrient overenrichment, including low
dissolved oxygen and reduced water clarity.
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Fig. 6.2 Sequence of six chl-a images from 2000 to illustrate the progression of the spring bloom
between March and June

Scientists and managers recognize that increased nutrient loading has acted to
fertilize the Bay, alleviating N-limitation and supporting increased phytoplankton
biomass. The response of the ecosystem is apparent as increased chl-a in the mid-
to lower Bay, particularly from the 1950s to the 1980s. Resource managers have a
strong interest in using chl-a data from airborne remote sensing to gauge progress
in reversing nutrient overenrichment as these data are more highly resolved than
other sources. A practical application of the data is to use surface chl-a and de-
rived products as indicators of nutrient loading, particularly of the macronutrient N
that impacts phytoplankton biomass on a Bay-wide scale (cf. Malone et al. 1996).
Detection of a long-term decline of chl-a that is expected to accompany nutrient
reductions is complicated by spatial and temporal variability of chl-a, however, and
remotely sensed data better capture the relevant scales of variability expressed in the
estuary. An important application is to use remotely sensed data to quantify spatial



6 Airborne Remote Sensing of Chlorophyll in Chesapeake Bay, USA 123

and temporal variability of chl-a in years of contrasting precipitation and freshwater
flow, providing an essential context against which to measure future changes.

6.3.2 Axial and Lateral Variability of Surface chl-a

Surface chl-a shows spatial variability on scales of 100s of meters to kilometers
along the main stem axis of the Bay and on lateral transects. Examples of recent
data illustrate gradients in 2002 and 2003, two strongly contrasting years with ‘dry’
and ‘wet’ climate conditions, respectively (Fig. 6.3). These data reveal four-fold ax-
ial and lateral variability of surface chl-a within 10–50 km. An earlier analysis of
lateral gradients quantified significant small-scale variability of surface chl-a using
ODAS data from 1990 to 1991 (Weiss et al. 1997). Linear models showed nega-
tive correlations between log10 chl-a and track distance, indicating a west to east
decrease. Steep gradients with west to east decreases of surface chl-a up to six-fold
were reported for the lower Bay. Interannual differences of surface chl-a gradients
were also observed during the spring bloom, with higher variability in 1990 than in
1991. Negative correlations were particularly common for lower Bay flight tracks
where significant linear decreases of surface chl-a occurred on >60% of flights.
Positive correlations indicating west to east increases of surface chl-a were less
common. Correlation lengths ranged from 0.3 to 7.0 km for two flight tracks in the
lower Bay, whereas more northerly tracks had correlation lengths ranging from 0.3
to 3.1 km. Predictable values of correlation length were associated with strong linear
gradients, and the absence of such a gradient was usually accompanied by a lower
and highly variable correlation length.

Based on their spatial analyses, Weiss et al. (1997) concluded that sampling infre-
quently or with limited spatial resolution poorly recovers information on small-scale
or short-term variability of surface chl-a, particularly at high concentrations. This
finding is consistent with the conclusions of Harding et al. (1994, 1995) that ship-
board sampling inadequately recovers high chl-a associated with blooms, but does
a respectable job estimating mean surface chl-a for different regions of the Bay.
Sampling that poorly retrieves peaks of surface chl-a is likely to introduce error
in quantifying the Bay-wide distribution of phytoplankton. This limitation affects
computations of seasonal/annual biomass by failing to include extreme values, and
has implications for secondary production known to be affected by spatial gradients
and localized peaks (cf. Boynton et al. 1997).

6.3.3 Event-Scale Phytoplankton Dynamics

Airborne remote sensing of ocean color quantified a major perturbation of phyto-
plankton biomass in Chesapeake Bay by Hurricane Isabel (17–19 September 2003)
(Fig. 6.4). Mid-Atlantic hurricanes typically produce high precipitation leading to
increased freshwater flow and nutrient loading, supporting increased phytoplankton
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Fig. 6.3 (a) Axial chl-a from April flights in successive dry (2002) and wet (2003) years, showing
the extension of high chl-a toward the mouth of Chesapeake Bay driven by high freshwater flow
and nutrient loading; (b) lateral chl-a from lower Bay track (latitude = 36.99–37.00◦N) from May
flights in 2002 and 2003

biomass over a period of weeks to months (Paerl et al. 2001). For example, Tropical
Storm Agnes in June 1972 led to unprecedented freshwater flow and a protracted
increase of phytoplankton biomass in Chesapeake Bay following a massive nutrient
pulse (Zubkoff and Warinner 1977). Phytoplankton responses to Isabel were quite
distinct from those to Agnes, occurring within days of storm passage by a mecha-
nism wherein hurricane energy eroded the pycnocline and injected nutrients to the
surface mixed layer (Davis and Yan 2004, Li et al. 2006).
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Fig. 6.4 Effect of Hurricane Isabel (18 September 2003) on the chl-a distribution in Chesa-peake
Bay: (a) long-term average (LTA) for September 1989–04; (b) pre-Isabel, 11 September; (c) post-
Isabel, 24 September; (d) two weeks post-Isabel, 2 October

Flights on 11 September 2003 (Fig. 6.4b) and 24 September 2003 (Fig. 6.4c)
before and after the passage of Hurricane Isabel showed a significant increase
(4.7mg m−3) of phytoplankton biomass covering >3000km2 of the mid- to lower
Chesapeake Bay (Miller et al. 2006a). A fall bloom of this magnitude had not been
detected in either CBRSP or CBP time-series of chl-a. Mass balance calculations
showed nutrients in bottom waters were mixed into the surface layer by Hurricane
Isabel and incorporated into phytoplankton biomass, leading to a rapid increase of
chl-a observed by airborne remote sensing. These nutrients were exhausted within
two weeks as chl-a returned to the long-term average for fall by 2 October 2003
(Fig. 6.4 a,d). This application highlights the usefulness of airborne remote sensing
to provide high-resolution, quasi-synoptic coverage of estuarine and coastal waters,
allowing the detection of a significant perturbation of phytoplankton dynamics.

6.3.4 Seasonal Distribution of Phytoplankton

To link climate and phytoplankton, we have used a synoptic climatology devel-
oped for the Bay (Miller et al. 2006b) to categorize individual years covered by
airborne remote sensing (Fig. 6.5). This approach quantifies regional climate con-
ditions using sea-level pressures (SLP) by computing the frequencies of individual
patterns, and relating interannual differences to surface conditions, i.e., precipita-
tion and freshwater flow, that are known to drive phytoplankton dynamics in the Bay.
The position of the spring phytoplankton maximum is sensitive to climate forcing as
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Fig. 6.5 Sea-level pressure (SLP) patterns for four commonly observed weather patterns in the
Chesapeake Bay region identified using synoptic climatology. Patterns (a) and (c) correspond to
‘wet’ conditions, and patterns (b) and (d) to ‘dry’ conditions

documented by interannual variability in the distribution of surface chl-a, euphotic-
layer chl-a, and integral, water-column chl-a derived from airborne remote sensing
(Figs. 6.6 and 6.7). In warm/wet years, maxima of these three biomass measures
occur seaward of maxima for cool/dry years. Long-term data (1989–2004) show

Fig. 6.6 Surface chl-a from airborne remote sensing of Chesapeake Bay for: (a) warm/wet, (b)
long-term average (LTA), and (c) cool/dry conditions
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Fig. 6.7 Regional means of
surface chl-a, euphotic-layer
chl-a, and integral,
water-column chl-a for six
regions along the main stem
Chesapeake Bay. The region
designations progress from
seaward (1) to landward (6)
per Harding and Perry (1997)

surface chl-a reaches a maximum of 13.1mg m−3 positioned in the mid-Bay in
warm/wet years, but is only 8.2mg m−3 in the upper Bay in cool/dry years. Peaks of
euphotic-layer chl-a occur in the lower Bay for both warm/wet and cool/dry climate
modes, whereas the magnitude of the peak is 47.7mg m−2 in warm/wet years and
36.8mg m−2 in cool/dry years. A maximum of integral, water-column chl-a occurs
in the mid-Bay in warm/wet years, distinct from a broad plateau of water-column
chl-a that is found in the mid- to upper Bay in cool/dry years (Fig. 6.7).

Differences in surface chl-a, euphotic-layer chl-a, and integral, water-column
chl-a between warm/wet and cool/dry years expressed as deviations from long-term
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averages (LTA) for 1989–2004 display consistent responses to climatic forcing
(Fig. 6.8). Largest positive anomalies for all three measures of phytoplankton
biomass occur in the mid- to lower Bay in warm/wet years. These regions average
49, 22, and 57% above the LTA for surface chl-a, euphotic-layer chl-a, and integral,
water-column chl-a, respectively. A negative anomaly for euphotic-layer chl-a is
found in the upper Bay during warm/wet years. The largest negative anomalies for

Fig. 6.8 Climate effects on phytoplankton biomass expressed as percent differences by re-gion for
surface chl-a (a, d), euphotic-layer chl-a, (b, e), and integral, water-column chl-a (c, f) from LTA
for warm/wet and cool/dry years. Regions are as defined in Fig. 6.7
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the three biomass measures occur in the mid- to lower Bay during cool/dry years.
Positive anomalies during warm/wet years are greater than negative anomalies dur-
ing cool/dry years for all regions and biomass measures.

Climatic forcing also affects the timing of the spring phytoplankton maximum
expressed as total chl-a biomass (Miller and Harding 2007). The highest value of
total chl-a biomass reaches ∼717 metric tons in late May during warm/wet years
and is significantly greater (p < 0.01) than the LTA of 455 metric tons. Total chl-a
biomass shows a broad peak of 383–445 metric tons in April-May in cool/dry years
and is significantly (p < 0.05) less than the LTA. Spring bloom intensity using
the metric of total chl-a biomass averages 276 metric tons greater in warm/wet
than in cool/dry years. The spatial extent of high biomass in the Bay also differs
in warm/wet and cool/dry climate conditions. Spatially averaged surface chl-a in
spring is 8.0mg m−3 and the area with >8mg m−3 averages ∼3800km2. During
warm/wet years the 8mg m−3 isopleth extends to the Bay’s mouth, expanding the
area with chl-a >8mg m−3 to 6836km2. Conversely, during cool/dry years the area
with surface chl-a >8mg m−3 is only 1872km2.

The contrasting responses to climate evident in data from airborne remote sens-
ing are useful to resource managers as they represent natural experiments wherein
warm/wet and cool/dry conditions mimic the effects of different nutrient loadings. A
cool/dry year with decreased nutrient loading leads to a commensurate decrease of
phytoplankton biomass and a chl-a distribution resembling that of a bygone decade.
Thus, analyses of phytoplankton dynamics that take account of climatic forcing are
valuable as a window to the past. Moreover, extensive research shows that the phy-
toplankton biomass accumulating in spring provides a significant fraction of the
fuel for summer hypoxia in the Bay. This link of phytoplankton biomass to hypoxia
accentuates the usefulness of synoptic and spatially explicit chl-a retrievals from
airborne remote sensing to the successful management of the ecosystem.

6.3.5 Primary Productivity From Remote Sensing and Models

PP derived from CBPM-2 applied to data from airborne remote sensing are in
good agreement with PP measurements over a broad range (346–3197mg C m2 d−1;
Miller 2006). Data binned by season (spring, summer, fall) and year (1995–2000)
show a highly significant (p < 0.001, r2 = 0.55, n = 18) relationship, despite dif-
ferences in sample density and timing. Time series of monthly, average PP for 16
years (1989–2004) reveal high interannual variability that is dominated by sum-
mer (June–September) (Fig. 6.9). Annual averages show highest values of 840 and
828mg C m−2 d−1 in the mid- to lower regions of the Bay, respectively, whereas the
light-limited upper Bay is lower at 698mg C m−2 d−1. Summer maxima show two-
to three-fold differences among years, averaging 1653mg C m−2 d−1 for the upper
Bay, 1957mg C m−2 d−1 for the mid-Bay, and 1860mg C m−2 d−1 the lower Bay.
Secondary spring peaks of PP occur during several years.
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Fig. 6.9 Annual and multi-year patterns of PP in Chesapeake Bay: (a) assembled data on integral,
water-column chl-a and PP from shipboard observations, 1982–1998 (n = 455), showing displace-
ment of peak biomass and PP (modified from Harding et al. 2002); (b) interannual variability of
PP derived from airborne remote sensing, 1989–2004 (modified from Miller 2006)

Miller (2006) computed integral PP as SIP and AIP using data from airborne
remote sensing, reporting two-fold interannual variability of SIP and AIP with
the largest range in the lower Bay and the smallest range in the upper Bay at
226 and 96g C m−2 yr

−1
, respectively. Average Bay-wide AIP is 301g C m−2 yr

−1

for the 16-yr time series. AIP is highest in the mid-Bay (306g C m−2 yr
−1) and

lowest (256g C m−2 yr
−1) in the upper Bay. Bay-wide SIP averages 189g C m−2

summer−1, whereas regional values range from a minimum of 164gCm−2 summer
−1

in the upper Bay to 193g C m−2 summer
−1

in the mid-Bay. On a Bay-wide scale,
the lower Bay is responsible for 52.6% of AIP, the mid-Bay for 42.5%, and the upper
Bay for only 4.8%. There are regional differences in AIP and SIP, but the propor-
tion of Bay-wide PP associated with each region is primarily a function of area. SIP
constitutes a large and consistent fraction of AIP, ranging from 55 to 79% with an
average of 62%. Simple linear regression of AIP on SIP for all regions produces a
highly significant relationship (p < 0.001) that explains 92% of the variance of AIP.
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Fig. 6.10 SIP and chl-a in Chesapeake Bay regions for warm/wet and cool/dry conditions from
airborne remote sensing

Examined regionally, SIP explains 75% of the variance of AIP in the upper Bay, and
94–95% of the variances in the mid- and lower Bay, respectively. Climatic forcing
exerts similar control on SIP as on surface chl-a, shown as deviations from LTA for
regional data grouped by warm/wet and cool/dry conditions (Fig. 6.10).

6.3.6 Satellite Remote Sensing

Satellite retrievals of surface chl-a from orbital ocean color missions are increas-
ingly useful for Chesapeake Bay (Magnuson et al. 2004, Harding et al. 2005,
Acker et al. 2005). Recent advances stem from a detailed analysis of algorithm
performance in the Bay, using ocean color data from SeaWiFS and in-situ observa-
tions from CBP monitoring cruises (Werdell et al. 2007). Both radiance-ratio and
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semi-analytical algorithms are effective to capture seasonal and regional distribu-
tions of surface chl-a in the mid- to lower Bay, whereas accuracy in the upper Bay
remains problematic due to high concentrations of chromophoric dissolved organic
matter (CDOM) and suspended particulate material (SPM). There are several advan-
tages to using a satellite system for environmental monitoring if current technolog-
ical and logistical difficulties can be overcome. Sun-synchronous orbiting satellites
such as SeaWiFS and MODIS provide 100–120 cloud-free images per year for the
Bay region, have fewer day-to-day operational considerations, and cover a much
broader region that includes the adjacent coastal ocean. Limitations of the current
generation of satellite sensors include pixels that are too large for relatively small
bays and rivers, atmospheric correction that cannot rely on assumptions used in the
open ocean, and complex and non co-varying absorption and scattering properties
that require local, empirically derived algorithms for most products (Magnuson et al.
2004, Harding et al. 2005). NASA’s Ocean Biology Processing Group is addressing
this last issue by comparing surface chl-a retrievals from nine different ocean color
algorithms to ground truth data collected in the Bay (Werdell et al. 2007).

6.4 Discussion

Since the beginning of airborne remote sensing in Chesapeake Bay nearly two
decades ago, we have improved spatial and temporal resolution of surface chl-a,
significantly adding to our understanding of phytoplankton dynamics previously
based on shipboard observations alone. Our focus has been on two pivotal periods
in the annual phytoplankton cycle – the spring diatom bloom that accounts for the
annual biomass peak, and spring-summer dinoflagellate outbreaks that often attain
‘red tide’ proportions – while collecting data at other times of year to give annual
coverage. Surface chl-a and derived products have been obtained at much finer reso-
lution than previously accomplished for an estuary by flying ocean color instruments
at a frequency of up to twice per week, collecting data at a spatial resolution of 10s
of meters along regular flight tracks. Images derived from a sequence of flights in
spring 2000 exemplify products we have attained for >400 dates between 1989
and 2007 (Fig. 6.2). The assembled data and images constitute a ‘climatology’ of
remotely-sensed surface chl-a that has been used in conjunction with in-situ obser-
vations to describe the links of freshwater flow and nutrient loading to variability of
phytoplankton biomass (cf. Harding 1994, Harding et al. 1994).

Small-scale variability of surface chl-a observed using airborne remote sensing
falls outside the sampling capabilities of shipboard monitoring, even by a concerted
long-term effort such as the CBP monitoring cruises. Each CBRSP flight generates
1000s of observations in a single day, whereas monitoring requires two ships, occu-
pies 49 main stem Bay stations, and occurs at a monthly frequency. Lateral variabil-
ity of surface chl-a detailed by Weiss et al. (1997) using ODAS data points out the
effectiveness of airborne remote sensing to quantify gradients on scales of 10s of
meters to kilometers. We analyzed surface chl-a for a series of flight tracks normal
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to the main axis of the Bay, showing high spatial variability that was most apparent
during phytoplankton blooms with high surface chl-a. Strong gradients observed us-
ing ODAS data consisted predominantly of west-to-east decreases of surface chl-a,
occurring commonly in spring and summer. Axial and lateral transects from more
recent flights using SAS III show strong gradients of surface chl-a consistent with
those earlier findings on small-scale variability (Fig. 6.3).

One of the unmatched strengths of airborne remote sensing in Chesapeake Bay
is resolving patchiness of surface chl-a. We found the magnitude of axial and lateral
variability of surface chl-a is comparable to Bay-wide variability, thus infrequent
sampling that does not address small-scale variability misses important informa-
tion about phytoplankton dynamics, such as the timing, position, and magnitude of
blooms. This limitation applies to harmful algal blooms (HABs) that are ephemeral
and of limited spatial extent. We reached a similar conclusion earlier that shipboard
sampling inadequately recovers information about high surface chl-a in the Bay
(Harding et al. 1994, 1995), and it is increasingly evident that quantifying small-
scale variability is essential to an accurate, complete characterization of phytoplank-
ton dynamics in the Bay. We submit that airborne remote sensing generates data
providing axial and lateral coverage of high spatial resolution that are appropriate
to this need.

Climatic perturbations such as tropical storms and hurricanes force significant
ecosystem responses that can be difficult or impossible to detect using shipboard
measurements. Our research on Hurricane Isabel in Chesapeake Bay represents an
example of the superiority of airborne remote sensing to capture such responses
(Fig. 6.4). N is usually limiting to phytoplankton growth by early fall in the mid-
to lower Bay, leading to low phytoplankton biomass toward the mouth (Fisher et al.
1992). This observation is consistent with long-term data from shipboard and air-
borne sampling showing a strong gradient along the main stem axis with low surface
chl-a (<5mg m−3) in southerly regions. Physical mixing of the Bay and the con-
sequent delivery of N to the surface mixing layer by Hurricane Isabel led to an
extensive fall bloom consisting of increased chl-a, a shift of floral composition to
diatoms, and increased PP commensurate with increased phytoplankton biomass in
a region usually characterized by seasonally low surface chl-a (Miller et al. 2006a).

Despite covering 3232km2, this unprecedented fall bloom would probably have
gone undetected by shipboard monitoring as it formed and dissipated rapidly. The
ability to undertake airborne remote sensing soon after Isabel provided a unique data
set bracketing this major climatic perturbation. Miller et al. (2006a) reconciled N in-
put associated with physical mixing with the chl-a increase. We estimated the 61.9
tons of chl-a that developed in the bloom area would require 192mg N m−2, assum-
ing N: chl-a (w/w) = 10 (Malone 1992). CBP monitoring cruises determined verti-
cal profiles of dissolved inorganic nitrogen (DIN) and a Zp of 3.8 m for the northern
half of the bloom region (<37.9◦N). These data were used to compute N supplied
to the euphotic layer by mixing of the water column as 387mg N m−2, more than
sufficient N to support the increase of chl-a we observed. The use of airborne remote
sensing to detect phytoplankton responses to Hurricane Isabel draws on the unique
capabilities of aircraft to give high-resolution, quasi-synoptic coverage of estuarine
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and coastal waters. These findings have implications for detecting event-scale cli-
matic forcing using sustained, long-term observations of key ecosystem variables.

Data from airborne remote sensing contribute to our understanding of seasonal
and interannual variability of phytoplankton dynamics, allowing us to link processes
in the Bay’s extensive 165,000km2 watershed to those in receiving waters of the
estuary proper. Our findings are consistent with earlier work on the effects of fresh-
water flow, nutrient loading, and turbidity (cf. Malone 1992), but draw on data of
unmatched spatial and temporal resolution to explicitly relate climatic forcing to
ecosystem responses. Recent analyses of shipboard observations show that freshwa-
ter flow and attendant properties, such as nutrient loading and light attenuation, exert
coincident effects on phytoplankton biomass, floral composition, and PP, suggesting
that climatic forcing significantly controls these properties (cf. Adolf et al. 2006).
The link of climate to phytoplankton dynamics suggested by detailed statistical anal-
yses of shipboard data has been extended recently by applying a synoptic climatol-
ogy to identify, categorize, and quantify regional climate patterns (Fig. 6.5). An
analysis of data from airborne remote sensing by Miller and Harding (2007) shows
predominantly warm/wet or cool/dry climate patterns affect the position and mag-
nitude of the surface chl-a maximum during spring (Fig. 6.6). Several derived mea-
sures of phytoplankton biomass for spring are also responsive to climate, evident
in regional distributions (Fig. 6.7) and deviations from the LTA (Fig. 6.8) for con-
trasting climate modes. Integrated biomass of the spring bloom expressed as metric
tons of chl-a using data from airborne remote sensing is also responsive to climatic
forcing. Total chl-a during warm/wet years peaked at ∼717 metric tons in late May,
significantly higher (p < 0.01) than the LTA of 455 metric tons. A broad maximum
of total chl-a of 383–445 metric tons during April-May occurs in cool/dry years, sig-
nificantly lower (p < 0.05) than the LTA. Intensity of the spring bloom expressed
as total chl-a averages 276 metric tons higher in warm/wet than in cool/dry years,
documenting climatic forcing of the production of organic material during spring.

The annual pattern of PP in the Bay resolved with data from airborne remote
sensing is essentially consistent with shipboard observations from >80 cruises span-
ning 1982–2004 (Harding et al. 2002). Both sources of data show a spring maximum
of euphotic-layer chl-a displaced from a summer maximum of PP, consistent with
the previous description by Malone (1992). A limitation of shipboard data that is
overcome by analyses based on airborne remote sensing is increased spatial and
temporal resolution. Shipboard data on PP we have collected give only seasonal
coverage and computations of AIP are thereby based on a few measurements spaced
over the year, supporting the textbook pattern of PP and euphotic-layer chl-a we de-
veloped by compiling data spanning many years (Fig. 6.9a; cf. Harding et al. 2002).
Recent analyses based on data from airborne remote sensing reveal attributes of the
annual cycle of PP that are not apparent in shipboard data alone. AIP derived from
a combination of remotely sensed data and models shows two-fold interannual vari-
ability not resolved with computations based on seasonal cruises (Fig. 6.9b). These
data also identify a significant correlation between AIP and euphotic-layer chl-a
(Miller 2006) that has pragmatic applications beyond the study of phytoplankton
dynamics.
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One such application is the use of PP data from airborne remote sensing to
address recruitment variability of young-of-year (YOY) Atlantic menhaden, an
important commercial fishery in the U.S. that has shown recent declines. AIP com-
puted using time-series of PP (1989–2005) from airborne remote sensing and mod-
els (Harding et al. 2002) allows us to relate interannual variability of recruitment to
AIP and chl-a using highly resolved data instead of those from sparse cruises. These
analyses show significant correlations of YOY menhaden to AIP and euphotic-layer
chl-a, suggesting a strong role of ‘bottom-up’ control in recruitment. These data
have also proven effective in developing a bioenergetics model for menhaden, adapt-
ing the methods of Hewitt and Johnson (1992) to evaluate mechanistic links of PP
to menhaden recruitment and growth (Annis et al. in prep). We tailor the model
to use chl-a from airborne remote sensing as an input, and derive estimates of the
growth potential for YOY menhaden based on water temperature and physiological
parameters defined in previous laboratory studies (Rippetoe 1993). This applica-
tion supports derivations of growth curves for Atlantic menhaden that are specific
to chl-a and temperature conditions for individual years. These estimates are subse-
quently compared to YOY menhaden collected on trawl surveys, providing a unique
opportunity to calibrate model outputs to field observations.

A recently developed hydrodynamic-biogeochemical model of the Bay is also
benefiting from the use of data from airborne remote sensing. The coupled three-
dimensional model is based on the Regional Ocean Modeling System (ROMS), us-
ing a biogeochemical model adapted from a five-component plankton model. Data
from airborne remote sensing are used to validate the coupled model, showing that
it captures observed seasonal and regional distributions of plankton in the Bay and
predicts the phase lag between the spring chl-a maximum and peak summer PP.
Quantitative comparisons between predicted and observed annual time series of
euphotic-layer chl-a and PP show the model has good predictive capability with
regression coefficients and skill scores falling in the range 0.5–0.9. Sensitivity anal-
ysis of model simulations for different parameter values and alternative formulations
of biogeochemical processes suggest that model predictions are robust, with outputs
for annual-mean euphotic-layer chl-a within 30% of 27.2mg m−2, and AIP within
15% of 246g C m−2 yr−1.

The success of airborne remote sensing in Chesapeake Bay is strong evidence of
the usefulness of this approach to collect data on phytoplankton dynamics in estu-
arine and coastal waters. Applications of the data are many and varied, as described
herein, and are especially relevant to support evaluations of ecosystem state and
trajectory. Increased spatial and temporal resolution of key ecosystem properties,
including phytoplankton biomass and productivity, is essential as we embark on
setting numerical criteria as mandated goals for water quality improvement. Such
efforts are well underway as a partnership of scientists and managers in the Bay.
But to develop and apply indicators of ecosystem health that express responses at
the primary producer level broadly, the singular success with this one estuary must
be extended to other systems, building data sets of sufficient spatial and temporal
resolution to detect trends.
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6.5 Conclusions

Metrics of phytoplankton chl-a clearly integrate the effects of watershed activities
that result from nutrient overenrichment of estuarine and coastal ecosystems. High
spatial and temporal variability of chl-a and PP in estuaries, however, makes it es-
sential to use new technologies to assess secular changes and separate them from
signals of lesser duration related to short-term forcing. CBRSP provides a unique
data source for the nation’s largest estuary, generating highly resolved chl-a and
PP data unattained previously. These data support progress in detailing the role of
freshwater flow/climate in regulating phytoplankton dynamics. The ecosystem-scale
measurements of chl-a and PP we acquire are at sufficiently fine spatial scales and
temporal frequency to serve as proximal indicators of nutrient loading for charting
the state and trajectory of water quality in the Bay. The combination of remotely
sensed and in-situ data reflects valuable sampling partnerships that enable us to
validate products derived from long-term ocean color measurements for waters of
complex optical properties.
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Chapter 7
Bio-Optical Characteristics and Remote Sensing
in the Mid Chesapeake Bay Through Integration
of Observations and Radiative Transfer Closure

Maria Tzortziou, Charles L. Gallegos, Patrick J. Neale, Ajit Subramaniam,
Jay R. Herman and Lawrence W. Harding, Jr.

Remotely sensed ocean color is an essential tool for studying water quality and
biogeochemical processes, and applying results for coastal ecosystem assessment
and management. Successful interpretation and application of remote sensing data
depends to a large extent on the accuracy of, and consistency among, the in-situ
data used in the calibration and validation of satellite measurements and in algo-
rithm development. Thus, the degree of closure among bio-optical quantities inde-
pendently measured in the field becomes critical for remote sensing applications.
Optical closure results can be used to identify sources of errors associated with dif-
ferent measurement methodologies, investigate uncertainties in relations between
inherent and apparent optical properties used in bio-optical models, and examine
the relative importance of certain processes in determining ocean color. Here, we
discuss how remote sensing of water quality in optically complex environments can
be improved by integrating optical measurements and radiative-transfer model cal-
culations. This approach is illustrated with recent findings on the bio-optical charac-
teristics of Chesapeake Bay waters, including measurements of the magnitude and
spectral characteristics of particulate backscattering. We then discuss progress on
optical closure studies in coastal regions and propose bio-optical relations for re-
mote sensing retrieval of water quality indicators in the Chesapeake Bay ecosystem.

7.1 Remote Sensing of Ocean Color in the Chesapeake Bay:
Progress and Challenges

The Chesapeake Bay is the largest estuary in the U.S. with about 150 rivers and
streams draining into the Bay. Its drainage basin is 166,000km2 in area, supports
more than 3,000 species of plants, fish and animals, and has over 15 million peo-
ple living nearby. In addition to its great socio-economic significance, Chesapeake
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Bay has significant commercial, recreational, and national security value directly
related to the productivity and quality of its water. In recent years the water quality
of the Chesapeake Bay has suffered as a consequence of growing human activity on
the surrounding land and from excessive fishing in the bay. Nutrients entering the
bay from agricultural runoff and inadequate sewage treatment often cause extensive
phytoplankton blooms, leading to increased biological oxygen demand and reduced
light penetration into the water column. Depleted fisheries, resulting from excess
removals, increased pollution, and loss of submerged aquatic vegetation (SAV), as-
sociated with reduced water clarity, are major problems in these waters (e.g. Boesch
2000).

Improving the Bay’s water quality has been a primary objective of manage-
ment agencies for several decades. Because the composition and concentrations
of water constituents (e.g. dissolved organic matter, phytoplankton and suspended
sediments) influence the water optical characteristics, optical measurements can be
applied to monitor changes in water quality in the Bay (e.g. Glibert et al. 1995,
Harding et al. 2004, Gallegos and Bergstrom 2005). Monitoring methods that in-
clude aircraft, satellite, and in situ optical instruments are being used to assess
ecosystem state and detect changes in response to management actions (Harding
et al. 2004). Recently, our ability to detect these changes has been augmented by
technological advances in optical sensors and radiative transfer modeling tech-
niques. Here, we discuss how remote sensing of water quality in this optically
complex environment can be improved by integrating optical measurements and
radiative transfer calculations. This approach is illustrated with recent findings on
the bio-optical characteristics of the middle region of the Chesapeake Bay.

Incorporating new techniques with in situ and remotely-sensed measurements
into the Chesapeake Bay monitoring activities is challenging, but also a criti-
cal step for taking advantage of the strengths offered by the different approaches
(e.g. Boesch 2000, Harding et al. 2004). In situ measurements of optical properties,
as well as physical, chemical, and biological indicators of the Bay’s health, have
been performed by several ship-based programs during the last decades. By pro-
viding observations at high spatial resolution and information on diurnal changes
or vertical distribution of water constituents, these field efforts have resulted in an
extensive monitoring network that has evolved to provide important information for
sustainable management of the Chesapeake Bay natural resources. Yet, the spatial
and temporal coverage of in situ measurements is often insufficient for resolving
important estuarine processes. Because in situ measurements are essentially point
observations, tides and advection can further complicate their interpretation.

Remote sensing of ocean color, using airborne or satellite sensors, offers the
capability of extending field observations beyond the restricted in situ sampling do-
main. Aircraft surveys provide surface maps at high spatial (less than 1 m) and spec-
tral (up to 256 channels in the visible) resolution. Since aircrafts can be flown under
clouds, they can provide data even on cloudy days. The Chesapeake Bay is proba-
bly the best-studied water body in the world using aircraft remote sensing, with over
300 flights flown between 1989 and 2002 (e.g. Hoge and Swift 1981, Harding et al.
1994, Lobitz et al. 1998). However, aircraft surveys, similar to shipboard surveys,
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are expensive to conduct, and only apply to the region within the flight range of the
aircraft. Satellite remote sensing provides nearly daily coverage over all coastal re-
gions using a common instrument with a single calibration. However, current ocean-
color satellite sensors have a spatial resolution of about 1 km at nadir view (satellite
directly overhead). Moreover, the sensor cannot ‘see’ through clouds, effectively re-
ducing the amount of available data in a particular region. To derive water optical
properties from remote sensing requires the determination of the fraction of the total
backscattered signal that originates from within the water by removing the atmo-
spheric component and that resulting from surface Fresnel reflection. Determining
these corrections to derive accurate estimates of the water leaving radiances is a ma-
jor issue for remote sensing of near-shore waters. The atmosphere over such water
bodies is heavily influenced by rapidly changing atmospheric pollution from natural
and anthropogenic input, and is more complex than the relatively homogenous atmo-
sphere over open oceans. Accounting for absorbing aerosols, ozone, NO2, and other
pollutants that change rapidly with time and space (e.g. Ahmad et al. 2007) may re-
quire more complicated atmospheric correction schemes than the static climatologic
look up tables used for open ocean conditions. Despite these difficulties, satellite
remote sensing of ocean color is an extremely valuable tool that complements tradi-
tional ship and aircraft surveys with synoptic monitoring of surface coastal waters
at temporal and spatial scales unattainable with field measurements alone (Dickey
et al. 2006).

Ocean remote sensing reflectance, Rrs, is related to backscattering, the scattering
of light in the opposite direction of the incident light, and absorption, the conver-
sion of photons to heat or chemical energy. In order to use satellite measurements
of ocean color to extract information on water composition it is necessary to de-
velop bio-optical algorithms relating Rrs either directly to the surface concentra-
tions of optically significant water constituents (empirical algorithms; e.g. Clark
1997, O’Reilly et al. 2000), or to their optical properties based on principles de-
rived from radiative transfer theory (semi-analytical inversion models; e.g. Garver
and Siegel 1997, Maritorena et al. 2002). Since the launch of the Coastal Zone
Color Scanner (CZCS) in October 1978, satellite ocean color observations have
contributed significantly to gaining a better understanding of biological activity in
open-ocean ‘Case 1’ waters where phytoplankton chlorophyll-a (chl-a) pigments
and co-varying material are the major optical components (e.g. Yentsch 1993,
Longhurst et al. 1995, Gregg and Conkright 2001). With more channels in the vis-
ible part of the spectrum, CZCS’s follow-on sensor SeaWiFS (Sea-viewing Wide
Field of view Sensor, launched in 1997) and newer instruments, including MODIS
(MODerate resolution Imaging Spectroradiometer, launched in 1999) and MERIS
(MEdium Resolution Imaging Spectrometer, launched in 2002), allowed for further
improvements in satellite retrievals of biogeochemical variables in Case 1 waters
(e.g. Yoder and Kennelly 2003, Carder et al. 2004, McClain et al. 2004, Curran
and Steele 2005). A more difficult challenge, however, has been developing bio-
optical algorithms suitable for use in optically complex ‘Case 2’ waters, such as
the Chesapeake Bay, where multiple, independently varying, dissolved and particu-
late, marine- and terrestrially-derived substances affect ocean color (e.g. Morel and
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Prieur 1977, Ruddick et al. 2001, Binding et al. 2003, Hu et al. 2003, Darecki and
Stramski 2004, Dall’Olmo et al. 2005).

Harding et al. (2005) examined the applicability of the SeaWiFS chl-a empiri-
cal algorithm OC4v4, a model relating variability in blue-green Rrs ratios to chl-a
changes (O’Reilly et al. 2000), for the Chesapeake. They found that SeaWiFS reli-
ably captured seasonal and inter-annual variability of phytoplankton biomass in the
lower Bay. However, the OC4v4 algorithm significantly overestimated chl-a in the
upper Bay due to strong absorption by non-covarying dissolved organic matter and
non-algal particles that are not sufficiently accounted for in this empirical algorithm.
Magnuson et al. (2004) used an extensive set of bio-optical data to parameterize the
semi-analytical Garver-Siegel-Maritorena (GSM01) model (Maritorena et al. 2002)
for the Chesapeake Bay and the adjacent Middle Atlantic Bight waters (model ver-
sion GSM01-CB). The GSM01 model allows for independent variation of several
sources of absorption and backscatter and uses multiple SeaWiFS wavebands in
the 412–670 nm spectral region. However, the lack of sufficient measurements of
backscattering, bb, for Bay waters affected backscattering parameterizations in the
GSM01-CB model and limited the authors’ ability to evaluate the model’s backscat-
tering product (Magnuson et al. 2004). Zawada et al. (2007) used a spectra-matching
optimization algorithm (Lee et al. 1999, Hu et al. 2003) to estimate bb in the Bay
from SeaWiFS data. In this case too, validation of the satellite bb estimates was
hindered by the lack of in situ bb measurements.

These studies underscore the need to improve our understanding on how certain
optical properties (e.g. particulate backscattering) affect remotely sensed quanti-
ties in the Chesapeake Bay, and develop more accurate algorithms for these Case
2 waters based on detailed in situ bio-optical characteristics. Development of ef-
fective coastal bio-optical algorithms and validation of remote sensing observations
using in situ bio-optical data require testing the accuracy of the data and the consis-
tency, or ‘optical closure’, among the independently measured quantities. Demon-
stration of optical closure involves solution of the equations of radiative transfer
using measured boundary conditions (e.g. downwelling surface radiance, Es(λ)) in-
herent optical properties (IOPs), such as absorption (a(λ)) and scattering (b(λ)),
and concentrations of in-water constituents, to predict apparent optical properties
(AOPs), such as downwelling in-water irradiance (Ed(λ,z)) or above-water remote
sensing reflectance Rrs(λ). Closure is obtained to the extent that model predictions
match independent measurements (schematic illustration shown in Fig. 7.1). Opti-
cal closure results can be used to investigate errors in measurement methodology
and uncertainties in relations between IOPs and AOPs used in bio-optical models,
as well as examine the relative importance of several bio-optical properties in deter-
mining coastal ocean color (Tzortziou et al. 2006).

In the following sections, we present some recent findings on the bio-optical
characteristics of Chesapeake Bay waters, including direct measurements of the
magnitude, variability and spectral characteristics of particulate backscattering. We
then discuss progress on optical closure studies in coastal regions and propose bio-
optical relations for remote sensing retrieval of water quality indicators in the Chesa-
peake Bay estuarine ecosystem.
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Fig. 7.1 Radiative transfer closure and its role in the interpretation of remote sensing ocean color
observations

7.2 Bio-Optical Characteristics of the Chesapeake Bay

In the Chesapeake Bay, phytoplankton biomass and primary productivity, nutrient
concentrations, and distributions of suspended particles and dissolved organic sub-
stances are highly variable. Their strong temporal and spatial variability are mainly
driven by seasonal changes in environmental conditions, freshwater inputs, frontal
features and tides and lateral gradients driven by estuarine circulation (e.g. Hood
et al. 1999, Harding et al. 2005, Adolf et al. 2006). The annual cycle of phytoplank-
ton in Chesapeake Bay typically consists of a winter–spring diatom bloom charac-
terized by high chl-a concentrations and low primary productivity, followed by a
summer maximum of picoplankton and flagellates coinciding with the annual pri-
mary productivity maximum (e.g. Malone et al. 1991, Malone 1992, Harding et al.
2002). The timing, position, and magnitude of the spring bloom are strongly influ-
enced by freshwater flow (Malone et al. 1988, Harding et al. 1994, Harding et al.
2002), dominated by the Susquehanna River located at the northern head of the es-
tuary. The summertime productivity is largely supported by regenerated nutrients
derived from metabolism of the spring bloom to support high primary productivity
(Malone 1992, Harding et al. 2005).

Consistent with studies in other areas of the Bay, measurements performed dur-
ing 2001–2002 in a region of the mid Chesapeake Bay (Fig. 7.2) revealed a wide
range of chl-a concentrations, [chl-a], and water optical characteristics. Details on
the methods for these measurements can be found in Tzortziou et al. (2006, 2007).
Relatively clear waters were observed during the fall, with low biological activity
and relatively low absorption, scattering, and [chl-a] values. Higher [chl-a] values,
associated with large surface phytoplankton bloom events, were observed in spring
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Fig. 7.2 Location of in situ measurements (stations HB, PI, TI and JT) and a typical cruise track,
for measurements performed in the mid Chesapeake Bay during 2001–2002 (from Tzortziou et al.
2006)

and summer (Tzortziou et al. 2007). Surface [chl-a] ranged from 3.5mg m−3 to
74mg m−3 with an average value of 14.7mg m−3 (Fig. 7.3).

Colored dissolved organic matter (CDOM) and non-algal particles (NAP) in the
Chesapeake Bay contribute considerably to light attenuation at blue-green wave-
lengths often used in satellite chl-a retrievals (Fig. 7.4). Combined contribution by
CDOM and NAP to surface (0–1 m) total (minus pure water) absorption, at-w, was
on average 61% at 532 nm and 59% at 488 nm in the mid Bay waters. Absorp-
tion by non-algal particles alone was as high as 56% and averaged 41% of at-w at
488 nm. Contribution by CDOM and NAP to surface at-w was even larger at shorter
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Fig. 7.3 Frequency histogram of surface [chl-a] (mg m−3) measured in the mid Chesapeake Bay,
2001–2002 (from Tzortziou et al. 2007)

Fig. 7.4 Average percent contribution of CDOM (aCDOM) phytoplankton (aphyt) and NAP (aNAP)
to surface total (minus pure water) absorption, along with the ±1 standard deviation (n = 136).
Results are shown at wavelengths 412, 443, 488, 510, 532, 555, 650, and 676 nm

wavelengths (e.g. 73% at 412 nm) because of the exponential increase in the absorp-
tion of both substances with decreasing wavelength.

Although both CDOM and NAP absorption increase exponentially with decreas-
ing wavelength, their absorption exponential spectral slopes, S, can be quite differ-
ent. Tzortziou et al. (2007) reported an average value of 0.018nm−1 for the SCDOM

in the mid Bay waters, and considerable variability (SD = 0.0032nm−1) among
sampling dates and locations. SNAP varied only slightly, having an average value of
0.011nm−1 (SD = 0.001nm−1) (Tzortziou et al. 2007). Because of the many dif-
ferent sources of dissolved and particulate compounds in the Bay and the different
processes affecting their quality, CDOM, NAP and phytoplankton amounts do not
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covary (Magnuson et al. 2004). According to Tzortziou et al. (2007), estimated co-
efficients of determination (R2 values) in linear regressions between phytoplankton
and CDOM, phytoplankton and NAP, and NAP and CDOM absorption at 440 nm
were 0.01, 0.28 and 0.08, respectively. The observed non-covariation between
CDOM and NAP and their largely different absorption spectral slopes complicate
monitoring of these biogeochemically important water components using remote-
sensing data, especially since most satellite Case 2 bio-optical algorithms combine
CDOM and NAP into one term (e.g. Carder et al. 2002, Maritorena et al. 2002).

The number of measurements of particulate backscattering, bbp, characteristics
in coastal and estuarine waters has increased rapidly in recent years (Loisel et al.
2007, Snyder et al. 2008), but the implications of this in situ information for re-
mote retrieval of particulate composition and distribution in Case 2 waters has not
been fully explored. Tzortziou et al. 2007 observed high bbp variability in the mid
Chesapeake Bay, depending on particulate loading, distance from land and mixing
processes. Surface bbp at 530 nm ranged from 0.013 to 0.166m−1. Higher bbp val-
ues were observed consistently near station Jetta (JT), which is located closest to
the land among the four sampling stations (Fig. 7.2) and is more strongly influ-
enced by shoreline erosion and resuspension of bottom sediments due to tidal and
land boundary effects. Considerable variation was also observed in the estimated
particulate backscattering fraction (or backscattering probability), which is defined
as the ratio of backscattering to total scattering by particles, bbp/bp. Backscatter-
ing fraction at 530 nm ranged from 0.006 to 0.036. Large values were measured
close to the bottom, consistent with an increase in the proportion of resuspended
inorganic sediments relative to organic particles with depth. In their measurements,
performed in three optically distinctive coastal regions off the coast of New Jersey,
in the Northern Gulf of Mexico and in Monterey Bay in California, Snyder et al.
(2008) also observed high variability in the particulate backscattering fraction, with
values at 550 nm in the range ∼ 0.005–0.06. The wavelength dependence they found
for bbp/bp varied from site to site and within each site. Averaged over all depths at
the four stations in the mid Chesapeake Bay, bbp/bp was 0.0128 (SD = 0.0032)
at 530 nm (Tzortziou et al. 2007). These results for the Chesapeake Bay were in
good agreement with bbp/bp values reported by Sydor and Arnone (1997) for the
near shore waters off Mississippi. Spectral dependence of bbp/bp in Chesapeake
Bay was weak, with average bbp/bp equal to 0.0133 (SD = 0.0032) at 450 nm and
0.0106 (SD = 0.0029) at 650 nm. This is in agreement with Mobley et al. (2002),
who measured a decrease in the backscattering fraction from 442 to 555 nm by less
than 24%, for the Case 2 waters offshore of New Jersey.

The large variability in water IOPs that characterizes the Chesapeake Bay re-
sults in large spatial and temporal variability in the magnitude of measured water
leaving radiance, Lw (the upwelling radiance just above the water surface), and Rrs.
However, Rrs spectra (and also Lw spectra) are similar in shape throughout the Bay
(Fig. 7.2 in Magnuson et al. 2004), with maximum values typically occurring at
green wavelengths (i.e. 554 nm, Fig. 7.5) because of the large pure-water absorp-
tion in the red and the large CDOM and NAP absorption in the blue region of the
spectrum.
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Fig. 7.5 Average Rrs spectrum for the mid Chesapeake Bay waters, estimated after normalizing
individual Rrs spectra to Rrs at 554 nm (N = 44). Standard deviation is shown as y-error bars (from
Tzortziou et al. 2007)

7.3 Role of Radiative Transfer Closure in Bio-Optical Modeling
of Coastal Waters

Successful remote retrieval of biogeochemical variables in near-shore waters relies
on accurate determination of the remotely sensed water reflectance, proper modeling
of the underwater light field, and on establishing robust algorithms relating amounts
of in-water constituents with water inherent and apparent optical properties based
on in situ information. Thus, successful applications and understanding of coastal
ocean color depend to a large extent on the accuracy of, and consistency among, the
in situ data used in the calibration and validation of satellite measurements and in
algorithm development. It is in this sense that the degree of closure between modeled
and measured radiometric quantities is critical for remote sensing applications.

Radiative transfer modeling can be used to investigate errors in measurement
methodology and uncertainties in relations between inherent and apparent optical
properties used in bio-optical models (Fig. 7.1). It can also be applied to exam-
ine the relative importance of certain processes, such as CDOM and chl-a fluores-
cence, in determining coastal ocean color (e.g. Bulgarelli et al. 2003, Tzortziou et al.
2006). Through a closure experiment, it is possible to evaluate how uncertainties in
the modeling of the atmosphere–water system affect computations of underwater
radiance distributions used in the generation of look-up tables for remote-sensing
applications. Bulgarelli et al. (2003) performed a closure experiment to quantify
how uncertainties in measurements of IOPs and bottom reflectance translate into
uncertainties in the numerical modeling of radiometric quantities in coastal waters.
Chang et al. (2003) used optical closure to understand the errors associated with
different in situ methods for the determination of Rrs(λ) in turbid coastal waters.



148 M. Tzortziou et al.

Three bio-optical properties, for which in-situ determinations are still rare in
many coastal regions despite their importance in obtaining closure between mea-
sured IOPs and light fields, are: (i) bbp and bbp/bp (e.g. Mobley et al. 2002);
(ii) long wavelength (> 700nm) non-algal particulate absorption (e.g. Babin and
Stramski 2002, Tassan and Ferrari 2003); and (iii) contribution of solar-induced
chl-a fluorescence to remotely-sensed water reflectance (e.g. Gower 1980, Mari-
torena et al. 2000). Inadequate characterization and uncertainties in the modeling
of these processes for the Bay waters complicate retrievals of key environmental
parameters from remote sensing data (e.g. Magnuson et al. 2004). Tzortziou et al.
(2006) showed that an approach combining new in situ measurements of particulate
backscattering and absorption with radiative transfer calculations can help address
some of the bio-optical modeling challenges imposed by the optical complexities of
the Chesapeake Bay waters.

7.3.1 Modeling of Backscattering Properties

The remote sensing reflectance, Rrs, is, to a first approximation, proportional to
the ratio of backscattering to the sum of backscattering and absorption [bb/(a +
bb)] (e.g. Morel and Prieur 1977). Thus, backscattering processes are of primary
importance in determining the magnitude and spectral shape of water reflectance.
However, measurements of particulate backscattering probability, magnitude and
spectral shape, or of the volume scattering function, VSF, which describes the di-
rectional dependence of scattering, are still rare in estuarine and coastal environ-
ments (Snyder et al. 2008). As a result, modeling of backscattering processes in
many studies has been largely based on a few existing datasets and assumptions re-
garding bb/b variability. For example, the Petzold ‘average particle’ VSF (Petzold
1972), derived from three measurements of VSF in San Diego Harbor and with an
estimated particulate backscattering fraction, bbp/bp, of ∼ 0.018, has been widely
assumed for modeling bb in coastal areas. The scarcity of bbp measurements in the
mid Chesapeake Bay waters poses a significant limitation in the development of
appropriate backscattering parameterizations for satellite algorithms, or the evalua-
tion of satellite backscattering products (e.g. Magnuson et al. 2004, Zawada et al.
2007). Due to the lack of in situ information on bb, Magnuson et al. (2004) param-
eterized the bbp spectral shape in the GSM01-CB model based on literature values
(e.g. Stramski and Kiefer 1991, Gould et al. 1999) and assuming zero wavelength
dependence for bbp. To evaluate the model performance, Magnuson et al. (2004)
compared the model-derived bbp coefficients to bbp values estimated from particu-
late scattering, bp, assuming a constant bbp/bp of 0.018 (from Petzold data). This
approach resulted in an overestimation of bbp compared to the bbp product of the
GSM01-CB model.

Tzortziou et al. (2006) applied detailed measurements of IOPs and radiomet-
ric quantities for the mid Chesapeake Bay waters to investigate the effect of the
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choice of VSF and the importance of variability in bb magnitude and spectral shape
for accurate modeling of underwater light fields and water-leaving radiance, Lw,
in these waters. Radiative transfer model simulations, performed using the exten-
sively validated Hydrolight underwater radiative transfer program (Mobley 1988),
showed that information on the spectral shape and vertical structure of bbp/bp is
important when modeling backscattering processes. It was also shown that the Pet-
zold ‘average particle’ assumption is usually not applicable for the Chesapeake Bay.
Alternative formulations for backscattering processes were necessary for accurate
bio-optical modeling in these waters.

Model calculations are shown here for an example data set when measured
bbp/bp in the blue-green was close to 0.015. Use of a Petzold phase function
in model simulations led to an underestimation of Ed(443) by ∼ 20% at 3–5 m
depths compared to measurements. Upwelling radiance just below the water sur-
face, Lu(0−), and Lw were overestimated by 30% at 443 nm and by 30–50% in
the 550–650 nm wavelength region (Fig. 7.6, stars). This large disagreement, and
the opposite signs in the estimated Ed and Lu differences, resulted mainly because
the assumed bbp/bp of 0.018 was too large for the specific waters.

The agreement between model results and measurements was improved consid-
erably when information on bbp/bp magnitude was incorporated into the model by
using a Fournier Forand (FF) phase function scaled to measured bbp/bp profiles
(Mobley et al. 2002). The FF VSF is an analytical representation of the angular scat-
tering of light that is determined by the particle index of refraction and the particle-
size distribution (Fournier and Forand 1994). Mobley et al. (2002) demonstrated

Fig. 7.6 Lw spectra estimated using: (i) a Petzold ‘average particle’ scattering phase function
(stars), (ii) a FF scattering phase function with a constant backscattering ratio, bbp/bp = 0.015
(open circles); and (iii) a FF scattering phase function as determined by measured wavelength-
and depth- dependent bbp/bp (open squares). Measured Lw are shown as filled squares. Percent
differences in Lw between measurements and model estimations are shown in the inset Fig. 7.7.
(percent differences estimated as (Lwmodel −Lwdata)/Lwdata) (from Tzortziou et al. 2006)
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that the FF VSF can be specified mainly by the backscattering fraction. Use of a FF
phase function with a backscattering fraction constant with wavelength and depth
and equal to the average value measured in the blue-green (bbp/bp = 0.015) resulted
in an overestimation of Lw by ∼ 15% in the blue-green spectral region (compared to
∼ 30% when using the Petzold assumption). Overestimates were larger, ∼ 20–30%,
at the red wavelengths because measured bbp/bp showed a small decrease with in-
creasing wavelength (Fig. 7.6, open circles).

Modeling bbp using a FF phase function and accounting for the bbp/bp spectral
shape and vertical structure further improved the agreement between data and model
simulations. Absolute percent differences between model estimated and measured
Lw(λ) were reduced to less than 10% at all wavebands (Fig. 7.6, open squares).
Use of FF VSF constrained by measured wavelength- and depth-dependent bbp/bp

consistently improved agreement between model and data for a wide range of bio-
optical conditions in the Chesapeake Bay waters (Table 7.1).

Chang et al. (2003) examined optical closure in the near shore waters off New
Jersey by performing radiative transfer calculations using measured VSFs con-
stant with wavelength and depth. Their average absolute percent differences be-
tween measured and model-estimated Lw(λ ) were 20% at 443 nm, 22% at 554 nm,
and 17% at 682 nm, similar to the results in Tzortziou et al. (2006) when us-
ing vertically and spectrally constant bb/b (Table 7.2, step 2). The use of a FF
scattering phase function constrained by measured bb/b allowed to incorporate
information on bb/b magnitude, spectral shape, and vertical structure into the ra-
diative transfer model, and account for the bb/b spatial and temporal variability
observed in the Bay waters. This approach reduced differences between measured
and model-estimated Lw, improving optical closure in coastal waters (Tzortziou
et al. 2006). Moreover, when Magnuson et al. (2004) used a bbp/bp of 0.0125
(instead of 0.018), which is close to the average surface bbp/bp reported for the
mid Chesapeake Bay waters by Tzortziou et al. (2006), the bias between their es-
timated bbp values and the GSM01-CB bbp product for the Chesapeake Bay was
reduced (Fig. 11(g,h) in Magnuson et al. 2004). Therefore, detailed information on
backscattering variability, including vertical and spectral resolution of backscatter-
ing processes, is necessary for radiative transfer modeling of water reflectance in the
Chesapeake Bay and application of both data and model results to satellite algorithm
development.

Table 7.1 Range of values (min-max) of wavelength specific total-water absorption (at-w), attenu-
ation (ct-w), the backscattering to scattering ratio (bb/b) and concentration of chl-a for those days
for which Hydrolight simulations were performed (from Tzortziou et al. 2006)

at-w(440) at-w(676) ct-w(440) ct-w(676) bb/b [chl-a]
(m−1) (m−1) (m−1) (m−1) (530) (mg m−3)

Min 0.6 0.12 2.5 1.6 0.006 4.8
Max 1.44 0.44 8.5 6.3 0.020 23
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Table 7.2 Improvement of agreement between measured and model-estimated Lw as information
on the specific IOPs measured at station PI (28 September 2001) is successively incorporated into
the radiative transfer model. The final agreement between data and model (step 4) demonstrates
the good optical closure obtained at this study site after applying measurement results to properly
model optical properties in the complex Chesapeake Bay waters (from Tzortziou et al. 2006)

Radiative transfer modeling Absolute % difference between
model and data

1. at-w(715) = 0, fluorescence included, Petzold VSF for Lw(554): 50%
2. FF VSF with bb/b = 0.015 (otherwise 1) for Lw(554): 20%
3. FF VSF with measured bb/b(λ,z) (otherwise 1) for Lw(554): 9%
4. at-w(715) = ap(715) (otherwise 3) for Lw(554): 0.6%

for Lw(685): 4%
5. chl-a fluorescence not included (otherwise 4) for Lw(685): 40%

7.3.2 Long Wavelength Particulate Absorption

Water absorption coefficients are frequently measured as part of near shore bio-
optical studies. However, current understanding of variations in the non-algal partic-
ulate absorption spectra is still limited (Babin et al. 2003) and uncertainties remain
about the long-wavelength particulate absorption in highly turbid waters, which
can affect model calculations of reflectance spectra and underwater light fields
(Tzortziou et al. 2006).

In situ measurements of water absorption are typically made using reflecting
tube absorption meters and spectrophotometers (e.g. WetLabs Inc. AC9 instrument).
One common assumption when correcting these measurements for scattering errors,
due to uncollected scattered light, is that particulate absorption at 715 nm is zero
(Zaneveld et al. 1994). Based on this assumption, a correction is typically applied to
absorption data by subtracting a fraction of the measured scattering from the whole
measured absorption spectrum. The fraction is scaled to set non-water absorption at
715 nm to zero. That is,

at−w (λ )corrected = at−w (λ )measured −
at−w (715)measured

bp (715)measured
bp (λ )measured (7.1)

However, this assumption is not always valid, especially in turbid coastal wa-
ters, resulting in negative bias in estimated absorption values and inaccuracies in
AOPs computed by radiative transfer models. Indeed, measurements in the mid
Bay waters revealed low, but non-zero, particulate absorption in the wavelength re-
gion 700–730 nm (example data shown in Fig. 4 in Tzortziou et al. 2006). Mea-
surements were performed both for particulates on glass fiber filters (standard
method) and for particle suspensions inside an integrating sphere (Tzortziou et al.
2006). Measured at-w(715) values for the studied region of the Bay were typi-
cally 0.03m−1 (S.D. = 0.01), commensurate with expectations based on measured
absorption characteristics (absorption magnitude, aNAP(440), and spectral shape,
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SNAP) of non-algal particles in these waters. Weak particulate absorption in the
700–730 nm was also shown by Gallegos and Neale (2002) for the Rhode River sub-
estuary on the western shore of the mid Chesapeake Bay, and by Babin and Stramski
(2002), Tassan and Ferrari (2003), and Babin et al. (2003) for other coastal waters.

Ramifications of this long-wavelength residual particulate absorption for estima-
tion of radiometric quantities in the visible, were examined more thoroughly for
an example data set when measured particulate absorption at 715 nm was close to
0.02m−1 (Tzortziou et al. 2006). When model simulations were performed using
in situ absorption data corrected assuming zero at-w(715) (Eq. 7.1), differences be-
tween model-estimated and measured Lu values at 1 m depth were as large as 17%
at 490 nm and 17.2% at 554 nm (Fig. 7.7). The model overestimated both Ed(z) and
Lu(z), due to the negative bias in at-w(λ), and the disagreement between measure-
ments and model estimations increased with increasing depth. Similar results were
observed when comparing measurements and model estimates for other days and

Fig. 7.7 (Left column) Comparison between measured (solid lines) and model-estimated Lu(z)
(in μW nm−1 cm−2 sr−1) at 443, 554 and 670 nm, assuming at-w(715) = 0 (open circles) and as-
suming at-w(715) = ap(715) (filled circles). Lu values are truncated at 0.01μW nm−1 cm−2 sr−1,
due to large measurement uncertainty at low light levels. (Right column) Similarly for Ed(z) (in
μW nm−1 cm−2). Data are shown for measurements performed at station PI, on 28 September 2001
(from Tzortziou et al. 2006)
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stations. The overestimation of both Lu and Ed by the model could not be explained
only by errors in measured bb, as overestimation, for example, of bb would result in
overestimation of Lu but underestimation of Ed.

Accounting for the small particulate absorption at 715 nm when correcting in situ
absorption data improved radiative transfer closure in the Bay waters by reducing
the model’s systematic overestimation of both Ed and Lu (Fig. 7.7, Table 7.2 step
4). In this case, a modified in situ absorption correction for scattering errors was
performed according to:

at−w (λ )corrected = at−w (λ )measured −
at−w (715)measured −ap (715)

bp (715)measured
bp (λ )measured

(7.2)

where ap(715) is the total particulate absorption at 715 nm measured spectrophoto-
metrically. Percent differences between model-estimated and measured Lu values at
1 m depth improved to 9% at 490 nm and 5.8% at 554 nm (compared to 17% and
17.2%, respectively, without allowing for small positive ap(715)). Similar improve-
ment in the agreement between model and data was observed for samples represent-
ing other bio-optical conditions in the Bay.

Due to strong absorption by CDOM and NAP at blue wavelengths, and wa-
ter itself at red wavelengths, the effect was most noticeable at green wavelengths
(i.e. 554 nm). In this wavelength region, total absorption is relatively small, and
small changes, equal to the observed particulate absorption at 715 nm, have a rela-
tively large effect on model simulations (Fig. 7.7). Failure to account for the small
near-infrared particulate absorption when correcting field measurements used as in-
puts for the radiative transfer model, leads to consistent, though variable, model
overestimation of Rrs around 554 nm. This is important when applying these model
results to algorithm development, as this is a key wavelength region that is being
used in both empirical and semi-analytical satellite algorithms for remote chl-a re-
trievals (e.g. O’Reilly et al. 2000, Carder et al. 2002, Maritorena et al. 2002).

7.3.3 Modeling Fluorescence in the Chesapeake Bay

Sun-induced chl-a fluorescence emission at wavelengths close to 685 nm affects the
magnitude and spectral shape of reflectance in natural waters (e.g. Gordon 1979,
Maritorena et al. 2000). As fluorescence is an indicator of both the amount of chl-
a and the rate of photosynthesis, much attention has been focused on the use of
the remotely sensed chl-a fluorescence signal for inferring information on primary
productivity and phytoplankton physiological state in coastal waters (e.g. Gower
and Borstad 1981, Abbott and Letelier 1999, Huot et al. 2005). This signal can be
particularly strong in estuaries that, similar to the Chesapeake Bay, are characterized
by high chl-a concentrations.

Radiative transfer studies provide a means of evaluating the effect of chl-a flu-
orescence on Rrs and, consequently, a basis for remote sensing retrieval of chl-a
distributions. Model simulations for the Chesapeake Bay showed that accounting
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for chl-a fluorescence removes large errors in modeling Rrs in the red wavelengths
(Tzortziou et al. 2006). Neglecting fluorescence for a [chl-a] of 7.3mg m−3 resulted
in model underestimations of Lu(0−), Lw and Rrs by as much as 30–40% in the
wavelength region around the chl-a fluorescence maximum at 685 nm compared to
measurements. Including chl-a fluorescence in the radiative transfer modeling, using
the Hydrolight default fluorescence efficiency of 2% (Mobley 1994), considerably
improved agreement between model and data, reducing absolute percent differences
to 4–8% (Table 7.2).

Assumptions regarding the chl-a fluorescence efficiency affect model calcula-
tions near 685 nm. Maritorena et al. (2000) found that vertical profiles of fluores-
cence quantum yield in the Case 1 Pacific waters were strongly structured, with
relatively low (1%) values close to the surface and maximal (5–6%) values at larger
depths. Similar in situ determinations of chl-a fluorescence efficiency variability for
the Chesapeake Bay waters could further improve model estimates of reflectance
at red wavelengths. Obtaining good closure of model and measurements in the red
supports the use of these wavelengths for chl-a retrieval from remotely sensed re-
flectance of Bay waters, as opposed to using Rrs in the blue and green where absorp-
tion is dominated by CDOM and non-algal particles.

7.3.4 Overall Radiative Transfer Model Performance

Based on the foregoing results for a single station, which are summarized in
Table 7.2, Tzortziou et al. (2006) performed radiative transfer calculations for more
stations in the mid Chesapeake Bay by: (i) using a FF phase function as determined
by measured profiles of bbp/bp spectra to account for the observed temporal and
spatial variability of bbp/bp, (ii) allowing for a small particulate absorption at the
715 nm wavelength region (equal to the measured ap (715)) when correcting in
situ absorption estimates used as input to the model, and (iii) including chl-a flu-
orescence. For completeness, fluorescence by CDOM was also included (using a
fluorescence efficiency based on Hawes (1992)), though neglecting CDOM fluores-
cence in model simulations had a relatively small effect on Rrs and Lw estimations
(i.e. 2–5% underestimation at the blue wavelengths and negligible effect at longer
wavelengths; Tzortziou et al. 2006). Application of these measurement results to
modeling of bio-optical processes in the Chesapeake Bay, allowed for improved op-
tical closure between independently measured inherent and apparent optical proper-
ties over a wide range of observed bio-optical conditions (Table 7.1).

Model Ed and Lu values, estimated from measured IOPs, were in good agreement
with measurements (Fig. 7.8). The agreement between model and data extended for
over three orders of magnitude dynamic range in radiance and irradiance values.
In the upper three meters, coefficients of determination assuming a 1:1 relation be-
tween model and observed values were 0.99 and 0.95 for Ed and Lu respectively. For
average values of attenuation (c(412) = 5.5m−1 and c(532) = 4.2m−1) measured
in the Chesapeake Bay (Tzortziou et al. 2006), the upper three meters correspond to
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optical depths (ζ = c z) of 16.5 and 12.5, at wavelengths 412 and 532 nm, respec-
tively. In these optically thick waters, the upper 3-meter layer is the most important
for remote sensing. For depths greater than 3 meters (N = 315), estimated R2 was
smaller, 0.95 and 0.92 for Ed and Lu respectively. Closer to the bottom, larger per-
cent differences between model and data typically occur, since both measurements
and model results have relatively high levels of uncertainties due to very low light
levels, problems with dark signal correction and small model-input errors that prop-
agate in the model calculations.

Although measured Lw spectra in the Bay are highly variable because of large
variation in Es and water IOPs, Lw(λ) measurements were consistently in good
agreement with model results (Tzortziou et al. 2006). Average absolute percent dif-
ferences between measured and model-estimated Lw were smaller than 10% in the
412–670 nm wavelength region, with a standard deviation in the percent differences
ranging between 5 and 7%. The coefficient of determination assuming a 1:1 relation

Fig. 7.8 Comparison
between model-estimated and
in situ measured Ed(z) (in
μW nm−1 cm−2), Lu(z) (in
μW nm−1 cm−2 sr−1), and Lw
(in μW nm−1 cm−2 sr−1) for
all cruises-stations that
comparisons with the
radiative transfer model were
performed. Comparisons
within the first 3 meters for
Ed and Lu are shown as dark
circles (R2 = 0.99 for
Ed, R2 = 0.95 for Lu), while
comparisons for depths below
3 m are shown as open circles
(R2 = 0.95 for Ed, R2 = 0.92
for Lu), (the 1:1 line is also
shown for comparison)

(a)

(b)

(c)
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between model and measured Lw values (Fig. 7.8) was R2 = 0.98 (N = 112). These
differences are considerably smaller than those presented in the few studies of opti-
cal closure performed previously in near shore waters of similar optical complexity
(e.g. Bulgarelli et al. 2003, Chang et al. 2003).

The improved optical closure in the Chesapeake Bay waters was obtained after
using depth and wavelength resolved measurements of bb/b, properly correcting ab-
sorption measurements in a way that allowed a small residual particulate absorption
at 715 nm, and including chl-a fluorescence in model simulations. Given that aver-
age values for bb/b and SNAP in this study were within the range of values reported
in previous studies (e.g. Mobley et al. 2002, Babin et al. 2003, Ferrari et al. 2003,
Boss et al. 2004a, Magnuson et al. 2004), and that chl-a concentrations were not
excessively high for estuaries, we expect that proper accounting for these optical
characteristics would be equally important in optical modeling of other coastal and
estuarine waters.

7.4 Remote Sensing of Chl-a and Non-Algal Particles
in the Chesapeake Bay

Obtaining synoptic-scale information on the concentration and dynamics of dis-
solved and particulate, organic and inorganic water constituents using remotely
sensed ocean color is critical for primary production studies, coastal water quality
monitoring, and carbon cycle modeling in Chesapeake Bay. However, application of
currently operational satellite algorithms in these waters often results in erroneous
retrievals (as shown in Harding et al. 2005 and Tzortziou et al. 2007), which un-
derscores the need to examine alternative, regionally specific algorithms based on
detailed in situ bio-optical measurements. As discussed in Sect. 7.3, integration of
observations with optical closure results is essential for examining the accuracy of
the in situ data and determining the contribution of various water constituents to
the backscattering and absorption characteristics of the Chesapeake Bay. Measure-
ments and radiative transfer model results can, then, be applied to the development,
parameterization, and refinement of bio-optical algorithms towards improved re-
mote retrieval of biogeochemical quantities, such as chl-a and suspended inorganic
particles, in this estuarine ecosystem.

7.4.1 Remote Sensing of chl-a in the Chesapeake Bay

Chlorophyll-a concentrations in the mid and upper Chesapeake Bay are typically
considerably larger than 2mg m−3 (e.g. Magnuson et al. 2004, Tzortziou et al.
2007, Gitelson et al. 2007). For [chl-a] > 2mg m−3, extant satellite chl-a algo-
rithms like the SeaWiFS OC4V4 (O’Reilly et al. 2000), the MODIS semi-analytical
algorithm (Carder et al. 2002) and the MODIS OC3M (O’Reilly et al. 2000) are all
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based on empirical relations between [chl-a] and reflectance ratios in the blue-green
spectral region (i.e. 443–555 nm). The specific wavelengths in these algorithms are
chosen on the basis of strong absorption by algal pigments at blue wavelengths
(e.g. 443 nm) and their weak absorption around 550–580 nm. These algorithms,
however, do not account sufficiently for any interference from other water com-
ponents that are optically significant in coastal waters. When considering previous
results for the Chesapeake Bay (e.g. Magnuson et al. 2004, Tzortziou et al. 2007)
showing large contributions by non-covarying CDOM and NAP to total light at-
tenuation at blue and green wavelengths, the weak performance of MODIS and
SeaWiFS chl-a retrievals in these Case 2 waters is not surprising. Using Mie scat-
tering calculations, Wozniak and Stramski (2004) showed that even relatively low
concentrations of mineral particles of the order of 0.1g m−3 can considerably affect
chl-a estimates from standard SeaWiFS and MODIS algorithms that are based on
blue-green reflectance ratios. In the Chesapeake Bay turbid waters, mineral partic-
ulate concentrations are typically much larger (average concentration of 4.8g m−3

reported in Tzortziou et al. 2007), strongly affecting the Rrs signal in the blue-green.
Because of the strong interference from CDOM and non-algal particulate ab-

sorption in the blue-green, regionally-specific algorithms based on the strong chl-a
fluorescence signal at around 685 nm or the chl-a absorption feature at 675 nm have
been proposed for improving chl-a retrievals in highly turbid, coastal and inland
waters (e.g. Gower and Borstad 1981, Letelier and Abbott 1996, Ruddick et al.
2001, Dall’Olmo and Gitelson 2005, Dall’Olmo et al. 2005). Tzortziou et al. (2007)
examined the correlation between surface [chl-a] and various two-band MODIS
Rrs ratios using in situ data for the mid Chesapeake Bay, and found that vari-
ability in surface [chl-a] was most strongly correlated with changes in the ratio
Rrs(677)/Rrs(554) (N = 40, R2 = 0.54). The derived relation between [chl-a] and
this Rrs ratio was consistent with predictions based on radiative transfer calcula-
tions and observed relations between in situ data of [chl-a] and IOPs (bb and a)
at the two specific wavelengths. Based on a seasonally-limited but detailed in-situ
dataset of water IOPs and radiance reflectance spectra, collected from a number of
stations in tributary rivers and the main stem of the Chesapeake Bay during 11–18
July 2005, Gitelson et al. (2007) also proposed the use of red and near-infrared spec-
tral bands for chl-a retrievals in the Chesapeake Bay waters (i.e. a two-band model
with SeaWiFS 670 and 765 nm bands (R2 = 0.65) and MODIS 667 and 748 nm
bands (R2 = 0.68), and a three-band model with MERIS 665, 705 and 754 nm bands
(R2 = 0.75)).

These results strongly suggest that further exploitation of the ocean color signal
in the red and near-infrared, where interference from CDOM and NAP absorption
is minimal, is necessary for improving satellite monitoring of biological activity
in these turbid and productive waters. Moreover, one of the main factors affecting
the accuracy of satellite chl-a retrievals in near shore waters is correction for the
atmosphere’s optical characteristics. Problems with atmospheric correction of satel-
lite data in the blue due to extrapolation of aerosol properties from near-infrared to
shorter wavelengths (Gordon and Voss 1999) are avoided when using information
in the red wavelengths for chl-a retrievals.
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7.4.2 Remote Sensing of Backscattering and Non-Algal Particles

Particulate backscattering in the water depends on the concentration, size, shape,
internal structure and refractive index of suspended, organic and inorganic parti-
cles (van de Hulst 1981). Thus, bbp carries useful information about the abundance
and the types of seawater constituents that affect carbon fluxes and biogeochemical
cycling in coastal ecosystems (Boss et al. 2004b). As carbon content in individual
plankton cells is coupled with particle size (Verity et al. 1992, Montagnes et al.
1994) and refractive index (Stramski et al. 1999), Stramski et al. (1999) reported
high correlation between surface bbp at 510 nm and surface concentration of par-
ticulate organic carbon (POC) in the Southern Ocean. In coastal waters, however,
strong correlation between backscattering and the organic component of particu-
late matter is not to be expected, as in these regions a significant fraction of sus-
pended particles consists of inorganic material derived from various sources, such
as river discharges, bottom resuspension, atmospheric deposition, or coastal erosion
by wave and current action (Stramski et al. 2004).

Particulate backscattering in the Chesapeake Bay is typically highly variable
(Tzortziou et al. 2007). This variation in surface bbp significantly affects Rrs at all
wavelengths (Fig. 7.9) and, in the mid Chesapeake Bay, was found to be the main
factor driving observed variability in the Rrs at 670 nm (N = 37, R2 = 0.88),

bb(650) = 15.82 ·Rrs(670)−0.008 (7.3)

Although Rrs magnitude is affected by both backscattering and absorption (Rrs ∼
bb/a), variability in Rrs at 670 nm is driven more by changes in particulate backscat-
tering than by changes in particulate absorption because of the relatively large con-
tribution by pure water to total absorption at 670 nm. In Tzortziou et al. (2007),
surface bb in the red varied by more than an order of magnitude (measured range
0.008–0.13m−1), corresponding to more than an order of magnitude changes in
Rrs(670). Particulate absorption in the red was also highly variable (at-w(670)
ranged between 0.1 and 1m−1). However, when at-w(670) was added to the rela-
tively large pure water absorption (aw(670) = 0.44m−1; Pope and Fry 1997) total
absorption varied by less than a factor of 3. At shorter visible wavelengths, the con-
tribution of pure water absorption is minimal. Therefore, Rrs at 443 and 532 nm is
affected strongly by changes in both total absorption (strong contribution by non-
covarying particulate and dissolved components) and total backscattering (contribu-
tion by suspended particles). The strong correlation found between bb and Rrs(670)
indicates that satellite measured Rrs at 670 nm can be applied to remotely retrieve
particulate backscattering in these Case 2 waters (Tzortziou et al. 2007). This could,
subsequently, be used to derive information on the major water constituents that
regulate backscattering variability in the Bay.

Backscattering fraction can provide a proxy to the particulate bulk refractive
index, which in turn is an indicator of the particulate composition in the water
(Twardowski et al. 2001, Stramski et al. 2004). Because of their high water content,
phytoplankton cells have relatively low refractive index and low backscatter signal
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Fig. 7.9 Relation between
measured bb (m−1) and
Rrs (sr−1) at wavelengths
(a) 443 nm (bb measured
at 450 nm), (b) 532 nm (bb
measured at 530 nm) and
(c) 670 nm (bb measured at
650 nm)

(a)

(b)

(c)

compared to inorganic particles (e.g. Carder et al. 1974, Stramski et al. 1988, Aas
1996). As particulate backscattering increases with increasing particulate refractive
index, bbp/bp values for phytoplankton-dominated waters are typically lower than
those of waters where suspended inorganic particles dominate (Twardowski et al.
2001). Measurements by Twardowski et al. (2001) in the Gulf of California and by
Boss et al. (2004a) off the New Jersey coast showed that phytoplankton-dominated
surface waters with high chl-a concentrations had bbp/bp values of ∼ 0.005–0.006,
while bbp/bp exceeded 0.012 in regions where highly refractive re-suspended inor-
ganic particles dominated. The bbp/bp values measured in the Bay, with an average
of 0.0125 at 530 nm (Tzortziou et al. 2007), were considerably larger than previ-
ously reported values for phytoplankton-dominated waters, suggesting that partic-
ulate backscattering in mid Chesapeake Bay is dominated by suspended inorganic
particles despite the large concentration of chl-a in these waters.
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Non-algal particles contributed significantly to total in-water absorption in the
studied region of the Bay (Fig. 7.4). The magnitude of NAP absorption showed
strong seasonal and temporal variability. However, the spectral shape of NAP ab-
sorption showed little variation, with SNAP values having a narrow range around an
average of 0.011nm−1 (SD = 0.001nm−1). According to previous studies that at-
tempted to infer qualitative information on non-algal particles from their absorption
characteristics, SNAP values of about 0.011nm−1 are typical for mineral-dominated
waters. Bowers et al. (1996) estimated an average SNAP value of 0.011nm−1 (SD =
0.0002nm−1) for the absorption spectra of over 100 samples of mineral suspended
solids collected from the Menai Strait in the Irish Sea. Measurements by Babin
et al. (2003) at about 350 stations in European coastal waters showed that SNAP was
on average 0.0117nm−1 for the mineral-dominated waters in the North Sea and En-
glish Channel. Ferrari et al. (2003) measured SNAP in the range 0.0095–0.0125nm−1

for the coastal waters of the North Sea and German Bight where 76% of total
suspended particulate matter was inorganic. Relatively higher SNAP values, in the
range 0.0115–0.0145nm−1, were reported for the Baltic Sea, which is known for
its high organic matter content (Voipo 1981, Ferrari et al. 2003). Similarly, Babin
et al. (2003) found that highly organic samples collected from the Baltic Sea had
significantly higher SNAP compared to mineral-dominated waters, suggesting that
observed variation in SNAP may be related to the proportion of mineral and organic
matter. The close agreement between the SNAP values reported in Tzortziou et al.
(2007) and those reported in studies for suspended inorganic particles, and the high
particulate backscattering ratio measured relative to phytoplankton-dominated wa-
ters, indicate that highly-refractive non-algal particles with high inorganic content
are the major water constituents controlling changes in both aNAP and bbp in the mid
Chesapeake Bay waters.

Consistent with these results, bb in the mid Bay, although highly variable, was
found to be strongly correlated with the magnitude of non-algal particulate absorp-
tion at 380 nm (Fig. 7.10a) (N = 44, R2 = 0.83), according to:

bb(650) = 0.0411 ·aNAP(380)−0.0107 (7.4)

Because SNAP was only slightly variable in the Chesapeake Bay, suggesting little
variability in composition, the magnitude of NAP absorption can be used as a proxy
for non-algal particles abundance in these waters. Zawada et al. (2007) used bb(440)
derived from SeaWiFS satellite data (Lee et al. 1999, Hu et al. 2003) as a proxy for
total suspended solids (TSS) concentrations in the Chesapeake Bay. Their derived
coefficient of determination between field measurements of TSS and satellite bb

was R2 = 0.4, which is considerably lower than the R2 of 0.83 that was derived
between bb(650) and aNAP in Tzortziou et al. (2007). Several factors can limit the
degree of correlation between satellite-derived bb and in situ measurements of TSS,
e.g. scale mismatches between satellite and field data, uncertainties in satellite al-
gorithm parameterizations, errors in the in situ TSS data. However, the variability
in the size and composition of particles included in the TSS pool, and the large dif-
ferences in the contribution of phytoplankton cells and inorganic particles to total
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Fig. 7.10 (a) Relation between surface measurements of bb(650) (m−1) and aNAP (m−1) at
380 nm. (b) Linear regression between Rrs(670) (sr−1) and surface measurements of absorption
by non-algal particles (m−1) at 380 nm

bbp (e.g. Twardowski et al. 2001), are probably the most important factors contribut-
ing to the relatively low R2 derived by Zawada et al. (2007). In the mid Chesapeake
Bay, the relation between surface [chl-a] and particulate backscattering showed high
variability at all measured bb wavelengths (450, 530, 650 nm; Tzortziou et al. 2007),
and correlation between bb(650) and [chl-a] was considerably smaller (R2 = 0.42)
compared to that between bb(650) and aNAP(380) (R2 = 0.83).

The strong correlation between particulate bb and aNAP, in conjunction with re-
mote retrieval of surface bb from Rrs measurements in the red, suggest that Rrs(670)
can be applied to remotely determine abundance and distribution of non-algal par-
ticulate matter in near-shore regions where suspended inorganic particles strongly
affect ocean color. Indeed, Rrs(670) in the Chesapeake Bay surface waters was
strongly correlated with NAP absorption (Fig. 7.10b). Coefficients of determina-
tion for the linear least-squares regression between Rrs(670) and surface aNAP were
0.7 and 0.74 for absorption measurements at 412 and 380 nm, respectively (only re-
sults at 380 are shown in Fig. 7.10b). Binding et al. (2003) found good correlation
between surface irradiance reflectance (R = Eu/Ed) at 665 nm and concentration of
mineral suspended sediments for the Irish Sea waters.

Because of the similarities in the absorption spectral shapes of dissolved organic
matter and non-algal particles, separating contribution by these two components to
total light absorption in Case 2 waters is a difficult task. As a result, most satel-
lite Case 2 algorithms (e.g. Lee et al. 1999, Carder et al. 2002, Maritorena et al.
2002, Hu et al. 2003) combine CDOM and NAP into one term even though the two
components do not covary in coastal waters. Regionally specific relations, such as
those discussed here between aNAP(380), bb(650), and Rrs(670), allow a separate
estimate of the contribution by NAP to total light absorption based on the backscat-
tering properties of non-algal particles and the remote retrieval of particulate bb

from satellite-measured Rrs.
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7.5 Conclusions

The extended areal and nearly daily coverage afforded by remote sensing is es-
sential for detecting and monitoring changes in water quality. Effective interpre-
tation of remotely sensed ocean color, however, is still a major challenge in near
shore waters such as the Chesapeake Bay where the quality and quantity of opti-
cally and biogeochemically important water constituents are affected by a number
of different sources as well as complex physical, photochemical and biological pro-
cesses. Improvements in remote sensing of water composition arise from advances
in technology and from better algorithms. Both the improved hardware sensitivity
and algorithmic interpretation must be tested against appropriately designed in situ
measurements. Comparison between field observations and radiative transfer model
simulations and demonstration of good optical closure is a critical step towards im-
proving our knowledge of the bio-optical characteristics of these waters and ap-
plying results to the development and refinement of remote-sensing algorithms for
accurate assessments of water quality.

Field observations and radiative transfer model calculations in the Chesapeake
Bay suggest that exploiting further the ocean color signal in the red and near-
infrared spectral region, where interference from CDOM and NAP absorption is
minimal, is necessary for improving satellite monitoring of chlorophyll-a variabil-
ity. Measurements of bb/b and SNAP indicate a dominant role by highly refrac-
tive inorganic particles in regulating backscattering variability in these waters, and
particulate backscattering was the main factor driving observed variability in the
remotely sensed quantity Rrs(670). Retrieval of particulate bb from satellite mea-
sured Rrs(670) can be applied to remotely monitor distribution and concentrations
of highly refractive suspended particles in this region of the Bay. Moreover, retrieval
of NAP absorption from the remotely-sensed reflectance signal at 670 nm could be
used in conjunction with inversion of blue (and, in future planned satellites, of UV)
wavelengths to derive CDOM absorption in these Case 2 waters. Separating con-
tribution by these two similarly absorbing, but non-covarying, components of total
light absorption would be particularly useful for remote sensing of CDOM and stud-
ies on dissolved organic carbon cycling and biogeochemical processing in coastal
waters. Quantitative analysis of particulate composition and measurements of the
differences in the optical characteristics (i.e. SNAP and bb) between organic detri-
tal and inorganic mineral suspended particles are needed to improve interpretation
of remote sensing in coastal regions where non-algal particles often dominate the
backscattered signal (Tzortziou et al. 2007).

Re-establishment of water clarity sufficient to support submerged vascular plants
to their historically observed extent is one major goal of the Chesapeake Bay restora-
tion effort (Chesapeake 2000 interagency agreement). Absorption and scattering
by non-algal particulates is the major contribution to light attenuation in the shal-
low, near-shore regions that bay grasses inhabit (Gallegos 2001). Further develop-
ment of the ability to estimate synoptically and repetitively the NAP absorption in
shallow turbid waters will contribute greatly to gauging progress toward successful
restoration.
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List of Symbols

a total absorption
aCDOM absorption by Colored Dissolved Organic Matter (CDOM)
aNAP absorption by Non Algal Particles (NAP)
ap particulate absorption
at-w total (minus pure water) absorption
aw pure water absorption
b total scattering
bp particulate scattering
bb total backscattering
bbp particulate backscattering
bb/b total backscattering fraction
bbp/bp particulate backscattering fraction
c total attenuation
ct-w total (minus pure water) attenuation
chl-a chlorophyll-a
[chl-a] chlorophyll-a concentration
Ed downwelling irradiance
Es downwelling surface irradiance
Eu upwelling irradiance
Lu upwelling radiance
Lw water-leaving radiance
R irradiance reflectance
Rrs remote sensing reflectance
SCDOM CDOM absorption exponential spectral slope
SNAP NAP absorption exponential spectral slope
z geometric depth
λ wavelength
ζ optical depth

List of Acronyms and Abbreviations

AOPs Apparent Optical Properties
CDOM Colored Dissolved Organic Matter
CZCS Coastal Zone Color Scanner
FF Fournier Forand
IOPs Inherent Optical Properties
MERIS MEdium Resolution Imaging Spectrometer
MODIS MODerate resolution Imaging Spectroradiometer
NAP Non Algal Particles
POC Particulate Organic Carbon
SAV Submerged Aquatic Vegetation
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SeaWiFS Sea-viewing Wide Field of view Sensor
TSS Total Suspended Solids
VSF Volume Scattering Function
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Chapter 8
High-Resolution Ocean Color Remote Sensing
of Coral Reefs and Associated Benthic Habitats

Deepak R. Mishra

This chapter discusses a research aiming to develop semi-analytical models that
resolve the confounding influence of water column attenuation on substrate re-
flectance to characterize benthic habitats from high-resolution remotely sensed im-
agery. We used high-resolution satellite and airborne imagery as inputs in the models
to derive water depth and water column optical properties. Then, we used these pa-
rameters in various bio-optical algorithms to deduce bottom albedo and then to clas-
sify the benthos, generating a detailed map of benthic habitats. We used IKONOS
and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne
data for benthic habitat mapping along the north shore of Roatan Island, Honduras.
We found that the hyperspectral data consistently outperform the high-resolution
satellite imagery in terms of classification accuracy; however, the hyperspectral data
and satellite imagery show similar accuracies when the classification is at the coarse
level. These findings reveal the need of data fusion from high spectral and spatial
resolution sensors for accurate benthic habitat mapping.

8.1 Introduction

Environmental stress on coral reefs and associated benthic habitats can result from
natural and human influences. Natural causes include global rise in temperature and
sea level (Pittock 1999), increased frequency of the El Niño Southern Oscillation
(ENSO) events (Timmermann et al. 1999), tropical cyclones (Knutson et al. 1998),
and increased concentrations of atmospheric CO2 (Kleypas et al. 1999), while hu-
man activities include coastal development, destructive fishing, marine pollution,
runoff from deforestation, and industrial/agricultural discharge. The net effect of
most disturbances is a decline in the percent cover of living benthic habitats over
time that has raised alarms in the scientific, recreational, tourism, and political sec-
tors. As a result there is an emerging consensus to map out the spatial distribution
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of benthic habitats so that protection, preservation, and monitoring measures can be
implemented (NOAA 2002). However, mapping benthic habitats over large areas us-
ing field surveys can be extremely expensive. Therefore, alternative methods such as
remote sensing may be preferred by resource managers because they are economical
and provide a synoptic view that is unmatched by surface data collection. However,
it is not a simple task because coral reef environments are optically, spatially, and
temporally complex. To extract meaningful information from remotely sensed data,
techniques must be developed that relate the signals received by a remote sensor to
the optical properties of the reef community and its associated habitats.

Accurate characterization of benthic features in shallow, near-shore waters can
be challenging for remote sensing because of the scattering, attenuation, and differ-
ential absorption of light by the water column. The presence of suspended organic
and inorganic materials and a heterogeneous benthos comprised of coral reefs, sea-
grasses, and other benthic features makes mapping and interpretation an extremely
difficult task (LeDrew et al. 1995, Mumby et al. 2001). Accurate benthic mapping
requires thorough analysis of substrate reflectance but it is always intimately associ-
ated with water column properties (depth, absorption, and scattering). Conventional
analytical methods are unable to resolve one measure accurately unless the other is
already known (Mishra et al. 2005, 2006, 2007). For example, if the water column
diffuse attenuation coefficients are known for each spectral band and the depth for
each pixel has been measured independently, the at-surface reflectance of the sub-
strate can be predicted, thus permitting spectral classification and benthic mapping
(LeDrew et al. 1995, Maritorena and Guillocheau 1996, Mumby et al. 2001)

The signals measured by a sensor from above the water surface of a shallow
marine environment are highly coupled with phytoplankton abundance (chlorophyll
absorption), water column interactions (absorption by water and scattering by sus-
pended sediments), and radiance reflected from the bottom i.e., bottom albedo. To
map the benthic habitats accurately, the bottom albedo needs to be known or at least
be derivable (Mumby et al. 1998b). The research question identified in this chapter
was: will incorporation of important parameters such as water depth, absorption and
scattering coefficients allow for an accurate estimation of bottom albedo?

This chapter is based on the work of Mishra et al. (2005, 2006, 2007) and focuses
on the development of semi-analytical models that can be used to map the spatial
distribution of coral reefs and associated habitats from remote measurements of water
reflectance. The models used high spatial resolution remotely sensed data, water depth
and water column optical properties (absorption and scattering) to remove the effect
of overlying water column, and derive a bottom image. Specific objectives included,
mapping the spatial distribution of these benthic habitats using high resolution multi-
and hyperspectral sensors as well as comparison of results derived from these sensors.

8.2 Study Area

Roatan Island lies between 16◦ 15′ to 16◦ 25′ N and 86◦ 22′ to 86◦ 37′ W. It is
the largest of the Bay Islands of Honduras, and is located in the western portion
of the Caribbean Sea approximately 50 km north of the mainland. Our study was
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Fig. 8.1 Location of Roatan Island, Honduras in Central America (circle inset), and a grayscale
image-map of the IKONOS scene acquired on 1 April 2001 (Mishra et al. 2005)

conducted in the vicinity of Anthony’s key and Man of War key resorts in the north
shore of the island (Fig. 8.1).

Roatan’s climate is typical of the hot and humid tropical environments, with an
average annual precipitation of 215 cm per year. Mean monthly temperatures range
from 25.4 ◦C in January to 28.9◦C in September (Davidson 1974). The reefs of
the Bay Islands contain at least 52 species of stony corals, at depths ranging from
2 to 15 m (Keck 2000). Coral species include Star corals (Montastrea annularis,
M. franksi, M. faveolata, M. cavernosa), Brain corals (Colpophylia natans, Diploria
spp.), Sheet and Lettuce corals (Agaricia agaricites, A. larcki, A. undata, A. fragilis,
and Leptosiris cuculatta), Flower coral (Eusmillia fastigiata), Pillar coral (Dendro-
gyra cylindrus), Boulder Brain coral (Colpophylia natans), Symmetrical Brain coral
(Diploria strigosa) and Massive Starlet coral (Siderastrea siderea). The bays con-
tain highly productive seagrass beds, with Turtle Grass (Thalassia testudinum) being
the most abundant species at Roatan. The seagrasses provide habitat for anemones,
mossusks, crabs, shrimp, and many other organisms.

8.3 Data Acquisition

8.3.1 In Situ Data

Two independent in situ datasets were collected for model calibration and validation
respectively. The model calibration datasets were obtained from a vertically stable
buoy guided by a snorkeler along a series of transects. This buoy served as a plat-
form for a Trimble TDC1 Asset Surveyor GPS antenna, a Sony Hi-8 mm TRV-320
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Fig. 8.2 Components of a
vertically stable GPS buoy
used in situ data collection for
bathymetry model calibration
(Mishra et al. 2005,
2006, 2007)

digital video camera encased in a T-9 housing (Undersea Video Housings), and
a Lowrance depth transducer (Fig. 8.2). The data were collected simultaneously
1-m below the air/water interface. Consequently, the instantaneous field of view
(IFOV) of the images and hyperspectral readings varied as a function of depth and
ranged from 0 to 25 m. However, recorded images and the GPS synchronous time
stamp were of suitable quality to determine the primary benthic cover at sample
locations and the IFOV was calculated based on depth measured by the Lowrance
sonar.

A towed sensor platform (the “towfish”) built by Shark Marine (St. Catharines,
Ontario, Canada) was used to acquire the bathymetric model validation data sets
(Fig. 8.3a,b). The towfish was constructed to resist wave action, so it moved through
the water at a relatively constant, horizontal position while being towed at a speed of
approximately 3 km/h (Fig. 8.3c). Depths were logged continuously along selected
transects and a high-resolution “mini-camera” imaged the bottom at the locations
where these readings were acquired (Fig. 8.3d). A differential GPS was placed on
the boat and the offset to the towfish was calculated. Mathematically, the exact lo-
cation of the transducer was determined by correcting for the distance between the
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Fig. 8.3 (a) Components of towfish, a multi-sensor platform designed by CALMIT includes 1.
ocean optics hyperspectral sensor, 2. camera one, 3. camera two, 4. transducer; (b) view of towfish
from under water; (c) towfish in action; (d) typical coral bottom types photograph taken by towfish
camera (Mishra et al. 2005, 2006, 2007)

GPS unit and the transducer (6.2 m), the angle at which the boat was moving (vari-
able), and the position of the transducer relative to the surface of the water (0.3048 m
below).

During subsequent field surveys in 2005, two pairs of Ocean Optics USB 2000
hyeprspectral radiometers were added to the towfish (i.e., upward looking and
downward looking Ocean Optics sensor) for acquiring upwelling radiance (Lu) and
downwelling irradiance (Ed) just above and below the water surface. In essence the
towfish provided us with four different kinds of datasets at a particular geographic
location, including bottom type (photograph from the camera), depth (transducer),
above water remote sensing reflectance, Rrs(λ ) (Ocean Optics), and underwater re-
mote sensing reflectance, rrs(λ ) (Ocean Optics).

8.3.2 Spaceborne Multispectral Data

IKONOS panchromatic and multispectral images were collected for the Roatan
study site on 1 April 2001 (Fig. 8.1). Primary radiometric corrections by Space
Imaging, Inc., Colorado, USA, were designed to remove any spatial variations in
digital output or artifacts that may occur in the image data. In addition, Space



176 D.R. Mishra

Imaging had performed geometric corrections (±1 pixel; nearest neighbor) on the
image to remove any optical or positional distortions. The brightness values (BVs)
for each band were converted to top of the atmosphere (TOA) radiance by applying
calibration coefficients referenced to well-characterized spectro-radiometric targets
(Space Imaging 2001).

Two Quickbird multispectral images were collected for the Roatan study site
on 15 March 2004 (Fig. 8.4a). The QuickBird sensor system has three visible bands
centered at 485 nm (450–520 nm), 560 nm (520–600 nm), and 660 nm (630–690 nm),
which can be used for shallow marine applications. Primary radiometric correc-
tions, performed by Digital Globe, Inc., Longmont, Colorado, USA, were designed

Fig. 8.4 Location of Roatan Island, Honduras in Central America (circle inset), and (a) A grayscale
image-map of the QuickBird scene acquired on 15 March 2004; (b) A grayscale image-map of the
AISA Eagle acquired in April 2005 (Mishra et al. 2006, 2007)
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to remove any spatial variations in digital output or artifacts that may occur in the
image data. Geometric corrections (±1 pixel; nearest neighbor) were performed by
Digital Globe, Inc. to remove any optical or positional distortions in the imagery.
The brightness values (BVs) for each band were converted to the top of atmo-
sphere (TOA) radiance by applying calibration coefficients derived from the image
metadata.

8.3.3 Airborne Hyperspectral Data

An aerial remote sensing platform for hyperspectral data collection was used for
this investigation. The instrument array included an AISA Eagle hyperspectral im-
ager from Visible to Near Infrared (VNIR), a system which can provide high spatial
and spectral resolution. The AISA Eagle is a solid-state, push-broom instrument
that has the capability of collecting data within a spectral range of 390–1000 nm
in up to 512 bands. The placement of the spectral bands may be configured by the
user and the selected bandwidths can range anywhere from ∼2nm to ∼10nm. The
AISA Eagle pre-processing software provides for the automatic geometric correc-
tion, rectification, mosaicking, and calculation of at-platform radiance by applying
calibration coefficients referenced to well-characterized spectroradiometric targets.
The algorithm uses the DGPS and attitude information from the INS to perform ge-
ometric, georeferencing and mosaicking operations. AISA Eagle data were acquired
between 0330 and 0430 h (CST) on 13 April 2005 when the solar zenith angle was
close to 70◦C. Ground data indicated low wind (∼3m s−1), minimal ocean swell,
high visibility (30 km), and clear skies. The sensor altitude was (2.073 km), and the
image was acquired at nadir at a spatial resolution of 2 m and spectral resolution of
62 bands ranging from 392.39 to 981.68 nm with a 12-bit radiometric output and the
flight lines covered an area of approximately 1.6km2 in the vicinity of Anthony’s
Key and Man of War Key (Fig. 8.4b). The image data were converted to at-platform
radiance by applying the calibration coefficients provided by AISA processing soft-
ware ‘Caligeo’ for subsequent processing.

8.4 Methodology

8.4.1 Land and Cloud Masking

When extracting aquatic information, it is useful to eliminate all upland and terres-
trial features (Jensen et al. 1991); thus all upland features, as well as boats, piers,
and clouds were masked out of all the images. The “land-mask” restricts the spectral
range of radiance values to aquatic features and allows for detailed feature discrim-
ination. Radiance values of the NIR band were used to prepare the binary mask
which was subsequently applied to all the channels.
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8.4.2 First-Order Atmospheric Correction

The atmospheric correction method employed herein follows the approach adopted
for Coastal Zone Color Scanner (CZCS) protocol (Gordon et al. 1983). The Rayleigh
and aerosol contributions to the total radiance measured by the sensors were re-
moved from the images. Rayleigh scattering was computed for each pixel, whereas
the aerosol scattering was calculated for offshore pixels assuming a marine-type of
aerosol. Water-leaving radiance is a radiometric quantity resulting from the atmo-
spheric correction and is a measure of the total signal recorded at the top of the
water column.

In the case of oceanic remote sensing, the total signal received at the sensor
altitude is dominated by radiance contributed by atmospheric scattering processes
and only 8–10% of the signal corresponds to the oceanic reflectance (Kirk 1994).
Therefore, it is advisable to correct for atmospheric effects to retrieve any quanti-
tative information for surface waters from the image. The radiance received by a
sensor, Lt(λi), at the top of the atmosphere (TOA) in a spectral band centered at a
wavelength λi can be divided into the following components (Gordon et al. 1983):

Lt(λi) = Lr(λi)+La(λi)+T (λi)Lg(λi)+ t(λi)Lw(λi) (8.1)

where,

Lr(λi) and La(λi) = radiances generated along the optical path in the atmosphere
by Rayleigh and aerosol scattering respectively;
Lg(λi) = contribution arising from the specular reflection of direct sunlight from
the sea surface or the sun glint component;
Lw(λi) = desired water leaving radiance;
T = direct atmospheric transmittance; and
t = diffuse atmospheric transmittance of the atmosphere.

Note that for a high visibility environmental condition (in our case visibility
>40km), we ignore any Rayleigh-aerosol multiple scattering and use a quasi-single-
scattering approximation. According to Gordon and Voss (1999), for areas around
the sun glint pattern, T (λi)Lg(λi) is so large that the imagery is virtually useless
and must be discarded. The images had negligible sun glint effects, and hence
T (λi)Lg(λi) may be ignored, leaving the largest and most difficult terms to estimate
(i.e., the path radiances due to Rayleigh and aerosol scattering).

Rayleigh atmospheric scattering affects the direction of short wave radiation, re-
sulting in haze that affects primarily the blue and green bands. Using the algorithm
developed by Gordon and Clark (1981), the Rayleigh path radiance was computed
and applied to the image. Similarly, the aerosol scattering for the scene, was de-
rived by subtracting the Rayleigh path radiance from TOA radiance in clear water
pixels (Figs. 8.1, 8.4a,b) of the NIR band. Gordon and Wang (1994) proposed an
exponential relationship for the spectral behavior of aerosol optical depth which has
been used for the SeaWiFs atmospheric correction algorithm. The algorithm uses
an Angstrom exponent (ε) based on an exponential relation using spectral data at
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765 and 865 nm for each pixel. The aerosol optical thickness was extrapolated to the
visible channels using this relationship. Because IKONOS and Quickbird sensor do
not have two bands in the NIR to calculate the Angstrom exponent, ε(λi,λ4), it was
set to unity, which is characteristic of maritime aerosols at high relative humidities
(Gordon and Voss 1999, Hu et al. 2001). It was also assumed that the aerosols are
homogenously distributed over the entire area of interest, so that it was implicit that
aerosol path radiance, computed over the clear water was constant for the entire
scene. The final component, diffuse transmittance (t(λi)), which is defined as the
water leaving radiance in a particular viewing direction transmitted to the TOA, was
computed as recommended by Gordon et al. (1983). By applying the method de-
scribed in this section it was observed that approximately 85–90% of the radiance
was removed as a result of atmospheric correction from all the images.

AISA Eagle data were atmospherically corrected by using FLAASH (Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes), a first-principles atmo-
spheric correction algorithm for visible to shortwave infrared (SWIR) hyperspectral
data. The solar zenith and azimuth angles were calculated in the FLAASH algorithm
from the AISA flight date, time, latitude, and longitude and were used to predict in-
cident solar irradiance at the top of the atmosphere. A scale factor file for the input
radiance image was provided to the algorithm. The input atmospheric and aerosol
models were chosen to be tropical and maritime respectively with initial visibility
of 30 km. Then 820 nm band was selected as the water absorption feature, and the
aerosol scale height and CO2 mixing ratio were kept as default, which is 2.0 km and
390 ppm respectively.

8.4.3 Shallow Marine Bathymetry Estimation

The ultimate goal of this research was to derive the bottom albedo and carry out
benthic mapping of shallow marine habitats in Roatan Island, Honduras. To derive
bottom albedo, water depth should be known for the study area. The depths will
be used to eliminate the change in reflectance that is attributable to variable depth,
and water column attenuation effects. Researchers have been attempting to estimate
depth of shallow water using remote sensing for several years (e.g., Lyzenga 1978).
A common problem among most studies is that the seafloor is covered by a patch-
work of organisms and substrates that have different albedos, ranging from very
dark (e.g., coral ∼0.12) to very bright (e.g., sand ∼0.3). The difficulty is that a dark
object strongly absorbs light and will appear to be deeper than it really is. This ef-
fect is not as severe for bright objects, which absorb less strongly. Thus, for coral
and sand at the same true depth, the coral virtually always appears to be deeper than
the sand. Previous researchers have mapped water depth by assuming that a pair of
wavebands can be identified such that the ratio of the radiances in these two bands
was the same for all the bottom types within a given scene (Polcyn et al. 1970,
Lyzenga 1978). Following this assumption, three site-specific algorithms were de-
veloped to map high resolution bathymetry using the radiance measured by the three
sensors. For example, in the IKONOS image essentially a ratio of wavebands (blue
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and green) was identified that is constant for all bottom types (Fig. 8.5a). With these
bands having different water absorptions, one band will have arithmetically lesser
values than the other. As the depth increased, radiance of the band with higher ab-
sorption (green) decreased proportionally faster than the band with lower absorption
(blue) and the radiance ratio of the blue to the green increased. This method also
compensate implicitly for variable bottom types. A change in bottom albedo affects
both bands similarly, but changes in depth affect the high absorption band more

Fig. 8.5 (a) Model calibration dataset taken from GPS buoy showing the regression between log-
transformed water-leaving blue versus green radiance values for several bottom types; (b) Rela-
tionship between bottom depth and ratio of blue to green water leaving radiance (Eq. 8.2). The
polynomial equation shown in the graph was used to derive bathymetry map from the IKONOS
image (Mishra et al. 2005)
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(Philpot 1989). Accordingly, the change in ratio because of depth is much greater
than that caused by change in bottom albedo, suggesting that different bottom albe-
dos at a constant depth will still have the same ratio. The log transformed radiance
ratio of the two bands (blue, green) in the IKONOS image was plotted against known
depth data (z) to develop a second order polynomial bathymetry models (Fig. 8.5b).
The models were different for different sensors. For example, given below is the
polynomial model for the IKONOS sensor:

y = −7.6439x2 +7.0734x+0.0876 (8.2)

where,

y = log(z) (8.3)

x = log

[
Lw(blue; 480.3nm)
Lw(green; 550.7nm)

]
(8.4)

The above polynomial equation explained > 97% of variation (p < 0.001) in
water depth calibration dataset collected over five transects of various bottom types
(coral, sand, seagrass, Mixed: sand/coral/seagrass/algae). Approximately 50% of
the predictions were within ±0.033m and the mean residual was ±0.13m. Equa-
tion (8.2) was used for the IKONOS image to derive a map of bathymetry across the
study site. Similarly a different polynomial model was used for AISA Eagle and a
single band model (taken from Mishra et al. 2006) was used for QuickBird to derive
the bathymetric maps.

8.4.4 Deriving Bottom Albedo

The signals measured by an airborne sensor from above the water surface of a
shallow marine environment are highly coupled with phytoplankton abundance
(chlorophyll absorption), water column interactions (water depth, absorption by wa-
ter column and scattering by suspended sediments), and bottom albedo. The appar-
ent optical properties of water such as absorption (a) and backscattering coefficient
(bb) are the main physical agents governing the magnitude and spectral composition
of the backscattered flux from the ocean surface (Maritorena et al. 1994). Derivation
or approximation of these parameters are necessary in order to determine the opti-
cal bottom albedo and ultimately to map the spatial distribution of benthic habitats
for shallow ocean waters. Lee et al. (1994, 1996) and Zhang et al. (1999) proposed
analytical models to derive water optical properties (a and bb) from remotely sensed
data. Using AVIRIS imagery and spaceborne spectrometers with high spatial and
spectral resolution, they successfully separated various shallow water constituents
based on their unique spectral contributions. The work described in this section of
the paper demonstrates analytically how to derive bottom albedo using multi- and
hyperspectral data, after the removal of atmospheric interferences. Given the lim-
ited number of visible bands on the IKONOS and QuickBird sensors, the model has
been necessarily simplified.
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Remote sensing reflectance (Rrs) is defined as a ratio of the water-leaving radi-
ance (Lw) to downwelling irradiance (Ed) just above the surface. Rrs is an apparent
optical property (Mobley 1994) controlled by the absorption and scattering proper-
ties of the constituents in the water and the bottom albedo, and can be written as:

Rrs(λ ) = Rw
rs(λ )+Rb

rs(λ ) (8.5)

where,

Rw
rs(λ ) = remote sensing reflectance from water column; and

Rb
rs(λ ) = remote sensing reflectance from the bottom

Lee et al. (1994) have further approximated the two terms, Rw
rs(λ ), Rb

rs(λ ), as
follows:

Rw
rs(λ ) ≈ 0.05

bb(λ )
a(λ )+bb(λ )

[
1− e−3.2(a(λ )+bb(λ ))H

]
(8.6)

Rb
rs(λ ) ≈ 0.173ρ(λ ) e[−2.7(a(λ )+bb(λ ))H] (8.7)

where,

a(λ ) = total absorption coefficient in m−1;
bb(λ ) = backscattering coefficient in m−1;
H = depth of water in m; and
ρ(λ ) = bottom albedo.

The angular dependency of the remote sensing reflectance (subsurface solar
zenith angle, sensor zenith angle) are not explicitly stated in the Eqs. (8.6) and (8.7);
however, they are included in the coefficients of the equations.

The backscattering coefficient may be expressed as:

bb(λ ) = bbp(λ )−bbw(λ ) (8.8)

where,

bbp = backscattering by particles in m−1; and
bbw = backscattering by water molecules in m−1 taken from Morel (1974).

Gordon et al. (1998) and Morel (1988) proposed different forms of bio-optical
algorithms to approximate the backscattering by particles and is incorporated in the
Eq. (8.8) as:

bb(λ ) = bbp(660)
(

660
λ

)η
+bbw(λ ) (8.9)

where,

η = a coefficient whose values for ocean particles range from 0.0 to 3.0;
η = 0.5 is chosen for this coastal study because it is Case-1 water, where con-
centration of chlorophyll and other biogenic materials is higher compared to non-
biogenic particles.
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To estimate bbp(660), we assume there is no contribution from the bottom
to the upwelling signal in 660 nm, where the absorption is large (>0.4m−1)
and dominated by water molecules. Hence, for relatively clear water deeper than
1.5/aw(660), where bottom effects are small, the backscattering coefficients by par-
ticles can be expressed as (Morel and Gentili 1993):

bbp(660) ≈ aw(660)
0.05

Rrs(660) (8.10)

where,

aw = pure-water absorption coefficient of water taken from Pope and Fry (1997).

The total absorption coefficient, a(λ ), can be derived by modification of Austin
and Petzold (1986) as:

a(λ ) = M(λ )[a(485)−aw(485)]+aw(λ ) (8.11)

where,

M = statistically derived coefficients taken from Austin and Petzold (1986);
a(485) = total absorption coefficient at 485 nm; and
aw(485) = pure-water absorption coefficient at 485 nm.

According to Lee et al. (1998), the total absorption coefficient at 440 nm, a(440),
over deep water, can be empirically determined by the following equation:

a(440) = 10
−0.619−1.969

(
log10

(
Rrs(485)
Rrs(560)

))
+0.790

(
log10

(
Rrs(485)
Rrs(560)

))2

(8.12)

where,

Rrs(485) = remote sensing reflectance at 485 nm; and
Rrs(560) = remote sensing reflectance at 560 nm.

We can thus rewrite the Eq. (8.11) to compute the total absorption coefficient at
485 nm as:

a(485) =
a(440)−aw(440)

M(440)
+aw(485) (8.13)

Note that, the models to derive absorption and backscattering coefficients dis-
cussed above uses wavelengths such as 485, 560, 660 nm, and in our case, applied
to IKONOS, QuickBird, and AISA Eagle blue, green, red band centers respectively.
Equation (8.11) is applied over deep water pixels (white square in Figs. 8.1, 8.4a,b)
to compute the water absorption coefficients for the blue, green, and red bands of the
IKONOS and QuickBird datasets as well as for 33 bands of the AISA Eagle dataset.
Deep water pixels were defined as those having very little upwelling signal in the
visible bands of the dataset and are not affected by bottom albedo; i.e., they com-
prise optically deep areas. A 50× 50 pixel window was identified (white square in
white square in Figs. 8.1, 8.4a,b) as having very little water leaving radiance values
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in all visible bands. The total absorption coefficients derived from that region were
assumed to be constant over the entire scene. Absorption and backscattering coeffi-
cients for each image were derived using Eqs. (8.9, 8.11, and 8.13) (Table 8.1a,b,c).
The water depth and optical parameters were used to derive the bottom albedo im-

Table 8.1 Absorption and backscattering coefficients derived from the 50×50 optically deep wa-
ter pixel window (shown in Figs. 8.1, 8.4a,c) of (a) IKONOS; (b) QuickBird; and (c) AISA Eagle
images (Mishra et al. 2005, 2006, 2007)

Sensors Total absorption
coefficients
(a(λ)) (m−1)

Total backscattering
coefficients (bb(λ))
(m−1)

Coefficients
(M(λ))

Name Wavelength-λ (nm)

IKONOS 480.3 0.0216 0.0049 1.0955
550.7 0.0617 0.0039 0.586
664.8 0.4310 0.0031 0.7301

Quick Bird 485 0.0366 0.0125 1.0469
560 0.0743 0.0067 0.5457
660 0.4266 0.0033 0.7101

AISA Eagle 401.15 0.2502 0.00387 1.7383
409.91 0.2425 0.00377 1.7591
418.67 0.2315 0.00368 1.6974
427.42 0.2262 0.00359 1.6108
436.22 0.2138 0.00350 1.5648
445.23 0.2002 0.00342 1.4673
454.27 0.1858 0.00333 1.3627
463.31 0.1719 0.00326 1.2521
472.35 0.1660 0.00318 1.1460
481.39 0.1544 0.00311 1.0955
490.42 0.1448 0.00304 1.0000
499.46 0.1385 0.00297 0.9118
508.50 0.1363 0.00291 0.8310
517.54 0.1410 0.00285 0.7578
526.58 0.1346 0.00279 0.7241
535.61 0.1317 0.00274 0.6627
544.67 0.1320 0.00268 0.6094
553.89 0.1366 0.00263 0.5647
563.17 0.1407 0.00258 0.5289
572.45 0.1473 0.00253 0.5146
581.78 0.1680 0.00248 0.4935
591.18 0.2089 0.00243 0.4840
600.58 0.3002 0.00238 0.4903
609.98 0.3438 0.00234 0.5090
619.39 0.3663 0.00230 0.5380
628.79 0.3911 0.00226 0.6231
638.19 0.4090 0.00222 0.7001
647.59 0.4280 0.00218 0.7300
656.99 0.4573 0.00214 0.7323
666.39 0.5015 0.00210 0.7205
675.80 0.5008 0.00207 0.6693
685.20 0.5055 0.00204 0.5651
694.60 0.5158 0.00200 0.3984
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age (Eq. 8.7) from which the spatial distribution of benthic habitats was extracted
using standard image processing procedures.

8.4.5 IKONOS and QuickBird Image Classification

Prior to implementing a spectral pattern recognition algorithm, a classification
scheme was developed that included the following categories: (1) dense seagrass,
(2) Mixed: seagrass/sand/algae, (3) Mixed: coral/sand, (4) sand, (5) coral, and (6)
deep water. These six aquatic feature classes were selected based on the availability
of sufficient replication of ground control data to verify feature locations in a later
classification analysis. The Iterative Self Organizing Data (ISODATA) algorithm
was used on the bottom albedo image composed of three bands to derive 150 statisti-
cally different clusters (Jensen 1996). Using in situ data these clusters were assigned
to the benthic categories with the highest probability of being a member. Finally a
comprehensive evaluation of the classification accuracy was performed based on
651 and 383 reference points for IKONOS and QuickBird respectively. The refer-
ence points included digital still photographs, and digital video images taken by the
towfish, as well as photos taken by the divers comprising our field team.

8.4.6 AISA Eagle Noise Reduction and Image Classification

Since bottom-reflected light is negligible (specifically wavelengths > 600nm) com-
pared to the total reflectance received at sensor level, the signal to noise ratio in the
bottom albedo image, generated after the atmospheric and water column correction
to the AISA-Eagle hyperspectral image, was found to be low. Therefore a noise re-
duction technique referred as “minimum noise fraction” (MNF) was applied to the
bottom albedo image before performing image classification. MNF determines the
inherent dimensionality, identifies and segregates noise in the image, and reduces
the computational requirements for subsequent processing (Boardman and Kruse
1994). It is essentially two cascaded principal components transformation. The first
transformation, based on an estimated noise covariance matrix, decorrelates and
rescales the noise in the data. This results in transformed data where the noise has
unit variance and no band-to-band correlations. The second transform is a standard
principal component transformation of the noise-whitened data. For further spectral
processing, the inherent dimensionality of the data is determined by examining the
final eigenvalues and the associated images. Once a threshold eigenvalue value was
established, the noise bands were clipped out and a spectral segmentation algorithm
was used on the information bands to map out the benthic habitats.

The classification scheme developed for AISA Eagle data had few more classes
because of the detailed field work and included the following categories: (1) Sand,
(2) Seagrass with Sand (3) Dense Seagrass (4) Sand with Benthic Algae, (5) Coral,
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(6) Coral with Sand, (7) Hard Bottom, (8) Mixed: Sand/Hard Bottom/Coral, and
(9) Deep Water. The ISODATA algorithm was used on the MNF information bands
to derive 300 clusters (Jensen 2004). Subsequently, in situ data were used to as-
sign each cluster to the category to which it had the highest probability of being a
member. Finally a comprehensive evaluation of the classification accuracy was per-
formed based on 1208 reference points, digital still photographs, and digital video
images taken by the towfish, as well as photos taken by the divers comprising our
field team.

8.5 Results and Discussion

The most common method for evaluating atmospheric correction is to compare Rrs

spectra retrieved from the images before and after the procedure for all sampling
areas as well as with ground-based measurements for a variety of targets. Visual ex-
amination of the IKONOS and QuickBird images before and after the atmospheric
correction procedure showed sharp differences between them (Fig. 8.6a,b). For ex-
ample in the IKONOS image the coral areas in the zoomed insets (light brown)
showed a linear trend (N-S) after the atmospheric correction (Fig. 8.6a). In gen-
eral the haziness depicted in the original images, attributed to Rayleigh and aerosol
scattering, was eliminated resulting in visually clear images (see comparison of
Fig. 8.6a,b zoomed insets). Radiance values of water over different bottom types
were analyzed before and after the atmospheric correction. Because TOA radiance
values are dominated by Rayleigh and aerosol path radiance, it becomes difficult
to infer the spectral properties of water over different benthic substrates. To fully
understand this concept, known pixels depicting water over five locations includ-
ing benthic algae, seagrass, deep water, sand, and coral reef areas were selected
(Fig. 8.7a,b). After the atmospheric correction was implemented, the corrected pro-
files showed the spectral variability in greater detail. For example, water leaving
radiance in the NIR became ≈ 0 in all the cases because of high NIR absorption by
water. Similarly, dark targets such as seagrass areas and deep water showed low ra-
diance values in all visible bands. Water leaving radiance in shallow waters always
contains a fraction of upwelling radiance of the underlying benthic habitat. When
comparing water leaving radiance over shallow areas, submerged sand or coral reefs
to seagrass areas, it can be observed that the seagrass substrate, being darker, has low
upwelling radiance. Conversely, submerged sand (being the brightest substrate) had
the maximum radiance values. In general, the blue and green bands were found to
have the highest water leaving radiance amongst all IKONOS and QuickBird bands.
Specific absorption features of different benthic bottom types were not identifiable
because of the water column attenuation and the broadband nature of the sensors.

For the AISA hyperspectral image, Rrs spectra for all sampling locations before
the FLAASH atmospheric correction when compared with the retrieved Rrs spectra
after applying the atmospheric correction model showed a significant decrease in
the Rrs values (70–80%) (Fig. 8.7c). In the red band (600–700 nm) the Rrs values



8
O

cean
C

olor
R

em
ote

Sensing
of

C
oralR

eefs
and

A
ssociated

B
enthic

H
abitats

187

Fig. 8.6 Visual differences in (a) IKONOS image before and after the atmospheric correction; (b) QuickBird image before and after the atmospheric correction;
(c) AISA Eagle hyperspectral image before and after the FLAASH atmospheric correction. Note that the atmospheric haziness is eliminated after the correction
is applied in all cases (Mishra et al. 2005, 2006, 2007)
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decreased after atmospheric correction indicating high absorption by water itself,
whereas the reflectance peak in the green is caused by the scattering of suspended
sediments and chlorophyll present in phytoplankton cells. To validate the accuracy
of atmospheric correction, above water Rrs in situ spectra acquired by the Ocean
Optics hyperspectral sensor was compared with the AISA atmospherically corrected
reflectance data over different benthic habitats. Overall the Rrs spectra of AISA and
Ocean Optics sensor for all the targets were in close agreement. Visual examination
of the images before and after atmospheric correction procedure showed sharp dif-
ferences (Fig. 8.6c). For example, coral areas towards the northeast of Anthony’s
Key, which appeared to be white before the correction, showed up clearly (light
brown) after the atmospheric correction. In addition, the haziness depicted in the
original AISA image, attributed to Rayleigh and aerosol scattering, and water va-
por content (3.3081 cm; 820 nm), was eliminated thus resulting in a visually clear
image.

A bathymetric map generated using Eq. (8.2), when compared to the original
IKONOS image (i.e., Fig. 8.1), visual observations of similarities in bottom patterns
can be made in both the image and the map (Fig. 8.8a). Two areas – Half-Moon Bay
(A) and Anthony’s Key (B) are depicted in a large format because our research team
has collected in situ data there annually since 1999. The depth variation around the
zoomed areas of Half-Moon Bay and Anthony’s Key was high, which is generally
true in the coral reef marine environment because of their uneven morphological
structure. Using 4999 in situ depth points, the bathymetric map was validated for
its accuracy and the root mean square (rms) error was calculated. When analyzing
the accuracies of estimated depths, it was found that the correlation coefficient be-
tween actual depth and estimated depth was 0.942 with an rms error of 2.711 m
(Fig. 8.9a). The slope and intercept of the trend line were found to be 1.166 and
0.706 respectively. From the errors in modeling the dependence of depth with band
ratio Lw(blue)/Lw(green) it was observed that x ≤ 0.25, the calibration points are
roughly evenly distributed about the curve (Fig. 8.5b). However, for x > 0.25, the
points are mostly below the calibration curve thus indicating that the model over-
estimates depths beyond 21 m. Residuals were calculated by subtracting estimated
depths from actual depths and revealed no clear pattern of over/under estimation
(Fig. 8.9b).

A visual examination of the QuickBird bathymetric image-map reveals the de-
tails of variations in depth at two study sites including Half-Moon Bay (A) and
Anthony’s Key (B) (Fig. 8.8b). The deep channel near the Anthony’s Key shows a
depth of > 7m, which is appropriate given our knowledge of the site. Using 620
in situ depth points, the bathymetric map was validated for its accuracy revealing
a correlation coefficient of 0.845 and a rms error of 2.819 m between actual and
estimated depth (Fig. 8.10a). The slope and intercept of the trend line were found
to be 0.845 and 1.616 respectively. It was evident that the RMS error increased
with depth, and based on further analysis it was observed that after 18-m there was
significant deviation of the estimated depths from actual depths. To quantify this
deviation, we separated the validation datasets as < 18m and > 18m where the cor-
relation coefficient for depths less than 18-m was 0.906 with a RMS of 1.316 and



190
D

.R
.M

ishraFig. 8.8 Bathymetric image-map of part of Roatan Island derived from (a) IKONOS image; (b) QuickBird image; and (c) AISA Eagle hyperspectral image
based on the polynomial model (Mishra et al. 2005, 2006, 2007)



8 Ocean Color Remote Sensing of Coral Reefs and Associated Benthic Habitats 191

Fig. 8.9 IKONOS depth validation: (a) Plot of actual versus estimated depths using model vali-
dation dataset taken from the towfish; (b) Histogram plot of depth residuals from the regression
model versus actual depth (Mishra et al. 2005)

a slope of 0.914 (Fig. 8.10b). Conversely, for depths greater than 18-m, the corre-
lation coefficient between actual and estimated depth was 0.114 (Fig. 8.10c) with a
RMS of 5.648 and a slope of 0.415, which is significantly different from slope of
1:1 line. The reason for these differences is simply because the path length of the
photons increase as depth increases, thereby resulting in increased light attenuation
and reduced light propagation. Reduced propagation decreases the signal to noise
ratio causing higher estimation error in the deep water. However, the residuals did
not have a clear pattern of over/under estimation (Fig. 8.10d).
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Fig. 8.10 QuickBird depth validation: (a) Plot of actual versus estimated depths using model val-
idation dataset taken from the towfish; (b) Validation result for depths < 18−m; (c) Validation
result for depths > 18−m and (d) Histogram plot of depth residuals from the regression model
versus actual depth (Mishra et al. 2006)

Comparing a bathymetric map generated using AISA Eagle data with the origi-
nal AISA image, visual observations of similarities in bottom patterns can be made
in both the image and the map (Fig. 8.4b,c). A close examination of the image
map revealed that most shallow vertical features around the Key were reproduced,
including a shallow “basin” of sand waves, fore reef, patch reef, and step narrow
reticulated reef structure. The image map also showed a clear distinction of the drop
off point (depicted in blue) separating the submerged shelf-edge reef from the deep
water (Fig. 8.8c). The barrier reef, which is separated from the shoreline by a mod-
erately deep (usually) body of water, depicted in red color and runs SW-NE through
the entire image, was the most distinct feature of the bathymetric map (Fig. 8.8c).
Using 5360 in situ depth points, the bathymetric map was validated for its accu-
racy and the rms error was calculated. When analyzing the accuracies of estimated
depths, it was found that the R2 between actual depth and estimated depth was 0.943
with an rms error of 2.873 m (Fig. 8.11a). The slope of the trend line was found to
be 0.829, which is not significantly different from the slope of 1:1 line. Residuals
were calculated by subtracting estimated depths from actual depths and revealed no
clear pattern of over/underestimation (Fig. 8.11b). However, for depths > 20m the
estimation error increased noticeably and the ratio transform rarely retrieved mean-
ingful depths.

The absorption and backscattering parameters for the three IKONOS and Quick-
Bird bands are specified at the band centers (Table 8.1). As the wavelength in-
creased, there was an increase in the total absorption coefficient in both cases,
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Fig. 8.11 AISA Eagle depth validation: (a) Plot of actual versus estimated depths using model
validation dataset taken from the towfish; (b) Histogram plot of depth residuals from the regression
model versus actual depth (Mishra et al. 2007)

which is due to the fact that the phytoplankton pigments and water itself shows
high absorption in the red spectrum. The waters off Roatan Island, where the
concentration of phytoplankton (chlorophyll range: 0.031–1.81 mg/l, seston range:
0.319–4.091 mg/l, based on field measurements) is greater than non-biogenic par-
ticles, are considered as Case-1 waters. Absorption by chlorophyll and related pig-
ments therefore plays a major role in determining the total absorption coefficient
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in such waters; although detritus and dissolved organic matter derived from the
phytoplankton also contribute to absorption in Case-1 waters. Because backscat-
tering is wavelength dependent, a higher coefficient was observed in blue band
than in the red. Absorption and backscattering coefficients along with water depth
were incorporated in Eq. (8.7) to generate bottom albedo images of IKONOS and
QuickBird data respectively (Fig. 8.12a,b). The dark region on the IKONOS albedo
image (Green band) is the deep water region with depths deeper than 21 m. The
zoomed inset shows the detailed variation in bottom albedo based on the substrate
reflectance. In the IKONOS bottom albedo image, the dark regions are comprised of
seagrasses with albedo ≤ 12%, while the bright regions represent sand dominated
areas with albedo ≥ 24%. Coral dominated areas manifested albedos in the range
of 12–24% depending upon the percent of live coral cover occurring in each pixel
(Fig. 8.12a). In the QuickBird bottom albedo image, the dark regions are comprised
of seagrasses with albedo ≤ 8%, while the bright regions represent sand dominated
areas with albedo ≥ 18% and the coral dominated areas manifested albedos in the
range of 8–18% depending upon the percent of live coral cover occurring in each
pixel (Fig. 8.12b). The effectiveness of the water column correction in both cases is
evident from the fact that the differences in radiance between deep and shallow sand
for the INOKOS and QuickBird scene observed in Figs. 8.1 and 8.4a are eliminated
in the albedo images, and all sand dominated areas have approximately the same
albedo.

The absorption and backscattering parameters for the 33 AISA bands are spec-
ified at the band centers (Table 8.1c). Absorption coefficients showed exponential
increase toward the higher wavelengths (> 600nm). However, there was signifi-
cant increase in absorption values observed at blue band because the chlorophyll
present in the phytoplankton cells absorbs blue light. Absorption by chlorophyll it-
self is characterized by strong absorption bands in the blue and in the red (peaking
at λ ≈ 430 and 665 nm, respectively, for chlorophyll a), with very little absorption
in the green. Overall, as the wavelength increased, there was an increase in the total
absorption coefficient, which is due to the fact that the phytoplankton pigments and
water itself shows high absorption with increasing wavelength. Phytoplankton cells
are strong absorbers of visible light and therefore play a major role in determining
the absorption properties of Case-1 waters such as Roatan waters; although detri-
tus and dissolved organic matter derived from the phytoplankton also contribute
to absorption in Case-1 waters. Overall backscattering is inversely proportional to
wavelength; therefore a higher coefficient was observed in blue band than in the red.
Backscattering coefficients of pure water (from Morel 1974) showed lower values
when compared with Roatan water which was expected because of several reasons.
Firstly, sea water consists of pure water plus various dissolved salts, which average
about 35 parts per thousand (35�) by weight (Mobley 1994). These salts increase
scattering above that of pure water by about 30% (Mobley 1994) but have a negli-
gible effect on absorption at visible wavelengths. Secondly, particles present in the
Roatan water are generally much larger than the wavelength of visible light and
are efficient scatterers, especially via diffraction, thus strongly influencing the total
scattering properties of sea water. Absorption and backscattering coefficients along
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with water depth were incorporated in Eq. (8.7) to generate a bottom albedo image
(Fig. 8.12c). Visual comparison of the atmospherically corrected image with the bot-
tom albedo image (image generated after water column correction; Fig. 8.12c: part
c1 & c2) revealed apparent differences. For example, areas 1 and 2 (Fig. 8.12c: part
c1) are both sand bottoms, approximately 3–4 m and 9–11 m deep respectively, and
showed a high contrast in their brightness values because of their occurrence at dif-
ferent depths. Whereas after the water column correction i.e., after eliminating the
depth factor, the contrast between the two areas was similar (ρ ≈ 40%) (Fig. 8.12c:
part c2). The zoomed inset showed the detailed variation in bottom albedo based
on the substrate reflectance. Dark regions are comprised of seagrasses, benthic al-
gae with ρ ≈ 15%, while the bright regions represent sand-dominated areas with
ρ > 30%. Coral-dominated areas manifested albedos in the range of 15–35% de-
pending upon the percent of live coral cover occurring in each pixel. Figure 8.13
shows the remarkable effect of water column attenuation while comparing above
water Rrs spectra (after atmospheric correction) with the bottom albedo for three pri-
mary benthic features. Before the water column correction the three features showed
similar spectral characteristics; i.e., high reflectance in green, low reflectance in blue
(chlorophyll absorption) and red (chlorophyll and water absorption). Any specific
absorption and reflectance features for the three bottoms were not identifiable. After

Fig. 8.13 Comparison of AISA Eagle above water Rrs spectra (after atmospheric correction) with
the bottom albedo spectra for 3 primary benthic features (coral, seagrass, sand) showing the effect
of water column attenuation (taken from Mishra et al. 2007)
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the water column correction bottom albedo spectra for coral exhibited relatively low
ρ between 400 and 500 nm, higher ρ between 550 and 650 nm, a narrow chlorophyll
absorption feature at 675 nm, and very rapidly increasing ρ at wavelengths greater
than 680 nm. This variability in the shape of coral ρ , determined by spectral absorp-
tion and fluorescence properties of multiple pigments residing at various locations in
a coral colony, including the zooxanthellae and ectodermal and endodermal host tis-
sues (Dove et al. 1995), were absent in the spectra before water column correction.
All those spectral features became prominent after removing the water attenuation
factor from the spectra. For sand bottom, a gradual increase in ρ was observed with
increasing wavelength, which is a typical sand reflectance characteristic. Seagrass
bottom exhibited a reflectance peak at around 550 nm, and chlorophyll absorption
features at ∼675nm and both chlorophyll and caretinoid absorption in blue band.
Overall water absorption and suspended sediment scattering played an important
role and photons reflected back from benthos were basically mixed spectra with
significant contributions from water column, specifically in the red wavelengths.
After water column removal the same set of spectra showed spectral features and
the magnitude of the ρ was comparable to the in situ spectra.

Because of the absence of the required field measurements, the validation for
water column correction i.e., for the estimated bottom albedo was performed in a
unique way. For this purpose the hypothesis was, if the water column correction to
derive bottom albedo was accurately performed, then the depth factor on the bottom
reflectance would have been eliminated and the bottom albedo for a particular bot-
tom at various depths would be similar. For this purpose, five bottom albedo spectra
of coral, sand, and seagrass at different depths were plotted and compared with their
corresponding reflectance spectra before the water column correction (Fig. 8.14).
Before the water column correction, the water depth played an important role in
determining the reflectance values of the bottom; for example, the deeper the bot-
tom the lower the reflectance values. After the water column correction, the albedo
values for a particular bottom were close to each other irrespective of their depths.
However, it was noted that with increasing depth, dark bottoms or bottoms with high
phytoplankton content (corals and seagrass) showed that influence of water column
is not completely eliminated. For example, the coral albedo at 5.632 m and 7.421 m
and the seagrass albedo at 4.868 m did not reveal the 675 nm chlorophyll absorption
feature which was clearly present at other depths (Fig. 8.14). Sand, being the bright
bottom, showed a close match for albedos at different depths indicating an accu-
rate water column correction. Another concern with the bottom albedo image was
the low signal to noise ratio for dark bottoms at longer wavelengths (specifically
λ > 600nm). This noise was introduced to the image during subsequent calcula-
tion and needed to be removed before applying the clustering algorithm to map the
benthic habitat.

An ISODATA classification algorithm was applied to the bottom IKONOS and
QuickBird albedo images resulting 150 and 100 clusters respectively and each clus-
ter was assigned to a particular benthic class with the help of in situ data, towfish
images, and still photographs derived from the video camera to derive benthic habi-
tat image-maps (Fig. 8.15a,b). A comparative evaluation of the IKONOS classified
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Table 8.2 Results of accuracy assessment of (a) IKONOS image based on 651 underwater reference points; (b) QuickBird image based on 383 underwater
reference points; and (c) AISA Eagle image based on 1208 underwater reference points (Mishra et al. 2005, 2006, 2007)
(a)

IKONOS
benthic typ

Dense 
seagrass

Mixed: 
seagrass/s
nd/algae 

Mixed:
coral/sand Sand Coral Deep

water Row total
Produces
accuracy

(%)

Users
accuracy

Kappa
coefficient

Dense 
Seagrass 69 18 4 0 7 6 104 75.82 66.35 0.810

Mixed: 

Sand
Coral /

Mixed: 
Seagrass/ 

Sand/
Algae 

11 95 5 0 2 0 113 72.52 84.07 0.808

0 9 43 0 8 0 60 57 72 0.813

Sand 0 0 11 109 5 0 125 95.61 87.20 0.808

Coral 4 9 12 5 131 0 161 83.97 81.37 0.803

Deep Water 7 0 0 0 3 78 88 92.86 88.64 0.811

Column
Total 91 131 75 114 156 84 Total = 

651
Overall Accuracy = 

80.645%;

Overall 
Kappa =

0.765

ae (%)
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(b)

IKONOS
benthic type 

Dense 
seagrass

Mixed: 
seagrass/

sand/algae 

Mixed:
coral/sand 

Sand Coral Deep
water 

Row total
Produces
accuracy

(%)

Users
accuracy (%)

Kappa
coefficient

Dense 
Seagrass 45 14 2 0 5 4 70 78.94 64.28 0.809

Mixed: 
Seagrass/ 

Sand/
Algae 

7 49 2 0 1 0 59 66.21 83.05 0.809

Mixed: 
Coral/Sand 0 5 24 0 3 0 32 60.00 75.00 0.813

Sand 0 0 3 51 1 0 55 94.44 92.72 0.811

Coral 2 6 9 3 81 0 101 88.04 80.19 0.802

Deep Water 3 0 0 0 1 62 66 93.93 93.93 0.809

Column
Total 57 74 40 54 92 66 Total =

383
Overall Accuracy =

81.462%

Overall 
Kappa =

0.774
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(c)

IKONOS 
benthic type 

Sand Seagrass 
with sand 

Dense 
seagrass

Sand with 
benthic 
algae 

Coral Coral 
with sand

Hard 
bottom 

Mixed: 
sand/hard 

bottom/coral

Deep 
water 

Row 
total 

Produces 
accuracy 

(%) 

Users 
accuracy 

(%) 

Kappa 
coefficient 

Sand 228 5 1 3 5 5 6 1 0 254 87.692 89.764 0.828 

Seagrass with 
Sand 

5 138 4 4 4 9 3 1 2 170 86.250 81.176 0.833 

Dense 
Seagrass 

0 4 114 7 4 2 1 0 7 139 87.023 82.014 0.834 

Sand with 
Benthic Algae

3 3 2 39 2 0 1 2 1 53 65.000 73.585 0.836 

Coral 5 2 3 3 187 8 4 3 2 217 85.780 86.175 0.831 

Coral with 
Sand 

11 5 3 2 11 165 3 5 0 205 85.938 80.488 0.832 

Hard Bottom 6 2 0 1 3 2 59 3 1 77 
75.641 

76.623 0.835 

Mixed: 
Sand/Hard 

Bottom/Coral
2 1 0 0 2 1 1 28 0 35 63.636 80.000 0.836 

Deep Water 0 0 4 1 0 0 0 1 52 58 80.000 89.655 0.836 

Column Total 260 160 131 60 218 192 78 44 65 
Total 

=  1208
Overall Accuracy  =  

83.609%

Overall 
Kappa =  

0.808
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Fig. 8.14 Validation of AISA Eagle water column correction procedure: Comparison of bottom
albedo spectra of different bottom types at different depths before and after the water column
correction (Mishra et al. 2007)

image map versus 651 independent in situ points (GPS location, towfish image)
revealed an overall accuracy of 80.645% (Table 8.2a), whereas similar compara-
tive evaluation of the QuickBird classified image map versus 383 independent in
situ points revealed an overall accuracy of 81.46% (Table 8.3b). In both cases sand
and deep water areas showed the highest producer’s and user’s accuracies, when
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of the (a) IKONOS; (b) QuickBird; and (c) AISA Eagle bottom albedo images. The border color of each representative photograph of bottom types (acquired by
towfish) matches the color given to a particular class (Mishra et al. 2005, 2006, 2007)



8 Ocean Color Remote Sensing of Coral Reefs and Associated Benthic Habitats 203

compared to dense seagrass, Mixed: seagrass/sand, and Mixed: coral/sand areas.
Sand (very bright), and deep water (very dark) are the two most spectrally distinct
classes and yielded the lowest classification errors, whereas the mixed benthos ar-
eas had higher error because of the spectral similarities between various features.
The overall Kappa statistic, a discrete multivariate accuracy assessment technique
described by Congalton and Mead (1983), was 0.765 and 0.774 for IKONOS and
QuickBird maps respectively. This statistic estimates the percent of successful clas-
sifications compared to a random, chance classification assignment (Jensen 2004).
There are several reasons for the confusion in the three classes, including limitations
of the spectral sensitivity of the broad band IKONOS and QuickBird satellites, and
spectral overlaps between optically similar objects. For example, the calcium car-
bonate skeleton of a dead coral is optically similar to sparse seagrass with a sand
background, while algal overgrowth is often similar to zooxanthalle densities and
pigmentation occurring in coral features. Depending on the level of classification,
previous studies using coarser resolution satellite data (e.g., Landsat TM) have nor-
mally achieved accuracies that have ranged from 37% (Mumby et al. 1998a) to 73%
(Mumby and Edwards 2002), even when compensating for the confounding effects
of variable water depths. The problems with our classification were primarily due to
the presence of sand in reef areas, and the rapid changes in coral diversity and reef
features over relatively short distances.

A noise reduction technique called MNF was applied on the AISA Eagle bot-
tom albedo image before running the ISODATA classification algorithm. MNF is
a linear transformation related to principal components that orders the data ac-
cording to signal-to-noise-ratio (Green et al. 1988) and can be used to partition
the data space into two parts: one associated with large eigenvalues and coherent
eigenimages, and a second with near-unity eigenvalues and noise-dominated im-
ages. By using only the coherent portions in subsequent processing, the noise is

Fig. 8.16 Eigenvalues of the MNF transformed AISA Eagle bands separating signal from noise at
band 10 (Mishra et al. 2007)
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separated from the data, thus improving spectral processing results. The MNF al-
gorithm was used to separate information from noise based on eigenvalues which
showed high variability (standard deviation, σ > 46.671) ranging from 249.005
(component 1) to 1.119 (component 33) (Fig. 8.16). The threshold band separat-
ing signal from noise was set on MNF band #10 after examining the σ of eigen
values and the image. The eigen values showed significant variation from band 1 to
10 (range = 249.005−2.318; σ = 79.010) whereas remained fairly constant (near-
unity) from band 11 to 33 (range = 1.558−1.119; σ = 0.103). Visual examination
of all the 33 MNF bands also exhibited a clear distinction between bottom albedo
signal or coherent eigenimage (MNF band 1–10) and noise dominated images (MNF
bands 11–33) (Fig. 8.17). The first 10 MNF bands were subset from MNF image and
were then used in the ISODATA clustering algorithm. An ISODATA classification
algorithm was applied to the bottom albedo image resulting 300 clusters and each
cluster was assigned to a particular benthic class with the help of in situ data, towfish
images, and still photographs derived from the video camera to produce a benthic
habitat map (Fig. 8.15c). A comparative evaluation of the classified image versus
1208 independent in situ points (GPS location, towfish image) revealed an overall
accuracy of 83.609% (Table 8.2c). An examination of producer’s and user’s accu-
racies also showed better classification results with AISA hyperspectral data versus
those derived from IKONOS and QuickBird (Mishra et al. 2005, 2006), and Landsat
TM or SPOT XS data (Mumby et al. 1998a). Sand, seagrass sand, coral, and deep
water areas showed the higher producer’s and user’s accuracies, when compared
to sand with benthic algae, hard bottom, and Mixed: sand/hard bottom/coral areas.
This indicates that confusion between the latter classes during the ISODATA clas-
sification were high, due to their similar spectral characteristics. Sand (very bright),
seagrass, coral, and deep water (very dark) are the spectrally distinct classes, with
the highest spectral separability and lowest classification error. The overall kappa
statistic was 0.808 which showed better classification results compared to IKONOS
and QuickBird sensors.

8.6 Conclusion

This research contributes to our understanding of how electromagnetic radiation in-
teracts with coastal waters and also adds to the limited number of existing benthic
habitat mapping studies. The most significant aspect of the study is that it provides
detailed techniques on extracting per-pixel bathymetry, and water column optical
properties from remotely sensed data. These lead to the correction of the water col-
umn effect, the strongest component of accurate benthic habitat mapping. How-
ever, these techniques are dependent on the extraction of dark water pixels as well
as depth sounding data which may not be available in a particular scene or for a
given site.

The bathymetric maps produced using IKONOS, QuickBird, and the AISA Eagle
revealed that most of the shallow vertical features around the Anthony’s Key area
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were reproduced, including a shallow “basin” of sand waves, fore reef, patch reef,
and steep narrow reticulated reef structure. All three bathymetric maps showed clear
distinction of the drop off point separating submerged shelf-edge reef from the deep
water. The barrier reef, which is separated from the shoreline by a moderately deep
body of water, runs SW-NE through the entire image, was distinctly revealed in
these bathymetric maps.

The water column correction technique used to produce the bottom albedo im-
ages showed similar results for both satellite datasets, whereas the albedo values
increased for the hyperspectral data. Albedo images derived from satellite data re-
vealed that seagrass areas are associated with low albedo values (≈ 8–12%), while
albedo values ranged from 18 to 24% in sand dominated areas. Coral areas mani-
fested albedos in the range of ≈ 12–24% depending upon the percent of live coral
cover occurring in each pixel. In case of the hyperspectral data, the dark regions
comprised of seagrasses and benthic algae with albedo values ≈ 15%; whereas sand
and coral dominated areas showed albedo > 30% and ≈ 15–35% respectively. This
increase in the albedo values could be attributed to the reduced atmospheric inter-
ferences observed in airborne data compared to spaceborne data. The effectiveness
of the water column correction was evident from the fact that differences in radiance
between deep and shallow homogenous substrate (i.e., shallow sand, large patch of
seagrass) were eliminated in the albedo image, and all homogenous substrate had
approximately the same albedo irrespective of their depth of occurrence.

Significantly varying in both spatial and spectral resolution, the satellite sensors
rendered considerable discrepancies for benthic habitat classification relative to air-
borne hyperspectral sensor. Overall, AISA Eagle image classification was consis-
tently more accurate (84%) including finer definition of geomorphological features
(9 classification levels) than the satellite sensors. IKONOS (81%) and QuickBird
(81%) classifications showed some correspondence to the AISA Eagle, however,
only at a coarse classification level of 5 and 6 habitats. This coarse classification
with satellite data is because of the limitation in the spectral sensitivity of the broad
band sensors, and spectral overlaps between optically similar objects. Depending
on the level of classification, previous studies using coarser resolution satellite data
(e.g., Landsat TM) have normally achieved accuracies ranging from 37% (Mumby
et al. 1998b) to 73% (Mumby and Edwards 2002), even when compensating for the
confounding effects of variable water depths. These results confirm the potential of
an effective combination of high spectral and spatial resolution satellite sensor for
the degree of accuracy required in coral reef habitat mapping.

A satellite sensor with high spectral resolution and an appropriate synoptic cov-
erage will help to address more efficiently the different signs of worldwide coral
reef degradation and accurate coral reef habitat inventorying, mapping, and moni-
toring. These submerged and highly heterogeneous environments impose challenges
for benthic habitat mapping and require a specialized sensor. Such challenges not
only include dealing with the intervening atmosphere (Gordon 1992), but also the
contribution of the water column (Smith and Baker 1981, Mobley 1994, Fraser et al.
1997, Mobley 1999, Morel and Maritorena 2001, Hochberg et al. 2003b), and depth
variation effects (Lyzenga 1978, 1981, Philpot 1989, Maritorena 1996, Stumpf et al.
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2003, Mishra et al. 2004) to the measured signal. The spectral resolution of a sensor
designed to better discriminate reef biological communities requires a high num-
ber of narrow, properly placed, bands which are not currently available in existing
satellite sensors (Mumby and Edwards 2002, Hochberg and Atkinson 2003). Opti-
cal hyperspectral sensors mounted on aerial platforms seem to be more appropriate
for overcoming the lack of high spectral resolution of satellite sensors. However,
the latter lacks the synoptic coverage for large-scale studies and usually cost more.
Mumby and Edwards (2002) suggest that in dealing with similar spectral bands at
different spatial scales, a higher spatial resolution increases the classification accu-
racy for fine level habitat mapping. Hochberg et al. (2003a) compared coral reef
spectral reflectances collected in situ around the world to those provided by sim-
ulated broadband spaceborne sensors, and pointed out the limitations of the latter
to spectrally discriminate between sand, coral and algae independent of geographic
location. Further, Capolsini et al. (2003), and Mumby et al. (1998a) demonstrated
the advantages of considering the reef morphology and habitat zonation at reef level
(e.g., contextual knowledge) to improve image classification accuracy. Additional
efforts to validate or unveil trends in terms of thematic map accuracy relative to sen-
sors specification should clarify the relative potential of individual sensors for coral
reef habitat mapping.

8.7 Future Research

It is widely suggested that reef communities around the world are currently un-
dergoing a phase shift, with previously coral-dominated areas being permanently
replaced by algae (Wilkinson 2000). Further research should focus on using the
hyperspectral data to address certain key issues that are of vital interest to the bio-
logical community, especially the detection of stress effects (i.e., bleaching, disease)
and structural changes in coral reef habitat. Researchers have had some success in
calculating percent live cover from airborne remote sensing (Mumby et al. 2004) us-
ing clustering and derivative analyses. One of the main factors affecting consistent
results is the effect of water column on the reflectance properties of corals. There is
always a temptation to interpret readily observable variations in remotely sensed sig-
nal of water as a direct indicator of water quality, or benthic type, without correcting
for water column effects. Initially, remote sensing specialists attempted to develop
strategies to monitor the extent and vitality of coral reefs, often by assuming the
effects of the water column above to be horizontally and vertically homogeneous
(Holden and LeDrew 2001). More recently, investigators have determined these as-
sumptions of homogeneity to be overly simplistic. This research provides innovative
techniques that will allow further processing (i.e., water column correction) of air-
borne or space-borne remotely sensed images necessary for mapping health and live
cover of sensitive benthic habitats. Future research should also focus on the gener-
ation of a large number of lookup tables for atmospheric correction and air-water
interface correction; and the generation of spectral libraries that simulate most coral
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reef, seagrass, macro-algae species, and other substrate types at varying depths and
types of water column. Once such data are available, fast processing methodologies
such as neural networks can be automated to process the satellite remote sensing
data and prepare accurate benthic habitat maps at a faster speed. This spectral li-
brary could require a period of 2–5 years to accomplish (depending on the level
of involvement by different agencies and developers) (Mobley et al. 2005). Once
accomplished it could be easily applied to all marine environments.
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Chapter 9
An Integrated Approach to Benthic Habitat
Mapping Using Remote Sensing and GIS:
An Example from the Hawaiian Islands

Ann E. Gibbs and Susan A. Cochran

This chapter documents our effort to map benthic habitats within the Kaloko-
Honokohau National Historic Park, Hawaì i, USA. We produce detailed benthic-
habitat maps by using a combination of color aerial photography, high-resolution
bathymetry, and georeferenced underwater video and still photography. We classify
individual habitat polygons using five basic attributes and additional information
regarding geology, morphology, and coral species. Derivative data sets including
isobaths, hillshades, and slope maps are also generated. The mapping shows that
benthic habitat and seafloor morphology varies greatly throughout the study area.
Nearly 73% of the study area consists of a hardbottom structure that is potentially
available for coral habitation; the remaining 27% includes unconsolidated sediment
and artificial or historical features. Coral cover is generally low and increases with
water depth. The offshore geology is predominantly composed of smooth to undu-
lating pahoehoe-type basalt flows that form flat to gently sloping benches, vertical
walls, and steep escarpments. In some locations the basalt surface is irregular and
mounded into ridges, pinnacles, and arches. Large rounded basaltic boulders and
smaller scattered rocks are common throughout the marine portions of the park.
Coral or accreted carbonate reef obscures the underlying volcanic surface in only a
few areas. The underlying geologic framework and morphology of the submerged
volcanic flows within Kaloko-Honokohau National Historical Park provide the pri-
mary control on benthic habitats within the park. The habitat maps and associated
data can be used as a stand-alone product or in a GIS to provide useful baseline
information to scientists, managers and the general public.

9.1 Introduction

Coral reefs are an essential part of the earth’s ecosystem. They are sensitive
indicators of the health of marine environments and are important economically,
providing people around the globe with food, jobs, coastal storm protection, and

A.E. Gibbs (B)
Pacific Science Center, U.S. Geological Survey, Santa Cruz, CA 95060, USA
e-mail: agibbs@usgs.gov

X. Yang (ed.), Remote Sensing and Geospatial Technologies for Coastal Ecosystem 211
Assessment and Management, Lecture Notes in Geoinformation and Cartography,
DOI 10.1007/978-3-540-88183-4 9, c© Springer-Verlag Berlin Heidelberg 2009



212 A.E. Gibbs and S.A. Cochran

recreational opportunities. Many of the world’s reefs have been severely damaged
over the past few decades due to a combination of factors including habitat destruc-
tion, land-based pollution, sedimentation, overfishing, vessel groundings, coastal
development, disease, and climate change.

In contrast to many coral reefs around the world, where nearly 70% are threat-
ened or destroyed, Hawaì i’s coral reefs are generally in good condition, with most
degradation occurring near urban areas and at popular tourist destinations in re-
sponse to land-based sources of pollution, overfishing, recreational overuse, and
invasive species (Wilkinson 2004, Friedlander et al. 2005).

With escalating population and development pressures, Hawaì i’s coral reefs will
increasingly become threatened. Baseline habitat maps and monitoring programs are
an essential step toward evaluating reef health and assisting in management of these
important resources. Prior to the 1990s, however, very few maps of the modern,
shallow-water coral reefs of Hawaì i existed.

9.1.1 History of Coral Reef Mapping in the Hawaiian Islands

Early works were merely descriptive in their nature (for example, MacCaughey
1918, Pollock 1928). Beginning around 1960, the coral reefs in Kane`ohe Bay, O`ahu
became some of the most heavily studied in the islands due to tremendous degra-
dation, as well as their proximity to researchers at the University of Hawaì i marine
lab on Coconut (Moku O Lo`e) Island. While the body of work in Kane`ohe Bay is
extensive, most of these coral reef surveys, and others conducted around the state
during the late 20th century, used a line-transect method to assess coral health and
coverage for various other studies (for example, Banner 1968, Fitzhardinge 1985,
Alifio 1986), and as such, provided no maps or method of quantifying the spatial
extent of Hawaiian reefs.

In 1984, the University of Hawaì i Marine Options Program undertook a coral
reef mapping effort on the island of Moloka ì for the U.S. Army Corps of Engi-
neers (Manoa Mapworks 1984). Qualitative field data were collected over a two-
week period using scuba and snorkel, and maps were plotted using 1:6 K and 1:24 K
black-and-white aerial photography from 1975 as a base layer. These maps provide a
useful background to the Moloka ì reef ecosystem, however, the aerial photographs
were not georeferenced, and thus no accurate measurements of scale and distribu-
tion can be made from them.

In 1998, the U.S. Geological Survey (USGS) recognized the need for accurate
maps of Hawaì i’s coral reefs to provide a baseline for future change assessments
and that these maps should include the geometry and distribution of coral cover
(Field and Reid 1998). In order to be useful for management decisions, the accu-
racy of the maps would need to be verified using ground-truth methods. Concur-
rently, in response to the mandate set forth by Executive Order 13089, the National
Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS)
implemented a program to provide digital maps of coral reefs within U.S. waters,
including territories, for use in a Geographic Information System (GIS). A digital
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Fig. 9.1 Map of the main eight Hawaiian islands. The dark black lines show the locations of recent
coral reef mapping efforts by the USGS

atlas of the benthic habitats of the main Hawaiian Islands was completed by NOAA’s
Biogeography team in 2003 (Coyne et al. 2003).

Coral reef mapping efforts by the USGS in the Hawaiian islands include ma-
jor efforts on the south coast of Moloka ì (Cochran-Marquez 2005) and within or
adjacent to three National Park lands along the Kona coast of Hawaì i: Pu`ukohola
Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park
(KAHO), and Pu`uhonua O Honaunau National Historical Park (PUHO) (Gibbs
et al. 2007, Cochran et al. 2007a,b). Limited reconnaissance mapping was also con-
ducted off the south shore of O`ahu and the west coast of Maui (Gibbs et al. 2005)
(Fig. 9.1). A combination of aerial photography, high-resolution lidar bathymetry,
and in situ observations were utilized in each of these mapping efforts. The method-
ologies employed and general results from one of the National Park studies, Kaloko-
Honokohau, are presented here.

9.1.2 The Kaloko-Honokohau Study Area

Kaloko-Honokohau National Historical Park is one of three National Park lands lo-
cated along the western coast of the island of Hawaì i and the only one to include
submerged lands and marine resources within its official boundaries. The park was
established in 1978 and is 1,160 acres in size, including 596 acres of marine area.
KAHO is located adjacent to a moderately well-developed area of the Kona coast.
The park is bordered on the south by the Honokohau small boat harbor and on the
north by a luxury residential/resort and golf course development near Wawahiwa`a
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Point (Fig. 9.2). Future development slated for lands adjacent to the southern bound-
ary of the park include a 300% expansion of the small boat harbor along with con-
struction of hotels, condominiums, and a light industrial park.

Marine resources located within KAHO include coral reef and habitat for many
marine animals such as the green sea turtle and a variety of fish and invertebrates. In
addition, many archeological, cultural, and recreational resources are located within
the marine realm of the park, including ancient fishponds and popular scuba div-
ing destinations. Potential threats and stressors to the modern marine environment
include groundwater and surface-water contamination, invasive plants and algae,
fishing pressure, use of monofilament gill nets (which can ensnare marine life or

Fig. 9.2 Location map showing the boundaries of Kaloko-Honokohau National Historical Park
and the area mapped as part of this study



9 An Integrated Approach to Benthic Habitat Mapping 215

become tangled on reefs and left behind as fishing debris), and visitor use impacts,
such as scuba diving and snorkeling. Illegal dumping, oil releases, boat ground-
ings, and other physical damage to reef resources are potential threats from users
of the nearby harbor. A specific issue of concern for the park includes establishing
baseline conditions of the offshore resources prior to the development of adjacent
coastal lands.

In 2003, the U.S. Geological Survey (USGS) Coastal and Marine Geology Pro-
gram, in cooperation with the National Park Service (NPS), was tasked with devel-
oping a detailed benthic-habitat classification map for the marine lands within and
adjacent to the park. The intent of this project was to provide baseline maps, a GIS
database, and a report summarizing the biological and geological resources of these
marine lands in order to facilitate the management, interpretation, and understand-
ing of park resources. The report (Gibbs et al. 2007) and data generated are available
online at: http://pubs.usgs.gov/sir/2006/5256/(last access on 11 March 2008).

9.2 Data and Methods

9.2.1 Classification Standards

A standard for characterization of coral-reef environments was first implemented by
NOAA for mapping the Florida Keys (Rohman and Monaco 2005) and Puerto Rico
and the Virgin Islands (Kendall et al. 2001). This standard for mapping coral reefs
in the United States and its territories characterizes benthic habitats on the basis
of their sea-floor geomorphology, geographic zones, and biological cover using a
minimum mapping unit of one acre. Typically, only color aerial photography or
satellite imagery is used to define habitat boundaries and field reference checks are
conducted using shipboard video or scuba transects.

In the study presented here, benthic-habitat classification maps were created us-
ing the standards established by NOAA but at a larger scale (minimum mapping
unit of 100m2 versus 1 acre) and with additional data sources, including existing
color aerial photography, Scanning Hydrographic Operational Airborne Lidar Sur-
vey (SHOALS) bathymetric data, and georeferenced underwater video and still pho-
tography. Maps were generated using both ArcView and ArcMap GIS software by
ESRI (http://www.esri.com; last access on 11 March 2008), and a statistical analysis
of accuracy of the resultant maps was performed.

9.2.2 Base Imagery and Data

9.2.2.1 Aerial Photography

High-resolution aerial photomosaics offer a relatively inexpensive and easily ac-
quired foundation for mapping shallow-water structures and features of coral reefs.
As a passive form of remote sensing, aerial photography can provide an excellent



216 A.E. Gibbs and S.A. Cochran

overview of reef habitats due to the typically clear, shallow-water environments in
which reefs are found. Two of the primary limitations in the use of aerial photogra-
phy for mapping coral reefs are: (1) the absorption of light by the water column pre-
cludes interpretation of bottom habitats in water depths greater than approximately
20 m, and (2) the remotely sensed data must be integrated with actual in-the-water
field (groundtruth) observations in order to determine actual sediment type and live
coral abundance, type, and distribution.

In this study, color aerial photographs were used as the base layers for mapping.
The images were scanned, orthorectified, and a digital mosaic with a resolution of
0.16 m per pixel was produced. The horizontal accuracy of this photography was
better than 2 m and most seafloor features were recognizable to a water depth be-
tween 15 and 25 m.

9.2.2.2 High-Resolution Bathymetry

High-resolution bathymetry was a second integral base data type used for delin-
eating the habitat and morphological environments in this study. Scanning Hydro-
graphic Operational Airborne Lidar Survey (SHOALS) bathymetric data were col-
lected over the Hawaiian islands during 1999 and 2000 by the U.S. Army Corps
of Engineers. Lidar is an active remote sensing technology that utilizes laser en-
ergy to detect distance between source and receiver. The SHOALS technology (see
also Lillycrop et al. 1996, Guenther et al. 2000, Irish et al. 2000) determines water
depth by comparing the time difference between a pulse of laser energy reflected
off the surface of the water and one reflected off the sea floor. This time difference
is difficult to resolve in shallow water (<∼ 1m) or where waves are breaking. The
maximum water depth of data collection is limited by the combined effects of the
incident sun angle and intensity, the reflectance or radiance of bottom material, and
water clarity–including the type and quantity of particles in the water column. The
SHOALS system is typically capable of sensing bottom depths equal to two or three
times the Secchi depth–the depth to which an 8-inch (20-cm) disk with alternating
black and white quadrants can be seen from the surface (Tyler 1968). In the KAHO
study area, the maximum water penetration was 42 m. The bathymetric data have a
nominal horizontal point spacing of 4 m (±3m) and a vertical resolution of ±15cm.
For further details regarding SHOALS data, see http://shoals.sam.usace.army.mil
(last access on 11 March 2008).

Continuous bathymetric data were obtained for nearly the entire park area, with
the exception of the shallow coastal waters in Honokohau and Kaloko Bays and
a swath of missing data in the central part of Honokohau Bay. Bathymetry in this
central area was obtained from the historical National Ocean Service (NOS) sur-
vey H09336 of 1968 (http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html; last
access on 11 March 2008). From the combined SHOALS/NOS data, a triangulated
irregular network (TIN) of the point data was generated, from which gridded sur-
faces were created. Isobaths, hillshades, and slope maps were derived from these
grids using standard ArcMap functions and then used to assist in the interpretation
of seafloor morphology and benthic habitat distribution.
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9.2.3 Groundtruth Data

9.2.3.1 Underwater Video and Still Photography

Several types of camera systems and collection methods were used to collect the
groundtruth data. In water depths shallower than a boat could navigate, and along
scuba transects, video and still photography were collected by snorkelers and scuba
divers using hand-held video recorders and digital still cameras. A Global Position-
ing System (GPS) unit mounted on a surface float tethered to the snorkeler or diver
provided positional information for the imagery.

In deeper water, video imagery was obtained by either towing a camera behind a
moving vessel or dropping it over the side of the vessel while remaining on a fixed
station or drifting slowly. Camera tows were designed to rapidly collect video im-
agery over large geographical areas. To avoid collisions with the seafloor, however,
the camera had to be towed several meters above the bottom. This limited the ob-
servable detail of the seafloor in the video and these images were thus most useful
for providing information regarding spatial transitions in coral cover and habitat. In
contrast, during collection of video using the on-station drop or drift configuration,
the camera could be lowered to within centimeters of the seafloor, which provided
exceptionally detailed information on substrate type, benthic cover, and habitat
diversity.

The camera system used for shipboard operations was a watertight video camera
illuminated with a light-emitting diode (LED) light ring designed by SeaViewer
Underwater Video Systems (http://www.seaviewer.com; last access on 11 March
2008). When rigged for towing, the camera was mounted in a small aluminum frame
with a rear-mounted plastic fin (Fig. 9.3A). When rigged for on-station dropping,
the camera and light were integrated with two battery-powered lasers and a Seabird
CTD (Conductivity, Temperature, Depth) instrument in a steel frame (Fig. 9.3B).
Live video from both systems was viewed in a shipboard laboratory on a monitor
and recorded directly to miniDV tape (Fig. 9.3C). Time, date, location, and ship
speed were overlaid on the video using Sea-Trak GPS Video Overlay, also developed
by the SeaViewer Company.

Simultaneous navigation, recording of ship position, and feature annotation were
conducted in real time using hardware and software developed by Red Hen Sys-
tems (RHS; http://www.redhensystems.com; last access on 11 March 2008) on a
PC laptop. Location data were recorded using a hand-held GPS receiver. The RHS
hardware transmitted NMEA-formatted GPS data at two-second intervals to the first
audio channel of the video tape. A database was simultaneously created to cross-
reference the GPS locations and video time codes. This technique allowed for nav-
igation and video to be viewed in real time and the location of features of interest
and comments (for example, start/end of lines, substrate types) to be added to the
database during data collection. For post-survey analyses, this technique allowed
rapid random access to the original video by selecting locations along the naviga-
tion trackline within MediaMapper and GeoVideo (an extension developed by Red
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Fig. 9.3 Photograph of the
(A) SEAVIEWER camera
system rigged to collect
towed video, and (B) with
SeaBird CTD acquisition
system rigged to collect drop
or drift video and CTD
information. (C) Photograph
of shipboard laboratory set up
for navigation, recording of
ship’s position, and
annotation of bottom features

Hen Systems for integration with the ESRI ArcMap platform) software packages.
Video could be interactively queried and geographically referenced feature annota-
tions could be added to the database.

Nearly 48 trackline kilometers (22 h) of underwater video footage and more than
500 still images (89 towed lines, 124 on-station drop/drift sites, 5 scuba transects,
and 3 snorkel transects), were collected during three field surveys between Decem-
ber 2003 and August 2004 (Fig. 9.4).



9 An Integrated Approach to Benthic Habitat Mapping 219

Fig. 9.4 Aerial photomosaic of the study area overlain with video trackline locations

9.2.3.2 Video Mosaics

Recent advances in software development have allowed digital video to be con-
verted to georeferenced image strips that can be imported into a GIS. Researchers at
the University of New Hampshire (UNH) are developing software tools for pattern
recognition from one video frame to the next, which results in a continuous image
mosaic made from overlapping video frames (Rzhanov et al. 2004). Collaborators
from the USGS and UNH used the sea-floor video acquired from KAHO to make
georeferenced mosaics of selected tracklines within the study area. Original video
on miniDV tape was converted into Audio Video Interleave (AVI) format using com-
mercial software and then divided into 2-min sections in order to limit file size and
to minimize propagation errors. Using the suite of UNH-developed software, the
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Fig. 9.5 Example of an underwater video mosaic overlain on aerial photography. (A) Aerial pho-
tomosaic with habitat polygon boundaries, and (B) with video mosaic added

video was then de-sampled, keeping every 15th–20th frame (depending on camera
sled speed), and the outer edges of the AVI were cropped to remove the navigation
and time stamps (Sea-Trak) that were superimposed on the video. With the clean
AVI, both automatic and manual pattern recognition were performed, calculating
the X-Y shift and rotation from one frame to the next. An image mosaic was gener-
ated using the video frames and the offset information. Finally, the image mosaics
were georeferenced using a combination of GIS techniques, the navigation infor-
mation on the original video, and comparison with the aerial photography where
shallow portions of the reef were visible. Once the imagery was properly georefer-
enced, it was available within the GIS for direct comparison and groundtruthing of
the benthic habitats (Fig. 9.5).

9.2.4 Benthic Habitat Mapping Using GIS

Digital benthic habitat maps were created using ESRI’s ArcMap 8.3 and Ar-
cView 3.2 software with a habitat digitizing extension created by NOAA (see
http://www.ccma.nos.noaa.gov/products/biogeography/digitizer/ to download the
extension; last access on 11 March 2008). The habitat digitizing extension allows
users to delineate habitat areas and assign attributes to the habitat polygons based
on a predetermined classification scheme using a point-and-click menu system.
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We delineated and classified 1,185 polygons, covering more than 2,479km2. A
minimum mapping unit (MMU) of 100m2 was used; however, smaller features were
mapped if they carried habitat significance (for example, an individual coral colony
2 m in diameter located in an otherwise uncolonized area). Features were digitized
and interpreted primarily using the orthomosaics. In areas where seafloor features
were too deep to be resolved in the aerial photograph, the morphological characteris-
tics of the sea floor observed in the bathymetry, combined with underwater imagery,
were used to define and classify the habitat polygons.

9.2.5 Classification Scheme

The classification scheme used was based on a scheme established by NOAA’s bio-
geography program in 2002 (Coyne et al. 2003) for the main eight Hawaiian islands
and subsequently revised in 2004 (NOAA 2005). Developed with input from coral

Table 9.1 List of individual habitat components in the classification scheme. Numbers represent
the 4-digit identifier (ABCD)

Major structure (A) Dominant structure (B)

1 Unconsolidated Sediment 1 Mud
2 Sand

2 Reef and Hardbottom 1 Aggregate Reef
2 Spur-and-Groove
3 Individual Patch Reef
4 Aggregated Patch Reef
5 Volcanic Pavement with 10–50% Rocks/Boulders
6 Volcanic Pavement
7 Volcanic Pavement with > 50% Rocks/Boulders
8 Volcanic Pavement with Sand Channels
9 Reef Rubble

3 Other 0 Unknown
1 Land
2 Artificial
3 Artificial/Historical

9 Unknown 0 Unknown

Major biologic cover (C) Percent cover (D)∗

0 Unknown 0 Unknown
1 Uncolonized 2 10– < 50%
2 Macroalgae 3 50– < 90%
3 Seagrass 4 90–100%
4 Coralline Algae ∗ Because < 10% coverage is considered to be

uncolonized, percent category (1) < 10% is not used.5 Coral
6 Turf
7 Emergent Vegetation
8 Mangrove
9 Octocoral
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reef scientists, managers, local experts, and others, the hierarchal scheme allows
users to expand or collapse the level of thematic detail as necessary. We used the
NOAA definition of benthic habitats and classification scheme as a starting point
to provide continuity with other habitat maps. We then made modifications to the
classification scheme where necessary to improve the characterization of benthic
habitats and geologic substrates found along the Kona coast.

The classification scheme uses four basic attributes to describe each mapped
polygon: (A) the major structure of the substrate, (B) the dominant structure (a sub-
set of the major structure), (C) the major biologic cover found on the substrate,
and (D) the percentage of major biological cover. The structure combined with the
overlying biologic cover is referred to as a “habitat”. Each polygon is coded with
a 4-digit identifier (ABCD) that reflects the combination of the individual habitat
components. See Table 9.1 for a list of habitat components. If a polygon includes
two or more substrate or coverage types, the polygon is identified with the dominant
one. Each polygon is also coded with a fifth attribute, “zone”, which refers to the
location of the habitat community within the coral reef ecosystem. These zones cor-
respond to typical reef geomorphology (for example, reef flat, reef crest, fore reef,
shelf, etc.; Spaulding et al. 2001, Kendall et al. 2001, Coyne et al. 2003). Detailed
descriptions of habitats and zones, including example photographs, may be found
in Gibbs et al. (2007).

9.3 Application of Techniques and Habitat Classification

9.3.1 Habitat and Geology

A thematic map showing the distribution of benthic habitats within the study area
is shown in Fig. 9.6. This 2-dimensional thematic map provides a highly detailed
representation of the aerial extent and distribution of the various benthic habitats.
The ability to directly query the digital data and view the data in 3 dimensions,
however, expands the utility and usefulness of the information, allowing for a more
complete assessment of the environment and the interpretation of potential controls
on the distribution of corals in this environment.

Evaluation of the bathymetric data, including the development of shaded relief
(hillshades) and slope maps, along with profile transects or cross-sections, provided
information on the shape or morphology of the seafloor (Fig. 9.7). Groundtruth data
provided additional detail on the structures at a finer scale than the bathymetric
data allowed. Gibbs et al. (2007) describe the geology of the marine region of the
park and suggest that the underlying geologic framework and morphology of the
submerged volcanic flows provide the primary control on benthic habitats within
the park. The seafloor of KAHO is composed of multiple, smooth to undulating
pahoehoe-type basalt flows that form flat to gently sloping benches, shear verti-
cal walls, and steep flow-front escarpments. In some locations the basalt surface
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Fig. 9.6 A thematic map showing the distribution of benthic habitat classes in the KAHO area
draped on shaded relief bathymetry and aerial photomosaic. Hatched lines indicate areas lacking
bathymetric data

is irregular and mounded into ridges, pinnacles, and arches. Large rounded boul-
ders and smaller scattered rocks are common throughout the marine portions of the
park. In only a few locations does coral cover or accreted carbonate reef obscure the
underlying volcanic surface (Fig. 9.7).



224 A.E. Gibbs and S.A. Cochran

Fig. 9.7 Shaded-relief map (hillshade) of the combined SHOALS and NOS bathymetry gridded
data, aerial photomosaic, and selected cross-sections illustrating the complex seafloor morphology
of the study area

Combination analyses of attributes, such as the structure/substrate with major bi-
ological cover, or percent coral cover with depth, provide information on the success
or failure of corals to colonize different environments. For example, pie charts show
the relative percent of seafloor potentially available for coral colonization (“avail-
able hardbottom” =73%) versus that covered with unconsolidated sand or other
structures (27%) (Fig. 9.8A). Of the available hardbottom, 76% is covered with at
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Fig. 9.8 Relative abundance of (A) major substrate structures, (B) major biological coverage on
coral reef and hardbottom, and (C) percent hard coral cover on available hardbottom in the KAHO
study area. All unconsolidated sediment (27% of the study area) is sand (A). The remaining 73% of
the study area is reef and hardbottom available for coral habitat (B). Of this available hardbottom,
76% is covered with a minimum of 10% coral (B). The majority of the study area is colonized
with less than 50% live coral (C). In this study, soft octocoral is considered separately from hard
scleractinian coral

least 10% coral (Fig. 9.8B). Overall, however, hard (scleractinian) coral cover is
low, with 84% of the total hardbottom classified with 10 to < 50% hard coral cover.
Only 14% is classified with moderately high (50–<90%) hard coral cover and 2%
is classified with high (90–100%) hard coral cover (Fig. 9.8C). Comparing coral

Fig. 9.9 Bar graph showing the percent coral cover by depth. The highest coral cover is located in
water depths between 10 and 20 m
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cover with water depth shows that, in general, coral cover increases with depth and
reaches maximum values between about 10 and 20 m (Fig. 9.9).

9.3.2 Accuracy of Maps

The validity, or usefulness, of any classification or interpretation can be determined
with an accuracy assessment, which compares the mapped interpretation with actual
reference conditions found in the field. In this project, the overall accuracy of the
benthic habitat map and its accuracy from both the producer and user points of view
were determined.

Overall accuracy indicates which points on the map are classified correctly
according to a field check (Lillesand and Keifer 1994). Producer accuracy in-
dicates how well the map producer classified the different cover types (that is,
what percentage of a particular class was correctly classified). User accuracy is
a measure of the reliability of an output map generated from a classification
scheme (that is, the probability a map user will actually find that class in the
field).

For this study, 185 randomly generated sample points were visited by third-
party coral reef research biologists from the University of Hawaì i who were fa-
miliar with the classification scheme. An accuracy assessment was performed for
the major biological covers (Table 9.2). The overall accuracy of 90.3% (with a
95% confidence interval of ±1.3) indicates which points on the map were clas-
sified correctly according to the reference field check. Producer’s and User’s ac-
curacies were generally greater than 60%, except for macroalgae, which was in-
correctly classified 100% of the time. A tau coefficient of 0.878 was calculated as
described by Ma and Redmond (1995) and indicates that 87.8% more points were
classified correctly than would be expected by chance alone. After accuracy assess-
ment calculations were performed, any misinterpreted polygons identified on the
map were corrected using the field reference data, thus increasing the accuracy of
the final map.

9.3.3 Integration of Data Sets

The unique aspect of this study was the integration of multiple remotely-sensed
and groundtruth data sets to map coral reef habitat. Previous mapping efforts used
solely aerial photography as a data source, with limited data for the purpose of accu-
racy assessment (Coyne et al. 2003). The lack of light penetration in standard aerial
photography limits its usefulness as the sole source for interpretation of underwater
features. By incorporating high-resolution bathymetry and field observations with
the aerial photography, the mappable depth can be increased to about 40 m, nearly
twice the depth that can be mapped with aerial multispectral or hyperspectral data
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Table 9.2 Accuracy assessment matrix for the major biological cover classes
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Algae 

0 0 0 0 0 0 0 0 0 0 0 100 
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Producer’s
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100 75 0 100 100 96 100 100 100 75

Diagonal Sum =167
Overall Accuracy=90.3%

Tau=0.878

alone (Fig. 9.10). In order to map to greater depths from a platform on or above the
water surface, non-optical methodologies (e.g., single-beam or multi-beam sonar)
would need to be employed.

9.3.4 Bathymetry and 3-D Visualization

The inclusion of high-resolution bathymetric data allows for 3-dimensional vi-
sualization of the maps, assisting in both habitat interpretation and management
decision-making. The integration of thematic maps with 3-dimensional data allows
the scientist or manager to view data with a real-world perspective, rather than in a
simple planar 2-dimensional perspective as is typical with conventional map prod-
ucts. A variety of software viewing packages exist (e.g., ArcScene, Fledermaus) that
allow the user to view the data from different perspectives and scales, stack layers,
and so on, to examine relationships between habitats and geology. For example, if
only 2-dimensional, planar information had been used in this study, the detection of
the complex seafloor morphology, including steep escarpments, vertical walls, and
pinnacled regions, and its control on coral distribution would not have been possible
(Fig. 9.11).
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Fig. 9.10 Lines showing the limit of mappable area using aerial photography alone (dashed line)
and using a combination of aerial photography, high-resolution bathymetry, and field observations
(solid line), overlain on the aerial photomosaic (left) and shaded relief bathymetry (right)

9.4 Summary and Conclusions

The integration of multiple data sets within a GIS allows for a multitude of ana-
lytical and visualization approaches to understanding, interpreting, and quantifying
a particular physical environment. In this study, we combined aerial photography,
high-resolution bathymetry, and georeferenced video and still imagery to produce a
high quality, multi-faceted data set on benthic habitats and submerged geological re-
sources in Kaloko-Honokohau National Historical Park. The integration of multiple
data sources allowed us to map the park area at a finer scale and to a deeper depth
than previously available. By using similar classification schemes our higher reso-
lution maps nest easily within the smaller scale (lower resolution) benthic habitat
maps developed for all of the main eight Hawaiian islands (Coyne et al. 2003). The
habitat maps and other data sources can be used by park managers and scientists as
stand-alone maps or can be digitally viewed and queried in a GIS for purposes of



9 An Integrated Approach to Benthic Habitat Mapping 229

Fig. 9.11 A 3-dimensional perspective figure showing the complex seafloor morphology off
Kaloko-Honokohau NHP. View is toward the north east. Vertical exaggeration is x4. Approximate
distance along the bottom of the figure is 3 km

inventorying and evaluating existing park resources. The data and maps also provide
a baseline for monitoring the status and sustainability of the habitats and resources
they are tasked with managing.
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Chapter 10
Assessment of the Abundance of Submersed
Aquatic Vegetation (SAV) Communities
in the Chesapeake Bay and its Use in SAV
Management

Kenneth A. Moore, Robert J. Orth and David J. Wilcox

Broad declines in Chesapeake Bay submerged aquatic vegetation (SAV) populations
that were first observed in the late 1960s and 1970s prompted the initiation of a
comprehensive aerial mapping program to assess the status of the resource. This
mapping program which began in 1978 has continued on an annual basis since
1984. The imagery used has primarily consisted of high resolution black and white
photographs taken at a scale of 1:24,000. Mapping missions have been flown un-
der guidelines addressing frame overlap, tidal stage, seasonal plant development,
sun angle, atmospheric transparency, water turbidity and wind speed and direction
to maximize SAV bed signatures. Currently 173 flight lines, which cover approx-
imately 3,800 flight line km, are photographed and mapped for SAV each year.
Scanned aerial photography images are geo-rectified and orthographically corrected
to produce a series of aerial mosaics at 1 m resolution. The SAV beds are inter-
preted on-screen using in a GIS environment. Extensive ground survey data is also
collected to verify the SAV photo-interpretation. A bay wide analysis of SAV distri-
butions since the 1930s was also undertaken with archival aerial photographs using
similar procedures to develop a composite historical coverage of SAV. Both the cur-
rent and historical mapping results have been used for a variety of purposes. The
composite historical coverages have been used to set SAV restoration goals and
direct SAV restoration efforts. In addition, analyses of the historical SAV growth
and bay bathymetry have been used to set seasonal water clarity targets for shallow
water historically vegetated SAV areas throughout the bay. Comparisons of current
SAV mapping results with historically based restoration targets are used annually
to provide important indexes of bay condition and trends that are used to assess the
effectiveness of nutrient and sediment reduction strategies for the bay and its wa-
tershed. In addition, the photographic imagery and the resultant SAV delineations
have been widely used by managers to identify and minimize direct impacts to
the SAV.
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10.1 Introduction

Throughout many littoral regions of the Chesapeake Bay and its tributaries both di-
rect observation and other evidence have indicated that broad declines of seagrasses
and other submersed aquatic vegetation (SAV) have occurred since the 1930s, with
precipitous declines beginning in the 1970s (Orth and Moore 1983a). These de-
clines have been thought to be principally the result of increasing inputs of nutri-
ents and sediments into the estuarine waters from the watershed and directly from
the atmosphere (Kemp et al. 1983, Twilley et al. 1985, Kemp et al. 2005). These
contribute to reduced light availability for plant photosynthesis by increasing water
column turbidity and periphyton fouling of the aquatic plant leaves (Neckles et al.
1993, Moore et al. 1996, 1997). Recent losses of SAV have not just been observed
in the Chesapeake Bay, but broad-scale declines attributed to human influences
have been documented in populations worldwide (Orth et al. 2006a, Ralph et al.
2006).

SAV is a highly valuable bay resource whose presence serves as an important in-
dicator of local water quality conditions (Dennison et al. 1993, Batiuk et al. 2000).
Throughout most of the Chesapeake Bay SAV are currently found growing at wa-
ter depths of 2 m mean low water (MLW) or less. Even in these shallow depths
high levels of nutrient and suspended sediments can decrease SAV growth and sur-
vival; and because SAV beds are non-motile, their presence or absence can serve as
an integrating measure of variable water quality conditions in local areas (Moore
et al. 1996, Kemp et al. 2005, Rybicki and Landwehr 2007). Research indicates that
the growth, survival and depth limits of SAV can be directly related to water col-
umn light levels (Duarte 1991, Dennison et al. 1993, Nielsen et al. 2002). Water
quality requirements for SAV growth are particularly crucial as barometers of the
health of the Chesapeake Bay littoral environment and because of the direct relation-
ships between SAV and water quality (Kemp et al. 2005), trends in the distribution
and abundance of Chesapeake Bay SAV over time are very useful in understanding
trends in water quality and bay restoration in general (Batiuk et al. 2000, Kemp et al.
2005).

Because of the value of SAV in the Chesapeake Bay ecosystem and their ap-
parent large scale declines, a SAV mapping program was instituted in the late
1970s to assess the status of the resource. Archived black and white photogra-
phy available from agencies such as the U.S. Geological Survey, U.S. Department
of Agriculture Soil Conservation Service, National Oceanic and Atmospheric Ad-
ministration and the Virginia and Maryland Departments of Highways was used
to develop a historical composite picture of a few selected areas dating back to
the 1930s (Orth and Moore 1983b). This provided the initial evidence that the
low abundances first observed in 1960s and continuing into the early 1970s in
all sections of the bay were likely unprecedented in recent bay history (Orth and
Moore 1983a). The intensity of the decline was greatest in upper bay and west-
ern tributaries, suggesting a direct link with watershed processes and watershed
development.
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10.2 The Aerial Photographic Mapping Process

The comprehensive aerial photographic mapping inventory of SAV in the Chesa-
peake Bay began in 1978 and has been conducted on an annual basis since 1984,
by the SAV Mapping Laboratory at the Virginia Institute of Marine Science (VIMS,
Gloucester Point, VA). The mapping project has been funded by a variety of state
and federal partners with the support of the Chesapeake Executive Council consist-
ing of the Governors of Virginia, Maryland, Pennsylvania, the Mayor of the District
of Columbia and the United States Environmental Protection Agency (USEPA) Ad-
ministrator. In the initial years, high resolution black and white, aerial photographs
were taken using 9.5 in. square negative Aerographic type 2405 or Aerochrome MS
type 2448 film at scales of 1:12,000 –1:24,000. Prints of these photographs were an-
alyzed directly with analog interpretation techniques based on photo-interpretation
by a seagrass biologist (Orth and Moore 1983b). The bed outlines were then trans-
ferred directly to mylar, 7.5 min series, 1:24,000 scale, United States Geodetic
Survey (USGS) topographic quadrangles for area determinations and perimeter dig-
itization. In addition to the boundaries of the SAV beds, estimates of percent cover
for each bed were visually classified into four categories using a standard scale
(Fig. 10.1) to estimate cover of the vegetation. A black and white film type was and
continues to be used for the delineations despite the potential advantages of normal-
color imagery for seagrass mapping (Pasqualini et al. 2001), due principally to the
finer grain, smaller storage requirements for scanned images, and lower cost. Cur-
rently Aviphot Pan 80 black and white film is used to obtain the images flown at
12,000 ft, yielding 1:24,000 scale photographs.

Guidelines for acquisition of aerial photography used in this monitoring program
were initially developed to address tidal stage, seasonal plant development, sun an-
gle, atmospheric transparency, water turbidity, wind, sensor operation and sufficient
land features for geographic orientation (Orth and Moore 1983b) and these con-
tinued to be used to the present (Orth et al. 2006b). For example, for SAV in the
Chesapeake Bay: photography must be acquired at low tide, ±0–1.5ft, as predicted
by the National Ocean Survey tables; imagery must be acquired when growth stages
ensure maximum delineation of SAV, and when SAV species phenologic state over-
lap is greatest; photography must be acquired when surface reflection from sun glint
does not cover more that 30% of frame; sun angle is between 20◦ and 40◦ to min-
imize water surface glitter; there is at least 60% line overlap and 20% side lap;
photography must be acquired during periods of no or low haze and/or clouds be-
low the aircraft as well as no more than scattered or thin broken clouds, or thin
overcast above the aircraft to ensure maximum SAV to bottom contrast; turbidity
must be low enough that when viewed from the aircraft the SAV can be seen by the
observer; there should be little or no wind, with offshore winds preferred to onshore
winds when slight wind conditions cannot be avoided; photography must be ac-
quired in the vertical mode with less that 5◦ tilt; scale, altitude, film and focal length
combination must permit resolution and identification of one square meter area of
SAV at the surface; each flight line must include sufficient identifiable land area to
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Fig. 10.1 Categories used for estimating density of SAV from aerial photography. Rows of squares
with black and white patterns represent three different arrangements of vegetated cover for a given
percentage. <10% = Category 1; 10–40% = Category 2; 40–70% = Category 3; 70–100% =
Category 4. (Reproduced from Moore et al. 2000, by permission)

assure accurate location of grass beds. These guidelines have become a standard for
mapping SAV (Dobson et al. 1995). Adherence to the guidelines assures acquisition
of photography under as optimal conditions as possible for detection of SAV, thus
ensuring accurate photo interpretation. Deviation from any of these guidelines re-
quires prior approval by VIMS staff. Quality assurance and calibration procedures
are consistently followed. The altimeter is calibrated annually by the Federal Avia-
tion Administration and the aerial camera is calibrated by USGS.

Camera settings are currently selected by automatic exposure control. Flights
are scheduled within a sun angle window of 20◦–40◦ to minimize sun glint in the
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frame. In addition, the camera is equipped with a computer controlled intervalome-
ter that establishes 60% line overlap and 20% sidelap providing duplicate coverage
for areas obscured by glint. An automatic bubble level holds the camera to within
one-degree tilt. The scale, altitude, film, and focal length combination is coordinated
so that SAV patches of one square meter can be resolved. Ground-level wind speed
is monitored with realtime data available on the web. Under normal operating con-
ditions, flights are usually conducted under wind speeds less than 10 mph. Above
this speed, wind-generated waves stir bottom sediments, which can easily obscure
SAV beds in less than one hour. During the flight the pilot evaluates water clarity
conditions. During optimum flight conditions where the turbidity is sufficiently low
to permit complete delineation of the SAV beds, the shoals are clearly visible and
the pilot is usually able to distinguish bottom features such as SAV or algae.

Excessively turbid conditions generally preclude photography and the determi-
nation of optimum cloud cover level is based on pilot experience. Records of pilot
observation are kept in a flight notebook. Cloud cover below 12,000 ft is limited to
5% of the area covered by the camera frame, but a thin haze layer above 12,000 ft
is acceptable. Experience with the Chesapeake Bay has shown that optimal atmo-
spheric conditions generally occur two to three days following passage of a cold
front, when winds have shifted from north-northwest to south and have moderated
to less than 10 mph. Within the guidelines for prioritizing and executing the photog-
raphy, the flights are planned to coincide with these atmospheric conditions where
possible. A 9-inch by 9-inch, black-and-white contact print is produced for each
exposed frame and reviewed by a scientist/photointerpreter to determine if each

Fig. 10.2 A Typical aerial image used for mapping with arrows indicating several areas of dark
SAV signatures near the island
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flight line is suitable for SAV delineation. Each photograph is labeled with the date
of acquisition as well as the flight line number and frame number (Fig. 10.2). Film
and photographs are stored under appropriate environmental conditions to prevent
degradation.

Currently the Chesapeake Bay SAV aerial photography (Orth et al. 2006b) con-
sists of 173 flight lines, which cover approximately 3,800 flight line km (Fig. 10.3).
These flight lines are positioned to include all areas known to recently or histor-
ically support SAV, as well as other areas of appropriate depths of less than 2 m
mean low water (MLW) that have the potential for SAV growth. Typically, the flight
lines are similar from year to year so as to provide a consistent image base. Flight
lines are prioritized by sections and flights timed to occur during the peak growing
season of the SAV species known to occur in each section. Specific areas known to
have had significant SAV coverage are given a high priority. Higher salinity seagrass
dominated regions in the lower bay are generally flown during May through June.
Here, the dominant seagrass species, eelgrass (Zostera marina), reaches maximum
biomass during this late spring-early summer period (Moore et al. 2000). Mid-bay

Fig. 10.3 Chesapeake Bay and coastal bays annual aerial photography flight lines. Solid lines
indicate flightlines
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and upper bay areas that are dominated by a mix of freshwater and oligohaline tol-
erant species which reach peak biomass in the late summer (Moore et al. 2000) are
flown later.

10.3 Orthorectification and Mosaic Production

Scanned aerial photography negatives are georectified and orthographically cor-
rected to produce a seamless series of aerial mosaics following standard operating
procedures. Leica LPS image processing software (Leica Geosystems GIS & Map-
ping, LLC. Atlanta, Ga. 2005) is used to orthographically correct the individual
flight lines using a bundle block solution. Camera lens calibration data is matched
to the image location of fiducial points to define the interior camera model. Control
points from USGS DOQQ images provide the exterior control, which is enhanced
by a large number of image-matching tie points produced automatically by the soft-
ware. The exterior and interior models are combined with a 30-m resolution digital
elevation model (DEM) from the USGS National Elevation Dataset (NED) to pro-
duce an orthophoto for each aerial photograph.

The orthophotographs that cover each USGS 7.5 min quadrangle area are ad-
justed to approximately uniform brightness and contrast and are mosaicked together
using the ERDAS Imagine mosaic tool to produce a one-meter resolution quad-sized
mosaic.

10.4 Photo-Interpretation and Bed Delineation

The SAV beds are interpreted on-screen from the orthophoto mosaics using com-
mercial GIS software and a custom tool, which includes editing palettes, that was
developed to facilitate the process. The identification and delineation of SAV beds
by photo interpretation utilizes all available information including: knowledge of
aquatic grass signatures on film, distribution of SAV from aerial photography,
ground survey information, and aerial site surveys. In addition to delineating SAV
bed boundaries, an estimate of SAV density within each bed is made by visually
comparing each bed to an enlarged crown density scale (Fig. 10.1) similar to those
developed for estimating forest tree crown cover from aerial photography (Paine
1981). Bed density is categorized into one of four classes based on a subjective
comparison with the density scale. These are: 1, very sparse (<10% coverage); 2,
sparse (10–40%); 3, moderate (40–70%); or 4, dense (70–100%). Substantial sec-
tions of larger beds that differ in density are delineated separately. Either the entire
bed or sections within the bed are assigned a bed density number (1–4) correspond-
ing to the above density classes. Additionally, each distinct SAV unit (bed or bed
section) is assigned an identifying one or two letter designation unique to its map.
Coupled with the appropriate SAV map number and year of photography, these one
or two letter designations uniquely identify each SAV bed in the database.
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Interpreting the outer, deeper edges of the SAV beds can be problematic espe-
cially in turbid systems. Mount (2003) has determined that the detection depth of
SAV bed boundaries is approximately 60% of the in situ water transparency secchi
depth. Typically, SAV in the Chesapeake Bay are found growing below mean sea
level to depths equal to 100% of the local secchi depth (Dennison et al. 1993), which
in the Chesapeake Bay commonly ranges from 0.5 m to 2.0 m. Given tidal ranges
throughout the bay of approximately 0.5–1.0 m, aerial photography taken around the
low tidal stage is usually sufficient to identify the deeper bed boundaries (Fig. 10.4).
Local constraints such as wind generated turbidity or phytoplankton blooms can ob-
scure the evidence of SAV in some areas; however, most SAV boundaries can be
mapped with precision. Other constraints such as weather patterns, including summer
atmospheric haze and restricted fly zones, typically provide a number of challenges
for the acquisition of imagery suitable for mapping SAV. Timely and direct commu-
nication between the aerial photography contractor and the SAV mapping program
scientist is critical in directing the aerial photography missions to the most appro-
priate flight lines for the local conditions. Strict adherence to mission constraints
as well as pilot and other mission personnel experience and knowledge of the SAV
natural resource also are extremely important in the acquisition of useful imagery.

Fig. 10.4 SAV beds on aerial black and white photograph showing photointerpreted bed bound-
aries and individual bed numeric density category (1–4) classifications

10.5 Ground Survey Sampling

Ground survey information is collected annually by a variety of partners including
researchers, state and federal management agency personnel, and trained individuals
including private citizens and non-profit groups. The data are submitted in a variety
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of formats including direct correspondence, transfer of GIS data files, and an in-
teractive website. These reports of species presence and abundance and location
are reviewed by scientific personnel at VIMS, tabulated and entered into a SAV
geographic information system database. Based on eleven years of ground survey
information from 1985 to 1996 Moore et al. (2000) were able to identify four dis-
tinct species associations (ZOSTERA, RUPPIA, POTAMOGETON, FRESHWA-
TER MIXED) that were distributed throughout the Bay and its tidal tributaries
principally by decreasing salinity regimes (Table 10.1).

Evaluation of the how well the photo-interpreted density classification (Fig. 10.1)
represents actual SAV coverage has been investigated using transects consisting
of point-intercept sampling by divers made across a range of SAV beds of dif-
ferent densities and species at 35 locations throughout the Bay system (Moore
et al. 2000). These ground survey cover measurements were then compared to the
photo-interpreted density class zones comprising each sampling area (Fig. 10.5).
This relationship indicates that the photo-interpreted density class zones provide
good measures of SAV abundance with a slight under estimate of SAV abundance
by photo-interpretation in lower density areas, and over estimate in higher den-
sity areas. No effects of community type or depth of SAV growth on the rela-
tionship between measured ground cover and density class assignment could be
determined. Therefore, the photo-interpreted density classification is applicable
throughout the Bay system. Ground survey field measurements of SAV bottom cover

Table 10.1 Chesapeake Bay SAV Communities. Species occurrence in community exceeds 10%
of species observations. Reprinted with permission from Moore et al. 2000

ZOSTERA Community Zostera marina∗

Ruppia maritima

RUPPIA Community Ruppia maritima∗

Potamogeton perfoliatus
Potamogeton pectinatus
Zannichellia palustris

POTAMOGETON Community Potamogeton perfoliatus∗

Potamogeton pectinatus∗

Elodea canadensis
Potamogeton crispus

FRESHWATER Community Myriophyllum spicatum∗

Hydrilla verticillata∗

Vallisneria americana∗

Ceratophyllum demersum
Heteranthera dubia
Najas minor
Elodea canadensis
Najas guadalupensis
Potamogeton crispus
Najas gracillima
Potamogeton pusillus

∗Dominant species.
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Fig. 10.5 Comparison of SAV aerial density classifications to ground survey measurements.
(Reproduced from Moore et al. 2000 by permission)

have previously been demonstrated to provide very good estimates of SAV density
and biomass (r2 > 0.86; Orth and Moore 1988), and therefore the combination of
ground survey information, aerial photography and density classification has been
used to quantify both current as well as historical SAV community biomass through-
out the growing season of multiple years (Moore et al. 2000).

10.6 Mapping Historical SAV Beds

To develop reasonable SAV restoration targets and to formulate the strategies for
achieving these targets, it is necessary to first identify the potential for SAV restora-
tion. Some shallow areas that may meet SAV water quality requirements are sub-
ject to high currents and wave activity or contain sediments that are very high in
organic content and may not have a high potential for SAV growth (Koch 2001).
Identification of those areas with previous evidence of SAV growth is an important
step in quantifying that potential. In addition, because of the direct relationships
between SAV and water quality, especially nutrient levels and water clarity, trends
in the distribution and abundance of SAV over time are also very useful in under-
standing trends in water quality. Initial reviews of photographic evidence from a
number of sites dating back to 1937 suggested that SAV, once abundant through-
out the Chesapeake Bay system, had declined from historic levels (Orth and Moore
1984) and therefore water quality conditions may have similarly deteriorated (Orth
and Moore 1983b). Although the absence of SAV on historical aerial photographs
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does not necessarily preclude SAV occurrence, SAV signatures are strong support-
ing evidence for the previous occurrence of SAV (Orth and Moore 1983b).

Photographic databases ranging from the 1930s through the early 1970s were
analyzed to develop a comprehensive evaluation of historical SAV abundances
throughout all littoral areas of the bay to serve as goals for SAV and water quality
restoration (Naylor 2002, Moore et al. 1999, 2001, 2003b, 2004). Key photographic
databases, including those of the Virginia and Maryland Departments of Trans-
portation, local city and county photographic archives, National Oceanic and Atmo-
spheric Administration (NOAA), United States Department of Agriculture (USDA),
United States Geological Survey (USGS), and the Virginia Institute of Marine Sci-
ence (VIMS) archives as well as other published reports, were initially searched
by direct visits to local, state and federal repositories to view paper prints and color
transparencies for photography and other documentation relative to SAV ground sur-
vey information. Web-based USGS and NOAA databases were also searched online
using a web browser. Photographs that contained images of SAV were purchased
and then scanned, photo-interpreted and digitized. Photo-interpretation of the se-
lected aerial photographs followed as closely as possible the methods currently used
to delineate SAV beds throughout the Chesapeake Bay in the annual aerial mapping
SAV surveys (e.g., Orth et al. 2006b).

Initial screening of photographic prints was accomplished by viewing under a
10X magnification viewer. Each print was searched for SAV signatures, and the
quality of the imagery for SAV delineation was estimated as “Good,” “Fair,” or
“Poor.” Those prints that showed some evidence of SAV signatures were scanned

at a resolution of 600 dpi and viewed using ERDAS Imagine
TM

image processing
software.

The aerial photography that was determined to have SAV signatures was pro-
cessed using a heads-up, on-screen digitizing system. The system increases accuracy
by combining the series of images into a single geographically registered image
permitting the final SAV interpretation to be completed seamlessly in a single step
(Fig. 10.6). In addition, the images are available digitally and can be printed along
with the interpreted lines to show the precise character of the SAV beds.

The standard 9 inch× 9 inch, 1:24,000 scale black and white historical aerial
photographs, were scanned at a resolution of 600 dpi, forming pixels approximately
one meter in width. This was the minimum resolution required to accurately de-
lineate SAV beds and resulted in files that were approximately 30 megabytes in
size. The scanned images were then transferred to a Windows 2000 workstation for

registration using ERDAS Orthobase
TM

(ERDAS, Atlanta, Ga.). Horizontal con-
trol was taken from USGS digital orthophoto quarter quads (DOQQ) and USGS
1:24,000 scale topographic quadrangles. USGS DEMs for the region were merged

and used for vertical control. The Orthobase
TM

software combined both sources of
control with a set of common “tag” points that were identified on pairs of photos
to generate a photogrammetric solution and orthorectify the images, producing a
single geographically corrected product that was used for interpretation. The total
RMS error for the solution varied among images from 2.6 m to 4.1 m with a mean
of 3.5 m.
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Fig. 10.6 Composited 1953 historical photographs of SAV along the northern shoreline of the York
River, Va. Lines indicate photo-interpreted SAV bed polygons

SAV bed outlines were traced directly from the combined image displayed on the
computer screen into a GIS polygon file. The image scale was held fixed at 1:12,000
and line segments for polygons characterizing the beds were set to be no shorter than
20 m to maintain consistency with previous historical SAV surveys. The interpreted
boundaries were drawn to include all visible SAV areas regardless of patchiness or
density (Fig. 10.6).

A variety of historical aerial photographic images were located and reviewed,
however the quality of the imagery for determination of SAV abundance ranged
from good to poor. As previously described, a number of criteria must be met for
acquisition of aerial photographs that are optimum for delineation of estuarine SAV
(e.g., Orth and Moore 1983b, Orth et al. 2006b). Most imagery used for histor-
ical SAV analyses was obtained for other purposes, usually land use or farming
analyses, and therefore, while criteria for atmospheric conditions were usually met
(e.g. sun elevation, atmospheric transparency, etc.), those important for SAV delin-
eation (e.g., tidal stage, water transparency, plant growth stage) may not have been
met. In addition, while standard black and white, and color photographs are useful
for SAV delineation (Orth and Moore 1984) other film types such as infrared or
color infrared photography, which effectively delineates upland vegetation, are less
useful in delineating submerged vegetation because of the rapid absorption of the
infrared wavelengths of sunlight in water.
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The most useful historical photography found for delineation of SAV in the Bay
came from USDA. This photography acquired for land use and agricultural purposes
was primarily black and white format at scales of approximately 1:20,000. The ear-
liest photography from USDA and other sources consisted of over-flights conducted
during 1936 and 1937. However much of this 1930s photography was found to show
less SAV coverage than similar photography from the 1950s. Qualitatively, in many
areas the difference appeared to be related to overall poorer atmospheric and water
clarity conditions making SAV less apparent in the 1930s. In many other areas it
appeared that the SAV were generally less abundant during the periods of the over-
flights during the 1930s. Seasonal differences may have also been a factor; however,
photography was constrained to that taken during the principal SAV growing season
(April-October). Reduced abundance of SAV in the lower bay during the 1930s may
have been the result of a worldwide decline of eelgrass that occurred in the early
1930s as well as a catastrophic un-named hurricane which struck the region in 1933
(Orth and Moore 1984). Given these constraints the 1950s period of photographs
were generally chosen to delineate historical coverage of SAV in the bay region. In
regions where data was available for more than one year, data from the year with
maximum coverage was selected. Datasets were joined to form a comprehensive,
composite, historical bay-wide SAV coverage. This GIS data layer represented the
SAV that was visible on the available historical aerial photography for the Chesa-
peake Bay. Areas that were not visible on any of the available photography were
not included. In some cases this was due to limited and poor quality of the available
photography. Ground survey data were gathered from a variety of sources including
reports, field survey sheets and interviews with local residents to substantiate SAV
occurrence. Typically, the signatures on the imagery were very similar to those ob-
served on current photography, and this combined with local knowledge and other
information such as location and bathymetry, provided a reasonable degree of photo-
interpretive confidence.

10.7 Setting Water Clarity Goals Based on SAV Distribution
and Abundance

Because of the strong relationships between light availability and SAV distribution
and abundance (Batiuk et al. 1992, 2000, Dennison et al. 1993) and because of the
importance of SAV as a critical designated use of the shallow water bay environ-
ment, the US EPA Chesapeake Bay Program (US EPA, Annapolis, MD) along with
its state partners has established water clarity criteria for shallow water (<2m MLW)
designated use based on SAV water column light requirements (USEPA 2003a). In
addition, it has developed and implemented a novel approach where water clarity
criteria and state water clarity standards for shallow water areas can be met by ei-
ther achieving the specific water clarity criteria, restoring the local SAV abundance
to historical acreage levels, or achieving a combination of both (US EPA 2007).
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10.7.1 Water Clarity Criteria

Research has determined that the mean SAV growing season light level at the deep-
est edge of a SAV bed necessary for continuing SAV survival is approximately 22%
of surface irradiance through the water column (PLW) for SAV growing in polyha-
line and mesohaline areas, and 13% for SAV communities in oligohaline and fresh-
water tidal areas (Batiuk et al. 1992, 2000, Kemp et al. 2004). One of these PLW
criteria has been set for every area of the bay depending on the salinity regime. It is
understood, however, that the bottom depths to which the PLW criteria are applied,
can and should be different for different areas depending on the natural conditions.
Duarte (1991) has demonstrated that while this 22% light level at the deepest edge
of a bed can be consistent for any one type of SAV or seagrass community found
throughout the world, the actual depth of bed growth can vary greatly dependent
on the local water clarity. For example, in coastal areas with historically very clear
water the seagrass beds dominated by one species such as eelgrass (Zostera marina)
can be found growing to 30 ft. depths or greater and at another, where the natural
background turbidity is much higher, eelgrass growth may be only to 3–6 ft (Den-
nison et al. 1993). Applying the PLW over a specific maximum restoration depth
will determine the exact water clarity requirement for a specific area. Water clarity
can be approximated by measuring the turbidity (NTU units) or visibility (secchi
disk depth) of the local water. It can also be determined more directly by measur-
ing a depth profile of phyotosynthetically available radiation (PAR) and calculat-
ing the negative exponential decay of the light field according to the Lambert-Beer
equation (Kirk 1994). Light at any depth can then be calculated using this resultant
downwelling light attenuation coefficient (Kd).

To assign an appropriate water depth (also called either “application” or “des-
ignated use” depths) for the PLW criteria as well as to set the targets for SAV
designated use attainment, the historical composite distributions of SAV were used
(US EPA 2003b). First, the historical SAV composite GIS coverage developed for
the entire bay was divided into three bathymetry zones (0–0.5 m, 0.5–1.0 m, and
1.0–2.0 m) that had been established by the USEPA Chesapeake Bay Program for
all bay shallow water areas. For the SAV restoration goals or SAV designated use
abundances, all historical SAV areas including those observed growing deeper that
the 2.0 m boundary were used. Next, water clarity restoration depths for the assess-
ment of PLW levels were set at 0.5 m, 1.0 m, or 2.0 m based on the maximum depths
of the historical SAV growth (Fig. 10.7), or more recent growth where either the his-
torical imagery was limited or the more recent abundances up to 2002 were greater
than the historical. A salinity-based segmentation scheme consisting of 78 bay seg-
ments (US EPA 2004a) was used to determine local spatial boundaries for the water
clarity application depth determinations. In setting the designated use application
depths for the PLW criteria a conservative estimate of SAV coverage within a depth
interval was used (US EPA 2004b). For the use of historical SAV aerial coverage,
at least 20% of the potential habitat in a depth interval for a segment was required
for the application depth to be set at the next greater depth interval. For example, a
historical SAV abundance in a segment would have to equal 20% or greater of the
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Fig. 10.7 Depiction of recent and historical depth distributions of Chesapeake Bay SAV in areas
with different historical and current SAV colonization depths and water clarity application depths.
(A) Water clarity depth 2 m. (B) Water clarity depth 1 m (C) Water clarity depth 0.5 m

available bottom bounded by the 1.0–2.0 m depth contours and the upstream and
downstream segment boundaries in order for the water clarity goal to be set to 22%
of light to the bottom at 2 m for that segment. If the 20% rule was not met, the water
clarity application depth was set at 1 m depending on SAV abundance in that seg-
ment. For those segments where more recent aerial photography was used to set the
application depths, a 10% coverage of the bottom habitat by SAV for an extended
period of time was required (US EPA 2003b). If none of the SAV acreage thresh-
olds were met, but some SAV growth was identified or considered possible, then a
minimum application depth of 0.5 m could be set for that segment. In all of these
analyses “No Grow Zones” were established and these areas were excluded from
the calculations if it was thought that high energy conditions or other factors unre-
lated to water clarity (Koch 2001) precluded SAV growth in those areas. Table 10.2
provides a listing of Chesapeake Bay segments for Virginia and their restoration
acreages as well as their restoration or water clarity designated use depths.

10.7.2 SAV Shallow Water Designated Use Criteria

Criteria for shallow water SAV designated use attainment set for the shallow water
designated use areas of each bay segment are based on the composite historical
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Table 10.2 Virginia Shallow Water SAV Designated Use and Water Clarity Standards (from 9 VAC 25-260 Virginia Water Quality Standards, January 12, 2006)

Chesapeake bay program segment
name

CBP segment SAV acres Water clarity
criteria (%)

Designated use
depth (m)1

Water clarity
acres

Water clarity temporal
application

Lower Central Chesapeake Bay CB5MH 7,633 22 2 14,514 April 1–October 31
Western Lower Chesapeake Bay CB6PH 1,267 22 1 3,168 March 1–November 30
Eastern Lower Chesapeake Bay CB7PH 15,107 22 2 34,085 March 1–November 30
Mouth of the Chesapeake Bay CB8PH 11 22 0.5 28 March 1–November 30
Upper Potomac River POTTF 2,093 13 2 5,233 April 1–October 31
Middle Potomac River POTOH 1,503 13 2 3,758 April 1–October 31
Lower Potomac River POTMH 4,250 22 2 10,625 April 1–October 31
Upper Rappahannock River RPPTF 66 13 0.5 165 April 1–October 31
Middle Rappahannock River RPPOH ∗ 13 0.5 ∗ ∗

Lower Rappahannock River RPPMH 1700 22 0.5 5000 April 1–October 31
Corrotoman River CRRMH 768 22 1 1,920 April 1–October 31
Piankatank River PIAMH 3,479 22 2 8,014 April 1–October 31
Upper Mattaponi River MPNTF 85 13 0.5 213 April 1–October 31
Lower Mattaponi River MPNOH ∗ 13 0.5 ∗ ∗

Upper Pamunkey River PMKTF 187 13 0.5 468 April 1–October 31
Lower Pamunkey River PMKOH ∗ 13 0.5 ∗ ∗

Middle York River YRKMH 239 22 0.5 598 April 1–October 31
Lower York River YRKPH 2,793 22 1 6,982 March 1–November 30
Mobjack Bay MOBPH 15,901 22 2 33,990 March 1–November 30
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Table 10.2 (continued)

Chesapeake bay program segment
name

CBP segment SAV acres Water clarity
criteria (%)

Designated use
depth (m)1

Water clarity
acres

Water clarity temporal
application

Upper James River-2 JMSTF2 200 13 0.5 500 April 1–October 31
Upper James River – 1 JMSTF1 1000 13 0.5 2500 April 1–October 31
Appomattox River APPTF 379 13 0.5 948 April 1–October 31
Middle James River JMSOH 15 13 0.5 38 April 1–October 31
Chickahominy River CHKOH 535 13 0.5 1,338 April 1–October 31
Lower James River JMSMH 200 22 0.5 500 March 1–November 30
Mouth of the James River JMSPH 300 22 1 750 March 1–November 30
Western Branch Elizabeth River WBEMH ∗ ∗ ∗ ∗ ∗

Southern Branch Elizabeth River SBEMH ∗ ∗ ∗ ∗ ∗

Eastern Branch Elizabeth River EBEMH ∗ ∗ ∗ ∗ ∗

Lafayette River LAFMH ∗ ∗ ∗ ∗ ∗

Mouth of the Elizabeth River ELIPH ∗ 22 0.5 ∗ ∗

Lynnhaven River LYNPH 107 22 0.5 268 March 1–November 30
Middle Pocomoke River POCOH ∗ 13 0.5 ∗ ∗

Lower Pocomoke river POCMH 4,066 22 1 9,368 April 1–October 31
Tangier Sound TANMH 13,579 22 2 22,064 April 1–October 31

Total 75,463 167,035

∗No specific numeric criteria developed.
1Recommended by EPA 2003. Not included in 9 VAC 25-260.
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or current SAV abundances determined through the use of the historical and recent
(through 2002) photography analyses described previously. The SAV designated use
is considered in attainment if there are sufficient acres of SAV observed within the
segment (determined as maximum single best year over the previous three years)
or if there are enough acres of shallow-water habitat meeting the applicable water
clarity criteria to support restoration of the desired acres of SAV for that segment
(US EPA 2005, 2007). Assessment of either measure or a combination of both can
be used as the basis for determining attainment or impairment of the shallow-water
bay SAV designated use (Fig. 10.8). Acreage of shallow water habitat required to
meet the water clarity goal is simply set at 2.5 times each acre of SAV required to
meet the SAV restoration goal for the segment or the total area of available shallow
bottom, whichever is less (US EPA 2003b). This is a bay-wide average of the ratio
of available bottom to the historical composite SAV abundance determined from the
historical photography. Attainment of a segment’s water clarity goal is based on a
calculation of the arithmetic mean of the year-by-year arithmetic means of a month-
by-month accounting of water clarity acres over the three year SAV growing season
assessment period. If neither the water clarity acreage (determined by measuring
and then interpolating numerous water clarity measurements for each segment) nor
the single best year SAV acreage meets their respective goals, then a combination
of SAV acreage and water clarity acreages may be summed to achieve a total that
must be equal to 2.5 times the SAV restoration acreage (US EPA 2007).

Fig. 10.8 Decision process used to determine shallow water SAV use attainment for each bay
segment. Use attainment can be met by meeting either SAV or water clarity (WC) restoration
acreages, or a combination of both. ∗Combination of SAV and WC not currently used in Virginia
in 2007
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Fig. 10.9 Lower York River, Va (YRKPH) segment. (A) Mapped SAV distribution in 2003. (B)
Mapped composite historical SAV distribution. (C) 0–1 m shallow water area. Green areas indicate
SAV. Blue lines indicate 1 m bathymetry contour
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Currently, high speed continuous mapping of water clarity for individual bay
segments is being conducted using flow-through systems from surface vessels that
make water quality measurements of turbidity every 25 m (Moore et al. 2003a).
These individual measurements are interpolated using a standard krieging proce-
dure (ArcGIS) and water clarity determined at a spatial grid of 25 m. Potentially
any accurate spatial measure of water turbidity including aerial mapping or satellite
imagery could be used to assess the water clarity attainment coverage. The current
methods using mapping from surface vessels allow for regular calibration sampling,
are detailed spatially, including near shore regions, and are not affected by atmo-
spheric or other interferences.

Another potential approach to the determination of the attainment of SAV desig-
nated use in shallow waters is the use of cumulative frequency distribution method-
ology (US EPA 2003a 2007). Here the proportion of each segment that exceeds the
water clarity criteria for that segment is plotted in ascending order for each cruise.
This curve is compared to a reference curve which accounts for the allowable ex-
ceedance of the criteria under natural conditions. Significant difference between the
curves can be tested statistically using empirical distribution functions, such as the
Kolmogorov-Smirnov test (Zar 1996) to determine if the distribution of water clar-
ity exceedances, if any, is significantly different from the reference. A reference
curve can be developed by calculating the proportion of water clarity exceedances
of areas that have been both mapped for SAV with aerial photography and measured
for water clarity. An example of how this can be applied among three different
classes of shallow water bottom is presented here. Figure 10.9 shows for Lower
York River segment (YRKPH) a recently mapped distribution of SAV (A), the com-
posite historical SAV areas (B), and the shallow water areas out to the water clarity
application depth of 1 m for that segment (C). The recently mapped SAV can be ob-
served to comprise significantly less area than the historical SAV coverage, which
is, in turn, less than the potentially available shallow water bottom out to a depth
of 1 m. In Fig. 10.10, CFD curves of interpolated monthly water clarity sampling
from 2002 to 2003 for each of these three areas are compared. Both the CFDs for

Fig. 10.10 Cumulative frequency distribution (CFD) curves of water clarity exceedences for 13
monthly SAV growing season cruises in 2002 and 2003 within the Lower York River, Va (YRKPH)
segment. Curves represent the 13 monthly measures of spatial extent of criteria exceedance over
time for the current SAV, historical SAV or 0–1 m depth areas in that segment
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the historical SAV area and the 0–1 m depth area are significantly different than the
existing SAV reference area (K-S test, p < 0.05). The increasing exceedances de-
picted by the curves (greater in the X and Y axes) progressing from existing SAV to
historically vegetated SAV area to total bottom indicate that increasing water clarity
exceedances of the standards are very likely limiting SAV regrowth in this region.

10.8 Direct Management Applications

The acquisition and analysis of annual photography for SAV distribution has had ad-
ditional benefits for protecting SAV by identifying direct impacts or conflicts to SAV
in this region and allowing for timely and efficient management to eliminate or mini-
mize these direct impacts or conflicts (Orth et al. 2002a,b). Specific threats included:
propeller scarring from fishing and recreational vessels traversing shallow water ar-
eas (Fig. 10.11A); the operation of large seines in shallow SAV beds (Fig. 10.11B);

Fig. 10.11 Aerial photography showing (A) Scarring of SAV by boating and fishing activities in
shallow areas of the lower Chesapeake Bay, (B) Scarring due to commercial haul seining fishing
activity, (C) Scarring by commercial dredging for wild clam populations, (D) Hard clam aquacul-
ture activities in SAV areas vegetated with eelgrass
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and dredging for wild clams (Mercenaria mercenaria) using oyster and hydraulic
dredges (Fig. 10.11C). In the case of dredging impacts, Virginia approved a regula-
tion designating a SAV sanctuary prohibiting clam and crab dredging, while Mary-
land approved legislation protecting existing SAV based on a composite average of
SAV coverage every three years (Orth et al. 2002a,b). In the case of propeller scar-
ring, analysis of consecutive years of annual photography, coupled to a quantitative
ground surveys revealed the extent of scarring baywide, but also the rates (generally
three years or less) at which these three meter wide scars were recovering (Orth un-
published data). Management actions did not prohibit commercial fishing but rather
attempted to direct fishing activity to times surrounding high tide to minimize pro-
peller impacts (Orth unpublished data). Managers in Virginia now require annual
reporting on the effectiveness of these new rules using the aerial photography to
monitor areas for compliance.

Aquaculture activities involving growing hard clams (Mercenaria mercenaria) in
shallow water sandy areas (Fig. 10.11D) have resulted in conflicts when permits
were requested in areas of SAV. Regulatory bodies now incorporate the presence
of SAV from the annual surveys into their permit processes and in 1998, passed
regulations that prohibited any additional aquaculture permits in existing SAV beds
(Orth et al. 2002a).

10.9 Conclusions

The assessment of the abundance of SAV communities in the Chesapeake Bay using
high altitude aerial photography has been a successful and useful program for use in
protecting, managing and restoring SAV in this system for the past 25 years (Orth
et al. 2002a). Although new sensors and platforms have been developed over this
time period, the combination of high utility, low cost, and flexibility of the aircraft-
based black and white photography has proven superior overall to other approaches
at this point. Future advances in direct-referencing using a combination of airborne
GPS and an inertial measurement unit (IMU) may greatly simplify the orthorecti-
fication process. Digital airborne imaging systems can provide additional spectral
data and bypass the physical processing and scanning steps associated with tra-
ditional aerial cameras. Satellite imagery at a resolution that might be sufficient to
monitor SAV is becoming available. In addition, automated classification algorithms
and analytic techniques for benthic mapping are being developed that might permit
more rapid analysis of imagery. These areas of development are routinely evaluated
for cost effectiveness, availability, and reliability. Appropriate new methods will
be implemented carefully to prevent delays and ensure continuity and comparabil-
ity with previous methods. Not only has the program provided imagery necessary
for quantifying the SAV resource, but when combined with bathymetry and other
information it has been used to develop and implement water quality criteria and
standards necessary for the fundamental improvements in habitat conditions ulti-
mately required for the recovery of this resource. SAV is an important resource and
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designated use of shallow water regions throughout the bay that has habitat require-
ments similar to many other important species in the bay system: especially water
quality that is low in nutrients and suspended sediments. Therefore SAV abundance
has provided a good index of overall water quality that is desirable for bay restora-
tion of many commercially important species. The annual assessments provide an
important index of bay condition and trends that are used to assess the effectiveness
of nutrient and sediment reduction strategies for the bay and its watershed. Because
of the importance of the annual mapping of SAV distribution and abundance in
providing a year-by-year index of the state of the bay and providing numerous ap-
plications for resolving use conflicts and direct impacts, the program has been an
integral component of various agreements among by the various states and the fed-
eral government dating back to 1983 (Orth et al. 2002a) and will likely continue as
such well in to the future.
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Chapter 11
Distribution and Spatial Change of Hudson
River Estuary Submerged Aquatic Vegetation:
Implications for Coastal Management
and Natural Resource Protection

William C. Nieder, Susan Hoskins, Stephen D. Smith and Stuart E.G. Findlay

The submerged aquatic vegetation (SAV) of the Hudson River estuary has been de-
scribed as supporting an abundant and species-rich invertebrate community. Given
the ecological significance of this aquatic habitat, understanding the spatial and tem-
poral status and trends is critical to effectively manage and protect this important
coastal resource. In this chapter we present the results from a change analysis be-
tween two inventories (1995/1997 and 2002). Total coverage of SAV and Trapa
natans did not show a statistically significant change between the two inventory
dates. However, change did occur with T. natans showing a net increase of 40 ha
and SAV showing a net loss of more than 160 ha. Statistically significant loss oc-
curred in areas were SAV beds were present during both inventories. These persis-
tent SAV beds could serve as indicators of overall estuarine health and provide clues
to the driving forces in the estuary responsible for the observed changes. The tidal
fresh and oligohaline zones support the greatest abundance of SAV per unit area
of available habitat with the mesohaline zone supporting the least. Over 95% of
the shallow water area in the mesohaline zone lacked any vegetation. Salinity alone
likely defines the southern limits of T. natans distribution in the Hudson River but
other forces present in the brackish zone likely limit SAV distribution. It appears that
light availability has a strong influence on the north-south distribution of SAV in the
Hudson River estuary. Primary productivity of Hudson River SAV beds is inversely
proportional to turbidity with the mesohaline zone experiencing the highest turbid-
ity in the estuary with light extinction occurring approximately 0.2 m shallower than
in the fresh tidal portion of the study area. An extremely high turbid summer in 2000
may have been a factor in the loss of SAV area mapped in 2002. Finally, we discuss
how this information and data have been used to better protect SAV habitats in the
Hudson River estuary.
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11.1 Introduction

11.1.1 Ecology of Hudson River Estuary Submerged
Aquatic Vegetation

Often referred to as submerged aquatic vegetation or SAV, the importance of this
habitat to provide major ecosystem functions to aquatic systems is well documented
and understood (Carpenter and Lodge 1986, Carter et al. 1991, Rybicki et al. 1997,
Findlay et al. 2006a,b,c). The submerged aquatic vegetation (SAV) of the Hudson
River estuary has been described as supporting more invertebrates per unit area than
unvegetated sediments (Strayer and Malcom 2007), are known to support a high di-
versity of fish species, supports elevated levels of dissolved oxygen and contributes
a significant portion of the Hudson River estuary’s primary productivity (Strayer
and Smith 2001, Findlay et al. 2006a,b,c). Given the ecological significance of this
aquatic habitat, understanding the spatial and temporal status and trends is critical
to determine causes and direction of change and management actions necessary to
protect and encourage propagation of the habitat.

Results of research in Hudson River SAV habitat in the later part of the 20th
century generally agreed with this understanding but much of what we knew prior
to 1995 was drawn from intensive studies of a few SAV beds. Findlay et al. (2006c)
synthesized the results of these studies, a necessary first step in identifying the gaps
in our knowledge. Of the twenty-five species of macrophytes that are found in SAV
beds on the Hudson River, water celery (Vallisneria americana Michx.) dominates
the habitat, occurring in over 90% of benthic grabs containing plants. Water masses
passing through SAV beds spent as much as 30% of the time supersaturated, with
oxygen concentrations as high as 150% of saturation suggesting these plants are a
significant source of in-river primary productivity. In fact, this production of oxygen
is a large component of midsummer oxygen budgets (Cole and Caraco 2006).

Hudson River SAV support a high diversity and abundance of macroinvertebrates
and the importance of this function increased after the zebra mussel (Dreissena
polymorpha) invaded the Hudson River (Strayer and Smith 2001). This is largely
due to the loss of planktonic food to zebra mussels which caused a large decline
in the benthic animal community found in unvegetated deepwater habitats but not
those found in shallow vegetated areas (Strayer 2006). The invertebrate community
found in SAV beds is especially rich in species commonly fed upon by fish (for
example chironomids, amphipods, mayflies, and caddisflies) (Findlay et al. 2006c).

The distribution and abundance of SAV can be directly and indirectly affected
by a variety of natural and human factors. These include water quality (nutrients
and suspended materials), nonindigenous species and infectious diseases (Orth and
Moore 1983, Walker and McComb 1992, Carter et al. 1994, Madden and Kemp
1996, Short and Burdick 1996, Moore et al. 2003). The shallow water areas of
the Hudson River also support the non-indigenous Eurasian water-chestnut (Trapa
natans L.). This annual plant produces a rosette of floating leaves attached to the
substrate by an underwater stem. This plant has been shown to cause a decline in
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SAV in other systems (Orth and Moore 1983) and has likely replaced SAV in some
areas on the Hudson River. Though this species of plant can provide some beneficial
ecological functions to aquatic systems, large T. natans beds can cause conditions
stressful to biota (i.e., hypoxia and anoxia) (Caraco and Cole 2002).

11.1.2 The Hudson River Submerged Aquatic Vegetation Project

The documented importance of the submersed macrophyte community in the Hud-
son River estuary led natural resource managers and scientists to gather and discuss
the known distribution and ecological importance of SAV in the Hudson River estu-
ary in 1993. Though it was determined that little was known, one important outcome
of the workshop was a list of priority actions required to protect and manage this
resource. These actions were to: (1) conduct an inventory of the distribution of SAV
habitat; (2) conduct a trends analysis to determine the stability and dynamic nature
of the SAV habitat; (3) determine the ecological functions SAV provide to the Hud-
son River estuary; (4) identify the primary anthropogenic and natural actions that
threaten the habitat; and (5) develop regulatory guidance for the long-term protec-
tion of SAV habitat. A collaborative team was formed to address these five priority
actions composed of ecologists, resource managers, remote sensing specialists and
environmental educators.

11.1.3 Spatial Distribution of Hudson River SAV
and Eurasian Water-Chestnut

The ability to reliably detect the presence of and change in the SAV habitat is critical
to effectively manage and protect this important coastal resource. There was some
uncertainty as to whether we would be able to acquire the imagery necessary to
inventory the SAV. Flight windows were restricted to the morning hours on clear
days between mid-July and early September. In addition to these restrictions, the
Hudson River estuary is a moderately turbid system with an annual average secchi
depth ranging from 60 to 130 cm (Fig. 11.1) further reducing the flight time to two
hours on either side of spring low water. To further complicate the acquisition of the
imagery, turbidity levels in the Hudson estuary are highly influenced by precipitation
events.

In addition to providing knowledge of the distribution and abundance of SAV
in the Hudson River estuary, a GIS based inventory was important for identifying
field-sampling sites to conduct an ecology study of the SAV throughout its range
along the estuary (Findlay et al. 2006b) and design a volunteer monitoring program
to assess inter-annual variability. This inventory was also necessary to provide the
base conditions to assess temporal and spatial change and for use by state and fed-
eral regulatory agencies staff to protect SAV from human development activities. In
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Fig. 11.1 Box plot of the average summer secchi depths of the Hudson River estuary for the study
area. The asterisk indicates the years aerial photographs were taken for this project (1995, 1997,
and 2002)

this chapter we present the results from two inventories of SAV and Trapa natans
(1995/1997 and 2002) and use these inventories to determine environmental factors
that may limit the plants distribution.

11.2 Methods

11.2.1 Site Description

The Hudson River estuary from the federal dam at Troy south to Hasting-On-
Hudson (200 km) was included in this study (Fig. 11.2). Tidal ranges along this
reach are 1.4 m near Hastings, 0.8 m at West Point, and 1.4 m at Troy. Average
depth is 11.0 m though approximately one third of the study area is shallower
than 3.0 m. Three distinct estuarine zones based on degree of influence by ocean-
derived salt exist along this reach (Limburg et al. 1986): (1) Tidal Fresh: combina-
tion of deep water and broad shallow areas (upper 130 km); (2) Oligohaline: salinity
range 0.5–5 ppt (next 30 km); and (3) Mesohaline: salinity range 5.0–18.0 ppt (lower
40 km) (Limburg et al. 1986). Findlay et al. (2006b) argue that the tidal fresh estu-
arine zone can be further divided into two distinct zones based on channel morphol-
ogy and aquatic organism assemblages: (1) Upper Tidal Fresh (upper 50 km); and
(2) Lower Tidal Fresh (next 80 km).
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Fig. 11.2 Map of study area from Troy to Hastings-On-Hudson, New York indicating the four
estuarine zones (modified from Nieder et al. 2004)

The Hudson River estuary along the study reach is moderately turbid with sus-
pended sediment concentrations averaging 11.0 mg dry mass/L (Findlay et al. 1996)
with an annual average secchi depth ranging from 60 to 130 cm (Fig. 11.1). Only
about 1.0% of summertime light reaches a depth of 2.5 m (Harley and Findlay 1994).
Nutrient concentrations are also moderate with an average DIN of 40.0 uM and DIP
of 1.0 uM (Lampman et al. 1999).

11.2.2 Development and Assessment of the Digital Database

11.2.2.1 Aerial Photography Acquisition

Aerial photography specifications and methods are detailed in Nieder et al. (2004)
and follow the protocol detailed by the National Oceanic and Atmospheric Admin-
istration (Dobson et al. 1995). Due to funding limitations and the initial pilot phase
of the project, the initial inventory was created from aerial photographs acquired
in two separate years: 1995 and 1997. The reach from Hyde Park to Castleton-On-
Hudson was mapped from 1995 photography and the remainder of the study area
was mapped from 1997 photography. Aerial photographs for the second inventory
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were acquired for the entire study area in 2002. Aerial photographs were taken using
Aerocolor 2445 Color Negative Film at a final scale of 1:14,400 with stereographic
cover of 60% end lap, and 30% side lap.

11.2.2.2 Air-Photo Interpretation

Interpretation of the aerial photography was carried out consistently among the
years as described in Nieder et al. (2004). In brief, interpretation was carried-out
using stereo pairs of photographs and an Abrams 2X or 4X stereoscope and a Delft
Scanning stereoscope at 4.5X. SAV and T. natans were annotated on a 3-mil matte
acetate overlay affixed to photographs. The minimum mapping unit was a 1.0 mm
average diameter polygon that could be drawn with 0.5 mm pencil. At the scale
of 1:14,400 this corresponds to a ground area of 0.016 ha (equivalent spherical
diameter ∼ 15m).

11.2.2.3 Digital Database Creation

Good quality shoreline maps were not available for the study area; therefore, 25
base-maps for data transfer were created through photographic reproductions of the
1:24,000 USGS planimetric maps enlarged to 1:14,400 scale to match scale with the
aerial photo contact prints. All vegetation was digitized with ArcInfo software from
the mylar overlays using a CalComp Drawing Board II or an Altek 30 system for the
1995/1997 inventory. Details of the digitization can be found in Nieder et al. (2004).
The digitizing board was replaced with a large format digital scanner for the 2002
inventory allowing us to scan the mylar overlays and create the final digital database
by tracing the scan on screen. The final digital data products for both inventories
were projected in UTM NAD27 and UTM NAD83.

11.2.2.4 Quality Assurance of Digital Spatial Database

In 2004, we generated random points spanning the study area in areas with water
depths less than 5 m but still contained within the shoreline (not including coves
and tidal portions of tributaries). This resulted in 246 random points we intended
to visit. When we conducted the field work, some points were inaccessible due
to extreme shallow water, T. natans or commercial dock space resulting in a final
collection of observations from 184 locations. At each location (within 5.0 m of
target coordinates) we determined SAV cover as presence/absence along with water
depth. These observations were compared to plant polygons mapped from the 2002
photographs. Field observation points that fell within 5.0 m of a polygon boundary
were not included in data analysis (n = 14) due to the accuracy limitation of the
GPS units used.
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11.2.2.5 Volunteer Monitoring Program

Data collection by volunteers was based on multiple transects that span beds of SAV
identified in the GIS database. In general, there were three or four lateral transects,
each of which included four or more observation points. Coordinates for observation
points were obtained from the GIS coverage and intended to bracket the bed edges
with one or two points in the bed interior. A rough map of the transects and a data
sheet with coordinates of the observation points were provided to the volunteers
but they did not know which points are expected to fall within the plant bed. To
date, transect locations have not been random but are selected to cover east and
west shores along the study reach. Volunteers may well report on bed expansion
but they were not sent to areas where no plants had been mapped previously. For
field work, volunteers are instructed to visit sites within two hours of low tide, place
floating markers at the observation points along a transect and then visit each point to
collect data. At an observation point they measure depth, record time of observation
and determine water clarity using a secchi disc. Plant observations are scored as
presence/absence and relative abundance in a 15 m diameter circle is scored from
none to dense (greater than 50% cover).

Data sheets are checked for obvious errors of transcription or location then en-
tered as points into the GIS database. Locations recorded by the handheld GPS units
are presumed to have a 5.0 m uncertainty. Observations of SAV presence/absence are
scored as either agreeing or not agreeing with mapped polygons derived from the
photos.

11.2.3 Determining Spatial Patterns and Temporal Change

Overall change between the two inventories in the distribution of mapped vegetation
within the study area was determined by making the following comparisons: (1)
total and net gain and loss of area covered by SAV and T. natans across the entire
study area; (2) total and net loss and/or gain of SAV and T. natans involving an
interchange of the two mapped habitats; and (3) total and net loss and/or gain of
SAV and T. natans that led to either gain or loss of unvegetated areas.

To determine if distribution and change in the mapped vegetation could be ex-
plained by the north-south position of the SAV along the study area, we divided the
river into twenty 10-km blocks as measured along a UTM easting grid line begin-
ning from the Troy dam to Hastings-On-Hudson. The area of each of the mapped
habitats for each inventory and the area of change (gains and losses) was deter-
mined within each of the 20 blocks. The area of shallow habitat (defined as that less
than 3.0 m deep below low water) was also determined within each block. Blocks
were combined into estuarine zones (upper and lower fresh tidal, oligohaline, and
mesohaline) with the blocks within each zone being treated as replicates.

To determine if distribution and change in the mapped vegetation was influ-
enced by east-west positioning along the study area, the estuary was bisected
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longitudinally following the center of the navigable channel as mapped on the dig-
ital raster graphics of USGS 7.5 min topographic maps. In areas where the channel
was not clearly marked, the centerline between the lowest bathymetric contour was
used as the east-west divide.

Spatial data were compared between years and estuarine zones using ArcGIS R©

9.x spatial analyst tools, single sample and independent t-tests and analysis of vari-
ance tests followed by Tukey HSD test. All spatial data were log transformed before
analysis. Statistica R© 6.0 was used for all statistical tests.

11.3 Results

11.3.1 Assessment of the Digital Database

11.3.1.1 Quality Assurance of Digital Database

There was overall good agreement between the observations from random points
and the digital database coverage with 169 observations (92%) correctly classified
(Table 11.1). Of the field observations, 41 (22%) had plants present and 28 of these
fell in mapped polygons of SAV. Not surprisingly, the larger of the two error cate-
gories was errors of omission, 7% of the field-mapped plants did not fall in a mapped
SAV polygon. There were only two instances where SAV were mapped but none
were observed in the field observations.

Table 11.1 Results of the quality assurance test of the mapped SAV in the 2002 digital database
through the collection of random field data in 2004. Ninety-two percent of the samples were in
agreement with the mapped SAV habitat

Mapping Field observation

Vegetation absent Vegetation present

Vegetation absent 141 (77%) 13 (7%)
Vegetation present 2 (1%) 28 (15%)

11.3.1.2 Volunteer Monitoring Results (SF)

Over the course of three summers (2003 through 2005), volunteers visited 356
points. We compared their field observations with whether or not the locations fell
within an SAV polygon mapped from the 2002 photos. In general, the proportion
of field observations recording plant presence was very close to the proportions of
points falling in a mapped SAV polygon (Table 11.2). Although these data clearly
cannot be used as a quantitative error assessment (transects were set up based on
mapped polygons) they do support the overall validity of the SAV inventories.
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Table 11.2 Results of the volunteer monitoring program. There is a close match between the per-
centage of the samples containing SAV and the percent of the sampling points that fell within
an SAV polygon. This further supports the accuracy of the digital data by indicating it is a true
representation of field conditions

Year Percent of total Mean (Max)

SAV observed in
field

Samples falling
within SAV polygon

Depth of pts in
SAV polygon

Depth of pts outside
SAV polygon

2003 46 49 1.07 (2.0) 1.26 (3.0)
2004 47 44 0.76 (1.5) 1.4 (6.0)
2005 54 51 0.98 (2.0) 1.23 (3.0)

The volunteers record water depth at the time of their observations and we can
use these to describe mean water depths for points falling inside versus outside
mapped SAV polygons. Not surprisingly, the points within polygons were shallower
but the difference was small, ranging from 0.2 to 0.6 m across years.

11.3.2 Determining Patterns in the Spatial Distribution of Plants

Results of the first inventory (based on 1995 and 1997 aerial images) can be found
in Nieder et al. (2004). In summary of that work, the SAV were wide spread in
shallows (defined as less than 3.0 m deep at low water) along the study area from
Troy south to Yonkers occupying 1,802 ha (4,453 ac) (Table 11.3).

When we compare the spatial coverage of SAV among the twenty 10-km blocks,
the coverage mapped in both the 1995/1997 and 2002 inventories was significantly
higher in the upper half of the study area (blocks 1–10 vs. 11–20) (t-test; p < 0.05).
This is generally true for T. natans though not significant (t-test; p = 0.06). To de-
termine what factors may be responsible for this distributional difference with SAV,
blocks were first grouped to represent two estuarine zones: fresh tidal (blocks 1–13)
and brackish tidal (blocks 14–20). Here we find a significantly greater abundance of
T. natans in the tidal fresh zone (p < 0.01) but the SAV abundance was not signifi-
cantly different between these two estuarine zones (p = 0.3).

Table 11.3 Area in hectares of SAV and Trapa natans occupying the mainstem of the Hudson
River from Troy south to Hastings-on-Hudson (study area or SA). Also presented are the percent
of the study area and percent change in both study area and target habitat (%TH)

1997 2002 Percent of change

Hectares %SA Hectares %SA %SA %TH

Trapa natans 575 1.9 615 2.1 0.1 6.9
SAV 1,802 6.1 1,637 5.5 −0.6 −9.1
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To further tease out the effect of estuarine zones, we then grouped the blocks
into four estuarine zones based on physical and chemical characteristics: upper fresh
tidal (blocks 1–5); lower fresh tidal (blocks 6–13); oligohaline (blocks 14–16); and
mesohaline (blocks 17–20). Analysis of variance tests indicate that with the excep-
tion of the upper fresh tidal zone (p < 0.01), SAV distribution could not be explained
by estuarine zones alone. Furthermore, if the upper fresh tidal zone is ignored in the
analyses, a significant difference exists in the abundance of SAV between the upper
and lower portion of the study area (blocks 3–10 vs. 11–20; p < 0.01) indicating
that some other factor is responsible for the observed difference in distribution.

When we normalize the area of SAV and T. natans to the area of river bottom
shallower than 3.0 m below mean low water (typical photic zone for Hudson River
SAV; Nieder et al. 2004), significant differences in distribution of plants are found
based on estuarine zone (p < 0.01) (Fig. 11.3). The tidal fresh (both upper and
lower) and oligohaline zones support the greatest abundance of SAV per unit area
of available habitat with the mesohaline zone supporting the least. Over 95% of the
shallow water area in the mesohaline zone lacked any vegetation. Normalizing the
T. natans area to shallow water did not indicate a significant difference in the plant’s
distribution in the freshwater or oligohaline zones. No T. natans was mapped in the
mesohaline zone.

Fig. 11.3 Proportion of shallows (area shallower then 3 m below low water) with SAV present.
The lower fresh tidal zone has significantly greater coverage of SAV than the mesohaline and
upper fresh tidal zones (p < 0.01); the oligohaline zone also had a significantly greater coverage
of SAV than the mesohaline zone (p < 0.01)
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Fig. 11.4 Percent of shallows (area shallower then 3 m below low water) occupied by both SAV
and Trapa natans

A significant difference also exists in the percent of the shallow water area
supporting either SAV or T. natans across the four estuarine zones (p < 0.01)
(Fig. 11.4). The lower tidal fresh zone supported the greatest percentage, almost
50% of that available, followed by the oligohaline (34.8%), the upper fresh tidal
(19.6%) and the mesohaline zones (4.7%).

11.3.3 Assessing Temporal Change in Plant Distribution

Coverage of SAV and Trapa natans did not show a statistically significant change
between the two inventory dates (t-test; p > 0.05). The actual area of change, how-
ever, was substantial with T. natans showing a net increase of 40 ha and SAV show-
ing a net loss of more than 160 ha. These net changes in coverage can be viewed
two ways: either as a percent of the entire study area, that is the total area of estuary
included in the study; or as a percent of the two habitats mapped in 1995/1997. Dur-
ing the study period, SAV decreased by 0.6% of the study area but by almost 10%
of the area that was mapped in 1995/1997.

Figure 11.5 displays the area of change for both SAV and T. natans along the
study area with the bars representing the area of change within each of the twenty
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Fig. 11.5 The bar graph shows the change in both SAV and Trapa natans in twenty 10-km sections
of the study area. The greatest change occurred at approximately river 175 km in Inbocht Bay where
a large area of SAV was last to the expansion of a Trapa natans bed. In general, SAV was last loss
occurred throughout the lower two thirds of the study area. River distance is measured from the
Battery in New York City

Fig. 11.6 Graphic representation of coverage exchange between SAV and Trapa natans in Inbocht
Bay, Catskill, New York. The area in red was all SAV in 1995 but this area is now dominated
by Trapa natans. This location experienced the greatest loss of SAV directly associated with the
spread of Trapa natans during the study
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10-km blocks. The greatest gains for both species occurred in the upper half of the
study area with the greatest gain in SAV having occurred in the northern most sec-
tions. There was a large loss of SAV around river km 175 corresponding with a large
gain of T. natans. Much of this change occurred in Inbocht Bay, a sheltered shallow
water cove on the west shore of the Hudson in Catskill, New York (Fig. 11.6). Here
we observed the highest area loss of SAV (almost 80 ha) as a direct result of the
expansion of T. natans.

Gains and losses in SAV and T. natans could also be related to which bank of the
Hudson River the habitat occurred (Fig. 11.7). Half of the SAV and T. natans occurs
within 150 m of the shoreline (Nieder et al. 2004) and given the prevailing winds
generally come from a westerly direction, the eastern shore may experience greater
wave action leading to greater physical damage to plants and/or habitat. SAV show
no difference in either gains or losses between the shorelines but T. natans increased
coverage on the west shore two fold over the east shore gains.

Net changes in SAV coverage is due to: (1) beds completely disappearing or new
beds appearing and; (2) changes in spatial coverage of SAV beds which occur in both
inventories. These persistent beds could be a better indicator of directional changes
due to longer-term stressors on the habitat than beds that appear or disappear in
relatively short time periods. They could also help explain variables responsible for
the observed north-south distribution of plants.

Fig. 11.7 Gains and losses of SAV and Trapa natans. There was no apparent difference between
the east and west shores with the exception of the large gain in Trapa natans on the west shore.
This gain was mostly due to the spread of this species in Inbocht Bay, Catskill, New York
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To determine if these persistent SAV beds are experiencing changes different
from that detected by analyzing the entire dataset, we selected only the SAV poly-
gons that overlapped between the two study periods. The spatial distribution of these
beds was similar to that of the entire dataset but with a significantly greater abun-
dance in the fresh tidal estuarine zones than the brackish zones when the cover-
age is normalized to area (p < 0.01). The least abundance of persistent beds per
unit area occurred in the mesohaline zone (p < 0.01). One noticeable difference be-
tween the persistent SAV beds and the entire SAV dataset, is the significantly greater
abundance of persistent beds in the lower fresh tidal than the upper fresh tidal zone
(p < 0.01). The magnitude and direction of loss in area coverage of these persistent
beds was similar to that of the entire dataset, but now this loss proved statistically
significant (180 ha loss, greater than 10%) (p < 0.01). Though not significant, the
greatest loss occurred in the lower fresh tidal reach of the study area. The reverse is
seen with the SAV beds that were not mapped (therefore not persistent) during both
study periods with almost a 15 ha (40%) net gain in coverage.

11.4 Discussion

11.4.1 Patterns of Plant Distribution in the Hudson River Estuary

Many environmental and physical features of an estuary including water depth, tur-
bidity, and salinity regimes determine the distribution and abundance of submerged
macrophytes. Human disturbances such as elevated turbidity levels, nutrient enrich-
ment and prop-scarring also are know to limit and reduce distribution and abundance
(Carter et al. 1994, Kennish et al. 2008). Determining which factor or factors con-
tribute the most to limiting SAV habitat is important to guide resource management
and protection. Understanding these influences can also help aide in restoring pre-
viously existing habitats.

Results of this study do show patterns in the distribution of both SAV and Trapa
natans throughout the study area. T. natans was significantly more abundant in the
fresh tidal compared to the brackish reaches. This would be expected since T. natans
is a freshwater macrophyte intolerant of ocean-derived salt. SAV abundance was
not significantly different between these two estuarine zones, which we would also
expect since the plant species found on the Hudson are tolerant to the salinities that
typically occur in the study area. However, much of the SAV mapped along the
estuary occurs in the upper half of the study area (Nieder et al. 2004, this study),
so some factor other than salinity must restrict macrophyte distribution in the lower
portion of the estuary.

Since only about one third of the river area within the estuary is shallow enough
to potentially support SAV (area less than 3.0 m below mean low water), the SAV
coverage data were normalized to the amount of shallow water habitat present in
the twenty 10-km blocks (abundance per unit area). This gives us some idea of how
successful these macrophytes are at colonizing the available substrate at a given
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location. By doing this, we find the SAV plants in the fresh tidal reach are more
efficient at colonizing the shallow area than those in the brackish reach. This finding
also holds true with the coverage of the persistent SAV beds. This indicates that
there is some factor in the lower estuary other than salinity that reduces the ability
of these macrophytes to occupy shallow water areas.

Primary productivity within SAV beds in the Hudson River is inversely related to
turbidity levels (Findlay et al. 2006b). Light availability is a primary limiting factor
in the distribution of SAV in many aquatic systems (for example Carter and Rybicki
1990) and likely has a strong influence on the reach-scale difference in distribution
of SAV in the Hudson River estuary. Harley and Findlay (1994) showed that the
summertime light availability of 1.0% at 2.5 m depth corresponds to the compensa-
tion point for Vallisneria americana, the dominant SAV found on the Hudson. When
we compared the SAV distribution normalized by the amount of shallow water area
available, we found the mesohaline reach of the brackish zone was significantly de-
pauperate in SAV (Fig. 11.3). The mesohaline zone experiences the highest turbidity
in the study area due to estuarine circulation and strong salinity gradients creating
at least two turbidity maximums in this reach (Bokuniewicz 2006). It is estimated
this lower portion of the Hudson River estuary receives between 1.14 million to
1.72 million MT/yr of silt-clay per year (Ellsworth 1986), which coupled with re-
suspension limits light availability to plants in this reach. The relative lack of SAV
occupying the shallows in the mesohaline zone supports this possibility with less
than 5.0% of the shallows actually supporting SAV (Fig. 11.4).

Light extinction has been measured at both Castleton (tidal fresh) and Haverstraw
(mesohaline) and this occurs approximately 0.2 m shallower in Haverstraw indicat-
ing a greater light limitation for plant growth in this area. The data collected by the
volunteer monitoring team also illustrates the sensitivity of the SAV to light limita-
tions. The relatively subtle depth difference for points falling inside versus outside
mapped SAV polygons is further evidence of the strong light-limitation of these
plants and suggests any attempt to determine lower depth limits or potential habitat
availability will have to be capable of describing bathymetry at 10 cm resolution.
Presently, the combination of individuals conducting field observations and large-
scale remote sensing provides unique information about environmental controls on
this habitat and confidence in our understanding.

11.4.2 Assessing Temporal Change in Plant Distribution

Since only two inventories have been conducted, we were not able to detect if sta-
tistically significant change in the mapped abundance of SAV or T. natans had taken
place with the exception of the persistent SAV beds. However, measurable change
did occur with losses and gains throughout the estuary resulting in a net loss of
SAV of more than 160 ha or 9% between the two inventories. This loss could be due
to natural processes or indicative of changing environmental stressors. There are
many causes for SAV decline including nutrient enrichment, nonindigenous species
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and increased suspended sediments (Walker and McComb 1992, Carter et al. 1994,
Madden and Kemp 1996). Determining what might be at the root of the change is
critical for successful management and protection of the habitat.

Throughout the study area, replacement of SAV by T. natans expansion ac-
counted for 28% of the loss of SAV beds mapped in 1995/1997. The most dra-
matic interaction between these two mapped habitats occurred in Inbocht Bay
(Catskill, New York) where almost 80 ha of SAV were lost to the spread of T.
natans (Fig. 11.6). With most of its biomass floating on the surface of the water,
T. natans is able to reduce the available light to submerged plants. Dramatic as
this localized interaction was, most of the loss of SAV we observed throughout the
study area was not caused by a direct interaction of T. natans and SAV but by some
other mechanism. To understand what these mechanisms might be, it is important
to understand the factors responsible for the observed distribution of both of these
habitats.

The greatest net gain in SAV and T. natans occurred in the upper third of the study
area with the greatest net loss of SAV occurring in the middle third (Fig. 11.5). How-
ever, statistically significant change did occur in SAV beds that were present during
both inventories, resulting in a loss of 180 ha (greater than 10% loss). These per-
sistent SAV beds could be functioning as indicators of overall estuarine health and
provide clues to the driving forces in the estuary responsible for observed changes.
Particular attention should be paid to these beds in future inventories to see if any
significant trends occur.

11.4.3 Environmental Forces Driving Change

In 2000, the study area was extremely turbid with the lowest average secchi depth
recorded in 13 years of measurements and the lowest recorded during this study
period (Fig. 11.1). Average SAV productivity in persistent beds, as a function of the
percent of time dissolved oxygen in SAV beds was over 8.0 mg/L, was less than half
of the maximum measured in 2003 (Findlay et al. 2006b). This productivity did not
increase much in 2001 (from approx. 20% of the 2003 maximum in 2000 to approx.
25% in 2001) even though the average secchi depth had increased to that which
is more typical for the Hudson. It is possible that the high turbidity event in 2000
contributed to the decline in the persistent SAV beds, which as of 2002 had not yet
recovered from this event.

To argue this point another way, the increased light availability in the fresh tidal
zone caused by the invasion of the zebra mussel (Dreissena polymorpha) has in-
creased the photosynthetic capacity of the SAV in this reach either by allowing
them to spread to deeper water or by an increase in biomass (Caraco et al. 2000).
Unfortunately, this invasion was well underway during the initial inventory but this
too is indicative that Hudson River SAV are so light limited that a small change
in light availability in either direction can lead to substantial changes in the SAV
habitat.
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11.4.4 Resource Protection and Management
of Hudson River SAV

The primary goal of this project has been to ensure proper management and protec-
tion of the SAV habitat on the Hudson River. To effectively do this, not only was it
important to know the distribution, stability and ecological importance of the habi-
tat, we also needed to identify the environmental laws that can be used to provide
protection, and transfer the habitat information to the correct authorities. The Envi-
ronmental Conservation Law of New York State (1994) provides protection to the
water resources, freshwater wetlands and tidal wetlands of the state (Articles 15, 24,
and 25 respectively). These three articles of law provide provisions to protect SAV
if their protection results in the protection and propagation of fish and wildlife in-
cluding birds, mammals and other terrestrial and aquatic life. Having made a strong
connection between Hudson River aquatic life and the SAV (Findlay et al. 2006b),
natural resource managers and environmental regulators of New York only need to
know where the SAV beds are located and have access to the most recent digital
database through New York’s Master Habitat Database (or MHDB) maintained by
the Department of Environmental Conservation (NYSDEC). The MHDB provides
easy access to all natural resource data in a GIS environment necessary for envi-
ronmental protection and management. NYSDEC also provides data and technical
support to environmental consultants as they develop plans for in river and near
shore projects.

These data are also being included in federal review of coastal projects. New
York State’s Coastal Zone Management Program (CZMP) includes the SAV cover-
age to determine the impact of any projects they review under the Federal Coastal
Consistency Program (Coastal Zone Management Act, 15 CFR Part 930). These
regulations establish the procedures to be followed in order to assure that federal
agency activities are consistent with the enforceable policies of the New York State
Coastal Management Program. The CZMP is currently incorporating the SAV ar-
eas into state designated Significant Coastal Habitats of the Hudson River to gain
greater protection of the resource. NYSDEC has also provided the United States
Army Corps of Engineers with the spatial data because they too consider the poten-
tial impacts any in-river and riverbank project may have on the SAV. Other federal
agencies holding regulatory authority on the Hudson River with access to these data
include the National Oceanic and Atmospheric Administration (National Marine
Fisheries Service) and the Department of the Interior (Fish and Wildlife Service).
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Chapter 12
Mapping Marine Macrophytes
along the Atlantic Coast of Tierra Del Fuego
(Argentina) by Remote Sensing

Sandra E. Torrusio

A discontinuous series of rocky formations with variable dimensions exist along
the intertidal zones in the eastern coast of Tierra del Fuego, Argentina, where an
abundance of marine macrophytes grow, such as Macrocystis pyrifera forming sub-
aquatic “forests”. This large amount of algae forms true fauna reservoirs and provide
potential stocks for deriving industrial algae products. The purpose of this study is
to map the undersea fauna resources by remote sensing and to evaluate the utilities
of different remote sensors given the frequent cloud cover and the winter days with
low sunlight. The data used include satellite imagery from Landsat, SAC-C, Aster,
Radarsat and QuickBird, as well as aerial photographs and maps. We co-register
them before actual mapping the algae distribution using different methods. The fi-
nal maps illustrate the algae distribution and temporal change, which can be useful
for managing the coastal environment and resources.

12.1 Introduction

The intertidal and subtidal environments with rocky bottom in template and subpo-
lar seas are dominated by brown algae associations (Dayton 1985). These marine
macrophyte communities are constantly exposed to tidal changes. The algae com-
munities are economically important due to its alginate contents; the phycocolloids
found in algae are useful to different industries, such as textile, food, paper, dental
and pharmaceutical, soldering, among others (Rees 1986). The fucales, laminariales
and durvilleales are used to extract alginates all over the world. In South America
the main exploited genus are Lessonia spp and Macrocystis spp, and both constitute
the most extensive high-quality natural reserve of the world, located in the coasts of
Chile and Argentina (Vasquez and Fonck 1993). The principal and most abundant
alginate producing species in Argentina is Macrocystis pyrifera. Its popular name
is “Cachiyuyo” in Spanish or “Kelp” in English. It forms subaquatic “forests” or
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“prairies” along the coasts in the Patagonia region, which are considered as true
fauna reservoirs and can provide potential stock for deriving industrial algae prod-
ucts. In Argentina, the algae extraction is concentrated in Chubut and Santa Cruz,
between 42◦S and 52◦S, at the north of Tierra del Fuego (53◦S–55◦S).

Several works evaluated the average biomass and density (e.g. Alveal et al. 1973,
Barrales and Lobban 1975, Santelices and Lopehandı́a 1981, Boraso de Zaixso et al.
1983, Werlinger and Alveal 1988), but most of them did not address the spatial and
temporal distribution of algae. Another problem is that as the methods they used
are not compatible so that a comparison among different sites is difficult. Therefore,
it is urgent to evaluate the populations of macroalgae at appropriate temporal and
spatial scales with standard and systematic methods.

Many studies were conducted in different regions of the world to identify aquatic
macrophytes by using remote sensing (Lambert et al. 1987, Lavoi et al. 1987, Ritter
and Lanzer 1997, Steeves et al. 1991, Veisze et al. 1999, Wittlinger and Zimmerman
2001, Dierssen et al. 2003, Fyfe 2003, Vahtmäe et al. 2006, Nezlin et al. 2007,
Tignyt et al. 2007). Aerospace remote sensing can provide repetitive, multispectral
and synoptic data, and thus can be quite useful for coastal studies (Lamaro et al. in
press).

The aims of this project were to map the spatio-temporal distribution of algae
using remotely sensed data and to evaluate the usefulness of the different types of
data given the frequent cloud cover in our study site. On the average, there are only
15 sunny days per year; the winter days are very short with just between six and
seven sunlight hours.

Another important consideration here is that Tierra del Fuego is rich in natural
resources and contains the most extensive offshore oil-producing zone in Argentina
and Chile; the knowledge of macrophyte distribution is critical for offshore oil-
producing activities because it can be used to monitor oil spill. For this purpose,
radar images can be very useful due to high temporal coverage, weather indepen-
dence, and high sensitivity to oil slick (Catoe 1973, Bentz and Pellon De Miranda
2001, Ivanov et al. 2002, Brown and Fingas 2003, Tufte et al. 2004). However, black
tones in radar images could confuse us since they could be either the area with oil
spill or the area with slow wind and calm waters that produce low or null backscat-
tering signals. In addition, coastal rocky formations, because of partially submerged
with tidal waters, can form a calm water area like a pool resulting in low or null
backscattering and hence dark tones in radar images. Moreover, dark tones could be
caused by the existence of macrophytes floating on the open sea surface or fixed on
the coastal rocky formations; both cases result in low or null backscattering signals.
Therefore, understanding the algae distribution can also help improve the accuracy
of oil spill monitoring in our study site.

12.2 Study Area

The Argentine Province of Tierra del Fuego is a large island shared with Chile,
which is located between 52◦ 30’S and 55◦S, and 64◦W and 70◦W, separated from
the continent by the Magallanes Strait. The algae mapping was carried out along
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Fig. 12.1 Location of the study area: Magallanes Strait and the Atlantic coast of Province of
Tierra del Fuego, Argentina. Note that the shoreline in the lower right insert extends approximately
315 km

the eastern coast extending 315 km in the island and the southeastern extreme of
the Strait (Fig. 12.1). The zone has a typical glacial landscape with many channels,
fiords and small islands, and its topography is irregular. Along the Atlantic coast,
rocky formations are discontinuously distributed in shallow water areas. They can
be submerged or not, depending on tidal dynamic.

The climate is quite cold, with strong winds during the whole year; the rainfall
decreases from west with 3500 mm per year to east with 500 mm per year. The main
plant community along the western and southern portions of the island is Andinean
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Patagonic Forest, and different species of nothofagus and peatbogs (moss) are abun-
dant. In the eastern and northern sectors, the steppa dominates with sparse grasses.
In both the Atlantic and Pacific coasts, there are an abundance of marine mammals,
such as dolphins, whales, sea lions, seals, and aquatic birds, such as fulmars, seag-
ulls, penguins, among others.

12.3 Materials

It was necessary to combine data from several satellite sensors for mapping the algae
along the eastern coast of Tierra del Fuego. The major characteristics of satellite data
we used in this project are summarized in Table 12.1.

12.3.1 SAC-C

These images were acquired by the Argentinean satellite SAC-C, with the Multi-
spectral Medium Resolution Scanner (MMRS). SAC-C was launched in November
2000, providing data with spatial resolution of 175 m, scene swath of 360 km, five
spectral bands in the visible and infrared portions of the spectrum, and temporal
resolution of 16 days or less according to the latitude. In the study area it was pos-
sible to obtain images every three or six days, thus increasing the chances to obtain
cloud-free data.

We were able to acquire ten cloud-free images covering the period of 2002–2004.
The best band combination used for macroalgae identification was near infrared-
NIR (4), shortwave infrared-SWIR (5), and red (3). The kelp forests are spectrally
similar to land vegetation but with higher reflectance in the near infrared portion
of the spectrum. The best band combination allows to identify and separate the kelp
beds and other macrophytes from bare rocks, suspended sediments or phytoplankton
components in the sea.

12.3.2 Landsat

We used data from three Landsat sennors: Multispectral Scanner (MSS), Thematic
Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+). We acquired one
1981 MSS scene that was originally in film with the blue (4), green (5) and near
infrared (7) band combination and at the scale of 1:1000000, and later digitized us-
ing a digital camera. We obtained nine cloud-free TM images from 1999 to 2004
covering Spring, Summer and Fall months. The band combination was NIR (4),
SWIR (5), and red (3), identical to the one we used for the SAC-C images: We also
composed a true color image using bands red (3), green (2), and blue (1), which al-
lowed to distinguish suspended sediments from a coastal river. We also acquired 15
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Table 12.1 List of satellite images used in the study

Satellite/sensor Path/row Date Spatial resolution (m)

SAC-C/(MMRS) 224 Jul. 28 2002 175
SAC-C/(MMRS) 225 Aug. 04 2002 175
SAC-C/(MMRS) 225 Sep. 05 2002 175
SAC-C/(MMRS) 225 Apr. 01 2003 175
SAC-C/(MMRS) 225 May 19 2003 175
SAC-C/(MMRS) 224 Nov. 04 2003 175
SAC-C/(MMRS) 224 Jan 23 2004 175
SAC-C/(MMRS) 224 Feb. 08 2004 175
SAC-C/(MMRS) 225 Feb 15 2004 175
SAC-C/(MMRS) 225 Mar. 18 2004 175
Landsat 5 TM 225/98 Mar. 13 1999 30
Landsat 5 TM 224/98 Oct. 27 2003 30
Landsat 5 TM 225/98 Nov. 03 2003 30
Landsat 5 TM 225/98 Dec. 05 2003 30
Landsat 5 TM 223/98 Jan. 24 2004 30
Landsat 5 TM 225/98 Feb 07 2004 30
Landsat 5 TM 223/98 Mar. 12 2004 30
Landsat 5 TM 224/98 Mar. 19 2004 30
Landsat 5 TM 224/98 Apr. 04 2004 30
Landsat 7 ETM+ 226/97 Aug. 24 2001 30
Landsat 7 ETM+ 226/97/98 Oct. 17 2003 30
Landsat 7 ETM+ 224/98 Oct. 19 2003 30
Landsat 7 ETM+ 224/97 Nov. 04 2003 30
Landsat 7 ETM+ 224/97/98 Jan. 07 2004 30
Landsat 7 ETM+ 224/97 Jan. 23 2004 30
Landsat 7 ETM+ 225/97/98 Feb.15 2004 30
Landsat 7 ETM+ 225/98 Mar. 02 2004 30
Landsat 7 ETM+ 226/97 Mar. 09 2004 30
Landsat 7 ETM+ 226/98 Mar. 25 2004 30
Landsat 7 ETM+ 225/97 May. 05 2004 30
Landsat 7 ETM+ 225/98 May. 05 2004 30
Terra/Aster-VNIR 226/98 Oct. 18 2006 15
Quick Bird – Feb. 06 2005 2.5
Quick Bird – Feb. 27 2004 2.5
Quick Bird – Dec. 25 2002 2.5
Radarsat/Beam Mode W1 Ascend. orbit Apr. 06 2007 30
Radarsat/Beam Mode SNA Descend. orbit May. 23 2006 50

cloud-free ETM+ images from 2001 to 2004. The band combination more adequate
to identify the algae was NIR (4), SWIR (5), and red (3).

12.3.3 ASTER

We acquired one image in Spring 2006 from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) on the Terra satellite, which covers
a small portion of the coast. With a swath of 60 km, ASTER has 15 bands, including
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three visible and near infrared bands with 15 m spatial resolution and 8-bit radio-
metric resolution, a second near infrared backward-scanning band used to create
a stereo view, six SWIR bands with 30 m spatial resolution and 8-bit radiometric
resolution, and five thermal bands (TIR) with 90 m spatial resolution and 16-bit ra-
diometric resolution. The band combination we used was NIR (3), red (2), and green
(1); these bands have 15 m spatial resolution, allowing to identify different macro-
phytes communities and determine the phenological state with textures and tones.

12.3.4 QuickBird

We used three QuickBird multispectral images with very high spatial resolution,
which cover part of the eastern coast of Tierra del Fuego and the Magallanes Strait
for Spring 2002, Summer 2004 and Summer 2005. They allowed us to compare the
current algae distribution with historical data.

12.3.5 Radarsat

Radarsat’s SAR (synthetic aperture radar) is an active sensor. It transmits a mi-
crowave energy pulse directly towards the Earth’s surface. The SAR sensor mea-
sures the amount of energy which returns to the satellite after it interacts with the
Earth’s surface. Unlike optical sensors, the microwave energy penetrates clouds,
rain, dust, or haze, and acquires images independent of the Sun and the weather
conditions. Variations in the returned signal are the result of changes in the surface
roughness and topography as well as physical properties such a moisture content
and electrical properties (Radarsat User Guide 1995). There are several products
with different spatial resolution according to the beam modes.

We acquired two Radarsat images: Scan Narrow A with 29◦ incidence angle,
spatial resolution of 50 m, and 200 km swath for 23 May 2006; Wide 1 with 24◦

incidence angle, spatial resolution of 30 m, and 150 km swath for 6 April 2007. For
oil spill detection, steep incidence angles are preferred. The SAR data were pro-
cessed with the adaptative filters of Lee for the Scan Narrow A mode and Frost
for the Wide 1 mode to suppress the image speckles for improving the visual
interpretability.

The Radarsat images were used to analyze “black areas” and to separate the dif-
ferent features on or near the sea surface: area with low/null wind speed, inland
waters, and emergent or floating kelps from real or potential oil spill. They also al-
low to view some offshore oil platforms that are hardly seen with medium-resolution
optical data.

12.3.6 Other Data

We also analyzed historical aerial photographs and bathymetric maps covering part
of Tierra del Fuego. These materials were produced by the Naval Hydrographical
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Survey. We considered four aerial photos from 1970 at the scale of 1:20000. The
bathymetric map was from 1939 at the scale of 1:400000.

12.4 Methods

Mapping of the marine macrophyte communities in the entire study area was carried
out by using the optical data from SAC-C and Landsat TM/ETM+. We clipped
most of the images to focus on the coastal area of interest only; this could also
help offset data processing burden. We georeferenced all the image subsets into
geographic coordinates, WGS84 datum and ellipsoid. The resampling method used
was cubic convolution and the average RMS was about one pixel for every image.
For the SAC-C images the mean RMS was 98.4 m, and 35 ground control points
(GCP) were used; for the Landsat images, the mean RMS was 17.8 m, and 23 GCPs
were used; and for the ASTER images, the mean RMS was 10.4 m, and 18 GCPs
were used.

Both digital and visual analysis methods were combined to mutually maximize
their capability for algae community identification. Because the weather and tidal
conditions were various for each optical image, we tried different methods to dis-
tinguish the macrophytes. Firstly, we tested supervised and unsupervised classifiers,
but the spectral confusion among some classes made difficult to obtain accurate re-
sults. Then, we conducted spectral enhancement to maximize the visual separability
considering colors, tones, textures and shapes of the submerged vegetation along
the coast. Specifically, we applied linear stretching, Gaussian, histogram equaliza-
tion, standard deviations, interactive stretching, and band ratio to different images
in order to improve the algae recognition. With the enhanced images, we further
mapped the algae communities by using on-screen digitizing, and the derived maps
were managed with a geographic information system.

The aerial photos were co-registered and mosaicked. The bathymetric map was
co-registered too. A detailed visual analysis was done using the photos and the satel-
lite images discussed in Sect. 12.3. This visual interpretation allowed us to analyze
the temporal and spatial changes and to compare the contributions and/or disadvan-
tages of each sensor.

All the above data processing tasks were conducted by using ERDAR Imagine
8.4, ENVI 3.5 and Arcview 3.1.

12.5 Results

The final maps show that the marine macrophytes were discontinuously distributed
along the eastern coast of Tierra del Fuego (Fig. 12.2a,b). This distribution pattern
may be related to the tidal influence and the type of rocks where the plants can fix.
As for the seasonal variation, we did not find any significant difference between
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Fig. 12.2 Seasonal algae distribution: (a) Interpretation from the Spring-Summer Landsat and
SAC-C images overlaid on a SAC-C image. Note that the white polygons are the distribution of
algae; (b) Interpretation from the Fall-Winter Landsat and SAC-C images overlaid on a SAC-C
image. Note that the white polygons are the distribution of algae

Fall-Winter and Spring-Summer covers for the period of 1999–2004 (Fig. 12.2a,b).
We believe that some field verifications by experts in algae and remote sensing
around the year should help improve the mapping accuracy.

From Fig. 12.3, we can see three portions of the 1939 bathymetric map with the
presence of algae in the same location where we can find them in recent satellite
images, e.g. the Landsat 5 TM scene acquired on November 2003. In the same
way we also compare the aerial photos mosaic (1970) versus Quick Bird (2002)
(Fig. 12.4), and Landsat 2 MSS (1981) versus SAC-C (Fig. 12.5).
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Fig. 12.3 Bathymetric maps for the three sites (a, b, and c) along the eastern coast of Tierra del
Fuego and the south extreme of the island. Note that (d) is part of the near infrared band of a
Landsat 5 TM image acquired on November 2003, covering the same area as (c) does. The algae
locations are indicated with arrows

Note that from the ASTER image (Fig. 12.6a) different marine macrophyte com-
munities, such as Macrocystis pyrifera (Fig. 12.6b,c), can be observed with various
reddish colors. Figure 12.6c,d are the outputs of different enhancements on a Land-
sat 5 TM image acquired on November 2003 with two different band combinations:
(a) 3,2,1 (Fig. 12.6d) allowing to identify a sediments plume (in beige-yellowish
color); and (b) 4,5,3 (Fig. 12.6e) permitting to identify macroalgae (in purplish
color).

Several additional figures helped us to assess the contribution of radar images
for algae identification and to explain how we separated and analyzed dark zones.
Figure 12.7 is a 2004 Radarsat Scan Narrow A image on which we see some bright
spots indicating offshore oil platforms in the Magallanes Strait and Northeast of
Tierra del Fuego. In Fig. 12.8, we can see some black areas in the 2007 Radarsat
image, which were with slow wind and calm water; we see some floating kelps
(indicated with the white arrows) from the 2004 QuickBird image, which were over
the same areas showing in black from the 2007 Radarsat image. In Fig. 12.9 we can
see some partially submerged rocks in the 2004 Scan Narrow A Radarsat image (in
dark tones) (Fig. 12.9a) and some offshore oil-platforms (Fig. 12.9b). Note from the
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Fig. 12.4 Comparison between a 1970 aerial photos mosaic (centre) and a 2002 QuickBird image
(the upper right insert). The algae locations are indicated with the white arrow

Fig. 12.5 Comparison between the images from Landsat 2 MSS (1981) (the two upper figures)
and from SAC-C (September 2002)
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Fig. 12.6 (a) An ASTER image acquired on October 2006 showing algae in reddish tones on
rocks. Macrocystis pyrifera on the rocks (b) and on the fixer disc (c). Color composites of the 2003
Landsat 5 TM image: (d) with bands 321; a sediments plume develops in the lower right portion;
and (e) with bands 453; this sediment plume is not visible and algae are in purplish

April 2006 Landsat 5 TM image, these areas emerged without plants (Fig. 12.9e).
Similar comparison is shown in Fig. 12.9d between the 2007 radar and the 2004
QuickBird images (Fig. 12.9c) in the northern island; coastal areas with dark tones
are calm water without fixed algae but with floating kelps near the shoreline.

In general we found that the macroalgal distribution did not change much over
time considering the materials we used covered the period of 1939–2007. Moreover,
the use of different sensors, both optical and active, helped improve the possibilities
of obtaining cloud-free images, and thus promoting our inventory effort in this area
where this type of information was sketchy and sometimes absent.
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Fig. 12.7 Part of the Radarsat image (Scan Narrow A, May 2004) covering the Magallanes Strait.
Note that the bright spots indicate off-shore oil platforms

Fig. 12.8 Part of the Radarsat image (Wide 1, Apr. 2007) covering the Magallanes Strait; dark
areas are with slow wind and calm water. Part of the QuickBird image (the lower right insert)
shows some floating seagrasses, which are indicated with three white arrows
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Fig. 12.9 Partially submerged rocks (in dark tones) on the radar image (Scan Narrow A 2004):
(a) in the bay and (b) an enlargement to show some oil-platforms. (e) Part of the 2006 Landsat 5
TM image (original in color, displayed with bands 321) shows the same area that emerged without
plants. Comparison between the 2007 radar (d) and the 2004 QuickBird (c) images shows that
some floating algae rather than fixed ones are in the coastal areas with dark tones

12.6 Conclusions

Probably, the comparison among different satellite sensors and other sources of data
was the most interesting aspect in this project. This study offers an insight con-
cerning the advantages and combinations of several products for mapping natural
resources, algae in this case. The use of these tools allows to obtain an integral per-
spective. We considered the advantages of using optical data with different spatial
resolution to identify the current macroalgae distribution and to detect potential sea-
sonal changes. On the other hand, the use of other data sources, such as historic
bathymetric maps and aerial photographs, allowed us to map the spatial distribution
of algae in the past. These have been very helpful to examine the temporal changes
through several decades.

Considering the application of active remote sensor data in this study we should
emphasize their advantage when there is frequent cloud cover during the year in
our study area. Because of the existence of intensive offshore oil-producing activi-
ties, however, the radar images play a critical role in every segment of the environ-
mental monitoring. Our results showed that it is not easy to separate among calm
water areas, macroalgae communities, and oil spills by using active remote sensing
alone. Thus, it would be very useful to construct a complete kelp bed data base for
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Argentina’s southern coast by combining both optical and radar data; we believe
such database will help us to produce better results, and thus improving our oil spill
monitoring plan.

Given the above considerations, we believe that the construction of the algae dis-
tribution base maps covering the 315 km coast is economically and environmentally
important. We should incorporate this mapping effort into our coastal monitoring
and management plans.
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Chapter 13
Shoreline Mapping and Coastal Change
Studies Using Remote Sensing Imagery
and LIDAR Data

Hongxing Liu

This chapter introduces algorithms and methods for numerically extracting shore-
lines from the remote sensing imagery and LIDAR elevation data. These methods
aim to minimize human operator’s intervention and editing efforts and to maximize
the delineation accuracy. The shoreline extraction method designed for processing
remote sensing imagery consists of three groups of algorithms: preprocessing, seg-
mentation and classification, and post-processing. This method is applicable to both
satellite images and digital aerial photographs, and the shoreline can be extracted
from the imagery at a pixel level accuracy. Further, two methods are presented to
process LIDAR data for automated shoreline delineation. The first method is com-
posed of three processing steps: contouring, line selection with a length threshold,
and line smoothing and generalization. The second one is based on the segmentation
of the LIDAR DEM. These methods have been employed to process multi-temporal
digital orthorectified aerial photographs, Landsat imagery, and airborne LIDAR data
in the upper Texas Gulf coast. The shorelines delineated from the time series of
remote sensing images and LIDAR DEMs are compared in GIS environment for
coastal change studies.

13.1 Introduction

Shoreline information is important to navigation charting, marine boundary determi-
nation, and many coastal zone management activities, such as monitoring shoreline
changes and delineating the inter-tidal zone, wetlands, and other coastal habitats.
Land planners have relied on up-to-date shoreline information for establishing build-
ing setback lines, managing recreational resorts, inventorying the wetland and agri-
cultural land resources, and delineating flood and hurricane hazard zones (Zeidler
1997). Engineers have employed shoreline and beach morphology information for
designing coastal defense and shipping structures (Szmytkiewicz et al. 2000). Ge-
omorphologists have long recognized the usefulness of shoreline information for
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studying coastal erosion and accretion and estimating sediment transport and bud-
gets (Shepard and Wanless 1971, Leatherman and Douglas 2003). As pointed out by
many coastal scientists (e.g. Morton 1991, Leatherman and Douglas 2003), track-
ing and investigating shoreline and coastal changes calls for rapid, highly accurate
methods that minimize the mapping error and processing time and provide frequent
and timely measurements.

Traditionally, shorelines on the nautical charts and topographic maps were com-
piled through ground surveys and visual interpretation of aerial photographs. In the
ground surveys, the direction and distance of shoreline features were observed and
determined in person on the beach with the plane table and rod, and the shorelines
were drew through the series of measured points on the shore. In the 1920s, the aerial
photogrammetric survey method replaced the older plane table survey method and
became the primary shoreline mapping technique. Using aerial photography map-
ping method, shoreline interpretation and compilation was brought from the field
into the office, saving time and cost. At present, shorelines on the majority of maps
are still determined through interpretation of the stereo-photogrammetric models
of aerial photographs (Graham et al., 2003). In recent decades, new approaches
have been developed for coastal and shoreline mapping. Those include the use of
high-resolution satellite imagery (Li et al. 2003), all-terrain kinematic GPS vehicles
(Morton 1997), and airborne LIDAR technology (Gibeaut et al. 2000, Robertson
et al. 2004).

The fundamental problem in using remote sensing images for shoreline mapping
is that the wet/dry beach (high-water) lines delineated from the imagery is affected
by water level at the time the images were acquired. Remote sensing images are
rarely taken at precise mean high water with no wave action throughout the survey.
Therefore, the high water line derived from the remote sensing imagery is not exact
intersection where a body of water at the precise desired tidal datum elevation and
the shore meet. The seasonal tidal variation and storm surges often create differ-
ent water levels. Water levels have their greater effects on the high water line for
wide low-gradient beaches than for narrow, steep beaches. Some mapped shoreline
changes could be merely a manifestation of the differences in water levels rather
than actual coastal erosion or accretion. With the recorded tide stages, we can adjust
and normalize the image derived shorelines to a common tidal elevation for com-
parison. However, the tide adjustment and normalization process is often difficult
and inaccurate.

With the advent of airborne LIDAR technology, the coast zone and shoreline may
be mapped more accurately and cost-effectively. Shorelines extracted from LIDAR
data have unprecedented accuracy and can establish a baseline for change analysis.
If the LIDAR data are collected at the time of low water level, it is possible to derive
shoreline indicators using various tidal datums. Therefore, the airborne LIDAR data
over coastal zones may offer a means to link and assimilate different shorelines
obtained from divergent approaches such as the NOAA T-sheets, kinematic GPS,
and aerial photographs, and satellite imagery.

While new remote sensing data have been increasingly becoming available,
derivation of shorelines from remote sensing data still is challenging. Manual
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tracing, digitizing, and delineating shorelines from an image is a tedious, subjective,
and labor intensive process, resulting in long periods between successive maps. In
previous studies, two different approaches have been proposed to derive shorelines
from high resolution LIDAR Digital Elevation Model (DEM): the cross-shore pro-
file method (Stockdon et al. 2002, Morton et al. 2005) and the contouring method
(Robertson et al. 2004). Stockdon et al. (2002) used the cross-shore LIDAR DEM
profiles to determine the shoreline position. A regression equation is fitted for the
LIDAR points for the foreshore area along each profile, and then the selected wa-
ter level is intersected with the regression line to identify the shoreline point for
each cross-shore profile. The shoreline points determined from individual cross-
shore profiles are linked to generate a shoreline representation. With this method,
the spatial detail of the shoreline is controlled by the spacing between individual
cross-shore profiles. To sample and analyze cross-shore profiles represent a tedious
and time consuming process, particularly when a small spacing between profiles is
chosen for a detailed shoreline. Many investigators used a contouring method to de-
rive shorelines from the LIDAR DEMs (Parker 2003, Smyth et al. 2003, Robertson
et al. 2004). By subtracting tidal datum (surface) from the LIDAR DEM, the zero
contour lines can be derived from the difference grid as the tidal datum referenced
shoreline indicator. Although the contouring routine is available in most GIS and
mapping software packages, it is not optimized for the shoreline extraction. Conse-
quently, the contouring process often tends to produce many noisy, broken shore-
lines (Parker 2003, Smyth et al. 2003, Robertson et al. 2004). A manual editing
effort is required to clean and eliminate the erroneous shorelines, while enhancing
the true shorelines.

This chapter introduces algorithms and methods for numerically extracting shore-
lines from the remote sensing imagery and LIDAR elevation data. These methods
aim to minimize human operator’s intervention and editing efforts and to maximize
the delineation accuracy. The shoreline extraction method designed for processing
remote sensing imagery consists of three groups of algorithms: preprocessing, seg-
mentation and classification, and post-processing. This method is applicable to both
satellite images and digital aerial photographs, and the shoreline can be extracted
from the imagery at a pixel level accuracy. Further, two methods are presented to
process LIDAR data for automated shoreline delineation. The first method is com-
posed of three processing steps: contouring, line selection with a length threshold,
and line smoothing and generalization. The second one is based on the segmen-
tation of the LIDAR DEM. The LIDAR DEM is segmented into a binary image,
consisting of land and water pixels, by intersecting it with the tidal datum surface.
Then, a sequence of image processing algorithms, similar to those used in process-
ing remote sensing imagery for shoreline extraction, are applied to extract vector
shorelines of cartographical quality. These methods have been employed to process
multi-temporal digital orthorectified aerial photographs, Landsat imagery, and air-
borne LIDAR data in the upper Texas Gulf coast. The shorelines delineated from
the time series of remote sensing images and LIDAR DEMs are compared in GIS
environment for coastal change studies.
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13.2 Shoreline and Tide Datums

In coast survey usage, the shoreline is considered synonymous with coastline
(Graham et al. 2003). Generally speaking, a shoreline refers to a spatially continuous
line of contact between the land and a body of water (sea or lake). The horizontal
position of the land-water interface is constantly changing with time as the water
level moves up and down. Water level of the sea surface fluctuates due to short-term
effects of tides as well as long-term relative sea level changes. It is also affected by
wind, atmospheric pressure, river discharge, beach changes, and steric effects due
to changing salinity and temperature of the water body. The more gentle the slope
of the beach, the greater the change in the shoreline position with changing water
level. The extreme storm surge from hurricanes can raise the water level several me-
ters and temporarily cause the shoreline movement miles landward in an area with
a gently sloping inter-tidal zone. Shorelines of different years are often compared
to quantify the beach erosion and accretion. A consistent shoreline definition is crit-
ical to the reliable change analysis and erosion rate calculation. If the shorelines
are delineated with different definitions, the detected changes might be merely a
manifestation of inconsistencies of the chosen definition, rather than real shoreline
changes due to the erosion or accretion.

The tide is the periodic rise and fall of the water resulting from gravitational
interactions between Sun, Moon, and Earth. The high water is the maximum height
reached by a rising tide, while low water is the minimum height reached by a falling
tide. The higher high water is the highest of the high waters (or single high water)
of any specific tidal day due to the declinational effects of the Moon and Sun. The
lower low water is the lowest of the low waters (or single low water) of any specific
tidal day due to the declinational effects of the Moon and Sun. Tidal datums at
water level stations are elevation values that are determined by averaging the time
series of observations. Tidal datums in the US are referenced to the National Tidal
Datum Epoch (NTDE). The NTDE is the specific 19-year period adopted by the
National Ocean Service as the official time segment over which tide observations
are taken and reduced to obtain mean values for tidal datums. Mean Higher High
Water (MHHW) for a particular gauging station is the average of the higher high
water height of each tidal day observed over the National Tidal Datum Epoch, while
Mean High Water (MHW) is the average of all of the high water heights of each
tidal day observed over the NTDE. Mean Low Water (MLW) is the average of all
the low water heights of each tidal day, and Mean Lower Low Water (MLLW) is the
average of the lower low water height of each tidal day over the NTDE. Mean Sea
Level (MSL) is the arithmetic mean of hourly heights observed over the NTDE.

Shorelines based on different water level indicators (vertical reference datum)
may have significant shifts in horizontal placement due to beach slope character-
istics. The mean high water line (MHWL), as published on the National Ocean
Service (NOS) nautical charts, is treated as the legal shoreline by many US gov-
ernment agencies, including the United States Army Corps of Engineers, Federal
Emergency Management Agency, and U.S. Census Bureau for the US (Parker 2003,
Graham et al. 2003). A MHWL is the position of the land-water interface at a water
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level elevation equal to a mean high water (MHW) datum. Although some coast sci-
entists argued that the vegetation line, dune line, bluff top line or other morphologic
features may be a better indicator for characterizing beach stability (Morton 1991),
the MHWL line is widely accepted as the reference feature for mapping shorelines.
Part of the reason is that identification of the MHWL is relatively easy in the field
and on the remote sensing imagery (Morton 1997, Pajak and Leatherman 2002).

Tidal datums are local and vary from place to place over the region. The tidal da-
tum variations are influenced by the gravitational attraction of water with the moon
and sun, as well as non-astronomical factors such as the configuration of the coast-
line, local depth of the water, ocean floor topography, and other hydrographic and
meteorological influences. Tidal datum values are only observed and calculated at
tide gauge stations. The use of a numerical hydrodynamic model or spatial interpo-
lation method like TCARI (Hess 2002, Hess 2003a,b) can compute the tidal datums
between gauge stations, producing a two-dimensional tidal datum field.

The tidal datum information is essential for the pre-flight planning and post-
flight data processing of remotely sensed data for shoreline extraction. The ground
surveys, the mobile GPS vehicle traversing, and aerial photograph and satellite im-
age acquisition should be scheduled at the time when the water level is close to the
MWH datum value for the region being surveyed. The tide window defined by the
NOS for collecting tide-coordinated or tide-predicted photographs is the time period
when the water level is within 0.3 feet (0.0914 m) above or below the MWH datum
(Graham et al. 2003). The tide window gives a guideline for the pre-flight planning
of aerial photogrammetric surveys of the coast and shoreline. To obtain the MWH
shoreline from the panchromatic or infrared color aerial photographs, the aircraft
should be planned to fly over the section of coast being surveyed within the tide
window. In the post-flight analysis of aerial photographs for shoreline interpretation
and extraction, the water level and tidal datum should be carefully considered. For
those images acquired at the time when the water level is close to the elevation of the
desired MHW datum, the dry/wet line extracted from the images approximates the
MHW shoreline. For those images acquired at the time when the actual water level is
significantly above or below the MHW datum, the shorelines extracted from the im-
ages need to be corrected by compensating the difference between the actual water
level elevation and the MHW datum. In other words, the image derived shorelines
must be normalized to a common MHW tidal datum for comparison. Otherwise,
the mapped shoreline changes could be merely the artifacts of differences in water
levels rather than actual shoreline erosion or accretion.

The tide window requirement for airborne LIDAR surveys is different from that
for aerial photography surveys. The optimal time for the airborne LIDAR surveys
of the coast and shoreline is when the water level is significantly below MLLW so
that the maximum extent of the inter-tidal zone is exposed. High tides, large waves,
storm surge, and runup at the time of survey may obscure the location of the vertical
datum. If LIDAR data are collected during low tide and low wave energy, the tide
coordinated shorelines can be derived by using different tidal datums as a reference,
including MHW, MHHW, MSL, MLW, or MLLW.
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13.3 Shoreline Extraction from Remote Sensing Imagery

Aerial photographs and satellite images are the primary data sources for shoreline
mapping. Conventionally, manual tracing and digitizing method was used to delin-
eate shorelines onto a map from remote sensing images. The manual delineation of
shoreline is a subjective, time-consuming, and labor intensive process. Errors were
frequently introduced in the manual tracing and in the transfer of the traced shore-
line features to the base topographical map. All these effects adversely influence the
accuracy and precision of the resulting shorelines (Leatherman 1983, Crowell et al.
1991). Crowell et al. (1991) estimated the total combined error in shoreline position
for 1:10,000 scale, non-tidal coordinated, aerial photography to be ∼7.6m, not in-
cluding errors associated with inaccurate interpretation of the location of the HWL.
This section presents an automated method for numerically deriving shorelines from
remote sensing imagery with a high precision.

On aerial photographs or high resolution satellite images, the visible high wa-
ter line (HWL) is commonly interpreted and used as the MHW shoreline. The high
water line is the intersection of land with the water surface at high tide, namely,
the wet/dry sand boundary. It is created by the furthest landward extent of the ris-
ing water on a beach face. The wet/dry line can be recognized from the markings
left on the beach by the last preceding high water, which manifests as distinct lin-
ear change and contrast in gray tone or color on images. In general, near infrared
panchromatic or color image is the best for delineating the waterline, due to its sen-
sitivity to moisture. To derive an accurate shoreline from a remote sensing image,
the water level of the coast being surveyed should be close to the MHW datum when
the image was acquired. In practice, the high water line from images taken in late
summer following a neap high tide gives a good approximation to the MHW shore-
line. Interpreting the high water shoreline indicator requires good quality imagery.
Good visibility without the presence of clouds or cloud shadows is also important
condition for collecting optical remote sensing images for shoreline extraction.

The automated method for shoreline delineation from remote sensing images
consists of three phases of image processing: preprocessing, segmentation/
classification, and post-processing as shown in Fig. 13.1. The input source remote
sensing images need to be geocoded to assign precise geographic coordinates to im-
age pixels and rectified to remove geometric and terrain distortions. The geographic
coordinates of the derived shoreline are inherited from the source remote sensing
imagery, accurate georeferencing and rigorous orthorectification of the source im-
ages are critical to ensure the derived shoreline with a precise geographic location
and reliable geometric shape.

Figure 13.2 shows the processing results for an infrared color aerial photograph.
The aerial photograph was orthorectified and projected to the UTM (zone 15) co-
ordinate system, horizontally referenced to NAD83 datum. In the preprocessing
phase, the orthorectified image is filtered to remove image noise and enhance the
image edges along the shoreline (Fig. 13.2a). To preserve the precise position of the
shoreline, an edge-preserving operator-Gaussian or median filter can be exploited
to filter images without blurring the major edge features. In the preprocessing stage,
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Fig. 13.1 Data flow chart for shoreline extraction from a remote sensing image

we also utilize an anisotropic diffusion algorithm (Liu and Jezek 2004) to enhance
strong edges along the shoreline and suppress the weak edges and interior variations
inside the land or ocean masses.

In the segmentation/classification phase, the input image is partitioned into ho-
mogeneous land and water regions using a segmentation or classification algorithm.
The border pixels between land/water regions (segments) are then delineated as the
shorelines. For a panchromatic aerial photograph or a single band satellite image,
a locally adaptive thresholding algorithm (Liu and Jezek 2004) is adopted for im-
age segmentation. The thresholding method sets the threshold value dynamically
according to the local characteristics to achieve a good separation between the land
and ocean water. Digital image segmentation produces a binary image. For multi-
spectral satellite imagery or color aerial photographs, supervised maximum like-
lihood algorithm, or unsupervised ISODATA algorithm can be used to classify the
image into different land cover classes. The classified images can be further recoded
into a binary image, showing land region and water region (Fig. 13.2b).

In the post-processing phase, the shoreline edges are differentiated from other
object edges, and the shoreline edge pixels are traced into a vector representation.
The segmentation or classification produces numerous connected water and land re-
gions. A region grouping and labeling algorithm (Sonka et al. 1999) is implemented
to group contiguous regions of land or water into a higher level of representation-
image objects (or regions). Each object is labeled with a unique identification num-
ber, and its area is computed. Based on knowledge about the size and continuity
of land and ocean masses, we can differentiate the true shoreline edge pixels from
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Fig. 13.2 Automated shoreline extraction algorithms. (a) Original infrared false color DOQQ im-
age; (b) Recoding the classification results into binary images; (c) Removal of small, noisy wa-
ter pixel regions. (d) Smoothed shoreline after morphology operation; (e) Extracted vector-based
shoreline; (f) Overlay of extracted shoreline with original infrared color DOQQ image

other object edge segments. Image objects are scanned and corrected in two passes
based on the knowledge about the size and continuity of land and ocean masses. In
the first pass, the connected image pixels classified as water pixels are scanned, and
those small water objects, which correspond to wetlands, lakes, stream, shadows, or
image noise in the land area, are identified and removed by changing them into land
objects (Fig. 13.2c). In the second pass, the land pixels are scanned. The small land
objects scattered in the water are mainly due to whitewater foams, wave runups,
small islands, or image noise. These isolated small land objects identified with a
selected area threshold can be fused into the ocean water objects. After two passes
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of removal of residual, isolated image objects, only two large continuous land and
ocean water objects remain. This procedure effectively eliminates unwanted objects
whose boundaries are not the shoreline, and therefore minimizes the editing work
for cleaning up the final shoreline product. Next, the morphological operation, dila-
tion immediately followed by erosion (Sonka et al. 1999), is used to generalize the
jagged boundaries of land objects, making the shoreline morphologically smoother
(Fig. 13.2d). Then, a line tracing and vectorization algorithm is employed to follow
the border pixels between land and water objects and record their coordinates onto a
list of vector line segments in ArcInfo Ungenerate format. Based on the Ungenerate
file, an ArcInfo vector line coverage is created to represent the final MHW shore-
line (Fig. 13.2e). The final product is a cartographic line coverage of the shoreline,
which can be readily incorporated into a GIS database. Visual comparison between
the extracted shorelines and the original digital aerial photograph shows that the po-
sition of the resulting shoreline is accurate to a pixel level (Fig. 13.2f). The degree of
absolute accuracy of the shoreline varies with the spatial resolution of input digital
aerial photographs and generalization level of morphology operations used in the
post-processing stage.

13.4 Tidal Datum Referenced Shoreline from LIDAR Data

Airborne LIDAR promise an accurate and cost-effective approach to coast and
shoreline mapping (Gibeaut et al. 2000, Robertson et al. 2004). The LIDAR system
integrates three technology components: laser scanning system, differential GPS,
and Inertial Measurement Unit (IMU). The onboard GPS receiver locates an X, Y,
Z position for each laser pulse return. At the same time, an inertial navigation sys-
tem (INS) monitors the attitude (pitch, roll, and yaw angles) of the laser sensor. The
laser scanning system can record the range and backscatter intensity of the first and
last laser returns of each laser reflection. By measuring the round trip travel time of
the laser pulse from the aircraft to the ground, a highly accurate spot elevation can
be calculated. LIDAR mapping of the coast and shoreline should be planned at the
time when the water level of sea surface is close to a minimum elevation (e.g. neap
tide), with a calm and low wave condition.

The airborne LIDAR data have been increasingly available for the coastal re-
search community. The NOAA Coastal Services Center (CSC) has collected to-
pographical LIDAR data along the United States coastline through a partnership
program with the USGS Center for Coastal and Regional Marine Studies and
the NASA Goddard Space Flight Center. LIDAR data have been acquired for a
number of coastal states for several time periods. The data are available to the
public through the CSC website (http://www.csc.noaa.gov/crs/tcm/missions.html).
Airborne LIDAR data not merely provides an efficient approach to the shoreline
mapping and change detection (Stockdon et al. 2002, Robertson et al. 2004), but also
gives detailed, accurate near shore bathymetry and beach topography of coast areas
over a broad region, allowing for analysis of micro-geomorphology of the beach and
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sand dunes and quantifying sediment budget of the beach (White and Wang 2003,
Zhang et al. 2005). The repeat LIDAR data of different years also render us the
capability of conducting 3-D volumetric change analysis (White and Wang 2003,
Finkl et al. 2005).

To derive tide coordinated shoreline, both the LIDAR DEM and the tidal datum
(field) need to be converted to a common datum, for instance, the North American
Vertical Datum of 1988 (NAVD88). The LIDAR data are often given in WGS84 el-
lipsoid height, and the tidal datum is commonly referenced to MLLW. The WGS84
ellipsoid heights of LIDAR data can be related to the NAVD88 orthometric heights
(elevations) through the latest geoid model GEOID03 developed by the National
Geodetic Survey (NGS) of the NOS (Parker 2003). To correlate the selected tidal
datum to the LIDAR DEM, the tidal datum values also need to be converted to el-
evation values relative to the orthometric datum NAVD88. At a tidal gauge station,
tidal datum elevations can be linked to NAVD88 datum through precise measure-
ment of the horizontal and vertical positions of the benchmarks around the tide
gauge stations. In addition, NGS developed a software tool, VDatum, to convert
the height measurements between different datums. To make a connection between
NAVD88 and MHW, this tool first transform the orthometric datum to local mean
sea level (MSL). The difference, NAVD88-to-MSL field, is the sea surface topog-
raphy, which is modeled by spatial interpolation of values at GPS-referenced tidal
benchmarks. Then, the local MSL is linked to MLLW by hydrodynamic tidal model
like TCARI (Hess 2003a,b).

This chapter presents two alternative methods for deriving shorelines from a
LIDAR DEM. The first method is based on the combination of contouring, line
selection with a length threshold, and line smoothing and generalization. Previous
studies reported that the general-purpose contouring software routines often give
broken, short, and noisy shoreline segments. A great deal of manual editing or re-
digitizing work was involved in creating the final clean shoreline representation
(Smyth et al. 2003, Parker 2003, Robertson et al. 2004). To achieve a continuous
shoreline of cartographical quality, we combine a number of operations to optimize
the shoreline extraction process as shown in Fig. 13.3. The data processing proce-
dure can be summarized as the following steps:

• Filter the LIDAR DEM with a 3×3 median. It can be realized by using ArcGIS
grid focal function.

• Create a difference grid by subtracting the tidal datum surface from the LIDAR
DEM after both are converted to the elevation values referenced to NAVD88.

• Contour zero values of the difference grid. In ArcGIS, contouring can be con-
ducted only along a single specified value, instead of deriving a series of contour
lines by specifying a base contour line and contour intervals in other software
packages. This saves the computation time and avoids the manual editing work
to eliminate non-zero contours.

• Select and delete short, noisy false shoreline segments with a specified length
threshold.

• Smooth the shoreline using the Douglas-Peucker algorithm or a bend smoothing
algorithm, which are available in ArcGIS as two options for line generalization.
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Fig. 13.3 Data flow chart of the contouring method for shoreline extraction

This method is demonstrated with a small area in the Galveston Bay, Texas. The
coastal area in this example is characterized by relatively straight, sandy, barrier is-
land beaches. All the processing steps are performed in ArcGIS environment, and
the processing results are shown in Fig. 13.4. Before applying the shoreline ex-
traction algorithms, the LIDAR measurements are projected to the UTM (zone 15)
coordinate system, horizontally referenced to NAD83 datum. The LIDAR DEM is
first converted to elevation values with reference to NAVD88. A 3×3 median filter
is applied to the LIDAR DEM to remove data noise (Fig. 13.4a). For this small study
area, the tidal datum surface is assumed to be a level plane with a constant eleva-
tion. The constant tidal datum MHW is determined to be 0.36 m relative to NAVD88
through precise measurements of the horizontal and vertical positions of the bench-
marks near tide gauge station-Galveston Pier 21. It should be pointed out that the
use of a constant tidal datum value for a large region could lead to error in shoreline
position determination. In the case of a large coastal region, a two-dimensional tidal
datum surface should be modeled and computed using a numerical hydrodynamic
model or spatial interpolation technique like TCARI (Hess 2003a,b).

Due to the contamination of the LIDAR measurements by waves and runups
around the water line, thick debris deposits of sargassum, the very subtle topogra-
phy variations of the sand berm crests and dunes, variations in vegetation height,
erroneous MHW contours are created in the initial contouring step (Fig. 13.4b).
These erroneous short MHW contours are eliminated by using a length thresh-
old (Fig. 13.4c). Douglas-Peucker generalization method is applied to smooth the
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Fig. 13.4 Contouring method for extracting shoreline from LIDAR DEM. (a) LIDAR DEM; (b)
36 cm contours derived from LIDAR DEM; (c) Shorelines selected from the contours with a length
threshold; (d) shoreline after generalization, enlarged view for the small box indicated in (c)

contours with weeding tolerance of 0.25 m. Both the median filtering of the LIDAR
DEM grid and the generalization of the resultant MHW shoreline (Fig. 13.4d) can
enhance the visual smoothness for cartographic representation of the shoreline.

The second shoreline extraction method for processing LIDAR data is based on
the segmentation of the LIDAR DEM. Similar to the shoreline extraction method
for remote sensing imagery, this method consists of three processing phases: pre-
processing, segmentation and post-processing (Fig. 13.5). The primary processing
steps of this method include (Liu et al. 2007):

• Reduce the LIDAR DEM noise using an edge preserving filter, such as median
filter (Sonka et al. 1999);

• Generate a binary grid consisting of water and land pixels, by intersecting the
topographical surface of the LIDAR DEM with the reference tide datum surface;

• Group and label the binary image into water and land objects (regions) by identi-
fying the connected water or land pixels, and calculate the area of each water or
land object;
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Fig. 13.5 Data flow chart of the segmentation based method for processing LIDAR data for shore-
line extraction

• Perform two passes of scans to remove small and noisy land and water objects.
The first pass will identify and remove small land regions with a user specified
areal threshold. The second pass will identify and remove small water regions
with another areal threshold area;

• Perform mathematical morphologic operations (dilation followed by erosion)
(Sonka et al. 1999) to smooth and generalize the land/water boundary; and

• Delineate the edge pixels of the land objects and trace the edge pixel into a con-
tinuous shoreline representation.

We have applied this method to extract a MHW shoreline for the upper Texas
Gulf Coast. Figure 13.6 illustrates the processing steps with a 6 km stretch of the
coast. In the preprocessing phase, the LIDAR DEM (Fig. 13.6a) is filtered by a 3×3
median filter after the conversion to NAVD88 datum is completed. The purpose is to
filter LIDAR measurement noise to prevent isolated and noisy shoreline segments.
The median filter is an edge-preserving operator. It removes the data noise without
blurring the position of the shorelines (Fig. 13.6b). In the segmentation phase, the
LIDAR DEM is intersected with the tidal datum surface. We code a pixel as water,
with a value of 0, if its LIDAR elevation is below the MHW tidal datum value of
0.36 m. Otherwise, the pixel is coded as land with a value of 255. This results in a
binary image consisting of land and water pixels (Fig. 13.6c).
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Fig. 13.6 Segmentation based image processing method for extracting shoreline from LIDAR
DEM. (a) LIDAR DEM; (b) Median filtered LIDAR DEM; (c) Binary image using the threshold
value of MHW datum; (d) Grouping water objects and removing small and noisy water objects;
(e) Applying morphology operation to smooth the shoreline; (f) shorelines traced and vectorized
along the boundary of land objects

In the post-processing phase, the same sequence of operations as those used in
processing remote sensing imagery for shoreline extraction are applied to extract
vector shorelines from the binary image. The connected water or land regions in
the binary image are grouped and labeled as image objects. Two passes of selective
removals of small and noisy land and water objects with specified areal thresholds
result in large and continuous land and water objects (Fig. 13.6d). The morpho-
logical operation smoothes the shoreline (Fig. 13.6e). The final MHW shoreline
product is in the format of ArcInfo vector line coverage (Fig. 13.6f). It should be
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pointed out that the morphological operations will result in some level of shore-
line generalization. For the purpose of cartographical representation, some degree
of generalization is unavoidable although it might introduce additional uncertainty
in the shoreline position. What level of error and uncertainty is acceptable de-
pends on the application context and the required map scale of the final shoreline
chart.

Shorelines based on different tidal datums may have significant shifts in horizon-
tal placement due to beach slope characteristics. The tidal datum values (relative to
NAVD88) for Galveston Pier 21 tide gauge station are: 0.36 m for MHW, 0.387 m
for MHHW, 0.21 m for MSL, 0.048 m for MLW and −0.043m for MLLW. In ad-
dition to the MHW shoreline, the shoreline indicators for the MHHW and MSL
datums have also derived. As shown in Fig. 13.7, the horizontal position of the
LIDAR-derived shoreline varies with the selected tidal datum. The MHHW shore-
line is located slightly landward of the MHW shoreline. In the most sections, the
MHW shoreline and MHHW shoreline are overlapping and cannot be differenti-
ated each other. This is because the spatial resolution (1 m) and the vertical accu-
racy (0.15 m) of the LIDAR data are not adequate to sense the small difference
between MHW and MHHW datums. The MSL shoreline is obviously located sea-
ward of the MHW shoreline. Also, it should be pointed out that the accuracy and
reliability of the MSL shoreline is not as good as the MHW shoreline. The rea-
sons are twofold. First, the beaches around the MSL line have a significantly lower

Fig. 13.7 MHW, MHHW and MSL shorelines overlaid on the hill-shaded relief image of the
LIDAR DEM
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surface slope than the beaches around the MHW line. Second, the MSL datum is
very close the water level at the time when the LIDAR data were acquired and easy
to be contaminated by wave runups. For our LIDAR data set, the MLW (0.048 m)
and MLLW (−0.043m) shorelines cannot be determined because the water level
(0.134 m) on the LIDAR data acquisition day was higher than MLW and MLLW
datums.

By using a Monte Carlo simulation technique (Openshaw 1989, Openshaw et al.
1991), the accuracy of the horizontal position of the LIDAR derived shoreline is
evaluated. The shoreline error can be conceived of as a deviation of the derived
horizontal position from the true position. The occurrence of the positional error is
mainly related to inherent uncertainty in the vertical and horizontal measurements
of the LIDAR data. Other potential sources of error include datum conversion, pro-
jection, and interpolation. Raw measurements of the LIDAR points used in this
research have a horizontal accuracy of 0.8 m (RMSE) and a vertical accuracy of
0.15 m over the bare beach. It is a bulk error estimate representing all sources of
error for the LIDAR system. The 0.8 m horizontal error in LIDAR points will be
directly transferred to 0.8 m shoreline position error. The vertical error in LIDAR
points would be propagated and inflated in the shoreline extraction process, caus-
ing the location of the shoreline to move landward or seaward. The error inflation
factor is determined by the foreshore beach slope. For a beach with a gentle sur-
face slope, a slight vertical measurement error would be amplified and translated
to a large error in shoreline position. Overall, the error in the tidal datum deter-
mination and conversion is tiny. We used a constant value to represent the MHW
datum for the study area, rather than a varying tidal datum field. The difference
in MHW at the two gauge stations (Galveston Pier 21 and Sabine Pass) bracket-
ing the study area is about 0.015 m, which can be regarded as the uncertainty level
of the MHW datum for this region. Considering the high sampling density of the
LIDAR points (about 1 m), the spatial interpolation and projection error is negligi-
ble. The surface slope around the MHW shoreline approximately ranges from 5 to
10% rise. A vertical error of 0.15 m for the LIDAR data combined with 0.015 m
uncertainty in the MHW datum may cause the error in the shoreline’s horizon-
tal position of 1.65–3.3 m. Along with the horizontal error of 0.8 m for LIDAR
points, the overall positional error of the MHW shoreline would be 2.45–4.1 m.
The uncertainty and error of the shoreline horizontal position varies spatially, de-
pending on the magnitude of surface slope. The beaches with a lower foreshore
surface slope tend to have a larger uncertainty and error in the shoreline position.
The effect of input data uncertainty and possible error propagation in the shore-
line extraction process is simulated and quantified using the Monte Carlo simu-
lation technique. Confidence intervals and summary error statistics are calculated
for each section of the extracted shoreline (Liu et al. 2007). The analysis for the
Upper Texas Gulf Coast suggests that the horizontal position of the LIDAR de-
rived shoreline is accurate within 4.5 m at the 95% confidence level (Liu et al.
2007). It is superior to the shorelines obtainable from traditional aerial photogra-
phy, which has a typical accuracy of about 6–7 m (Leatherman 1983, Crowell et al.
1991).
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13.5 Applications in the Upper Texas Gulf Coast

Scientists have investigated the impacts of global climate changes and seal level rise
on shoreline erosion (Leatherman and Douglas 2003). Global sea level has risen
about 20 cm in the last century (Leatherman and Douglas 2003). Relative rates of
rise have more than doubled this amount in Texas coast zone due to substantial land
subsidence caused by excessive withdrawal of ground water and extraction of oil
and natural gases (Paine and Morton 1993, Morton 1997). Average rates of beach
erosion along the Texas Gulf coast were estimated to be above 2 m per year, much
higher than in the US east coast (1 m per year). Future sea levels are projected to rise
significantly faster than occurred in the 20th century, and acceleration of the present
rate of shore recession is expected (Leatherman and Douglas 2003).

In terms of time scale, shoreline changes can be divided into three categories:
long-term, short-term, and episodic changes. Long-term changes occur over tens
to thousands of years; short-term change refers to movement occurring over sev-
eral seasons to 5 or 10 years; and episodic changes occurs in response to a single
storm. Pioneering work on the analysis of long-term shoreline changes in the Texas
Gulf coast has been carried out by scientists at the Bureau of Economic Geology
in University of Texas at Austin. By digitizing topographical maps and manually
tracing aerial photographs, historical shorelines have been compiled for most parts
of the Texas Gulf coast for 1937, 1956, 1965, 1974, and 1991 (Paine and Morton
1993). The digitized topographic sheets (T-sheets) of the National Ocean Service
(NOS) provided the shoreline position of the Texas coast dating back to 1856. By
using moderate resolution satellite data, high-resolution digital aerial photographs
and airborne LIDAR, this research examines the shoreline change rates in recent
decades for the upper Texas coast.

The upper Texas coast is the stretch from Sabine Pass in the border with
Louisiana west to the Brazos River mouth, including the estuarine drainage area of
Galveston Bay (Fig. 13.8). It is characterized by extensive western Louisiana-type
marshes, coastal prairie, humid flat woods inland, and barrier islands. The shore-
line in the upper Texas coast shoreline experienced a higher level of short-term and
episodic fluctuations than the middle and lower Texas coasts, due to frequent hurri-
canes and tropical storms (Morton 1997).

The airborne LIDAR data used in this research were acquired on October 16,
1999 by NASA’s Airborne Topographic Mapper (ATM) laser instrument. The flights
were timed to occur within a few hours of low tide, when the beach was most ex-
posed. The shoreline LIDAR surveys cover a swath approximately 250 m wide, and
the spacing between data points is between 1 and 2 m on the ground. The surveyed
swath covers the beaches, fore dunes, and the a few rows of houses landward. In
some parts of the coast, such as the Rollover Pass area on the Bolivar Peninsula,
the data swath can extend a few kilometers inland, covering salt- and brackish-
water marshes, tidal flats, and adjacent uplands. By applying the shoreline extrac-
tion method, a MHW datum referenced shoreline is derived from the 1999 LIDAR
data. This MWH shoreline is compared with the 1977 NOS T-sheet shoreline to es-
timate shoreline change rates in the past two decades. The NOS T-sheet TP-00230
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Fig. 13.8 The upper Texas Gulf coast

was compiled at the scale 1:20,000 from tide-controlled aerial photographs flown
on March 1, 1977. The HWL depicted on the NOAA T-sheets is a close approxima-
tion of the historical mean high water line (MHWL). Figure 13.9 shows the moving
direction and distance of the oceanfront shoreline of the Bolivar Peninsula observed
22 years apart. Comparison of two sets of shorelines shows that most parts of the
shoreline in this region are quite stable or experienced slight advancing. The average
advancing rate is less than 1.5 m/year.

Landsat satellite image data are utilized to identify the erosion or accretion
hotspots during 1990–2000. Each Landsat covers a ground area of 185 km by
185 km, and two image scenes are used to cover the entire upper Texas coast.
Two Landsat 5 TM image scenes acquired on December 8, 1990 and two Land-
sat 7 ETM+ image scenes acquired on January 10, 2000 are used in the analysis.
The Landast 5 TM imagery has 7 multi-spectral bands with 30 m spatial resolution.
The Landsat 7 ETM+ imagery has a panchromatic band and 7 multi-spectral bands.
The panchromatic band has a spatial resolution of 15 m, and 6 non-thermal bands
have a spatial resolution of 30 m. We acquired 41 ground control points (GCPs),
and an affine transformation was applied to the two sets of Landsat images for re-
fining geolocation. After georeferencing operation, the Root Mean Squares Error
(RMSE) of the Landsat images has been reduced from 130 m to 9.77 m, reaching
sub-pixel level accuracy. The images are projected into UTM (zone 15) coordinate
system referenced to NAD83 datum. The locally adaptive thresholding algorithm
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Fig. 13.9 Shoreline variations during 1977–1999 by comparing the 1977 NOS T-sheet shoreline
with the 1999 LIDAR derived MHW shoreline. Background images are 1995 infrared aerial pho-
tographs

was employed to segment the near infrared band (band 4) of the orthorectified Land-
sat images. Then, the image processing chain described above is applied, and two
complete sets of shorelines for 1990 and 2000 have been derived (Figs. 13.10 and
13.11). The positional accuracy of shorelines extracted from the Landsat imagery is
estimated to be about 50 m. The comparison of two sets of shorelines 10 years apart
reveals the most rapidly changing sections of the coast (hot spots) (Fig. 13.12). The
shorelines around the west Galveston Island, Atkinson Island, around Matagorda
Bay, and near Bryan Beach State Park advanced or retreated as large as 1 km. The
dramatic advances of the beaches and sand dunes in the west Galveston Island,
around the Bryan Beach State Park, and the southwest Bolivar Peninsula are due to
the sediment deposition or beach nourishment projects. Huge amount of sand have
been carried west along the shore of Bolivar Peninsula and accumulated north of the
Galveston Jetty at the Galveston Entrance Channel (Fig. 13.12). Due to the limita-
tions of the spatial resolution and the positional accuracy of the derived shorelines,
the Landsat imagery is not adequate for reliably resolving and detecting the shore-
line variations less than 50 m. High resolution imagery is required to measure the
short-term shoreline changes.

To resolve possible short-term shoreline variations, we collected high resolu-
tion digital aerial photographs for 1995 and 2000, covering the upper Texas coast.
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Fig. 13.10 Shoreline derived from the 1990 Landsat 5 TM near infrared band

The 1995 digital aerial photographs are known as Digital Orthophoto Quarter
Quadrangles (DOQQs) distributed by the Texas Natural Resource System data dis-
tribution web site. The distortions and displacement in the image due to sensor ori-
entation and terrain relief have been removed during the orthorectification process
by using digital elevation models, ground control points, and camera calibration
data. The 1995 DOQQs have a 1 m spatial resolution, and each image covers quarter-
quadrangle (about 7 km by 7.5 km). The images are in the UTM (zone 15) coordi-
nate system with reference to NAD83 datum. The horizontal positional accuracy of
the DOQQs is estimated to be about 4–5 m. The 1995 DOQQs are scanned from
near infrared color film, producing three digital bands: near infrared, red, and green
bands. The 2000 digital aerial photographs were acquired in January 2000 by the

Fig. 13.11 Shoreline derived from the 2000 Landsat 7 ETM+ near infrared band
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Fig. 13.12 Shoreline changes around Matagorda Bay, Bryan Beach State Park, and the west end
of Bolivar Peninsula. (a) 1990 Landsat image of Matagorda Bay; (b) 2000 Landsat image of
Matagorda Bay; (c) 1990 Landsat image of Bryan Beach State Park; (d) 2000 Landsat image
of Bryan Beach State Park. (e) 1990 Landsat image around Port Bolivar; (f) 2000 Landsat image
around Port Bolivar
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Houston-Galveston Area Council. The ground resolution of the 2000 orthophotos is
0.5 m, and each image covers about 2.5 km by 4 km ground area. The distortions and
displacement of features in the image induced by terrain relief and camera orienta-
tion have been mathematically corrected during the orthorectification process. The
horizontal positional accuracy is about 1.5 m. The digital images were scanned from
true natural color film diapositives, resulting in three digital bands: red, green, and
blue bands. The orthophotos are provided in State Plane coordinate System (Texas
South Central Zone, fipscode 4204), referenced to NAD83 datum. The shorelines
extracted from 2000 orthophotos are projected into the UTM (zone 15) coordinate
system in order to compare with those derived from the 1990 DOQQs.

Fig. 13.13 Shoreline draped on the 1995 infrared color aerial photographs
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We used the image processing chain described above to automatically derive the
shorelines from the 1995 infrared false color DOQQs and the 2000 natural true color
orthophotos. Maximum likelihood supervised classification method was used to first
classify the digital aerial photograph images into a number of land cover categories.
Then, these land cover types were recoded into binary images, consisting of land
pixels and water pixels. The remaining processing steps are similar to those used
to process the Landsat images. Figure 13.13 shows the comparison of shorelines
respectively derived from the 1995 infrared color aerial photos and the 2000 nat-
ural color aerial photos. Within about 13 km stretch of the coast, the erosion area
is 128052m2, the accretion area is 25151km2, and the net land loss is 102901m2.
Overall, the shoreline changes are dominated by a retreating process, and only a
small stretch of the shoreline advanced seaward during 1995–2000 (Fig. 13.14).
The maximum erosion rate is 5.1 m/year (25.7 m within 5 years), and most sec-
tions of the shoreline in this region experienced erosion at a rate of above 2 m/year.
The accelerated short-term erosion during 1995–2000 was mainly caused by two
significant tropical storms. Tropical storm Josephine in October 1996 and tropical
storm Frances in September 1998 destroyed many beachfront structures, eroded the
dunes and beaches, and caused as great as 25 m of scarp and vegetation line retreat.
Large volumes of beach sand were swept inland through the Rollover Pass and per-
manently deposited in the east Galveston Bay and the GIWW (Gulf Intra-coastal
Waterway) in the vicinity. Emergency erosion control efforts have been made to

Fig. 13.14 Shoreline variations during 1995–2000 around the Rollover Pass
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stem shoreline retreat brought to the forefront by tropical storms. Large round hay
bales were placed after Josephine, and sand-filled geotextile tubes were installed
along the oceanfront shoreline of Galveston Island and the Bolivar Peninsula in
2000 following tropical storm Frances. Small-scale beach nourishment projects have
been also conducted, and muddy sand dredged behind Rollover pass was placed on
the beach. The measured erosion rate represents a net effect of the storm induced
erosion and beach nourishments.

13.6 Conclusions

This chapter has presented numerical algorithms and automated methods for auto-
matically extracting shoreline features from remote sensing imagery and airborne
LIDAR data. The methods are able to create continuous shorelines with the greatest
amount of geometric details and high positional accuracy. The applications to the
upper Texas Gulf Coast show that these methods are efficient, accurate, objective
and replicable. Compared with conventional manual tracing and digitizing method,
these methods represent a substantial technical improvement.

The dry/wet high water line on digital aerial photographs and satellite images
can be automatically extracted at a pixel level as shoreline indicators. The absolute
positional accuracy of shorelines extracted from remote sensing imagery depends
on the image spatial resolution, the quality of image orthorectification and georef-
erencing, and the actual water level at the time of image acquisition. The primary
challenge for the remote sensing imagery as the shoreline source is the difficulty in
compensating the difference between the MHW datum and the actual water level
when the imagery was acquired.

The airborne LIDAR technology represents an efficient and cost-effective ap-
proach to shoreline mapping. Our analysis results demonstrate that spatially detailed,
tidal datum referenced shorelines can be automatically derived from the LIDAR
data. The accuracy of the shoreline horizontal position attainable from the LIDAR
data is estimated to be within 4.5 m at the 95% confidence level, which mainly as-
sociated with the vertical error of the LIDAR DEM and the surface slope of the
foreshore beach. Our experiments show that the MHHW shoreline is virtually the
same as the MHW shoreline in the case of the upper Texas coast, given the spatial
resolution and vertical accuracy of the current topographical LIDAR technology.
Although it is possible to derive the MSL shoreline from the LIDAR DEM, its ac-
curacy and reliability is limited due to the very gentle surface slope in the inter-tidal
zone and the contaminations of wave runups. In practice, it is difficult to derive the
MLW and MLLW shorelines from the topographical LIDAR data. The actual wa-
ter level is often higher than the MLW or MLLW datum when the LIDAR survey
was conducted. The marine LIDAR system, the Scanning Hydrographic Operational
Airborne LIDAR Survey (SHOALS), can measure the depth of water down to about
50 m in the moderately clear, non-turbulent, near shore coastal waters (Irish and
Lillycrop 1999, Lillycrop et al. 2001). It may provide the capability of mapping the
MLW and MLLW shorelines and the bathymetry of ocean bottom.
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To investigate shoreline variations in the upper Texas Gulf Coast, the automated
numerical methods have been employed to process multi-temporal remote sensing
imagery and airborne LIDAR data. During 1990–2000, the large scale land accre-
tions have been detected at a number of locations in the upper Texas coast by using
the Landsat satellite imagery. By using two sets of high-resolution orthorectified
digital aerial photographs, we also measured and quantified the short-term shoreline
change rate for the Bolivar Peninsula during 1995–2000. The short-term shoreline
change was dominated by the strong erosion process at a rate of 2–5 m/year. The
1999 MHW shoreline derived from airborne LIDAR is compared with the 1977
NOS T-sheet MHW shoreline. The comparison suggests that the oceanfront shore-
line of the Bolivar Peninsula was relatively stable or experienced slight advancing
with a rate of less than 1.5 m/year during the past two decades. This averaged change
rate pattern in the past two decades is in strong contrast to the short-term erosion
dominated change (2–5 m/year) during 1995–2000 detected from the orthorectified
aerial photographs. To provide an accurate, timely prediction of shoreline change
for disaster warning and resource management, further investigation on the magni-
tude and causes of short-term and episodic shoreline changes need to be conducted
with high resolution remote sensing data in the future.
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Chapter 14
Remote Sensing of Coastal Mangrove Forest

Le Wang and Wayne P. Sousa

Mangroves, once occupied 75% of the world’s tropical and subtropical coastlines,
are seriously threatened by coastal development projects and accelerated climate
change, e.g. sea-level rise. In this study, we aim to attain three objectives: (1) to
develop effective methods for discriminating mangrove species from IKONOS im-
agery; (2) to determine an optimal season for capturing the spectral and textural dif-
ference among mangrove species; (3) to investigate the capability of hyperspectral
data for distinguishing mangrove species. Our study site is in Panama. Two scenes of
IKONOS imagery respectively acquired during dry and wet seasons were employed.
A Clustering-Based Neural Network (CBNN) classifier was developed and its per-
formance was compared with two other conventional classifiers: Back-Propagation
Neural Networks classifier (BPNN) and Maximum Likelihood Classifier (MLC).
Results indicate that CBNN is superior to BPNN and MLC in employing textural
information. Rainy season is better than dry season for mangrove species classifi-
cation. To investigate the third objective, a one-way ANNOVA followed by linear
discriminate analysis (LDA) method was devised for analyzing the leaf-level hyper-
spectral reflectance. A kappa value of 0.9 was achieved in classifying leaves from
three species. Four narrow-band indices were tested for detecting stress conditions
associated with the three mangrove species.

14.1 Introduction

Mangrove forests are highly productive ecosystems that typically dominate the in-
tertidal zone of low energy tropical and subtropical coastlines (Lugo and Snedaker
1974, Kathiresan and Bingham 2001). The constituent species in these forests are
often differentially distributed with distance from the water’s edge, forming zones
of differing species composition perpendicular to the intertidal gradient. Mangrove
habitats and the organisms they support are of significant ecological and economic
value (Lugo and Snedaker 1974, Tomlinson 1986, Hutchings and Saenger 1987,
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Hogarth 1999, Kathiresan and Bingham 2001). Among other values, mangroves
(1) provide vital habitat for a wide variety of animal and plants species, many of
them uniquely adapted to mangrove environments, and some of them rare and/or
endangered, (2) function as nursery and feeding grounds for many species of com-
mercially valuable fishes, crustaceans, and molluscs, (3) are an important source
of carbon to detritus-based food webs in adjacent coastal waters, (4) stabilize de-
posited sediments, reducing shoreline erosion, (5) buffer the impact of storm waves
and floods on inland areas, and (6) trap nutrients and sediments in runoff from up-
land areas, helping to maintain the quality of estuarine and nearshore waters.

However, mangrove forests’ health and persistence are seriously threatened
by coastal development projects and various forms of non-renewable exploita-
tion (Saenger et al. 1983, Ellison and Farnsworth 1996, Farnsworth and Ellison
1997). In recent decades, mangrove habitats have suffered dramatic declines in
area (Saenger et al. 1983, Farnsworth and Ellison 1997, Ellison and Farnsworth
2001, Alongi 2002) due to coastal development, non-renewable resource exploita-
tion (e.g. clear cutting, mining, aquaculture), pollution, high rates of sedimentation,
and alterations of hydrology. Alongi (2002) estimated that as much as a third of
the world’s mangrove forest have been lost in the past 50 years. In the Caribbean,
the rate of mainland mangrove deforestation is estimated to be 1.4–1.7% annually
(Ellison and Farnsworth 1996, FAO 2003), comparable to the rates documented for
threatened tropical rainforests. Thus, there is an increasing need to monitor and as-
sess mangrove forest structure and dynamics, both to gain a better understanding
of their basic biology and to help guide conservation and restoration efforts. The
ability to accurately map mangrove species with the tools of remote sensing would
greatly assist in this effort.

Although remote sensing has been used to map many of the land cover types on
earth, it has not been widely used for mapping mangrove forests due to the limited
spectral and spatial resolution with conventional imagery. Using the conventional
multispectral remote sensing imagery, study has been concentrated on distinguish-
ing mangrove from non-mangrove habitats, without regard to species of mangrove.
Among these studies, Venkataratnam and Thammappa (1993) used Landsat Mul-
tispectral Scanner (MSS) data to map mangroves along the coastline of Andhra
Pradesh, India. Rasolofoharinoro et al. (1998) produced a detailed cartographic in-
ventory of a mangrove ecosystem in Madagascar based on a classification from
Satellite pour l’Observation de la Terre (SPOT) images (SPOT 1 and 2). Gao (1998)
developed a two-tiered classification scheme based on a SPOT image and applied
it to the mangrove mapping in the Waitemata Harbour of Auckland, New Zealand.
This method was 81.4% accurate in classifying mangrove versus non-mangrove land
cover. Green et al. (1998) compared the suitability of three types of data (SPOT XS,
Landsat TM, CASI) in mapping mangrove species with five different classification
approaches. Gao (1999) conducted a comparative study on mangrove mapping with
SPOT XS and Landsat Thematic Mapper (TM) images at 10, 20, 30 m resolution.

Given the small patch size of some mangrove species, spatial resolution plays a
more important role than spectral resolution in discriminating different mangrove
species. The recent launching of so-called “Very High Resolution” (VHR) satel-
lite sensors provides a new opportunity to map land cover types at a much higher
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spatial resolution than with previously available sensors. In the VHR category, there
are two major commercial sources of imagery: IKONOS images and QuickBird
images. The IKONOS 2 satellite, launched in 1999, provided the first publically
available VHR satellite images, while even higher resolution images became avail-
able from the QuickBird satellite in 2001. With this enhanced spatial resolution,
a better classification of individual mangrove species has become possible. How-
ever, another challenge emerged, which is to develop analytical approaches that can
realize the full potential of the acquired data when attempting to define and discrim-
inate spatial entities. The development of methods for mapping mangrove forests
using information collected by high resolution sensors, particularly at the species-
level, is still at an early exploratory stage. Mumby and Edwards (2002) were able
to improve thematic accuracy for a marine environment comprised of 13 habitat
classes (including mangroves) by incorporating texture information in their analysis
of an IKONOS image. Held et al. (2003) employed an integrated analysis of data
from the high spatial/spectral resolution scanner CASI and the airborne AIRSAR
(NASA’s polarimetric radar) to map mangrove estuaries along the Daintree River in
North Queensland, Australia. Higher classification accuracies of different habitats
and mangrove forest types were achieved when hyperspectral and radar data were
used in combination, and a slight improvement (around 3%) was achieved using
a hierarchical neural network in place of MLC. Wang et al. (2004a) developed an
integrated pixel-based and object-based method, and achieved a moderately accu-
rate result when classifying the canopies of three mangrove species in an IKONOS
image. Furthermore, Wang et al. (2004b) compared the ability to discriminate the
canopies of different mangrove species using various combinations of spectral and
textural information inherent to IKONOS and QuickBird imagery.

This chapter investigated effective methods that can be employed for monitor-
ing and assessing the spatial and temporal pattern of mangrove forests with images
acquired from VHR satellite sensors as well as hyperspectral sensors. Specifically,
the following objectives are to be attained: (1) to investigate and develop suitable
methods for discriminating mangrove species; (2) to determine an optimal season
for capturing the spectral difference among mangrove species; (3) to investigate the
capability of hyperspectral data for distinguishing mangrove species.

14.2 Study Sites

The study was conducted in mainland mangrove forests near the Smithsonian Trop-
ical Research Institute’s Galeta Marine Laboratory (9◦24′18′′ N, 79◦51′48.5′′ W) at
Punta Galeta on the Caribbean coast of Panama, approximately 8 km northeast of
the city of Colon.

Three tree species comprise the canopy of the study forests. They are: black man-
grove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red
mangrove (Rhizophora mangle). Red mangrove forms a pure or nearly pure stand
at the seaward fringe. About 10–20 m from the water’s edge, white mangrove joins
the canopy, forming a nearly even mixture with red mangrove in the low intertidal.
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In these mixed-species stands, white mangroves reach average heights of 22 m,
while red mangroves average 16 to 18 m in height (W. Sousa, unpublished data).
So, the crowns of white mangroves tend to be emergent, and therefore more visible
in the satellite image than those of red mangroves, which form a lower sub-canopy.
Black mangrove joins the canopy in the mid-intertidal, creating a mixed canopy
of the three species, and then gradually monopolizes most upper intertidal stands.
White mangrove may disappear completely from the canopy in the upper intertidal,
or occur only as scattered individuals or small stands (W. Sousa, unpublished data).

Over the past 31 years, Punta Galeta has received, on average, 2781 mm of rain-
fall per year (based on measurements made at the Galeta Marine Laboratory by the
Smithsonian Tropical Research Institute’s Environmental Science Program). There
is marked seasonality in precipitation, with more than 90% of rainfall occurring be-
tween early May and late December (Cubit et al. 1988, 1989, Duke et al. 1997).
Aspects of mangrove phenology exhibit a strong association with seasonal rainfall
patterns. We regularly observe that new leaves are flushed primarily during the wet
season, and this pattern was quantified for Rhizophora mangle on Punta Galeta by
Duke and Pinzón (1993). They found that leaf production was lowest from Decem-
ber to February (dry season) and peaked in May to July (early wet season). Since
the spectral properties of leaves change as they age (Carter et al. 1989), we would
expect canopy reflectance to change seasonally with the shift in average leaf age.

14.3 Mangrove Species Classification with High Spatial
Resolution Imagery

14.3.1 Data Collection and Preprocessing

Two scenes of IKONOS Geo bundle images were employed in this study. They
were acquired on 2 February 2004 at 16:04 pm local time and 8 May 2004 at 16:01
local time. Metadata for the two sets of images indicate that both were collected
at a similar sensor elevation: 85.8◦ for the February images and 79.1◦ for the May
images. The high elevation angle largely offsets the geometric distortion induced by
variation in terrain elevation, which is very modest in mangrove habitats. An image
to image registration was conducted using May imagery as the reference image and
a registration error: root mean square (RMS) of 0.5 pixels was reported. A nearest
neighbor resampling approach was adopted to rectify the February image.

14.3.2 Methodology

14.3.2.1 Back-Propagation Neural Networks Classifier (BPNN)

A BPNN is a multi-layered feed-forward network trained by the so-called back-
propagation algorithm as first introduced by Rumelhart et al. (1986). This learning
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algorithm, also called the generalized delta rule, is an iterative gradient descent train-
ing procedure. It is carried out in two stages. In the first stage, once the network
weights have been randomly initialized, the input data are presented to the network
and propagated forward to estimate the output value for each training pattern set.
In the second stage, the difference (error) between known and estimated outputs is
minimized. The whole process is repeated, with weights being recalculated at each
iteration, until the error is minimal, or lower than a given threshold. For the clas-
sification problem a BPNN classifier recognizes spectral patterns by learning from
training sets. After training, the neural network system fixes all the weights and
maintains the original learning parameters. The classification process calculates the
output of each pixel using the parameters learned from the training phase, and then
decides the class assignment of the pixel.

In this study, a BPNN with two hidden layers of 24 and 12 neurons respectively,
hereafter referred to as BP:24:12, was trained using the MATLAB Neural Network
Toolbox (V4.0.2-R13). One input node per band and one output neuron per class
were employed with the output encoding convention of a high level (0.9) from the
output neuron corresponding to a given class and simultaneously low output (0.1)
from other output neurons. Each neuron computes a log-sigmoid function of the
weighted sum of its input. The updates of the weights and activation level parame-
ters were carried out using the Levenberg-Marquardt optimization method for 100
epochs.

14.3.2.2 Clustering-Based Neural Network Classifier (CBNN)

Wang et al. (2008) developed a computationally efficient method based on neural
network. This method is divided in two stages. In the first stage, the ISODATA
algorithm is run on each training set to identify a number of clusters for each class.
Each cluster center is labeled according to the class it belongs to and the entire
set is used to build a Delaunay graph. In the second stage, a three-layered, feed-
forward network is built as follows. For each pair of nodes belonging to different
classes that are connected in the Delaunay graph, a neuron is created in the first
hidden layer and its weight parameters are set to the coefficients of the hyperplane
that separates the two clusters in question. A second layer of neurons is then added
to perform the intersection of the half-spaces defined by the first layer to form the
largest convex regions, each of which falls into a single class. Finally, the output
layer joins the convex region into arbitrarily complex non-convex regions which
define the decision region for each class.

It must be noted that the activation functions for all units are implicitly considered
as hard limiters (or step functions) during the design stage. However, log-sigmoid
functions may be used in the classification process. In the latter case a smoothing
parameter is considered and the hard limiter results as a limiting process. More
specifically, the sigmoid function is defined by

f (s) =
1

1− e−s/α
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Fig. 14.1 Plot of kappa values against the smoothing factor. Optimum smoothing parameter
is 0.015

where α is the smoothing parameter. As α approach to zero the plot of f (s) tends to
a hard limiter function.

Since different smoothing factors lead to different classification accuracies, a
natural question to ask is how we can choose the best value for the smoothing pa-
rameter. In previous work, Silvan-Cárdenas (2003), α was empirically set to 0.02.
In this study, we developed a scheme to choose the optimal parameter α with which
the kappa value is at a maximum. The plot of the kappa value against α obtained
for the data set of May is shown in Fig. 14.1. In this case, the optimum smooth-
ing factor falls around 0.01. After several trials it was observed that the optimum
α most likely lies at 0.015, which confirms that 0.02 is a good empirical choice.
Another interesting observation is the fact that the optimum α based on the testing
set (and still using the same trained network) reports a similar value as the optimum
α based on the training set. This might indicate that (1) the training sample is repre-
sentative of the classes under consideration and (2) the network can generalize very
well the data that are not previously included in the training samples. Evidently, the
second conclusion can be a consequence of the first one only if the training method
succeeds.

This method was implemented in MATLAB software. The classifier is hereafter
referred to as CBNN.

14.3.2.3 Maximum Likelihood Classifier (MLC)

For the purpose of evaluating the previous two types of neural network methods, we
also adopted MLC as the third method. Equal a priori probability was assumed for
all the classes in the implementation of MLC.
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14.3.3 Results

To compare classification performance of the two images, spatially consistent train-
ing and test samples were prepared with the aid of two field surveys carried out in
January and July 2004, close to the times of image acquisition. During both field
surveys, an extensive number of GPS points were measured by a high precision
Trimble GPS (Pathfinder Pro XRS receiver). The species type, percentage of sur-
rounding vegetation as well as other tree inventory information such as DBH, crown
area were recorded as well. Given the patchy distribution of mangrove species, we
used polygon tools to define training and test samples on the images. In reference
to the field collected GPS points, small polygons, each encompassing no more than
10 pixels, were delineated across the study area to serve as training and test sam-
ples. Special caution was made to only choose polygons that fall in pure stands of
a specific species in order to avoid including mixed pixels. Two experiments were
designed to assess the accuracy of each classification method given two different
combinations of input bands: spectral bands only, or spectral and textural bands.
The results were reported in detail below.

14.3.3.1 Classification Based on Spectral Information

In the first experiment, the four multispectral bands were employed as input bands
while the panchromatic band was not taken into account. For each classifier the
overall kappa value was computed using both the training and test sample sets to
analyze its generalization characteristic. Intuitively, one should expect lower kappa
values for the test set than for the training set. A kappa value based on the training set
represents the ability of the model to fit the training data, however a kappa based on
the test set reveals the capability of the model to generalize (i.e. achieve the correct
classification of data not previously encountered). Therefore, the ratio of the later
with respect to the former is an index of the level of generalization achieved by a
supervised classifier, provided that the number of samples in both sets is sufficiently
large for rigorous statistical comparison. The corresponding kappa values and gen-
eralization ratio for the tested classifiers are shown in Table 14.1b. Three results are
clearly discernable. First, in general the CBNN and MLC classifiers performed bet-
ter with the May image than with the February image, while the BP:24:12 classifier
displayed lower accuracy with the May than February image. Second, The CBNN
and MLC classifier considerately outperformed the BP:24:12 for the May image
in terms of both the kappa value and the generalization ratio. The three classifiers
achieved comparable accuracy when applied to the February image. Third, MLC
yielded the highest generalization ratios (0.99 and 1.05) for both images.

User accuracy was derived for each classifier and land cover type (Table 14.1a).
For the individual mangrove species, user accuracy ranged from 35.6% (for black
mangrove in the May image with the BP:24:12 classifier) to 96% (for white man-
grove in the May image with the CBNN classifier). The CBNN and MLC classifiers
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Table 14.1 Accuracy of the three classification methods for the February and May IKONOS im-
ages using multispectral bands alone. (a) User accuracy for individual classes; (b) Kappa values
from training and test samples, respectively, and ratios between two corresponding Kappa values

Land cover category Feb-04 May-04

BP:24:12 CBNN MLC BP:24:12 CBNN MLC

(a) User’s Accuracy (%)

Red mangrove 88.8 81.6 86.6 44.3 94.3 92.6
White mangrove 56.8 65.6 73.3 82.1 96.0 92.4
Black mangrove 68.2 64.4 72.5 35.6 78.8 91.5
Gap 93.7 85.9 82.2 0.0 96.2 89.3
Lagoon 100.0 100.0 100.0 83.7 90.6 90.0
Rainforest 72.7 73.8 78.4 91.7 89.1 84.3
Road 94.6 100.0 89.9 90.4 98.0 71.8

(b) Kappa Values

Kappa (test samples) 0.74 0.73 0.78 0.49 0.87 0.86
Kappa (training samples) 0.79 0.78 0.79 0.6 0.87 0.83
Ratio 0.94 0.94 0.99 0.83 1.00 1.05

were noticeably more accurate than BP:24:12 when applied to either image, while
in general, MLC gave consistently high user accuracy for the three mangroves in
both images.

14.3.3.2 Classification Based on Textural and Spectral Information

As detailed above, the CBNN and MLC classifiers provided reasonably high overall
classification accuracy when only spectral bands were considered. Given the high
spatial detail associated with the panchromatic band of the IKONOS image, it was of
interest to further investigate how well these two classifiers can utilize added textu-
ral information in assisting the classification process. In this experiment, the second
order texture method, Grey Level Co-occurrence Matrix (GLCM), was adopted to
extract the textural information from the panchromatic band of the IKONOS image.
Displacement vectors at four directions (0, 45, 90, and 135 degrees), with a spa-
tial distance of 1 pixel, were employed to compute three rotation invariant texture
bands: Contrast (CON), Entropy (ENT), and Angular Second Moment (ASM) at
three different window sizes: 9∗9, 17∗17, 25∗25. The quantization level was set to
16 in all cases. Then, each texture band was resampled to the same resolution as the
multispectral bands (4 m), and stacked together with the four multispectral bands
as the input bands for the CBNN and MLC classifier. For the CBNN method, the
smoothing parameter was fixed to 0.015. The respective kappa values based on the
test samples are presented in Fig. 14.2.

The addition of textural bands to the multspectral bands significantly improved
the classification results for both CBNN and MLC (Fig. 14.2). For the February
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Fig. 14.2 Kappa values for the CBNN and MLC analyses of February and May images using both
multispectral and textural bands. Feb CBNN and Feb MLC stand for CBNN and MLC methods
applied to the February imagery. Similarly, May CBNN and May MLC stand for CBNN and MLC
methods applied to the May imagery

image, the kappa values increased to 0.88 for CBNN and 0.8 for MLC, compared to
0.78 and 0.79, respectively when only multispectral bands are included. Likewise,
for the May image, the kappa values when textural information was included were
0.93 for CBNN and 0.89 for MLC, compared to 0.87 and 0.83, respectively when
textural information was not included. Furthermore, when textural information was
included, analyses of the May image yielded consistently superior classification at
all window sizes when compared to analyses of the February image. Finally, textural
information extracted from a larger window size was more instructive than that from
a smaller window size.

14.4 Spectral Discrimination Analysis of Mangrove Leaves
with Lab Hyperspectral Remote Sensing

14.4.1 Data Collection and Preprocessing

Leaves of each species were sampled from trees growing in two different envi-
ronmental settings: (1) areas supporting closed-canopy stands of large trees, some
growing to more than 25 m, and (2) areas with a sparser cover of mostly short-
stature (up to 3 m) trees that exhibited a wizened, shrub-like growth form. The for-
mer stands grow on organically rich soils of moderate salinity and relatively high
nutrient availability, while the latter grow on sandy, coral reef-derived, soil that
has lower nutrient concentrations, dries more rapidly between flood tides and rain
storms, and is often higher in salinity (W. Sousa, unpublished data). A nutrient ma-
nipulation experiment conducted with Rhizophora mangle seedlings in this sandy
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site demonstrated that their growth was nutrient-limited (L. Robinson, unpublished
data). Leaves collected from the two sites differed in appearance and thickness:
those from productive sites that support good growth tended to be larger, thinner,
and more pliant than those collected from trees in the sandy site.

To determine whether the reflectance patterns of leaves from healthy individu-
als of the three mangrove species could be successfully discriminated, we selected
30 trees of each species for sampling from an array of productive stands across the
study area. These ranged from fringe red mangrove stands growing at the water’s
edge to more inland stands dominated by white or black mangroves. Where pos-
sible, several trees of each species were sampled in each stand, so as to minimize
the confounding influence of location on spectral measurements. Since leaves at dif-
ferent positions in the canopy might exhibit distinct spectral characteristics (due to
differences in photosynthetic properties or water content), we stratified the leaf sam-
ples collected from each tree by height. From each tree, we collected one sample of
10 leaves from upper parts of the canopy surface and a second sample of 10 leaves
from lower parts of the canopy surface. We were not able to sample leaves from the
tops of taller trees at these productive sites, but the trees we sampled were growing
in open areas, either at the water’s edge or along a roadside, and therefore probably
experienced similar levels of incident sunlight as the upper canopy of taller trees.
Subsequent statistical analyses found that the reflectance patterns of leaves collected
from upper versus lower heights in the canopy did not differ significantly for any of
the three species (ANOVA, P > 0.05). Therefore, we used the pooled sample of 20
leaves to calculate each tree’s mean reflectance curve.

To examine the effect of physiological stress and/or nutrient limitation on foliar
spectral properties, we collected leaves from stunted individuals of each species
that were growing in an area of sandy soils located approximately 100 m behind
fringe red mangrove stands that border the back reef adjacent to the Galeta Marine
Laboratory. We sampled leaves from 20 trees of each species, haphazardly selected
from across an approximately 1 ha area of this vegetation type; a sample of 10 leaves
was collected from each tree. Since the crowns of these small trees were easily
reached and contained relatively few leaves, we collected from the entire canopy of
each tree; no effort was made to stratify these samples by height.

All leaves were collected on 16 July, 2004. They were immediately sealed in
plastic bags, kept in a dark cooler, and transported back to the nearby laboratory
for analysis. Leaf reflectance was measured with a Field Spec Pro FR (Analytical
Spectral Devices, Boulder, CO, USA). The measurement procedure followed that
employed by Pu et al. (2003). The light source consisted of two 500W halogen
tungsten filament lamps. All spectra were measured in reflectance mode at the nadir
direction of the radiometer with a 25◦ FOV. A white Spectralon panel was employed
as the white reference and measured every five minutes to convert leaf radiance to
percent reflectance. The spectrometer was configured to yield a spectra with 25
spectral averaging. Each sample of ten leaves was stacked in an overlapping pile on
top of a calibrated black cloth and care was taken to make sure the field of view
was fully occupied by leave stacks. The adaxial surfaces of a sample were measured
five times, from which an average spectral reflectance curve was generated. Spectral
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reflectance was originally measured over the ranges of 350–1000 nm at 1.4 nm inter-
vals and 1000–2500 nm at 2.2 nm intervals. The entire spectral range (350–2500 nm)
was automatically resampled to 1 nm when exported to the computer. To reduce
system noise and redundancy between adjacent bands, we computed an average re-
flectance for each 10 nm interval, providing a total of 215 wavebands for analysis.

For band selection and classification of leaves from healthy trees, we had a sam-
ple size of 30 spectra for each tree species. We randomly split these 30 samples into
a training group comprised of 20 samples and a test group of 10 samples; the lat-
ter were used to assess our classification accuracy. This procedure was repeated 10
times on randomly drawn sets of training and test samples.

14.4.2 Band Selection and Tree Species Classification

Due to the high correlation inherent to adjacent wavebands, it was neither efficient
nor reliable to include all 215 measured bands in the classification at one time. In-
stead, one must first choose a subset of bands that will maximize the likelihood of
discrimination before proceeding with a conventional classification. A number of
band or feature selection methods have been developed and documented in the re-
mote sensing literature, including Principal Component Analysis (PCA), Fisher’s
Linear Discriminant Analysis (LDA), Penalized Discriminant Analysis (PDA), and
wavelet-based feature selection (Yu et al. 1999, Pu and Gong 2004). Among them,
LDA is the procedure that has been most widely adopted. However, a critical prob-
lem associated with LDA is that it will not provide a reliable solution when re-
flectance values for many highly correlated wavebands are included in the analysis
and the number of available training samples is small. In this circumstance, esti-
mates of within-class covariance matrices from the training samples are poor and
unstable. In this study, we had 215 bands of reflectance values while only 20 sam-
ples for each species as training samples. The results of an LDA on such data would
be highly questionable; the projection axis is likely to be misoriented, giving rise to
over-fitting: i.e. a perfect performance on the training data, but a poor performance
on the test data. Yu et al. (1999) provide a good graphical illustration of the problem.

To circumvent this problem, a method was developed by Wang and Sousa (2008)
by first applying a series of one-way ANOVAs to filter out wavebands that did not
differ significantly in mean reflectance among leaves of the three tree species. A one-
way ANOVA, with species as the independent factor, was carried out for each of the
215 wavebands. The resultant probability provided an index of the importance of the
tested band to the discrimination of the tree species. We considered P ≤ 0.01 as an
indication that the mean reflectance of at least two of the three species differed in the
tested band; all bands meeting this criterion were included in the LDA. One potential
criticism of this band selection procedure is that the results of tests on adjacent
bands are not statistically independent. However, our objective in applying ANOVA
was not to test hypotheses about differences within specific bands; rather, we were
seeking to eliminate bands from the analysis that provided no useful information
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for discriminating species’ reflectance patterns, and thereby reduce the number of
analyzed bands to a level that would be operational for LDA. This band selection
procedure was performed on all the training samples.

An LDA was then performed using the wavebands that ANOVA identified from
the above procedure. The principle of LDA is to project the original redundant data
to a new orthogonal space oriented along the axis that can maximize the ratio of
between-class to within-class variance matrices of the training samples. The axis of
the new space is aligned in the order of discrimination power among groups such
that the first axis provides the greatest overall discrimination, the second provides
second greatest, and so on. If we denote the total number of groups to be classified
as NG and the total number of original bands as NB, then the number of dimensions
for the new space is equal to either NG-1 or NB, whichever is smaller. Since in
practice, NB is usually larger than NG, LDA will typically yield a new data set with
NG-1 dimensions. In this way, the data dimensions are significantly reduced.

The significance of a specific wavelength to a discrimination function can be
determined by examining the standardized coefficients for that band. The interpre-
tation of the standardized coefficients resembles the logic of multiple regressions.
The larger the absolute value of standardized coefficient, the larger is the respective
variable’s unique contribution to the discrimination as specified by the respective
discriminant function. As such, by ordering the standardized coefficients the opti-
mal wavebands were determined.

Given the fact that we have three species to classify, LDA generated two discrim-
inant functions, with which the test samples were transformed. Then a Mahanolobis
distance classifier was performed. A kappa value was calculated to assess the clas-
sification accuracy (Cohen 1960).

14.4.3 Discrimination Between Leaves from Healthy Versus
Stressed Trees

Previous studies have found that leaf spectral reflectance increases in portions of the
visible and very-near infrared range (but not in the infrared) as a plant experiences
physiological stress (Carter 1993, 1994, Carter and Knapp 2001). This response
has been documented for numerous plant species when subjected to various agents
of stress. We therefore focused on the 400–800 nm waveband in our comparison
of healthy and stressed leaves. The sensitivity of reflectance to stress (i.e. relative
change in reflectance) varies considerably within this spectral range. Sensitivity is
greatest for wavelengths (e.g. 605, 695, and 710 nm) at which absorption by chloro-
phylls a and b is relatively weak. At these wavelengths, even a slight drop in leaf
chlorophyll content caused by stress results in a large increase in leaf reflectance
(Carter 1993).

As demonstrated by Carter (1994), reflectance sensitivity is best expressed as
a ratio of reflectance in a stress-sensitive band to reflectance in a stress insensi-
tive band. For our study, we calculated four narrow band leaf reflectance ratios
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as indices of stress: R695/R420, R605/R760, R695/R760, and R710/R760. Carter
(1994) found these ratios to be particularly sensitive indicators of stresses that affect
chlorophyll content. We used ANOVA to compare the means of these ratios between
leaf samples from trees growing in productive and stressful sites.

14.4.4 Results

14.4.4.1 Band Selection and Classification

Figure 14.3 presents the mean reflectance spectra of leaves from the three mangrove
species; values for healthy and stressed trees are plotted separately (Fig. 14.3). We
will first examine patterns of reflectance for leaves from healthy trees growing in
productive sites. As expected, the general shapes of the species’ curves are very
similar, with considerable overlap.

However, one-way ANOVA tests revealed significant heterogeneity among the
species in particular wavebands. Of the 215 10 nm-wide wavebands tested, 116
bands exhibited significant (P ≤ 0.01) interspecific variation in mean reflectance.
These bands were clustered in five areas of the spectrum, i.e. 350–510 nm, 610–
690 nm, 760–810 nm, 1370–1550 nm, and 1850–2500 nm. Bands within each of
these areas are highly correlated and cannot be treated as independent estimates
of species-level response. To reduce this correlation, we first regrouped the 116
significant bands into three regions as follows – region 1: VNIR (350–510 nm, 610–
690 nm, and 760–810 nm); region 2: SWIR I (1370–1550 nm); and region 3: SWIR
II (1850–2500 nm). An LDA was executed separately within each region and the
standardized coefficients for two discrimination functions were respectively calcu-
lated and ranked. We concluded that a band was influential for its particular region
if the absolute value of its LDA standardized coefficients were ranked among the
top ten for both discrimination functions. Table 14.2 lists such influential bands for
each region of wavelengths considered in the analysis.

The final classification of mangrove species was generated by LDA after pooling
the influential bands from each region. In both the training and test samples, leaves
of the three mangrove species were well separated in discriminant space. The aver-
age kappa value for the ten sets of test samples was 0.9, with a range of 0.85 to 1.00.
This indicates that our method for extracting influential wavebands from the hyper-
spectral data, in combination with an LDA-based classification procedure, was very
successful in discriminating the leaves of different mangrove species. Our results
concur with several other researches that achieved good discrimination through use
of the LDA method (Gong et al. 1997, Van Aardt and Wynne 2001, Clark et al.
2005). In addition, the LDA results show that the first discriminant function alone is
sufficient to distinguish red from either black or white mangrove leaves. Examina-
tion of the standardized coefficients associated with the first discriminant function
reveals that reflectance at the 780, 790, 800, 1480, 1530, and 1550 nm wavebands
contribute most strongly to the first discriminant function. In other words, these
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Fig. 14.3 (a) mean and (mean +/−1 stdev) reflectance spectra for leaves from healthy leaves of
the three mangrove species (WM: White Mangrove; RM: Red Mangrove; BM: Black Mangrove);
(b) mean and (mean +/− 1 stdev) reflectance spectra for leaves from physiologically stressed
leaves of the three mangrove species

bands are critical to the discrimination of red from the other two types of mangrove.
The second discriminant function best distinguishes white from black mangrove
leaves; this function was most strongly influenced by wavebands at 770, 780, 790,
800, 1430, and 1480 nm.



14 Remote Sensing of Coastal Mangrove Forest 337

Table 14.2 Results of one-way ANOVA showing the potentially important wavelengths for dis-
criminating leaf samples from healthy trees of the three mangrove species

Spectral region Region 1: VNIR [350–510,
610–690, 760–810] (nm)

Region 2: SWIR I
[1370–1550] (nm)

Region 3: SWIR II
[1850–2500] (nm)

Influential wavelengths
in each region

490, 500, 630, 770, 780,
790, 800

1400, 1430, 1480,
1530, 1550

1940, 1970, 1990

14.4.4.2 Discrimination Between Leaves from Healthy Versus Stressed Trees

One or more of the four reflectance ratio indices proved useful in detecting stress in
each of the mangrove species (Table 14.3). R605/R760, R695/R760, and R710/R760
were effective in distinguishing stressed from non-stressed red mangrove leaves. In
the case of white mangrove, R695/R420 was the only ratio that successfully detected
the presence of stress. All four ratios were capable of detecting stress in black man-
groves.

Table 14.3 Results of ANOVA. Entries are P values by comparing the mean values of the four
narrow band ratios between stressed and healthy leaves; bolded values are considered statistically
significant (P value < 0.01)

Narrow Band Ratios Mangrove species

Red White Black

R695/R420 0.371 < 0.001 < 0.001
R605/R760 0.009 0.799 < 0.001
R695/R760 0.008 0.888 < 0.001
R710/R760 0.013 0.613 < 0.001

14.5 Conclusion

Multitemporal information can be very helpful in discriminating the canopies of
different forest species (Jensen 2004). Our results confirmed that multiseasonal im-
agery can aid species-level classification of mangrove forests. Our study found that
an IKONOS image acquired during the early rainy season more effectively cap-
tured the difference among mangrove species than one taken during the dry season.
This difference is probably attributable to phenological and physiological changes
that affect the reflectance of tree canopies. At our study sites, mangroves flush new
leaves during the early wet season, while they experience stress from drought and
high soil salinity during the dry season.

When only multispectral bands were included in the classification, MLC proved
the best method for discriminating different mangrove species, consistent with the
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findings of other studies, mentioned above. CBNN demonstrated a similar perfor-
mance but at the cost of a considerable increment in computing time. However, when
textual information was added to the classification, CBNN exhibited a strong advan-
tage over MLC in characterizing the complex decision boundary associated with the
combination of textural and spectral bands. The relative loss in MLC’s power of dis-
crimination when textural information was incorporated could have resulted from a
violation of its central assumption of a multivariate Gaussian distribution model, as
discussed earlier. Neural network-based analyses do not rest on this assumption, and
thus gained discrimination power from the added textural information. Compared to
the traditional back-propagation neural network method, the new CBNN method
provides a computational simpler yet effective way in discriminating different man-
grove species.

The high classification accuracy we obtained with the leave-level hyperspectral
reflectance confirms the great potential of using hyperspectral data to distinguish
mangrove species. We are confident that the use of narrow band hyperspectral
data can effectively overcome the problem of overlap in spectral characteristics
among species observed in our previous analyses of wide band multispectral im-
agery (Wang et al. 2004 a,b).
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Chapter 15
Remote Sensing Support for Tidal Wetland
Vegetation Research and Management

Maggi Kelly and Karin Tuxen

Tidal marshes are ecotones that bridge estuary systems with upland areas and exhibit
complex spatial patterning and ecological processes in response to multiple physical
gradients. They are some of the most productive ecosystems on the earth and pro-
vide a range of valuable ecosystem services. Recent efforts to restore these systems
only strengthen the need to accurately map and monitor tidal wetlands. While re-
mote sensing has long been used to monitor wetlands, the recent availability of high
spatial and spectral resolution remotely sensed imagery combined with new image
processing and classification algorithms make mapping increasingly accurate and
automated. This chapter discusses the complex spatial and temporal patterning of
tidal wetland vegetation and the ecosystem services these systems provide and then
examines how remotely sensed imagery has been used to map and monitor tidal
wetlands in the past. Where appropriate, we demonstrate with examples from our
work and from the published literature. Finally, this chapter discusses some of the
remaining technical challenges facing wetland managers and scientists who wish to
map tidal marshes using remote sensing. The discussion is grounded in recent work
in the San Francisco Bay area, but lessons learned can be applied to other estuarine
systems globally.

15.1 Introduction

Tidal wetland environments are among the world’s most productive ecosystems
(in plant, algal, and other communities) providing the basis for rich estuarine food
webs. They provide habitat for large populations of migrating and local waterfowl;
flood and erosion control, natural barriers against saltwater intrusion into freshwa-
ter aquifers; pollutant and sediment trapping; and critical fish and wildlife habi-
tat; and space for recreational, scientific and educational activities (Fretwell et al.
1996, Mitsch and Gosselink 2000). In the San Francisco Bay estuary, tidal wetlands
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provide habitat for large populations of migrating waterfowl; every year, 15% of
the Pacific Flyway waterfowl population uses the area’s remaining wetlands as a
stopover, wintering, or breeding habitat on their flight between Alaska and the south-
ern tip of South America (Fretwell et al. 1996). Aside from the flood and erosion
control, natural barriers against saltwater intrusion into freshwater aquifers, pol-
lutant and sediment trapping, the estuary’s tidelands provide critical habitat for a
range of species, including the endangered and endemic salt marsh harvest mouse
(Reithrodontomys raviventris), the California clapper rail (Rallus longirostris obso-
letus), and the soft bird’s beak (Cordylanthus mollis spp. mollis). And in the dense
urban areas of the Bay Area, the tidal marshes also provide valuable land for recre-
ational, educational, and scientific research activities, which together with the eco-
logical functions, help our environment, economy, and quality of life in one of the
nation’s largest urban areas (Fretwell et al. 1996).

Tidal marshes are frequently or continually inundated wetlands containing emer-
gent herbaceous vegetation adapted to saline and saturated soil conditions (Mitsch
and Gosselink 2000). The physical stressors of salinity and inundation can be con-
sidered natural disturbances that cause spatial and temporal patterning in vegetation
at multiple scales (Sousa 2001), including complex zonation and structure of plants
(Mitsch and Gosselink 2000). While many salt marshes exhibit fairly simple vegeta-
tion community patterns in response to the strong physical gradients (Pennings and
Bertness 2001), some salt marshes including more brackish marshes exhibit spa-
tially complex and heterogeneous landscapes (Davy and Smith 1985, Phinn et al.
1996, Ramsey and Laine 1997). Saltier marshes have more obvious vegetation
zones, although there is fine-scale mixing with fuzzy boundaries between vegeta-
tion patches. In Pacific Coast salt marshes for example, the lowest vegetation zone
is usually made up of Pacific cordgrass (Spartina foliosa, except where invaded by
Atlantic cordgrass [S. alterniflora]), the middle zone pickleweed (Sarcocornia paci-
fica), and the upper zone gumplant (Grindelia spp.) and other high marsh species
(Cohen 2000). The zones are less distinct in more brackish Pacific coast marshes,
where the lowest zone is made up mostly of tule; the middle zone alkali bulrush, cat-
tail, and three-square bulrush; and the upper zone pickleweed, saltgrass, grindelia,
and rush (Cohen 2000). In more freshwater tidal marsh systems, less salt-tolerant
halophytes like pickleweed exist, and the high marsh plains contain more rush (Jun-
cus spp.) and grass species like salt grass (Distichlis spicata) (Cohen 2000). Finally,
tidal creeks within all types of tidal marshes cause microenvironments that have
different vegetation zones along the creek banks (Mitsch and Gosselink 2000), and
the level of inundation and salinity can affect plant height and size (Pennings and
Bertness 2001).

The San Francisco Bay and Estuary’s Mediterranean climate has strong effects
on the structure and diversity of marsh vegetation (Callaway and Sabraw 1994,
Sanderson et al. 2000). Rainfall is highly seasonal, and variations between years
may lead to dominance by different annuals that have different salt tolerances dur-
ing the wet months (Pennings and Bertness 2001). Also, primary productivity is
higher than that of marshes in other climate regions due to the greater influx of solar
energy, the longer growing season, and the nutrient-rich sediments carried from the
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upstream Sacramento-San Joaquin River Delta. Vegetation distribution and abun-
dance are strongly affected by the physical environment, inundation regime, nutri-
ent availability, soil oxygen levels, salinity of water and soil. With a heterogeneous
tidal channel network and micro-topography, and a variable Mediterranean climate,
Pacific Coast tidal marshes exhibit particularly high spatial complexity in vegetation
community patterns (Callaway and Sabraw 1994, Zedler et al. 1999).

These patterns can be stable in older marshes, but in newly restored marshes
the patterning can be temporally dynamic. Patterns of vegetation colonization are
influenced by plant reproductive strategy, competition, timing, and location in the
marsh, and often long-term monitoring is needed to understand the emerging vege-
tation dynamics in a young marsh. In addition, disturbances (such as grazing, fire,
sedimentation from upland watersheds, nutrient inputs from adjacent land use, and
human use), climate and changes to hydrology can impact the patterning of older,
more stable marshes. Changes in the salinity regime and inundation driven by global
climate change will likely have ramification on tidal wetland vegetation patterning
across scales in the world’s estuaries.

While sea level rise is one of the more pressing threats facing tidal wetlands, there
are others challenges facing wetlands. The pressure for development along the coast
remains an active challenge: in California 77% of the population will live in coastal
communities in 2000, which made up only 25% of the state; in the U.S., the areas
of highest population growth are coastal areas and inland along coastal watersheds
(California Resources Agency 2005). Newer threats from invasive species like At-
lantic cordgrass (Spartina alterniflora), the hybridized native/non-native cordgrass
(Spartina alterniflora x foliosa), and Perennial pepperweed (Lepidium latifolia) can
invade recently-restored and natural wetlands (Cohen and Carlton 1998), causing
ecological changes to the estuary.While the goals and methods for marsh restora-
tion may differ between scientists and practitioners, there is increasing agreement
that restoration of modified tidal marshes is important for the restoration and im-
provement of ecosystem services that they provide (Callaway and Sabraw 1994,
Sanderson et al. 2000).

Mapping is critical to capture multi-scale dynamics of vegetation patterning in
wetland sites and linking those patterns to ecological function, and has proved to be
useful in wetland management and restoration: there is a recognized need to under-
stand vegetation community dynamics and need to map through time (Pennings and
Bertness 2001).

This chapter outlines current remote sensing applications in tidal wetland mon-
itoring, management and science. The types of questions in a wetland context that
can be answered using remote sensing are varied. For example, we might ask: How
is wetland vegetation developing through time? Can we estimate biomass across a
site? Can we map the growth of a particular species? Does vegetation patterning
and diversity vary across sites? What controls vegetation patterning and diversity
across sites? How does vegetation patterning and diversity support wetland func-
tion (e.g. birds, fish, macroinverts, primary productivity)? Is vegetation pattern and
diversity related to wetland size, position in the bayscape, age, salinity or other gra-
dients? And can we predict how a wetland’s vegetation will restore through time, or
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Fig. 15.1 Our study areas in the SF Bay Estuary; these are part of the Integrated Regional Wetland
Monitoring Program. These sites range from brackish to saline, from 48 acres to 972 acres in size,
and range from very recently restored to mature marsh. See website (http://www.irwm.org) for
more information

change in the face of rising sea level or threat from invasion by different species?
These scientific and management questions can be organized into questions about
(1) individual plants and plant community composition, (2) vegetation structure and
patterning, and how that patterning is controlled, and (3) what kinds of ecosystem
services such patterning supports. Remote sensing can help in all these areas. In
addition to these questions, we also discuss the value of mapping technology for
outreach and communication to a diverse public about the value of wetlands. We
also discuss some of the technological trends and remaining challenges associated
with remote sensing of wetland vegetation. Where possible, we illustrate concepts
with examples from our work in the San Francisco Bay estuary (Fig. 15.1), and in
other cases, with examples from the literature.

15.2 Remote Sensing of Tidal Wetlands

Remote sensing, or the capture and analysis of (most commonly) spectral informa-
tion from a remote target organized in a image format is highly effective for analyz-
ing estuaries and coastal systems (Phinn et al. 2000, Klemas 2001, Yang 2005a), and
has been used to map, monitor, and detect and predict change in wetlands (Zhang
et al. 1997, Jensen 2000). Remote sensing is ideal for monitoring wetlands because
it is cost-effective, time-efficient, and non-invasive. It allows for a high intensity of
measurements in relatively inaccessible and sensitive sites, without the potential in-
vasiveness that traditional field methods present to delicate habitat conditions, bird
nesting territories, or endangered species habitat (Shuman and Ambrose 2003). It
also allows for broad-scale estimation of many parameters valuable to ecologists,
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including land cover, vegetation structure, biophysical characteristics, and habitat
areas (Wulder et al. 2004). In addition, many wetlands are inaccessible due to soft
sediment or dense vegetation, restricting movement and causing traditional field
data collection to be expensive and labor intensive.

15.2.1 Early Efforts to Map Wetlands via Remote Sensing

Mainly due to spatial, spectral, and temporal data limitations of coarse resolution
satellite imagery, early (c. 1970–1985) use of remote sensing of wetland ecosystems
primarily dealt with the mapping, monitoring, and change detection of very gen-
eral wetland types, e.g., palustrine emergent wetland, estuarine emergent wetland
(Scarpace et al. 1981, Jensen et al. 1984, Henderson et al. 1999), and very large spa-
tial extents (e.g. Kelly 2001). There are several early examples of the use of Landsat
TM and other coarse-scale imagery for mapping tidal wetlands (Gross et al. 1987,
Browder et al. 1989, Kelly 2001). For example, Browder et al. (1989) used Land-
sat TM imagery to examine large-scale trends in wetland loss along the Louisiana
coast, and infer a relationship between shrimp production and trends in wetland loss.
Gross et al. (1987) quantified biomass for the tidal marsh species Spartina alterni-
flora Loisel in Delaware. The Coastal Change Analysis Project (C-CAP), detailed
elsewhere in this volume is another notable example of broad scale wetland mapping
(Dobson et al. 1992, 1995, Klemas et al. 1993, Dobson and Bright 1993).

Concurrent with these advancements was more research with spectral radiome-
try of wetland plants (Bartlett and Klemas 1981, Best et al. 1981, Ernst-Dottavio
et al. 1981). In more homogeneous tidal wetlands, early research linked spectral re-
flectance to plant biomass and productivity, and vegetation indices such as NDVI
were found to be correlated with biomass, salinity, and moisture (Hardisky et al.
1983a,b,c, Hardisky et al. 1984, Gross et al. 1990, Cohen 1991, Gross et al. 1993).
Airborne imagery and digital photography were also utilized for more detailed map-
ping of wetlands. For example, Jensen et al. (1986) used airborne multi-spectral
scanner data with a 3 m resolution to achieve greater spectral resolution, and were
therefore able to map general wetland classes (e.g., emergent marsh, algal map,
mixed deciduous swamp).

15.2.2 Species to Community Level Mapping

These advances in biophysical remote sensing, when coupled with recent increases
in spatial, spectral, and temporal resolutions, as well as reduced price and increased
cost-effectiveness, have enabled more detailed classification and mapping of vege-
tation cover types (Byrd et al. 2004, Hinkle and Mitsch 2005, Rosso et al. 2005a).
Wetland plant species classification can be challenging because of the high level
of spectral confusion between different wetland species and within assemblages
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(Andresen et al. 2002, Ozesmi and Bauer 2002, Schmidt and Skidmore 2003). High
spatial resolution imagery is especially needed to map and monitor changes to
vegetation types or individual species within a marsh, due to the small patch sizes of
wetland vegetation. High spectral resolution, or hyperspectral data allows for very
specific narrow spectral bands to be targeted helping distinguish between marsh
plant species (Schmidt and Skidmore 2003, Rosso et al. 2005b, Yang 2005a). Hyper-
spectral imagery has been used successfully to map vegetation in a range of ecosys-
tems (Kokaly et al. 2003, Schmid et al. 2004) and its use for species-level wetland
vegetation mapping shows great potential (Schmidt and Skidmore 2003). However,
there is still much need for research on both the technical and applied aspects us-
ing hyperspectral data for monitoring and modeling coastal ecosystems (Cochrane
2000, Phinn et al. 2000, Hirano et al. 2003, Marani et al. 2003, Underwood et al.
2003, Artigas and Yang 2005).

In the past few years, there has been an increase in the number of studies or
projects classifying wetlands to a community or individual species level. This has
mainly been due to the increase in the availability and acquisition of remotely sensed
imagery with high spatial and spectral resolutions (Hirano et al. 2003, Schmidt and
Skidmore 2003, Rosso et al. 2005a). However, few studies have been successful at
mapping wetland vegetation to the genus or species level. Mapping vegetation types
within a wetland is particularly difficult for two reasons. First, herbaceous wetland
vegetation exhibits high spectral and spatial variability (Töyrä and Pietroniro 2005).
Second, wetland plant species are often very similar spectrally (Yang 2005b). Many
studies have cited the benefit of multi-temporal and multi-source data in increasing
the accuracy of wetland vegetation classification (Ozesmi and Bauer 2002). Non-
optical data sources, such as radar data (e.g. SAR, RADAR) and laser altimetry
(e.g. LiDAR) have been shown to add value when combined with optical remote
sensing data. Rosso et al. (2005b) used LiDAR data to map invasive cordgrass
(Spartina alterniflora and Spartina alterniflora x foliosa) affecting the San Fran-
cisco Bay. They used LiDAR data to map cordgrass structure and marsh topography
and showed that the species was having an impact on the accretion and erosion
processes of the marsh banks.

It is often difficult to identify boundaries where one community type stops and
another begins, especially in diverse systems such as salt marshes, which exhibit
mixed vegetation types blending into one another. However, the grouping of species
into classes that are represented by the one or two most abundant species is use-
ful (Mueller-Dombois and Ellenberg 1974) and necessary for mapping land cover
and understanding change, not to mention fundamental to image classification.
Certain species commonly reoccur with certain dominants or co-dominants, form-
ing associations (Mueller-Dombois and Ellenberg 1974). However, it is necessary
to provide clear definition of the limits between vegetation types (Adams 1999).
The selection of the classes prior to community analysis, with the assumption that
some are more important than others can lead to biased results in both the forma-
tion of vegetation classes (Mueller-Dombois and Ellenberg 1974) and in the image
classification.
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15.2.3 Spatial Patterning of Vegetation

Wetland scientists, restoration ecologists and resource managers are concerned with
wetland ecosystem functions and ecological processes. Processes, such as produc-
tivity, nutrient cycling, habitat provision and population dynamics can influence and
be influenced by landscape pattern which can be measured from remotely sensed im-
agery (Turner et al. 2001, Yang and Liu 2005a). Remotely sensed imagery taken on
a regular basis can provide the opportunity to detect change in wetland vegetation
cover and patterning by measuring relationships in the spectral and spatial responses
over time (Töyrä and Pietroniro 2005). Ecological processes, such as vegetation col-
onization and succession of recently restored marshes can progress very quickly
(Tuxen et al. 2008), altering landscape diversity, patch connectivity, and habitat
quality. For this reason, restoring marshes should be monitored frequently with tools
and methods that are objective, cost-effective, and highly automated (Andresen et al.
2002) to produce timely and accurate results. Remote sensing has been used to map
and detect change in flood-tide deltaic wetlands (Guo and Psuty 1997) forested wet-
lands (Michener and Houhoulis 1997), mangroves (Wang et al. 2004a,b), and inland
freshwater wetlands (Jensen et al. 1995).

Vegetation patterning in wetland sites is controlled by the interplay of a number
of local-scale controls like salinity and inundation, but also responds to larger-scale
processes and patterns (including management decisions), and remote sensing can
be valuable tools to understand the linkages between vegetation patterning through
time and such factors as adjacency and large-scale site context. One early broad-
scale example is provided by Kelly (2001), who looked at the large-scale spatial
patterning of tidal wetland vegetation in and adjacent to permitted wetland alter-
ations under Section 404 of the Clean Water Act. She found that in many of the
cases, more wetland loss than was permitted was found immediately adjacent to
wetland permit sites. In another example, Byrd et al. (2004) used historic remote
sensing through time to map vegetation succession and edaphic conditions in tidal
marshes located in an agricultural drainage. They showed that controls on site-scale
vegetation patterning were largely external in nature (the vegetation patterning was
driven by upland sedimentation); these results were useful in planning restoration
and managing the sites. We highlight a case study later in the chapter describing our
effort to map the vegetation patterning associated with salt marsh harvest mouse and
marsh song sparrow (Tuxen and Kelly, 2008).

15.2.4 Examining Tidal Wetland Change

There has been a recent increase in the number of tidal marsh restoration projects,
particularly in the United States. In the San Francisco Bay in particular there have
been some significant accomplishments in recent years: 9,000 acres of North Bay
salt ponds (now known as the Napa-Sonoma Marsh State Wildlife Area) on the
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west side of the Napa River were restored after the Department of Fish and Game
acquired the land in 1994; and the State and other agencies purchased 16,500
acres from Cargill Inc. in 2002 for future restoration (San Francisco Estuary In-
stitute (SFEI) 2005). Remote sensing technologies can support monitoring in these
projects, and has been shown to aid restoration efforts in the past (Phinn 1998), al-
though its use on restoring wetlands has been limited (Phinn et al. 1999). This is
changing, and a recent study of ours examined the feasibility of mapping a restored
tidal wetland site through 10 years using high-spatial resolution digital photogra-
phy. We examined Petaluma River Marsh (PRM) – a restored tidal marsh on the
Petaluma River in the San Francisco Bay CA from 1994 to 2004. Aerial photog-
raphy was acquired for a range of different purposes, but with precise geometric
and spectral control, we were able to map vegetation/non-vegetation over the site
through 10 years using simple NDVI thresholding based on field reconnaissance
(Fig. 15.2). This work was simple to implement, but rich in results; clearly showing
the need for long term monitoring of restoration success to compensate for small
temporal scale changes in water availability (Fig. 15.3).

Fig. 15.2 Example of the NDVI thresholding method for mapping wetland vegetation growth af-
ter marsh restoration: (A) original imagery, (B) NDVI transform, and (C) the thresholded result;
grey = vegetation and white = mud

15.2.5 Remote Sensing and Geospatial Technologies for Outreach

Finally, remote sensing allows for enhanced visualization and increased partic-
ipation of all stakeholders involved; and aid in legislation and decision-making
(Skidmore et al. 1997). Maps, imagery and associated spatial data can be power-
ful communicators of place, environment, and personal context. The ability and
readiness of the Internet to distribute such information without expensive and com-
plicated software requirements have led to a proliferation of Internet-based GIS sites
(also called webGIS) that have the potential to profoundly change the way the pub-
lic interacts with local land use decision making. Examples like the SFEI Wetland
Tracker (San Francisco Estuary Institute (SFEI) 2005), the interactive map for the
South Bay Restoration Project, and other web-based GIS systems (Kearns et al.
2003) demonstrate show that public availability of spatial information, including
remotely sensed imagery, when linked to specific data on wetland restoration or
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Fig. 15.3 Carl’s marsh, a restoring tidal marsh on the Petaluma River in the San Francisco Bay
Estuary, showing 10 years of vegetation growth

planning goals can be an effective way of including the public in wetland manage-
ment scenarios (Fig. 15.4).

15.3 Technological Trends and Remaining Challenges

The review above clarifies some of the research and management questions that can
be addressed using remote sensing in tidal wetland communities. Our experience
in the San Francisco Bay area wetland imaging has further highlighted several re-
maining questions, and we provide guidance from our experience on: (1) the use
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Fig. 15.4 Screen capture from the Wetland Tracker, an Internet-based Geographic Information
System designed to allow public to view data, photographs, videos and remotely sensed data about
wetland sites in the San Francisco Bay Estuary created by the San Francisco Estuary Institute: (A)
project interface for the bay, (B) imagery from the south bay
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of satellite vs. airborne imagery, (2) manual delimitation vs. automated classifiers,
and (3) new methods for automated classification of tidal wetland plant species,
communities and patterning.

15.3.1 Satellite vs. Airborne Imagery

With the launch of the first Landsat satellite in 1972, scientists working in wet-
lands and other ecosystems employed more satellite imagery in their remote sensing
work. However, depending on a project’s particular wetland mapping goals, much
of wetland science still required the finer scales and flexible flight times offered
by aircraft-borne sensors. For these same reasons, some organizations still choose
aerial photography over satellite imagery for their wetland monitoring projects. One
example of this is the National Wetland Inventory (NWI), managed by the United
States Fish & Wildlife Service, which maps the characteristics, extent, and status of
U.S. wetlands and deepwater habitats (http://www.fws.gov/nwi/. Last access on 31
March 2008). Furthermore, the use of historical imagery is often required in long-
term studies (Byrd et al. 2004, Van Dyke and Wasson 2005), and researchers are
therefore restricted in the imagery that is available.

While the spatial and spectral resolutions of satellite imagery are increasing and
are expected to increase in the future, currently there are certain circumstances
where one would choose aerial photography over satellite imagery for wetland
mapping. Aerial photography is useful for small, shallow, and spatially complex
wetlands where high spatial resolution imagery is needed (Yang and Liu 2005b).
Aerial photography is more commonly used for marsh studies and projects due to
the higher resolution and flexibility it offers. Flights can be planned in order to
acquire imagery during certain tide levels or vegetation states. It also allows for
specification of the spatial resolution, or pixel size, of the imagery, which can result
in a very small pixel size to map heterogeneous patches that exist in marshes. Aerial
photography, however, has inherent challenges such as individual image differences
from airplane tilt and variable brightness gradients within tile(s), and other radio-
metric and geometric inconsistencies (Devereux et al. 1990). The identification and
understanding of these issues with aerial imagery is crucial so that efforts can be
made to reduce confounding problems.

Some aerial photography, such as color infrared (CIR) photography, is relatively
inexpensive when compared with other imagery options, an important considera-
tion for monitoring projects with limited funds. CIR photographs are multispectral
and typically have three bands in the green, red, and near-infrared (NIR) spectral
regions. Multispectral imagery is divided into multiple spectral bands (usually three
to seven), each spanning a certain part of the electromagnetic spectrum (e.g. red,
blue, green, NIR, middle infrared, etc.). The three bands of CIR photographs span
the portion of the electromagnetic spectrum necessary to calculate many vegetation
indices, but do not contain any spectral information in the middle infrared, which
can be useful for plant water content.
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High-resolution multispectral satellite imagery offers some advantages over aerial
photography, in terms of geometric control, radiometric precision, spectral range
and image processing, and possesses the same ability as aerial photography to map
vegetation composition, structure, and condition. The high-spatial resolution satel-
lite platforms available on the commercial market today that compare with the high
spatial resolution of aerial photography include IKONOS, OrbView-3, and Quick-
bird. IKONOS and OrbView-3 have a spatial resolution of 4 m for each multispectral
band (blue, green, red, and near infrared), and have a spatial resolution of 1 m for the
panchromatic (visible spectrum) band. Quickbird has a spatial resolution of 2.4 m
for each multispectral band and 0.6 m for the panchromatic band. While 2.4–4 m is
too large to map the fine-scaled heterogeneous marsh patterns, the imagery can be
pan-sharpened using the higher-resolution panchromatic band combination, to ren-
der a higher-resolution multispectral image. While this is highly desired for studies
that use satellite imagery, it does not substitute the frequent need for even finer res-
olutions, in the realm of 0.20–1.0 m, as is used in this study.

Past work has shown that aerial and satellite imagery offer different, but compli-
mentary, information (Ozesmi and Bauer 2002). Much work was done by Jensen and
others in the 1980s (Jensen et al. 1984, 1986) with Airborne Multispectral Scanner
(MSS) data, as well as Landsat MSS and Thematic Mapper (TM) satellite data. The
two platforms were thought to complement each other well, as aerial imagery pos-
sessed high spatial resolution required for small minimum mapping units (MMUs),
while the satellite data possessed high spectral resolution useful for spectral dis-
crimination of large-scale wetland areas at the watershed level (Jensen et al. 1986).
Many others have described the combination of aerial photography and satellite im-
agery used to reap the benefits of both (Ramsey and Laine 1997, Ozesmi and Bauer
2002, Palandro et al. 2003); however, the very high resolutions and flexible flight
times offered by aerial photography are still required for most wetland monitoring
projects.

Typically, coastal wetland classification maps are produced every five to ten years
(Jensen et al. 1995). While this work is helpful at detecting long-term changes in
composition and health, this time scale does not allow for a timely response and may
not effectively depict short-term changes so that action can be taken (Jensen et al.
1995). However, space-borne imagery is anticipated to surpass airborne imagery in
efficiency and effectiveness for short- or long-term wetland monitoring projects in
the coming decades, due to (1) increasing spatial resolutions, (2) better temporal
resolutions, and (3) decreasing costs (Ozesmi and Bauer 2002). Furthermore, with
increased access to software that allows object-based image analysis and modeling,
the monitoring of disturbed and restored wetlands will be improved (Phinn 1998,
Klemas 2001).

We have some experience with the choice between aerial and satellite imagery.
For our recent Integrated Regional Management Program (IRWM) that focused on
mapping six sites (Fig. 15.1) in the San Francisco Bay Estuary, satellite imagery was
not possible for our study areas as we required both extremely high spatial resolution
imagery as well as particular flight times that were timed for proper sun angle and
tidal stage. We used color infrared aerial photography that was acquired for the
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IRWM Project (http://www.irwm.org. Last access on 31 March 2008). Imagery was
taken at the lowest possible tide in 2003 to aid in vegetation mapping, whereas in
2004, imagery was taken at mid-tide to aid in channel delineation. Images had three
bands: near infrared, red, and green. All sites were flown at a scale of 1:9,600 and
scanned at a resolution of 1,200 dpi, resulting in a pixel size of 0.2 m for all sites.
The overall goal was to achieve the same scale and pixel resolution for all sites,
regardless of site size, in order to achieve uniform data for subsequent analyses. The
aerial images were used primarily for vegetation classification and map production,
as well as channel delineation. Imagery is freely-available at http://www.irwm.org/.
The imagery was used to classify vegetation community patterning for six sites
(Fig. 15.1) over two years.

15.3.2 Automated Mapping vs. Manual Delimitation

Even with these advancements in remote sensing image acquisition technology,
there still exist some obstacles to effectively mapping tidal marsh vegetation. While
the benefit of remote sensing for mapping vegetation in diverse, inaccessible, and
sensitive marsh environments was recognized over 30 years ago, obstacles to ac-
curate mapping arose regularly. At that time, scientists used visual photo interpre-
tation of color-infrared aerial photography to recognize size, shape, photographic
tone, color, pattern, shadow, and texture to distinguish between vegetation types
(Reimold et al. 1973, Seher and Tueller 1973, Shima et al. 1976, Howland 1980).
General boundaries of vegetation patches could be discerned, and studies were able
to map wetlands as small as 6 m in diameter (Cowardin and Myers 1974). However,
high color variation from varied species diversity or plant densities, conflicting color
(or spectral) variation for two different species, and the same species producing dif-
ferent color (or spectral) properties under different conditions within the same site
(Shima et al. 1976). Timing of flights and knowledge of the ecology of each site were
identified as important criteria for accurate mapping (Cowardin and Myers 1974).
The same obstacles still exist today; however, advances made since the 1980’s have
provided image analysts with much technological assistance.

Despite the advancements in remote sensing, numerous analysts prefer less
automated tools, and concentrate on visual interpretation and manual digitization
to outline wetland habitats on photography or imagery. On-screen digitizing is very
common in wetland mapping (Harvey and Hill 2001, Higinbotham et al. 2004,
Hinkle and Mitsch 2005), largely because of the importance of capturing discrete
wetland vegetation patch boundaries, and also due to the spectral confusion be-
tween species which can make automated classifiers more challenging. These man-
ual methods are still appropriate for some projects but such manual tools are not
ideal in many cases, as analyst subjectivity can be a factor. More automated ap-
proaches allow for more objective, consistent, and repeatable results, making them
able to scientifically defended.

Automated pixel-based classifiers have been gaining in popularity over the past
decade because computational power has made them more operational. The use
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of automated (computer-assisted) image classification reduces inconsistencies and
error introduced through visual photo-interpretation of imagery. Therefore, classifi-
cations between sites and between time periods are more consistent with automated
methods. In addition, automated methods have been found to be more cost-effective
than visual delineation and classification (Thomson et al. 2003). Remotely sensed
imagery has long been interpreted either by human or machine to achieve a land-
scape view of land use land cover (LULC) types for wetlands, as well as other
ecosystems. Visual interpretation of remotely sensed imagery is still a common
method in wetland mapping (Andresen et al. 2002), and there has been numer-
ous studies demonstrating this (Field and Philipp 2000, Harvey and Hill 2001,
Higinbotham et al. 2004, Hinkle and Mitsch 2005). This includes digitizing either
on-screen or using a digitizing tablet. There are many reasons why visual interpreta-
tion has commonly been used in the past, including the desire to delineate accurate
boundaries around objects and to produce a map that is visually appealing. While
effective for some, it can be expensive and time-intensive to achieve detailed clas-
sification results as these manual methods are not automated; and maps by different
interpreters or at different time periods can produce very different results that are
not comparable across space or time (Blaschke and Strobl 2001).

Our efforts at repeatable, defensible mapping of sites necessitated we use more
automated approaches to mapping tidal wetland vegetation, and we investigated
both pixel-based and object-based procedures for analyzing remotely sensed im-
agery, both in a fully automated and semi-automated (with some human decision
input) fashion. The results from pixel-based methods (e.g. ISODATA and Maxi-
mum Likelihood Classifier) used on our high spatial resolution imagery in extremely
complex vegetation patterns were poor (Tuxen and Kelly, 2008), and necessitated
the use of object-based image analysis methods.

15.3.3 Pixel-Based vs. Object-Based Methods in Remote Sensing

The recent proliferation in high spatial resolution imagery (<1m pixel size) from
new satellites and airborne platforms has catalyzed the refinement and development
of image processing routines and algorithms that better deal with the local detail
and heterogeneous spectral values found in high spatial resolution imagery. At the
forefront of this trend are techniques for image segmentation and classification often
grouped under the term “object based image analysis” or OBIA (Blaschke and Hay
2001, Andresen et al. 2002, Burnett et al. 2003, Hay et al. 2003, Blaschke 2005,
Blaschke et al. 2005, Guo et al. 2007, Laliberte et al. 2006, Yu et al. 2006), which
can be directly compared to more traditional “pixel-based” image processing meth-
ods that classify pixels individually, ignoring local context and spatial information
content.

Object-based image analysis (OBIA) describes the process of segmenting re-
motely sensed imagery into meaningful objects and the analysis and classification
of the objects across spatial, spectral, and temporal scales (Hay et al. 2001, Guo
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et al. 2007). Homogeneous patches are created (by image segmentation) first, and
those patches, or objects, are classified into land cover classes. The image segmen-
tation applies a homogeneity threshold to allow some heterogeneity within objects.
Because objects are used instead of individual pixels, results do not have spuri-
ous erroneously classified pixels (termed the “speckle” or “salt-and-pepper” effect)
that are common in pixel-based classifications (Blaschke et al. 2000) so no post-
classification filtering or smoothing is needed. OBIA allows for the segmentation of
one image into segments at multiple scales (Schiewe et al. 2001), allowing scales to
be linked to each other, to model the hierarchical nature of complex systems, such
as salt marshes (Burnett and Blaschke 2003).

We see three reasons why OBIA holds promise as a method for classifying
tidal marsh vegetation with high spatial resolution imagery. First, in contrast to
traditional pixel-based methods, in OBIA, homogeneous objects are extracted at
multiple scales from a single image, linked across scales with rules of inheritance,
enabling multi-scale analyses that utilize hierarchical relationships between the dif-
ferent scales. Pixels, on the other hand, are uni-scale and represent a fixed area on the
ground (Benz et al. 2004), and while pixel-based classification methods essentially
cluster these pixels into “objects,” they are non-hierarchical, single-valued, and are
not part of a multi-scalar framework. Manual delineation methods also “segment” an
image, but can depict only the one scale perceived by the image interpreter (Burnett
and Blaschke 2003).

A second reason why OBIA holds promise for tidal marsh mapping is because
objects are segmented based on a certain level of local homogeneity. For this rea-
son, object-based approaches are especially good for high spatial resolution data,
because neighboring pixels more likely belong to same class (Blaschke and Hay
2001, Schiewe et al. 2001). Variability between pixels becomes advantageous infor-
mation because it now defines the internal heterogeneity, or texture, of an object,
thus expressing texture more explicitly than with pixel-based approaches (Blaschke
and Hay 2001). Moving from pixels to objects causes the local pixel variability to
decrease (Schiewe et al. 2001), which produces more accurate mapped products.
At the same time, the variability within classes increases because now classes can
include some heterogeneity within objects, which actually better represents reality
in which certain patches belonging to the same vegetation type can possess dif-
ferent levels of internal heterogeneity. The process also reduces the spurious pixel
problem that is a typical result of pixel-based classifiers, which cannot recognize
the local spatial variability found in high spatial resolution imagery (Yu et al. 2006,
Guo et al. 2007).

In addition to the accuracy benefits of OBIA, we propose that ecosystem map-
ping is more ecologically sound with OBIA because principles of landscape ecol-
ogy are maintained, with patches based on homogeneous objects rather than pixels
(Andresen et al. 2002), making up classes that incorporate the inter-patch vari-
ability, which in turn make up the entire landscape in all its heterogeneity. Thus,
object-based methods follow ecological phenomenon more closely than traditional
pixel-based methods (Blaschke and Strobl 2001), which analyze each pixel indepen-
dently, without taking into account spatial concepts like neighborhood, proximity,
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and homogeneity (Burnett and Blaschke 2003). Likewise, the hierarchical relation-
ships between objects at multiple scales represent the multi-scale nature of com-
plex ecosystems such as salt marshes, with patterns and processes interacting across
multiple scales. Therefore, a major goal with OBIA is to segment out patches that
represent meaningful objects based on a specific level of homogeneity.

A third reason why OBIA has mapping potential is because it allows for the
integration of Hierarchical Patch Dynamics (HPD) (Burnett and Blaschke 2003,
Blaschke et al. 2005). HPD is the representation of a landscape in spatially nested
patch hierarchies, with larger patches being made up of smaller patches. Landscape
dynamics are linked between adjacent hierarchical scales, or levels. In this past, it
was difficult to represent pattern and processes in this multi-scale manner because
hierarchical linking of scales was not well defined (Hay et al. 2003). Geographic
Information Science (GIS) was often considered the closest thing to multi-scale
mapping because different scales could be analyzed separately, but GIS had some
problems representing more than one scale at a time. OBIA has the potential to
model landscapes in a multi-scale manner because a single image represents a vari-
ety of scales and levels of abstraction (Hay et al. 2003). Object segmentation uses the
same object boundaries across scales (Hay et al. 2003), so topological relationships
can be utilized. In this way, OBIA can integrate GIS analyses while representing
the hierarchical scaling of real-world ecosystems which humans can mentally move
between easily, but previously could not adequately model in a GIS (Blaschke and
Strobl 2001).

In summary, OBIA combines the advantages of visual interpretation and pixel-
based methods in that patches are delineated into homogeneous areas that are both
accurate and visually appealing, and the methods are objective, automated, and
repeatable. OBIA allows for more semantic, real-world, and intuitive and human-
conceived object shapes (Blaschke and Strobl 2001, Schiewe et al. 2001) based on
user knowledge (Hay et al. 2003). Shape and context are taken into account as well
as color or spectral quality of the patch (Schiewe et al. 2001). In addition, soft clas-
sifications, or fuzzy modeling, that are based on user knowledge can be integrated
into the analyses, where an object is assigned to multiple classes at varying degrees
of membership, in order to reflect the ecotonal nature of many systems.

Wetland ecosystems often consist of small isolated wetland patches, with com-
plex pattern. The use of high spatial resolution imagery is necessary to capture de-
tail. There are several studies published using object-based techniques for mapping
wetlands. Some have used OBIA with coarse-scale Landsat imagery (Bock 2003,
Stankiewicz et al. 2003, Yoon et al. 2003), while others have used it with high spa-
tial resolution images, such as CIR aerial photography (0.2–1 m) (Ivits et al. 2002,
Burnett et al. 2003), Quickbird satellite imagery (60 cm–2.4 m) (Wang et al. 2004a,b,
Hurd et al. 2005), and IKONOS satellite imagery (Blaschke and Hay 2001, Hall
et al. 2004, Wang et al. 2004a).

Andresen et al. (2002) applied OBIA to IKONOS satellite imagery to map
aquatic vegetation, and found that they could successfully map vegetation both for
inventory purposes using hierarchical segmentation and classification, and for mon-
itoring purposes by measuring incremental patch change. Stankiewicz et al. (2003)
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found that while shrub classes could be successfully delineated, many wetland
patches could not be identified with coarse-scale Landsat imagery. Multiple stud-
ies have compared OBIA with pixel-based methods. Wang et al. (2004b) compared
the two methods together and found that while object-based methods were more
efficient at differentiating spectrally mixed vegetation classes, but over-generalized
species diversity in areas where spectral differentiation was clear. Therefore, they in-
tegrated both methods by applying object-based methods only to those classes that
were spectrally similar, and pixel-based methods to all other classes (Wang et al.
2004a,b). Hurd et al. (2005) who found that results from the object-based multi-
scale methods on Quickbird imagery were smoother and reduced errors of commis-
sion and omission. Harken and Sugumaran (2005) found object-based results from
eCognition software to be nearly 30% more accurate overall than pixel-based results
from Spectral Angle Mapper (SAM). The majority of applied OBIA studies found
used the commercially available software Definiens Professional (formerly known
as “eCognition”) made by Definiens, Inc. (1995–2006). Using this software, studies
have implemented multi-scale object-based segmentation and classification of mires
(Burnett et al. 2003). Others have integrated multiple data sources (Stankiewicz et al.
2003, Li and Chen 2005), such as elevation data, to help further discriminate classes.
Some have experimented with hyperspectral data, such as Greiwe and Ehlers (2005),
who found an almost 20% accuracy improvement when they used hyperspectral in-
formation rather than just high spatial resolution data. All of these studies demon-
strated an increase in accuracy over pixel-based image analysis, but none discuss
the multi-scale mapping of ecosystem function (Sugumaran et al. 2000, Greiwe and
Ehlers 2005). OBIA has the ability for powerful mapping, modeling, and visualiza-
tion across multiple scales for many future applications, including restoration.

We used OBIA methods to map vegetation in a restored tidal marsh (Bull Island
on the Napa River in the San Francisco Bay estuary (see Fig. 15.1 for location map)).
Our objective was to accurately map vegetation communities using high spatial reso-
lution imagery, but also to map the spatial pattern of certain vegetation communities

Fig. 15.5 A comparison between (A) pixel-based classification approach and (B) object-based
image analysis for Bull Island a restored marsh in the San Francisco Bay estuary
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that comprise habitat for two species: the salt marsh harvest mouse (Reithrondonto-
mys raviventris) and song sparrow (Melospiza melodia). Each uses different wetland
plants as habitat, but requires certain spatial configuration of habitat to be success-
ful. For example, the song sparrow prefers to nest in shrub cover away from upland
areas to limit predation. The mouse is cover dependent on pickleweed (Sarocornia
pacifia), and prefers dense continuous cover of the plant with nearby areas of higher
elevation which can serve as refugia in high tides. The OBIA method not only in-
creased classification accuracy by reducing spurious pixels and mis-classification,
we were also able to maintain the spatial cohesion of habitat patches, providing a
better “functional” map of habitat (Fig. 15.5) (Tuxen and Kelly, 2008).

15.4 Conclusions

Tidal wetlands are critical linkages between water and land, and are increasingly
facing pressure from coastal development, sea level rise, and other threats. Encour-
agingly, at least in the US, wetland restoration is also taking place in some areas.
Remote sensing can provide research and management support for those work-
ing in these important ecosystems. The implementation of large-scale restoration
projects will necessitate accurate, precise, multi-scale mapping of wetland sites to
integrate into regional and global planning for climate change. This chapter dis-
cussed several trends in the mapping of tidal marshes: increases in the spatial and
spectral resolution of sensors, increase in temporal resolution and control, and the
general increase in availability of spatial data and imagery. We also discuss the in-
tegration across numerous spatial technologies like GIS and landscape ecology that
lend support to wetland science and management. Despite the abundance of tools
and data, mapping the complex and dynamic pattern of vegetation in coastal tidal
marshes still faces challenges, and scientists and managers must consider numer-
ous trade-offs in cost, accuracy, speed in choosing a monitoring method. The choice
between satellite imagery (with its better spatial fidelity and cost savings) and air-
borne imagery (providing better temporal control and spatial resolution) remains. In
addition, despite numerous research examples of operational accuracies in wetland
classification using automated methods, manual delimitation remains as an impor-
tant wetland management tool. New approaches that better deal with large volumes
of high-spatial resolution imagery through object-based techniques are the impetus
for studies comparing accuracies and labor costs between manual and automated
approaches.
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Chapter 16
Assessment of Coastal-Vegetation Habitats
Using Airborne Laser Remote Sensing

Amar Nayegandhi and John C. Brock

Airborne light detection and ranging (LIDAR) technology has broad applications in
vegetation-structure mapping within coastal communities. This chapter provides an
overview of airborne LIDAR technology and assesses the capabilities and limita-
tions of LIDAR instruments available from research and commercial sources. Pre-
vious studies on the extraction of vegetation metrics such as height and density of
vegetation in coastal forests are reviewed, with special emphasis on canopy height
of short shrubs, marsh, grass, and other vegetation found in the littoral zone. The
studies reviewed in this chapter report accurate measurements of canopy height and
ground topography in most forested environments. The accuracy in determining the
height of low vegetation is considerably improved when using a small-footprint,
waveform-resolving LIDAR system. The integration of spectral imagery and LI-
DAR has the potential of significantly improving the classification and structural
mapping of coastal-plant communities. Technical challenges facing the airborne LI-
DAR remote sensing industry include: (i) the estimation of vegetation height and
density for submarine vegetation, (ii) better understanding of the relations that exist
between forest structure and LIDAR backscatter return, and (iii) improvements in
standardized software to glean structural information from waveform data. In total,
the studies reported in this chapter demonstrate that laser remote sensing is a cost-
effective and reliable tool for the quantitative assessment of vegetation habitats on
barrier islands, wetlands, and other coastal-plant communities.

16.1 Introduction

Coastal forests provide a protective barrier between terrestrial ecosystems and
nearshore water bodies. The plant species native to this habitat are specially adapted
to withstand salinity, soil type, and other stressors such as high tides and winds.
Coastal geomorphology, and consequently coastal forest characteristics, have been
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shaped over geologic time by changing sea levels and variation in sediment supply
(Williams et al. 1999). In the littoral zone, intertidal salt marshes occupy a broad,
flat expanse of landscape often referred to as the marsh platform at an elevation that
approximates that of mean high water. The elevation of this platform relative to sea
level determines total wetland area, inundation frequency, and wetland productivity
(Morris et al. 2005). Vegetation change in coastal communities is also a potentially
valuable integrative measure of sea-level rise. Moreover, forest structure is a key to
the functioning of an ecosystem (Spies 1998), and accordingly techniques to distin-
guish organizational patterns are quite useful in understanding processes related to
coastal-forest habitat, physiology, and dynamics.

Remote sensing represents an important tool for understanding coastal-ecosystem
diversity across several different spatial scales and is also critical for assessments of
changes in ecosystem patterns over time. Remote sensing provides the most effi-
cient tool available for determining landscape-scale elements of forest biodiversity,
such as the physical arrangement of patches of vegetated communities (Innes and
Koch 1998), and as a hydrologic monitoring tool (Kite and Pietroniro 1996). Pas-
sive remote sensing techniques, based on reflected or emitted light energy from nat-
ural sources within the electromagnetic spectrum, have been widely used in forestry
applications since the advent of airborne and spaceborne sensors. Several differ-
ent types of spaceborne spectral remote sensing tools exist, ranging from high-
resolution sensors capable of providing 2 to 4 m resolution multi-spectral imagery
at swath widths of 10–16 km, to medium- (4–30 m) or low- (30->1000 m) reso-
lution imagery with increased spectral resolution (3–15 bands) and 100–1000 km
image swath widths (Cracknell and Hayes 2006). In contrast, airborne instruments
provide higher spatial resolution than satellite sensors do, but with typically much
smaller sampling swath or area, because of the much lower altitude at which they
operate. Remote sensing is thus capable of providing a range of spectral data for
coastal-biodiversity studies.

The recent emergence of remote sensing based on airborne Light Detection and
Ranging (LIDAR) as a coastal-forest management tool promises to increase the
efficiency of forest inventory programs dramatically. LIDAR is an active remote
sensing technique that determines the distance between the sensor and the target by
accurately measuring the round-trip time of a pulse of laser energy (Wehr and Lohr
1999). LIDAR altimeters have demonstrated the capability to provide greatly im-
proved remotely sensed estimates of important aspects of canopy structure (Lefsky
et al. 1999).

Airborne LIDAR technology has been commonly used in mapping barrier island
vegetation communities. These communities are strongly influenced by littoral geo-
morphic processes. Subjected to frequent and major storm events, coastal-vegetation
communities undergo more frequent and stochastic changes than do their up-
land counterparts. The relative abundance and spatial distribution of vegetation-
community types on a barrier island can also serve as an indicator and a measure
of change due to littoral processes (Nayegandhi et al. 2006). Detailed and accurate
topography from LIDAR surveys provides relevant information for understanding
the dynamics of habitat distribution on low-lying barrier islands. LIDAR digital
elevation models (DEMs) have been used to model changes in marsh distribution
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and as additional and independent data layers for mapping barrier island habitats in
conjunction with other remote sensing imagery (Gibeaut et al. 2003).

LIDAR has routinely been used to determine precise digital canopy height and
terrain models for surface hydrologic studies. Hydrodynamic vegetation roughness
refers to the resistance force exerted by vegetation on water flowing over or through
it (Straatsma and Middlekoop 2006). High vegetation roughness reduces the veloc-
ity of flowing water, which leads to higher water levels, thereby increasing flood
risks (Straatsma and Middlekoop 2006). Roughness coefficients can be derived us-
ing topographic information acquired by airborne laser scanning for modeling hy-
drologic processes and hydraulic surface-flow models in stream channels and the
surrounding floodplain (Cobby et al. 2001, Mason et al. 2003, Hollaus et al. 2007).

However, several challenges still exist in mapping wetland topography in coastal
areas, where the elevation changes are slight, except for levees and outcrops, and the
vegetation cover varies from short shrubs to dense maritime forests. In an evaluation
study of LIDAR technology in a deltaic wetland environment, Toyra et al. (2003)
demonstrated that LIDAR pulses had difficulties penetrating thick willow cover and
dense thatch layers beneath grasses and sedges. However, recent advances in LI-
DAR technology have resulted in the potential to produce detailed vertical structure
of coastal vegetation canopies (Lefsky et al. 1999), and derive accurate digital ter-
rain models under dense coastal marshes and short shrubs (Andersen et al. 2006).
The primary objective of this chapter is to review the capabilities and potential of
airborne laser remote sensing as a tool for quantitative assessment of vegetation
habitats on barrier islands, wetlands, and other coastal zones.

16.2 Airborne LIDAR Technology Overview

Most airborne LIDAR systems consist of the following components:

• Laser ranging device to determine the distance between the aircraft and the target
object below,

• Differential Global Positioning System (DGPS) to determine the location of the
aircraft,

• Inertial Navigation System (INS) to determine the orientation of the aircraft, and
• Digital red-green-blue (RGB) or color-infrared (CIR) camera, to provide a visual

representation of the mapped area.

The laser ranging device typically includes a pulsed laser transmitter emitting
highly collimated laser pulses directed to a scanning mirror. Laser system character-
istics that help differentiate between current airborne LIDAR instruments include:
(i) pulse repetition frequency (PRF) ranging from 1 kHz to 170 kHz, (ii) the total
energy content of the laser pulse – varying from 50μJ for low power, high-PRF
systems to 5 mJ for high-power, low-PRF systems, (iii) pulse duration, which is the
time during which the laser output-pulse power remains continuously above half its
maximum value – varying from 1.5 ns for short-temporal-pulse systems that provide
increased measurement accuracy and enhanced multiple-return pulse resolution, to
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10 ns for traditional discrete-return systems, and (iv) wavelength of the outgoing
pulse, which is typically near-infrared (1064 nm) for subaerial topographic mapping
and green (532 nm) for submerged topographic mapping.

The scanning device steers the laser transmitted beam to create a scanning pattern
based on the opto-mechanics and electro-optical properties of the scanner. Several
types of scanning mechanisms have been used on airborne LIDAR systems (Wehr
and Lohr 1999). The most common scanning device is the oscillating mirror that
produces a zigzag line (bidirectional scan) on the surface of the target area as the
mirror rotates back and forth within its pre-defined field of view (Fig. 16.1).

Fig. 16.1 Principles of airborne laser scanning using the Experimental Advanced Airborne Re-
search LIDAR (EAARL). This laser instrument uses a green wavelength laser and a raster scan-
ning mechanism to acquire LIDAR data. GPS receivers on the aircraft are combined with data
acquired by a base station set up at a nearby location to locate position of the aircraft precisely.
Aircraft orientation parameters (pitch, roll, and heading) are obtained by an Inertial Measurement
Unit (IMU) onboard the aircraft. A digital camera provides coincident high-resolution imagery of
the mapped area
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Data acquired by an onboard GPS receiver are differentially corrected using one
or more nearby GPS base stations to provide the absolute aircraft trajectory. The
base-station antenna is mounted on a known location and remains stationary during
the survey, thereby enabling the post-flight differential correction of the trajectory of
the aircraft. The Inertial Measurement Unit (IMU) comprises three accelerometers
and three gyroscopes arranged in an orthogonal triad to measure the local gravity
vector, acceleration vector, and angular rate vector experienced by the IMU at a typ-
ical sampling rate of 200 Hz. Post-flight processing GPS-IMU software is generally
used to convert the measured accelerations and angular rates along with differen-
tial GPS positioning to determine pitch, roll, and heading of the aircraft. The air-
craft trajectory, IMU-derived orientation data, and the laser range measurements are
combined with calibration data and instrument mounting parameters in post-flight
processing software to determine the three-dimensional location of the target.

Two of the major characteristics that distinguish among LIDAR instruments are
the footprint size of the laser pulse and the way in which the intensity of the return
is recorded. Accordingly, airborne LIDAR systems used in coastal vegetation appli-
cations can be categorized as large footprint or small footprint, and discrete-return
or waveform-resolving as explained in the following sections.

16.2.1 Small-Footprint, Discrete-Return LIDAR

Discrete-return systems are currently the most common type of LIDAR systems
available in commercial industry. They typically record one (e.g., first or last), two
(e.g., first and last), or several (i.e., up to five) returns for each laser pulse. All
discrete-return LIDAR systems have a relatively small footprint (0.2–0.9 m), the
precise size of which depends on the beam divergence, receiver field-of-view, and
flight altitude. Recent studies have suggested that the optimal experimental design
for discrete-return systems is to capture three echoes per pulse, since less than 1%
of pulses return a fourth echo, and only about 0.1% of pulses return a fifth echo
(Lim et al. 2003; Fig. 16.2). The basic principles and design constraints of discrete-
return LIDAR systems are well documented in literature (Wehr and Lohr 1999,
Baltsavias 1999, Fowler et al. 2007). System characteristics of two small-footprint
discrete-return LIDAR systems currently available in commercial industry reveal
a push toward higher sampling resolution and greater operating altitude, with in-
creased horizontal and vertical accuracy (Table 16.1).

Obtaining forest measurements such as canopy height and volume using discrete-
return, small-footprint LIDAR systems has yielded useful results (Næsset 2002, Lim
et al. 2003, Popescu et al. 2003, Bortolot and Wynne 2005). However, a number of
factors limits the capability of discrete-return small-footprint sensors in deriving for-
est measurements: (1) the inability of a small-footprint laser pulse to strike the tops
of trees consistently, especially in conifer stands; (2) the small-footprint laser pulse
may penetrate through gaps all the way through to the ground without intercepting
the canopy, thereby indicating the absence of a canopy; (3) conversely, the laser
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Fig. 16.2 Data acquired by a discrete-return LIDAR system in a forested area showing the per-
centage of returns resolved from successive reflections from a laser pulse. Returns from all laser
pulses resulted in 16,864 returns. The 3rd and 4th returns account for less than 5% of the total
returns. Image courtesy of Robert J. McGaughey, USDA Forest Service

pulse may be entirely blocked by dense canopy materials (leaves and branches),
thereby not reaching the ground; (4) low-altitude surveys with narrow swaths re-
quire extensive flying to obtain adequate data coverage over large areas; and (5)
most discrete-return systems require a minimum vertical object separation to reg-
ister consecutive returns from the pulse separately, thereby being blind to canopy
material within this “dead zone” (Fig. 16.3). The dead zone, which typically ranges
from 1.5 m to greater than 7 m in vertical height (Nayegandhi et al. 2006), is usu-
ally caused by hardware limitations in the sensor design. Figure 16.3 is a schematic
illustrating the effect of the dead zone between successive discrete returns D1 and
D2, wherein reflected laser backscatter from canopy materials between these reflec-
tions are not distinguishable by the sensor unless the backscatter is digitized to a
represent a waveform as explained in the next section.

16.2.2 Small-Footprint, Waveform-Resolving LIDAR

Discrete-return LIDAR systems output the three-dimensional coordinates of the sur-
face locations hit by the laser pulse. However, it is not always clear how to interpret
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Table 16.1 Airborne lidar system characteristics of sample commercial and research sensors

Small-footprint, discrete-return Small-footprint, waveform-resolving Large-footprint, waveform-resolving

Sensor ALTM ALS50 EAARL LMS-Q560 SLICER LVIS
Type of Operation Commercial Commercial Research Commercial Research Research
Max. Operating Altitude

(AGL)
4000 m 6000 m 1000 m 1500 m 10 km 10 km

Wavelength (nm) 1064 1064 532 1500 1064 1064
Pulse energy < 200μJ ? < 70μJ < 8μJ 0.7 mJ 5 mJ
Max. Pulse Repetition

Frequency
167 KHz 150 KHz 10 KHz 100 KHz 80 Hz 500 Hz

Pulse width at half
maximum

8 ns 11.8 ns 2 ns 4 ns 4 ns 10 ns

Scan angle range ±25◦ ±75◦ ±22.5◦ ±22.5◦ ? ±7◦

Footprint size@nominal
operating altitude

0.3–0.8 m@1km 0.15–0.22 m@1km 0.18 m@300 m 0.5 m@1 km 10 m@5 km 40 m@5 km

Digitizer interval N/A N/A 1 ns 1 ns 1 ns 2 ns
Max. number of returns 4 4 N/A N/A N/A N/A
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Fig. 16.3 Schematic showing the dead-zone effect in discrete return LIDAR systems. “D1”, “D2”,
and “D3” are successive reflections from a discrete return laser pulse. The laser pulse is effectively
blind to canopy material between “D1” and “D2”. The vertical structure information is, however,
captured in the sample waveform from a vegetated canopy acquired by a small-footprint waveform-
resolving system

these discrete measurements for different targets, particularly since commercial ven-
dors rarely disclose the detection methods for the determination of the trigger pulses
(Wagner et al. 2004). Further, the choice of pulse detection methods has significant
impact on accuracy and may affect the quality of measurements (Hug et al. 2004).

A full-temporal waveform-digitizing LIDAR system senses and records LI-
DAR backscatter returned to the sensor in a series of equal time intervals, usu-
ally in 1- to 3- nanosecond increments. The high sensitivity of the receiver optics
and electronics results in the characterization of small volume changes of veg-
etation and a detailed description of vertical canopy volume distribution, which
are not separated by discrete-return LIDAR systems (Fig. 16.3). Digitized re-
turn waveforms can give detailed insights into the vertical structure of surface
objects, surface slope, roughness, and reflectivity (Hug et al. 2004). Recent ad-
vances in digital electronics and storage capacities have made it feasible to con-
struct waveform-resolving LIDAR systems that are self-contained and small enough
for operational and commercial use (Hug et al. 2004, Fowler et al. 2007). The
Riegl waveform-processing airborne laser scanner LMS-Q560 is one of the first
commercial airborne LIDAR terrain mapping systems to use waveform digitiza-
tion (Wagner et al. 2006). The Experimental Advanced Airborne Research LIDAR
(EAARL) is a non-commercial, green-wavelength, waveform-resolving system ca-
pable of mapping submarine and sub-aerial topography simultaneously (Wright and
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Brock 2002, Nayegandhi et al. 2006). Both systems digitize the return waveform at
a 1-nanosecond interval over a wide dynamic range, giving a temporal resolution
of 14.9 cm in air (Table 16.1). In coastal forestry applications, vertical information
from waveform-resolving LIDAR gives details on canopy and sub-canopy structures
and the potential to derive accurate ground information under short herbaceous veg-
etation (Persson et al. 2005, Nayegandhi et al. 2006).

Full waveform digitization of a laser pulse creates a pulse-by-pulse reflection
record that is highly sensitive to even minor changes in vegetation structure. This
technique enables many multiple returns with short separation to be collected from a
single laser shot (Fig. 16.3). This is especially true for a short-temporal-pulse-width
laser pulse. Small variations in the vertical structure can be detected by processing
the resulting waveforms using a variety of pulse detection methods. Wagner et al.
(2004) report a number of detection methods that can be applied on the backscat-
ter waveform: threshold, center of gravity, maximum, zero crossing of the second
derivative, and constant fraction. Determining the range in post-flight processing
software has the advantage of selecting one or more pulse detection algorithms
based on the application, analyzing the intermediate results, and considering neigh-
borhood relations of pulses. For example, canopy-height estimation may be im-
proved by detecting small inflections or “sub-peaks” in the waveform. Figure 16.4
illustrates the result of using different pulse detection methods to derive the range to
the first and last return from short vegetation. LIDAR reflections from short shrubs,
grass, or other herbaceous vegetation cause the return pulse to widen. The early in-
flection in the waveform at height A is detected by determining the zero crossing

Fig. 16.4 Sample waveform illustrating the widening of the return pulse from low, coastal, herba-
ceous vegetation. The horizontal lines “A” and “B” denote the range to the top and bottom of the
vegetation structure, respectively. The dotted line indicates the range determined by a discrete-
return LIDAR system using leading-edge threshold detection method
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of the second derivative at a low backscatter threshold. Similarly, the range to the
last return can be determined by analyzing the waveform starting from the trailing
edge, thereby selecting the small inflection at height B from the convolved wave-
form (Fig. 16.4). The first return represents the height of the canopy surface, and the
last return represents ground topography. If this area were mapped by a traditional
discrete-return LIDAR sensor using real-time leading-edge threshold detection to
determine the range, it would have resolved the range to only one significant return
(dashed line in Fig. 16.4).

Small-footprint, waveform-resolving LIDAR systems thus have tremendous po-
tential for mapping forested environments. Many of the limiting factors of discrete-
return LIDAR systems are addressed by waveform-resolving systems. The pulse
detection method can be modified for determining canopy heights in conifer stands,
such that the canopy-top elevation can be determined by small and often convolved
inflections in the leading edge of the waveform. The small-footprint LIDAR pulse
may still reflect directly off the ground through gaps in the canopy or be entirely
blocked by canopy materials in the upper story. In order to minimize these effects
and better describe the vertical structure of a vegetation canopy, several individual
small-footprint laser pulses can be combined to make a composite “large-footprint”
waveform that defines a larger horizontal area (Nayegandhi et al. 2006). The size of
the synthesized large footprint can be varied depending on the point sampling den-
sity and nature of the vegetated terrain. Further, the short temporal pulse width com-
bined with the ability to determine the pulse detection method in post-processing
software can significantly reduce the effect of the “dead zone.”

16.2.3 Waveform-Resolving Large-Footprint LIDAR

Large-footprint systems collect the complete waveform of reflected energy in a sin-
gle pulse over a large horizontal footprint (>10m), which generally includes returns
from the top of the canopy, and from the ground visible through gaps in the canopy.
These systems have been widely used in forestry research over the past decade
to determine the vertical distribution of canopy characteristics (Means et al. 1999,
Lefsky et al. 1999, Dubayah and Drake 2000, Harding et al. 2001, Lim et al. 2003,
Anderson et al. 2006). Metrics derived from large-footprint LIDAR systems have
proven useful for predicting a range of ecological variables such as canopy height
and structure, the density of forest cover, and aboveground biomass (Means et al.
1999, Dubayah and Drake 2000, Harding et al. 2001, Anderson et al. 2006). Other
studies have reliably inferred a Leaf Area Index (LAI) using methods to characterize
canopy volume, spatial organization of vegetative material, and empty space within
the forest canopy (Lefsky et al. 1999). The Scanning LIDAR Imager of Canopies
by Echo Recovery (SLICER) (Harding et al. 2001) and the Laser Vegetation Imag-
ing Sensor (LVIS) (Blair et al. 1999) are large-footprint waveform-resolving LI-
DAR systems developed for research purposes at NASA’s Goddard Space Flight
Center (Table 16.1). The instruments have been evaluated by comparing simulated
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waveforms from various types of vegetation canopies contained within the laser
footprint (Blair et al. 1999). These prototype instruments were originally planned
as part of the pre-launch calibration/validation of a spaceborne laser altimeter, the
Vegetation Canopy LIDAR (VCL).

Large-footprint systems are optimal for mapping forest structure at the plot level
(Dubayah and Drake 2000) for several reasons, including: (1) large footprint size
that illuminates the average crown diameter of a tree (10–25 m), thereby provid-
ing consistent canopy top and ground returns, (2) high operating altitude and wide
image swath, allowing the inexpensive mapping of large forested areas, and (3) dig-
itization of the entire return signal, providing the vertical distribution of intercepted
surfaces through the canopy. Waveform data from these instruments have been eval-
uated using regression techniques to estimate forest stand characteristics in conifer
forests (Means et al. 1999), deciduous forests (Lefsky et al. 1999), tropical forests
(Drake et al. 2002), and mixed northern temperate forests (Anderson et al. 2006).
However, no studies have reported the use of these systems in maritime forests. In
coastal environments with low-lying, dynamic and dense vegetation, high-altitude,
large-footprint LIDAR systems are cost-prohibitive and inefficient to operate on a
regular basis. However, a spaceborne laser altimeter will provide the vertical distri-
bution of intercepted surfaces at very large spatial scales, thereby providing a global
reference dataset for terrestrial ecosystem modeling, monitoring, and prediction.

16.3 Vegetation Metrics

Current ecological applications of LIDAR remote sensing tend to fall within four
categories: (i) deriving canopy heights at the individual tree, plot, and stand level,
(ii) deriving ground topography, (iii) measuring the three-dimensional structure and
function of vegetation canopies, and (iv) predicting forest stand structure attributes.
The first three categories are metrics derived from data acquired by LIDAR systems.
These metrics can be evaluated by comparing with ground-based measurements us-
ing statistical methods. The fourth category includes predicted measures such as
basal area and aboveground biomass, which are derived and evaluated using regres-
sion techniques by comparing LIDAR-derived metrics from the first three categories
to allometric equations based on field measurements (e.g., DBH). The following sec-
tions discuss the metrics derived for the first three categories by reviewing studies
conducted using discrete-return and waveform-resolving LIDAR systems and how
these metrics may be used to predict forest structure attributes.

16.3.1 Canopy Height

Canopy height is determined by calculating the distance between the first return and
the ground. An accurate bare-Earth or digital terrain model (DTM) is required to
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determine a digital canopy height model. Canopy height is one of the more fun-
damental measurements in coastal forest inventory and is a critical variable in the
quantitative assessment of forest biomass, carbon stocks, growth, and site produc-
tivity (Andersen et al. 2006). The height of a forest patch can be expressed as the
mean tree height or the maximum tree height in a limited-size plot. Canopy heights
are also estimated from percentiles of the laser data by assuming that the vertical
leaf area distribution of canopy-forming trees is the same as the vertical distribu-
tion of laser points (Magnussen and Boudewyn 1998). Straatsma and Middlekoop
(2006) provide a tabulated summary of explained variances based on regression
analyses from research on forest height prediction. Several studies have demon-
strated that the overall quality of laser scanning prediction of canopy height is better
than conventional methods, such as the manual interpretation of aerial stereo photos
(Næsset 2002, Popescu et al. 2003). However, most LIDAR canopy height studies
demonstrate accuracy within a limited sample environment. Hopkinson et al. (2006)
present a method that shows some promise in the search for a more universal canopy
height model across a wide range of canopy height, canopy openness, vegetation
type, and data collection configurations for small-footprint discrete-return LIDAR.

With the advent of very high-density, discrete-return LIDAR, determination of
individual tree and stand heights has become feasible. High-density, small-footprint
LIDAR data have been used for estimating plot-level tree height by measuring
individual trees identifiable on the three-dimensional LIDAR surface (Popescu
et al. 2003). In a rigorous assessment of tree height measurements obtained us-
ing LIDAR and conventional field methods, Andersen et al. (2006) determined that
LIDAR-derived height measurements were more accurate for ponderosa pine for-
est (−0.43± 0.13m) than for Douglas-fir forest (−1.05± 0.41m), and although
tree heights using conventional field techniques (−0.27±0.27m) were more accu-
rate than LIDAR (−0.73± 0.43m), this difference was insignificant compared to
the wider coverage and cost efficiencies afforded by a LIDAR-based survey. Small-
footprint, waveform-resolving LIDAR data with high sampling density may also be
used to determine the height of individual trees, though studies using LIDAR wave-
forms have only been conducted at the plot level (Nayegandhi et al. 2006). However,
large- footprint LIDAR systems cannot be used for characterizing individual trees
since the footprint is usually wider than the diameter of the canopy-forming tree.

The effect of beam angle plays a significant role in the determination of canopy
height, which may influence the ability of the low power discrete-return LIDAR
systems to measure canopy height accurately. The power of the wide-beam LI-
DAR pulse is spread out over a larger area, leading to a lower signal-to-noise ratio
for the returning LIDAR signal, which is sometimes below the threshold detection
value of discrete-return LIDAR. Andersen et al. (2006) indicated that high-density
(6 points/m2), discrete-return, narrow-beam (0.3 mrad) LIDAR is significantly more
accurate than a wide-beam (0.8 mrad) LIDAR for measuring individual tree heights.
However, individual tree height estimates are more influenced by pulse density than
by beam divergence (Yu et al. 2004), which indicates that airborne surveys can be
conducted at higher flight altitudes if the pulse density and transmit power are suffi-
cient to penetrate through gaps in the canopy.
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Few studies have investigated the estimation of short vegetation height from
discrete-return LIDAR. In a hydrologic study to understand the effects of land-
scape roughness on evaporation, soil moisture, runoff, and soil erosion, Cobby et al.
(2001) used different algorithms to extract topographic and vegetation heights from
discrete-return LIDAR data depending on land cover. Short vegetation heights are
calculated using a logarithmic regression relation that predicts the vegetation height
from the standard deviations of detrended LIDAR heights in a smaller surrounding
area. In a boreal wetland environment, Hopkinson et al. (2005) found the vertical
bias of discrete-return LIDAR data to vary with vegetation cover, with no signifi-
cant vertical bias for grass and herbs. The error in canopy heights was also found to
vary with vegetation class, ranging from 0.10 to 0.84 m. The study also determined
that low shrubs displayed the highest proportion of vegetation surface underesti-
mation with average laser pulse penetration of 63%. Hollaus et al. (2007) suggest
that some inaccuracies of the vegetation height model arose in areas covered by ho-
mogeneous meadows with high-grass or scrubs due to technical limitations of the
current discrete-return laser systems. When measuring senescent herbaceous vege-
tation, Straatsma and Middlekoop (2006) note that the minimum detectable object
size is of specific importance. The minimum object size is generally influenced by
flying altitude, reflectivity, laser power, detector sensitivity, and laser wavelength
(Baltsavias 1999).

A short-pulse-width, waveform-resolving LIDAR system is more likely to be
able to discriminate between first and last returns from short shrubs (Fig. 16.4),
thereby enabling canopy height estimation. High sampling density in small-footprint
LIDAR systems also increases the probability that laser pulses will proceed down
through gaps in the canopy. As noted earlier, canopy height estimations may be
improved by detecting sub-peaks in the waveform, which are too weak to be de-
tected in real time by discrete-return LIDAR (Hug et al. 2004). High-resolution,
small-footprint, short-pulse-width, waveform-resolving LIDAR systems thus have
the greatest potential in mapping short vegetation communities.

16.3.2 Ground Topography

Reliable bare Earth information in coastal areas is useful in a wide range of applica-
tions, including flood-risk analysis, change detection, and hydrographic numerical
modeling. Ground topography is needed in modeling the hydrology of areas, and
hence aid in predicting vegetation assemblages likely to occur across specific to-
pographies (Straatsma and Middlekoop 2006). For example, knowing the elevation
of the land surface above sea level on barrier islands gives an estimate of relative
depths to water tables, which can aid in predicting water availability to vegetation
on sandy substrates. Further, the relative elevation of the sediment surface within
salt-marsh landscapes is a critically important variable that determines the duration
and frequency that these habitats are submerged by the tides. The productivity of
the salt marsh plant community is thus dependent on the elevation of the sediment
surface (Morris et al. 2005).
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Detecting ground topography under vegetation using airborne LIDAR is influ-
enced by the ability of the transmitted laser pulse to “see” the ground. In vegetated
terrains, the transmitted laser pulse is intercepted by canopy elements within the
path of the laser illumination. The non-intercepted component of the pulse proceeds
through the canopy, with any remaining energy being backscattered, reflected, or
absorbed at the ground surface. In many situations, the laser pulse is not able to
penetrate dense vegetation surfaces completely. Various methods have been devel-
oped to extract and identify ground elevations from a point cloud of last returns. The
majority of these methods uses spatial filtering techniques that calculate a measure
of discontinuity based on a local neighborhood. In dense vegetation, the filtering
methods will fail if there are only a few or no ground points in the analyzed area.
Sithole and Vosselman (2004) provide an excellent overview and analysis of eight
different bare-Earth-extraction algorithms implemented in a variety of land cover
types. Almost all bare-Earth algorithms perform better in flat or sparsely vegetated
areas. Accuracy usually deteriorates with an increase in vegetation cover or terrain
slope. Further, it is difficult to detect ground topography under low vegetation that
is not significantly higher than the surrounding bare ground. In addition to errors
caused by laser systems and errors caused by applied methodology and algorithms,
the quality of the DTM is influenced by data-acquisition characteristics (e.g., point
density, flight altitude, and scan angle) as well as errors due to characteristics of the
complexity of the terrain (e.g., type, flatness, density of canopy above).

Traditional discrete-return small-footprint LIDAR systems tend to overestimate
ground elevation due to (i) minimal pulse penetration through dense vegetation,
and (ii) the inability to detect small vertical variations in short vegetation due to
the significant “dead zone” between successive reflections. High point-sampling
density improves the probability of the laser pulses to find gaps in the canopy.
In vegetated coastal areas, ground elevation is highly correlated with vegetation
type. Therefore, parallel knowledge of the distribution of vegetation greatly im-
proves the ability to determine an accurate DTM (Göpfert and Heipke 2006). In
a deltaic wetland environment, Toyra et al. (2003) computed vertical bias ranging
from +0.07m (±0.15m) to +0.15m (±0.26m) for determining bare Earth ele-
vations under graminoid and willow scrub, respectively. Hopkinson et al. (2005)
reported similar results in a boreal wetland environment but noted that the LIDAR
system used in estimating ground elevation was unable to distinguish between first
and last returns less than 4.6 m apart, thereby recording only one return in canopies
lower than this height. The single return usually represented a canopy element in
short vegetation, which greatly affected the ability to measure ground topography
accurately.

Small-footprint, short-pulse-width, waveform-resolving systems provide the grea-
test potential to map bare Earth accurately, due to (i) low minimum object separation
for each laser-pulse return backscatter, and (ii) the ability to determine ground ele-
vations under short vegetation by analyzing the waveforms using different detection
methods in post-processing software (Fig. 16.4). Prior knowledge of land cover type
is extremely useful in such cases, since the detection methods can be applied based
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on the type of land cover. Nayegandhi et al. (in press) report bare Earth measurement
accuracies of 0.16–0.2 m using the EAARL system in a variety of coastal vegeta-
tion communities dominated by invasive species such as Australian pine, Brazilian
pepper, needle grass, as well as native species such as mangroves.

All small-footprint laser pulses suffer from sampling bias inherent to spaced data
points. In contrast, a large-footprint laser pulse will fully illuminate the canopy,
thereby penetrating any gaps in the canopy to reach the ground. Large-footprint
LIDAR systems are most effective on relatively flat surfaces; however, on steep
slopes the spreading of the ground return limits the ability to distinguish between
the ground and short shrubs (Harding et al. 2001). An accuracy analysis study con-
ducted in a dense tropical forest to determine sub-canopy topography using the LVIS
sensor revealed that the measurements were within ∼1.5m of each other on less than
3◦ slopes, and ∼5m on slopes up to 30◦ (Hofton et al. 2002). Further, in some dense
forest canopies, or areas of high canopy cover, the portion of the LIDAR signals
being reflected from the ground was weak, making ground determination ambigu-
ous at best, and sometimes completely indeterminable. Measurements made from
waveforms containing less than 20% of the total return energy within their lowest
reflection caused the largest number of outliers and the largest error (5.22 m), com-
pared to reflections with greater than 50% of the total energy (0.98 m). In general,
studies suggest that the accuracy of sub-canopy topography using large-footprint
LIDAR systems is worse than those reported using small-footprint LIDAR systems,
where accuracies are typically 0.1–0.2 m in flat areas, and ∼1m on high slopes
(Andersen et al. 2006).

Vegetation-removal algorithms are often used to produce a bare-Earth model at a
nominal posting density that is lower than the PRF at data acquisition for very dense
vegetation (Morris et al. 2005). The accuracy of the less dense dataset is more likely
to improve if one ground return can be selected reliably from a large neighborhood
of last returns. Typically, LIDAR vendors will provide a DTM at 5 m resolution in
dense vegetation communities even though the data were acquired at 1 m or better
spatial resolution.

Very few studies have attempted to determine the ground topography in aquatic
vegetation, and the results from these studies are not very encouraging (Hopkinson
et al. 2005). Near-infrared-wavelength laser pulse is usually absorbed at the water
surface, thereby leading to unpredictable height measurement of vegetation emerg-
ing above a water body. Dense patches of mangrove forests, prevailing around the
many brackish lakes in coastal regions, are particularly difficult to map using near-
infrared LIDAR systems. Water-surface specular reflection from a green-wavelength
LIDAR system generally occurs at or near nadir, which results in a strong backscat-
ter signal (Nayegandhi et al. in press). The green-wavelength LIDAR system, capa-
ble of mapping subaerial and submarine topography, may also be able to penetrate
through the water surface to provide submarine bottom topography. The only known
study to map sub-canopy topography under mangroves indicated a 0.2 m RMS er-
ror and a very low spatial data density due to the inability to extract sufficient and
accurate ground returns from under the dense thickets (Nayegandhi et al. in press).
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16.3.3 Canopy Structure

The accurate and detailed representation of the horizontal and vertical structure of
plant communities, also called canopy structure, is a critical metric for a variety
of coastal processes. Structural characteristics of canopies have manifold effects on
ecosystem composition and function by controlling growth and production, affect-
ing microclimates at various scales, and providing habitat for a diversity of organ-
isms (Parker et al. 2004). The basis for detailed canopy structure information is a
set of spatially referenced distance measurements, which are provided by waveform-
resolving and discrete-return LIDAR.

Forest stand characteristics derived from large-footprint LIDAR systems have
been successfully extracted over a wide range of forest types and climate zones;
from the tropics (Drake et al. 2002) to northern temperate conifer (Means et al.
1999), deciduous (Lefsky et al. 1999), and mixed forests (Anderson et al. 2006).
The most common field-derived metric for characterizing canopy structure is fo-
liage height profile (FHP), in which the observer determines the height to the nearest
leaf overhead at many locations in the stand. This is done by focusing an upward-
viewing telephoto lens calibrated to measure distance (Parker et al. 2004). Since
LIDAR systems do not easily distinguish leaves from other surfaces (Lefsky et al.
1999), the derived vertical profile is the surface area of all canopy material, fo-
liar and woody, as a function of height, and is known as the canopy height profile
(CHP). CHP is adjusted for occlusion (i.e., the amount of transmit energy seen by
lower-canopy elements is less than that seen by the upper-canopy elements) using
the same principles as field-derived FHP. Results from Harding et al. (2001) and
Lefsky et al. (1999) showed that the large-footprint waveform-based CHPs were
highly reproducible and reliably provided a measure of canopy structure that re-
veals ecologically interesting structural variations in a variety of forest stands. The
quadratic mean canopy height metric, derived from CHP as the mean canopy height
weighted by the square of the distance from the ground, was found to be highly
correlated to both basal area and aboveground biomass in deciduous forests (Lefsky
et al. 1999). Several other metrics derived from large-footprint LIDAR returns were
found to be significantly correlated with forest structural characteristics at both foot-
print and plot levels (Means et al. 1999, Drake et al. 2002, Anderson et al. 2006).
Canopy reflection ratio (CRR), which is the sum of the portion of the waveform
return reflected from the canopy divided by the sum of the portion of the waveform
return reflected from the canopy and the ground, is a relative measure of canopy
cover (Harding et al. 2001). Independent knowledge of the vertical distribution of
canopy reflectance and the reflectance of the ground at the laser wavelength are
required to convert CRR into an absolute measure of canopy cover. Nevertheless,
CRR was found to correlate with ground-based canopy cover and forest biomass
in coniferous forest (Means et al. 1999). The height of median energy (HOME),
which is the median height of the entire signal from the waveform, was found to be
a good predictor of biomass in tropical forests, and sensitive to changes in both the
vertical arrangements of the canopy and the degree of canopy openness (Drake et al.
2002).
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Although structural metrics derived from large-footprint LIDAR systems were
not tested in coastal forests, similar metrics derived from small-footprint waveforms
acquired by the EAARL system yielded promising results in coastal vegetated en-
vironments on a barrier island and within a wetland (Nayegandhi et al. 2006). The
composite waveforms, derived from a collection of individual small-footprint wave-
forms within a 10-m-diameter footprint, showed high correlation when tested for re-
producibility from overlapping surveys for CRR and HOME metrics. The effect of
occlusion in small footprint waveforms is minimal, since the individual waveforms
within the composite footprint attenuate only within the small footprint but origi-
nate from various vertical layers in the canopy as they travel through gaps within
the canopy. Further, the spatial distribution of energy within each small footprint
minimally affects the horizontal organization of reflecting surfaces. In contrast, the
large-footprint LIDAR is greatly affected by the Gaussian distribution of laser en-
ergy within the footprint (Harding et al. 2001).

Research conducted to determine canopy structural attributes using discrete-
return LIDAR systems has focused on an individual tree-based approach (Maltamo
et al. 2004, Bortolot and Wynne 2005). High sampling density provides the possibil-
ity to recognize individual trees and attributes such as crown area, tree height, stem
diameter, and stem number. While much research using large-footprint LIDAR sys-
tems has been to derive structural canopy information using statistical methods, in
which features and predictors are assessed using regression and discriminant analy-
sis (Means et al. 1999, Lefsky et al. 1999, Dubayah and Drake 2000, Harding et al.
2001, Anderson et al. 2006), the small-footprint, high-density LIDAR data have
been analyzed with image processing methods, which utilize computer-vision tech-
niques to locate and measure the properties of individual trees (Popescu et al. 2003,
Maltamo et al. 2004, Bortolot and Wynne 2005, Andersen et al. 2006). Characteris-
tics of forest stands derived from discrete-return LIDAR systems have been found to
be correlated strongly to vegetation density, biomass, and timber volume using im-
age processing based retrieval methods (Maltamo et al. 2004, Bortolot and Wynne
2005). Næsset (2002) estimated several forest attributes with regression methods
using canopy density metrics which were computed as the proportions of both first-
and last-pulse laser hits above the 0,10, . . . ,90 quantiles of the height distributions
to the total number of pulses. However, individual stems in under-story vegetation in
dense canopies were difficult to detect using these methods (Maltamo et al. 2004).

Compared to forestry research, few studies have been reported on the extraction
of vegetation structure of low vegetation, such as reed, natural grassland, herba-
ceous vegetation, or low shrubs. Straatsma and Middlekoop (2006) report one study
that found only very poor relations between height distributions of laser scan data
and the vegetation density of low floodplain vegetation. A look-up table was estab-
lished to assign vegetation density values to areas with a specific vegetation height
range to enable roughness computation. Vegetation density determination from laser
scanning data thus remains a challenge. A detailed structural characterization of
intertidal marshes is particularly challenging, because sites typically have a com-
plex net of small channels and creeks among uniform and dense vegetation with
low-elevation relief. Accurate mapping of channels hidden by vegetation, areas of
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Fig. 16.5 Coastal-vegetation topography acquired by the EAARL system on March 5, 2004, in
Terra Ceia Aquatic and Buffer Preserve, located in the southeast coast of Tampa Bay, FL, USA.
(a) High-resolution digital georeferenced imagery of a section of the Preserve shows patches of
vegetated communities dominated by invasive species such as Australian pine, Brazilian pepper,
and needle grass. Native mangroves surround the many fresh and saltwater ponds in the region.
The submerged vegetation is primarily composed of seagrass on sandy substrates. Image courtesy
of TerraServer-USA, obtained using Global Mapper software. (b) Canopy height sub-aerial topog-
raphy derived from data acquired by the EAARL system. (c) Seamless bare-Earth and submerged
topography acquired by the EAARL system
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flooding, or the elevation of small mounds are of great importance to the functioning
of intertidal marshlands.

16.3.4 Submerged Topography

Airborne laser remote sensing has been successfully used in characterizing emer-
gent coastal vegetation communities. However, the challenge still remains to esti-
mate vegetation height and density for submerged vegetation from laser scanning
data. Airborne LIDAR Bathymetry (ALB) is a technique for measuring the depths
of moderately clear, nearshore coastal waters and lakes from a low-altitude aircraft
using a scanning pulse laser beam (Guenther 2007). Instruments that use a green-
wavelength laser, such as the EAARL system, can penetrate through relatively clear
water, but very little research has been conducted to determine the height of subma-
rine vegetation using ALB. Mapping submerged topography using LIDAR presents
several challenges and requires thorough understanding of the effect of the air/water
interface on the laser pulse and its scattering through the water column. The laser
transmit power is regulated in some ALB systems to allow eye-safe operation with
sufficient pulse energy for high signal-to-noise ratios by expanding the beam to il-
luminate a diameter of at least several meters at the water surface (Guenther 2007).
Another generic problem that must be solved is the handling of the several orders of
magnitude of amplitude dynamic range between strong water-interface returns and
the weak bottom returns. ALB is often optimal in shallow areas where boat-based
acoustic surveying is inefficient, dangerous, or impossible to undertake. Further, the
ability of an airborne LIDAR system to map submerged and sub-aerial topography
simultaneously in a single overflight allows for detailed and seamless mapping of
vegetation communities in coastal areas (Fig. 16.5). Recent advances in laser hard-
ware, in-flight LIDAR operation, and post-processing of waveform data from the
EAARL system present a viable solution to mapping submarine and terrestrial to-
pography using a short-pulse, green-wavelength LIDAR system.

16.4 Comparison with Other Technologies

Photogrammetry and Interferometric Synthetic Aperture Radar (IFSAR) are the
other remote sensing technologies capable of making topographic measurements.
A large variety of IFSAR, LIDAR, and photogrammetric sensors exist, and the
technology and performance for all three types of sensors are continuously im-
proving. Hence, only very general comparisons of the sensor characteristics are
presented. Photogrammetric sensors generate geo-referenced spectral and topo-
graphic data when operated with enabling technologies (GPS, IMU) and supporting
ground control information. Airborne photogrammetric surveys are conducted to
produce significant image overlap along each flight segment to allow stereo view-
ing for orthoimage production. An aerotriangulation process is generally required
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to combine the ground coordinates, image measurements, and exterior orientation
data to create orthoimage DEMs. IFSAR systems operate at microwave frequen-
cies (3–40,000 MHz) and determine the parallax of stereoscopic observations by
measuring the phase difference between signals received by two antennas spatially
separated in the cross-track plane (Hensley et al. 2007).

IFSAR and LIDAR are active sensors that can be flown in the day or night, while
photogrammetry requires daylight and optimum sun angle during the survey. LI-
DAR and IFSAR missions can be conducted in coastal regions during overcast
weather conditions. Planning considerations required when using IFSAR and LI-
DAR are primarily driven by tides and GPS satellite configuration, i.e., the effect of
sun angle is given lower priority as compared to photogrammetric surveys. IFSAR
has the additional advantage of not being affected by inclement weather and low-
level cloud cover, as long as conditions do not degrade the image formation process.
IFSAR systems are typically flown at higher altitudes allowing efficient mapping of
broad spatial areas.

In forested areas, the ability of LIDAR to obtain ground topography is far su-
perior to IFSAR or photogrammetric methods. Both IFSAR and photogrammetric
methods require the same surface to be “seen” by at least two independent images,
to allow stereoscopic viewing. In dense vegetation canopies, the same spot on the
ground is rarely seen from two different viewing angles, thereby making it nearly
impossible for the two independent images to “see” the same spot on the ground
beneath the canopy. In photogrammetry, true ground surface is usually determined
by manually selecting the ground surface heights and then extrapolating to other
portions of the canopied area. Heights measured by IFSAR systems are reflective
surface heights that may lie anywhere within the canopy, and although longer wave-
length systems penetrate deeper into the canopy, the precise location within the
canopy corresponding to the height measurement is not easily determined (Hensley
et al. 2007).

The integration of spectral imagery and LIDAR has the potential to improve the
extraction of forest information significantly. Laser data provide vertical informa-
tion on various layers through the canopy, including accurate ground topography,
whereas optical imagery provides more details about the spatial geometry and spec-
tral information usable for classification of tree species and health. In coastal forests,
simultaneous acquisition of aerial imagery and LIDAR can provide the necessary
spectral and three-dimensional canopy information to resource managers, especially
after major storm events. Even though most LIDAR surveys include a digital camera
for spectral image acquisition, these images are only used for visual inspection dur-
ing processing and quality control of topography products generated from LIDAR.
The mission planning considerations and optimal flight operations for airborne LI-
DAR and digital imagery surveys are considered different enough by commercial
vendors to fly these surveys independently. Nevertheless, the integration of multi-
spectral and LIDAR elevation data can provide canopy, sub-canopy, and habitat
classification in coastal regions ranging from marsh characterization in the littoral
zone (Morris et al. 2005) to dense and tall vegetation canopy structure information
on watersheds (Straatsma and Middlekoop 2006).
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16.5 Outlook

Recent advances in acquisition, processing, and visualization of remotely sensed
data have led to the availability of a broad range of techniques for the management
of coastal resources. Over the past decade, significant advances have been made in
using laser ranging to determine ground topography and vegetation structure. Sev-
eral studies reviewed in this paper show that vegetation heights of coastal forests and
bare Earth under different types of vegetation can be measured reliably. The laser
pulse must be able to proceed through gaps in the canopy for accurate estimation
of ground topography. As a rule of thumb, if on a bright sunny day, some amount
of sunlight can be seen on the ground beneath the canopy, then there is a very good
possibility that some laser pulses will reach the ground. If the density of vegetation
precludes any sunlight from reaching the ground, the laser pulse will not be able to
penetrate through the canopy. High pulse density increases the probability to find
any gaps in the canopy. Advances in computer storage hardware and electronics are
pushing commercial sensors toward higher sampling density, which also enables the
sensor to be operated at higher altitudes for increased swath width.

The time duration of the laser pulse affects the ability to distinguish between
successive reflections from different objects within the path of the laser illumina-
tion – short temporal-width laser pulses provide increased measurement accuracy
and enhanced multiple-return pulse resolution (Nayegandhi et al. 2006). Determin-
ing heights of short vegetation canopies is a more difficult problem due to the lack
of separation between the top of the vegetation and the ground. Small-footprint,
discrete-return LIDAR systems tend to overestimate the height of bare Earth due to
the inability to detect ground below herbaceous vegetation. The waveform resolv-
ing systems have a greater ability to detect bare Earth by analyzing the waveform in
post-processing software and detecting small inflections in the waveforms that are
not detected by discrete-return systems in real-time hardware. The software tech-
niques to detect these inflections in small-footprint systems have only been devel-
oped and applied to sample environments (Nayegandhi et al. 2006, Wagner et al.
2006). The analysis of large-footprint waveforms has also been conducted for re-
search purposes only and applied to specific target locations where the study was
conducted (Dubayah and Drake 2000). There is no commercial software package
that analyzes waveforms acquired by LIDAR systems. With the advent of commer-
cial small-footprint LIDAR systems (Wagner et al. 2006) and several other airborne
LIDAR manufacturing companies including a “waveform” mode to their product,
there will be an incentive for commercial software to be developed to glean more
information from waveform data.

The theoretical understanding of the relations that exist between forest structure
and the LIDAR backscatter return is still incomplete. LIDAR backscatter, whether
resolved as discrete return or waveform, is dependent on the reflectivity and orien-
tation of the target object. The canopy elements (i.e., branches, trunks, leaves) and
the ground each have different reflectance measures at the laser wavelength. Further,
the transmit pulse is uncalibrated, and the transmit energy often varies from pulse
to pulse. The effects of varied transmit energy and canopy reflectances minimally
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affect the ranging capability of the laser system. However, when laser intensity is
used in the computation of LIDAR-derived metrics, it is necessary to have better
understanding of these attributes. If the canopy and ground reflectance values were
known and the laser pulse were calibrated, waveform-resolving LIDAR systems
would be able to provide an absolute measure of canopy cover (Harding et al. 2001).
Currently, small- and large-footprint waveforms have only been used to derive a rel-
ative measure of canopy cover (Drake et al. 2002, Nayegandhi et al. 2006). The
intensity component of the laser return signal, if properly calibrated and radiomet-
rically corrected, could serve as an excellent tool to discriminate between different
types of vegetation cover.

While the absolute and calibrated measure of laser intensity to conduct land cover
classification is still being researched, the fusion of LIDAR data and other image
sources provides the necessary three-dimensional and spectral synoptic data at mul-
tiple scales to address key coastal vegetation issues. Several studies discussed in
this paper reveal the strong potential of using a combination of spectral and LIDAR
data for marsh characterization, wetland delineation, and floodplain management.
Boundaries between vegetation types can be generated from object-based classifi-
cation techniques using spectral data and metrics derived from LIDAR data.

Large-footprint, waveform-sampling LIDAR can characterize the structural
complexity and associated functional properties of natural landscapes relevant to
ecological investigations by providing vertical and volumetric profiles of forest
vegetation (Anderson et al. 2006). The reported accuracies for canopy height and
ground topography using large-footprint systems compare favorably to those re-
ported by small-footprint systems in most forested environments, except on slopes
and under short vegetation. Research using large-footprint LIDAR systems to pre-
dict forest stand structure attributes such as basal area and aboveground biomass
has yielded potentially significant results in assessing coastal vegetation commu-
nities; however, no specific study has been conducted in coastal communities us-
ing a large-footprint LIDAR system. Nevertheless, the results obtained from small-
footprint, waveform-resolving LIDAR systems that combine several small-footprint
laser pulses to create a synthesized large footprint reveal significant potential in
characterizing vegetation structure in coastal communities. It is expected that full
waveform digitizing of the return pulse is the future of airborne laser remote sens-
ing for vegetation structure mapping, as it provides a more detailed structure of
plant communities, more accurate range measurements, and extraction of more de-
tailed information from the data using custom post-processing methods. Further, re-
search sensors such as the EAARL system have illustrated the use of a short-pulse,
green-wavelength laser to map submerged and emergent vegetation structure simul-
taneously and create seamless topography products for the effective management of
coastal resources.

Acknowledgement The U.S. Geological Survey’s Coastal and Marine Geology Program funded
this investigation. The authors thank Monica Palaseanu-Lovejoy (Jacobs – USGS), Robert
Woodman (NPS), Barbara Lidz (USGS) and the anonymous referees for their comments and care-
ful review of this manuscript. Any use of trade names is for descriptive purposes only and does not
imply endorsement by the U.S. Government.



16 Assessment of Coastal-Vegetation Habitats Using Airborne Laser Remote Sensing 387

References

Andersen H, Reutebuch SE, McGaughey RJ (2006) A rigorous assessment of tree height mea-
surements obtained using airborne LIDAR and conventional field methods. Can J Rem Sens
32:355–366

Anderson J, Martin ME, Smith ML, Dubayah RO, Hofton MA, Hyde P, Peterson BE, Blair JB,
Knox RG (2006) The use of waveform LIDAR to measure northern temperate mixed conifer
and deciduous forest structure in New Hampshire. Remote Sens Environ 105:248–261

Baltsavias E (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm
54:199–214

Blair JB, Rabine DL, Hofton MA (1999) The laser vegetation imaging sensor: a medium-altitude,
digitization-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J Pho-
togramm 54:115–122

Bortolot Z, Wynne R (2005) Estimating forest biomass using small footprint LIDAR data: an
individual tree-based approach that incorporates training data. ISPRS J Photogramm 59:
342–360

Cobby DM, Mason DC, Davenport IJ (2001) Image processing of airborne scanning laser altimetry
data for improved river flood modeling. ISPRS J Photogramm 56:121–138

Cracknell AP, Hayes L (2006) Introduction to remote sensing, 2nd edn. Taylor and Francis, UK
Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel

JF, Prince S (2002) Estimation of tropical forest structural characteristics, using large-footprint
LIDAR. Remote Sens Environ 79:305–319

Dubayah RO, Drake JB (2000) LIDAR remote sensing for forestry. J Forest 98:44–46
Fowler R, Samberg A, Flood MJ, Greaves TJ (2007) Topographic and terrestrial LIDAR. In: Maune

DF (ed) Digital elevation model technologies and applications: the DEM users manual. Amer-
ican Society for Photogrammetry and Remote Sensing, Bethesda, pp 199–248

Gibeaut JC, White WA, Smyth RC, Andrews JR, Tremblay TA, Gutiérrez R, Hepner TL,
Neuenschwander A (2003) Topographic variation of barrier island subenvironments and as-
sociated habitats. Coastal sediments ′03: proceedings of the fifth international symposium on
coastal engineering and science of coastal sediment processes, American Society of Civil En-
gineers, CD-ROM
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Chapter 17
Measuring Habitat Changes in Barrier
Island Marshes: An Example from Southeastern
North Carolina, USA

Joanne N. Halls

The rate of change of back-barrier land cover types was computed by gathering,
rectifying, interpreting, and digitizing historical aerial photography (from 1938 to
1998) at Topsail Island in southeastern North Carolina. Marsh area has steadily
decreased from 1938 to 1998. To quantify the significance of the spatial changes,
cross-tabulation matrices were analyzed to create observed versus expected changes.
Results indicate that when upland gains, it replaces marsh; when upland loses, marsh
replaces it; when marsh gains, it replaces upland; when water loses, marsh replaces
it; and there was no clear pattern for what transitions when marsh is lost. A series of
tests were conducted to test the accuracy of the rectified photographs, the digitized
polygons, and the change detection results. The accuracy of the photointerpretation
and digitizing was greater than 80%. The digitized polygons were tested for de-
gree of crenulation, or curviness, and also line generalization tests were conducted
which indicated that the interpretation of the photographs was not a factor in the
results. Third, a fuzziness test (using derived epsilon bands) was used to identify
true changes in the marsh habitats versus positional changes, or sliver polygons.
Results indicated that rectification of aerial photography (with an RMS error of less
than 1), interpretation, and digitizing did not result in erroneous results. These ac-
curacy assessment techniques are useful for testing the validity of change detection
and spatial landscape indices.

17.1 Introduction

Traditionally the disciplines of demography, ecology, and environmental science
have performed research independently. However, recently there has been more in-
terdisciplinary research where these disciplines have collaborated using GIS and
remote sensing technologies. In coastal environments, GIS and remote sensing have
been utilized to address the relationship between population growth and health of
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coastal ecosystems (Benfield et al. 2005, Conway 2005, Phinn and Stanford 2001,
Ramessur 2002). The purpose for this chapter is to describe methods for mapping
and analyzing barrier island salt marshes.

17.1.1 Population Growth in Coastal North Carolina

Population growth and decline varies throughout the United States. One popular
method for analyzing the changing population is the national Census of Population
which occurs every 10 years. From 1980 to 1990, the urban areas of the South,
West, and coastal Northeast gained population while large Midwestern cities and
rural areas substantially declined. From 1990 to 2000, population change was still
largest along the coasts, but the non-coastal cities of Las Vegas, Phoenix, Dallas,
and Chicago also grew substantially.

In North Carolina, population growth has been steady, as reflected throughout the
southern United States. However, across the state there are spatial patterns of pop-
ulation decline in the rural areas, large population growth in the largest urban cen-
ters of Charlotte and Raleigh, and population growth along the southeastern coast
(Fig. 17.1). Along the southeastern coast, Wilmington has experienced rapid growth
in the city, bedroom communities, and surrounding beaches (Fig. 17.2). The urban
area has spread from the City of Wilmington to include a majority of the surround-
ing counties spreading along major transportation routes and the coastal retirement
destinations. The study area chosen for investigation is a typical developed barrier

Fig. 17.1 North Carolina change in population, by Census Block Group, from 2000 to 2005
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Fig. 17.2 Southeastern North Carolina change in population, by Census Block Group, from 2000
to 2005

island located in southeastern North Carolina. Topsail Island was first developed pri-
marily with vacation homes with few year-round residents. However, the population
has steadily increased over time and currently has a much larger resident population
comprised of retirees and working professionals (Fig. 17.3).

Fig. 17.3 Location of Topsail Island, North Carolina. The island straddles two counties, Onslow
and Pender, which can lead to difficulties in locating comprehensive aerial photography. The por-
tion of the island that was studied is highlighted in a series of 0.5 km width boxes from the Surf
City bridge south to New Topsail Inlet
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17.1.2 Coastal GIS and Remote Sensing

Each local planning agency is GIS savvy and has developed several data layers
for monitoring growth and mapping infrastructure. For example, the City of Wilm-
ington and New Hanover County have an Internet mapping website for people to
visualize a variety of data and also a link to download data for use by other GIS
users. Both Brunswick and Pender counties also have a planning and GIS depart-
ment where they report to the county commissioners on growth, zoning, infrastruc-
ture and other mandated activities.

Other than local government GIS data, remote sensing imagery is another pos-
sible data source for investigating land use/land cover change. For example, one
popular satellite system is Landsat (the older Multispectral Scanner and the more
recent Thematic Mapper and enhanced Thematic Mapper) which is useful for map-
ping both urban and natural areas. There are many types of commercial satellite
and airborne imaging sensors, but the most popular in the United States are Landsat
and SPOT. SPOT, a French satellite, is most appropriate for mapping urban areas
because it has a relatively high spatial resolution (color is 20 m by 20 m cell size
and black and white is 10 m by 10 m cell size) which is needed when discerning
urban objects such as small buildings, roads, etc. Landsat (such as Landsat 5 and 7)
is better for identifying natural habitats because of its ability to discriminate vari-
ous types of vegetation, although the spatial resolution is coarser (30 m by 30 m cell
size) (Alphan and Yilmaz 2005, Donoghue and Mironnet 2002, Phinn and Stanford
2001, Shi et al. 2002, Ucuncuoglu et al. 2006, Vanderstraete et al. 2006). There
is also aerial photography which is an excellent source of data that enables more
detailed mapping and can provide a longer historical record than satellite imagery
(Al-Bakri et al. 2001, Higginbotham et al. 2004, Jones 2006, Zharikov et al. 2005).
However, with the large scale of aerial photography this translates to small cell size
and consequently much more data. So, aerial photography is usually analyzed when
the study area is relatively small.

To investigate how satellite imagery and aerial photography can be utilized for
mapping land cover change, two studies were conducted where Landsat 5 imagery
was used to investigate change in New Hanover County and aerial photography was
used to map changes in marsh habitats at Topsail Island.

17.2 Physical Geography of Barrier Islands

Barrier islands and coastal salt marshes are complex ecosystems that move and
change through time in response to many factors. For example, hurricanes bring
strong winds, rain, and storm surge which can greatly change the distribution of
surficial deposits (Nordstrom et al. 2006). Through time the islands can migrate and
inlets change their positions.

There are many reasons for investigating how back-barrier marsh systems change
through time. For example, they provide protection for the mainland during storms
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by absorbing the tidal surge and providing a stabilizing environment for storm over-
wash. These environments are also economically and environmentally important
ecosystems because they provide fish nursery habitats, bird nesting and foraging
sites, and act as a filter for chemicals entering the ecosystem. In the southeastern
United States salt marshes are typically found in tandem with barrier islands. This
ecosystem includes the beach, dunes, vegetated zones, maritime forest, swampy ter-
rains, tidal flats, and low-lying salt marshes (Bates and Jackson 1984). Researchers
have identified several factors related to marsh stability: geomorphology, elevation,
vegetation, hydrologic conditions, frequency of tropical storms, tidal range, and sed-
iment supply (Goodbred and Hine 1995, Davidson-Arnott et al. 2002). If estimates
are correct and sea level rise is increasing at 1.9 cm/year (Davis 1994), then the salt
marshes in this region require a substantial amount of sediment, either from over-
wash or other transport mechanisms, to sustain their existing size.

In addition to the geologic and geomorphic processes of marsh formation, there
has been a steady increase in coastal development along all coasts of the United
States (Titus 1990) and it is yet to be determined what impact this urbanization
has on back barrier marshes (Bertness et al. 2004). Therefore, a study was un-
dertaken to map back barrier marshes in order to quantify change as well was
compute various spatial measures to identify patterns in how these marshes have
changed through time. To understand how barrier island marsh habitats change
through time Topsail Island, located in southeastern North Carolina, was inves-
tigated. The island is part of a chain of barrier islands in the geologic system
known as the Georgia Bight. Topsail Island is a 30km barrier island that was
initially used as a military rocket testing site in the 1940s and is now primar-
ily single-family vacation homes but has an increasing population of year-round
residents.

17.3 GIS Database Development

It has become quite common to utilize the tools available in remote sensing and
GIS software for mapping coastal habitats such as salt marshes (Zharikov et al.
2005, Dech et al. 2005, Jupiter et al. 2007). For Topsail Island, the GIS develop-
ment began with a detailed survey of all local, regional, state, and federal agencies
that commonly acquire aerial photography. Many dates of photography were iden-
tified, however only those dates where photography covered all of the back bar-
rier marshes, were of similar scale (1:12,000 and 1:20,000), were at similar tidal
stages, and same time of year were used in the study. The most recent photography
was 1998, it was already rectified into orthophotography, and was near-infrared.
All other years (1938, 1949, 1956, 1971, and 1986) were in analog format which
required scanning and rectifying. After several tests at varying resolutions, it was
determined that scanning the aerial photographs at 400 dpi was sufficient for the
scale, interpretation and digitization of the marshes.
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17.3.1 Interpretation and Digitizing

Once in a GIS, each of the photographs were interpreted, digitized and then com-
pared. Although the scanning produced pixels with 1 m spatial resolution, the scale
of the photography dictated the minimum mapping unit based on standards devel-
oped by the US Geological Survey. Therefore, the aerial photography was precisely
mapped where the smallest marsh polygon interpreted and digitized was less than
0.1 hectare. The land cover classification scheme was: marsh, upland, water, and
barrier island (Fig. 17.4). To aid in the interpretation process, field work was con-
ducted where hundreds of sites were visited and a comparison was made between
the real land cover types (predominantly wetlands) and the photography. The field
work was imperative for becoming comfortable interpreting the imagery. Although
photointerpretation and digitizing are labor intensive and time consuming, several
image processing classification techniques were tested but did not produce accept-
able results. For example, unsupervised and supervised analyses were tested using
a variety of cluster algorithms and training site selection trials. Unfortunately, the
image processing algorithms were not able to distinguish marshes from water with
any consistency because the photography had little spectral variety. Perhaps future
tests using object-oriented classification rather than pixel spectral analysis will yield
improved habitat mapping (Laliberte et al. 2004, Lathrop et al. 2006).

17.3.2 Accuracy Assessment of Photointerpretation and Digitizing

Performing an accuracy assessment is an important part of any change detection
analysis or other type of temporal spatial analysis (Couto 2003; Hughes et al.
2006). After all of the photographs for the 6 years were digitized and checked for
logical consistency and topological correctness an accuracy assessment was con-
ducted where 140 points were randomly located in the study area and the digitized
land cover classes were compared to the aerial photography. Using an error ma-
trix, an overall accuracy greater than 80% was computed for each year which was
acceptable.

17.4 Change Detection

The back barrier marsh habitats of Topsail Island changed from 1938 to 1998, but
the changes were not systematic across the study area (Fig. 17.4). When summa-
rizing the total area of marsh, it steadily decreased from 1938 to 1998 (Fig. 17.5).
In fact, by simply calculating regression statistics between marsh area and time,
there was a strong negative linear relationship between the area of marsh and time
(y = −2.112x + 4739, R2 = 0.961). However, these summary results do not fully
describe how the marsh has changed through time. There are several analytical
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Fig. 17.4 Topsail Island interpreted and digitized habitat maps in (a) 1938, (b) 1949, (c) 1956, (d)
1971, (e) 1986, and (f) 1998
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Fig. 17.5 Area of marsh from 1938 to 1998

techniques that were employed to further investigate how the Topsail marshes have
changed including change detection analyses and landscape fragmentation.

To compare how the land cover changed from one time period to the next transi-
tion matrices, also referred to as cross-tabulation matrices, were created. The tech-
nique used in this study is known as the post-classification comparison where the
input data layers have been independently classified/interpreted and then the results
are compared, or overlaid (Jensen 1996). Using this approach, classification matri-
ces document how each land cover class changed from one time period to the next
(Table 17.1). The diagonal cells (shown in grey) contain the area (in hectares) that
did not change from time 1 to time 2 and conversely, the off-diagonal cells docu-
ment the area that changed from time one to time two and how the area changed.
So, the diagonal values can be considered persistent whereas the off-diagonal val-
ues document the areas that have transitioned from one class to another. Although
documenting the area of change is useful, it is best to represent this change in per-
centages so that further statistical analyses can be computed (Table 17.2). The total
percentage column is the summation of each habitat row in time 1 and likewise
the total percentage row is the summation of each habitat column in time 2. The
percentage of habitat lost is the summation of the off-diagonal row values and the
percentage of habitat gained is the summation of off-diagonal column values. The
total net change is the difference between the total in time 1 and total in time 2.
However, the net change does not describe how the habitats have persisted versus
changed, or transitioned, to another habitat type.

The change detection cross-tabulation matrices revealed that 71% (22.47/31.75)
of the marsh in 1938 remained marsh in 1949; this dropped to 65% in 1956, 58% in
1971, 65% in 1986 and 73% in 1998. To visualize how the marshes have changed
through time, we can track the persistent marsh (marsh that remained from time 1
to time 2), the marsh that didn’t remain (lost marsh) and new marsh (marsh that was
gained) (Fig. 17.6). Although it is interesting to map the persistent, gained, and lost
marsh there isn’t a clear spatial pattern. From a vulnerability standpoint, it would
be best if we could clearly decipher a pattern of marsh loss versus gain (Fig. 17.7).
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Table 17.1 Cross-tabulation matrices for each date of aerial photography (in hectares)

1949
marsh upland water 

marsh 449.2 28.6 156.8
upland 45 215.7 20.719

38

water

marsh
upland

water

marsh
upland

water

marsh
upland

water

marsh
upland

water

118.1 17.6 947

1956
marsh upland water 

402.6 36.5 176.7

42.6 202.9 13.519
49

 

143.9 24.3 961.6

1971
marsh upland water 

338.8 53.9 192.2

47.6 180.2 33.519
56

192.9 28.7 922.9

1986
marsh upland water 

378.3 49.7 151.8

38.3 205.1 17.319
71

 

134.8 17.1 1,003.70

1998
marsh upland water 

405.6 34.4 114.1

17.4 239.9 14.619
86

80.6 10 1,087.20

However, there clearly isn’t a consistent spatial pattern to marsh loss other than that
there is more loss than gain. So, further analysis into how the habitats are changing
is necessary in order to more clearly understand the changing landscape.

As can be seen in the cross-tabulation matrices (Table 17.2), the amount of persis-
tence in each habitat class far exceeds the amount of change from one habitat class
to another (the diagonals are larger than the off-diagonals), but this is to be expected
in change detection studies. So, although the percentage of persistence is greater
than the percentages that have transitioned to other classes, it is important that we
investigate these transitions in order to determine which transitions are creating the
greatest impact to the landscape. In Table 17.2, the conversion of marsh to water was
an average of 7.9% over the entire study area. The next largest transition was water
converting to marsh (averaging 6.71%), but the largest transitions don’t necessarily
mean these are the most important, or indicative, of how the landscape has changed.
To investigate the habitat change further, there is another technique that can mea-
sure how the landscape has changed by quantifying the amount of habitat that has
changed to another class, also known as the amount of class swapping (Pontius et al.
2004). The equation to calculate the amount of swapping is:

S j = 2∗ min(gain, loss) (17.1)
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Table 17.2 Cross-tabulation matrices for each date of photography (in percent)

1949 

marsh upland water 
total 
1938 

Loss 

marsh 22.47 1.43 7.85 31.75 9.28 

upland 2.25 10.79 1.04 14.08 3.29 

19
38

 

water 5.91 0.88 47.38 54.17 6.79 

total 1949 30.63 13.10 56.26 100.00  

Gain 8.16 2.31 8.88   

1956 

marsh upland water 
total 
1949 

Loss 

marsh 20.08 1.82 8.81 30.72 10.64 

upland 2.13 10.12 0.67 12.92 2.80 1949 

water 7.18 1.21 47.97 56.36 8.39 

total 1956 29.39 13.15 57.46 100.00  

Gain 9.30 3.03 9.49   

1971 

marsh upland water 
total 
1956 

Loss 

marsh 17.02 2.71 9.65 29.38 12.36 

upland 2.39 9.05 1.68 13.13 4.07 1956 

water 9.69 1.44 46.36 57.49 11.13 

total 1971 29.10 13.20 57.70 100.00  

Gain 12.08 4.15 11.34   

1986 

marsh upland water 
total 
1971 

Loss 

marsh 18.95 2.49 7.60 29.05 10.09 

upland 1.92 10.28 0.87 13.06 2.79 1971 

water 6.75 0.86 50.28 57.89 7.61 

total 1986 27.62 13.62 58.75 100.00  

Gain 8.67 3.35 8.47   

1998 

marsh upland water 
total 
1986 

Loss 

marsh 20.24 1.72 5.69 27.65 7.41 

upland 0.87 11.97 0.73 13.57 1.60 1986 

water 4.02 0.50 54.26 58.78 4.52 

total 1998 25.13 14.19 60.68 100.00  

Gain 4.89 2.22 6.42   

where, S j is the amount of swapping of class j and gain and loss are the percentages
of greatest gain and largest loss from class j to all other classes. Table 17.3 contains
the overall percentage change, the percentage of gain and loss, the total change (gain
plus loss) and the amount of swapping among classes. The following conclusions
can be drawn from this table:

• The net change reveals the overall loss of marsh habitat in all time periods.
• Water and marsh change more than upland.
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Fig. 17.6 A subset of the Topsail study area showing marsh that has persisted, gained, and lost for
(a) 1938 to 1949, (b) 1949 to 1956, (c) 1956 to 1971, (d) 1971 to 1986, and (e) 1986 to 1998

• Although the overall percentage of marsh area has decreased through time
(Fig. 17.5) there has been a much greater percentage of marsh swapping (gain
and loss) across the study area.

17.4.1 Observed Versus Expected Change

Although it is customary to describe how much change has taken place between
time periods, a further investigation into how much change is significant can
be accomplished by calculating the difference between expected and observed
change (Pontius et al. 2004). To determine the importance of the off-diagonals (or
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Fig. 17.7 A portion of the study area showing (a) all marsh areas lost over each time period and
(b) marsh areas that were gained in each time period. Although there was more marsh lost than
gained, there is no clear spatial pattern to the gains and losses
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Table 17.3 Percent net change, gains/losses, and amount of swapping between land cover habitats
for each date of aerial photography

Net Change Gain Loss Total Change Swap

1938 to 1949 Marsh −1.12 8.16 9.28 17.44 16.32
Upland −0.98 2.31 3.29 5.60 4.62
Water 2.09 8.88 6.79 15.67 13.58

1949 to 1956 Marsh −1.33 9.30 10.64 19.94 18.61
Upland 0.23 3.03 2.80 5.83 5.60
Water 1.10 9.49 8.39 17.88 16.78

1956 to 1971 Marsh −0.28 12.08 12.36 24.44 24.16
Upland 0.08 4.15 4.07 8.22 8.15
Water 0.21 11.34 11.13 22.47 22.26

1971 to 1986 Marsh −1.42 8.67 10.09 18.77 17.34
Upland 0.56 3.35 2.79 6.13 5.57
Water 0.86 8.47 7.61 16.08 15.22

1986 to 1998 Marsh −2.52 4.89 7.41 12.30 9.78
Upland 0.62 2.22 1.60 3.81 3.19
Water 1.90 6.42 4.52 10.94 9.04

transitions), we need to calculate the expected transition percentages and compare
these to the observed to identify transitioning trends. To calculate the expected gains,
the percentage of gain is distributed across the habitat types according to the overall
percentages of these categories in time 1. Likewise, the expected losses were cal-
culated using the overall distribution of losses in time 1. The equations to calculate
expected gains and losses were:

gi j = (c+ j− c j j)
(
ci+

/
100− c ji

)
(17.2)

li j = (ci+ − cii)
(
c+ j

/
100− c+ i

)
(17.3)

where the expected gain in class i from class j(ci j) is the expected amount of gain
of class j in proportion to the amount of the losing class i. The expected loss in class
i from class j(li j) is in proportion to the amount of the gaining class i.

Using the cross-tabulation matrices, the observed and expected percentages were
computed to identify which observed gains were greater or less than expected
(Table 17.4) and which losses were also greater or less than expected (Table 17.5). In
Table 17.4, if the difference between the observed and expected gains was positive,
then there was more gain in the new transition class than was expected. Conversely,
if the difference was negative, then there was less gain than expected. In Table 17.5,
if the difference between the observed and expected losses was positive then there
was more loss than expected. Conversely, if the difference was negative then there
was less loss than expected.

To identify which expected and observed habitat transitions clearly illustrated
a systematic pattern we divided the difference between observed minus expected
(deviation) by the expected (this is analogous to computing a chi square statistic).
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Table 17.4 Cross-tabulation matrices for each date of photography with calculations for the expected gains in each land cover class. The column headings
correspond to: Obs is the percent observed, Exp is the expected gain (in percent), Dev is the deviation (or absolute value) of the difference between expected and
observed, and Dev/Exp is the ratio of the deviation to percent expected for each habitat type and time period

1949
Marsh Upland Water

1938 Obs Exp Dev Dev/Exp Obs Exp Dev Dev/Exp Obs Exp Dev Dev/Exp
Marsh 22.47 22.47 0.00 0.00 1.43 0.85 0.58 0.68 7.85 12.82 −4.97 −0.39
Upland 2.25 1.68 0.57 0.34 10.79 10.79 0.00 0.00 1.04 2.73 −1.69 −0.62
Water 5.91 6.48 −0.57 −0.09 0.88 2.51 −1.63 −0.65 47.38 47.38 0.00 0.00

1956
1949 Marsh Upland Water
Marsh 20.08 20.08 0.00 0.00 1.82 0.81 1.01 1.23 8.81 13.48 −4.66 −0.35
Upland 2.13 1.74 0.39 0.22 10.12 10.12 0.00 0.00 0.67 2.81 −2.14 −0.76
Water 7.18 7.57 −0.39 −0.05 1.21 2.75 −1.54 −0.56 47.97 47.97 0.00 0.00

1971
1956 Marsh Upland Water
Marsh 17.02 17.02 0.00 0.00 2.71 0.78 1.93 2.47 9.65 16.40 −6.75 −0.41
Upland 2.39 2.25 0.15 0.06 9.05 9.05 0.00 0.00 1.68 3.50 −1.82 −0.52
Water 9.69 9.84 −0.15 −0.01 1.44 3.73 −2.29 −0.61 46.36 46.36 0.00 0.00

1986
1971 Marsh Upland Water
Marsh 18.95 18.95 0.00 0.00 2.49 0.77 1.72 2.23 7.60 12.28 −4.68 −0.38
Upland 1.92 1.60 0.32 0.20 10.28 10.28 0.00 0.00 0.87 2.63 −1.76 −0.67
Water 6.75 7.08 −0.32 −0.05 0.86 2.69 −1.83 −0.68 50.28 50.28 0.00 0.00

1998
1986 Marsh Upland Water
Marsh 20.24 20.24 0.00 0.00 1.72 0.74 0.98 1.32 5.69 9.57 −3.88 −0.41
Upland 0.87 0.92 −0.05 −0.05 11.97 11.97 0.00 0.00 0.73 2.11 −1.39 −0.66
Water 4.02 3.97 0.05 0.01 0.50 1.61 −1.11 −0.69 54.26 54.26 0.00 0.00
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Table 17.5 Cross-tabulation matrices for each date of photography with calculations for the expected losses in each land cover class. The column headings
correspond to: Obs is the percent observed, Exp is the expected loss (in percent), Dev is the deviation (or absolute value) of the difference between expected and
observed, and Dev/Exp is the ratio of the deviation to percent expected for each habitat type and time period

1949
Marsh Upland Water

1938 Obs Exp Dev Dev/Exp Obs Exp Dev Dev/Exp Obs Exp Dev Dev/Exp
Marsh 22.47 22.47 0.00 0.00 1.43 1.75 −0.32 −0.18 7.85 11.44 −3.59 −0.31
Upland 2.25 1.16 1.09 0.94 10.79 10.79 0.00 0.00 1.04 2.13 −1.09 −0.51
Water 5.91 4.76 1.15 0.24 0.88 2.03 −1.15 −0.57 47.38 47.38 0.00 0.00

1956
1949 Marsh Upland Water
Marsh 22.47 22.47 0.00 0.00 1.43 1.98 −0.55 −0.28 7.85 13.07 −5.23 −0.40
Upland 2.13 0.95 1.18 1.24 10.12 10.12 0.00 0.00 0.67 1.85 −1.18 −0.64
Water 7.18 5.80 1.38 0.24 1.21 2.59 −1.38 −0.53 47.97 47.97 0.00 0.00

1971
1956 Marsh Upland Water
Marsh 22.47 22.47 0.00 0.00 1.43 2.30 −0.87 −0.38 7.85 15.19 −7.35 −0.48
Upland 2.39 1.37 1.03 0.75 9.05 9.05 0.00 0.00 1.68 2.71 −1.03 −0.38
Water 9.69 7.66 2.03 0.27 1.44 3.47 −2.03 −0.58 46.36 46.36 0.00 0.00

1986
1971 Marsh Upland Water
Marsh 22.47 22.47 0.00 0.00 1.43 1.90 −0.47 −0.25 7.85 12.44 −4.59 −0.37
Upland 1.92 0.89 1.03 1.15 10.28 10.28 0.00 0.00 0.87 1.89 −1.03 −0.54
Water 6.75 5.10 1.66 0.33 0.86 2.51 −1.66 −0.66 50.28 50.28 0.00 0.00

1998
1986 Marsh Upland Water
Marsh 22.47 22.47 0.00 0.00 1.43 1.40 0.03 0.02 7.85 9.14 −1.30 −0.14
Upland 0.87 0.47 0.40 0.86 11.97 11.97 0.00 0.00 0.73 1.13 −0.40 −0.35
Water 4.02 2.89 1.13 0.39 0.50 1.63 −1.13 −0.69 54.26 54.26 0.00 0.00
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By comparing the expected to the observed, for both gains and losses the following
statistics clearly stand out:

• When upland gains, it replaces marsh.
• When upland loses, marsh replaces it.
• For almost all of the time periods, when marsh gains, it replaces upland.
• When water loses, marsh replaces it.
• There was no clear pattern for what transitions when marsh is lost.

Interestingly, of the marshes that did not remain as marsh in the next time period,
most of this area became water, not upland. In the areas that were upland, some
converted to marsh (e.g. 16% in 1938 and 1956) and to a lesser extent, some con-
verted to water. Lastly, water generally stayed the same from one time period to the
next, but when the water did change it mostly became marsh, not upland.

This change detection analysis demonstrated the usefulness of gathering this in-
formation in order to understand where the barrier island environment has changed
through time. The marsh habitats at Topsail Island have generally decreased since
the 1930s, but there have also been some areas where the marsh has increased
(Fig. 17.7).

17.5 Predicted Marsh Change

There are additional techniques, known as landscape metrics, which can be em-
ployed to attempt to predict future landscapes. Three of these (Area, Area/Perimeter,
and Fractal Dimension) were tested in this study (Lovejoy 1982). Although fu-
ture research may investigate additional spatial indices, these three techniques were
tested and compared. The first two indices, Area and Area/Perimeter, are simple
calculations where Area ranks the total area, or size, of the marsh polygons and
Area/Perimeter is a ranking of the division of Area by the Perimeter of the polygon
(Lovejoy 1982). The hypothesis is that the larger the polygon the more likely it will
be present in the future and likewise the larger the ratio of area to perimeter will
be more likely to be present in the future (a circle has the largest Area to Perimeter
ratio). The fractal dimension index uses fractal geometry to measure the degree of
edginess so the higher the score the more convoluted the polygon (Mandelbrot 1982,
Olsen et al. 1993). Conversely, the lower the score the more round the polygon and
so with regards to marshes, the rounder a polygon the less likely it is to erode. The
equation to compute the fractal dimension index was:

S =
2ln(Pr/4)

ln(A)
(17.4)

where: S = fractal dimension, Pr = perimeter, and A = area.
The three techniques were computed for each year and compared with the subse-

quent time period to see how well the techniques predicted the future gain and loss
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in marshes. Each spatial index was ranked into 5 classes to statistically compare
with the change detection results.

An example of the Fractal Dimension Index is given in Fig. 17.8. Note that in this
figure, the green polygons are marshes that were predicted to have a low probability
of remaining and in fact were not present in the next time period. The dark blue
marshes were predicted to remain and they did. This type of predictive measure
isn’t perfect, but it is useful to gain an understanding of how areas have changed
and where the fractal dimension index can be used as a predictive tool.

The spatial indices were applied to each year and statistical analysis concluded
there was no difference in the Area versus Area/Perimeter indices and these indices

Fig. 17.8 An example of the Fractal Dimension Index for predicting future marsh changes from
1938 to 1949
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Table 17.6 Probability of each spatial index predicting presence or absence of marshes in the next
time period. A/P is the Area/Perimeter index and FD is the Fractal Dimension index. Rankings are:
(1) low probability of marsh remaining but they did, (2) low probability of remaining and they did
not, (3) high probability of remaining but they didn’t, and (4) high probability of remaining and
they did

Rank A/P Area FD

1938 to 1949
1 0.5 0.8 11.9
2 0.2 0.6 25.4
3 29.4 29.0 18.0
4 69.9 69.5 44.7
1949 to 1956
1 2.0 2.2 11.2
2 1.1 0.9 18.4
3 33.1 32.9 23.9
4 63.8 64.0 46.5
1956 to 1971
1 1.6 1.6 18.2
2 0.6 0.7 21.6
3 42.6 42.6 26.0
4 55.2 55.1 34.2
1971 to 1986
1 2.0 2.1 10.8
2 0.9 1.0 23.0
3 33.0 32.9 24.2
4 64.1 64.0 42.0
1986 to 1998
1 1.8 1.7 9.3
2 0.9 1.0 24.1
3 25.5 25.6 18.0
4 71.8 71.8 48.6

predicted marsh survival that ranged from 55 to 72% (Table 17.6). Interestingly, al-
though the Fractal Dimension index had a lower probability of predicting marshes
that remained through time (ranging from 34 to 50%), this index outperformed the
others by more correctly predicting which marshes would not remain through time.
Future research will expand on these results by incorporating other landscape mea-
sures into the predictive tools.

17.6 Sensitivity Assessment

The habitat change detection and marsh spatial indices have provided useful infor-
mation about the changing barrier island environment, but what confidence can we
place on these results? Even though we have an overall photointerpretation accuracy
greater than 80%, does the level of detail, or number of vertices in the polygons,
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influence the quantification of change? To answer these questions, several smooth-
ing functions were applied to a subsection of the study area, computed the curvi-
ness, or degree of crenulation, and compared these data with the original polygons
to see if these new data would derive statistically different results. A smoothing
algorithm was applied to the polygons for each year using increasing distances be-
ginning with 5 m and ending with 70 m. With each new data set the three indices of
Area, Area/Perimeter, and Fractal Dimension were calculated. Statistical analyses
using chi square determined that there were no significant differences between the
original polygons and the smoothed data; therefore, it was concluded that the level
of detail did not influence the spatial indices.

To test whether or not the precision of interpretation and digitization impacted
the change detection results, epsilon bands were created which were then used to
remove polygons from the change detection results (Mas 2005). The sizes of the
epsilon bands were the average and standard deviation widths of the sliver poly-
gons which were then used to remove polygons. In the Mas (2005) study it was
determined that this method increased the accuracy of the change detection matrix.
In the Topsail data, the change from 1938 to 1949 was used to test the amount of
change to see if sliver polygons statistically impacted the change detection results.
The average width (1.44m) and standard deviation (0.4) of the sliver polygons was
calculated by dividing the area by half the perimeter (Mas 2005, p. 621). Therefore,
a buffer distance of 1.84m was applied to the 1938–1949 change dataset to create the
epsilon bands. The polygons within the buffer were deleted by merging them with
the adjacent polygons that had the longest shared boundary. The process was then
repeated using a distance of 2 standard deviations (2.24 m). Two new classification
matrices were created and compared to the original change matrix. Unlike the Mas
(2005) study, the epsilon band matrices were not statistically different from each
other or the original matrix. Therefore, it was concluded that creating epsilon bands
for removal of sliver polygons did not alter the change detection results. However,
it is prudent for all change detection studies to perform this analysis to verify the
accuracy of the interpretation and digitization process.

17.7 Conclusions and Further Research

Traditional land use/land cover change models have relied on urban growth models,
such as cellular automata, to predict future landscape scenarios. However, in many
coastal areas the increase in population is not due to economics (such as employ-
ment opportunities) but rather the climate, natural resource amenities, recreation,
cultural opportunities, and retirement lifestyle, provide ample reasons to migrate to
the coasts.

Remote sensing and GIS techniques can be used to measure land cover change,
model the future, and disseminate information. Several scales, from continental to
local, and several types of data, from the Census to aerial photography, have been
analyzed to illustrate a variety of GIS techniques and provide some insight into one
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coastal location. It is clear from these analyses that population growth and urbaniza-
tion has occurred in southeastern North Carolina where natural, undeveloped, areas
have been converted to urban (including transportation, residential, commercial, and
industrial uses). Where there was growth in urban land, it generally replaced agri-
culture which has been found in similar coastal environments (Alphan and Yilmaz
2005, Chen et al. 2005).

This study has computed land use/land cover change and has determined that
the change is real and not an artifact of either the data collection or processing
methodologies. Other researchers have conducted similar change detection analy-
ses of coastal environments, including using aerial photography (Lu et al. 2004,
Frederiksen et al. 2004, Field and Philipp 2000, Higginbotham et al. 2004, Feist and
Simenstad 2000). So, it can be concluded that the techniques used here are widely
supported in the research community. In fact, the success of mapping emergent veg-
etation has led to an increase in the number of studies mapping submersed vegeta-
tion (seagrasses) (Meehan et al. 2005, Lathrop et al. 2001, Pasqualini et al. 2001).
In addition, several indices have been implemented, tested, and appear to be able to
provide some insight into the changing morphology of back-barrier marshes; how-
ever a robust model of the spatial dynamics of marshes in the Topsail Island study
area has yet to be created. One step in that direction would be the calculation of Rel-
ative Errors of Area which is a tool for assessing the accuracy of landscape indices
(Shao and Wu 2004).

Although we determined that traditional interpretation and on-screen digitizing
was the most appropriate technique for this study, there are several image process-
ing techniques that may be tested in future research. For example, cross-correlation
analysis, neural networks, and object-oriented classification have been found to be
useful methods in land use change analyses (Calvo et al. 2003). These techniques
may provide good mapping results, would be repeatable, and less time consuming
in comparison to photointerpretation and digitizing.

There are several additional research projects being developed to further un-
derstand the marsh environment. First is the development of a predictive land-
scape model. Although there are numerous types of models, essentially spatially
explicit models can be grouped into process-based models and spatial pattern mod-
els (Castella and Verburg 2007, Schroder and Seppelt 2006, Perry and Enright
2006). One method of spatial pattern modeling uses the historical probability of
change and this would be useful to implement in this type of environment since
there are no clearly defined rules for land cover change (Pontius and Batchu 2003).

Dissemination of these data is being developed at an Internet GIS website
(www.uncw.edu/gis) where users can view all of the years of data. While this project
demonstrated the techniques for quantifying spatial changes through time, there are
certainly other data sources that could be gathered and tested (Phinn et al. 2000).
Lastly, multi and hyper spectral imagery will be analyzed at several study areas
in North Carolina where marsh habitats will be mapped by species. Using the en-
hanced capabilities of these types of imagery may provide more information about
the species health and spatial characteristics that we have not previously mapped
using aerial photography (Filippi and Jensen 2006, Li et al. 2005, Pengra et al.
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2007). One drawback, of course, is the spatial resolution of satellite imagery can
lead to mixed pixels which can be difficult to classify (Donoghue and Mironnet
2002). However, using the existing aerial photography with the satellite imagery
may yield improved mapping results.
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Chapter 18
Mapping Fire Scars and Marsh Recovery
with Remote Sensing Data

Elijah Ramsey III, Amina Rangoonwala, Frank Baarnes and Ruth Spell

Two coastal marshes exhibiting dramatically different patterns of seasonal biomass
turnover were monitored with satellite and aircraft-based sensors and ground and
helicopter-based site-specific measures that portrayed the canopy structure and op-
tical reflectance. The seasonal maidencane fresh marsh completely recycled annu-
ally, producing a very different temporal response to burning than did the seasonally
stable black needlerush saline marsh. For the black needlerush marsh, we used atmo-
spherically corrected, normalized optical image data transformed to a vegetation in-
dicator. When optical data were limited, time-since-burn prediction was constrained
to the first year since burn, but single frequency (C band) and polarization (VV)
Synthetic Aperture Radar image data showed good correspondence, extending the
time-since-burn prediction to ∼900 days. For the maidencane marsh, we focused
on multiple date Landsat Thematic Mapper (TM) image data and nearly concur-
rent site-specific canopy reflectance and structural measurements. In spring, these
measures of nonburnt, winter burnt, and spring burnt marshes indicated that form
and magnitude could differentiate variations in marsh burn history, but by summer,
nonburnt and burnt marshes were inseparable. To overcome these inseparabilities
and provide a full marsh burn history, we overlaid TM winter, spring, and summer
classifications. The produced map successfully depicted complex changes in the
maidencane marsh that resulted from late fall to spring wildfires.

18.1 Introduction

Each year over a million acres of Department of the Interior lands (Bureau of Land
Management, National Park Service, Bureau of Indian Affairs, and U.S. Fish and
Wildlife Service) are burnt by prescribed and wildfires. Although public awareness
is normally focused on fires occurring in forests or shrublands surrounding densely
populated urban centers, coastal and inland marsh fires can risk lives and property
and destroy critical wildlife habitat and ground cover necessary for erosion control,
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Fig. 18.1 More than 100 firefighters battled a brush fire that swept through a salt marsh in
the Cleveland suburb of Mentor before it reached nearby homes. “If you were standing here
when the flames were 50 feet in the air and they were coming to the road where the fire-
fighters were making their stand, that’s pretty dramatic,” said Mentor Fire Chief Rich Har-
vey. Mentor Marsh was once a freshwater marsh, but salt contamination starting in the 1950s
resulted in the saline-tolerant reed grass, phragmites, proliferating there permission requested
(http://www.cnn.com/2003/US/Midwest/04/28/ohio.brush.fire/)

and unique to coastal marshes, suppression of devastating storm surges. The marsh
fire in suburban Cleveland in 2003 dramatically illustrated the threat to human pop-
ulations that are increasing abutting marshes (Fig. 18.1). As the responding Fire
Chief said, “It’s a beautiful place to live until it’s on fire.” Fueled by a salt-tolerant
reed grass (Phragmites) containing an oily hydrocarbon, the fire reached 50 feet
high and sent thick black clouds hundreds of feet into the air. Once a freshwater
marsh in the 1950s, salt contamination allowed the invasion and proliferation of the
highly flammable Phragmites.

Replacement of the freshmarsh with Phragmites illustrates how different man-
agement options (Beukema et al. 1999) can substantially influence fire risk and de-
struction. Build-up of fuel or replacement with more flammable materials and the
lack of moisture in these marsh environments can dramatically increase fire danger
(flammability) and smoke emissions and result in high risk to human populations. In
May of 2007, southern Georgia and northern Florida, specifically the Big Bend area
of Florida, experienced numerous life threatening grassland fires causing substan-
tial loss in property and habitat, escalating pulmonary complications, and raising
visibility concerns along transportation corridors. Similar fire events have occurred
throughout Florida to North Carolina over the past 40 years.

As the suburban Cleveland marsh fire and recent devastating grassland fires
in the Southeastern United States demonstrate, there is a critical need to develop
monitoring methods that will decrease the risk to humans and facilities in these
densely populated environments. At the same time that improved monitoring meth-
ods are needed to assess the spatial variability of marsh and grassland fire danger
and fuel distribution (related to fire behavior), the ecological impact of these fires
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and fire abatement practices and the part these fires play in influencing fire risk
and destruction must be better understood (e.g., Angeler et al. 2006). Grassland
fires are a major component of managed and nonmanaged (wildfire) burning prac-
tices occurring from the open prairie to the coastal wetlands (marshes) (Johnson
and Knapp 1993). Each year immense but unknown acreages of fresh to saline Gulf
of Mexico coast marshes are burnt (Hoffpauer 1968, Wilson 1968, Ramsey et al.
1992a, 1993, 1994a). These fires range widely in spatial extent and intensity with
multiple burns occurring over time causing interspersion and juxtaposition of burn
histories.

Little information exists concerning the effect of fire on wetland grasses (marsh)
(Johnson and Knapp 1993, Taylor et al. 1994), and little, if any information on the
number, extent, and intensity of marsh burns in the Gulf region. Further, marsh man-
agement practices that include fire management may not produce intended results
and could be detrimental to sustaining the desired marsh function (Whigham 1999,
Gabrey and Afton 2001, Gabrey et al. 2001, Smith et al. 2001). To properly man-
age wetland resources as related to fire danger, fire risk, and ecological impact, it
is important that we fully understand how the grassland responds to common fire
management practices. However, even though direct assessment techniques can be
used to monitor local effects, these surveys to assess the extent and spatial variabil-
ity of a burn are constrained by time, personnel, costs, and site accessibility. Further,
unless field observations are performed strictly adherent to accepted standard pro-
cedures, quantitative and repeatable measurements are not obtained (Belluco et al.
2006). To circumvent these limitations in temporal and spatial measurements, we
continue to develop remote sensing tools to detect, inventory, and monitor areas of
burnt marsh. The development and implementation of these tools provide critical
inputs to fire behavior and ecological models that could be used to understand the
effects of fires on grassland development and how these developments influence fire
danger and risk.

18.1.1 Data Sources

For more than 15 years, we have collected ground-based, aircraft, and satellite mea-
surements at numerous sites throughout coastal Louisiana and the Big Bend area
of Florida (e.g., Ramsey et al. 2006). Objectives of these collections were not de-
signed or funded for burn detection and monitoring; however, ground-based and
image data collections encompassed marsh burns and recovery at numerous field
sites that included at least four dominate marsh types throughout the Big Bend re-
gion of Florida and coastal Louisiana. Ground-based measurements included time-
sequences of canopy structure and biomass estimators and canopy reflectance from a
helicopter platform of burnt and nonburnt marsh sites. Within the same time period,
passive visible and near infrared (VNIR), shortwave infrared (SWIR), and active
microwave at multiple frequencies and polarizations (e.g., X, C, and L bands: HH
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and VV “like” polarizations and the HV or VH “cross” polarization pairs) image
data were collected from sensors that are currently available to the public. Perti-
nent image data sources included satellite (e.g., Landsat Thematic Mapper (TM),
ERS Synthetic Aperture Radar (SAR), Shuttle Imaging Radar-C (SIR-C) SAR, and
aircraft image data (NAVY P3 Orion and USGS STAR-1 SAR’s, and NASA The-
matic Mapper Simulator (TMS)). Unless specified otherwise, the passive visible and
near infrared (VNIR) to shortwave infrared (SWIR) image data (0.40μm to 2.5μm,
for example Landsat TM or ETM+) were calibrated to radiance, corrected for at-
mospheric influences and changes, and normalized to ground reflectance. ERS-1
(CVV) and SIR-C (L and C multiple polarization) SAR image data were calibrated
with software provided by the Canadian Center of Remote Sensing (Ramsey et al.
1994b, Ramsey 1995) and NASA Jet Propulsion Laboratory (JPL), respectively. The
NAVY P3 Orion (L multiple polarization) and USGS STAR-1 (XHH) SAR image
data were converted from slant to ground range and a relative calibration applied to
the P3 Orion SAR image data (Ramsey et al. 1999). Calibrated radar images also
explicitly contained differences related to spatial resolutions (1 m, 12 m, and 25 m)
and incident and look angles. Incident angles ranged from steep (for example about
22◦ in the case of ERS-1 SAR) to mid range angle around 40◦ in the case of P3
Orion SAR (mid range included the St. Marks National Wildlife Refuge coverage).
Azimuth was primarily shore-parallel and look angles were toward the east or to-
ward the west in all SAR collections.

18.1.2 Monitoring Marsh Burn Recovery with Optical Satellite
Sensor Image Data

Remote sensing can economically monitor biophysical characteristics over large
areas, and generate data on various spatial and temporal scales by using a wide
variety of sensors and sensor platforms (Lulla and Mausel 1983). It is the repeti-
tive ability; however, that has the greatest potential in fire management. The repet-
itive ability, or temporal monitoring, allows patterns to be revealed in the data that
may be transformed into quantitative determinations of fuel quantity and fire danger
and provides a means for monitoring the recovery of marsh (or grasslands) from
fire. From a remote sensing point of view, monitoring vegetation canopy recov-
ery involves detecting and separating normal change and variability from abnormal
changes and variabilities (e.g., Ramsey and Rangoonwala 2005, 2006). Although
the definition varies about what marsh canopy changes and variabilities are both
pertinent to estimating the vegetation canopy recovery and amenable to remote
sensing, when the monitoring period extends over seasons, the seasonal variabil-
ity must be considered. In these cases, the obvious question is whether or not the
canopy vegetation seasonal changes and variabilities can mask those that are a con-
sequence of the impact agent. For this reason, we will describe one situation where
the marsh changes little with season and another where the marsh totally recycles
yearly.
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18.1.3 Monitoring Marsh Burn Recovery with Site-Specific
Canopy Reflectance and Backscatter

The canopy reflectance or backscatter is that portion of the remotely sensed signal
most directly related to the vegetation canopy properties. Broadly and in aggre-
gate, the vegetation canopy includes the plant canopy and background (Lorenzen
and Jensen 1988, Spanglet et al. 1998, Penuelas and Filella 1998). Dominantly, the
plant canopy comprises the plant leaf spectral properties and the canopy structure
(e.g., height, orientation), intimately coupling the leaf reflectance (or backscatter)
and canopy structure in the remote sensing signal. Variability in plant leaf optical
properties or canopy structure can reflect changing biophysical forces defining the
natural landscape (Ramsey et al. 1992b,c, 1999, 2001). In the later stage of marsh
recovery, it is likely that changes in the leaf optical properties will primarily con-
trol VNIR to SWIR canopy reflectance variabilities (e.g., Ramsey and Rangoonwala
2004, 2005, 2006), while canopy structural changes will more likely be measurable
with radar data (e.g., Ramsey 1998, Ramsey et al. 1999, Ramsey 2005). From a re-
mote sensing perspective, to provide the subtle marsh discrimination necessary for
mapping and monitoring burn impact and recovery above natural variability, the sep-
arate influences of plant leaf spectral, canopy structural, and background variability
on the remote sensing signal must be estimated. Reliance on visual appearance does
not provide an acceptable means to detect subtle changes related to recovery or
a metric to measure the recovery progression against (Ramsey and Rangoonwala
2005, 2006).

To minimize these complications and to fully control target location complica-
tions in linking canopy spectral properties to image data (e.g., Vanderbilt and Grant
1985, Ranson et al. 1985, Deering and Eck 1987, Gross et al. 1988, Huete and
Jackson 1988), we used ground-based and helicopter-based field radiometers for
collecting data (Hobbs and Shennan 1986, Ramsey et al. 1992a,b,c, 1993, Spell and
Ramsey 1991, 1993). Further, our helicopter-based recordings were at near nadir
during clear skies and at times of higher sun elevations to simulate most satellite
operations and minimize sun-view influences (Kimes 1983). Generation of canopy
reflectance spectra in this way was analogous to moving the satellite sensor a few
hundred meters above the canopy and controlling for sunlight illumination and at-
mospheric variability (e.g., Ramsey and Nelson 2005, Ramsey and Rangoonwala
2006). Even with controlled measurements, multiple vegetation canopy contributors
(Colwell 1974, Myneni et al. 1995) each with a varied relationship and importance
to burn occurrence complicate linking the marsh burn recovery to canopy reflectance
or backscatter. Even if the image pixel contains only a single plant species (similar
leaf spectral properties), variability in the background and at least one component of
the canopy structure, the plant structure, will be combined into the remote sensing
signal (Allen and Richardson 1968, Ranson et al. 1985, Huete and Jackson 1988,
Peterson et al. 1988, McCloy et al. 1993, Spanglet et al. 1998). Changes in canopy
structure and background (e.g., surface water and soil water content) occur natu-
rally in these marshes, mainly reflecting inundation gradients (Hardisky et al. 1986),
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and are more visually apparent in the earlier stages of burn recovery progression
(e.g., Ramsey 1995, Ramsey et al. 1999).

18.2 Monitoring Burn Recovery in a Seasonally Stable Marsh

Our seasonally stable marsh example includes a Juncus romerianus (black needle-
rush) saline marsh in the Big Bend area of coastal Florida. In our studies and those
of others (William and Murdoch 1972, Hopkinson et al. 1978, Stout 1984), black
needlerush marshes of the Gulf coast wetlands tend to have little and varied change
in canopy live and dead biomass or structure related to seasons. In a study moni-
toring the burn recovery of a Juncus romerianus (black needlerush) (Ramsey et al.
2002), we observed a depressed vegetation index (VI) within the first year following
the burn and after that a higher than normal VI for at least two years (Fig. 18.2 left)
(see Tucker 1979 for the relevance of the VI transform to vegetation condition). At
13 sites throughout the marsh, the time-since-burn extracted from the St. Marks Na-
tional Wildlife Refuge (NWR) burn records and personal observations was related
to corresponding image data (PCI 1998, Ramsey et al. 1999, Ramsey et al. 2002).

The VI was based on the atmospherically corrected and normalized TM im-
age data and the Normalized Difference Vegetation Index (NDVI) transform. Heute
et al. (1985) and Heute and Jackson (1988) showed that NDVI based on reflectance
data (atmospherically corrected and normalized) performed as well or better than all
other VI’s transforms in portraying vegetation canopy differences and changes. The
VI transform of the TM responses from a single burn site showed a response pattern
was observable with the VNIR-SWIR sensor (Fig. 18.2 left). Combining all burn
sites and corrected and transformed NDVI data from the nine TM image dates, we
observed marsh recovery was divided into four general regions; preburn (phase 1),
immediate postburn (0 to ∼360 days, phase 2), rapidly increasing biomass (1–3
years, phase 3), and asymptotic plateau (>3 yrs, phase 4) (Fig. 18.2 right). As in the

Fig. 18.2 Data from nine Landsat Thematic Mapper images collected on 09/18/90, 02/09/91,
08/20/91, 02/28/92, 08/06/92, 03/18/93, 08/25/93, 03/05/94, and 09/13/94 were transformed to
NDVI. (left) The NDVI trend at one marsh burn site (solid symbol) and its associated non burnt
control (open symbol). (right) The NDVI temporal trend extracted from all 13 burnt marsh sites
(Ramsey et al. 2002, Fig. 18.3, p. 90 with kind permission of Springer Science and Business Media)
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single site comparison to its associated non burnt control (Fig. 18.2 left), the NDVI
in phase 2 was lower and phase 3 was higher as related to the average NDVI (0.40)
of non burnt controls. These NDVI temporal trends in response to marsh burns was
apparent even though canopy spectral reflectances differences between burnt and
non burnt marshes were low (i.e., <2–5%) throughout the VNIR spectral range.

In a following comparison with TM image data, we combined the calculated VI
data into a single regression predictor of the time-since-burn. First, we regressed the
combined TM-NDVI data from the suite of nine TM dates with the time-since-burn
from all 13 sites up to 365 days since burn (n = 18, p < 0.01, R2 = 0.60) (Fig. 18.3
left). Second, we regressed TM-NDVI data from a single TM date with time-since-
burn restricted to one year since burn (n = 9, p < 0.05, R2 = 0.88) (Fig. 18.3 right).

Fig. 18.3 (left) All nine TM-NDVI image dates (listed in Fig. 18.2). (right) A single TM-NDVI
image collected on 28 February 1992

18.2.1 Single-Date Monitoring of Marsh Burn Recovery

As illustrated in the mapping of burn recovery (Fig. 18.2), repeatability of satel-
lite and aircraft remote sensing measurements is critical in determining patterns in
the image data that can be quantifiably linked to landscape process. However, or-
bital characteristics (Landsat collects image data over the same area every 16 days)
combined with prevalent cloud cover or extreme atmospheric turbidity in the sub-
tropical to tropical regions results in the collection of very few useful images per
year (Ramsey and Laine 1997). This inability to provide consistent monitoring fun-
damentally restricts passive VNIR to SWIR remote sensing systems’ ability to de-
termine and monitor wetland condition and change. A second restriction of these
passive sensor systems is the very limited penetration of fully developed vegetation
canopies. This lack of penetration results in the collection of little or no information
from beneath the top of the canopy (Ramsey et al. 1998b, Ramsey 1998, 2005).
To minimize weather restrictions and maximize recovery monitoring, we exam-
ined single-date image collections as burn recovery predictors. In conjunction with



422 E. Ramsey et al.

minimizing our reliance on multiple passive VNIR to SWIR collections of accept-
able quality, we examined the ability of different SAR satellite systems to provide
the burn history. SAR sensor systems nearly eliminate collection restrictions due
to weather, allow nighttime reconnaissance, and most often increases canopy pene-
tration compared to passive VNIR to SWIR sensor systems. In both passive VNIR
to SWIR and SAR single-date image analyses, we used the same coastal Juncus
roemerianus burn sites as used in the suite of nine TM images (Fig. 18.2, Ramsey
et al. 2002). Instead of the time-since-burn of each burn site varying with-respect-
to the suite of temporal TM image dates, the single-date image analyses used the
time-since-burn to the sensor response correlation strength (goodness of fit, R2) as
an indicator of sensor type usefulness in monitoring burn recovery.

Continuing with the seasonally stable marsh, a single-data NASA TMS image
was collected on 8 July 1992 and calibrated with coefficients supplied by NASA
(Fig. 18.4 left). The TMS image was neither atmospherically corrected nor nor-
malized to reflectance. Even though not corrected or transformed, the NDVI image
data from a single date NASA TMS image were significantly related to time-since-
burn with a goodness of fit of R2 = 0.48 (n = 9, p < 0.02); although the tendency
toward an exponential trend suggests saturation of the TMS-NDVI response with
time. With the same set of burn sites and the set prediction level we obtained with
operational optical data, we produced similar prediction simulations with available
and operational SAR image data. The single date (X band HH polarization) USGS
STAR-1 SAR was not significantly related to time-since-burn (p < 0.05), with or
without normalization by the relevant per site control (Ramsey 1998). Of the six
ERS-1 SAR images collected and processed of the St Marks NWR, Florida, the
July, August, October, and November SAR responses were significantly related to
time-since-burn (p < 0.1). Estimated from the explained variance statistic, the best
relationship was between the July ERS-1 SAR image data and the time- since-burn

Fig. 18.4 (left) NASA TMS collected on 8 July 1992. Not atmospherically corrected or normalized
to reflectance. (right) A single date ERS-1 SAR image collected in July 1993 (dB refers to decibel
units)
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(R2 = 0.71, n = 10, p < 0.01) (Fig. 18.4 right). Normalization of the July data by
site-specific control decreased the correspondence in July, increased correspondence
in October, and left the relationships unchanged in August and November regression
analyses. The SIR-C C band and HH polarization normalized by the CHH control
(n = 10, p < 0.05, R2 = 0.42) and the L and C band cross polarization (HV) differ-
ence (LHV-CHV) (n = 10, p < 0.1, R2 = 0.32) exhibited significant relationships
with time-since-burn (graphs not shown). Excluding one site from the LHV-CHV
and time-since-burn regression increased the explained variance from 32% to 71%
and changed the significance from p < 0.10 to p < 0.05.

18.2.2 Site-Specific Canopy Reflectance and Structure Related
to Burn Recovery

As an example of canopy reflectance related to burn recovery, canopy spectra col-
lected over a non burnt and a burnt black needlerush marsh sites were compared (see
Ramsey and Nelson (2005) and Ramsey and Rangoonwala (2006) for details con-
cerning canopy reflectance generation) (Fig. 18.5). The non burnt and burnt marsh
sites portrayed in Fig. 18.5 were within similar marsh zones (Ramsey et al. 1998a)
in order to minimize differences related to normal and hydrologic variabilites. As il-
lustrated in the pictures in Fig. 18.5, the mature marsh contains more dead material
than the recovering marsh. The more flattened spectral response across the VNIR

Fig. 18.5 (top) Representative ground pictures of a black needlerush marsh site that was burnt and
(bottom) a series of canopy reflectance spectra of a non burnt (J4) and burnt (J3) black needlerush
marsh sites. In both top and bottom series the leftmost picture and graphic portrays before burn,
the center – just after burnt, and the rightmost – within 1 year after burnt. Canopy reflectances were
derived from light measurements from a helicopter platform and on the ground (ground resolution
about 20 m) (Ramsey et al. 1992a, 1993; Spell and Ramsey 1993)
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as exhibited in the before versus one year after burn spectra is also indicative of
a higher concentration of dead material in the vegetation canopy. Excluding these
differences between the before and one year after spectral pairs related to biomass
composition, burnt and non burnt spectral differences were similar for both spec-
tral pairs.

Noted earlier, this close correspondence from about 2% to 5% of the burnt and
non burnt spectra across the VNIR reflectance complicates the burn recovery moni-
toring in these black needlerush marshes. As illustrated in Fig. 18.2, however, marsh
burn monitoring until full recovery in this fairly stable marsh is possible by em-
ploying multiple image dates containing high fidelity data. In addition, Figs. 18.3
and 18.4 indicate that if restricted to the first year since burn, single date recovery
estimation is possible with high fidelity satellite optical data and somewhat possible
with non corrected aircraft optical image data. However, a saturation of the TMS-
NDVI response with time-since-burn was indicated (Fig. 18.4 left). Importantly,
single date satellite radar image data collected outside of flooding periods was also
highly predicted of the time-since-burn (Fig. 18.4 right). This variable radar re-
sponse most likely indicated a change in canopy structure that occurred with burn
recovery. To more directly evaluate the changes in canopy structure accompanying
marsh burn recovery, we isolated and plotted changes in light-canopy attenuation
with recovery as an indicator of marsh structural changes (Fig. 18.6) (Ramsey et al.
2004).

Light penetration curves parallel canopy spectral changes (Figs. 18.5 and 18.6).
The marsh canopies were very similar before the burn and highly different directly
following the burn occurrence; however, the parallel similarity ends there. The pen-
etration curves shown after one year and 16 months after burn (Fig. 18.6 rightmost)
still portray differences in the non burnt and burnt canopy structure. This longer
term canopy structure response is in stark contrast to the high similarity and low
magnitude differences obtained in the canopy reflectance progression of marsh burn
recovery. As illustrated in the cartoon series of Fig. 18.6 (top), the canopy gains both
density and height with time-since-burn. This is clearly portrayed in the light pene-
tration series (Fig. 18.6 bottom). The relatively high differences in light penetration
after one year-since-burn indicated that radar, as a more direct indicator of marsh
canopy structure, would be more responsive to documenting canopy changes that
accompany marsh burn recovery. Another feature illustrated in the cartoon series
(Fig. 18.6 top) is the canopy overall orientation change from primarily a vertical to
a more mixed vertical and horizontal orientation as the marsh recovers. The change
in dominate canopy orientation with recovery was based on St. Marks NWR field
observations (Ramsey et al. 1999).

18.2.3 Marsh Burn Recovery Related to Polarimetric Radar

We tested the ability to capture this canopy orientation change with recovery by ap-
plying polarimetric radar image data (Ramsey et al. 1999). Following Elachi (1987),
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Fig. 18.6 (top) An illustration of regrowing black needlerush marsh recovering from a burn. The
arrows represent percent light penetration from the top-of-canopy (TOC) to the marsh surface. The
leftmost cartoon portrays recent regrowth, the center within 1 year, and the rightmost within 2 to 3
years after burn. (bottom) A series of canopy-light attenuation curves representing light penetration
with depth. These graphics depict measurements collected from the same non burnt (J4) and burnt
(J3) black needlerush marsh sites depicted in Fig. 18.5. The leftmost graphic portrays before burn,
the center just after burn, and the rightmost within 1 year after burn. Light penetration profiles were
generated from 22 measurements at each height along 30 m transects

we predicted that changes in the preferred orientation of the canopy with recovery
would be observable as changes in the strength of interaction, and thereby in the
amplitudes, of vertical and horizontal polarimetric send and return combinations
from the recovering burnt marsh (e.g., Fig. 18.7 right). As shown in Fig. 18.7(left),
absorption increases as the wave polarization is more aligned with the target orienta-
tion, and conversely absorption decrease as the wave and target orientations become
more orthogonal. Another way to look at this absorption trend is that interaction of
the wave and target increases as alignment increases. In general, this interaction can
take on various forms primarily partitioned following Kirchoff’s law into whether
the plant material absorbs, transmits, or reflects the impinging radiation. From this
diagram (Fig. 18.7 left) and our field observations, we expected that in the earlier
stages of regrowth, a vertical send and receive (VV) would most interact and HH
would least interact with the mostly vertical canopy, and VH interactions would be
most related to the amount of canopy biomass (Ramsey 1998, 2005). At later stages
of regrowth recovery, VV interactions would decrease while HH and VH interac-
tions would increase as the upper canopy included a greater mixture of orientations
and plant material. The upper canopy biomass increase would effectively block pen-
etration of the radar into the lower canopy more dominated by vertical components.
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Fig. 18.7 (left) After Elachi (1987, Fig. 6-5, p. 170, with permission of John Wiley & Sons, Inc.)
(Absorption ——; Depth of Penetration- - - -). (right) NAVY P3 Orion SAR image data collected
and normalized over nine black needlerush marsh burn sites (Ramsey et al. 1999). The ordinate
depicts the VV return normalized by the VH return. In this case, VH is used to indicate the change
in canopy biomass. VH increased with burn recovery (Ramsey et al. 1999)

As shown in Fig. 18.7(right), VV return amplitudes did decrease with black
needlerush canopy regrowth and recovery (Ramsey et al. 1999). Not shown but also
documented in Ramsey et al. (1999), HH and VH return amplitudes increased with
time-since-burn. To obtain the high correspondences, the mean radar polarimetric
amplitude of each site was first normalized by a nearby non burnt marsh site. Ratios
of the normalized polarimetric amplitudes were used to diminish surface returns
most prominent in the earliest stages of recovery and additionally to decrease the
influence of biomass increase accompanying the marsh recovery (e.g., Fig. 18.7
right). With normalizations, the P3 Orion polarimetric SAR provided a time-since-
burn prediction of black needlerush marsh recovery of around 1000 days (Ramsey
et al. 1999). This time interval matched that predicted by the multiple TM burn
marsh series obtained by Ramsey et al. (2002) and shown in Fig. 18.2 (left). As
previously stated, this long-term recovery of Gulf coast black needlerush marsh was
suggested but not documented by earlier field researchers (Hopkinson et al. 1978).

18.3 Monitoring Burn Recovery in a Yearly Turnover Marsh

Our annual marsh example includes a Panicum hemitomon (maidencane) fresh
marsh in the coastal zone of Louisiana. As shown in our studies (e.g., Ramsey
et al. 1992b,c, 2004), maidencane marshes in coastal Louisiana completely recycle
from one year to the next. Canopy green-up begins in March to April and obtains
full canopy regrowth by June. Senescence starts in late September to late October
leading to a complete lack of live canopy plant material by January to February.
During the latter period of canopy senescence and into the spring green-up much
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of the accumulating dead material can be carried away by freshwater flushing and
some possibly lost to in-situ decomposition. By mid summer, the regrown canopy
is most often nearly devoid of dead or dying plant material. This phenological de-
velopment contrasts sharply with the more perennial black needlerush marshes of
the Gulf coast wetlands that we have shown have little and varied change in canopy
live and dead biomass or structure related to seasonal changes. As a comparison to
the more seasonally stable black needlerush marshes, we describe the response of
a maidencane marsh situated well within the fresh marsh zone of coastal Louisiana
and outside of Gulf of Mexico salinity influences (Chabreck 1970). From the set
of Louisiana freshmarsh data, the sites and data acquisition times were chosen to
best illustrate the spectral and structural response of the marsh to being burnt. The
discussions are limited to three sites (TH1=burnt between the start and end of the
study; TH4=burnt pre-study; TH5=unburnt throughout the study), and partitioned
between different methods used to monitor the marsh status: satellite (thematic map-
per imagery-TM), and ground-based measurements (canopy reflectance and light
attenuation). Canopy reflectance spectra were chosen to best correlate with times of
available TM imagery; however, light penetration data were acquired about a year
later in sites of similar burn histories.

18.3.1 Site-Specific Canopy Reflectance and Structure Related
to Burn Recovery

Canopy reflectance spectra of three maidencane marsh sites were calculated from
upwelling radiance collected from a helicopter platform and downwelling irradi-
ance measurements measured at the ground surface in December 1990, March 1991,
and July 1991 (Fig. 18.8). December and July upwelling radiance spectra were nor-
malized by using pre-flight downwelling irradiance spectra, while March spectra
were normalized by using simultaneously recorded downwelling irradiance spectra.
Thus, in interpreting the canopy reflectance data, the March data are more credible;
however, the form and magnitude of the December and July spectra follow field
observations of canopy changes and changes in the uncorrected (atmospheric) TM
imagery obtained near these dates. Additionally, similar grass canopies exhibited
similar canopy reflectance spectra, and spectra acquired on March 9 and 18, but
normalized with preflight data, closely followed March 4 canopy spectra. Finally,
site markers were not in place during the December and March helicopter collec-
tions; thus, reoccupation locations were not exact, especially at site TH5.

Canopy reflectance spectra acquired in December are spectrally nondistinct.
Spectra associated with sites TH1 and TH5 depicted dead, non burnt maidencane,
whereas the burnt marsh at site TH4 was in the very early stages of recovery (green
shoots just beginning to appear). Marsh at site TH4 was burnt after the November
TM collection but before the December helicopter site-specific collections. Spectra
in March showed the early appearance of a near-infrared (NIR) plateau and abrupt
red to NIR amplitude shift (red-edge) at sites TH1 and TH5 and a more defined
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Fig. 18.8 (top) A typical progression of burnt (winter–black, spring—green) and non burnt
(winter—brown [no live material], spring—green-up [mixture of dead and live material]) Pan-
icum hemitomon (maidencane) fresh marsh in the coastal zone of Louisiana. (bottom) A similar
progression as shown in the top pictures illustrated in the canopy reflectance spectra progression
(the locations of TH4, TH1, and TH5 are shown in Fig. 18.10)

NIR plateau and red-edge associated with site TH4 as new growth appeared in the
marsh. Physically, the difference between non burnt marsh at sites TH1 and TH5
and recently burnt maidencane at site TH4 was the addition of dead material (light
brown stalks) at the non burnt sites, while only black stubble remained as back-
ground at the burnt site. By July, the spectra associated with the three sites were
generally similar, small differences remain in the amplitude that may or may not
have been significant. However, the concurrence of the spectra in July was deceiv-
ing. A site occupation on March 18 revealed the marsh at site TH1 had been burnt
sometime after March 9 (the previous field occupation). On March 18 the canopy
reflectance spectrum associated with site TH1 almost exactly overlaid the spectrum
related to marsh canopy at site TH4 during the December helicopter collection. By
July, only small differences existed between canopy reflectance spectra associated
with sites TH1 and TH5, while spectra associated with TH4 exhibited slightly lower
amplitudes, especially in the NIR wavelengths.

Typical progression of light penetration curves beginning at the time of burn and
extending until the canopy reached maturity less than one year later is illustrated
in Fig. 18.9. As in the stable marsh discussion, the light penetration curves depict
the change in marsh structure. In the case of this turnover marsh, however, the en-
tire canopy biomass from previous year disappears as the marsh reaches maturity
normally by mid to late summer (Spell and Ramsey 1991, Ramsey et al. 1993). In
general, the regrowth of a maidencane marsh begins in late March to early April.
Nearly vertical green shoots of maidencane begin to emerge from the black back-
ground in the burn, whereas taller dead and the shorter new growth are mixed at
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Fig. 18.9 A typical
progression in light
attenuation profiles for a
Panicum hemitomon
(maidencane) fresh marsh in
the coastal zone of Louisiana
(Ramsey et al. 1992a, 2004).
Note February and March
measurements were at zero
canopy depth (soon after
burnt). Light attenuation
increases through July then
begins to decrease from
September onto December.
Site TH4 is depicted (canopy
reflectance is illustrated in
Fig. 18.8 and the site is
located on Fig. 18.10). Error
bars associated with each data
point depict plus/minus two
standard errors (95%)

the non burnt sites (Fig. 18.8). In general by mid summer, winter burnt and non
burnt marsh canopies have obtained similar heights and light attenuation profiles;
the burnt canopy structure has fully recovered. At marsh sites burnt after winter,
summer canopy light attenuation profiles can be steeper than in non burnt marshes
indicating a less dense canopy or possibly a more vertical canopy structure in marsh
canopies impacted by seasonally later burns (Ramsey et al. 1993, 2004).

18.3.2 Satellite Optical Image Data and Site-Specific Burn
Recovery Monitoring

Classified maps were generated from November 1, 1990, March 9, 1991, and July
31, 1991 TM scenes (Fig. 18.10a). The area is centered at latitude 90.861◦ and lon-
gitude 29.478◦ and covers about 11.6 km (east/west) and 9.9 km (north/south). The
March and July scenes were coregistered to the rectified November scene. Classifi-
cations were accomplished by first using a simple spectral algorithm to cluster the
brightness values related to the six reflectance bands, and subsequently attaching
the cluster signatures to assumed landcovers by using knowledge based on field oc-
cupations of the area. On the maps, the areas immediately to the west, south, and
southwest of Lake Theriot encompassed sites occupied on the ground. Figure 18.10a
depicts approximate locations for sites TH1, TH4, and TH5.

No burnt maidencane marsh areas were visible on the November TM imagery
(Fig. 18.10a). Classes were limited to those easily definable: maidencane marsh,
open water, and shrub or upland (Fig. 18.10b). In the March image, marsh ar-
eas (burnt and non burnt) were not always separable from shrub or upland areas
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Fig. 18.10 A and B—November, C and D—March, and E an F—July. A, C, and E are non classi-
fied color composites of TM bands 4, 3, 2. B is the November classified TM image; blue is water,
green non marsh, and yellow non burnt maidencane marsh. In classified images B, D, and F, yellow
is non burnt and red burnt is marsh and black is non marsh. G composites B, D, and F. Yellow is
non burnt marsh November to July, grey is burnt in March not July, purple July not March, and red
is burnt in March and July

(Fig. 18.10c and d). Thus, in order to facilitate differentiation between burnt and
non burnt marsh in the March and July TM images, the classified November image
was used to mask-out all non-maidencane marsh in these images before classifica-
tion. Thus, only brightness values of the six TM reflectance bands associated with
maidencane marsh areas – determined from the November classification – were en-
tered into the classification algorithm. This procedure was valuable in separating



18 Mapping Fire Scars and Marsh Recovery with Remote Sensing Data 431

classes of landcovers found to be spectrally similar relative to the variance of the
entire data set (Jensen et al. 1987, Ramsey and Laine 1997).

The March classified image showed burnt and non burnt maidencane marsh ar-
eas (Fig. 18.10d). Mixed within the marsh burnt class were older (already regrow-
ing) and more recent burns (both since November 1990). Within the maidencane
marsh, recent burnt marshes (typified by TH4—Fig. 18.8 [December]) were associ-
ated with low returns (brightness values), and older burnt marshes (TH4—Fig. 18.8
[March]) with higher returns in the NIR wavelengths. Non burnt marshes (typified
by sites TH1 and TH5—Fig. 18.8 [March]) were associated with higher returns
throughout the wavelength range compared to those associated with burnt marshes.
Additional burning continued following the 9 March TM collection as is illustrated
in the July classified image (Fig. 18.10f). The July burn map (and field spectra)
revealed that new burning –since the March 9 image – had occurred primarily ad-
jacent to Lake Theriot (typified by TH1–Fig. 18.8 [December and March]) and in
the southwest corner of the marsh study area. Canopy reflectance spectra (Fig. 18.8)
related to these new burnt marshes (TH1) and to non burnt marshes (TH5) sug-
gest little spectral difference existed between marsh at the two sites in July, at least
between 400 nm to 900 nm. Incorporated within this burnt class are marshes burnt
before March (classified March image) that still could be separated from non burnt
maidencane marsh. Further, incorporated in the July non burnt class are maidencane
marshes that were burnt in March but were not spectrally separable by using simple
classification techniques.

In order to properly map the development history of the maidencane marsh, the
November, March, and July TM classifications were spatially overlain and the burn
history of each image pixel calculated (Fig. 18.10g). Four classes of maidencane
marsh related to burn history between November 1990 and July 1991 were (1) those
areas of marsh that remained unburned throughout this time period, (2) those areas
burned by March that could be distinguished as burns in July, (3) those areas burned
by March that could not be distinguished as burns in July, and (4) marsh areas burned
after March 9.

18.4 Summary

Two coastal marshes exhibiting dramatically different patterns of seasonal biomass
turnover were monitored with satellite and aircraft based sensors and site-specific
canopy measurements. The biomass turnover trends of the two marshes were used
to illustrate how monitoring might differ dependent on its seasonal covariance.
The black needlerush saline marsh in coastal Florida had minimal covariance with
season while that maidencane fresh marsh in coastal Louisiana completely co-
varied with changing seasons under normal circumstances. In neither marsh-burn
study were the burn locations or extents detected without a priori information or
ground-based observations. Instead, the studies examined the ability to monitor
marsh recovery with satellite and aircraft image-based data and relate those data to
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ground-based site-specific measures that portrayed the canopy structure and optical
reflectance without interferences from atmospheric contributions and illumination
changes.

18.4.1 Non Seasonal Marsh

In the black needlerush saline marsh, trends in burn recovery were possible with
atmospherically corrected and normalized optical image data transformed to a veg-
etation indicator (VI). As shown in that study based on a time series of temporal TM
image data, the lower than normal VI following the canopy burn transformed into
a higher than normal VI period as the canopy responded with new growth. As dead
plant material was gradually added, the canopy VI lowered once again to preburn
spectral condition. The periods of depressed, then elevated, and finally a return to
before burnt VI ranged from three to four years on average. Although a series of
well-conditioned TM data transformed into an optical recovery indicator (VI) could
monitor the trends in black needlerush marsh recovery, the non monotonic trend
proved optical sensor data were incapable in providing a clear indication of time-
since-burn of the full burn-recovery record based on a single or even multiple data
collection dates. The time-since-burn prediction was possible, however, with opti-
cal image data when constrained to the first year since burn when based on multiple
dates or a single date of TM image data. A closer examination of the spectral re-
covery was obtained in a comparison of site-specific canopy reflectance collected of
burnt and non burnt black needlerush marshes over time. A similar trend shown in
the temporal TM study was observed; however, the site-specific spectral differences
were even less than expected from the TM-VI study. The VI transform of the well-
conditioned TM image data seemed to accentuate the burnt and non burnt canopy
green biomass differences. In either case, even though recovery trends were obtain-
able when VI indicators were available at least twice yearly, and time-since-burn
was obtainable when restricted to the first year of recovery, an indicator based on
a single remote sensing image date was preferred that could predict the time-since-
burn over the entire three to four year range of recovery.

ERS-1 SAR image data collected within the same time period as the optical im-
ages showed good correspondence with the time-since-burn extending nearly 900
days since burn. The ERS-1 SAR C band VV polarization sensor decreased through-
out the marsh canopy recovery time-range. The decrease in VV returns was expected
from site-specific measurements that documented the change in marsh density and
orientation through the recovery period. As the black needlerush canopy reemerged,
the mostly vertical marsh transformed with time into a more dense marsh con-
taining a mixture of vertical and horizontal component orientations. The increas-
ingly thicker and mixed orientation upper marsh canopy tended to obstruct the
radar penetration to the lower more vertical marsh canopy resulting in a decreasing
VV return. From our ERS-1 SAR results and site-specific canopy structure mea-
surements, we further expected that HH polarization returns would increase as the
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horizontal components increased and that VH polarization returns would increase
as the canopy density increased. To test this idea, we collected a full polarization
SAR image of the coastal Florida black needlerush marsh.

The multiple polarization SAR returns were as expected. The VV returns de-
creased and the HH and VH returns increased with time-since-burn. These results,
however, depended on normalization of the burnt marsh returns either by a suitable
non burnt marsh control near to or within the same marsh zone as the burnt marsh
site or by another polarization return (e.g., VV/VH). In either case, once normalized
the polarimetric returns provided a good predictor of time-since-burn. In addition,
the relative variation in polarimetric returns provided canopy structural informa-
tion independent of weather or illumination conditions. The single date polarimetric
SAR, and to a lesser extent, the single date single polarimetric SAR provided an
adequate predictor of time-since-burn in a black needlerush marsh. Including only
canopy changes due to burn recovery (excluding flooding, herbivory, etc.), these
results indicate that radar would provide an appropriate source of consistent im-
age data for monitoring burn recovery, and as likely, the overall status of a black
needlerush or similar herbaceous canopy over an extended time period.

18.4.2 Seasonal Marsh

Burn recovery monitoring of a seasonally changing maidencane marsh in coastal
Louisiana was also studied with satellite optical and site-specific canopy reflectance
and structure measurements. In contrast to the black needlerush marsh of coastal
Florida, the maidencane marsh biomass completely recycled from year-to-year
producing a very different temporal marsh response to burning than the mostly
or entirely non seasonally connected black needlerush marsh. Our results in the
maidencane marsh, however, were similar to those in the black needlerush marsh.
We focused primarily on documenting what remote sensing methods could pro-
vide adequate indicators of burn recovery and which of these tools were sensi-
tive to long-term changes (over a year). Radar image collections were not part of
the coastal Louisiana study; thus, the documentation was limited to passive optical
methods. Multiple TM image dates as well as nearly concurrent site-specific canopy
reflectance spectra and limited canopy structural measurements were available for
the maidencane marsh burn recovery study.

Site-specific canopy reflectance spectra obtained at non burnt, winter burnt, and
spring burnt marsh sites indicated that changes in spectra form and magnitude could
be used to differentiate burnt and non burnt maidencane marsh in the spring. Visual
interpretation further implied that some information could be extracted from the re-
flectance spectra that defined the burn age, at least in general for that season. By
summer, however, non burnt and burnt marshes in different stages of recovery were
not separable by using canopy reflectance as in the set of spring spectra. The set of
light penetration curves (canopy structure) typifying two maidencane marsh sites –
one that was burnt and recovered and the other unburned throughout the same time
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periods – indicated the same trend. Maidencane marsh recovery to non burnt marsh
condition was nearly complete by midsummer, judging by the similar form of the
canopy reflectance spectra and light penetration curves. Finally, TM images ob-
tained close to the same dates as the site-specific canopy reflectance spectra were
analyzed as a simple means of monitoring burn extent and recovery. The winter im-
age contained no burnt marsh, but the spring and summer images contained various
stages of marsh burn and recovery.

Along with the winter image to define areas of maidencane marsh versus all other
landcovers in the study area, a simple clustering algorithm and a masking technique
were used to restrict and improve the classification of the spring and summer images
into burnt and non burnt marsh. With the marsh isolation technique, winter-early-
spring burns were identifiable on the spring image, while spring burns (post-spring
image) and some winter-early-spring burns were detectable on the summer image;
however, they were not spectrally separable from each other. For example, winter-
early spring burns were not commonly identifiable in summer by using this method;
in the summer map, these were classified as non burnt maidencane marsh. Because
of the spectral inseparability of the winter-early-spring burns from the post-spring
burns, we devised a multiple TM-classification approach in order to account for the
various burn histories throughout the maidencane marsh.

Our approach entailed spatially overlaying the winter, spring and summer clas-
sification and identifying the burn history of each image pixel area (about 25 m by
25 m). A burn-history map was produced that depicted changes in the maidencane
marsh due to burns the covering winter-spring-summer time period. The map por-
trays a complex marsh landscape that resulted from the wildfires that occurred from
November to July. The produced burn-history map encompassed non burnt marsh
from November to July, burnt marsh that was identifiable in March but not in July,
burnt marsh that was identifiable in July but not in March, and marsh that was burnt
in March and burnt again by July. Of note is the spatial extent of wildfires and the
very little non burnt marsh that remained in the study area in just nine months. As in-
dicated by the site-specific measurements, the high frequency collection of images
throughout the winter to summer regrowth period is most likely the only method
to properly document the extensive and non managed (wildfire) burns within these
fresh marshes of coastal Louisiana. However, the ability to consistently collect high
temporal frequency optical data is questionable in these sub tropical regions. As
shown in the black needlerush marsh burn study, radar can provide similar monitor-
ing results even with a single image date. With this in mind, we are currently pur-
suing the application of radar in these marshes and other marshes occurring within
the brackish and saline environments as well as detecting burn locations and extents
solely with image data.

As we have discussed, each year extensive marshes are burnt by fires that range
widely in spatial extent and intensity and that can occur interspersed and in juxtapo-
sition resulting in a complexity of marsh burn histories. Our work has shown that it is
possible to monitor marsh recovery and predict burn history (time-since-burn) with
optical as well as radar image data when burn locations have been identified. We
expect the ability to monitor these burns and estimate the time-since-burn and the
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extent of burn recovery will aid resource manages by providing (1) improved tools
for the spatial assessment of marsh and grassland fire danger and fuel distribution,
and (2) improved data relating to ecological impact of these fires as, for example, the
function of these marshes as habitat and natural barriers to storm impacts, flooding,
and contaminants.
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Chapter 19
Response of Reed Mudflats in the Caspian
Coastal Zone to Sea Level Fluctuations

Valentina I. Kravtsova

We investigate the response of the low-lying northwestern Caspian coasts and the
main Caspian deltas to sea level fluctuations by using multi-temporal optical and
radar images. We compile a time series of maps illustrating the coastal ecosystems
dynamics during 1977–2001 for the Kalmykian coastal zone and the Ural River
delta. These maps suggest an important role of the reed mudflats in relation to the
coastal zone dynamics. When the Caspian Sea level rose, the shoreline began to
change not from the front reed-belt bound but from the rear bound; when the sea
level declined, the rear bound moved seaward faster than the front bound. This trend
revealed from the optical image interpretation can also be observable in the color
composite of the multi-date radar images by using an interpretation key. In order to
answer the question “at what depth the reed can survive when the sea level rise”,
we constructed a series of profiles along the Ural River delta; the profiles show at
what depths the reed belt grew or withered. We found that the ecological niche for
reed growth was around the 2 m water depth. Overall, this study demonstrates the
usefulness of satellite imagery for the study of coastal zone dynamics in the context
of global changes.

19.1 Introduction

The Caspian Sea level had risen rapidly during 1977–1995, from −29.01m ASL in
1977 to −26.66m ASL in 1995, with approximately 130 mm per year (Mikhailov
1997). Afterwards, the sea level fluctuated around −27m ASL, declined to −27.20m
ASL in 2002, and then rose to −27.0m ASL in 2005 (Kravtsova and Baldina
2006) (Fig. 19.1). Due to global warming, the World ocean coasts could experience
rapid sea-level rise in the 21st century. Therefore, the Caspian Sea is considered as
an ideal site for the study of coastal zone and river mouths response to sea-level
change.
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Fig. 19.1 Changes of the Caspian Sea level in 1837–2005 (mean annual sea levels)

The Laboratory of Aerospace Methods, the Department of Cartography and
Geoinformatics, and the Department of Hydrology, Moscow State University
established a research initiative aiming to investigate the response of low-lying
northwestern Caspian coasts and the main Caspian deltas to sea-level change. The
major research activities included multi-date satellite image interpretation and map
compilation to illustrate the coastal and deltaic ecosystems dynamics.

This research effort uncovered a very important role of the reed mudflats in re-
lation to the coastal zone dynamics. Interaction between vegetation and tidal in-
undation was studied by Beeftink (1987) and De Leeuw et al. (1994). The reed
mudflats along the low-lying Caspian coasts are found to be somewhat similar to
the salt marshes along the North American coasts. However, there is a significant
difference. In the Caspian coastal zone, reed mudflat formation is mainly due to the
wind-induced surges rather than the tidal-level fluctuations since the later are very
weak. The role of reed mudflat ecosystems has been widely examined. For example,
Halls and Kraatz (2006) noted that reed mudflat ecosystems can serve as ‘buffers’
to protect the highland by softening tidal surges during storms. Goodbred and Hine
(1995) studied the response of salt marshes to a severe tropical storm. In 2005, when
Hurricane Katrina hit the Gulf of Mexico, the salt marshes in the Mississippi delta
protected the city of New Orlean from flooding; waters from Lake Pontchartrain
flooded the City from the north, where reed thickets did not exist. In addition, reed
mudflats are also economically and environmentally important because they provide
fish nursery habitats, bird nesting and foraging sites, and act as a filter for chemicals
entering the ecosystem (Halls and Kraatz 2006).

This chapter presents our reed mudflats research for two test sites at the Caspian
Sea coasts: the Kalmykian coastal zone and the Ural River delta (Fig. 19.2).
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Fig. 19.2 Location of the study sites: 1– Kalmykian coastal zone; 2 – the Ural River delta

19.2 Materials and Methods

Compiling maps to illustrate the status and dynamics of the coastal and deltaic
ecosystems requires the use of images with a sufficient spatial resolution. Image
types we used varied over time. For example, we used photos taken from orbital sta-
tions for the sea-level decline period in 1970s (see Fig. 19.1), photos from Resurs-F
and images from Resurs-O for the sea-level rise period in late 1970s-mid 1990s, and
optical and radar images from Landsat-7 and Meteor-3M for the stable sea-level pe-
riod and afterwards since late 1990s (Table 19.1).

We used satellite images to compile a time series of maps for the low-lying
Kalmykian coast and the Ural River delta. By using visual interpretation and com-
puter processing of multi-date satellite images, we compiled several maps to illus-
trate the coastal and deltaic ecosystems statuses in 1977–1978, 1991–1992, 1997–
1998, and 2000–2001, the transgressive changes in the coastal zone for the periods
of 1978–1991 and 1991–1997, and the post-transgressive changes for 1997–2001.
The map scale is at 1:200 000, with approximately 90 percent accuracy.

The coastal ecosystem types shown in the coastal zone status maps for various
years are listed in Table 19.2, and the change types illustrated in the coastal zone
dynamics maps are summarized in Table 19.3.

We also used radar images to study the coastal zone changes with a multi-
date color composite and a tailored interpretation key to define the changes. The
results of the coastal and delta change mapping are presented in the next three
sections.
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Table 19.1 List of satellite images used for mapping coastal ecosystems dynamics

Date Satellite Surveying
system

Image
resolution (m)

The Kalmykian
coastal zone

Optical July 1978 Salut-6 MKF-6 20
23 May 1983 Resurs-F KFA-1000 10
19 June 1991 Resurs-F MK-4 10
28 August 1997 Resurs-O MSU-E 35
25 August 2001 Landsat-7 ETM+ 30,15

Radar 26 June 1995 ERS-1 SAR 30
16 June 1999 ERS-2 SAR 30
9 June 2004 Envisat ASAR 30

The Ural River
delta

optical June 1975 Salut-4 KATE-140 60
5 October 1992 Landsat-5 TM 30
April 1996 Mir Photo 20
5 August 2000 Resurs-O MSU-E 35
30 August 2003 Meteor-3M MSU-E 35

Table 19.2 List of geographic features shown in the maps of Kalmykian coastal zone status in
various years (1978, 1991, 1997). Note the numbers here do not correspond to the numbers in
Figs. 19.3, 19.4, and 19.6

No Features

1 Shoreline (defined with the outer limit of reed mudflats)
2 Offshore depositional features
3 Beach ridges
4 Sand flat
5 Reed mudflat
6 Mudflat saturated with water
7 Lagoons behind reed mudflats
8 Lagoon relicts behind the reed mudflats
9 Narrow strips of water along beach ridges within the reed mudflat

10 Waterlogged area behind mudflat and along the lagoons and canals
11 Meadow-solonchak depressions, solonchak meadows in the troughs between Baer’s mounds
12 Semi-desert plain
13 Inner water bodies (lakes, man-made reservoirs)
14 Canals
15 Urban area
16 Sea
17 Sea zone with exposed aquatic vegetation
18 Sea zone with submerged reeds
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Table 19.3 Features shown at maps of Kalmykian coastal zone dynamics for various peri-
ods (1978–1991 and 1991–1997), Note the numbers here do not correspond to the numbers in
Figs. 19.5 and 19.7

No Type of changes

1 Shoreline (defined with the outer limit of the reed-covered mudflats): a – in 1978, b – in
1991, c – in 1997

2 Offshore depositional features eroded
3 Submerged reed mudflat (zone of the coast retreat)
4 Sand flat formed (zone of the coast accretion)
5 Beach ridges
6 Reed mudflat retained
7 Reed mudflat newly appeared (zone of the landward shift of the reed mudflat) in place of:

a – lagoon behind the reed mudflat, b – waterlogged area along the lagoon,
c – semi-desert plain

8 Lagoons formed behind the reed mudflat
9 Retained segments of the lagoon behind of the reed mudflat

10 Narrow strips of water formed along beach ridges within the reed mudflat
11 Waterlogged area along lagoons and the reed mudflat: a – retained, b – newly appeared in

place of semi-desert plain
12 Solonchak meadows in the troughs between Baer’s mounds and in erosion basins:

a - retained, b - newly formed
13 Semi-desert plain
14 Inner water bodies (lakes, man-made reservoirs): a – retained, b – newly formed
15 Canals
16 Urban area
17 Sea
18 Boundaries of objects which: a – retained and newly formed, b – disappeared

19.3 Coastal Dynamics and Sea Level Fluctuations:
The Kalmykian Coast

19.3.1 Optical Image Analysis

The Kalmykian coast extends 120 km from north to south, along the northwestern
Caspian Sea. It is a low-lying coast affected by wind-induced surges. An extensive
mudflat belt covered with dense reeds has been formed there. The mudflats are ad-
jacent to dry land, which comprises plains at the top of the Caspian Sea terraces
covering with dry steppe in the north and semi-desert vegetation in the south. In the
north, a specific relief of the Baer’s mounds exists near the Volga River delta. It is
a repetitive succession of dry steppe hills and wet swamp hollows, which extends
toward the west-east direction. Our satellite image interpretation indicates that the
sea-level transgressive changes along this coast increased with distance from the
Volga River delta, suggesting that the delta serving as ‘buffer’ due to its steep coasts
(Kravtsova and Lukyanova 1999).

During 1978–1991, the sea-level rose by 1.75 m, but the northern shoreline
changed very little (see Figs. 19.3, 19.4, and 19.5). This weak response can be
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Fig. 19.3 Status of the Kalmykian coastal zone in 1978: 1 – shoreline; 2 –offshore depositional
features; 3 – beach ridges; 4 – reed mudflat; 5 – meadow-solonchak depressions; 6 – semi-desert
plain; 7 – inner water bodies; 8 – canals; 9 – urban area; 10 – sea
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Fig. 19.4 Status of the Kalmykian coastal zone in 1991: 1 – shoreline; 2 – beach ridges; 3 – reed
mud flat; 4 – sand flat; 5 – lagoons behind reed mudflats; 6 – waterlogged area along the lagoons
and canals; 7 – meadow-solonchak depressions; 8 – semi-desert plain; 9 – inner water bodies;
10 – canals; 11 – urban area; 12 – sea; 13 – sea zone with aquatic vegetation; 14 – sea zone with
submerged reeds
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Fig. 19.5 Dynamics of the
Kalmykian coastal zone in
1978–1991: 1 – shoreline:
1a – in 1978, 1b – in 1991;
2 – offshore depositional
features eroded;
3 – submerged reed mudflat
(zone of the coast retreat);
4 – sand flat (zone of the
coast accretion); 5 – beach
ridges; 6 – reed mudflat:
6a – retained, 6b – newly
formed; 7 – lagoons behind
the reed mudflat;
8 – waterlogged area along
lagoons; 9 – solonchak
meadows in the troughs
between Baer’s mounds and
in erosional basins:
9a – retained, 9b – newly
formed; 10 – semi-desert
plain; 11 – inner water
bodies: 11a – retained,
11b – newly formed;
12 – canals; 13 – urban area;
14 – sea; 15 – boundaries of
objects which: 15a – retained
and newly formed,
15b – disappeared

attributed to the ‘buffer effect’ due to the existence of extensive shallow-water area
in front of the Volga River delta. On the other hand, the sea-level rise significantly
affected the southern coast, which is far away from the Volga River delta. From the
satellite images, we can see that the mudflat’s front edge was submerged with sea
waters and the shoreline retreated 1–3 km; by constructing a coastal zone profile,
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we see that new beach ridges formed along the water line due to the wave activ-
ities. The development of beach ridges and lagoons behind the ridges was quite
common along the Caspian coastal zone under the sea-level rise condition (Ignatov
et al. 1993, Kravtsova and Lukyanova 2000). Mudflat widened landward from 1–2
to 6–10 km. With the beginning of sea-level rise, a large lagoon was formed behind
the mudflats due to the wave activities and the groundwater level rise. During the
1990s this lagoon belt was clearly seen with 1–2 km in width along the northwestern
Caspian coast. The coastal plain behind the mudflats was influenced by groundwa-
ter; a waterlogged zone can be observed with several kilometres in width at the back
of the lagoon.

During 1991–1997, the sea-level continued to rise till 1995 when it remained at
−26.6m ASL, and then it began to decline; the shoreline in the northern Kalmykian
coast and near the Volga River delta changed very little, which was consistent
to the preceding period (Figs. 19.6 and 19.7). However, the coastal plain became
more humid, particularly along the troughs between Baer’s mounds. In the southern
Kalmykian coast, the shoreline retreated by 4–5 km in some places. As a result, the
reed mudflat changed considerably with less dense vegetation cover and more open
water areas, particularly along the narrow, prolonged troughs between beach ridges.
The reed thickets became more fragmented, and the landward side of the mudflat
changed significantly. The large lagoon began to disintegrate into separate segments
and then disappeared from most of the coast. The mudflat continued to grow land-
ward and reached beyond 2–4 km in width. However, the mudflat belt only shifted
landward and did not change its width noticeably after 1991.

During 1997–2001, the sea-level fell to −27.2m ASL, representing 0.3 m of de-
cline; the shoreline change was marginal. The shoreline near the Volga River delta
virtually did not change, which was consistent to the previous periods (Fig. 19.8).
But the shoreline in the northern part, which was more than 30 km from the Volga
delta, changed at two opposite directions: retrogression and progression. During this
period, the mudflat became less humid, largely due to the less progressive sea-level
change. Interestingly, the lagoon behind the mudflat completely withered, with only
some narrow water strips remained. Reed mudflats shrank and dry steppe vegetation
expanded along the mudflat’s landward bound; this trend was well observed from
the satellite images.

Based on the multi-date image mapping and the subsequent analysis of the
coastal and delta dynamics, we can draw the following observations:

• Coasts with reed mudflat have two critical bounds: one between reed thickets
and the open sea and the other between reed thickets and land. We found that the
first bound tended to be less mobile, largely due to the ‘buffer’ effect from the
reeds. The second was more sensitive to the sea-level changes; it tended to move
landwards when the sea-level rose and seawards when the sea-level declined.

• The status of reed thickets had something to do with water depth and hence the
magnitude of the sea-level rise. During 1978–1991, the sea-level rose by 1.75 m,
the reed thickets were intact, with the increase in both area and width, indicating
a good ecological condition. During 1991–1997, the sea-level rose 2.35 m by
1995, and then began to decline; the reed thickets became more fragmented.
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Fig. 19.6 Status of the Kalmykian coastal zone in 1997; 1 – shoreline; 2 – reed mudflat; 3 –
mudflat saturated with water; 4 – lagoon relicts behind the reed mudflats; 5 – narrow strips of water
along beach ridges within the reed mudflat; 6 – waterlogged area behind mudflat; 7 – solonchak
meadows in the troughs between Baer’s mounds; 8 – semi-desert plain; 9 – inner water bodies;
10 – canals; 11 – urban area; 12 – sea; 13 – sea zone with aquatic vegetation; 14 – sea zone with
submerged reeds
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Fig. 19.7 Dynamics of the
Kalmykian coastal zone in
1991–1997: 1 – shoreline:
1a – in 1991, 1b – in 1997;
2 – submerged reed mudflat
(zone of the coast retreat);
3 – reed mudflat retained;
4 – reed mudflat newly
formed (zone of the landward
shift of the reed mudflat) in
place of: 4a – lagoon behind
the reed mudflat,
4b – waterlogged area along
the lagoon, 4c – semi-desert
plain; 5 – retained segments
of the lagoon behind of the
reed mudflat; 6 – narrow
strips of water appeared along
beach ridges within the reed
mudflat; 7 – waterlogged area
along the reed mudflat:
7a – retained, 7b – newly
formed at the semi-desert
plain; 8 – solonchak meadows
in the troughs between Baer’s
mounds and in erosional
basins: 8a – retained,
8b – newly formed;
9 – semi-desert plain;
10 – inner water bodies:
10a – retained, 10b – newly
formed; 11 – canals;
12 – urban area; 13 – sea;
14 – boundaries of objects
which: 14a – retained and
newly formed,
14b – disappeared

19.3.2 Radar Images Analysis

We used SAR and ASAR images from ERS-1, 2 and Envisat satellites for 1995,
1999, 2004 to analyze the coastal zone change. All images were acquired in June
so that the vegetation phenological condition should be approximately identical.
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Fig. 19.8 Dynamics of the
Kalmykian coastal zone in
1997–2001: A. Ecosystems
without significant changes:
1 – reed mudflat: 1a – with
dense vegetation cover,
1b – with sparse vegetation
cover; 2 – steppe and
semi-desert vegetation of
shore plains; 3 – sea;
4 – lakes B. Ecosystems with
significant changes:
5 – submerged reed mudflats
(zone of shoreline retreat);
6 – reed mudflats, new
formed within sea zone (zone
of coast accretion); 7 – reed
mudflats with deteriorated
vegetation; 8 – steppe and
semi-desert vegetation,
formed in place of: 8a – reed
mudflat with deteriorated
vegetation, 8b – reed mudflat
and troughs with healthy
vegetation

The images covered 1995 when the sea-level rise culminated and then began to de-
cline. The main features in the Kalmykian coastal zone can be clearly defined in
the SAR images: smooth water surfaces are in dark, almost black; the reed zone
is in light gray and nearly white colors; and the inland dry steppe plains are in
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gray. We created a color composite of the three-date radar images by using dig-
ital image processing, which were used as a complementary approach to the op-
tical images interpretation discussed in Sect. 19.3.1. We specifically designed an
interpretation key that allowed us to identify the nature of changes by using dif-
ferent colors (Kravtsova and Baldina 2006). The technical details for creating the
color composite and designing the interpretation key are discussed in Sects. 19.3.2.1
and 19.3.2.2.

19.3.2.1 Color Compositing of the Multi-Date Images

Image color compositing was used to combine three images by displaying the first
image in the red gun, the second in the green gun and the third in the blue gun.
By combining three images of different dates we can obtain a color composite of
the multi-date images, which can be further used to analyze the change of interest
objects.

Success in applying this technique depends on how sharply the changing objects
stand out against the image background. Thus, it is more desirable to use images
with maximum contrast. For example, near infrared images are the most suitable
for studying changes within the coastal zone since they have the highest contrast
between water and bare land or vegetation. Obviously, images acquired at differ-
ent times should be precisely co-registered prior to the color compositing. More-
over, the grey levels of each image should be balanced by their histograms prior to
color compositing. Finally, color compositing allows using any order of multi-date
images. But we prefer to apply Red – Green – Blue colors in order from an ear-
lier survey date to a later one since this way can help interpret the resultant color
composite.

Given the above considerations, we produced a color composite by synthesizing
the three-date radar images, with the red band for 1995, green band for 1999, and
blue band for 2004 (Fig. 19.9). To understand this color composite, we specifically
constructed an interpretation key that will be explained in the next section.

19.3.2.2 Interpretation Key

Through visual analysis of the color composite image (see Fig. 19.9), we noticed
that the features with little change are achromatic and the areas with much changes
are in bright colors. Each color of changing areas corresponds to a specific combi-
nation of brightness from the multi-date images, and such combinations can be used
to compile the interpretation key (Table 19.4).

Table 19.4 was constructed by analyzing the three radar images and through visi-
ble image interpretation (see Sect. 19.3.1). It shows specific combinations of bright-
ness in the multi-date images that correspond to different colors. This is actually a
way of color coding using the additive color theory. This key can help define the na-
ture of changes within the coastal zone for each color from the multi-date color
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Fig. 19.9 Multi-temporal color composite image for the Kalmykian coastal zone of the Caspian
Sea, composed of multi-date SAR (ASAR) images: 1 – dry steppe and semi-desert plain of Caspian
terraces; 2 – reed mudflat; 3 – sea; 4 – zone of reed mudflat retreat in 1995–1999 (pink color); 4 –
zone of reed mudflat retreat at 1999–2004 (yellow color)

composite. For example, red color results from a combination of the maximum
brightness (i.e. reeds) in 1995, and the minimum brightness (i.e. water) in 1999
and 2004; orange from a combination of reeds in 1995, dry land in 1999 and water
in 2004. The multi-date changes of brightness are shown in the last column with
charts.
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Table 19.4 Colors in the color composite multi-temporal image resulting from different tones of
the initial images

Tone (Object) on Initial Images for 
Different Years, Being Color With 

Different Filters 

Color on Multi-
Temporal 
Composite 

Image 1995 
Red 

1999 
Green 

2004 
Blue 

Temporal 
Signature of 

Objects 

Red Reed Water Water 

Orange Reed Land Water 

Yellow Reed Reed Water 

Yellow-green Land Reed Water 

Green Water Reed Water 

Green-blue Water Reed Land 

Light-blue Water Land Reed 

Blue Water Water Reed 

Blue-violet Land Water Reed 

Violet Reed Water Reed 

Rose-violet Reed Water Land 

Note that white color corresponds to reed, gray to dry land, and black tone to water. Letters at the
vertical axes of the temporal mean signature graphs: w – white, g - gray, and b – black. Numbers
at the horizontal axes are for years (1995, 1999, 2004).   

19.3.2.3 Results

The coastal zone response to sea-level fluctuations can be examined by using the
interpretation key. We found that the front reed belt had the minimum change during
1995–2004, while the rear reed mudflat generally retreated seawards. This pattern is
understandable since even a small sea-level decline would cause groundwater level
to fall down. As a result, wet swamps would turn to dry land, and reeds would not
grow in such a dry condition.

Reeds are found to have disappeared in the depressions between Baer’s mounds.
The areas previously occupied by reeds are in yellow and pink strips in the color
composite image (Fig. 19.9). Areas in pink are the reed retreat during 1995–1999
when the sea-level declined by 0.34 m; the retreat strip adjacent to dry land was
1–2 km in width. Areas in yellow are the reed retreat during 1999–2004 when the
sea-level first declined by 0.18 m in 2002 and then rose by 0.14 m in 2004; the retreat
strip adjacent to the sea was quite narrow, ranging from 200–300 m to completely
unobservable. Please note that such a pattern is not seen everywhere. It is caused by
the sea-level changes in various directions. Reeds are also found to have disappeared
around the troughs between Baer’s mounds, where reeds flourished before. The reed
retreat areas are in pink and yellow in the color composite image. Moreover, some
lakes are found to have disappeared, and are in blue and violet.
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Our radar image analysis further confirms some observations obtained by using
optical image interpretation discussed in Sect. 19.3.1. For example, the multi-date
radar image analysis reveals the rear reed mudflat retreated when the seal-level de-
clined; such an observation was also obtained by using the optical images. Intensity
and rate of the reed mudflat retrogression are very sensitive to sea-level fluctuations.
The method of multi-date image interpretation identified in this case study certainly
has a more general meaning and can be applied to other similar coastal areas.

19.4 Coastal Dynamics and Sea Level Fluctuations:
The Ural River Delta

River deltas are among the most dynamic ecosystems on Earth. Their evolution
depends on the interaction between river and sea. Natural and anthropogenic fac-
tors could accelerate process of delta progradation or erosion. The Caspian Sea
level fluctuations are considered to strongly impact not only on the coastal zone
but also on the river mouth. The deltas along the Caspian coasts have undergone
large-scale changes, which were caused by the significant sea-level decline during
1930th–1970th, the rapid rise during 1977–1995, and the slow decline and some-
what stabilization in 1995–2004, as well as the sediment discharge reduction. The
Caspian deltas dynamics was investigated by the author and her colleagues, includ-
ing virtually all the large deltas except the Volga delta (Mikhailov et al. 2003, 2004).
Among these deltas, the Ural River delta has a broad reed belt at its periphery, which
is changing in response to sea-level fluctuations. This reed belt is very important
given the subject of this study.

Like other Caspian deltas, the Ural River delta in the eastern part of the Northern
Caspian coast changed its position and dimension over a long period of sea re-
gression. The formation of the modern delta began from 18th century. The growth
of this delta was caused by the sea-level decline and a large amount of the sedi-
ment discharges. The rapid delta progradation in the 1940s–1960s was caused by
the construction of the Ural-Caspian Sea channel. In 1977, when the sea-level was
the lowest, the Ural River delta was 32 km in length, with a total area of 522km2;
it even included the Peshnoy Peninsula, which used to be an island (Kravtsova
and Mikhailov 2007). Mapping of the delta with satellite images taken in 1977,
1992, 1996, and 2000 shows significant changes (Kravtsova and Shumatiev 2005)
(Fig. 19.10).

In 1977–1995 the sea-level rise caused to flood the delta’s periphery, and fuelled
the reed growth, forming a broad reed belt along the shoreline (Fig. 19.11-I). By
1992 this reed belt was 15–30 km in width. Some lagoons were also formed along
the rear reed belt, with 3–5 km in width. As a result, the dry delta became more
humid, and finally turned into wet marshes. If we use the sea-reed bound as the
shoreline, then the latter’s position did not change much during the early stage of
1977–1995 despite the rapid sea-level rise; the shoreline even moved seaward a lit-
tle due to the reed expansion. After 1992, when the sea-level rise exceeded 1.92 m,
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Fig. 19.10 The Ural River delta statuses in different years

the reed belt began to wither along the seaside so the shoreline began to move land-
ward (Fig. 19.11-II). This change was caused by wave activities and ice breaking.
In 1992–1996 the shoreline retreated 3–5 km, and some lagoons as wide as 7 km
developed. Dry river channel was then filled with waters.

In 1996–2000, the sea-level began to decline gradually, and the reed belt re-
gained. The reed belt’s front side moved seaward by 1 km (Fig. 19.11-III), while its
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Fig. 19.11 Changes of the Ural River delta in 1977–1992 (I), 1992–1996 (II), 1996–2000 (III): 1 –
water instead of land and reed; 2 – reed instead of land and water; 3 – land instead of water and
reed; 4 – water; 5 – reed; 6 – land

rear side expanded landward and even flourished over some lagoons. River channels
ran dry again.

In summary, the Ural River delta response to the sea-level fluctuations was char-
acterized by the formation of a reed belt along the shoreline when the sea-level rise
exceeded 1.9 m. The expansion or withering of the reed belt was dependent upon
the sea-level fluctuations and water depth.

19.5 Ecological Niche of the Reed Thickets

The changes revealed by satellite mapping of the Kalmykian coastal zone and the
Ural River delta depended on the reed thickets in relation to the changing water level
and hence the water depth. It is evident that reeds should have a specific ecological
niche, probably around 1.9–2 m in depth, where reeds were quite sensitive to the
bathymetry and water-level changes. When the sea-level rose to 2.35 m, the reed belt
began to wither in area and width, its landscape structure became more fragmented,
and the reed-open sea bound retreated, as indicated at the two test sites. When the
sea-level declined moderately after 1995 (0.52 m by 2002), the reed thickets began
to regain around the Ural River delta.

It is important to investigate the reed ecological niche and the influence of the
water depth on the reed thickets. Such an investigation could help understand the
past and predict the future of the coastal zone dynamics in the context of global
sea-level rise. For this purpose, we constructed some profiles of the bathymetry
and topography in the Ural delta region (Kravtsova and Shumatiev 2005). In these
profiles, we also noted the sea-level heights for the dates our satellite data spanned
over, and thus we created the water-depth profiles. The reed thicket bounds were
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Fig. 19.12 Profiles across the Ural River delta and surrounding sea which show bottom relief and
reed thickets distribution: 1 – water, 2 – reed bushes

overlaid on these profiles (Fig. 19.12). This allowed us to analyze the relationship
between reed distribution and water-depth fluctuations.

These profiles show that the reeds distributed at the sea with depth up to 1.7–2 m;
these water areas were actually land during the previous sea regressive period.
Reeds grew and widened until 1992 when the sea-level rise reached 1.92 m. More
aggressive sea-level rise had not only caused the reeds to wither but also their land-
scape structure to be more fragmented; this trend was well observable, particularly
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in 1992–1996 when water depth increased from 2 m to 2.3 m. Reeds stopped retreat-
ing when the sea-level rise was marginal and even negative; the reed-belt bounds
were not only stable but also had begun to intrude into the sea and lagoons. Based on
these observations, we determine the reed ecological niche in relation to water depth
in the northern Caspian Sea; the growth of reeds reversed when the water depth was
more than 1.9–2.0 m. Similar findings were noted when studying the Volga delta
region during the Caspian Sea level rise period (e.g. Baldina et al. 1999); they re-
ported that the reeds around the Chistaya Banka Island withered when water depth
was between 1.5 and 2.0 m. Weisner (1991) noted that the maximum water depth
reeds could tolerate should be between 1.6 and 1.7 m.

Of course, many other factors than water depth could affect reed distribution,
including wind regime, sea ice, water chemistry, bottom sediments, among others.
The reed distribution at the rear mudflat had something to do with groundwater
level. Therefore, it may be important to know the height of groundwater level at
which reeds could regain or wither. To answer this question, ground observations
are necessary. Assessing the influence of these factors will help us to better under-
stand the coastal zone dynamics based on the use of satellite imagery. New methods
of heights measurements include the use of different spectral bands and through
LiDAR surveys; the latter have been successfully applied in marsh investigations
(Yang 2007). These new methods may help understand the relationship between
groundwater level and reed distribution.

19.6 Conclusions

The response of the low-lying Kalmykian coasts to sea-level rise as examined by
using satellite imagery included the formation of a lagoon complex and the growth
of the reed mudflat zone; the reed mudflat shifted landward and further withered
when water depth exceeded 2 m. A small sea-level decline led to the mudflat bounds
moving seaward but the reed-land bound was more mobile. A similar pattern took
place in the Ural River delta, where a broad reed belt formed as a result of the sea-
level rise; the reed belt withered after the sea-level rise exceeded 1.9 m and the water
depth reached 2 m and beyond.

The above observations suggest that the coastal ecosystem status depended upon
the response of the reeds to water regime changes. This has been confirmed by our
two case studies along the Kalmykian coastal zone and around the Ural River delta.
Analysis of the reed thicket distribution change in relation to water depth shows
that in the Caspian Sea reeds grew favourable where the water depth was less than
2 m. Beyond this limit, reeds withered, reed thickets became more fragmented, large
water windows formed, and reed thicket bounds retreated.

Our research focus was on the local Caspian Sea level fluctuations rather than
the global sea level change. But the reaction of the Kalmykian coastal zone and
deltas to the Caspian Sea level rise can be interpreted as a benchmark to forecast
the processes which can take place in the world coastal zones and river deltas in the
context of global sea-level rise.
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The two important conclusions are summarized:

• The reed belt survives a sea-level rise up to 2 m in water depth, and beyond this
limit the reed belt will wither; and

• The reed-land bound is more sensitive to the sea-level fluctuations that the reed-
sea bound. Therefore, it is necessary to reinforce the monitoring effort along this
more mobile bound.
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Chapter 20
Integrating Satellite Imagery and Geospatial
Technologies for Coastal Landscape Pattern
Characterization

Xiaojun Yang

This chapter discusses the utilities of integrating remote sensing and related geospa-
tial technologies for coastal landscape pattern characterization. The case study site
is in the Pensacola estuarine drainage area, well known as one of the few exem-
plary large river-driven estuarine systems across the northern Gulf of Mexico, USA.
Central to this study are the two Landsat images that have been used to extract land
use/cover information with hierarchic classification and spatial reclassification tech-
niques. The resultant land use/cover maps are then used to compute a large number
of the initial landscape metrics for different spatial units. To suppress the informa-
tion redundancy and improve the manageability, landscape ecology principles and
multivariate statistical techniques are further used to help select a small set of core
metrics on which the final interpretation and analysis are based. Throughout the
entire watershed, the landscape structure exhibited a pronounced pattern of frag-
mentation, particularly around the city centers and along the coastlines; over time,
the landscape mosaics became more heterogeneous while the classes of patches
were more fragmented. These observed changes in landscape structure and pattern
have been largely driven by vigorous urban and economic growth in the Pensacola
metropolitan area during the 1990s. The findings reported here should be useful not
only to those who study coastal watershed dynamics but also to those who must
manage and provide services in such a sensitive environment. The analytical frame-
work identified can be applicable easily to other coastal drainage basins. This can
improve understanding of socio-ecological dynamics of landscape, thus facilitating
a sophisticated approach to coastal conservation and protection.

20.1 Introduction

Because of large population and intensive development, global coastal ecosystems
are under strain as never before, and there is a strong need for environmental
monitoring and assessment in order to manage and protect these highly sensitive
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ecosystems more effectively (EPA 1999, NRC 2000, Hobbie 2000, Shi and Singh
2003, Martinez et al. 2007, Richmond et al. 2007, Halpern et al. 2008). To assess
environmental conditions in coastal ecosystems, a suite of indicators spanning the
full spectrum of biological organization from generic markers to entire ecosystems
are needed (Niemi et al. 2004, Yang 2005). Assessment of landscape patterns at the
ecosystem level can help identify some important changes emerging from lower-
level disturbances due to complex interactions between social and environmental
processes (Turner et al. 2001).

The combination of landscape ecology principles and geospatial information
technologies offers a workable framework supporting the quantitative assessment
of spatio-temporal pattern of landscape composition and structure (Turner 1990,
McGarigal and Marks 1995). Landscape ecology as the forefront of ecology and
land management emphasizes the interaction between spatial pattern and ecologi-
cal process (Turner et al. 2001). Interest in measuring landscape pattern is driven
by the promise that there are essential links between ecological pattern and eco-
logical function and process (Gustafson 1998). Landscape metrics as quantitative
indices to describe structure and pattern of a landscape can be extracted from cate-
gorical land use/cover maps that are normally derived by remote sensing. They are
increasingly being used to assess ecosystem health or as inputs for running various
ecological models supporting numerous environmental assessment and planning ef-
forts (e.g. Cain et al. 1997, Griffith et al. 2000, Fuller 2001, Leitao and Ahern 2002,
Liu et al. 2003, Renofalt et al. 2005, Munroe et al. 2007, Hollister et al. 2008).

With the development of software engineering in geographic information sys-
tems, measurement of landscape metrics seems to be unlimited. However, there are
several fundamental issues that need to be addressed before these quantitative in-
dices can be meaningfully interpreted for landscape pattern analysis. Firstly, accu-
rate land use/cover data are a prerequisite to measuring landscape metrics. Mapping
land use/cover in the coastal environment is challenged by erratic climate condi-
tions and complex landscape structure. The high humidity in coastal areas makes
difficult to obtain cloud-free image scenes; the presence of complex urban impervi-
ous materials and agricultural lands, along with a variety of wetlands and vegetation
covers, causes substantial inter-pixel and intra-pixel changes in the coastal environ-
ment. These factors collectively challenge the applicability and robustness of remote
sensing technologies for coastal landscape change mapping.

Secondly, the choice of landscape metrics seems to be quite rich, but some may
be partially or perfectly correlated with each other because they are basically de-
rived from a few primary measurements that can be made from patches (McGarigal
and Marks 1995); this results in information redundancy. Moreover, a large num-
ber of metrics would be difficult to interpret and analyze. Practically, a small set of
metrics that are not redundant but capture the major properties of a landscape are
more desirable. Selection of core landscape metrics can be accomplished by using
landscape ecology principles as described by McGarigal (2002), and many applica-
tions were based on this approach of metrics selection for landscape pattern analysis
(e.g. Zhang et al. 1997, Fuller 2001, Li et al. 2001, Baskent and Kadiogullari 2007).
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However, this approach generally works well to reduce inherent redundancy but not
empirical redundancy. Statistical methods (e.g. principal component analysis) can
be used to reduce data redundancy and select a parsimonious suite of independent
metrics for landscape pattern analysis (e.g. Riitters et al. 1995, Cain et al. 1997,
Griffith et al. 2000, Herzog and Lausch 2001, Yang and Liu 2005a). Although re-
cent studies indicate that landscape pattern can be characterized by using a small
number of core indicators, consensus has not been reached on the choice of individ-
ual metrics (McGarigal 2002).

Lastly, the choice of an appropriate spatial unit is another critical issue be-
cause landscape metrics are sensitive to the extent over which they are calculated
(Hunsaker et al. 1994). Thus, spatial units can affect the measurement of landscape
metrics and hence the pattern-process relationship. On the other hand, landscape
metrics are normally computed and aggregated by specific spatial units. The current
landscape ecology literature, however, does not provide much guidance on how to
choose spatial units, and therefore, further effort is needed to design spatial units
which could explicitly reflect some hypotheses related to major processes acting
upon a landscape under investigation.

The objective of this study was to evaluate the utilities of integrating remote
sensing and relevant geospatial technologies for coastal landscape pattern charac-
terization. This has been done through a case study focusing on the Pensacola es-
tuarine drainage area, well known as one of the few exemplary, large river-driven
estuarine systems across the northern Gulf of Mexico, USA. The study area has
historically supported a rich and diverse ecosystem, productive fisheries, and con-
siderable recreational opportunities in north-western Florida (EPA 1999). Since
the beginning of 1990s, this area has witnessed significant population and eco-
nomic growth, resulting in point and non-point source pollution, hydrologic alter-
ations, and direct habitat destruction throughout the watershed (NFWMD 1997).
These changes have provoked concerns over the degradation of ecosystem health
in Pensacola Bay. Since 2000, the author has been involved in various research
projects aiming to develop environmental indicators for integrated estuarine ecosys-
tem assessment in the Gulf of Mexico; Pensacola Bay and its watershed have been
targeted for coordinated research. This chapter examines the spatio-temporal pat-
tern of landscape composition and structure in the Pensacola estuarine drainage
area through the integration of geospatial information technologies, part of the
above research effort. This should add useful insights into the emerging coastal
environmental indicator research in which the development of broad-scale indi-
cators is considered to be critical for coastal researchers and managers (Levinson
2005).

The following sections document the research framework that comprised several
major components: choice of the study site, primary and secondary data acquisition,
land use/cover classification from satellite imagery, design of spatial observational
units, computation of initial landscape metrics, selection of core metrics, and inter-
pretation and analysis (Fig. 20.1).
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Fig. 20.1 Flowchart of the working procedural route

20.2 Case Study Site: Pensacola Estuarine Drainage Area

The geographical coverage of the Pensacola estuarine drainage area (PEDA) in-
cludes the majority of Escambia, Santa Rosa and Okaloosa counties, the northwest-
ern part of Walton County in Florida, as well as portions of Conecuh, Covington,
Escambia, and Monroe counties in Alabama (Fig. 20.2). The PEDA is defined ac-
cording to National Oceanic and Atmospheric Administration (NOAA)’s Coastal
Assessment Framework (CAF). CAF is a GIS-based digital spatial framework de-
signed for managers and analysts to organize information on the nation’s coastal,
near-ocean, and Great Lakes’ resources (NOAA 1999). The PEDA is the estuar-
ine portion of the Pensacola Bay drainage basin, approximately 50% of the total
watershed (NFWMD 1997). The entire basin discharges into the Gulf of Mexico
through a narrow pass at the mouth of Pensacola Bay. The PEDA has a total area
of 9,119km2, which includes 8,643km2 of the upstream watershed and 476km2 of
bays, fitting well within a whole scene (180×180km2) of Landsat imagery.

Physiographically, the PEDA lies within the Coastal Plain province, which is
underlain mainly by beds of sand, silt, and clay that dip gently seaward (Marsh
1966). The estuarine embayments are within the Gulf Coastal Lowlands subdivision
and contain a series of parallel terraces rising from the coast in successively higher
levels. Much of the area is less than 30 m above sea level. PEDA includes three
major river systems, namely, Escambia, Blackwater and Yellow rivers. The climate
is humid subtropical with generally warm temperatures.
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Fig. 20.2 Location of the study site
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20.3 Land Use/Cover Classification

20.3.1 Data Acquisition and Preprocessing

In order to compute landscape metrics, two different dates of land use/cover maps
are produced. For this purpose, a predominantly cloud-free scene of Landsat The-
matic Mapper (TM)/Enhanced Thematic Mapper (ETM+) image was acquired from
USGS EROS Data Center for 1989 (6 April) and 2002 (20 May), respectively. To
facilitate land use/cover mapping, a variety of ancillary data were collected, which
include Digital Ortho Quarter Quads (DOQQs), topographical maps, hydrological
and political boundaries, existing land use/cover maps, wetland datasets produced
by National Wetland Inventory, and road networks. GPS guided field surveys were
also conducted to acquire ground truth for classification scheme design and accuracy
assessment (Fig. 20.3).

Both geometric rectification and radiometric normalization were conducted in
the phase of image preprocessing. With USGS topographical maps, the 2002 image
was georeferenced to the UTM map projection (Zone 16), NAD 1983 horizontal
datum, and GRS 1984 ellipsoid. Then, this image was used as the reference to rectify
the 1989 image. The radiometric normalization method of using radiometric control
sets that was developed by Hall et al. (1991) was also applied to the image data.

20.3.2 Classification Scheme

Based on the research objectives, image spatial resolution and field surveys, a mod-
ified version of the Anderson scheme (Anderson et al. 1976) was developed (Yang
and Liu 2005a):

• High density urban (HDU) is characterized by approximately 70–100% (imper-
vious) construction materials, typically commercial and industrial buildings with
large open roofs as well as large open transportation facilities; it also includes
military bases, tourism and recreational facilities, and a low percentage of resi-
dential development residing in the city cores.

• Low density urban (LDU) consists of approximately 40–70% (impervious) con-
struction materials, typically residential development including single/multiple
family houses and public rental housing estate, as well as local roads and small
transitional space as can be always found in a residential area; it also contains a
various amount of vegetation cover.

• Agricultural land (AGL) is characterized by crops, pastures, and other herba-
ceous vegetation, including lands that are regularly mowed for hay or grazed by
livestock and regularly tilled and planted cropland; it may contain small parks
and golf courses.

• Evergreen forest (EGF) includes coniferous forests.
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Fig. 20.3 GPS-based field survey routes. The boundary of the Pensacola estuarine drainage area
is shown. The total length of these routes is more than 1,500 km (from Yang and Liu 2005b)

• Mixed forest (MXF) consists of evergreen and deciduous species mixed with a
various amount of shrubs, brushes and young trees.

• Woody wetlands (WWL) include hardwood, mixed forest, and shrubs, which are
distributed along rivers and bays.

• Emergent herbaceous wetlands (EHW) is characterized by tall grasses such as
black needle rush; it is also called swamp, salt marsh, and brackish marsh.

• Barren land (BRL) consists of the areas of sparse vegetation cover (less than
20%), including beaches, clearcuts, and transactional lands that are likely to
change or be converted to other uses in the near future.

• Water (WTR) consists of all areas of open water, generally with greater than 95%
cover of water, including streams, rivers, lakes, reservoirs, and bays.
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20.3.3 Hierarchical Classification

The adoption of hierarchical classification strategy was based on the observation
that some types of land use/cover tend to be spectrally similar. For example, ur-
ban built-up land shows similar spectral reflectance to barren land and several types
of agricultural land. This is actually a form of the spectral confusion problem be-
ing regarded as the major barrier to achieving adequate accuracy with a per-pixel
based classification method from remotely sensed imagery with middle-size spatial
resolutions and broad spectral bands (Yang 2002). To resolve spectral confusion,
hierarchic classification and spatial reclassification procedures were developed in
consideration of the imaging sensor and the scenic characteristics. This section de-
scribes the procedures of hierarchic classification, and Sect. 20.3.4 discusses the
spatial reclassification. Hierarchic classification emphasizes the use of image sub-
sets being organized hierarchically, rather than whole scenes, in a series of indepen-
dent classification procedures. The purpose of using image subsets is to isolate the
problematic categories so that the most effective classification decision can be de-
veloped for each subset. Hierarchic classification allows each form of information to
be used in its most effective context, and its procedure is discussed in the following
sections (see Fig. 20.4-above).

20.3.3.1 ISODATA Clustering

The ISODATA (Interactive Self-organizing Data Analysis) algorithm was used to
identify spectral clusters from the image scenes excluding the thermal band. To
avoid the impacts of sampling characteristics, the ISODATA algorithm was im-
plemented without assigning predefined signature sets as starting clusters. Each
scene was grouped into 60 spectral clusters when the convergence value reached
at least 0.990.

20.3.3.2 Landscape Segmentation

The output of ISODATA clustering was separated into urban and rural subsets
through the use of an image ‘mask’ that defines the urban area with road intersection
density and road buffers through a three-step procedure. Firstly, road intersections
were extracted from the Environmental System Research Institute (ESRI) 2002 and
2003 road networks, and their density was further computed; note that the road data
for 1989 were derived from the ESRI 2002 data that were adjusted by using the
1989 TM imagery. Secondly, a threshold density value was determined interactively
to include as much urban area as possible. With this threshold value, the density map
was sliced into the urban and rural subsets. Lastly, the urban subset was unionized
with 100-m road buffers to define the final urban subset, and other part was defined
as the rural subset.
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Fig. 20.4 (Upper): Sequential procedures identified for land use and land cover classification:
A. The original image in false color display; B. The cluster image in false color after ISODATA
clustering; C. The mask image consisting of road intersection density slices and road buffers; D.
The map for rural part after cluster labeling; E. The map for urban part after cluster labeling; F.
The map after the merge of D and E; and G. The final map after conducting spatial reclassification.
Detailed discussion on these procedures can be found from relevant text. (Lower): Land use and
land cover maps derived from Landsat TM/ETM+ data

20.3.3.3 Interactive Classification

Each spectral cluster in either the urban or the rural subset was assigned into one
of the nine land use/cover classes using visual inspection of the original images,
the reference data, and the familiarity of the study area. This class labeling was
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based on the examination of a targeted cluster at two different levels of details:
at the large scale, the individual image color was mainly used in decision making
while at the small scale such image elements as association and site were utilized to
improve classification accuracy. The land use/cover classifications of both the urban
and rural subsets were further combined to form a whole map. This was the initial
land use/cover classification.

20.3.4 Spatial Reclassification

The initial land/cover maps after hierarchic classification came with the accuracies
of approximately 65–75%. For this study, however, higher accuracy was needed.
Therefore, a spatial reclassification procedure was developed to reduce image clas-
sification errors and improve accuracy. It was implemented by using image interpre-
tation, ancillary data and a variety of GIS functions.

20.3.4.1 Raster Modal Filtering

A 3×3 modal filter was used to reduce boundary errors at class boundaries due to
the occurrences of intra-pixel spectral mixing and signal noises. Pixels identified as
boundary errors are generally in the form of salt and pepper and they can be replaced
with classes of their surroundings through a modal filter.

20.3.4.2 Interactive Image Interpretation

Although the spectral confusion described in Sect. 20.3.3 has been substantially
suppressed after hierarchic classification, a varying degree of spectral confusion
was still observable in some areas. These areas were further identified using an
image interpretation procedure through which spectral and spatial contextual con-
tents as well as human wisdom and experience were synthesized. Image interpre-
tation can be implemented digitally using on-screen digitizing, multiple zooming,
AOI (area of interest) functionality, and other relevant GIS tools such as overlaying
and recoding. In addition, several image processing programs offer advanced tools
of spatial modeling through which some ‘manual’ operations can be implemented
automatically.

With the above methods, four major types of spectral confusion were identi-
fied:(i) low density urban (mostly residential)/mixed forest (sparse trees), (ii) low
density urban (scattered residential)/agricultural land (sparse crops or grasses), (iii)
mixed forest (sparse forest and shrubs)/agricultural land (cropland or grassland),
and (iv) high density urban(large open roof buildings, air fields, and multilane
highways)/barren land (large barren landmass, beaches, clearouts, and fallowed
land). These pairs of land use/cover types are spectrally similar to varying degrees.
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Whenever any spectrally confused cluster was identified, an AOI layer was imme-
diately created through on-screen digitizing to define a ‘mask’ by which the prob-
lematic cluster was split and then recoded into a correct land use/cover class. This
process was iterative until an acceptable accuracy was reached.

20.3.4.3 GIS Data Overlay Enforcement

Several GIS data layers were further overlaid with the classification product after
the above procedures were completed, which include (i) weighted buffers of road
networks for 1989 and 2002, respectively. Road data were derived from the ESRI
2002 road network adjusted with the reference of the two image scenes; (ii) airports,
military fields, tourism and recreational facilities for the above two years. They were
initially extracted from the 1995 Florida Department of Environmental Protection
land use/cover map and were then modified by using the image scenes; and (iii) two
types of wetlands which were extracted from National Wetland Inventory data sets
for 1992 and then modified by using the above images.

20.3.5 Accuracy Assessment

A standard procedure described by Jensen (2005) was used for accuracy assessment
using at least 50 test points per class that were selected with a stratified random sam-
pling scheme. The reference data used for accuracy assessment were described in
Sect. 20.3.1. Producer accuracy, user accuracy, and Kappa statistics were computed,
and detailed reports are shown in Table 20.1. Overall, the two final maps (Fig. 20.4-
below) met the minimum 85% accuracy stipulated by the Anderson classification
scheme (Anderson et al. 1976), indicating that the image processing procedure de-
veloped has been quite effective.

20.4 Spatial Units and Landscape Metrics Computation

20.4.1 Spatial Units

Choosing an appropriate spatial unit is critical for landscape pattern analysis. Pre-
vious research reported the use of hexagons to sample a landscape (e.g. Hunsaker
et al. 1994, Griffith et al. 2000), but also noted the significant discrepancy of pat-
tern metrics between the hexagon sampling landscape and the complete landscape
(Hunsaker et al. 1994). In this study, a different strategy was adopted. The spa-
tial units used here are related to either a hydrological unit or a predefined buffer
zone. They are associated with different levels or types of biophysical or human-
dimension stressors, which are likely to impact landscape pattern.



472
X

.Y
ang

Table 20.1 Summary of the accuracy assessment reports for the 1989 and 2002 maps

Land Use/Cover∗ 1989 2002

Producer’s
Accuracy (%)

User’s Accu-
racy (%)

Conditional K
Coefficient of
Agreement

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Conditional K
Coefficient of
Agreement

Low Density Urban
(LDU)

72.00 72.00 0.70 84.78 78.00 0.77

High Density Urban
(HDU)

97.45 91.60 0.88 98.35 95.60 0.93

Agricultural Land
(AGL)

88.07 96.00 0.95 89.72 96.00 0.95

Evergreen Forest
(EGF)

88.89 96.00 0.96 84.91 90.00 0.89

Mixed Forest (MXF) 85.71 96.00 0.96 84.75 100.00 1.00
Woody Wetlands

(WWL)
90.38 94.00 0.94 100.00 96.00 0.96

Emergent
Herbaceous
Wetlands (EHW)

97.62 82.00 0.81 94.12 96.00 0.96

Barren Land (BRL) 97.96 96.00 0.96 97.83 90.00 0.89
Water (WTR) 97.09 100.00 1.00 98.97 96.00 0.95

Overall 92.40 0.91 94.13 0.93

∗A total of 750 sample points were used with at least 50 points for each class.
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Fig. 20.5 Spatial observational units used in the study: (a) The entire Pensacola estuarine drainage
area (PEDA) and its four sub-watersheds: Blackwater River(BLWR), Escambia River (ESCR),
Pensacola Bay (PNSB), and Yellow River (YLWR); (b) Weighted highway buffers (HWYB); (c)
One-kilometer coastline buffers (CSTB); (d) Weighted city buffers (CTYB) according to popula-
tion size (from Yang and Liu 2005a)

The spatial units considered include the entire PEDA, four major sub-watersheds,
and three predefined buffer areas (Fig. 20.5). PEDA was used as a background for
comparison; the four sub-watersheds were used to examine the variation of land-
scape patterns across the watershed. The other three units considered are highway
buffers, city buffers, and coastline buffers. The highway buffers were derived from
the ESRI 2002 highway data, and their size was weighted according to highway
types. Highway buffers occupy 5,402km2 or 59.21% of the total PEDA. The size
of city buffers was weighted with a city’s 2002 population size, and they occupy
a total area of 611km2. Coastline buffers consist of the area within 1 km from the
coastline, representing 661km2 of the PEDA.
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Table 20.2 List of initial and final landscape metrics at the class and landscape levels, respectively

Structural Feature Index (Acronym) Full Name (Unit)∗ Class Level Landscape Level

Initial Final Initial Final

Area CA Class Area (ha) Yes
LPI Largest Patch Index (%) Yes Yes Yes Yes
PLAND Percent of Landscape (%) Yes Yes
TA Total Area (ha) Yes

Patch MPS Mean Patch Size (ha) Yes Yes Yes Yes
NP Number of Patches (none) Yes Yes Yes Yes
PD Patch Density (#/100 ha) Yes Yes
PSCV Patch Size Coefficient of Variation (%) Yes Yes
PSSD Patch Size Standard Deviation (ha) Yes Yes

Shape AWMPFD Area Weighted Mean Patch Fractal
Dimension (none)

Yes Yes Yes

AWMSI Area Weighted Mean Shape Index (none) Yes Yes Yes
MPFD Mean Patch Fractal Dimension (none) Yes Yes
MSI Mean Shape Index (none) Yes Yes

Core Area CACV1 Core Area Coefficient of Variation (%) Yes Yes Yes Yes
CACV2 Disjunct Core Area Coefficient of

Variation (%)
Yes Yes

CAD Core Area Density (#/100 ha) Yes Yes
CASD1 Core Area Standard Deviation (ha) Yes Yes
CASD2 Disjunct Core Area Standard Deviation

(ha)
Yes Yes

CPLAND Core Area Percent of Landscape (%) Yes Yes
LCAS Landscape Core Area Similarity (%) Yes
MCA1 Mean Area per Core (ha) Yes Yes
MCA2 Mean Core Area 2 (ha) Yes Yes
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Table 20.2 (continued)

Structural Feature Index (Acronym) Full Name (Unit)∗ Class Level Landscape Level

Initial Final Initial Final

MCAI Mean Core Area Index (%) Yes Yes
NCA Number of Core Areas (none) Yes Yes
TCA Total Core Area (ha) Yes Yes Yes Yes
TCAI Total Core Area Index (%) Yes Yes

Diversity MSIDI Modified Simpsons Diversity Index
(none)

Yes Yes

MSIEI Modified Simpsons Evenness Index
(none)

Yes

SHDI Shannons Diversity Index (none) Yes
SHEI Shannons Evenness Index (none) Yes
SIDI Simpsons Diversity Index (none) Yes
SIEI Simpsons Evenness Index (none) Yes

Configuration IJI Interspersion and Juxtaposition (%) Yes Yes Yes Yes

∗Detailed definitions on these landscape metrics can be found from McGarigal and Marks (1995).
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20.4.2 Computation of Landscape Metrics

Before the actual computation of landscape metrics, a 5×5 modal filter was applied
to the two raster maps to remove isolated pixels resulting from boundary errors
(Yang 2002). This should help improve the speed in the computation of landscape
metrics. Then, the two raster maps were converted into vectors, and landscape met-
rics were computed with Fragstats∗ ARC (McGarigal and Marks 1995). A total of 56
metrics were considered in the context of our research objective and the landscape
ecology principles (e.g. Turner 1990, Forman RRT 1995, McGarigal 2002). These
metrics are related to either landscape composition (e.g. proportional abundance of
each class) or configuration (e.g. patch size distribution and density, patch shape
complexity, and interspersion). They are grouped into six major structural cate-
gories: area, patch, shape, core area, diversity, and configuration (Table 20.2). At the
class level, there are a total of 25 metrics, falling within five of the six major struc-
tural groups. At the landscape level, there are a total of 31 metrics. These metrics
were computed for each spatial unit using the 1989 and 2002 land use/cover data.

20.5 Selection of Core Metrics

Principal component analysis (PCA) and Spearman’s rank correlation analysis
(SRCA) were used to help identify a set of metrics that best described character-
istics of the landscape units. PCA is a multivariate method that linearly combines
the original variables into several uncorrelated and independent variables known as
principal components. Most of the variability in the original variables is captured
in the first few principal components. PCA was used here to identify a smaller set
of metrics from the initial list which are highly correlated with the first few compo-
nents. Variables that were not strongly correlated with the first few principal com-
ponents were excluded from further analysis. Spearman’s rank correlation analysis
(SRCA) was conducted after PCA. As a non-parametric method, SRCA uses the
ranks of the data, rather than the actual data, to compute a correlation coefficient.
With SRCA, a correlation coefficient matrix was created at the landscape and class
levels, respectively. Additionally, several core metrics which are ecologically crit-
ical were included given the research objective and landscape ecology principles
(e.g. McGarigal and Marks 1995, Turner et al. 2001). While any number of metrics
could be eliminated after PCA and SRCA, it was decided to include at least one
core metric for each structural group (see Table 20.2). This was to ensure that each
structural group could be addressed in the further analysis. If no metrics were left
for any structural group after PCA and SRCA, at least one critical metric for that
group would have to be added back into the list. In this way, a final list of the core
metrics was created at the landscape and class levels, respectively.

Table 20.3 summarizes the outcome of the PCA at the landscape level. In this
computation, all 31 metrics at the landscape level were considered for eight spa-
tial units at two different years. Thus, there were 16 ‘samples’ used in the PCA. To
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Table 20.3 Results of principal component analysis (PCA) and varimax rotation of the first four
components at the landscape level

Component Number
1 2 3 4  

Eigenvalues and cumulative proportion of variance explained by principal 
component analysis

Eigenvalue* 15.926 7.954 4.209 1.637 
Cumulative Variance 51.375 77.034 90.610 95.891 

Component pattern after varimax rotation Communality** 
LPI 0.887 0.121 -0.395 0.198 1.00
TA -0.280 0.228 0.905 -0.157 0.97

MPS 0.188 -0.348 0.232 -0.878 0.98
NP -0.323 0.317 0.874 -0.107 0.98
PD -0.073 0.277 -0.235 0.922 0.99

PSCV 0.907 0.230 -0.149 0.308 0.99
PSSD 0.970 0.188 -0.068 -0.069 0.98

AWMPFD 0.629 -0.249 -0.717 0.093 0.98
AWMSI 0.681 0.043 -0.335 0.584 0.92
MPFD 0.640 0.072 -0.334 0.662 0.96

MSI -0.787 -0.259 0.363 -0.268 0.89
CACV1 0.804 0.342 0.063 0.465 0.98
CACV2 0.743 0.455 0.330 0.319 0.97

CAD -0.893 0.094 0.383 -0.069 0.96
CASD1 0.964 0.191 -0.013 -0.094 0.97
CASD2 0.967 0.144 -0.099 -0.001 0.97

CPLAND 0.960 0.061 -0.236 -0.113 0.99
LCAS 0.960 0.061 -0.236 -0.113 0.99
MCA1 0.835 -0.077 -0.071 -0.534 0.99
MCA2 0.933 0.019 -0.274 -0.107 0.96
MCAI -0.735 -0.210 0.369 -0.457 0.93
NCA -0.345 0.251 0.879 -0.131 0.97
TCA -0.134 0.216 0.933 -0.188 0.97
TCAI 0.960 0.061 -0.236 -0.113 0.99

MSIDI 0.051 0.946 0.207 0.151 0.96
MSIEI 0.050 0.945 0.209 0.153 0.96
SHDI 0.283 0.919 0.151 0.111 0.96
SHEI 0.281 0.920 0.150 0.113 0.96
SIDI 0.083 0.944 0.198 0.158 0.96
SIEI 0.084 0.945 0.194 0.158 0.96
IJI 0.148 0.598 -0.285 -0.431 0.65

sum 29.73
Variance explained by each component after rotation

298.3133.5967.6437.31

* The computation considers all spatial units at two different years.  Descriptions of the metrics are given in Table 
20.2.  Entries (correlation coefficients) in bold are considered to be strongly associated with one or more principal 
components.  The metrics which were excluded for further considerations are shaded. 
** Communality is the proportion of variance that each variable has in common with other variables. 
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increase interpretability, an orthogonal varimax rotation, which perceives the rel-
ative orientation, was used on the resulting component scores. Note that the first
four components explain approximately 96% of the variability in the entire data
set. Metrics that were weakly correlated with the first four principal components
were excluded from further analysis. This resulted in the elimination of six metrics:
AWMPFD, AWMSI, MPFD, CAV2, MCAI, and IJI (see Table 20.2 for the descrip-
tion of the metrics). Spearman’s rank correlation coefficients were computed for
all the remaining 25 metrics and the results are summarized in Table 20.4. LPI,
MPS, and NP were selected as the first three core metrics because they are criti-
cal to quantify landscape fragmentation (McGarigal and Marks 1995). Nine metrics
whose correlations with any of the first three core metrics reached at least 0.85
were considered to be redundant and were eliminated from further consideration;
they are PSCV, PSSD, MSI, CASD1, CASD2, PD, TA, NCA, and TCA. Then,
CACV1 was selected as a critical metric representing the core area structural group
(see Table 20.2). MSIDI, a Simpson index, was selected as a core diversity metric.
Five metrics, namely MSIEI, SHDI, SHEI, SIDI, and SIEI, were eliminated because
they were highly correlated with MSIDI. Six other metrics were eliminated because
they were highly correlated with one or more of the metrics which were eliminated
earlier. Finally, three ecologically critical metrics, namely AWMPFD, TCA, and
IJI, which were eliminated earlier, were added back to represent three structural
groups (see Table 20.2). Thus, the final list consists of eight metrics: LPI, MPS, NP,
AWMPFD, CACV1, TCA, MSIDI, and IJI. Similar procedures were adopted at the
class level, and the final list has eight metrics: LPI, PLAND, MPS, NP, AWMSI,
CACV1, TCA, and IJI (see Table 20.2).

Table 20.4 Spearman’s rank correlation coefficient matrix for 25 metrics at the landscape level
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LPI 1.00                         

TA -0.68 1.00                        

MPS -0.16 0.33 1.00                       

NP -0.61 0.94 0.12 1.00                      

PD 0.16 -0.33 -1.00 -0.12 1.00                     

PSCV 0.90 -0.53 -0.21 -0.46 0.21 1.00                    

PSSD 0.93 -0.52 -0.06 -0.50 0.06 0.97 1.00                   

MSI -0.87 0.59 0.25 0.56 -0.25 -0.91 -0.93 1.00                  

CACV1 0.84 -0.46 -0.30 -0.33 0.30 0.96 0.91 -0.84 1.00                 

CAD -0.65 0.72 -0.24 0.77 0.24 -0.58 -0.61 0.54 -0.48 1.00                

CASD1 0.91 -0.50 -0.07 -0.48 0.07 0.98 0.99 -0.94 0.92 -0.61 1.00               

CASD2 0.91 -0.52 -0.14 -0.46 0.14 0.98 0.98 -0.91 0.95 -0.61 0.98 1.00              

CPLAND 0.74 -0.47 0.24 -0.55 -0.24 0.84 0.86 -0.77 0.74 -0.81 0.87 0.85 1.00             

LCAS 0.74 -0.47 0.24 -0.55 -0.24 0.84 0.86 -0.77 0.74 -0.81 0.87 0.85 1.00 1.00            

MCA1 0.41 -0.20 0.66 -0.40 -0.66 0.45 0.56 -0.39 0.29 -0.70 0.54 0.49 0.80 0.80 1.00           

MCA2 0.73 -0.55 0.26 -0.61 -0.26 0.77 0.79 -0.67 0.68 -0.91 0.79 0.78 0.96 0.96 0.81 1.00          

NCA -0.66 0.98 0.27 0.96 -0.27 -0.51 -0.51 0.58 -0.41 0.77 -0.49 -0.51 -0.51 -0.51 -0.27 -0.59 1.00         

TCA -0.45 0.93 0.47 0.87 -0.47 -0.26 -0.24 0.36 -0.21 0.49 -0.21 -0.24 -0.17 -0.17 0.06 -0.27 0.90 1.00        

TCAI 0.74 -0.47 0.24 -0.55 -0.24 0.84 0.86 -0.77 0.74 -0.81 0.87 0.85 1.00 1.00 0.80 0.96 -0.51 -0.17 1.00       

MSIDI 0.29 0.20 -0.43 0.36 0.43 0.43 0.34 -0.34 0.46 0.37 0.36 0.35 -0.01 -0.01 -0.26 -0.15 0.28 0.29 -0.01 1.00      

MSIEI 0.29 0.20 -0.43 0.36 0.43 0.43 0.34 -0.34 0.46 0.37 0.36 0.35 -0.01 -0.01 -0.26 -0.15 0.28 0.29 -0.01 1.00 1.00     

SHDI 0.36 0.08 -0.35 0.12 0.35 0.61 0.53 -0.54 0.57 0.13 0.56 0.52 0.31 0.31 0.08 0.15 0.10 0.22 0.31 0.85 0.85 1.00    

SHEI 0.36 0.08 -0.35 0.12 0.35 0.61 0.53 -0.54 0.57 0.13 0.56 0.52 0.31 0.31 0.08 0.15 0.10 0.22 0.31 0.85 0.85 1.00 1.00   

SIDI 0.29 0.20 -0.43 0.36 0.43 0.43 0.34 -0.34 0.46 0.37 0.36 0.35 -0.01 -0.01 -0.26 -0.15 0.28 0.29 -0.01 1.00 1.00 0.85 0.85 1.00  

SIEI 0.29 0.20 -0.43 0.36 0.43 0.43 0.34 -0.34 0.46 0.37 0.36 0.35 -0.01 -0.01 -0.26 -0.15 0.28 0.29 -0.01 1.00 1.00 0.85 0.85 1.00 1.00 

Note that only the coefficients in the lower diagonal part are presented above. The computation considers all spatial units at the two different years.  Descriptions of 
the metrics are given in Table 20.2. 
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20.6 Interpretation and Analysis

20.6.1 Landscape Level

Based on Figs. 20.6 and 20.7, the spatio-temporal pattern of landscape composi-
tion and structure can be characterized at the landscape level for different spatial
units. The mean patch size (MPS) is a critical metric and can serve as a habitat frag-
mentation index (McGarigal and Marks 1995). In 1989, among all eight units, the
Pensacola Bay watershed and the city buffer area had the largest and smallest MPS,
respectively. The MPS of the Pensacola Bay watershed was 6.91 ha, approximately
14.01% larger than the PEDA’s mean patch size which was 6.06 ha; while the MPS
of the city buffer area was 4.07 ha, approximately 33% smaller. This indicates that
the landscape mosaic in the city buffer area was the most fragmented, while the
Pensacola Bay watershed was the least. The two other buffer areas also had smaller
MPS than the PEDA’s in 1989. Among the four sub-watersheds, the Pensacola Bay
had the largest MPS in 1989, followed by the Blackwater River (6.20 ha), the Yel-
low River (6.13 ha), and the Escambia River (5.22 ha), implying that the landscape
mosaic in the Escambia was the most fragmented. In 2002, the mean patch size
decreased consistently in each unit when compared with 1989, implying that the

Fig. 20.6 Land use/cover changes for the Pensacola estuarine drainage area during the period of
1989 to 2002



480 X. Yang

Fig. 20.7 Change in landscape composition and structure for different spatial units at the land-
scape level. Descriptions of the metrics and the spatial units are given in Table 20.1 and Fig. 20.4,
respectively (from Yang and Liu 2005a)
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landscape mosaic became more fragmented. In 2002, the Pensacola Bay watershed
and the city buffer area were still the two opposite extremes in mean patch size.
Among the eight units, the Pensacola Bay watershed had the highest rate of drop in
mean patch size (16.32%), followed by the coastline buffers (15.23%), the Yellow
River watershed (14.05%), the PEDA (12.19%), the Blackwater River watershed
(10.62%), the highway buffers (9.85%), the Escambia River watershed (8.10%),
and the city buffers (7.37%).

In addition to MPS, seven other metrics were used to examine landscape com-
position or configuration for the entire mosaic at different units. Largest patch in-
dex (LPI) quantifies the percentage of total landscape area comprised by the largest
patch, which can be used to examine how landscape configuration varies. In both
1989 and 2002, there were three units whose largest patches comprised more than
14% of the landscape: the Pensacola Bay watershed, the city buffer area, and the
coastline buffer area. The largest patch in the Blackwater River watershed com-
prised less than 1% of the landscape. The LPI scores were quite stable between
1989 and 2002 for each unit except the city buffer area, where a decrease of 15.36%
occurred.

Number of patches (NP) can be used to quantify spatial heterogeneity of the en-
tire landscape mosaic (McGarigal and Marks 1995). In 1989, the Yellow River wa-
tershed had the largest number of patches (57,312) among the four sub-watersheds,
followed by the Escambia River (38,763), the Blackwater River (35,566), and the
Pensacola Bay (19,976). In 2002, the numbers of patches increased consistently for
each unit, with the Pensacola Bay watershed increasing the most (19.50%). This
indicates that the landscape mosaic for each unit became more heterogeneous.

Area weighted mean patch fractal dimension (AWMPFD) is an index quantify-
ing the complexity of patch shape, with higher scores indicate greater complexity in
patch shape. Among the four sub-watersheds, the Pensacola Bay received the high-
est AWMPFD scores in both years. The coastline buffer area and city buffer area re-
ceived much higher scores than the PEDA. Between 1989 and 2002, the AWMPFD
scores for all units decreased, indicating less complexity in patch shape. This further
confirms the earlier findings (e.g. Lam and de Cola 1993) that the patch shape of a
landscape under intensive human influence tends to be more regular.

Two metrics characterizing core area were examined. Total core area (TCA)
reflects both landscape composition and configuration, and can be used to quan-
tify habitat quality (McGarigal and Marks 1995). Among the four sub-hydrological
units, the Yellow River watershed had the largest TCA for both years. Between 1989
and 2002, the TCA for each unit shrank consistently. Patch core area coefficient of
variation (CACV1) represents the relative variation in core area per patch, and con-
veys more useful information than TCA (McGarigal and Marks 1995). Among the
four watersheds, the Pensacola Bay watershed showed the largest CACV1 scores
in both years. In both 1989 and 2002, the city buffer area had larger CACV1 scores
than the PEDA’s. Between 1989 and 2002, the CACV1 scores increased consistently
for all units, implying that the patch core areas became more variable.

The modified Simpson’s diversity index (MSIDI) is used to measure diversity at
the landscape level. For both 1989 and 2002, the MSIDI scores did not vary much
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across units. Between 1989 and 2002, the MSIDI scores for all units except the
highway buffer area shrank.

The last index used is IJI (interspersion and juxtaposition index), which measures
the extent to which patch types are interspersed. In 1989, the Pensacola Bay water-
shed had the highest IJI score among four sub-hydrological units, but had the lowest
score in 2002. This indicates that the landscape mosaic in Pensacola Bay watershed
became less interspersed with similar adjacent patch types. Like the Pensacola Bay
watershed, two buffer areas (city and coastline) also showed a decline in their IJI
scores. All other units increased somewhat in IJI scores.

20.6.2 Class Level

The proportion of land use/cover classes for each spatial unit is important informa-
tion about the composition of landscape mosaic. How this proportion changes can
help understand the driving forces behind the observed changes in landscape pattern
over space and time. The proportions of land use/cover for each unit are presented
in Table 20.5. For the entire PEDA, the largest proportion of land class in 1989 was
forest land, occupying 58.01% of the total area; this shrank to 55.48% in 2002. The
two urban classes occupied 10.16% of the total area in 1989 and increased to 13.65%
in 2002, representing an increase of 34.35%. Both woody wetland and agricultural
land shrank slightly between 1989 and 2002.

When compared to the PEDA, the three predefined buffer areas had much higher
proportions of urban land in both years. The city buffer area had the largest pro-
portion of urban land among all units, which was 37.44% and 47.54% in 1989 and
2002, respectively, representing an increase of 26.98%. At the same time, forest land
and agricultural land shrank by 36.56% and 59.85%, respectively. Between 1989
and 2002, the proportion of urban land in the coastline buffer area increased by
29.30%, while forest land and agricultural land decreased by 28.75% and 37.21%,
respectively. Within the highway buffer area, agricultural land declined by 32.13%
between 1989 and 2002.

Among the four sub-watersheds, the Pensacola Bay had the largest proportion
of urban land in both 1989 (35.94%) and 2002 (45.07%), representing an increase
of 25.04%. The proportion of forest land in the Pensacola Bay was the smallest
among the four watersheds in both years. Between 1989 and 2002, agricultural
land declined by 45.98% in the Pensacola Bay watershed. When compared with
the Pensacola Bay watershed, the other three watersheds had a higher proportion of
forest land; whereas urban land, although relatively smaller in the percentage, had
increased at a much higher rate. Finally, during the period of 1989 to 2002, woody
wetland declined consistently for all units with the highest drop rate occurred in the
city buffer area.

Further analysis at the class level focuses on eight metrics for three classes: low-
density urban, evergreen forest, and woody wetlands. These classes were chosen
because they were quite dynamic, as can be seen from Table 20.5. The amount
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Table 20.5 Land use/cover proportions for each spatial units

Land Use/Cover∗ Spatial Units∗

PEDA BLWR ESCR PNSB YLWR CSTB CTYB HWYB

HDU 1989 8.99 6.38 6.74 31.39 7.58 19.70 13.65 11.04
2002 8.64 6.23 7.08 29.11 7.15 18.59 12.55 10.27
Change −3.92 −2.45 5.10 −7.25 −5.59 −5.64 −8.05 −7.04

LDU 1989 1.17 0.62 0.84 4.55 1.00 3.27 23.79 1.83
2002 5.01 3.26 3.40 15.96 4.90 11.11 34.99 7.39
Change 326.81 423.67 304.42 250.50 389.65 239.69 47.07 303.26

AGL 1989 15.24 12.97 25.51 3.24 15.84 1.48 4.91 18.70
2002 15.14 13.89 26.46 1.75 14.81 0.68 4.02 18.52
Change −0.69 7.04 3.74 −45.98 −6.51 −54.36 −18.08 −0.94

EGF 1989 40.15 48.36 29.10 34.97 47.96 11.28 13.49 35.89
2002 29.74 38.82 19.69 29.44 33.81 7.08 5.41 24.36
Change −25.93 −19.73 −32.32 −15.83 −29.50 −37.21 −59.85 −32.13

MXF 1989 18.06 21.01 24.58 7.13 17.61 5.91 8.23 16.19
2002 25.74 27.60 31.00 5.80 30.02 5.16 8.37 23.85
Change 42.52 31.35 26.10 −18.60 70.42 −12.67 1.69 47.36

WWL 1989 9.73 9.83 11.56 13.13 9.02 8.75 2.42 8.38
2002 9.14 9.12 11.05 12.41 8.41 7.90 1.87 7.78
Change −6.08 −7.21 −4.41 −5.54 −6.76 −9.78 −22.84 −7.22

EHW 1989 0.65 0.34 0.94 2.13 0.37 3.60 0.39 0.73
2002 0.65 0.63 0.69 2.44 0.27 4.03 0.36 0.69
Change 0.92 81.99 −27.22 14.64 −25.91 12.05 −7.74 −5.17

BRL 1989 0.10 0.00 0.01 1.72 0.00 2.28 0.99 0.28
2002 0.10 0.00 0.02 1.70 0.01 2.26 0.28 0.29
Change −0.81 −22.95 89.64 −1.25 465.82 −0.97 −72.00 2.64

WTR 1989 5.91 0.47 0.60 1.72 0.62 43.72 32.13 6.96
2002 5.84 0.45 0.49 1.70 0.61 43.18 32.14 6.86
Change −1.12 −3.67 −18.47 −1.25 −1.18 −1.23 0.02 −1.46

∗Descriptions of the abbreviated land use/cover units and the spatial units are given in Table 20.1
and Fig. 20.5.

of low-density urban increased substantially, while evergreen forest and woody
wetlands declined consistently in each unit. Substantial change from forest and
woody wetland to low-density urban may be an important change in landscape pat-
tern that affects landscape function. Woody wetlands, although relatively small, are
ecologically important for wildlife habitat, flood protection, water purification and
recreation.

The mean low-density urban patch size (MPS) increased substantially in each
unit during the period of 1989–2002 (Fig. 20.8). Among the eight units, the city
buffer area had the largest MPS in both years. At the same time, both the number
of low-density urban patches (NP) and class proportion (PLAND) increased in each
unit. This represents a process of pervasive suburbanization by which numerous
residential urban clusters emerged and agglomerated to form larger masses in each
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Fig. 20.8 Change in landscape composition and structure of the low-density urban land class for
different spatial units. Descriptions of the metrics and the spatial units are given in Table 20.1 and
Fig. 20.4, respectively (from Yang and Liu 2005a)
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unit. The largest patch index (LPI) scores were quite small for each unit except
the city buffer area. The shape of low-density urban patches was fairly regular, as
indicated by relatively low AWMSI (Area-Weighted Mean Shape Index) scores in
each unit except the city buffer area, where the AWMSI was quite large in 1989 but
shrank substantially in 2002. In both years, the total low-density urban core area
(TCA) was quite small for each unit except the city buffer area, where large, well-
developed residential areas existed. The city buffer area also had the largest core
area coefficients of variation (CACV1) among all units in both years. The IJI scores
of low-density urban patches were grater than 40 in each unit for both years. The IJI
scores showed little change between 1989 and 2002 except for the Pensacola Bay
watershed, the city buffer area, and the coastline buffer area, where residential urban
patches became less interspersed with similar adjacent patch types.

Between 1989 and 2002, the mean evergreen forest patch size (MPS) for the
PEDA declined, indicating that the evergreen forest landscape became more frag-
mented (Fig. 20.9). Among the four watersheds, the Escambia River had the small-
est mean evergreen forest patch size in both years. The MPS of evergreen forest
patches was relatively large in the Blackwater River and Yellow River watersheds in
1989, but declined substantially in 2002. In both years, the MPS of evergreen forest
patches was relatively small for the coastline buffer and city buffer areas. The Pen-
sacola Bay watershed was the only unit where the MPS of evergreen forest patches
increased between 1989 and 2002, indicating that many small patches were removed
as a result of intensified suburbanization. Between 1989 and 2002, the number of
evergreen forest patches (NP) increased in the PEDA and the watersheds of Black-
water River and Yellow River but declined in other units. The largest evergreen for-
est patch index (LPI) shrank in each unit. The evergreen forest patch shape tended
to be less complex in each unit, as indicated by the decrease in AWMSI (Area-
Weighted Mean Shape Index) scores between 1989 and 2002. Among all units, the
city buffers and the coastline buffers had the smallest total evergreen forest core area
(TCA) but their core area coefficients of variation (CACV1) score was the largest in
both years. The TCA scores declined substantially in each unit during the period of
1989 and 2002; this decline in core evergreen forest area can adversely affect many
area-sensitive species. The evergreen forest patches were fairly well interspersed in
both years.

The Escambia River watershed had the largest mean woody wetland patch size
(MPS) in both years (Fig. 20.10). Between 1989 and 2002, the MPS shrank in each
unit except the Pensacola bay watershed and the coastline buffer area where many
small-size woody wetland patches were removed due to Pensacola’s increased sub-
urbanization. The number of woody wetland patches (NP) declined in each unit
except the Blackwater River watershed where a small increase occurred. Among
all units, the Escambia River watershed had the largest scores for largest woody
wetland patch index (LPI) in both years while the city buffer area had the small-
est scores. During the period of 1989 to 2002, the AWMSI (Area-Weighted Mean
Shape Index) scores decreased in each unit except the coastline buffer area where
a small increase occurred. The city buffer area had the smallest total woody wet-
land core area (TCA). The Escambia River watershed had the largest total woody
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Fig. 20.9 Change in landscape composition and structure of the evergreen forest class for different
spatial units. Descriptions of the metrics and the spatial units are given in Table 20.1 and Fig. 20.4,
respectively (from Yang and Liu 2005a)
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Fig. 20.10 Change in landscape composition and structure of the woody wetland class for different
spatial units. Descriptions of the metrics and the spatial units are given in Table 20.1 and Fig. 20.4,
respectively (from Yang and Liu 2005a)
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wetland core area among all the four watersheds in both years. The Yellow River
watershed has the largest woody wetland core area coefficient of variation (CACV1)
among all units in both years. Based on the IJI scores, woody wetland patches were
fairly well interspersed in both years.

20.7 Summary and Conclusion

Large populations and intensified human economic activities threaten global coastal
ecosystem health. Therefore, there is an urgent need to find efficient ways to man-
age and plan these highly sensitive environments. Analyzing landscape patterns can
help understand some important changes emerging from lower-level disturbances
due to complex interactions between social and environmental processes. Remote
sensing allows a retrospective, synoptic viewing of large regions, thus providing
useful data sources for computing landscape metrics that support landscape moni-
toring and assessment.

This study demonstrates the usefulness of integrating remote sensing and relevant
geospatial technologies for coastal landscape pattern characterization. The methods
identified here are based on an understanding of landscape features, the nature of
landscape metrics, the characteristics of satellite imagery, and information extrac-
tion and reduction techniques. The entire research has gone through several major
stages from the beginning of data acquisition and collection. The primary data were
two Landsat images; ancillary data included ground truth data acquired through
GPS-guided field surveys, DOQQs, existing land use/cover datasets, hydrological
and political boundaries, road networks, cities, coastlines, among others. This was
followed by hierarchic classification and spatial reclassification to produce two land
use/cover maps from remotely sensed imagery. The maps were then used as the
primary data for computing landscape metrics that quantify ecologically important
landscape characteristics. The spatial units used were related to either a hydrolog-
ical unit or a predefined buffer zone so that the variation of landscape pattern can
be characterized. This should help understand the driving forces behind observed
changes over space and time. A large set of landscape metrics were computed for
different spatial units at the landscape and class levels. Landscape ecology princi-
ples, principal component analysis, and Spearman’s rank correlation analysis were
applied to help identify a small group of core metrics that capture the major proper-
ties of a landscape. With the use of these core metrics, the spatio-temporal patterns
of landscape composition and structure were quantified for different spatial units at
the landscape and class levels. Based on this research, it is found that the integration
of remote sensing with other relevant geospatial technologies such as geographic
information systems (GIS) and spatial modeling (e.g. landscape metrics and multi-
variate statistical modeling) has mutually reinforced the utility of these techniques.
The integration has provided insights that would not otherwise be available if spa-
tial data were not organized in a GIS environment and GIS were not integrated with
remote sensing and spatial modeling. Only through this integration can geospatial
technologies be effective for coastal landscape pattern characterization.
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At the application level, this study provides a regional case study focusing on the
Pensacola estuarine drainage area, one of few exemplary large-scale river-driven
estuarine systems across the northern Gulf of Mexico. This study reveals that the
overall landscape mosaics became more heterogeneous and the classes of patches
tended to be more fragmented, which are largely driven by Pensacola’s fast urban
and economic growth since the beginning of 1990s. It is found that landscape com-
position and structure varied greatly across different spatial units. Landscape frag-
mentation was more intensive in the Pensacola Bay watershed, along the coastlines,
and around the city centers, where urbanization and human economic activities were
more concentrated. These findings should be useful not only to those who study
coastal watershed dynamics but also to those who must manage and provide ser-
vices in such a sensitive ecosystem. Coastal managers in the Pensacola estuarine
drainage area should target the highly fragmented areas where restoration, manage-
ment, or changes in policies are needed to slow, stop, or reverse declining envi-
ronmental trends. Given that many world-wide coastal watersheds face the growing
problems caused by urban and economic development, the landscape pattern char-
acterization technical framework developed in this study focusing on Pensacola bay
can be easily applicable to other coastal drainage basins. This method can improve
our understanding of socio-ecological dynamics of landscape, thus facilitating a so-
phisticated approach to coastal conservation and protection.
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Chapter 21
Remote Sensing and Spatial Analysis
of Watershed and Estuarine Processes
for Conservation Planning in Elkhorn Slough,
Monterey County, California

Kristin B. Byrd

The Elkhorn Slough watershed, located on the coast of Monterey Bay in Central
California, is a significant Pacific Coast estuarine system. It has become a nexus
of remote sensing research due to partnerships with multiple nearby institutions,
and innovative approaches in the research area have addressed several manage-
ment issues in the watershed. Historical ecological research with archival aerial
photographs identified significant trends in marshland conversion to other habitat
types, mainly from hydrological modifications but also from off-farm sedimenta-
tion. Research addressing nutrient and sediment runoff demonstrate the potential to
correlate estuarine disturbance and response to watershed inputs or properties. Spec-
tral indices from HyMap hyperspectral imaging of salt marsh vegetation were cor-
related with water nutrient enrichment. Also the current extent of sedimentation in
the salt marsh was linked to historical land cover and physical watershed variables.
Repeat multibeam bathymetry surveys identify regions of the slough with high ero-
sion rates from tidal scour and point to causes of salt marsh conversion. Despite
challenges associated with these applications, remote sensing and GIS analyses, es-
pecially salt marsh vegetation change detection and bathymetric change detection,
inform current restoration planning efforts described in the Elkhorn Slough Tidal
Wetland Strategic Plan. Multiple committees and working groups have formed a
consensus on the need to address the problem of tidal scour partly due to the avail-
ability of high quality, high resolution spatial data. In addition GIS-based watershed
management continues to improve estuarine conditions, as agencies, land trusts and
private landowners have reduced nutrient and sediment inputs through restoration
and erosion control.

21.1 Overview of the Elkhorn Slough Watershed

The Elkhorn Slough watershed, located on the coast of Monterey Bay in Central
California, is a significant estuarine system in California, with its tidal marshland
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Fig. 21.1 The Elkhorn Slough watershed and Moss Landing Harbor, located on the coast of Mon-
terey Bay in Central California

extent only second to that of San Francisco Bay (Fig. 21.1). The slough is a sea-
sonal estuary extending inland for 11.4 km from Monterey Bay and contains approx-
imately 1,090 ha of estuarine habitat types including subtidal channels, tidal creeks,
mudflats, salt marshes, and tidal brackish marshes (Elkhorn Slough Tidal Wetland
Project Team 2007). As only about 3% of conterminous United States salt marsh
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acreage occurs along the Pacific Coast (Field et al. 1991), this represents a signifi-
cant resource for wildlife, fisheries, research and education, and recreation. Despite
its proximity to the urbanized Silicon Valley (about 90 km), Elkhorn Slough and
its surrounding watershed have retained high biodiversity, attractive viewsheds, and
open space. Elkhorn Slough estuarine habitats support over 340 birds (135 aquatic
species), 550 marine invertebrates, and 102 fish species including 24 rare, threat-
ened or endangered species (Caffrey et al. 2002). The watershed is drained by many
small seasonal streams and one main channel, Carneros Creek. Steep hills rise 30
to 100 m from the marsh; while many hills are cultivated, the uplands contain a
rich matrix of oak woodland, grassland and ridges covered with rare central mar-
itime chaparral plant communities, including several endemic plant species. This
diverse, interdependent complex of upland and wetland habitat types supports a di-
versity of species that may be the highest in California for a watershed of its size,
182km2 (Elkhorn Slough Foundation and Tom Scharffenberger Land Planning and
Design 2002).

Over a century of human activity has affected Elkhorn Slough’s natural environ-
ments in ways that have altered ecosystem processes required to sustain the rich
complex of habitats and species diversity both within the estuary and its watershed.
In 1872 a raised embankment for the Southern Pacific Railroad was constructed
through the marshlands, and during the early to mid 1900s tidal wetlands were con-
verted to pastureland for dairy operations, salt evaporation ponds, and waterfowl
habitat (Van Dyke and Wasson 2005). In 1947 the U.S. Army Corps of Engineers
modified the Elkhorn Slough main channel and created a new opening to Mon-
terey Bay to accommodate vessel traffic in the newly created Moss Landing Harbor.
Prior to this point, Elkhorn Slough joined the Salinas River, which meandered north
along the shoreline and entered the bay approximately 1 km from the present-day
harbor (Fig. 21.2). In less than 50 years the slough changed from a largely fresh-
water regime dominated by deposition from the Salinas River and surrounding wa-
tershed to a highly saline system characterized by stronger tidal flow and greater
tidal reach (Schwartz et al. 1986, Crampton 1994). Within the watershed, farming
on the plateau west and north of Elkhorn Slough began in the late 1880s with es-
tablishment of potatoes and sugar beets (ABA Consultants 1989) and intensified in
the 1970s with the expansion of strawberry farms in response to growing markets
(Dickert and Tuttle 1980, Caffrey et al. 2002). Between 1981 and 1993, crop area
in the watershed increased 29%, with strawberry acreage increasing 53% (USDA-
SCS 1994). Currently 24% of the Elkhorn Slough watershed is intensively farmed
(Caffrey et al. 2002).

The ridge tops and south facing slopes of the eastern portion of the upper water-
shed, the Elkhorn Highlands, are highly desirable for farmers and residential buyers,
which threatens large areas of undisturbed central maritime chaparral. A majority of
the soils in the watershed uplands are derived from the Aromas sands formation, an
aeolian sandy parent material producing soils with high sand content that are highly
erodible when disturbed (Fig. 21.3). As the hills are highly susceptible to erosion,
the health of aquatic habitats is intertwined with preservation of central maritime
chaparral. With vegetation clearing, the sandy soils underneath can be washed away
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Fig. 21.2 Aerial photographs
comparing the mouth of
Elkhorn Slough in 1931 (prior
to the 1947 construction of
Moss Landing Harbor) and
1949. Circles represent where
the Elkhorn Slough estuary
enters Monterey Bay. Source:
Elkhorn Slough Tidal Wetland
Project Team (2007)
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Fig. 21.3 A mosaic of habitat types, including pickleweed-dominated diked salt marsh in the fore-
ground, agricultural fields on the hillside, and coast live oak woodland and central maritime cha-
parral on the hilltops. Source: Tuxen (2003)

by winter runoff and greatly impact downstream wetlands (Elkhorn Slough Foun-
dation and Tom Scharffenberger Land Planning and Design 2002).

The Elkhorn Slough watershed spans a complex patchwork of public and
privately-owned lands. The southeastern portion of the estuary contains a NOAA
National Estuarine Research Reserve (ESNERR), designated in 1979. The Califor-
nia Department of Fish and Game manages the 631 ha Research Reserve along with
583 ha of other wetlands including the Moss Landing Wildlife Management Area.
The Elkhorn Slough Foundation, a land trust, and the Nature Conservancy have
acquired through fee or easement 194 ha of wetland and 1227 ha of upland for con-
servation purposes. Together these land acquisitions and state designations account
for a quarter of the estuary’s habitats (Elkhorn Slough Tidal Wetland Project Team
2007). Cooperation among public and private owners, state and local agencies, and
academic institutions have facilitated a conservation and restoration planning pro-
cess targeting protection of important biological resources.

Likewise through the involvement of multiple institutions, Elkhorn Slough has
become a nexus of remote sensing research. The ESNERR brings an inflow of
GIS and remote sensing resources from the NOAA Coastal Services Center. Prox-
imity to Silicon Valley, the home of NASA Ames Research Center, and the high
concentration of research institutions in Monterey Bay, including the U.S. Naval
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Postgraduate School, the Monterey Bay Aquarium Research Institute, the University
of California, Santa Cruz and California State University, Monterey Bay also pro-
vide significant resources.

This chapter describes the influence of a conservation planning process in Elkhorn
Slough on research applying GIS and remote sensing technologies. The chapter
features innovations in geospatial research that address impacts to this estuarine
system. It further highlights how results from these studies have informed recent
planning strategies. Three areas of research relevant to Elkhorn Slough conserva-
tion and restoration are covered: historical ecology, connections between watershed
land use and estuarine response, and change detection of tidal marsh and slough
bathymetry.

21.2 Early Planning Initiatives

By 1999 State and federal land designations as well as several conservation pro-
grams were in place, and several individuals representing non-profit, local and
state government, and academic institutions came together to develop a Watershed
Conservation Plan that would guide future conservation activities. Central to this
planning process was the development of a GIS, which was used to assess spatial
distribution of biological resources and land use patterns in order to prioritize lands
for acquisition, management and restoration. The plan identified critical resources,
most significant threats to these resources, and strategies to protect these resources
over time (Scharffenberger et al. 1999). Critical resources, or conservation targets,
were defined as natural wetland and upland habitats and the rare and endangered
species they support, and productive agricultural areas vital to the local and county
economy. The report identified the most significant threats to Elkhorn Slough to
be: (1) sedimentation and contamination of marshes mostly due to uncontrolled
runoff from steep cultivated fields, (2) destruction and fragmentation of maritime
chaparral habitat from residential development, (3) depletion of groundwater and
accompanying seawater intrusion from excess pumping of wells for irrigation and
(4) loss of marsh habitat by tidal erosion and conversion from human manipulation
of marsh hydrology. These threats remain a high priority for resource managers, and
threats (1) and (4) have been the focus of remote sensing-based research over the
past eight years.

The location, area and distribution of conservation targets were mapped from
aerial photography, and a planning strategy was built around five conservation zones
delineated to represent major regions of the watershed that contained the most in-
tact remaining conservation targets in the area. Generally, overarching conservation
strategies applied to each zone were to acquire unprotected parcels through fee ti-
tle or conservation easement, create vegetated buffers between cultivated fields and
wetlands, and restore natural habitat where possible.

These conservation strategies were further refined in a follow-up planning docu-
ment in 2002, called “Elkhorn Slough at the Crossroads” (Elkhorn Slough Foun-
dation and Tom Scharffenberger Land Planning and Design 2002). One of its
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major contributions was a more complete understanding of the watershed’s sen-
sitive habitats through detailed vegetation mapping. Authors of the report identified
a high diversity of unusual interdependent habitats and reinforced the need to prop-
erly manage land uses since aquatic resources were so heavily impacted by runoff
from cultivation and development. Upon completion of the report, the director of the
Elkhorn Slough Foundation, Mark Silberstein stated, “The process of developing the
GIS and the layers of information behind the maps has brought a new appreciation
for the importance, beauty and fragility of the slough. Accurate mapping provides
the basis for sound land use decisions and we supply this information in the spirit
of informed dialogue as the community works toward a vision of the future of this
part of the coast and toward a new General Plan for the County.”

The keystone of the report was a vegetation map created through hand digitiz-
ing aerial photography in order to update the 1999 Watershed Conservation Plan’s
biological and agricultural resource inventories. The map contained 18 classes in-
cluding dominant vegetation types and land uses such as agriculture, greenhouses,
and developed areas. From these maps and coordinated efforts a vision was devel-
oped to create an intact and interconnected network of natural communities includ-
ing over 1616 ha of coastal marsh within Elkhorn Slough and Moro Cojo Slough to
the south, enhanced freshwater wetlands of McClusky Slough to the north, restored
riparian forest along the lower Carneros Creek floodplain, and a series of upland
ridges with unfragmented maritime chaparral in the Elkhorn Highlands. These natu-
ral communities were to be surrounded by productive, habitat-compatible farmland,
scenic vistas and residences.

21.3 A Remote Sensing Approach to Historical Ecology

The implementation of conservation and restoration strategies in Elkhorn Slough re-
quired information about the area’s environmental baseline conditions prior to major
human modification of the watershed. Historical information has become increas-
ingly important in setting sustainable management goals and has become central to
the field of restoration ecology (Swetnam et al. 1999). Historical ecology is char-
acterized by the use of a long time sequence of measurements or observations to
gain information about changes in populations, ecosystem structures, disturbance
frequencies, process rates, trends, and periodicities (Swetnam et al. 1999). Applied
historical ecology involves the use of historical knowledge in ecosystem manage-
ment and planning.

Recognizing the importance of historical information for informing conserva-
tion decisions, an historical ecology research program was developed at ESNERR.
This program was made feasible by the rich archive of historical maps and aerial
photographs of the region, due to the coastal location of the watershed and its prox-
imity to the historical city of Monterey (Van Dyke and Wasson 2005). The direc-
tion of historical ecology research at ESNERR and elsewhere were influenced by
two anthropogenic impacts discussed in the early planning documents: long-term
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human modification of marsh hydrology and sedimentation into the slough from
eroding upland cultivated areas. As research progressed, innovative remote sensing
techniques were developed to discern historical environmental conditions from the
archival materials and to assess historical ecological changes. The use of histori-
cal geographical data, like aerial photographs, for map-making is a key component
of historical ecology research, as maps most clearly illustrate the relationship be-
tween physical processes and habitats, habitats and species, and habitats of different
kinds (Grossinger 2001). Maps also can help identify significant historical habitat
types and current habitat remnants that are an important source of regional species
diversity (Grossinger 2001).

Aerial photography, which began early in the 20th century, is an especially
important tool for monitoring long-term ecological changes. Not only can aerial
photographs be used to quantify ecosystem changes, but they can help explore ex-
plicit linkages between ecosystem change and human resource uses that drive those
changes. While several remote sensing data sources are available to map coastal ar-
eas and wetlands [e.g. Light Detection and Ranging (LiDAR) data, Landsat satellite
imagery, Airborne Data Acquisition and Registration (ADAR) imagery], only color
or color infrared (IR) aerial photography provides the combination of spatial and
spectral resolution and temporal scale required to conduct long-term historical time
series analysis of wetland change at fine spatial scales such as the plant commu-
nity level.

Despite the advantageous spatial resolution provided by most aerial photogra-
phy, the method of image capture creates several challenges when using the data.
Problems with color balance and geometric distortion exist due to camera tilt, re-
lief displacement, lens distortion, and atmospheric refraction, which can cause scale
variation and horizontal error (Dickert and Tuttle 1980, Bolstad 1992, Barrette et al.
2000) and must be rectified. Contact printing and scanning introduce more distortion
(Moore 2000), and the process of matching ground control points during rectifica-
tion is another source of error (Van Dyke and Wasson 2005). Ideally, the problem
being studied would determine the time between image dates chosen for historical
studies or the frequency of change detection. Ultimately however, the availability of
imagery influences the choice of image dates and what historical processes can be
identified (Klemas 2001).

At ESNERR a project was initiated to track trends in tidal wetland habitat
changes due to human modification of the Elkhorn Slough system. Developing an
efficient method for georeferencing and mosaicking multiple color and color IR
contact prints was a key step to extracting information from historical aerial pho-
tographs. Van Dyke and Wasson (2005) scanned, georectified and mosaicked 26
historical maps and charts dating from 1853 to 1925 and 13 aerial photograph
flights taken between 1931 and 2003, which together comprised more than 300
photos. This combination of black and white, true color and color IR aerial pho-
tos were scanned to produce a resolution of 0.6 m/pixel after rectification. Ground
control features were identified in 0.6 m/pixel digital orthophotographs. Because
image distortion increases with increasing distance from the image center, the team
constructed the mosaic using the central portion of each overlapping image. This
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central “effective area” was identified with a script that applied a proximity function
and created a honeycomb polygon shapefile that served as a mask for assembling the
mosaic. Control points were located at well spaced locations near the perimeter of
the effective areas. Because camera tilt was likely the greatest source of distortion,
the images were resampled with a four-point plane projective model.

Van Dyke and Wasson (2005) conducted a marsh and tidal creek time series anal-
ysis on 196 fixed 100m2 quadrats and 196 tidal creek cross sections in undiked areas
from 12 dates ranging between 1931 and 2003. Within each quadrat and date they
determined the percentages of vegetated salt marsh and unvegetated areas. Typical
of Northern California salt marshes, the dominant vegetation at Elkhorn Slough is
pickleweed (Sarcocornia pacifica), a low-growing succulent plant that forms dense
monospecific stands across the marsh plain.

Black and white historical aerial photographs provide limited capacity to differ-
entiate plant community types, especially through automated classification methods.
To address this issue image classification was accomplished using a custom inter-
active application to perform semi-automated image interpretation. Starting with
the first quadrat, the user selects a threshold grayscale value that defines the iso-
line boundaries between vegetated and bare portions, then the tool automatically
produces the corresponding set of polygons (vegetated and unvegetated) within a
shapefile. Moving across the aerial photo, the initial grayscale selection seeds the se-
lection for the following quadrat, and the tool allows the user to adjust the grayscale
value to account for contrast variations among quadrats. All analysis was performed
on grayscale imagery; for color IR photos the researchers converted red-green-blue
to hue-saturation-intensity then interpreted the intensity component.

Interpretation of these aerial photos demonstrated that major changes to Elkhorn
Slough’s wetland habitats occurred over 150 years. Since 1870 more than two thirds
of the slough’s salt marsh has either degraded or been converted to other habitat
types. From 1870 to 1956 the construction of more than 60 km of levees and em-
bankments reduced the range of unobstructed tidal influence by 59%. During this
same period of extensive diking, the extent of intact salt marsh (veg cover >75%)
decreased by 66%. By 2000 the extent of high-quality marsh was 23% of its cover-
age 100 years before (Fig. 21.4) (Van Dyke and Wasson 2005).

From the quadrat analysis it became clear that much of the upper slough that was
once densely vegetated is now mudflat and open water. The mean percentage of salt
marsh vegetation cover in undiked areas decreased from 89.6% to 46.4% in 2003.
Tidal creeks have also become wider in undiked areas, from an average of 2.5 m
in 1931 to 12.4 m in 2003. The extent of marsh loss and changes in creek channel
width increased with increasing distance from Monterey Bay (Fig. 21.5).

The changes to Elkhorn Slough’s marshlands over 100 years were attributed to
two major alterations in the slough’s hydrology: restrictions to the range of tidal flow
occurring earlier in the study period and expansion of tidal range, amplitude, and ve-
locity that occurred since the opening of Moss Landing Harbor in 1947 (Van Dyke
and Wasson 2005). The newly created, deeper, wider channel entrance to Monterey
Bay increased the velocity and amplitude of tidal exchange within the slough, trans-
forming it into a highly erosional system. The marsh quadrat and tidal creek analysis
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Fig. 21.4 An example of
evolution of salt marsh to mud
flat. Dark areas are salt marsh,
light areas are unvegetated.
(a) Tidal creek network and
growing interior panes, 1980
aerial photo. (b) Deteriorated
marsh largely converted to
open mud flat, 2001 aerial
photo. Source: Van Dyke
and Wasson (2005), Fig. 8,
p. 185; c© 2005 Estuarine
Research Federation, with
kind permission of Springer
Science and Business Media

showed that conversion of salt marsh habitat to mudflat and widening of tidal creeks
accelerated only after 1949, timing that coincides with artificial channel opening
(Van Dyke and Wasson 2005).

Moving up into the watershed, an earlier study (Dickert and Tuttle 1980) exam-
ined historical land use change between 1931 and 1980 and calculated erosion rates
associated with different land uses, soil types, and slopes. The authors identified
sediment fans resulting from this erosion that had formed in the marsh at the base of
slopes draining into the slough. Between 1931 and 1980 there was a 5-fold increase
in the number of sediment fans and a doubling of their acreage in the pickleweed
marsh as agriculture in the watershed increased by 282%. By 1980 at least 30 sed-
iment fans had formed in the salt marsh, ponds, and freshwater marsh of Elkhorn
Slough.

Another historical ecology project based out of the University of California,
Berkeley, addressed this problem of watershed erosion and examined how sedi-
mentation from eroding cultivated areas buried salt marsh vegetation at the upland
margin of the slough. Byrd et al. (2004) analyzed the same archive of historical
aerial photos used by Van Dyke and Wasson to produce a time series of vegetation
change on sediment fans over four decades. A combination of black and white and
color IR aerial photographs and orthophotos from May 1971, April 1980, May 1992,
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Fig. 21.5 Annualized change, vegetation cover and tidal creek width. 1931–1956: (a) High to very
high marsh loss at lower slough; moderate loss at mid and upper slough. (b) Low to moderate
overall tidal creek width increase. 1956–1980: (c) Little change or marsh recovery at lower and
mid slough; very high loss at upper slough. (d) High to very high creek width increase at upper
slough and southern part of lower slough; low to moderate increase elsewhere. 1980–2003: (e)
Moderate to high marsh loss at lower and mid slough; very high loss at upper slough. (f) Moderate
to very high creek width increase at lower and mid slough; very high increase at upper slough.
Source: Van Dyke and Wasson (2005), Fig. 6, p. 183; c© 2005 Estuarine Research Federation,
with kind permission of Springer Science and Business Media

and May and June 2001 were chosen for analysis, and May 1931 aerial photographs
provided reference conditions. Again all photos were scanned to generate digital
images with a resolution of approximately 0.6 m/pixel. This sub-meter resolution
was required to differentiate vegetation types in the salt marsh. Fifteen sediment
fans present in salt marsh, both diked and undiked, were chosen as study areas.
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The color IR images (1980, 1992, and 2001) were classified based on a plant
community level scheme derived from “A Manual of California Vegetation” (Sawyer
and Keeler-Wolf 1995), and classes included bare soil (including mudflat), pickle-
weed, saltgrass/jaumea (Distichlis spicata/Jaumea carnosa), bulrush/cattail
(Schoenoplectus spp./Typha spp.), arroyo willow/coast live oak (Salix lasiolepis/
Quercus agrifolia), coyote brush scrubland (Baccharis pilularis), and California an-
nual grassland. In the black and white images (1931 and 1971), only pickleweed and
mudflat areas were classified.

Overall, a hierarchical supervised classification of color IR aerial photographs
was successful in discriminating several plant communities. The study area had
little heterogeneity within plant communities that were for the most part mono-
typic, which lent to a greater success rate. The high spatial resolution (0.6 m/pixel)
enhanced separability among classes and likely reduced the number of spectrally
mixed pixels. This resolution allowed for the analysis of vegetation change in rel-
atively small areas. Together, all 15 study sites comprised 37 ha. Additional bands
generated from the original IR, red and green bands also proved necessary for a suc-
cessful classification. Use of NDVI was instrumental in separating vegetation from
bare soil, and the IR and green variance texture bands contributed to the separation
of forest from grasses and shrubs.

A time series analysis from 1980 to 2001 identified the relative change in area
among pickleweed, bare soil, saltgrass/jaumea, and willows. The results demon-
strated a process of succession that was typical on five sediment fans, all located on
the western side of the slough where tidal action was still present. Between 1980 and
1992 as sedimentation occurred, pickleweed and mudflat were replaced by saltgrass
and jaumea on fans below upland drainages. Between 1992 and 2001 sedimentation
likely continued, especially during the strong El Niño winter of 1997–1998, and
arroyo willow took the place of saltgrass and jaumea and continued to extend into
the marsh plain. On the eastern side of the slough the pattern of successional change
lacked the intermediate stage of saltgrass and jaumea, but the final outcome was still
an expansion of willow cover and movement of willows into the salt marsh. Over-
all willow expansion occurred on 11 of 15 sediment fans encompassing an area of
4.75 ha (Fig. 21.6). Of this expansion 57% occurred as willows moved into grass-
land and 43% as willows extended into the marsh.

Though not a main objective of this project, it became evident that the post-
classification change detection methods applied here separated effects of tidal
erosion and sedimentation, the two contrasting processes of salt marsh loss both
occurring within the study areas. A from-to matrix generated by the change detec-
tion from 1980 to 2001 revealed that pickleweed within the study area declined by
3.64 ha. Eighteen percent of the pickleweed was converted to mudflat, which can be
interpreted as an impact of tidal erosion, the likely cause of pickleweed loss to mud-
flat (Van Dyke and Wasson 2005). Fourteen percent of pickleweed was converted to
another vegetation class, primarily arroyo willow, and represents the establishment
of new species where sedimentation occurred.

Despite the challenges associated with historical aerial photographs, such as im-
age quality, scale, and image dates, they enable the study of historical ecological



21 Remote Sensing and Spatial Analysis of Watershed and Estuarine Processes 507

Fig. 21.6 Arroyo willow expansion on sediment fans from 1980 to 2001. Source: Byrd et al.
(2004), Fig. 5, p. 361; c© 2004 Bellwether Publishing Ltd

processes that help explain present-day land cover. Analyzing several dates of aerial
photographs also provides information about transitional stages of ecological pro-
cesses and sequential pressures acting upon habitat loss or gain. Documentation
of historical patterns of change has supported conservation planning at other West
Coast estuaries (Zedler 1996, Goals Project 1999, Borde et al. 2003) and has proven
equally essential to planning efforts in Elkhorn Slough. As stated in Van Dyke
and Wasson (2005), “Historical ecology may not supply easy answers to Elkhorn
Slough’s complex habitat conservation questions, but a thoughtful analysis of the
historical record can help guide development of feasible and sustainable restoration
goals.”

21.4 Identifying Connections Between Watershed Land
Use and Estuarine Response

Again returning to the initial planning documents, one of the greatest anthropogenic
disturbances to Elkhorn Slough tidal wetlands is runoff of sediment and nutrients
from cultivated fields. Agricultural fertilizers add 50–200 kg of nitrogen per ha per
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year to the watershed and an estimated 50% remains unassimilated (Caffrey et al.
2002). Fertilizer runoff contributes significant excess nitrogen to the slough and is
the primary source of water quality degradation and eutrophication (Caffrey et al.
2002).

As one of 27 National Estuarine Research Reserves, ESNERR is mandated
to conduct monitoring programs to track key ecosystem, habitat, and community
parameters over time. The monitoring provides long-term baseline data for re-
searchers and students. Equally important, monitoring enables early detection of
major changes, which would allow for adaptive management in the case of an
anthropogenic disturbance. The ESNERR monitoring program has monitored wa-
ter quality at 24 stations surrounding the slough monthly since 1988. Four addi-
tional stations along the main channel are sampled every 30 min (see http://www.
elkhornslough.org/esnerr.htm).

As an alternative to water sampling, vegetation can be a bioindicator of salt marsh
nutrient inputs. The nutrient content in plant tissues reflects the integration of the
nutrient regime over a period of time that is related to the duration of retention and
delayed use of nutrients, and this includes the effects of nutrient pulses that could be
missed by periodic water sampling (Siciliano et al. 2008). The spectral response of
wetland vegetation to variable nutrient uptake and storage can be potentially mapped
and correlated with airborne hyperspectral sensors. As such a hyperspectral image
could provide a synoptic view of a region, revealing spatial patterns of vegetation’s
integrated response to nutrients over time. To successfully detect a correlation be-
tween spectral response and water nutrient enrichment, vegetation must be nutrient
limited, the vegetation’s uptake of water column nutrients must produce a spectral
response, and the spectral and spatial resolution of the imagery must be sufficient
to detect spectral differences within and between vegetation patches (Siciliano et al.
2008).

A novel study in Elkhorn Slough tested the validity of using of pickleweed spec-
tral responses derived from hyperspectral imagery to detect variations in estuarine
nutrient enrichment. This was the first time salt marsh plants have been used as
bioindicators of eutrophication potential in a “real” system, as opposed to an ex-
perimental setting under controlled conditions. It was also the first time that two
spectral indices were tested at the landscape level with hyperspectral imagery, as
opposed to tests with spectroradiometer readings (Siciliano et al. 2008).

Researchers investigated two spectral indices for their potential to signal nutri-
ent enrichment of salt marsh vegetation: the Derivative Chlorophyll Index (DCI)
(Zarco-Tejada et al. 2002) and the Photochemical Reflective Index (PRI) (Gamon
et al. 1997). DCI, the ratio of the derivative values at 705 and 725 nm, is correlated
with increases in chlorophyll fluorescence and concentrations. As plant stress in-
creases, such as with reduced nutrient levels, the magnitude of the 725 peak declines
and the magnitude of the 700 peak increases consistently (Lamb et al. 2002, Smith
et al. 2004). PRI is the ratio of narrow band reflectance at 531 and 570 nm (531–
570)/(531+570) and indicates the efficiency of photosynthetic radiation use across
nutrient levels and plant species. Nutrient deficient leaves with lower photosynthetic
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rates have lower PRI values than fertilized plants, and this reduction is consistent
among annual, perennial deciduous, and perennial evergreen plants (Gamon et al.
1997).

After confirming that pickleweed was nitrogen-limited from fertilization exper-
iments, the researchers compared two spectral indices of fertilized and unfertilized
pickleweed plots from spectroradiometer readings at leaf and canopy levels. Sec-
ondly the researchers tested correlations between the same spectral indices derived
from hyperspectral imaging of pickleweed plots and water nutrient levels. HyMap
hyperspectral imagery [126 bands, 2.5–3.0 m spatial resolution; (Cocks et al. 1998)]
was acquired over Elkhorn Slough on May 3, 2000 by HyVista Corp. (Sydney,
Australia). Eighteen regions of interest in the HyMap imagery, corresponding to
monospecific pickleweed stands adjacent to 18 water quality stations, were ana-
lyzed by extracting every pixel and calculating the mean and variance of DCI and
PRI within each region of interest. The researchers used regression analysis to test
correlations between spectral indices and mean water-nitrogen levels for productive
months (March through September) for five years preceding image acquisition.

Spectral signatures derived from spectroradiometer measurements at leaf and
canopy scales were distinctly different between fertilized and unfertilized pickle-
weed plants. Results indicated that the spectral signature of pickleweed exposed to
nutrient enrichment had a greater absorption between 555 nm and 680 nm, steeper
red-edge slope, and higher PRI and DCI values.

Spectral indices from the hyperspectral imagery had significant but low corre-
lations with average growing season nutrient levels. DCI values increased with in-
creasing water nitrogen content (R2 = 0.260; P < 0.01; N = 18 stations). Nitrogen
levels at two stations were an order of magnitude higher than at other stations; when
these two stations were removed, R2 doubled to 0.485 (Fig. 21.7). PRI also increased

Fig. 21.7 Regression (logarithmic fit) of Derivative Chlorophyll Index (DCI) from HyMap image
spectra against mean total water Nitrogen (mean of productive seasons of 1996–2000) at each
monitoring station (N = 16), excluding 2 stations (Potrero Rd. North and Potrero Rd. South). DCI
values are for each image-extracted spectrum of a 2.5× 2.5 meter pixel containing Sarcocornia
pacifica. Source: Siciliano et al. 2008, Fig. 10, p. 4029; c© 2008 Elsevier Inc
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significantly with increasing water nitrogen content (R2 = 0.258) when 2 stations
were removed for excess nitrogen and one was removed because of high phosphate
concentrations, which are known to influence spectral response. Overall, nitrogen
inputs could be differentiated spatially across the slough with spectral readings from
the HyMap imagery (Siciliano et al. 2008).

In this study there was little or no DCI response to water nitrogen higher than
12 mg/L. From these results it was determined that the useful range of the DCI/water
nitrogen relationship is limited from about 2 mg/l to 10 mg/l nitrogen. This is the
range most commonly experienced by pickleweed marshes in Elkhorn Slough and
spans unenriched to eutrophic conditions (Siciliano et al. 2008). Overall, the two
spectral indices, DCI and PRI, have the potential to serve as proxies for nutrient
input at least for qualitative mapping of relative nutrient variation and gradients.
However the researchers suggest that more research is needed to determine how
well spectral data and plant nitrogen content are related. Provided this relationship
is found to be consistent and strong, the cost of airborne hyperspectral imagery
may still limit this approach as a monitoring tool. However, hyperspectral satellite
imagery would be a much more cost effective tool in the near future, when high res-
olution, high signal to noise ratio (SNR) hyperspectral satellites become operational
(D. Siciliano, personal communication, September 17, 2007).

Nutrient runoff from cultivated fields has often been associated with off-farm
sedimentation into Elkhorn Slough’s salt marshes. The extent of sedimentation in
salt marshes in relation to current and former watershed properties has also been
identified through remote sensing applications (Byrd et al. 2007). Researchers ex-
plored the relationships between present-day sediment fan size with current (2001)
and past (1980) land cover and watershed variables. Watershed variables were those
that represented physical properties of the watershed, such as slope or area, while
land cover included riparian forest, cultivated fields, and grazing land. The influ-
ence of sub-watershed size on the ability to identify these relationships was also
investigated.

Land cover and watershed variables were derived from the 1980 color IR aerial
photographs and the 2001 orthophotos applied to the study of vegetation change
on sediment fans (Byrd et al. 2004). It was not possible to distinguish riparian for-
est cover from other types of forest cover using spectral-based automated classi-
fication of color IR aerial photographs; therefore, Byrd et al. (2007) developed a
method using topographical data to model the likely distribution of riparian for-
est. This was accomplished with the program FLOW 95 (Schäuble 1999), which
predicts areas of high sediment accumulation. FLOW 95 uses a multiple flow algo-
rithm to calculate cumulative flow accumulation in watersheds from a DEM, and
is based on the logic of Desmet and Govers’ algorithm (Desmet and Govers 1996),
which calculates overland flow. In contrast to the usual flow accumulation model,
which is useful for delineating linear flow paths and stream channels, this model
estimates flow accumulation over an areal extent, which is more suitable for es-
timating sediment flow and deposition. The FLOW 95 algorithm produced a flow
accumulation grid with higher cell values corresponding to higher levels of sediment
accumulation.



21 Remote Sensing and Spatial Analysis of Watershed and Estuarine Processes 511

Overlaying a general forest cover map with the flow accumulation grid, forest
cover meeting a flow accumulation value of 65 or higher was selected and labeled as
riparian forest. This value was experimentally chosen based on the intersection be-
tween flow accumulation values and the presence of riparian forest cover (mostly ar-
royo willow), which was identified through photointerpretation and ground-truthing.
The 1980 image had an overall classification accuracy of 88% and the 2001 image
had an overall classification accuracy of 90%.

According to regression analysis the power to explain sediment fan size increased
among large sub-watersheds (adjusted R2 = 0.94 vs. 0.75), and three historical wa-
tershed variables were significant. Sediment fan size increased with less riparian
forest in 1980, less steep agricultural slopes in 1980, less steep sub-watershed flow-
path slopes, and shorter riparian flowpath lengths in 1980 (water flowpaths within
riparian forest located between farmland and marsh) (Fig. 21.8). Variables most
correlated with fan size were 1980 %riparian forest cover (r = −0.94) and longest
flowpath slope (r = −0.94).

Strong relationships between wetland conditions and watershed land cover may
exist in large watersheds, while in smaller watersheds, the spatial arrangement of
landscape patches or land use management may be more critical than the dominant
land cover in explaining downstream impacts (Strayer et al. 2003). For example
sediment flux may be highly variable in smaller watersheds, but less variable in
large watersheds because they integrate random pulses of sediment occurring over
their smaller sub-catchments (Benda and Dunne 1997). Because of this integration,
in large watersheds the overall effect of land use on downstream impacts would be
stronger, as soil erosion rates would vary according to land cover (Opperman et al.
2005).

Historical variables likely explained sediment fan size because there was a time
lag between watershed land conversion and sedimentation in the marsh; intense
storms stochastically drive sedimentation events that occur after land conversion
(Benda and Dunne 1997). Subsequently once sediment deposits, several years pass
before arroyo willow dominates the sediment fans. While many sediment fans
formed during the 1980s, arroyo willow expansion on fans occurred most during
the 1990s (Byrd et al. 2004). Historical riparian flowpath was related to sediment
fan size, with short flowpaths leading to larger fans. Riparian flowpath length in-
creased 70 m on average from 1980 to 2001, generally from the mid 1990s onward
when most restoration activities began. If riparian flowpaths continue to lengthen
then the amount of sediment transported to the marsh will possibly be reduced.

These studies addressing nutrient and sediment runoff have demonstrated the
potential to correlate estuarine response to watershed inputs or properties through
remote sensing applications. In one case salt marsh vegetation spectral response was
related to spatial variation in water nitrogen concentration, and in the other the extent
of sedimentation in salt marsh was related to land cover and physical watershed vari-
ables. These studies also emphasize the temporal component of watershed-estuarine
connections. In the highly variable Mediterranean climate of coastal California, land
use combined with stochastic winter rainstorm events drive nutrient and sediment
inputs. Storms during the El Niño winter of 1997/1998 produced significant levels
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Fig. 21.8 Partial regression
plots of significant
independent variables against
sediment fan size (square root
transformed) for large
sub-watersheds (n = 14).
Source: Byrd et al. (2007),
Fig. 2, p. 107; c© 2007
Springer Science and
Business Media
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of sedimentation and high nutrient pulses. In Elkhorn Slough spectral indices from
hyperspectral imagery integrated vegetation response to the previous five years of
nutrient uptake, including high nutrient concentrations from the El Niño winter.
Finally, the current extent of sedimentation was linked to historical watershed prop-
erties, and represented a legacy of past land management and land use activities.
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21.5 Change Detection of Salt Marsh Vegetation
and Channel Bathymetry

The water quality and weather and biological monitoring programs at ESNERR are
well established. However the rapid rate of marsh loss presented by Van Dyke and
Wasson (2005) emphasizes the need for continued landscape-scale monitoring of
tidal wetland coverage. With the expansion of the GIS program at ESNERR, the
increasing frequency of digital aerial photo acquisition, and increasing availability
of satellite imagery, LiDAR, and digital aerial photography, a geographical monitor-
ing program became available to address this need. The goals of this program are to
map and quantify changes in the extent of all emergent tidal wetlands over the entire
estuarine system and emergent tidal wetland plant communities at selected locations
every two to five years. Currently mapping will be conducted according to methods
described in Van Dyke and Wasson (2005). But efforts are underway to develop
a faster, more consistent protocol. A wealth of imagery from a variety of sources
was made available to develop an efficient mapping program. These included
true-color digital aerial photography yielding 0.45 m/pixels, Ikonos multispectral
satellite imagery (4.0 m/pixel for multispectral and 1.0 m/pixel for pan), Quick-
Bird multispectral satellite imagery (2.8 m/pixels for multispectral and 0.7 m/pixel
for pan), HyMap hyperspectral imagery (126 bands, approximately 3 m/pixels),
NASA AVIRIS hyperspectral imagery (224 bands, approximately 20 m/pixels), and
PHILLS II hyperspectral imagery (124 bands, 3 m/pixels). Through experimenta-
tion, landscape-scale emergent tidal wetland mapping was found to be most effec-
tive with 1 m/pixel pan-sharpened multispectral satellite imagery.

In addition a new tidal wetland classification system is being developed at
Elkhorn Slough for the NOAA Coastal Change Analysis Program (C-CAP) to be
used for the entire NERR system. Instead of 30 m resolution Landsat imagery used
in past C-CAP mapping, a high resolution (1 m) digital elevation model (DEM) de-
rived from LiDAR data and 1 m pan-sharpened multispectral satellite data are being
applied to develop a habitat classification system based on tidal datums and the
Cowardin wetland classification system. This method is expected to create much
more accurate estuarine habitat maps, as habitat types are inherently related to
the extent of tidal inundation (Eric Van Dyke, personal communication, August
21, 2007).

Mapping and frequent monitoring of sub-tidal areas of the Elkhorn Slough estu-
ary and beyond the mouth of the slough into Monterey Canyon have been facilitated
by California State University’s Seafloor Mapping Lab. Sequential bathymetric
surveys of the slough channel have produced a time series of erosional and deposi-
tional patterns that can partially explain patterns of marsh loss and tidal creek widen-
ing. Data capture and analysis have been part of undergraduate student training, and
were the subject of a number of senior thesis, or “capstone” projects, that provided
information essential to restoration planning in the slough. Bathymetry data is col-
lected with a Reson 8101 SeaBat multibeam sonar system that measures discrete
depths, enabling complex underwater features to be mapped with precision. Dif-
ferential GPS vessel positioning for multibeam surveys is provided by a GPS with
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differential corrections. When higher accuracy x,y,z positioning is required, Real-
Time Kinematic (RTK) mode is applied. (see http://seafloor.csumb.edu/descriptions/
multibeamdescrip.html).

Multibeam bathymetry imagery of the Elkhorn Slough channel was collected to
study in detail the effect of hydrological changes caused by the development of the
Moss Landing Harbor in 1947. When the harbor opened, Elkhorn Slough’s main
channel was exposed to direct tidal flow and flushing. As a result the tidal prism of
the slough increased and the system became characterized by tidally mediated ero-
sion, or tidal scour (Crampton 1994). Tidal scour has been attributed to the widening
and deepening of the main channel and tidal creeks, and loss of pickleweed marsh,
all of which expand the tidal prism. This process of expanding the tidal prism cre-
ates a positive feedback loop as tidal velocities increase, accelerating the erosion
rate of channels and creeks. Determining the rate and distribution of tidal scour is of
critical necessity for developing appropriate remediation plans. As a result resource
managers would like to determine when or if the slough will reach equilibrium,
whereby the net sediment flux approximates zero.

A student researcher collected multibeam bathymetry data of Elkhorn Slough
in 2001 and compared results to bathymetry data collected in the same area by
Malzone and Kvitek in 1993 (Dean 2003). In 1993 Malzone and Kvitek collected
data along 67 cross-sections of the main channel and 6 across the mouth of Parson’s
Slough with a single beam sonar fathometer and a differential GPS with an accuracy
of 2 m. Malzone calculated that the erosion rate for the total slough system was
8.0×104 m3/year (Malzone 1999). Later Dean’s multibeam survey produced a grid
of points at a resolution of 1 m or better. The results were to provide the basis for a
hydrological model that would help planners predict changes in the slough.

By comparing survey points, Dean determined changes in cross-section area,
thalweg depth, and channel volume, and identified areas of net erosion and deposi-
tion. Results showed that the mean cross-section area of the main channel increased
by 16% between 1993 and 2001, and slough volume increased by 21% or an aver-
age of 5.6×104 m3 per year. Portions of the main channel just upstream of Parson’s
Slough experienced relatively small changes in maximum depth and significant de-
position occurred at the head of the slough, while the downstream portion of the
slough grew much deeper, steepening the depth gradient. Since most of the erosion
occurred downstream of the mouth of Parson’s Slough, there is evidence that an
increasing tidal prism within Parson’s Slough had become a dominant influence on
tidal scour downstream.

Sampey followed up with another multibeam bathymetry survey in 2003 (Sampey
2006). He produced a map of Elkhorn Slough’s tidal prism and compared his sur-
vey results to those from Dean’s 2001 survey to assess changes in erosion rates. A
GPS receiver capable of RTK correction was used for primary navigation and in situ
tide height data collection during all surveys, enabling the construction of tide mod-
els on the fly. Depth values were referenced to the North American Vertical Datum
(NAVD) 1988. The use of RTK GPS tide data greatly increased the accuracy of the
data over past surveys that used predicted tides from tidal stations. A high resolu-
tion 1-m DEM was produced from bathymetric data collected with multibeam and
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single beam sonar systems at high tide, and topographical LiDAR data collected at
low tide. While the bathymetry data covered subtidal areas, the topographical Li-
DAR provided coverage for marshes and mudflats. The tidal prism calculated from
the 2003 DEM was 6.22×106m3±1.00×106. This represented a 12.71% increase
in tidal prism since Malzone’s calculation in 1999. Parson’s Slough accounted for
30% of the tidal prism with a volume of 1.39×106m3.

Comparison with the 2001 bathymetry data indicated that the thalweg contin-
ued to deepen along the length of the main channel. Between 2001 and 2003,
2.4× 105m3 of sediment was lost. The net sediment volume change in the main
channel was −1.23% suggesting an erosion dominated system. Seventy percent
of the total sediment volume eroded downstream of Parson’s Slough. These data
suggest that erosion rates are increasing, and the slough system has not reached a
point of equilibrium. The upper slough remained a depositional dominated system
as was seen in 1993 and 2001. The depositional pattern especially in these upper
reaches corresponds with bank failure of tidal creeks, demonstrating the risk of fur-
ther marsh habitat erosion.

While the multibeam bathymetry data has proven invaluable for resource man-
agers working toward a solution for tidal scour, challenges exist with using the
multibeam sonar equipment in a shallow estuarine environment. The twisting chan-
nels strained software designed to survey wide straight swaths of coast and open
ocean. Erosion had compromised the reliability of navigational charts and tide mod-
els. Thick patches of eel grass tangled propellers, cluttered sonar returns with noise,
and trapped sediment. Huge shoals of baitfish also interfered with sonar returns.
Furthermore many areas were too shallow to survey (Dean 2003).

21.6 The Contribution of Remote Sensing Data to Modern
Restoration Planning Strategies

The extensive marsh loss and estuarine habitat erosion documented in the remote
sensing studies described here are receiving attention through a large, collabora-
tive restoration planning process documented in the Elkhorn Slough Tidal Wet-
land Strategic Plan, published in March 2007. Over one hundred coastal resource
managers, representatives from key regulatory and jurisdictional entities, leaders of
conservation organizations, scientific experts and community members have come
together to develop and implement strategies to conserve and restore estuarine habi-
tats in the Elkhorn Slough watershed through the Elkhorn Slough Tidal Wetland
Project (Elkhorn Slough Tidal Wetland Project Team 2007).

After reviewing an extensive scientific literature on Elkhorn Slough, major im-
pacts were identified and addressed in the Strategic Plan, many of which were pre-
viously identified in former planning documents. Acknowledging multiple stressors
to the Elkhorn Slough watershed, the Strategic Team prioritized the need to address
interior marsh dieback and estuarine habitat erosion. Studies discussed here (Dean
2003, Van Dyke and Wasson 2005, Sampey 2006) calculated a rapid rate of change
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in marsh environments and the existence of a non-equilibrium state in the estuarine
system, emphasizing the need to identify solutions in order to slow habitat loss. It
was determined that without action, salt marsh will continue to erode, the extent
and cross-sectional area of tidal creeks will increase, sediment in soft-bottom areas
exposed to strong tidal currents will erode leaving harder substrates, bank erosion
will continue, cross sectional area of the main channel of the slough will increase,
and the extent of mudflat will increase.

Overall the Tidal Wetlands Project identified three goals: (1) to conserve existing
high quality estuarine habitats by reducing the rate of salt marsh and tidal creek
conversion to other habitat types, reducing subtidal channel erosion, and reducing
the loss of soft sediment from mudflat and subtidal channels, (2) to restore and
enhance degraded estuarine habitats by increasing the extent of salt marsh, tidal
brackish marsh, and high quality soft sediment in mudflat and subtidal channels, and
(3) to restore the physical processes that support and sustain estuarine habitats by
reducing the tidal prism in undiked areas, restoring tidal exchange to diked marshes,
and increasing elevations to subsided marshes by re-establishing or augmenting the
supply of suitable sediments (Elkhorn Slough Tidal Wetland Project Team 2007).

Establishment of these goals were informed by the availability of high quality
data from multiple studies covering a wide spectrum of topics. The high resolu-
tion, both temporal and spatial, of the remote sensing data described in this chapter,
especially from Dean (2003), Van Dyke and Wasson (2005), and Sampey (2006),
were a valuable source of information that guided priority setting (Barb Peichel,
personal communication, August 21, 2007). Aerial photos were also instrumental
in communicating facts about estuarine change to community members, as long
as they were accompanied with reference materials, such as site photos. Multiple
committees and working groups that addressed several aspects of the slough system
had access to this information that provided a common knowledge base from which
each group operated. This data helped to establish a common consensus among the
groups. On May 5, 2005, the strategic planning team made a consensus statement
that the 50-year habitat trends in Elkhorn Slough are not acceptable and a no-action
alternative is not an acceptable course of action.

One proposed restoration alternative is to restore or replicate the historical loca-
tion, mouth size, and sinuosity of the Elkhorn Slough channel opening to Monterey
Bay and block the current opening to Moss Landing with a structure. Another less
extreme alternative is to more closely approximate the historical entrance of the
estuary by decreasing the opening size under or near the Highway 1 bridge crossing
the mouth of the slough using a structure such as an underwater sill. Further it was
determined that an addition of thin layers of sediment may be needed to encourage
plant growth, and there is potential need to re-establish riverine sediment supplies
such as from the Salinas River, which was diverted in 1909.

The second strategy calls to restore and enhance degraded estuarine habitats
through tidal exchange and creek modifications, sediment additions, upland best
management practices, and freshwater augmentation. This strategy would involve
a smaller scale restoration project at Parson’s Slough where tidal influence would
be reduced and sediment would be added to restore marsh habitat. This area was
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targeted because, as mentioned earlier, Parson’s Slough accounts for approximately
30% of the total Elkhorn Slough volume, and its increasing tidal prism is influenc-
ing tidal scour downstream in the main channel. Restoration here could potentially
also slow marsh loss and habitat erosion in the rest of the estuary.

The Tidal Wetlands Plan identifies research needed to decide on a future course of
action; a decision regarding the direction for restoration activities is set to be made in
early 2009. Among multiple topics to be investigated, the Plan proposes research on
ongoing changes to Elkhorn Slough bathymetry. There are plans to quantify rates of
tidal erosion and deepening and widening of main Elkhorn Slough channel to build
support for possible restoration actions and help predict future changes under differ-
ent restoration scenarios. The spatial pattern of erosion in tidal channels and creeks
will also be analyzed to create a five year projection of bathymetric changes and/or
a 50-year range of projections. With the capability to quickly detect the rate and
location of fine changes, change detection from bathymetric data will be important
for assessing management decisions and monitoring the effects of restoration ac-
tions such as muting tidal flows (Rikk Kvitek, personal communication, September
14, 2007).

21.7 Conclusions

Upon inspection the chronologies of Elkhorn Slough conservation and restoration
planning efforts and the progression of remote-sensing based research have run in
parallel. Management problems identified in planning documents influenced the
direction of research on watershed and estuarine processes applying remote sens-
ing technologies. A rich archive of historical maps and aerial photos plus partner-
ships with multiple institutions that provided high quality imagery made this type
of research possible. Taking advantage of rapidly advancing new technologies that
provided imagery with better horizontal and vertical spatial resolution, researchers
developed innovative methods for information extraction. The resulting datasets in
turn informed further efforts to refine conservation and restoration strategies.

While information on watershed and estuarine processes described in this chap-
ter has been useful to resource managers, application of geospatial technologies still
pose challenges. With historical aerial photography one can discern past ecological
conditions and changes but distortion and color imbalance of contact prints pro-
duce errors. Hyperspectral imagery has the potential to provide a spatially-explicit
synoptic view of vegetation response to nutrient enrichment, but more research is
needed on correlations between spectral data and plant nitrogen content. Conduct-
ing multibeam bathymetry surveys in a shallow estuarine system can be difficult,
but the development of tide models on the fly with RTK GPS has reduced much of
the error associated with this application. As research programs progress, they will
further guide restoration decisions made by the Tidal Wetland Project Team.

Watershed management applying spatial data should also improve estuarine con-
ditions. The Elkhorn Slough Foundation, in its 25th year, has acquired 90% of the
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808 ha identified for conservation in the 1999 Watershed Conservation Plan. Since
1980 considerable management efforts have been made to reduce soil erosion in the
Elkhorn Slough watershed. The Elkhorn Slough Foundation has implemented ero-
sion control practices on their managed properties, including construction of sed-
iment basins, native grass and willow plantings, soil stabilization, and reduction
of annual crops. The Natural Resources Conservation Service and the Resource
Conservation District of Monterey County, through the Elkhorn Slough Water-
shed Project, have worked with farmers to implement conservation practices on
3260 acres and prevent approximately 79,463 tons of soil loss between 1994 and
2001(USDA-NRCS 2002). These projects have reduced the amount of sediment
and nutrient runoff into the estuary, and these efforts are expected to continue in the
future.
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Chapter 22
Runoff Water Quality, Landuse
and Environmental Impacts on the Bellairs
Fringing Reef, Barbados

Marko Tosic, Robert B. Bonnell, Pierre Dutilleul and Hazel A. Oxenford

In this study, the contributions of runoff to seawater quality degradation off Holetown,
Barbados were documented with a watershed diagnostic of surface water quality and
landuse, and an analysis of seawater quality following flow events. The following
parameters were monitored during the rainy season of 2006: turbidity, total sus-
pended solids (TSS), nitrate-nitrite nitrogen, soluble reactive phosphorus, nearshore
sedimentation, salinity, and terrestrial discharge. Data from the watershed outlet re-
veal a first flush phenomenon for TSS. High mean nutrient concentrations despite
the watershed’s high proportion of natural land imply overfertilization of agricul-
tural lands and enrichment from urban sources. This is supported by poorer wa-
ter quality found in the subbasin which had the highest proportion of developed
land. Marine data reveal a significant northward dispersion trend directing plumes
towards the Bellairs Reef. All 4 documented events produced detrimental levels
of turbidity, or TSS, or both above the reef. Seawater quality varied significantly
among events in correspondence to total TSS loads and discharges from the outlet,
though temporal variation above the nearby reef also depended on wind stress. Reef
sedimentation rates were well above guidelines for 30% of the season. Estimated
dissolved nutrient loads are expected to induce coastal eutrophication, especially
with respect to phosphorus.

22.1 Introduction

“A high incidence of sunshine, unbroken warm temperatures, brilliantly clear seas
and white coral sand beaches provide the natural attractions which bring a quar-
ter million tourists to the West Indian Island of Barbados every year” (Bird et al.
1979). Little has changed since 1979 with respect to the described natural attrac-
tions though they currently bring four times as many tourists (Ministry of Tourism
2003). In addition to the quarter million local Barbadians (Ministry of Labour 2002),
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tourism has prompted extensive development of the coastal area (Nurse 1986). In the
west coast catchment area of Holetown, urban areas have doubled between 1964 and
1996 causing higher proportions of rainfall to be transported as surface runoff to the
coast (Leitch and Harbor 1999). Runoff events in the coastal area can leave the sea-
water somewhat less than “brilliantly clear” impacting another natural attraction not
described above: the coral reefs.

A series of fringing coral reefs extends along the western, leeward coast of Bar-
bados (Lewis 1960; Lewis and Oxenford 1996). These ecosystems have undergone
considerable changes over the past 25 years as the fringing reefs have degraded both
structurally (Lewis 2002) and biologically (Bell and Tomascik 1993; Delcan Con-
sulting 1993). While these systems have been affected by acute disturbances such
as Hurricane Allen (Mah and Stearn 1986), the mass mortality of the grazer Di-
adema antillarum (Hunte et al. 1986), and a recent bleaching event (Oxenford et al.
2008), an underlying cause of the demise has been eutrophication, and associated
suspended particulate matter (SPM, or total suspended solids, TSS) and sedimenta-
tion (Bell and Tomascik 1993). This chronic stress has been documented along the
west coast as a gradient of water quality deteriorating towards the southern more
developed part of the island (Tomascik and Sander 1985).

If high levels of eutrophication and sedimentation are sustained, they act as
chronic disturbances which may be more detrimental to coral communities than
acute disturbances (Connell 1997; Bell et al. 2007). Coastal eutrophication has been
shown to harm corals, which naturally live in clear, nutrient-poor environments.
Nutrient enrichment can disrupt coral-zooxanthellae symbioses, but will more com-
monly be rapidly utilized by phytoplankton and macroalgae. The increased biomass
of the former decreases water clarity, inhibiting growth of the light-dependent coral,
and the latter competes with coral for substrate (Fabricius 2005). Sedimentation on
reefs often results in reduced biodiversity as smothering can cause mortality. Cer-
tain morphologies, such as that of large branching corals, or the ability to remove
settled particles make some corals more tolerant of sedimentation, however particle
removal comes at a metabolic cost thus inhibiting growth (Rogers 1990).

Land-based sources have been linked to the eutrophication (Lapointe et al. 2004)
and sedimentation (Bothner et al. 2006) of coral reef environments. Land-based an-
thropogenic impacts on nearshore marine life in Barbados have been clearly demon-
strated through the use of sewage pollution indicators (Bellairs Research Institute
1997, Cabana 1997, Risk et al. 2007). Urban wastewater is widely known to cause
nutrient enrichment in receiving waters (Peierls et al. 1991; Howarth et al. 1996).
Other activities known to enhance nutrient and sediment concentrations via runoff
include landuses such as agriculture, high-density grazing, industries, construction
sites, and land-clearing (Kayhanian et al. 2001; Brodie and Mitchell 2005). Natural
areas, on the other hand, do not commonly degrade water quality (Meybeck 1982)
but can act as buffers in trapping nutrients and sediments.

Inputs to the nearshore zone of Barbados affecting water quality include runoff,
groundwater, coastal point-sources, and oceanic currents. Periodic runoff events
during the rainy season (June–December) create plumes of nutrient-rich, sediment-
laden freshwater which can extend over 1 km offshore to the island’s bank reefs
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(Delcan Consulting 1994). Groundwater seepage along the west coast has been
shown to make significant nutrient contributions (Lewis 1985, 1987), as have point
source discharges such as rum refineries (Runnalls 1994). Ocean currents have the
potential to bring productive waters from South America to Barbados, though such
occurrences are somewhat unpredictable (Fratantoni and Glickson 2002).

This study aims to assess the specific contributions of runoff to the nearshore
area of Holetown, Barbados, as well as to identify landuses degrading surface water
quality. By monitoring stormwater runoff, flood plumes, and nearshore sedimenta-
tion from May–December 2006, an event-based assessment of water quality pro-
cesses is presented. Mapping and GIS-based analyses of the watershed’s landuses
further allowed for a watershed diagnostic.

22.2 Methodology

22.2.1 Study Area

The studied watershed is situated on the central west coast of Barbados and drains
into the Holetown Lagoon, a body of surface water (approximately 3× 106 L) sep-
arated from the sea by a narrow, 9 m length of beach (Fig. 22.1). The occurrence
of ephemeral runoff events quickly washes away this beach, flushing runoff and la-
goon water out to sea. About 600 m north-west of this outlet lies the Bellairs Reef, a
fringing coral reef which is separated into a northern and southern lobe. This study
site was chosen due to its proximity to the Bellairs Research Institute and the wealth
of past research focusing on this watershed and the Bellairs Reef.

Fig. 22.1 Watershed sampling scheme and physical characteristics. Inset: location of study area
on the island of Barbados. Labels identify sampling sites (HO, SB, NB, AD, PG) and rain gauges
(G1–G7). Sampling site abbreviations: HO – Holetown Outlet; SB – South Branch; NB – North
Branch; AD – Ape’s Hill Dam; PG – Porey Spring Gully
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The watershed’s karstic aquifer is mostly composed of coral limestone (89%)
while the remainder lies within the Scotland District (Fig. 22.1), an area of imper-
meable and impervious soils and Tertiary oceanics (Vernon and Carroll 1965). A set
of cliffs run parallel to the coastline and separate the watershed into three distinct
terraces, the middle of which is highly karstified (Huang 2006). With an average
porosity of 45% (Jones and Banner 2003), the watershed’s limestone exhibits many
karstic features such as sinkholes in the interfluvial zone, caves and fissures in the
gullies, as well as intermittent springs.

The watershed drains an area of 9.9km2, although removing areas draining to
sinkholes and a quarry, the watershed’s effective contributing area is 9.2km2. El-
evations range from 3 to 335 m with an overall slope of 4.0% over a longest flow
length of 8314 m. Surface water flows ephemerally through a system of deep and
extremely eroded gullies bordered by steep banks covered in dense forest (Stantec
Consulting 2003). The watershed’s time of concentration, the time needed for wa-
ter to travel from the watershed’s furthest point to the outlet, has been estimated at
145.8 minutes (Cumming Cockburn Ltd 1996).

Barbados has a sub-humid to humid maritime, tropical climate where large rain-
fall events are typically modulated by tropical waves moving westward across
the Atlantic (Riehl 1954, Avila et al. 2000). The rainy season lasts from June–
December, peaks during the months of August–October, and accounts for 60% of
the total annual rainfall. Average annual precipitation spatially varies from 1300 to
2000 mm with values increasing towards higher elevations. However, spatial precip-
itation patterns vary seasonally as well, with totals increasing towards the western
leeward side of the island during the rainy season (Jones and Banner 2003).

Extensive development in the watershed has altered its landuse greatly over the
past 40 years. From 1964 to 1996, urban areas doubled resulting in a predicted 5.5%
increase in runoff depth (Leitch and Harbor 1999). This intensification of hydrolog-
ical response has been somewhat counterbalanced by the demise of the sugar cane
industry. Sugar cane plantations covered 50% of the area in 1964, a proportion that
was halved by 1996 (Leitch and Harbor 1999), and reduced to 1% by 2006 as many
plantations have been converted into pasture or left idle and overgrown with brush
(this study). This idle brushland is expected to lower hydrologic peaks and lengthen
hydrologic event periods.

Figures 22.2 and 22.3 show the proportions and spatial distributions, respectively,
of each of the major landuse categories found in the watershed and its upstream sub-
basins. With all agricultural areas combining for only 6% (HO, Fig. 22.2), landuse
is now dominated by natural lands (69%) including the forested gullies, grasslands,
and brush. Animal husbandry accounts for 12% of the land, nearly all of which is
in pasture grazed by moderate densities of horses or tethered cattle (about 25/km2).
Urban areas and industries are utilizing 10% and 3% of the land, respectively. The
watershed’s industries include a sugar factory, a cement factory, a small catering
service, construction of a golf course and reservoir, and a quarry. By-products of the
sugar factory include fly ash, bagasse, and filter press mud (Dunfield 1991) which
are left as big, loose, exposed piles in large plots on the property.

Urban areas in Barbados are distinctive in their wastewater disposal methods
and their widespread utilization of garden plots. Most houses are equipped with
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Fig. 22.2 Proportions of 2006 landuse in the entire watershed (HO) and in upstream subbasins
(SB, NB, AD, PG). Distribution of landuses and locations of subbasins can be seen in Fig. 22.3

Fig. 22.3 Landuse distribution in the watershed in 2006. Labels identify sampling sites and the
catchments draining to them

suckwells, or soakaways, for sewage disposal (73%), which connect a house’s water
closet to the underground limestone aquifer (Stanley International Group Inc. 1998).
However, overflows and resurfacing groundwater present a potential risk of these
areas contributing nutrients to the runoff during flooding events. Garden plots of
food crops or fruit trees are quite common to residential areas, and so the effects
of agriculture on surface water quality may also be expected from residential areas
to some extent. Lastly, much of the island lacks a proper waste collection system
which has resulted in some of the gullies near urban areas being used as clandestine
dumpsites (Stantec Consulting 2003).
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22.2.2 Assembling Environmental Databases

Landuse, soil, and waterway information was obtained from McGill University’s
Geographic Information Center, Montreal, and verified in the field. Waterways re-
quired minor updates but landuse had changed considerably, requiring the digitiza-
tion of a new layer. Sinkholes, landuses, and waterways were mapped using a Thales
ProMark 3 GPS unit. GPS data were post-processed with data from the Continu-
ously Operated Reference Station at the Barbados Coastal Zone Management Unit
(CZMU). A digital elevation model was interpolated using ArcGIS 9.1 from 3.05 m
contours digitized by Baird & Associates Ltd. ArcHydro was used to delineate the
watershed with the utilization of stream-burning (Maidment 2002). Sinkholes, as
well as a large quarry, represent areas of internal drainage which do not contribute
to runoff at the watershed’s outlet and so their catchment areas were delineated
and removed from the total watershed area to define an effective contributing area
(Fig. 22.1) (Wallace Evans and Partners 1973; Leitch and Harbor 1999).

Rain data recorded by 7 gauges, G1-G7 (Fig. 22.1), were contributed by various
sources (Table 22.1). Additional historical data were also provided by the Caribbean
Institute for Meteorology and Hydrology. Theissen polygons were computed from
available rain gauges for each event and used to calculate average and total rainfall
depths within the watershed. Hourly wind data were obtained from a weather station
operated by the Barbados CZMU, and averaged over the time between the onset of
flow and seawater sampling. The weather station was located on the roof of a build-
ing on the coastline 300m south of the terrestrial outlet (Fig. 22.4). Significant wave
heights used to identify periods of higher wave action were obtained from a sensor
stationed approximately 1km south of the seawater sampling area also operated by
the Barbados CZMU.

Table 22.1 Sources of 2006 rain data. Gauge locations are shown in Fig. 22.1

Gauge ID Recording interval Operated by

G1–G4 1mm Baird & Associates Ltd.
G5 1h Coastal Zone Management Unit, Barbados
G6 0.2mm Drainage Unit, Barbados
G7 1h Sandy Lane Golf Course

22.2.3 Field Sampling and Measurement

Weather patterns were tracked and flow events were monitored from May–December
2006. Samples (300 ml) were taken from the runoff’s surface water and analyzed
for TSS, turbidity, soluble reactive phosphorus (SRP), and nitrate-nitrite-nitrogen
(NOx-N). These variables are known indicators of eutrophication and sedimenta-
tion for which guidelines for the protection of marine health have been set by the
Barbados Government’s Marine Pollution Control Act (Government of Barbados
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Fig. 22.4 Marine sampling
scheme. Labels identify sea
sampling stations (Outlet
Area: O1–O9, Reef Area:
R1–R10) and sediment
traps (T1–T7)

1998) as well as other organizations globally. Descriptions of all methodologies,
laboratory analyses, rating curve data, and loading calculations are available online
in Tosic (2007).

At the coastal outlet of the Holetown watershed, site HO (Fig. 22.1), single sam-
ples were taken every 5 minutes for at least the first 3 hours of each of 4 flow events
(Oct. 16, Oct. 27, Nov. 14, Nov. 24). A high frequency of sampling is important due
to rapid changes in concentrations during events (Brodie and Mitchell 2005). Trip-
licate samples were taken every 30 minutes to verify the precision of measurement.
In addition, a set of 7 grab samples were taken at HO 2 hours after the initial flow of
an event on Aug.24. These 5 flow events represent the first 5 of 9 events which oc-
curred in 2006. TSS and turbidity were analyzed for all 5 events, SRP was analyzed
for the events of Oct. 16, Oct. 27, Nov. 14, Nov. 24, and NOx −N was analyzed for
the events of Nov. 14 and Nov. 24.

Upstream sites for water quality sampling were selected based on accessibility
(Fig. 22.1). For two events (Nov. 14, Nov. 24), triplicate sets of grab samples were
taken from upstream sites in the following order: SB, NB, AD, and PG. Upstream
sampling on Nov.14 and Nov.24 began 50 and 40 minutes after the initial flow at
HO, respectively, and was complete within 55 and 45 minutes, respectively. The
catchments draining to these sampling sites (Fig. 22.1) will hereafter be referred to
by the names of their outlets.

A rating curve was established at site HO (Fig. 22.1) in the rectangular con-
crete channel (2.5 m width, 0.6 m depth) 25 m upstream of the Holetown lagoon.
Velocity was measured at 6 tenths of the total depth below the surface at five points
equally spaced across the channel’s width using a model 1210 Price Type AA Cur-
rent Meter (Herschy 1995). A pressure transducer in the channel operated by Baird
& Associates Ltd. for the Barbados CZMU recorded continuous measurements of
stage which were later converted to discharge using the rating curve. For above bank
conditions, Manning’s equation was used to calculate flow according to Arcement
and Schneider (1989).
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Seawater surface samples were collected at depths of 0.5 m (Devlin and Brodie
2005) from a sea kayak. Tidal level can affect seawater nutrient concentrations
(Sander 1981; Lewis 1987), and so sampling was always done at the same tidal level
for consistency. Sampling began immediately following low-tide such that tidal cur-
rents did not change during sampling. For each of 4 events (Aug. 24, Oct. 16, Oct.
27, Nov. 14), seawater sampling was done following the conclusion of flow in the
channel, and one tidal cycle, such that the rising tide had rebuilt the beach. This
corresponded to a period of 17 hours following the onset of flow which coincidently
always occurred within 1 hour of the same time of day (16:00 local time). A second
set of samples was collected for the events of Aug. 24, Oct. 16, and Nov. 14 follow-
ing periods of 67, 41, and 67 hours, respectively, after the onset of each flow event.
Baseline data were collected on 4 occasions between Sept. 30–Oct. 14, at which
point no flow event had occurred for at least 1 month. Seawater samples were taken
at 19 stations (Fig. 22.4): 10 stations in the area of the Bellairs Reef (R1-R10) and
9 stations in the area of the terrestrial outlet (O1-O9). However, for 1 event (Aug.
24) only the reef area was sampled. In each area, sampling was done along onshore-
offshore transects (Devlin and Brodie 2005) with 80 m between each transect and
stations located at approximately 50, 100, and 200 m offshore. These offshore dis-
tances were selected in order to sample both the crest zone and the spur and groove
zone of both North and South Bellairs. Stations R7-R10 were located in the spur and
groove zone of the Bellairs Reef (depth = 5m), while stations R1-R6 were located
in the reef’s crest zone (depth = 2m). At each station, triplicate 1L samples were
taken and analyzed for turbidity and TSS. Salinity was also measured in samples
taken 17 hours after the onset of 2 flow events (Oct. 16, Oct. 27) and on 1 baseline
sampling occasion using a YSI model 33 S-C-T meter.

Seven sediment traps were monitored from July 31 to Dec. 5 (Fig. 22.4). Traps
were retrieved periodically, with sampling periods ranging between 3 and 30 days.
Four traps were placed in the spur and groove zone of the Bellairs Reef (T1-T4)
and three were placed directly offshore of the terrestrial outlet (T5-T7). Traps were
placed 100 m offshore with the exception of two traps on South Bellairs, traps
T3 and T4, for which offshore distances were adjusted to 175 and 225m, respec-
tively, such that all traps on the reef were at equal depths of 5.4 m. The opening
of each trap was positioned at a height of 60 cm off the seabed (Delcan Consult-
ing 1994). Each trap comprised three PVC tubes (3.8 cm diameter, 25 cm length)
spaced 20 cm apart on a single cement block. These dimensions yield an aspect ratio
(height:mouth diameter) of 6.6, characteristic of an efficient sediment trap (Hargrave
and Burns 1979).

22.2.4 Data Analysis

The statistical analyses of runoff water quality data were performed spatially using
5 sites and temporally using 2 events. In the case of seawater quality, statistical
analyses were performed after subtraction of baseline levels. Spatial trends were
analyzed for the 9 sampling stations in the outlet area as well as for the 10 sampling
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stations in the reef area. Temporal trends were analyzed across 3 flow events in the
outlet area and 4 flow events in the reef area. Changes in runoff water quality and
seawater quality in the nearshore area following a flow event were first analyzed
using classical unmodified ANOVA. The basic ANOVA model was a fixed two-way
factorial model with replicates, the sampling station and flow event being the two
crossed factors.

However, the spatio-temporal data of runoff and seawater exhibited signs of au-
tocorrelation and heteroscedasticity in violation of the circularity condition required
for unmodified ANOVA F-tests (Huynh and Feldt 1970; Rouanet and Lepine 1970).
Thus, a modified univariate testing procedure was performed, using estimates of
Box’s epsilon (Box 1954a,b) to correct the numbers of degrees of freedom in a
given F-test statistic and adjust the probability of significance. A doubly multivari-
ate model, called the matrix normal model, was used to compute estimates of Box’s
epsilon and adjust probabilities of significance of the modified ANOVA F-tests for
space, time, and space-time effects (Dutilleul and Pinel-Alloul 1996). When main
effects of sampling station or flow event were declared significant (P < 0.05) by
the modified ANOVA F-test, multiple comparisons of means were performed with
a modified Student-Newman-Keuls procedure. In this procedure, the error number
of degrees of freedom was multiplied by the corresponding Box’s estimate.

22.3 Results

22.3.1 Runoff Water Quantity and Quality

The flow regime of the watershed’s gully system is dominated by the characteris-
tics of flash floods (Gaume et al. 2004). Discharges at the watershed’s outlet, site
HO, rise from zero to peak flow within the first 15 minutes of flow and then grad-
ually decrease (Fig. 22.5). A second peak discharge was visible for 5 of the events

Fig. 22.5 Discharge at the
Holetown watershed outlet
(HO) for the first 5 of 9 flow
events that occurred in 2006
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10–20 minutes after the first peak, indicating the arrival of another tributary’s runoff.
Most flow events resulted from rainfall intensities between 30 and 45 mm/h, though
values of 94 and 78 mm/h were recorded on Oct. 16 and Nov. 28, respectively, at the
gauge furthest upstream, G1. The period of time between peak rainfall at G1 and
peak discharge at HO varied between 1–1.5 hours for high-flow events and 2.5–3
hours for low-flow events. During the study period 9 flow events occurred at HO, all
of which breached the beach and flowed directly to sea.

Total annual rainfall was average in the watershed’s upper terrace, G1, and be-
low average near the coast, G4, compared to the past 25 years (unpublished data,
Caribbean Institute for Meteorology and Hydrology). During this rainy season’s
peak, Aug.–Nov., all monthly totals were below average at all stations except G1
where monthly rainfall was below average only in September and above average
in November. September was an unusually dry month yielding no flow events and
creating public concern over the upcoming year’s groundwater reserve (Price 2006).

The spatial distribution of rainfall within the watershed showed high heterogene-
ity (Table 22.2). During some storms, parts of the watershed received almost no rain
while the vast majority of rainfall was localized in the upper terrace (e.g. Oct. 16).
For most flow events rainfall was highest at gauge G1, though later in the season the
proportion of event rainfall near the coastal area increased, typical of distribution
patterns in the rainy season (Jones and Banner 2003). The common discrepancy
between rainfall at G5 and nearby gauge G4 is a good example of how sharply
contrasting these distributions can be. The data show that rainfall from a single
station cannot be used as an indicator of runoff from this watershed, as has been
used in some past research (Sander 1981), especially considering the hydrologi-
cal complexities involved in karstic drainage in addition to those of tropical rain-
fall. More detailed analyses of the watershed’s hydrology can be found in Tosic
(2007).

Nutrient concentrations at HO revealed event mean concentrations of 0.34+/−
0.06mg SRP/l and 0.7+/−0.3mg NOx-N/l but no discernable temporal patterns.
Concentration curves for TSS and turbidity during the events monitored at HO are
displayed in Figs. 22.6 and 22.7, respectively. The temporal variation of TSS during
the high-flow events (Oct. 16, Oct. 27, Nov. 14) exhibits the characteristics of the
first flush phenomenon: a disproportionately high delivery of a substance’s mass
during the initial portions of a flow event (Sansalone and Cristina 2004). On Oct. 16,

Table 22.2 Event rainfall totals (mm) for 2006. Hyphens (−) indicate a lack of data

ID Aug. 24 Oct. 16 Oct. 27 Nov. 14 Nov. 24 Nov. 25 Nov. 28 Dec. 6 Dec. 10 Dec. 19

G1 97 58 40 54 18 11 37 4 12 12
G2 – – – 55 – 0 53 – – –
G3 – 3 22 14 3 0 9 32 19 2
G4 – 7 31 32 4 7 11 36 15 1
G5 69.4 1.8 24.6 0 0 0 0.2 33.4 10.6 0.2
G6 55.7 18 16.8 39 3.7 6.3 9.5 – – –
G7 46.7 1.8 6.3 25 4.1 6.6 2 25 8.6 –
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Fig. 22.6 TSS concentrations
at the Holetown watershed
outlet, HO

Oct. 27, and Nov. 14, 80% of the total TSS load was delivered within the first 59%,
38%, and 46% of total runoff volume, respectively. TSS concentrations 2 hours into
the year’s first flow event, Aug.24, were much higher than those 2 hours into any
other event (Fig. 22.6), and so it appears that there may also be a seasonal first flush
phenomenon (Lee et al. 2004). Correspondingly, TSS in the residual discharge of
the year’s second event, Oct. 16, was higher than that of the events to follow. Such a
phenomenon can naturally be expected as a result of sediment accumulation during
the year’s 8 month dry season proceeded by sediment exhaustion by the season’s
first flow.

Similarly, turbidity values in the events’ residual discharge decreased with each
successive event (Fig. 22.7). Temporal variation of turbidity within a given event
was different from TSS. The 2 high-flow events during which samples were taken
within the first 30 minutes (Oct. 16, Nov. 14) showed that turbidity gradually in-
creased during the initial period of flow. The observed differences between turbidity
and TSS in the first 30 minutes could conceivably be due to the presence of siz-
able organic matter flushed out of the gullies (where illicit dumping is common)

Fig. 22.7 Turbidity at the
Holetown watershed outlet,
HO
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which would add to TSS mass but not be accounted for in the turbidity measure-
ment. Higher turbidity may be related to discharge with a short lag or, alternatively,
originate from a further location.

Means of water quality results from various sites in the watershed during the
events of Nov. 14 (high-flow) and Nov. 24 (low-flow) are displayed in Figs. 22.8
and 22.9. Values at HO used for comparison are values obtained 30 minutes after
sampling at sites NB and SB, to allow for travel time between the two terraces.
Overall, turbidity and TSS were significantly higher among all sites for the high-
flow event (P < 0.001), which is expected as a result of higher water velocities
capable of eroding and transporting more sediments. Differences in nutrient con-
centrations between the events were insignificant, showing the potential for nutrient
transport even by low-flow events.

The results of the modified ANOVA showed that the upstream site NB had sig-
nificantly higher turbidity (P < 0.001), TSS (P < 0.001), and SRP (P = 0.001) than
all other sites, with the exception of there being no significant difference between
TSS at NB and HO. However, the ranking of sampling sites for these parameters
was not the same for both events (Figs. 22.8 and 22.9), which reflected a signifi-
cant station∗time interaction for turbidity (P < 0.001), TSS (P < 0.001), and SRP
(P = 0.014). Urban, agricultural, and industrial landuses combine for 33% of sub-
basin NB’s area, a much higher proportion than in catchments HO (19%), SB (15%),

Fig. 22.8 Upstream water quality sampling Nov. 14. Values given at each site are event means
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Fig. 22.9 Upstream water quality sampling Nov. 24. Values given at each site are event means

AD (12%), and PG (18%) (Fig. 22.3). This suggests that the landuses in subbasin
NB are contributing much higher turbidity, TSS, and SRP per unit area of land than
the landuses in the other subbasins. The impact of these upstream tributaries on
downstream water quality would best be assessed by their total loads but these can-
not be calculated accurately as the shapes of their hydrographs are unknown and
may be different.

Subbasin NB was further examined with samples taken at locations further up-
stream (Fig. 22.10). These samples were taken during the late stages of a low-flow
event in which runoff did not arrive downstream to NB, presumably due to internal
drainage (Tosic 2007). Water levels were low enough that the 2 tributaries sam-
pled (MS & MN which flow to M) were the only ones flowing. Low water levels
and the fact that the tributary running from the nearby construction site (“Indus-
trial” Fig. 22.10) wasn’t flowing are the likely reasons turbidity and TSS were low
compared to levels at NB during other events. However, it is clear that the tributary
draining the urban and agricultural areas of Hillaby, MS, is contributing much higher
levels of all the tested parameters than the tributary draining the less developed area
to the north, MN.
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Fig. 22.10 Upstream water quality in subbasin NB, Nov. 23

22.3.2 Environmental Impacts of Runoff on the Reef Area

Effluents from the entire watershed and wind data for each event are summarized in
Table 22.3. Total discharge, peak discharge, and TSS load were positively related.
The single exception is the TSS load of Aug. 24, estimated to be much higher than
the load of Nov. 14 which had a higher total discharge and peak discharge. As pre-
viously discussed, the Aug. 24 event was the year’s first flow which can contain
much higher concentrations (Lee et al. 2004). Wind speed showed strong variation
and although wind direction varied, it was consistently offshore with a northward
component.

While the nutrient loads presented in Table 22.3 would be expected to enrich
the nearshore seawater it is difficult to assess the impact these loads would have
on ambient nearshore concentrations without concurrent measurements of seawater
nutrients during the events. Loads can be used to predict the potential for eutrophica-
tion, however, this would require knowledge of the nearshore flushing rate (Valiela
et al. 2004).

Seawater analyses showed no difference in salinity between baseline values and
post-event values (34.6+/−0.4ppt) meaning that surface waters were well-mixed
by the time of sampling, 17 hours after the onset of flow. Baseline TSS values
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Table 22.3 Summary of flow event data. Hyphens (−) indicate a lack of data necessary for making
estimates. Estimates of potential error are presented in parentheses. Wind direction is given in
degrees where zero represents north and angles are measured clockwise

Event date Total
discharge
(106 L)

Peak rate of
discharge
(m3/s)

TSS
Load
(tonnes)

SRP Load
(kg)

NOx-N
Load (kg)

Wind
speed
(m/s)

Wind
direction
(degrees)

Aug. 24 68.2 (9.2) 10.9 (0.4) ∼187 (25) – – 13.2 168.2
Oct. 16 66.2 (6.5) 12.1 (0.5) 97.5 (13.2) 22.5 (6.2) 46.4 (24.6) 4.0 123.2
Oct. 27 25.1 (6.5) 3.0 (0.3) 32.0 (4.1) 8.6 (4.0) 17.6 (13.7) 7.1 135.0
Nov. 14 95.3 (13.6) 17.8 (0.6) 117.6 (20.4) 32.4 (10.4) 66.7 (38.5) 8.8 118.1

averaged 2.24 + / − 0.26mg/l and baseline turbidity averaged 0.47 + / − 0.07
NTU. The results of post-event seawater turbidity and TSS analyses are shown in
Fig. 22.11 for the 4 events documented in this study. Turbidity and TSS values
from each sampling station were used for interpolation using the IDW method to
the power of 3. Standard deviations at sampling stations were similarly interpolated
and are displayed as contours (Antonic et al. 2001). Guidelines for the protection
of marine health have been set by the Barbados Government’s Marine Pollution
Control Act (MPCA) for turbidity and TSS at 1.5 NTU and 5.0 mg/l, respectively
(Government of Barbados 1998). On all occasions, the Bellairs Reef was affected
by excessive levels of turbidity, or TSS, or both, with respect to these guidelines.

Second sets of seawater samples taken 41 and 67 hours after the onset of flow
showed that above-guideline turbidity levels did not remain in the surface water for
long (Fig. 22.12a). On the other hand, TSS levels did not recede showing little, if
any change (Fig. 22.12b). As a result, this study shows that when plumes reach the
reef, it is subject to harmful TSS conditions due to runoff for a minimum of 3 days
following an event.

Statistical analyses of spatio-temporal variance in seawater quality showed that
all effects exhibited a departure from the circularity condition with exception to
TSS in the outlet area which was close to satisfying the condition on the temporal
scale (Table 22.4). Adjustments to P-values had a slight effect with exception to
TSS in the reef area, where station effects were highly significant before correction
(P = 0.0080) and no longer significant at the 5% level after correction (P = 0.0773).
The station∗time interaction effects for TSS in the reef area were neither significant
before nor after adjustment. All other effects were found to be significant after cor-
rection, while time effects were highly significant in all cases.

The significant station effects in the outlet area show high spatial variation of
water quality (Fig. 22.13). In terms of both turbidity and TSS, the station directly in
front of the outlet, O4, had the poorest water quality overall, followed by the station
O1 to the north. Station O9, 200 m offshore and to the south, was least affected by
the flow events, followed by station O6, 200 m directly offshore of the outlet. This
indicates a northward trend for the fate of runoff as the stations to the north yielded
significantly higher values than those to the south for turbidity at 50 m and 200 m
offshore, and for TSS at 50 m offshore.
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Fig. 22.11 Seawater turbidity (a–d) and TSS (e–h) following flow events on Aug. 24 (a, e), Oct.
16 (b, f), Oct. 27 (c, g), and Nov. 14 (d, h). Contours indicate standard deviations. Indicated on the
left are each event’s total discharge of water (Total Q) and TSS
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Fig. 22.12 Overall averages of (a) turbidity and (b) TSS of post-event seawater samples. Error
bars show standard deviations. Samples were taken 17, 41, and 67 hours after the onset of flow

On the reef, the lack of statistically significant station effects for TSS follow-
ing correction indicates that there is no consistent spatial variation in the area
(Fig. 22.14a). Therefore, most of the variation observed among stations before cor-
rection was due to the data’s autocorrelation and heteroscedasticity. Spatial trends
for turbidity on the reef were limited to the station closest to the outlet, R5, having
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Table 22.4 Results of the repeated measures ANOVA F-tests in terms of probabilities of significance (P) and the estimates of Box’s epsilon used to calculate
the adjusted probabilities

Parameter Main effects and interactions Outlet Reef

Unadjusted P Adjusted P Epsilon Unadjusted P Adjusted P Epsilon

Turbidity (NTU) station <0.0001 0.0038 0.313 <0.0001 0.0251 0.149
time <0.0001 <0.0001 0.630 <0.0001 0.0003 0.413
station∗time <0.0001 0.0118 0.185 <0.0001 0.0304 0.047

TSS (mg/l) station <0.0001 0.0025 0.314 0.0080 0.0773 0.384
time <0.0001 <0.0001 0.927 <0.0001 0.0004 0.770
station∗time <0.0001 0.0016 0.278 0.2790 0.3656 0.179
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Fig. 22.13 (a) TSS and (b) turbidity at sea sampling stations (O1–O9) in the outlet area

significantly higher values than the rest (Fig. 22.14b). There were no differences in
turbidity or TSS between the reef’s spur and groove zone and crest zone nor between
the north and south lobes of the reef.

Considering all sampling stations in the reef and outlet areas together, negative
relationships were observed between turbidity and distance from the outlet and be-
tween TSS and distance from the outlet (Fig. 22.15). The single exception is TSS
on Oct. 27 in which stations at further distances are no lower than those directly in
front of the outlet.

Significant station∗time interactions indicate that differences between stations
were not constant from one event to the next, as was the case for turbidity and
TSS in the outlet area and turbidity in the reef area. In particular, the station with
the highest turbidity or TSS value in each area varied among the events. These
interaction effects are evident in the differing slopes of the straight lines fitted for
each event in Fig. 22.15. For example, both turbidity and TSS decreased rapidly
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Fig. 22.14 (a) TSS and (b) turbidity at sea sampling stations (R1–R10) in the reef area

with distance from the outlet on Nov. 14 while the event of Oct. 27 produced lines
with much flatter slopes.

The most important effects were those due to temporal variation which were
highly statistically significant in all cases. This variation may be associated with the
differences between the individual events (Table 22.3, Fig. 22.11). In the outlet area,
all three events produced significantly different turbidity levels. The event of Nov.
14 produced the highest turbidity values followed by the events of Oct. 16, and then
Oct. 27. This ranking is in accordance to differences in the total discharge, peak
discharge, and TSS load of the three events sampled. TSS levels yielded the same
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Fig. 22.15 Water quality vs. distance to outlet. (a) Turbidity and (b) TSS at all stations displayed
with error bars of standard deviations and trend lines labeled by event date

ranking; however, there was no significant difference between the events of Oct. 16
and Oct. 27.

In the reef area, changes in turbidity due to the four events sampled showed
significant differences. The events of Aug. 24 and Oct. 27 respectively produced
the highest and lowest seawater turbidity values as well as TSS loads in the runoff
(Table 22.3, Fig. 22.11). However, the event of Nov. 14 had less of an effect on
turbidity in the reef area than the event of Oct. 16 which yielded a lower discharge
and TSS load, and had much weaker wind speeds. A possible explanation could be
that the strong winds of Nov. 14 directed more offshore caused the plume to disperse
offshore fast enough to avoid a high turbidity impact to the nearby reef to the north.
Seawater TSS levels in the reef area were significantly higher for the two events
with the greatest discharges and loads, Aug. 24 and Nov. 14. The event with the
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lowest discharge and load, Oct. 27, created greater changes in the reef’s seawater
TSS levels than that of the Oct. 16 event. Again, this could be explained by wind
direction, as the winds on Oct. 27 were much stronger and pushed surface water
more northward than those of Oct. 16.

Time-averaged sedimentation rates are displayed in Fig. 22.16, though on oc-
casion some traps were not set or found knocked over, resulting in missing data.
Sedimentation rates were above the MPCA guidelines (25mg/cm2∗d) for the last
35 days of sampling on both lobes of the reef (Fig. 22.16a). On North Bellairs,
traps T1 and T2, sedimentation rates were above or near the guidelines for the first

Fig. 22.16 Time-averaged sedimentation rates (mg/cm2 ×d) in the (a) reef area and the (b) outlet
area, and flow event total discharge volumes (106 L). Vertical error bars show standard deviations.
MPCA guidelines (25mg/cm2 ×d) are indicated on the left vertical axes with an arrow
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52 days of sampling. However, it is most likely that the average rate of the first sam-
pling set was elevated by the first flow event (Aug. 24) occurring at the end of the
sampling period, and that the period during which rates were near MCPA guidelines
was approximately 26 days.

In the outlet area, temporal variation of sedimentation rates appears to be regu-
lated by inputs of terrigenous sediment. For example, rates increased following the
event of Aug. 24 and then gradually decreased until the next event (Fig. 22.16b).
Sedimentation rates at trap T6, directly in front of the outlet, are extremely high
following the event of Oct. 16. While this event was not the largest in magnitude, its
resulting plume did not disperse widely due to the low wind speeds, as seen in the
TSS values (Fig. 22.11f), which may have resulted in the considerably large mass
of accumulated sediment at T6. Spatial variation was similar to that of the surface
water with the trap to the north of the outlet, trap T5, collecting larger quantities
than the trap to the south, trap T7.

In the reef area, it appears that temporal variation was also regulated by the input
of terrigenous sediment. However, in this case the input is not only dependent on
the occurrence of flow events but on the presence of substantial wind speeds capa-
ble of transporting plumes to the reef; wind speeds were weak during the event of
Oct. 16 resulting in a lack of input to the reef area, as was the result for surface
water TSS. Waves, which also have the potential to resuspend both terrigenous and
marine source sediments in the reef increasing recorded sedimentation rates (Both-
ner et al. 2006), gradually increased in height during the survey period. However,
the sedimentation rates gradually decreased for the first 3 months of sampling, thus
weakening hypotheses of temporal variation depending on wave heights. Though
wave data were not recorded over the spatial scale of the sediment traps, observa-
tions of sea conditions were made daily. During times of low wave action, signif-
icant resuspension may still occur in the spur and groove zone of North Bellairs
due to its close proximity to the coastline. This coastline is bordered by a seawall
(Fig. 22.4) against which waves are regularly crashing. This may be the reason sed-
imentation rates were higher on the reef’s northern lobe, traps T1 and T2, for the
first 3 months of sampling. At the end of the study period, wave heights increased
and substantially greater surf took place upon South Bellairs, traps T3 and T4. This
likely caused increases in resuspension and sedimentation rates on South Bellairs to
be higher than on North Bellairs. Taking averages over the entire sampling season,
overall sedimentation rates on the two lobes of the reef were equal.

22.4 Discussion

22.4.1 Runoff Water Quality and Landuse

A previous study sampling just 300 m upstream of HO on multiple occasions dur-
ing the wet season reported similar nitrogen concentrations (0.610mg NO3-N/l)
though lower phosphorus concentrations (0.096mg PO4-P/l) (data converted from
original, Hunte 1989). A reduction in agriculture and expansion of urban areas
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over the time period between these two studies suggests SRP increases could
be the result of greater amounts of urban wastewater, though increased fertilizer
availability and use are also possibilities. The nutrient concentrations reported in
this study are similar to those in some of the world’s large contaminated rivers
(Meybeck 1982). Brodie and Mitchell (2005) report dissolved inorganic nitrogen
(DIN = NH4-N+NOx-N) concentrations of 0.14–1.40 mg/l in northern Australian
catchments dominated by agriculture. High nutrient concentrations in agricultural
watersheds are expected due to widespread fertilizer use, however, with only 6%
of the present watershed’s land devoted to agriculture (HO, Fig. 22.2) these values
are quite high. Whereas natural areas in this watershed account for 69% of the land,
natural catchments around the world typically have nitrate-nitrogen and phosphate-
phosphorus concentrations of 0.1 mg/l and 0.01 mg/l, respectively (Meybeck 1982).

On Nov. 14, the surface water’s turbidity, TSS, and NOx-N increased as it trav-
eled from sites NB and SB to site HO (Fig. 22.8), indicating sources in the area
between the sites. These increases could very possibly be caused by the sugar fac-
tory which has large fields of loose piles of the factory’s particulate by-products.
An accumulation of fine sediments was also observed at the base of a clearing
through the bank of the gully adjacent to the factory’s property. Hunte (1989) sam-
pled this gully directly downstream of the factory and reported high nitrate levels
(0.843mg NO3-N/l) which were much higher than concurrent samples taken down-
stream, near HO, on 3 of 4 occasions. The first flush phenomenon is commonly seen
in runoff from urban areas, highways, and construction zones (Sansalone and Buch-
berger 1997; Deletic 1998; Lee et al. 2002; Kayhanian and Stenstrom 2005), sup-
porting the identification of these landuses as sources of sediment in this watershed.
Unfortunately, these findings cannot be corroborated by the data from Nov. 24, as
the lower terrace received very low amounts of rainfall during this event (Fig. 22.9),
suggesting that surface runoff was not generated in the area, and that values at HO
simply resulted from mixing of the upstream tributaries.

Subbasin PG had the 2nd highest SRP concentrations and the highest NOx-N
concentrations among sites, though the lowest levels of turbidity and TSS. This
subbasin is similar to NB in its high nutrient concentrations and high proportion
of agricultural landuse (12%) relative to SB, AD, and HO. However, PG and NB
differ in that PG has no industries and a smaller amount of urban area (5%) than NB
(16%). The low levels of TSS and turbidity at PG support the notion that sources
of sediment and turbidity are, at least in this watershed, more likely to be industrial
and urban rather than agricultural areas. Meanwhile the high nutrient concentrations
support the identification of agriculture as a source of nutrients in the runoff.

A pasture covers much of the area draining to site AD (61%). Nutrient concen-
trations at this site were the lowest among all sites showing how little pastures con-
tribute to nutrients in this watershed’s runoff. The higher TSS and turbidity levels
seen on Nov. 14 are surely flushed from the large-scale construction site immedi-
ately upstream, yet they were very low on Nov. 24, as a part of the station∗time
interaction effects. These inconsistent results may be due to differences in flow lev-
els between the two events, or may also be specific to the state of the construction
site during the events.
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22.4.2 Nearshore impacts

Estimates of nutrient loads can be compared to other primary nutrient inputs to
the nearshore area of Holetown such as the water of the Holetown Lagoon and
groundwater seeping through the beach. Sampling the Holetown lagoon over space
and time, Braithwaite (2004) reported nutrient concentrations averaging 0.7 + /−
0.3mg/l NO3-N (converted from original) and 24.0 + /− 13.9mg/l PO4-P. A ho-
tel acts as a point-source input to this water body discharging its laundry effluent
directly (Braithwaite 2004) and treated wastewater (secondary treatment) (Stan-
ley International Group Inc. 1998). The reported nitrogen concentrations in the
lagoon are similar to that of wastewater which typically has nutrient concentra-
tions of about 0.7mg/l NO3-N and 5.0mg/l PO4-P (Stanley International Group
Inc. 1998). The higher concentrations of phosphorus in the lagoon indicate another
source which could likely be the laundry effluent as detergents are typically rich in
phosphates. Another plausible source of phosphorus could be sediment from previ-
ous runoff events settled in the lagoon slowly releasing dissolved phosphorus by the
process of desorption (Froelich 1988). With an approximate volume of 3× 106 L,
lagoon water represents estimated nutrient loads of 2.1 + /− 1.3kg-NO3-N and
72 + /− 54kg-PO4-P. While this nitrate load is less than even the smallest esti-
mate of that for runoff (Oct. 27 = 17.6 + /− 13.7kg-NOx-N), the load of reactive
phosphorus in the lagoon is more than twice the estimate of that due to runoff during
the year’s largest flow event (Nov. 14 = 32.4+/−10.4kg-SRP).

This combined load of dissolved phosphorus is of great importance as phos-
phorus may be the nutrient limiting algal growth in the nearshore area. The molar
ratio of dissolved inorganic nitrogen to dissolved inorganic phosphorus has been re-
ported as 28.1:1 (Sander and Moore 1979), greater than the average cellular ratio of
16:1 (Hecky and Kilham 1988). Current research shows that estimates of this ratio
are more accurately described by total nutrient levels (Downing 1997). Wellington
(1999) measured total nutrients in the coastal waters of Holetown in both the wet
and dry season, and reported values yielding N:P molar ratios of no less than 69:1.
However, others have reported a much lower average TN:TP molar ratio of 14:1
(Bellairs Research Institute 1997), and so further research is needed.

Based on groundwater and offshore sources, Wellington (1999) estimated nutri-
ent loading rates of approximately 1kg NO3-N/day and 0.009kg PO4-P/day en-
tering a 1200m2 area along 100 m of Holetown’s coast. Though such quantifica-
tions are subject to large error, the magnitudes of these estimates suggest that runoff
makes substantial dissolved nutrient contributions to the coastal system, especially
with respect to phosphorus. Extending Wellington’s estimates over the entire 2 km
coastline of Holetown (i.e. multiplying by 20), dissolved nitrogen loading due to
runoff is apparently comparable to that which naturally enters the coastal water
daily. However, the combined dissolved phosphorus load of runoff and the lagoon is
still 2 orders of magnitude greater than that due to natural daily loading. Under these
assumptions, a single runoff event contributes a dissolved phosphorus load equal to
the annual load estimated by Wellington (1999). Of course, the nutrient loads due
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to runoff compared here are only minimum estimates of the total nutrient loads, as
only reactive nutrients were measured.

A trend of northward flow from the outlet for turbidity was confirmed by stations
to the north yielding significantly higher values than those to the south at 50 m and
200 m offshore. The fact that this trend was not observed at 100m offshore may be
explained by the irregular bathymetry of the northern transect. The three stations
O1, O2, and O3 located 50 m, 100 m, and 200 m along this transect have depths of
4.4, 6.1, and 4.2 m, respectively. According to Fick’s Law, the concentration at any
location will be inversely proportional to the location’s depth during dispersion of
a given flux. Thus, the greater depth of station O2 could explain its turbidity levels
being lower than that of the further station, O3.

The use of an appropriate statistical model, in this case the matrix normal model
and the corresponding modified ANOVA F-tests (Dutilleul and Pinel-Alloul 1996),
proved to be essential to a sound comprehension of our results. Station effects of
TSS in the reef area were finally declared non-significant at the 5% level, although
had the ANOVA F-test not been modified the effects would have been found to be
significant. Thus, the use of the matrix normal model avoided the generation of arti-
fact effects, which were in fact due to the spatial autocorrelation and heteroscedas-
ticity of the data.

The lack of spatial effects in the distribution of plume waters over the reef indi-
cated that if an event’s plume reaches the reef, it will affect the entire reef similarly.
While this suggests that different zones of the reef will be affected equally by poor
surface water quality, the implications may be greater for the reef crest. This zone
takes the brunt of the wave action and has far poorer coral species diversity than
that of the spur and groove zone (Lewis and Oxenford 1996). Wave action may
be considered a chronic stress upon coastal ecosystems (Grigg 1998; Tewfik et al.
2007). Perhaps the added stresses of eutrophication and sedimentation restricting
coral growth in the crest zone are thus inhibiting the coral’s resistance to the zone’s
naturally turbulent environment.

In addition to the potential effects caused by the estimated nutrient loads, event-
water plumes with detrimental levels of turbidity and TSS could be termed a chronic
stress to the Bellairs Reef as flow events occur every year and all of the events sam-
pled produced detrimental water quality levels above the reef making this a pre-
dictable seasonal disturbance. Of the 3 events for which second sets of seawater
samples were taken, the two largest events both caused initially high TSS levels
that did not recede within 67 hours from the onset of flow. It thus appears that
large events can cause poor water quality to linger above the reef but further sam-
pling is needed to confirm this and establish the full duration of influence. Few flow
events occurred this year until late November when more frequent flows from the
outlet restricted reformation of the beach separating the lagoon from the sea. Resi-
dents of Holetown state that this flow regime usually dominates much more of the
rainy season, and rainfall in the watershed was below average for the year (unpub-
lished data, Caribbean Institute for Meteorology and Hydrology), suggesting that
more than the observed 9 flow events would normally occur. In fact, adjacent wa-
tersheds to the north and south atypically did not generate runoff at all in 2006,
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minimizing stress incurred by the Bellairs Reef due to additional sources of runoff.
During the final stages of the study period, when the lagoon flowed continuously
and wave heights were highest, sedimentation rates on the reef were far above the
recommended guidelines. Such heavy surf continues for months into the dry season
potentially sustaining high sediment resuspension rates. While the complexities of
coastal sediment transport exceed the scope of this study, the documented terrestrial
sediment loads represent a significant contribution to the nearshore zone and thus
the excessive levels of sedimentation observed on the reef.

Excessive sedimentation commonly decreases coral diversity as few species are
resilient to such conditions (Cortes and Risk 1985). Large branching corals can typ-
ically survive the stress of sedimentation as their morphology limits the accumula-
tion of sediment on their surfaces (Rogers 1990). However, the proliferation of such
corals may impede the resilience of a reef’s coral community as their tolerance to
sedimentation is counterbalanced by their susceptibility to large waves (Blanchon
and Jones 1997). For example, the southern part of South Bellairs was once densely
covered by the branching coral Porites porites (James et al. 1977) until the passing
of Hurricane Allen in 1981 destroyed 96% of this species (Mah and Stearn 1986).

22.4.3 Recommendations

The first flush phenomenon observed in TSS at the watershed’s outlet shows that if
any efforts were made to reduce sediment fluxes to the sea, this could efficiently be
done by retarding as much of the initial discharge as possible to allow for settling,
and protecting the accumulated sediment from erosive action during future events.
In this regard, it has been suggested to divert the tributary upstream of site NB into
the nearby quarry (Cumming Cockburn Ltd 1996). The present study supports that
this venture would not only be a viable solution for reducing runoff peak flows but
turbidity, TSS, and SRP loads as well. Capturing only half of the runoff would cap-
ture 80% of the TSS, and the tributary to the north has been shown to be contributing
the highest concentrations per unit area of land.

Given the low proportions of agricultural and urban landuses, it appears that ex-
cessive application of fertilizers is occurring. A recent survey of farmers in a nearby
watershed revealed that none were aware of the fertilizer quantities being applied
(Denis and Hughes 2003). Though not an immediate solution, it is likely that agri-
cultural practices will eventually require improvement and control as ongoing farm-
ing development and population growth will only expand agricultural landuse.

Increases in the island’s local and tourist populations will also enhance the po-
tential for wastewater contamination of runoff. Remediation of this problem has
been addressed and awaits the progress of the West Coast Sewerage Project (Stan-
ley International Group Inc. 1998). An additional solution would be to phase out
the use, or importation, of soaps and detergents containing phosphates. This last
solution would be beneficial to conservation of the nearshore marine environment
considering the large SRP load shown in this study and that phosphorus has been



548 M. Tosic et al.

suggested to be the nutrient limiting algal growth (Sander and Moore 1979; Welling-
ton 1999). However, it appears that water from the coastal lagoon flushed by runoff
events presents a greater dissolved phosphorus load than that delivered by the runoff
itself. This lagoon has a volume equal to 10% of an average flow event’s total dis-
charge, meaning that regardless of all the upstream nutrient sources, the most ef-
ficient means for reducing phosphorus loading would be to control this lagoon’s
point-sources. These sources are known to have been discharging large quantities of
phosphorus for a long time (Brewster 1990; Braithwaite 2004).

22.5 Conclusions

Water quality in the watershed is much poorer than it ought to be with such a high
proportion of natural land. While high-flow events have a much higher potential
for transporting solids, similar nutrient concentrations were observed in high- and
low-flow events alike. The high levels of TSS, turbidity, and SRP in the most de-
veloped subbasin support the hypothesis of sources being agricultural, urban, and
industrial areas.

The first-flush phenomenon observed for TSS and turbidity shows that most of
the runoff’s sediment content is transported rapidly. Sources are most likely those
where solids are abundant and unstable such as the various construction sites and the
fields of by-product storage at the sugar factory. This hypothesis is supported firstly
by elevated TSS and turbidity levels drained from the areas with large industries, and
secondly by lower levels coming from a subbasin containing no industries, a small
urban area, and greater agricultural landcover relative to the rest of the watershed.

The reported nutrient concentrations are quite high considering what little agri-
cultural land remains. Expected reductions in nutrient contamination due to the
demise of agriculture in the watershed’s recent history may have been offset by in-
creased fertilizer application in the remaining areas and urban growth. Identification
of agricultural areas as sources of nutrients is supported by high nutrient concentra-
tions found draining from a subbasin with relatively larger agricultural and smaller
urban landcover. Pastures, on the other hand, yielded much smaller concentrations
of nutrients.

Runoff into the nearshore zone of Holetown causes plumes in excess of the
MPCA guidelines for turbidity (1.5 NTU) and TSS (5 mg/l), and delivers large loads
of sediments and nutrients contributing to the chronic effects of eutrophication and
sedimentation. Including water from the Holetown lagoon, surface water flushed by
runoff events appears to be the chief source of SRP to the nearshore area, doubtlessly
enhancing coastal eutrophication as phosphorus has been cited in the literature as
the limiting nutrient for algae growth (Sander and Moore 1979; Wellington 1999).
Plumes around the outlet revealed a trend of northward flow towards the Bellairs
Reef. This study’s data show that the magnitude of post-discharge changes in the
seawater depends on a flow event’s TSS load and total discharge, which were pro-
portional for the three events monitored in the outlet area. In the reef area, factors
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controlling seawater quality changes included TSS load and total discharge, as well
as the strength and direction of prevailing winds. Turbidity levels were above the
MPCA guidelines for less than 2–3 days following events but TSS levels showed
the potential to remain high for at least three days following the sampled events.
Sedimentation represents a definite chronic disturbance as accumulation rates on
the reef were far above the recommended guidelines for 35 of the 118 days moni-
tored, and were near the threshold on North Bellairs for an additional 26 days.

The fringing reefs of Barbados are still recovering from the acute disturbances
which occurred over 20 years ago as their recovery is impeded by the chronic distur-
bances of eutrophication and sedimentation resulting from land-based sources (Bell
and Tomascik 1993). Remediation of the degrading seawater is critical to the health
of the reefs (Bellairs Research Institute 1997). If measures are taken to improve wa-
ter quality, there is potential for the reef’s subsequent improvement. A recent study
on the island’s south coast revealed ecosystem recovery following local improve-
ments in seawater quality due to enhanced flushing rates in a coastal lagoon (Risk
et al. 2007).
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