

Subdivision Methods
for Geometric Design:

A Constructive Approach

The Morgan Kaufmann Series in Computer
Graphics and Geometric Modeling
Series Editor: Brian A. Barsky,
University of California, Berkeley

Subdivision Methods for Geometric Design:
A Constructive Approach
Joe Warren and Henrik Weimer

The Computer Animator’s Technical
Handbook
Lynn Pocock and Judson Rosebush

Computer Animation: Algorithms and
Techniques
Rick Parent

Advanced RenderMan: Creating CGI
for Motion Pictures
Anthony A. Apodaca and Larry Gritz

Curves and Surfaces in Geometric Modeling:
Theory and Algorithms
Jean Gallier

Andrew Glassner’s Notebook: Recreational
Computer Graphics
Andrew S. Glassner

Warping and Morphing of Graphical Objects
Jonas Gomes, Lucia Darsa, Bruno Costa,
and Luis Velho

Jim Blinn’s Corner: Dirty Pixels
Jim Blinn

Rendering with Radiance: The Art and Science
of Lighting Visualization
Greg Ward Larson and Rob Shakespeare

Introduction to Implicit Surfaces
Edited by Jules Bloomenthal

Jim Blinn’s Corner: A Trip Down the Graphics
Pipeline
Jim Blinn

Interactive Curves and Surfaces:
A Multimedia Tutorial on CAGD
Alyn Rockwood and Peter Chambers

Wavelets for Computer Graphics: Theory and
Applications
Eric J. Stollnitz, Tony D. DeRose, and
David H. Salesin

Principles of Digital Image Synthesis
Andrew S. Glassner

Radiosity & Global Illumination
François X. Sillion and Claude Puech

Knotty: A B-Spline Visualization Program
Jonathan Yen

User Interface Management Systems: Models
and Algorithms
Dan R. Olsen, Jr.

Making Them Move: Mechanics, Control, and
Animation of Articulated Figures
Edited by Norman I. Badler, Brian A. Barsky,
and David Zeltzer

Geometric and Solid Modeling:
An Introduction
Christoph M. Hoffmann

An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling
Richard H. Bartels, John C. Beatty, and
Brian A. Barsky

Subdivision Methods
for Geometric Design:

A Constructive Approach

Joe Warren
Rice University

Henrik Weimer
DaimlerChrysler AG, Berlin

Executive Editor Diane D. Cerra
Publishing Services Manager Scott Norton
Production Editor Howard Severson
Assistant Editor Belinda Breyer
Cover Design Ross Carron Design
Text Design Rebecca Evans & Associates
Composition and Illustration Interactive Composition Corporation
Copyeditor Daril Bentley
Proofreader Mary Roybal
Indexer Bill Meyers
Printer Courier Corporation

Designations used by companies to distinguish their products are often claimed as trade-
marks or registered trademarks. In all instances in which Morgan Kaufmann Publishers is
aware of a claim, the product names appear in initial capital or all capital letters. Readers,
however, should contact the appropriate companies for more complete information regard-
ing trademarks and registration.

Morgan Kaufmann Publishers
340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205, USA
http://www.mkp.com

ACADEMIC PRESS
A Division of Harcourt, Inc.
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
http://www.academicpress.com

Academic Press
Harcourt Place, 32 Jamestown Road, London, NW1 7BY, United Kingdom
http://www.academicpress.com

c© 2002 by Academic Press
All rights reserved
Printed in the United States of America

06 05 04 03 02 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopying, or otherwise—without
the prior written permission of the publisher.

Library of Congress Control Number: 2001094349
ISBN: 1-55860-446-4

This book is printed on acid-free paper.

Foreword
Tony DeRose

Pixar Animation Studios

Considerable effort has been expended over the last forty years in the area of geo-
metric design, the goal of which is to develop efficient and flexible representations
of complex shapes. Applications of geometric design are broad and varied; they in-
clude aerospace and automotive design, industrial design, and computer animation
for interactive games, commercials, and full-length feature films.

Bézier curves, developed independently by Pierre Bézier at Renault and Paul
de Casteljau at Citroen in the early ’60s, were one of the first successful computer
representations. They are still the representation of choice in some applications.
Bézier curves were followed by B-splines, which were introduced into geometric
design in the mid ’70s by Riesenfeld and others. B-splines possess a beautiful un-
derlying theory that leads to a wide range of highly efficient algorithms, which is
why they have become the standard representation in geometric design systems.
B-spline surfaces do however have a severe shortcoming. They can only represent
a limited set of surface topologies—namely, topological disks, cylinders, and tori.

The search for a representation that overcomes the topological limitations of
B-splines began shortly after the introduction of B-splines to geometric design.
Inspired by George Chaikin’s work that described curves as the limit of a sequence
of subdivision steps, two teams of researchers (Ed Catmull and Jim Clark, and
Malcolm Sabin and D. Doo) independently developed the notion of subdivision
surfaces in 1978.

Subdivision surfaces naturally admit arbitrary surface topologies. They were
initially met with considerable enthusiasm, but since they lacked the beautiful and
powerful theory of B-splines, they were treated as a rather exotic representation
for nearly 20 years. That began to change in the mid ’90s. Advances were made on
a number of fronts by researchers in numerous disciplines, including approxima-
tion theory, numerical analysis, and computer graphics. These surfaces are rapidly
establishing themselves as the new representation of choice, and I predict that in

v

vi Foreword

coming years they will largely supplant B-splines in many application domains. In
feature film production here at Pixar for instance, subdivision surfaces are already
the preferred way to represent the shape of virtually everything that moves.

The authors of this book have been on the forefront of these advances, and
this book represents the first comprehensive description of subdivision methods.
However, the book is not simply a collection of material that can be found in the
open literature. Rather, it offers a deep and unique perspective into the world of
subdivision. I learned a tremendous amount from reading this book. I’m sure you
will too.

Contents

Foreword v

Preface xi

Table of Symbols xiii

Chapter 1 Subdivision: Functions as Fractals 1

1.1 Functions 1
1.1.1 Piecewise Polynomials 3
1.1.2 Bézier Curves 5

1.2 Fractals 9
1.2.1 Iterated Affine Transformations 9
1.2.2 The Sierpinski Triangle 12
1.2.3 The Koch Snowflake 13
1.2.4 Bézier Curves 15

1.3 Subdivision 18
1.3.1 Piecewise Linear Splines 19
1.3.2 Subdivision for Piecewise Linear Splines 22

1.4 Overview 25

Chapter 2 An Integral Approach to Uniform Subdivision 27

2.1 A Subdivision Scheme for B-splines 28
2.1.1 B-spline Basis Functions via Repeated Integration 29
2.1.2 A Refinement Relation for B-spline Basis Functions 32
2.1.3 The Associated Subdivision Scheme 35

2.2 A Subdivision Scheme for Box Splines 40
2.2.1 B-spline Basis Functions as Cross-sectional Volumes 41
2.2.2 Box-spline Scaling Functions as Cross-sectional Volumes 44
2.2.3 Subdivision for Box Splines 45
2.2.4 Examples 48

2.3 B-splines and Box Splines as Piecewise Polynomials 52
2.3.1 B-splines as Combinations of Truncated Powers 53

vii

viii Contents

2.3.2 Box Splines as Combinations of Cone Splines 57
2.3.3 Bivariate Examples 58

Chapter 3 Convergence Analysis for Uniform Subdivision Schemes 62

3.1 Convergence of a Sequence of Functions 63
3.1.1 Pointwise Convergence 63
3.1.2 Uniform Convergence 65
3.1.3 Uniform Convergence for Continuous Functions 67
3.1.4 Uniform Convergence for Smooth Functions 68

3.2 Analysis of Univariate Schemes 69
3.2.1 A Subdivision Scheme for Differences 70
3.2.2 A Condition for Uniform Convergence 73
3.2.3 A Subdivision Scheme for Divided Differences 75
3.2.4 Example: The Four-point Scheme 79

3.3 Analysis of Bivariate Schemes 81
3.3.1 A Subdivision Scheme for Differences 82
3.3.2 A Condition for Uniform Convergence 83
3.3.3 Convergence to a Smooth Function 85
3.3.4 Example: Bivariate Interpolatory Schemes 88

Chapter 4 A Differential Approach to Uniform Subdivision 91

4.1 Subdivision for B-splines 92
4.1.1 A Differential Equation for B-splines 92
4.1.2 A Finite Difference Equation for B-splines 95
4.1.3 The Associated Subdivision Scheme 97

4.2 Subdivision for Box Splines 99
4.2.1 A Differential Equation for Box Splines 99
4.2.2 The Subdivision Scheme for Box Splines 101

4.3 Subdivision for Exponential B-splines 103
4.3.1 Discretization of the Differential Equation 103
4.3.2 A Subdivision Scheme for Exponential Splines 105
4.3.3 Exponential B-splines as Piecewise Analytic Functions 106

4.4 A Smooth Subdivision Scheme with Circular Precision 110
4.4.1 Splines in Tension 110
4.4.2 Mixed Trigonometric Splines 112
4.4.3 The Unified Subdivision Scheme 114
4.4.4 Convergence Analysis for Nonstationary Schemes 116

Chapter 5 Local Approximation of Global Differential Schemes 120

5.1 Subdivision for Polyharmonic Splines 120
5.1.1 The Radial Basis for Polyharmonic Splines 121

Contents ix

5.1.2 A Bell-shaped Basis for Polyharmonic Splines 124
5.1.3 A Subdivision Scheme for Polyharmonic Splines in the Bell-shaped

Basis 127

5.2 Local Approximations to Polyharmonic Splines 129
5.2.1 The Exact Scheme via Laurent Series 129
5.2.2 Local Approximations via the Jacobi Iteration 133
5.2.3 Optimal Local Approximations via Linear Programming 136
5.2.4 A Comparison of the Three Approaches 138

5.3 Subdivision for Linear Flows 141
5.3.1 Linear Flows 142
5.3.2 Primal Versus Dual Subdivision 145
5.3.3 A Finite Difference Scheme for Perfect Flows 147
5.3.4 A Subdivision Scheme for Perfect Flows 149
5.3.5 An Analytic Basis for Linear Flows 151

Chapter 6 Variational Schemes for Bounded Domains 157

6.1 Inner Products for Stationary Subdivision Schemes 157
6.1.1 Exact Derivatives 158
6.1.2 Exact Inner Products 162
6.1.3 Example: Exact Enclosed Area for Parametric Curves 165

6.2 Subdivision for Natural Cubic Splines 167
6.2.1 A Variational Formulation of Cubic Splines 167
6.2.2 A Finite Element Scheme for Natural Cubic Splines 169
6.2.3 A Multiscale Relation for Natural Cubic Splines 173
6.2.4 Subdivision Rules for Natural Cubic Splines 176

6.3 Minimization of the Variational Scheme 180
6.3.1 Interpolation with Natural Cubic Splines 180
6.3.2 Exact Inner Products for the Variational Scheme 182
6.3.3 Multiresolution Spaces for Energy Minimization 184

6.4 Subdivision for Bounded Harmonic Splines 188
6.4.1 A Finite Element Scheme for Bounded Harmonic Splines 188
6.4.2 Subdivision for Harmonic Splines on a Quadrant 191
6.4.3 Subdivision for Harmonic Splines on Bounded Rectangular

Domains 193

Chapter 7 Averaging Schemes for Polyhedral Meshes 198

7.1 Linear Subdivision for Polyhedral Meshes 198
7.1.1 Polyhedral Meshes 199
7.1.2 Topological Subdivision of Polyhedral Meshes 201

7.2 Smooth Subdivision for Quad Meshes 204
7.2.1 Bilinear Subdivision Plus Quad Averaging 205
7.2.2 Comparison to Other Quad Schemes 209

x Contents

7.2.3 Weighted Averaging for Surfaces of Revolution 212
7.2.4 Averaging for Quad Meshes with Embedded Creases 220

7.3 Smooth Subdivision for Triangle Meshes 226
7.3.1 Linear Subdivision Plus Triangle Averaging 226
7.3.2 Comparison to Other Triangle Schemes 230

7.4 Other Types of Polyhedral Schemes 232
7.4.1 Face-splitting Schemes 232
7.4.2 Dual Subdivision Schemes 234

Chapter 8 Spectral Analysis at an Extraordinary Vertex 239

8.1 Convergence Analysis at an Extraordinary Vertex 239
8.1.1 The Limit Surface at an Extraordinary Vertex 240
8.1.2 Local Spectral Analysis 243
8.1.3 Exact Evaluation Near an Extraordinary Vertex 246

8.2 Smoothness Analysis at an Extraordinary Vertex 249
8.2.1 The Characteristic Map 250
8.2.2 Eigenfunctions 252
8.2.3 Sufficient Conditions for Cm Continuity 254
8.2.4 Necessary Conditions for Cm Continuity 257

8.3 Verifying the Smoothness Conditions for a Given Scheme 259
8.3.1 Computing Eigenvalues of Circulant Matrices 260
8.3.2 Computing Eigenvalues of Local Subdivision Matrices 263
8.3.3 Proving Regularity of the Characteristic Map 267

8.4 Future Trends in Subdivision 272
8.4.1 Solving Systems of Physical Equations 272
8.4.2 Adaptive Subdivision Schemes 272
8.4.3 Multiresolution Schemes 273
8.4.4 Methods for Traditional Modeling Operations 274
8.4.5 C2 Subdivision Schemes for Polyhedral Meshes 275

References 276

Index 287

Preface

Subdivision is an exciting new area in computer graphics that allows a geometric
shape to be modeled as the limit of a sequence of increasingly faceted polyhe-
dra. Companies such as Pixar and Alias/Wavefront have made subdivision surfaces
the basic building block for much of their computer graphics/modeling software.
Assuming a background of basic calculus and linear algebra, this book is intend to
provide a self-contained introduction to the theory and practice of subdivision. The
book attempts to strike a balance between providing a complete description of the
basic theory of subdivision (such as convergence/smoothness analysis) while consid-
ering practical issues associated with implementing subdivision (such as represent-
ing and manipulating polyhedral meshes). Its target audience consists of graduate
and advanced undergraduate students of computer graphics, as well as practitioners.

Overview

The book consists of roughly three parts: The first part, consisting of Chapters 1–3,
is introductory. Chapter 1 introduces subdivision as a method for unifying func-
tional and fractal representations. Chapter 2 presents repeated integration, a
simple technique for creating subdivision schemes, and it uses this method to
construct two basic examples of subdivision schemes, B-splines and box splines.
Chapter 3 considers the problem of analyzing the convergence and smoothness of
a given uniform subdivision scheme. The second part of the book, Chapters 4–6,
focuses on a new differential method for constructing subdivision schemes. This
method, developed by the authors, allows for the construction of a much wider
range of subdivision schemes than the integral method, and it provides a frame-
work for systematically generating subdivision schemes on bounded domains. The
last part of the book, Chapters 7–8, focus on the current “hot” topic in model-
ing: subdivision on polyhedral meshes. Chapter 7 introduces various subdivision
schemes for polyhedral meshes, such as the Catmull-Clark scheme and Loop’s
scheme, and it considers the problem of implementing these schemes in detail.

xi

xii Preface

Chapter 8 considers the problems of testing and proving the smoothness of poly-
hedral surface schemes.

www.subdivision.org

During the course of using the book, the reader will often notice a small chess
piece either embedded in the text or placed on the left-hand side of the page. This
icon is designed to alert the reader that there is more related material available
at the Web site www.subdivision.org. This Web material is stored in a sequence of
Mathematica 4.1 notebooks (one per chapter) and consists of items such as the
Mathematica implementations used in generating the figures in this book. Almost
all the computational concepts discussed in the book are implemented in these
notebooks. We highly recommend that the interested reader download and explore
these notebooks during the course of using this book. www.subdivision.org also
contains an interactive tutorial on subdivision (using Java applets) that allows the
user to subdivide both curves and surfaces. The Java implementation of this tutorial
is also available for download and is intended to provide a starting point for someone
interested in building modeling tools based on subdivision.

Acknowledgements

Many people helped in the writing of this book. We would specifically like to
thank Malcolm Sabin, Luiz Velho, Tony DeRose, Igor Guskov, Brian Barsky, Ron
Goldman, and Ju Tao for their help in reviewing the manuscript. Finally, Scott
Schaeffer deserves an especially hearty thanks for his help in putting together the
Web site www.subdivision.org.

Table of Symbols

Notation

The manuscript for this book (and its associated implementation) was prepared
using Mathematica. Therefore, our general approach to notation is to use the
StandardForm notation of Mathematica. The main advantage of this choice is that
we avoid some of the inherent ambiguities of traditional mathematical notation.
The highlights of this notation are the following:

■ Function application is denoted using square brackets, for example, p[x]. This
choice allow parentheses () to be reserved for grouping expressions.

■ Vectors (and lists) are created by enclosing their members in curly brackets,
for example {a, b, c}, which denotes the vector whose entries consist of a, b

and c. Conversely, the i th entry of a vector p is denoted by p[[i]]. This choice
allows us to define a sequence of vector pk and then index a particular ele-
ment of these vectors via pk[[i]]. (In Mathematica, vectors are always indexed
starting at one; we allow the [[]] operator to also be used on vectors whose
indices range over the integers.)

■ The symbol == denotes equality while the symbol = denotes assignment.
In traditional mathematics, this distinction is typically blurred; we attempt
(to the best of our ability) to maintain this distinction.

■ The expression p(i , j)[x, y] denotes the i th derivative with respect to x and j th
derivative with respect to y of the function p[x, y].

We also follow several important stylistic rules when assigning variable names.
Roman variable are used to denote discrete quantities while script variables are
used to denote continuous quantities. Often, the same variable may have both a
Roman and a script version denoting the discrete and continuous aspects of the
same quantity. For example, the vector p often denotes a vector of coefficients
while the function p[x] denotes the continuous limit function associated with this

xiii

xiv Table of Symbols

vector p. In the discrete case, we typically use lowercase letters to denote vectors,
with uppercase letters being reserved for matrices. For example, the expression Sp

denotes the product of the matrix S times the column vector p.

Roman

A affine transformation, generic matrix (Chapter 1)

c[x], C circulant mask, circulant matrix (Chapter 8)

d[x], dk[x] discrete difference mask, discrete divided difference mask (Chap-
ter 4, 5)

e[x], E , E k energy mask, energy matrices (Chapter 6)

h index of sector for mesh at extraordinary vertex (Chapter 8)

i , j integer indices

k level of subdivision

l [x , y], lk[x , y] discrete Laplacian masks (Chapter 5)

m order of spline

M, Mk topological mesh (Chapter 7, 8)

n size of grid, valence of extraordinary vertex

n[x], N , Nk interpolation mask, interpolation matrices (Chapter 6)

p, pk, q, qk generic vectors of coefficients, generic control polygons/polyhedra

r [x] various residual masks

S, Sk subdivision matrices

s, s[x], sm[x], s� [x , y] subdivision mask, subdivision mask of order m, subdivision
mask for box spline with direction vectors � (Chapter 2,
3, 4)

T difference matrix (Chapter 3)

U , Uk upsampling matrices (Chapter 6)

uk[x , y], vk[x , y] generating functions for discrete flow (Chapter 5)

v arbitrary vertex, extraordinary vertex

Vk, Wk function spaces, complementary spaces (Chapter 6)

wk weight vector on grid 1
2k Z

2 (Chapter 6)

w[n] weight function at extraordinary vertex (Chapter 7, 8)

Table of Symbols xv

x , y variables for generating functions

z, z i eigenvectors of subdivision matrix (Chapter 8)

Script

bm
i [x], Bm[x] Bernstein basis function, vector of Bernstein basis functions

(Chapter 1)

c[x], c[x, y] truncated powers, cone splines (Chapter 2, 4)

Ck space of functions with k continuous derivatives

D[x] differential operator (Chapter 4, 5)

E [p] energy functional (Chapter 6)

g[x, y] source of rotational flow (Chapter 5)

Hm m-dimensional hypercube (Chapter 2)

I[x] integral operator (Chapter 4)

L[x, y] continuous Laplacian operator (Chapter 5)

n[x], nm[x], n� [x, y] scaling function for a subdivision scheme (Chapter 2, 4)

N [x], Nk[x] vector of scaling functions for a subdivision scheme (Chapter 2, 4, 6)

p[x], p[x, y], q[x], q[x, y] generic limit functions

r k[x] residual functions

R, R+, (R+)m set of real numbers, set of non-negative real numbers,
m-dimensional cone

s, t temporary continuous variables

{u[x, y], v[x, y]}T continuous flow in the plane (Chapter 5)

x, y, z continuous domain variables

Greek Letters

α, β, ε temporary real valued constants

δ[x], δ[x, y] Dirac delta function (Chapter 4, 5)

γ tension parameter for exponential splines (Chapter 4)

λi eigenvalues of a subdivision matrix (Chapter 8)

xvi Table of Symbols

σ k, ρ k tension parameters for non-stationary scheme (Chapter 4, 7)

ψ characteristic map (Chapter 8)

φ functional representation at an extraordinary vertex (Chapter 8)

� set of direction vectors (Chapter 2)

ωn nth root of unity (Chapter 8)

� domain of integration (Chapter 6)

Miscellaneous

e exponential constant

i square root of −1

†, ª, Ø, ü genus, number of edges, vertices, faces for a topological mesh
(Chapter 7)

D topological dual of one-dimensional grid or a two-dimensional surface mesh
(Chapter 5, 7)

Z, Z
2, Z

+, (Z+)2 set of integers, set of integer pairs, set of non-negative integers,
set of non-negative integer pairs

Functions

area[p] area enclosed by a polygon p (Chapter 1)

dim[v] dimension of the smallest cell containing a vertex v in a topological mesh
(Chapter 7)

mod[i , n] the integer i taken modulo n

ring[v] the set of faces containing a vertex v in a topological mesh (Chapter 7)

val[v] the number of faces in ring[v] (Chapter 7)

volm[A] the m-dimensional volume of a set A (Chapter 2)

C H A P T E R 1

Subdivision: Functions
as Fractals

Describing a complex geometric shape is a challenging task. Artists and designers
may spend weeks and even months describing a single complex shape, such as that
of a new car. To specify geometric shapes using a computer, one must f irst settle
on a language for describing shape. Fortunately, there already exists a language
that can describe a wide range of shapes: mathematics. The aim of this book is to
expose the reader to subdivision, a new and exciting method for mathematically
describing shape. Subdivision may be viewed as the synthesis of two previously
distinct approaches to modeling shape: functions and fractals. This chapter reviews
some of the basic ideas behind modeling shapes using both functions and fractals.
It concludes with a brief introduction to the fundamentals of subdivision.

1.1 Functions

To describe the shape of a curve, a range of mathematical tools is available. Perhaps
the simplest of these tools is the function. A function p maps an input parameter x to
a function value p[x]. If p is plotted versus a range of parameter values x, the resulting
graph defines a geometric shape. The crux here is to choose the function p so that
the resulting graph has the desired shape. For example, if p is the trigonometric
function Sin, the resulting graph is a wave-like curve (shown in Figure 1.1).

Obviously, this explicit approach restricts the resulting curve to be single valued
with respect to the x axis. That is, for any x there is exactly one value p[x]. One way
to remedy this problem is to define a curve parametrically using a pair of functions
in a common parameter x. Each of these functions describes a separate coordinate of
the curve. As x varies, this pair of functions traces out a curve in the coordinate plane

1

2 C H A P T E R 1 Subdivision: Functions as Fractals

1 2 3 4 5 6

�1

�.5

.5

1

Figure 1.1 Graph of the function Sin[x] for x ∈ [0, 2π].

�1 �.5 .5 1

�1

�.5

.5

1

Figure 1.2 Plot of the parametric function {Cos[x], Sin[x]} for x ∈ [0, 2π].

that describes the desired shape. For example, the parametric function {Cos[x], Sin[x]}
defines the circle of Figure 1.2 as x varies over the range [0, 2π].

Although parametric curves are extremely popular, they are by no means the
only method available for defining curves. Another well-known method is to define
a curve in the xy plane implicitly as the solution to the equation p[x, y] == 0. For
example, the circle of Figure 1.2 can be represented implicitly as the solution to
the equation x2 + y2 − 1 == 0. Figure 1.3 shows a darkened plot of this circle and
its interior, x2 + y2 − 1 ≤ 0.

The difference in appearance of these two plots illustrates the fundamental
difference between the two representations: The parametric curve {Cos[x], Sin[x]}
describes a sequence of points lying on the circle itself. The contour plot of the

1.1 Functions 3

�1.5 �1 �.5 0 .5 1 1.5
�1.5

�1

�.5

0

.5

1

1.5

Figure 1.3 Plot of an implicitly defined circle and its interior, x2 + y2 − 1 ≤ 0.

implicit region x2 + y2 − 1 ≤ 0 shows two separate regions: the interior and the ex-
terior of the circle. Each representation describes the circle precisely.

Choosing between these two representation methods is often difficult. There
are applications for which one of the representations is better suited than the other.
For example, a parametric representation can be evaluated at a sequence of parame-
ter values to produce a sequence of points on a parametric curve. Generating points
that lie exactly on an implicit curve is a bit more complex and usually involves
f inding the roots of a univariate equation. On the other hand, testing whether a
point lies in the interior of a region bounded by an implicit curve reduces to evalu-
ating p[x, y] and checking its sign, which is quite easy. Answering the same question
for a closed parametric curve is much more involved. Comparing and contrast-
ing these two representations could be the subject of an entire textbook by itself.
For those readers interested in exploring these questions more, we suggest the sur-
vey by Requicha and Voelker [131]. Our approach in this book will be to focus
mainly on the explicitly defined functional case while occasionally examining the
parametric case.

1.1.1 Piecewise Polynomials

No matter which representation one prefers, a question remains: What type of
functions should be used in defining a shape p? The answer that has been most
popular in computer-aided geometric design for the last few decades is to use
piecewise polynomial functions. These functions describe a rich class of shapes, are
computationally efficient, and have been subjected to rigorous numerical analysis.
Unfortunately, controlling the shape of a piecewise polynomial function can be

4 C H A P T E R 1 Subdivision: Functions as Fractals

difficult. For example, consider the piecewise polynomial function n[x] whose value
has the form

n[x] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ∈ [−∞, 0],
x3

6 if x ∈ [0, 1],

2
3 − 2x + 2x2 − x3

2 if x ∈ [1, 2],

− 22
3 + 10x − 4x2 + x3

2 if x ∈ [2, 3],

− 1
6 (−4 + x)3 if x ∈ [3, 4],

0 if x ∈ [4, ∞].

Surprisingly, these seemingly unrelated polynomials define a very nice smooth
bump function, graphed in Figure 1.4. (n[x] is the cubic B-spline basis function.)

Representing each of these polynomial functions in the monomial basis gives
no clue about the shape of the graph of n[x]. Ideally, the definition of n[x] as a
piecewise polynomial should provide information about the shape of its graph. The
careful choice of an appropriate basis for the piecewise polynomials provides the
solution to this problem. The coefficients of this basis should give some geometric
information about the shape of the graph of the resulting piecewise polynomial
function. In particular, these coefficients should define a piecewise linear shape
that approximates the associated function. This idea of relating a piecewise linear
shape to an associated continuous shape is one of the fundamental paradigms of
geometric design. As we shall see later, subdivision is one of the most successful
instances of this paradigm.

1 2 3 4

.1

.2

.3

.4

.5

.6

Figure 1.4 Plot of the piecewise cubic polynomial n[x].

1.1 Functions 5

1.1.2 Bézier Curves

Perhaps the simplest example of a functional representation that embodies this
paradigm is that of Bernstein polynomials and Bézier curves. Our goal in this sec-
tion is to give a brief introduction to Bézier curves in preparation for discussing
subdivision for these curves later in the chapter. For those readers interested in a
more complete exploration of the properties of Bézier curves, the authors suggest
Farin [59] or Bartels et al. [9].

Recall that our goal is to f ind a basis whose coefficients provide geometric
intuition concerning the shape of the function defined by these coefficients. To
be specif ic, let us f irst consider the problem of representing a single polynomial
function p[x] of degree m over the unit interval [0, 1]. For polynomials, the key idea
is to construct a set of m + 1 basis functions bm

i [x] of degree m where 0 ≤ i ≤ m. Then,
every polynomial p[x] of degree m can be represented as a unique linear combination
of these basis functions:

p[x] =
m∑

i =0

p[[i]]bm
i [x]. (1.1)

Here, the m + 1 coefficients are represented as a column vector p whose i th co-
efficient is denoted by p[[i]]. For the sake of notational compactness, equation 1.1
can also be in vector form as p[x] = Bm[x]p, where Bm[x] is a row vector consisting of
the m + 1 basis function bm

i [x].
If the basis functions bm

i [x] are chosen to be the Bernstein basis functions, the
coefficients of p provide strong geometric intuition about the behavior of p[x] on the
interval [0, 1]. The Bernstein basis functions can be defined in a variety of manners.
One simple construction is to consider the binomial expansion of the expression
((1 − x) + x)m. The binomial expansion consists of m + 1 terms of degree m in x. For
example,

((1 − x) + x)3 == (1 − x)3 + 3(1 − x)2x + 3(1 − x)x2 + x3.

The resulting terms of this expansion are the Bernstein basis functions of degree m.
Applying the binomial theorem yields an explicit expression for the i th Bernstein
basis function of degree m:

bm
i [x] =

(
m
i

)
(1 − x)m−i x i . (1.2)

6 C H A P T E R 1 Subdivision: Functions as Fractals

.2 .4 .6 .8 1

.2

.4

.6

.8

1

Figure 1.5 Plots of the six quintic Bernstein basis functions b5
i [x].

Figure 1.5 shows a plot of the six Bernstein basis functions b5
i [x] of degree five.

These basis functions have a wide range of remarkable properties. These properties
include:

■ The functions bm
i [x] are non-negative polynomials of degree m on the interval

[0, 1].

■
∑m

i =0 bm
i [x] == 1 due to the definition of the bm

i [x] in terms of the binomial
expansion.

■ bm
i [x] is a bell-shaped function that reaches its maximum at x == i

m . (This
property can be verif ied by noting that the derivative of bm

i [x] is zero at
x == i

m .)

If the entries of the vector p are points (instead of scalar coefficients), p[x] is a
parametric curve known as a Bézier curve. The open polygon defined by the m + 1

control points of p is the control polygon associated with the curve p[x]. Observe
that the definition of equation 1.1 involves only weighted combinations of the
control points of the form

∑
i αi p[[i]]. Because the Bernstein basis functions bm

i [x]

sum to one, these weights αi always sum to one (i.e.,
∑

i αi == 1). Taking such an
affine combination of a set of points is a frequent operation in geometric design;
restricting the sum of the weights to be one guarantees that the sum

∑
i αi p[[i]] is a

well-defined point whose location is independent of the particular coordinate sys-
tem used in representing the points p[[i]]. (Technically, the construction is affinely
invariant.)

Due to the properties of the Bernstein polynomials, the Bézier curve p[x] follows
the control polygon p in a very natural manner as x varies from 0 to 1. For example,

1.1 Functions 7

.5 1 1.5 2

.5

1

1.5

2

.5 1 1.5 2 2.5 3

.5

1

1.5

2

2.5

3

1 2 3 4 5 6

1

2

3

4

5

6

Figure 1.6 Several Bézier curves and their control polygons.

p[x] interpolates the endpoints of the polygon p (i.e., p[0] == p[[0]] and p[1] == p[[m]]).
Because the Bernstein basis functions bm

i [x] are non-negative on the interval [0, 1],
p[x] is an affine combination of the points p[[i]], where the weights are always non-
negative. Such a combination is called a convex combination because the resulting
point always lies inside the convex hull of the points p[[i]]. Figure 1.6 shows several
control polygons and their corresponding Bézier curves p[x].

This method for defining parametric curves and using them to design shapes
was discovered independently by two researchers for rival French automakers in the
early 1960s. One researcher, P. Bézier of Renault, was able to publish his ideas; the
resulting curves became known as Bézier curves. The other researcher, P. de Castel-
jau of Citroën, was not allowed to publish his ideas, because they were viewed as
trade secrets by Citroën. It was not until 1972 that the link between these two inde-
pendent pieces of work was uncovered [76]. (Do not feel too sorry for de Casteljau;
the subdivision algorithm for Bézier curves is known as the de Casteljau algorithm
in honor of his contributions.)

Due to its many nice properties, a designer can control the shape of the Bézier
curve p[x] simply by manipulating the polygon p. Ideally, this manipulation of Bézier
curves should be done interactively. The designer modif ies p and the modeling
system instantly updates p[x]. To achieve this goal, the system should produce some
type of dense polygonal approximation to p[x] that can be rendered easily on the
screen. The simplest approach is to evaluate p[x] at a sequence of n + 1 values
x = {0, 1

n , 2
n , . . . , 1} and to render the polygon {p[0], p[1

n], p[2
n], . . . , p[1]}. As n → ∞,

this discrete approximation converges to the true Bézier curve p[x]. Figure 1.6 uses
such a discretization for n = 32.

8 C H A P T E R 1 Subdivision: Functions as Fractals

The rendering method previously described is reasonable but has some flaws.
Evaluating p[x] repeatedly to compute {p[0], p[1

n], p[2
n], . . . , p[1]} is expensive. Much

more efficient methods for repeated evaluation, such as forward differencing [2, 9],
exist. (Note that forward differencing is not always numerically stable.) Another
drawback is the need to determine n prior to the discretization. If n proves to be
too small (i.e., the discrete approximation does not follow p[x] closely enough),
p[x] must be reevaluated using a larger n. One simple trick, which avoids this total
recomputation, is to replace n by 2n. To compute {p[0], p[1

2n], p[2
2n], . . . , p[1]}, one need

only compute the value of p[x] at x = 1
2n , 3

2n , 5
2n , . . . , 2n−1

2n . The remaining values have
already been computed earlier. Because this algorithm determines discretizations of
p[x] of increasingly f ine resolution, this procedure is an example of a multiresolution
algorithm. Figure 1.7 shows an example of this approach applied to a cubic Bézier
curve for n = 4, 8, 16, 32.

.5

.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

.5

.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

.5

.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

.5

.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

Figure 1.7 A multiresolution algorithm for drawing a cubic Bézier curve.

1.2 Fractals 9

1.2 Fractals

The plotting algorithm described at the end of the previous section has an impor-
tant property: it produces increasingly detailed plots of a function by doubling the
resolution of the plot at each step. Eventually, the plots converge to the exact Bézier
curve. This method is a simple example of a multiresolution algorithm. Starting
with a coarse shape, multiresolution methods build increasingly finer shapes that
eventually converge to some limit shape. Ideally, successive shapes are related by
a simple transformation. In the case of Bézier curves, the actual transformation
relating two consecutive approximations is not quite clear. As described in the pre-
vious section, each approximation was actually computed directly from the coarsest
starting shape. The true multiresolution nature of Bézier curves will become clearer
later in this section.

This section considers another interesting example of multiresolution shapes:
fractals. Conceptually, building a fractal requires two ingredients: a space of geo-
metric shapes pk and a transformation S that maps a coarse shape pk−1 to a fine
shape pk. Given an initial shape p0, a fractal method defines an infinite sequence
of shapes by iterating S according to pk = Spk−1. (The expression Spk−1 denotes
the application of S to pk−1.) If the transformation S is chosen appropriately, the
limit of pk as k → ∞ is a well-defined shape p∞ satisfying the fixed-point prop-
erty p∞ = Sp∞. Most of the material on constructing fractals using this approach is
drawn from Barnsley [8], an excellent introduction to the area of fractals.

1.2.1 Iterated Affine Transformations

One of the simplest methods for constructing fractals involves iterating a set of
affine transformations. Before attempting to construct fractals using this method,
we brief ly review some of the properties of affine transformations and discuss an
elegant method for representing affine transformations. Mathematically, an affine
transformation is a function A that maps points to points and satisf ies the relation

A

[∑
i

αi p[[i]]

]
=
∑

i

αi A [p[[i]]] (1.3)

for all vectors of points p provided that
∑

i αi == 1. For points in the plane, some
standard examples of affine transformations include rigid-body motions, such as
rotations and translations, as well as scaling and shearing. (See Mortenson [108] for
more information on affine transformations.)

10 C H A P T E R 1 Subdivision: Functions as Fractals

One interesting feature of affine transformations in the plane is that once the
value of an affine transformation A is known at three noncollinear points p[[0]], p[[1]]

and p[[2]] the action of A on an arbitrary point v can be computed using equation 1.3.
The trick is to express the point v as an affine combination of the points p[[0]], p[[1]],
and p[[2]]; that is, v == α0 p[[0]] +α1 p[[1]] +α2 p[[2]], where α0 +α1 +α2 == 1. Given these
weights αi , the value A[v] of the affine transformation A satisf ies

A[v] = α0 A [p[[0]]] + α1 A [p[[1]]] + α2 A [p[[2]]]

due to equation 1.3. These affine weights are the barycentric coordinates of v with
respect to the base triangle p and can be computed as the ratio of the areas of
various triangles defined by v and the vertices of p,

{α0, α1, α2} = {area[v, p[[1]], p[[2]]], area[p[[0]], v, p[[2]]], area[p[[0]], p[[1]], v]}
area[p[[0]], p[[1]], p[[2]]]

. (1.4)

Given this observation, all that remains is to specify the behavior of A at the vertices
of p. One simple solution is to express the position of points A[p[[i]]] in terms of
their barycentric coordinates with respect to the triangle p. These three sets of
coordinates can be collected into a 3 × 3 matrix S whose rows are the barycentric
coordinates for A[p[[0]]], A[p[[1]]], and A[p[[2]]] with respect to the triangle p. Given a
point v with barycentric coordinates {α0, α1, α2} with respect to the triangle p, the
barycentric coordinates of A[v] with respect to points A[p[[0]]], A[p[[1]]], and A[p[[2]]]

are the vector/matrix product {α0, α1, α2}S.
To illustrate this method, we next construct the matrix S that represents the

affine transformation mapping a base triangle p to an image triangle q. These two
triangles themselves are represented as a column vector consisting of three points in
the plane; that is, a 3×2 matrix, where each row contains the Cartesian coordinates
of the vertices of the triangle. For our example, we let p and q be the triangles

p =

⎛⎜⎝0 0

2 0

1 1

⎞⎟⎠ , q =

⎛⎜⎝ 0 0

1 0
1
2

1
2

⎞⎟⎠ .

As observed, the rows of the matrix S are the barycentric coordinates of the vertices
of q with respect to the base triangle p. Because q[[0]] == p[[0]], the first row of S

is simply {1, 0, 0}. Similarly, q[[1]] is the midpoint of the edge from p[[0]] to p[[1]].
Therefore, the second row of S is { 1

2 , 1
2 , 0}. Finally, q[[2]] is the midpoint of the edge

1.2 Fractals 11

from p[[0]] to p[[2]]. Therefore, the third and final row of S is { 1
2 , 0, 1

2 }. Thus, the
matrix S has the form

S =

⎛⎜⎜⎝
1 0 0
1
2

1
2 0

1
2 0 1

2

⎞⎟⎟⎠ .

Observe that the matrix S satisf ies q = Sp. One quick way to compute S from
p and q is as follows: extend both p and q to form 3 × 3 matrices, p̃ and q̃, by
adding an extra column of 1s (i.e., converting the coordinates of p and q to their
homogeneous form). Because the rows of S sum to one, these extended matrices
satisfy S p̃ = q̃. As long as p is a nondegenerate triangle, the matrix p̃ is invertible
and S is exactly q̃ p̃−1. In terms of our previous example,

⎛⎜⎜⎝
1 0 0
1
2

1
2 0

1
2 0 1

2

⎞⎟⎟⎠ =

⎛⎜⎝ 0 0 1
1 0 1
1
2

1
2 1

⎞⎟⎠
⎛⎜⎝0 0 1

2 0 1

1 1 1

⎞⎟⎠
−1

.

Observe that the matrix S actually encodes a relative transformation with re-
spect to the base triangle p. Choosing a different base triangle defines a different
transformation. This particular method of representing affine transformations is
advantageous in that many of the constructions for fractals have the form “Take a
shape p and transform it as follows.” The matrix S encapsulates this relative trans-
formation without encoding any particular information about the base triangle p.
For example, the action of the matrix S shown previously is to shrink the triangle p

by a factor of 1
2 and reposition the image triangle q so that it continues to touch the

first vertex of p. Figure 1.8 shows the result of applying the affine transformation
associated with S to two different base triangles p (outlined). The corresponding
triangles q = Sp are black.

Figure 1.8 Application of the transformation S to the large outlined triangles yields the smaller solid
triangles.

12 C H A P T E R 1 Subdivision: Functions as Fractals

Given an affine transformation encoded by a matrix S, we can now consider
the question of iterating this transformation via pk = Spk−1. In particular, if p0 is
some base triangle, we are interested in the behavior of the triangles pk as k → ∞.
To answer this question, we note that an affine transformation A is contractive if
there exists a constant 0 ≤ β < 1 such that

dist [A [u], A[v]] ≤ β ∗ dist [u, v]

for all points u, v in the plane. (dist [u, v] is the Euclidean distance between the points
u and v.) If the affine transformation associated with S is contractive, the diameter
of the triangles pk decreases after each application of S and therefore the limit of
this process is a point.

Of course, fractals consisting of a single point are not particularly interesting.
However, if we consider a set of contractive affine transformations, iterating the
composite transformation consisting of the union of these transformations yields a
much more interesting limit shape. If S is a set of matrices associated with these
affine transformations and p is a set of triangles, we let Sp denote the new set of
triangles representing all possible combinations of applying any one transformation
from S to one triangle from p. Obviously, the size of the resulting set is the product
of the size of the set of transformations and the size of the set of input triangles.
In this framework, we can now define the fractal process, mapping sets of triangles
pk−1 to sets of triangles pk, as

pk = Spk−1.

If each of the affine transformations in S is contractive, the limit of this process is a
f ixed set of points p∞ whose shape depends on S and the base triangle p0. Instead
of attempting to characterize and prove this convergence, we refer the interested
reader to Chapters 2 and 3 of Barnsley [8]. Our agenda for the remainder of this
section is to consider some intriguing examples of this fractal process and to show
that the Bézier curves introduced in section 1.1 can be represented as the limit of
this process.

1.2.2 The Sierpinski Triangle

Our first example of a fractal process is the Sierpinski triangle. Conceptually, the set
of iterated affine transformations describing the fractal process for the Sierpinski

1.2 Fractals 13

Figure 1.9 Progressive approximations to the Sierpinski triangle.

triangle maps a base triangle into three children by splitting each edge of the base
triangle in half. The set S of transformations consists of the three matrices

S =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1 0 0
1
2

1
2 0

1
2 0 1

2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 1 0
1
2

1
2 0

0 1
2

1
2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 1
1
2 0 1

2

0 1
2

1
2

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Because each of these transformations is contractive (with β == 1
2), there exists a

fractal, the Sierpinski triangle, associated with the limit of the iteration pk = Spk−1.
To draw the Sierpinski fractal, we repeatedly apply the set of affine transformations
S to a single base triangle p0 until the size of the triangles in the set pk falls below
the desired resolution. Figure 1.9 shows the result of applying this process f ive
times to the gray base triangle p0.

Based on the figure, we observe that the Sierpinski triangle has a very curious
property: the final shape consists of three copies of itself, placed in the three corners
of the original triangle. In fact, the three shapes are exactly the result of applying the
three affine transformations from S to the Sierpinski triangle itself. This property
follows from the fact that the limit shape p∞ is a f ixed point of the transforma-
tion S (i.e., p∞ = Sp∞). This self-similarity relation (often referred to as the collage
property) is characteristic of fractals defined by iterated affine transformations.

1.2.3 The Koch Snowflake

A second example of this fractal process is the Koch snowflake. Here, the set of
affine transformations S has the form

S =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1 0 0
2
3

1
3 0

2
3 0 1

3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
2
3 0 1

3

2
3

1
3 0

1
3

1
3

1
3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
3

1
3

1
3

0 1
3

2
3

1
3 0 2

3

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
3 0 2

3

0 1
3

2
3

0 0 1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

14 C H A P T E R 1 Subdivision: Functions as Fractals

Figure 1.10 The four affine transformations used in defining the Koch snowf lake.

Figure 1.11 Progression approximations of the Koch curve.

Each of these four transformations maps the base triangle to one of the four image
triangles shown in Figure 1.10. The two transformations on the left map the upper
vertex of the base triangle to a point two-thirds of the way down the upper left
edge of the base triangle. The transformations on the right map the upper vertex
of the base triangle to a point two-thirds of the way down the upper right edge of
the base triangle.

Because each of these affine transformations is contractive (with β == 1
3), there

exists a fractal limit to the process pk = Spk−1. As before, the set of transformations
is repeatedly applied to the base triangle p0 until the size of the children reaches a
desired resolution. Figure 1.11 depicts the four applications of the transformation
to the gray parent triangle p0. Again, we observe that the fractal limit is a collage
of four affine copies of itself, placed along the base of the triangle p0 according to
the four transformations in S.

In the previous example, we started the fractal rendering process with just one
base triangle. A neat trick can be applied to close the Koch curve into an actual
snowflake. We can apply one round of the fractal process for the Sierpinski triangle
to a single, initial triangle. The result is three smaller triangles we then use as the
initial geometry for the fractal process associated with the Koch curve. Figure 1.12
shows the three triangles resulting from one round of the fractal process for the
Sierpinski triangle. The result of applying the Koch transformations to these three

1.2 Fractals 15

Figure 1.12 The Koch snowflake.

triangles repeatedly is shown in black in Figure 1.12 and resembles the outline of a
snowflake.

1.2.4 Bézier Curves

As a final example, we develop a fractal process for the class of shapes f irst encoun-
tered in section 1.1, Bézier curves. Recall that a Bézier curve p[x] was defined in
equations 1.1 and 1.2 as the convex combination of a set of points p. The weights
used for this combination were the values of the Bernstein basis functions bm

i [x].
Our goal now is to construct two affine transformations that form a collage for
this Bézier curve. These affine transformations can be derived from the subdivision
algorithm for Bézier curves, the de Casteljau algorithm. This subdivision algorithm
splits the control polygon for an entire Bézier curve p[x] into two control polygons:
one for the first half of the curve, corresponding to x ∈ [0, 1

2], and one for the second
half of the curve, corresponding to x ∈ [1

2 , 1].
Given a vector of points p, this algorithm recursively computes a related tri-

angular array of points p̃. In the base case, the base of the triangular array p̃[[i , i]] is
initialized to p[[i]] for 0 ≤ i ≤ m. For 0 ≤ i < j ≤ m, the points p̃[[i , j]] are defined by
the recurrence

p̃[[i , j]] = 1
2

p̃[[i , j − 1]] + 1
2

p̃[[i + 1, j]]. (1.5)

For m == 3, this recurrence has the tabular form shown in Figure 1.13. The
beauty of this algorithm is that the control points for the two new control polygons
lie on the lateral edges of Figure 1.13. In particular, the control polygon for the

16 C H A P T E R 1 Subdivision: Functions as Fractals

p~�1,2�

p~�1,3�p~�0,2�

p~�0,3�

p~�1,1�

p~�0,1�

p~�0,0� p~�2,2�

p~�2,3�

p~�3,3�

Figure 1.13 The de Casteljau algorithm for cubic Bézier curves.

restriction of p[x] to the interval [0, 1
2] is { p̃[[0, 0]], p̃[[0, 1]], . . . , p̃[[0, m]]}. Likewise, the

control polygon for the restriction of p[x] to the interval [1
2 , 1] is { p̃[[0, m]], p̃[[1, m]], . . . ,

p̃[[m, m]]}. A powerful tool for understanding the behavior (and correctness) of the
de Casteljau algorithm is blossoming, credited to Ramshaw [127]. Seidel [140] gives
a nice introduction to this topic.

Based on the de Casteljau algorithm, we can express Bézier curves as iterated
affine transformations. For quadratic Bézier curves (i.e., m == 2), one affine trans-
formation maps the polygon p to the polygon { p̃[[0, 0]], p̃[[0, 1]], p̃[[0, 2]]}. The second
affine transformation maps the polygon p to the polygon { p̃[[0, 2]], p̃[[1, 2]], p̃[[2, 2]]}.
Based on equation 1.5, the two 3 × 3 matrices defining these transformations have
the form

S =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1 0 0
1
2

1
2 0

1
4

1
2

1
4

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
4

1
2

1
4

0 1
2

1
2

0 0 1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

One application of this set of transformations to an initial triangle yields two finer
triangles built from the midpoints of the legs of the base triangle, as well as the
center of these two midpoints. Figure 1.14 shows this construction applied to the
gray parent triangle.

Because both of these transformations are contractive (with β = 3
4), iteratively

applying this pair of affine transformations leads to an elegant multiresolution al-
gorithm for rendering Bézier curves. The visual appearance of the plots produced
by this method can be improved by drawing only the line segment connecting the
first and last vertex of each triangle in pk. Due to the structure of the two affine
transformations, the result of n iterations of pk = Spk−1 is a continuous sequence of

1.2 Fractals 17

Figure 1.14 One round of an iterated affine transformation based on the quadratic de Casteljau algorithm.

Figure 1.15 Four rounds of an iterated affine transformation converging to a quadratic Bézier curve.

2n line segments whose 2n + 1 vertices lie on the Bézier curve. Figure 1.15 shows
the progression of this rendering algorithm for a quadratic Bézier curve.

Higher-degree Bézier curves can also be constructed as the limit of iterated
affine transformations. To generate a Bézier curve of degree m, the set of transfor-
mations S consists of a pair of (m+ 1)×(m+ 1) matrices defined via the de Casteljau
algorithm. These matrices can be viewed as defining a pair of m-dimensional affine
transformations. In the case of planar Bézier curves, these m-dimensional transfor-
mations are then applied to a degenerate m-dimensional simplex (i.e., an (m + 1)-
gon) that lies entirely in the plane. For example, cubic Bézier curves have a pair of
associated transformation matrices of the form

S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
1
8

3
8

3
8

1
8

0 1
4

1
2

1
4

0 0 1
2

1
2

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

18 C H A P T E R 1 Subdivision: Functions as Fractals

Figure 1.16 One round of an iterated affine transformation based on the cubic de Casteljau algorithm.

Figure 1.17 Four rounds of an iterated affine transformation converging to a cubic Bézier curve.

Figure 1.16 shows the result of applying this transformation to an initial quadrilat-
eral (a degenerate tetrahedron). Note that the vertices of the black quadrilaterals
lie at the various combinations of midpoints of the gray quadrilateral. Given the
gray base quadrilateral p0, iterating pk = Spk−1 yields a continuous sequence of
2k line segments that approximates the associated cubic Bézier curve. Figure 1.17
shows several rounds of these transformations applied to the cubic control polygon
of Figure 1.7. For those readers interested in more information on extensions of
this approach to curve subdivision, we recommend two papers by Micchelli and
Prautzsch [104, 105].

1.3 Subdivision

The first part of this chapter described two popular techniques for representing
complex shapes: explicit functions and fractal procedures. When describing shapes

1.3 Subdivision 19

with functions, piecewise polynomials are a particularly common and practical
choice. Piecewise polynomial functions provide a convenient and efficient method
of defining smooth curved shapes. In addition, the mathematics of the resulting
geometry is well understood. On the other hand, iterated affine transformations
define a richer class of shapes using the very simple concept of iterative transforma-
tions. However, analyzing the behavior of the final limit shapes can be extremely
challenging.

Subdivision captures the best of both methods. Using subdivision, a curve is
defined as the limit of an increasingly faceted sequence of polygons. Each poly-
gon is related to a successor by a simple linear transformation that provides an
increasingly accurate approximation to the final limit curve. In most applications,
a sufficiently dense polygon can be used in place of the final limit curve without
any noticeable error.

Remarkably, many of the traditional shapes used in geometric design can be
defined using subdivision. As the previous section illustrated, Bézier curves have a
very simple subdivision method, the de Casteljau algorithm. The solutions to many
variational problems and partial differential equations can also be expressed using
subdivision. Moreover, many new shapes useful in geometric design are defined
only in terms of subdivision. The rest of this section introduces the basic mechanics
of subdivision in terms of a simple example: piecewise linear splines.

1.3.1 Piecewise Linear Splines

Our approach is to introduce piecewise linear splines in terms of their polynomial
definition and later propose a functional analog of the collage property. This prop-
erty leads to a simple multiresolution rendering method for piecewise linear splines.
Consider the piecewise linear function of the form

n[x] = c[x + 1] − 2c[x] + c[x − 1],

where c[x] is the truncated linear function that is x if x ≥ 0 and zero if x < 0.
For x /∈ [−1, 1], the function n[x] is identically zero. At x == 0, n[x] is exactly one.
Elsewhere, n[x] varies linearly. Therefore, n[x] is the unit hat function. Figure 1.18
shows plots of c[x] and n[x], respectively.

Replacing the parameter x in the function n[x] by x − i has the effect of translat-
ing the unit hat function i units to the right. Figure 1.19 plots the functions n[x − i]

over the parameter range x ∈ [−2, 2] for various integer values of i . Now, consider

20 C H A P T E R 1 Subdivision: Functions as Fractals

�2 �1 1 2

.5

1

1.5

2

�2 �1 1 2

.2

.4

.6

.8

1

(a) (b)

Figure 1.18 The functions c[x] (a) and n[x] (b).

�2 �1 1 2

.5

1

Figure 1.19 Several translates of the unit hat function.

a new function p[x] constructed as a linear combination of translated hat functions,
that is, p[x] having the form

p[x] =
∞∑

i =−∞
p[[i]] n[x − i], (1.6)

where p[[i]] is the i th element of a column vector of coefficients p. Again, this
expression can be written in vector form as p[x] = N [x]p, where N [x] is a row vector
whose i th entry is n[x − i].

Due to the piecewise definition of n[x], the breakpoints (called knots) between
the linear pieces of the function p[x] lie at the integers Z. Due to the uniform spacing
of these knots, p[x] is a uniform spline. For uniform splines, the function n[x] is often
referred to as the scaling function associated with the spline. If the translates of the
scaling function n[x − i] are linearly independent, these scaling functions are basis
functions for the space of splines in equation 1.6. Much of the first part of this book
considers the problem of subdivision for uniform splines.

1.3 Subdivision 21

�2 �1 1 2

.5

1

Figure 1.20 Several translates of dilates of the unit hat function.

To develop a multiresolution representation for linear splines, we next con-
sider the relationship between splines with knots at the integers Z and splines with
knots at the half-integers 1

2 Z. Note that replacing the parameter x by 2x has the
effect of dilating (i.e., expanding) the coordinate axis. Applying this transformation
to the function n[x] yields a new hat function n[2x] that has been compressed by
a factor of two and that is supported on the interval [− 1

2 , 1
2]. Figure 1.20 displays

translates of dilated scaling functions of the form n[2x − i], plotted over the range
x ∈ [−2, 2]. Note that there are twice as many scaling functions as before. More-
over, these dilated scaling functions are centered over the half-integers 1

2 Z, whereas
the original scaling functions are centered over the integers Z. Finally, the range in
which a scaling function n[2x − i] is non-zero is just half as wide as for the origi-
nal scaling functions n[x − i]. These translates n[2x − i] of the dilated hat function
form a basis for the space of piecewise linear functions with knots at the half-
integers 1

2 Z.
In the previous section on fractals, the collage property stated roughly that a

fractal could be expressed as the union of a collection of affine copies of itself. In our
current functional setting, the analog of this property is to express the hat functions
n[x] as linear combination of translated dilates n[2x − i]. Recalling our definition of
n[x] in terms of c[x] and the fact that c[2x] = 2c[x], it is easy to verify that the hat
function n[x] satisf ies the ref inement relation

n[x] ==
1
2

n[2x + 1] + n[2x] + 1
2

n[2x − 1]. (1.7)

Recurrences of this type are sometimes referred to as two-scale relations, in that they
relate scaling functions defined on two consecutive scales. The refinement relation

22 C H A P T E R 1 Subdivision: Functions as Fractals

for a scaling function n[x] is the analog of a collage for a fractal and provides the key
ingredient necessary for subdivision. Note that a variant of this ref inement relation
also holds for translates of the scaling function n[2kx] on the grid 1

2k
Z.

1.3.2 Subdivision for Piecewise Linear Splines

Given this ref inement relation, we can now construct the subdivision scheme for
piecewise linear splines. Consider a linear spline p[x] with knots on Z. The spline
p[x] can be written as a linear combination of hat functions n[x − i] on the coarse
grid Z. In vector form, this fact can be expressed as

p[x] = N [x]p0, (1.8)

where N [x] is a row vector whose i th entry is the function n[x− i] and p0 is a column
vector whose entries are the values of p[x] on Z. Due to equation 1.7, p[x] can also
be written as a linear combination of hat functions n[2x − i], with knots on the fine
grid 1

2 Z. In vector form, this linear combination can be expressed as

p[x] = N [2x]p1, (1.9)

where p1 is a vector whose entries correspond to the values of p[x] on 1
2 Z. Given

these two expressions, our task is to find the change of basis matrix relating p0 and
p1. Rewriting equation 1.7 in vector form, the coarse scaling functions N [x] can be
expressed as a linear combination of the next f iner scaling functions N [2x] via a
change of basis matrix S satisfying

N [x] == N [2x]S. (1.10)

This subdivision matrix, S, has entries that depend only on the coefficients of
the refinement relation. In particular, the i th column of S consists of the coefficients
attached to the entries ofN [2x] that reproduce the scaling function n[x−i]. For piece-
wise linear splines, this column vector has exactly three non-zero entries { 1

2 , 1, 1
2 },

with corresponding row indices {2i −1, 2i , 2i +1}. Note that each time i is increased
by one, the corresponding row indices of the non-zero entries are shifted by two.
The resulting matrix S has the property that each of its columns is a two-shift of
a single fundamental vector s. In particular, the i th entry s[[i]] is the coefficient of
the function n[2x − i] on the right-hand side of equation 1.7. Such matrices whose
columns are two-shifts of a fundamental vector are known as two-slanted matrices. In

1.3 Subdivision 23

this example, S can be viewed as a two-slanted matrix whose columns are two-shifts
of the common sequence { 1

2 , 1, 1
2 }. In particular, equation 1.10 expands into

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

n[x + 2]

n[x + 1]

n[x]

n[x − 1]

n[x − 2]
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

==

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

n[2x + 3]

n[2x + 2]

n[2x + 1]

n[2x]

n[2x − 1]

n[2x − 2]

n[2x − 3]
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 1
2

1
2 0 0 0 .

. 0 1 0 0 0 .

. 0 1
2

1
2 0 0 .

. 0 0 1 0 0 .

. 0 0 1
2

1
2 0 .

. 0 0 0 1 0 .

. 0 0 0 1
2

1
2 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(Note that the dots are used to emphasize that the vectors and matrices of this re-
lation are bi-inf inite.) Substituting the right-hand side of equation 1.10 into equa-
tion 1.8 yields p[x] == N [2x](Sp0). Because the functions of N [2x] are linearly inde-
pendent, p1 = Sp0. Given that equation 1.10 holds, the following theorem makes
these observations precise.

THEOREM

1.1

Let the matrix ref inement relation of equation 1.10 hold (i.e., N [x] =
N [2x]S). If function p[x] has the form p[x] = N [x]p0, then p[x] == N [2kx]pk,
where

pk = Spk−1. (1.11)

Proof Observe that replacing x by 2k−1x in equation 1.10 yields a matrix ref inement
relation for basis functions on 1

2k−1
Z and 1

2k
Z (i.e., N [2k−1x] = N [2kx]S).

Proceeding inductively, we assume that p[x] = N [2k−1x]pk−1. Replacing
N [2k−1x] by the right-hand side of this matrix ref inement relation yields
p[x] = N [2kx](Spk−1). Given that the functions of N [2kx] are linearly inde-
pendent, equation 1.11 holds.

Given an initial vector of coefficients p0, we can apply equation 1.11 to generate
a sequence of new vectors pk. Because the entries of pk are coefficients of hat
functions taken on the grid 1

2k
Z, plotting the i th entry of pk at x == i

2k
gives a good

24 C H A P T E R 1 Subdivision: Functions as Fractals

.5 1 1.5 2 2.5 3

.5

1

1.5

2

2.5

3

.5 1 1.5 2 2.5 3

.5

1

1.5

2

2.5

3

.5 1 1.5 2 2.5 3

.5

1

1.5

2

2.5

3

.5 1 1.5 2 2.5 3

.5

1

1.5

2

2.5

3

Figure 1.21 Progression of the subdivision process for a piecewise linear function.

approximation to shape of the function p[x]. Figure 1.21 shows three rounds of this
ref inement procedure starting from

p0 =

⎛⎜⎜⎝
0 0
1 3
2 2
3 0

⎞⎟⎟⎠ .

The i th coefficient of pk is plotted at x == i
2k

.
This process of taking a coarse approximation p0 and computing increasingly

dense approximations pk to a final limit function p[x] is referred to as subdivision.
The beauty of subdivision is that we can now ignore the functions N [2kx] entirely,
and instead rely on the subdivision matrix S when generating approximations to p[x].
In effect, subdivision is a multiresolution rendering algorithm that generates increas-
ingly dense plots by taking convex combinations of points used in previous plots.

Note that these convex combinations, embodied by Spk−1, can be computed
without constructing the entire subdivision matrix S. Because the columns of S are

1.4 Overview 25

two-shifts of the sequence {. . . , 0, 1
2 , 1, 1

2 , 0, . . .}, multiplication of the matrix S by
a column vector of coefficients pk−1 determines new coefficients in the vector pk

according to two simple rules. Coefficients in even-indexed rows of pk correspond
to coefficients from pk−1, because the weights in the even-indexed rows of S are
{. . . , 0, 1, 0, . . .}. Coefficients in odd-indexed rows of pk are the average of two con-
secutive coefficients from pk−1, because the odd-indexed rows of S have the form
{. . . , 0, 1

2 , 1
2 , 0, . . .}.

As seen from this example, subdivision is potentially a very powerful method
of modeling shapes. In particular, it combines the best of functional and frac-
tal representations. As this book will demonstrate, subdivision has four principal
advantages:

■ Ease of use: Modeling with subdivision is easy to implement because it
involves only discrete shapes.

■ Expressiveness: Simple subdivision schemes can reproduce a large class of
interesting shapes.

■ Efficiency: Many subdivision schemes use repeated averaging, a fast method
of computing discrete approximations of the limit shapes.

■ Linear analysis tools: The subdivision process defines scaling functions
whose properties can be analyzed using linear algebra.

1.4 Overview

One interesting property of the subdivision scheme for linear splines is that it makes
no explicit use of the piecewise polynomial definition of the unit hat function n[x].
The scheme used only the subdivision matrix S. For piecewise linear splines, the
subdivision matrix S was “nice” (i.e., it defined a convergent process). Thus, the
scaling functions N [2kx] associated with the subdivision scheme could be computed
entirely in terms of the matrix S. To recover a scaling function in N [x], one would
simply apply the subdivision process to the vector {. . . , 0, 0, 1, 0, 0, . . .}. This obser-
vation allows us to focus our entire attention on the subdivision matrix S and leads
to two related questions:

■ How can we construct a subdivision matrix S whose associated limit func-
tions are “interesting”?

■ Given a subdivision matrix S, is the associated subdivision scheme conver-
gent? If so, are the associated limit functions smooth?

26 C H A P T E R 1 Subdivision: Functions as Fractals

The next two chapters of this book address these two questions. Chapter 2
introduces a simple technique for generating subdivision schemes: directional in-
tegration. This integral approach is the standard technique used in constructing
subdivision schemes for B-splines and box splines and leads directly to a simple
repeated averaging algorithm for subdividing these splines. Chapter 3 considers the
second question of convergence and smoothness. The key to answering this ques-
tion is developing a method for subdividing various differences associated with the
vector pk. Taken together, the first three chapters of this book form an introduction
to the basics of subdivision.

The second part of the book (Chapters 4, 5, and 6) reconsiders the first prob-
lem in more detail. Chapter 4 introduces an alternative approach, developed by
the authors, for constructing “interesting” subdivision schemes. This differential
method, although slightly more complicated, is capable of generating a wider range
of schemes than those produced by the integral method. For example, the last
section in Chapter 4 introduces a new curve subdivision scheme that reproduces
splines in tension, B-splines, and trigonometric splines as special cases of a more
general scheme. This subdivision scheme is the building block for a new scheme for
surfaces of revolution introduced in Chapter 7. As an application of the differential
method, Chapter 5 derives an infinitely supported subdivision scheme for solu-
tions to the harmonic equation via the differential approach and discusses building
finite approximations to this scheme. Chapter 6 considers variational extensions of
the differential method for the problem of generating subdivision rules along the
boundaries of f inite domains.

The last part of the book, Chapters 7 and 8, introduces and analyzes a range of
subdivision schemes for polyhedral meshes. Chapter 7 discusses an elegant method
of subdividing surface meshes using repeated averaging (including an extension to
the case of surfaces of revolution). This chapter also includes a simple method
for handling creases and boundaries of subdivision surfaces. Chapter 8 extends the
smoothness tests developed in Chapter 3 to the extraordinary vertices of these
surface schemes and concludes by considering some of the promising areas for
future research on subdivision.

C H A P T E R 2

An Integral Approach to
Uniform Subdivision

Chapter 1 provided a glimpse into the nature of subdivision. The key to building
a subdivision scheme for splines with uniformly spaced knots is a scaling func-
tion n[x] that possesses a ref inement relation, that is, an expression of the function
n[x] as a linear combination of integer translates of its dilates, n[2x − i]. For ex-
ample, the scaling function for piecewise linear splines satisf ies the refinement
relation

n[x] ==
1
2

n[2x + 1] + n[2x] + 1
2

n[2x − 1]. (2.1)

The coeff icients s of this ref inement relation are then used to define a two-slanted
matrix S that relates coeff icient vectors pk−1 and pk defined on the grids 1

2k−1
Z and

1
2k

Z, respectively, via the subdivision relation pk = Spk−1.
This chapter introduces a general method for creating scaling functions that

may be refined: directional integration. For example, the B-spline basis functions
have a simple recursive definition in terms of integration. Based on this definition,
we derive the refinement relation for B-splines and construct the associated subdi-
vision scheme. Later in the chapter, we describe an equivalent geometric method
for constructing the B-spline basis functions as the cross-sectional volumes of high-
dimensional hypercubes. This construction easily generalizes from the univariate
case to the bivariate case and allows creation of ref ineable scaling functions in two
variables. The splines associated with these scaling functions, box splines, also have
an elegant subdivision algorithm. The chapter concludes with a simple method for
constructing explicit piecewise polynomial expressions for both B-splines and box
splines. Again, these constructions have an interesting geometric interpretation in
terms of high-dimensional geometry.

27

28 C H A P T E R 2 An Integral Approach to Uniform Subdivision

2.1 A Subdivision Scheme for B-splines

Chapter 1 introduced a simple method for constructing a smooth curve that fol-
lowed a control polygon p with m + 1 vertices. The Bézier curve p[x] associated
with p is a parametric curve of degree m that approximates p as x varies from 0

to 1. For small values of m, the Bézier technique works well. However, as m grows
large (say, m > 20), Bézier curves begin to exhibit some undesirable properties. In
particular, the Bernstein basis functions Bm[x] are supported over the entire interval
[0, 1]. Therefore, modifying any one of the control points in p induces a change to
the entire curve p[x]. Moreover, subdividing p[x] using the de Casteljau algorithm
requires O[m2] computations.

One solution to this problem is to construct a collection of Bézier curves, say
of degree three, that approximate the shape of p. The resulting composite curve is
a piecewise polynomial curve. This modif ication allows local control of the com-
posite curve in the sense that modifying one Bézier curve in the collection does
not necessarily induce a change in the entire curve. Moreover, subdividing the O[m]

Bézier curves of degree three can be done in O[m] time. Because in many applica-
tions it is desirable for this composite curve to be smooth (i.e., have a continuous
derivative), any method for representing p[x] as a collection of Bézier curves must
ensure that the control polygons for consecutive Bézier curves meet smoothly.

An alternative approach is to construct a set of smooth piecewise polyno-
mial basis functions that behave like the Bernstein basis functions. Instead of being
globally supported, each basis function is locally supported. For example, if the
associated curve p[x] is defined on the interval [0, m], the i th basis function is sup-
ported only over a small subrange, say [i − 2, i + 2] for cubic splines. Taking linear
combinations of these smooth basis functions automatically yields a smooth curve
p[x]. The advantage of this approach is that there is no need to manage each poly-
nomial piece of p[x] explicitly; smoothness of the entire curve p[x] is guaranteed by
construction.

The canonical example of such smooth piecewise polynomial basis functions
is the B-spline basis functions. If the breakpoints between each polynomial piece
(i.e., the knots) are placed at the integers, the curve formed by taking linear com-
binations of these basis functions is a uniform B-spline. Uniform B-splines are a
fundamental tool in a number of areas, including numerical analysis, f inite element
methods, geometric design, and computer graphics. The success story of B-splines
in geometric design starts with the landmark publications by De Boor [37, 38].
Bartels et al. [9] give an extensive introduction to the various remarkable proper-
ties and algorithms associated with B-splines.

2.1 A Subdivision Scheme for B-splines 29

2.1.1 B-spline Basis Functions via Repeated Integration

We begin our discussion of B-splines with a definition of B-spline basis functions in
terms of repeated integration. Later, we derive the refinement relation for B-spline
basis functions and conclude by constructing the corresponding subdivision scheme
for uniform B-splines via Lane and Riesenfeld [93]. This subdivision scheme has a
particularly beautiful interpretation in terms of repeated averaging. This averaging
algorithm is simple to implement and provides the intellectual stepping-stone to
the surface schemes discussed in Chapter 7. One important fact the reader should
keep in mind during the rest of this chapter is that although the mathematics
of constructing subdivision schemes may seem complicated the resulting schemes
themselves are beautifully simple.

Our definition of B-spline basis functions is recursive. For the base case, the
B-spline basis function of order one has the form

n1[x] =
{

1 if 0 ≤ x < 1,
0 otherwise.

(2.2)

Figure 2.1 shows the graph of n1[x]. This function is a piecewise constant function
that is zero everywhere except on the interval [0, 1), where it is the constant one.
(In signal processing circles, this function is also referred to as the Haar scaling
function.) Given the B-spline basis function nm−1[x], the B-spline basis function of
order m, nm[x], is defined via the recurrence

nm[x] =
∫ 1

0

nm−1[x − t] dt. (2.3)

�1 �.5 .5 1 1.5 2

.2

.4

.6

.8

1

Figure 2.1 The B-spline basis function of order one.

30 C H A P T E R 2 An Integral Approach to Uniform Subdivision

Note that the order of a B-spline is by construction always one more than the
degree of the B-spline. Due to their definition by repeated integration, B-spline
basis functions have the following easily proven properties:

■ nm[x] is a Cm−2 piecewise polynomial of degree m − 1, with knots at the inte-
gers Z. This observation follows from the fact that each round of integration
via equation 2.3 increases the smoothness of a function.

■ nm[x] is non-negative and is supported on the interval [0, m]. Again, this
observation follows from the inductive definition of nm[x].

■ nm[x] has unit integral. In fact, the sum
∑

i ∈Z
nm[x − i] is exactly one. This fact

holds trivially for the base case n1[x] and follows by induction on m.

Together, these three properties are suff icient to establish that the function nm[x]

is unique. Let’s continue by considering some examples of B-spline basis functions
of low order. For example, the B-spline basis function n2[x] is a piecewise linear
function of the form

n2[x] =

⎧⎨⎩
x if 0 < x ≤ 1,
2 − x if 1 < x ≤ 2,
0 otherwise.

Figure 2.2 shows a plot of the piecewise linear basis function n2[x]. Due to the
recursive nature of the definition in equation 2.3, this hat function is supported on
the interval [0, 2] (as opposed to the hat function centered around the origin used

.5 1 1.5 2

.2

.4

.6

.8

1

Figure 2.2 The linear B-spline basis function (order two).

2.1 A Subdivision Scheme for B-splines 31

.5 1 1.5 2 2.5 3

.1

.2

.3

.4

.5

.6

.7

Figure 2.3 The quadratic B-spline basis function (order three).

in Chapter 1). Applying the recursive definition once again yields the piecewise
quadratic basis function n3[x] (depicted in Figure 2.3):

n3[x] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x2

2 if 0 < x ≤ 1,

− 3
2 + 3x − x 2 if 1 < x ≤ 2,

1
2 (−3 + x)2 if 2 < x ≤ 3,

0 otherwise.

An alternative method of defining the B-spline basis function nm[x] involves
repeated convolution with the basis function n1[x]. The continuous convolution of
two functions p[x] and q[x], denoted p[x] ⊗ q[x], is the integral

∫ ∞
−∞ p[t]q[x − t] dt. (Ob-

serve that the value of this integral is again a function of x.) Given this definition,
the continuous convolution of the basis functions n1[x] and nm−1[x] is the integral∫ ∞

−∞ n1[t]nm−1[x − t] dt. Because the effect of multiplying by the function n1[t] inside
this integral is to simply restrict the range of integration for the variable t to the
interval [0, 1], this integral reduces to the right-hand side of equation 2.3. Therefore,
the basis function nm[x] is simply the continuous convolution of two lower-order
basis functions, n1[x] and nm−1[x]; that is,

nm[x] == n1[x] ⊗ nm−1[x].

Linear combinations of integer translates of the basis function nm[x] can now be
used to construct arbitrary B-splines. For example, a piecewise constant B-spline
with knots at the integers Z can be written as a combination of translates of n1[x]:

p[x] =
∑
i ∈Z

p[[i]] n1[x − i].

32 C H A P T E R 2 An Integral Approach to Uniform Subdivision

�1 1 2 3 4 5 6

1

2

3

4

5

6

Figure 2.4 A piecewise constant B-spline.

2 4 6 8

1

2

3

4

5

Figure 2.5 A piecewise cubic B-spline.

As in Chapter 1, this expression can be written in vector form as p[x] = N 1[x]p,
where N 1[x] is the vector whose i th entry is n1[x − i]. Figure 2.4 shows a plot of
a piecewise constant B-spline for which the vector p has the form {. . . , 0, 1, 3, 2, 5,

6, 0, . . .}. (The non-zero entries of p have indices ranging from 0 to 4.)
Higher-order B-splines p[x] can be constructed by taking linear combinations

of integer translates of higher-order basis functions (i.e., functions of the form∑
i ∈Z

p[[i]]nm[x − i]). Figure 2.5 shows a cubic B-spline with the same coeff icients as
in Figure 2.4. Observe that this function is supported now over the interval [0, 8],
because the basis function n4[x] is supported on the interval [0, 4].

2.1.2 A Refinement Relation for B-spline Basis Functions

For the piecewise linear splines of Chapter 1, the key ingredient in constructing
a subdivision scheme was deriving a refinement relation for the associated scaling

2.1 A Subdivision Scheme for B-splines 33

function. In this section, we derive a refinement relation for the B-spline basis
function of order m. In general, this relation has the form

nm[x] ==
∑
i ∈Z

sm[[i]]nm[2x − i]. (2.4)

For uniform schemes, the coeff icient sequence sm (m is a superscript here, not an
exponent) is the subdivision mask associated with the refinement relation. Due to
the recursive definition of nm[x], the construction for the mask sm is also recursive.
For the base case, we observe that n1[x] possesses the particularly simple refinement
relation

n1[x] == n1[2x] + n1[2x − 1]. (2.5)

The refinement relation of equation 2.5 expresses a basis function defined on a
coarse integer grid Z as the sum of two basis functions defined on a finer, half-
integer grid 1

2 Z. This relation is depicted in Figure 2.6.
A very useful technique for manipulating the subdivision mask s associated

with a refinement relation is to construct the generating function s[x] associated with
the mask s. By definition, s[x] is the sum of terms of the form s[[i]]x i where i ∈ Z

(i.e., s[x] = ∑ s[[i]]x i). Be aware that the generating function s[x] may possess neg-
ative powers of x and thus is not necessarily a polynomial in x. Returning to
our initial example, the refinement coeff icients for n1[x] define the subdivision
mask s1[x] = 1 + x. (We use the term mask to refer to s and its associated gen-
erating function s[x] interchangeably.) For a B-spline basis function of order m,
the subdivision mask sm[x] obeys the recurrence relation of Theorem 2.1, which
follows.

�1 �.5 .5 1 1.5 2

.2

.4

.6

.8

1

Figure 2.6 The B-spline basis function of order one as the sum of two translates of its dilates.

34 C H A P T E R 2 An Integral Approach to Uniform Subdivision

THEOREM

2.1

For all m > 1, the subdivision mask sm[x] for the B-spline basis function nm[x]

of order m satisf ies the recurrence

sm[x] = 1
2

(1 + x)sm−1[x]. (2.6)

Proof The proof is inductive. Assume that the subdivision mask sm−1[x] encodes
the coeff icients of the refinement relation for nm−1[x]. Our task is to show
that the mask 1

2 (1 + x)sm−1[x] encodes the coeff icients of the refinement
relation for nm[x]. We begin with the inductive definition of nm[x] as∫ 1

0
nm−1[x − t] dt. Refining nm−1[x − t] via equation 2.4 yields the new in-

tegral ∫ 1

0

(∑
i

sm−1[[i]] nm−1[2(x − t) − i]

)
dt.

Reparameterizing via t → 1
2 t yields a new integral on the interval [0, 2]

scaled by a factor of 1
2 . Splitting this integral into two integrals on the

interval [0, 1] and reindexing yields the equivalent integral

1
2

∫ 1

0

(∑
i

(sm−1[[i]] + sm−1[[i − 1]])nm−1[2x − t − i]

)
dt.

Moving the integral inside the sum yields

1
2

∑
i

(sm−1[[i]] + sm−1[[i − 1]])
∫ 1

0

nm−1[2x − t − i] dt.

Finally, applying the definition of nm[2x − i] yields the desired scaling rela-
tion for nm [x] as

nm[x] ==
1
2

∑
i

(sm−1[[i]] + sm−1[[i − 1]])nm[2x − i].

The subdivision mask associated with this ref inement relation is exactly
1
2 (1 + x)sm−1[x].

Starting from the base case s1[x] = 1 + x, we can now iterate this theorem
to obtain the subdivision masks for B-splines of higher order. In particular, the

2.1 A Subdivision Scheme for B-splines 35

subdivision mask for B-splines of order m has the form

sm[x] = 1
2m−1

(1 + x)m. (2.7)

Due to this formula, the coeff icients of the refinement relation for nm[x] are
simply the coeff icients of the binomial expansion of (1 + x)m scaled by a fac-
tor of 1

2m−1
. Another technique for deriving the refinement relation for uniform

B-spline basis functions uses the definition of nm[x] in terms of repeated continuous
convolution. Unrolling the recurrence nm[x] = n1[x] ⊗ nm−1[x] leads to the formula

nm[x] = ⊗m
i =1n1[x] = ⊗m

i =1(n1[2x] + n1[2x − 1]).

Based on the linearity of convolution, this convolution of m + 1 functions can be
expanded using the binomial theorem into the sum of terms consisting of the
convolution of m + 1 functions of the form n1[2x] or n1[2x−1]. Because these dilated
functions satisfy the recurrence

nm[2x] = 1
2

(n1[2x] ⊗ nm−1[2x]),

these terms have the form 1
2m−1

nm[2x−i], where 0 ≤ i ≤ m. Accumulating these terms
according to the binomial theorem yields the mask of equation 2.7.

2.1.3 The Associated Subdivision Scheme

Having computed the subdivision mask sm[x] for the B-spline basis function nm[x],
we can use the coeff icients of sm to construct a matrix ref inement relation that
expresses translates of the basis function nm[x] defined on the coarse grid Z in terms
of translates of the dilated function nm[2x] on the finer grid 1

2 Z. This matrix rela-
tion has the form Nm[x] = Nm[2x]S, where Nm[x] is a row vector whose i th entry is
nm[x − i]. Just as in the linear case, this subdivision matrix S is a bi-inf inite ma-
trix whose columns are two-shifts of the subdivision mask sm. This two-shifting
arises from the fact that translating a refineable scaling function nm[x] of the form∑

i sm[[i]]nm[2x − i] by j units on Z induces a shift of 2 j units in the translates of the
dilated scaling function nm[2x] on 1

2 Z; that is,

nm[x − j] ==
∑

i

sm[[i]]nm[2x − i − 2 j]. (2.8)

36 C H A P T E R 2 An Integral Approach to Uniform Subdivision

Based on this formula, we observe that the i j th entry of the matrix S is sm[[i − 2 j]].
For example, the subdivision mask for cubic B-splines is 1

8 + 1
2 x + 3

4 x2 + 1
2 x3 + 1

8 x4.
The corresponding subdivision matrix S has the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 1
2

1
2 0 0 0 .

. 1
8

3
4

1
8 0 0 .

. 0 1
2

1
2 0 0 .

. 0 1
8

3
4

1
8 0 .

. 0 0 1
2

1
2 0 .

. 0 0 1
8

3
4

1
8 .

. 0 0 0 1
2

1
2 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Given a B-spline p[x] expressed in vector form asN m[x]p0, this matrix ref inement
relation implies that p[x] can also be expressed as N m[2x](Sp0). If we define a sub-
division process of the form

pk = Spk−1,

the resulting vectors pk are the coeff icients for the function p[x] defined on the grid
1
2k

Z (i.e., p[x] = Nm[2kx]pk). Of course, in practice one should never actually con-
struct the subdivision matrix S, because it is very sparse. Instead, the i th coeff icient
of pk can be computed as a linear combination of the coeff icients in pk−1 (using
equations 2.4 and 2.8):

pk[[i]] =
∑
j ∈Z

sm[[i − 2 j]]pk−1[[j]]. (2.9)

If pk−1[x] and sm[x] are the generating functions associated with pk−1 and sm, the
summation of pairwise products in equation 2.9 looks suspiciously like an expres-
sion for the coeff icients of the product sm[x]pk−1[x]. In fact, if the expression i − 2 j

were replaced by i − j , equation 2.9 would indeed compute the coeff icients of
sm[x]pk−1[x]. To model equation 2.9 using generating functions, we instead upsample
the coeff icient vector pk−1 by introducing a new zero coeff icient between each co-
eff icient of pk−1. The entries of the upsampled vector are exactly the coeff icients of
the generating function pk−1[x2]. Because the j th coeff icient of pk−1[x] corresponds
to the (2 j)th coeff icient of pk−1[x2], equation 2.9 can now be viewed as defining

2.1 A Subdivision Scheme for B-splines 37

the i th coeff icient of the product sm[x]pk−1[x2]. In particular, the analog in terms of
generating functions for the subdivision relation pk = Spk−1 is

pk[x] = sm[x]pk−1[x2]. (2.10)

To illustrate this subdivision process for uniform B-splines, we next consider
two examples, one linear and one cubic. For both examples, our initial coeff icient
vector p0 will have the form {. . . , 0, 1, 3, 2, 5, 6, 0, . . .}, where the non-zero entries
of this vector are indexed from 0 to 4. The corresponding generating function p0[x]

has the form 1 + 3x + 2x2 + 5x3 + 6x4. In the piecewise linear case, the subdivision
mask s2[x] has the form 1

2 (1 + x)2. Applying equation 2.10 yields p1[x] of the form

p1[x] = s2[x]p0[x2],

= 1
2

(1 + x)2(1 + 3x2 + 2x4 + 5x6 + 6x8),

= 1
2

+ x + 2x2 + 3x3 + 5x4

2
+ 2x5 + 7x6

2
+ 5x7 + 11x8

2
+ 6x9 + 3x10.

Subdividing a second time yields p2[x] = s2[x]p1[x2], where p2[x] has the form

1
2

(1 + x)2

(
1
2

+ x2 + 2x4 + 3x6 + 5x8

2
+ 2x10 + 7x12

2
+ 5x14 + 11x16

2
+ 6x18 + 3x20

)
.

Using the technique of Chapter 1, we plot the i th coeff icient of the generating
function pk[x] at the grid point x == i

2k
. Figure 2.7 shows plots of the coeff icients of

p0[x], p1[x], p2[x], and p3[x] versus the grids Z, 1
2 Z, 1

4 Z, and 1
8 Z, respectively. We next

repeat this process for cubic B-splines using the subdivision mask s4[x] = 1
8 (1 + x)4.

Figure 2.8 shows plots of the coeff icients of p0[x], p1[x], p2[x], and p3[x] versus the
grids Z, 1

2 Z, 1
4 Z, and 1

8 Z, respectively, where pk[x] = s4[x]pk−1[x2].
The cubic B-spline p[x] of Figure 2.5 was supported over the interval [0, 8]. In

Figure 2.8, the polygons defined by the vector pk appear to be converging to this
function p[x] as k → ∞. Note that the polygons in this f igure shift slightly to the
right during each round of subdivision. This behavior is due to the fact that the sub-
division mask 1

8 (1 + x)4 involves only non-negative powers of x; each multiplication
by this mask shifts the resulting coeff icient sequence to the right. To avoid this
shifting, we can translate the basis function nm[x] such that it is supported on the in-
terval [− m

2 , m
2]. The effect of the subdivision mask sm[x] is to multiply it by a factor of

x− m
2 . The resulting subdivision mask is now centered (as in equation 2.1). As a result,

the polygons corresponding to the vectors pk no longer shift during subdivision.
For linear B-splines that are centered, it is clear that the coeff icients of pk

interpolate the values of p[x] on the grid 1
2k

Z, in that the basis function n2[x] has

38 C H A P T E R 2 An Integral Approach to Uniform Subdivision

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

Figure 2.7 Three rounds of subdivision for a linear B-spline (m == 2).

2 4 6 8

1

2

3

4

5

6

2 4 6 8

1

2

3

4

5

2 4 6 8

1

2

3

4

5

6

2 4 6 8

1

2

3

4

5

6

6

Figure 2.8 Three rounds of subdivision for a cubic B-spline (m == 4).

2.1 A Subdivision Scheme for B-splines 39

value 1 at x == 0 and is zero at the remaining integer knots. However, higher-order
B-splines are not interpolatory (i.e., their limit curves do not pass through the
coeff icients of pk plotted on the grid 1

2k
Z). For now, the convergence of the vectors

pk to the actual values of p[x] as k → ∞ is simply assumed. For those interested in a
proof of this fact, we suggest skipping ahead to Chapter 3, where this question is
considered in detail.

This subdivision scheme for B-splines was first documented by Chaikin [18]
(for the quadratic case) and by Lane and Riesenfeld [93] (for the general case). Lane
and Riesenfeld described a particularly elegant implementation of this subdivision
method based on the factorization of sm[x] in Theorem 2.1. The subdivision mask
sm[x] can be written as 2(1+x

2)
m. Thus, given a set of coeff icients pk−1 defined on a

coarse grid 1
2k−1

Z, we can compute a set of coeff icients pk defined on the fine grid
1
2k

Z as follows:

■ Construct the generating function pk−1[x] from pk−1. Upsample pk−1[x] to
obtain pk−1[x2]. Set pk[x] = 2pk−1[x2].

■ Update pk[x] m times via the recurrence pk[x] = (1+x
2)pk[x].

■ Extract the coeff icients pk of the resulting generating function pk[x].

In geometric terms, each multiplication of pk[x] by (1+x)
2 corresponds to computing

the midpoints of adjacent vertices of the control polygon pk. Thus, a single round
of subdivision for a B-spline of order m can be expressed as upsampling followed
by m rounds of midpoint averaging. Figure 2.9 shows an example of a single round
of subdivision for cubic B-splines implemented in this manner.

In practice, using generating functions to implement subdivision is ineff icient.
A better method is to observe that the coeff icient sequence for the product
sm[x]pk−1[x2] is simply the discrete convolution of the sequence sm and the up-
sampled sequence pk−1. Using an algorithm such as the Fast Fourier Transform
(FFT), the discrete convolution of these two coeff icient sequences can be com-
puted very quickly. (See Cormen, Leiserson, and Rivest [27] for more information
on the FFT.) More generally, upsampling and midpoint averaging can be viewed as
simple filters. Used in conjunction with wiring diagrams, these filters are a useful
tool for creating and analyzing uniform subdivision schemes. An added benefit of
the filter approach is that it is compatible with the filter bank technology used
in constructing wavelets and in multiresolution analysis. Strang and Nguyen [150]
give a nice introduction to the terminology and theory of f ilters. Guskov et al. [69],
Kobbelt and Schröder [87], and Kobbelt [84] give several examples of using filter
technology to construct subdivision schemes.

40 C H A P T E R 2 An Integral Approach to Uniform Subdivision

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

2 4 6

1

2

3

4

5

6

2 4 6

2

4

6

8

10

12

Figure 2.9 One round of cubic B-spline subdivision expressed as upsampling (top right) followed by four
rounds of midpoint averaging.

2.2 A Subdivision Scheme for Box Splines

In the previous section, B-spline basis functions were defined via repeated integra-
tion. Although this definition has the advantage that it is mathematically succinct,
it fails to deliver much geometric intuition about why B-spline basis functions
possess such a simple refinement relation. In this section, we give a more intuitive
geometric construction for these basis functions. Using this geometric construction,
the possibility of building analogs to B-splines in higher dimensions becomes im-
mediately clear. These analogs, the box splines, are simply cross-sectional volumes
of high-dimensional hypercubes. For the sake of notational simplicity, we restrict
our investigation of box splines to two dimensions. However, all of the results that
appear in this section extend to higher dimensions without any diff iculty. A good
source for most of the material that follows is the book by De Boor et al. [40].

2.2 A Subdivision Scheme for Box Splines 41

2.2.1 B-spline Basis Functions as Cross-sectional Volumes

We begin with a simple geometric construction for the B-spline basis function of
order m as the cross-sectional volume of an m-dimensional hypercube. Given an
interval H = [0, 1), we let Hm denote the m-dimensional hypercube consisting of all
points {t1, . . . , tm} such that 0 ≤ t i < 1 for 1 ≤ i ≤ m. Now, consider a function n[x]

satisfying the equation

n[x] = 1√
m

volm−1

[{
{t1, . . . , tm} ∈ Hm

∣∣∣∣∣
m∑

i =1

t i == x

}]
, (2.11)

where volm−1[B] is the (m − 1)-dimensional volume of the set B . For a particular
value of x, n[x] returns the (m − 1)-dimensional volume of the intersection of the
m-dimensional hypercube Hm and the (m − 1)-dimensional hyperplane

∑m
i =1 t i == x.

(The extra factor of 1√
m

normalizes n(x) to have unit integral.)
The left-hand portion of Figure 2.10 illustrates this construction for m == 2.

At the top of the figure is the unit square H 2. At the bottom of the figure is a
plot of n[x], the length of the line segment formed by intersecting the vertical line
t1 + t2 == x with the square H 2. Observe that n[x] is exactly the piecewise linear
hat function. The right-hand portion of Figure 2.10 illustrates this construction for
m = 3. At the top of the figure is the unit cube H 3. At the bottom of the figure is a
plot of n[x], the area of the polygon formed by intersecting the plane t1 + t2 + t3 == x

(orthogonal to the x axis) with the cube H 3. Again, n[x] looks remarkably like the
quadratic B-spline basis function.

�2 �1 0 1 2 3 4 �2 �1 0 1 2 3 4 5

(a) (b)

Figure 2.10 (a) Linear and (b) quadratic B-spline basis functions as cross-sectional volumes of the hyper-
cubes H2 and H3.

42 C H A P T E R 2 An Integral Approach to Uniform Subdivision

Because the vertices of Hm project onto integer points on the x axis, the function
n[x] is a piecewise polynomial function of degree m− 1, with knots at Z. In fact, the
function n[x] generated by the cross-sectional volume of Hm is exactly the B-spline
basis function nm[x]. The following theorem shows that cross-sectional volumes
used in defining n[x] satisfy a recurrence identical to that of equation 2.3.

THEOREM

2.2

The B-spline basis function nm[x] of equation 2.3 satisf ies equation 2.11;
that is,

nm[x] ==
1√
m

volm−1

[{
{t1, . . . , tm} ∈ Hm

∣∣∣∣∣
m∑

i =1

t i == x

}]
.

Proof The proof proceeds by induction on m. The base case of m == 1 holds
by inspection. If we assume that nm−1[x] satisf ies the volume definition of
equation 2.11,

nm−1[x] = 1√
m − 1

volm−2

[{
{t1, . . . , tm−1} ∈ Hm−1

∣∣∣∣∣
m−1∑
i =1

t i == x

}]
,

our task is to show that nm[x] also satisf ies equation 2.11. To complete
this induction, we observe that the (m − 1)-dimensional volume on the
right-hand side of equation 2.11 satisf ies the recurrence:

1√
m

volm−1

[{
{t1, . . . , tm} ∈ Hm

∣∣∣∣∣
m∑

i =1

t i == x

}]
(2.12)

==
∫ 1

0

1√
m − 1

volm−2

[{
{t1, . . . , tm−1} ∈ Hm−1

∣∣∣∣∣
m−1∑
i =1

t i == x − tm

}]
dtm.

The various square roots in this expression normalize the integral of the
(m−2)-dimensional volumes to agree with the (m−1)-dimensional volume.
Applying our inductive hypothesis to the right-hand side of this equa-
tion yields

1√
m

volm−1

[{
{t1, . . . , t m} ∈ Hm

∣∣∣∣∣
m∑

i =1

t i == x

}]
==
∫ 1

0

nm−1[x − tm] dtm. (2.13)

Applying the inductive definition of nm[x] from equation 2.3 completes the
proof.

2.2 A Subdivision Scheme for Box Splines 43

This idea of constructing B-spline basis functions as the cross-sectional volumes of
a higher-dimensional polytope appeared as early as 1903 in Sommerfeld [142] and
was popularized by Curry and Schönberg in [28]. (Curry and Schönberg actually
suggested using a simplex in place of Hm.)

Given this geometric construction for nm[x], the refinement relation for nm[x]

has an elegant interpretation. Consider the effect of splitting the hypercube Hm

into 2m subcubes by splitting the interval H into the subintervals [0, 1
2) and [1

2 , 1).
Because all of these new subcubes are scaled translates of the original hypercube
Hm, their cross-sectional volumes are multiples of integer translates of the dilated
cross-sectional volume nm[2x].

For example, the left-hand side of Figure 2.11 illustrates the case of m == 2.
At the top, the square H 2 has been split into four subsquares. At the bottom is
a plot of the cross-sectional lengths of each of these subsquares. (Note that the
cross-sectional lengths for subsquares with the same projection onto x have been
summed.) Because cross-sectional length is halved when the square H2 is split, the
cross-sectional lengths satisfy the recurrence

n2[x] ==
1
2

n2[2x] + n2[2x − 1] + 1
2

n2[2x − 2].

This equation is exactly the refinement relation for linear B-splines. The right-hand
side of Figure 2.11 illustrates the case of m == 3. At the top, the cube H3 has been
split into eight subcubes. At the bottom is a plot of the cross-sectional areas of
each of these subcubes. (Note that the cross-sectional areas for subcubes with the

�2 �1 0 1 2 3 4 �2 �1 0 1 2 3 4 5

(a) (b)

Figure 2.11 Subdividing (a) linear and (b) quadratic basis functions by splitting the hypercubes H2 andH3.

44 C H A P T E R 2 An Integral Approach to Uniform Subdivision

same projection onto x have been summed.) Because cross-sectional area is scaled
by a factor of 1

4 when the cube H3 is split, these cross-sectional areas satisfy the
recurrence

n3[x] ==
1
4

n3[2x] + 3
4

n3[2x − 1] + 3
4

n3[2x − 2] + 1
4

n3[2x − 3].

Again, this equation is exactly the refinement relation for a quadratic B-spline.

2.2.2 Box-spline Scaling Functions as Cross-sectional Volumes

The beauty of this geometric construction for B-spline basis functions is that it
immediately implies the existence of a ref inement relation for the basis functions.
De Boor and Höllig [39] observed that this construction can be generalized to
produce smooth multivariate scaling functions that are also refineable. (Note that
integer translates of these scaling functions are not necessarily linearly independent,
and hence not necessarily basis functions.) The key idea is to define a set of direction
vectors � of the form {{a i , bi } ∈ Z

2 | i = 1, . . . , m} and then consider the cross-sectional
volume of the form

volm−2

[{
{t1, . . . , tm} ∈ Hm

∣∣∣∣∣
m∑

i =1

{a i , bi }t i == {x, y}
}]

. (2.14)

If this function is normalized to have unit integral, the resulting function n� [x, y]

is the box-spline scaling function associated with the direction vectors �. Note that
instead of computing the (m − 1)-dimensional volume of the intersection of Hm and
an (m−1)-dimensional hyperplane this definition computes the (m − 2)-dimensional
volume of the intersection of Hm and two (m − 1)-dimensional hyperplanes of the
form

∑m
i =1 ai t i == x and

∑m
i =1 bi t i == y. One way to visualize the relation between

the hypercube Hm and the direction vectors {ai , bi } is to orient Hm with respect to
the xy plane such that the origin of Hm projects onto the origin of the xy plane
and the coordinate axes of Hm project onto the line segments defined by placing
the direction vectors {ai , bi } at the origin. Based on this definition, the following
properties follow (almost) immediately:

■ n� [x, y] is a piecewise polynomial function of degree m−2 with C α−2 continu-
ity, where α is the size of the smallest subset A ⊂ � such that the complement
of A in � does not span R

2.

■ n� [x, y] is non-negative and is supported on the domain {∑m
i =1{ai , bi }t i | 0 ≤

t i < 1}.

2.2 A Subdivision Scheme for Box Splines 45

■ n� [x, y] has unit integral by construction. As in the case of B-splines, this
property can be strengthened to

∑
i , j n

� [x − i , y − j] == 1.

The only one of these properties that requires substantial analysis is the smooth-
ness bound of C α−2. In the case of B-splines, the basis functions nm[x] always have
maximal smoothness (i.e., Cm−2). However, box-spline scaling functions n� [x, y] do
not always achieve the maximum possible smoothness of Cm−3. If the direction
vectors in � are independent (i.e., no two vectors are constant multiples of each
other), all but one of the vectors must be removed from � for the space of the
remaining vectors to collapse to a line. In this case, the box-spline scaling function
has maximal smoothness Cm−3, in that α == m− 1. However, if one of the direction
vectors in � is repeated several times, removing all vectors except for this repeated
vector leads to α < m − 1. In this case, the box-spline scaling function does not have
maximal smoothness. See section 2.2.4 for examples of computing the smoothness
of various box splines.

Geometrically, the effect of repeated direction vectors on the resulting projec-
tion of Hm is to cause a higher-dimensional face of Hm to project onto a line segment
in the xy plane. As a result, the cross-sectional volume of the hypercube Hm taken
across this edge no longer has the maximal smoothness of Cm−3. For a more detailed
analysis of this and other properties of box splines, we direct the interested reader
to [40].

2.2.3 Subdivision for Box Splines

Our next task is to derive a refinement relation (and the corresponding subdivision
mask) for the box-spline scaling functions n� [x, y]. Geometrically, this ref inement
relation is a consequence of splitting the hypercube Hm into 2m subcubes. To
compute the actual coeff icients of this ref inement relation, we instead reformu-
late box splines in terms of an inductive definition based on repeated integration
(as done for B-splines in equation 2.3). The subdivision mask for box splines then
follows from a variant of Theorem 2.1.

To simplify this recursive definition, we always choose the set � of direction
vectors to consist of the two standard unit vectors, {1, 0} and {0, 1} in the base case. In
this case, the box-spline scaling function n� [x, y] is simply the step function defined
over the unit square:

n� [x, y] =
{

1 if 0 ≤ x < 1 and 0 ≤ y < 1,
0 otherwise.

(2.15)

46 C H A P T E R 2 An Integral Approach to Uniform Subdivision

Larger sets of direction vectors are formed by inductively adding new direction
vectors to this initial set. Given an existing set of direction vectors �

∼ and associated
box-spline scaling function n�̃ [x, y], the box-spline scaling function associated with
the set � = �

∼ ∪ {{a, b}} has the form

n� [x, y] =
∫ 1

0

n�̃ [x − at, y − bt] dt.

A proof of the equivalence of this recursive definition of n� [x, y] to the definition of
equation 2.14 is almost identical to the proof of Theorem 2.2. The main difference
is that the (m − 2)-dimensional volume of equation 2.14 is reduced to the integral
of (m − 3)-dimensional volumes in a manner similar to that of equation 2.12 for
B-splines.

Given this definition (in terms of repeated directional integration), we next
establish the link between repeated directional integration and subdivision. For the
base case of � = {{1, 0}, {0, 1}}, the two-direction constant box splines of equa-
tion 2.15 satisfy the following refinement relation:

n� [x, y] == n� [2x, 2y] + n� [2x − 1, 2y] + n� [2x, 2y − 1] + n� [2x − 1, 2y − 1].

This relation simply states that a constant function defined over the unit square
can be expressed as the sum of four constant functions, each defined over one of
four subsquares that constitute the original square. The coeff icients of this relation
define the subdivision mask for this scaling function, s� [x , y] = (1 + x)(1 + y). Next,
based on the recursive definition of n� [x, y], we recursively construct the subdivision
mask s� [x , y] for box splines. This mask satisf ies a ref inement relation of the form

n� [x, y] ==
∑

i

s� [[i , j]] n� [2x − i , 2y − j].

Theorem 2.3, which follows, generalizes Theorem 2.1 and establishes the effect
of integration in the direction {a, b} on the subdivision mask for a scaling function.

THEOREM

2.3

Let �
∼ = � ∪ {{a, b}}. If s� [x , y] is the subdivision mask for n� [x, y], the sub-

division mask s�̃ [x , y] for n�̃ [x, y] has the form

s�̃ [x , y] = 1
2

(1 + xa yb)s� [x , y].

Proof The proof is entirely analogous to that of Theorem 2.1.

2.2 A Subdivision Scheme for Box Splines 47

Recursively applying Theorem 2.3 to a set of direction vectors �, we note that the
subdivision mask s� [x , y] has the explicit form

s� [x , y] = 4
∏

{a,b}∈�

1 + xa yb

2
. (2.16)

The factor of four here arises from rewriting the mask s� [x , y] for the base case
� = {{1, 0}, {0, 1}} as 4 (1+x)

2
(1+y)

2 . If the vector {a, b} appears multiple times in �, the

corresponding factor 1+xa yb

2 should appear to the appropriate power.
A box spline p[x, y] is simply a linear combination of integer translates of the

box-spline scaling function n� [x − i , y − j]; that is, a sum of the form
∑

i , j p0[[i , j]]

n� [x−i , y− j], where p0[[i , j]] is the entry of the vector p0 attached to the point {i , j } in
the grid Z

2. As in the univariate case, we write this sum in vector form as N� [x, y]p0.
Subdividing the entries of basis vector N� [x, y] using the subdivision mask s� allows
the function p[x, y] to be expressed as a sum of the form N� [2kx, 2ky]pk. If pk−1[x , y]

and pk[x , y] are the generating functions associated with successive coeff icient vec-
tors pk−1 and pk, these generating functions are related via the expression

pk[x , y] = s� [x , y]pk−1[x2, y2]. (2.17)

Note that Theorem 2.3 makes clear the need to restrict the direction vector {a, b}
to the integer grid Z

2. Allowing nonintegral values for a and b would give rise to
a refinement relation for N� [x, y] that does not involve members of the vector
N� [2x, 2y] and would therefore make this type of subdivision process impossible.

For box splines, the subdivision relation of equation 2.17 gives rise to four types
of subdivision rules (as opposed to the two rules of equation 2.9 in the univariate
case). These four rules take convex combination of pk−1 using the weights of the
form s� [[2i , 2 j]], s� [[2i + 1, 2 j]], s� [[2i , 2 j + 1]], and s� [[2i + 1, 2 j + 1]], where {i , j } ∈ Z

2.
In the one-dimensional case, the i th coeff icient of pk was plotted over x == i

2k

to form a discrete approximation to the B-spline p[x]. In the case of box splines, the
i j th coeff icient of pk is plotted at {x, y} == { i

2k
, j

2k
}. As long as the set of direction

vectors � includes the initial directions {1, 0} and {0, 1}, the polyhedra formed by
the pk converge to the box-spline function p[x, y]. For those readers interested in a
proof of this convergence result, we recommend Cohen et al. [25] and Dahmen
and Micchelli [33]. Chapter 3 also provides tools for addressing this question.

In the univariate case, Theorem 2.1 led to a repeated averaging algorithm for
B-spline subdivision. For box splines, Theorem 2.3 yields a similar repeated aver-
aging algorithm for box-spline subdivision. Given a set of coeff icients pk−1 on the

48 C H A P T E R 2 An Integral Approach to Uniform Subdivision

coarse grid 1
2k−1

Z
2, the algorithm computes a set of coeff icients pk on the refined

grid 1
2k

Z
2 as follows:

■ Construct the generating function pk−1[x , y] from pk−1. Upsample pk−1[x , y]

to yield pk−1[x2, y2]. Set pk[x , y] = 4pk−1[x2, y2].

■ For each direction vector {a, b} ∈ �, update pk[x , y] via the recurrence

pk[x , y] = (1+xa yb)
2 pk[x , y]. Each multiplication by (1+xa yb)

2 corresponds to mid-
point averaging on pk in the direction {a, b}.

■ Extract the coeff icients pk of the generating function pk[x , y].

2.2.4 Examples

We conclude this section by considering three examples of well-known box splines.

Three-direction Linear Splines

In Chapter 1, we considered a subdivision scheme for piecewise linear hat functions.
These hat functions can be generalized to a triangular grid in two dimensions. If
each triangle in the grid is subdivided into four subtriangles, the hat functions can
be refined in a manner similar to that of the univariate case. For uniform triangular
grids, this subdivision process can be expressed in terms of three-direction box
splines. Let � consist of the set of three direction vectors {{1, 0}, {0, 1}, {1, 1}}. For
k == 0, the resulting grid consists of triangles bounded by lines of the form x == i ,
y == j , and x − y == h, where h, i , j ∈ Z. Applying equation 2.16, we obtain the
subdivision mask for this scheme:

s� [x , y] = 4
1 + x1 y0

2
1 + x0 y1

2
1 + x1 y1

2

= (1 + x)(1 + y)(1 + xy)
2

.

The coeff icients of this subdivision mask s� can be visualized as a two-dimensional
array of the form

s� [x , y] == (1 x x2)

⎛⎜⎜⎝
1
2

1
2 0

1
2 1 1

2

0 1
2

1
2

⎞⎟⎟⎠
⎛⎜⎝ 1

y

y2

⎞⎟⎠ .

Note that this 3 × 3 matrix is not the subdivision matrix S but a plot of a single
column of S as a two-dimensional array. The four subdivision rules for this scheme

2.2 A Subdivision Scheme for Box Splines 49

0 0

�1

1

3
2

0
.25
.5

.75
1

�1

1
2

3

0 0

�1

1

3
2

0
.25
.5

.75
1

�1

1
2

3

0
0

�1

1

3
2

0
.25
.5

.75
1

�1

1
2

3

Figure 2.12 Three rounds of subdivision for the linear box-spline basis function.

correspond to taking convex combinations of the entries of the vector pk−1 using
the weights (

1
2 0

0 1
2

)
, (1

2
1
2

),

(
1
2

1
2

)
, (1).

The basis function n� [x, y] associated with this scheme is piecewise linear and is
supported over the hexagon consisting of all points of the form {1, 0}t1 + {0, 1}t2 +
{1, 1}t3, where 0 ≤ t i < 1. The basis function is C0 (i.e., α == 2) because removing
any two vectors from � causes the remaining vector to fail to span the plane R2.

Figure 2.12 shows the results of three rounds of subdivision using this scheme,
applied to the initial generating function p0[x , y] = 1. In each plot, the coeff icients
of pk are taken on the grid 1

2k
Z. Observe that these plots are converging to the

piecewise linear hat function n� [x, y] on the three-direction grid defined by �, with
the shifting of the hat function due to the use of an uncentered subdivision mask.

Four-direction Quadratic Box Splines

The piecewise linear hat function in the previous example is a continuous (i.e., C0)
function. Adding an extra copy of the direction vector {1, 1} to the three direction
vectors {1, 0}, {0, 1}, and {1, 1} for linear box splines yields a new set � of four
direction vectors that defines a quadratic box spline. However, observe that α == 2

for this case, in that removing {1, 0} and {0, 1} from � leaves the two copies of the
vector {1, 1} that together do not span the plane R2. Therefore, this quadratic box
spline is only C0.

On the other hand, if we add a new vector in an independent direction—
say {−1, 1}—to the direction vectors {1, 0}, {0, 1}, and {1, 1}, the resulting set � of
direction vectors {{1, 0}, {0, 1}, {1, 1}, {−1, 1}} defines a smooth box-spline scaling

50 C H A P T E R 2 An Integral Approach to Uniform Subdivision

function, because α == 3. Via equation 2.16, the subdivision mask for this box
spline has the form

s� [x , y] = 4
∏

(a,b)∈�

1 + xa yb

2
==

1
4

(1 + x)(1 + y)(1 + xy)(1 + x−1 y).

Plotting the coeff icients of s� [x , y] as a two-dimensional array yields

s� [x , y] == (x−1 1 x x2)

⎛⎜⎜⎜⎜⎜⎝
0 1

4
1
4 0

1
4

1
2

1
2

1
4

1
4

1
2

1
2

1
4

0 1
4

1
4 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

1
y
y2

y3

⎞⎟⎟⎠ .

The four subdivision rules for this scheme correspond to taking convex combina-
tions of the entries of the vector pk−1 using the weights(

0 1
4

1
4

1
2

)
,

(
1
4

1
2

0 1
4

)
,

(
1
4 0

1
2

1
4

)
,

(
1
2

1
4

1
4 0

)
.

Figure 2.13 shows the results of three rounds of subdivision under this scheme,
applied to the generating function p0[x , y] = 1. The resulting polyhedra are converg-
ing to the scaling function n� [x, y]. This function, n� [x, y], is a piecewise quadratic
function supported over an octagon. Note that the integer translates of the scaling
function n� [x, y] for this box spline are linearly dependent. In particular, choosing
the initial coeff icients p0 for this box spline to satisfy p0[[i , j]] = (−1)i + j yields the
function zero.

0

2

4

0

.4

.2

�2
0

2
0

2

4

0

.4

.2

�2

0

2
0

2

4

0

.4

.2

�2
0

2

Figure 2.13 Three rounds of subdivision for the four-direction quadratic box-spline scaling function.

2.2 A Subdivision Scheme for Box Splines 51

Three-direction Quartic Box Splines

We conclude with an example of a box spline whose scaling function has continuous
second derivatives (i.e., is C2). This box spline, the three-direction quartic, is defined
in terms of six direction vectors: the three direction vectors used in defining the
linear hat function, each repeated. Specif ically, the set of direction vectors � has
the form {{1, 0}, {1, 0}, {0, 1}, {0, 1}, {1, 1}, {1, 1}}. For this example, α == 4, and
therefore the resulting spline is C2. According to equation 2.16, the subdivision
mask for the scheme has the form

s� [x , y] == 4
∏

(a,b)∈�

1 + xa yb

2
= 1

16
(1 + x)2(1 + y)2(1 + xy)2.

Plotted in two dimensions, the coeff icients of this subdivision mask have the form

s� [x , y] == (1 x x2 x3 x4 x5)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
16

1
8

1
16 0 0

1
8

3
8

3
8

1
8 0

1
16

3
8

5
8

3
8

1
16

0 1
8

3
8

3
8

1
8

0 0 1
16

1
8

1
16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1
y
y2

y3

y4

y5

⎞⎟⎟⎟⎟⎟⎟⎠ .

The four subdivision rules for this scheme correspond to taking convex combina-
tions of the entries of the vector pk−1 using the weights

⎛⎜⎜⎝
1
16

1
16 0

1
16

5
8

1
16

0 1
16

1
16

⎞⎟⎟⎠ ,

(
1
8

3
8 0

0 3
8

1
8

)
,

⎛⎜⎜⎝
1
8 0

3
8

3
8

0 1
8

⎞⎟⎟⎠ ,

(
3
8

1
8

1
8

3
8

)
.

Figure 2.14 depicts three rounds of subdivision based on this scheme, starting
from the initial generating function p0[x , y] = 1. The resulting plot is an approx-
imation of the basis function n� [x, y], a piecewise quartic function defined over a
hexagon, with a support that is twice the size of the support hexagon for the hat
function. Figure 2.15 shows an example of a toroidal surface constructed using a
parametric version of the three-direction quartic box spline in which one coordinate
is treated as being periodic.

52 C H A P T E R 2 An Integral Approach to Uniform Subdivision

0

2

4
0

.6
.4
.2

2
0

4
0

2

4
0

.4

.2

0
2

4
0

2

4

0

.4

.2

0
2

4

Figure 2.14 Three rounds of subdivision for the three-direction quartic box-spline basis function.

1
2

0
1

2

�.5

0

.5

1
2

3
4

0
1

2
3

�1
�.5

0

.5

1

3

3

1
2

3

0
1

2

�.5

0

.5

3

Figure 2.15 A parametric surface constructed using subdivision for a three-direction quartic box spline.

2.3 B-splines and Box Splines as Piecewise Polynomials

In the preceding examples, the plots of the box-spline scaling functions n� [x, y]

were constructed via subdivision. Starting with the initial generating function
p0[x , y] = 1, we applied several rounds of subdivision to compute pk[x , y] and plot-
ted the resulting coeff icients of pk on the grid 1

2k
Z

2. In practice, this approach of
computing discrete approximations is an extremely effective method for manipu-
lating box splines. However, occasionally it is useful to have access to the piecewise
polynomial representation of the box spline. For example, in f inite element analysis,
knowing the exact value of the finite element basis functions at certain quadrature
points is very useful in constructing the inner product matrix associated with the
basis functions. Using the piecewise polynomial representation, the box spline can
be evaluated exactly at those quadrature points. Further, all of the results from clas-
sical functional analysis can be applied to the piecewise polynomial representation
to investigate the properties of a given box spline.

2.3 B-splines and Box Splines as Piecewise Polynomials 53

Attempting to construct the piecewise polynomial representation of a box-
spline scaling function based on the support and smoothness conditions for the
box spline is quite diff icult. The number of polynomial pieces is large, and the lin-
ear relationships between coeff icients for adjacent polynomial pieces are tedious to
construct. In this f inal section, we discuss an elegant technique for constructing the
piecewise polynomial representation for B-splines and box splines. For B-splines,
this technique expresses the basis functions nm[x] as a linear combination of trun-
cated powers. For box splines, the scaling functions n� [x, y] are expressed as a linear
combination of cone splines, the cross-sectional volumes of high-dimensional cones.
As we will see later, the differential approach to subdivision, introduced in Chap-
ter 4, is closely tied to these results.

2.3.1 B-splines as Combinations of Truncated Powers

In section 2.2.1, we expressed the B-spline basis function nm[x] as the cross-sectional
volume of the hypercube Hm. In this section, we consider the cross-sectional volume
c m[x] of a related cone and show that nm[x] can be expressed as a linear combination
of translates c m[x − i]. If R+ denotes the half-interval consisting of all non-negative
real numbers, the cone (R+)m consists of those points {t1, . . . , tm} such that 0 ≤ t i for
1 ≤ i ≤ m. Just as was done for hypercubes, we consider the cross-sectional volumes
of the form

c m[x] = 1√
m

volm−1

[{
{t1, . . . , tm} ∈ (R+)m

∣∣∣∣∣
m∑

i =1

t i == x

}]
. (2.18)

Because the interval H can be expressed as the difference of the half-interval R+ and
its integer translate in the positive direction—that is, the interval [0, 1) is the differ-
ence of the intervals [0, ∞) and [1, ∞)—the hypercube Hm can be decomposed into
an alternating sum of 2m integer translates of the cone (R+)m. This decomposition
induces an interesting relation between cross-sectional volumes of these objects:
the B-spline basis function nm[x] and integer translates of the function c m[x].

For example, in Figure 2.10, a piecewise linear hat function could be viewed as
the cross-sectional length of a square H2. In Figure 2.16, the square H2 has been ex-
pressed as the alternating sum of four translates of the cone (R+)2, each with a vertex
at the corner of the square and opening toward the right. The leftmost cone con-
tains the square. The top and bottom cones are subtracted from the leftmost cone,
leaving the square. The top and bottom cones overlap, forming the rightmost cone.
Adding this rightmost cone back accounts for this overlap and leaves the original
square.

54 C H A P T E R 2 An Integral Approach to Uniform Subdivision

�2 �1 0 1 2 3 4

Figure 2.16 A square expressed as the alternating sum of translated cones.

In a similar manner, the cross-sectional length of the square can be expressed as
a linear combination of the cross-sectional lengths of these cones. For this particular
example, this relation can be expressed as

n2[x] = c 2[x] − 2c 2[x − 1] + c 2[x − 2],

where c 2[x] is the cross-sectional length of the cone (R+)2. Our goal in this section
is to precisely capture the linear relationship between the functions nm[x] and the
integer translates cm[x − i] for arbitrary order m.

As was the case for B-splines, we redefine the function cm[x] inductively using
repeated integration. The advantage of this inductive approach is that the linear
relationship between nm[x] and the integer translates c m[x − i] can also be computed
recursively. The base case for our inductive definition of c m[x] starts at m == 1. In
particular, we define c1[x] to be 1 if x ≥ 0, and zero otherwise. Given the function
c m−1[x], we define c m[x] to be the integral

c m[x] =
∫ ∞

0

c m−1[x − t] dt. (2.19)

Again, the equivalence of this recursive definition to the definition of equation 2.18
follows in a manner almost identical to the proof of Theorem 2.2. Based on this
inductive definition, we can show that c m[x] = 1

(m−1)! x m−1 if x ≥ 0, and zero other-

wise. These functions are the truncated powers of x, often written as 1
(m−1)! x

m−1
+ in

standard B-spline notation. Figure 2.17 shows plots of the functions c m[x] for small
values of m.

2.3 B-splines and Box Splines as Piecewise Polynomials 55

�1 �.5 .5 1 1.5 2

.5

1

1.5

2

�1 �.5 .5 1 1.5 2

.2

.4

.6

.8

1

1.2

�1 �.5 .5 1 1.5 2

.2

.4

.6

.8

1

�1 �.5 .5 1 1.5 2

.5

1

1.5

2

Figure 2.17 Plots of truncated powers c m[x] for m = 1, . . . , 4.

Given this recursive definition for the truncated powers c m[x], the following
theorem captures the exact relationship between the B-spline basis function nm[x]

and the integer translates of truncated powers c m[x].

THEOREM

2.4

If nm[x] and c m[x] are, respectively, the B-spline basis functions and the
truncated powers of order m, then

nm[x] =
∑

i

dm[[i]] cm[x − i],

where d m[x] is the generating function (1 − x)m.

Proof The proof proceeds by induction on m. For m == 1, the theorem holds
by observation, in that n1[x] = c1[x] − c1[x − 1], where d1[x] = 1 − x. Next,
assume that the theorem holds for splines of order m − 1; that is,

nm−1[x] =
∑

i

dm−1[[i]] cm−1[x − i],

56 C H A P T E R 2 An Integral Approach to Uniform Subdivision

where dm−1[x] = (1 − x)m−1. We now show that the theorem holds for splines
of order m. By definition, nm[x] is exactly

∫ 1

0
nm−1[x − t] dt. Substituting the

inductive hypothesis for nm−1[x] yields

nm[x] =
∫ 1

0

∑
i

dm−1[[i]] c m−1[x − t − i] dt,

=
∑

i

dm−1[[i]]

∫ 1

0

c m−1[x − t − i] dt.

The inner integral
∫ 1

0
c m−1[x−t− i] dt can be rewritten as

∫ ∞
0

c m−1[x−t− i] dt−∫ ∞
1

c m−1[x − t − i] dt, which is exactly c m[x − i] − c m[x − i − 1]. Substituting
this expression into the previous equation, we obtain

nm[x] =
∑

i

dm−1[[i]](c m[x − i] − c m[x − i − 1]),

=
∑

i

(dm−1[[i]] − dm−1[[i − 1]])c m[x − i].

The coeff icients dm−1[[i]] − dm−1[[i − 1]] of this new relation are exactly the
coeff icients of (1 − x)dm−1[x] == dm[x].

One particularly useful application of this theorem lies in evaluating nm[x]. To eval-
uate this B-spline basis function at a particular value of x, we simply evaluate
the corresponding truncated power c m[x] at m + 1 values and multiply by various
binomial coeff icients. Evaluating c m[x] is easy, given its simple definition. How-
ever, one word of caution: although the value of this expression should always be
zero outside of the range [0, m], numerical errors can cause this evaluation method
to be unstable and return non-zero values. We suggest that any evaluation
method using this expression explicitly test whether x ∈ [0, m] and return zero if
x /∈ [0, m].

Note here that the coeff icients of dm[x] are the mth discrete differences with
respect to an integer grid. For those readers familiar with the theory of B-splines,
Theorem 2.4 may be viewed as expressing the B-spline basis function of order m

as the mth divided difference of the function x m−1
+ with respect to an integer grid.

(See De Boor [38] and Schumaker [137] for a complete exposition on divided
differences and B-splines.) One advantage of this view is that this relation also
holds for nonuniform grids. In fact, it is often used as the initial definition for
B-spline basis functions.

2.3 B-splines and Box Splines as Piecewise Polynomials 57

2.3.2 Box Splines as Combinations of Cone Splines

Section 2.2.2 defined a box-spline scaling function n� [x, y] as the cross-sectional
volume of a hypercube Hm based on a set of direction vectors �. By replacing
the hypercube Hm with the cone (R+)m in this definition, we can define a related
spline, known as a cone spline, c� [x, y]. As before, viewing the hypercube Hm as an
alternating sum of integer translates of the cone (R+)m leads to a linear relationship
between the box-spline scaling function n� [x, y] and integer translates of the cone
spline c� [x, y]. Our task in this section is to capture this relationship precisely.

Just as for box splines, our approach is to characterize the cone splines recursively
using repeated integration. For the base case, the set � of direction vectors consists
of the two standard unit vectors {1, 0} and {0, 1}. In this case, the cone spline c� [x, y]

has the form

c� [x, y] =
{

1 if 0 ≤ x and 0 ≤ y,
0 otherwise.

(2.20)

Larger sets of direction vectors are formed by inductively adding new direction
vectors to this initial set. Given an existing set of direction vectors � and its associ-
ated cone spline c� [x, y], the cone spline associated with the set �̃ = � ∪ {{a, b}} has
the form

c�̃ [x, y] =
∫ ∞

0

c� [x − at, y − bt] dt. (2.21)

Cone splines, sometimes also referred to as multivariate truncated powers,
were introduced by Dahmen in [30]. Dahmen and others have further analyzed
the behavior of these splines in [29], [26], and [103]. If � contains m direction
vectors, the basic properties of the cone spline c� [x, y] are summarized as follows:

■ c� [x, y] is a piecewise polynomial of degree m − 2, with Cα−2 continuity, where
α is the size of the smallest subset A ⊂ � such that the complement of A

in � does not span R
2.

■ Each polynomial piece of c� [x, y] is supported on a cone with a vertex at the
origin, bounded by two vectors in �. Inside each of these regions in c� [x, y]

is a homogeneous polynomial of degree m − 2 in x and y.

Due to this homogeneous structure, the cone spline c� [x, y] satisf ies a scaling relation
of the form c [x, y] == 22−mc [2x, 2y], where m is the number of direction vectors in
�. Before considering several examples of common cone splines, we conclude this

58 C H A P T E R 2 An Integral Approach to Uniform Subdivision

section by proving that the box-spline scaling function n� [x, y] can be expressed as a
linear combination of integer translates of the cone spline c� [x, y]. In this theorem,
due to Dahmen and Micchelli [32], the coeff icients used in this linear combination
encode directional differences taken with respect to �.

THEOREM

2.5

If n� [x, y] and c� [x, y] are, respectively, the box-spline scaling function and
cone spline associated with the set of direction vectors �, then

n� [x, y] =
∑

i , j

d� [[i , j]]c� [x − i , y − j],

where d� [x , y] =∏{a,b}∈�
(1 − xa yb).

Proof The proof proceeds by induction on the size of �. The base case is � =
{{1, 0}, {0, 1}}. In this case, d� [x , y] = (1 − x)(1 − y). One can explicitly ver-
ify that

n� [x, y] == c� [x, y] − c� [x − 1, y] − c� [x, y − 1] + c� [x − 1, y − 1].

For larger sets of direction vectors �, the inductive portion of the proof
continues in complete analogy to the univariate proof of Theorem 2.4.

2.3.3 Bivariate Examples

Section 2.2 considered three examples of box splines: the three-direction linear, the
four-direction quadratic, and the three-direction quartic. We conclude this chapter
by constructing the cone splines corresponding to these box splines. By deriving the
difference mask d� [x , y] and applying Theorem 2.5 to the cone splines, we construct
a relatively simple piecewise polynomial representation of the corresponding box
splines.

Three-direction Linear Cone Splines

Our first example is the three-direction linear cone spline. As for the three-direction
linear box spline, the three directions are � = {{1, 0}, {0, 1}, {1, 1}}. The cone spline

2.3 B-splines and Box Splines as Piecewise Polynomials 59

�1
0

1
2

3 �1

0

1

2

3

0
.25
.5

.75
1

�1

0

1

2

3

0
1

2

3

�1
0

1
2

3

(a) (b)

Figure 2.18 The (a) linear cone spline and (b) linear box-spline basis function obtained as a difference of
integer translates of the cone spline.

c� [x, y] consists of two wedge-shaped linear pieces of the form

c� [x, y] =

⎧⎪⎨⎪⎩
y if y ≥ 0 and x ≥ y,

x if x ≥ 0 and x ≤ y,

0 otherwise.

The left-hand portion of Figure 2.18 shows a plot of the cone spline c� [x, y] on
the square [−1, 3]2. Via Theorem 2.5, the difference mask d� [x , y] has the form
(1 − x)(1 − y)(1 − xy). Plotting the coeff icients of this generating function as a two-
dimensional array yields

d� [x , y] == (1 x x2)

⎛⎝ 1 −1 0
−1 0 1

0 1 −1

⎞⎠⎛⎝ 1
y
y2

⎞⎠ .

The right-hand portion of Figure 2.18 shows a plot of the box-spline scaling function
n� [x, y] computed using Theorem 2.5.

Four-direction Quadratic Cone Splines

The next example is the four-direction quadratic cone spline. For this spline, � has
the form {{1, 0}, {0, 1}, {1, 1}, {−1, 1}}. Applying the recursive definition for cone

60 C H A P T E R 2 An Integral Approach to Uniform Subdivision

�1

0

1

2

3

0

2
3

�1
0

1
2

3

1

4

�1
�2

0
1

2
3 �1

1

3

2

4

0
.2

.4

0

(a) (b)

Figure 2.19 The (a) four-direction quadratic cone spline and (b) four-direction quadratic box-spline scaling
function obtained as a difference of integer translates of the cone spline.

splines to the previous example of the three-direction linear cone spline yields
the cone spline c� [x, y], with three quadratic, wedge-shaped pieces. These pieces
satisfy

c� [x, y] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y2

2 if y ≥ 0 and x ≥ y,

1
4 (−x2 + 2xy + y2) if x ≥ 0 and x ≤ y,

1
4 (x + y)2 if x ≤ 0 and x ≥ −y,

0 otherwise.

The left-hand portion of Figure 2.19 shows a plot of c� [x, y] on the square [−1, 3]2.
Via Theorem 2.5, the difference mask d� [x , y] has the form (1 − x)(1 − y)(1 − xy)

(1− x−1 y). Plotting the coeff icients of this generating function as a two-dimensional
array yields

d� [x , y] == (x−1 1 x x2)

⎛⎜⎜⎝
0 −1 1 0
1 0 0 −1

−1 0 0 1
0 1 −1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

1
y
y2

y3

⎞⎟⎟⎠ .

The right-hand portion of Figure 2.19 shows a plot of the box-spline scaling function
n� [x, y] computed using Theorem 2.5.

2.3 B-splines and Box Splines as Piecewise Polynomials 61

�1

0

1

2

3

0
2
4

�1
0

1
2

3

6

0

2

4

2

4

0

.2

.4

0

(a) (b)

Figure 2.20 The (a) three-direction quartic cone spline and (b) three-direction quartic box-spline basis
function as a difference of integer translates of the cone spline.

Three-direction Quartic Cone Splines

Our final example is the three-direction quartic cone spline. Here, � has the form
{{1, 0}, {1, 0}, {0, 1}, {0, 1}, {1, 1}, {1, 1}}. This cone spline, c� [x, y], consists of two
quartic, wedge-shaped pieces. These pieces satisfy

c� [x, y] =

⎧⎪⎪⎨⎪⎪⎩
1

12 y3(2x − y) if y ≥ 0 and x ≥ y,

1
12 x 3(2y − x) if x ≥ 0 and x ≤ y,

0 otherwise.

The left-hand portion of Figure 2.20 shows a plot of c� [x, y] on the interval [−1, 3]2.
Via Theorem 2.5, the difference mask d� [x , y] has the form (1 − x)2(1 − y)2(1 − xy)2.
Plotting the coeff icients of this generating function as a two-dimensional array
yields

d� [x , y] == (1 x x2 x3 x4)

⎛⎜⎜⎜⎜⎝
1 −2 1 0 0

−2 2 2 −2 0
1 2 −6 2 1
0 −2 2 2 −2
0 0 1 −2 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1
y
y2

y3

y4

⎞⎟⎟⎟⎟⎠ .

The right-hand portion of Figure 2.20 shows a plot of the box-spline basis function
n� [x, y] computed using Theorem 2.5.

C H A P T E R 3

Convergence Analysis for
Uniform Subdivision Schemes

Chapter 2 introduced a simple tool, repeated integration, for creating interesting
subdivision schemes. In the univariate case, repeated integration led to subdivision
masks of the form s[x] = 2(1+x

2)
m, whose coeff icients defined the refinement relation

for the B-spline basis function of order m. In the bivariate case, repeated integration

led to a subdivision mask s[x , y] of the form 4
∏

{a,b}∈�

1+xa yb

2 for box splines. The

coeff icients of this subdivision mask defined the refinement relation for the box-
spline scaling function associated with the set of direction vectors �. Essentially,
the previous chapter gave us tools for constructing subdivision masks s[x] (or s[x , y])
whose subdivision schemes are “nice.” In the context of subdivision, “nice” usually
means that the limit of the subdivision process always exists (i.e., the scheme is
convergent) and that the limit function is smooth.

This chapter considers the converse problem: Given a subdivision mask s[x] (or
s[x , y]), does the associated subdivision scheme define a “nice” curve (or surface)?
For the schemes of the previous chapter, this question may not seem particularly
important, in that the limiting splines had a definition in terms of repeated inte-
gration. However, for many subdivision schemes (especially interpolatory ones),
there is no known piecewise representation; the only information known about the
scheme is the subdivision mask s[x]. In this case, we would like to understand the
behavior of the associated subdivision process in terms of the structure of the sub-
division mask s[x] alone.

Given a subdivision mask s[x] and an initial set of coeff icients p0, the subdivision
process pk[x] = s[x]pk−1[x2] defines an infinite sequence of generating functions. The
basic approach of this chapter is to associate a piecewise linear function p k[x] with
the coeff icients of the generating function pk[x] and to analyze the behavior of
this sequence of functions. The first section reviews some mathematical basics
necessary to understand convergence for a sequence of functions. The next section

62

3.1 Convergence of a Sequence of Functions 63

derives suff icient conditions on the mask s[x] for the functions p k[x] to converge
to a continuous function p∞[x]. The final section considers the bivariate version of
this question and derives suff icient conditions on the mask s[x , y] for the functions
p k[x, y] to converge to a continuous function p∞[x, y].

3.1 Convergence of a Sequence of Functions

The previous chapter considered subdivision schemes that took as input a coarse
vector p0 and produced a sequence of increasingly dense vectors pk. In plotting
these vectors, we constructed a sequence of piecewise linear functions p k[x] that
interpolated the i th coeff icient of pk at x == i

2k
; that is,

p k

[
i

2k

]
= pk[[i]].

For B-splines, we observed that these functions p k[x] appear to converge to a limit
curve that is the B-spline curve associated with the initial control points p0. This
section reviews the basic mathematical ideas necessary to make this construction
precise and to prove some associated theorems. For those readers interested in more
background material, we suggest Chapter 18 of Taylor [151], the source of most
of the material in this section. For less mathematically inclined readers, we suggest
skipping this section and proceeding to section 3.2. There, we derive a simple
computational test to determine whether a subdivision scheme is convergent.

3.1.1 Pointwise Convergence

Before considering sequences of functions, we first review the definition of con-
vergence for a sequence of real numbers, x0, x1, x2, This sequence converges to
a limit x∞ if for all ε > 0 there exists n such that |x∞ − x k| < ε for all k ≥ n. This
limit is denoted by limk→∞ x k = x∞. For example, consider the limit of the sequence
x k = 2−k

e2−k −1
. As k → ∞, 2−k goes to zero, and the function e2−k − 1 also goes to zero.

What is the value of their ratio as k → ∞? Recall that the exponential function eα

has a power series expansion of the form
∑∞

i =0
1
i !
αi . Substituting α = 2−k yields x k

of the form

x k = 2−k(
1 + 2−k + 1

2 (2−k)2 + · · ·)− 1
==

2−k

2−k
(
1 + 1

2 (2−k) + · · ·) ==
1

1 + 1
2 (2−k) + · · · .

Clearly, as k → ∞, the terms 2−k go to zero and the limit x∞ is exactly 1.

64 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

Given a sequence of functions p0[x], p1[x], p2[x], . . . , there are several ways to
define the limit of this sequence of functions. The simplest definition, pointwise
convergence, defines the limit limk→∞ p k[x] = p∞[x] independently for each possible
value of x.

The main drawback of pointwise convergence is that properties that are true
for a sequence of functions p k[x] may not be true for their pointwise limit p∞[x]. For
example, consider the sequence of functions p k[x] = xk. On the interval 0 ≤ x ≤ 1,
the limit function p∞[x] is zero if x < 1 and one if x == 1. However, this function
p∞[x] is discontinuous, while for any k the monomial p k[x] is continuous. Thus, the
pointwise limit of a sequence of continuous functions is not necessarily a continuous
function.

Another drawback is that the derivatives of a sequence of functions p k[x] do not
necessarily converge to the derivative of their pointwise limit. For example, consider
the piecewise linear function p k[x] whose value at i

2k
is 2−k if i is odd and zero if i

is even. The top portion of Figure 3.1 shows plots of these sawtooth functions for
k == 0, 1, 2, 3. Clearly, the pointwise limit of the functions p k[x] as k → ∞ is simply
the function zero. However, note that the derivative p′

k[x] of these functions has
value ±1 for any value of k and does not converge to zero (i.e., the derivative of the
function zero) in any sense. The lower portion of Figure 3.1 shows plots of these
derivatives.

1 2 3 4

�1

1

1 2 3 4

�1

1

1 2 3 4

�1

1

1 2 3 4

�1

1

1 2 3 4

�1

1

1 2 3 4

�1

1

1 2 3 4

�1

1

1 2 3 4

�1

1

(a)

(b)

Figure 3.1 A sequence of functions converging to zero (a) whose derivatives (b) do not converge to zero.

3.1 Convergence of a Sequence of Functions 65

3.1.2 Uniform Convergence

The diff iculties alluded to in the previous section lie in the definition of pointwise
convergence. Given an ε, each value of x can have a distinct n associated with it
in the definition of pointwise convergence. A stronger definition would require
one value of n that holds for all x simultaneously. To make this approach work, we
need a method for computing the difference of two functions over their entire
domain. To this end, we define the norm of a function p[x], denoted by ‖p[x]‖, to
be the maximum of the absolute of p[x] over all possible x; that is,

‖p[x]‖ = Max
x

|p[x]|.

In standard numerical analysis terminology, this norm is the infinity norm of p[x].
(Observe that one needs to use care in applying this norm to functions defined on
infinite domains, because Max is not always well defined for some functions, such
as p[x] = x.) Based on this norm, we define a new, stronger type of convergence for
sequences of functions. A sequence of functions p k[x] uniformly converges to a limit
function p∞[x] if for all ε > 0 there exists an n such that for all k ≥ n

‖p∞[x] − p k[x]‖ < ε.

Figure 3.2 illustrates this definition. For k ≥ n, each function p k[x] must lie in the
ribbon bounded above by p∞[x] + ε and bounded below by p∞[x] − ε.

When proving that a sequence of functions p k[x] defined by subdivision con-
verges uniformly to a limit function p∞[x], we usually do not have access to the limit

�� � ε

�� � ε

�
k

Figure 3.2 Two functions p∞[x] ± ε bounding the function p k[x] in the definition of uniform convergence.

66 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

function p∞[x] beforehand. Thus, it is diff icult to bound the norm ‖p∞[x] − p k[x]‖
directly. Instead, we examine the norm of differences between successive approx-
imations ‖p k[x] − p k−1[x]‖. The following theorem establishes a useful condition
on these differences that is suff icient to guarantee uniform convergence of the
sequence of functions p k[x].

THEOREM

3.1

Given a sequence of functions p0[x], p1[x], p2[x], . . . , if there exist constants
0 < α < 1 and β > 0 such that

‖p k[x] − p k−1[x]‖ < βαk−1

for all k > 0, the sequence converges uniformly to a limit function p∞[x].

Proof To begin, we prove that there exists a pointwise limit p∞[x] for the functions
p k[x]. For a f ixed value of x, we observe that the sum of the absolute value
of the difference of successive functions satisf ies the inequality

k∑
j =1

|p j [x] − p j −1[x]| <

k∑
j =1

βα j −1 == β
1 − αk

1 − α
.

Because 0 < α < 1, the expression β 1−αk

1−α
converges to β

1−α
as k → ∞. There-

fore, by the comparison test (Theorem II, page 548 in [151]), the sum∑∞
j =1 |p j [x] − p j −1[x]| is also convergent. Moreover, because this sum of ab-

solute values is convergent, the sum
∑∞

j =1 (p j [x]−p j −1[x]) is also convergent
(Theorem IX, page 557 in [151]). Given this convergence, we define the
pointwise limit of the subdivision process to be the infinite sum

p∞[x] == p0[x] +
∞∑
j =1

(p j [x] − p j −1[x]).

To conclude the proof, we prove that the functions p k[x] uniformly converge
to p∞[x]. To this end, we observe that the difference p∞[x] − p k[x] can be
expressed as an infinite sum of the form

p∞[x] − p k[x] ==
∞∑

j =k+1

(p j [x] − p j −1[x]).

3.1 Convergence of a Sequence of Functions 67

Taking the norm of both sides of this expression and applying the triangle
inequality yields

‖p∞[x] − p k[x]‖ ≤
∞∑

j =k+1

‖p j [x] − p j −1[x]‖.

Now, by hypothesis, the norm ‖p j [x] − p j −1[x]‖ is bounded by βαk−1. Sub-
stituting this bound into the infinite sum above yields

‖p∞[x] − p k[x]‖ ≤ β
αk

1 − α
.

Given an ε > 0 from the definition of uniform continuity, we simply choose
k suff iciently large such that the right-hand side of this equation is less
than ε. This condition ensures that the functions p k[x] converge uniformly
to p∞[x].

3.1.3 Uniform Convergence for Continuous Functions

One advantage of uniform convergence over pointwise convergence is that it guar-
antees that many important properties of the functions p k[x] also hold for the limit
function p∞[x]. In the case of subdivision, the most important property is conti-
nuity. By construction, the piecewise linear approximations p k[x] are continuous.
Thus, a natural question to ask is whether their limit p∞[x] is also continuous. If
the convergence is uniform, the answer is yes. The following theorem establishes
this fact.

THEOREM

3.2

Let p k[x] be a sequence of continuous functions. If the sequence p k[x] con-
verges uniformly to a limit function p∞[x], then p∞[x] is continuous.

Proof We begin by recalling the definition of continuity for a function. The func-
tion p∞[x] is continuous at x = x0 if given an ε > 0 there exists a neighbor-
hood of x0 such that |p∞[x] − p∞[x 0]| < ε for all x in this neighborhood. To
arrive at this inequality, we first note that due to the uniform convergence
of the p k[x], for any ε > 0 there exists an n independent of x such that,

68 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

for all k ≥ n, |p k[x] − p∞[x]| < ε

3 for all x. At this point, we can expand the
expression p∞[x] − p∞[x0] in the following manner:

p∞[x] − p∞[x0] == (p∞[x] − p k[x]) + (p k[x] − p k[x0]) + (p k[x0] − p∞[x0]),

|p∞[x] − p∞[x0]| ≤ |p∞[x] − p k[x]| + |p k[x] − p k[x0]| + |p k[x0] − p∞[x0]|.

Combining these two inequalities yields a new inequality of the form

|p∞[x] − p∞[x0]| < |p k[x] − p k[x 0]| + 2ε

3
.

Because p k[x] is continuous at x0, there exists a neighborhood of x0 for
which |p k[x] − p k[x0]| < ε

3 holds. Thus, |p∞[x] − p∞[x 0]| < ε for all x in this
neighborhood of x0.

One immediate consequence of this theorem is that anytime we prove that the
piecewise linear approximations p k[x] for a subdivision scheme converge uniformly
the resulting limit function p∞[x] is automatically continuous.

3.1.4 Uniform Convergence for Smooth Functions

As we saw earlier in this section, one drawback of pointwise convergence is that it
does not ensure that the derivative of the functions p k[x] converge to the derivative
of the limit function p∞[x]. Because the derivatives p

′
k[x] of the piecewise linear

functions p k[x] associated with a subdivision scheme are piecewise constant func-
tions, we arrive at another natural question: Do these piecewise constant functions
p

′
k[x] converge to the derivative of p∞[x] (i.e., of the limit of the functions p k[x])? The

answer is yes if the functions p
′
k[x] converge uniformly to a continuous function.

The following theorem is a slight variant of Theorem V, page 602 in [151].

THEOREM

3.3

Let the functions p k[x] converge uniformly to p∞[x]. If the derivative func-
tions p

′
k[x] converge uniformly to a function q[x], then q[x] is the derivative

of p∞[x] with respect to x.

Proof We start by showing that
∫ x

0
p

′
k[t] dt is pointwise convergent to

∫ x

0
q[t] dt for

all x. Given that the functions p
′
k[x] converge uniformly to q[x] as k → ∞,

for all ε > 0 there exists n such that for all k ≥ n

|p′
k[t] − q[t]| < ε

3.2 Analysis of Univariate Schemes 69

for all t. For a f ixed x, integrating the left-hand side of this expression on
the range [0, x] yields

∣∣∣∣∫ x

0

(p
′
k[t] − q[t]) dt

∣∣∣∣ ≤
∫ x

0

|p′
k[t] − q[t]|dt ≤ ε x

for all k ≥ n. Recalling that p
′
k[t] is by definition the derivative of p k[t], the

left-hand side of this expression reduces to

∣∣∣∣p k[x] − p k[0] −
∫ x

0

q[t] dt

∣∣∣∣ ≤ ε x.

Given a fixed x, this inequality implies that the limit of p k[x] − p k[0] as
k → ∞ is exactly

∫ x

0
q[t] dt. However, by assumption, p k[x] − p k[0] also con-

verges to p∞[x] − p∞[0]. Therefore,

p∞[x] ==
∫ x

0

q[t] dt + p∞[0]

for any choice of x. Thus, q[x] is the derivative of p∞[x] with respect to x.

3.2 Analysis of Univariate Schemes

The univariate subdivision schemes considered in the previous chapter generated a
sequence of vectors pk via the subdivision relation pk[x] = s[x]pk−1[x2]. Associating
each vector pk with a grid 1

2k
Z yields a sequence of piecewise linear functions p k[x]

whose value at the i th knot, p k

[
i

2k

]
, is the i th entry of the vector pk; that is,

p
[i

2k

]
= pk[[i]].

This section addresses two main questions concerning the sequence of functions
produced by this subdivision scheme: Does this sequence of functions p k[x] con-
verge uniformly to a limit function p∞[x]? If so, is this limit function smooth? The
answers to these questions have been addressed in a number of papers, including
those by Dahmen, Caveretta, and Micchelli in [17] and Dyn, Gregory, and Levin
in [51]. An excellent summary of these results appears in Dyn [49].

70 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

3.2.1 A Subdivision Scheme for Differences

To answer the first question, we begin with the following observation: If the max-
imal difference between consecutive coeff icients of pk goes to zero as k → ∞, the
functions p k[x] converge to a continuous function. If d[x] is the difference mask
(1 − x), the differences between consecutive coeff icients of pk are simply the co-
eff icients of the generating function d[x]pk[x]. Intuitively, as the coeff icients of
d[x]pk[x] converge to zero, any jumps in the associated linear functions p k[x] be-
come smaller and smaller. Therefore, the functions p k[x] converge to a continuous
function p[x]. Figure 3.3 shows plots of these differences for three rounds of cubic
B-spline subdivision. Note that the maximum value of these differences is decreas-
ing geometrically.

Our task in this and the next section is to develop a method for explicitly
bounding the decay of these differences in terms of the subdivision mask s[x]. At
the heart of this method is the observation that if two consecutive approximations
pk−1[x] and pk[x] are related by the subdivision mask s[x] (by pk[x] = s[x]pk−1[x2])
then the differences at consecutive levels, d[x]pk−1[x] and d[x]pk[x], are themselves
also related by a subdivision mask t[x]:

d[x]pk[x] == t[x](d[x2]pk−1[x2]). (3.1)

�2 2 4 6

�4
�3
�2
�1

1
2
3
4

�2 2 4 6

�4
�3
�2
�1

1
2
3
4

�2 2 4 6

�4
�3
�2
�1

1
2
3
4

�2 2 4 6

�4
�3
�2
�1

1
2
3
4

�2 2 4 6

1
2
3
4
5
6

�2 2 4 6

1
2
3
4
5

�2 2 4 6

1
2
3
4
5

�2 2 4 6

1
2
3
4
5

(a)

(b)

Figure 3.3 Three rounds of cubic B-spline subdivision (a) and corresponding differences (b).

3.2 Analysis of Univariate Schemes 71

Under a relatively mild assumption concerning the structure of s[x], this new
subdivision mask t[x] can be constructed directly from s[x]. If we assume that the
subdivision process defined by s[x] is invariant under aff ine transformations, the
rows of the associated subdivision matrix S must sum to one. For uniform subdi-
vision schemes, the matrix S has two types of rows: those corresponding to the
odd-indexed coeff icients s[[2i +1]] of s[x] and those corresponding to even-indexed
coeff icients s[[2i]] of s[x]. Requiring the rows of S to sum to one is equivalent to
requiring each of these coeff icient sequences to sum to one. Using simple linear
algebra, this condition can be expressed directly in terms of the mask s[x] as s[1] == 2

and s[−1] == 0. Under the assumption that s[−1] == 0, the following theorem (cred-
ited to Dyn, Gregory, and Levin [51]) relates the masks s[x] and t[x].

THEOREM

3.4

Given a subdivision mask s[x] satisfying s[−1] == 0, there exists a subdivi-
sion mask t[x] relating the differences d[x]pk−1[x] and d[x]pk[x] of the form

t[x] = s[x]
1 + x

.

Proof Recall that the approximations pk−1[x] and pk[x] are related via pk[x] =
s[x]pk−1[x2]. Multiplying both sides of this expression by the difference
mask d[x] yields

d[x]pk[x] == d[x] s[x]pk−1[x2].

Because s[x] has a root at x == −1, the polynomial 1+ x exactly divides s[x].
Therefore, there exists a mask t[x] satisfying the relation

d[x] s[x] == t[x] d[x2]. (3.2)

Substituting the t[x] d[x2] for d[x]s[x] in the previous equation yields
equation 3.1, the subdivision relation for the differences d[x] pk−1[x] and
d[x] pk[x].

Note that equation 3.2 is at the heart of this theorem. One way to better un-
derstand this equation is to construct the associated matrix version of it. The matrix
analog D of the difference mask d[x] = 1 − x is the bi-inf inite two-banded matrix
with −1 and 1 along the bands. If S and T are the bi-inf inite two-slanted subdivision

72 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

matrices whose {i , j }-th entries are s[[i − 2 j]] and t[[i − 2 j]], respectively, the matrix
analog of equation 3.2 has the form

DS == TD . (3.3)

Note that the action of the difference mask d[x] in equation 3.2 is modeled by
multiplying the two-slanted matrix S on the left by D, whereas the action of
the mask d[x2] is modeled by multiplying the two-slanted matrix T on the right
by D.

For example, if s[x] = (1+x)2

2x , then s[x] is the subdivision mask for linear subdi-
vision. The subdivision mask t[x] for the difference scheme is simply (1+x)

2x . In ma-
trix form (showing only a small portion of the bi-inf inite matrices), equation 3.3
reduces to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. −1 1 0 0 0 0 0 0 0 .

. 0 −1 1 0 0 0 0 0 0 .

. 0 0 −1 1 0 0 0 0 0 .

. 0 0 0 −1 1 0 0 0 0 .

. 0 0 0 0 −1 1 0 0 0 .

. 0 0 0 0 0 −1 1 0 0 .

. 0 0 0 0 0 0 −1 1 0 .

. 0 0 0 0 0 0 0 −1 1 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 1 0 0 0 0 .

. 1
2

1
2 0 0 0 .

. 0 1 0 0 0 .

. 0 1
2

1
2 0 0 .

. 0 0 1 0 0 .

. 0 0 1
2

1
2 0 .

. 0 0 0 1 0 .

. 0 0 0 1
2

1
2 .

. 0 0 0 0 1 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

==

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 1
2 0 0 0 .

. 1
2 0 0 0 .

. 0 1
2 0 0 .

. 0 1
2 0 0 .

. 0 0 1
2 0 .

. 0 0 1
2 0 .

. 0 0 0 1
2 .

. 0 0 0 1
2 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

.

. −1 1 0 0 0 .

. 0 −1 1 0 0 .

. 0 0 −1 1 0 .

. 0 0 0 −1 1 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

3.2 Analysis of Univariate Schemes 73

3.2.2 A Condition for Uniform Convergence

Given Theorem 3.4, we are now ready to state a condition on the subdivision mask
t[x] for the differences that is suff icient to guarantee that the associated piecewise
linear functions p k[x] converge uniformly. This condition involves the size of the
various coeff icients t[[i]] of this mask. To measure the size of this sequence of co-
eff icients, we first define a vector norm that is analogous to the previous functional
norm. The norm of a vector p has the form

‖p‖ = Max
i

|p[[i]]|.

(Again, this norm is the infinity norm in standard numerical analysis terminology.)
Given this vector norm, we can define a similar norm for a matrix A of the form

‖A‖ = Max
p�=0

‖Ap‖
‖p‖ .

Observe that if the matrix A is inf inite it is possible that the infinite sum denoted
by the product Ap is unbounded. However, as long as the matrix A has rows with
only a finite number of non-zero entries, this norm is well defined. One immediate
consequence of this definition of ‖A‖ is the inequality ‖Ap‖ ≤ ‖A‖‖p‖ for all column
vectors p. We leave it as a simple exercise for the reader to show that the norm of
a matrix A is the maximum over all rows in A of the sums of the absolute values in
that row (i.e., ‖A‖ = Maxi

∑
j |A[[i , j]]|). Using these norms, the following theorem

(again credited to Dyn, Gregory, and Levin [51]) characterizes those subdivision
schemes that are uniformly convergent.

THEOREM

3.5

Given an aff inely invariant subdivision scheme with associated subdivision
matrix S, let the matrix T be the subdivision matrix for the differences
(i.e., T satisf ies DS == TD). If ‖T‖ < 1, the associated functions p k[x] con-
verge uniformly as k → ∞ for all initial vectors p0 with bounded norm.

Proof Our approach is to bound the difference between the functions p k[x] and
p k−1[x] and then apply Theorem 3.1. Because p k−1[x] is defined using piece-
wise linear interpolation, it interpolates the coeff icients of S̃pk−1 plotted
on 1

2k
Z, where S̃ is the subdivision matrix for linear subdivision. Therefore,

‖p k[x] − p k−1[x]‖ == ‖pk − S̃pk−1‖. (3.4)

74 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

Because pk = Spk−1, the right-hand side of equation 3.4 can be rewritten as
‖(S − S̃)pk−1‖. Recalling that the subdivision mask for linear interpolation

has the form s̃ [x] = (1+x)2

2x , the mask for S− S̃ has the form s[x]− s̃ [x]. Because

both subdivision schemes are aff inely invariant, the mask s[x] − s̃ [x] has
roots at x == ± 1. Thus, s[x] − s̃ [x] is divisible by d[x2] and can be rewritten
in the form a[x]d[x2]. Converting this expression back to matrix form, S − S̃

can be expressed as the matrix product AD, where D is the difference
matrix. Thus, equation 3.4 can be rewritten in the form

‖p k[x] − p k−1[x]‖ == ‖ADpk−1‖ ≤ ‖A‖ ∗ ‖Dpk−1‖. (3.5)

Now, we observe that Dpk−1 can be written as DSk−1p0, where S is the
subdivision matrix. This expression can be reduced to Tk−1Dp0 by applying
the substitution DS == TD exactly k − 1 times. Substituting this expression
into equation 3.5 yields

‖Dpk−1‖ == ‖Tk−1 Dp0‖ ≤ ‖T‖ ∗ ‖Tk−2 Dp0‖ ≤ . . . ≤ ‖T‖k−1 ∗ ‖Dp0‖. (3.6)

Finally, setting β == ‖A‖ ∗ ‖Dp0‖ and α == ‖T‖ and applying Theorem 3.1
completes the proof.

Theorem 3.5 provides us with a constructive test for whether the subdi-
vision scheme associated with the subdivision mask s[x] is uniformly conver-
gent: Given s[x], we first compute t[x] = s[x]

1+x and then compute ‖T‖. Because T

is a matrix whose columns are two-shifts of the sequence t, this norm is simply
Max [

∑
i |t[[2i]]|, ∑i |t[[2i + 1]]|]. If this norm is less than one, the scheme defined by

s[x] is uniformly convergent.
This test, based on Theorem 3.5, is not conclusive in determining whether the

difference scheme associated with T converges to zero. It is possible to construct
examples of subdivision matrices T such that ‖T‖ > 1 but for which limn→∞‖Tn‖ → 0.
Luckily, this matrix analysis gives direct insight into a more exact condition for uni-
form convergence. Dyn et al. [51] observe that a necessary and suff icient condition
for uniform convergence is the existence of n > 0 such that ‖Tn‖ < 1. If such an n

fails to exist, the differences do not converge. If such an n exists, the differences
converge to zero and the subdivision scheme is convergent. The matrix norm ‖Tn‖

3.2 Analysis of Univariate Schemes 75

can be expressed in terms of the initial subdivision mask t[x] as follows ():

■ Subdivide n times using the mask t[x] to form the generating function t̃ [x] =∏n−1
i =0 t[x2i

]. The 2n shifts of the coeff icients t̃ of this generating function form
the columns of the matrix Tn.

■ Partition t̃ into 2n subsequences corresponding to distinct rows of Tn and
compute maxi

∑
j |̃t [[2n j + i]]| for i == 0 . . . 2n − 1.

Determining whether there exists an n such that the norm ‖Tn‖ is less than one is a
diff icult problem, for which the authors are aware of no easy solution. In practice,
we simply suggest computing ‖Tn‖ for a small number of values of n.

3.2.3 A Subdivision Scheme for Divided Differences

The previous section derived a suff icient condition on the subdivision mask t[x] =
s[x]
1+x for the corresponding functions p k[x] to converge uniformly. This subdivision
mask t[x] provides a scheme for computing differences d[x]pk[x] on increasingly f ine
grids. This section modif ies this scheme slightly to yield a subdivision mask for the
divided differences of the original scheme, providing a tighter grip on the derivative
of the limit curve. To derive this new scheme, we recall that the first derivative p′[x]

of a smooth function p[x] is the limit

p′[x] = lim
t→0

p[x] − p[x − t]
t

.

By the definition of the derivative, any possible sequence of values for t is guaranteed
to converge to the respective derivative of the smooth function p[x], as long as we
can guarantee that t → 0. Consequently, we can pick a sequence of values for t that
f its our discretization on the grid 1

2k
Z exceptionally well: substituting t = 1

2k
leads to

p′[x] = lim
k→∞

2k

(
p[x] − p

[
x − 1

2k

])
. (3.7)

If we multiply the difference operator d[x] by the constant 2k, the resulting differ-
ence mask dk[x] = 2kd[x] == 2k(1 − x) computes the first divided differences on the
grid 1

2k
Z. Higher-order divided differences can be computed using powers of the

first difference mask dk[x].
Observe that these difference masks dk[x]m+1 have the property that they an-

nihilate samples of polynomial functions of degree m taken on the grid 1
2k

Z. For

76 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

example, the second difference mask 4k(1 − x)2 annihilates generating functions
whose coeff icients are samples of linear functions. As the next theorem shows,
these difference masks play a key role in determining the behavior of a subdivision
scheme on polynomial functions.

THEOREM

3.6

Consider a subdivision scheme with mask s[x], for which integer translates
of its scaling function are linearly independent and capable of reproduc-
ing all polynomials of degree m. A limit function p∞[x] produced by this
scheme is a polynomial function of degree m if and only if its associated
generating functions pk[x] satisfy the difference relation

(1 − x)m+1 pk[x] == 0. (3.8)

Proof Consider a generating function pk[x] whose limit under subdivision by the
mask s[x] is the function p∞[x]. Due to the linearity of subdivision, mul-
tiplying pk[x] by the difference mask (1 − x)m+1 corresponds to taking an
(m+ 1)st difference of translates of p∞[x] on the grid 1

2k
Z. If p∞[x] is a poly-

nomial of degree m, this difference is identically zero. Because the integer
translates of the scaling function for this scheme are linearly independent,
the generating function (1 − x)m+1 pk[x] must also be identically zero.

Because the coeff icients of the generating function pk[x] satisfying equa-
tion 3.8 are samples of polynomial functions of degree m, the space of
solutions pk[x] to equation 3.8 has dimension m + 1, the same dimension as
the space of polynomials of degree m. Because the integer translates of the
scaling function for the scheme are linearly independent, any limit function
p∞[x] corresponding to a generating function pk[x] satisfying equation 3.8
must be a polynomial of degree m; otherwise, there would exist a polyno-
mial limit function whose initial coeff icients do not satisfy equation 3.8.

Our next goal is to construct the subdivision mask t[x] that relates the first di-
vided differences dk−1[x]pk−1[x] at level k−1 to the first divided differences dk[x]pk[x]

at level k. Making a slight modif ication to equation 3.2 yields a new relation be-
tween s[x] and t[x] of the form

dk[x] s[x] == t[x] dk−1[x2]. (3.9)

3.2 Analysis of Univariate Schemes 77

Note that the various powers of 2 attached to dk[x] and dk−1[x2] cancel, leaving a
single factor of 2 on the left-hand side. Solving for t[x] yields a subdivision mask for
the first divided difference of the form 2s[x]

1+x .
Given this subdivision scheme for the first divided difference, we can now test

whether the limit function p∞[x] associated with the original subdivision scheme
is smooth (i.e., p∞[x] ∈ C1). The coeff icients of dk[x]pk[x] correspond to the first
derivatives of the piecewise linear function p k[x], that is, the piecewise constant
function p′

k[x]. Now, by Theorem 3.3, if these functions p′
k[x] uniformly converge

to a continuous limit q[x], then q[x] is the derivative of p∞[x]. Given these obser-
vations, the test for smoothness of the original scheme is as follows: Construct
the mask 2s[x]

1+x for the divided difference scheme, and then apply the convergence
test of the previous section to this mask. If differences of this divided difference
scheme converge uniformly to zero, the first divided difference scheme converges
to continuous limit functions, whereas the original scheme converges to smooth
limit functions.

An iterated version of this test can be used to determine whether a subdivi-
sion scheme defines limit functions p∞[x] that have m continuous derivatives (i.e.,
p∞[x] ∈ Cm). Specif ically, the test must determine whether the difference of the mth
divided difference of p k[x] is converging to zero. Given a subdivision mask s[x], the
subdivision mask for this difference scheme has the form t[x] = 2ms[x]

(1+x)m+1 . If s[x] is

divisible by (1 + x)m+1, the original scheme with mask s[x] produces Cm functions if
and only if there exists n > 0 such that ‖Tn‖ < 1.

Of course, to apply this test the mask s[x] must be divisible by (1 + x)m+1. This
condition is equivalent to requiring that the mask s[x] has a zero of order m + 1

at x == −1; that is, s(i)[−1] == 0 for i == 0 . . . m. As the next theorem shows, both
of these conditions have a nice interpretation in terms of the space of functions
generated by the subdivision scheme.

THEOREM

3.7

If s[x] defines a subdivision scheme for which the integer translates of
its scaling function are linearly independent and capable of reproducing
all polynomials up to degree m, the mask s[x] satisf ies s(i)[−1] == 0 for
i == 0 . . . m.

Proof Consider the function p[x] = (1 + 2x)m. Because this function is a global
polynomial of degree m, it can be represented as a uniform B-spline of
order m + 1 on the grids Z and 1

2 Z, respectively. If p0 and p1 are coeff icient

78 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

vectors for p[x] on these grids, their generating functions p0[x] and p1[x] are
related by

p1[x] ==
1

2m
(1 + x)m+1 p0[x2].

Note that p0[x] satisf ies the difference relation (1 − x)m+1 p0[x] == 0 because
its limit function is the polynomial p[x]. If we replace x by −x in this equa-
tion and multiply both sides of the equation by the subdivision mask s[x],
the resulting equation has the form

s[x]p1[−x] ==
1

2m
(1 − x)m+1s[x]p0[x2]. (3.10)

Because (1 − x)m+1 p0[x] == 0, the limit of the subdivision process defined
by the mask s[x] is also a polynomial of degree m, due to Theorem 3.6.
Therefore, the order (m + 1)st difference of s[x]p0[x2] must be zero, and
the right-hand side of equation 3.10 is identically zero (i.e., s[x]p1[−x] == 0).

Now, our care in choosing the function p[x] pays off. Using blossoming,
we can show that the coeff icients of the vector p1 have the form p1[[i]] =∏i +m−1

j =i j . Thus, the constant coeff icient of s[x]p1[−x] has the form

∞∑
i =−∞

(−1)i s[[i]]p1[[−i]] ==
∞∑

i =−∞

(
(−1)i s[[i]]

−i +m−1∏
j =−i

j

)
.

Finally, we observe that the right-hand side of this expression can be
reduced to s(m)[−1] by distributing a factor (−1)m inside the product and
reversing the order of multiplication of the product. Because the constant
coeff icient of s[x]p1[x2] is zero, s(m)[−1] is also zero.

This theorem guarantees that if a scheme reproduces all polynomials of up
to degree m then its mask s[x] is divisible by (1 + x)m+1 and thus there exists a
subdivision mask t[x] for the difference of the mth divided differences. Assuming
polynomial reproduction of up to degree m is not a particularly restrictive condition
because it is known that under fairly general conditions this condition is necessary
for schemes that produce Cm limit functions (see section 8.2.4 or [123]).

3.2 Analysis of Univariate Schemes 79

3.2.4 Example: The Four-point Scheme

The previous section described a simple method of determining whether a sub-
division scheme produces limit functions that are smooth. In this section, we
use this method to analyze the smoothness of a simple uniform scheme. A uni-
variate subdivision scheme is interpolatory if its mask s[x] has the property that
s[[0]] == 1 and s[[2i]] == 0 for all i �= 0. (The odd entries of the mask are uncon-
strained.) The effect of this condition on the corresponding subdivision matrix S is
to force the even-indexed rows of S to be simply unit vectors, that is, vectors of the
form {. . . , 0, 0, 1, 0, 0, . . .}. Geometrically, interpolatory subdivision schemes have
the property that control points in pk−1 are left unperturbed during subdivision,
with only new points being inserted into pk.

Figure 3.4 illustrates an example of such an interpolatory scheme, the four-point
scheme of Deslauries and Dubic [43, 50]. The subdivision mask s[x] for this scheme
has the form

s[x] = − 1
16

x−3 + 9
16

x−1 + 1 + 9
16

x − 1
16

x3.

The corresponding subdivision matrix S has the form

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 1 0 0 0 0 .

. 9
16

9
16 − 1

16 0 0 .

. 0 1 0 0 0 .

. − 1
16

9
16

9
16 − 1

16 0 .

. 0 0 1 0 0 .

. 0 − 1
16

9
16

9
16 − 1

16 .

. 0 0 0 1 0 .

. 0 0 − 1
16

9
16

9
16 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�2 2 4 6

�3
�2
�1

1
2

�2 2 4 6

�3
�2
�1

1
2

�2 2 4 6

�3
�2
�1

1
2

�2 2 4 6

�3
�2
�1

1
2

Figure 3.4 Three rounds of subdivision using the four-point scheme.

80 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

This particular subdivision mask is the interpolatory mask of minimal support,
with the property that the associated subdivision scheme reproduces cubic func-
tions. Specif ically, if the initial coeff icients p0 are samples of a cubic function p[x]

(i.e., p0[[i]] = p[i]), the associated limit function is exactly p[x]. For example, if the
initial coeff icients p0 satisfy p0[[i]] = i 3, applying the row mask (− 1

16 , 9
16 , 9

16 , − 1
16) to

four consecutive coeff icients (i 3, (i + 1)3, (i + 2)3, (i + 3)3) yields a new coeff icient
centered at x = i + 3

2 of the form (i + 3
2)

3. Subdividing a uniformly sampled cubic
function with this mask yields a denser sampling of the same cubic function.

This method of choosing subdivision masks based on reproducing polynomial
functions represents a distinct approach from the integral method of the previous
chapter. However, interpolatory schemes that approximate solutions to variational
problems can be generated using the linear programming techniques described in
Chapter 5.

For the remainder of this section, we analyze the smoothness of the limit func-
tions produced by this four-point scheme. We begin by computing the subdivision
mask t1[x] = s[x]

1+x for the associated difference scheme. This mask has the form

t1[x] = − 1
16

x−3 + 1
16

x−2 + 1
2

x−1 + 1
2

+ 1
16

x − 1
16

x2.

If T1 is the subdivision matrix associated with this mask t1, then ‖T1‖ = 5
8 . There-

fore, via Theorem 3.5, this difference scheme converges to zero, and thus the
four-point scheme produces continuous limit functions. Figure 3.5 depicts the
application of the subdivision scheme for the divided differences 2t1[x] to the dif-
ferences of the coeff icients of the previous example.

To determine whether the four-point scheme produces smooth limit functions,
we next compute the difference scheme t2[x] = 2t1[x]

1+x for the divided difference
scheme 2t1[x]. The mask t2[x] has the form

t2[x] = −1
8

x−3 + 1
4

x−2 + 3
4

x−1 + 1
4

− 1
8

x .

�2 2 4 6

�4
�3
�2
�1

1
2
3
4

�2 2 4 6

�4
�3
�2

1
2
3
4

�2 2 4 6

�4
�3
�2

1
2
3
4

�2 2 4 6

�4
�3
�2

1
2
3
4

Figure 3.5 Three rounds of subdivision for the first divided differences from Figure 3.4.

3.3 Analysis of Bivariate Schemes 81

At this point, we observe that ‖T2‖ = 1. Thus, Theorem 3.5 is not suff icient to
conclude that the scheme associated with t2[x] converges to zero. However, because
‖(T2)2‖ = 3

4 , the difference scheme t2[x] converges to zero. Therefore, the divided
difference scheme 2t1[x] converges to continuous functions, and thus the four-point
scheme converges to smooth functions.

To conclude, we can compute the difference scheme t3[x] = 2t2[x]
1+x associated

with the second divided difference scheme 2t2[x]. The mask t3[x] has the form

t3[x] = −1
4

x−3 + 3
4

x−2 + 3
4

x−1 − 1
4

.

Unfortunately, ‖(T3)n‖ is one for all n > 0. Therefore, the four-point scheme does
not produce C2 limit functions.

3.3 Analysis of Bivariate Schemes

We conclude this chapter by developing tools for analyzing the convergence and
smoothness of uniform, bivariate subdivision schemes. As in the univariate case,
the key is to develop a subdivision scheme for various differences associated with
the original scheme. However, in the bivariate case, the number of differences that
need to be considered is larger than in the univariate case. As a result, the subdivi-
sion schemes for these differences, instead of being scalar subdivision schemes, are
subdivision schemes involving matrices of generating functions. This technique in-
volving matrices of generating functions (pioneered by Dyn, Hed, and Levin [52])
generalizes to higher dimensions without diff iculty. Again, Dyn [49] provides an
excellent overview of this technique.

Given an initial vector of coeff icients p0 whose entries are indexed by points
on the integer grid Z

2, bivariate subdivision schemes generate a sequence of vectors
pk via the subdivision relation pk[x , y] = s[x , y]pk−1[x2, y2]. As in the univariate case,
our approach to analyzing the behavior of these schemes is to associate a piecewise
bilinear function p k[x, y] with the entries of the vector pk plotted on the grid 1

2k
Z

2.
In particular, the value of this function p k[x, y] at the grid point { i

2k
, j

2k
} is simply the

i j th coeff icient of the vector pk; that is,

p k

[
i

2k
,

j
2k

]
= pk[[i , j]].

Given this sequence of functions p k[x, y], this section attempts to answer the same
two questions posed in the univariate case: Does this sequence of functions p k[x, y]

82 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

converge to a limit? If so, is the limit function smooth? The rest of this section
develops the necessary tools to answer these questions.

3.3.1 A Subdivision Scheme for Differences

As in the univariate case, the key observation is to consider the behavior of various
differences associated with the scheme. If the differences of p k[x, y] in both the x

and y directions simultaneously converge to zero, the functions p k[x, y] converge to
a continuous function. To measure both of these differences at once, we consider
a column vector of differences of the form

(
d[x]
d[y]

)
pk[x , y]. As we shall see, the decay

of these differences is governed by a theorem similar to that of Theorem 3.5.
Following the same strategy as in the univariate case, our next step is to derive a

subdivision scheme that relates these differences at consecutive levels. To derive
the subdivision mask for this difference scheme in the univariate case, we assumed
that the subdivision mask s[x] associated with the subdivision scheme was aff inely
invariant. In the bivariate case, we make a similar assumption. For a bivariate sub-
division mask s[x , y] to be aff inely invariant, the rows of its associated subdivision
matrix S must sum to one. Following a line of reasoning similar to that of the uni-
variate case, this condition can be expressed directly in terms of the subdivision
mask s[x , y] as

s[1, 1] = 4,

s[−1, 1] = 0,

s[1, −1] = 0,

s[−1, −1] = 0.

(3.11)

However, at this point, a fundamental distinction between the univariate and the
bivariate case arises. In the univariate case, the subdivision scheme for the differ-
ences had the form t[x] = s[x]

1+x , where s[x] was the subdivision mask for the original
scheme. In the bivariate case, there are two distinct differences d[x] and d[y] to con-
sider. Attempting to derive two independent subdivision schemes, one for d[x] of
the form s[x ,y]

1+x and one for d[y] of the form s[x ,y]
1+y , is doomed to failure. The crucial

difference is that in the univariate case aff ine invariance of the univariate mask s[x]

guaranteed that (1 + x) divided s[x]. However, in the bivariate case, aff ine invari-
ance is not suff icient to ensure that both (1 + x) and (1 + y) divide s[x , y]. Luckily, if
both differences are considered simultaneously, there exists a matrix of generating
functions that relates the differences at level k−1,

(
d[x]
d[y]

)
pk−1[x , y], to the differences

3.3 Analysis of Bivariate Schemes 83

at level k,
(

d[x]
d[y]

)
pk[x , y]. This matrix of generating functions satisf ies the following

theorem, credited to Dyn et al. [49, 52].

THEOREM

3.8

Given a subdivision mask s[x , y] that is aff inely invariant (i.e., satisf ies equa-
tion 3.11), there exists a matrix of generating functions ti j [x , y] satisfying(

d[x]
d[y]

)
s[x , y] ==

(
t00[x , y] t01[x , y]
t10[x , y] t11[x , y]

)(
d[x2]
d[y2]

)
. (3.12)

Proof Because s[x , y] satisf ies equation 3.11, the polynomial d[x] s[x , y] vanishes
at the intersection of the curves d[x2] == 0 and d[y2] == 0, that is, the four
points {x , y} == {±1, ±1}. Because these two curves intersect transversally
(i.e., are not tangent) at these four points, the polynomial d[x] s[x , y] can
be written as a polynomial combination of d[x2] and d[y2]. (See section
6.1 of Kunz [90] or lemma 3.1 in Warren [156] for a proof.) The masks
t00[x , y] and t01[x , y] are the coeff icients used in this combination. A similar
argument for d[y] s[x , y] yields the masks t10[x , y] and t11[x , y].

For example, consider the subdivision mask for the four-direction quadratic
box splines: s[x , y] = 1

4 (1 + x)(1 + y)(1 + xy)(x + y). The matrix of subdivision masks

(ti j [x , y]) for the differences
(

d[x]
d[y]

)
s[x , y] has the form

1
4

(
(1 + y)(x + y)(1 + xy) 0

0 (1 + x)(x + y)(1 + xy)

)
.

Unfortunately, these matrix masks ti j [x , y] are not unique. For example, adding the
term d[y2] to t00[x , y] can be canceled by subtracting the term d[x2] from t01[x , y].
However, as we shall shortly see, there is a good method for choosing specif ic
generating functions ti j [x , y] based on minimizing the norm for this matrix.

3.3.2 A Condition for Uniform Convergence

In the univariate case, Theorem 3.5 states a suff icient condition on a subdivi-
sion mask s[x] for its associated subdivision scheme to be convergent. The key to
the proof of the theorem was converting equation 3.2 to the equivalent matrix
(non-generating function) form DS = TD . Convergence of the scheme associated

84 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

with S could then be characterized in terms of the norm ‖T‖. In the bivariate case, a
similar conversion for equation 3.12 into block matrix form is useful. In particular,
the matrix of masks (ti j [x , y]) has a block matrix analog of the form

T ==

(
T00 T01

T10 T11

)
, (3.13)

where T i j is the matrix version of the subdivision mask ti j [x , y]. Note that this block
matrix T formed by the Ti j has eight types of rows: four rows corresponding to
the first row (T 00 T01) and four rows corresponding to the second row (T10 T11).
The norm of the matrix T is the maximum, over each of these rows, of the sum of
the absolute values of the entries in the row. If the ti j are the coeff icient vectors for
the generating function ti j [x , y], the norm of the block matrix T can be expressed in
terms of the ti j as

‖T‖ = Max
i

[∑
j ,k,l

|ti j [[2k, 2l]]|,
∑
j ,k,l

|ti j [[2k + 1, 2l]]|, (3.14)

∑
j ,k,l

|ti j [[2k, 2l + 1]]|,
∑
j ,k,l

|ti j [[2k + 1, 2l + 1]]|
]

.

Note that this equation allows us to compute the norm of T without explicitly
constructing T. (In fact, T simply serves as a notational convenience for manip-
ulating the norms of various quantities associated with the subdivision scheme.)
Convergence of the subdivision scheme associated with s[x , y] can be characterized
in terms of the norm ‖T‖.

THEOREM

3.9

Let s[x , y] be the subdivision mask for an aff inely invariant subdivision
scheme. If the block matrix subdivision mask T for the difference scheme
(given in equation 3.13) has norm ‖T‖ < 1, the associated functions p k[x, y]

converge uniformly as k → ∞ for all initial vectors p0 with bounded norm.

Proof The proof has essentially the same structure as the proof of Theorem 3.5.
Again, our goal is to show that the difference ‖p k[x, y] − p k−1[x, y]‖ decays
geometrically as k → ∞ and to apply Theorem 3.1. If S̃ is the subdivision
matrix for bilinear subdivision, then

‖p k[x, y] − p k−1[x, y]‖ == ‖pk − S̃ pk−1‖ == ‖(S − S̃)pk−1‖.

3.3 Analysis of Bivariate Schemes 85

If the mask for bilinear subdivision is s̃ [x , y], the mask for the expres-
sion (S − S̃) has the form s[x , y] − s̃ [x , y]. Because this mask vanishes at
{d[x2] == 0, d[y2] == 0}, s[x , y] − s̃ [x , y] can be written as a polynomial com-
bination of d[x2] and d[y2] (as argued in the proof of Theorem 3.8):

s[x , y] − s̃ [x , y] == a0[x , y] d[x2] + a1[x , y] d[y2]

== (a0[x , y] a1[x , y])

(
d[x2]
d[y2]

)
.

After converting this expression back into matrix form, the proof concludes
in complete analogy with the univariate case via equation 3.6.

Due to this theorem, if ‖T‖ < 1, the bivariate subdivision mask s[x , y] produces
continuous limit functions. This observation leads us to our method for uniquely
determining the ti j [x , y]. Given s[x , y], we choose the generating function ti j [x , y] so
as to satisfy Theorem 3.8 while minimizing ‖T‖. This minimization can be done
using linear programming in a manner similar to that of section 5.2.3. As in the
univariate case, having ‖T‖ < 1 is not necessary for a bivariate scheme to converge.
In general, a necessary and suff icient condition for a bivariate scheme to con-
verge is the existence of an n > 0 such that ‖Tn‖ < 1. (See Dyn [49] for more details.)

3.3.3 Convergence to a Smooth Function

In the univariate case, testing whether a limit function is Cm continuous involves
taking m + 1 successive differences of the coeff icient vector pk. In terms of gen-
erating functions, this test for Cm continuity involves determining whether the co-
eff icients of d[x] dk[x]m pk[x] converge to zero as k → ∞ for any initial choice of
p0. Given a subdivision mask s[x] for the original scheme, we constructed a new
subdivision mask of the form t[x] = 2ms[x]

(1+x)m+1 for these order m + 1 differences. The

original scheme produces Cm functions if there exists an n > 0 such that ‖Tn‖ < 1.
In the bivariate case, deriving a test on the subdivision mask s[x , y] that is

suff icient to determine whether the subdivision scheme converges to Cm limit
functions is much more complicated due to the fact that we must consider the
differences d[x] and d[y] of m + 1 distinct divided differences of order m:

{dk[x]m, dk[x]m−1dk[y], . . . , dk[y]m}.

86 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

Due to the growth in the number of differences as m increases, attempting to
iterate Theorem 3.8 is very awkward. Instead, we propose an alternate approach
based on computing an (m + 2) × (m + 2) matrix of generating functions (ti j [x , y])

that directly relates the various differences of order m+ 1 at successive levels. As in
the univariate case, the existence of this matrix depends on whether the scheme is
capable of reproducing polynomials of degree m.

Via Theorem 3.7, if a univariate scheme reproduces polynomials up to degree
m, its mask s[x] has a zero of order m + 1 at x == −1 and consequently the subdivision
mask t[x] for the (m + 1)st difference scheme is guaranteed to exist. In the bivariate
case, a similar result holds. If integer translates of the scaling function for the scheme
are linearly independent and reproduce all polynomials of up to degree m, its mask
s[x , y] has a zero of order m + 1 at the points {{−1, 1}, {1, −1}, {−1, −1}}; that is,

s(i , j)[−1, 1] == 0,

s(i , j)[1, −1] == 0,

s(i , j)[−1, −1] == 0

(3.15)

for all i , j ≥ 0 and i + j ≤ m (). (The proof of this fact is nearly identical to that of
Theorem 3.7.)

As the next theorem shows, any subdivision scheme whose mask s[x , y]

satisf ies equation 3.15 has an associated subdivision scheme for the order (m+ 1)st
differences whose matrix mask (ti j [x , y]) satisf ies the following relation.

THEOREM

3.10

If the subdivision mask s[x , y] satisf ies equation 3.15, there exists a matrix
of generating functions ti j [x , y] satisfying

2m

⎛⎜⎜⎜⎜⎜⎝
d[x]m+1

d[x]m d[y]
.

d[x] d[y]m

d[y]m+1

⎞⎟⎟⎟⎟⎟⎠ s[x , y] ==

⎛⎜⎜⎜⎜⎜⎜⎝
t00[x , y] t01[x , y] . t0m[x , y] t0 (m+1)[x , y]

t10[x , y] t11[x , y] . t1m[x , y] t1 (m+1)[x , y]

.

tm0[x , y] tm1[x , y] . tmm[x , y] tm(m+1)[x , y]

t(m+1)0[x , y] t(m+1)1[x , y] . t(m+1) m[x , y] t(m+1)(m+1)[x , y]

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
d[x2]m+1

d[x2]md[y2]
.

d[x2] d[y2]m

d[y2]m+1

⎞⎟⎟⎟⎟⎟⎟⎠ .

3.3 Analysis of Bivariate Schemes 87

Proof The polynomial span of d[x2]m+1, d[x2]md[y2], . . . , d[y2]m+1 is the space of
all polynomials with order m + 1 zeros at each of {x , y} = {±1, ±1}. (See
lemma 3.1 of Warren [156] for a proof of this fact.) Now, note that the
polynomial d[x]i d[y] j s[x , y] has zeros of order m+1 at {x , y} = {±1, ±1} for all
i + j == m + 1. Therefore, d[x]i d[y] j s[x , y] can be expressed as a polynomial
combination of these functions with the i th row of the matrix consist-
ing of the polynomial coeff icients of the functions d[x2]m+1, d[x2]md[y2], . . . ,

d[y2]m+1.

For example, the subdivision mask s[x , y] for the four-direction quadratic box spline
has the form 1

4 (1 + x)(1 + y)(1 + xy)(x + y). This mask has zeros of order one at
{{1, −1}, {−1, 1}, {−1, −1}}. Therefore, there exists a matrix subdivision scheme for

the second differences
(

d[x]2

d[x]d[y]

d[y]2

)
of the form

(ti j [x , y]) ==

⎛⎜⎜⎝
1
2 + xy

2 + x y2

2 + y3

2 − 1
2 + x

2 + y
2 − xy

2 0

0 x
2 + y

2 + x2 y
2 + x y2

2 0

0 − 1
2 + x

2 − xy
2 + y3

2
1
2 + x3

2 + y
2 + xy

2

⎞⎟⎟⎠ . (3.16)

Given this matrix of generating functions ti j [x , y], we can now apply an analysis
similar to that for the case of m == 0 to prove that this scheme is C1. The key is to
convert the matrix of generating functions ti j [x , y] into an equivalent block matrix
T = (T i j) and compute its norm using equation 3.14. If there exists an n > 0 such
that ‖Tn‖ < 1, the differences of the order m divided differences converge to zero
as k → ∞. Thus, by Theorem 3.9, the subdivision produces limit functions that are
Cm continuous.

THEOREM

3.11

Let s[x , y] be a subdivision mask s[x , y] satisfying equation 3.15 that pro-
duces a limit function p∞[x, y] ∈ Cm−1. If ‖T‖ < 1, where T = (Ti j) is the block
matrix version of the matrix (ti j [x , y]) in Theorem 3.10, then p∞[x, y] ∈ Cm

for all initial vectors p0 with bounded norm.

Proof Removing the first two entries of the difference vector 2mk

⎛⎜⎝ d[x]m+1

d[x]m d[y]
.

d[x] d[y]m

d[y]m+1

⎞⎟⎠ and

factoring these two expressions reveals that the differences of the mth di-
vided difference with respect to x,

(
d[x]
d[y]

)
dk[x]m pk[x , y], converge uniformly to

zero, in that ‖T‖ < 1. Therefore, via Theorem 3.9, the limit of dk[x]m pk[x , y]

88 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

as k → ∞ is a continuous function. Because the original scheme was as-
sumed to converge uniformly to a Cm−1 continuous function, these divided
differences dk[x]m pk[x , y] converge to p(m, 0)

∞ [x, y] as k → ∞, with the proof
being completely analogous to that of Theorem 3.3. Because a similar ar-
gument holds for the remaining partial derivatives of p∞[x, y] of order m,
p∞[x, y] is a Cm function.

Returning to our example of the four-direction quartic box splines, if T = (T i j)

is the block matrix version of the subdivision mask of equation 3.16, then ‖T‖ = 1,
‖T2‖ = 1, and ‖T3‖ = 1

2 (). Consequently, four-direction quadratic box splines are
at least C1. We conclude the chapter by analyzing the smoothness of two bivariate
interpolatory subdivision schemes.

3.3.4 Example: Bivariate Interpolatory Schemes

Finally, we consider the smoothness of two bivariate subdivision schemes. A bivari-
ate subdivision scheme is interpolatory if its mask s[x , y] has the form s[[0, 0]] == 1

and s[[2i , 2 j]] == 0 for all i , j �= 0. (The remaining entries can be chosen arbitrarily.)
As in the univariate case, the effect of this condition on the associated subdivision
matrix S is to force one of the four types of rows in S to be shifts of the unit vector.
As a result, the action of an interpolatory scheme is to leave the coeff icients pk−1 at

1
2k−1

Z
2 unperturbed and to simply insert new coeff icients into pk at the midpoints

of edges and the center of faces in 1
2k−1

Z
2. We conclude this chapter by considering

two examples of bivariate interpolatory schemes: one for three-direction triangular
grids and one for tensor product grids.

The Butterf ly scheme of Dyn et al. [55] is a bivariate interpolatory subdivision
scheme defined on a triangular grid. This triangular grid can be embedded in Z

2

via the three direction vectors {{1, 0}, {0, 1}, {1, 1}}. Its subdivision mask s[x , y] has
the form

s[x , y] = 1
16

(x−3 x−2 x−1 x0 x1 x2 x3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 −1 0

0 0 −1 0 2 0 −1

0 −1 2 8 8 2 −1

0 0 8 16 8 0 0

−1 2 8 8 2 −1 0

−1 0 2 0 −1 0 0

0 −1 −1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y−3

y−2

y−1

y0

y1

y2

y3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

3.3 Analysis of Bivariate Schemes 89

Applying basic calculus, it is easy to show that s[x , y] has zeros of order four at
(x , y) = {{−1, 1}, {1, −1}, {−1, −1}}. This observation agrees with the fact that this
scheme reproduces polynomials of up to degree three. To analyze the behavior of
this scheme, we next apply Theorem 3.8 with m == 0 and compute the subdivision
matrix T for the first differences. (See the implementation for the actual matrix
of masks ().) This matrix T has a norm of 7

8 . Therefore, the Butterf ly scheme
converges to a continuous function.

To continue our smoothness analysis, we next compute the subdivision matrix
T for the difference of divided differences (i.e., m == 1). In this case, ‖T‖ == 3

2 .
However, computing the norm of higher powers of T, ‖Tn‖, yields values 1.5,

2.06658, 1.8632, 1.47043, 1.16169, and finally 0.879105 for T6. Therefore, the But-
terf ly scheme produces C1 limit functions on uniform grids.

Finally, we note that the Butterf ly scheme cannot produce C2 limit functions.
For initial coeff icient vectors p0 that are cylinders with respect to the x axis (i.e.,
p0[[i , j]] == p0[[i , k]] for all i , j , k), the action of the subdivision mask s[x , y] on p0 is
equivalent to the action of the mask s[x , 1] on p0. Because this mask replicates the
action of the four-point scheme, which is known to be exactly C1, the Butterf ly
scheme is also exactly C1. The left-hand portion of Figure 3.6 shows a scaling
function for the Butterf ly scheme.

We conclude by analyzing the smoothness of a second type of interpolatory
scheme for two-direction (tensor product) meshes. The scheme has a bivariate

�2
�1

�2

�1

0

1

2

0
.25
.5

.75
1

0

1

2

�2
�1

�2

�1

0

1

2

0
.25
.5

.75
1

0

1

2

(a) (b)

Figure 3.6 Scaling functions for (a) the Butterfly subdivision scheme and (b) an interpolating scheme on
quads.

90 C H A P T E R 3 Convergence Analysis for Uniform Subdivision Schemes

mask s[x , y] of the form

s[x , y] = 1
32

(x−3 x−2 x−1 x0 x1 x2 x3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 −2 −1 0 0

0 0 0 0 0 0 0

−1 0 10 18 10 0 −1

−2 0 18 32 18 0 −2

−1 0 10 18 10 0 −1

0 0 0 0 0 0 0

0 0 −1 −2 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y−3

y−2

y−1

y0

y1

y2

y3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that this subdivision mask is not the tensor product of the four-point mask
with itself (as used in Kobbelt [81]). In particular, s[x , y] has a smaller support than
the tensor product mask because the coeff icients corresponding to x±3 y±3 are zero
in s[x , y].

The mask s[x , y] has zeros of order three at (x , y) = {{−1, 1}, {1, −1}, {−1, −1}},
corresponding to the fact that the scheme reproduces polynomials of up to degree
two. To analyze the behavior of this scheme, we first apply Theorem 3.8 with
m == 0 and compute the subdivision matrix T for the first differences. (See the
implementation for the actual matrix of masks ().) This matrix T has a norm
of 3

4 . Therefore, the scheme converges to a continuous function. To continue the
analysis, we compute the subdivision matrix T for the differences of f irst divided
differences (i.e., m == 1). The norm of this matrix has ‖T‖ == 5

4 . However, as n

increases, ‖Tn‖ takes on the values 1.25, 1.30078, 1.01002, 0.715133. Therefore, this
scheme produces C1 limit functions on uniform grids. An argument similar to that
used for the Butterf ly scheme limits the smoothness of this scheme to being C1.
The right-hand side of Figure 3.6 shows an example of a scaling function for this
scheme.

C H A P T E R 4

A Differential Approach
to Uniform Subdivision

At its heart, much of the theory of splines revolves around a simple idea. Given
a space of functions and a set of knots, splines are smooth, piecewise functions
whose segments (the parts between two adjacent knots) lie in the given function
space. Unfortunately, this simplicity often gets lost in the details of attempting to
piece these segments of a spline together smoothly. One of the main benefits of the
integral approach to subdivision described in Chapter 2 is that these smoothness
conditions used in connecting adjacent segments of the spline are never considered
explicitly. Instead, the smoothness of the splines arises directly from the integral
definition of the scaling functions for B-splines and box splines.

This chapter introduces a differential method for constructing subdivision
schemes. Given a differential equation whose solutions form the segments of the
spline, this method involves deriving a finite difference equation that characterizes
a sequence of solutions to the differential equation on increasingly f ine grids. If
the right-hand side of this difference equation is chosen appropriately, successive
solutions to this f inite difference equation, pk−1[x] and pk[x], can be related via a
subdivision recurrence of the form pk[x] = sk−1[x]pk−1[x2]. This differential method
is essentially a new technique, introduced by the authors in [160]. The primary
advantage of this approach is that it can reproduce all of the schemes resulting
from the integral approach (such as B-splines and box splines) while yielding new
schemes (such as those for thin plates [162] and slow flows [163]) that do not
possess any equivalent integral formulation. (These new subdivision schemes are
the topic of Chapter 5.)

The first two sections of this chapter reconsider the two examples of Chap-
ter 2, B-splines and box splines, from a differential point of view. In each case, the
differential approach yields the same subdivision mask as the integral approach.
By taking a slightly more abstract, operator-based view, the relation between these

91

92 C H A P T E R 4 A Differential Approach to Uniform Subdivision

two approaches can be captured with beautiful precision. Starting from the differ-
ential approach, the third section derives the subdivision scheme for exponential
B-splines. The chapter concludes with a section devoted to a particularly useful
variant of exponential splines.

4.1 Subdivision for B-splines

As its f irst example, Chapter 2 considered the case of polynomial splines. Specif i-
cally, we constructed the refinement relation for the B-spline basis function from a
recursive definition based on integration. In this chapter, we revisit the case of poly-
nomial splines and rederive their associated subdivision scheme using a differential
approach. The starting point for the differential approach is a differential equation
that governs segments of the splines. In the case of polynomial splines of order m,
because the segments are polynomials of degree m− 1, they satisfy a homogeneous
differential equation of order m of the form

p(m)[x] == 0.

Given an initial vector of control points p0, our goal is to construct a subdivi-
sion scheme that converges to a function p[x] that approximates p0 on the grid Z

and whose pieces satisfy this differential equation (i.e., are polynomials of degree
m − 1). At the integer knots Z, p[x] should have maximal smoothness (i.e., be Cm−2

continuous).
Our approach is to derive a right-hand side for this differential equation that

characterizes the B-spline curve p[x] as a function of the initial control points p0.
Given this differential equation, we then construct a sequence of associated finite
difference equations. If we have chosen the right-hand side of this differential equa-
tion correctly, these difference equations possess a sequence of discrete solutions
pk[x] whose coeff icients converge to the B-spline p[x]. Finally, comparing the finite
difference equations for two successive levels yields a subdivision mask sk−1[x] that
relates two successive solutions pk−1[x] and pk[x]. This construction yields a remark-
ably simple expression for sk−1[x] in terms of the divided difference masks dk−1[x]

and dk[x] associated with the differential equation.

4.1.1 A Differential Equation for B-splines

By definition, a B-spline curve p[x] is a linear combination of integer translates of the
B-spline basis function nm[x]. In section 2.3.1, this basis function itself is expressed

4.1 Subdivision for B-splines 93

as the difference of integer translates of the truncated power cm[x]. Thus, if this
truncated power can be expressed as the solution to a differential equation, this
relation can be used to express a B-spline curve p[x] as the solution to a related
differential equation. To this end, recall that the truncated power cm[x] satisf ies the
integral recurrence of equation 2.19 as

cm[x] =
∫ ∞

0

cm−1[x − t] dt,

where c1[x] is the unit step function. At this point, we introduce two operators that
play a crucial role throughout this chapter. These operators are complementary
in nature and help to illuminate the link between the integral and the differential
approach to subdivision. The first operator I[x] is an integral operator of the form

I[x] p[x] =
∫ ∞

0

p[x − t] dt.

(Note that the limit of p[x] as x → −∞ must be zero for the integral to converge.)
Repeated applications of I[x] can be written in operator form as I[x]m.

For example, the integral recurrence for the truncated powers cm[x] can be
written in operator form as cm[x] = I[x]cm−1[x]. The base case for this recurrence can
be lowered to m == 0 by observing that c1[x] == I[x]δ[x], where δ[x] is the Dirac delta
function. This function, δ[x], is a distribution that is zero everywhere except at the
origin. At the origin, δ[x] has a unit “impulse” whose integral is one. (See pages
69–97 in Bracewell [12] and pages 79–82 in Spanier et al. [143] for more details
on distributions and the Dirac delta.) Unwinding this recurrence to the base case
of c0[x] == δ[x] yields an explicit integral equation for cm[x] of the form

cm[x] = I[x]mδ[x]. (4.1)

Similarly, the integral definition of the B-spline basis functions, equation 2.3, can be
written as an integral recurrence of the form nm[x] = I[x](nm−1[x] − nm−1[x − 1]). Again,
this recurrence can be extended to have a new base case of the form n0[x] = δ[x]. In
fact, unwinding this recurrence and replacing n0[x] by c0[x] in the base case yields
an alternative proof for Theorem 2.4.

The second important operator is D[x], the derivative operator. Application
of this operator takes the form D[x] p[x], which by definition is simply the first
derivative of p[x] with respect to x (i.e., p(1)[x]). Again, repeated application of the
operator D[x] is written as D[x]m and corresponds to taking the mth derivative of a
function with respect to x. As one might expect, these operators are closely related.
In particular, I[x] and D[x] are inverses in Theorem 4.1.

94 C H A P T E R 4 A Differential Approach to Uniform Subdivision

THEOREM

4.1

Let p[x] be a function whose integral I [x] p[x] is a continuous function. Then

D [x]I [x] p[x] == p[x].

Proof By definition, I [x] p[x] is the integral
∫ ∞

0
p[x − t] dt. By a simple change of

variables, the integral can be rewritten as
∫ x

−∞ p[t] dt. Taking the derivative
of this integral with respect to x corresponds to taking the limit of the
expression

1
ε

(∫ x

−∞
p[t] dt −

∫ x−ε

−∞
p[t] dt

)
as ε → 0. Combining the two integrals yields a new expression of the form
1
ε

∫ x

x−ε
p[t] dt. Because the value of this integral is a continuous function (by

assumption), the limit as ε → ∞ is exactly p[x].

(A similar theorem holds in the case when p[x] is the Dirac delta function and the
integral I[x] p[x] is the step function c1[x].) Because D[x] is the left inverse of I[x],
multiplying both sides of equation 4.1 by D[x]m yields a differential equation for
the truncated powers of the form

D[x]mcm[x] == δ[x]. (4.2)

Thus, the truncated powers cm[x] are the solutions to the differential equation
p(m)[x] == δ[x]. Solutions to differential equations whose right-hand side is the Dirac
delta δ[x] are often referred to as a Green’s function, associated with the differential
operator. Note that the Green’s functions for this differential operator are unique
only up to addition of any polynomial of degree m − 1.

Having derived a differential equation for the truncated powers, we next con-
struct the differential equation for a basis function nm[x] using Theorem 2.4. In
particular, if dm[x] is the generating function (1 − x)m, the B-spline basis function
nm[x] has the form

∑m
i =0 dm[[i]] cm[x − i], where dm[[i]] is the coeff icient of xi in dm[x].

Substituting this relation into equation 4.2 reveals that nm[x] satisf ies the differential
equation

D[x]mnm[x] ==
m∑

i =0

dm[[i]] δ[x − i]. (4.3)

4.1 Subdivision for B-splines 95

An equivalent method of arriving at this differential equation starts from the
integral definition of B-spline basis functions expressed in terms of the integral
operator I [x]:

nm[x] = I [x](nm−1[x] − nm−1[x − 1]). (4.4)

Multiplying both sides of this equation by D[x] yields a differential recurrence for
the B-spline basis functions of the form

D[x]nm[x] == nm−1[x] − nm−1[x − 1].

Iterating this recurrence m times and substituting δ[x] for n0[x] in the base case yields
equation 4.3 as desired.

To derive the differential equation for an arbitrary B-spline p[x], we recall
that p[x] can be written as a linear combination of translated basis functions:∑

i p0[[i]]nm[x − i], where p0 is the initial vector of control points. Substituting this
definition into the previous equation reveals that p[x] satisf ies a differential equation
of the form

D[x]mp[x] ==
∑

i

dp0[[i]] δ[x − i], (4.5)

where dp0 is the vector of coeff icients of the generating function dm[x]p0[x]. Note
that these coeff icients are simply the mth differences of successive control points
in p0 on the grid Z. Because the right-hand side of this equation is zero between
integer knots, the segments of p[x] are polynomials of degree m − 1. Due to the
placement of the Dirac delta functions at the integer knots, the function p[x] has at
least Cm−2 continuity at these knots.

4.1.2 A Finite Difference Equation for B-splines

Our next task is to develop a finite difference equation that models equation 4.5.
Although finite difference equations and their associated finite difference schemes
are the subject of entire books (see [96, 144] for examples), the basic idea behind
finite differencing is relatively simple: develop a set of discrete linear equations
that approximates the behavior of a continuous differential equation at a set of
sample points. If these sample points are chosen to lie on a uniform grid, these
linear equations can be expressed succinctly using generating functions. The most
important generating function used in this approach is the finite difference mask
1 − x. The coeff icients of this mask are the discrete analogs of the left-hand side of
the differential equation (i.e., of the differential operator).

96 C H A P T E R 4 A Differential Approach to Uniform Subdivision

To discretize equation 4.5, our f irst task is to construct a difference mask dm
k [x]

that models the action of the differential operator D[x]m on the 1
2k

-integer grid.
Luckily, we can rely on our observation from equation 3.7:

p(1)[x] = lim
k→∞

2k

(
p[x] − p

[
x − 1

2k

])
. (4.6)

Given a generating function pk[x] whose coeff icients are samples of a continuous
function p[x] on the knot sequence 1

2k
Z, we can compute a new generating function

whose coeff icients approximate D[x] p[x] on 1
2k

Z by multiplying pk[x] with the gen-

erating function 2k(1 − x). The coeff icients of 2k(1 − x)pk[x] can be simply viewed
as discrete divided differences of pk taken on the grid 1

2k
Z. Following a similar line

of reasoning, the discrete analog of the mth derivative operator D[x]m on 1
2k

Z is a
generating function dm

k [x] of the form

dm
k [x] = (2k(1 − x))

m == 2mk(1 − x)m.

Note that multiplying the difference mask dm
0 [x] by a generating function p[x] yields

a generating function whose coeff icients are the mth differences of the coeff icients
of p[x]. For example, the generating function d2

0[x]p[x] has coeff icients that are
second differences of the coeff icients p[[i]] of p[x] and that have the form p[[i]] −
2p[[i − 1]] + p[[i − 2]]. The corresponding coeff icients of dm

k [x]p[x] are mth-divided
differences of the coeff icients of p[x] with respect to the grid 1

2k
Z.

The difference mask dm
k [x] has the property that if the coeff icients of pk[x]

are samples of a polynomial of degree m − 1 on the grid 1
2k

Z then dm
k [x]pk[x] is

exactly zero. This observation is simply a rephrasing of the fact that the mth divided
difference of the sample of a polynomial function of degree m − 1 on a uniform grid
is exactly zero. Because m remains constant through the entire construction that
follows, we drop the superscript m in dm

k [x] and instead use dk[x].
To complete our discretization of equation 4.5, we must settle on a discrete

analog of the Dirac delta δ[x]. Recall that by definition this function is zero every-
where but the origin; there it has an impulse with unit integral. The discrete analog
of δ[x] on the grid 1

2k
Z is a vector that is zero everywhere except at the origin, where

the vector has value 2k. (The factor of 2k is chosen so that this discrete approxima-
tion has unit integral with respect to the grid 1

2k
Z.) The coeff icient of this vector

can be represented as the generating function 2k because all terms of this generating
function of the form xi have coeff icient zero for i �= 0.

Finally, integer translates of the Dirac delta δ[x − i] can be modeled on the
grid 1

2k
Z by multiplying the generating function for δ[x], 2k, by the monomial x2ki .

4.1 Subdivision for B-splines 97

Absorbing these powers into the generating function dp[x] == d0[x]p0[x] yields a
f inite difference equation of the form

dk[x]pk[x] == 2kd0

[
x2k]

p0

[
x2k]

. (4.7)

Given p0[x], this f inite difference equation would ideally have a single solution
pk[x]. Unfortunately, the solution pk[x] to this equation is not unique because the
difference equation dk[x]pk[x] == 0 has m solutions corresponding to the samples
of polynomials of degree m − 1. However, there does exist one sequence of the
solutions pk[x] that converges to the B-spline p[x]. The next section demonstrates a
simple method of constructing this sequence of solutions.

4.1.3 The Associated Subdivision Scheme

For each value of k, equation 4.7 characterizes a solution pk on the grid 1
2k

Z that is

independent of the solution pk−1 on the coarser grid 1
2k−1

Z. However, the beauty of
this particular f inite difference equation is that there exists a simple recurrence for
constructing an entire sequence of solutions pk to equation 4.7. In particular, these
solutions can be constructed using a subdivision scheme.

THEOREM

4.2

Given an initial set of control points p0, consider the function pk[x] satis-
fying the recurrence relation pk[x] = sk−1[x]pk−1[x2], where

sk−1[x] = 2dk−1[x2]
dk[x]

(4.8)

for all k > 0. Then pk[x] satisf ies the finite difference relation of equa-
tion 4.7 for all k ≥ 0.

Proof The proof is by induction on k. For k == 0, equation 4.7 follows reflexively.
Next, assume that pk−1[x] satisf ies equation 4.7; that is,

dk−1[x]pk−1[x] == 2k−1d0

[
x2k−1]

p0

[
x2k−1]

.

Replacing x with x2 in these generating functions and multiplying each side
by 2 yields a new equation of the form

2dk−1[x2]pk−1[x2] == 2kd0

[
x2k]

p0

[
x2k]

.

98 C H A P T E R 4 A Differential Approach to Uniform Subdivision

Substituting the right-hand side of equation 4.8 into pk[x] == sk−1[x]pk−1[x2]

and multiplying by dk[x] yields a f inite difference equation of the form

dk[x]pk[x] == 2dk−1[x2]pk−1[x2].

Combining the last two equations completes the induction and proves the
theorem.

For polynomial splines, the difference mask dk[x] in equation 4.8 has the form
(2k(1 − x))m. Therefore, the subdivision mask sk−1[x] has the form

sk−1[x] = 2
dk−1[x2]

dk[x]
== 2

2m(k−1)(1 − x2)m

2mk(1 − x)m == 2

(
1 + x

2

)m

.

This mask, sk−1[x], is exactly the Lane-Riesenfeld mask for B-splines derived in
Chapter 2. However, independent of our previous knowledge concerning B-splines,
we can still deduce several important properties of this scheme directly from the
structure of the subdivision mask sk−1[x]. For example, the convergence of the co-
eff icients of the solution pk[x] to a limit function p∞[x] can be proved directly from
the structure of the subdivision mask sk−1[x] using the techniques of Chapter 3.
Further, the function p∞[x] possesses the following properties:

■ p∞[x] is a Cm−2 piecewise polynomial function of degree m − 1, with knots at
the integers Z. This observation follows from the fact that p∞[x] is a linear
combination of integer translates of the truncated power cm[x].

■ The associated basis function n[x] for this scheme is non-negative and is
supported on the interval [0, m]. This observation follows from the fact that
the subdivision mask sk−1[x] has only m+1 non-zero coeff icients, all of which
are positive.

■ The basis function n[x] has unit integral. This observation follows from the
fact that the coeff icients of the generating function

∏k
i =1 s i −1[x2k−i

] are con-
verging to the basis function n[x] when plotted on the grid 1

2k
Z. Because the

masks sk−1[x] satisfy sk−1[1] == 2 for all k > 0, the sum of the coeff icients in
this product of generating functions is 2k. Therefore, the integrals of these
bounded approximations to n[x] are converging to one, and thus the integral
of n[x] is also one.

The beauty of this differential approach is that all that is needed to construct
the subdivision mask sk−1[x] is the original differential operator governing the spline.

4.2 Subdivision for Box Splines 99

Given this operator, we simply discretized it over the grid 1
2k

Z and constructed the
discrete difference mask dk[x]. The corresponding subdivision mask sk−1[x] had the
form 2dk−1[x2]

dk[x] . The rest of this chapter and the next demonstrate that this approach
can be applied to a wide range of differential operators, including those in more
than one variable.

4.2 Subdivision for Box Splines

Chapter 2 constructed box-spline scaling functions in terms of an integral recur-
rence on a set of direction vectors. In this section, we recast box splines from a
differential viewpoint. As in the univariate case, our approach is to construct ex-
plicitly the integral operator used in defining the box-spline scaling functions. Using
the differential operator that is the inverse of the integral operator, we next show
that the cone splines are Green’s functions associated with this operator. Because
the box splines can be written as linear combinations of cone splines, the partial
differential equation for box splines follows immediately. We conclude the section
by deriving the finite difference equation associated with this differential equation
and an associated subdivision mask that relates solutions to this difference equation
on successive grids.

4.2.1 A Differential Equation for Box Splines

The integral operator I [x] was the crux of our initial integral construction for uni-
variate B-splines. Using the inverse differential operator D[x], we were able to con-
struct the differential equation for B-splines from the original integral definition.
Two-dimensional versions of these operators play analogous roles for box splines.
Given a direction {a, b}, the integral operator I [x a, yb] computes the directional in-
tegral of a function p[x, y] via the definition

I [x a, yb] p[x, y] =
∫ ∞

0

p[x − at, y − bt] dt.

One simple application of this operator is the recursive definition for cone
splines given in equation 2.21. If the set of direction vectors �̃ can be decomposed
into � ∪ {{a, b}}, the cone spline c�̃ [x, y] can be expressed in terms of the cone spline
c� [x, y] via

c�̃ [x, y] =
∫ ∞

0

c� [x − at, y − bt] dt

= I [x a, yb] c� [x, y].

100 C H A P T E R 4 A Differential Approach to Uniform Subdivision

As was the case for B-splines, the base case for this recurrence can be reduced to the
case when � is empty. In this case, c{}[x, y] is taken to be the Dirac delta function in
two dimensions, δ[x, y]. Unwinding the previous recurrence to this base case yields
an explicit integral expression for the cone spline c� [x, y] of the form

c� [x, y] =
(∏

{a,b}∈�

I [x a, yb]

)
δ[x, y]. (4.9)

Note that if the direction vector {a, b} appears in � with a particular multiplicity
the operator I [x a, yb] appears in this product with the corresponding multiplicity.

Given the integral representation for cone splines, our next task is to construct
a differential equation that characterizes cone splines. As in the univariate case, the
key is to construct the inverse operator for I [x a, yb]. In two dimensions, this operator
is simply the directional derivative. Given a direction vector {a, b}, the directional
derivative of the function p[x, y] along the direction {a, b} is given by

D[x a, yb] p[x, y] = lim
t→0

p[x, y] − p[x − at, y − bt]
t

.

Just as in the univariate case, the operators I [x a, yb] and D[x a, yb] are inverses of each
other in Theorem 4.3.

THEOREM

4.3

Given a direction {a, b}, let p[x, y] be a function such that its directional
integral I [x a, yb] p[x, y] is continuous. Then

D [x a, yb]I [x a, yb] p[x, y] == p[x, y]. (4.10)

Proof The key observation is to restrict p[x, y] to lines parallel to the vector {a, b}.
For example, consider the line {x = x0 + at, y = y0 + bt}. The restriction of
the function p[x, y] to this line can be viewed as a univariate function:

p̃[t] = p[x0 + at, y0 + bt].

On this line, the left-hand side of equation 4.10 reduces to D [t]I [t] p̃[t].
Because I [x a, yb] p[x, y] is continuous, I [t] p̃[t] must also be continuous.
Therefore, due to Theorem 4.1, D [t]I [t] p̃[t] is exactly p̃[t]. Because this con-
struction holds independent of the choice of {x0, y0}, the theorem is proved.

4.2 Subdivision for Box Splines 101

Based on this theorem, we can derive the partial differential equation governing
cone splines. Multiplying both sides of equation 4.9 by the directional derivative
D[x a, yb] for each vector {a, b} ∈ � yields the differential equation for cone splines:(∏

{a,b}∈�

D[x a, yb]

)
c� [x, y] == δ[x, y]. (4.11)

(Again, the differential operator D[x a, yb] should appear with the correct multiplic-
ity.) Per Theorem 2.5, the box-spline scaling function n� [x, y] can be expressed as
a linear combination of translates of the cone spline c� [x, y], where the coeff icients
of this linear combination are based on the discrete difference mask d[x , y] of the
form

∏
{a,b}∈�

(1− xa yb). Applying this theorem to equation 4.11 yields a differential

equation for the box-spline scaling functions:(∏
{a,b}∈�

D[x a, yb]

)
n� [x, y] ==

∑
i , j

d[[i , j]] δ[x − i , y − j]. (4.12)

To complete our derivation, a box spline p[x] can be written as a linear combination
of translated scaling functions:

∑
i , j p0[[i , j]]n� [x − i , y − j], where p0 is the initial

vector of control points. Substituting this definition into equation 4.12 reveals that
p[x, y] satisf ies a partial differential equation of the form(∏

{a,b}∈�

D[x a, yb]

)
p[x, y] ==

∑
i , j

dp0[[i , j]] δ[x − i , y − j], (4.13)

where dp0 is the vector of coeff icients of the generating function d[x , y]p0[x , y]. As
we shall see, these coeff icients dp0 are the discrete directional difference of the
control points p0 analogous to the directional derivative

∏
{a,b}∈�

D[x a, yb] p[x, y].

4.2.2 The Subdivision Scheme for Box Splines

In the univariate case, our approach is to derive a finite difference equation that
models the differential equation for B-splines. In the bivariate case, we follow a
similar approach. The key to constructing this f inite difference scheme is building
the discrete analog of D[x a, yb] on the grid 1

2k
Z

2. If we replace t with 1
2k

in the
definition of the directional derivative, we obtain

D[x a, yb] p[x, y] = lim
k→∞

2k

(
p[x, y] − p

[
x − 1

2k
a, y − 1

2k
b

])
. (4.14)

102 C H A P T E R 4 A Differential Approach to Uniform Subdivision

Now, consider a vector pk whose entries are samples of a function p[x, y] on the
grid 1

2k
Z. The discrete analog of the directional derivative D[x a, yb] p[x, y] is a new

vector whose entries are coeff icients of the generating function 2k(1 − xa yb)pk[x , y].
In particular, the coeff icients of the generating function 2k(1− xa yb) exactly encode
the differences required by equation 4.14. To model the product of several dif-
ferential operators, we simply take the product of their corresponding difference
masks. Specif ically, the discrete analog of the differential operator

∏
{a,b}∈�

D[x a, yb]

has the form

dk[x , y] =
∏

{a,b}∈�

2k(1 − xa yb). (4.15)

To complete our discretization of equation 4.13, we note that the analog of
δ[x, y] on the grid 1

2k
Z

2 is the constant 4k. Here, the factor of four arises from the move

to two dimensions. (In n dimensions, the constant is (2n)k.) Given these discretiza-
tions, the finite difference equation corresponding to equation 4.13 for polynomials
has the form

dk[x , y]pk[x , y] == 4kd0

[
x2k

, y2k]
p0

[
x2k

, y2k]
.

Just as in the univariate case, this equation has many solutions. However, there
exists a sequence of solutions pk[x] for this difference equation that are related
by a simple subdivision scheme. Given an initial set of control points p0, these
successive solutions pk[x , y] can be constructed via the subdivision relation pk[x , y] =
sk−1[x , y]pk−1[x2, y2], where

sk−1[x , y] = 4dk−1[x2, y2]
dk[x , y]

.

As in the univariate case, the generating function dk[x , y] divides dk−1[x2, y2], yield-
ing a finite subdivision mask. In particular, the difference mask 2k(1 − xa yb) divides
2k−1(1− x2a y2b), yielding 1

2 (1+ xa yb). Based on this observation, the subdivision mask
sk−1[x , y] has the form

sk−1[x , y] = 4
∏

{a,b}∈�

(
1 + xa yb

2

)
. (4.16)

This subdivision mask sk−1[x , y] is exactly the subdivision mask for box splines de-
rived in Chapter 2. Therefore, the discrete solutions pk produced by this scheme
converge to the box spline p[x, y] that satisf ies equation 4.13.

4.3 Subdivision for Exponential B-splines 103

4.3 Subdivision for Exponential B-splines

The first section in this chapter outlined a method of deriving the subdivision
scheme for B-splines directly from the homogeneous differential equation
p(m)[x] == 0. The crux of this construction is that the subdivision mask sk−1[x] for
B-splines has the form 2dk−1[x2]

dk[x]
, where dk[x] is the discretization of the differen-

tial operator D[x]m on the grid 1
2k

Z. Remarkably, this construction can be extended

to inhomogeneous differential equations of the form

m∑
i =0

β i p
(i)[x] == 0, (4.17)

where the β i are real constants. In this case, the resulting subdivision mask sk−1[x]

defines Cm−2 splines whose pieces are exponential functions (the solutions to the
differential equation 4.17). These splines, the exponential B-splines, have been stud-
ied in a number of papers (e.g., by Dyn and Ron [57], Koch and Lyche [88], and
Zhang [168]).

In this section, we apply our differential approach to the problem of con-
structing the subdivision scheme for exponential splines. Instead of attempting
to construct the differential equation for exponential B-splines from an integral
definition, we simply construct a f inite difference scheme of the form

dk[x]pk[x] == 2kd0

[
x2k]

p0

[
x2k]

, (4.18)

where dk[x] is a difference mask that annihilates samples of the appropriate expo-
nential functions. Given p0[x], successive solutions pk[x] to this difference equation
are related by a subdivision mask sk−1[x] of the form 2dk−1[x2]

dk[x] . The coeff icients of
these solutions pk[x] converge to exponential splines. The remarkable feature of
this construction is its simplicity. All that needs to be done is to develop a discrete
version dk[x] of the differential operator in equation 4.17. Given this difference
mask, the subdivision mask for the scheme follows immediately.

4.3.1 Discretization of the Differential Equation

Before discretizing equation 4.17, we first rewrite this equation in terms of the
differential operatorD[x]. Due to the linearity of differentiation, linear combinations
of various powers of D[x] can be used to model differential operators of higher order.
In particular, equation 4.17 can be rewritten as (

∑m
i =0 β iD[x]i)p[x] == 0. If we assume,

104 C H A P T E R 4 A Differential Approach to Uniform Subdivision

without loss of generality, that the leading coeff icient βm is one, the differential
operator for this equation can be factored into linear terms:

m∑
i =0

β iD[x]i ==
m∏

i =1

(D[x] − αi), (4.19)

where the αi are roots of the polynomial equation
∑m

i =0 β i xi == 0. Observe that if
the coeff icients β i are real then these roots αi are either real or complex conjugates.

We now proceed to our main challenge: constructing the difference mask dk[x]

for the differential operator
∏m

i =1(D[x]−αi) on the grid 1
2k

Z. As in the previous cases,

our approach is to factor the differential operator and then develop difference
masks for each of these factors. The product of these difference masks provides the
desired discrete operator.

Focusing on a single factor of the form (D[x] − α), we observe that the differential
equation (D[x] − α)p[x] == 0 has a solution of the form p[x] = eαx. As in the polyno-
mial case, the difference mask associated with (D[x] − α) should annihilate samples
of this solution taken on the grid 1

2k
Z. Given that samples of eαx taken on the grid

1
2k

Z form the geometric sequence {. . . , η[k, α]−2, η[k, α]−1, 1, η[k, α], η[k, α]2, . . .} where

η[k, α] = e2−k∗α,

the difference mask (1 − η[k, α]x) yields the desired cancellation.
All that remains is to choose an appropriate normalization for this difference

mask to account for the grid size. In the polynomial case, this normalization for the
difference mask (1 − x) was the factor 2k. On the grid 1

2k
Z, discrete approximations

pk[x] to the function x have the form
∑

i
i

2k
x i . Now, the product 2k(1 − x)pk[x] is

the generating function
∑

i x i , which is exactly the discretization for the constant
function 1. Thus, the difference mask 2k(1 − x) acts analogously to the differential
operator D[x]: it annihilates constants and maps the function x to the function 1.

In the exponential case, the correct normalizing constant is α

η[k,α]−1
. The reader

may verify this choice by observing that if p[x] is the constant function 1 then
(D[x] −α)p[x] == −α. Likewise, multiplying the difference mask (α

η[k,α]−1
)(1 − η[k, α]x)

by the generating function
∑

i x i yields the generating function −α
∑

i x i . This nor-
malization is compatible with the polynomial case, α == 0, because the limit as
α → 0 of the expression α

η[k,α]−1
is exactly the constant 2k of the polynomial case.

If the root α has multiplicity n, solutions to the differential equation
(D[x] − α)np[x] == 0 also satisfy equation 4.17. For this differential equation, the
reader may verify that the space of solutions is simply the span of the functions
p[x] = x j eα x where j = 0 . . . n−1. Again, the difference mask (1 − η[k, α]x)n annihilates

4.3 Subdivision for Exponential B-splines 105

samples of the exponential functions x j eα x on 1
2k

Z for j == 0 . . . n−1. Thus, the prod-
uct mask

∏m
i =1(1 − η[k, αi]x) annihilates samples of solutions to equation 4.17 taken

on 1
2k

Z. If each term (1 − η[k, αi]x) in this product is normalized by the constant
αi

η[k,αi]−1 , the appropriate difference mask dk[x] has the form

dk[x] =
m∏

i =1

(
αi

η[k, αi] − 1

)(
1 − η[k, αi]x

)
. (4.20)

4.3.2 A Subdivision Scheme for Exponential Splines

As shown in Theorem 4.2, successive solutions pk−1[x] and pk[x] to the finite dif-
ference equation dk[x]pk[x] == 2kd0[x2k

]p0[x2k
] are related via the recurrence pk[x] =

sk−1[x]pk−1[x2], where the subdivision mask sk−1[x] has the form

sk−1[x] = 2dk−1[x2]
dk[x]

.

At this point, our care in defining the difference mask dk[x] in equation 4.20 pays off.
Just as in the polynomial case, the difference mask dk[x] divides dk−1[x2]. Specif ically,
each term in the numerator, dk−1[x2], has the form (1 − (η[k, α]x)2). Likewise, each
term in the denominator, dk[x], has the form (1 − η[k, α]x). The latter term divides
the former, leaving (1+η[k, α]x). After suitable simplif ication, sk−1[x] is a f inite mask
of the form

sk−1[x] = 2
m∏

i =1

(
1 + η[k, αi]x
1 + η[k, αi]

)
. (4.21)

For polynomial B-splines, the subdivision masks sk−1[x] have the property that
their coeff icients are independent of k. Subdivision schemes for which the sub-
division rules are independent of the level of subdivision are known as stationary
schemes. The subdivision rules for box splines are also stationary. On the other hand,
the current subdivision scheme is nonstationary: the coeff icients of the subdivision
mask sk−1[x] in equation 4.21 depend explicitly on the level of subdivision k.

Given an initial set of control points p0, the subdivision masks sk−1[x] define a
sequence of solutions pk[x] whose coeff icients converge to a function p∞[x]. Based
on the structure of the finite difference equation for this scheme, and based on the
form of the subdivision mask sk−1[x], this function p∞[x] has the following properties:

■ p∞[x] is a Cm−2 piecewise exponential function with knots at the integers
Z. The smoothness of p∞[x] follows directly from the structure of the

106 C H A P T E R 4 A Differential Approach to Uniform Subdivision

subdivision mask sk−1[x]. Section 4.4.4 discusses techniques for proving this
convergence directly from the mask sk−1[x] in the nonstationary case. The
convergence of segments of p∞[x] to exponentials follows from the fact that
the difference mask dk[x] in equation 4.18 annihilates exactly those gener-
ating functions whose coeff icients are samples of exponentials on 1

2k
Z.

■ p∞[x] is the sum of integer translates of a scaling function n[x]. This scaling
function is non-negative and is supported on the interval [0, m]. This fact
follows from the observation that the subdivision mask sk−1[x] has only m+1

non-zero coeff icients, all of which are positive.

■ The scaling function n[x] has unit integral. This observation follows from
the fact that the coeff icients of the generating function

∏k
i =1 si −1[x2k−i

] are
converging to the scaling function n[x] when plotted on the grid 1

2k
Z. Because

the masks sk−1[x] satisfy sk−1[1] == 2 for all k > 0, the sum of the coeff icients
in this product of generating functions is 2k. Therefore, the integrals of these
bounded approximations to n[x] are converging to one, and thus the integral
of n[x] is also one.

Together, these three properties are suff icient to establish that the function n[x]

is unique. In fact, n[x] is the exponential B-spline basis function of order m. See
Hoschek and Lasser (section 3.6.1 of [76]) for a more general discussion of some
of the properties of such splines.

4.3.3 Exponential B-splines as Piecewise Analytic Functions

All things being equal, the natural tendency is to prefer stationary schemes over
nonstationary schemes. For example, applying a nonstationary subdivision mask
requires keeping track of the level of subdivision. Another diff iculty is that the
refinement relation for scaling functions associated with nonstationary schemes is
more complex. In particular, the scaling functions at various levels of subdivision
for a nonstationary scheme are not dilates of a single scaling function n[x]. Although
this diff iculty is not particularly crippling, it does make constructing an analytic
representation for the underlying scaling functions more complex. We suggest using
nonstationary schemes only when there is a compelling advantage to their use. (See
the next section for such an example.)

This section concludes by considering the problem of constructing a piecewise
analytic representation for exponential B-splines. In particular, we derive an integral
operator that serves as the inverse to the differential operator (D[x] − α), and use this
operator to construct the Green’s function associated with the original differential

4.3 Subdivision for Exponential B-splines 107

equation. As was the case for B-splines and box splines, the basis functions for
exponential splines can then be expressed as a linear combination of these Green’s
functions.

In the polynomial case, the associated Green’s functions are the truncated
powers cm[x] that satisfy the differential equation D[x]mcm[x] == δ[x]. These trun-
cated powers are explicitly defined in a related integral equation of the form
cm[x] = I[x]mδ[x]. In the exponential case, we started from a differential definition
of the Green’s function instead of an equivalent integral definition. In particular,
the Green’s function c[x] associated with equation 4.17 satisf ies the differential
equation

m∏
i =1

(D[x] − αi) c[x] == δ[x]. (4.22)

To construct an explicit integral representation for c[x], we now must f ind the
integral operator that serves as an inverse to the differential operator (D[x] − α).
This inverse operator I[x, α] has the form

I[x, α] p[x] =
∫ ∞

0

eαtp[x − t] dt.

De Boor and Lynch [41] give an example of this integral operator for splines in
tension. Note that if α == 0, then this operator reduces to the integral operator I [x]

of the polynomial case. (For those readers familiar with the theory of differential
equations, the operator I [x, −α] is simply the Laplace transform.)

This integral operator I [x, α] is the right inverse of (D [x] − α); that is (D [x] −
α) I [x, α] p[x] == p[x]. (The proof of the relation involves integration by parts on
the intermediate expression

∫
eαtp′[x − t] dt.) Therefore, as done in the case of poly-

nomial splines and box splines, we can construct a Green’s function c[x] satisfying
equation 4.22 via an integral construction of the form

c[x] =
m∏

i =1

I [x, αi] δ[x].

In the following we consider several examples of Green’s functions constructed
using this operator. In general, c[x] is a Cm−2 piecewise exponential function that is
zero for x < 0, with a single knot at the origin. If m == 1, then c[x] is the exponential
step function of the form eα1x for x ≥ 0 and zero otherwise. The left-hand portion
of Figure 4.1 shows a plot of this function for α1 == 1. If m == 2, two cases are
possible: If α1 == α2, then c[x] = x ex α1 if x ≥ 0 and zero otherwise. The middle

108 C H A P T E R 4 A Differential Approach to Uniform Subdivision

�1 �.5 .5 1 1.5 2

1
2
3
4
5
6
7

�1 1 2 3

2

4

6

8

10

�1 1 2 3

.2

.4

.6

.8

1

Figure 4.1 Several Green’s functions for exponential splines of low order.

portion of Figure 4.1 shows a plot of this function for α1 == α2 == 1. If α1 �= α2,
then c[x] = 1

α1−α2
(eα1x − eα2x) if x ≥ 0 and zero otherwise. Note that c[x] is a real-

valued function even if the roots αi are complex conjugates. For example, if α1 == i

and α2 == − i, the function 1
α1−α2

(eα1x − eα2x) reduces to the function Sin[x]. The
right-hand portion of Figure 4.1 shows a plot of this function.

At this point, we can construct an explicit representation of the basis functions
for exponential B-splines in terms of the Green’s functions c[x]. If p0[x] is initialized
to be 1, the coeff icients of the resulting generating functions pk[x] converge to a
basis function n0[x] defined on the integer grid Z. Via equation 4.18, these solu-
tions satisfy the finite difference equation dk[x]pk[x] == 2kd0[x2k

]. Now, observe that
the finite difference equation for the Green’s function c[x] (i.e., analogous to equa-
tion 4.22) is dk[x]pk[x] == 2k. Therefore, the basis function n0[x] can be expressed
as a linear combination of translated Green’s functions in the form

n0[x] =
m∑

i=0

d0[[i]] c[x − i].

Figure 4.2 shows plots of the scaling functions n0[x] corresponding to the
Green’s functions of Figure 4.1. The rightmost plot is the exponential B-spline
basis function of order one corresponding to α1 == 1, the middle plot corresponds
to an exponential basis function of order two for α1 == 1 and α2 == 1, and the
leftmost plot corresponds to a similar basis function of order two for α1 == i and
α2 == − i. Note that this last basis function is real valued even though the roots α1

and α2 are complex conjugates.
One potential problem with this construction is that the Green’s function

as defined in equation 4.22 is not unique. Adding any exponential solution p[x]

of equation 4.17 to c[x] yields another solution c[x] + p[x] of equation 4.22. How-
ever, observe that

∑m
i =0 d0[[i]] p[x − i] is identically zero due to the definition of the

4.3 Subdivision for Exponential B-splines 109

�1 �.5 .5 1 1.5 2

.25
.5

.75
1

1.25
1.5

�1 1 2 3

.2

.4

.6

.8

1

�1 1 2 3

.2

.4

.6

.8

Figure 4.2 Several basis functions for exponential B-splines of low order.

difference mask d0[x]. In other words, exponential solutions of equation 4.17 are
annihilated by the difference mask d0[x]. Therefore, this construction for n0[x] yields
a unique scaling function independent of the particular Green’s function used.

More generally, we can start the subdivision process on the grid 1
2k

Z by initial-
izing pk[x] to be the generating function 1. The resulting solutions pk+ j [x] satisfy the
finite difference equation

dk+ j [x]pk+ j [x] == 2k+ j
(
2−kdk

[
x2 j])

(4.23)

for all j > 0. Because the finite difference equation dk+ j [x]pk+ j [x] == 2k+ j models
the Green’s function c[x], the coeff icients of the solution pk+ j [x] to equation 4.23,
plotted on the grid 1

2k+ j
Z, converge to a basis function n k[x] of the form

n k[x] == 2−k
m∑

i=0

dk[[i]] c

[
x − i

2k

]
. (4.24)

(Note that this basis function is dilated so as to be supported on the interval [0, m
2k

].)
Given this definition of n k[x], the reader may verify that these basis functions satisfy
the refinement relation defined by the subdivision mask sk−1[x]; that is,

n k−1[x] ==
m∑

i=0

sk−1[[i]] n k

[
x − i

2

]
.

Just as in the polynomial case, exponential B-splines also have an equivalent
definition in terms of an integral recurrence based on I [x, α] that is analogous
to equation 4.4. This recurrence can also be used to compute an analytic repre-
sentation for the resulting exponential B-splines. The associated implementation
contains more details on this recurrence and an implementation in Mathematica of
this recurrence ().

110 C H A P T E R 4 A Differential Approach to Uniform Subdivision

4.4 A Smooth Subdivision Scheme with Circular Precision

The subdivision scheme for exponential splines has a nonstationary mask sk−1[x]

(i.e., the entries in the mask depend on k). At first glance, it might seem that
there is no reason to prefer this nonstationary scheme over the stationary scheme
for polynomial splines. However, there are good reasons to prefer nonstationary
schemes in some applications. For example, consider the problem of constructing
a subdivision scheme whose associated limit curves p[x] include circles. A circle is a
fundamental geometric shape that arises in a variety of modeling operations, such
as offsetting and blending. Due to the fact that circles do not possess a polynomial
parameterization, most modeling approaches based on subdivision either approx-
imate a circle to some given tolerance or use a rational parameterization for the
circle. (See Farin [60] for more details.)

Unfortunately, any rational parameterization for a circle is nonuniform. For
example, the rational parameterization { 1−x 2

1+x 2
, 2x

1+x 2
} traces out the first quadrant

of the unit circle as x varies from 0 to 1. On the other hand, as x varies from 1

to ∞, the parameterization traces out the second quadrant of the circle. Instead,
we desire a subdivision scheme capable of representing circles in their arc-length
parameterization {Cos[x], Sin[x]}. Now, as x varies from 0 to 2π , the parameterization
traces out the entire circle uniformly. Luckily, exponential B-splines are capable of
reproducing such trigonometric functions.

In the two sections that follow, we consider two related instances of exponen-
tial splines. The first instance, splines in tension, is a standard generalization of
polynomial splines that allows the introduction of a tension parameter. The second
instance considers a scheme that converges to a mixture of polynomial and trigono-
metric functions. This scheme is smooth and capable of reproducing circles. The
final section unif ies these two schemes and cubic B-splines as a single nonstationary
scheme. This scheme is the basis for a surface scheme, discussed in Chapter 7, that
can generate surfaces of revolution.

4.4.1 Splines in Tension

Our first example of an exponential spline is splines in tension. These splines are a
standard generalization of polynomial splines that allow the introduction of a ten-
sion parameter into the scheme. Varying the tension parameter results in a curve
p[x] that follows the initial polygon p0 with varying degrees of “tightness.” Splines in
tension have been the subject of numerous papers [23, 41, 138]. The subdivision

4.4 A Smooth Subdivision Scheme with Circular Precision 111

mask for splines in tension can be derived directly from their defining differen-
tial equation. In particular, segments of splines in tension satisfy the differential
equation

p(4)[x] − γ 2p(2)[x] == 0,

where γ is a real constant. (The constant γ 2 serves as the “tension” parameter
in most constructions for splines in tension.) To construct the subdivision mask
sk−1[x] for splines in tension, we first compute the roots of the polynomial equation
x4 −γ 2x 2 == 0. Because these roots have values {0, 0, −γ , γ }, the segments of a spline
in tension are linear combinations of 1, x, e−γ x, and eγ x. Next, recalling the definition
of the hyperbolic sine, Sinh[x] = 1

2 (ex − e−x), and of the hyperbolic cosine, Cosh[x] =
1
2 (e−x + ex), we observe that the segments of p[x] are linear combinations of 1, x,

Sinh[γ x], and Cosh[γ x]. Plugging these values for the roots into equation 4.21 and
simplifying the resulting expression using these hyperbolic identities yields

sk−1[x] = 1
2

(1 + x)2

(
1 + (eγ 2−k + e−γ 2−k)

x + x2

e−γ 2−k + 2 + eγ 2−k

)

==
1
2

(1 + x)2

(
1 + 2 Cosh[2−kγ]x + x2

2 + 2 Cosh[2−kγ]

)
.

Applying the subdivision mask sk−1[x] requires evaluating Cosh[2−kγ] for successive
integral values of k. Although this computation is not particularly onerous, the
trigonometric identity Cosh[x] == 2 Cosh[x

2]2−1 yields a pleasing recurrence for these
values of the form

Cosh[2−kγ] =
√

1 + Cosh[2−(k−1)γ]
2

.

Given a control polygon p0 = {{1, 0}, {0, 1}, {−1, 0}, {0, −1}}, the three curves on
the right-hand side of Figure 4.3 are examples of splines in tension for this initial

Figure 4.3 A family of curves approximating an initial diamond shape.

112 C H A P T E R 4 A Differential Approach to Uniform Subdivision

diamond. (The two curves on the left are discussed in the next section.) The middle
curve has tension γ == 0 and is a cubic B-spline curve. The next two curves to the
right are splines in tension with γ = Cosh−1[10] and γ = Cosh−1[100], respectively. By
construction, all of these curves are C2 continuous. Note that as γ increases the
resulting splines bend more sharply and behave increasingly like linear B-splines.

4.4.2 Mixed Trigonometric Splines

In our first example, we constructed a subdivision scheme whose limit curves
consist of polynomial and hyperbolic segments. In this example, we construct a
scheme whose segments are combinations of polynomials and trigonometric func-
tions. These “mixed” trigonometric curves, capable of reproducing circles, have been
studied by several authors. For example, Dyn and Levin [53] consider a scheme of
order three whose segments are combinations of 1, Sin[x], and Cos[x]. Zhang [168]
considers a scheme of order four that generates limit curves, which he refers to as
“C curves.” Pottmann and Wagner [119, 154] consider a similar space of splines,
which they refer to as “helix” splines. In both cases, the segments of the spline are
solutions to the differential equation

p(4)[x] + γ 2p(2)[x] == 0,

where γ is a real constant. Because the roots of the polynomial x4 + γ 2x2 == 0

have the form {0, 0, −γ i, γ i}, the solutions to this differential equation are linear
combinations of 1, x, eγ ix, and e−γ ix. Due to the identities i Sin[x] == 1

2 (eix −e−ix)

and Cos[x] == 1
2 (e−ix +eix), the solutions can also be expressed as linear combinations

of the functions 1, x, Sin[γ x], and Cos[γ x].
Recall that the discrete difference masks dk[x] associated with a differential

equation were constructed so as to annihilate samples of solutions to this equa-
tion on the grid 1

2k
Z. Because Sin and Cos are periodic, the constant γ is typically

restricted to lie in the range 0 < γ ≤ π to ensure that these difference masks are
unique. Plugging the roots {0, 0, −γ i, γ i} into equation 4.21 and simplifying the
resulting expression using the previously given trigonometric identities yields

sk−1[x] = 1
2

(1 + x)2

(
1 + (eγ i2−k + e−γ i2−k)

x + x2

e−γ i2−k + 2 + eγ i2−k

)

==
1
2

(1 + x)2

(
1 + 2 Cos[2−kγ]x + x2

2 + 2 Cos[2−kγ]

)
.

4.4 A Smooth Subdivision Scheme with Circular Precision 113

Applying the subdivision mask sk−1[x] requires evaluating Cos[2−kγ] for successive
values of k. As in the previous case, the trigonometric identity Cos[x] == 2 Cos[x

2]2 −1

yields a pleasing recurrence for these values of the form

Cos[2−kγ] =
√

1 + Cos[2−(k−1)γ]
2

.

The restriction 0 < γ ≤ π ensures that Cos[2−kγ] ≥ 0 for all k > 0 and causes the
positive square root to always be used in this equation.

The three curves on the left-hand side of Figure 4.3 are examples of mixed
trigonometric splines for an initial diamond p0. The middle curve has tension γ == 0

and is a cubic B-spline curve. The next two curves to the left are mixed trigonomet-
ric splines with γ = π

2 and γ = π , respectively. By construction, all of these curves
are C2 continuous. Note that as γ increases the resulting splines are more rounded,
the opposite of the behavior for splines in tension.

In this example, the trigonometric spline curve corresponding to γ = π

2 (second
from the left in Figure 4.3) is exactly a circle. Setting γ = π

2 allows the spline to ex-
actly reproduce the trigonometric functions {Cos[πx

2], Sin[πx
2]} on the initial grid Z. If

x is treated as being periodic on the interval [0, 4], this parameterization traces out
a unit circle as x varies over this interval. Figure 4.4 shows three rounds of subdi-
vision for this scheme starting from the initial diamond. Note that each successive
approximation is a regular polygon.

Taking a tensor product version of this univariate subdivision scheme allows
the construction of exact surfaces of revolution via subdivision. Figure 4.5 shows
examples of an ellipsoid and an elliptical torus created using this scheme. In both
examples, a diamond-shaped polygon has been revolved around the vertical axis to
form a control polyhedron for a closed tensor product surface (the polyhedra on
the left). In the first example, the limit surface is a double covering of the ellipsoid.
Note that whereas the cross sections of the initial polyhedra with respect to the

Figure 4.4 Three rounds of subdivision for a mixed trigonometric spline converging to a circle.

114 C H A P T E R 4 A Differential Approach to Uniform Subdivision

Figure 4.5 Three rounds of subdivision for two tensor product trigonometric splines.

axis of revolution are square diamonds, the cross sections of the limit surfaces taken
along the axis of revolution are not circles, but ellipses. To generate a surface of
revolution with a circular cross section (e.g., a sphere), the reader should consult
section 7.2.3.

4.4.3 The Unified Subdivision Scheme

At this point, we have considered three examples of exponential splines of order
four: cubic B-splines, splines in tension, and mixed trigonometric splines. These
splines share enough structure that they can be viewed as instances of a single
spline scheme of order four whose segments satisfy the differential equation
p(4)[x] ± γ 2p(2)[x] == 0. Depending on the sign and the value of ± γ 2, this differential
equation captures the three schemes as special cases. Remarkably, the subdivision
masks for these three schemes can be expressed as a single mask sk−1 involving
a “tension” parameter σk. This mask depends on the tension σk in the following
manner:

sk−1 = 1
4 + 4σk

(1, 2 + 2σk, 2 + 4σk, 2 + 2σk, 1). (4.25)

For each of the three schemes, the choice of the tension σk depends on the sign and
value of ±γ 2. These cases are summarized as follows:

■ For γ == 0 (i.e., the polynomial case), let σk == 1.

4.4 A Smooth Subdivision Scheme with Circular Precision 115

■ For +γ 2 (i.e., the exponential case), let σk = Cosh[2−kγ]. Note that in this
case σk > 1 for all k.

■ For −γ 2 (i.e., the trigonometric case), σk = Cos[2−kγ]. The restriction 0 ≤ γ ≤ π

causes σk to lie in the range −1 ≤ σk < 1.

In all three cases, the reader may verify by inspection that equation 4.25 reproduces
the appropriate subdivision mask. At first glance, this separation of the values of
σk into three cases seems to provide little help. However, the following theorem
makes these three cases unnecessary once the initial tension σ0 has been chosen.

THEOREM

4.4

If σ0 ≥ −1, for all three of the previously stated cases the tensions σk−1 and
σk satisfy the recurrence

σk =
√

1 + σk−1

2
. (4.26)

Proof In the polynomial case, equation 4.26 follows from the fact that 1 ==√
1+1

2 . In the exponential case, equation 4.26 follows from the identity

Cosh[x]2 == 1+Cosh[2x]
2 . In the trigonometric case, equation 4.26 follows from

the identity Cos[x]2 == 1+Cos[2x]
2 and the fact that 0 < γ ≤ π .

Given the tension σk−1, the subdivision mask sk−1 is derived by first computing
σk using equation 4.26 and by then substituting σk into equation 4.25. (Observe
that the mask sk−1 uses the tension parameter σk, not σk−1.) This nonstationary
subdivision scheme combines the three previous schemes in a very elegant manner.
Instead of choosing γ , the user simply chooses an initial “tension” σ0. In all three
cases, the resulting limit curve is a C2 spline.

If the initial tension is σ0 = 1, then σk == 1 for all k and the subdivision scheme
is exactly the cubic B-spline subdivision algorithm of Lane and Riesenfeld. If σ0 > 1,
the scheme converges to a spline in tension. If −1 ≤ σ0 < 1, the scheme converges
to a “mixed” trigonometric spline. Figure 4.3 illustrates the effect of varying initial
tensions σ0 on the resulting splines. In particular, the figure shows a diamond-
shaped polygon and the corresponding splines for σ0 = {−1, 0, 1, 10, 100}. Varying
σ0 controls the distribution of the curvature of the spline. Using large values for σ0

causes most of the curvature to be concentrated near the vertices of the control
polygon (i.e., the spline “clings” to the control polygon). Using small values tends
to distribute more of the curvature of the spline near edges of the control polygon.
Finally, if the initial polygon p0 is chosen to be a regular n-gon, choosing the initial
tension σ0 to be Cos[2π

n] causes the subdivision scheme to converge to a circle.

116 C H A P T E R 4 A Differential Approach to Uniform Subdivision

4.4.4 Convergence Analysis for Nonstationary Schemes

The convergence analysis of Chapter 3 considered stationary subdivision schemes,
that is, those schemes in which the mask used at each level of subdivision re-
mained unchanged. However, the subdivision schemes for exponential B-splines in
section 4.3.2 had the property that the subdivision masks sk−1[x] and their corre-
sponding matrices Sk−1 vary as a function of k. Given an initial control polygon p0,
this scheme constructs a sequence of new polygons pk related by pk = Sk−1 pk−1.
By construction, the limit functions pk[x] associated with this scheme are C2. In
this section, we consider the problem of determining the smoothness of the limit
function p∞[x] directly from the subdivision matrices Sk−1.

One approach would be to follow the general method of Chapter 3 and con-
struct a subdivision scheme for various differences associated with Sk−1. The sub-
division matrices Tk−1 for these schemes should satisfy DkSk−1 = Tk−1 Dk−1, where Dk

is an appropriate difference matrix. However, there are two diff iculties with this
approach. First, we still have to analyze the nonstationary subdivision matrices Tk−1

for the difference schemes. Second, for many types of nonstationary schemes, these
matrices Tk−1 may not exist, because the subdivision scheme associated with Sk−1 is
not necessarily aff inely invariant. For example, exponential B-splines are aff inely
invariant (i.e., have subdivision matrices whose rows sum to one) if and only if one
of the roots αi in equation 4.19 is zero.

In this section, we describe a different method, credited to Dyn and Levin
in [54], for proving that nonstationary schemes converge to Cm limit functions. The
key to this method is to observe that the subdivision matrices Sk−1 for most non-
stationary schemes converge to a limit matrix S∞. If this convergence is suff iciently
fast and the subdivision scheme for the matrix S∞ produces Cm limit functions,
the nonstationary scheme associated with the matrices Sk−1 also produces Cm limit
functions. The following, weaker version of Dyn and Levin’s theorem bounds the
rate at which the matrix Sk−1 must converge to the limit matrix S∞ to guarantee
that the functions p k[x] defined by the nonstationary scheme converge to a limit
function p∞[x] that is continuous.

THEOREM

4.5

Consider a sequence of subdivision matrices Sk−1 converging to a subdi-
vision matrix S∞ whose rows are non-negative and sum to one. If this
convergence occurs at the rate

‖Sk−1 − S∞‖ < βαk−1,

4.4 A Smooth Subdivision Scheme with Circular Precision 117

where β > 0 and 0 < α < 1, and the stationary scheme associated with S∞ is
uniformly convergent, the nonstationary scheme associated with the matri-
ces Sk−1 converges uniformly for all initial vectors p0 with bounded norm.

Proof Because the scheme associated with S∞ is convergent, let n[x] be its as-
sociated scaling function. Given a sequence of vectors pk defined by the
nonstationary process pk = Sk−1 pk−1, our goal is to show that the successive
functions pk[x] of the form

p k[x] =
∑

i

pk[[i]]n[2kx − i]

are converging uniformly. To prove this convergence, we examine the dif-
ference of successive functions p k[x] − p k−1[x]. These differences can be
expressed as a linear combination of the coeff icients of (pk − S∞ pk−1)

multiplied by translates of the scaling function n[2kx]. Because translates
of the scaling function n[2kx] are non-negative and sum to one (due to
the rows of S∞ being non-negative and summing to one), the following
relation holds:

‖p k[x] − p k−1[x]‖ ≤ ‖pk − S∞ pk−1‖ (4.27)

≤ ‖(Sk−1 − S∞)pk−1‖
≤ ‖Sk−1 − S∞‖ ∗ ‖pk−1‖.

Given that the norm ‖Sk−1 − S∞‖ decays geometrically in k, we next bound
the norm ‖pk−1‖ in terms of the norm ‖p0‖ to complete the proof. To this
end, we observe that the vectors pk and pk−1 defined by the nonstationary
scheme satisfy

‖pk‖ ≤ ‖S∞ + (Sk−1 − S∞)‖‖pk−1‖
≤ (‖S∞‖ + ‖Sk−1 − S∞‖)‖pk−1‖.

Because the rows of S∞ are non-negative and sum to one, the ∞-norm ‖S∞‖
is exactly one. Moreover, by hypothesis, ‖Sk−1 − S∞‖ < βαk−1 and, therefore,

‖pk‖ ≤ (1 + βαk−1)‖pk−1‖

≤
(k∏

i =1

(1 + βαi −1)

)
‖p0‖.

118 C H A P T E R 4 A Differential Approach to Uniform Subdivision

The product
∏k

i=1(1 + βαi −1) can be converted into an equivalent sum by
taking the logarithm of the product and then summing the logarithms of
the terms constituting the product. Because Log[1 + ε] < ε for all ε > 0, the
product given previously is bounded by

‖pk‖ ≤ e
∑k

i =1
βαi −1‖p0‖

≤ e
β

1−α ‖p0‖.

Substituting this bound into equation 4.27 and applying the hypothesis
yields

‖ p k[x] − p k−1[x]‖ ≤ β αk−1e
β

1−α ‖p0‖.

Because 0 < α < 1, Theorem 3.1 guarantees that the continuous functions
p k[x] converge uniformly to a continuous limit function p∞[x] for all
bounded ‖p0‖.

Requiring the rows of S∞ to be non-negative and sum to one is actually un-
necessary and was assumed in order to simplify the proof of Theorem 4.5. Dyn
and Levin [54] give a more general proof that removes this restriction. In the case
of higher-order continuity, Dyn and Levin show that if the convergence rate of
the subdivision matrices Sk−1 to a limit matrix S∞ satisf ies 0 < α < 2−m and the
stationary scheme associated with S∞ converges to Cm limit functions then the
nonstationary scheme associated with the matrices Sk−1 also converges to Cm limit
functions.

To conclude this section, we use this theorem to analyze the smoothness of the
nonstationary scheme of section 4.4.3. Given an initial tension σ0 ≥ −1, the scheme
uses subdivision masks of the form

sk−1[x] = (1 + x)2(1 + 2σkx + x2)
4x2(1 + σk)

,

where σ is updated via σk =
√

1+σ k−1
2 . Given our previous analysis based on the

governing differential equation, we know that this scheme converges to a C2 spline-
in-tension if σ0 > 1, a C2 trigonometric spline if σ0 < 1, and a C2 cubic B-spline if
σ0 == 1. We now prove that the scheme is C2 without resorting to any underlying
differential equation. Our first step is to construct a subdivision mask tk−1[x] for

4.4 A Smooth Subdivision Scheme with Circular Precision 119

the second divided differences of the form

tk−1[x] = (1 + 2σkx + x2)
x(1 + σk)

.

If the scheme associated with tk−1[x] is C0, the original scheme sk−1[x] is C2, as ob-
served in Theorem 3.3.

To apply Theorem 4.5, our f irst task is to determine the behavior of tk−1[x]

as k → ∞. As observed previously, the tensions σk converge to one as k → ∞.
Therefore, the limit mask t∞[x] is the subdivision mask for linear subdivision (1+x)2

2x .
Because linear subdivision converges to continuous limit functions, our f inal task
is to bound the coeff icients in tk−1[x] − t∞[x]. After simplif ication, this expression
has the form

tk−1[x] − t∞[x] == − (1 − x)2(1 − σk)
2x(1 + σk)

.

Because σk ≥ −1, we need only establish the rate at which σk converges to one. To
bound the rate of convergence, we next show that the sequence of tensions σk obeys
the bound 0 ≤ 1−σk

1−σ0
≤ 1

2k
for all k > 0. To establish this bound, it suff ices to show

that 0 ≤ 1−σk
1−σk−1

≤ 1
2 . Due to the recurrence σk =

√
1+σk−1

2 , this ratio satisf ies

1 − σk

1 − σk−1
==

1

2 + √
2
√

1 + σk−1

≤ 1
2

,

in that σk−1 ≥ −1. Because linear subdivision is convergent and tk−1[x] is converging
to t∞[x] at the rate of O

[
1
2k

]
, the nonstationary scheme associated with tk−1[x] is also

C0, and therefore the original scheme associated with the mask sk−1[x] is C2.

C H A P T E R 5

Local Approximation of Global
Differential Schemes

Chapter 4 described a method of constructing a subdivision mask sk−1[x] from the
discretization dk[x] of a differential operator. In particular, these masks satisfy the
finite difference relation dk[x]sk[x] = 2dk−1[x2]. For all three examples in Chapter 4
(polynomial B-splines, exponential B-splines, and box splines), the difference mask
dk[x] divides the mask dk−1[x2], yielding a finite subdivision mask sk−1[x]. In this
chapter, we consider two examples of differential operators for which this division
fails and for which there is no local subdivision scheme that exactly models our
physical problem.

The first section considers splines that are solutions to the polyharmonic equa-
tion L[x, y]m p[x, y] == 0, where L[x, y] = D[x]2+D[y]2 is the standard Laplace operator.
These polyharmonic splines possess a globally supported, but highly localized, bell-
shaped basis that can be expressed as a difference of integer translates of the tradi-
tional radial basis function. This bell-shaped basis function possesses a ref inement
relation that itself has a globally supported, but highly localized, subdivision mask.
The next section in this chapter considers three techniques for computing finite
approximations to this inf inite mask: Laurent series expansion, Jacobi iteration, and
linear programming. Each method yields a locally supported subdivision scheme
that approximates the polyharmonic splines. The final section in the chapter consid-
ers the problem of generating a subdivision scheme for simple types of linear f lows.
As is the case of polyharmonic splines, the subdivision mask for these flows follows
directly from the discretization of the differential operators governing these flows.

5.1 Subdivision for Polyharmonic Splines

One generalization of B-splines from the univariate setting to the multivariate set-
ting is box splines. Recalling their differential definition, box splines satisfy a partial

120

5.1 Subdivision for Polyharmonic Splines 121

differential equation whose structure depends on a set of direction vectors �. One
consequence of this dependence on � is that the box-spline scaling functions are
not radially symmetric and exhibit certain directional preferences. This section con-
siders an alternative generalization of B-splines based on the differential operator
L[x, y] = D[x]2 + D[y]2 associated with Laplace’s equation p(0,2)[x, y] + p(2,0)[x, y] == 0.
Due to the radial symmetry of the operator L[x, y] (also known as the Laplace oper-
ator), the space of solutions to the partial differential equation

L[x, y]m p[x, y] == 0 (5.1)

is invariant under rotation. Spline surfaces that satisfy this equation (with excep-
tions possible at a set of points) are the polyharmonic splines of order m.

Polyharmonic splines model many interesting physical phenomena. For exam-
ple, harmonic splines (m == 1) model thin elastic membranes, heat conduction, and
electromagnetic f ields. Biharmonic splines (m == 2) model the bending behavior of
thin elastic plates. (See Powers [121] for more examples and details.) The prop-
erties of polyharmonic splines have been studied in a number of papers, including
[46, 47, 48, 72, 162].

Our approach in constructing a subdivision scheme for polyharmonic splines
follows the differential approach for polynomial splines of Chapter 4. After ini-
tially constructing the Green’s function for the polyharmonic equation, we next
construct a bell-shaped basis function by taking linear combinations of translates
of this Green’s function. This basis function is the analog of the B-spline basis
function for polynomial splines. Finally, we derive the partial differential equa-
tion that governs this bell-shaped basis function and discretize it. The subdivi-
sion mask for this new basis function follows from the resulting finite difference
equations.

5.1.1 The Radial Basis for Polyharmonic Splines

As our first step, we construct a Green’s function c[x, y] associated with the differen-
tial operator L[x, y]m for the polyharmonic equation. Recall that a Green’s function
c[x, y] is a solution to the partial differential equation

L[x, y]m c[x, y] == δ[x, y]. (5.2)

As observed previously, this equation has many solutions. Given one Green’s func-
tion c[x, y], any other solution to equation 5.2 has the form c[x, y] + p[x, y], where

122 C H A P T E R 5 Local Approximation of Global Differential Schemes

p[x, y] is a solution to equation 5.1. Observe that any Green’s function c[x, y] satis-
fying equation 5.2 also satisf ies a scaling relation of the form

c[x, y] == 41−mc[2x, 2y] + p[x, y], (5.3)

where p[x, y] is a solution to equation 5.1. The key to this equation is to note that
both c[x, y] and 41−mc[2x, 2y] are solutions to equation 5.2, in that the Dirac delta
function δ[x, y] satisf ies a scaling relation of the form δ[x, y] = 4δ[2x, 2y]. (The factor
of 4 arises from the fact that the integral of δ[2x, 2y] is 1

4 .)
Observe that the scaling relation of equation 5.3 is very similar to the scaling

relation for cone splines given in section 2.3.2. This similarity is no coincidence.
In fact, the Green’s functions associated with a homogeneous differential operator
always satisfy a scaling relation similar to that of equation 5.3. The existence of such
a scaling relation is often an early indication that constructing a subdivision scheme
using the integer translates of c[x, y] is possible. Analytic solutions to equation 5.2
can be found in the literature [46, 56] and have the form

c[x, y] = (x 2 + y 2)m−1 Log[x 2 + y 2]

22m((m − 1)!)2π
.

Note that we have carefully normalized the denominator in our definition of c[x, y]

such that the integral
∫ L[x, y]mc[x, y] dx dy is exactly one. This integral can be evalu-

ated by restricting the range of this integral to the unit disc and then converting this
integral over the unit disc to an equivalent integral over the unit circle using Green’s
theorem. (This observation accounts for the factor of π in the denominator.)

These functions c[x, y] are often referred to as the radial basis functions because
the resulting functions have radial symmetry. Figure 5.1 plots some examples of
radial basis functions for small values of m. Note the behavior of these functions

�2

1
2 �2

�1

0

1
2

0
.05
.1

.15

�1
0

�2
�1

0
1

2 �2

�1

0

1
2

�.1
0

.1

�2

1
2�2

�1

0

1
2

0
.1
.2
.3

�1
0

Figure 5.1 Radial basis function c [x, y] for polyharmonic splines of order m = 1, 2, 3.

5.1 Subdivision for Polyharmonic Splines 123

at the origin. For m == 1, c[0, 0] evaluates to Log[0]
4π

, which is −∞. For m ≥ 2, c[0, 0]

evaluates to a constant multiple of 0 Log[0], which appears to be indeterminate.
However, taking the limit as {x, y} approaches the origin yields c[0, 0] == 0. In fact,
closer analysis reveals that c[x, y] has exactly 2m − 3 continuous derivatives at the
origin (i.e., c[x, y] is a C2m−3 function).

For the case of m == 2, the radial basis function c[x, y] is a smooth (C1) function.
One important application of this particular radial basis function is in scattered data
interpolation. Given a collection of n points (x i , y i), each with observed values v i ,
this interpolation problem is that of constructing a function p[x, y] that interpolates
the data points with the observed values (i.e., p[x i , y i] == v i). Of course, many
functions satisfy this interpolation problem. To uniquely determine a solution, an
auxiliary constraint is to require this function p[x, y] to “bend” as little as possible.
One solution to this problem is to express p[x, y] as a linear combination of translated
radial basis functions c[x − x i , y − y i] of the form

p[x, y] =
n∑

i =1

αi c[x − x i , y − y i].

Given the n interpolation constraints p[x i , y i] == v i , the coeff icients αi are uniquely
determined. Because the radial basis function c[x, y] satisf ies the biharmonic equa-
tion (m == 2), which models a thin sheet of clamped metal, the resulting spline
function p[x, y] has the property that it “bends” as little as possible while interpo-
lating the desired data points. This function p[x, y] is often referred to as a thin plate

0

4
6 0

2

4

6

0
.25
.5

.75
1

2

0
2

4
6 0

2

4

6

0

.5

1

(a) (b)

Figure 5.2 Given data points (a) interpolated by a thin plate spline (b).

124 C H A P T E R 5 Local Approximation of Global Differential Schemes

spline. Figure 5.2 shows a thin plate spline that interpolates an 8 × 8 grid of data
points with values of the form

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

.

There are many variants of this radial basis function approach to scattered
data interpolation. For example, it is possible to add a polynomial term that forces
the interpolation scheme to have polynomial precision. Other types of radial basis
functions may also be used. Alfeld [3] and Hoschek and Lasser [76] provide a nice
overview of the many approaches to this problem. However, all of these radial
approaches have a major drawback: the basis functions c[x, y] are highly nonlocal.
The nonlocality of these bases often causes the associated systems of linear equations
used in computing the α i to be ill conditioned (see Franke [66] for details). Our
approach in the next section is to develop a different basis for polyharmonic splines
that is much more localized.

5.1.2 A Bell-shaped Basis for Polyharmonic Splines

Recall that in the polynomial case the B-spline basis functions could be expressed
as linear combinations of integer translates of truncated powers. Likewise, the
box-spline scaling functions could be expressed as a linear combination of integer
translates of cone splines. Both the truncated powers and cone splines are them-
selves Green’s functions. For polyharmonic splines, a similar construction is possible.
Our approach is to construct a new basis function n[x, y] as a linear combination
of integer translates of the Green’s function for the polyharmonic equation, the
radial basis function c[x, y]. As before, the coeff icients of this combination arise
from the discretization for the differential operator L[x, y]m on the integer grid
Z

2. The difference mask for L[x, y] on this grid is the discrete Laplacian mask
l [x , y] = (1−x)2

x + (1−y)2

y . Note that the terms of the mask l [x , y] have been centered at

5.1 Subdivision for Polyharmonic Splines 125

the origin by the division with x and y, respectively. The coeff icients of this mask,
plotted as a two-dimensional array, have the form

(x−1 1 x)

⎛⎝0 1 0
1 −4 1
0 1 0

⎞⎠⎛⎝y−1

1
y

⎞⎠ .

More generally, the discretization of the differential operator L[x, y]m on the
grid Z

2 is simply the corresponding power of the discrete Laplacian mask l [x , y]m.
For example, the coeff icients of the difference mask l [x , y]2 for biharmonic splines
(m == 2) have the form

(x−2 x−1 1 x x2)

⎛⎜⎜⎜⎜⎝
0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

y−2

y−1

1
y
y2

⎞⎟⎟⎟⎟⎟⎠ .

To discretize the operator L[x, y]m on the grid 1
2k

Z
2, the difference mask l [x , y]m must

be normalized by a power of 4k to account for the effect of the grid spacing on the
second derivative. As before, we denote this mask (4k l [x , y])m by the generating
function dk[x , y]. Now, the coeff icients of the difference mask d0[x , y] can be used
to define the analog of the B-spline basis function for polyharmonic splines of
order m. This analog is a function n[x, y] of the form

n[x, y] ==
∑

i , j

d0[[i , j]] c[x − i , y − j], (5.4)

where d0[[i , j]] is the coeff icient of xi y j in d0[x , y].
Note that this basis function n[x, y] is independent of the particular choice of

Green’s function. For example, adding a solution p[x, y] of equation 5.1 to c[x, y]

yields another Green’s function, c[x, y] + p[x, y]. However, because the coeff icients
of the difference mask d0[x] annihilate samples of this function on Z

2, replacing
c[x − i , y − j] with c[x − i , y − j] + p[x − i , y − j] in equation 5.4 yields the same basis
function, n[x, y].

Figure 5.3 shows plots of the basis function n[x, y] for various values of m. These
bell-shaped basis functions n[x, y] for polyharmonic splines of order m have been
studied in several papers, including Powell [120], Dyn et al. [47, 56], and Wahba

126 C H A P T E R 5 Local Approximation of Global Differential Schemes

0
2

�2

0

2

0
.1
.2
.3
.4

�2�2
0

2
�2

0

2
0

.5
1

1.5
2

�2
0

2
�2

0

2
0

.2
.4
.6

Figure 5.3 The bell-shaped basis functions for polyharmonic splines of order m = 1, 2, 3.

and Wendelberger [155]. Although not locally supported, these basis functions
n[x, y] exhibit a range of desirable properties. In particular:

■ n[x, y] is highly localized. For example, in the case of harmonic splines
(m == 1), converting to polar coordinates via the transformation {x, y} =
{r Cos[α], r Sin[α]} and simplifying yields

n[r, α] = 1
4π

Log

[
1 + 1

r 8
− 2 Cos[4α]

r 4

]
.

Because Log[1 + 1
r 4

] decays asymptotically at the rate O[r −4] as r → ∞, n[x, y]

also decays at the rate O[r −4] as r → ∞. Bell-shaped basis functions of higher
orders exhibit a similar rate of decay.

■ The basis function n[x, y] of order m has smoothness C 2m−3. This fact fol-
lows directly from the smoothness of the corresponding radial basis func-
tion c[x, y]. Note that the harmonic (m == 1) basis function n[x, y] is
discontinuous (i.e., in C−1) due to the unbounded spikes at the grid points
{{0, 0}, {1, 0}, {0, 1}, {−1, 0}, {0, −1}}. Only the central spike is positive; the
remaining four spikes are negative. (These spikes in the leftmost plot of
Figure 5.3 have been truncated to keep the scale of the plot in balance.)

■ The sum of the integer translates of n[x, y] is exactly one (i.e., the bell-shaped
basis functions form a partition of unity). This fact can be proven with some
effort using equation 5.3. Instead, we will give a much simpler proof in
the next section, based on the structure of the subdivision mask associated
with this scheme. A similar analysis leads the authors to hypothesize that
this bell-shaped basis for polyharmonic splines of order m is also capable of
reproducing all polynomial functions up to degree 2m − 1.

This last property is somewhat surprising because most scattered data schemes
based on radial basis functions must explicitly include polynomial functions to

5.1 Subdivision for Polyharmonic Splines 127

0
2

4

6 0

2

4

6

0
.5
1

1.5
2

2

4

6 0

2

4

6

0
.25
.5

.75
1

0

(a) (b)

Figure 5.4 Examples of a harmonic spline (a) and a biharmonic spline (b) constructed using the bell-
shaped basis.

achieve polynomial reproduction. For the bell-shaped basis, this explicit inclusion
is no longer necessary; polynomials are reproduced naturally by the scheme.

Given this basis, a polyharmonic spline (in the bell-shaped basis) is a function
p[x, y] consisting of integer translates of the basis function n[x, y]; that is, p[x, y] =∑

i , j p0[[i , j]] n[x − i , y − j], where p0 is a vector of control points. Figure 5.4 shows
examples of the harmonic and biharmonic splines corresponding to the initial poly-
hedron of Figure 5.2. Observe that the upper portion of the large “bump” for both
the harmonic and biharmonic splines is f lat. This feature is due to the fact that the
bell-shaped basis functions reproduce constants. The harmonic spline has infinite
“spikes” at a subset of the integer grid Z

2 due to the nature of the harmonic equa-
tion. (Note that these spikes cancel where the coeff icients of l [x , y]p0[x , y] are zero.)
Solutions to the harmonic equation model phenomena such as elastic membranes
that naturally exhibit such unbounded behavior. The difference between the bi-
harmonic spline of Figure 5.4 and the thin plate spline of Figure 5.2 is that the
biharmonic spline approximates the initial control polyhedron whereas the thin
plate spline interpolates the initial control polyhedron.

5.1.3 A Subdivision Scheme for Polyharmonic Splines
in the Bell-shaped Basis

Given the definition of the bell-shaped basis n[x, y] in terms of the radial basis
function c[x, y], the scaling relation of equation 5.3 clearly points to the existence
of a ref inement relation that relates translates of n[x, y] to translates of n[2x, 2y].
The key to deriving this ref inement relation and its associated subdivision scheme

128 C H A P T E R 5 Local Approximation of Global Differential Schemes

is to derive the partial differential equation that governs a polyharmonic spline.
Given the definition of a polyharmonic spline p[x, y] in terms of the bell-shaped
basis function n[x, y] that in turn is defined in terms of the Green’s function c[x, y],
the polyharmonic spline p[x, y] satisf ies the partial differential equation

L[x, y]m p[x, y] ==
∑

i , j

dp0[[i , j]] δ[x − i , y − j], (5.5)

where dp0[[i , j]] is the coeff icient of xi y j in d0[x , y]p0[x , y]. To derive a subdivision
scheme for these splines, we discretize equation 5.5 and construct a f inite difference
equation of the form

dk[x , y]pk[x , y] == 4kd0

[
x2k

, y2k]
p0

[
x2k

, y2k]
. (5.6)

As before, the coeff icients of pk[x , y] form a discrete approximation to p[x, y] on
the grid 1

2k
Z

2. (Note that the factor of 4k is the discretization of δ[x, y].) Just as
in the univariate case, the beauty of this discretization is that successive approx-
imations pk−1[x , y] and pk[x , y] are related by the subdivision relation pk[x , y] =
sk−1[x]pk−1[x2, y2], where

sk−1[x , y] = 4dk−1[x2, y2]
dk[x , y]

.

Given this formula, we first analyze the structure of the subdivision mask
sk−1[x , y] for harmonic splines (i.e., m == 1). This mask is independent of k (i.e., the
various powers of four cancel out) and has the form s[x , y] = l [x2,y2]

l [x ,y] , where l [x , y] is

the discrete Laplacian mask (1−x)2

x + (1−y)2

y . For polyharmonic splines of order m, the
difference mask dk[x , y] has the form (4k l [x , y])m. Therefore, the subdivision mask
sk−1[x , y] for these splines has the form

sk−1[x , y] == 4
(4k−1 l [x2, y2])m

(4k l [x , y])m ==
1

4m−1

(
l [x2, y2]
l [x , y]

)m

.

In particular, the subdivision mask for a polyharmonic spline of order m is the
constant multiple of the mth power of the subdivision mask for harmonic splines.
Thus, most of our focus in the subsequent analysis will be on the harmonic case
(i.e., m == 1).

At this point, we arrive at a troubling realization. In the case of box splines, the
difference mask d[x , y] always divided the difference mask d[x2, y2] exactly. As a re-
sult, the subdivision mask s[x , y] for box splines was finite and defined a subdivision

5.2 Local Approximations to Polyharmonic Splines 129

scheme with locally supported scaling functions. For polyharmonic splines, l [x , y]

does not divide l [x2, y2]. This diff iculty is expected; the bell-shaped basis functions
n[x, y] were not locally supported. At this point, our main focus is to find a bi-inf inite
series expansion for s[x , y] of the form

∑
i , j s[[i , j]] x i y j . Given the correct expansion

of s[x , y], the resulting series coeff icients s[[i , j]] define a refinement relation for the
basis functions n[x, y] and a corresponding subdivision scheme for polyharmonic
splines p[x, y].

5.2 Local Approximations to Polyharmonic Splines

In the previous section, we computed a globally supported bell-shaped basis for the
polyharmonic splines and derived a subdivision scheme whose mask was the ratio
of two difference masks (i.e., s[x , y] = l [x2,y2]

l [x ,y]). Unfortunately, the difference mask

l [x , y] does not exactly divide l [x2, y2]. Given this fact, our focus in this section is

on various series expansions for l [x2,y2]
l [x ,y] . The first method computes the bi-inf inite

Laurent series expansion of l [x2,y2]
l [x ,y] whose coeff icients form the exact ref inement re-

lation for the bell-shaped basis functions n[x, y]. Because manipulating this inf inite
series in practice is awkward, we next consider two other methods that produce lo-
cally supported approximations to this series. These locally supported series define
subdivision schemes that provide a locally supported approximation to polyhar-
monic splines. The second method uses a traditional iterative technique, the Jacobi
method, for computing a finite series approximation to l [x2,y2]

l [x ,y] . The third method
computes a locally supported expansion of l [x2,y2]

l [x ,y] using linear programming. For a

series of f ixed length, the coeff icients produced by the latter scheme provide an
optimal series expansion to l [x2,y2]

l [x ,y] .

5.2.1 The Exact Scheme via Laurent Series

The most common type of series expansion in xi is the power series expansion cen-
tered at the origin, s[x] =∑∞

i =0 s[[i]]x i . This expansion uses only non-negative powers
of x and is convergent in the neighborhood of x == 0 for analytic functions. Unfor-
tunately, such an expansion is not a suitable candidate for s[x , y] = l [x2,y2]

l [x ,y] because the
resulting subdivision mask should be symmetric. However, there are series expan-
sions of s[x] that are convergent in other neighborhoods. One such expansion that al-
lows for negative powers of x (and thus provides symmetric subdivision masks) is the
Laurent series expansion. This expansion, again centered at the origin, has the form

130 C H A P T E R 5 Local Approximation of Global Differential Schemes

s[x] =∑∞
i =−∞ s[[i]]x i , where the coeff icients s[[i]] are chosen such that the series ex-

pansion is convergent on an annulus containing the circle |x | == 1 in the complex
plane.

Ahlfors [4] contains an introduction to complex analysis and Laurent series.
Given a univariate function s[x], the coeff icients s[[i]] of the Laurent series expansion
can be computed as complex (Cauchy) integrals of the form

s[[i]] = 1

2πi

∫
|x |==1

s[x]
x i +1

dx .

If s[x] is a real analytic function, this integral is always real valued. For example,
the rational function x

1−3x+x2 has a Laurent series expansion
∑∞

i =−∞ s[[i]]x i with co-

eff icients s[[i]] of the form

{. . . , −0.009519, −0.02492, −0.06524, −0.17082,

− 0.447214, −0.17082, −0.06524, −0.02492, −0.009519, . . .}.

Here, the values of s[[i]] are displayed as i ranges from −4 to 4. Analogously, the
Laurent series expansion of a bivariate function s[x , y] is a bi-inf inite series expan-
sion

∑
i j s[[i , j]]x i y j that is convergent on the Cartesian product of the unit circles

|x | == 1 and |y| == 1. The coeff icients s[[i , j]] of this expansion can be computed via
the complex integral

s[[i , j]] = −1
4π2

∫
|x |==1
|y|==1

s[x , y]
x i +1 y j +1

dx dy. (5.7)

For s[x , y] = l [x2,y2]
l [x ,y] , it might appear that the integral of equation 5.7 is not convergent

because the denominator l [x , y] of the mask s[x , y] is zero at the point {1, 1}, which
lies on the range of integration. (This point is the only intersection of the algebraic
curve l [x , y] == 0 with the circles |x | == 1 and |y| == 1 in complex space ().) Luck-
ily, this pole in the denominator of s[x , y] is canceled by a corresponding zero in the
numerator of s[x , y]. In fact, the limit of the value of the mask s[x , y] as {x , y} → {1, 1}
is exactly 4, independent of the direction of approach. This fact follows from the
observation that the value of the univariate mask s[1 + az, 1 + bz] taken at z == 0 is
4, independent of the direction of approach {a, b}. Figure 5.5 shows a plot of the
values of s[x , y] in a small neighborhood of {1, 1}.

Observe that the numerator l [x2, y2] of the mask s[x , y] is zero at the three
points {{−1, 1}, {1, −1}, {−1, −1}}. Therefore, as shown in section 3.3.3, the sub-
division scheme corresponding to this mask reproduces constant functions, or,
equivalently, the bell-shaped basis functions n[x, y] form a partition of unity. More
generally, the mask s[x , y] has a zero of order 2m at these three points. This

5.2 Local Approximations to Polyharmonic Splines 131

.9

1.1 .9

.95

1

1.05

1.1

4
4.0025
4.005

4.0075
4.01

.95
1

1.05

Figure 5.5 Plot of the harmonic mask s[x , y] on the range [0.9, 1.1]2.

observation is consistent with the authors’ hypothesis that the bell-shaped basis
functions of order m can reproduce polynomial functions of up to degree 2m − 1.

Given that the integral of equation 5.7 is well defined, our next task is to
develop a method for computing the coeff icients s[[i , j]]. If we apply the transfor-
mation {x , y} = {Cos[α] + i Sin[α], Cos[β] + i Sin[β]} to the subdivision mask s[x , y], the
resulting reparameterized mask s[α, β] is a real function of α and β and has the form

s[α, β] ==
Cos[2α] + Cos[2β] − 2

Cos[α] + Cos[β] − 2
.

Using this reparameterization, the complex integral of equation 5.7 can be reduced
to a real integral of the form

s[[i , j]] =
∫ 2π

0

∫ 2π

0

Cos[i α + jβ]

(
Cos[2α] + Cos[2β] − 2

Cos[α] + Cos[β] − 2

)
dα dβ.

(Note that we have deleted the imaginary part of the integrand in this expression
because its integral is always zero.) Unfortunately, this integral appears to be ex-
tremely diff icult to evaluate symbolically when treating i and j as free parameters.
However, the values s[[i , j]] can be computed using numerical integration for vari-
ous values of i and j . Figure 5.6 shows a table of the coeff icients s[[i , j]] for i and j

ranging from −4 to 4, rounded to four digits.
Because working with this entire infinite expansion is impractical, we instead

consider subdivision masks that are f inite truncations of the infinite series s[x , y].
This approach seems reasonable because the coeff icients s[[i , j]] are converging to
zero as i , j → ∞. If the size of the truncated mask is large enough, the difference
between the truncated scheme and the infinite scheme is visually indiscernible.
Figure 5.7 shows an example of the truncated subdivision mask of Figure 5.6

132 C H A P T E R 5 Local Approximation of Global Differential Schemes

0.0016 0.0023 0.0019 −0.0022 −0.0106 −0.0022 0.0019 0.0023 0.0016
0.0023 0.0048 0.0073 0.0015 −0.0338 0.0015 0.0073 0.0048 0.0023
0.0019 0.0073 0.021 0.0347 −0.1277 0.0347 0.021 0.0073 0.0019

−0.0022 0.0015 0.0347 0.2441 0.4535 0.2441 0.0347 0.0015 −0.0022
−0.0106 −0.0338 −0.1277 0.4535 1.4535 0.4535 −0.1277 −0.0338 −0.0106
−0.0022 0.0015 0.0347 0.2441 0.4535 0.2441 0.0347 0.0015 −0.0022

0.0019 0.0073 0.021 0.0347 −0.1277 0.0347 0.021 0.0073 0.0019
0.0023 0.0048 0.0073 0.0015 −0.0338 0.0015 0.0073 0.0048 0.0023
0.0016 0.0023 0.0019 −0.0022 −0.0106 −0.0022 0.0019 0.0023 0.0016

Figure 5.6 Coefficients s[[i , j]] of the exact subdivision mask for harmonic splines (to four digits).

�2
�1

0
1

2 �2

�1

0

1

2

0
.5
1

�2
�1

0
1

2 �2

�1

0

1

2

0
.5
1

�2
�1

0
1

2

�2
�1

0
1

2

0

1

2

�2
�1

0
1

2 �2

�1

0

1

2

0
.5
1

1.5

Figure 5.7 A basis function for harmonic splines constructed via subdivision based on the truncated
Laurent series.

5.2 Local Approximations to Polyharmonic Splines 133

4
6 0

2

4

6
0

.5
1

1.5

0
2

Figure 5.8 The harmonic spline of Figure 5.4 approximated by three rounds of subdivision using the
truncated Laurent series.

applied to a standard unit vector. The result is an approximation of the harmonic
basis function n[x, y]. Figure 5.8 shows three rounds of subdivision for the initial
polyhedron of Figure 5.2. Note that the resulting polyhedron is a close approxi-
mation of the harmonic spline of Figure 5.4, with the exception that spikes of the
subdivided version are slowly diverging toward the unbounded spikes of the limit
solution.

Unfortunately, the truncated Laurent series has the drawback that the resulting
scheme may not reproduce constant functions. Another defect is that the error
induced by truncation is concentrated along the boundary of the mask where the
truncation takes place. Ideally, this error should be distributed over the entire mask.
In the rest of this section, we consider two alternative methods for constructing
locally supported masks that approximate bi-inf inite Laurent series.

5.2.2 Local Approximations via the Jacobi Iteration

We next consider a simple method for approximating the exact subdivision mask
s[x , y] = l [x2,y2]

l [x ,y] based on using an iterative method to solve the linear system

l [x , y] s[x , y] == l [x2, y2]. (5.8)

The main advantage of this approach is that iterative methods are simple to imple-
ment and have been extensively studied. Although many iterative methods (such as
the Gauss-Seidel method, the Gauss-Seidel method with successive overrelaxation,
the RF method, and the Peaceman-Rachford method) are available for this task, we

134 C H A P T E R 5 Local Approximation of Global Differential Schemes

focus on the Jacobi iteration due to its simplicity. For a comprehensive description
and analysis of all of these methods, the authors suggest Varga [152] and Young
[166]. Other excellent references on iterative solution methods for linear systems
include Golub and Van Loan [67], Horn and Johnson [75], and Kelly [79].

Given an initial mask s0[x , y], the Jacobi iteration constructs a sequence of
masks si [x , y]. For harmonic splines (i.e., masks satisfying equation 5.8), the Jacobi
iteration has the form

si [x , y] = (α ∗ l [x , y] + 1) si −1[x , y] − α ∗ l [x2, y2]. (5.9)

The mask (α∗ l [x , y]+1) is the smoothing mask associated with the iteration, whereas
the mask α ∗ l [x2, y2] is the correction mask associated with the iteration. For
0 ≤ α ≤ 1

4 , the smoothing mask takes convex combinations of coeff icients of the
mask si [x , y]. For example, if α = 1

6 , the smoothing mask and correction mask have,
respectively, the form

⎛⎜⎜⎝
0 1

6 0

1
6

1
3

1
6

0 1
6 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1

6 0 0

0 0 0 0 0
1
6 0 − 2

3 0 1
6

0 0 0 0 0

0 0 1
6 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Observe that the iteration of equation 5.9 has the property that any solution s[x , y]

to equation 5.8 is also a fixed point of the iteration.
The beauty of this iteration is that the masks si [x , y] converge to the exact

Laurent series s[x , y] for a small range of α around α == 1
6 . This constant α is the

relaxation factor for the iteration and controls the rate of convergence of this it-
eration. (See Young [166] for more details on the convergence of iterative meth-
ods.) If we choose an initial mask s0[x , y] to be the mask for bilinear subdivision
(1+x)2

2x
(1+y)2

2y , Figure 5.9 shows the 9×9 mask resulting from three rounds of the Jacobi
iteration.

Figure 5.10 shows an approximation to the basis function n[x, y] based on three
rounds of subdivision, with each round of subdivision using three iterations of equa-
tion 5.9. Note that although the subdivision mask of Figure 5.9 is not a particularly
good approximation of the exact mask s[x , y] the resulting approximation of n[x, y]

is visually realistic and diff icult to distinguish from Figure 5.7. Figure 5.11 shows
three rounds of subdivision applied to the initial polyhedron of Figure 5.2. Again,
this f igure and Figure 5.8 are nearly indistinguishable.

5.2 Local Approximations to Polyharmonic Splines 135

0. 0. 0. 0.0012 −0.0023 0.0012 0. 0. 0.

0. 0. 0.0035 0.0069 −0.0208 0.0069 0.0035 0. 0.

0. 0.0035 0.0185 0.0382 −0.1204 0.0382 0.0185 0.0035 0.

0.0012 0.0069 0.0382 0.2361 0.4352 0.2361 0.0382 0.0069 0.0012
−0.0023 −0.0208 −0.1204 0.4352 1.4167 0.4352 −0.1204 −0.0208 −0.0023

0.0012 0.0069 0.0382 0.2361 0.4352 0.2361 0.0382 0.0069 0.0012
0. 0.0035 0.0185 0.0382 −0.1204 0.0382 0.0185 0.0035 0.

0. 0. 0.0035 0.0069 −0.0208 0.0069 0.0035 0. 0.

0. 0. 0. 0.0012 −0.0023 0.0012 0. 0. 0.

Figure 5.9 Coefficients of the mask s3[x , y] formed by three rounds of Jacobi iteration.

�2
�1

0
1

2 �2

�1

0

1

2

0
.5
1

�2

2 �2

�1

0

1

2

0
.5
1

�1
0

1

�2

1
2 �2

�1

0

1
2

.5
0

1
1.5

�1
0

�2
�1

0
1

2 �2

�1

0

1
2

0

1

2

Figure 5.10 A basis function for harmonic splines constructed via subdivision based on the Jacobi iteration.

136 C H A P T E R 5 Local Approximation of Global Differential Schemes

0
2

4
6 0

2

4

6
0

.5
1

1.5

Figure 5.11 The harmonic spline of Figure 5.4 approximated by three rounds of subdivision using the
Jacobi iteration.

For differential and variational problems, the idea of expressing subdivision as
prediction using bilinear subdivision followed by smoothing with the Jacobi iteration
has been examined by Kobbelt in a number of papers [80, 82, 83, 84, 86]. Note
that the other types of iterative methods can be used in place of the Jacobi itera-
tion. For example, Kobbelt and Schröder [87] use cyclic reduction in constructing
subdivision schemes for variationally optimal curves. More generally, subdivision
schemes of this type can be viewed as instances of multigrid schemes [13] in which
the coarse grid correction phase has been omitted.

5.2.3 Optimal Local Approximations via Linear Programming

Our last method takes a more direct approach to constructing a local subdivision
scheme that approximates harmonic splines. Because the exact subdivision mask
s[x , y] for harmonic splines is globally supported, any locally supported scheme
has to be an approximation to the exact globally supported scheme. Our strategy
is to compute a subdivision mask ŝ [x , y] with a given support that approximately
satisf ies l [x , y] ŝ [x , y] � l [x2, y2]. If the coeff icients of ŝ [x , y] are treated as unknowns,
this approach leads to an optimization problem in these unknown coeff icients.

For harmonic splines (m == 1), we compute a locally supported subdivision
mask ŝ [x , y] whose coeff icients ŝ [[i , j]] are the unknowns. Because the bell-shaped
basis function for harmonic splines is symmetric with respect to the axes x == 0,
y == 0 and x == y, the number of unknowns in the symbolic representation of ŝ [x , y]

can be reduced accordingly by reusing variable names. In particular, for f ixed i , j

5.2 Local Approximations to Polyharmonic Splines 137

the eight unknowns ŝ [[±i , ± j]], ŝ [[± j , ±i]] are constrained to be equal. The key
to computing the remaining unknown coeff icients lies in minimizing the residual
mask r [x , y] of the form

r [x , y] = l [x , y] ŝ [x , y] − l [x2, y2].

Observe that any subdivision mask ŝ [x , y] that causes the residual mask r [x , y]

to be zero yields a subdivision scheme that produces solutions to equation 5.6. In
keeping with the spirit of the analysis of Chapter 3, we choose to minimize the
∞-norm of the residual mask r [x , y]; that is, minimize

Max

[∑
i , j

|r [[2i , 2 j]]|,
∑

i , j

|r [[2i + 1, 2 j]]|, (5.10)

∑
i , j

|r [[2i , 2 j + 1]]|,
∑

i , j

|r [[2i + 1, 2 j + 1]]|
]
.

This minimization problem can be expressed as a linear programming problem in
the unknowns of the subdivision mask ŝ [x , y]. To construct this linear program,
we first convert the expressions |r [[i , j]]| appearing in expression 5.10 into a set
of inequalities. To this end, we express the unknown r [[i , j]] as the difference of
two related unknowns r +[[i , j]] − r −[[i , j]], where r +[[i , j]] ≥ 0 and r −[[i , j]] ≥ 0. Given
this decomposition, the absolute value of [[i , j]] satisf ies the inequality |r [[i , j]]| ≤
r +[[i , j]] + r −[[i , j]]. Observe that during the course of minimizing the sum r +[[i , j]] +
r −[[i , j]] one of the variables r +[[i , j]] and r −[[i , j]] is forced to be zero, with remaining
variables assuming the absolute value |r [[i , j]]|.

Based on this transformation, minimizing expression 5.10 is equivalent to min-
imizing the variable obj subject to the four inequality constraints∑

r +[[2i , 2 j]] + r −[[2i , 2 j]] ≤ obj ,∑
r +[[2i , 2 j + 1]] + r −[[2i , 2 j + 1]] ≤ obj ,∑
r +[[2i + 1, 2 j]] + r −[[2i + 1, 2 j]] ≤ obj ,∑

r +[[2i + 1, 2 j + 1]] + r −[[2i + 1, 2 j + 1]] ≤ obj .

Because the coeff icients r [[i , j]] are linear expressions in the unknown coeff icients
of ŝ [x , y], substituting these linear expressions for r [[i , j]] leads to a linear pro-
gram whose minimizer is the approximate mask ŝ [x , y]. For example, Figures 5.12
and 5.13 show the 5 × 5 and 9 × 9 masks ŝ [x , y], respectively, for harmonic splines.
Observe that each of these masks is an increasingly accurate approximation of the
exact mask shown in Figure 5.6.

138 C H A P T E R 5 Local Approximation of Global Differential Schemes

0 0.0303 −0.1212 0.0303 0
0.0303 0.2424 0.4545 0.2424 0.0303

−0.1212 0.4545 1.4545 0.4545 −0.1212
0.0303 0.2424 0.4545 0.2424 0.0303
0 0.0303 −0.1212 0.0303 0

Figure 5.12 The optimal 5 × 5 approximation to the subdivision mask for harmonic splines.

0 0.0014 0.0014 −0.0014 −0.009 −0.0014 0.0014 0.0014 0
0.0014 0.0042 0.0072 0.0019 −0.0331 0.0019 0.0072 0.0042 0.0014
0.0014 0.0072 0.0211 0.0351 −0.1273 0.0351 0.0211 0.0072 0.0014

−0.0014 0.0019 0.0351 0.2445 0.4539 0.2445 0.0351 0.0019 −0.0014
−0.009 −0.0331 −0.1273 0.4539 1.4539 0.4539 −0.1273 −0.0331 −0.009
−0.0014 0.0019 0.0351 0.2445 0.4539 0.2445 0.0351 0.0019 −0.0014

0.0014 0.0072 0.0211 0.0351 −0.1273 0.0351 0.0211 0.0072 0.0014
0.0014 0.0042 0.0072 0.0019 −0.0331 0.0019 0.0072 0.0042 0.0014
0 0.0014 0.0014 −0.0014 −0.009 −0.0014 0.0014 0.0014 0

Figure 5.13 The optimal 9 × 9 approximation to the subdivision mask for harmonic splines.

Figure 5.14 shows an approximation of the basis function n[x, y] for harmonic
splines based on three rounds of subdivision with the 9 × 9 mask of Figure 5.13.
Figure 5.15 shows the result of three rounds of subdivision with this mask applied
to the initial polyhedron of Figure 5.2.

5.2.4 A Comparison of the Three Approaches

All three of the methods in this section (truncated Laurent series, Jacobi iteration,
and linear programming) provide finite approximations to the exact subdivision
mask s[x , y] for harmonic splines. To conclude this section, we compare the accuracy
of these three methods in reproducing the exact subdivision scheme for harmonic
splines. Figure 5.16 shows the ∞-norm of the residual expression r [x , y] for f inite
approximations of various sizes using these methods. The upper curve is the residual
plot of the Jacobi iteration, the middle curve is the residual plot for the truncated
Laurent series, and the lower curve is the residual plot for the linear programming
method. The horizontal axis is the size of the approximate mask, and the vertical
axis is the norm of the corresponding residual expression.

5.2 Local Approximations to Polyharmonic Splines 139

�2

2 �2

�1

0

1

2

0
.5
1

�1
0

1

�2

2 �2

�1

0

1
2

0

.5

1

�1
0

1

�2

2 �2

�1

0

1
2

0
.5
1

1.5

�1
0

1
�2

2

�2
�1

0
1

2

0

1

2

�1
0

1

Figure 5.14 A basis function for harmonic splines constructed via subdivision based on the optimal 9 × 9
mask.

0
2

4
6 0

2

4

6
0

.5
1

1.5

Figure 5.15 The harmonic spline of Figure 5.4 approximated by three rounds of subdivision using the
optimal 9 × 9 mask.

140 C H A P T E R 5 Local Approximation of Global Differential Schemes

1 5 9 13 17

.005
.01

.05
.1

.5
1

(a)

(b)

(c)

Figure 5.16 Residual plots for the Jacobi iteration (a), Laurent series expansion (b), and linear programming
method (c).

As expected, the linear programming method yields masks with minimal resid-
ual. In general, the residual for the truncated Laurent mask is roughly twice that
of the optimal mask, with all of the error being distributed at the boundary of the
mask. Finite masks based on the Jacobi iteration typically have a residual that is at
least an order of magnitude larger.

One interesting question involves the behavior of these residuals during several
rounds of subdivision. The mask resulting from k rounds of subdivision has the form∏k

i =1 ŝi −1[x2k−i
]. To measure the accuracy of this mask, we compute the norm of the

multilevel residual:

l [x , y]

(k∏
i =1

ŝi −1

[
x2k−i])− l

[
x2k

, y2k]
.

Figure 5.17 shows a plot of the multilevel residual for the masks of size 17 × 17

produced by each scheme. As before, the upper curve is the residual plot of the
Jacobi iteration, the middle curve is the residual plot for the truncated Laurent
series, and the lower curve is the residual plot for the linear programming method.
The horizontal axis denotes the number of rounds of subdivision, whereas the
vertical axis denotes the norm of the residual.

The truncation of the Laurent series expansion yields reasonable results. Be-
cause the Laurent series expansion corresponds to the exact subdivision scheme,
the only error induced is that of the truncation. Expanding the support of the trun-
cated series yields a sequence of subdivision schemes that provides increasingly
accurate approximations of polyharmonic spline surfaces. On the other hand, the

5.3 Subdivision for Linear Flows 141

1 2 3 4 5
.002

.005

.01

.02

.05

.1

.2 (a)

(b)
(c)

Figure 5.17 Multilevel residuals for Jacobi iteration (a), Laurent series expansion (b), and linear program-
ming method (c).

Jacobi iteration yields masks that are substantially less accurate. In practice, a very
large number of iterations may be necessary to obtain reasonably precise solutions,
due to the slow convergence of the iteration.

The method based on linear programming exhibits the best performance in
terms of minimizing the residual. For example, the 17 × 17 mask had a residual
error of less than one percent, even after f ive rounds of subdivision. Although the
size of this mask might seem prohibitive, applying such larger masks during subdi-
vision can be greatly accelerated by using discrete convolution and the Fast Fourier
Transformation. The associated implementation uses this method in computing the
multilevel residual for large masks (). For example, the multilevel residual for f ive
rounds of subdivision with a 17 × 17 mask was computed in less than 20 seconds
on a laptop computer. One final advantage of the linear programming approach is
that for higher-order polyharmonic splines (i.e., m > 1) it is easy to add extra con-
straints on the approximate mask ŝ [x , y] that correspond to polynomial precision
and that guarantee the conditions for convergence and smoothness of the resulting
subdivision schemes (as summarized in Chapter 3).

5.3 Subdivision for Linear Flows

Our previous examples considered the problem of constructing subdivision
schemes for scalar-valued functions (with possibly vector coeff icients in the para-
metric case). In this section, we consider an extension of the techniques of the

142 C H A P T E R 5 Local Approximation of Global Differential Schemes

Figure 5.18 An example of subdivision for flow fields.

previous two sections to the problem of constructing subdivision schemes for vec-
tor f ields. Figure 5.18 shows an example of this idea. Given a coarse vector f ield
on the left, we wish to construct a set of subdivision rules that generate a sequence
of increasingly dense vector f ields (shown on the right). If these rules are chosen
carefully, the limit of these vector f ields is a continuous vector f ield that follows
the initial vector f ield. As was the case for polyharmonic splines, our approach to
constructing these rules is a differential one based on a set of partial differential
equations that model simple types of f low. This method, developed by the authors,
appears in [163].

Mathematically, f low in two dimensions is a vector-valued function {u[x, y],

v[x, y]}T in two parameters, x and y. Flows can be visualized in a number of ways.
Perhaps the simplest method is to evaluate {u[x, y], v[x, y]}T at a grid of parameter
values {i , j } ∈ Z

2. Each resulting vector {u[i , j], v[i , j]}T is then plotted, with its tail
placed at {i , j } to form a vector f ield. The behavior of f lows is governed by a set
of partial differential equations (PDEs) known as Navier-Stokes equations. Because
the behavior of these equations is a f ield of study that can occupy an entire career,
our goal is to give a brief introduction to several special cases of these equations.
The source for most of the material in this introduction is Fluid Mechanics by
Liggett [97].

5.3.1 Linear Flows

In their most general setting, the Navier-Stokes equations are nonlinear. Because
subdivision is an intrinsically linear process, it is unreasonable to expect that the
general solution to these equations can be modeled by a subdivision scheme. How-
ever, in several important settings, the Navier-Stokes equations reduce to a much
simpler set of linear PDEs. We next consider two such cases: perfect f low and slow

5.3 Subdivision for Linear Flows 143

f low. Later, we derive subdivision schemes for perfect f low, noting that exactly the
same methodology can be used to build schemes for slow flow.

Perfect f lows are characterized by two properties: incompressibility and zero
viscosity. A flow {u[x, y], v[x, y]}T is incompressible if it satisf ies the partial differential
equation

u(1,0)[x, y] + v(0,1)[x, y] == 0.

Flows {u[x, y], v[x, y]}T satisfying this equation are said to be divergence free. In most
f lows, viscosity induces rotation in the flow. However, if the fluid has zero viscos-
ity, its f lows are free of rotation. Such flows are often referred to as irrotational.
Irrotational f lows are characterized by the partial differential equation

u(0,1)[x, y] == v(1,0)[x, y].

Together, these two equations in two functions u and v uniquely characterize per-
fect f low:

u(1,0)[x, y] + v(0,1)[x, y] == 0,

u(0,1)[x, y] − v(1,0)[x, y] == 0.
(5.11)

To facilitate manipulations involving such systems of PDEs, we use two impor-
tant tools. As in the scalar case, we express various derivatives using the differen-
tial operators D[x] and D[y]. Left multiplication by the differential operator D[x] is
simply a shorthand method for taking a continuous derivative in the x direction; for
example, D[x]u[x, y] = u(1,0)[x, y] and D[y]v[x, y] = v (0,1)[x, y]. Our second tool is ma-
trix notation. After replacing the derivatives in equation 5.11 with their equivalent
differential operators, the two linear equations in two unknowns can be written in
matrix form as (

D[x] D[y]

D[y] −D[x]

)(
u[x, y]

v[x, y]

)
== 0. (5.12)

In conjunction, these techniques allow the generation of subdivision schemes from
systems of PDEs using the same strategy as employed for polyharmonic splines.

Another important class of linear f low is slow f low. A slow flow is an incom-
pressible f low in which the viscous behavior of the flow dominates any inertial
component of the flow. For example, the flow of viscous fluids such as asphalt,
sewage sludge, and molasses is governed almost entirely by its viscous nature. Other

144 C H A P T E R 5 Local Approximation of Global Differential Schemes

examples of slow flow include the movement of small particles through water or
air and the swimming of microorganisms [97]. Slow flow may also be viewed as a
minimum-energy elastic deformation applied to an incompressible material. This
observation is based on the fact that the flow of an extremely viscous fluid is es-
sentially equivalent to an elastic deformation of a solid. One by-product of this
view is that any technique for creating slow flows can also be applied to create
minimum-energy deformations.

Slow flows in two dimensions are also governed by two partial differential
equations. The first partial differential equation corresponds to incompressibility.
However, due to their viscosity, slow flows have a rotational component. This
rotational component is governed by the partial differential equation

u(2,1)[x, y] + u(0,3)[x, y] − v(3,0)[x, y] − v(1,2)[x, y] == 0.

(For a complete derivation of this equation, see Liggett [97], page 161.) If L[x, y] =
D[x]2 +D[y]2 denotes the continuous Laplacian, these two partial differential equa-
tions can now be written together in matrix form as(

D[x] D[y]

L[x, y]D[y] −L[x, y]D[x]

)(
u[x, y]

v[x, y]

)
== 0. (5.13)

In this form, the similarity between the governing equations for perfect f low and
those for slow flow is striking: the second equation in 5.13 corresponds to the equa-
tion for irrotational f low multiplied by the Laplacian L[x, y]. The effect of this extra
factor of L[x, y] on the rotational component of slow flows is easy to explain: perfect
f lows exhibit inf inite velocities at sources of rotational f low. The extra factor of
L[x, y] smooths the velocity f ield at rotational sources and causes slow flows to be
continuous everywhere. For the sake of simplicity, we focus most of our analysis
on the case of subdivision for perfect f low. However, the same techniques can be
used to derive a subdivision scheme for slow flow. Those readers interested in more
details for the case of slow flow should consult [163]. The Mathematica implemen-
tation associated with this book includes code for computing approximate matrix
masks for both schemes. This code was used to compute examples for both perfect
and slow flows.

Traditionally, f luid flow has been modeled through either explicit or numerical
solutions of the associated PDEs. Explicit solutions for perfect f low are known for a
number of primitives, such as sources, sinks, and rotors. These can be combined into
more complex fields using simple linear combinations (see [97] for more details).

5.3 Subdivision for Linear Flows 145

Numerical solutions for the modeling and simulation of f low are a very active
research area. Commonly, such solutions involve approximation using either f inite
difference or f inite element schemes. Brezzi and Fortin [14] provide an introduction
to some of the standard numerical techniques used for modeling flow. Recently,
cellular automata have been applied with some success for the discrete modeling
of physical problems, including gas and fluid flow [21, 133].

On the computer graphics side, Kass and Miller [78] simulate surface waves in
water by approximately solving a two-dimensional shallow water problem. Chen
and Lobo [19] solve the Navier-Stokes equations in two dimensions and use the
resulting pressure field to define a fluid surface. Chiba et al. [20] simulate water
currents using a particle-based behavioral model. Miller and Pearce [106] model
viscous fluids through a connected particle system. Wejchert and Haumann [165]
introduce notions from aerodynamics to the graphics community. Stam and Fiume
[147] model turbulent wind fields for animation based on solving the underlying
PDEs. Foster and Metaxas [64] suggest solving the Navier-Stokes equations on a
coarse grid in three dimensions using a finite-difference approach and then inter-
polating the coarse solution locally as needed. They also extend their method to
handle turbulent steam [65].

5.3.2 Primal Versus Dual Subdivision

Our goal is to use the differential method of Chapter 4 in deriving vector subdivi-
sion schemes for linear f lows. In the previous scalar cases, the differential method
produces a subdivision scheme that given an coarse polygon p0 defines a sequence
of polygons pk that converge to a continuous curve p[x] approximating the initial
polygon p0. In the current vector case, the differential method produces a subdivi-
sion scheme that given a coarse vector f ield {u0, v0}T on the coarse grid Z

2 defines a
sequence of increasingly dense vector f ields {uk, vk}T on the finer grid 1

2k
Z

2 that con-
verge to a continuous vector f ield {u[x, y], v[x, y]}T approximating the initial vector
f ield {u0, v0}T.

Before discussing the details of the subdivision scheme for f low, we first make
an important observation concerning the differential method of Chapter 4. In the
univariate case, the difference mask dk[x] for the order m divided differences involves
only non-negative powers of x and leads to a subdivision mask s[x] for B-splines of
order m that also only involves non-negative powers of x. As a result, the corre-
sponding B-spline basis function n[x] is supported on the interval [0, m]. For scalar
subdivision schemes, we did not need to be careful about introducing extra powers

146 C H A P T E R 5 Local Approximation of Global Differential Schemes

of x into the difference mask dk[x] and its associated subdivision mask s[x] because
these extra powers simply translated the resulting scaling function n[x].

For vector subdivision schemes, we must be much more careful about introduc-
ing extraneous translations into the components of the vector f ield. For example,
translating only the first component of the flow {u[x, y], v[x, y]}T by one unit in the
x direction yields a new flow {u[x − 1, y], v[x, y]}T . This new flow is not a translate
of the original f low but a completely different f low. To translate the flow by one
unit in the x direction, we must translate each component of the flow by one unit,
that is, form the new flow {u[x − 1, y], v[x − 1, y]}T. The main consequence of this
observation is that when applying the differential method to vector schemes we
must avoid introducing extraneous shifts into the difference masks used to model
equations 5.12 and 5.13.

The solution to this problem is to center higher-order difference masks by tak-
ing powers of the centered first difference mask d[x] = x− 1

2 −x
1
2 . Before constructing

the finite difference equations for equation 5.11, we first consider some of the im-
plications of using half-integer powers of x in our construction. For B-splines, using
this centered mask d[x] in place of the uncentered mask 1 − x leads to subdivision
masks s[x] whose basis functions n[x] are supported on the interval [− m

2 , m
2]. If m is

even, the powers x
1
2 cancel out, yielding a mask s[x] involving only integral powers

of x. Because m is even, the knots of the basis function n[x] remain positioned at the
integers Z. Moreover, the coeff icients attached to the integer translates of this basis
function also remain positioned on the integer grid Z. Such schemes are known as
primal schemes. After k rounds of subdivision for a primal scheme, the entries of
pk are positioned on the grid 1

2k
Z.

If m is odd, the situation becomes more complicated. The powers of x
1
2 do not

cancel, and the resulting mask s[x] involves fractional powers of x. More important,
because m is odd, the integer translates of the basis function n[x] have knots that lie
at the midpoints of segments in the integer grid Z. We denote the grid consisting
of such points i + 1

2 , where i ∈ Z by D[Z]. Because B-splines are typically viewed
as having knots at the integers, this half-integer shift in D[Z] can be cancelled by
inducing a half-integer shift in the coeff icients of p0[x], that is, positioning the
coeff icients of p0 at the midpoints of segments in the integer grid 1

2k
Z. In this

model, p0[x] is now a generating function involving powers of x of the form xi ,

where i ∈ D[Z]. Schemes with this structure are known as dual schemes. After k

rounds of subdivision for a dual scheme, the entries of pk are positioned on the grid
D[1

2k
Z], that is, at the midpoints of segments in the grid 1

2k
Z.

In the case of linear f low, the structure of the differential equations causes
the resulting vector subdivision schemes to have an unusual primal/dual structure

5.3 Subdivision for Linear Flows 147

Figure 5.19 Plotting the components of the discrete flow {u0, v0}T on the integer grid.

that does not occur in the scalar case. In particular, the linear f lows {u[x, y], v[x, y]}T

defined by these schemes have the property that the u[x, y] component is primal
in x and dual in y, whereas the v[x, y] component is dual in x and primal in y. In
particular, the entries of the uk component of the discrete f low {uk, vk}T lie on the
grid 1

2k
Z×D[1

2k Z], whereas the entries of the component vk lie on the grid D[1
2k

Z]× 1
2k Z.

One way to visualize this discrete f low is to define a square grid passing through
the vertices of 1

2k
Z

2. The entries of uk approximate flow in the x direction normal
to the vertical walls of the square grid. The entries of vk approximate flow in the
y direction normal to the horizontal walls of the grid. Figure 5.19 illustrates this
positioning, with the horizontal vectors corresponding to the uk component and
the vertical vectors corresponding to the vk component. The length of the vectors
corresponds to the value of the corresponding entry.

As in the scalar case, the vectors uk and vk can be represented as generating
functions uk[x , y] and vk[x , y], with the dual component of these generating functions
involving half-integer powers of x and y. (The associated implementation discusses
a method for implementing dual subdivision schemes with generating functions
based on integral powers of x and y ().)

5.3.3 A Finite Difference Scheme for Perfect Flows

To construct the subdivision scheme for perfect f low, we first discretize differ-
ential equation 5.12 on the grid 1

2k
Z

2. As suggested previously, we represent the

148 C H A P T E R 5 Local Approximation of Global Differential Schemes

differential operator D[x] in terms of a centered divided difference of the form
dk[x] = 2k(x− 1

2 − x
1
2). Under this discretization, the left-hand side of equation 5.12

reduces to(
dk[x] dk[y]

dk[y] −dk[x]

)(
uk[x , y]

v k[x , y]

)
==

(
dk[x] uk[x , y] + dk[y] vk[x , y]

dk[y] uk[x , y] − dk[x] vk[x , y]

)
.

The coeff icients of the upper generating function dk[x] uk[x , y] + dk[y] vk[x , y] esti-
mate the compressibility of the discrete f low {uk, vk}T at the centers of squares in
1
2k

Z
2. Each coeff icient is associated with a square and consists of the difference of

entries in uk and vk corresponding to flow entering and exiting the four sides of the
square. The coeff icients of the lower generating function dk[y] uk[x , y] − dk[x] vk[x , y]

estimate the rotational component of the discrete f low at grid points of 1
2k

Z
2. Each

coeff icient in this expression involves the difference of the four entries of uk and vk

corresponding to the edges incident on a particular grid point. (The discrete f low
of Figure 5.19 is incompressible but has a non-zero rotational component at each
grid point.)

Given this discretization of the left-hand side of equation 5.12, our next task is
to choose a right-hand side for equation 5.12 that relates a solution {u[x, y], v[x, y]}T to
an initial coarse f low {u0, v0}T in an intuitive manner. One particularly nice choice is(

D[x] D[y]

D[y] −D[x]

)(
u[x, y]

v[x, y]

)
==
(

0∑
i , j rot[[i , j]] δ[x − i , y − j]

)
,

where rot[[i , j]] is an estimate of the rotational component of the flow {u0, v0}T at the
integer grid point {i , j }. In terms of generating functions, rot[x , y] is the expression
d0[y] u0[x , y] − d0[x] v0[x , y]. Due to this particular choice for the right-hand side,
the resulting flows {u[x, y], v[x, y]}T are divergence free everywhere and driven by
rotational sources positioned at the integer grid points Z

2.
Our last task before proceeding to the derivation of the subdivision scheme is

to construct a set of f inite difference equations analogous to the partial differential
equations previously given. Given that the discrete analog of the Dirac delta δ[x, y]

is 4k, the appropriate set of f inite difference equations on the grid 1
2k

Z
2 has the form(

dk[x] dk[y]

dk[y] −dk[x]

)(
uk[x , y]

vk[x , y]

)
== 4k

(
0

rot
[
x2k

, y2k]
)

(5.14)

== 4k

(
0 0

d0

[
y2k] −d0

[
x2k])(u0

[
x2k

, y2k]
v0

[
x2k

, y2k]
)

.

5.3 Subdivision for Linear Flows 149

5.3.4 A Subdivision Scheme for Perfect Flows

Given the previous f inite difference equation, we can now derive the associated
subdivision scheme for perfect f low. The subdivision mask for this scheme consists
of a matrix of generating functions that relates successive solutions {uk−1, vk−1}T and
{uk, vk}T and has the form(

uk[x , y]
vk[x , y]

)
==
(

s11[x , y] s12[x , y]
s21[x , y] s22[x , y]

)(
uk−1[x2, y2]
vk−1[x2, y2]

)
.

Here, we let si j [x] denote the i j th entry of this matrix of generating functions. (Note
that we have dropped the subscript k − 1 from s because the resulting scheme is
stationary.) The key to computing this matrix of masks is to construct an associated
finite difference equation that relates successive solutions {uk−1, vk−1}T and {uk, vk}T.
In the case of perfect f lows, this two-scale relation has the form(

dk[x] dk[y]

dk[y] −dk[x]

)(
uk[x , y]

vk[x , y]

)
== 4

(
0 0

dk−1[y2] −dk−1[x2]

)(
uk−1[x2, y2]

vk−1[x2, y2]

)
.

Substituting for {uk[x , y], vk[x , y]}T and canceling common factors of {uk−1[x2, y2],

vk−1[x2, y2]}T on both sides of this equation yields(
dk[x] dk[y]

dk[y] −dk[x]

)(
s11[x , y] s12[x , y]

s21[x , y] s22[x , y]

)
== 4

(
0 0

dk−1[y2] −dk−1[x2]

)
. (5.15)

The beauty of this relation is that the mask si j [x , y] can now be computed by
inverting the matrix of generating functions

(
dk[x] dk[y]
dk[y] −dk[x]

)
. The resulting matrix of

masks has the form(
s11[x , y] s12[x , y]

s21[x , y] s22[x , y]

)
==

2
l [x , y]

(
d[y] d[y2] −d[y] d[x2]

−d[x] d[y2] d[x] d[x2]

)
, (5.16)

where d[x] = x− 1
2 − x

1
2 and l [x , y] = d[x]2 + d[y]2 is the discrete Laplacian mask. This

matrix (s i j [x , y]) encodes the subdivision scheme for perfect f low. Note that this
subdivision scheme is a true vector scheme: uk depends on both uk−1 and vk−1. Such
schemes, although rare, have been the object of some theoretical study. Dyn [49]
investigates some of the properties of such vector schemes.

As in the polyharmonic case, the denominator l [x , y] does not divide the
various entries in the numerators of the masks s i j [x , y]. In reality, this diff iculty
is to be expected. Flows, even linear ones, are intrinsically nonlocal. However, just

150 C H A P T E R 5 Local Approximation of Global Differential Schemes

as in the case of polyharmonic surfaces, the entries s i j [x , y] of the matrix of subdivi-
sion masks can be approximated by a matrix of f inite masks ŝ i j [x , y] using a variant
of the linear programming technique discussed in the previous section.

To construct this linear program, we observe that due to symmetries in x and y

in equation 5.16 the exact masks s i j [x , y] satisfy the relations s11[x , y] == s22[y, x] and
s21[x , y] == s12[y, x]. Moreover, the coeff icients of s11[x , y] are symmetric in x and y,
whereas the coeff icients of s21[x , y] are antisymmetric in x and y. Thus, our task
reduces to solving for approximate masks ŝ11[x , y] and ŝ21[x , y] that are symmetric
and antisymmetric, respectively.

If these masks are fixed to have finite support, we can solve for the unknown
coeff icients of these approximate masks using equation 5.15. This matrix equa-
tion includes two coupled linear equations involving the exact masks s11[x , y] and
s21[x , y]. We wish to compute approximations ŝ11[x , y] and ŝ21[x , y] to these exact
masks such that the approximate scheme is irrotational, that is,

d[y] ŝ11[x , y] − d[x] ŝ21[x , y] == 2d[y2],

while minimizing the ∞-norm of the compression term

d[x] ŝ11[x , y] + d[y] ŝ21[x , y].

Additionally, we can force the approximate vector scheme to have constant preci-
sion by enforcing the four auxiliary constraints

ŝ11[1, 1] = 4,

ŝ11[−1, 1] = 0,

ŝ11[1, −1] = 0

ŝ11[−1, −1] = 0

during the linear programming process. These four conditions in conjunction with
the fact that ŝ21[±1, ±1] == 0 (due to the antisymmetric structure of ŝ21[x , y]) au-
tomatically guarantee that the resulting vector scheme reproduces constant vec-
tor f ields. The associated implementation contains a Mathematica version of this
algorithm.

Given these approximate masks, we can apply the vector subdivision scheme to
an initial, coarse vector f ield {u0, v0}T and generate increasingly dense vector f ields
{uk, vk}T via the matrix relation(

uk[x , y]
vk[x , y]

)
=
(

ŝ11[x , y] ŝ21[y, x]
ŝ21[x , y] ŝ11[y, x]

)(
uk−1[x2, y2]
vk−1[x2, y2]

)
.

5.3 Subdivision for Linear Flows 151

If the vector f ield {uk−1, vk−1}T is represented as a pair of arrays, the polynomial
multiplications in this expression can be implemented very eff iciently using
discrete convolution. The resulting implementation allows us to model and ma-
nipulate f lows in real time. Although matrix masks as small as 5 × 5 yield nicely
behaved vector f ields, we recommend the use of 9 × 9 or larger matrix masks if
visually realistic approximations to perfect f lows are desired.

Visualizing the discrete vector f ields {uk, vk}T as done in Figure 5.19 is awkward
due to the fact that entries of uk and vk are associated with the grids 1

2k
Z × D[1

2k Z] and
D[1

2k
Z]× 1

2k Z, respectively. One solution to this problem is to average pairs of entries
in uk that are adjacent in the y direction. The result is an averaged component whose
entries lie on the grid 1

2k
Z

2. Similarly, applying a similar averaging to pairs of entries
in vk that are adjacent in the x direction yields a second component whose entries lie
on the grid 1

2k
Z

2. The coeff icients of these averaged components can be combined
and be plotted as vectors placed at grid points of 1

2k
Z

2. Figures 5.20 and 5.21 show
plots of several rounds of subdivision applied to a vector basis function defined in
the x direction. Figure 5.20 uses the optimal 7 × 7 approximations ŝ i j [x , y] to the
mask for perfect f low. Figure 5.21 uses the optimal 7×7 approximations ŝ i j [x , y] to
the mask for slow flow. Figure 5.18, a slow flow, was also generated using this mask.
Note that in both cases the averaging in the y direction has split the basis vector in
the x direction into two separate vectors of length 1

2 . The effects of this averaging
diminish as the vector f ield converges to the underlying continuous flows.

5.3.5 An Analytic Basis for Linear Flows

Due to the linearity of the process, the limiting vector f ield defined by the sub-
division scheme can be written as a linear combination of translates of two vector
basis functions nx[x, y] and ny[x, y] multiplied by the components u0 and v0 of the
initial vector f ield, respectively. Specif ically, the components of the limiting field
{u[x, y], v[x, y]}T have the form

(
u[x, y]

v[x, y]

)
=

∑
i ∈Z, j ∈D[Z]

u0[[i , j]] nx[x − i , y − j] +
∑

i ∈D[Z], j ∈Z

v0[[i , j]] ny[x − i , y − j].

(Note that both nx[x, y] and ny[x, y] are vector-valued functions.) Our goal in this
f inal section is to find simple expressions for these vector basis functions in terms
of the radial basis function c[x, y] for harmonic splines. Recall that the continuous
field {u[x, y], v[x, y]}T is the limit of the discrete f ields {uk, vk}T as k → ∞. By solving

152 C H A P T E R 5 Local Approximation of Global Differential Schemes

Figure 5.20 Three rounds of subdivision for a basis function in the x direction (perfect flow).

equation 5.14, we can express {uk, vk}T directly in terms of {u0, v0}T :(
uk[x , y]

vk[x , y]

)
= 4k

lk[x , y]

(
dk[y]

−dk[x]

)(
d0

[
y2k] −d0

[
x2k])(u0

[
x2k

, y2k]
v0

[
x2k

, y2k]
)

. (5.17)

Our task is to find continuous analogs of the various parts of this matrix expres-
sion as k → ∞. We first analyze the most diff icult part of the expression, 4k

lk[x ,y] .

5.3 Subdivision for Linear Flows 153

Figure 5.21 Three rounds of subdivision for a basis function in the x direction (slow flow).

Consider a sequence of generating functions ck[x , y] such that lk[x , y] c k[x , y] = 4k for
all k. The coeff icients of the ck[x , y] are discrete approximations to the radial basis
function c[x, y] satisfying the differential equation L[x, y] c[x, y] = δ[x, y].

The other components of this equation are easier to interpret. The differences
dk[x] and dk[y] taken on 1

2k
Z

2 converge to the continuous derivatives D[x] and D[y],

154 C H A P T E R 5 Local Approximation of Global Differential Schemes

respectively. If gk[x , y] corresponds to ck[x , y]
(

dk[y]
−dk[x]

)
, the continuous analog is the

vector function g[x, y] of the form

g[x, y] =
(

D[y]

−D[x]

)
c[x, y]. (5.18)

The behavior of g[x, y] gives us our first insight into the structure of perfect f low.
In fact, g[x, y] is a generator for a localized, rotational perfect f low. We can ver-
ify that g[x, y] is truly a perfect f low by substituting the definition of g[x, y] into
equation 5.12. (Remember that the radial basis function c[x, y] satisf ies (D[x]2 +
D[y]2)c[x, y] == δ[x, y].) Likewise, we can verify that this f low is highly localized
(i.e., decays to zero very quickly, away from the origin), based on the analytic
representation. The left-hand portion of Figure 5.22 shows a plot of g[x, y] on the
domain [−1, 1]2.

To complete our construction, we observe that equation 5.17 can be written
as gk[x , y]{d0[y2k

], −d0[x2k
]}. These differences d0[x2k

] and d0[y2k
] taken on the grid

1
2k

Z
2 correspond to unit differences of g[x, y] taken in the x and y directions, re-

spectively, on the integer grid Z
2. Thus, the coeff icients of the generating functions

gk[x , y]{d0[y2k
], −d0[x2k

]} are converging to vector basis functions for our subdivision

(a) (b)

Figure 5.22 A rotational generator g[x, y] (a) and vector basis function nx[x, y] (b) for perfect flow.

5.3 Subdivision for Linear Flows 155

scheme of the form

nx[x, y] = g
[
x, y + 1

2

]− g
[
x, y − 1

2

]
,

ny[x, y] = −g
[
x + 1

2 , y
]+ g

[
x − 1

2 , y
]
.

(5.19)

The right-hand portion of Figure 5.22 contains a plot of the vector basis func-
tion nx[x, y]. Note that this vector basis consists of a pair of rotational sources po-
sitioned so as to drive a flow along the x axis. Again, this f low is localized in the
sense that it decays rapidly to zero away from the origin. More complex flows can
be constructed by taking linear combinations of these vector basis functions. Due
to the normalizing constant of 1

4π
used in defining the original radial basis function

c[x, y], the scheme has constant precision. In particular, choosing the coarse vector
f ield {u0, v0}T to be translates of a constant vector defines a constant f low of the
same magnitude in the same direction.

A similar approach can be used to construct the analytic bases for slow flow. The
main change is that equation 5.18 now also involves a difference of the radial basis

functions for c[x, y] = (x 2+y 2) Log[x 2+y 2]
16π

for biharmonic splines as well as its derivatives.
In particular, the rotational generator g[x, y] for slow flow has the form

g[x, y] =
(D[y]

−D[x]

)
(−4c[x, y] + c[x − 1, y] + c[x + 1, y] + c[x, y − 1] + c[x, y + 1]). (5.20)

The left-hand portion of Figure 5.23 shows a plot of g[x, y] on the domain [−1, 1]2.

(a) (b)

Figure 5.23 A rotational generator g[x, y] (a) and vector basis function nx[x, y] (b) for slow flow.

156 C H A P T E R 5 Local Approximation of Global Differential Schemes

Figure 5.24 A plot of the flow from Figure 5.18 using the analytic representation for slow flow.

Now, the analytic basis functions nx[x, y] and ny[x, y] are again defined as in equa-
tion 5.19. The right-hand portion of Figure 5.23 shows a plot of the basis function
nx[x, y]. The final f igure, Figure 5.24, shows a plot of the analytic representation of
the flow of Figure 5.18.

C H A P T E R 6

Variational Schemes for
Bounded Domains

The first part of this book considered various subdivision schemes defined over un-
bounded, uniform grids. The rest of the book focuses on extending these schemes
to domains that are nonuniform in nature. Note that nonuniform domains arise
naturally due to the presence of boundaries, both internal and external, in most
shapes. In the surface case, nonuniform schemes also necessarily arise in any at-
tempt to model surfaces of genus other than one. In this chapter, we describe a
generalization of the differential approach of Chapter 4 to the case of uniform
grids over bounded domains.

The key to this approach is to develop a variational version of the original
differential problem. Given this variational formulation, we construct an inner
product matrix Ek that plays a role analogous to dk[x] in the differential case. Re-
markably, such inner products can be computed exactly for limit functions defined
via subdivision, even if these functions are not piecewise polynomial. Next, we
derive a matrix relation of the form EkSk−1 == Uk−1 Ek−1, where Uk−1 is an upsam-
pling matrix. This new relation is a matrix version of the finite difference relation
dk[x] sk−1[x] == 2dk−1[x2] that characterized subdivision in the differential case. So-
lutions Sk−1 to this matrix equation yield subdivision schemes that converge to
minimizers of the original variational problem. To illustrate these ideas, we con-
sider the problem of constructing subdivision schemes for two types of splines with
simple variational definitions: natural cubic splines and bounded harmonic splines.

6.1 Inner Products for Stationary Subdivision Schemes

One of the most promising applications of subdivision lies in its use to solve physical
problems eff iciently. As we saw in Chapters 4 and 5, there is a strong link between

157

158 C H A P T E R 6 Variational Schemes for Bounded Domains

partial differential equations and subdivision. Via a finite difference approach, we
were able to derive subdivision schemes that converge to the solution to a range
of physical problems. Unfortunately, generalizing the difference rules used in the
finite difference approach to nonuniform domains is diff icult. For nonuniform
domains, we suggest an alternate approach: pose the physical problem as an equiv-
alent variational problem and construct a subdivision scheme that converges to the
minimizers of this variational problem. Using a finite element approach, we can
construct such subdivision schemes for nonuniform domains.

In the univariate case, the starting point for most variational methods is a
continuous inner product 〈 p, q〉 of the form

∫
�

p(i)[x] q(j)[x] dx, where � is some
bounded domain. Given this inner product, an associated variational functional
E [p] is then defined to be 〈 p, p〉. In this framework, a typical variational problem
is to compute a function p[x] that minimizes E [p] subject to a set of interpolation
conditions on p[x] (e.g., p[i] == b[[i]] for integers i ∈ �). This section discusses two
constructions useful in solving such variational problems: computing the exact
values for various derivatives of a subdivision scheme and computing exact inner
products for functions defined using subdivision.

Remarkably, both constructions rely only on the subdivision matrix S associ-
ated with a stationary scheme. In particular, they are based on the fact that this
subdivision matrix S and its associated row vector of basis functions N [x] satisfy a
matrix ref inement relation of the form

N [2x]S == N [x]. (6.1)

Given this ref inement relation, the constructions do not rely on any type of
closed form representation (such as piecewise polynomials) for the basis function
of N [x].

6.1.1 Exact Derivatives

Given the subdivision matrix S for a convergent, stationary scheme and its associ-
ated vector of basis functions N [x], we begin by considering the following problem:
compute the values of the basis functions in N [x] taken on the integer grid Z. The
result of this computation is an interpolation matrix N whose ith row is the value of
the vector N [x] taken at x == i . Given a function p[x] of the form N [x]p, multiplying
the interpolation matrix N by the column vector p yields a column vector N p whose

6.1 Inner Products for Stationary Subdivision Schemes 159

ith entry is the value of p[x] at x == i . For example, the interpolation matrix N for
uniform cubic B-splines is a tridiagonal matrix of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 2
3

1
6 0 0 0 .

. 1
6

2
3

1
6 0 0 .

. 0 1
6

2
3

1
6 0 .

. 0 0 1
6

2
3

1
6 .

. 0 0 0 1
6

2
3 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The non-zero entries of these rows correspond to the values of a cubic B-spline
basis function evaluated at its three interior knots. For polynomial splines, one
approach to computing N would be to construct the polynomial pieces for each
function in N [x] using the method of section 2.3.1 and evaluate these pieces directly
on Z. Unfortunately, there exist many subdivision schemes, such as the four-point
scheme, that do not have an analytic definition as piecewise polynomials. Luckily,
there exists an alternative approach that avoids constructing these pieces by using
equation 6.1 to derive a recurrence that the interpolation matrix N must satisfy.

As a preliminary to constructing this recurrence, we recall that upsampling a
vector p involves constructing a new vector by inserting zeros between the entries of
p. If p[x] is the generating function associated with p, the coeff icients of the generat-
ing function p[x2] are the upsampled version of p. Upsampling can also be modeled
via matrix multiplication. If U is the upsampling matrix whose entries have the form
U[[i , j]] = 1 if i == 2 j and 0 otherwise, the product Up returns the vector p with zero
inserted between all of its entries. Note that multiplying the transpose of the up-
sampling matrix U by a column vector p has the effect of deleting every other entry
of p. As a result, this matrix UT is sometimes referred to as the downsampling matrix.

Given these two matrices, we are now ready to construct a recurrence involving
the interpolation matrix N and the subdivision matrix S. The key to generating this
recurrence is to evaluate equation 6.1 at x == i for all integers i . Each evaluation
yields an equation of the form N [2i]S == N [i]. Accumulating these row vectors
N [i] for all i ∈ Z forms the interpolation matrix N on the right-hand side of this
equation. On the left-hand side, accumulating the vectors N [2i] yields a matrix that
corresponds to the interpolation matrix N with all of its odd-indexed rows deleted.

160 C H A P T E R 6 Variational Schemes for Bounded Domains

This deletion can be modeled by multiplying on the expression NS on the left by
the downsampling matrix UT . Therefore,

UT NS == N. (6.2)

For example, the interpolation and subdivision matrices for cubic B-splines satisfy
a recurrence of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎝

.

. 0 1 0 0 0 .

. 0 0 0 0 0 .

. 0 0 1 0 0 .

. 0 0 0 0 0 .

. 0 0 0 1 0 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 2
3

1
6 0 0 0 .

. 1
6

2
3

1
6 0 0 .

. 0 1
6

2
3

1
6 0 .

. 0 0 1
6

2
3

1
6 .

. 0 0 0 1
6

2
3 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 1
8

3
4

1
8 0 0 .

. 0 1
2

1
2 0 0 .

. 0 1
8

3
4

1
8 0 .

. 0 0 1
2

1
2 0 .

. 0 0 1
8

3
4

1
8 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

==

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 2
3

1
6 0 0 0 .

. 1
6

2
3

1
6 0 0 .

. 0 1
6

2
3

1
6 0 .

. 0 0 1
6

2
3

1
6 .

. 0 0 0 1
6

2
3 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.3)

For uniform schemes, the recurrence of equation 6.2 can be expressed very
compactly in terms of generating functions. This conversion relies on the fact that
the scaling vector N [x] consists of integer translates of a single scaling function
n[x]. Thus, the rows of the interpolation matrix N consist of samples of this scal-
ing function taken on the integer grid Z, that is, {. . . , n[2], n[1], n[0], n[−1], n[−2], . . .}.
These values can be used to define a generating function n[x] of the form

∑
i n[−i]x i .

The generating function n[x] is the interpolation mask for the scheme. Observe that
multiplying the interpolation mask n[x] by the generating function p0[x] yields a gen-
erating function n[x]p0[x] whose coeff icients are the values of the function N [x]p0,
taken on the integer grid Z.

If s[x] is the subdivision mask for the subdivision matrix S, the matrix product
NS in equation 6.2 can be modeled by the product n[x] s[x]. As observed previously,
the action of left multiplication by UT is to select every other coeff icient of the
generating function n[x] s[x]. In terms of generating functions, this action can be

6.1 Inner Products for Stationary Subdivision Schemes 161

modeled by representing n[x] s[x] as the sum of two generating functions: one with
only even powers and one with only odd powers. In particular, n[x] s[x] has the form

n[x] s[x] == n[x2] + x r [x2], (6.4)

where the function r [x2] is an arbitrary residual.
If the scaling function n[x] is supported over m intervals, the interpolation mask

n[x] can be treated as a generating function with m − 1 unknown coeff icients n[i]

that are the value of n[x] at the m − 1 interior grid points of its support. Equation
6.4 yields a set of m − 1 homogeneous equations in these m − 1 unknowns. For con-
vergent subdivision schemes, these equations are linearly dependent and have a
single solution that is unique up to multiplication by a constant. (This observation
is due to the fact that the subdivision matrix S for a convergent scheme has an
eigenvalue 1 with multiplicity one. See section 8.2.4 for details.) To normalize this
solution, we observe that for these convergent schemes the sum of the coeff icients
n[i] must be one (i.e., n[1] == 1). Given a stationary subdivision mask s[x], the as-
sociated Mathematica implementation computes the associated interpolation mask
n[x] (). (Note that a similar construction can be used to compute the interpolation
mask n[x , y] for a bivariate scheme with a stationary mask s[x , y].)

For example, the subdivision mask for cubic B-splines has the form s[x] =
1
8 x−2 + 1

2 x−1 + 3
4 + 1

2 x + 1
8 x2, whereas the associated interpolation mask n[x] has the

form 1
6 x−1 + 2

3 + 1
6 x. For this example, equation 6.4 has the form

(
1
6

x−1 + 2
3

+ 1
6

x

)(
1
8

x−2 + 1
2

x−1 + 3
4

+ 1
2

x + 1
8

x2

)
==
(

1
6

x−2 + 2
3

+ 1
6

x2

)
+ x

(
1
48

x−4 + 23
48

x−2 + 23
48

+ 1
48

x2

)
.

If the subdivision scheme has suff icient smoothness, it is also possible to compute
derivative matrices for the scheme. These matrices return the exact value of deriva-
tives of scaling functions in the vector N [x] taken on the grid Z. One method for
computing these matrices would be to take the derivative of both sides of equa-
tion 6.1. The resulting equation N ′[2x]S == 1

2N ′[x] yields a recurrence involving the
values of N ′[x]. (Note the extra factor of 1

2 introduced by the chain rule.)
An alternative approach is to compute a subdivision scheme for the derivatives

of the original scheme using the method of section 3.2.4 and compute the interpo-
lation matrix for this derivative scheme. For uniform schemes, this construction is
particularly simple. Given a subdivision scheme with mask s[x], the first derivative

162 C H A P T E R 6 Variational Schemes for Bounded Domains

scheme has a subdivision mask of the form 2s[x]
1+x . Given the interpolation mask n[x]

for this derivative scheme, we observe that the derivative mask for the original
scheme (on Z) has the form (1 − x)n[x]. The derivative mask on finer grids 1

2k
Z has

the form 2k(1 − x)n[x].
For example, the subdivision mask for the four-point scheme has the form

s[x] = − 1
16 x−3 + 9

16 x−1 + 1 + 9
16 x − 1

16 x3. Because this scheme is interpolatory, the
interpolation mask for this scheme is simply 1. However, due to the fact that the
four-point scheme is not piecewise polynomial, computing the exact value of f irst
derivatives of this scheme at integer grid points is nontrivial. Dividing the subdi-
vision mask s[x] for the four-point scheme by 1

2 (1 + x) yields the subdivision mask
for the first derivative of the four-point scheme, − 1

8 x−3 + 1
8 x−2 + x−1 + 1 + 1

8 x − 1
8 x2.

After applying the recurrence of equation 6.4, the interpolation mask for this deriva-
tive scheme has the form − 1

12 x−2 + 7
12 x−1 + 7

12 − 1
12 x. Finally, multiplying this mask

by the difference mask (1 − x) yields the exact derivative mask for the four-point
scheme of the form − 1

12 x−2 + 2
3 x−1 − 2

3 x + 1
12 x2. (Remember that this mask should

be multiplied by a factor of 2k to compute the derivative on 1
2k

Z.)

6.1.2 Exact Inner Products

Having derived a method for computing the exact value and derivatives of the
scaling functions N [x], we next derive a similar scheme that computes the exact
inner product of two functions defined using subdivision. To begin, we consider
a simple inner product 〈 p, q〉 of the form

∫
�

p[x] q[x] dx, where � is some bounded
domain. Given a convergent, stationary scheme with a subdivision matrix S, our
task is to compute the exact values of this inner product for functions of the form
p[x] = N [x]p and q[x] = N [x]q, where the vector N [x] satisf ies the matrix ref inement
relation of equation 6.1. In particular, we are interested in a method that does not
rely on any type of underlying piecewise polynomial definition for N [x]. The key
to this method is to compute an inner product matrix E of the form

E =
∫

�

N [x]T N [x] dx. (6.5)

Note that N [x]T N [x] is a matrix whose i jth entry is the product of the ith and jth
functions in the vector N [x]. Therefore, the i jth element of E is the inner product of
the ith and jth functions in the vector N [x]. The usefulness of this inner product
matrix E lies in the fact that it can be used to compute the exact inner product of
two functions p[x] and q[x] defined as N [x]p and N [x]q, respectively. In particular,

6.1 Inner Products for Stationary Subdivision Schemes 163

the inner product 〈 p, q〉 is simply the scalar expression pT Eq. As in the previous
section, our basic approach in computing the inner product matrix E is to derive
a recurrence that relates E and the subdivision matrix S. The following theorem
characterizes this recurrence.

THEOREM

6.1

Given a convergent subdivision scheme whose subdivision matrix satisf ies
N [2x]S == N [x], the inner product matrix E of equation 6.5 satisf ies

ST E S == 2E . (6.6)

Proof Substituting N [2x]S for the subdivision matrix N [x] in equation 6.5 yields
that the inner product matrix E has the form

E ==
∫

�

(N [2x]S)T (N [2x]S)dx.

Distributing the transpose inside the parentheses and pulling the matrices
ST and S outside the integral yields

E == ST

(∫
�

N [2x]T N [2x] dx

)
S.

To conclude, we apply the change of variable x → 1
2 x to the integral∫

�
N [2x]T N [2x] dx and observe that it reduces to 1

2

∫
�
N [x]T N [x] dx. Because

by definition
∫

�
N [x]T N [x] dx is exactly the inner product matrix E, the

theorem follows.

Observe that a similar recurrence of the form ST E S̃ == 2E holds when the inner
product matrix E of equation 6.5 involves two different sets of scaling functions
N [x] and Ñ [x] satisfying the recurrences N [2x]S̃ == N [x] and Ñ [2x]S̃ == Ñ [x].

Given the subdivision matrix S, our task is to compute the inner product matrix
E using equation 6.6. If the matrix S is a f inite matrix, this problem can be converted
into an eigenvalue problem using direct products. In particular, E can be expressed
as a left eigenvector of the direct product of S with itself. (See Chapter 4 of Horn
and Johnson [75] or Chapter 8 of Lancaster [92] for an introduction to direct
products.) Unfortunately, as currently posed, the matrix S is an infinite matrix. For
now, we focus on a method credited to Dahmen and Micchelli [31] for computing
this inner product matrix E in the uniform case. Later, in sections 6.2.2 and 6.4.1,

164 C H A P T E R 6 Variational Schemes for Bounded Domains

we describe a more general method for computing the inner product matrix E based
on linear algebra.

The key to Dahmen and Micchelli’s method is to convert equation 6.6 into
an equivalent expression in terms of generating functions. In the uniform case,
the columns of the inner product matrix E are all one-shifts of a single column e.
The generating function e[x] associated with this column is the inner product mask
e[x] associated with E. If s[x] is the subdivision mask for the subdivision matrix
S, the columns of the matrix product E S are two-shifts of the coeff icients of the
generating function e[x] s[x]. Multiplying the matrix ST by E S yields a new matrix
whose columns are two-shifts of the sequence formed by deleting every other
coeff icient of s[1

x] e[x] s[x]. (This deletion is due to the two-shifting of the rows of
ST .) Therefore, equation 6.6 can be modeled by an expression of the form

s
[1

x

]
e[x] s[x] == 2e[x2] + x r [x2],

where r [x] is an arbitrary residual function. At this point, we note that this equation
has a striking similarity to equation 6.4. Regrouping the terms on the left-hand side
of this equation leads to a new equation of the form

e[x]

(
1
2

s
[1

x

]
s[x]

)
== e[x2] + 1

2
x r [x2].

In this view, the inner product mask e[x] is simply the interpolation mask for the uni-
form subdivision scheme with mask 1

2 s[1
x] s[x]. For example, if s[x] is the subdivision

mask for linear B-splines, 1
2x (1 + x)2, the inner product mask e[x] is the interpola-

tion mask associated with the subdivision mask for cubic B-splines, 1
8x2

(1 + x)4. The

reader may verify using the piecewise polynomial definition of linear B-splines that
the inner product mask for linear B-splines has the form e[x] = 1

6 x−1 + 2
3 + 1

6 x.
In many variational applications, one wishes to compute an inner product of

the form
∫

�
p(i)[x] q(j)[x] dx. The same technique used in computing derivative masks

may be applied to computing masks for inner products involving derivatives. Given
the subdivision mask s[x], we first compute subdivision masks 2i s[1

x]

(1+ 1
x)

i and 2 j s[x]

(1+x) j for

the derivative schemes associated with p(i)[x] and q(j)[x]. Next, we compute the inner
product mask e[x] for these two derivative schemes. Finally, we multiply the
inner product mask e[x] for the derivative schemes by the difference masks (1 − 1

x)
i

and (1 − x) j associated with the various derivatives on Z. The resulting inner product
mask corresponds to the original inner product

∫
�

p(i)[x] q(j)[x] dx. (See the associated
Mathematica implementation for details on computing such masks ().)

6.1 Inner Products for Stationary Subdivision Schemes 165

6.1.3 Example: Exact Enclosed Area for Parametric Curves

To illustrate the power of this approach, we consider a simple problem involving
inner products: computing the area enclosed by a curve defined through uniform
subdivision. In particular, our method will return the exact enclosed area even
when the curve scheme is not piecewise polynomial. The key idea is to express
the area enclosed by a parametric curve of the form {p[x], q[x]} in terms of an inner
product involving p[x], q[x], and their derivatives. The following theorem, a variant
of Green’s theorem, provides the necessary integral.

THEOREM

6.2

Given a closed parametric curve {p[x], q[x]} that is periodic on the interval
� = [0, 1], the signed area of the region enclosed by the curve is

1
2

∫ 1

0

Det

[(
p[x] q[x]
p′[x] q′[x]

)]
dx. (6.7)

Proof The signed area can be approximated by the sum of the areas of m triangles
with vertices {{0, 0}, { p[i −1

m], q[i −1
m]}, { p[i

m], q[i
m]}}, where 1 ≤ i ≤ m. The area

of each of these triangles can be expressed as a 3 × 3 determinant that is
easily reduced to a 2 × 2 determinant:

1
2

Det

⎡⎢⎣
⎛⎜⎝1 1 1

0 p
[

i −1
m

]
q
[

i −1
m

]
0 p

[
i
m

]
q
[

i
m

]
⎞⎟⎠
⎤⎥⎦ ==

1
2

Det

[(
p
[

i −1
m

]
q
[

i −1
m

]
p
[

i
m

]− p
[

i −1
m

]
q
[

i
m

]− q
[

i −1
m

])] .

Based on this observation, the sum of the areas of all m of these triangles
can be expressed as

1
2m

m∑
i =1

Det

[(
p
[

i −1
m

]
q
[

i −1
m

]
m
(
p
[

i
m

]− p
[

i −1
m

])
m
(
q
[

i
m

]− q
[

i −1
m

]))] .

Taking the limit of this sum as m → ∞ yields the integral of equation 6.7.

To apply our exact inner product method from the previous section to the
area integral of equation 6.7, we express this integral as the difference of two
inner products 1

2 (〈 p, q′〉 − 〈 p ′, q〉). If the functions p[x] and q[x] are constructed using
the same subdivision mask s[x], the subdivision mask for q′[x] has the form 2s[x]

1+x .
Therefore, the inner product mask corresponding to 〈 p, q′〉 is the interpolation mask

166 C H A P T E R 6 Variational Schemes for Bounded Domains

for s[1
x] s[x]

(1+x) multiplied by the difference mask (1 − x). Likewise, the inner product

mask corresponding to 〈 p′, q〉 is the interpolation mask for s[1
x]

(1+ 1
x)

s[x] multiplied by

the difference mask (1 − 1
x). Because these two inner product masks are simply the

negatives of each other, the corresponding inner products satisfy 〈 p, q′〉 == −〈 p′, q〉.
Thus, the area enclosed by the parametric curve {p[x], q[x]} is simply the value of
the inner product 〈 p, q′〉.

As an example of this computation, we next compute the exact area en-
closed by limit curves produced by the four-point scheme. If s[x] is the subdivi-
sion mask for the four-point scheme − 1

16 x−3 + 9
16 x−1 + 1 + 9

16 x − 1
16 x3, we recall that

the subdivision mask for the first derivative of the four-point scheme has the form
− 1

8 x−3+ 1
8 x−2+x−1+1+ 1

8 x− 1
8 x2. Therefore, the exact area mask e[x] for the four-point

scheme is the interpolation mask for the product of these two masks multiplied by
the difference mask (1 − x). In particular, this mask has the form

e[x] = 1
665280x5

+ 4
10395x4

− 481
73920x3

+ 731
6930x2

− 3659
5280x

+ 3659x
5280

− 731x2

6930
+ 481x3

73920
− 4x4

10395
− x5

665280
.

To compute the enclosed area for a given curve {p[x], q[x]}, we compute the
value of the expression pT Eq, where p[x] = N [x]p, q[x] = N [x]q, and E is the inner
product matrix corresponding to the mask e[x] given previously. One quick check
of the correctness of E is to choose the coeff icients p and q such that the associated
curve {p[x], q[x]} forms an exact unit square. For the four-point scheme, this condition
requires the use of f ive-fold points at each of the corners of the square. (The factor
of f ive is due to the size of the mask associated with the four-point scheme.) The
associated implementation verif ies that in this case the expression pT Eq evaluates
to exactly 1 (). Figure 6.1 shows a plot of the area enclosed by the four-point
curve associated with a regular n-gon inscribed in a unit circle. Observe that as n

increases, the enclosed area rapidly converges to π .
Variants of equation 6.6 also hold for inner products defined on nonuniform

domains. The traditional approach of Halstead et al. [71] is to isolate the nonuni-
formities and break the domain into an infinite union of increasingly small uni-
form domains. The inner product is then expressed as an infinite sum over these
uniform domains. Instead, using equation 6.6, one can simply solve for the ap-
propriate matrix E from the local subdivision rules of S. Section 6.2.2 illustrates
an example of this nonuniform approach for natural cubic splines, and section
6.4.1 illustrates this approach for bounded harmonic splines. Other possible future
applications of this method include finite elements on subdivision surfaces [22],
enclosed volumes of subdivision surfaces [114], and construction of fair surfaces.

6.2 Subdivision for Natural Cubic Splines 167

10 12 14 16 18 20

3.115

3.125

3.13

3.135

3.14

Figure 6.1 The exact area enclosed by four-point curves whose initial control polygon is a regular n-gon.

6.2 Subdivision for Natural Cubic Splines

Chapter 4 considered the problem of subdivision for cubic splines from a differ-
ential point of view. Given the differential equation p(4)[x] == 0 that governed the
segments of a cubic spline p[x], we derived the subdivision mask s[x] for cubic splines
as a consequence of the finite difference relation dk[x] s[x] == 2dk−1[x2], where dk[x]

was the discretization of the differential operator D[x]4 on the grid 1
2k

Z. One ma-
jor drawback of the differential approach is that it yields little insight into how to
generalize the subdivision rules for cubic splines to bounded domains. In this sec-
tion, we recast cubic splines in a variational framework. This variational approach
provides the insight necessary to generalize the subdivision rules for cubic splines
to bounded domains.

6.2.1 A Variational Formulation of Cubic Splines

The evolution of geometric design as a discipline traces its roots all the way back
to the beginning of the twentieth century. At that time, most drafting was done
using a thin, f lexible piece of metal known as a spline. The draftsman attached
the spline to anchor points on his drafting table. The spline was then allowed to
slide through the anchor points and to assume a smooth, minimum energy shape.
In the 1940s and 1950s, mathematicians realized that the behavior of a spline could
be modeled mathematically.

In the simplest model, the shape of a mechanical spline is described as the
graph of a function p[x]. To capture the behavior of mechanical splines, we must

168 C H A P T E R 6 Variational Schemes for Bounded Domains

enforce two conditions on p[x]. First, the graph of p[x] must pass through pegs on
the drafting table. If these pegs are spaced evenly in the x direction, this condition
can be expressed mathematically as

p [i] == b [[i]], (6.8)

where b [[i]] is the height of the ith peg. To capture the fact that the mechanical spline
assumes a shape with minimal bending energy, we need to settle on a mathematical
model for the bending energy of p[x]. Recall that the first derivative of the function,
p(1)[x], represents the tangent of the curve p at parameter x. The second derivative
of the function, p(2)[x], approximately measures how much the tangents of p change
at x. In other words, p(2)[x] measures how much p bends at x. Thus, we can model
the bending energy of the function p[x] by computing its second derivative, taking
its square, and integrating the result over the interval �. This functional E [p] has
the form

E [p] =
∫

�

(p(2) [x])2 dx. (6.9)

Now, a natural cubic spline is a function p[x] that satisf ies equation 6.8 while min-
imizing the functional E from equation 6.9. At this point, we note that a natural
cubic spline is only an approximation to the shape of a mechanical spline, because
the second derivative of p[x] is only a weak approximation of the true curvature of
a mechanical spline. Section 3.1 of Hoschek and Lasser [76] gives a more detailed
analysis of the relationship between mechanical splines and natural cubic splines.

The Euler-Lagrange theorem, sometimes referred to as the Kuhn-Tucker rela-
tions, provides a link between the minimization of a variational functional, such as
the functional E we just introduced for natural cubic splines, and a set of partial
differential equations. Roughly speaking, the theorem states that the extremal func-
tions for a variational problem satisfy a set of partial differential equations related
to the variational functional. A more detailed explanation of the Euler-Lagrange
theorem can be found in [14].

Applying Euler-Lagrange to the variational functional of equation 6.9 leads to
the associated differential equation for natural cubic splines:

p(4) [x] == 0. (6.10)

Natural cubic splines satisfy this differential equation everywhere except at the
integer knots in the interval �. In particular, a natural cubic spline p[x] is a piecewise

6.2 Subdivision for Natural Cubic Splines 169

cubic function that has continuous second derivatives at the knots (i.e., p[x] ∈ C2)
and whose second derivative is zero at the endpoints of the interval � (the natural
boundary conditions).

In the differential approach to subdivision, we discretized equation 6.10 over
a sequence of uniform grids 1

2k
Z and constructed an associated sequence of f inite

difference equations. In the variational approach to subdivision, we construct an
inner product matrix Ek corresponding to the functional of equation 6.9 taken on
the restriction of the grid 1

2k
Z to the interval �. As we shall see, the minimizers

of this functional are captured by a matrix equation analogous to the finite dif-
ference equation dk[x] s[x] == 2dk−1[x2]. The authors f irst published this method for
constructing minimizers of variational problems in [160].

6.2.2 A Finite Element Scheme for Natural Cubic Splines

One standard approach to solving variational problems of this type is the f inite
element method. Given an interval �, the finite element method first constructs a
set of f inite element basis functions Ñ k[x] defined on this interval whose members
are indexed by points on the 1

2k
Z grid. The basis functions comprising the vector

Ñ k[x] are chosen to be suff iciently smooth so that the variational functional E is
well defined for any function pk[x] in the span of Ñ k[x]. Next, the finite element
method computes the function pk[x] of the form Ñ k[x]pk that minimizes the varia-
tional functional E while satisfying the interpolation constraints pk[i] == b[[i]] for all
integers i ∈ �. For functionals such as equation 6.9 that are quadratic in the func-
tion p[x] and its derivatives, this minimization problem reduces to solving a system
of linear equations involving pk. These linear equations can be viewed as a discrete
approximation to the partial differential equation associated with the variational
functional E by the Euler-Lagrange theorem.

The payoff from this construction is that under fairly weak conditions on the
finite element basis Ñ k[x] the limit of the minimizing functions pk[x] as k → ∞ is
the function p∞[x] that minimizes E over the space of all functions for which E is
well defined. Thus, the finite element method is simply a multilevel method for
computing a sequence of vectors pk that converge to the minimizer of the variational
functional E. For those readers interested in a more rigorous treatment of the finite
element method, we recommend Oden and Reddy [113].

In the finite element method, the key step in constructing the linear equa-
tions that characterize the minimizing vector pk is building the inner product ma-
trix E k associated with the variational functional E. For natural cubic splines, the

170 C H A P T E R 6 Variational Schemes for Bounded Domains

continuous inner product associated with the variational functional E of equation
6.9 has the form

〈 p, q〉 =
∫

�

p(2)[x] q(2)[x] dx. (6.11)

If the functions p[x] and q[x] are expressed in terms of the finite element basis
functions at level k (i.e., p[x] = Ñ k[x]pk and q[x] = Ñ k[x]qk), the continuous inner
product 〈 p, q〉 given in equation 6.11 can be expressed as a discrete inner product
of the form pT

k Ekqk, where

Ek =
∫

�

Ñ (2)

k [x]
T

Ñ (2)

k [x] dx.

In particular, the i jth element of Ek is the continuous inner product (defined in
equation 6.11) of the ith and jth basis functions in Ñ k[x].

If the finite element basis functions in Ñ k−1[x] can be expressed as a linear
combination of f inite element basis functions in Ñ k[x], these basis functions satisfy
a matrix ref inement relation of the form Ñ k[x]S̃ k−1 == Ñ k−1[x], where S̃ k−1 is the
subdivision matrix associated with this f inite element scheme. For f inite element
bases of this form, the inner product matrices Ek−1 and Ek satisfy a recurrence similar
to that of equation 6.6; that is,

S̃
T

k−1 Ek S̃ k−1 == Ek−1. (6.12)

To prove this recurrence relation, simply replace Ñ k−1[x] by Ñ k[x]S̃ k−1 in the defi-
nition of Ek−1 and simplify the resulting expression.

Given a finite interval �, our task for the remainder of this section is to choose
an appropriate f inite element basis Ñ k[x] and compute its corresponding inner
product matrix Ek for the inner product of equation 6.11. To simplify our effort,
we compute these inner product matrices Ek for the unbounded interval � = [0, ∞].
The advantage of this particular choice of domain is that equation 6.12 reduces to
the stationary case of the previous section and allows us to compute a single inner
product matrix E. The rows of this inner product matrix E include the inner product
rules for uniform grids as well as special inner product rules for the endpoint of an
interval. Given these rules, the inner product matrix Ek for an arbitrary interval can
be constructed without any further diff iculty.

For the sake of simplicity, we choose the finite element basis functions in
Ñ k[x] to be of as low a degree as possible. In this case, these basis functions are
the restrictions of the uniform quadratic B-splines to the interval [0, ∞]. Because

6.2 Subdivision for Natural Cubic Splines 171

�1 1 2 3 4 5

.2

.4

.6

.8

1

�1 1 2 3 4 5

.2

.4

.6

.8

1

(a) (b)

Figure 6.2 Plot of the finite element basis functions in (a) Ñ [x] and (b) its dilate Ñ [2x].

these basis functions are C1 piecewise quadratic functions, the inner product 〈 p, q〉 of
equation 6.11 is always guaranteed to be well defined for f inite linear combinations
of such functions.

If ñ[x] is the uniform quadratic basis function supported on the interval [−2, 1],
we define the vector Ñ [x] to consist of the restriction of integer translates of ñ[x] to
the interval [0, ∞]. Because functions of the form ñ[x− i], where i < 0, are identically
zero on [0, ∞], we omit these functions from the basis vector Ñ [x]. Therefore, the
basis vector Ñ [x] has the form { ñ[x], ñ[x − 1], ñ[x − 2], ñ[x − 3], . . .}, with all functions
being truncated at x == 0. Figure 6.2 shows a plot of the basis functions comprising
the vector Ñ [x] and its dilate Ñ [2x].

Due to the choice of the domain � = [0, ∞] and the structure of the vector
Ñ [x], the finite element basis functions at level k, Ñ k[x], are simply dilates of Ñ [x]

(i.e., Ñ k[x] = Ñ [2kx]). Given this definition, the basis functions Ñ [x] satisfy a matrix
ref inement relation of the form Ñ [2x]S̃ == Ñ [x], where S̃ is a subdivision matrix of
the form

S̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
4

1
4 0 0 .

1
4

3
4 0 0 .

0 3
4

1
4 0 .

0 1
4

3
4 0 .

0 0 3
4

1
4 .

0 0 1
4

3
4 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

172 C H A P T E R 6 Variational Schemes for Bounded Domains

Observe that this subdivision matrix is a submatrix of the bi-inf inite subdivision
matrix for uniform quadratic B-splines. Because the preceding matrix S̃ is indepen-
dent of k, the subdivision scheme for this f inite element basis is actually a stationary
process.

Recall that by definition the i jth entry of Ek corresponds to the inner product
of the ith and jth entries of Ñ [2kx]. Using a simple change of variables, it is easy
to show that the inner product matrices Ek are all constant multiples of a single
inner product matrix E = E0 whose i jth entry is the inner product of the ith and
jth entries of Ñ [x]. In particular, the inner product matrices Ek satisfy the relation
Ek = 8k E. The constant 8 is the product of a factor of 42, corresponding to the
effect of halving of the grid spacing on the second derivative squared, multiplied
by a factor of 1

2 , arising from the effect of the change of variables on integration.
Due to equation 6.12, the inner product matrices Ek also satisfy the recurrence
S̃

T
Ek S̃ == Ek−1. Therefore, the inner product matrix E and the subdivision matrix S̃

for our finite element scheme satisfy the recurrence

S̃
T
E S̃ ==

1
8

E . (6.13)

The factor of 1
8 (in place of 2) arises from the use of second derivatives in the

inner product. Treating E as a matrix of unknowns while enforcing symmetry and
sparseness conditions due to the structure of Ñ [x] yields a symbolic inner product
matrix of the form

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e[−3] e[−2] e[2] 0 0 0 .

e[−2] e[−1] e[1] e[2] 0 0 .

e[2] e[1] e[0] e[1] e[2] 0 .

0 e[2] e[1] e[0] e[1] e[2] .

0 0 e[2] e[1] e[0] e[1] .

0 0 0 e[2] e[1] e[0] .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The unknowns e[i] with negative index capture the special inner product rules at
the origin, whereas the unknowns e[i] with non-negative index capture the inner
product rule for uniform quadratic B-splines. In particular, the unknowns e[i], where
i ≥ 0, are the inner product of two uniform basis functions ñ[x] shifted by a relative
difference of Abs[i] units on the integer grid. Based on the method of section 6.1.2,
we observe that these unknowns have the values e[0] == 6, e[1] == −4, and e[2] == 1.

To solve for the remaining unknowns, we substitute the definitions of S̃ and E

into the equation S̃
T
E S̃ == 1

8 E. This relation yields a set of homogeneous equations

6.2 Subdivision for Natural Cubic Splines 173

in the unknowns e[i]. Solving for the remaining e[i] yields

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1 0 0 0 .

−2 5 −4 1 0 0 .

1 −4 6 −4 1 0 .

0 1 −4 6 −4 1 .

0 0 1 −4 6 −4 .

0 0 0 1 −4 6 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.14)

Given this inner product matrix E, we can construct inner product matrices Ek for
f inite grids, as described previously. Having these matrices, we could then follow
the finite element approach and attempt to minimize the functional E subject
to the interpolation conditions. Instead, we ignore the interpolation conditions
and focus on constructing a variational analog of the finite difference equation
dk[x] sk−1[x] == 2dk−1[x2]. This analog will lead directly to a matrix equation involving
the inner product matrices Ek that characterizes a sequence of subdivision matrices
Sk−1 whose associated scheme converges to the minimizing function of the original
variational problem.

6.2.3 A Multiscale Relation for Natural Cubic Splines

Given the inner product matrices Ek, we can now develop a set of linear equations
that relate these inner product matrices and the subdivision matrices Sk for natural
cubic splines. Important note: The matrices S̃ k (with a tilde) are the subdivision
matrices for the finite element basis Ñ k[x], whereas the matrices Sk (with no tilde)
are the subdivision matrices for natural cubic splines. These matrices Sk define an
associated basis vector Nk[x] for natural cubic splines on the grid 1

2k
Z. The distinction

between these quantities is very important in the analysis that follows.
To generate these subdivision matrices Sk from the inner product matrices Ek,

we return to the differential case for guidance. The subdivision scheme for cubic
splines constructed generating functions pk[x] that were solutions to the multiscale
f inite difference equation

dk[x]pk[x] == 2kd0

[
x2k]

p0

[
x2k]

. (6.15)

The beauty of this f inite difference approach is that successive solutions of this
scheme, pk−1[x] and pk[x], are related by a subdivision relation of the form pk[x] =
sk−1[x]pk−1[x2], where the subdivision mask sk−1[x] satisf ies dk[x]sk−1[x] == 2dk−1[x2].
Our goal in this section is to derive an analogous matrix equation for the variational

174 C H A P T E R 6 Variational Schemes for Bounded Domains

form of the problem. In the following section, we will show that solutions to this
new equation minimize the original variational functional.

Assuming that the matrix Ek is the correct analog of the difference mask dk[x],
we are left with deriving the correct matrix analog of d0[x2k

]. Note that the ef-
fect of replacing x by x2 in a generating function (i.e., substituting p[x] → p[x2]) is
to spread the coeff icients of the generating function and to insert zeros between
them (i.e., upsample the vector p). In matrix terms, upsampling the vector p from
the coarse grid 1

2k−1
Z onto the fine grid 1

2k
Z can be modeled via multiplication

by the upsampling matrix Uk−1 whose i jth entry is 1 if i == 2j and 0 otherwise.
(Note that the ith row of Uk−1 is indexed by the grid point i

2k
∈ � and the jth

column of Uk−1 is indexed by the grid point j

2k−1
∈ �.) Based on this observation,

the matrix analog of d0[x2] is U0 E0. More generally, the matrix analog of d0[x2k
] is the

product of E0 multiplied by a sequence of upsampling matrices U0, U1, . . . , Uk−1.
Consequently, the variational matrix analog of equation 6.15 is

Ek pk == Uk−1 · · ·U0 E0 p0. (6.16)

(Note that the extra power of 2k in equation 6.15 is absorbed into the matrix Ek as
a constant of integration for the grid 1

2k
Z.)

Equation 6.16 relates a vector pk defined on the fine grid 1
2k

Z, with the vector
p0 defined on the coarse grid Z. As in the differential case, our goal is to construct
a sequence of subdivision matrices Sk−1 that relates successive solutions to equa-
tion 6.16. These subdivision matrices Sk−1 satisfy the following relation involving
the inner product matrices Ek−1 and Ek at successive scales.

THEOREM

6.3

For all k > 0, let Sk be a sequence of matrices satisfying the two-scale
relation

EkSk−1 == Uk−1 Ek−1. (6.17)

If the vectors pk satisfy the subdivision relation pk = Sk−1 pk−1 for all k > 0,
then pk and p0 satisfy the multiscale relation of equation 6.16.

Proof The proof proceeds by induction. For k = 1, the theorem follows trivially.
More generally, assume that Ek−1 pk−1 == Uk−2 · · ·U0 E0 p0 holds by the in-
ductive hypothesis. Multiplying both sides of this equation by Uk−1 and
replacing Uk−1 Ek−1 by EkSk−1 on the left-hand side yields the desired result.

6.2 Subdivision for Natural Cubic Splines 175

A subdivision scheme satisfying equation 6.17 requires a certain commutativity
relationship to hold among the inner product matrices, subdivision matrices, and
upsampling matrices. This relation has an interesting interpretation in terms of the
Euler-Lagrange theorem. Recall that given a variational functional E this theorem
constructs a partial differential equation whose solutions are extremal functions
for E. The discrete version of the variational functional E [p] on the grid 1

2k
Z is the

expression pT
k Ek pk, where Ek is the inner product matrix associated with E. Now,

observe that this quadratic function in the entries of the vector pk is minimized by
exactly those vectors pk satisfying Ek pk == 0. In other words, the linear equation
Ek pk == 0 can be viewed as the discretized version of the partial differential equation
corresponding to E.

If the products Ek−1 pk−1 and Ek pk are viewed as taking discrete differences of
the vectors pk−1 and pk corresponding to this partial difference equation, equa-
tion 6.17 states that differencing the vector pk−1 over the coarse grid 1

2k−1 Z and
then upsampling those differences to the next f iner grid 1

2k
Z should be the same as

subdividing the vector pk−1 using the subdivision matrix Sk−1 and then differencing
those coeff icients with respect to the finer grid 1

2k
Z using the matrix Ek. Figure 6.3

illustrates this commutativity constraint in a diagram, stating that the two paths
from the upper left to the lower right should yield the same result (i.e., the same
differences over the fine grid 1

2k
Z).

The effect of several rounds of subdivision with these matrices Sk is to define a
sequence of vectors pk whose differences Ek pk replicate the differences E0 p0 on Z

and are zero on the remaining grid points in 1
2k

Z. As a result, the limiting function

pk�1

Sk�1pk�1

Ek�1pk�1

EkSk�1pk�1 �� UkEk�1pk�1

Difference

U
ps

am
pl

e

Su
bd

iv
id

e

Difference

Figure 6.3 The two-scale relation requires commutativity between inner products, upsampling, and
subdivision.

176 C H A P T E R 6 Variational Schemes for Bounded Domains

1 2 3 4

�15
�10

�5

5
10
15

1 2 3 4

�15
�10

�5

5
10
15

1 2 3 4

�15
�10

�5

5
10
15

1 2 3 4

�15
�10

�5

5
10
15

1 2 3 4

2

3

4

5

1 2 3 4

1.5
2

2.5
3

3.5
4

4.5

1 2 3 4

1.5
2

2.5
3

3.5
4

4.5

1 2 3 4

1.5
2

2.5
3

3.5
4

4.5

(a)

(b)

Figure 6.4 A sequence of polygons pk defined by natural cubic subdivision (a) and plots of the differences
Ek pk (b).

p∞[x] satisf ies the partial differential equation associated with the variational func-
tional everywhere except on the grid Z. Figure 6.4 illustrates the behavior of these
differences using the subdivision rules for natural cubic splines derived in the next
section. The top row of plots shows the effects of three rounds of subdivision. The
bottom row of plots shows the differences Ek pk for k == 0. . . 3.

6.2.4 Subdivision Rules for Natural Cubic Splines

Given equation 6.17, our approach is to use this relation in computing the subdivi-
sion matrix Sk−1. In the next section, we show that the limit functions produced by
the resulting scheme are minimizers of the variational functional E [p]. We proceed
by noting that equation 6.17 does not uniquely determine the subdivision matrix
Sk−1, because the inner product matrix Ek has a non-empty null space and thus
is not invertible. For the inner product of equation 6.11, the differences Ek pk are
zero when pk is the constant vector or the linearly varying vector pk[[i]] = i . This
observation is consistent with the fact that the continuous variational functional
E yields zero energy for linear functions. Instead of attempting to invert Ek, we
focus on computing a simple sequence of subdivision matrices Sk−1 that satisf ies
equation 6.17 and defines a convergent subdivision scheme.

6.2 Subdivision for Natural Cubic Splines 177

As done in computing the inner product matrices, our approach is f irst to
compute the stationary subdivision matrix S for the domain � = [0, ∞]. This matrix
encodes the subdivision rules for the endpoint of a natural cubic spline and can be
used to construct the subdivision matrices Sk−1 for any other f inite intervals. The
main advantage of choosing this domain is that due to the inner product matrices
Ek satisfying Ek == 8k E equation 6.17 reduces to a stationary equation of the form
8E S == UE. The factor of 8 in this equation arises from integrating the product
of second derivatives. If we assume the subdivision matrix S to be a uniform two-
slanted matrix suff iciently far from the endpoint of x == 0, the equation 8E S == UE

has the matrix form

8

⎛⎜⎜⎜⎜⎜⎜⎝
1 −2 1 0 0 0 0 .

−2 5 −4 1 0 0 0 .

1 −4 6 −4 1 0 0 .

0 1 −4 6 −4 1 0 .

0 0 1 −4 6 −4 1 .
.

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s[−4] s[−3] 0 .

s[−2] s[−1] 0 .

s[2] s[0] s[2] .

0 s[1] s[1] .

0 s[2] s[0] .

0 0 s[1] .

0 0 s[2] .
. . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

==

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 .

0 0 0 .

0 1 0 .

0 0 0 .

0 0 1 .
. . . .

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

1 −2 1 .

−2 5 −4 .

1 −4 6 .
. . . .

⎞⎟⎟⎠ .

The unknowns s[i] with negative index encapsulate the boundary behavior of S,
whereas the unknowns s[i] with non-negative index encapsulate the uniform sub-
division rules for cubic B-splines. Solving for these unknowns yields a subdivision
matrix S for the domain � = [0, ∞] of the form

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 .

1
2

1
2 0 .

1
8

3
4

1
8 .

0 1
2

1
2 .

0 1
8

3
4 .

0 0 1
2 .

. . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

178 C H A P T E R 6 Variational Schemes for Bounded Domains

Note that the interior rows of S agree with the subdivision rules for uniform
cubic B-splines with the subdivision rule at the endpoint forcing interpolation. In
fact, the subdivision matrices Sk for an arbitrary interval � with integer endpoints
have the same structure: the first and last row in the matrix are standard unit vectors,
and all remaining rows are shifts of the fundamental sequences { 1

2 , 1
2 } and { 1

8 , 3
4 , 1

8 }.
The behavior of the scheme at the endpoints of this interval can be analyzed by
constructing the explicit piecewise cubic representation for N [x]. If � = [0, 4], the
five basis functions comprising N [x] can be written in piecewise cubic Bézier form
as follows:

0 1
3

2
3 1 4

3
5
3 2 7

3
8
3 3 10

3
11
3 4

� � � � �

1 2
3

1
3

1
6 0 0 0 0 0 0 0 0 0

0 1
3

2
3

2
3

2
3

1
3

1
6 0 0 0 0 0 0

0 0 0 1
6

1
3

2
3

2
3

2
3

1
3

1
6 0 0 0

0 0 0 0 0 0 1
6

1
3

2
3

2
3

2
3

1
3 0

0 0 0 0 0 0 0 0 0 1
6

1
3

2
3 1 .

The first row consists of the x coordinates for the control points of the four Bézier
segments as x varies from 0 to 4. The last f ive rows are the corresponding Bézier
coeff icients of the five basis functions, each row consisting of four consecutive cubic
Bézier functions. The reader can verify that these basis functions are consistent
with the subdivision rules given previously. Note that the middle basis function
is the uniform cubic basis function. A plot of these basis functions is shown in
Figure 6.5.

This representation confirms that the basis functions are C2 piecewise cubics
and satisfy the natural boundary conditions (i.e., their second derivatives at 0 and
4 are zero). Given the subdivision matrices Sk and an initial set of coeff icients
p0, the scheme can be used to define increasingly dense sets of coeff icients pk via
the relation pk = Sk−1 pk−1. If we interpolate the coeff icients of pk with the piecewise
linear function pk[x] satisfying pk[i

2k
] = pk[[i]], the functions pk[x] uniformly converge

to a piecewise cubic function p∞[x] ∈ C2. (See [157] for a matrix version of the
convergence analysis of Chapter 3.)

Given an initial set of coeff icients p0, applying the subdivision scheme yields
increasingly dense approximations of the natural cubic spline. Figure 6.6 shows
three rounds of this subdivision procedure applied to the initial coeff icients p0

6.2 Subdivision for Natural Cubic Splines 179

1 2 3 4

.2

.4

.6

.8

1

Figure 6.5 Plots of the five basis functions comprising the basis vector N0[x] for the domain
� = [0, 4].

.2 .4 .6 .8

.2

.4

.6

.8

.2 .4 .6 .8

.2

.4

.6

.8

.2 .4 .6 .8

.2

.4

.6

.8

.2 .4 .6 .8

.2

.4

.6

.8

Figure 6.6 Progression of the natural cubic spline subdivision process starting from the initial control polygon
(upper left).

180 C H A P T E R 6 Variational Schemes for Bounded Domains

(upper left). Note that here the scheme is applied parametrically; that is, the control
points are points in two dimensions, and subdivision is applied to both coordinates
to obtain the next denser shape.

6.3 Minimization of the Variational Scheme

The previous section constructed a relation of the form EkSk−1 == Uk−1 Ek−1 that
models the finite difference relation dk[x] sk−1[x] == 2dk−1[x2] arising from the dif-
ferential method. However, we offered no formal proof that subdivision schemes
constructed using the differential method converged to solutions to the differen-
tial equation. Instead, we simply analyzed the convergence and smoothness of
the resulting schemes. In this section, we show that subdivision matrices satisfying
equation 6.17 define a subdivision scheme whose limit functions p∞[x] are minimiz-
ers of E [p] in the following sense: over the space of all functions (with well-defined
energy) interpolating a fixed set of values on �∩Z, the limit function p∞[x] produced
by this subdivision scheme has minimal energy.

Our approach in proving this minimization involves three steps. First, we con-
sider the problem of enforcing interpolation for natural cubic splines using interpo-
lation matrices. Next, we show that these interpolation matrices can also be used
to compute the exact value of the variational functional E [p∞]. Finally, we set up a
multiresolution framework based on the inner product associated with E and prove
that p∞[x] is a minimizer of E in this framework.

6.3.1 Interpolation with Natural Cubic Splines

Due to the linearity of the subdivision process, any limit function p∞[x] can be
written as the product of the row vector of basis functions N0[x] associated with
the subdivision scheme and a column vector p0; that is, p∞[x] = N0[x]p0. Remember
that N0[x] represents the vector of basis functions associated with the variational
subdivision scheme; Ñ 0[x] is the finite element basis used in constructing the inner
product matrix E0. Due to the convergence of the subdivision scheme for natural
cubic splines, the continuous basis N0[x] can be evaluated on the grid Z (restricted
to �) to form the interpolation matrix N0.

In the stationary case where � = [0, ∞], all of the interpolation matrices Nk agree
with a single interpolation matrix N that satisf ies the recurrence of equation 6.2
(i.e., UT N S == N). This matrix N is tridiagonal because the natural cubic spline basis
functions are supported over four consecutive intervals. If the non-zero entries

6.3 Minimization of the Variational Scheme 181

of N are treated as unknowns, for natural cubic splines this recurrence has the
matrix form

⎛⎜⎜⎝
1 0 0 0 0 .

0 0 1 0 0 .

0 0 0 0 1 .

.

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n[−2] n[−1] 0 0 0 .

n[1] n[0] n[1] 0 0 .

0 n[1] n[0] n[1] 0 .

0 0 n[1] n[0] n[1] .

0 0 0 n[1] n[0] .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 .
1
2

1
2 .

1
8

3
4 .

0 1
2 .

0 1
8 .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

==

⎛⎜⎜⎜⎜⎝
n[−2] n[−1] .

n[1] n[0] .

0 n[1] .

. . .

⎞⎟⎟⎟⎟⎠ .

Again, the unknowns n[i] with negative index encapsulate the boundary behavior
of the natural cubic splines, whereas the unknowns n[i] with non-negative index
encapsulate the interpolation mask for cubic B-splines. After further constraining
the rows of the interpolation matrix N to sum to one, there exists a unique solution
for the interpolation matrix N of the form

N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 .

1
6

2
3

1
6 0 .

0 1
6

2
3

1
6 .

0 0 1
6

2
3 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

More generally, if � is an arbitrary finite interval with endpoints in Z, then N0 is a
tridiagonal matrix whose first and last rows are of the form {1, 0, . . .} and {. . . , 0, 1},
and whose interior rows have the form {. . . , 0, 1

6 , 2
3 , 1

6 , 0, . . .}.
The interpolation matrices play several vital roles in manipulating natural cubic

splines. First, the interpolation matrix gives us a systematic method of handling
the interpolation conditions associated with the original spline problem. Given a
natural cubic spline of the form p∞[x] = N0[x]p0, the values of p∞[x] on Z are exactly
N0 p0. Thus, p∞[x] interpolates the values N0 p0 on the grid Z. To interpolate an
arbitrary collection of values b, the initial coeff icients p0 must be chosen so as

182 C H A P T E R 6 Variational Schemes for Bounded Domains

Figure 6.7 Using the inverse of the interpolation matrix to force interpolation of the vertices of a control
polygon.

to satisfy p0 = (N0)−1b. For example, if the vertices of the curve in the left-hand
image of Figure 6.7 are denoted by b, the center image of Figure 6.7 depicts the
control polygon p0 = (N0)−1b. The right-hand image of the figure shows the result
of applying four rounds of natural cubic spline subdivision to p0, converging to a
curve that interpolates the original points b.

6.3.2 Exact Inner Products for the Variational Scheme

Another important application of the interpolation matrices Nk lies in computing
the inner product of limit functions produced by the subdivision scheme, that is,
functions of the form p∞[x] = N0[x]p0 and q∞[x] = N0[x]q0 where N0[x] is the vector
of scaling functions associated with the variational scheme. In the previous section,
we constructed the inner product matrices Ek with the property that 〈 p∞, q∞〉 is
the limit of pT

k Ekqk as k → ∞. Instead of computing this inner product as a limit,
the following theorem expresses the exact value of 〈 p∞, q∞〉 in terms of a modif ied
discrete inner product matrix of the form E0 N0.

THEOREM

6.4

Consider a uniformly convergent subdivision scheme whose subdivision
matrices Sk−1 satisfy equation 6.17, with the matrices Ek being defined via
a symmetric inner product taken on a bounded domain �. Given two limit
curves p∞[x] and q∞[x] for this scheme of the form N0[x]p0 and N0[x]q0, the
inner product 〈 p∞, q∞〉 satisf ies

〈 p∞, q∞〉 == pT
0 E0 N0q0,

where N0 is the interpolation matrix for the scheme.

Proof Given p0 and q0, let pk and qk be vectors defined via subdivision. Now, con-
sider the continuous functions pk[x] = Ñ k[x]pk and q k[x] = Ñ k[x] qk defined

6.3 Minimization of the Variational Scheme 183

in terms of the f inite element basis Ñ k[x] used in constructing the inner
product matrix Ek. Due to the linearity of inner products, 〈 p∞, q∞〉 satisf ies

〈 p∞, q∞〉 == 〈 pk, q k〉 + 〈 p∞ − pk, q k〉 + 〈 p∞, q∞ − q k〉.

Due to the uniform convergence of pk[x] to p∞[x] on the bounded domain
�, the inner product 〈 p∞ − pk, q k〉 converges to zero as k → ∞. Because
a similar observation holds for 〈 p∞, q∞ − q k〉, the inner product 〈 p∞, q∞〉
satisf ies

〈 p∞, q∞〉 = lim
k→∞

〈 pk, q k〉 == lim
k→∞

pT
k Ekqk.

Because the subdivision matrices Sk−1 satisfy equation 6.17, the vectors pk

satisfy equation 6.16 for all k > 0. Replacing pT
k Ek == (Ek pk)T by its equiv-

alent left-hand side, (Uk−1· · ·U0 E0 p0)T , yields

lim
k→∞

pT
k ET

k qk == lim
k→∞

pT
0 ET

0 UT
0 · · · U T

k−1qk.

Now, the effect of the product UT
0 · · · UT

k−1 on the vector qk is to down-
sample the entries of qk from the grid 1

2k
Z to the grid Z. Therefore, as

k → ∞, the vector UT
0 · · · UT

k−1qk converges to the values of the limit func-
tion q∞[x] taken on the integer grid Z. However, these values can be com-
puted directly using the interpolation matrix N0 via the expression N0q0.
Thus, the theorem is proven; that is,

lim
k→∞

pT
0 ET

0 UT
0 · · ·UT

k−1qk == pT
0 E0 N0q0.

For example, let p0 be the vector consisting of the first coordinate of the ver-
tices of the center polygon in Figure 6.7. If the subsequent vectors pk are defined
via the subdivision relation pk = Sk−1 pk−1 for natural cubic splines, the energy of
the quadratic B-spline curves associated with these polygons is a scalar of the form
pT

k Ek pk. Evaluating this expression for k = 0, 1, . . . , 5 yields the energies 71.3139,
42.2004, 34.922, 33.1025, 32.6476, and 32.5338. These energies are converging to the
energy of the natural cubic spline p∞[x] associated with the initial vector p0.
The energy of this limit curve can be computed directly by applying Theorem 6.4;
that is,

E [p∞] == pT
0 E0 N0 p0 = 32.4959.

184 C H A P T E R 6 Variational Schemes for Bounded Domains

6.3.3 Multiresolution Spaces for Energy Minimization

We conclude this section by showing that the limit functions p∞[x] produced by
this subdivision scheme are minimizers of E in a well-defined sense. Typically,
the space of functions over which this minimization is performed is restricted to
those functions for which E is well defined. If L2 is the space of functions that are
square integrable over � (in the Lebesgue sense), let Lm

2 denote those functions all
of whose derivatives of up to order m are in L2. These spaces Lm

2 are the standard
Sobolev spaces used in finite element analysis (see [113] or [134] for more details).
By this definition, the variational functional for our problem, E [p], is well defined
for those functions p ∈ L2

2.
Given a convergent subdivision scheme whose subdivision matrices Sk−1 satisfy

equation 6.17, let Vk be the span of the vector of scaling functions Nk[x] associated
with the scheme. Due to the refinement relation for these vectors Nk[x]Sk−1 ==
Nk−1[x], the spaces Vk are nested; that is,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ L2
2.

Our goal in this section is to prove that V0 is exactly the space of functions q[x]

that minimize E [q] over all possible choices of interpolation conditions on � ∩ Z.
Our basic approach is to construct a multiresolution expansion of any function
q[x] ∈ L2

2 in terms of the spaces Vk and a sequence of complementary spaces Wk.
These complementary spaces Wk have the form

Wk = span

[{
r k[x] ∈ Vk+1 | r k[i] == 0, i ∈ 1

2k
Z ∩ �

}]
.

Wk consists of those functions in the space Vk+1 defined on the fine grid 1
2k+1

Z

that vanish on the coarse grid 1
2k

Z. A function q k+1[x] ∈ Vk+1 can be written as a
combination of a function q k[x] ∈ Vk and a residual function r k[x] ∈ Wk such that

q k[i] == q k+1[i],
r k[i] == 0,

for all i ∈ 1
2k

Z ∩ �. Therefore, the space Vk+1 can be written as the sum of the
spaces Vk and Wk (i.e., Vk+1 = Vk + Wk). The beauty of this decomposition is that
the spaces Vk and Wk are orthogonal with respect to the continuous inner product
used in defining the inner product matrices Ek.

6.3 Minimization of the Variational Scheme 185

THEOREM

6.5

Given a symmetric inner product 〈 〉, let Vk and Wk be the spaces defined
previously. Then the spaces Vk and Wk are orthogonal with respect to this
inner product; that is, q k[x] ∈ Vk and r k[x] ∈ Wk implies that

〈q k, r k〉 == 0.

Proof Because q k[x] ∈ Vk, q k[x] can be expressed as Nk[x]qk. Subdividing once, q k[x]

can be expressed as Nk+1[x]Skqk. Because r k[x] ∈ Wk+1, r k[x] can be expressed
as Nk+1[x] r k. Hence, the inner product in question can be expressed using
Theorem 6.4 as

〈q k, r k〉 == qT
k ST

k Ek+1 Nk+1r k.

Due to the symmetry of the inner product, the two-scale relation of equa-
tion 6.17 reduces to ST

k Ek+1 == EkUT
k . Substituting yields

〈q k, r k〉 == qT
k EkUT

k Nk+1r k.

The expression UT
k Nk+1rk corresponds to the vector of values of the contin-

uous function r k[x] sampled on 1
2k

Z∩�. By construction of r k[x], this vector
is zero and the theorem is proven.

Given a function q[x] for which the variational functional E [q] of equation 6.9
is well defined (i.e., q[x] ∈ L2

2), this function can be expressed as an infinite sum of
the form

q[x] = q0[x] +
∞∑

i =0

r i [x], (6.18)

where q0[x] ∈ V0 and r k[x] ∈ Wk. Due to this expansion, the variational functional
E [q] can be expressed as the inner product 〈q0 +∑∞

i =0 r i , q0 +∑∞
i =0 r i 〉. Due to the

bilinearity of the inner product, this variational functional can be expanded to

E [q] == 〈q0, q0〉 + 2

〈
q0,

∞∑
i =0

r i

〉
+
〈 ∞∑

i =0

r i ,
∞∑
j =0

r j

〉
.

Our next task is to move the infinite summations outside of the integrals comprising

186 C H A P T E R 6 Variational Schemes for Bounded Domains

the inner products in this equation. Because q[x] ∈ L2
2, we observe that q[x] must

be continuous (see [113] for details) and therefore bounded on the closed, f inite
interval �. Consequently, the convergence of the partial sums q k[x] to q[x] must be
uniform (see Taylor [151], pages 498 and 594). This uniform convergence allows
the previous equation to be rewritten as

E [q] == 〈q0, q0〉 + 2
∞∑

i =0

〈q0, r i 〉 +
∞∑

i =0

∞∑
j =0

〈 r i , r j 〉

(see Taylor [151], page 599). Finally, by Theorem 6.5, the inner product of q0 and
r i is zero. Likewise, the inner product of r i and r j is zero for i �= j . Therefore, this
expansion reduces to

E [q] == 〈q0, q0〉 +
∞∑

i =0

〈 r i , r i 〉 == E [q0] +
∞∑

i =0

E [r i].

Based on this equation, it is clear that the minimum-energy function that inter-
polates the values of q[x] on Z ∩ � is simply the function q0[x]. More generally,
the minimum-energy function that interpolates the values of q[x] on 1

2k
Z ∩ � is the

function q k[x] whose energy satisf ies

E [q k] == E [q0] +
k∑

i =0

E [r i].

To summarize, a convergent subdivision scheme whose subdivision matrices Sk−1

satisfy equation 6.17 converges to limit functions that minimize the variational
functional E used in defining the inner product matrices Ek.

We can now apply this technique to construct a multiresolution decomposi-
tion of a function q k[x] in Vk. If q k[x] is specif ied as Nk[x] qk, our task is to compute
the projection of q k[x] into the spaces Vk−1 and Wk−1. By definition, the projection
Nk−1[x] qk−1 in Vk−1 interpolates the values of q k[x] on the grid 1

2k−1
Z. Due to equa-

tion 6.2, the coeff icient vectors qk−1 and qk satisfy the relation U T
k−1 Nkqk == Nk−1qk−1,

where the matrices Nk−1 and Nk are interpolation matrices and U T
k−1 is a downsam-

pling matrix. Multiplying both sides of this equation by N−1
k−1 yields the analysis

equation

qk−1 == N−1
k−1U T

k−1 Nkqk.

The detail function r k−1[x] lies in Vk and can be expressed as Nk[x] rk−1. Given
that r k−1[x] = q k[x] − q k−1[x], the vector rk−1 can be generated via a second analysis

6.3 Minimization of the Variational Scheme 187

1 2 3 4 5 6

7.5�10�6

5�10�6

2.5�10�6

�2.5�10�6

5�10�6

�7.5�10�6

1 2 3 4 5 6

.03

.02

.01

�.01
�.02
�.03

1 2 3 4 5 6

.0001
.00005

�.00005
�.0001

1 2 3 4 5 6

.002

.001

�.001

�.002

1 2 3 4 5 6

�1

�.5

.5

1

1 2 3 4 5 6

�1

�.5

.5

1

1 2 3 4 5 6

�1

�.5

.5

1

1 2 3 4 5 6

�1

�.5

.5

1

1 2 3 4 5 6

�1

�.5

.5

1

1 2 3 4 5 6

�1

�.5

.5

1

1 2 3 4 5 6

�1.5

�.5

.5

�1

1.5
1

1 2 3 4 5 6

�1

�.5

.5

1

Figure 6.8 An example of a minimum-energy multiresolution decomposition for Sin[x].

equation of the form rk−1 = qk − Sk−1qk−1. Note that the detail coeff icients rk−1

are overrepresented as a vector on the grid 1
2k

Z. (In particular, we are not using a
wavelet basis for the space Wk−1.)

Figure 6.8 shows an example of this analysis technique. Starting from a vector
q3 whose limit function q3[x] interpolates the function Sin[x] on the grid π

16 Z, the
analysis equation constructs the vectors q3, q2, q1, and q0 plotted in the left-hand

188 C H A P T E R 6 Variational Schemes for Bounded Domains

column. Subdividing these vectors defines the natural cubic splines q3[x], q2[x],
q1[x], and q0[x] in the center column. Each of these functions is the minimum-
energy function that interpolates the values of Sin[x] on the grids π

16 Z, π

8 Z, π

4 Z, and
π

2 Z, respectively. The right-hand column plots the residual vectors r3, r2, r1, and r0

produced by the analysis.

6.4 Subdivision for Bounded Harmonic Splines

The previous sections derived a variational subdivision scheme for natural cubic
splines defined on a bounded interval �. The resulting subdivision rules produced
splines that minimize a variational functional approximating bending energy. Here,
we construct a subdivision scheme for a bounded variant of the harmonic splines
p[x, y] introduced in Chapter 5. These splines are the minimizers of the functional

E [p] =
∫

�

(
p(1,0) [x, y]2 + p(0,1) [x, y]

2)
dx dy. (6.19)

Whereas Chapter 5 considered the case in which the domain of this integral is
the entire plane, we consider here the case in which the domain � is a rectangle
with corners on the integer grid Z

2.
Our goal in this section is to construct a sequence of subdivision matrices Sk−1

that given an initial vector p0 define a sequence of vectors pk satisfying pk = Sk−1 pk−1

and whose entries converge to a function p[x, y] minimizing this functional E. The
entries of the vectors pk are plotted on the restriction of the unbounded uniform
grid 1

2k
Z

2 to the rectangle �. Our approach, introduced by the authors in [162]

for biharmonic splines, is similar to that of the previous section. We construct
discrete inner product matrices Ek that approximate E [p], and then solve for sub-
division matrices Sk−1 satisfying the relation EkSk−1 == Uk−1 Ek−1. As was true in the
unbounded case of Chapter 5, there exists no locally supported solution Sk−1 to
this equation. Instead, we construct locally supported subdivision matrices Ŝk−1

that approximately satisfy this equation (i.e., Ek Ŝk−1 � Uk−1 Ek−1).

6.4.1 A Finite Element Scheme for Bounded Harmonic Splines

According to equation 6.17, the key to constructing a variational subdivision
scheme is constructing a sequence of inner product matrices Ek for the variational

6.4 Subdivision for Bounded Harmonic Splines 189

functional of equation 6.19. In the case of harmonic splines, the continuous inner
product corresponding to this energy function E has the form

〈 p, q〉 =
∫

�

(p(1,0) [x, y] q(1,0) [x, y] + p(0,1) [x, y] q(0,1) [x, y])dx dy. (6.20)

Given a suff iciently smooth finite element basis Ñ k[x, y], the entries of Ek are the
inner product of pairs of basis functions in Ñ k[x, y]. In the case of natural cubic
splines, we chose a finite element basis consisting of translates of the quadratic
B-spline basis function. In the case of bounded harmonic splines, we use a finite
element basis consisting of translates of the piecewise linear hat function ñ[x, y].
Again, this f inite element basis leads to well-defined inner product matrices Ek.

Our approach in computing these matrices Ek is to restrict the piecewise linear
hat functions to the quadrant � = [0, ∞]2, and then to set up a recurrence simi-
lar to that of equation 6.13 governing the corresponding inner product matrices
over this domain. Due to this restriction, the initial f inite element basis Ñ [x, y]

consists of integer shifts of the form ñ[x − i , y − j], where i , j ≥ 0. Subsequent
f inite element bases consist of dilates Ñ [2kx, 2ky] of this vector and are related by a
stationary subdivision matrix S̃ satisfying Ñ [2x, 2y]S == Ñ [x, y], whose columns have
the form ⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2 0 0 .

1
2

1
2 0 0 .

0 0 0 0 .

0 0 0 0 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 1 1

2 .

0 0 1
2

1
2 .

0 0 0 0 .

0 0 0 0 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. . .

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 .

1
2 0 0 0 .

1 1
2 0 0 .

1
2

1
2 0 0 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 .

0 1
2

1
2 0 .

0 1
2 1 1

2 .

0 0 1
2

1
2 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. . .

.

Each two-dimensional array here corresponds to a column of S̃ plotted using the
natural two-dimensional grid induced by the grid (Z+)2 (i.e., the restriction of Z

2 to
[0, ∞]2). The rows of S̃ are also ordered in a similar manner. Technically, the rows
and columns of S̃ (and E) are indexed by integer pairs {i , j } ∈ (Z+)2. In Mathemat-
ica, these matrices are represented as four-dimensional tensors whose entries are

190 C H A P T E R 6 Variational Schemes for Bounded Domains

indexed by two integer pairs, {i 1, j1} and {i 2, j2}, the first pair corresponding to a
row of the matrix and the second pair corresponding to a column of the matrix.

Having restricted our initial analysis to the quadrant [0, ∞]2, we observe that the
inner product matrices Ek associated with the basis Ñ [2kx, 2ky] satisfy the equation
Ek = E for all k ≥ 0. (Observe that the factor 4k induced by taking the square of the
first derivative on 1

2k
(Z+)2 is canceled by the constant of integration 1

4k
arising from

integrating on the grid 1
2k

(Z+)2.) Substituting this relation into equation 6.12 yields

a recurrence relation of the form

S̃
T

E S̃ == E .

By treating the rows (or columns) of E as unknown masks, this equation can be
used to set up a system of homogeneous linear equations whose single solution is a
constant multiple of the inner product matrix E. This unique homogeneous solu-
tion can then be normalized to agree with the inner product mask for the uniform
case. Based on the method of section 6.1, we observe that this inner product mask
e [x , y] for integer translates of the piecewise linear hat function ñ[x, y] has the form

e[x , y] = (x−1 1 x)

⎛⎝ 0 −1 0
−1 4 −1

0 −1 0

⎞⎠⎛⎝ y−1

1
y

⎞⎠ .

The associated Mathematica implementation gives the details of setting up this
unknown matrix in the bivariate case and solving for the entries (). The resulting
inner product matrix E has the form shown in Figure 6.9.

⎛⎜⎜⎜⎜⎝
1 − 1

2 0 .

− 1
2 0 0 .

0 0 0 .

. . . .

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

− 1
2 2 − 1

2 .

0 −1 0 .

0 0 0 .

. . . .

⎞⎟⎟⎟⎟⎠ . . .

⎛⎜⎜⎜⎜⎝
− 1

2 0 0 .

2 −1 0 .

− 1
2 0 0 .

. . . .

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0 −1 0 .

−1 4 −1 .

0 −1 0 .

. . . .

⎞⎟⎟⎟⎟⎠ . . .

.

Figure 6.9 Rows of the inner product matrix E for translates of the piecewise linear hat function on
[0, ∞]2.

6.4 Subdivision for Bounded Harmonic Splines 191

6.4.2 Subdivision for Harmonic Splines on a Quadrant

Having derived the inner product matrix E for the domain � = [0, ∞]2, our next task
is to construct a subdivision matrix S for bounded harmonic splines that satisf ies
a two-dimensional stationary version of equation 6.17 (i.e., E S == UE, where U is
the two-dimensional upsampling matrix). One approach to this problem would
be to use the Jacobi iteration or the linear programming method of Chapter 5 to
compute a finite approximation to S. Either of these methods produces a matrix Ŝ

whose rows are finite approximations to the infinitely supported row of the exact
subdivision matrix S. In this section, we describe an alternative construction for
the subdivision matrix S that exactly satisf ies the relation E S == UE.

The key to this approach is to extend the subdivision scheme on a single quad-
rant to an equivalent uniform scheme defined over the entire plane. This extension
from a quadrant to the plane relies on reflecting the entries of the initial vector
p0 with respect to each of the coordinate axes. Given an initial vector p0 whose
entries are defined on the grid (Z+)2, this vector can be extended to the grid Z

2

via the reflection rule p0[[i , j]] = p0[[| i |, | j |]] for all { i , j } ∈ Z
2. Plotted on the two-

dimensional grid Z
2, this ref lected set of coeff icients has the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. p0[[2, 2]] p0[[2, 1]] p0[[2, 0]] p0[[2, 1]] p0[[2, 2]] .

. p0[[1, 2]] p0[[1, 1]] p0[[1, 0]] p0[[1, 1]] p0[[1, 2]] .

. p0[[0, 2]] p0[[0, 1]] p0[[0, 0]] p0[[0, 1]] p0[[0, 2]] .

. p0[[1, 2]] p0[[1, 1]] p0[[1, 0]] p0[[1, 1]] p0[[1, 2]] .

. p0[[2, 2]] p0[[2, 1]] p0[[2, 0]] p0[[2, 1]] p0[[2, 2]] .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If the coeff icients of this ref lected vector are attached to a generating function
p0[x , y], our approach in generating the subdivision matrix S for bounded harmonic
splines is to subdivide p0[x , y] using the exact subdivision mask s[x , y] for uniform
harmonic splines (as defined in equation 5.7). The result is a sequence of generating
functions pk[x , y] satisfying the multiscale relation

e [x , y]pk[x , y] == e
[
x2k

, y2k]
p0

[
x2k

, y2k]
(6.21)

whose coeff icients are also reflections of a sequence of vectors pk defined over

192 C H A P T E R 6 Variational Schemes for Bounded Domains

the grid (1
2k

Z
+)

2. Now, we claim that these vectors pk satisfy the related multiscale
equation

E pk == Uk E p0 (6.22)

for bounded harmonic splines, where E is the inner product matrix computed in
the previous section. To verify this claim, we observe that for any vector pk the
coeff icients of e [x , y]pk[x , y] are constant multiples of entries of the vector E pk. For
example, the coeff icient of the x0 y0 term in e [x , y]pk[x , y] is 4pk[[0, 0]] − 2pk[[1, 0]] −
2pk[[0, 1]], four times the entry of E pk corresponding to the origin. Likewise, co-
eff icients of the terms xi y0 in e [x , y]pk[x , y], where i > 0, have the form 4pk[[i , 0]] −
pk[[i −1, 0]]− pk[[i +1, 0]]−2pk[[i , 1]]. These coeff icients are two times the correspond-
ing entries of E pk. Because these constants appear on both sides of equation 6.22
in E, restricting solutions of equation 6.21 to the first quadrant yields a solution to
equation 6.22.

Given this observation, the subdivision relation pk[x , y] = s[x , y]pk−1[x , y] for
the unbounded case can be converted into an equivalent matrix form pk = S pk−1,
where S is the subdivision matrix for harmonic splines on the quadrant [0, ∞]2.
In particular, the entry of S in the { i 1, j1}th row and { i 2, j2}th column is a sum of
coeff icients from the exact subdivision mask s[x , y] for unbounded harmonic splines
(equation 5.7) of the form ∑

s[[i1 ± 2i2, j1 ± 2 j2]]. (6.23)

Note that when i 2 or j2 is zero, the corresponding coeff icient appears only once
in the sum. For example, each entry of the column of S corresponding to the
origin (i.e., { i 2, j2} == {0, 0}) consists of a single coeff icient of the exact mask s[x , y].
Plotted as a two-dimensional grid, this column has the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

1.4535 0.4535 −0.1277 −0.0338 −0.0106 .

0.4535 0.2441 0.0347 0.0015 −0.0022 .

−0.1277 0.0347 0.021 0.0073 0.0019 .

−0.0338 0.0015 0.0073 0.0048 0.0023 .

−0.0106 −0.0022 0.0019 0.0023 0.0016 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Entries of columns of S corresponding to grid points that lie on the boundary of
� = [0, ∞]2 are the sum of two coeff icients from the exact mask s[x , y]. For example,

6.4 Subdivision for Bounded Harmonic Splines 193

the column of S corresponding to the grid point with index { i 2, j2} == {1, 0} has
the form

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−0.2554 0.0695 0.0421 0.0146 0.0038 .

0.4197 0.2456 0.0421 0.0063 0.0001 .

1.443 0.4513 −0.1258 −0.0315 −0.0089 .

0.4496 0.2424 0.035 0.0025 −0.0013 .

−0.1295 0.0336 0.0208 0.0077 0.0024 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

In general, entries of columns of S correspond to the interior grid points consisting
of four coeff icients. For example, the column of S corresponding to the grid point
{ i 2, j2} == {1, 1} has the form

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.0841 0.0841 −0.2516 0.0699 0.0417 .

0.0841 0.252 0.4198 0.2448 0.0413 .

−0.2516 0.4198 1.4341 0.4483 −0.1271 .

0.0699 0.2448 0.4483 0.2413 0.0343 .

0.0417 0.0413 −0.1271 0.0343 0.021 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

6.4.3 Subdivision for Harmonic Splines on Bounded
Rectangular Domains

Given a bounded rectangular domain � whose corners are in Z
2, we can con-

struct a sequence of inner product matrices Ek using the boundary rules from
Figure 6.9. Given these inner product matrices, our task is to compute the cor-
responding subdivision matrices Sk−1 that satisfy the relation EkSk−1 == Uk−1 Ek−1.
The simplest approach would be to invert the matrix Ek and explicitly solve for
Sk−1. Unfortunately, the matrix Ek−1 is not invertible because its null space is the
constant vector. To uniquely specify the desired subdivision matrix Sk−1, we must
add an extra constraint to each of the columns of the matrix Sk−1.

In the case where � = [0, ∞]2, each column of the subdivision matrix S defined
by equation 6.23 satisf ies a simple constraint arising from the observation that the
sum of the coeff icients s[[i , j]] for the unbounded harmonic mask s[x , y] is exactly 4

194 C H A P T E R 6 Variational Schemes for Bounded Domains

(i.e., s[1, 1] == 4). If w is a row vector whose entries (plotted as a two-dimensional
grid) have the form

w =

⎛⎜⎜⎜⎜⎝
1 2 2 2 .

2 4 4 4 .

2 4 4 4 .

2 4 4 4 .

.

⎞⎟⎟⎟⎟⎠ ,

we claim that the subdivision matrix S defined in equation 6.23 satisf ies the aux-
iliary relation wS == 4w. For each column of S, this relation follows from the fact
that the harmonic mask s[x , y] is symmetric and that its coeff icients sum to 4. For
example, the column of S corresponding to the origin had the form⎛⎜⎜⎜⎜⎝

s[[0, 0]] s[[0, 1]] s[[0, 2]] .

s[[1, 0]] s[[1, 1]] s[[1, 2]] .

s[[2, 0]] s[[2, 1]] s[[2, 2]] .

. . . .

⎞⎟⎟⎟⎟⎠ ,

where s[[i , j]] was the i jth coeff icient of the harmonic mask s[x , y]. Weighting the
corner coeff icient s[[0, 0]] by a factor of one, edge coeff icients s[[i , 0]] and s[[0, i]]

by a factor of two, and interior coeff icients s[[i , j]] by a factor of four yields an
infinite sum of the coeff icients s[[i , j]] that is equivalent to requiring that s[1, 1] == 4

because the mask s[x , y] is symmetric. This auxiliary constraint wS == 4w can be
generalized to the bounded case by defining a sequence of row vectors wk whose
entries correspond to grid points of 1

2k Z
2 restricted to � and have the form

wk =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 . 2 1
2 4 4 . 4 2
2 4 4 . 4 2
.

2 4 4 . 4 2
1 2 2 . 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Now, the relation EkSk−1 == Uk−1 Ek−1 taken in conjunction with the auxiliary
constraint wkSk−1 = 4wk−1 defines a sequence of unique subdivision matrices Sk−1

for harmonic splines on the bounded domain �. Figure 6.10 shows an example of
two rounds of exact harmonic subdivision applied to our test shape from Chapter 5
(defined on the domain � = [0, 7]2). The two subdivision matrices S0 and S1 for
this example were computed exactly using linear algebra within Mathematica. Note

6.4 Subdivision for Bounded Harmonic Splines 195

0

.5

1

0
.5
1

0
.5
1

Figure 6.10 Two rounds of exact subdivision for bounded harmonic splines.

that we did not attempt to continue this process and compute the exact subdivision
matrix S2, in that this computation involves inverting a 3249 × 3249 matrix whose
rows and columns are indexed by a pair of 57 × 57 grids.

As in the unbounded case, bounded harmonic splines p∞[x, y] diverge at integer
grid points Z

2 for which the corresponding entry of the vector E p0 is non-zero.
Although this divergence causes the variational functional of equation 6.19 to also
diverge, these functions p∞[x, y] still satisfy the harmonic equation on the interior
of the domain � (except at integer grid points in Z

2) via equation 6.22. More-
over, due to the definition of the subdivision scheme in terms of ref lection, the
limit function p∞[x, y] also satisf ies the natural boundary condition of having its
cross-boundary derivative be zero. (For the higher-order polyharmonic splines, the
associated subdivision scheme is always convergent at the integer grid Z

2, and as a
result the minimization theory of section 6.3 follows without diff iculty.)

As in the case when � = [0, ∞]2, entries of the columns of the subdivision
matrices Sk−1 for bounded domains are sums of coeff icients s[[i , j]] of the uniform
mask s[x , y]. (We leave the derivation of the exact formula to the interested reader.)
Due to the fast decay of the coeff icients in the mask s[x , y], interior columns of the
subdivision matrix S0 for large domains provide a reasonable approximation to the
uniform mask s[x , y] itself. For example, Figure 6.11 shows the central 9×9 portion
of column {4, 4} of the subdivision matrix S0 for the domain [0, 8]2. Observe that the
entries agree with the exact coeff icients of s[x , y] of Figure 5.6 to four decimal digits.

Another interesting consequence of the fast decay of the coeff icients of s[x , y] is
that the subdivision rules (i.e., rows) associated with the initial matrix S0 are finite
approximations to the subdivision rules for subsequent matrices Sk. In particular,
subdivision rules of S0 for corners of � can be used to approximate the exact sub-
division rules of Sk at corners of �. For example, if � = [0, 4]2, the two tables of
Figure 6.12 are plots of the exact subdivision rules for S0 and S1 at a corner of �.

196 C H A P T E R 6 Variational Schemes for Bounded Domains

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 0.0016 0.0023 0.0018 −0.0023 −0.0107 −0.0023 0.0018 0.0023 0.0016 .

. 0.0023 0.0048 0.0072 0.0014 −0.0339 0.0014 0.0072 0.0048 0.0023 .

. 0.0018 0.0072 0.0209 0.0346 −0.1278 0.0346 0.0209 0.0072 0.0018 .

. −0.0023 0.0014 0.0346 0.244 0.4534 0.244 0.0346 0.0014 −0.0023 .

. −0.0107 −0.0339 −0.1278 0.4534 1.4534 0.4534 −0.1278 −0.0339 −0.0107 .

. −0.0023 0.0014 0.0346 0.244 0.4534 0.244 0.0346 0.0014 −0.0023 .

. 0.0018 0.0072 0.0209 0.0346 −0.1278 0.0346 0.0209 0.0072 0.0018 .

. 0.0023 0.0048 0.0072 0.0014 −0.0339 0.0014 0.0072 0.0048 0.0023 .

. 0.0016 0.0023 0.0018 −0.0023 −0.0107 −0.0023 0.0018 0.0023 0.0016 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 6.11 Approximating the subdivision mask for unbounded harmonic splines.

⎛⎜⎜⎜⎜⎝
1.4534 −0.2556 −0.0213 −0.0039 −0.001

−0.2556 0.0838 0.0073 −0.0012 −0.0008
−0.0213 0.0073 0.0065 0.0021 0.0005
−0.0039 −0.0012 0.0021 0.002 0.0009
−0.001 −0.0008 0.0005 0.0009 0.0004

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.4535 −0.2554 −0.0211 −0.0035 −0.001 −0.0004 −0.0002 −0.0001 −0.0001
−0.2554 0.0841 0.0076 −0.0008 −0.0009 −0.0005 −0.0003 −0.0002 −0.0001
−0.0211 0.0076 0.0066 0.0019 0.0004 0 −0.0001 −0.0001 −0.0001
−0.0035 −0.0008 0.0019 0.0014 0.0006 0.0002 0.0001 0 0
−0.001 −0.0009 0.0004 0.0006 0.0004 0.0003 0.0001 0.0001 0
−0.0004 −0.0005 0 0.0002 0.0003 0.0002 0.0001 0.0001 0
−0.0002 −0.0003 −0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
−0.0001 −0.0002 −0.0001 0 0.0001 0.0001 0.0001 0.0001 0.0001
−0.0001 −0.0001 −0.0001 0 0 0 0.0001 0.0001 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 6.12 Approximating the exact subdivision rule at a corner of �.

Observe that padding out the subdivision rule for S0 by zeros yields an approxi-
mation to the exact subdivision rule for S1 that is accurate to within three decimal
digits.

In a similar manner, subdivision rules of S0 for the edges of � can be used
to approximate the exact subdivision rules of Sk on the edges of �. Finally, subdivi-
sion rules of S0 on the interior of � can be used to approximate the exact subdivision

6.4 Subdivision for Bounded Harmonic Splines 197

0
.5
1

1.5

Figure 6.13 Three rounds of approximate subdivision for bounded harmonic splines.

rules of Sk on the interior of �. These observations lead to a simple algorithm for
constructing locally supported approximations Ŝk to the exact subdivision matrices
Sk: compute the exact subdivision rules from S0 and pad these rules to form the
rows of Ŝk. Of course, this process could also be repeated with the exact subdivision
matrix S1, with the resulting subdivision matrices Ŝk being a more accurate approx-
imation to the exact matrices Sk at the cost of larger row supports. Figure 6.13
shows the result of three rounds of approximate harmonic subdivision using the
padded subdivision rules from the matrix S0 on the domain [0, 7]2.

One final question that arises during the construction is the effect of the original
f inite element basis Ñ k[x, y] on the resulting subdivision matrices Sk. In the differ-
ential case, the bi-inf inite Laurent expansion of l [x2,y2]

l [x ,y]
led to a unique choice for

the subdivision mask for harmonic splines. However, in the variational case, choos-
ing a different f inite element basis, say translates of the biquadratic B-spline basis
functions, leads to a different set of inner product matrices Ek that in turn leads
to different subdivision matrices Sk satisfying equation 6.17. The theory of sec-
tion 6.3 ensures that for any choice of f inite element basis the resulting exact
subdivision scheme converges to minimizers of the variational functional. Thus,
different choices for the finite element basis lead to different subdivision schemes
that all converge to the same space of minimizers. In the case of natural cubic
splines, inner product matrices based on quadratic B-splines were carefully cho-
sen so as to produce locally supported subdivision rules. For bounded harmonic
splines, no choice of f inite element basis leads to locally supported subdivision
rules. Instead, we simply follow the heuristic of choosing the finite element basis
with appropriate smoothness and support as small as possible. In practice, this rule
appears to lead to a variational scheme whose subdivision rules are highly localized.

C H A P T E R 7

Averaging Schemes for
Polyhedral Meshes

Chapters 5 and 6 considered uniform surface schemes (both bounded and un-
bounded). Unfortunately, these schemes are not flexible enough for most practical
modeling applications because even simple topological shapes such as the sphere
cannot be represented by a single uniform surface grid. This chapter introduces a
more flexible representation for surfaces—in terms of topological meshes capable
of representing surfaces of arbitrary topology—that avoids this problem. The first
part of the chapter investigates some of the basic properties of topological meshes
and introduces two subdivision schemes for such meshes: linear subdivision for tri-
angle meshes and bilinear subdivision for quadrilateral meshes. Next, the chapter
introduces a smooth variant of bilinear subdivision and presents several extensions
of this scheme. Finally, the chapter concludes with a brief survey of the wealth of
current work on subdivision schemes for polyhedral meshes.

7.1 Linear Subdivision for Polyhedral Meshes

Chapter 6 considered uniform surface schemes whose coeff icient vectors pk are
associated with the restriction of the uniform grid 1

2k Z
2 to a bounded rectangu-

lar domain. In general, this restriction requires the resulting limit surfaces to be
functional; that is, the graph of the bivariate function p∞[x, y]. Treating the vector
pk as a collection of control points allows us to construct parametric surfaces that
although no longer functional are still topologically equivalent to a plane (or to a
portion of a plane). This uniform approach can be generalized slightly if one treats
the underlying parametric domain as periodic. Taking this view, the resulting para-
metric surface is now a closed surface that is topologically equivalent to a torus

198

7.1 Linear Subdivision for Polyhedral Meshes 199

(or a portion of a torus). Unfortunately, other topological shapes such as spheres
cannot be modeled by this method without introducing degeneracies such as poles.
For example, the latitude/longitude system used to assign two-dimensional coordi-
nates to the surface of the earth is degenerate at the North and South Poles.

To understand the reason for this topological restriction, consider the closed
square grid induced by restricting the grid points Z

2 to a periodic domain. (See
the doughnut-shaped grid of Figure 7.7 for an example.) This grid consists of a
collection of Ø vertices, ª edges, and ü square faces. Now, consider the value of the
expression Ø− ª+ ü for any such surface grid. For each vertex in this grid, there exist
two corresponding edges (say one pointing “north” and another pointing “east”) and
one corresponding face (say the “northeast” face). Therefore, the expression Ø− ª+ ü

is always zero for any size grid. This expression Ø − ª + ü is the Euler characteristic
for the surface grid and is related to the number of “handles” † associated with the
surface grid (and its underlying closed surface) via the relation Ø − ª + ü = 2 − 2†.
(See Firby and Gardiner [62] and Lakatos [91] for more details.) Because the Euler
characteristic is always zero for such closed uniform grids, this surface scheme is
capable of representing only surfaces, such as a torus, that have one handle. To
model other types of topological surfaces, we must use a more general type of
surface representation.

7.1.1 Polyhedral Meshes

A two-dimensional topological mesh consists of a list of polygonal faces in which
each polygon is represented by a list of vertices, with each vertex denoted by a
distinct index. For example, an octahedron can be thought of as eight triangles,
each consisting of three vertices. If we number the vertices 1 through 6, one possible
topological mesh for the octahedron, has the form

{{1, 2, 5}, {2, 3, 5}, {3, 4, 5},
{4, 1, 5}, {2, 1, 6}, {3, 2, 6}, {4, 3, 6}, {1, 4, 6}}.

As a second example, consider a hexahedron (i.e., a topological cube) consisting of
six quadrilateral faces. If each face consists of four vertices numbered 1 through 8,
one possible topological mesh for the hexahedron has the form

{{1, 4, 3, 2}, {1, 2, 6, 5},
{2, 3, 7, 6}, {3, 4, 8, 7}, {4, 1, 5, 8}, {5, 6, 7, 8}}.

200 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Note that this representation does not encode the geometric shape of the mesh. It
encodes only the connectivity of the edges and faces of the mesh. To specify actual
geometric locations for each of these vertices, we need only add a second vector
consisting of geometric positions for each of the vertices (the vector p in previous
chapters). In the hexahedral example, letting the vertices 1 through 8 have the
geometric positions

{{0, 0, 0}, {1, 0, 0}, {1, 1, 0},
{0, 1, 0}, {0, 0, 1}, {1, 0, 1}, {1, 1, 1}, {0, 1, 1}}

defines a unit cube. As before, we can access the particular coordinates for a vertex
v via the expression p[[v]].

Thus, a polyhedral mesh is a pair {M, p}, where M is the topological mesh and
p is a vector of vertex positions. One might ask, Why not substitute the vertex
positions of p directly into the corresponding elements of M? Separating topology
from geometry has several advantages. First, two faces sharing a common edge or
vertex can immediately be identif ied by comparing vertex indices. If a face were
simply a list of vertex positions, determining whether two faces share a common
edge or vertex would involve geometric comparison of numerical vertex positions
that themselves may be subject to error. Second, separating topology from geometry
also saves space. A vertex position that consists of three floating-point numbers is
stored only once in p. Subsequent references in M require only an integer index.
Finally, and most important, the subdivision rules described in this chapter depend
solely on the local topology of the mesh. Explicitly encoding this topology makes
implementing the schemes much easier. Figure 7.1 depicts the polyhedral meshes
for the octahedron and the hexahedron referred to previously.

(a) (b)

Figure 7.1 Polyhedral meshes representing an octahedron (a) and a hexahedron (b).

7.1 Linear Subdivision for Polyhedral Meshes 201

We next introduce two important quantities associated with the vertices of a
topological mesh M. The set of faces in M that contains the vertex v is denoted by
ring[v], whereas val[v], the valence of v, is the number of faces in ring[v]. Given these
definitions, a topological mesh M defines a surface mesh (i.e., a manifold) if ring[v]

is topologically equivalent to a disc (an interior vertex) or a half-disc (a boundary
vertex) for every vertex v of M. For surface meshes, an edge is an interior edge if
it is shared by exactly two polygons, and is a boundary edge if it lies on a single
polygon. A maximally connected chain of boundary edges forms a boundary curve
of the surface mesh. Closed surface meshes have no boundary curves, whereas open
surface meshes have one or more boundary curves.

Surface meshes consisting entirely of triangular faces are triangle meshes. For
example, three-direction quartic box splines generate a sequence of triangle meshes
by splitting each triangle into four subtriangles. The resulting meshes have vertices
of only valence six. Likewise, surface meshes consisting entirely of quadrilateral
faces are quad meshes. The subdivision scheme for bicubic B-splines generates a
sequence of quad meshes by splitting each quad into four subquads.

7.1.2 Topological Subdivision of Polyhedral Meshes

We proceed by considering two simple subdivision schemes for polyhedral meshes:
linear subdivision for triangle meshes and bilinear subdivision for quad meshes.
These methods avoid the topological limitations of uniform schemes and provide
a foundation for subsequent smooth schemes. Each method produces a sequence
of polyhedral meshes {Mk, pk} via a two-step process. The first step, topological
subdivision, splits each face in Mk−1 into a set of subfaces in Mk. The second step,
geometric positioning, computes positions for the new vertices pk in terms of the
positions of the old vertices pk−1 via a subdivision relation pk = Sk−1 pk−1. The beauty
of these two subdivision schemes is that the subdivision matrix Sk−1 depends only on
the topology Mk−1 of the mesh. We first discuss the details of topological subdivision
for these schemes.

Given a topological mesh Mk−1, topological subdivision splits each face in Mk−1

into a collection of subfaces and collects the results as a new topological mesh Mk.
There are two traditional variants of topological subdivision for surface meshes. In
triangle subdivision, each triangle is split into four subtriangles, as shown in the
upper left of Figure 7.2. In one sense, this topological split “chops off” the three
corners of the triangle, leaving a triangle in the middle. This split can be generalized
to other types of polygons, as shown in the upper portion of Figure 7.2. Given an

202 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Figure 7.2 Two types of topological subdivision for various polygons.

n-gon, this split returns n triangles and a new n-gon connecting the midpoints of
the edges of the original n-gon. For most applications, triangle subdivision is used
only when the initial mesh consists only of triangles.

An alternative approach is quad subdivision. In this method, each n-gon in Mk−1

is split into n quads in Mk by placing a single vertex in the center of the n-gon and
adding edges from this vertex to the midpoints of each edge. The lower portion of
Figure 7.2 illustrates this quadrilateral decomposition. This subdivision has the nice
property that after one round of topological subdivision the refined mesh consists
solely of quads.

Having computed the new topology Mk, we complete the subdivision process
by computing the vertex positions pk from coarse vertex positions pk−1 via the sub-
division relation pk = Sk−1 pk−1. Of course, in practice we never actually construct
the matrix Sk−1, in that this matrix consists almost entirely of zeros. Instead, during
topological subdivision we compute the geometric position of new vertices in Mk

directly from the position of their parent vertices in Mk−1. For triangle subdivision,
new vertices are positioned at the midpoint of edges in the coarse mesh Mk−1. For
quad subdivision, new vertices are positioned at the midpoint of edges in Mk−1

and at the centroid of faces of Mk−1 using bilinear subdivision.
The advantage of these two types of subdivision is that iterating them leads

to increasingly dense topological meshes that are nearly uniform. For example,

7.1 Linear Subdivision for Polyhedral Meshes 203

triangle subdivision of a triangle mesh produces a new triangle mesh. Moreover, all
new interior vertices introduced into this new mesh have valence six. For triangle
meshes, interior vertices of valence six are ordinary vertices. Interior vertices of
valence other than six are extraordinary vertices. (On the boundaries of a trian-
gle mesh, ordinary vertices have valence four.) Likewise, quad subdivision always
produces a quad mesh and introduces only ordinary interior vertices of valence
four. During quad subdivision, interior vertices with valence other than four are
extraordinary and can only be inherited from the initial mesh.

Under these definitions, only ordinary vertices are introduced by topological
subdivision. Furthermore, those extraordinary vertices present in the initial mesh
are increasingly isolated as subsequent rounds of topological subdivision are per-
formed. It is this isolation of extraordinary vertices that constitutes the foundation of
most subdivision schemes for surface meshes. These schemes rely on the fact that
almost all of the mesh produced by topological subdivision is uniform. For these
portions of the mesh, the rules from uniform subdivision schemes developed in
previous chapters can be applied. Figure 7.3 depicts the octahedron and the cube
after three rounds of subdivision. Note that the original vertices of these shapes are
the only extraordinary vertices in the new, refined mesh.

These topological splits in which edges of the mesh Mk−1 are split into two edges,
both appearing in Mk, are edge-splitting subdivisions. Other types of edge-splitting
subdivisions are certainly possible. For example, Figure 7.4 shows a two-step re-
f inement process for a triangulation of a square grid. This split, referred to as
4-8 subdivision by Velho et al. [153], involves repeatedly splitting triangles along

(a) (b)

Figure 7.3 An octahedron (a) and cube (b) after three rounds of subdivision. The extraordinary vertices
are separated by a uniform mesh.

204 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Figure 7.4 The two steps of 4-8 subdivision of triangle meshes.

their longest edge. The authors show that several well-known quad schemes can be
reproduced using 4-8 subdivision and also argue that 4-8 subdivision is well suited
for adaptive applications.

We conclude this section by considering some practical requirements for im-
plementing edge-splitting subdivision. Given the topology Mk−1 for a coarse mesh,
we can generate the topology Mk for the refined mesh by splitting each triangle
or quad in Mk−1 into its children. The decomposition of a single triangle (or quad)
in Mk−1 into its children is relatively easy. The only diff icult detail lies in correctly
generating new indices for the vertices of Mk that lie at the midpoints of edges in
Mk−1. For these “edge” vertices in Mk, several faces in Mk−1 may contain this edge
and spawn new faces in Mk that contain this vertex. Thus, we need to ensure that
all of these faces in Mk use the same vertex index.

One simple solution is to store the indices for “edge” vertices in Mk in a hash
table. To look up the index for a given “edge” vertex in Mk, we query the hash table
with the indices of the endpoints of the edge in Mk−1 containing the “edge” vertex.
If the table entry is uninitialized, the vertex is assigned a new index and that index
is stored in the hash table. Otherwise, the hash table returns the previously stored
index for the edge vertex. A global counter can be used to assign new indices and
to keep track of the total number of vertices.

7.2 Smooth Subdivision for Quad Meshes

For both triangle and quad meshes, topological subdivision produces meshes that
are tantalizingly close to uniform. The resulting meshes Mk have the property that
they are uniform everywhere except at extraordinary vertices, which themselves

7.2 Smooth Subdivision for Quad Meshes 205

are restricted to be a subset of the initial vertices of M0. For uniform portions of Mk,
the uniform subdivision rules developed in the previous chapters can be used to
produce smooth limit surfaces. Only near the extraordinary vertices of Mk are new,
nonuniform rules needed. Our approach in this section is to develop a geometric
characterization of the bicubic subdivision rules for uniform quad meshes, and to
then generalize these rules to extraordinary vertices of nonuniform meshes.

7.2.1 Bilinear Subdivision Plus Quad Averaging

To develop a geometric characterization for bicubic subdivision, we first return
to the subdivision rules for cubic B-splines. The Lane and Riesenfeld algorithm
of Chapter 2 subdivided a polygon pk−1 and produced a new polygon pk via the
subdivision relation

pk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 1
8

3
4

1
8 0 0 .

. 0 1
2

1
2 0 0 .

. 0 1
8

3
4

1
8 0 .

. 0 0 1
2

1
2 0 .

. 0 0 1
8

3
4

1
8 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
pk−1 ==

⎛⎜⎜⎜⎜⎜⎝
.

. 1
4

1
2

1
4 0 0 .

. 0 1
4

1
2

1
4 0 .

. 0 0 1
4

1
2

1
4 .

.

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 1 0 0 .

. 1
2

1
2 0 .

. 0 1 0 .

. 0 1
2

1
2 .

. 0 0 1 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
pk−1.

Note that on the right-hand side of this relation the subdivision matrix for cubic
B-splines has been factored into the subdivision matrix for linear B-splines, followed
by averaging via the mask { 1

4 , 1
2 , 1

4 }. The subdivision rules for bicubic B-splines ex-
hibit a similar structure. These subdivision rules can be factored into two separate
transformations: bilinear subdivision, followed by averaging with the tensor product
of the univariate mask with itself; that is, the two-dimensional mask,⎛⎜⎝

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎞⎟⎠ .

Figure 7.5 illustrates this factorization for a single step of bicubic subdivision. A
coarse mesh is f irst split using bilinear subdivision. The resulting mesh is then
smoothed using the averaging mask given previously.

There are several advantages of expressing bicubic subdivision as bilinear sub-
division followed by averaging. First, bilinear subdivision neatly encapsulates the

206 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

(a) (b) (c)

Figure 7.5 Initial shape (a), result of bilinear subdivision (b), result of quad averaging (c).

topological modif ications of the mesh, with the latter averaging step only perturbing
the geometric positions of the resulting vertices. Another advantage of this decom-
position is that there is only a single averaging mask for uniform tensor product
meshes (as opposed to three types of subdivision rules for bicubic B-splines). This
simplif ication allows us to focus on developing a generalization of this averaging
rule that reproduces the tensor product rule on tensor product meshes, and that
yields smooth limit surfaces for arbitrary quad meshes. As we shall see, this gen-
eralization (developed simultaneously by Morin et al. [107], Zorin and Schröder
[170], and Stam [146]) is remarkably simple.

The key to finding a suitable averaging operator for non-tensor product meshes
is to understand the structure of the averaging operator in the tensor product case.
In the univariate case, the subdivision rule for cubic B-splines can be expressed
as linear subdivision followed by averaging with the mask { 1

4 , 1
2 , 1

4 }. Note that this
mask can be rewritten as 1

2 { 1
2 , 1

2 , 0} + 1
2 {0, 1

2 , 1
2 }. This new expression has a simple

geometric interpretation: reposition a vertex at the midpoint of the midpoints of the
two segments containing that vertex. In the bivariate case, the bivariate averaging
mask can be decomposed into the sum of four submasks:⎛⎜⎝

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎞⎟⎠ == 1
4

⎛⎜⎝
⎛⎜⎝ 0 0 0

1
4

1
4 0

1
4

1
4 0

⎞⎟⎠+

⎛⎜⎝0 0 0

0 1
4

1
4

0 1
4

1
4

⎞⎟⎠+

⎛⎜⎝0 1
4

1
4

0 1
4

1
4

0 0 0

⎞⎟⎠+

⎛⎜⎝
1
4

1
4 0

1
4

1
4 0

0 0 0

⎞⎟⎠
⎞⎟⎠ .

(7.1)

This decomposition has a geometric interpretation analogous to the univariate case:
reposition a vertex at the centroid of the centroids of the four quadrilaterals that

7.2 Smooth Subdivision for Quad Meshes 207

contain the vertex. This geometric interpretation of the tensor product bivariate
rule leads to our general rule for smoothing a mesh of quadrilaterals:

Quad averaging: Given a vertex v, compute the centroids of those quads that
contain v. Reposition v at the centroid of these centroids.

Due to its simplicity, quad averaging can be implemented in a very straightfor-
ward manner, with a minimal amount of topological computation. Given a mesh
{Mk, p̃k} produced by bilinear subdivision of {Mk−1, pk−1}, f irst compute val[v], the
number of quads in Mk that contain the vertex v. This quantity can easily be com-
puted during a single pass through Mk (or maintained during topological subdivi-
sion). Next, initialize a table of new vertex positions pk to be zero. Finally, make
a second pass through Mk. For each quad in Mk, compute the centroid cent of its
vertices in p̃k and update the position of vertex v of the quad via

pk[[v]] += cent
val[v]

, (7.2)

where pk[[v]] is the entry of pk corresponding to vertex v. Because there are exactly
val[v] quads containing v, pk[[v]] accumulates the centroid of the val[v] centroids.

The combination of bilinear subdivision plus quad averaging yields a smooth
subdivision scheme for quad meshes. Figure 7.6 shows the effect of applying
this subdivision scheme to an initial surface mesh consisting of six squares forming
a cube. The leftmost f igure is the initial cube. The next f igure to the right is the
result of bilinear subdivision. The middle figure is the result of next applying quad
averaging and corresponds to one round of subdivision applied to the initial cube.
The remaining two figures are the results of applying bilinear subdivision and then
averaging to the middle f igure. Note that the resulting mesh has a tensor product
structure everywhere except at the eight extraordinary vertices. Because bilinear
subdivision followed by quad averaging reproduces the subdivision rule for bicubic
B-splines on tensor product meshes, the limit surfaces are C2 everywhere except at

Figure 7.6 Two rounds of subdivision of a cube expressed as alternating steps of bilinear subdivision and
quad averaging.

208 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Figure 7.7 Three rounds of subdivision of a doughnut-shaped mesh using bilinear subdivision combined with
quad averaging.

Figure 7.8 Subdivision of a non-manifold curve network using linear subdivision plus averaging.

extraordinary vertices. At these extraordinary vertices, the scheme produces limit
surfaces that are provably C1 (see Chapter 8 for a formal analysis).

Figure 7.7 shows another example of bilinear subdivision with quad averaging
applied to a doughnut-shaped quad mesh. Note that the initial surface mesh has
only valence-four vertices. As a result, the limit surface is not only smooth but
has continuous curvature (i.e., the surface is C2). Observe that the limit surface
is not precisely a torus, but instead has a slightly f lattened shape along the sides
of the bounding box. The problem of constructing exact surfaces of revolution is
considered later in this chapter.

One particular advantage of this subdivision scheme is that it makes no restric-
tions on the local topology of the mesh. In particular, the scheme can be applied
without any change to meshes with non-manifold topology. In the univariate case,
non-manifold topology gives rise to curve networks with n > 2 segments meeting at
a vertex. Applying this averaging rule in conjunction with linear subdivision yields a
subdivision rule at a non-manifold vertex that takes 3

4 of the original vertex position
plus 1

4n multiplied by the position of each of its n neighbors. Figure 7.8 shows an
example of the scheme applied to a non-manifold, butterf ly-shaped curve network.
The method yields similarly nice results for non-manifold surface meshes.

7.2 Smooth Subdivision for Quad Meshes 209

Figure 7.9 Two rounds of subdivision for an A-shaped volume mesh.

Another advantage of this scheme is that it easily generalizes to higher di-
mensions. For example, MacCracken and Joy [101] first proposed a subdivision
scheme for volume meshes that could be used to represent free-form deformations.
Bajaj et al. [5] propose an improved variant of this volume scheme that consists
of trilinear subdivision followed by hexahedral averaging. Figure 7.9 shows two
rounds of this scheme applied to an A-shaped volume mesh consisting initially of
eight hexahedra. The lower portion of the figure shows wireframe plots of the
internal hexahedra.

7.2.2 Comparison to Other Quad Schemes

Traditionally, the subdivision rules for surface schemes have been expressed in terms
of weights that combine the action of bilinear subdivision and averaging simulta-
neously. For example, Catmull and Clark [16] were the first to derive a smooth
scheme for quad meshes that generalizes bicubic subdivision for B-splines. In [81],
Kobbelt describes a smooth interpolating scheme for quad meshes that generalizes
the tensor product version of the four-point rule. In each paper, topological and
geometric subdivision are performed together in a single step. The positions pk of
“new” vertices in Mk are specif ied as combinations of positions pk−1 of “old” vertices
in Mk−1 via the subdivision relation pk = Sk−1 pk−1.

210 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

1
4

1
4

1
4

1
4

1
16

1
64

1
64

3
32

1
64

1
64

3
32

3
32

3
329

16

1
16

1
16

1
16

3
8

3
8

Figure 7.10 Face, edge, and vertex subdivision rules for bicubic B-splines.

Each row of the subdivision matrix Sk−1 specif ies the position of a vertex in
Mk relative to the positions of vertices in Mk−1. These rows (i.e., subdivision rules
associated with Sk−1) typically come in three variants: a “face” subdivision rule that
specif ies the relative positions of vertices in Mk that lie on the faces of Mk−1, an
“edge” subdivision rule that specif ies the relative positions of vertices in Mk that
lie on edges of Mk−1, and a “vertex” subdivision rule that specif ies the positions
of vertices in Mk that lie near vertices of Mk−1. Given a vertex in Mk, one way to
visualize the structure of its corresponding subdivision rule is to plot a portion of
the nearby mesh in Mk−1 and to attach to each vertex in this plot the corresponding
weight used in computing the position of the new vertex. Figure 7.10 shows a plot
of the three subdivision rules for bicubic B-splines. The grid lines correspond to the
mesh Mk−1, whereas the dark dot is the vertex of Mk in question.

To apply these subdivision rules to an arbitrary quad mesh, we need only gen-
eralize the “vertex” rule from the valence-four case to vertices of arbitrary valence.
Specif ically, this modif ied “vertex” rule specif ies the new position of v as a weighted
combination of vertex positions in ring[v] on Mk−1. If the vertex v happens to be of
valence four, the weights reproduce the uniform rule of Figure 7.10. If the vertex
v is extraordinary, the weights should lead to a subdivision scheme that is smooth
at the extraordinary vertex.

Our next task is to derive the subdivision rule for an extraordinary vertex
of valence n for bilinear subdivision plus averaging. Observe that after bilinear
subdivision the n vertices that are edge-adjacent to v in Mk lie on the midpoints
of the n edges incident on v in Mk−1. The n vertices that are face-adjacent to v in
Mk lie at the centroid of the quadrilateral faces containing v in Mk−1. After quad
averaging, the new position of v is 1

16n times the position of each of its n face-adjacent
neighbors plus 3

8n times the position of its n edge-adjacent neighbors plus 9
16 times

7.2 Smooth Subdivision for Quad Meshes 211

3
8n

3
8n

3
8n

3
8n

3
8n

1
16n

1
16n

1
16n

1
16n

1
16n

9
16

3
2n2

1
4n2

1
4n2

1
4n2

7
4n1�

1
4n2

1
4n2

3
2n2

3
2n2

3
2n2

3
2n2

(a) (b)

Figure 7.11 Vertex rules for bilinear subdivision plus averaging (a) and standard Catmull-Clark
subdivision (b).

Figure 7.12 Bilinear subdivision plus quad averaging (left) and standard Catmull-Clark (right) applied to
an initial cube.

the original position of v. The left-hand image of Figure 7.11 schematically depicts
this rule for a vertex of valence n (not just valence five). The right-hand image
of Figure 7.11 schematically depicts the standard Catmull-Clark rule. (Catmull
and Clark also mentioned the left-hand rule in their original paper [16] but were
unaware of its expression in terms of bilinear subdivision plus averaging.)

Figure 7.12 shows a high-resolution rendering of the limit surface produced
by each of these schemes when applied to an initial cube. Note that the standard

212 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Catmull-Clark rule tends to produce “rounder” surfaces than the rule based on
bilinear subdivision and averaging. In fact, this behavior is not an accident: inducing
this “roundness” in the resulting limit surface was one of the main criteria that
Catmull and Clark used in the design of their subdivision scheme. Luckily, the
standard Catmull-Clark rule can also be expressed in terms of bilinear subdivision
followed by a modif ied form of averaging. (See the associated implementation for
details ().)

7.2.3 Weighted Averaging for Surfaces of Revolution

The previous schemes yielded smooth limit surfaces, even in the presence of ex-
traordinary vertices. For quad meshes, the final limit surface is a bicubic B-spline
away from extraordinary vertices. A fundamental limitation of this scheme is that
many surfaces of great practical importance (such as spheres, cylinders, and tori)
cannot be exactly represented as bicubic B-spline surfaces. This limitation is due
to the fact that a circle does not possess a polynomial parameterization (see
Abhyankar and Bajaj [1] for more details). However, because circles do possess
rational parameterizations, one possible solution would be to move from the poly-
nomial domain to the rational domain. The resulting rational subdivision scheme
would then manipulate the control points in homogeneous space. Sederberg et al.
[139] construct one such subdivision scheme based on a generalization of nonuni-
form rational B-spline surfaces (NURBS).

Such a rational approach has a major drawback. Rational parameterizations for
circles are nonuniform. Using a rational quadratic parameterization, only a portion
of the circle (such as one or two quadrants) can be modeled using a single pa-
rameterization. As a result, rational parameterizations of spheres, tori, and other
surfaces of revolution typically only cover a portion of the surface. Several param-
eterizations are required to cover the entire surface. A better solution is to use the
arc-length parameterization of the circle based on the functions Sin[x] and Cos[x].
This parameterization is uniform and covers the entire circle. Luckily, a univariate
subdivision scheme that reproduces Sin[x] and Cos[x] was developed in section 4.4.
This curve scheme had a subdivision matrix Sk−1 whose columns have the form

1
4 + 4σk

(1, 2 + 2σk, 2 + 4σk, 2 + 2σk, 1), (7.3)

where the tension parameter σk is updated via the rule σk =
√

1+σk−1
2 . Given an

initial tension σ0 == 1, the scheme produces cubic B-splines. For initial tensions

7.2 Smooth Subdivision for Quad Meshes 213

σ0 > 1, the scheme produces splines in tension. For initial tensions −1 ≤ σ0 < 1, the
scheme produces splines whose segments are linear combinations of linear func-
tions and the trigonometric functions Sin[x] and Cos[x]. Our task here is to develop
a geometric interpretation for this mask, and then to generalize this interpretation
to arbitrary quad meshes. The resulting scheme, introduced in Morin et al. [107],
is a simple nonstationary subdivision scheme that can represent general surfaces of
revolution.

To begin, we note that the action of the scheme of equation 7.3 can be decom-
posed into three separate operations. Equation 7.4 shows this decomposition in
terms of the subdivision matrix Sk−1. (Note that only finite portions of the infinite
matrices are shown.) The columns of the matrix Sk−1 on the left-hand side of equa-
tion 7.4 are exactly two-shifts of the mask of equation 7.3. The subdivision mask
of equation 7.3 can be expressed as linear subdivision followed by two rounds of
averaging (the right-hand side in equation 7.4):⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
4+4σk

1+2σk
2+2σk

1
4+4σk

0 0

0 1
2

1
2 0 0

0 1
4+4σk

1+2σk
2+2σk

1
4+4σk

0

0 0 1
2

1
2 0

0 0 1
4+4σk

1+2σk
2+2σk

1
4+4σk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
==

⎛⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0 0

0 1
2

1
2 0 0 0

0 0 1
2

1
2 0 0

0 0 0 1
2

1
2 0

0 0 0 0 1
2

1
2

⎞⎟⎟⎟⎟⎟⎟⎠ (7.4)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1+σk

σk
1+σk

0 0 0 0 0

0 σk
1+σk

1
1+σk

0 0 0 0

0 0 1
1+σk

σk
1+σk

0 0 0

0 0 0 σk
1+σk

1
1+σk

0 0

0 0 0 0 1
1+σk

σk
1+σk

0

0 0 0 0 0 σk
1+σk

1
1+σk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0

0 1 0 0 0

0 1
2

1
2 0 0

0 0 1 0 0

0 0 1
2

1
2 0

0 0 0 1 0

0 0 0 1
2

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Given a coarse polygon pk−1, let p̃k be the new polygon produced by linear subdivi-
sion. The first round of averaging applies weighted combinations of the tension σk

to the vertices of p̃k. For each edge {v, u} in Mk, this weighted averaging computes
a new point of the form

σk p̃k[[v]] + p̃k[[u]]
σk + 1

,

where v is a vertex of Mk−1 and u is a vertex of Mk that lies on an edge of Mk−1. Note
that this weighted rule reverses the averaging mask on consecutive segments of Mk.

214 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Figure 7.13 The three separate transformations comprising a single round of subdivision.

Finally, the second round of averaging places the vertices of pk at the midpoints of
these weighted averages.

For example, Figure 7.13 shows the three separate transformations of equa-
tion 7.4 used to perform a single round of subdivision applied to a diamond. The
leftmost polygon p0 is a diamond whose initial tension is σ0 = Cos[2π

4] == 0.
The polygon immediately to its right, p̃1, is the result of applying linear subdi-
vision. The next polygon (a regular octagon) is the result of weighted averaging
using the tension σ1 =

√
1
2 . Note that applying midpoint averaging here (i.e., σ1 == 1)

would not produce a regular octagon. The rightmost polygon, p1, is another regular
octagon that results from a final round of averaging using midpoints.

The beauty of this reformulated curve scheme is that it has a simple gen-
eralization to quad meshes. For each quad in the initial mesh M0, we assign two
tension parameters, σ0 and ρ0, one per pair of parallel edges in the quad. Each round
of subdivision takes a coarse polyhedron {Mk−1, pk−1}; applies bilinear subdivision
to produce a finer, intermediate mesh {Mk, p̃k}; and then applies weighted quad
averaging to produce the final polyhedral mesh {Mk, pk}. During bilinear subdivi-
sion, the tensions σk−1 and ρk−1 for a given quad are updated via σk =

√
1+σk−1

2 and
ρk =

√
1+ρk−1

2 . These new tensions are then assigned to the appropriate pairs of edges
for each of the four quad subfaces. These new tensions are then used to compute
weighted centroids of each quad during the averaging phase. Given a quad {v, u, t, s}
in Mk, this weighted centroid is the tensor product of the univariate weighting rule
and has the form

ρk(σk p̃k[[v]] + p̃k[[u]]) + (σk p̃k[[t]] + p̃k[[s]])
(σk + 1)(ρk + 1)

, (7.5)

where v is a vertex of Mk−1, s lies on a face of Mk−1, and u and t lie on edges of
Mk−1 tagged by ρk and σk, respectively. (The necessary orientation information for
this rule can be maintained for each quad by storing its topological indices in a

7.2 Smooth Subdivision for Quad Meshes 215

v

t s
1

�k�k�k

�k

u

Figure 7.14 Computing the weighted average of the vertices on the solid grid. Gray vertices are interme-
diate points used in computing the position of the black vertex.

systematic order.) The second round of averaging is done by computing the centroid
of these weighted centroids. The update rule for these two rounds of averaging is
exactly that of equation 7.2, in which cent is the weighted centroid of equation 7.5.

Figure 7.14 illustrates weighted quad averaging in action. The solid lines denote
the mesh {Mk, p̃k} produced by bilinear subdivision. To compute the new vertex po-
sition of the central black vertex, weighted quad averaging computes the weighted
gray centroids for each quad in Mk. Note that the weight σkρk is always attached to
the vertex of the quad that is also a vertex of Mk−1. Finally, the central black vertex
is repositioned at the centroid of the gray vertices.

This subdivision scheme has several remarkable properties. Because the ini-
tial tensions σ0 and ρ0 are greater than or equal to −1, the scheme involves only
convex combinations of control points. If all initial tensions are chosen to be 1,
the scheme reduces to bilinear subdivision plus unweighted averaging. For tensor
product meshes with a single global tension for each coordinate, the resulting limit
surfaces are the tensor product of two C2 curve schemes. Consequently, the surfaces
must be C2. For tensor product meshes whose associated tensions are not the ten-
sor of two sets of curve tensions, the scheme is no longer necessarily C2. However,
numerical tests show that the limit surfaces still appear to be C2. At extraordinary
vertices, the limit surfaces remain C1. The smoothness of this scheme is analyzed
in greater detail in Morin et al. [107].

216 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

To complete this section, we describe a simple construction for generating
surface meshes whose limit surfaces are surfaces of revolution. Given a control
polygon p0 (and a list of tensions for its segments) in the xz plane, we construct a
tensor product surface mesh s0 (and associated set of tensions) in xyz space whose
limit s∞ is the surface formed by revolving p∞ around the z axis. We construct s0 by
making m copies of p0 and revolving the i th copy around the z axis by 2π i

m radians.
If we decompose p0 into its components in x and z (i.e., p0 = {px

0, p z
0}), the ith copy

of p0 has the form

s0 =
{

Cos

[
2π i
m

]
px

0, Sin

[
2π i
m

]
px

0, p z
0

}
.

Joining these m revolved curves (and their tensions) yields a tensor product mesh.
If the tensions in the direction of revolution for this mesh are initialized to Cos[2π

m],
cross sections of the associated limit surface s∞ taken orthogonal to the z axis are
circles (i.e., s∞ is a surface revolution).

However, as observed in section 4.4, this limit surface s∞ is not the surface
of revolution formed by revolving p∞ around the z axis. Due to the averaging
that takes place between adjacent revolved copies of p0, s∞ is “squeezed” toward
the z axis. To counteract this effect, we must scale the x and y coordinates of the
initial polyhedron s0 by a factor of 2π

m Csc [2π

m] (see [107] for a derivation of this
constant). For m ≥ 4, this scaled version of s0 has the property that s∞ is the surface
of revolution formed by revolving the limit curve p∞ around the z axis.

Figures 7.15 and 7.16 show an example of this process used to construct a
pawn. The leftmost polygon in Figure 7.15 is the control polygon p0. The polygons
to its right are ref ined polygons p1 and p2. The leftmost surface in Figure 7.16 is the
scaled tensor product surface mesh s0 formed by revolving p0 around the vertical
z axis. Note that a vertical cross section of s0 is “fatter” than p0 due to the scaling in
the x direction by 2π

m Csc [2π

m]. Subsequent meshes s1 and s2 appearing to the right are
the result of subdivision using weighted averaging. Note that vertical cross sections
of these meshes sk are converging to pk. (This example also revolves crease vertices
on p0 to introduce crease edges on the limit surface s∞. See the next section for
details on creating crease vertices and crease edges.)

Figures 7.17 and 7.18 show two other examples of simple surfaces of revolu-
tion. Figure 7.17 shows an octahedron being subdivided into a sphere. Figure 7.18
shows a torus being created through subdivision. In both cases, the original profile
curves p∞ were circles. In the case of the torus, the profile curve does not intersect
the z axis, and thus the surface of revolution is a smooth, single-sheeted surface.

7.2 Smooth Subdivision for Quad Meshes 217

0 .5 1 1.5 2

0

1

2

3

4

5

0 .5 1 1.5 2

0

1

2

3

4

5

0 .5 1 1.5 2

0

1

2

3

4

5

Figure 7.15 Subdivision of the profile curve for a pawn.

�2 �1 0 1 2

0

2

4

�2 �1 0 1 2

0

2

4

�2 �1 0 1 2

0

2

4
�2

0
2

�2
0
2

�2
0

2

Figure 7.16 A pawn created by subdividing the revolved profile curve.

218 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Figure 7.17 Three rounds of subdivision converging to a sphere.

In the case of the sphere, the profile curve is a circle symmetrically positioned on
the z axis. Due to this positioning, the resulting surface of revolution is a smooth,
double-sheeted surface (i.e., a surface that consists of two copies of the same sur-
face). More generally, revolving any profile curve that is symmetric with respect to
the z axis through 2π radians results in a double-sheeted surface.

In practice, we wish to avoid this double-sheetedness when the profile curve
p∞ is symmetric with respect to the z axis. The solution to this problem is to revolve
the initial symmetric polygon p0 through only π radians. Because the polygon p0 is
symmetric with respect to the z axis, the new polyhedron s0 is closed (and single-
sheeted). If the intersection of the z axis and polygon p0 occurs at vertices of p0, this
quad mesh s0 has poles at these vertices. These poles consist of a ring of degenerate
quads (triangles) surrounding the pole (as shown by the dark lines in Figure 7.19).

Applying bilinear subdivision plus weighted averaging to this single-sheet poly-
hedron s0 yields a single-sheeted surface of revolution s∞ that agrees with the
double-sheeted surface of revolution produced by revolving p0 through 2π radians.
The key to this observation is to note that applying this subdivision scheme to

7.2 Smooth Subdivision for Quad Meshes 219

Figure 7.18 Three rounds of subdivision converging to a torus.

Figure 7.19 Subdividing a degenerate quad mesh around a pole.

220 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

both the single-sheeted and double-sheeted variants of s0 yields the same surface
(single-sheeted and double-sheeted, respectively) as long as the degenerate quads
at the poles of the single-sheet version are treated as such and are subdivided as
shown in Figure 7.19 (the dotted lines).

7.2.4 Averaging for Quad Meshes with Embedded Creases

Up to now, we have focused on constructing subdivision schemes that yield smooth
limit surfaces everywhere. However, most real-world objects have boundaries and
internal creases where the surface of the object is not smooth. Our goal in this
section is to modify the averaging rules developed in the previous two sections to
allow for the controlled introduction of “crease” curves and vertices onto the limit
surface. The key to this modif ication is to restrict the application of the averaging
rules to a subset of the mesh Mk corresponding to the crease curves and vertices.

To model such features, the topological base mesh M0 associated with the
scheme is expanded to allow the inclusion of vertices and edges, as well as faces. For
example, the base mesh M0 for a quadrilateral surface may contain line segments
and vertices, as well as quad faces. These lower-dimensional cells define crease
curves and crease vertices in the resulting surface mesh. For example, the initial
topology M0 for the bounded quad surface patch of Figure 7.20 consists of four
faces, eight boundary edges, and four corner vertices. If the vertices in this 3 × 3

grid are numbered
(

1 2 3
4 5 6
7 8 9

)
, the initial topology M0 is a list of the form

{{1, 2, 5, 4}, {4, 5, 8, 7}, {2, 3, 6, 5}, {5, 6, 9, 8}, (7.6)

{1, 4}, {4, 7}, {1, 2}, {2, 3}, {3, 6}, {6, 9}, {7, 8}, {8, 9},
{1}, {3}, {7}, {9}}.

Figure 7.20 Bilinear subdivision plus averaging for a surface patch with boundary creases.

7.2 Smooth Subdivision for Quad Meshes 221

Given this new representation, bilinear subdivision is performed as usual, with
each quad split into four quads, each edge split into two edges, and each vertex
copied.

Given the mesh Mk produced by bilinear subdivision, we define the dimension
dim[v] of a vertex v in Mk to be the dimension of the lowest-dimensional cell in Mk

that contains v. In the previous example, dim[v] has the values

v : 1 2 3 4 5 6 7 8 9
dim[v] : 0 1 0 1 2 1 0 1 0

.

Having computed dim[v] for Mk, the rule for quad averaging at vertex v is modif ied
to use only those cells whose dimension is dim[v]. In particular, the update process
of equation 7.2 is adjusted as follows:

Quad averaging with creases: Given a vertex v, compute the centroids of those
cells in Mk containing v whose dimension equals dim[v]. Reposition v at the centroid
of these centroids.

This modif ication ensures that the subdivision rules for vertices on a crease are
influenced only by vertices on the crease itself. For example, if M0 contains a vertex
(a cell of dimension 0), this modif ied averaging rule leaves the position of the vertex
unchanged and forces the resulting limit surface to interpolate the vertex. If M0

contains a sequence of edges forming a curve, the resulting limit surface interpolates
the cubic B-spline associated with the control points along the edges.

To implement this modif ied version of averaging, we compute dim[v] and val[v]

(now the number of cells of dimension dim[v] containing v) simultaneously during a
first pass through Mk. Given these two quantities, the averaging rules described in
the previous sections can then be applied. Quad averaging is particularly amenable
to this change because the update rule for the vertices of a cell is independent of
its dimension. Figure 7.20 shows a surface patch produced by bilinear subdivision
plus averaging applied to the example mesh of equation 7.6. The four edges in M0

force the boundary of the surface patch to interpolate the B-spline curves defined
by the boundary of the initial mesh. Similarly, the four vertices in M0 force the
limit surface to interpolate the four corners of the initial mesh.

Figures 7.21 and 7.22 show high-resolution renderings of two more complex
objects, a ring and an axe, during subdivision. The ring includes a crease curve
where the stone meets the ring and four crease vertices at the corners of the stone.
The axe incorporates crease edges at the top and bottom of its handle, crease edges
along its blade, and crease vertices at its corners. Note that in both examples a
compact polyhedral mesh leads to a nontrivial, realistic model.

222 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Figure 7.21 A ring modeled using a subdivision surface with creases. (Thanks to Scott Schaefer for his help
with this figure.)

7.2 Smooth Subdivision for Quad Meshes 223

Figure 7.22 An axe modeled using a subdivision surface with creases. (Thanks to Scott Schaefer for his help
with this figure.)

224 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Figure 7.23 A king modeled using weighted subdivision in conjunction with creases. (Thanks to Scott
Schaefer for his help with this figure.)

Using crease vertices and crease edges in conjunction with weighted subdivision
allows us to model complex shapes using coarse initial meshes. Figure 7.23 shows
a high-resolution rendering of another chess piece, a king, during subdivision. This
model was created as a surface of revolution and then hand edited to add the
three-dimensional cross to the king’s head. Figure 7.24 shows a high-resolution
rendering of an umbilic torus defined via subdivision. This object was modeled as
a twisted surface of revolution in which the profile curve, a triangle with concave
edges, was rotated 2π

3 radians around its center during a single sweep around the
axis of revolution. Due to this rotation, the sharp edge on the umbilic torus is
modeled as a single crease curve that wraps around the axis of revolution three
times.

Developing subdivision rules for boundaries and creases of subdivision surfaces
is an active area of research. For example, Hoppe et al. [74] first proposed spe-
cialized rules that allow the introduction of B-spline crease curves onto triangle

7.2 Smooth Subdivision for Quad Meshes 225

Figure 7.24 An umbilic torus modeled as a twisted surface of revolution with a single crease edge. (Thanks
to Scott Schaefer for his help with this figure.)

subdivision surfaces. Biermann et al. [10] propose an improved set of boundary
rules tailored to deliver better behavior along concave portions of the boundary.
DeRose, Kass, and Truong [42] describe a simple modif ication to an existing crease
rule that allows the user to control the “sharpness” of a crease. In [94] and [95],
Levin describes a subdivision method called “combined subdivision” that allows for

226 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

interpolation of arbitrary curves using subdivision. This scheme is the basis of a
trimming algorithm used to compute the intersection of two subdivision surfaces
[98]. In [109], [110], and [112], Nasri describes several schemes used to interpo-
late points and normals along curves.

7.3 Smooth Subdivision for Triangle Meshes

The previous section described a scheme for smoothly subdividing a quadrilat-
eral mesh in which a single round of subdivision is decomposed into two simpler
steps: bilinear subdivision and quad averaging. One of the major advantages of this
scheme is that almost all of the topological computation takes place during bilinear
subdivision. The only topological information computed during quad averaging is
the valence val[v] for each vertex v in Mk. Maintained as an array, val[v] can easily
be computed during a single pass through Mk or simply updated during bilinear
subdivision, in that all old vertices in Mk−1 inherit the same valence and all new ver-
tices introduced into Mk have valence four. This decomposition of the subdivision
scheme into two steps is superior to the single-step approach because it avoids the
need to compute or maintain an explicit set of neighbors for each vertex in Mk−1.

Our goal in this section is to develop a similar two-step scheme for smoothly
subdividing triangle meshes. Again, the main benefit of this scheme is that it avoids
the need to compute or maintain explicit neighbor information for the meshes Mk.
Clearly, the first step of our scheme should be linear subdivision. As described in
section 7.1, linear subdivision can easily be implemented as a single pass through the
triangles of Mk−1. All that remains is to construct an averaging method for triangle
meshes that is analogous to quad averaging. Once we have derived this averaging
operator for uniform triangle meshes, an extension to meshes with extraordinary
vertices follows naturally.

7.3.1 Linear Subdivision Plus Triangle Averaging

The key to constructing an averaging rule for triangle meshes is to recall the three-
direction quartic box spline of Chapter 2. This spline is a C2 piecewise quartic
function defined over a three-direction triangle mesh. In particular, the set of di-
rection vectors � for this scheme has the form

� = {{1, 0}, {1, 0}, {0, 1}, {0, 1}, {1, 1}, {1, 1}}.

7.3 Smooth Subdivision for Triangle Meshes 227

Observe that � consists of the direction vectors for piecewise linear splines
{{1, 0}, {0, 1}, {1, 1}} repeated twice. Thus, the subdivision scheme for the three-
direction quartic box spline can be expressed as linear subdivision followed by
averaging with the mask corresponding to these three direction vectors. This two-
dimensional averaging mask is of the form

⎛⎜⎝
1
8

1
8 0

1
8

1
4

1
8

0 1
8

1
8

⎞⎟⎠ .

For quad meshes, we decomposed the averaging mask of equation 7.1 into the
average of four submasks, each supported over one of the four quads meeting at
the vertex. For triangle meshes, we can decompose the averaging mask into six
submasks, each supported over a triangle incident on the vertex:

⎛⎜⎝
1
8

1
8 0

1
8

1
4

1
8

0 1
8

1
8

⎞⎟⎠ ==
1
6

⎛⎜⎝
⎛⎜⎝

3
8 0 0
3
8

1
4 0

0 0 0

⎞⎟⎠+

⎛⎜⎝
3
8

3
8 0

0 1
4 0

0 0 0

⎞⎟⎠+

⎛⎜⎝0 3
8 0

0 1
4

3
8

0 0 0

⎞⎟⎠ (7.7)

+

⎛⎜⎝0 0 0

0 1
4

3
8

0 0 3
8

⎞⎟⎠+

⎛⎜⎝ 0 0 0

0 1
4 0

0 3
8

3
8

⎞⎟⎠+

⎛⎜⎝ 0 0 0
3
8

1
4 0

0 3
8 0

⎞⎟⎠
⎞⎟⎠ .

This decomposition again suggests a geometric interpretation for this averaging
mask applied at a vertex v: compute the weighted centroid of each triangle that
contains v using the weights 1

4 , 3
8 , and 3

8 at v and its two neighbors; then reposition
v at the centroid of these weighted centroids. This generalized averaging opera-
tion, triangle averaging, can now be applied to triangle meshes with vertices of any
valence. Figure 7.25 shows an example of two rounds of linear subdivision plus
triangle averaging applied to an octahedron. The upper left-hand mesh is the initial
octahedron after linear subdivision. The mesh to its right is the result of applying
triangle averaging to this mesh. The lower left-hand mesh shows the results of ap-
plying linear subdivision to the upper right-hand mesh. The lower right-hand mesh
shows the results of applying triangle averaging to the lower left-hand mesh.

Triangle averaging differs from quad averaging in that the weights used dur-
ing the averaging process vary, depending on which vertex of the triangle is being
updated. Specif ically, consider a triangle {s, t, v} in the triangle mesh {Mk, p̃k} pro-
duced by linear subdivision. Triangle averaging computes a weighted centroid of

228 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Figure 7.25 Two rounds of subdivision for an octahedron expressed as alternating steps of linear subdivision
and triangle averaging.

the form 1
4 p̃k[[v]] + 3

8 p̃k[[s]] + 3
8 p̃k[[t]] when updating the position of vertex v. Simi-

larly, triangle averaging uses weighted centroids of the form 1
4 p̃k[[s]]+ 3

8 p̃k[[t]]+ 3
8 p̃k[[v]]

and 1
4 p̃k[[t]] + 3

8 p̃k[[s]] + 3
8 p̃k[[v]] when updating the position of s and t, respectively.

(Note that using the centroid of the triangle {s, t, v} in the averaging phase leads to
a subdivision scheme whose limit functions are only C1 in the uniform case.)

Luckily, triangle averaging can still be implemented as a single pass through the
topology Mk. As for quad averaging, a table of new vertex position pk is initialized
to 0, with the positions of the averaged mesh being accumulated on a triangle-
by-triangle basis. The main distinction here from quad averaging is that instead
of computing a single centroid for a triangle {s, t, v} the three weighted centroids
described previously must be computed and used to update the appropriate vertex
of {s, t, v}. The update rule for this triangle can be expressed in matrix form as

7.3 Smooth Subdivision for Triangle Meshes 229

the product of an update matrix multiplied by the column vector of old positions
p̃k[[{s, t, v}]]:

pk[[{s, t, v}]] += 1
8

⎛⎜⎝
2

val[s]
3

val[s]
3

val[s]

3
val[t]

2
val[t]

3
val[t]

3
val[v]

3
val[v]

2
val[v]

⎞⎟⎠ p̃k[[{s, t, v}]]. (7.8)

Here, pk[[{s, t, v}]] is a column vector consisting of the three entries pk[[s]], pk[[t]], and
pk[[v]]. Note that the row of the update matrix corresponding to v sums to 1

val[v] . This
property is necessary if we desire the corresponding averaging scheme to be aff inely
invariant (i.e., the sum of the weights at a vertex is one).

Because triangle averaging is designed to reproduce the averaging rule for three-
direction quartic box splines on valence-six triangle meshes, the resulting limit
surface is C2 everywhere except at extraordinary vertices. The next chapter analyzes
the smoothness of the limit surfaces at extraordinary vertices and shows that the
scheme produces limit surfaces that are C1 for all valences except three. In this
case, the surface is only C0. The middle portion of Figure 7.26 shows a stellated
octahedron (an octahedron with a regular tetrahedron attached to each face) after
three rounds of subdivision using triangle averaging. Note that the limit surface is
not smooth in the neighborhood of the original valence-three vertices. This problem
is addressed later in this chapter.

(a) (b) (c)

Figure 7.26 A stellated octahedron (a), after three rounds of subdivision with triangle averaging (b) and after
three rounds of subdivision using Loop’s scheme (c).

230 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

7.3.2 Comparison to Other Triangle Schemes

The combined action of linear subdivision followed by triangle averaging can be
expressed in a single step as multiplication by a subdivision matrix Sk−1. For triangle
schemes, there are essentially two types of rows in Sk−1, each corresponding to two
types of subdivision rules. “Edge” rules position vertices of Mk that are introduced
during edge splits of Mk−1. This rule, the edge rule for the four-direction quartic
box spline, is shown on the left in Figure 7.27.

The remaining type of subdivision rules are “vertex” rules that position those
vertices of Mk that are also vertices of Mk−1. For such a vertex v, the n vertices
adjacent to v in Mk lie on the midpoints of n edges incident on v in the origi-
nal mesh Mk−1 after linear subdivision. Each of these midpoints lies on triangles
containing v. After triangle averaging, the new position of vertex v is 3

8n times
the position of each of its n neighboring vertices in Mk−1 plus 5

8 times the original
position of v in Mk−1. The middle portion of Figure 7.27 shows this rule plotted
diagrammatically.

The first smooth subdivision scheme for arbitrary triangle meshes was devel-
oped by Loop in his Master’s thesis [99]. This scheme, also based on a generaliza-
tion of the subdivision rules for the three-direction quartic box spline, converges
to surfaces that smooth at extraordinary vertices of all valences. For example, the
rightmost portion of Figure 7.26 was produced using three rounds of Loop sub-
division. Note that the limit surface is smooth even at extraordinary vertices of
valence three. The rightmost portion of Figure 7.27 shows Loop’s rule for position-
ing an extraordinary vertex of valence n. The constant w[n] used in this rule has

w[n]
n

w[n]
n

w[n]
n

w[n]
n

1 � w[n]

w[n]
n

3
8n

3
8n

3
8n

3
8n

3
8n

5
8

1
8

3
8

1
8

3
8

Figure 7.27 Subdivision rules for smooth triangle schemes.

7.3 Smooth Subdivision for Triangle Meshes 231

the form

w[n] = 5
8

−
(

3
8

+ 1
4

Cos

[
2π

n

])2

. (7.9)

This weight function of equation 7.9, although mysterious looking, was chosen by
Loop so as to make the resulting surfaces close to having continuous curvature (i.e.,
be C2) for low-valence vertices. Although the resulting limit surfaces do not have
continuous curvature (except, of course, at valence-six vertices), the limit surfaces
do have bounded curvature in the neighborhood of extraordinary vertices of valence
three to six (see Peters and Umlauf [117, 118] for details). Both Sabin [135] and
Holt [73] give alternative subdivision rules that also attempt to bound the curvature
of a subdivision surface in the neighborhood of an extraordinary vertex.

Figure 7.28 shows a side-by-side comparison of linear subdivision with averag-
ing versus Loop’s scheme when the base mesh is an octahedron. The left-hand
surface was produced by linear subdivision plus triangle averaging. The right-
hand surface was produced by Loop’s scheme. Note that the right-hand surface is
“rounder” due to the careful curvature “tuning” of Loop’s subdivision rule. (Section
8.3 provides a more detailed analysis of the differences between these schemes.)

The subdivision rules of Figure 7.27 position a vertex of Mk directly in terms
of the positions pk−1 of vertices of Mk−1. Ideally, we would like to recast Loop’s
rule in terms of linear subdivision plus some type of modif ied averaging with a
simplicity similar to that of triangle averaging. The beauty of the matrix update used
in equation 7.8 is that it can also be modif ied to reproduce Loop’s extraordinary

(a) (b)

Figure 7.28 A comparison of linear subdivision with triangle averaging (a) versus Loop’s scheme (b).

232 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

vertex rule for triangle meshes. In particular, Loop subdivision can be expressed as
linear subdivision followed by averaging via the matrix update

pk[[{s, t, v}]] +=

⎛⎜⎜⎝
1−2w[val[s]]

val[s]
w[val[s]]

val[s]
w[val[s]]

val[s]

w[val[t]]
val[t]

1−2w[val[t]]
val[t]

w[val[t]]
val[t]

w[val[v]]
val[v]

w[val[v]]
val[v]

1−2w[val[v]]
val[v]

⎞⎟⎟⎠ p̃k[[{s, t, v}]],

where w[n] satisf ies equation 7.9. The advantage of this formulation of Loop’s
method is that the positions of vertices in Mk can now be accumulated on a
triangle-by-triangle basis as done using triangle averaging.

Although both of the schemes described previously are approximating, inter-
polatory schemes for triangle meshes are also possible. Dyn, Levin, and Gregory
[55] developed the Butterf ly scheme, an interpolatory scheme that is C1 on three-
direction triangle meshes (see Chapter 3 for details). Although applying the But-
terf ly scheme to arbitrary triangle meshes is possible, the resulting surfaces are not
always C1 for all possible vertex valences. Zorin et al. [171] describe a modif ied
version of the Butterf ly scheme that is provably C1 at extraordinary vertices of all
valences.

7.4 Other Types of Polyhedral Schemes

The previous three sections covered the core subdivision methods for polyhedral
meshes. However, there are a number of other interesting types of subdivision
schemes available for polyhedral meshes. Because subdivision is an active area of
research in which new types of schemes are constantly being invented, it is diff icult
to summarize all possible schemes in the subdivision “zoo.” This section provides
a quick overview of some of these schemes, focusing in particular on subdivision
schemes based on other types of topological splits.

7.4.1 Face-splitting Schemes

The two types of topological splits considered previously were based on edge split-
ting. However, these are not the only types of topological splits that can be applied
to a polyhedral mesh. Another interesting class of topological splits involves face-
splitting subdivision. During face-splitting subdivision of a mesh Mk−1, new vertices
(gray) are added to Mk on the faces of Mk−1. Existing edges in Mk−1 are then removed

7.4 Other Types of Polyhedral Schemes 233

(a) (b)

Figure 7.29 Face-splitting subdivisions for quad (a) and triangle meshes (b).

with new edges (dashed) added into Mk, as shown in Figure 7.29. The left-hand
split is for quad meshes, and the right-hand split is for triangle meshes. As in the
case of edge-splitting subdivision, these topological splits introduce only ordinary
vertices and isolate those extraordinary vertices present in the original mesh. An
important feature of these two splits is that performing two rounds of subdivision
is equivalent to one round of binary subdivision for quad meshes and one round of
ternary subdivision for triangle meshes.

Kobbelt [85] has built an interesting subdivision scheme based on face-splitting
subdivision for triangle meshes. This scheme, which he calls

√
3-subdivision, posi-

tions “face” vertices in Mk (the gray vertices in Figure 7.29) at the centroid of the
triangular face in Mk−1 that contains the vertex. The remaining vertices (inherited
from Mk−1) are repositioned by applying the weight 1 − w[n] to the vertex and
weights w[n]

n to each of its n neighbors where

w[n] = 4 − 2 Cos
[

2π

n

]
9

.

In the ordinary case (i.e., n == 6), this rule leads to a weighting of 2
3 at the vertex

and weights of 1
18 applied to its six neighbors. Kobbelt shows that this rule is C2 in

the uniform case and delivers C1 limit surfaces at extraordinary vertices. Kobbelt
argues that

√
3-subdivision is particularly well suited for adaptive subdivision.

Another area in which face-splitting subdivision appears to have promise is
in creating simpler interpolatory surface schemes. The advantage of face-splitting

234 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

1
32�

1
32�

1
9�

1
9�

1
9�

4
9

4
9

4
9

1
32�

1
32�

5
16

5
16

1
32�

5
16

1
32�

1
32�

5
16

1
32�

Figure 7.30 Subdivision rules for interpolatory face-splitting subdivision.

subdivision over edge-splitting subdivision is that in the interpolatory case only one
type of subdivision rule is necessary: a positioning rule for new vertices on faces
of Mk−1. In the uniform case, this rule can easily be derived so as to reproduce
polynomials. Figure 7.30 shows the face rules for a quad and a triangle scheme,
respectively. These rules are chosen so as to reproduce cubic functions for the quad
rule and quadratic functions for the triangle rule. Note that the support of the rule
for triangle meshes is smaller than the Butterf ly rule.

A preliminary analysis of the quad scheme (included in the associated Mathe-
matica implementation ()) shows that the scheme converges to C1 limit surfaces
for uniform meshes and produces smooth limit surfaces at extraordinary vertices
for a small range of valences. For the triangle rules, we have no estimates of the
smoothness of the resulting surfaces and leave the analysis of this scheme to the
interested reader. In both cases, we suspect that it will be necessary to develop
variants of these rules to produce schemes that are C1 for all valences.

7.4.2 Dual Subdivision Schemes

In section 5.3.2, we observed that the uniform B-splines of odd order had the
property that the control points in pk could be viewed as being positioned at
D[1

2k
Z], the midpoints of the intervals defined by the grid 1

2k
Z. Such spline schemes

7.4 Other Types of Polyhedral Schemes 235

(a) (b)

Figure 7.31 Dual meshes (dotted) for quad (a) and triangle (b) meshes.

were referred to as dual schemes. Now, a surface scheme is a dual scheme if the
control points in the vector p are attached to the faces of the surface mesh M. Note
that placing these control points on the faces of M defines a new topological surface
mesh D[M] whose vertices correspond to the faces of M, whose faces correspond
to vertices of M, and whose edges connect two vertices in D[M] if and only if the
associated faces in M share a common edge. This surface mesh D[M] is the topological
dual of a surface mesh M.

Figure 7.31 shows a plot of the topological duals of a portion of a uniform
quad mesh and a portion of a uniform triangle mesh. These duals (dotted lines)
are, respectively, another quad mesh and a hexagonal mesh. Note that constructing
the dual of M “f lips” the edges of M in constructing D[M]. One important feature
of the topological dual is that for closed surface meshes the dual of the dual of a
mesh yields the original mesh (i.e., D[D[M]] == M). For example, the dual of the
topological mesh for a cube is the mesh of an octahedron. Likewise, the dual of
the topological mesh for an octahedron is a topological cube.

Now, given a primal subdivision scheme that maps a coarse mesh Mk−1 to a
refined mesh Mk, the corresponding dual scheme maps the coarse mesh D[Mk−1]

to the refined mesh D[Mk]. Figure 7.32 shows an example of dual topological sub-
division applied to a quad mesh. The solid lines are the meshes Mk−1 and Mk,
respectively. The dotted lines are the dual meshes D[Mk−1] and D[Mk], respectively.
Note that the vertices of D[Mk−1] are not a subset of the vertices of D[Mk], as they
were for the previous primal schemes. Luckily, dual subdivision retains the key

236 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

Figure 7.32 Topological subdivision of a dual quad mesh.

property that made primal subdivision work: isolation of extraordinary features.
In the primal case, topological subdivision introduces only ordinary vertices and
isolates existing extraordinary vertices. In the dual case, topological subdivision in-
troduces only ordinary faces and isolates those extraordinary faces that are dual to
extraordinary vertices in Mk.

The simplest example of a dual subdivision scheme is constant subdivision. This
scheme takes an existing mesh {Mk−1, pk−1} and splits each face f of Mk−1 into four
subfaces in Mk. Given the control point in pk−1 corresponding to this face f , we next
make four copies of this control point for the four subfaces of f . Unfortunately, this
scheme is not particularly interesting for parametric meshes because the scheme
converges to a set of points corresponding to those in the original vector p0. (In the
functional case, this scheme converges to piecewise constant functions; hence the
name.)

The main application of constant subdivision lies in serving as a preprocessor
for higher-order dual schemes. The method for generating these schemes is the
same as in the primal case: apply an appropriate averaging operator to the results
of some type of simple subdivision operation. For primal meshes, applying quad
averaging to the result of linear subdivision leads to smooth primal schemes. For
dual meshes, applying quad averaging to the result of constant subdivision leads to
smooth dual schemes.

For example, one round of quad averaging leads to a dual scheme that
generalizes biquadratic B-splines to polyhedral meshes. The left-hand portion of
Figure 7.33 shows the subdivision rule for this scheme at an extraordinary vertex
v of valence n in Mk−1. The dark lines bound the face in D[Mk−1] dual to v; the

7.4 Other Types of Polyhedral Schemes 237

1
4n

1
4n

1
4n

2 � n
8n

1 � 2n
4n

w[2]

w[...]

w[n � 2] w[n � 1]

w[1]

w[0]

2 � n
8n

Figure 7.33 Two subdivision rules for a dual quad scheme at an extraordinary vertex.

dashed lines bound the face in D[Mk] dual to v. The position of a vertex (gray dot)
on D[Mk] is expressed as a weighted combination of the vertices of D[Mk−1] (black
dots), as shown. This subdivision rule defines a dual scheme that converges to
smooth limit surfaces even in the presence of extraordinary vertices.

This subdivision rule was first proposed by Doo and Sabin in their original
paper [45]. Doo and Sabin also propose an alternate subdivision rule shown on the
right in Figure 7.33. The weights w[i] have the form w[0] = n+5

4n and w[i] = 3+2 Cos[2i π
n]

4n

for i == 1. . . n − 1. This alternate rule also produces limit surfaces that are smooth
everywhere.

Higher-order dual schemes can be constructed by applying several rounds of
quad averaging. For example, Zorin and Schröder [170] generate a dual quar-
tic subdivision scheme via constant subdivision, followed by two rounds of quad
averaging.

Dual schemes based on other types of topological splits are also possible. For
example, Peters and Reif [115] devised a scheme that they refer to as the “mid-
edge” scheme. Topologically, this scheme is the dual of the face-splitting scheme
for quads described previously; that is, vertices in Mk are placed at the midpoints of
edges in Mk−1. On uniform grids, two rounds of the mid-edge scheme correspond
to one round of subdivision for the four-direction quadratic box spline. Peters and
Reif show that their scheme is C1 even in the presence of extraordinary vertices.
Habib and Warren [70] describe another variant of the quadratic box spline rule
that converges to a C1 surface at extraordinary vertices and allows more precise
control over boundary behavior.

Dual schemes based on triangle subdivision of Mk−1 are also possible (although
rarely used in practice). These schemes lead to primal subdivision schemes on the

238 C H A P T E R 7 Averaging Schemes for Polyhedral Meshes

hexagonal mesh D[Mk−1]. For example, Goodman [68] describes a construction for
what he refers to as a “cubic half-boxspline.” This spline is a dual spline defined
on a three-direction triangle mesh. The subdivision scheme for this spline is, there-
fore, a primal subdivision scheme for hexagonal meshes. The authors leave the
details of deriving the actual subdivision rules for this scheme to the interested
reader.

C H A P T E R 8

Spectral Analysis at an
Extraordinary Vertex

Given a polyhedral mesh {Mk−1, pk−1}, the subdivision schemes considered in Chap-
ter 7 consisted of two major steps: topological subdivision and geometric posi-
tioning. For most schemes, topological subdivision consisted of splitting each face
in Mk−1 into four new subfaces to produce a new topological mesh Mk. Geo-
metric updating involved positioning new vertices pk via the subdivision relation
pk = Sk−1pk−1. For these schemes, the choice of the subdivision rules used in Sk−1

depended only on the topology of Mk−1, not on the level k. Such schemes in which
the same subdivision rules are used at all levels of subdivision are stationary subdi-
vision schemes. Note that the scheme for surfaces of revolution was not stationary,
because the tensions σ k, ρ k used in constructing Sk−1 varied as a function of k.

The goal of this chapter is to develop a set of tools for analyzing the behavior
of stationary subdivision schemes at extraordinary vertices. The first part of the
chapter introduces the main tool used in understanding the behavior of a subdi-
vision process at an extraordinary vertex: spectral analysis. The second portion of
the chapter uses spectral analysis to derive necessary and suff icient conditions for
stationary subdivision schemes to produce smooth limit surfaces. The third portion
of the chapter applies these analysis techniques to an example problem, Loop’s
subdivision scheme, and shows that this scheme converges to a smooth limit sur-
face at extraordinary vertices. Finally, we conclude the book with a brief overview
of some current areas of research in subdivision.

8.1 Convergence Analysis at an Extraordinary Vertex

The averaging schemes of Chapter 7 generalized uniform subdivision schemes to
arbitrary polyhedral meshes. The key idea behind these schemes was to apply
uniform subdivision within each triangle or quad of the original mesh M0. Because

239

240 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

Figure 8.1 Triangular and quadrilateral meshes M consisting of a single extraordinary vertex.

the only nonuniformities present in the resulting meshes Mk are those that are
inherited from the original mesh M0, these nonuniformities (the extraordinary ver-
tices) are isolated inside an otherwise uniform mesh. Our approach in the next two
sections is to analyze the behavior of averaging schemes on a mesh M consisting of a
single extraordinary vertex of valence n surrounded by an otherwise uniform mesh.

In the two-dimensional case, such meshes M can be formed by combining
several copies of a quadrant of the uniform mesh Z

2. These sectors correspond to
the mesh (Z+)2 where Z

+ denotes the grid of non-negative integers. If M consists
of a single extraordinary vertex v of valence n, M can be formed by joining n sectors
around a common, extraordinary vertex v of valence n. Figure 8.1 shows several
examples of such triangular and quadrilateral meshes for an extraordinary vertex
of valence three to eight. (Only a finite portion of the infinite mesh M centered
around the extraordinary vertex v is shown.)

These infinite meshes M have the nice property that they are invariant under
repeated topological subdivision; that is, if M0 == M, then Mk == M for all k ≥ 0.
In other words, topologically subdividing such a mesh M always returns M back.
Because the subdivision matrices Sk are functions of the topology Mk, the subdivi-
sion process for such an initial mesh M is independent of the level of subdivision. In
particular, if S is the bi-inf inite subdivision matrix associated with M, the geometric
update rule for the mesh M has the form

pk = Spk−1 == S k p0, (8.1)

where p0 is the vector of initial vertex positions.

8.1.1 The Limit Surface at an Extraordinary Vertex

Chapter 3 discussed developing tools for analyzing the behavior of subdivision
schemes defined over uniform meshes. The key observation there was to define a

8.1 Convergence Analysis at an Extraordinary Vertex 241

function p k[x, y] associated with a vector of coeff icients pk on the grid 1
2k

Z
2 and

then to consider the convergence of this sequence of functions. In our current case,
we wish to analyze the behavior of this vector pk when associated with the mesh
M. Because M consists of n sectors, we can number the vertices of pk using a triple
index {h, i , j }, where h denotes a sector of M and {i , j } denotes a particular vertex in
that sector where i , j ≥ 0. To model the connection between sectors, this indexing
is also subject to the following rules:

■ The indices {h, 0, 0} coincide with the extraordinary vertex v for 0 ≤ h < n.

■ The boundary vertices of each sector overlap subject to the indexing rules
{h, 0, i } == {mod [h + 1, n], i , 0} for 0 ≤ h < n.

Figure 8.2 shows an example of this indexing for an extraordinary vertex of valence
four in a triangular mesh.

Given a vector of coeff icients pk, we let pk[[h, i , j]] denote the coeff icient in pk

with index {h, i , j }. Based on this indexing, we now define n associated piecewise
polynomial functions p k[h, x, y] for 0 ≤ h < n. For triangular meshes, these functions
p k[h, x, y] are typically piecewise linear over each sector of M, whereas in the quad
case the functions are piecewise bilinear over each sector of M. In both cases, these

000
020

120

220

320

010

011110111

210

211 310 311

Figure 8.2 An example of vertex indexing for the two-ring of an extraordinary vertex of valence four.

242 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

functions interpolate the values of pk in a manner similar to that of the uniform
case; that is,

p k

[
h,

i
2k

,
j

2k

]
= pk[[h, i , j]]. (8.2)

Due to the compatibility conditions associated with this indexing, these func-
tions coincide along the common boundary shared by two adjacent sectors; that
is, they satisfy p k[h, 0, x] == p k[mod[h + 1, n], x, 0] for 0 ≤ h < n and x ≥ 0. Given a
subdivision process of the form pk = Sk p0, we define the limit surface associated
with this process to be the parametric surface of the form

p∞[h, x, y] = lim
k→∞

p k[h, x, y], (8.3)

where 0 ≤ h < n and x, y ≥ 0. As we shall see, the existence of this limit surface
p∞[h, x, y] depends on the structure of the subdivision matrix S. Away from the
extraordinary vertex v, the subdivision rules in S are typically chosen to reproduce
a uniform subdivision scheme. Because the mesh M is uniform except at v, the limit
surface p∞[h, x, y] shares all of the convergence and smoothness properties of the
uniform scheme everywhere except at the extraordinary vertex v (with coordinates
{x, y} == {0, 0}). All that remains is to analyze the behavior of this surface at v.

To illustrate the concepts discussed in this chapter, we will consider a single
running example throughout the entire chapter. The subdivision scheme for this
example is the univariate stationary scheme associated with the following bi-inf inite
subdivision matrix S:

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

. 0 1
8

3
4

1
8 0 0 0 0 0 .

. 0 0 1
2

1
2 0 0 0 0 0 .

. 0 0 1
8

25
32

3
32 0 0 0 0 .

. 0 0 0 5
8

3
8 0 0 0 0 .

. 0 0 0 5
24

29
40

1
15 0 0 0 .

. 0 0 0 0 3
5

2
5 0 0 0 .

. 0 0 0 0 3
20

29
40

1
8 0 0 .

. 0 0 0 0 0 1
2

1
2 0 0 .

. 0 0 0 0 0 1
8

3
4

1
8 0 .

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

8.1 Convergence Analysis at an Extraordinary Vertex 243

1 2 3 4 5 6

1

2

3

4

5

6

Figure 8.3 Three rounds of subdivision with a nonuniform curve scheme.

This matrix has three nonuniform columns, with the remaining columns corre-
sponding to the subdivision mask { 1

8 , 1
2 , 3

4 , 1
2 , 1

8 } for a uniform cubic B-spline.
Figure 8.3 shows several rounds of subdivision applied to an initial control polygon.
The large, dark vertex on p0 is the extraordinary vertex v.

Our approach for this univariate example is to treat the central vertex v as
an extraordinary vertex joining two sectors (each a uniform mesh Z

+). The three
special columns of S arise from the need to form a smooth transition between these
two meshes. Following our indexing scheme for surfaces, entries of vectors pk asso-
ciated with this scheme can be indexed by a pair of the form {h, i }, where h == 0, 1

and i is a non-negative integer. Index h == 0 corresponds to the upper-left-hand por-
tion of the vector pk, whereas indices with h == 1 correspond to lower-right-hand
portions of the vector pk. Enumerated in order, these indices have the form

{. . . , {0, 2}, {0, 1}, {0, 0} == {1, 0}, {1, 1}, {1, 2}, . . .}.

Our task in the rest of this section and the next two is to analyze the convergence
and smoothness of the composite parametric limit curve p∞[h, x] defined via a
univariate version of equation 8.3.

8.1.2 Local Spectral Analysis

The key to analyzing the behavior of the limit surface p∞[h, x, y] near an extraordi-
nary vertex v is to construct a f inite submatrix S of the infinite subdivision matrix
S that encapsulates the behavior of the scheme near the extraordinary vertex v. In

244 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

practice, the size of this f inite submatrix depends on the locality of the subdivision
rules used in constructing S. Given the initial mesh M, let M be the submesh of M

that determines the behavior of the limit function p∞[h, x, y] on the one-ring of the
extraordinary vertex v, ring[v]. This submesh M is the neighborhood of the extraor-
dinary vertex v. For example, in the case of uniform cubic B-splines, any vertex v

has a neighborhood that consists of v and its two neighbors on either side. In the
surface case, the neighborhood of an extraordinary vertex v is the one-ring of v in
the case of linear and bilinear subdivision. For Loop and Catmull-Clark subdivision,
the neighborhood of v consists of the two-ring of v (i.e., ring[ring[v]]).

Given this neighborhood M, we can restrict the subdivision matrix S to a square,
f inite submatrix S whose rows and columns correspond to the vertices in M. As we
shall show, the spectral properties of this matrix S determine the convergence and
smoothness of the scheme at the extraordinary vertex v. For our running example,
the neighborhood of the central vertex v consists of v and its two neighbors on
either side. Therefore, the matrix S is the 5×5 submatrix corresponding to the five
vertices lying in the two-ring of the central vertex v:

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
8

25
32

3
32 0 0

0 5
8

3
8 0 0

0 5
24

29
40

1
15 0

0 0 3
5

2
5 0

0 0 3
20

29
40

1
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If the subdivision matrix S relates infinite vectors via pk = Spk−1, these infinite
vectors pk can also be restricted to the neighborhood of v. This restriction pk is a
f inite subvector of pk corresponding to the vertices in the neighborhood M. Given
a sequence of vectors satisfying equation 8.1, the corresponding localizations to the
neighborhood M satisfy

pk = S pk−1 == S k p0. (8.4)

To understand the behavior of this iteration as k → ∞, we consider the eigen-
values and eigenvectors of S. A vector z is a right eigenvector z of S with associated
eigenvalue λ if S z == λz. Note that multiplying S k by an eigenvector z is equiv-
alent to multiplying λk by z (i.e., S kz == λkz). As we shall see, the magnitude of
the eigenvalues of S governs the behavior of equation 8.4 as k → ∞. The process
of computing the properties of the powers S k is known as spectral analysis. (See

8.1 Convergence Analysis at an Extraordinary Vertex 245

Strang [149] for an introduction to eigenvalues, eigenvectors, and spectral analysis.)
Our goal in this chapter is to use spectral analysis to understand the behavior of
subdivision schemes at extraordinary vertices.

The eigenvalues and eigenvectors of S can be expressed collectively in matrix
form as S Z == Z�. For our running example, this spectral decomposition of the
subdivision matrix S has the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
8

25
32

3
32 0 0

0 5
8

3
8 0 0

0 5
24

29
40

1
15 0

0 0 3
5

2
5 0

0 0 3
20

29
40

1
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 11
3 6 0

1 −1 2
3 0 0

1 1
3

−2
3 0 0

1 2 8
3 0 0

1 4 44
3 0 48

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.5)

==

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 11
3 6 0

1 −1 2
3 0 0

1 1
3

−2
3 0 0

1 2 8
3 0 0

1 4 44
3 0 48

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1
2 0 0 0

0 0 1
4 0 0

0 0 0 1
8 0

0 0 0 0 1
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The eigenvalues of S, 1, 1
2 , 1

4 , 1
8 , and 1

8 , are entries of the rightmost diagonal matrix �.
These values are also the non-zero eigenvalues of the matrix S. The eigenvectors
of S are the corresponding columns of the matrix Z . For example, the eigenvector
associated with 1

2 is {−2, 1, 1
3 , 2, 4}.

Given this decomposition, we can now answer the question of whether the
limit of p k[h, 0, 0] exists as k → ∞. Let λi and zi be the eigenvalues and eigen-
vectors of S, respectively. For convenience, we index the eigenvalues in order of
decreasing magnitude. If the subdivision matrix S is non-defective (i.e., S has a full
complement of linearly independent eigenvectors), p0 can be expressed as a com-
bination of these eigenvectors zi of the form p0 = ∑

i ai z i . All of the schemes
discussed in this book have local subdivision matrices S that are non-defective. For
schemes with defective subdivision matrices S, a similar analysis can be performed
using the Jordan decomposition of S. (See page 191 of Strang [149] for more details
on defective matrices and the Jordan decomposition.)

Given this spectral decomposition, we can now determine the limit of pk as
k → ∞. In our running example, the initial vector p0 = {0, 0, 1, 0, 0} can be expressed

246 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

as a linear combination of the eigenvectors of S via

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 11
3 6 0

1 −1 2
3 0 0

1 1
3

−2
3 0 0

1 2 8
3 0 0

1 4 44
3 0 48

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
5

3
10

−9
20

11
40

1
10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
==

⎛⎜⎜⎜⎜⎝
0
0
1
0
0

⎞⎟⎟⎟⎟⎠ . (8.6)

Given this decomposition of p0 into a linear combination of eigenvectors z i , sub-
sequent vectors pk satisfying equation 8.4 can be expressed as

pk = S k p0 =
∑

i

λk
i a i z i . (8.7)

For our running example, the eigenvalues satisfy λ0 == 1 > |λ i | for i > 0. Hence, for
i > 0 the λ k

i converge to zero as k → ∞. Therefore, the vectors pk converge to
the vector a0z0 == 3

5 {1, 1, 1, 1, 1} as k → ∞ or, equivalently, p∞[h, 0] == 3
5 . Note that

this method computes the exact limit value of the scheme at the origin in a manner
similar to that of section 6.1.1.

In the surface case, this decomposition leads to a simple condition for a scheme
to converge at an extraordinary vertex v. If the spectrum of S has the form λ0 ==
1 > |λ i | for all i > 0, the vectors pk converge to the vector a0z0 as k → ∞. For the
surface schemes of the previous chapter, this condition on the eigenvalues of S can
be checked using the techniques discussed in section 8.3. Because these schemes
are aff inely invariant (i.e., the rows of their subdivision matrices S sum to one), the
eigenvector z0 associated with the eigenvalue 1 is the vector {. . . , 1, 1, 1, . . .}, and via
equation 8.7 the limit of the p k[h, 0, 0] as k → ∞ is simply a0. Note that this type
of convergence analysis f irst appeared in Doo and Sabin [45]. Ball and Storry [6]
later ref ined this analysis to identify the “natural configuration” associated with the
scheme, a precursor of the “characteristic map” introduced in section 8.2.

8.1.3 Exact Evaluation Near an Extraordinary Vertex

The method of the previous section used spectral analysis to compute the exact
value of p∞[h, 0, 0]. Remarkably, Stam [145] shows that this analysis can be ex-
tended to compute the exact value of the limit function p∞[h, x, y] anywhere within
ring[v] for any subdivision scheme whose uniform rules are those of box splines. To
understand Stam’s method, we first extend eigenvectors z of S to form eigenvectors

8.1 Convergence Analysis at an Extraordinary Vertex 247

z of S. Specif ically, the non-zero eigenvalues (and associated eigenvectors) of S and
S are related as follows.

THEOREM

8.1

Let z be an eigenvector of S with associated right eigenvalue λ > 0 (i.e.,
S z == λz). Then there exists an extension of z to an infinite right eigen-
vector z of S with associated eigenvalue λ such that Sz == λz.

The proof is straightforward and is left to the reader; the basic idea is to apply the
subdivision scheme to z and multiply by 1

λ
. Due to the size of the neighborhood used

in constructing S, the result of this application is an extension of the eigenvector
z to a larger portion of the mesh surrounding the extraordinary vertex v. For our
running example, the eigenvector {−2, −1, 1

3 , 2, 4} was defined over the two-ring
of v. Applying the subdivision rules for the scheme and multiplying by 2 yields an
extension of this vector to the three-ring of v; that is,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
−2
−1

1
3

2
4
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0

1
8

25
32

3
32 0 0

0 5
8

3
8 0 0

0 5
24

29
40

1
15 0

0 0 3
5

2
5 0

0 0 3
20

29
40

1
8

0 0 0 1
2

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

⎛⎜⎜⎜⎜⎜⎝
−2
−1

1
3

2
4

⎞⎟⎟⎟⎟⎟⎠ .

Applying the subdivision rules for S to this new vector {−3, −2, −1, 1
3 , 2, 4, 6}

yields an even longer extension of z of the form {−5, −4, −3, −2, −1, 1
3 , 2, 4, 6, 8, 10}.

Further repetitions yield increasingly long extensions of the eigenvector {−2, −1, 1
3 ,

2, 4}. Due to the structure of these eigenvectors, the limit functions associated
with these eigenvectors have an intrinsically self-similar structure. The following
theorem establishes a fundamental recurrence governing these limit functions.

THEOREM

8.2

Let λ be the eigenvalue associated with the right eigenvector z. If p0 = z,
consider the sequence of vectors defined by the recurrence pk = Spk−1. The
limit surface p∞[h, x, y] associated with this process satisf ies the relation

p∞[h, x, y] == λp∞[h, 2x, 2y].

248 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

Proof Recall the definition of the associated functions p k[h, x, y] from equation 8.2:

p k

[
h,

i
2k

,
j

2k

]
= pk[[h, i , j]].

Because z is an eigenvector of S, the associated vectors pk−1 and pk satisfy
pk = λpk−1. Therefore, the functions p k and p k−1 are related via

p k

[
h,

i
2k

,
j

2k

]
== pk[[h, i , j]] == λpk−1[[h, i , j]] == λp k−1

[
h,

2i
2k

,
2 j
2k

]

for all {i , j } ∈ (Z+)2. Because the remaining values of the functions p k

and p k−1 are defined by piecewise linear (or bilinear) interpolation, the
two functions must agree over their entire domain; that is, p k[h, x, y] ==
λp k−1[h, 2x, 2y] for all x, y ≥ 0. Given that p∞[h, x, y] is the limit of the
p k[h, x, y] as k → ∞, the theorem follows immediately.

The recurrence of Theorem 8.2 is the key ingredient of Stam’s exact evaluation
algorithm for the limit function p∞[h, x, y]. For the sake of simplicity, we sketch this
evaluation algorithm in the case of Catmull-Clark surfaces. Outside the one-ring
of the extraordinary vertex v (i.e., where Max[x, y] ≥ 1), Catmull-Clark surfaces are
simply bicubic B-spline surfaces. There, the value of this tensor product surface
can be computed at an arbitrary parameter location using Böhm’s knot insertion
algorithm for B-splines [11]. (For schemes whose uniform rules are derived from
other types of box splines, the evaluation algorithm of section 2.3 based on cone
splines can be used.) However, within the one-ring of an extraordinary vertex v

the mesh structure is no longer tensor product, and this algorithm is no longer
applicable.

To evaluate a Catmull-Clark surface within the one-ring of v (i.e., where
Max[x, y] < 1), we instead express p0 in terms of the eigenvectors z i for the scheme
and evaluate these eigenvectors using Böhm’s algorithm at {h, 2kx, 2ky}, where
2k Max[x, y] ≥ 1. Theorem 8.2 can then be used to derive the values of the z i and,
consequently, p0 at {h, x, y}. Note that this algorithm is not particularly eff icient,
and Stam suggests several nice improvements to this basic algorithm that greatly
improve its speed.

To illustrate this method, we consider the problem of computing p∞[1, 1
3] for

our running curve example. Due to the structure of uniform rules used in defining

8.2 Smoothness Analysis at an Extraordinary Vertex 249

the subdivision matrix S for our example, the limit curve p∞[h, x] is a uniform cubic
B-spline for x ≥ 2. Therefore, we can use Böhm’s algorithm in conjunction with
Theorem 8.2 to compute the value of p∞[1, x] for any x ∈ [0, 2]. For example, if
p0 = {0, 0, 1, 0, 0}, the value of p∞[1, 1

3] can be computed as follows ():

■ Express p0 in terms of the eigenvectors of S, as shown in equation 8.6.
Observe that the coeff icients a i are { 3

5 , 3
10 , − 9

20 , 11
40 , 1

10 }.
■ For each eigenvector z i , compute its value at {1, 8

3 } using Böhm’s algorithm.
(Note that we use a larger neighborhood than for Catmull-Clark surfaces
due to the larger extent of the nonuniform rules in our curve example.) The
values of the limit functions associated with these eigenvectors are, in order,
{1, 16

3 , 256
9 , 0, 4096

27 }.
■ Apply Theorem 8.2 three times to compute values of the limit functions

associated with these eigenvectors at {1, 1
3 }. In particular, the values at {1, 8

3 }
are scaled by the cubes of the eigenvalues of S (i.e., {1, 1

8 , 1
64 , 1

512 , 1
512 }). The

resulting values at {1, 1
3 } are, in order, {1, 2

3 , 4
9 , 0, 8

27 }.
■ Multiply these values by their corresponding coeff icients a i , given previ-

ously. Thus, the value of p∞[1, 1
3] is exactly 17

27 .

8.2 Smoothness Analysis at an Extraordinary Vertex

Although the previous section established conditions for a subdivision scheme to
converge at an extraordinary vertex, it did not answer a second, more diff icult
question: Do the surface schemes of the previous chapter produce limit surfaces
that are smooth at extraordinary vertices? To answer this question, we must f irst
settle on a suitable method for measuring the smoothness of a surface. The standard
definition from mathematics requires that the surface in question be a smooth
manifold. In particular, a limit surface p∞[h, x, y] is a Ck manifold in the neighborhood
of an extraordinary vertex v if p∞[h, x, y] is locally the graph of a Ck function (see
Fleming [63] for more details). Our goal is to develop a local reparameterization
for p∞[h, x, y] such that the resulting surface is the graph of a function and then to
develop conditions on the spectral structure of S for a scheme to produce smooth
limit functions. We warn the reader that the mathematics of this section is rather
involved. Those readers interested in simply testing whether a given scheme is
smooth at an extraordinary vertex are advised to skip to section 8.3.

250 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

8.2.1 The Characteristic Map

For convergent schemes with a spectrum of the form λ0 == 1 > |λ1| ≥ |λ2| > . . . ,
the key to this reparameterization is the eigenvectors z1 and z2 corresponding to
the subdominant eigenvalues λ1 and λ2. These eigenvectors determine the local
structure of the limit surface p∞[h, x, y] in the neighborhood of v. Given an initial
mesh of the form {M, p0} with p0 = {z1, z2}, we define the characteristic map ψ =
{ψs, ψt} associated with the subdominant eigenvectors z1 and z2 to be the limit of
the subdivision process pk = Spk−1; that is,

ψ [h, x, y] = p∞[h, x, y].

Figure 8.1 shows plots of the mesh {M, {z1, z2}} for both Loop and Catmull-Clark
subdivision for valences three to eight. Reif introduced the characteristic map in
his ground-breaking analysis of the smoothness of subdivision schemes at extraor-
dinary vertices [128]. The characteristic map ψ is regular if it is 1 − 1 and onto
everywhere. Subdivision schemes with regular characteristic maps define limit sur-
faces that are locally manifolds at the extraordinary vertex v. In particular, if ψ is
regular, the inverse map ψ−1 exists everywhere and provides the reparameterization
needed to convert the parametric surfaces p∞[h, x, y] into functional form. Once in
this functional form, analyzing the smoothness of the limit surface reduces to deter-
mining whether certain derivatives of the functional form exist and whether they
are continuous at v.

Up to now, the possibility of the eigenvalues λ i and their corresponding eigen-
vectors z i being complex has not affected our analysis. However, if the subdominant
eigenvalues are complex, the characteristic map is complex valued and the analysis
that follows is much more diff icult. Luckily, for most schemes considered in this
book, the subdominant eigenvalues λ1 and λ2 are real and positive. For a few of
the schemes, such as the face-splitting quad scheme of section 7.4.1, one round
of the subdivision induces some type of rotation in the mesh M. As a result, the
subdominant eigenvalues for the associated subdivision matrix are typically com-
plex conjugates. In these cases, constructing a subdivision matrix that represents
two or more rounds of subdivision usually cancels out the rotational component
and yields a subdivision matrix with real eigenvalues. Consequently, we restrict our
analysis to those schemes for which λ1 and λ2 are real and positive. For the reader
interested in a more general analysis of the fully complex case, we recommend
consulting Zorin [169].

To illustrate the nature of the characteristic map, we explicitly construct this
map for our running curve example. In the univariate case, the characteristic map

8.2 Smoothness Analysis at an Extraordinary Vertex 251

ψ [h, x] is the scalar limit function associated with the subdominant eigenvector
z1 = {. . . , −3, −2, −1, 1

3 , 2, 4, 6, . . .}. Now, observe that the entries of this vector sat-
isfy z1[[0, i]] = −i and z1[[1, i]] = 2i for i > 0. Because the subdivision rules for uniform
cubic B-splines have linear precision, the associated characteristic map ψ satisf ies
ψ [0, x] = −x and ψ [1, x] = 2x. Before attempting to invert ψ, we must f irst verify
that ψ is regular (i.e., a 1 − 1 and onto covering of the parameter line). To this end,
we observe that ψ [0, x] covers the negative portion of the parameter line in a 1 − 1

manner, whereas ψ [1, x] covers the positive portion of the line in a 1 − 1 manner.
Therefore, ψ is regular and possesses an inverse map ψ−1 of the form

ψ−1[s] =
{

{0, −s} if s ≤ 0,{
1, 1

2 s
}

if s ≥ 0.

In the curve case, verifying that the characteristic map ψ is regular is easy. In the
surface case, determining whether the characteristic map is regular is actually quite
diff icult. One important trick in simplifying this task lies in applying Theorem 8.2.
The characteristic map ψ satisf ies the recurrence

ψ [h, x, y] == ψ [h, 2x, 2y]

(
λ1 0
0 λ2

)
. (8.8)

If λ1 and λ2 are real and positive, applying the aff ine transformation
(

λ1 0
0 λ2

)
to

the map ψ does not affect its regularity. Thus, if we can prove that ψ is regular
on an annulus surrounding v of suff icient width, the recurrence of equation 8.8
implies that ψ is regular everywhere except at v. As long as the characteristic map
winds around v exactly once, it is also regular at the origin. The details of verifying
the regularity of the characteristic map of Loop’s scheme on such an annulus are
considered in section 8.3.

The main use of the characteristic map ψ lies in the fact that it provides an
extremely convenient parameterization for the limit surface p∞[h, x, y] at the ex-
traordinary vertex v. Given an initial vector q of scalar values, consider the limit
surface p∞[h, x, y] associated with the initial vector p0 = {z1, z2, q}. If the character-
istic map ψ is regular, this three-dimensional limit surface can be viewed as the
graph of a single-valued function with respect to the first two coordinates. More
precisely, we define a bivariate function φ[q] associated with a vector q of scalar
values as follows:

φ[q] [s, t] = p∞[ψ (−1)[s, t]], (8.9)

252 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

�2 �1 1 2

�2

�1

1

2

3

4

�2 �1 1 2 3 4

�2

�1

1

2

3

4

Figure 8.4 Reparameterization using the inverse of the characteristic map.

where p0 = q is the initial vector associated with p∞. Observe that this definition is
equivalent to requiring that φ[q][ψ [h, x, y]] == p∞[h, x, y]. Note that the function φ[q]

is linear in q due to the linearity of the subdivision process.
Figure 8.4 illustrates the effect of reparameterization by the inverse of the

characteristic map for our running curve example. This f igure shows two plots of
the eigenvector z1 = {−2, −1, 1

3 , 2, 4} after three rounds of subdivision. The left-
hand plot shows the result plotted on the grid 1

8 Z. Note that the resulting curve
has a discontinuity in its derivative at the origin. In the right-hand plot, the grid
1
8 Z has been reparameterized using ψ−1. The effect on the resulting function φ[z1]

is to stretch the positive portion of the parameter line by a factor of two and to
smooth out the discontinuity at the origin. Observe that if z1 is the eigenvalue used
in defining ψ, then φ[z1] is always exactly the linear function s by construction.

8.2.2 Eigenfunctions

For subdivision schemes with regular characteristic maps, we can now introduce
our main theoretical tool for analyzing the behavior of these schemes. Recall that
if the local subdivision matrix S is non-defective any local coeff icient vector q can
be written in the form

∑
i a i z i . Therefore, its corresponding function φ[q] has an

expansion of the form

φ[q][s, t] ==
∑

i

ai φ[z i][s, t]

8.2 Smoothness Analysis at an Extraordinary Vertex 253

for all {s, t} in the one-ring of v. Note that this sum need only include those
eigenvectors z i that are the extensions of the eigenvectors z i of S. Due to this
decomposition, we can now focus our attention on analyzing the smoothness of
the eigenfunctions φ[z]. These eigenfunctions φ[z] satisfy a fundamental scaling re-
currence analogous to the recurrence of Theorem 8.2. This recurrence is the main
tool for understanding the behavior of stationary schemes at extraordinary vertices.
The following theorem, first appearing in Warren [158], establishes this recurrence.

THEOREM

8.3

If λ is an eigenvalue of S with associated eigenvector z, the eigenfunction
φ[z] satisf ies the recurrence

φ[z][s, t] == λ φ[z]

[
s
λ1

,
t

λ2

]
, (8.10)

where λ1 and λ2 are the subdominant eigenvalues of S.

Proof Consider the limit function p∞[h, x, y] associated with the initial vector
p0 = z. Applying Theorem 8.2 to this limit surface yields p∞[h, x, y] ==
λp∞[h, 2x, 2y]. Applying the definition of φ (i.e., equation 8.9) to both sides
of this equation yields a functional relation of the form

φ[z][ψ [h, x, y]] == λ φ[z][ψ [h, 2x, 2y]]. (8.11)

If the characteristic map ψ [h, x, y] is assigned the coordinates {s, t} (i.e.,
{s, t} = ψ [h, x, y]), the dilated map ψ [h, 2x, 2y] produces the coordinates
{ s

λ1
, t

λ2
} due to the recurrence relation of equation 8.8. Replacing ψ [h, x, y]

and ψ [h, 2x, 2y] by their equivalent definitions in terms of s and t in equa-
tion 8.11 yields the theorem.

Returning to our running example, the eigenfunction φ[z0][s] had an associ-
ated eigenvalue of 1 and therefore satisf ied the scaling relation φ[z0][s] = φ[z0][2s].
This observation is compatible with the fact that φ[z0][s] == 1. Likewise, the eigen-
function φ[z1][s] had an associated eigenvalue of 1

2 and satisf ied the scaling relation
φ[z0][s] = 1

2 φ[z0][2s]. Again, this relation is compatible with φ[z1][s] == s. In the next
two sections, we deduce the structure of the remaining eigenfunctions.

254 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

.5 1 1.5 2

.2

.4

.6

.8

1

.5 1 1.5 2

.5

1

1.5

2

.5 1 1.5 2

1

2

3

4

Figure 8.5 Three functions that satisfy the scaling relation f [s] = 1
2 f [2x].

8.2.3 Sufficient Conditions for Cm Continuity

The smoothness of the eigenfunction φ[z] away from the origin depends entirely
on the structure of the uniform rules associated with the subdivision scheme. All
that remains is to analyze the smoothness of these eigenfunctions at the origin.
The key to this analysis is the scaling recurrence of equation 8.10. In particular,
the magnitude of the eigenvalue λ (taken in relation to λ1 and λ2) determines the
smoothness of the eigenfunction φ[z] at the origin.

To illustrate the effect of λ, consider a univariate function f [s] satisfying a scaling
relation of the form f [s] = λ f [2s]. Once f [s] has been specif ied on the interval [1, 2),
the scaling relation determines the remaining values of f [s] for all s ≥ 0. If 0 < |λ| < 1,
the value of f [s] on the interval [1, 2) has no effect on the behavior of f [s] at the
origin. Substituting s = 0 into the scaling relation yields f [0] == λ f [0], and therefore
that f [0] == 0. More important, the scaling relation forces the function f [s] to con-
verge to zero in the neighborhood of the origin. For example, Figure 8.5 shows plots
of three possible functions f [s] satisfying the scaling relation f [s] = 1

2 f [2x]. Observe
that all three functions converge to zero at the origin.

By taking the derivative of both sides of the scaling relation of equation 8.10,
a similar method can be used to analyze various derivatives of f [s] at the origin.
The following theorem, credited to the authors, ties these observations together
and relates the magnitude of the eigenvalue λ to the smoothness of its associated
eigenfunction φ[z] at the origin.

THEOREM

8.4

Let S be a bivariate subdivision matrix with spectrum λ0 == 1 > λ1 ≥ λ2 >

|λ3| > Consider an eigenfunction φ[z] of S whose associated eigenvalue
λ satisf ies |λ| < λm

2 . If the function φ[z] is Cm continuous everywhere except
at the origin, then φ[z] is Cm continuous at the origin.

8.2 Smoothness Analysis at an Extraordinary Vertex 255

Proof Consider the case when m == 0. By hypothesis, the eigenvalue λ satisf ies
|λ| < 1. Evaluating the recurrence of Theorem 8.3,

φ[z][s, t] == λ φ[z]

[
s
λ1

,
t

λ2

]
,

at {s, t} == {0, 0} yields φ[z][0, 0] == 0. We next show that the limit of
φ[z][s, t] as {s, t} approaches the origin is zero. Consider the behavior of
φ[z] on the annulus Ak of the form

Ak = {ψ [h, x, y] | 0 ≤ h < n, 2−k ≤ x + y ≤ 21−k}.

Because φ[z] is continuous on the bounded annulus A0, its absolute value
must be bounded on this annulus by some value ν. Due to the recurrence of
Theorem 8.3, the absolute value of φ[z] on the larger annulus Ak is bounded
by λkν. Because |λ| < 1, the function φ[z][s, t] is converging to zero as {s, t}
converges to the origin. Therefore, φ[z] is continuous at the origin.

For m > 0, we show that φ[z](i , j) is continuous (with value zero) at the origin
for 0 ≤ i + j ≤ m. The key step in this proof is to construct a recurrence for
φ[z](i , j) of the form

φ[z](i , j)[s, t] ==
λ

λ i
1λ

j
2

φ[z](i , j)

[
s
λ1

,
t

λ2

]
by taking the appropriate derivatives of both sides of the recurrence of
Theorem 8.3. Due to the hypothesis that |λ| < λm

2 , the eigenvalue λ sat-
isf ies |λ| < λ i

1λ
j
2 because 0 < λ2 ≤ λ1. The remainder of the proof follows

the structure of the case m == 0.

At this point, we have assembled all of the tools necessary to prove that the
surface schemes of Chapter 7 (i.e., Catmull-Clark and Loop) produce limit surfaces
that are C1 at an extraordinary vertex v. In particular, these schemes have sub-
division matrices S centered at v that satisfy three properties:

■ The spectrum of S has real eigenvalues of the form λ0 == 1 > λ1 ≥ λ2 >

|λ3| ≥

■ The dominant eigenvector z0 is the vector of ones.

■ The characteristic map defined by the subdominant eigenvectors z1 and z2

is regular.

256 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

Now, given an arbitrary vector of coeff icients q, the smoothness of the function
φ[q] is determined by the smoothness of the eigenfunctions φ[z i] associated with
the subdivision scheme. Because the dominant eigenvector z0 is the vector of ones,
the corresponding eigenfunction φ[z0] is simply the constant function. The eigen-
functions φ[z1] and φ[z2] correspond to the functions s and t, respectively, due to
their use in defining the characteristic map ψ. All three of these eigenfunctions are
polynomial, and therefore C∞ everywhere.

Because the uniform rules associated with these schemes produce C 2 limit
surfaces, we can use Theorem 8.4 to analyze the smoothness of the remaining
eigenfunctions at the origin. By assumption, the eigenvalues associated with the
remaining eigenfunctions satisfy |λ i | < λ2 for i > 2. Therefore, these eigenfunctions
φ[z i] are at least C1 at the origin, and consequently any linear combination of these
eigenfunctions φ[q] must be C1 at the origin. Note the fact that the associated uni-
form scheme converges to C 2 limit functions does not automatically guarantee that
all of these eigenfunctions φ[z i] are C 2 at the origin. Theorem 8.4 guarantees only
that those eigenfunctions with eigenvalues λ i satisfying |λ i | < λ2

2 are guaranteed to
be C 2 continuous at the origin. Those eigenfunctions whose eigenvalues λ i satisfy
λ2 > |λ i | > λ2

2 may only be C1 continuous at the origin.
This observation gives insight into constructing surface schemes that are Cm

continuous at extraordinary vertices. The trick is to construct a set of subdivision
rules whose subdivision matrix S has a spectrum with |λ i | < λm

2 for all i > 2. If the
uniform rules in S are Cm, the corresponding eigenfunctions φ[z i] are also Cm contin-
uous. Note, however, that all derivatives up to order m of these eigenfunctions are
necessarily zero at the origin. For example, the subdivision rules at the endpoint of
a natural cubic spline have a subdivision matrix S with a spectral decomposition
S Z == Z � of the form

⎛⎜⎜⎝
1 0 0
1
2

1
2 0

1
8

3
4

1
8

⎞⎟⎟⎠
⎛⎜⎝1 0 0

1 1 0

1 2 1
3

⎞⎟⎠ ==

⎛⎜⎝1 0 0
1 1 0

1 2 1
3

⎞⎟⎠
⎛⎜⎜⎝

1 0 0

0 1
2 0

0 0 1
8

⎞⎟⎟⎠ .

Due to Theorem 8.4, this scheme is at least C 2 at the endpoint, because the eigen-
function φ[z2] has λ2 < λ2

1. Note that this eigenfunction φ[z2] is f lat (i.e., has a
second derivative of zero) at the endpoint. Prautzsch and Umlauf [125] have de-
signed surface schemes that are C 2 at extraordinary vertices based on this idea.
They construct subdivision rules at an extraordinary vertex v such that the resulting

8.2 Smoothness Analysis at an Extraordinary Vertex 257

subdivision matrix S has a spectrum of the form 1 > λ1 == λ2 > |λ3| > . . . , where
|λ3| < λ2

2. Just as in the previous curve case, the resulting limit surfaces are f lat (i.e.,
have zero curvatures) at the extraordinary vertex v.

8.2.4 Necessary Conditions for Cm Continuity

Just as the scaling relation of equation 8.10 was the key to deriving suff icient
conditions for Cm continuity at an extraordinary vertex, this relation is also the
main tool in deriving necessary conditions for a surface scheme to converge to a Cm

limit function at an extraordinary vertex. The key technique is to examine those
functions that satisfy a scaling relation of the type f [s] = λf [2s], where |λ| ≥ 1. The
left-hand plot of Figure 8.6 shows an example of a function satisfying this scaling
relation f [s] = 3

2 f [2s]; this function diverges at the origin independent of the value of
f [s] on the defining interval [1, 2). The middle and right-hand plots show examples
of functions satisfying f [s] = f [2s]. In the middle plot, the function f [s] varies (i.e.,
is not a constant) on the interval [1, 2). As a consequence of the scaling relation,
the function f [s] cannot be continuous at the origin. The right-hand plot shows a
function that is constant on the interval [1, 2). Observe that only constant functions
can both satisfy the scaling relation and be continuous at the origin.

By taking various derivatives of both sides of the scaling relation of equa-
tion 8.10, this observation can be generalized to functions with higher-order
smoothness. In particular, if a subdivision scheme converges to smooth limit func-
tions, its eigenfunctions corresponding to dominant eigenvalues must be polyno-
mials. The following theorem deals with the case when the eigenvalues λ1 and λ2

are equal. Variants of this theorem appear in [158] and [123].

.5 1 1.5 2

2.5
5

7.5
10

12.5
15

17.5

.5 1 1.5 2

1.2

1.4

1.6

1.8

2

.5 1 1.5 2

.5

1

1.5

2

(a) (b) (c)

Figure 8.6 A function satisfying f [s] = 3
2 f [2s] (a) and two functions satisfying f [s] = f [2s] (b and c).

258 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

THEOREM

8.5

Let S be a subdivision matrix with spectrum λ0 == 1 > λ1 == λ2 > |λ3| >

If φ[z] is a non-zero eigenfunction of S that is Cm continuous everywhere
and whose associated eigenvalue λ satisf ies 1 ≥ λ ≥ λm

1 , there exists an
integer 0 ≤ i ≤ m such that λ = λ i

1, with φ[z][s, t] being a homogeneous
polynomial of degree i in s and t.

Proof Consider the functions φ[z](i , j) for all i + j == m. Taking the appropri-
ate derivatives of both sides of equation 8.10 yields a new recurrence of
the form

φ[z](i , j)[s, t] ==
λ

λ i
1λ

j
2

φ[z](i , j)

[
s
λ1

,
t

λ2

]
.

Based on this recurrence, we claim that the functions φ[z](i , j) must be con-
stant functions. By hypothesis, λ ≥ λm

1 , and therefore λ ≥ λ i
1λ

j
2, because

λ1 == λ2. If λ > λ i
1λ

j
2, either the function φ[z](i , j) is identically zero or it di-

verges as {s, t} → {0, 0}. If λ == λ i
1λ

j
2, then φ[z](i , j) either is the constant func-

tion or has a discontinuity at {s, t} == {0, 0}. Because the function φ[z](i , j) is
continuous by hypothesis, φ[z](i , j) must be a constant function in either case.

Given that φ[z](i , j) is a constant function for all i + j == m, the original
function φ[z] is a polynomial function of, at most, degree m. To conclude,
we observe that equation 8.10 is satisf ied only by homogeneous polynomial
functions of degree i where λ == λ i

1.

Note that a similar theorem holds in the case when λ1 > λ2. In this case, there
exist integers 0 ≤ i + j ≤ m such that λ == λ i

1λ
j
2, with φ[z] being a multiple of the

monomial si t j .
To illustrate this theorem, we complete our analysis of the running curve exam-

ple by constructing explicit representations for the eigenfunctions associated with
the scheme. At this point, we reveal that the matrix S associated with this exam-
ple is the subdivision matrix that maps the control points for a nonuniform cubic
B-spline with knots at {. . . , −3, −2, −1, 0, 2, 4, 6, . . .} to the new set of control points
associated with a B-spline whose knots lie at 1

2 {. . . , −3, −2, −1, 0, 2, 4, 6, . . .}. The
particular entries of S were computed using the blossoming approach to B-splines
described in Ramshaw [126] and Seidel [140]. One consequence of this observation
is that the eigenfunctions of S must be cubic B-splines and therefore C 2 piecewise
polynomials. Given this fact, we may now apply Theorem 8.3.

8.3 Verifying the Smoothness Conditions for a Given Scheme 259

Given the spectral decomposition S Z == Z�, as shown in equation 8.5, the
eigenfunctions φ[z0], φ[z1], and φ[z2] must reproduce constant multiples of the func-
tions 1, s, and s2, respectively, by Theorem 8.5. Via blossoming, the reader may ver-
ify that the remaining eigenfunctions φ[z3] and φ[z4] are piecewise cubic functions
of the form

φ[z3][s] =
{−s3 if s ≤ 0,

0 if s ≥ 0,

φ[z4][s] =
{

0 if s ≤ 0,
s3 if s ≥ 0.

As observed in the previous section, constructing a surface scheme that satisf ies
these necessary conditions for m == 1 is easy. The characteristic map ψ automat-
ically yields eigenfunctions φ[z1] and φ[z2] that reproduce the functions s and t.
Unfortunately, Theorem 8.5 is much more restrictive in the case of m > 1. To con-
struct a non-f lat scheme that is C2 continuous at extraordinary vertices, the scheme
must possess eigenvectors z3, z4, and z5 whose associated eigenfunctions φ[z3], φ[z4],
and φ[z5] reproduce linearly independent quadratic functions with respect to the
characteristic map ψ. Peters and Umlauf [117] give an interesting characterization
of this condition in terms of a system of differential equations.

Building a stationary subdivision matrix S that satisf ies these conditions for
arbitrary valence extraordinary vertices is extremely diff icult. For example, one
consequence of these conditions is that the uniform rules used in constructing S

must have high degree. Prautzsch and Reif [124] show that the uniform rules of
S must reproduce polynomials of at least degree 2m + 2 if S defines a Cm non-flat
scheme. Both Prautzsch [122] and Reif [129] have developed Cm schemes that
achieve this bound. Unfortunately, both schemes are rather complex and beyond
the scope of this book.

8.3 Verifying the Smoothness Conditions
for a Given Scheme

The previous two sections developed conditions on the dominant eigenvalues and
eigenvectors of S for a subdivision scheme to be convergent/smooth at an extraor-
dinary vertex v. In the running curve example, computing these eigenvalues and
eigenvectors was easy using Mathematica. For surface meshes with extraordinary

260 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

vertices, this computation becomes more diff icult because the valence of the ver-
tex affects the spectral structure of S. In this section, we discuss techniques for
computing these eigenvalues/eigenvectors based on the block cyclic structure of S.
Using these techniques, we show that the triangle schemes discussed in section 7.3
converge to smooth limit surfaces at extraordinary vertices. A similar analysis can
be used to show that the quad schemes of section 7.2 also converge to a smooth
limit surface at extraordinary vertices.

8.3.1 Computing Eigenvalues of Circulant Matrices

For curve schemes, the construction of S and the computation of its spectral decom-
position are easy given the subdivision rules for the scheme. For surface schemes
on uniform meshes, this spectral analysis is equally easy because each vertex of
a uniform mesh has the same valence. As a result, the local subdivision matrix S

centered at a vertex is the same for every vertex in a uniform mesh. However, for
a surface scheme over meshes with extraordinary vertices, the problem of com-
puting the spectral decomposition at these extraordinary vertices becomes more
complicated because the local topology at an extraordinary vertex is parameterized
by its valence n. The structure of the local subdivision matrix S centered at this
extraordinary vertex depends on this valence n.

Fortunately, given the subdivision rules for a surface scheme, the eigenvalues
and eigenvectors of S can be computed in closed form as a function of n. This
section outlines the basic idea underlying this computation. The key observation
is that almost all of S can be expressed as a block matrix whose blocks are each
circulant matrices. An (n × n) matrix C is circulant if the rows of C are successive
rotational shifts of a single fundamental row c; that is,

C[[i , j]] == c[[mod[j − i , n]]] (8.12)

for 0 ≤ i , j < n. (Note that for the rest of this section we index the rows and columns
of C starting at zero.) As done in previous chapters, the row c can be used to define
an associated generating function c[x] of the form

∑n−1
i =0 c[[i]]x i .

The usefulness of this generating function c[x] lies in the fact that eigenvalues
of C are the values of c[x] taken at the n solutions to the equation xn == 1. These
solutions, the n roots of unity, are all powers of a single fundamental solution ωn of

8.3 Verifying the Smoothness Conditions for a Given Scheme 261

the form

ωn = e
2πi
n == Cos

[
2π

n

]
+ Sin

[
2π

n

]
i.

The following theorem, from Davis [36], makes this relationship explicit.

THEOREM

8.6

An n × n circulant matrix C has n eigenvalues λ i of the form c[ωi
n] for 0 ≤

i<n. Moreover, their associated eigenvectors z i have the form {1, x , x2, . . . ,

xn−1}T , where x = ωi
n for 0 ≤ i < n.

Proof Consider the product of the circulant matrix C and the column vector
{1, x , x2, . . . , xn−1}T . By definition, the zeroth entry of the resulting column
vector is c [x]. If we restrict x to satisfy xn == 1, the j th entry of this product
can be rewritten as c [x]xn. More generally, the product of the matrix C and
the vector {1, x , x2, . . . , xn−1}T is exactly the vector c [x]{1, x , x2, . . . , xn−1}T ,
where x is one of the n solutions to the equation xn == 1.

To illustrate this theorem, consider a circulant matrix C of the form

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 1
1 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
1 0 0 0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Using Mathematica (), the reader can verify that this matrix has eigenvalues
{0, 1, 1, 3, 3, 4}. The associated generating function c[x] has the form 2 + x + x5. Eval-
uating c[x] at various powers of ω6 == 1

2 + i
√

3
2 also yields the desired eigenvalues.

One common trick used in manipulating c[x] is to reduce the degree of high powers
of x in c[x] via the relation xn == 1. This reduction does not affect the value of c[x] at
powers of ωh

n because (ωh
n)n == (ωn

n)h == 1. For our current example, the mask c[x]

can be rewritten as 2 + x + x−1. This trick is particularly useful in expressing c[x] in
such a way that it does not explicitly depend on n.

One nice feature of this analysis is that it can be generalized to block circulant
matrices. For example, consider an (m× m) block matrix (Ci j) whose components Ci j

262 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

are themselves (n × n) circulant matrices. If ci j is the zeroth row of the circulant
matrix Ci j , we can construct an (m × m) matrix of generating functions (ci j [x]) cor-
responding to the block matrix (Ci j). Now, the m n eigenvalues of the original block
circulant matrix (Ci j) correspond to the m eigenvalues of the matrix (ci j [x]). Each
of these m eigenvalues of (ci j [x]) is a function of x. Evaluating each of these m

functions at the n roots of unity yields the mn eigenvalues of (Ci j). If the vector
{z0[x], z1[x], . . . , zm−1[x]}T is one of the m right eigenvectors of (ci j [x]), then (Ci j) has
n associated right eigenvectors of the form

{z0[x], z0[x]x , . . . , z0[x]xn−1, 1
z1[x], z1[x]x , . . . , z1[x]xn−1,
. . . , . . . , . . . , . . . ,

zm−1[x], zm−1[x]x , . . . , zm−1[x]xn−1}T ,

(8.13)

where x = ωh
n for 0 ≤ h < n. As an example, consider a block circulant matrix of

the form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 1 1 0 0 0 0 0
1 2 1 0 0 0 0 1 0 0 0 0
0 1 2 1 0 0 0 0 1 0 0 0
0 0 1 2 1 0 0 0 0 1 0 0
0 0 0 1 2 1 0 0 0 0 1 0
1 0 0 0 1 2 0 0 0 0 0 1
0 0 0 0 0 0 4 1 0 0 0 1
0 0 0 0 0 0 1 4 1 0 0 0
0 0 0 0 0 0 0 1 4 1 0 0
0 0 0 0 0 0 0 0 1 4 1 0
0 0 0 0 0 0 0 0 0 1 4 1
0 0 0 0 0 0 1 0 0 0 1 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using Mathematica, the reader may verify that this block circulant matrix has the
twelve eigenvalues {0, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 6} (). The associated (2 × 2) matrix
of generating functions (ci j [x]) has the form(

2 + x + x−1 1
0 4 + x + x−1

)
.

Because this matrix is upper triangular, its eigenvalues (taken as functions of x) are
the entries of its diagonal (i.e., 2 + x + x−1 and 4 + x + x−1). Evaluating these two
eigenvalues at x = ωh

6 for 0 ≤ h < 6 yields the twelve eigenvalues of the original

8.3 Verifying the Smoothness Conditions for a Given Scheme 263

block circulant matrix. The eigenvectors of (ci j [x]) are independent of x and have
the form {1, 0} and {1, 2}. Therefore, the twelve eigenvectors of (Ci j) have the form

{1, x , x2, x3, x4, x5, 0, 0, 0, 0, 0, 0},
{1, x , x2, x3, x4, x5, 2, 2x , 2x2, 2x3, 2x4, 2x5},

where x = ωh
6 for 0 ≤ h < 6.

8.3.2 Computing Eigenvalues of Local Subdivision Matrices

Given the block circulant method described in the previous section, we can now
compute the eigenvalues and eigenvectors of the subdivision matrices for Loop’s
scheme (and its triangular variants). For Loop’s scheme, the neighborhood of an
n-valent extraordinary vertex v consists of the two-ring of v. The vertices in this
neighborhood can be partitioned into v plus three disjoint sets of n vertices with
indices i j of the form 10, 11, and 20 (see Figure 8.2). If we order the rows and
columns of the local subdivision matrix S according to this partition, the resulting
matrix has the form (for n == 4)

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − w[n] w[n]
n

w[n]
n

w[n]
n

w[n]
n 0 0 0 0 0 0 0 0

3
8

3
8

1
8 0 1

8 0 0 0 0 0 0 0 0

3
8

1
8

3
8

1
8 0 0 0 0 0 0 0 0 0

3
8 0 1

8
3
8

1
8 0 0 0 0 0 0 0 0

3
8

1
8 0 1

8
3
8 0 0 0 0 0 0 0 0

1
8

3
8

3
8 0 0 1

8 0 0 0 0 0 0 0

1
8 0 3

8
3
8 0 0 1

8 0 0 0 0 0 0

1
8 0 0 3

8
3
8 0 0 1

8 0 0 0 0 0

1
8

3
8 0 0 3

8 0 0 0 1
8 0 0 0 0

1
16

5
8

1
16 0 1

16
1
16 0 0 1

16
1
16 0 0 0

1
16

1
16

5
8

1
16 0 1

16
1

16 0 0 0 1
16 0 0

1
16 0 1

16
5
8

1
16 0 1

16
1
16 0 0 0 1

16 0

1
16

1
16 0 1

16
5
8 0 0 1

16
1

16 0 0 0 1
16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

264 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

Note that we have not assumed an explicit subdivision rule at the extraordinary
vertex v. Instead, we have written this rule so as to weight the vertex v by weight
1 − w[n] and the neighbors of v by weights w[n]

n .
Deleting the uppermost row and leftmost column of S yields a (3 × 3) block

circulant submatrix (Ci j), where 0 ≤ i < 3 and 0 ≤ j < 3. To compute the eigenvalues
and eigenvectors of S, we first compute the eigenvalues and eigenvectors of (Ci j)

and then extend these vectors to form eigenvectors of S. The eigenvalues and
eigenvectors of (Ci j) can be computed by examining the spectral structure of the
matrix (ci j [x]):

⎛⎜⎜⎜⎝
3
8 + 1

8 x + 1
8 x−1 0 0

3
8 + 3

8 x 1
8 0

5
8 + 1

16 x + 1
16 x−1 1

16 + 1
16 x−1 1

16

⎞⎟⎟⎟⎠ . (8.14)

This lower triangular matrix has three eigenvalues that correspond to the entries
on its diagonal: 3

8 + 1
8 x + 1

8 x−1, 1
8 , and 1

16 . Evaluating these three eigenvalues at
x = ωh

n for 0 ≤ h < n yields the corresponding 3n eigenvalues of (Ci j). For example,
if n == 4, the four eigenvalues of (Ci j) associated with 3

8 + 1
8 x + 1

8 x−1 are 5
8 , 3

8 , 1
8 ,

and 3
8 . The remaining eight eigenvalues of (Ci j) consist of four copies of 1

8 and four
copies of 1

16 .
Note that the n-fold symmetry of the mesh M used in defining S gave rise to

the block circulant structure of (Ci j). This symmetry also manifests itself during
the construction of the eigenvectors of (Ci j). In particular, the eigenvectors of the
matrix (ci j [x]) correspond to the restriction of the eigenvectors of (Ci j) to a sin-
gle sector of the underlying mesh M. The multiplication of the components of
these eigenvectors of (ci j [x]) by powers of x where xn == 1 corresponds to rotating
the components of this eigenvector in the complex plane to form the associated
eigenvector of (Ci j) defined over all n sectors of M.

The matrix (ci j [x]) of equation 8.14 has three eigenvectors of the form
{1, 3x

1+x , 1+13x+x2

2+5x+2x2
}, {0, x , 1 + x}, and {0, 0, 1}. The corresponding 3n eigenvectors of

(Ci j) are as shown in equation 8.13, with x being evaluated at ωh
n for 0 ≤ h < n. For

example, if n == 4, the four eigenvectors of (Ci j) corresponding to {0, x , 1 + x} have
the form

{0, 0, 0, 0, x , x2, x3, x4, (1 + x), (1 + x)x , (1 + x)x2, (1 + x)x3},

8.3 Verifying the Smoothness Conditions for a Given Scheme 265

where x = ih for 0 ≤ h < 4. The remaining eight eigenvectors of (Ci j) corresponding
to
{

1, 3x
1+x , 1+13x+x2

2+5x+2x2

}
and {0, 0, 1} are constructed in a similar manner.

Given these eigenvectors for (Ci j), we next form potential eigenvectors for the
subdivision matrix S by prepending an initial zero to these vectors. For the 3n − 3

eigenvectors (Ci j) corresponding to x taken at ωh
n where 0 < h < n, these extended

vectors have the property that they also annihilate the uppermost row of S. There-
fore, these extended vectors are eigenvectors of S whose associated eigenvalues are
simply the corresponding eigenvalues of (Ci j). Most importantly, the eigenvalue
3
8 + 1

8 x + 1
8 x−1 of (ci j [x]) gives rise to n − 1 eigenvalues of S of the form

3
8

+ 1
8

ωh
n + 1

8
ω−h

n ==
3
8

+ 1
4

Cos

[
2πh

n

]
for 0 < h < n. Note that these eigenvalues lie in the range (1

8 , 5
8) and reach a

maximum at h = 1, n − 1. In particular, we let λ[n] denote this maximal double
eigenvalue of S; that is,

λ[n] = 3
8

+ 1
4

Cos

[
2π

n

]
.

For appropriate choices of w[n], this double eigenvalue λ[n] is the subdominant
eigenvalue of the subdivision matrix S. Observe that the associated eigenvectors
used in defining the characteristic map are independent of the weight function
w[n]. (In the next section, we will show that the characteristic map defined by
these eigenvectors is regular.)

The remaining four of the 3n + 1 eigenvectors of S have entries that are con-
stant over each block of S. The four eigenvalues associated with these eigenvectors
are eigenvalues of the 4 × 4 matrix formed by summing any row of each block in
the matrix S; that is, ⎛⎜⎜⎜⎜⎜⎜⎝

1 − w[n] w[n] 0 0

3
8

5
8 0 0

1
8

3
4

1
8 0

1
16

3
4

1
8

1
16

⎞⎟⎟⎟⎟⎟⎟⎠ .

(Note that the 3 × 3 submatrix on the lower right is simply (ci j [1]).)
Because the eigenvalues of this matrix are 1, 5

8 − w[n], 1
8 , 1

16 , the full spectrum
of the local subdivision matrix S (and its inf inite counterpart S) has the form

266 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

1, λ[n], λ[n], 5
8 − w[n] with all of the remaining eigenvalues having an absolute value

less than λ[n] (). Our goal is to choose the weight function w[n] such that λ[n] >

| 5
8 − w[n]|. To this end, we substitute the definition of λ[n] into this expression and

observe that this inequality simplif ies to

1 − Cos
[

2π

n

]
4

< w[n] <
4 + Cos

[
2π

n

]
4

. (8.15)

Any choice for w[n] that satisf ies this condition yields a subdivision matrix S whose
spectrum has the form 1 > λ[n] == λ[n] > | 5

8 −w[n]|. Therefore, by Theorem 8.4, the
limit functions associated with such a scheme are smooth at extraordinary vertices.
For example, linear subdivision plus averaging (see section 7.3.1) causes the weight
function w[n] to be the constant 3

8 . This choice for w[n] satisf ies equation 8.15 for
all n > 3, and consequently linear subdivision plus averaging converges to smooth
limit functions at extraordinary vertices with valences greater than three. However,
for n == 3, the subdivision matrix S has the spectrum 1, 1

4 , 1
4 , 1

4 , . . . , and, as observed
previously, the resulting scheme is continuous, but not smooth, at the extraordinary
vertices of this valence. (An alternative choice for w[n] that satisf ies equation 8.15
for all valences and reproduces the uniform weight w[6] == 3

8 is w[n] = 3
n+2 .)

Loop’s subdivision rule uses a subtler choice for w[n]. In particular, Loop sets
the weight function w[n] to have the value 5

8 − λ[n] 2. This choice satisf ies equation
8.15 for all n ≥ 3 and yields a subdivision matrix S whose spectrum has the form
1, λ[n], λ[n], . . . , λ[n] 2, This particular choice for w[n] is motivated by an attempt
to define a subdivision rule that is C 2 continuous at extraordinary vertices. Unfor-
tunately, the eigenfunction associated with the eigenvalue λ[n] 2 does not reproduce
a quadratic function as required by Theorem 8.5, and therefore cannot be C 2 at the
extraordinary vertex v.

However, this associated eigenfunction does have the property that its curva-
ture is bounded (but discontinuous) at v (see Peters and Umlauf [118] for details).
For valences 3 ≤ n ≤ 6, the spectrum of S has the form 1, λ[n], λ[n], λ[n] 2, . . . (i.e.,
there are no other eigenvalues between λ[n] and λ[n] 2). Therefore, due to Theo-
rem 8.4, Loop’s scheme produces limit surfaces with bounded curvature for these
valences. This bound on the curvature is particularly important in some types of
milling applications. In a similar piece of work, Reif and Schröder [130] show that
the curvature of a Loop surface is square integrable, and therefore Loop surfaces
can be used in a finite element method for modeling the solution to thin shell
equations [22].

8.3 Verifying the Smoothness Conditions for a Given Scheme 267

An almost identical analysis can be used to derive the spectral structure for
Catmull-Clark subdivision (and its quadrilateral variants). The crux of the analysis
is deriving an analog to the 3 × 3 matrix of equation 8.14. For quad meshes, there
are 6n vertices in the two-ring of the vertex v (excluding v). If we order the indices
i j of the six vertices in a single quadrant as 10, 11, 20, 12, 21, and 22, the appropriate
6 × 6 matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
8 + 1

16 x + 1
16 x−1 1

16 + 1
16 x−1 0 0 0 0

1
4 + 1

4 x 1
4 0 0 0 0

9
16 + 1

64 x + 1
64 x−1 3

32 + 3
32 x−1 3

32
1
64 x−1 1

64 0

1
16 + 3

8 x 3
8

1
16 x 1

16 0 0

3
8 + 1

16 x 3
8

1
16 0 1

16 0

3
32 + 3

32 x 9
16

1
64 + 1

64 x 3
32

3
32

1
64

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Computing the eigenvalues and eigenvectors of this matrix and evaluating them
at x = ωh

n for 0 ≤ h < n leads to the desired spectral decomposition of S. Reif and
Peters [116] perform such an analysis in full detail and show that Catmull-Clark
subdivision produces C1 limit functions at extraordinary vertices of all valences.

8.3.3 Proving Regularity of the Characteristic Map

To complete our proof that Loop’s scheme produces smooth limit surfaces, we
must verify that the characteristic map for this scheme is regular at an extraordinary
vertex of arbitrary valence. In this section, we outline a proof of regularity for the
characteristic map arising from Loop’s scheme. The basic approach is to compute
the pair of eigenvectors corresponding to the double eigenvalue λ[n] and show
that the Jacobian of the resulting characteristic map ψ [h, x, y] has the same sign
everywhere; that is,

Det

[(
ψ (1,0)

s [h, x, y] ψ (0,1)
s [h, x, y]

ψ
(1,0)
t [h, x, y] ψ

(0,1)
t [h, x, y]

)]
�= 0 (8.16)

for all x, y ≥ 0, where ψ = {ψs, ψt}. This condition on the Jacobian of ψ prevents
ψ from folding back on itself locally and is suff icient to guarantee that the map is
regular (see Fleming [63] for more details). In practice, we orient the meshes used

268 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

in computing this Jacobian such that the resulting determinant is strictly positive
for regular characteristic maps.

As observed in the previous section, the range on which this condition must
be verif ied can be reduced signif icantly via equation 8.8. Because λ[n] is real and

positive, applying the aff ine transformation
(

λ[n] 0
0 λ[n]

)
to the map ψ does not affect

its regularity. Thus, if we can prove that ψ satisf ies equation 8.16 on an annulus
surrounding v of suff icient width, the recurrence of equation 8.8 implies that ψ sat-
isf ies equation 8.16 everywhere except at v. Because the subdominant eigenvectors
used in defining the characteristic map arise from the principal nth root of unity
ωn, this annulus winds around v exactly once, and the corresponding characteristic
map ψ is also regular at the origin.

For surface schemes supported on the two-ring, this annulus typically consists
of those faces that lie in the two-ring but not in the one-ring of v. The advantage
of this choice is that the behavior of the scheme on this annulus is determined
entirely by the uniform subdivision rules used in S. For triangular schemes, such
as Loop’s scheme, this annulus consists of the region 1 ≤ x + y ≤ 2 composed of
3n triangular faces with 3 triangles per wedge (see Figure 8.7). In this section, we
sketch a computational proof that the characteristic map ψ for Loop’s scheme (and
its triangular variants) is regular. This method is very similar to an independently
derived method given in Zorin et al. [171]. Variants of either the current method
or Zorin’s method can be used to prove that the characteristic map for quadrilateral
schemes is also regular.

Our first task in this proof is to compute the two eigenvectors used in defining
the characteristic map, that is, the eigenvectors associated with the double eigen-
value λ[n]. In particular, we need the entries of these eigenvectors over the three-
ring of the extraordinary vertex v because this ring determines the behavior of the
characteristic map on the two-ring of v (i.e., the annulus 1 ≤ x + y ≤ 2). Recall that
this double eigenvalue arose from evaluating the eigenvalue 1+3x+x2

8x of the matrix
(ci j [x]) of equation 8.14 at x = ωn and x = ω−1

n . Extending the matrix (ci j [x]) to the

Figure 8.7 The annulus used in verifying regularity of the characteristic map for Loop’s scheme.

8.3 Verifying the Smoothness Conditions for a Given Scheme 269

three-ring of v yields a new matrix of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
8 + 1

8 x + 1
8 x−1 0 0 0 0 0

3
8 + 3

8 x 1
8 0 0 0 0

5
8 + 1

16 x + 1
16 x−1 1

16 + 1
16 x−1 1

16 0 0 0

1
8 + 3

8 x 3
8

1
8 x 0 0 0

3
8 + 1

8 x 3
8

1
8 0 0 0

3
8

1
8 + 1

8 x−1 3
8 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now, the eigenvector associated with the eigenvalue 1+3x+x2

8x for this extended
matrix is the vector{

1,
3x

1 + x
,

1 + 13x + x2

2 + 5x + 2x2
,

x(2 + 32x + 87x2 + 55x3 + 7x4)
(1 + x)(2 + 11x + 19x2 + 11x3 + 2x4)

,

x(7 + 55x + 87x2 + 32x3 + 2x4)
(1 + x)(2 + 11x + 19x2 + 11x3 + 2x4)

,
3x(5 + 23x + 5x2)

2 + 11x + 19x2 + 11x3 + 2x4

}
.

Evaluating this eigenvector at x = ωn yields a complex eigenvector of the form
z1 + iz2, where z1 and z2 are the real eigenvectors associated with the double eigen-
value λ[n]. (Evaluating at x = ω−1

n yields a complex conjugate eigenvector of the
form z1 − iz2.) As observed previously, these real eigenvectors z1 and z2 define the
behavior of the characteristic map on a single sector of M. To construct the char-
acteristic map for all n sectors, these eigenvectors can be extended to eigenvectors
of S by multiplying by powers of xh for 0 < h < n. Because xn == 1, the action of
this multiplication is to rotate the entries of z1 + iz2 in the complex plane and make
n copies of a single sector. Figure 8.7 shows a plot of the mesh resulting from this
rotation for valences ranging from 3 to 7.

To prove regularity of the corresponding characteristic maps ψ, we must show
that ψ satisf ies the Jacobian condition of equation 8.16 on the darkened annulus of
Figure 8.7 corresponding to 1 ≤ x + y ≤ 2 for 0 ≤ h < n. Given the n-fold rotational
symmetry of ψ, we can restrict our regularity analysis to the two gray triangles in
this annulus of Figure 8.7. The behavior of ψ on these two triangles is determined
completely by the 4×4 submesh containing this pair of triangles. Figure 8.8 depicts
these submeshes for extraordinary vertices of valences 3 ≤ n ≤ 7.

Our final task is to show that the Jacobian condition of equation 8.16 holds over
the gray regions in question. Due to the tensor product structure of these 4×4 sub-
meshes, this verif ication can be done quite easily. Because the uniform subdivision

270 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

Figure 8.8 4 × 4 submeshes used in verifying regularity.

rules for our triangular schemes are based on box splines, we can compute the
directional derivatives of ψ (i.e. ψ (1,0) and ψ (0,1)) and represent these derivatives as
box splines of lower order. The coeff icients of these derivative schemes are formed
by computing directional differences between adjacent control points with respect
to the two coordinate directions. Because the basis functions associated with the
directional derivative are non-negative, the maximum and minimum values of the
four entries in the Jacobian matrix can be bounded using the convex hull property.
Representing these bounds as an interval, we can have Mathematica compute the
determinant of this matrix of intervals.

As a univariate example, consider the problem of proving regularity for the
nonuniform curve scheme of our running example. The eigenvector z1 associated
with the subdominant eigenvalue λ1 == 1

2 had the form {. . . , −3, −2, −1, 1
3 , 2, 4,

6, . . .}. If ψ [h, x] is the characteristic map for this scheme (i.e., the limit function
associated with this eigenvector z1), we must show that the Jacobian of ψ [h, x],
ψ (1)[h, x] has the same sign for all x ≥ 0 where h = 0, 1. By applying equation 8.8,
this condition can be reduced to showing that ψ (1)[h, x] has the same sign for
2 ≤ x < 4 where h = 0, 1. (Note that we use the annulus [2, 4] in place of [1, 2]

because the subdivision rules for the curve scheme are uniform over this larger
interval.) The subvectors {−5, −4, −3, −2, −1} and {2, 4, 6, 8, 10} of z1 determine the
behavior of ψ [h, x] on the intervals [2, 4] where h = 0, 1. To bound ψ (1)[x] on these
intervals, we observe that the differences of consecutive coeff icients in these sub-
vectors are the coeff icients of the uniform quadratic B-spline corresponding to
ψ (1)[h, x]. For h == 0, these differences are all −1, and therefore ψ (1)[0, x] == − 1 for
2 ≤ x < 4. Likewise, for h == 1, the maximum and minimum of these differences
are 2, and therefore ψ (1)[1, x] == 2 for 2 ≤ x < 4. Thus, ψ [h, x] is regular for our curve
example.

In the bivariate case, we store the 4 × 4 submesh in a positive orientation and
compute an interval that bounds the value of the Jacobian using this method. If
this interval is strictly positive, the Jacobian is positive over the entire gray region.

8.3 Verifying the Smoothness Conditions for a Given Scheme 271

If the interval is strictly negative, the Jacobian test fails. If the interval contains zero,
the gray region is recursively subdivided into four subregions using the subdivision
rules associated with the schemes. The test is then applied to each subregion, with
failure on any subregion implying violation of the Jacobian condition.

The associated implementation contains the Mathematica functions that im-
plement this test (). The first function, jacobian, returns an interval bound on the
value of the Jacobian for a given 4×4 mesh. The second function, regular, recursively
applies jacobian using the uniform subdivision rule associated with the scheme. The
user can test whether the characteristic map ψ satisf ies regular for any valence n.

Ultimately, we would like to conclude that ψ is regular for all valences n ≥ 3.
One solution would be to take the limit of the 4 × 4 mesh associated with our gray
region as n → ∞ and then show that this limiting mesh satisf ies the Jacobian con-
dition. Unfortunately, the entries in the second eigenvector z2 (i.e., the imaginary
part of the complex eigenvector z) converge to zero as n → ∞. The effect on the
associated 4 × 4 mesh is to compress this mesh toward the s axis. The solution to
this problem is to scale the t component of the characteristic map by a factor of

1
Sin[2π

n]
(i.e., divide z2 by Sin[2π

n]). This division does not affect the regularity of the

map ψ and stretches the mesh in such a way that a unique limit mesh does exist as
n → ∞. Figure 8.9 shows this normalized mesh for n = 8, 16, 32, ∞.

Now, we can complete our proof of regularity by explicitly testing regularity
for valences 3 ≤ n ≤ 31. Then, using Mathematica, we can compute this normalized
4 × 4 mesh as a symbolic function of n. Finally, we can verify that all character-
istic maps for valence n ≥ 32 are regular by calling the function regular on this
symbolic normalized mesh with n == Interval [{32, ∞}]. The associated implemen-
tation performs these calculations and confirms that ψ is regular for all valences

n ≥ 3 ().

Figure 8.9 Nonuniform scaling to obtain a convergent submesh as n → ∞.

272 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

8.4 Future Trends in Subdivision

This book has covered only the basics of subdivision. One of the exciting aspects
of subdivision is that it is an area in which research is actively taking place. In this
brief conclusion, we outline some of these research areas.

8.4.1 Solving Systems of Physical Equations

Chapters 4, 5, and 6 developed subdivision schemes that converge to the solutions
of a range of physical problems. The basic approach in these chapters was to con-
struct subdivision schemes that simulated the behavior of either a multilevel f inite
difference solver or a multilevel f inite element solver. As the authors have shown in
[162] and [163], these schemes are essentially a special type of multigrid method in
which the prediction operator has been customized to the particular physical prob-
lem. For graphical applications, this predictor is accurate enough that the smoothing
and coarse grid correction steps of traditional multigrid can be skipped. In this vein,
one area that is ripe for further research is the connection between subdivision and
multigrid. For example, techniques from traditional multigrid might lead to new,
interesting types of subdivision schemes. Conversely, techniques from subdivision
might lead to advances in multigrid solvers.

Another interesting possibility is the construction of f inite element schemes
whose associated bases are defined solely through subdivision. Chapter 6 includes
two nonuniform examples of this approach: one for natural cubic splines and one
for bounded harmonic splines. Although both of these examples are functional, a
more interesting possibility is applying this idea to shapes defined as parametric
meshes. Following this approach, the solution to the associated physical problem
would be represented as an extra coordinate attached to the mesh. The advantage
of this method is that it unif ies the geometric representation of a shape and its
f inite element representation.

8.4.2 Adaptive Subdivision Schemes

Another area of subdivision that is ripe with promise is that of adaptive subdivision.
For univariate spline schemes, the most powerful type of adaptive subdivision in-
volves knot insertion. Given a set of knots M0 and a vector of control points p0, such
spline schemes typically construct a function p[x] that approximates the entries of
p0 with breakpoints at the knots of M0. Given a new knot set M1 that contains M0,

8.4 Future Trends in Subdivision 273

knot insertion schemes compute a new vector of control points p1 that represent
the same function p[x]. As in the case of subdivision, the vectors p0 and p1 are
related via the matrix relation p1 = S0 p0, where S0 is a knot insertion matrix that
depends on the knot sets M0 and M1. Notice that in this framework subdivision is a
special instance of knot insertion in which the number of knots is doubled during
each insertion step.

The knot insertion scheme for univariate B-splines is known as the Oslo algo-
rithm [24]. Whereas variants of the Oslo algorithm are known for a range of univari-
ate splines (e.g., exponential B-splines [89]), instances of knot insertion schemes
for bivariate splines are much more diff icult to construct. One fundamental diff i-
culty is determining the correct analog of a knot in the bivariate case. Should the
analog be a partition of the plane into polygonal pieces or a set of f inite points?
The B-patch approach of Dahmen et al. [35] uses the latter approach. Given a set
of knots, it constructs a locally defined piecewise polynomial patch with vertices
at the given knots. Unfortunately, it has proven diff icult to generalize this method
to spline surfaces consisting of multiple patches. In general, the problem of building
spline surfaces with fully general knot insertion methods remains open.

Another approach to adaptive subdivision is to construct schemes that allow
for smooth transitions between uniform meshes of different levels. For example,
both the 4-8 scheme of Velho et al. [153] and the

√
3 scheme of Kobbelt [85] allow

the user to subdivide only locally specif ied portions of a uniform mesh. The ad-
vantage of this approach is that the resulting meshes need be adapted only in areas
of interest. The drawback of these approaches is that they abandon the piecewise
functional representation that makes analyzing B-splines easier. For example, con-
structing some type of piecewise analytic representation for the scaling functions
underlying adaptive

√
3 subdivision is very diff icult. Ideally, a bivariate scheme for

adaptive subdivision would capture all of the nice aspect of knot insertion for uni-
variate B-splines: underlying function spaces, fully irregular knot geometry, local
support, maximal smoothness, and so on.

8.4.3 Multiresolution Schemes

Another area that is intimately related to subdivision is multiresolution analysis.
Given a fine mesh {Mk, pk}, a multiresolution scheme typically computes a coarse
mesh {Mk−1, pk−1} and a “detail” mesh {Mk, qk−1} via matrix equations

pk−1 = Ak−1 pk,
qk−1 = Bk−1 pk.

274 C H A P T E R 8 Spectral Analysis at an Extraordinary Vertex

The matrices Ak−1 and Bk−1, known as analysis f ilters, typically depend on the
topology of the fine mesh Mk. If these filters are chosen appropriately, the coarse
mesh {Mk−1, pk−1} forms a “good” approximation to the fine mesh {Mk, pk}. The
detail mesh {Mk, qk−1} encodes the differences between the meshes {Mk−1, pk−1} and
{Mk, pk}. The process can be repeated k times to yield a base mesh {M0, p0} plus k

detail meshes {Mj +1, qj } where 0 ≤ j < k. The analysis process can be reversed via
an inverse synthesis process. Expressed in matrix form, this relation is

pk = Sk−1pk−1 + Tk−1qk−1.

The matrices Sk−1 and Tk−1, known as synthesis f ilters, typically depend on the topol-
ogy of the coarse mesh Mk−1. The subdivision matrix Sk−1 maps the vector pk−1 into
the vector pk, whereas the matrix Tk−1 expands the detail coeff icients onto the
level k mesh. In the uniform case, there has been a massive amount of work on the
relationship between subdivision and multiresolution analysis. Stollnitz et al. [148]
and Strang et al. [150] give nice introductions to this topic.

One important limitation of most work on multiresolution analysis is that it
assumes a functional domain. Subdivision schemes based on polyhedral meshes
avoid this functional limitation. The existence of purely matrix schemes leads to the
following problem: given a subdivision matrix Sk−1, choose the remaining synthesis
matrix Tk−1 such that the analysis matrices Ak−1 and Bk−1 are sparse. The sparsity
restriction allows the filters to be applied eff iciently even for large meshes. Both
Lounsbery et al. [100] and Schröder et al. [136] consider this problem for the case
of interpolatory schemes, whereas Dahmen and Micchelli [34] and Warren [159]
consider the more general case of approximating schemes. Note that any filters that
solve this problem can be generalized to a range of f ilters using the lifting scheme
of Schröder et al. [136].

The drawback of these previous schemes is that they assume full subdivision of
the meshes involved. A more elegant approach would be to combine adaptive sub-
division with multiresolution analysis. Guskov et al. [69] propose a first step in this
direction: a multiresolution scheme that incorporates adaptive subdivision based
on minimizing a variational functional. Again, more work in this area is needed.

8.4.4 Methods for Traditional Modeling Operations

Currently, subdivision surfaces are very popular in computer graphics applications
due to their ability to construct interesting shapes with a minimal amount of ef-
fort. On the other hand, NURBS (nonuniform rational B-splines) remain dominant

8.4 Future Trends in Subdivision 275

in the traditional areas of geometric modeling, such as computer-aided design. In
this area, computations such as Boolean set operations, surface/surface intersection,
trimming, offset, and blending are very important. To facilitate the use of subdi-
vision surfaces in this area, algorithms for computing these operations need to be
developed.

One preliminary piece of work on the problem of surface/surface intersection
is that of Litke et al. [98]. This paper describes a method based on the “combined”
subdivision scheme of Levin [94] and exactly reproduces the intersection curve of
two subdivision surfaces. Away from the curve, the original subdivision surfaces
are approximated using a multiresolution scheme based on quasi-interpolation.
More generally, developing methods for approximating existing geometry using
subdivision remains a high priority.

8.4.5 C2 Subdivision Schemes for Polyhedral Meshes

Probably the biggest problem in subdivision is that of constructing a surface scheme
whose limit surfaces are C2 at extraordinary vertices. Catmull-Clark and Loop
subdivision yield limit surfaces that are C2 everywhere except at extraordinary ver-
tices. At these vertices, these schemes deliver surfaces that are only C1. Although
Prautzsch [122] and Reif [129] have proposed methods that are capable of produc-
ing limit surfaces that are C2 everywhere, the uniform subdivision rules associated
with these schemes converge to piecewise polynomial surfaces with a high degree
(i.e., quintic in the C2 case). Moreover, the resulting limit surfaces are relatively
inflexible at the extraordinary vertex v because they generate a single degenerate
polynomial patch in the neighborhood of v. (For Catmull-Clark and Loop subdivi-
sion, n distinct surface patches meet at an extraordinary vertex of valence n.)

Ideally, we desire a C2 scheme that has a f lexibility similar to that of Catmull-
Clark or Loop subdivision with subdivision rules of a similar support. Based on the
negative results of Prautzsch and Reif [124], this generalization is most likely not a
stationary scheme. One promising line of attack for this problem lies in construct-
ing nonstationary schemes that are C2 at extraordinary vertices. For example, the
nonstationary scheme of section 7.2.3 converges to surfaces of revolution that are
C2 at their poles. Note that this approach is not a complete solution, in that the
resulting surfaces of revolution are always spherical (or elliptical) at their poles. As
usual, more work remains to be done in this area.

References

[1] Abhyankar, S. and Bajaj, C.: Automatic parameterization of rational curves and
surfaces {III}: algebraic plane curves. Computer-Aided Geometric Design 5,
pp. 309–321, 1988.

[2] Abi-Ezzi, S.: The graphical processing of B-splines in a highly dynamic environ-
ment. Ph.D. thesis, Rensselaer Design Research Center, Rensselaer Polytech-
nic Institute, 1989.

[3] Alfeld, P.: Scattered data interpolation in three or more variables. In Lyche, T.
and Schumaker, L. (eds.): Mathematical methods in computer-aided geometric
design, pp. 1–33, New York: Academic Press, 1989.

[4] Alfhors, L.: Complex analysis, second edition. New York: McGraw-Hill, 1966.
[5] Bajaj, C. and Warren, J.: A smooth subdivision scheme for hexahedral meshes.

To appear in The Visual Computer, 2001.
[6] Ball, A. and Storry, D.: Conditions for tangent plane continuity over recursively

generated B-spline surfaces. ACM Transactions on Graphics 7(2), pp. 83–102,
1988.

[7] Ball, A. and Storry, D.: An investigation of curvature variation over recursively
generated B-spline surfaces. ACM Transactions on Graphics 9(4), pp. 424–
437, 1990.

[8] Barnsley, M.: Fractals everywhere. Academic Press, 1988.
[9] Bartels, R., Beatty, J. and Barsky, B.: An introduction to splines for use in

computer graphics and geometric modeling. San Francisco: Morgan Kaufmann,
1987.

[10] Biermann, H., Levin, A. and Zorin, D.: Piecewise smooth subdivision surfaces
with normal control. Proceedings of SIGGRAPH 2000, Annual Con-
ference Series, pp. 113–120. New York: Addison Wesley Longman,
2000.

[11] Böhm, W.: On the efficiency of knot insertion algorithms. Computer-Aided
Geometric Design 2(1–3), pp. 141–144, 1985.

[12] Bracewell, R.: The Fourier transform and its applications, third edition. New
York: McGraw-Hill, 1999.

[13] Brandt, A.: Multi-level adaptive solutions to boundary value problems. Mathe-
matics of Computations 31, pp. 333–390, 1977.

[14] Brezzi, F. and Fortin, M.: Mixed and hybrid finite element methods. Berlin:
Springer-Verlag, 1991.

276

References 277

[15] Briggs, W.: A multigrid tutorial. SIAM, 1987.
[16] Catmull, E. and Clark, J.: Recursively generated B-spline surfaces on arbitrary

topological meshes. Computer Aided Design 16(6), pp. 350–355, 1978.
[17] Cavaretta, A., Dahmen, W. and Micchelli, C.: Stationary subdivision. Mem-

oirs of the AMS 453, AMS, 1991.
[18] Chaikin, G.: An algorithm for high-speed curve generation. Computer Graphics

and Image Processing 3, pp. 346–349, 1974.
[19] Chen, J. and Lobo, N.: Toward interactive-rate simulation of fluid with moving

obstacles using Navier-Stokes equations. Graphical Models and Image Process-
ing 57(2), pp. 107–116, 1995.

[20] Chiba, N. et al.: Visual simulation of water currents using a particle-based
behavioral model. Journal of Visualization and Computer Animation 6,
pp. 155–171, 1995.

[21] Chopard, B. and Droz, M.: Cellular automata modeling of physical systems.
New York: Cambridge University Press, 1998.

[22] Cirak, F., Ortiz, M. and Schröder, P.: Integrated modeling, finite-element analy-
sis, and design for thin-shell structures using subdivision. To appear in Computer
Aided Design, 2001.

[23] Cline, A. K.: Scalar and planar-valued curve fitting using splines under tension.
Communications of the ACM 17, pp. 218–220, 1974.

[24] Cohen, E., Lyche, T. and Riesenfeld, R.: Discrete B-splines and subdivision
techniques in computer-aided geometric design and computer graphics. Com-
puter Graphics and Image Processing 14, pp. 87–111, 1980.

[25] Cohen, E., Lyche, T. and Riesenfeld, R.: Discrete box splines and refinement
algorithms. Computer-Aided Geometric Design 1, pp. 131–148, 1984.

[26] Cohen, E., Lyche, T. and Riesenfeld, R.: Cones and recurrence relations for
simplex splines. Constructive Approximation 3, pp. 131–141, 1987.

[27] Cormen, T., Leiserson, C. and Rivest, R.: Introduction to algorithms. New
York: McGraw-Hill, 1990.

[28] Curry, H. and Schöenberg, I.: On Polya frequency functions IV: the fundamen-
tal spline functions and their limits. Journal de Analyse Math. 17, pp. 71–107,
1966.

[29] Dahmen, W.: Multivariate B-splines: recurrence relations and linear combina-
tions of truncated powers. In Schempp, W. and Zeller, K. (eds.): Multivariate
Approximation Theory, Basel: Birkhaser, pp. 64–82, 1979.

[30] Dahmen, W.: On multivariate B-splines. SIAM Journal of Numerical Analysis
17, pp. 179–191, 1980.

[31] Dahmen, W. and Micchelli, C.: Computation of inner products on multivariate
B-splines. Numerical and Functional Analysis and Optimization 3, pp. 357–
375, 1981.

[32] Dahmen, W. and Micchelli, C.: Recent progress in multivariate splines. In Chui,
C., Schumaker, L., and Ward, J. (eds.): Approximation theory IV, New York:
Academic Press, pp. 27–121, 1983.

278 References

[33] Dahmen, W. and Micchelli, C.: Subdivision algorithms for the generation of
box spline surfaces. Computer-Aided Geometric Design 1(2), pp. 115–129,
1984.

[34] Dahmen, W. and Micchelli, C.: Banded matrices with banded inverses II:
locally finite decomposition of spline spaces. Constructive Approximation 9,
pp. 263–281, 1993.

[35] Dahmen, W., Micchelli, C. and Seidel, H.: Blossoming begets B-splines built
better by B-patches. Mathematics of Computation 59, pp. 265–287, 1993.

[36] Davis, P.: Circulant matrices, second edition. New York: Chelsea Publications,
1994.

[37] De Boor, C.: On calculating with B-splines. Journal of Approximation Theory
6, pp. 50–62, 1972.

[38] De Boor, C.: A practical guide to splines. New York: Springer-Verlag, 1978.
[39] De Boor, C. and Höllig, K.: B-splines from parallelepipeds. Journal d’Analyse

Math. 42, pp. 99–115, 1983.
[40] De Boor, C., Höllig, K. and Riemenschneider, S.: Box splines. New York:

Springer-Verlag, 1993.
[41] De Boor, C. and Lynch, R.: On splines and their minimum properties. Journal

of Mathematics and Mechanics 15, pp. 953–968, 1966.
[42] DeRose, T., Kass, M. and Truong, T.: Subdivision surfaces in character anima-

tion. Proceedings of SIGGRAPH 98, Annual conference series, New York:
ACM Press, pp. 85–94, 1998.

[43] Deslauriers, G. and Dubuc, S.: Symmetric iterative interpolation processes. Con-
structive Approximation 5, pp. 49–68, 1989.

[44] DoCarmo, M.: Differential geometry of curves and surfaces. New York:
Prentice-Hall, 1976.

[45] Doo, D. and Sabin, M.: Behavior of recursive division surfaces near extraordi-
nary points. Computer Aided Design 10(6), pp. 356–360, 1978.

[46] Duchon, J.: Splines minimizing rotation invariant semi-norms in Sobolev spaces.
In Keller, M. (ed.): Constructive theory of functions of several variables, pp. 85–
100, Berlin: Springer-Verlag, 1977.

[47] Dyn, N.: Interpolation of scattered data by radial functions. In Chui, C.,
Schumaker, L. and Utreras, F.: Topics in multivariate approximation, New
York: Academic Press, pp. 47–61, 1987.

[48] Dyn, N.: Interpolation and approximation by radial and related functions.
In Chui, C., Schumaker, L. and Ward, J. (eds.): Approximation theory VI,
volume 1, New York: Academic Press, pp. 211–234, 1989.

[49] Dyn, N.: Subdivision schemes in computer-aided geometric design. In Light, W.
(ed.): Advances in numerical analysis II, New York: Oxford University Press,
pp. 36–104, 1992.

[50] Dyn, N., Gregory, J. and Levin, D.: A four-point interpolatory subdivision
scheme for curve design. Computer-Aided Geometric Design 4, pp. 257–268,
1987.

References 279

[51] Dyn, N., Gregory, J. and Levin, D.: Analysis of uniform binary subdivi-
sion schemes for curve design. Constructive Approximation 7, pp. 127–147,
1991.

[52] Dyn, N., Hed, S. and Levin, D.: Subdivision schemes for surface interpolation.
In Conte, A. et al. (eds.): Workshop on computational geometry, pp. 97–118,
World Scientific Publishing, 1993.

[53] Dyn, N. and Levin, D.: The subdivision experience. In Laurent, P., LeMéhauté,
A. and Schumaker, L. (eds.): Curves and surfaces II, Wellesley, MA: A. K.
Peters, 1991.

[54] Dyn, N. and Levin, D.: Analysis of asymptotically equivalent binary subdi-
vision schemes. Journal of Mathematical Analysis and Applications 193,
pp. 594–621, 1995.

[55] Dyn, N., Levin, D. and Gregory, J.: A butterfly subdivision scheme for sur-
face interpolation with tension control. ACM Transactions on Graphics 9(2),
pp. 160–169, 1990.

[56] Dyn, N., Levin, D. and Rippa, S.: Numerical procedures for surface fitting of
scattered data by radial functions. SIAM Journal of Statistical Computing 7,
pp. 639–659, 1986.

[57] Dyn, N. and Ron, A.: Multiresolution analysis by infinitely differentiable com-
pactly supported functions. CMS TSR #93-4, Madison, WI: University of
Wisconsin Press, 1992.

[58] Evans, L.: Partial differential equations. New York: American Mathematical
Society, 1998.

[59] Farin, G.: Curves and surfaces for CAGD: a practical guide, third edition. New
York: Academic Press, 1992.

[60] Farin, G.: NURBS: From projective geometry to practical use, second edition.
Wellesley, MA: A. K. Peters, 1999.

[61] Fields, J.: Theory of the algebraic functions of a complex variable. Berlin: Mayer
& Müller, 1906.

[62] Firby, P. and Gardiner, C.: Surface topology. New York: John Wiley, 1982.
[63] Flemming, W.: Functions of several variables. New York: Springer-Verlag,

1977.
[64] Foster, N. and Metaxas, D.: Realistic animation of liquids. Graphical Models

and Image Processing 58(5), pp. 471–483, 1996.
[65] Foster, N. and Metaxas, D.: Modeling the motion of a hot, turbulent gas. Pro-

ceedings of SIGGRAPH 97. Annual Conference Series, pp. 181–188, New
York: Addison Wesley, 1997.

[66] Franke, R.: Scattered data interpolation: test of some methods. Mathematics of
Computation 38, pp. 181–200, 1982.

[67] Golub, G. and Van Loan, C.: Matrix computations, third edition. Baltimore:
Johns Hopkins University Press, 1996.

[68] Goodman, T.: Polyhedral splines. In Dahmen, W., Gasca, M. and Micchelli,
C. (eds.): Computation of curves and surfaces, pp. 347–382, 1990.

280 References

[69] Guskov, I., Schröder, P. and Sweldens, W.: Multiresolution signal processing for
meshes. Proceedings of SIGGRAPH 99, Annual Conference Series, pp. 325–
334. New York: Addison Wesley Longman, 1999.

[70] Habib, A. and Warren, J.: Edge and vertex insertion for a class of C1 subdivision
surfaces. Computer-Aided Geometric Design 16(4), pp. 223–247, 1999.

[71] Halstead, M., Kass, M. and DeRose, T.: Efficient, fair interpolation using
Catmull-Clark surfaces. Proceedings of SIGGRAPH 93, Annual Conference
Series. New York: ACM Press, pp. 35–44, 1993.

[72] Harder, R. and Desmarias, R.: Interpolation using surface splines. Journal of
Aircraft 9, pp. 189–197, 1972.

[73] Holt, F.: Towards a curvature-continuous stationary subdivision algorithm.
Z. Angew. Math. Mech. 76, pp. 423–424, 1996.

[74] Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J.,
Schweitzer, J. and Stuetzle, W.: Piecewise smooth surface reconstruction. Pro-
ceedings of SIGGRAPH 94, Annual Conference Series. New York: ACM
Press, pp. 295–302, 1994.

[75] Horn, R. and Johnson, C.: Topics in matrix analysis. New York: Cambridge
University Press, 1991.

[76] Hoschek, J. and Lasser, D.: Fundamentals of computer-aided geometric design.
Boston: A. K. Peters, 1993.

[77] Jesperson, D.: Multigrid methods for partial differential equations. Studies in
Numerical Analysis 24, 1984.

[78] Kass, M. and Miller, G.: Rapid, stable fluid dynamics for computer graphics.
Proceedings of SIGGRAPH 89, Annual Conference Series, pp. 49–57, New
York: Addison Wesley, 1989.

[79] Kelly, C. T.: Iterative methods for linear and nonlinear systems. Philadelphia:
Society of Industrial and Applied Mathematics, 1995.

[80] Kobbelt, L.: Interpolatory refinement by variational methods. In Chui, C. and
Schumaker, L. (eds.): Approximation theory VIII, volume two: wavelets and
multilevel approximation, World Scientific Publishing, pp. 217–224, 1995.

[81] Kobbelt, L.: Interpolating subdivision on open quadrilateral nets with arbitrary
topology. Computer Graphics Forum 15, pp. 409–420, 1996.

[82] Kobbelt, L.: A variational approach to subdivision. Computer-Aided Geo-
metric Design 13(8), pp. 743–761, 1996.

[83] Kobbelt, L.: Fairing by finite difference methods. In Daehlen, M., Lyche, T.
and Schumaker, L. (eds.): Mathematical methods for curves and surfaces II,
Nashville: Vanderbilt University Press, 1998.

[84] Kobbelt, L.: Discrete fairing and variational subdivision for freeform surface
design. The Visual Computer 16(3-4), pp. 142–150, 2000.

[85] Kobbelt, L.:
√

3-subdivision. Proceedings of SIGGRAPH 2000, Annual Con-
ference Series, pp. 103–112, New York: Addison Wesley Longman, 2000.

[86] Kobbelt, L., Campagna, S., Vorsatz, J. and Seidel, H.: Interactive multi-
resolution modeling on arbitrary meshes. Proceedings of SIGGRAPH 98,
Annual Conference Series, pp. 105–114. New York: Addison Wesley, 1998.

References 281

[87] Kobbelt, L. and Schröder, P.: A multiresolution framework for variational sub-
division. ACM Transactions on Graphics 17(4), pp. 209–237, 1998.

[88] Koch, P. and Lyche, T.: Construction of exponential tension B-splines of arbitrary
order. In Laurent, P., LeMéhauté, A. and Schumaker, L. (eds.): Curves and
surfaces, New York: Academic Press, 1991.

[89] Koch, P., Lyche, T., Neamtu, M. and Schumaker, L.: Control curves and knot
insertion for trigonometric splines. Advances in Computational Mathematics
4, pp. 405–424, 1995.

[90] Kunz, E.: Introduction to commutative algebra and algebraic geometry. Boston:
Birkhäuser, 1985.

[91] Lakatos, I.: Proofs and refutations: the logic of mathematical discovery. New
York: Cambridge University Press, 1976.

[92] Lancaster, P. and Tismenetsky, M.: Theory of matrices. New York: Academic
Press, 1985.

[93] Lane, J. and Riesenfeld, R.: A theoretical development for the computer gen-
eration and display of piecewise polynomial functions. Transactions on Pattern
Analysis and Machine Intelligence 2(1), pp. 35–46, 1980.

[94] Levin, A.: Combined subdivision schemes for the design of surfaces satisfying
boundary conditions. Computer-Aided Geometric Design 16(5), pp. 345–
354, 1999.

[95] Levin, A.: Interpolating nets of curves by smooth subdivision surfaces. Computer
Proceedings of SIGGRAPH 1999, Annual Conference Series, pp. 57–64,
New York: Addison Wesley, 1999.

[96] Levy, H. and Lessman, F.: Finite difference equations. Dover Publications,
1992.

[97] Liggett, J.: Fluid mechanics. New York: McGraw-Hill, 1994.
[98] Litke, N., Levin, A. and Schröder, P.: Trimming for subdivision surfaces.

Computer-Aided Geometric Design 18, pp. 463–481, 2001.
[99] Loop, C. T.: Smooth subdivision surfaces based on triangles. Master’s thesis,

Department of Mathematics, University of Utah, August 1987.
[100] Lounsbery, M., DeRose, T. and Warren, J.: Multiresolution analysis for surfaces

of arbitrary topological type. ACM Transactions on Graphics 16(1), pp. 34–73,
1997.

[101] MacCracken, R. and Joy, K.: Free-form deformations of solid primitives with
constraints. Proceedings of SIGGRAPH 1996, Annual Conference Series,
pp. 181–188, New York: Addison Wesley Longman, 1996.

[102] Maz`ia, V. G.: Sobolev spaces. New York: Springer-Verlag, 1985.
[103] Micchelli, C.: On a numerically efficient method for computing multivariate

B-splines. In Schempp, W. and Zeller, K. (eds.): Multivariate approximation
theory, Basel: Birkhäuser, pp. 211–248, 1979.

[104] Micchelli, C. and Prautzsch, H.: Computing curves invariant under halving.
Computer-Aided Geometric Design 4, pp. 113–140, 1987.

[105] Micchelli, C. and Prautzsch, H.: Uniform refinement of curves. Linear Algebra
and Its Applications 114/115, pp. 841–870, 1989.

282 References

[106] Miller, G. and Pearce, A.: Globular dynamics: a connected particle system
for animating viscous fluids. Computers and Graphics 13(3), pp. 305–309,
1989.

[107] Morin, G., Warren, J. and Weimer, H.: A subdivision scheme for surfaces of
revolution. Computer-Aided Geometric Design 18, pp. 483–502, 2001.

[108] Mortenson, M.: The computer graphics handbook: geometry and mathematics.
New York: Industrial Press Inc., 1990.

[109] Nasri, A.: Surface interpolation on irregular networks with normal conditions.
Computer-Aided Geometric Design 8, pp. 89–96, 1991.

[110] Nasri, A.: Curve interpolation in recursively generated B-spline surfaces over
arbitrary topology. Computer-Aided Geometric Design 14(1), pp. 13–30,
1997.

[111] Nasri, A.: A 4-sided approach to curve interpolation by recursive subdivision
surfaces. The Visual Computer 14(7), pp. 343–353, 1998.

[112] Nasri, A.: Interpolating meshes of boundary intersecting curves by subdivision
surfaces. The Visual Computer 16(1), pp. 3–14, 2000.

[113] Oden, J. and Reddy, J.: An introduction to the mathematical theory of finite
elements. New York: John Wiley, 1976.

[114] Peters, J. and Nasri, A.: Computing volumes of solids enclosed by recursive
subdivision surfaces. Computer Graphics Forum 16(3), pp. 89–94, 1997.

[115] Peters, J. and Reif, U.: The simplest subdivision scheme for smoothing polyhedra.
ACM Transactions on Graphics 16(4), pp. 420–431, 1997.

[116] Peters, J. and Reif, U.: Analysis of generalized B-spline subdivision algorithms.
SIAM Journal of Numerical Analysis 35, pp. 728–748, 1998.

[117] Peters, J. and Umlauf, G.: Gaussian and mean curvature of subdivision surfaces.
In Cipolla, R. and Martin, R. (eds.): The mathematics of surfaces IX, IMA,
pp. 59–69, 2000.

[118] Peters, J. and Umlauf, G.: Computing curvature bounds for bounded curvature
subdivision. Computer-Aided Geometric Design 18, pp. 455–461, 2001.

[119] Pottmann, H. and Wagner, M.: Helix splines as an example of affine Tcheby-
cheffian splines. Advances in Computational Mathematics 2, pp. 123–142,
1994.

[120] Powell, M.: The theory of radial basis function approximation. In Light, W. A.,
Advances in numerical analysis II: wavelets, subdivision algorithms and radial
functions, Oxford: Clarendon Press, 1992.

[121] Powers, D.: Boundary value problems. New York: Harcourt Brace Jovanovich,
1987.

[122] Prautzsch, H.: Freeform splines. Computer-Aided Geometric Design 14,
pp. 201–206, 1997.

[123] Prautzsch, H.: Smoothness of subdivision surfaces at extraordinary points. Ad-
vances in Computational Mathematics 9, pp. 377–389, 1998.

[124] Prautzsch, H. and Reif, U.: Degree estimates of Ck piecewise polynomial subdi-
vision surfaces. Advances in Computational Mathematics 10, pp. 209–217,
1999.

References 283

[125] Prautzsch, H. and Umlauf, G.: A G2 subdivision algorithm. In Farin, G., Bieri,
H., Brunnet, G. and DeRose, T. (eds.): Geometric modeling, Computing Sup-
plements 13, pp. 217–224, New York: Springer-Verlag, 1998.

[126] Ramshaw, L.: Ph.D. thesis, Department of Computer Science, Stanford Uni-
versity, 1987.

[127] Ramshaw, L.: Blossoms are polar forms. Computer-Aided Geometric Design
6, pp. 323–358, 1989.

[128] Reif, U.: A unified approach to subdivision algorithms near extraordinary points.
Computer-Aided Geometric Design 12, pp. 153–174, 1995.

[129] Reif, U.: TURBS: topologically unrestricted B-splines. Constructive Approxi-
mation 4, pp. 55–77, 1998.

[130] Reif, U. and Schröder, P. Curvature integrability of subdivision surfaces. To
appear in Advances in Computational Mathematics, 2001.

[131] Requicha, A. and Voelker, H.: Solid modeling: a historical summary and con-
temporary assessment. IEEE Computer Graphics and Applications, pp. 9–24,
1982.

[132] Rockwood, A. and Chambers, P.: Interactive curves and surfaces: a multimedia
tutorial. San Francisco: Morgan Kaufmann, 1996.

[133] Rothman, D. and Zaleski, S.: Lattice-gas cellular automata. New York: Cam-
bridge University Press, 1997.

[134] Royden, H.: Real analysis, third edition. New York: Macmillan; London: Col-
lier Macmillan, 1988.

[135] Sabin, M.: Cubic recursive division with bounded curvature. In Laurent, P.,
LeMehaute, A. and Schumaker, L. (eds.): Curves and surfaces, New York:
Academic Press, pp. 411–414, 1991.

[136] Schröder, P. and Sweldens, W.: Spherical wavelets: efficiently representing func-
tions on the sphere. Proceedings of SIGGRAPH 95, Annual Conference Series,
pp. 161–172, New York: Addison Wesley, 1995.

[137] Schumaker, L.: Spline functions: basic theory. New York: John Wiley, 1981.
[138] Schweikert, D.: An interpolation curve using a spline in tension. J. Math. A.

Physics 45, pp. 312–317, 1966.
[139] Sederberg, T., Zheng, J., Sewell, D. and Sabin, M.: Non-uniform recursive sub-

division surfaces. Proceedings of SIGGRAPH 98, Annual Conference Series,
pp. 387–394, New York: Addison Wesley, 1998.

[140] Seidel, H.: An introduction to polar forms. IEEE Computer Graphics and
Applications 13, 1993.

[141] Singer, I. and Thorpe, J.: Lecture notes on elementary topology and geometry.
New York: Springer-Verlag, 1996.

[142] Sommerfeld, A.: Eine besondere auschauliche Ableitung des Gaussischen
Fehlergesetzes. Berlin: Festschrift Ludwig Boltzmann, pp. 848–859, 1904.

[143] Spanier, J. and Oldham, K.: An atlas of functions. Washington, DC: Hemi-
sphere Publications, 1987.

[144] Spiegel, M.: Schaum’s outline of theory and problems of calculus of finite differ-
ences and difference equations. New York: McGraw-Hill, 1971.

284 References

[145] Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary
parameter values. Proceedings of SIGGRAPH 98, Annual Conference Series,
pp. 395–404, New York: Addison Wesley, 1998.

[146] Stam, J.: On subdivision schemes generalizing B-spline surfaces of arbitrary
degree. Computer-Aided Geometric Design 18, pp. 397–427, 2001.

[147] Stam, J. and Fiume, E.: Turbulent wind fields for gaseous phenomena. Proceed-
ings of SIGGRAPH 93. Annual Conference Series, pp. 369–376, New York:
Addison Wesley, 1993.

[148] Stollnitz, E., DeRose, T. and Salesin, D.: Wavelets for computer graphics. San
Francisco: Morgan Kaufmann, 1996.

[149] Strang, G.: Linear algebra and its applications. New York: Academic Press,
1980.

[150] Strang, G. and Nguyen, T.: Wavelets and filter banks. Wellesley, MA:
Wellesley-Cambridge Press, 1997.

[151] Taylor, A.: Advanced calculus. Waltham, MA: Ginn and Company, 1955.
[152] Varga, R.: Matrix iterative analysis, second edition. New York: Springer-Verlag,

2000.
[153] Velho, L. and Zorin, D.: 4-8 subdivision. Computer-Aided Geometric Design

18, pp. 397–427, 2001.
[154] Wagner, M. and Pottmann, H.: Symmetric Tchebycheffian B-spline schemes. In

Laurent, P., Le Mehaúte, A. and Schumaker, L. (eds.): Curves and Surfaces
in Geometric Design, Wellesley, MA: A. K. Peters, pp. 483–490, 1994.

[155] Wahba, G. and Wendelberger, J.: Some new mathematical methods for varia-
tional objective analysis using splines and cross validation. Monthly Weather
Review 108, pp. 1122–1143, 1980.

[156] Warren, J.: On algebraic surfaces meeting with geometric continuity. Ph.D. the-
sis, Department of Computer Science, Cornell University, 1986.

[157] Warren, J.: Binary subdivision schemes for functions over irregular knot se-
quences. In Daehlen, M., Lyche, T. and Schumaker, L. (eds.): Mathematical
methods in CAGD III, New York: Academic Press, 1995.

[158] Warren, J.: Subdivision methods for geometric design. Manuscript available
online at http://www.cs.rice.edu/∼jwarren/, 1995.

[159] Warren, J.: Sparse filter banks for binary subdivision schemes. In Goodman, T.
(ed.): Mathematics of surface VII, Dundee: IMA, 1996.

[160] Warren, J. and Weimer, H.: Variational subdivision for natural cubic splines.
In Chui, C. and Schumaker, L. (eds.): Approximation theory IX, Nashville:
Vanderbilt University Press, pp. 345–352, 1998.

[161] Warren, J. and Weimer, H.: Subdivision schemes for variational splines. Rice
University, Department of Computer Science Technical Report, CS-TR 00-
354, available online at http://cs-tr.cs.rice.edu/, 2000.

[162] Weimer, H. and Warren, J.: Subdivision schemes for thin-plate splines. Com-
puter Graphics Forum 17(3), pp. 303–313 and 392, 1998.

[163] Weimer, H. and Warren, J.: Subdivision schemes for fluid flow. Proceedings
of SIGGRAPH 1999, Annual Conference Series. New York: ACM Press,
pp. 111–120, 1999.

References 285

[164] Weisstein, E.: CRC concise encyclopedia of mathematics. Boca Raton, FL: CRC
Press, 1999.

[165] Wejchert, J. and Haumann, D.: Animation aerodynamics. Proceedings of
SIGGRAPH 1991, Annual Conference Series, pp. 19–22, New York:
Addison Wesley, 1991.

[166] Young, D.: Iterative solution of large linear systems. New York: Academic Press,
1971.

[167] Zariski, O. and Samuel, P.: Commutative algebra. New York: Springer-Verlag,
1975.

[168] Zhang, J.: C-curves: an extension of cubic curves. Computer-Aided Geometric
Design 13, pp. 199–217, 1996.

[169] Zorin, D.: Smoothness of stationary subdivision on irregular meshes. Construc-
tive Approximation 16, pp. 359–398, 2000.

[170] Zorin, D. and Schröder, P.: A unified framework for primal/dual quadrilateral
subdivision schemes. Computer-Aided Geometric Design 18, pp. 483–502,
2001.

[171] Zorin, D., Schröder, P. and Sweldens, W.: Interpolating subdivision for meshes
with arbitrary topology. Proceedings of SIGGRAPH 1996, Annual Confer-
ence Series. pp. 189–192, New York: ACM Press, 1996.

This Page Intentionally Left Blank

Index

adaptive subdivision, 272–273
affine combinations, 6, 15–18
affine transformations

barycentric coordinates, 10–11
contractive, 12
defined, 9
iterated, 9–12
Koch snowflake, 13
Sierpinski triangle, 13

analysis filters, 273–274
annulus, 268
areas, exact enclosed, 165–167
averaging masks

quad, 205
triangular, 227

averaging schemes for polyhedral meshes
bilinear subdivision plus quad averaging,

205–209
creases, embedded, 220–226
linear subdivision with triangle, 226–229

axe, mesh model of, 221, 223

barycentric coordinates, 10–11
bell-shaped basis for polyharmonic

splines, 124–127
Bernstein basis functions, 5–6
Bézier curves

Bernstein basis functions, 5–6
blossoming, 16
de Casteljau algorithm, 15–18
defined, 6
fractal process for, 15–18
multiresolution algorithms, 8–9
problems with, 28
rendering methods, 7–8

bicubic B-spline subdivision rules, 205
biharmonic splines, 121, 125
bilinear subdivision plus quad averaging,

205–209, 215
binomial expansions, 5

bivariate schemes. See also box splines
adaptive subdivision, 273
affinely invariant bivariate masks, 82–83
Butterfly scheme, 88–89
convergence analysis of, 81–90
interpolatory, 88–90
limit functions, 87–88
matrix of generating functions for, 87
matrix subdivision mask of, 84–85
smoothness, convergence to, 81–82,

85–88
tensor product meshes, 89–90

blossoming, 16
boundary curves, 201
boundary edges, 201
bounded domains

bounded harmonic splines, 188–197
derivative matrices, 161
difference approach, difficulty in

applying, 157–158
energy minimization using

multiresolution spaces, 184–188
exact derivatives approach, 158–162
exact inner products, 162–164, 182–183
inner products for stationary

schemes, 157–167
interpolation with natural cubic

splines, 180–182
natural cubic splines, 167–180
subdivision on a quadrant, 191–193
subdivision on bounded rectangular

domains, 193–197
upsampling matrices, 159
variational problem approach, 158

bounded harmonic splines, 188–197
divergence, 195
exact subdivision mask method,

191–193
extension to entire plane, 191
fast decay of mask coefficients, 195–196
finite approximations, 191

287

288 Index

bounded harmonic splines (continued)
finite element basis, effect of

choosing, 197
finite element scheme for, 188–190
generating functions, 191–192
inner product corresponding to energy

function, 189
inner product matrices, 189–190
locally supported approximation

algorithm, 197
minimization of variation

functionals, 197
rectangular domains, subdivision on,

193–197
subdivision matrices, 189–193
subdivision on a quadrant, 191–193

box splines
cone splines, building with, 57–58,

99–101
differential approach, 99–102
direction vectors, 44–45
evaluation at quadrature points, 52
four-direction quadratic, 49–50, 59–60,

83, 87–88
as piecewise polynomials, 52–53
refinement relations, 45–48, 46
repeated averaging algorithm, 47–48
scaling functions, 44–47, 101
smoothness, 45
subdivision masks, 45–48
three-direction linear splines, 48–49
three-direction quartic box splines,

51–52, 61
B-spline basis functions

cone representation, 53–56
continuous convolution, 31–32, 35
as cross-sectional volumes, 41–44
differential approach, 98
differential equation for, 94–95
order of, 29–33
piecewise polynomial technique, 53–56
properties of, 30
refinement relations, 33–35, 43
subdivision masks, 33–35
truncated power representation, 53–56

B-splines
basis functions, 28–31. See also B-spline

basis functions
constructing arbitrary, 31–32
cubic, 4, 37–38
defined, 28
differential approach, 92–99

divided differences, 56
exponential. See exponential B-splines
filter approach to subdivision, 39
finite difference equations for, 95–97
higher order, constructing, 32
inner product masks, 164
interpolation matrices, 158–159
knot insertion schemes, 273
linear, 37–38, 43
matrix refinement relation, 35–36
order of, 30
Oslo algorithm, 273
piecewise constant, 31–32
as piecewise polynomials, 52–56
quadratic, 43–44
refinement relations for basis functions,

33–35
subdivision masks, 33–35
subdivision matrix construction, 36
subdivision scheme, 35–40
uniform, 28, 37, 158–159
upsampling, 39–40

Butterfly scheme, 88–89

Catmull-Clark subdivision, 209–212,
248, 267

characteristic maps, 250–252, 267–271
circles

arc-length parametrizations, 212–213
difficulties with, 110
mixed trigonometric splines, 112–114
rational parametrizations, 212

circulant matrices, computing eigenvalues
of, 260–263

closed square grids, 199
closed surface meshes, 201
coefficients supplying geometric

intuition, 4–5
collage property, 13, 21–22
cones, 53–54
cone splines

building box splines theorem, 58
differential equations,

characterizing, 100
four-direction quadratic, 59–60
integral operator recursive definition

of, 99–100
partial differential equations

governing, 101
properties of, 57–58
three-direction linear, 58–59

Index 289

three-direction quartic, 61
type of Green’s function, 124

continuity
B-splines, differential approach, 95
convergence of maximal difference, 70
derivatives of piecewise linear

functions, 68
of directional integrals, 100
of limit functions, 67
necessary condition for, at extraordinary

vertices, 257–259
sufficient conditions for, at extraordinary

vertices, 254–257
continuous convolution for B-spline basis

functions, 31–32, 35
control points, 6, 79
control polygons

approximating, 28
de Casteljau algorithm, 15–16
defined, 6–7

convergence, uniform, 65–69, 73–75,
83–85

convergence analysis
of bivariate schemes, 81–90
Butterfly scheme, 88–89
conditions for uniform convergence,

73–75
continuous functions, 67–68
differences of functions, 66–67, 70–72,

75–78
at extraordinary vertices. See

extraordinary vertices, convergence
analysis at

limit matrices, 116–118
nonstationary schemes, 116–119
piecewise linear functions, 63
real numbers, convergence of

sequences, 63
smooth functions, 68–69
smoothness, convergence to, 85–88.

See also smoothness
smoothness of four-point scheme,

79–81
tensor product meshes, 89–90
uniform convergence, 65–69, 73–75,

83–85
univariate schemes, 69–81

convex combinations, 7
correction masks, 134
creases, 220–226
cross-sectional volumes

box splines as, 44–45

B-splines as, 41–44
direction vectors, 44–45

cubic B-splines
basis function, 4
subdivision scheme, 37–38

cubic half-boxsplines, 238
cubic splines. See cubic B-splines; natural

cubic splines

de Casteljau algorithm, 7, 15–18
definition of subdivision, 19, 24
delta function, Dirac, 93, 96
derivative matrices, 161
derivative operator, 93–94. See also

differential operators
difference equations

for B-splines, 95–97
characterizing solutions to differential

equations, 91
finite. See finite difference equations

difference masks
annihilation of polynomial functions

by, 75–76
biharmonic splines, 125
cone splines, 58–61
convergence analysis, 70–72
discrete Laplacian masks, 124–125
divided differences, 75–78
modeling action of differential

operator, 96
polyharmonic splines, 128–129

differences
bivariate schemes, 81–90
conditions for uniform convergence,

73–75
decay in bivariate case, 82–83
divided, scheme for, 75–78
of functions, 65–66
subdivision masks for, 78
subdivision scheme for, 70–72

differential approach
box splines, 99–102
B-splines, 92–99
derivative operator, 93–94
difference equations, 91, 95–97
differential equation for B-splines, 92–95
discretization of differential equations,

103–105
exponential B-splines, 103–109
generating functions for difference

equations, 96

290 Index

differential approach (continued)
integral operator, 93–94
knots, continuity at, 95
linear flows. See linear flows
method of, basic, 91
mixed trigonometric splines, 112–114
polyharmonic splines. See polyharmonic

splines
polynomial splines, 92, 98
splines in tension, 110–112

differential equations
for B-splines, 92–95
cone splines, characterizing, 100
discretization of, 103–105
inhomogeneous, 103
for natural cubic splines, 168
for splines in tension, 111

differential operators
defined, 93–94
directional derivatives, 100
discrete analog of, 102
discrete Laplacian masks, 124–125
higher order versions of, 103–104
Laplace operator, 121, 124–125,

144, 149
matrix notation, 143–144

differential recurrence for B-spline basis
functions, 95

dilating the coordinate axis, 21
Dirac delta function, 93, 96
directional derivatives, 100
directional integrals, 99
directional integration. See repeated

integration
discrete differential operator, 102
discrete Laplacian masks, 124–125, 149
discretization of differential equations,

103–105
discs, 201
divergence free linear flows, 143
double-sheeted surfaces, 218
downsampling matrices, 159–160
dual subdivision schemes, 146–147,

234–238

ease of use of subdivision, 25
edges, types of, 201
edge-splitting subdivisions, 203–204
efficiency of subdivision, 25
eigenfunctions

Loop subdivision, 266

smoothness, analyzing with, 252–253
smoothness at extraordinary vertices,

determining with, 254–259
eigenvector relation theorems, 247–248
eigenvectors and eigenvalues

characteristic maps, 250–252, 267–271
circulant matrices, computing, 260–263
complex eigenvalues, 250
eigenfunctions. See eigenfunctions
indexing, 245
Jacobian, 267–271
local subdivision matrices, computing at,

263–267
of matrices for extraordinary vertices,

244–246
smoothness at extraordinary vertices,

254–259
energy minimization, multiresolution

spaces, 184–188
Euler characteristic of grids, 199
Euler-Lagrange theorem, 168, 175
exact derivatives approach, 158–162
exact enclosed areas for parametric curves,

165–167
exact evaluation near an extraordinary

vertices, 246–249
exact inner products, 162–164
explicit representation of functions, 1
exponential B-splines

basis functions, 106, 108
convergence analysis, 116–119
defined, 103
difference mask construction, 104
discretization of differential equations,

103–105
finite difference scheme for, 103
Green’s functions, in terms of, 108–109
integral recurrence definition, 109
limit function, 105–106
mixed trigonometric splines, 112–114
as piecewise analytic functions, 106–109
scaling functions, 108
smoothness, 118–119
splines in tension, 110–112
subdivision masks, 105
subdivision scheme for, 105–106

expressiveness of subdivision, 25
extraordinary vertices

annulus, 268
arbitrary valence vertices, smoothness at,

159, 267–271
characteristic maps, 250–252, 267–271

Index 291

circulant matrices, computing
eigenvalues of, 260–263

conditions for continuity, 254–259
convergence analysis at, 239–249
defined, 203
eigenfunctions, 252–253
eigenvalues of submatrices, 244–246
eigenvector relation theorems, 247–248
exact evaluation near, 246–249
geometric update rule, 240
indexing eigenvalues, 245
indexing vertices, 241
limit surface equation, 242
limit surfaces at, 240–246
local spectral analysis, 243–246
local subdivision matrices, computing

eigenvalues at, 263–267
Loop subdivision, 263–267
manifolds defined, 249
neighborhood, 244
piecewise polynomial functions, 241–242
regularity of characteristic maps,

267–271
rings of, 244
sectors, 240–241
smoothness analysis at, 249–259
spectral analysis at, 239. See also spectral

analysis
Stam’s method, 246–249
subdivision matrix, example, 242–243
submatrix for analysis, 243–244
uniform mesh surrounding, 240
valences, 240
verifying smoothness, 259–271

face-splitting schemes for polyhedral
meshes, 232–234

FFT (Fast Fourier Transform), 39
filter approach to subdivision, 39
finite difference equations

basic concept, 95
for B-splines, 95–97
linear flows, 147–148
polyharmonic splines, 128
recurrence relation theorem, 97–98

finite difference mask, 95
finite difference schemes, exponential

B-splines, 103
finite element analysis, 52
finite element schemes

for bounded harmonic splines, 188–190

for natural cubic splines, 169–173
possible extensions, 272

fluid mechanics. See linear flows
forward differencing method, 8
four-direction quadratic box splines, 49–50,

59–60, 83, 87–88
four-direction quadratic cone splines,

59–60
4-8 subdivision, 203–204
four-point scheme

exact area enclosed, 166
interpolation mask for, 162
smoothness, 79–81

fractals
Bézier curves, 15–18
collage property, 13
de Casteljau algorithm, 15–18
defined, 9
iterated affine transformations, 9–12
Koch snowflake, 13–15
multiresolution algorithms, 9
process using contractive triangle

transformations, 12
self-similarity relation, 13
Sierpinski triangle, 12–13

functionals. See variational functionals
functions

basis, choosing appropriate, 4–5
coefficients supplying geometric

intuition, 4–5
control polygons, 6–7
defined, 1
explicit representation, 1
implicit representation, 2–3
multiresolution algorithms, 8–9
parametric representation, 1–3
piecewise linear shape paradigm, 4
pointwise convergence, 63–64
polynomials, 3–5
uniform convergence, 65–69
unit hat function, 19–20

generating functions
bounded harmonic splines, 191–192
box splines, differential approach, 102
circulant matrices, 260–263
defined, 33
for finite difference equations, 95–96
interpolation masks, 160–162
matrices of, 81, 83, 86–87

geometric design, history of, 167–168

292 Index

Green’s functions
B-spline basis functions, 94
cone splines. See cone splines
defined, 94
exponential B-splines using, 106–109
for polyharmonic equation, 121–122
scaling relation for, 122
truncated powers. See truncated powers

grids
closed square grids, 199
Euler characteristic, 199
integer, 20–22
primal vs. dual schemes, 146
sectors of grid of non-negative

integers, 240
unbounded vs. bounded, 157

harmonic masks, 130–131
harmonic splines. See also polyharmonic

splines
approximation of, 133
bounded, 188–197
elastic membranes, modeling, 121

hat functions, 19–20, 22, 30, 53–54
helix splines, 112
homogeneous differential equations of

order m, 92
hypercube subdivision method, 43, 45

implicit representation of functions, 2–3
incompressible flows, 143
infinity norms, 65–66, 73
inhomogeneous differential equations, 103
inner product masks, 164
inner product matrices

bounded harmonic splines, 189–190
bounded rectangular domains, 193–197
defined, 162
masks, 164
natural cubic splines, 170–173
recurrence equation, 163
variational functionals with, 169–170

inner products for stationary schemes,
157–167

defined, 158
derivatives in inner products, 164–165
exact derivatives, 158–162
exact enclosed areas for parametric

curves, 165–167
exact inner products, 162–164

four-point scheme, exact area
enclosed, 166

inner product masks, 164
matrices. See inner product matrices

integral operators, 93–94, 99–100, 107
integral recurrence for truncated powers, 93
integration, repeated. See repeated

integration
interpolation

bivariate schemes, 88–90
face-splitting schemes, 233–234
masks, 160–162
matrices, 158–160, 180–183
with natural cubic splines, 180–182
univariate subdivision schemes, 79
using radial basis functions, 123

irrotational linear flows, 143
isolation of extraordinary vertices, 203
iterated affine transformations, 9–12

barycentric coordinates, 10–11
collage property, 13
de Casteljau algorithm, 15–18
fractal process, 12
Koch snowflake, 13
self-similarity relation, 13
Sierpinski triangle, 12–13

iterative methods, Jacobi iteration, 133–136

Jacobian, 267–271
Jacobi iteration for local approximations of

polyharmonic splines, 133–136

king, chess, mesh model, 224
knot insertion, 272–273
knots

bivariate case equivalent, 273
defined, 20

Koch snowflake, 13–15
Kuhn-Tucker relations, 168

Laplace operator
defined, 121
discrete Laplacian masks, 124–125, 149
slow flow equation, 144

Laplace transforms, 107
Laurent series expansion for polyharmonic

splines, 129–133
limit functions

bivariate schemes, 87–88

Index 293

conditions for converging to
polynomials, 76

continuity of, 67–68
convergence to, 65–66
eigenvectors with self-similar structure,

247–248
exponential B-splines, 105–106
polynomial splines, 98
smoothness, testing for, 77–78
surfaces. See limit surfaces

limit matrices, convergence to,
116–118

limit surfaces
characteristic maps, 250–252
at extraordinary vertices, 240–243

linear B-splines, 37–38, 43
linear flows, 141–156

analytic basis for, 151–156
auxiliary constraints, 150
computer graphics developments, 145
discretization of differential equation,

147–148
divergence free, 143
dual schemes, 146–147
extraneous translations in vector

fields, 146
finite difference equation, 147–148
incompressible flows, 143
irrotational, 143
Laplace operator, 144
Laplacian mask, 149
limiting vector field, 151
matrix notation, 143–144
Navier-Stokes equations, 142
perfect flows, 143, 147–151
primal schemes, 146–147
radial basis functions, 151–156
rotational components, 143–144
slow flow, 143–144, 155–156
solutions, types of, 144–145
subdivision scheme for, 149–151
viscosity, 143–144
visualization of, 142, 151

linear nature of subdivision, 25
linear programming for optimal local

approximations, 136–138
linear splines, expression as sum of hat

functions, 22
linear subdivision plus triangle averaging,

226–229, 232
local approximations to polyharmonic

splines, 129–141

local subdivision matrices, computing
eigenvectors and eigenvalues at,
263–267

Loop subdivision, 230–232, 263–267

manifolds defined, 249
masks. See subdivision masks
matrices

circulant, 260–263
derivative, 161
downsampling, 159–160
inner products. See inner product

matrices
interpolation, 158–160, 180–183
limit, 116–118
local subdivision, 263–267
non-defective subdivision, 245
subdivision. See subdivision matrices
two-slanted. See two-slanted matrices
upsampling, 159, 174, 191

matrices of generating functions
for affinely invariant masks, 83
for bivariate difference schemes, 81
block matrix analogs, 84, 87

matrix notation, 143
matrix refinement relation theorem, 23
m-dimensional volumes, 41
minimization of variational functionals, 169

convergence to, 197
limit functions for, 184–188

mixed trigonometric splines, 112–114
multigrid methods with prediction

operators, 272
multilevel finite solvers, 272
multiresolution algorithms

Bézier curves as, 16
defined, 8–9
linear splines, 21

multiresolution analysis, 273–274
multiresolution spaces for energy

minimization, 184–188
multivariate truncated powers. See cone

splines

natural cubic splines, 167–180
Bézier form of basis functions, 178
commutativity requirement, 175
defined, 168
differential equation for, 168
energy, converging to, 183

294 Index

natural cubic splines (continued)
Euler-Lagrange theorem, 175
exact inner products, 182–183
finite element basis functions,

170–171, 183
finite element scheme for, 169–173
inner product matrices, 170–174
inner products, continuous, 169–170
interpolation with, 180–182
knots, 168–169
limit functions, computing, 182–183
matrix refinement relation, 171
multiscale relation for, 173–176
stationary subdivision matrix

computation, 177–178
subdivision matrices, 173–176, 176–177
subdivision rules for, 176–180
two-scale relation theorem, 174
variational formulation, 167–169
variational functional, 175
variational matrix multiscale

relation, 174
Navier-Stokes equations, 142
non-defective subdivision matrices, 245
nonstationary schemes, 105, 106, 110,

116–119
nonuniform domains, 157. See also

bounded domains
norms

of block matrices, 84, 87
defined, 65–66
minimizing limit norms, 137
of a vector, 73

NURBS (nonuniform rational B-spline),
212, 274–275

one-ring, 244
open surface meshes, 201
operators, 93–94
ordinary vertices, 203
Oslo algorithm, 273

parametric representation of functions, 1–3
partial differential equations

Navier-Stokes equations, 142
polyharmonic splines, 128

pawn (chess) construction, 216–217
perfect flows, 143
piecewise analytic functions, exponential

B-splines as, 106–109

piecewise linear functions
conditions for uniform convergence,

73–75
convergence of sequences of, 63
derivatives, convergence of, 68
pointwise convergence, 63–64
uniform convergence, 65–69

piecewise linear splines
basis functions, 20
collage property, 21–22
dilating the coordinate axis, 21
hat functions, 19–20, 22
knots, 20
refinement relation, 21–22
scaling functions, 20–22, 27
subdivision scheme for, 22–25
two-slanted matrices, 22–23
uniform splines, 20

piecewise polynomial basis functions
box spline scaling functions, 44
B-spline basis functions, 30

piecewise polynomials
approximating control polygons, 28
box splines as, 52–53
B-splines as, 52–56
difficulties with, 3–4
smoothness, 28
utility of, 18–19

pointwise convergence, 63–64
polyharmonic splines, 120–141

analytic solution to differential
equation, 122

bell-shaped basis for, 124–127
biharmonic spline difference masks, 125
comparison of methods, 138–141
correction masks, 134
difference masks, 128–129
discrete Laplacian masks, 124–125
finite difference equation, 128
finite truncation masks, 131–132
Green’s function, 121–122
harmonic masks, 130–131
Jacobi iteration for local approximations,

133–136, 138–141
Laplace operator, 121
Laurent series expansion, 129–133,

138–141
linear programming for optimal local

approximations, 136–141
local approximations to, 129–141
localized nature of basis functions, 126
minimization of limit norm problem, 137

Index 295

partial differential equation
governing, 128

radial basis for, 121–124
residual plots, compared, 138–141
smoothing masks, 134
smoothness of basis functions, 126
subdivision masks, 128–129
subdivision relation equation, 128
subdivision scheme for, 127–129
thin plate splines, 123–124

polyhedral meshes
4-8 subdivision, 203–204
bilinear subdivision plus quad averaging,

205–209
circulant matrices, computing

eigenvalues of, 260–263
constant subdivision, 236
continuity at extraordinary vertices,

254–259, 275
defined, 200
discs, 201
doughnut shaped example, 208
dual subdivision schemes, 234–238
edge-splitting subdivisions, 203–204
embedded creases, averaging for,

220–226
exact evaluation near an extraordinary

vertices, 246–249
extraordinary vertices, convergence

analysis at, 239–249
face-splitting schemes, 232–234
geometrical positioning step, 201
interpolatory face-splitting schemes,

233–234
isolation of extraordinary vertices, 203
manifolds defined, 249
quad meshes. See quad meshes
rational parametrizations, 212
rings, 201
separating topology from geometry, 200
smoothing quad meshes, 207
stellated octahedron example, 229
surfaces of revolution, 212–220
tensor product rule, 205–206
topological subdivision of, 201–204
triangle mesh smooth subdivision,

226–232
triangle subdivision, 201–202
two-step subdivision schemes,

201, 226
valences, 201, 203
vertices, 200–202

polynomials
basis function representation, 5
convergence of subdivision schemes

on, 76
defined, 3–4
piecewise. See piecewise polynomials

polynomial splines
differential approach, 92, 98
interpolation matrices, 158–159
splines in tension, 110–112

power series expansion, 129
prediction followed by smoothing, 136
primal schemes, 146–147

quad meshes
averaging operator, 206–207
axe, mesh model of, 221, 223
bilinear subdivision plus quad averaging,

205–209
Catmull-Clark subdivision, 209–212
defined, 201
doughnut shaped example, 208
dual meshes, 235–236
embedded creases, averaging for,

220–226
extraordinary vertex rule, 210–211
face-splitting schemes, 232–234
high-dimensional generalizations, 209
king, chess, mesh model, 224
non-manifold topology, 208
quad averaging, 207–208
ring, mesh model of, 221–222
smoothing rule, 207
tensor product rule, 205–206
umbilic tori, mesh model, 224–225
uniform rule, 209–210
weighted centroids, 214–215

quadratic box splines, 49–50, 59–60, 87–88
quadratic B-splines, cross-sectional

refinement relations, 43–44
quadratic cone splines, 59–60
quad subdivision, 202. See also quad meshes
quartic box splines, 51–52, 61

radial basis functions, 123–124, 151–156
rational parametrizations, 212
real numbers, convergence of

sequences, 63
rectangular domains, subdivision on,

193–197

296 Index

recurrences
Bézier control points, 15
B-spline basis functions differential

recurrence, 95
B-splines, 29, 34, 39, 42
characteristic maps, 251
Cosh, 111
differential method, 91, 93, 95, 97
eigenfunctions, 253
eigenvectors with self-similar structure,

247–248
inner product matrix theorem, 163
interpolation matrices, 160
refinement. See refinement relations
tension parameter, 115
two-scale, 21

refinement relations
box splines, 45–48, 46
B-spline basis functions, 29, 33–35, 43
cross-sectional volumes, 43
defined, 21–22
generating functions for subdivision

masks, 33
hypercube subdivision method, 43
piecewise linear splines, 27
for polyharmonic splines, 127–128
subdivision masks, B-spline, 33–35

regular characteristic maps, 250–251,
267–271

relaxation factors for iterative methods, 134
repeated integration

box splines, 45–48
B-splines, 29
defined, 27

ring, mesh model of, 221–222
rings of vertices, 201, 244

scaling functions
box splines, 44–47, 101
defined, 20–22
exact derivatives for, 158–162
exponential B-splines, 108
piecewise linear splines, 27
quartic box splines, 51–52
refinement relations, 27
with stationary vs. nonstationary

schemes, 106
scaling relations

cone splines, 57
for Laplace operator partial differential

equation, 122

self-similarity relation, 13
Sierpinski triangle, 12–13
slow flow, 143–144, 155–156
smoothing masks, 134
smoothness

of basis functions for polyharmonic
splines, 126

bivariate schemes, convergence to, 85–88
Butterfly scheme, 88–89
characteristic maps, 250–252, 267–271
continuity at extraordinary vertices,

254–259
eigenfunctions, 252–253
extraordinary vertices, analysis at,

249–259
extraordinary vertices, verifying for

schemes, 259–271
four-point scheme, 79–81
interpolatory bivariate schemes, 88–90
manifolds defined, 249
smoothing masks, 134
tensor product meshes, 89–90
testing for, 77–78
triangle mesh surfaces, 229

smooth piecewise polynomial basis
functions, 28, 30

spaces, multiresolution, 184–188
spectral analysis

Catmull-Clark subdivision, 267
characteristic maps, 250–252, 267–271
circulant matrices, computing

eigenvalues of, 260–263
condition for convergence, 246
continuity at extraordinary vertices,

254–259
defined, 244–245
eigenfunctions, 252–259
local, of extraordinary vertices, 243–246
local subdivision matrices, computing

eigenvectors and eigenvalues at,
263–267

Loop subdivision, 263–267
non-defective subdivision matrices, 245
regularity of characteristic maps,

267–271
smoothness analysis, 249–259

spheres
rational parametrizations, 212
as surface of revolution mesh, 216–218
topological restrictions on, 199

splines
B. See B-splines

Index 297

bending energy, 168
bounded harmonic. See bounded

harmonic splines
defined, 91
differential equations forming, 91
helix, 112
mixed trigonometric, 112–114
natural, equation of, 168
physical origin of idea, 167–168
piecewise linear. See piecewise linear

splines
polyharmonic. See polyharmonic splines
theory of, 91

splines in tension, 107, 110–112
Stam’s method, 246–249
stationary schemes, 105, 106, 110

at extraordinary vertices, 239
inner products for, 157–167

stellated octahedron example, 229
subdivision

advantages of, 25
defined, 19, 24

subdivision masks, 33–35
affine invariant, 82–83
bivariate difference case, 82
block matrix analog, 84, 87
box splines, 45–48
centering, 37
conditions for converging to

polynomials, 76
cubic B-splines, 37–38
differences of functions, 70–72
exact, bounded harmonic splines,

191–192
existence of, for differences, 78
factoring, 39
four-point scheme, 79–81
generating functions defined by, 62
harmonic masks for polyharmonic

splines, 130–131
of interpolatory bivariate schemes, 88–90
Jacobi iteration for local approximations,

133–136
linear flows, 149–150
matrix refinement relation, 35–36
polyharmonic splines, 128–129
for polynomial splines, 98
quadratic box splines, 49–50
quartic box splines, 51–52
for splines in tension, 111
stationary vs. nonstationary, 110
tensor product meshes, 89–90

three-direction linear splines, 48–49
unified for exponential splines,

114–115
uniform B-splines, 37
uniform convergence, conditions for,

73–75
with zeros of order m + 1, 77, 86

subdivision matrices
bounded harmonic splines, 191–193
circles, 212–213
defined, 22
inner product matrix theorem, 163
natural cubic splines, 173–177
properties of, 25–26
triangle meshes, 230–232
uniform convergence, 84, 87
using, 23–25

subdivision on a quadrant, 191–193
subdivision on bounded rectangular

domains, 193–197
subdivision schemes

bivariate, analysis of, 81–90
box splines, 45–48
B-splines, differential approach, 97–99
B-splines, integration approach, 29–40
capable of reproducing all polynomials,

77–78
convergence. See convergence analysis
differences of functions, 70–72
differential method for box splines,

101–102
exponential B-splines, 105–106, 109
interpolatory univariate, 79
for linear flows, 149–151
piecewise linear splines, 22–25
for polyharmonic splines, 127–129
quadratic box splines, 49–50
quartic box splines, 51–52
stationary vs. nonstationary, 105,

106, 110
three-direction linear splines, 48–49
unified, differential approach, 114–115
uniform convergence, conditions for,

73–75
surface meshes

defined, 201
edge-splitting subdivisions, 203–204
isolation of extraordinary vertices, 203
quad subdivision, 202
topological subdivision, 201–202
triangle subdivision, 201–202

surface representation problem, 199

298 Index

surfaces of revolution
double-sheeted surfaces, 218
tensor product meshes, 215–216
tensor product of mixed trigonometric

splines, 113–114
weighted averaging of polyhedral meshes,

212–220
weighted centroids, 214–215

surface/surface intersection, 275
synthesis filters, 274

tension parameter
mixed trigonometric splines, 112–114
recurrence theorem, 115
splines in tension, 107, 110–112
unified scheme, 114–115

tensor product meshes, 215–216
tensor product rule, 205–206
thin plate splines, 123–124
three-direction linear cone splines,

58–59
three-direction linear splines, 48–49,

58–59
three-direction quartic box splines, 51–52,

61, 226–229
three-direction quartic cone splines, 61
topological duals, 235
topological meshes

creases, expanding to include,
220–221

defined, 199
polyhedral. See polyhedral meshes
quad meshes. See quad meshes
surface meshes, 201
topological subdivision, 201–202
triangle meshes, 201
triangle subdivision, 201–202
vertices, numbering, 199

topological restrictions, 199
topological subdivision, 201–203
tori

parametric surface equivalent,
198–199

rational parametrizations, 212
as surface of revolution mesh,

216–218
transformations, 9–11
triangle averaging, 227–228
triangle meshes

defined, 201
dual meshes, 235, 237–238

edge rules, 230
face-splitting schemes, 232–234
linear subdivision with averaging,

226–229
Loop subdivision, 230–232
smooth subdivision, 226–232
subdivision, 201–202
subdivision matrix method, 230–232
vertex rules, 230
vertices, 203

truncated powers
differential operator representation, 94
function, 54–55
Green’s functions for exponential

B-splines, 107
integral operator representation, 93
multivariate. See cone splines
representation of B-splines, 53–56, 93

two-direction (tensor product) meshes,
89–90

two-ring, 244
two-scale relations, 21
two-slanted matrices, 22–23

umbilic tori, mesh model, 224–225
uniform B-splines

defined, 28
interpolation matrices, 158–159
subdivision scheme, 37

uniform convergence
of bivariate schemes, conditions for,

83–85
conditions for, 73–75
difference method, 65–68
smooth functions, 68–69

uniform splines, defined, 20
unit hat function, 19–20
univariate subdivision schemes, 69–81.

See also B-splines
upsampling matrices, 159, 174, 191

valences, 201, 203, 240
variational functionals

bounded harmonic splines, 188
discrete version, 175
inner product form of expression,

185–186
minimization using limit functions,

184–188
natural splines, 168–170, 175

Index 299

variational problems, finite element
method, 169–173

vector fields, subdivision schemes for. See
linear flows

vertices
defined, 203
dimension of, defined, 221
extraordinary. See extraordinary vertices

weighted averaging for surfaces of
revolution, 212–220

weighted centroids, 214–215, 227–228

zeros of order m + 1
bivariate scheme masks with, 86
univariate subdivision masks with, 77

	1558604464
	Copyright Page

	Contents
	Foreword
	Preface
	Table of Symbols

	Chapter 1. Subdivision: Functions as Fractals
	1.1 Functions
	1.2 Fractals
	1.3 Subdivision
	1.4 Overview

	Chapter 2. An Integral Approach to Uniform Subdivision
	2.1 A Subdivision Scheme for B-splines
	2.2 A Subdivision Scheme for Box Splines
	2.3 B-splines and Box Splines as Piecewise Polynomials

	Chapter 3. Convergence Analysis for Uniform Subdivision Schemes
	3.1 Convergence of a Sequence of Functions
	3.2 Analysis of Univariate Schemes
	3.3 Analysis of Bivariate Schemes

	Chapter 4. A Differential Approach to Uniform Subdivision
	4.1 Subdivision for B-splines
	4.2 Subdivision for Box Splines
	4.3 Subdivision for Exponential B-splines
	4.4 A Smooth Subdivision Scheme with Circular Precision

	Chapter 5. Local Approximation of Global Differential Schemes
	5.1 Subdivision for Polyharmonic Splines
	5.2 Local Approximations to Polyharmonic Splines
	5.3 Subdivision for Linear Flows

	Chapter 6. Variational Schemes for Bounded Domains
	6.1 Inner Products for Stationary Subdivision Schemes
	6.2 Subdivision for Natural Cubic Splines
	6.3 Minimization of the Variational Scheme
	6.4 Subdivision for Bounded Harmonic Splines

	Chapter 7. Averaging Schemes for Polyhedral Meshes
	7.1 Linear Subdivision for Polyhedral Meshes
	7.2 Smooth Subdivision for Quad Meshes
	7.3 Smooth Subdivision for Triangle Meshes
	7.4 Other Types of Polyhedral Schemes

	Chapter 8. Spectral Analysis at an Extraordinary Vertex
	8.1 Convergence Analysis at an Extraordinary Vertex
	8.2 Smoothness Analysis at an Extraordinary Vertex
	8.3 Verifying the Smoothness Conditions for a Given Scheme
	8.4 Future Trends in Subdivision

	References
	Index

