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Preface

Mathematics is a beautiful subject. Its symbols, notation and abstract structures per-
mit us to define, manipulate and resolve extremely complex problems. However, the
symbols by themselves are meaningless – they are nothing more than a calligraphic
representation of a mental idea. If one does not understand such symbols, then the
encoded idea remains a secret.

Having spent most of my life using mathematics, I am still conscious of the fact
that I do not understand much of the notation used by mathematicians. And even
when I feel that I understand a type of notation, I still ask myself “Do I really un-
derstand its meaning?” For instance, I originally studied to be an electrical engineer
and was very familiar with i =

√
−1, especially when used to represent out-of-phase

voltages and currents. I can manipulate complex numbers with some confidence, but
I must admit that I do not understand the physical meaning of ii. This hole in my
knowledge makes me feel uncomfortable, but I suppose it is reassuring to learn that
some of our greatest mathematicians have had problems understanding some of their
own inventions.

Some people working in computer graphics have had a rigorous grounding in
mathematics and can exploit its power to solve their problems. However, in my
experience, the majority of people have had to pick up their mathematical skills on
an ad hoc basis depending on the problem at hand. They probably had no intention
of being mathematicians, nevertheless they still had to study mathematics and apply
it intelligently, which is where this book comes in.

To begin with, this book is not for mathematicians. They would probably raise
their hands in horror about the level of mathematical rigour I have employed, or
probably not employed! This book is for people working in computer graphics who
know that they have to use mathematics in their day-to-day work, and don’t want to
get too embroiled in axioms, truths and Platonic realities.

This book originally appeared as part of Springer’s excellent “Essential” series,
and was revised to include chapters on analytical geometry, barycentric coordinates
and worked examples. This edition includes a new chapter on geometric algebra,
which I have written about in my books Geometric Algebra for Computer Graphics
and Geometric Algebra: An Algebraic System for Computer Games and Animation.
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viii Preface

Although I prepared the first book using Microsoft WORD, for this last edition
I have used LATEX 2ε which has greatly improved the layout. This, however, has re-
quired me to type in every equation again, which was not only tedious, but an oppor-
tunity to correct a handful of typos that always seem to find there way into books. I
have also redrawn all the illustrations to bring a consistent graphical appearance to
the book. LATEX 2ε is an amazing software system – extremely fast and robust. The
entire book only takes 4 s to typeset, which permitted me to edit the final draft and
recompile every time I changed a single punctuation mark!

Whilst writing this book I have borne in mind what it was like for me when I
was studying different areas of mathematics for the first time. In spite of reading
and rereading an explanation several times it could take days before “the penny
dropped” and a concept became apparent. Hopefully, the reader will find the fol-
lowing explanations useful in developing their understanding of these specific areas
of mathematics, and enjoy the sound of various pennies dropping!

Once again, I am indebted to Beverley Ford, General Manager, Springer UK, and
Helen Desmond, Assistant Editor for Computer Science, for persuading me to give
up holidays and hobbies in order to complete this book! I would also like to thank
Springer’s technical support team for their help with LATEX 2ε .

Ringwood, John Vince
January 2010
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Chapter 1
Mathematics

1.1 Introduction

When I was taught mathematics at junior school in the late 1950s, there were no
computers or calculators. Calculations, whether they were addition, subtraction,
multiplication, division or square roots, had to be worked out in one’s head or with
pencil and paper. We learnt our ‘times tables’ by reciting them over and over again
until we could give the product of any pair of numbers up to 12 in a fraction of a
second – numbers higher than 12 were computed long hand.

I was fortunate in having a teacher who appreciated the importance of mathe-
matics, and without knowing it at the time, I began a journey into a subject area that
would eventually bring my knowledge of mathematics to life in computer graphics.

Today, students have access to calculators that are virtually miniature comput-
ers. They are programmable and can even display graphs on small LCD screens.
Unfortunately, the policy pursued by some schools has ensured that generations of
children are unable to compute simple arithmetic operations without the aid of a
calculator. I believe that such children have been disadvantaged, as they are un-
able to visualize the various patterns that exist in numbers such as odd numbers
(1, 3, 5, 7, ...), even numbers (2, 4, 6, 8, ...), prime numbers (2, 3, 5, 7, 11, ...),
squares (1, 4, 9, 16, 25, ...) and Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, ...). They will
not know that it is possible to multiply a two-digit number, such as 17, by 11, simply
by adding 1 to 7 and placing the result in the middle to make 187.

Although I do appreciate the benefits of calculators, I believe that they are intro-
duced into the curriculum far too early. Children should be given the opportunity to
develop a sense of number and the possibility of developing a love for mathematics,
before they discover the tempting features of a digital calculator.

‘I am no good at mathematics’ is a common response from most people when
asked about their mathematical abilities. Some suggest that their brain is unable to
cope with numbers, some claim that it’s boring, whilst others put it down to in-
adequate teaching. Personally, I am not very good at mathematics, but I delight in
reading books about mathematicians and the history of mathematics, and applying
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2 1 Mathematics

mathematics to solve problems in computer graphics. I am easily baffled by pages
of abstract mathematical symbols, but readily understand the application of mathe-
matics in a practical context.

It was only when I started programming computers to produce drawings and pic-
tures, that I really appreciated the usefulness of mathematics. Multiplication became
synonymous with scaling; division created perspective; sines and cosines rotated
objects; tangents produced shearing, and geometry and trigonometry provided the
analytical tools to solve all sorts of other problems. Such a toolkit is readily under-
stood and remembered.

1.2 Is Mathematics Difficult?

‘Is mathematics difficult?’ I suppose that there is no real answer to this question,
because it all depends upon what we mean by ‘mathematics’ and ‘difficult’. But if
the question is rephrased slightly: ‘Is the mathematics of computer graphics diffi-
cult?’ then the answer is a definite no. What’s more, I believe that the subject of
computer graphics can instill in someone a love for mathematics. Perhaps ‘love’
is too strong a word, but I am convinced that it is possible to ‘make friends’ with
mathematics.

For me, mathematics should be treated like a foreign language: You only require
to learn an appropriate vocabulary to survive while visiting another country. If you
attempt to memorize an extended vocabulary, and do not put it to practice, it is highly
likely that you will forget it. Mathematics is the same. I know that if I attempted to
memorize some obscure branch of mathematics, such as vector calculus, I would
forget it within days if I did not put it to some practical use.

Fortunately, the mathematics needed for computer graphics is reasonably simple
and covers only a few branches such as algebra, trigonometry, vectors, geometry,
transforms, interpolation, curves and patches. Although these topics do have an ad-
vanced side to them, in most applications we only need to explore their intermediate
levels.

1.3 Who Should Read This Book?

I have written this book as a reference for anyone intending to study computer
graphics, computer animation, computer games or virtual reality, especially for
people who want to understand the technical aspects. Although it is possible to
study these topics without requiring the support of mathematics, increasingly, there
are situations and projects that require animators, programmers and technical direc-
tors to resort to mathematics to resolve unforeseen technical problems. This may be
in the form of a script or an extra piece of program code.
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1.4 Aims and Objectives of This Book

One of the aims of this book is to bring together a range of useful mathematical
topics that are relevant to computer graphics. And the real objective is to provide
programmers and animators with an understanding of mathematics so that they can
solve all sorts of problems with confidence.

I have attempted to do this by exploring a range of mathematical topics without
intimidating the reader with mathematical symbols and abstract ideas. Hopefully, I
will be able to explain each topic in a simple and practical manner, with a variety of
practical examples.

This is far from an exhaustive study of the mathematics associated with computer
graphics. Each chapter introduces the reader to a new topic, and should leave the
reader confident and capable of studying more advanced books.

1.5 Assumptions Made in This Book

I suppose that I do expect that readers will have some understanding of arithmetic
and the general knowledge of the principles of mathematics, such as the ideas of
algebra. But, apart from that, each subject will be introduced as though it were the
first time it had been discovered.

In the chapter on curves and surfaces I have used a little calculus. Readers who
have not studied this subject should not be concerned about missing some vital piece
of information. I only included it to keep the explanation complete.

1.6 How to Use This Book

I would advise starting at the beginning and proceeding chapter by chapter. Where
a subject seems familiar, just jump ahead until a challenge is discovered. Once you
have read the book, keep it handy so that you can refer to it when the occasion arises.

Although I have tried to maintain a sequence to the mathematical ideas, so that
one idea leads to another, in some cases this has proved impossible. For example,
determinants are referred to in the chapter on vectors, but they are described in detail
in the next chapter on transforms. Similarly, the later chapter on analytic geometry
contains some basic ideas of geometry, but its position was dictated by its use of
vectors. Consequently, on some occasions, the reader will have to move between
chapters to read about related topics.





Chapter 2
Numbers

2.1 Introduction

All sorts of number system have been proposed by previous civilizations, but our
current system is a positional number system using a base ten. The number 1234
means the sum of one thousand, plus two hundreds, plus three tens, plus four ones,
which can be expressed as

1234 = 1×1000+2×100+3×10+4×1.

It should be obvious that the base ten is nothing special, it just so happens that human
beings have evolved with ten digits, which we use for counting. This suggests that
any number can be used as a base: 2, 3, 4, 5, 6, 7, etc. In fact, the decimal number
system is not very convenient for computer technology, where electronic circuits
switch on and off trillions of times a second using binary numbers – numbers to a
base 2 – with great ease. In this text there is no real need to explore such numbers.
This is left to programmers who have to master number systems such as binary
(base 2), octal (base 8) and hexidecimal (base 16).

The only features of numbers we have to revise in this chapter are the sets of
numbers that exist, what they are used for, and any problems that arise when they
are stored in a computer. In some cases, the sets of number are represented by a
single letter such as R for real and Z for integers. It is also common practice to
declare a symbol λ (lambda) as being a member of a particular set using λ ∈ R
which implies that lambda (λ ) is a member of (∈) the set of real numbers (R) and
is thus a real quantity.

Let us begin with the natural numbers.
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2.2 Natural Numbers

The natural numbers [1, 2, 3, 4, ...] are used for counting, ordering and labelling
and represented by the set N. When zero is added to the set, N∗ is used. Note that
negative numbers are not included. We often use natural numbers to subscript a
quantity to distinguish one element from another, e.g., x1,x2,x3,x4....

2.3 Prime Numbers

A natural number that can be divided only by 1 and itself, without leaving a remain-
der, is called a prime number. Examples are [2, 3, 5, 7, 11, 13, 17]. There are 25
primes less than 100, 168 primes less than 1,000 and 455,052,512 primes less than
10,000,000,000. The fundamental theory of arithmetic states ‘Any positive integer
(other than 1) can be written as the product of prime numbers in one and only one
way.’ For example:

25 = 5×5
26 = 2×13
27 = 3×3×3
28 = 2×2×7
29 = 29
30 = 2×3×5

92365 = 5×7×7×13×29.

In 1742 Christian Goldbach conjectured that every even integer greater than 2 could
be written as the sum of two primes:

4 = 2+2
14 = 11+3
18 = 11+7, etc.

No one has ever found an exception to this conjecture, and no one has ever con-
firmed it.

Although prime numbers are enigmatic and have taxed the brains of the greatest
mathematicians, unfortunately they play no part in computer graphics!

2.4 Integers

Integers include the natural numbers and their negative counterparts: [..−3, −2, −1,
0, 1, 2, 3, 4, ..] and are represented by the set Z and Z∗ without zero.
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2.5 Rational Numbers

Rational or fractional numbers are numbers that can be represented as a fraction
and are represented by the set Q. For example, 2,

√
16,0.25 are rational numbers

because

2 =
4
2

√
16 = 4 =

8
2

0.25 =
1
4
.

Some rational numbers can be stored accurately inside a computer, but many others
can only be stored approximately. For example, 4/3 = 1.333 333 produces an infinite
sequence of threes and has to be truncated when stored as a binary number.

2.6 Irrational Numbers

Irrational numbers cannot be represented as fractions. Examples are
√

2 = 1.414213562...

π = 3.141592653...

e = 2.718281828...

Such numbers never terminate and are always subject to a small error when stored
within a computer.

2.7 Real Numbers

Rational and irrational numbers together comprise the set of real numbers which
are represented by the letter R. R∗ is used to represent the set of real numbers with-
out zero. Typical examples are 1.5,0.004,12.999 and 23.0.

2.8 The Number Line

It is convenient to organize numbers in the form of an axis to give them a spatial
significance. Figure 2.1 shows such a number line which forms an axis as used in
graphs and coordinate systems. The number line also helps us understand complex
numbers which are the ‘king’ of all numbers.
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–5 –4 –3 –2 –1 0 1 2 3 4 5

Fig. 2.1 The number line.

2.9 Complex Numbers

Leonhard Euler (1707–1783) (whose name rhymes with boiler) played a significant
role in putting complex numbers on the map. His ideas on rotations are also used
in computer graphics to locate objects and virtual cameras in space, as we shall see
later on.

Complex numbers resolve some awkward problems that arise when attempting
to solve certain types of equations and are represented by the set C. For example,
x2−4 = 0 has solutions x =±2. But x2 +4 = 0 has no solutions using real numbers.
However, the number line provides a graphical interpretation for a new type of
number: the complex number. The name is rather misleading: it is not complex,
it is rather simple.

Consider the scenario depicted in Fig. 2.2. Any number on the number line is
related to the same number with the opposite sign via an anticlockwise rotation
of 180◦. For example, if 2 is rotated 180◦ about zero, it becomes −2, and if −3 is
rotated 180◦ about zero it becomes 3.

We can now write −2 = (−1)× 2, or 3 = −1×−3, where −1 is effectively a
rotation through 180◦. But a rotation of 180◦ can be interpreted as two consecutive
rotations of 90◦, and the question now arises: What does a rotation of 90◦ signify?
Well, let’s assume that we don’t know what the answer is going to be – even though
some of you do – we can at least give a name to the operation, and what better name
to use than i.

So the letter i represents an anticlockwise rotation of 90◦. Therefore 2i is equiv-
alent to lifting 2 out of the number line, rotating it 90◦ and leaving it hanging in
limbo. But if we take this ‘imaginary’ number and subject it to a further 90◦ rota-
tion, i.e., 2ii, it becomes −2. Therefore, we can write 2ii = −2, which means that
ii = −1. But if this is so, i =

√
−1 ! Therefore, i is not really a number, but an

operator – an operator that effectively rotates a number anticlockwise through 90◦.

–3  –2 –1 0 1 2 3

Fig. 2.2 Rotating numbers through 180◦ reverses their sign.
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So now we have two types of number: ordinary numbers and complex numbers.
Ordinary numbers are the everyday numbers we use for counting and so on, whereas
complex numbers have a mixture of real and imaginary components, and help re-
solve a wide range of mathematical problems. For example, a complex number z is
represented as

z = a+bi

where a and b are real quantities, but b is multiplied by i, which makes it imaginary.
Complex numbers obey all the normal laws of algebra. For example, if we mul-

tiply (a+bi) by (c+di) we obtain:

(a+bi)(c+di) = ac+adi+bci+bdi2.

Collecting up like terms and substituting −1 for i2 we get

(a+bi)(c+di) = ac+(ad +bc)i−bd

and simplifies to

(a+bi)(c+di) = ac−bd +(ad +bc)i

which is another complex number.
Something interesting happens when we multiply a complex number by its

conjugate, which is the same complex number but with the sign of the imaginary
part reversed:

(a+bi)(a−bi) = a2 −abi+bai−b2i2.

Collecting up like terms and simplifying we obtain

(a+bi)(a−bi) = a2 +b2

which is a real number because the imaginary part has been cancelled out by the
action of the conjugate.

Figure 2.3 shows how complex numbers can be represented graphically: the hor-
izontal number line represents the real component, and the vertical number line
represents the imaginary component.

For example, the complex number P(1 + 2i) in Fig. 2.3 is rotated 90◦ to Q by
multiplying it by i. Let’s do this, and remember that i2 = −1:

i(1+2i) = i+2i2

= i−2
= −2+ i.
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–4    4

2i

1i

–1i

–2i

P(1+2i)

Q(–2+i)

R(-1-2i)

S(2-i)

real

imaginary

–3 –2  –1 1 2  3

Fig. 2.3 The graphical representation of complex numbers.

The point Q(−2+ i) is rotated another 90◦ to R by multiplying it by i:

i(−2+ i) = −2i+ i2

= −2i−1
= −1−2i.

The point R(−1−2i) is rotated another 90◦ to S by multiplying it by i:

i(−1−2i) = −i−2i2

= −i+2
= 2− i.

Finally, the point S(2− i) is rotated 90◦ back to P by multiplying it by i:

i(2− i) = 2i− i2

= 2i+1
= 1+2i.

Historically, complex numbers have not played a big part in computer graph-
ics, but imaginary quantities are very important in quaternions and geometric alge-
bra, which are covered in later chapters. Complex numbers are intimately related to
Cartesian coordinates, in that the ordered pair (x,y) ≡ (x + yi), and that they led to
the discovery of vectors and quaternions.

Before concluding this chapter, I cannot fail to include the famous equation dis-
covered by Euler:

eiπ +1 = 0

which integrates 0,1,e,π and i in a simple and beautiful arrangement, and is on a
par with Einstein’s e = mc2.



2.10 Summary 11

2.10 Summary

Apart from the natural numbers, integers, rational, irrational, prime, real and
complex numbers, there are also Fermat, Mersenne, amicable, chromic, cubic,
Fibonacci, pentagonal, perfect, random, square and tetrahedral numbers, which
although equally interesting, don’t concern us in this text.

Now that we know something about the important number sets, let’s revise some
ideas behind algebra.





Chapter 3
Algebra

3.1 Introduction

This chapter reviews the basic elements of algebra to prepare the reader for the
algebraic manipulations used in later chapters. And although algebra can be a very
abstract mathematical tool, we only need to explore those practical features relevant
to its application to computer graphics.

3.2 Notation

The word ‘algebra’ comes from the Arabic al-jabr w’al-muqabal meaning ‘restora-
tion and reduction’. Today’s algebraic notation has evolved over thousands of years
where different civilizations developed ways of annotating mathematical and log-
ical problems. In retrospect, it does seem strange that centuries passed before the
‘equals’ sign (=) was invented and concepts such as ‘zero’ (CE 876) were intro-
duced, especially as they now seem so important. But we are not at the end of
this evolution, because new forms of annotation and manipulation will continue
to emerge as new mathematical ideas are invented.

One fundamental concept of algebra is the idea of giving a name to an un-
known quantity. For example, m is often used to represent the slope of a 2D
line, and c is the line’s y-coordinate where it intersects the y-axis. René Descartes
(1596 –1650) formalized the idea of using letters from the beginning of the alphabet
(a,b,c, etc.) to represent arbitrary quantities, and letters at the end of the alphabet
(p,q,r,s, t, . . . , x,y,z) to represent quantities such as pressure (p), temperature (t),
and coordinates (x,y,z).

With the aid of the basic arithmetic operators +,−,×,÷ we can develop expres-
sions that describe the behaviour of a physical process or a specific computation.
For example, the expression ax + by− d equals zero for a straight line. The vari-
ables x and y are the coordinates of any point on the line and the values of a, b, d

J. Vince, Mathematics for Computer Graphics, Undergraduate Topics 13
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determine the position and orientation of the line. There is an implied multiplication
between ax and by which would be expressed as a∗x and b∗y using a programming
language.

The ‘=’ sign permits the line equation to be expressed as a self-evident statement:

0 = ax+by−d.

Such a statement implies that the expressions on the left- and right-hand sides of
the = sign are ‘equal’ or ‘balanced’. So whatever is done to one side must also be
done to the other in order to maintain equality or balance. For example, if we add d
to both sides, the straight-line equation becomes

d = ax+by.

Similarly, we could double or treble both expressions, divide them by 4, or add 6,
without disturbing the underlying relationship.

Algebraic expressions also contain a wide variety of other notation, such as:
√

x = square root of x
n
√

x = nth root of x

xn = x to the power n

sinx = sine of x

cosx = cosine of x

tanx = tangent of x

logx = logarithm of x

lnx = natural logarithm of x.

Parentheses are used to isolate part of an expression in order to select a sub-
expression that is manipulated in a particular way. For example, the parentheses
in c(a + b) + d ensure that the variables a and b are added together before being
multiplied by c and finally added to d.

3.3 Algebraic Laws

On the whole, mathematics is well behaved. This is because it is subject to a system
of laws or axioms that describe how mathematical statements are to be manipulated.
Negative numbers and zero always seem to cause problems and we just have to
remember that the product of two negative numbers results in a positive number
and that

x/0 equals infinity
0/x equals 0, and
0/0 is undefined.
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There are three basic axioms that are fundamental to manipulating algebraic
expressions: associative, commutative and distributive. In the following descrip-
tions, the term binary operation represents the arithmetic operations +,− or ×,
which are always associated with a pair of numbers or variables.

3.3.1 Associative Law

The associative law in algebra states that when three or more elements are linked
together through a binary operation, the result is independent of how each pair of
elements is grouped. The associative law of addition is

a+(b+ c) = (a+b)+ c

e.g. 1+(2+3) = (1+2)+3.

This seems so obvious that it is almost unnecessary to state such an axiom. But it
must be included as it reminds us that grouping is immaterial when adding a string
of numbers.

The associative law of multiplication also seems unnecessary, but reminds us that
grouping is also immaterial when multiplying a string of numbers:

a× (b× c) = (a×b)× c

e.g. 1× (2×3) = (1×2)×3.

However, note that subtraction is not associative:

a− (b− c) �= (a−b)− c

e.g. 1− (2−3) �= (1−2)−3.

which may seem surprising, but at the same time confirms the need for clear axioms.

3.3.2 Commutative Law

The commutative law in algebra states that when two elements are linked through
some binary operation, the result is independent of the order of the elements. The
commutative law of addition is

a+b = b+a

e.g. 1+2 = 2+1.

The commutative law of multiplication is

a×b = b×a

e.g. 1×2 = 2×1.
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Again, these may seem so obvious that they are unnecessary. But the algebra of
numbers must be clear on such products. Note that subtraction is not commutative

a−b �= b−a

e.g. 1−2 �= 2−1.

3.3.3 Distributive Law

The distributive law in algebra describes an operation which when performed on a
combination of elements is the same as performing the operation on the individual
elements. The distributive law does not work in all cases of arithmetic. For example,
multiplication over addition holds:

a(b+ c) = ab+ac

e.g. 2(3+4) = 6+8.

whereas addition over multiplication does not:

a+(b× c) �= (a+b)× (a+ c)
e.g. 3+(4×5) �= (3+4)× (3+5).

Although most of these laws seem to be natural for numbers, they do not neces-
sarily apply to all mathematical constructs. For instance, the vector product, which
multiplies two vectors together, is not commutative.

3.4 Solving the Roots of a Quadratic Equation

To put the above laws and notation into practice, let us take a simple example to
illustrate the logical steps in solving a problem. The task involves solving the roots
of a quadratic equation, i.e., those values of x that make the equation equal zero.
And as the starting equation involves an x2 term, at some stage we will have to take
a square root. Therefore, the strategy is to create a situation that makes it easy to
take a square root.

We begin with the quadratic equation where a �= 0:

ax2 +bx+ c = 0.

Step 1: Subtract c from both sides:

ax2 +bx = −c.

Step 2: Divide both sides by a:

x2 +
b
a

x = − c
a
.
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Step 3: Add b2/4a2 to both sides to create a perfect square on the left side:

x2 +
b
a

x+
b2

4a2 =
b2

4a2 − c
a
.

Step 4: Factorize the left side
(

x+
b

2a

)2

=
b2

4a2 − c
a
.

Step 5: Make 4a2 the common denominator for the right side:
(

x+
b
2a

)2

=
b2 −4ac

4a2 .

Step 6: Take the square root of both sides:

x+
b
2a

=
±
√

b2 −4ac
2a

.

Step 7: Subtract b/2a from both sides:

x =
±
√

b2 −4ac
2a

− b
2a

.

Step 8: Rearrange the right side:

x =
−b±

√
b2 −4ac

2a

which provides the roots for any quadratic equation.

3.5 Indices

A notation for repeated multiplication is with the use of indices. For instance, in the
above example with a quadratic equation x2 is used to represent x×x. This notation
leads to a variety of situations where laws are required to explain how the result is
to be computed.

3.5.1 Laws of Indices

The laws of indices are expressed as follows:

am ×an = am+n

am ÷an = am−n

(am)n = amn

which are easily verified using some simple examples.
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3.5.2 Examples

23 ×22 = 8×4 = 32 = 25

24 ÷22 = 16÷4 = 4 = 22

(22)3 = 64 = 26.

From the above laws, it is evident that

a0 = 1

a−p =
1
ap

a
1
q = q

√
a

a
p
q = q

√
ap.

3.6 Logarithms

Two people are associated with the invention of logarithms: John Napier
(1550–1617) and Joost Bürgi (1552–1632). Both men were frustrated by the time
they spent multiplying numbers together, and both realized that multiplication
could be replaced by addition using logarithms. Logarithms exploit the addition
and subtraction of indices shown above, and are always associated with a base. For
example, if ax = n, then loga n = x, where a is the base. When no base is indicated,
it is assumed to be 10. A concrete example brings the idea to life:

if 102 = 100 then log100 = 2

which can be interpreted as “10 has to be raised to the power (index) 2 to equal 100”.
The log operation finds the power of the base for a given number. Thus a multipli-
cation can be translated into an addition using logs:

36×24 = 864
log 36+ log 24 = log 864

1.55630250077+1.38021124171 = 2.93651374248.

In general, the two bases used in calculators and computer software are 10 and
2.718281846... The latter is e, a transcendental number. (A transcendental number
is not a root of any algebraic equation. Joseph Liouville proved the existence of
such numbers in 1844. π , the ratio of the circumference of a circle to its diameter, is
another example). To distinguish one type of logarithm from the other, logarithms
to the base 10 are written as log, and logarithms to the base e are written ln. From
the above notation, it is evident that
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log(ab) = loga+ logb

log
(

a
b

)
= loga− logb

log(an) = n loga.

3.7 Further Notation

Mathematicians use all sorts of symbols to substitute for natural language expres-
sions. Here are some examples:

< less than
> greater than
≤ less than or equal to
≥ greater than or equal to

 approximately equal to
≡ equivalent to
�= not equal to.

For example, 0 ≤ t ≤ 1 is interpreted as: t is greater than or equal to 0, and is less
than or equal to 1. Basically, this means t varies between 0 and 1.

3.8 Summary

The above description of algebra should be sufficient for the reader to understand the
remaining chapters. However, one should remember that this is only the beginning
of a very complex subject.





Chapter 4
Trigonometry

4.1 Introduction

When we split the word ‘trigonometry’ into its constituent parts, ‘tri’ ‘gon’ ‘metry’,
we see that it is to do with the measurement of three-sided polygons, i.e., triangles.
It is a very ancient subject, and one the reader requires to understand for the analysis
and solution of problems in computer graphics.

Trigonometric functions arise in vectors, transforms, geometry, quaternions and
interpolation, and in this chapter we survey some of the basic features with which
the reader should be familiar.

The measurement of angles is at the heart of trigonometry, and today two units
of angular measurement have survived into modern usage: degrees and radians. The
degree (or sexagesimal) unit of measure derives from defining one complete rotation
as 360◦. Each degree divides into 60 min, and each minute divides into 60 s. The
number 60 has survived from Mesopotamian days and is rather incongruous when
used alongside today’s decimal system – which is why the radian has secured a
strong foothold in modern mathematics.

The radian of angular measure does not depend upon any arbitrary constant. It is
the angle created by a circular arc whose length is equal to the circle’s radius. And
because the perimeter of a circle is 2πr, 2π radians correspond to one complete
rotation. As 360◦ correspond to 2π radians, 1 radian corresponds to 180◦/π , which
is approximately 57.3◦.

The reader should try to memorize the following relationships between radians
and degrees:

π
2
≡ 90◦ π ≡ 180◦

3π
2

≡ 270◦ 2π ≡ 360◦.
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4.2 The Trigonometric Ratios

Ancient civilizations knew that triangles, whatever their size, possessed some
inherent properties, especially the ratios of sides and their associated angles. This
meant that if such ratios were known in advance, problems involving triangles with
unknown lengths and angles could be computed using these ratios.

To give you some idea why we employ the current notation, consider the history
of the word sine. The Hindu word ardha-jya meaning ‘half-chord’ was abbreviated
to jya (‘chord’), which was translated by the Arabs into jiba, and corrupted to jb.
Other translators converted this to jaib, meaning ‘cove’, ‘bulge’ or ‘bay’, which in
Latin is sinus.

opposite

adjacent

hypotenuse

b

Fig. 4.1 Labeling a right-angle triangle for the trigonometric ratios.

Today, the trigonometric ratios are known by the abbreviations sin, cos, tan, csc,
sec and cot. Figure 4.1 shows a right-angled triangle where the trigonometric ratios
are given by:

sinβ =
opposite

hypotenuse
cosβ =

adjacent
hypotenuse

tanβ =
opposite
adjacent

cscβ =
1

sinβ
secβ =

1
cosβ

cotβ =
1

tanβ
.

The sin and cos functions have limits ±1, whereas tan has limits ±∞. The signs
of the functions in the four quadrants are

sin cos tan
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h

b

10

50°

Fig. 4.2 h and b are unknown.

4.3 Example

Figure 4.2 shows a triangle where the hypotenuse and one angle are known. The
other sides are calculated as follows:

h
10

= sin50◦

h = 10sin50◦= 10×0.76601 = 7.66
b

10
= cos50◦

b = 10cos50◦= 10×0.64279 = 6.4279.

4.4 Inverse Trigonometric Ratios

As every angle has its associated ratio, functions are required to convert one into
the other. The sin, cos and tan functions convert angles into ratios, and the inverse
functions sin−1, cos−1 and tan−1 convert ratios into angles. For example, sin45◦ ≈
0.707, therefore sin−1 0.707 ≈ 45◦. Although sine and cosine functions are cyclic
functions (i.e., they repeat indefinitely) the inverse functions return angles over a
specific period.

4.5 Trigonometric Relationships

There is an intimate relationship between the sin and cos definitions, and are for-
mally related by

cosβ = sin(β +90◦).
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Also, the theorem of Pythagoras can be used to derive other formulae such as

sinβ
cosβ

= tanβ

sin2 β + cos2 β = 1

1+ tan2 β = sec2 β

1+ cot2 β = csc2 β .

A B

C

ab

c

Fig. 4.3 An arbitrary triangle.

4.6 The Sine Rule

The sine rule relates angles and side lengths for a triangle. Figure 4.3 shows a trian-
gle labeled such that side a is opposite angle A, side b is opposite angle B, etc.

The sine rule states

a
sinA

=
b

sinB
=

c
sinC

.

4.7 The Cosine Rule

The cosine rule expresses the sin2 β + cos2 β = 1 relationship for the arbitrary tri-
angle shown in Fig. 4.3. In fact, there are three versions:

a2 = b2 + c2 −2bccosA

b2 = c2 +a2 −2cacosB

c2 = a2 +b2 −2abcosC.
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Three further relationships also hold

a = bcosC + ccosB

b = ccosA+acosC

c = acosB+bcosA.

4.8 Compound Angles

Two sets of compound trigonometric relationships show how to add and subtract
two different angles and multiples of the same angle. The following are some of the
most common relationships:

sin(A±B) = sinAcosB± cosAsinB

cos(A±B) = cosAcosB∓ sinAsinB

tan(A±B) =
tanA± tanB

1∓ tanA tanB
sin2β = 2sinβ cosβ

cos2β = cos2 β − sin2 β

cos2β = 2cos2 β −1

cos2β = 1−2sin2 β

sin3β = 3sinβ −4sin3 β

cos3β = 4cos3 β −3cosβ

cos2 β =
1
2
(1+ cos2β )

sin2 β =
1
2
(1− cos2β ).

4.9 Perimeter Relationships

Finally, with reference to Fig. 4.3, we come to the relationships that integrate angles
with the perimeter of a triangle:

s =
1
2
(a+b+ c)

sin
(

A
2

)
=

√
(s−b)(s− c)

bc



26 4 Trigonometry

sin
(

B
2

)
=

√
(s− c)(s−a)

ca

sin
(

C
2

)
=

√
(s−a)(s−b)

ab

cos
(

A
2

)
=

√
s(s−a)

bc

cos
(

B
2

)
=

√
s(s−b)

ca

cos
(

C
2

)
=

√
s(s− c)

ab

sinA =
2
bc

√
s(s−a)(s−b)(s− c)

sinB =
2
ca

√
s(s−a)(s−b)(s− c)

sinC =
2
ab

√
s(s−a)(s−b)(s− c).

4.10 Summary

No derivation has been given for the formulae in this chapter, and the reader who is
really interested will find plenty of books that show their origins. Hopefully, the for-
mulae will be a useful reference when studying the rest of the book, and perhaps will
be of some use when solving problems in the future. I should draw the reader’s atten-
tion to two maths books that I have found a source of information and inspiration:
Handbook of Mathematics and Computational Science by John Harris and Horst
Stocker (1998), and Mathematics from the Birth of Numbers by Jan Gullberg (1997).



Chapter 5
Cartesian Coordinates

5.1 Introduction

René Descartes (1596–1650) is often credited with the invention of the xy-plane,
but Pierre de Fermat (1601–1665) was probably the first inventor. In 1636 Fermat
was working on a treatise titled Ad locus planos et solidos isagoge, which out-
lined what we now call analytic geometry. Unfortunately, Fermat never published
his treatise, although he shared his ideas with other mathematicians such as Blaise
Pascal (1623–1662). At the same time Descartes devised his own system of analytic
geometry and in 1637 published his results in the prestigious journal Géométrie. In
the eyes of the scientific world, the publication date of a technical paper determines
when a new idea or invention is released into the public domain. Consequently, ever
since this publication Descartes has been associated with the xy-plane, which is why
it is called the Cartesian plane. If Fermat had been more efficient in publishing his
research results, the xy-plane could have been called the Fermatian plane (A History
of Mathematics by Boyer and Merzbach, 1989)!

5.2 The Cartesian xy-Plane

The Cartesian xy-plane provides a mechanism for visualizing pairs of related vari-
ables into a graphical format. The variables are normally x and y, as used to describe
a function such as y = 0.5x + 1. Every value of x has a corresponding value of y,
which can be located on intersecting axes as shown in Fig. 5.1. The set of points
forms a familiar straight line associated with equations of the form y = mx + c. By
convention, the axis for the independent variable x is horizontal, and the depen-
dent variable y is vertical. The axes intersect at 90◦ at a point called the origin.
As previously mentioned, Descartes suggested that the letters x and y should be
used to represent variables, and letters at the opposite end of the alphabet should
substitute numbers. Which is why equations such as y = ax2 +bx+c are written the
way they are.
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+X

+Y

–X

–Y 

Fig. 5.1 The equation y = 0.5x+1 using the xy Cartesian plane.

Measurements to the right and left of the origin are positive and negative
respectively, and measurements above and below the origin share a similar sign
convention. Together, the axes are said to create a left-handed set of axes, because it
is possible, using one’s left hand, to align the thumb with the x-axis and the first fin-
ger with the y-axis. We will say more about left and right-handed axes in Chapter 6.

The Cartesian plane is such a simple idea that it is strange that it took so long to
be discovered. But even though it was invented almost 400 years ago, it is central
to computer graphics. However, although it is true that René Descartes showed how
an orthogonal coordinate system could be used for graphs and coordinate geometry,
coordinates had been used by ancient Egyptians, almost 2,000 years earlier!

Any point P on the Cartesian plane is identified by an ordered pair of numbers
(x,y) where x and y are called the Cartesian coordinates of P. Mathematical func-
tions and geometric shapes can then be represented as lists of coordinates inside a
computer program.

5.2.1 Function Graphs

A wide variety of functions, such as y = mx+c (linear), y = ax2 +bx+c (quadratic),
y = ax3 + bx2 + cx + d (cubic), y = asinx (trigonometric), etc., create familiar
graphs that readily identify the function’s origins. Linear functions are straight lines,
quadratics are parabolas, cubics have an ‘s’ shape, and trigonometric functions often
have a wave-like trace. Such graphs are used in computer animation to control the
movement of objects, lights and the virtual camera. But instead of depicting the rela-
tionship between x and y, the graphs show the relationship between an activity such
as movement, rotation, size, brightness, colour, etc., with time. Figure 5.2 shows an
example where the horizontal axis marks the progress of time in animation frames,
and the vertical axis records the corresponding brightness of a virtual light source.
Such a function forms part of the animator’s user interface, and communicates in a
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Fig. 5.2 A function curve relating brightness to frame number.

very intuitive manner the brightness of the light source for every frame of animation.
The animator can then make changes to the function with the aid of interactive
software tools.

5.2.2 Geometric Shapes

Computer graphics requires that 2D shapes and 3D objects have a numerical
description of some sort. Shapes include polygons, circles, arbitrary curves,
mathematical functions, fractals, etc., and objects can be faceted, smooth, bumpy,
furry, gaseous, etc. For the moment though, we will only consider 2D shapes.

5.2.3 Polygonal Shapes

A polygon is constructed from a sequence of vertices (points) as shown in Fig. 5.3.
A straight line is assumed to link each pair of neighbouring vertices; intermediate
points on the line are not explicitly stored. There is no convention for starting a
chain of vertices, but software will often dictate whether polygons have a clockwise
or anticlockwise vertex sequence. If the vertices in Fig. 5.3 had been created in
an anticlockwise sequence, they could be represented in a tabular form as shown,
where the starting vertex is (1, 1), but this is arbitrary. We can now subject this list
of vertex coordinates to a variety of arithmetic and mathematical operations. For
example, if we double the values of x and y and redraw the vertices, we discover
that the shape’s geometric integrity is preserved, but its size is doubled with respect
to the origin. Similarly, if we divide the values of x and y by 2, the shape is still
preserved, but its size is halved with respect to the origin. On the other hand, if we
add 1 to every x-coordinate and 2 to every y-coordinate and redraw the vertices,
the shape’s size remains the same but it is displaced 1 unit horizontally and 2 units
vertically. This arithmetic manipulation of vertices is the basis of shape and object
transforms and is described in Chapter 7.
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x y

1 1
3 1
3 2
1 3

Y

3, 2

3, 11,1

1,3

X

Fig. 5.3 A simple polygon created with four vertices shown in the table.

5.2.4 Areas of Shapes

The area of a polygonal shape is readily calculated from its chain of coordinates.
For example, given the following list of coordinates:

x y

x0 y0

x1 y1

x2 y2

x3 y3

the area is computed by

area =
1
2
[(x0y1 − x1y0)+(x1y2 − x2y1)+(x2y3 − x3y2)+(x3y0 − x0y3)].

If you check to see what is happening, you will notice that the calculation sums
the results of multiplying an x by the next y, minus the next x by the previous y.
When the last vertex is selected it is paired with the first vertex to complete the
process. The result is then halved to reveal the area. As a simple test, let’s apply this
formula to the shape described in Fig. 5.3

area =
1
2
[(1×1−3×1)+(3×2−3×1)+(3×3−1×2)+(1×1−1×3)]

area =
1
2
[−2+3+7−2] = 3.
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which by inspection, is the true area. The beauty of this technique is that it works
with any number of vertices and any arbitrary shape. In Chapter 6 we will discover
how it works.

Another feature of the technique is that if the set of coordinates is clockwise, the
area is negative. Which means that the calculation computes vertex orientation as
well as area. To illustrate this feature, the original vertices are reversed to a clock-
wise sequence as follows:

area =
1
2
[(1×3−1×1)+(1×2−3×3)+(3×1−3×2)+(3×1−1×1)]

area =
1
2
[2−7−3+2] = −3.

The minus sign indicates that the vertices are in a clockwise sequence.

X

d

x1

Y

y2

Dy

Dx

y1

P1

P2

x2

Fig. 5.4 Calculating the distance between two points.

5.2.5 Theorem of Pythagoras in 2D

We can calculate the distance between two points by applying the theorem of
Pythagoras. Figure 5.4 shows two arbitrary points P1(x1,y1) and P2(x2,y2). The dis-
tance Δx = x2 − x1 and Δy = y2 − y1. Therefore, the distance d between P1 and P2
is given by

d =
√

(Δx)2 +(Δy)2.

5.3 3D Coordinates

In the 2D Cartesian plane a point is located by its x- and y-coordinates. But when
we move to 3D there are two choices for positioning the third z-axis. Figure 5.5
shows the two possibilities, which are described as left- and right-handed axial
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systems. The left-handed system allows us to align our left hand with the axes
such that the thumb aligns with the x-axis, the first finger aligns with the y-axis
and the middle finger aligns with the z-axis. The right-handed system allows the
same system of alignment, but using our right hand. The choice between these
axial systems is arbitrary, but one should be aware of the system employed by
commercial computer graphics packages. The main problem arises when projecting
3D points onto a 2D plane, which, in general, has a left-handed axial system. This
will become obvious when we look at perspective projections. In this text we will
keep to a right-handed system as shown in Fig. 5.6, which also shows a point P with
its coordinates. It also worth noting that handedness has no meaning in spaces with
four dimensions or more.

X

Y

Z

Z X

Y
ba

Fig. 5.5 (a) A left-handed system. (b) A right-handed system.

P

XZ

Y

x z

y

Fig. 5.6 A right-handed axial system showing the coordinates of a point P.
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5.3.1 Theorem of Pythagoras in 3D

The theorem of Pythagoras in 3D is a natural extension of the 2D rule. In fact,
it even works in higher dimensions. Given two arbitrary points P1(x1,y1,z1) and
P2(x2,y2,z2), we need to compute Δx = x2 − x1, Δy = y2 − y1 and Δz = z2 − z1,
from which the distance d between P1 and P2 is given by

d =
√

(Δx)2 +(Δy)2 +(Δz)2.

5.3.2 3D Polygons

The simplest 3D polygon is a triangle, which is always planar, i.e., the three vertices
lie on a common plane. Planarity is very important in computer graphics because
rendering algorithms assume that polygons are planar. For instance, it is quite easy
to define a quadrilateral in 3D where the vertices are not located on one plane.
When such a polygon is rendered and animated, spurious highlights can result, sim-
ply because the geometric techniques (which assume the polygon is planar) give
rise to errors.

5.3.3 Euler’s Rule

In 1619, Descartes discovered quite a nice relationship between vertices, edges and
the faces of a 3D polygonal object:

faces+ vertices = edges+2.

As a simple test, consider a cube: it has 12 edges, 6 faces and 8 vertices, which
satisfies this equation. This rule can be applied to a geometric database to discover
whether it contains any spurious features. Unfortunately for Descartes, for some
unknown reason, the rule is named after Euler!

5.4 Summary

The Cartesian plane and its associated coordinates are the basis for all mathematics
used for computer graphics. By changing the values of the coordinates, we effec-
tively change the shape of objects and their position in space. Furthermore, by cre-
ating a virtual lighting environment and associating colour and reflective properties
with surfaces they can be rendered with realistic textures, shadows and surface fin-
ishes. Basically, this is what computer graphics is about: simulating the real world
numerically!
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We will see in following chapters how 2D shapes are manipulated using simple
functions, and how the plane can be extended into a three-dimensional Cartesian
space that becomes the domain for creating objects, curves, surfaces, and a virtual
environment where they can be animated and visualized.



Chapter 6
Vectors

6.1 Introduction

Vectors are a relatively new arrival to the world of mathematics, dating only from the
nineteenth century. They provide us with some elegant and powerful techniques for
computing angles between lines and the orientation of surfaces. They also provide
a coherent framework for computing the behaviour of dynamic objects in computer
animation and illumination models in rendering.

We often employ a single number to represent quantities that we use in our daily
lives such as height, age, shoe size, waist and chest measurement. The magnitude of
this number depends on our age and whether we use metric or imperial units. Such
quantities are called scalars. In computer graphics scalar quantities include colour,
height, width, depth, brightness, number of frames, etc.

On the other hand, there are some things that require more than one number to
represent them: wind, force, weight, velocity and sound are just a few examples.
These cannot be represented accurately by a single number. For example, any sailor
knows that wind has a magnitude and a direction. The force we use to lift an object
also has a value and a direction. Similarly, the velocity of a moving object is mea-
sured in terms of its speed (e.g., miles per hour) and a direction such as north-west.
Sound, too, has intensity and a direction. These quantities are called vectors. In
computer graphics, vectors generally require two or three numbers, and these are
the only type we consider in this chapter.

Mathematicians such as Caspar Wessel (1745–1818), Jean Argand (1768 – 1822)
and John Warren (1796–1852) were simultaneously exploring complex numbers
and their graphical representation. And in 1843, Sir William Rowan Hamilton
(1788–1856) made his breakthrough with quaternions. In 1853, Hamilton published
his book Lectures on Quaternions in which he described terms such as vector,
transvector and provector. Hamilton’s work was not widely accepted until in 1881,
when the American mathematician Josiah Gibbs (1839–1903), published his treatise
Vector Analysis, describing modern vector analysis.

J. Vince, Mathematics for Computer Graphics, Undergraduate Topics 35
in Computer Science, DOI 10.1007/978-1-84996-023-6 6,
c© Springer-Verlag London Limited 2010
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Gibbs was not a fan of the imaginary quantities associated with Hamilton’s
quaternions, but saw the potential of creating a vectorial system from the imagi-
nary i, j and k into the unit basis vectors i, j and k, which is what we use today.

Some mathematicians were not happy with the direction vector analysis had
taken. Hermann Gunther Grassmann (1809–1877) for example, believed that his
own geometric calculus was far superior to Hamilton’s quaternions and the vector
techniques of Gibbs, but he died without managing to convince any of his fellow
mathematicians. Fortunately, William Kingdon Clifford (1845–1879) recognized
the brilliance of Grassmann’s ideas and formalized what today has become known
as geometric algebra.

With the success of Gibbs’ vector analysis, quaternions faded into obscurity, only
to be rediscovered in the 1970s when they were employed by the flight simula-
tion community to control the dynamic behavior of a simulator’s motion platform.
A decade later they found their way into computer graphics where they are used
for rotations about arbitrary axes. A decade later Clifford’s geometric algebra was
discovered by the computer graphics community, and today it is beginning to extend
traditional vector techniques.

Now this does not mean that vector analysis is dead – far from it. Vast quanti-
ties of computer graphics software depends upon the vector mathematics developed
over a century ago, and will continue to employ it for many years to come. There-
fore, this current chapter is very important for the reader. Nevertheless, geometric
algebra is destined to emerge as a powerful mathematical framework that could
eventually replace vector analysis some day, which is why Chapter 12 is also very
important.

6.2 2D Vectors

In computer graphics we employ 2D and 3D vectors. In this chapter we first consider
vector notation within a 2D context and then extend the ideas into 3D.

6.2.1 Vector Notation

A scalar such as x is just a name for a single numeric quantity. However, because a
vector contains two or more numbers, its symbolic name is printed using a bold font
to distinguish it from a scalar variable. Examples being n, i and q. When a scalar
variable is assigned a value we employ the standard algebraic notation

x = 3.

However, when a vector is assigned its numeric values, the following notation is
used
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n =

[
3

4

]

which is called a column vector. The numbers 3 and 4 are called the compo-
nents of n, and their position within the brackets is important. A row vector trans-
poses the components horizontally n = [3 4]T as it is sometimes convenient for
presentation purposes, and the superscript T reminds us of the column to row
transposition.

1 2 3 4 5 6

1

2

3

4

X

Y

Fig. 6.1 A vector represented by a line segment. However, although the vector has magnitude,
it does not have direction.

6.2.2 Graphical Representation of Vectors

Because vectors have to encode direction as well as magnitude, an arrow could be
used to indicate direction and a number to represent magnitude. Such a scheme is
often used in weather maps. And although this is a useful graphical interpretation of
such data, it is not practical for algebraic manipulation.

Cartesian coordinates provide an excellent mechanism for representing vectors
and allows them to be incorporated within the classical framework of mathematics.
Figure 6.1 shows a short line segment which could be used to represent a vector. The
length of the line represents the vector’s magnitude, and the line’s orientation defines
its direction. But as you can see from the figure, the line does not have a direction.
Even if we attach an arrowhead to the line, which is standard practice for anno-
tating vectors in books and scientific papers, the arrowhead has no mathematical
reality.

The line’s direction is determined by first identifying the vector’s tail and then
measuring its components along the x- and y-axes. For example, in Fig. 6.2 the
vector r has its tail defined by (x1,y1) = (1,2) and its head by (x2,y2) = (3,4).
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1 2 3 4 5 6

1

2

3

4

X

Y

r

s

(x2, y2)

(x2, y2)

(x1, y1)

(x3, y3)

Fig. 6.2 Two vectors r and s have the same magnitude but opposite directions.

Vector s, on the other hand, has its tail defined by (x3,y3) = (5,3) and its head by
(x4,y4) = (3,1) The x- and y-components for r are computed as follows

xr = (x2 − x1) yr = (y2 − y1)
xr = 3−1 yr = 4−2
xr = 2 yr = 2

and the components for s are computed as follows

xs = (x4 − x3) ys = (y4 − y3)
xs = 3−5 ys = 1−3
xs = −2 ys = −2.

It is the negative value of xs and ys that encode the vector’s direction. In general,
given that the coordinates of a vector’s head and tail are (xh,yh) and (xt ,yt) respec-
tively, its components Δx and Δy are given by

Δx = (xh − xt) Δy = (yh − yt).

One can readily see from this notation that a vector does not have a unique position
in space. It does not matter where we place a vector, so long as we preserve its
length and orientation its components will not alter.

6.2.3 Magnitude of a Vector

The magnitude of a vector r is written |r| and is computed by applying the theorem
of Pythagoras to its components:

|r| =
√

(Δx)2 +(Δy)2.
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1 2 3

1

2

X

Y

-2-3 -1

–1

–2

Fig. 6.3 Eight vectors whose coordinates are shown in Table 6.1.

To illustrate these ideas, consider a vector defined by (xh,yh) = (4,5) and
(xt ,yt) = (1,1). The x- and y-components are 3 and 4 respectively. Therefore
its magnitude is equal to

√
32 +42 = 5. Figure 6.3 shows eight vectors, and their

geometric properties are listed in Table 6.1.

Table 6.1 Values associated with the eight vectors in Fig. 6.3

xh yh xt yt Δx Δy |vector|

2 0 0 0 2 0 2

0 2 0 0 0 2 2

−2 0 0 0 −2 0 2

0 −2 0 0 0 −2 2

1 1 0 0 1 1
√

2

−1 1 0 0 −1 1
√

2

−1 −1 0 0 −1 −1
√

2

1 −1 0 0 1 −1
√

2

6.3 3D Vectors

The above vector examples are in 2D, but it is extremely simple to extend this
notation to embrace an extra dimension. Figure 6.4 shows a 3D vector r with its
head, tail, components and magnitude annotated. The vector, its components and
magnitude are given by

r = [Δx Δy Δz]T
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X

Y

Z

|r|

Pt

Ph Dy

Dx
Dz

Fig. 6.4 The vector r has components Δx, Δy, Δz, which are the differences between the head and
tail coordinates.

Δx = (xh − xt)
Δy = (yh − yt)
Δz = (zy − zt)

|r| =
√

(Δx)2 +(Δy)2 +(Δz)2.

As 3D vectors play a very important role in computer animation, all future examples
will be three-dimensional.

6.3.1 Vector Manipulation

As vectors are different to scalars, a set of rules has been developed to control how
the two mathematical entities interact with one another. For instance, we need to
consider vector addition, subtraction and multiplication, and how a vector is modi-
fied by a scalar. Let’s begin with multiplying a vector by a scalar.

6.3.2 Multiplying a Vector by a Scalar

Given a vector n, 2n means that the vectors components are doubled. For example, if

n =

⎡
⎢⎢⎣

3

4

5

⎤
⎥⎥⎦ then 2n =

⎡
⎢⎢⎣

6

8

10

⎤
⎥⎥⎦
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which seems logical. Similarly, if we divide n by 2, its components are halved. Note
that the vector’s direction remains unchanged – only its magnitude changes.

In general, if

n =

⎡
⎢⎢⎣

n1

n2

n3

⎤
⎥⎥⎦ then λn =

⎡
⎢⎢⎣

λn1

λn2

λn3

⎤
⎥⎥⎦where [λ ∈ R].

There is no way we can resolve the expression 2+ n, for it is not obvious which
component of n is to be increased by 2. If all the components of n have to be in-
creased by 2, then we simply add another vector whose components equal 2. How-
ever, if we can add a scalar to an imaginary (e.g., 2+3i), why can’t we add a scalar
to a vector (e.g., 2 + n)? Well, the answer to this question is two-fold. First, if we
change the meaning of ‘add’ to mean ‘associated with’, then there is nothing to
stop us from ‘associating’ a scalar with a vector as we do with complex numbers.
Second, the axioms controlling our algebra must be clear on this matter. Unfor-
tunately, the axioms of traditional vector analysis do not support the ‘association’
of scalars with vectors in this way. However, geometric algebra does! Furthermore,
geometric algebra even permits division by a vector, which does sound strange. Con-
sequently, whilst reading the rest of this chapter keep an open mind about what is
allowed and what is not allowed. At the end of the day, virtually anything is possible,
so long as we have a well-behaved axiomatic system.

6.3.3 Vector Addition and Subtraction

Given vectors r and s, r± s is defined as

r =

⎡
⎢⎢⎣

xr

yr

zr

⎤
⎥⎥⎦ s =

⎡
⎢⎢⎣

xs

ys

zs

⎤
⎥⎥⎦ then r± s =

⎡
⎢⎢⎣

xr ± xs

yr ± ys

zr ± zs

⎤
⎥⎥⎦ .

Vector addition is commutative:

a+b = b+a

e.g.

⎡
⎢⎢⎣

1

2

3

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

4

5

6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4

5

6

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1

2

3

⎤
⎥⎥⎦ .
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X

Y

Z

s

r

r + s 

Fig. 6.5 Vector addition r+ s.

However, like scalar subtraction, vector subtraction is not commutative

a−b �= b−a

e.g.

⎡
⎢⎢⎣

4

5

6

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

1

2

3

⎤
⎥⎥⎦ �=

⎡
⎢⎢⎣

1

2

3

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

4

5

6

⎤
⎥⎥⎦ .

Let’s illustrate vector addition and subtraction with two examples. Figure 6.5 shows
the graphical interpretation of adding two vectors r and s. Note that the tail of vec-
tor s is attached to the head of vector r. The resultant vector t = r + s is defined
by adding the corresponding components of r and s together. Figure 6.6 shows a
graphical interpretation for r− s. This time the components of vector s are reversed
to produce an equal and opposite vector. Then it is attached to r and added as de-
scribed above.

6.3.4 Position Vectors

Given any point P(x,y,z), a position vector p can be created by assuming that P is
the vector’s head and the origin is its tail. Because the tail coordinates are (0,0,0)
the vector’s components are x,y,z. Consequently, the vector’s magnitude |p| equals√

x2 + y2 + z2. For example, the point P(4,5,6) creates a position vector p relative
to the origin:

p =

⎡
⎢⎢⎣

4

5

6

⎤
⎥⎥⎦ and |p| =

√
42 +52 +62 ≈ 20.88.

We will see how position vectors are used in Chapter 8 when we examine analytic
geometry.



6.3 3D Vectors 43

X

Y

Z

s

r -s

r – s

Fig. 6.6 Vector subtraction r− s.

6.3.5 Unit Vectors

By definition, a unit vector has a magnitude of 1. A simple example is i where

i =

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ and |i| = 1.

Unit vectors are extremely useful when we come to vector multiplication. As we
shall discover later, the multiplication of vectors involves taking their magnitude,
and if this is unity, the multiplication is greatly simplified. Furthermore, in computer
graphics applications vectors are used to specify the orientation of surfaces, the
direction of light sources and the virtual camera. Again, if these vectors have a unit
length, the computation time associated with vector operations can be minimized.

Converting a vector into a unit form is called normalizing and is achieved by
dividing a vector’s components by its magnitude. To formalize this process, consider
a vector r whose components are x,y,z. The magnitude |r| =

√
x2 + y2 + z2 and the

unit form of r is given by

r̂ =
1
|r|

⎡
⎢⎢⎣

x

y

z

⎤
⎥⎥⎦ .

This process can be confirmed by showing that the magnitude of r̂ is 1:

|r̂| =

√(
x
|r̂|

)2

+
(

y
|r̂|

)2

+
(

z
|r̂|

)2

=
1
|r̂|

√
x2 + y2 + z2

|r̂| = 1.
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To put this into context, consider the conversion of r into a unit form:

r =

⎡
⎢⎢⎣

1

2

3

⎤
⎥⎥⎦

|r| =
√

12 +22 +32 =
√

14

r̂ =
1√
14

⎡
⎢⎢⎣

1

2

3

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

0.267

0.535

0.802

⎤
⎥⎥⎦ .

6.3.6 Cartesian Vectors

Now that we have investigated the scalar multiplication of vectors, vector addition
and unit vectors, we can combine all three to permit the algebraic manipulation of
vectors. To begin with, we will define three Cartesian unit vectors i, j, k that are
aligned with the x-, y- and z-axes respectively:

i =

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ , j =

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦ , k =

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦ .

Therefore, any vector aligned with the x-, y- or z-axes can be defined by a scalar
multiple of the unit vectors i, j and k respectively. For example, a vector 10 units
long aligned with the x-axis is simply 10i. And a vector 20 units long aligned with
the z-axis is 20k. By employing the rules of vector addition and subtraction, we can
compose a vector r by summing three Cartesian unit vectors as follows:

r = ai+bj+ ck.

This is equivalent to writing r as

r =

⎡
⎢⎢⎣

a

b

c

⎤
⎥⎥⎦

which means that the magnitude of r is readily computed as

|r| =
√

a2 +b2 + c2.
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Any pair of Cartesian vectors such as r and s can be combined as follows

r = ai+bj+ ck
s = di+ ej+ f k

r± s = (a±d)i+(b± e)j+(c± f )k.

For example, given

r = 2i+3j+4k
s = 5i+6j+7k

then

r+ s = 7i+9j+11k

and

|r+ s| =
√

72 +92 +112 ≈ 15.84.

6.3.7 Vector Multiplication

Although vector addition and subtraction are useful in resolving various problems,
vector multiplication provides some powerful ways of computing angles and surface
orientations.

The multiplication of two scalars is very familiar: for example, 6×7 or 7×6 =
42. We often visualize this operation, as a rectangular area where 6 and 7 are the
dimensions of a rectangle’s sides, and 42 is the area. However, when we consider
the multiplication of vectors we are basically multiplying two 3D lines together,
which is not an easy operation to visualize.

The mathematicians who defined the structure of vector analysis provided two
ways to multiply vectors together: one gives rise to a scalar result and the other a
vector result. We will start with the scalar product.

6.3.8 Scalar Product

We could multiply two vectors r and s by using the product of their magni-
tudes: |r| |s|. Although this is a valid operation it does not get us anywhere because
it ignores the orientation of the vectors, which is one of their important features.
The concept, however, is readily developed into a useful operation by including the
angle between the vectors.
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X

Y

Z

r

s
b

Fig. 6.7 The projection of r on s creates the basis for the scalar product.

Figure 6.7 shows two vectors r and s that have been drawn, for convenience,
such that their tails touch. Taking s as the reference vector, which is an arbitrary
choice, we compute the projection of r on s, which takes into account their relative
orientation. The length of r on s is |r|cosβ . We can now multiply the magnitude
of s by the projected length of r: |s||r|cosβ This scalar product is written

r · s = |r||s|cosβ . (6.1)

The dot symbol ‘·’ is used to represent scalar multiplication, to distinguish it
from the vector product, which, we will discover, employs a ‘×’ symbol. Because
of this symbol, the scalar product is often referred to as the dot product.

So far we have only defined what we mean by the dot product. We now need to
discover how to compute it. Fortunately, everything is in place to perform this task.
To begin with, we define two Cartesian vectors r and s, and proceed to multiply
them together using the dot product definition:

r = ai+bj+ ck
s = di+ ej+ f k

therefore,

r · s = (ai+bj+ ck) · (di+ ej+ f k)
= ai · (di+ ej+ f k)
+bj · (di+ ej+ f k)
+ ck · (di+ ej+ f k)

r · s = adi · i+aei · j+a f i ·k
+bdj · i+bej · j+b f j ·k
+ cdk · i+ cek · j+ c f k ·k.
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Before we proceed any further, we can see that we have created various dot
product terms such as i · i, i · j, i ·k etc. These terms can be divided into two groups:
those that reference the same unit vector, and those that reference different unit vec-
tors.

Using the definition of the dot product (6.1), terms such as i · i , j · j and k ·k = 1 ,
because the angle between i and i, j and j, or k and k, is 0◦; and cos0◦ = 1. But
because the other vector combinations are separated by 90◦, and cos90◦ = 0, all
remaining terms collapse to zero. Bearing in mind that the magnitude of a unit vector
is 1, we can write

|r||s|cosβ = ad +be+ c f .

This result confirms that the dot product is indeed a scalar quantity. Now let’s see
how it works in practice.

6.3.9 Example of the Scalar Product

To find the angle between two vectors r and s

r =

⎡
⎢⎢⎣

2

3

4

⎤
⎥⎥⎦ and s =

⎡
⎢⎢⎣

5

6

10

⎤
⎥⎥⎦

|r| =
√

22 +02 +42 ≈ 4.472

|s| =
√

52 +62 +102 ≈ 12.689.

Therefore,

|r||s|cosβ = 2×5+0×6+4×10 = 50
12.689×4.472× cosβ = 50

cosβ =
50

12.689×4.472
≈ 0.8811

β = cos−1 0.8811 ≈ 28.22◦.

The angle between the two vectors is approximately 28.22◦.
It is worth pointing out at this stage that the angle returned by the dot product

ranges between 0◦ and 180◦. This is because, as the angle between two vectors
increases beyond 180◦ the returned angle β is always the smallest angle associated
with the geometry.
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6.3.10 The Dot Product in Lighting Calculations

Lambert’s law states that the intensity of illumination on a diffuse surface is
proportional to the cosine of the angle between the surface normal vector and the
light source direction. This arrangement is shown in Fig. 6.8. The light source is
located at (20, 20, 40) and the illuminated point is (0, 10, 0).

In this situation we are interested in calculating cosβ , which when multiplied by
the light source intensity gives the incident light intensity on the surface. To begin
with, we are given the normal vector n̂ to the surface. In this case n̂ is a unit vector,
and its magnitude |n̂| = 1:

n̂ =

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦ .

The direction of the light source from the surface is defined by the vector s:

s

n̂

b

light
source

Fig. 6.8 Lambert’s law states that the intensity of illumination on a diffuse surface is proportional
to the cosine of the angle between the surface normal vector and the light source direction.

s =

⎡
⎢⎢⎣

20−0

20−10

40−0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

20

10

40

⎤
⎥⎥⎦

|s| =
√

202 +102 +402 ≈ 45.826

|n̂||s|cosβ = 0×20+1×10+0×40 = 10

1×45.826× cosβ = 10

cosβ =
10

45.826
≈ 0.218.
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Therefore the light intensity at the point (0,10,0) is 0.218 of the original light
intensity at (20,20,40), but does not take into account the attenuation due to the
inverse-square law of light propagation.

6.3.11 The Scalar Product in Back-Face Detection

A standard way of identifying back-facing polygons relative to the virtual camera
is to compute the angle between the polygon’s surface normal and the line of sight
between the camera and the polygon. If this angle is less than 90◦ the polygon is
visible; if it is equal to or greater than 90◦ the polygon is invisible. This geometry is
shown in Fig. 6.9. Although it is obvious from Fig. 6.9 that the right-hand polygon
is invisible to the camera, let’s prove algebraically that this is so. Let the camera
be located at (0,0,0) and the polygon’s vertex is (10,10,40). The normal vector is
[5 5 −2]T .

camera

invisible

<90°

≥90°

visible

Fig. 6.9 The angle between the surface normal and the camera’s line of sight determines the
polygon’s visibility.

n =

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦

|n| =
√

52 +52 +(−2)2 ≈ 7.348.

The camera vector c is

c =

⎡
⎢⎢⎣

0−10

0−10

0−40

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−10

−10

−40

⎤
⎥⎥⎦

|c| =
√

(−10)2 +(−10)2 +(−40)2 ≈ 42.426
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therefore,

|n||c|cosβ = 5× (−10)+5× (−10)+(−2)× (−40)
7.348×42.426× cosβ = −20

cosβ =
−20

7348×42.426
≈−0.0634

β = cos−1(−0.0634) ≈ 93.635◦

which shows that the polygon is invisible.

6.3.12 The Vector Product

As mentioned above, there are two ways to multiply vectors. The first is the scalar
product, and the second is the vector product, which is also called the cross product
due to the ‘×’ symbol used in its notation. It is based on the assumption that two
vectors r and s can be multiplied together to produce a third vector t:

r× s = t

where

|t| = |r||s|sinβ (6.2)

and β is the angle between r and s.
We will discover that the vector t is normal (90◦) to the plane containing the

vectors r and s. Which makes it an ideal way of computing the surface normal to a
polygon. Once again, let’s define two vectors and proceed to multiply them together
using the × operator:

r = ai+bj+ ck
s = di+ ej+ f k

therefore,

r× s = (ai+bj+ ck)× (di+ ej+ f k)
= ai× (di+ ej+ f k)
+bj× (di+ ej+ f k)
+ ck× (di+ ej+ f k)

r× s = adi× i+aei× j+a f i×k
+bdj× i+bej× j+b f j×k
+ cdk× i+ cek× j+ c f k×k.
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As we found with the dot product, there are two groups of vector terms: those
that reference the same unit vector, and those that reference different unit vectors.

Using the definition for the cross product (6.2), operations such as i× i, j× j and
k× k result in a vector whose magnitude is 0. This is because the angle between
the vectors is 0◦, and sin0◦ = 0. Consequently these terms disappear and we are left
with

r× s = aei× j+a f i×k+bdj× i+b f j×k+ cdk× i+ cek× j. (6.3)

The mathematician Sir William Rowan Hamilton struggled for many years when
working on quaternions to resolve the meaning of a similar result. At the time, he
was not using vectors, as they had yet to be defined, but the imaginary terms i, j
and k. Hamilton’s problem was to resolve the products i j, jk, ki and their opposites
ji, k j and ik. What did the products mean? He reasoned that i j = k, jk = i and ki = j,
but could not resolve their opposites. One day in 1843, when he was out walking,
thinking about this problem, he thought the impossible: i j = k, but ji = −k, jk = i,
but k j = −i, and ki = j, but ik = − j. To his surprise, this worked, but it contradicted
the commutative multiplication law of scalars where 6×7 = 7×6. We now accept
that the commutative multiplication law is there to be broken!

Although Hamilton had discovered 3D complex numbers, to which he gave the
name quaternion, they were not popular with everyone. And as mentioned earlier,
Josiah Gibbs saw that converting the imaginary i, j and k terms into the unit vectors
i, j and k created a stable algebra for manipulating vectors, and for over a century
we have been using Gibbs’ vector notation.

The question we must ask is “Was Gibbs right?” to which the answer is probably
“no!” The reason for this is that although the scalar product works in space of any
number of dimensions, the vector (cross) product does not. It obviously does not
work in 2D as there is no direction for the resultant vector. It obviously works in
3D, but in 4D and above there is no automatic spatial direction for the resultant
vector. So, the vector product is possibly a special condition of some other structure.
Hermann Grassmann knew this but did not have the mathematical reputation to
convince his fellow mathematicians.

In Chapter 12 on geometric algebra we return to this problem and discover that
the terms i× j, j× k, k× i and their opposites are entities in there own right. We
also discover that geometric algebra incorporates the 3D vector product and a much
better version of quaternions.

For the moment though, let’s continue with Hamilton’s rules and reduce the cross
product terms of (6.3) to

r× s = aek−a f j−bdk+b f i+ cdj− cei. (6.4)

Equation (6.4) can be tidied up to bring like terms together:

r× s = (b f − ce)i+(cd −a f )j+(ae−bd)k. (6.5)
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Now let’s repeat the original vector equations to see how equation (6.5) is
computed:

r = ai+bj+ ck
s = di+ ej+ f k

r× s = (b f − ce)i+(cd −a f )j+(ae−bd)k. (6.6)

To compute the i scalar term we consider the scalars associated with the other
two unit vectors, i.e., b, c, e, and f , and cross-multiply and subtract them to form
(b f − ce).

To compute the j scalar term we consider the scalars associated with the other
two unit vectors, i.e., a, c, d, and f , and cross-multiply and subtract them to form
(cd −a f ).

To compute the k scalar term we consider the scalars associated with the other
two unit vectors, i.e., a, b, d, and e, and cross-multiply and subtract them to form
(ae−bd).

The middle operation seems out of step with the other two, but in fact it pre-
serves a cyclic symmetry often found in mathematics. Nevertheless, some authors
reverse the sign of the j scalar term and cross-multiply and subtract the terms to
produce −(a f − cd) which maintains a visual pattern for remembering the cross-
multiplication. Equation (6.6) now becomes

r× s = (b f − ce)i− (a f − cd)j+(ae−bd)k. (6.7)

However, we now have to remember to introduce a negative sign for the j scalar
term!

Although we have not yet covered determinants, their notation allows us to write
(6.7) as

r× s =

∣∣∣∣∣
b c

e f

∣∣∣∣∣ i−
∣∣∣∣∣

a c

d f

∣∣∣∣∣ j+

∣∣∣∣∣
a b

d e

∣∣∣∣∣k. (6.8)

A 2×2 determinant is the difference between the product of the diagonal terms.
Therefore, to derive the cross product of two vectors we first write the vectors

in the correct sequence. Remembering that r× s does not equal s× r. Second, we
compute the three scalar terms and form the resultant vector, which is perpendicular
to the plane containing the original vectors.

Let’s illustrate the vector product with some examples. First we will confirm that
the vector product works with the unit vectors i, j and k.

We start with

r = 1i+0j+0k
s = 0i+1j+0k

and then compute (6.7)

r× s = (0×0−0×1)i− (1×0−0×0)j+(1×1−0×0)k.
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The i scalar and j scalar terms are both zero, but the k scalar term is 1, which makes
i× j = k.

Now let’s show what happens when we reverse the vectors. This time we start
with

r = 0i+1j+0k
s = 1i+0j+0k

and then compute (6.7)

r× s = (1×0−0×0)i− (0×0−0×1)j+(0×0−1×1)k.

The i scalar and j scalar terms are both zero, but the k scalar term is −1, which
makes j× i = −k. So we see that the vector product is antisymmetric, i.e., there is a
sign reversal when the vectors are reversed. Similarly, it can be shown that

j×k = i
k× i = j
k× j = −i
i×k = −j.

Let’s now consider two vectors r and s and compute the normal vector t. The vec-
tors are chosen so that we can anticipate approximately the answer. For the sake of
clarity, the vector equations include the scalar multipliers 0 and 1. Normally, these
would be omitted. Figure 6.10 shows the vectors r and s and the normal vector t,
and Table 6.2 contains the coordinates of the vertices forming the two vectors

r =

⎡
⎢⎢⎣

x3 − x2

y3 − y2

z3 − z2

⎤
⎥⎥⎦ and s =

⎡
⎢⎢⎣

x1 − x2

y1 − y2

z1 − z2

⎤
⎥⎥⎦

X

Y

Z

r

s

t

P3

P2P1

Fig. 6.10 The vector t is normal to the vectors r and s.
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Table 6.2 Coordinates of the vertices used in Fig. 6.10

Vertex x y z

P1 0 0 1

P2 1 0 0

P3 0 1 0

P1 = (0,0,1)
P2 = (1,0,0)
P3 = (0,1,0)
r = −1i+1j+0k
s = −1i+0j+1k

r× s = [1×1−0×0]i
− [−1×1− (−1)×0]j
+[−1×0− (−1)×1]k

t = i+ j+k.

This confirms what we expected from Fig. 6.10. Let us now reverse the vectors to
illustrate the importance of vector sequence.

s = −1i+0j+1k
r = −1i+1j+0k

s× r = [0×0−1×1]i
− [−1×0− (−1)×1]j
+[−1×1− (−1)×0]k

t = −i− j−k

which is in the opposite direction to r× s and confirms that the vector product is
non-commutative.

6.3.13 The Right-Hand Rule

The right-hand rule is an aide mémoire for working out the orientation of the cross
product vector. Given the operation r× s, if the right-hand thumb is aligned with r,
the first finger with s, and the middle finger points in the direction of t. However, we
must remember that this only holds in 3D. In 4D and above it makes no sense.
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6.4 Deriving a Unit Normal Vector for a Triangle

Figure 6.11 shows a triangle with vertices defined in an anticlockwise sequence
from its visible side. This is the side from which we want the surface normal to

X

Y

Z

r

s

t

P3 (1, 1, 2)

P1 (0, 2, 2)

P2 (0, 1, 4)

Fig. 6.11 The normal vector t is derived from the cross product r× s.

point. Using the following information we will compute the surface normal using
the cross product and then convert it to a unit normal vector.

Create vector r between P1 and P3, and vector s between P2 and P3:

r = −1i+1j+0k
s = −1i+0j+2k

r× s = (1×2−0×0)i
− (−1×2−0×−1)j
+(−1×0−1×−1)k

t = 2i+2j+k

|t| =
√

22 +22 +12 = 3

t̂u =
2
3

i+
2
3

j+
1
3

k.

The unit vector t̂u can now be used in illumination calculations, and as it has unit
length, dot product calculations are simplified.

6.5 Areas

Before we leave the cross product let’s investigate the physical meaning of
|r| |s|sinβ . Figure 6.12 shows two 2D vectors r and s. The height h = |s|sinβ ,
therefore the area of the parallelogram is

area = |r| h = |r||s|sinβ .
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r

s

h

b

Y

X

Fig. 6.12 The area of the parallelogram formed by two vectors r and s equals |r||s|sinβ .

But this is the magnitude of the cross product vector t. Thus when we calculate
r× s, the length of the normal vector t equals the area of the parallelogram formed
by r and s. Which means that the triangle formed by halving the parallelogram is
half the area.

area of parallelogram = |t|

area of triangle =
1
2
|t|.

This means that it is a relatively easy exercise to calculate the surface area of an
object constructed from triangles or parallelograms. In the case of a triangulated
surface, we simply sum the magnitudes of the normals and halve the result.

6.5.1 Calculating 2D Areas

Figure 6.13 shows three vertices of a triangle P0(x0,y0), P1(x1,y1) and P2(x2,y2)
formed in an anti-clockwise sequence. We can imagine that the triangle exists on the
z = 0 plane, therefore the z-coordinates are zero. The vectors r and s are computed
as follows:

r =

⎡
⎢⎢⎣

x1 − x0

y1 − y0

0

⎤
⎥⎥⎦ and s =

⎡
⎢⎢⎣

x2 − x0

y2 − y0

0

⎤
⎥⎥⎦

r = (x1 − x0)i+(y1 − y0)j
s = (x2 − x0)i+(y2 − y0)j

|r× s| = (x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)
= x1(y2 − y0)− x0(y2 − y0)− x2(y1 − y0)+ x0(y1 − y0)



6.6 Summary 57

= x1y2 − x1y0 − x0y2 + x0y0 − x2y1 + x2y0 + x0y1 − x0y0

= x1y2 − x1y0 − x0y2 − x2y1 + x2y0 + x0y1

= (x0y1 − x1y0)+(x1y2 − x2y1)+(x2y0 − x0y2).

But the area of the triangle formed by the three vertices is 1
2 |r× s|. Therefore

area =
1
2
[(x0y1 − x1y0)+(x1y2 − x2y1)+(x2y0 − x0y2)]

which is the formula disclosed in Chapter 2!

r

s

Y

X

P0

P2

P1

Fig. 6.13 The area of the triangle formed by the vectors r and s is half the magnitude of their cross
product.

6.6 Summary

Vectors are extremely useful and relatively easy to use. They are vital to rendering
algorithms and shaders, and most of the time we only need to use the scalar and
cross products. However, I have tried to prepare you for an alternative algebra for
vectors: geometric algebra. As we shall see in Chapter 12, geometric algebra shows
that mathematics took the wrong direction when it embraced Gibbs’ vector analysis.
Hermann Grassmann had been right all along. If the mathematicians of the day had
adopted Grassmann’s ideas, today we would be familiar with vectors, bivectors,
trivectors, quaternions, etc. But we are where we are, and we must prepare ourselves
for some new ideas.

Even if you already knew something about vectors, I hope that this chapter has in-
troduced some new ideas and illustrated the role vectors play in computer graphics.





Chapter 7
Transforms

7.1 Introduction

Transforms are used to scale, translate, rotate, reflect and shear shapes and objects.
For example, if we start with a 2D point P(x,y), it can be transformed into P′(x′,y′)
by manipulating the original coordinates x and y using

x′ = ax+by+ e

y′ = cx+dy+ f .

Similarly, a 3D point P(x,y,z) can be transformed into P′(x′,y′,z′) using

x′ = ax+by+ cz+ k

y′ = dx+ ey+ f z+ l

z′ = gx+hy+ jz+m.

By choosing different values for a,b,c, .... we can translate, shear, scale, reflect or
rotate a shape.

Although algebra is the basic notation for transforms, it is also possible to express
them as matrices, which provide certain advantages for viewing the transform and
for interfacing to various types of computer graphics hardware. We begin with an
algebraic approach and then introduce matrix notation.

7.2 2D Transforms

7.2.1 Translation

Cartesian coordinates provide a one-to-one relationship between number and shape,
such that when we change a shape’s coordinates, we change its geometry. For
example, if P(x,y) is a vertex on a shape, when we apply the operation x′ = x+3 we

J. Vince, Mathematics for Computer Graphics, Undergraduate Topics 59
in Computer Science, DOI 10.1007/978-1-84996-023-6 7,
c© Springer-Verlag London Limited 2010
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create a new point P′(x′,y) three units to the right. Similarly, the operation y′ = y+1
creates a new point P′(x,y′) displaced one unit vertically. By applying both of these
transforms to every vertex to the original shape, the shape is displaced as shown in
Fig. 7.1.

321 4 5 6

1

2

3

4

X

Y

translated

original

Fig. 7.1 The translated shape results by adding 3 to every x-coordinate, and 1 to every y-coordinate
to the original shape.

7.2.2 Scaling

Shape scaling is achieved by multiplying coordinates as follows:

x′ = 2x

y′ = 1.5y.

This transform results in a horizontal scaling of 2 and a vertical scaling of 1.5 as
illustrated in Fig. 7.2. Note that a point located at the origin does not change its
place, so scaling is relative to the origin.

7.2.3 Reflection

To make a reflection of a shape relative to the y-axis, we simply reverse the sign of
the x-coordinates, leaving the y-coordinates unchanged:

x′ = −x

y′ = y
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1 2 3 4 5 6

1

2

3

4

X

Y

scaled

original

Fig. 7.2 The scaled shape results by multiplying the x-coordinates by 2 and the y-coordinates
by 1.5.

and to reflect a shape relative to the x-axis we reverse the y-coordinates:

x′ = x

y′ = −y.

Examples of reflections are shown in Fig. 7.3.
Before proceeding, we pause to introduce matrix notation so that we can develop

further transforms using algebra and matrices simultaneously.

2

1 1 32

1

1

original

X

Y

2

2

3

Fig. 7.3 The top right-hand shape gives rise to three reflections simply by reversing the signs of
its coordinates.
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7.3 Matrices

Matrix notation was researched by the British mathematician Arthur Cayley around
1858. Caley formalized matrix algebra, along with the American mathematicians
Benjamin and Charles Pierce. Also, by the start of the nineteenth century Carl Gauss
(1777–1855) had shown that transforms were not commutative, i.e., T1 × T2 �=
T2 × T1 (where T1 and T2 are transforms) and Caley’s matrix notation would clar-
ify such observations. For example, consider the transform T1:

T1 =

{
x′ = ax+by

y′ = cx+dy
(7.1)

and another transform T2 that transforms T1:

T2 ×T1 =

{
x′′ = Ax′ +By′

y′′ = Cx′ +Dy′.

If we substitute the full definition of T1 we get

T2 ×T1 =

{
x′′ = A(ax+by)+B(cx+dy)

y′′ = C(ax+by)+D(cx+dy)

which simplifies to

T2 ×T1 =

{
x′′ = (Aa+Bc)x+(Ab+Bd)y

y′′ = (Ca+Dc)x+(Cb+Dd)y.

Caley proposed separating the constants from the variables, which permits us to
write (7.1) as:

T1 =

[
x′

y′

]
=

[
a b

c d

][
x

y

]

where the 2 × 2 matrix of constants in the middle describe the transform. The
algebraic form is recreated by taking the top variable x′, introducing the = sign,
and multiplying the top row of constants [a b] individually by the last column vec-
tor containing x and y. We then examine the second variable y′, introduce the = sign,
and multiply the bottom row of constants [c d] individually by the last column
vector containing x and y to create

x′ = ax+by

y′ = cx+dy.
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Using Caley’s notation, the product T2 ×T1 is
[

x′′

y′′

]
=

[
A B

C D

][
x′

y′

]
.

But the notation also intimates that
[

x′′

y′′

]
=

[
A B

C D

][
a b

c d

][
x′

y′

]

and when we multiply the two inner matrices together they must produce

x′′ = (Aa+Bc)x+(Ab+Bd)y
y′′ = (Ca+Dc)x+(Cb+Dd)y

or in matrix form [
x′′

y′′

]
=

[
Aa+Bc Ab+Bd

Ca+Dc Cb+Dd

][
x

y

]

otherwise the two system of notation will be inconsistent. This implies that
[

Aa+Bc Ab+Bd

Ca+Dc Cb+Dd

]
=

[
A B

C D

][
a b

c d

]

which demonstrates how matrices must be multiplied. Here are the rules for matrix
multiplication: [

Aa+Bc ...

... ...

]
=

[
A B

... ...

][
a ...

c ...

]
.

1: The top left-hand corner element Aa+Bc is the product of the top row of the first
matrix by the left column of the second matrix.

[
... Ab+Bd

... ...

]
=

[
A B

... ...

][
... b

... d

]
.

2: The top right-hand element Ab + Bd is the product of the top row of the first
matrix by the right column of the second matrix.

[
... ...

Ca+Dc ...

]
=

[
... ...

C D

][
a ...

c ...

]
.

3: The bottom left-hand element Ca + Dc is the product of the bottom row of the
first matrix by the left column of the second matrix.
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[
... ...

... Cb+Dd

]
=

[
... ...

C D

][
... b

... d

]
.

4: The bottom right-hand element Cb + Dd is the product of the bottom row of the
first matrix by the right column of the second matrix.

It is now a trivial exercise to confirm Gauss’s observation that T1×T2 �= T2×T1.
For if we reverse the transforms T2 ×T1 to T1 ×T2 we get

[
aA+bC aB+bD

cA+dC cB+dD

]
=

[
a b

c d

][
A B

C D

]

which shows conclusively that the product of two transforms is not commutative.
One immediate problem with this notation is that there is no apparent mechanism

to add or subtract a constant such as e or f :

x′ = ax+by+ e

y′ = cx+dy+ f .

Mathematicians resolved this in the nineteenth century by the use of homogeneous
coordinates. But before we look at this idea, it must be pointed out that currently
there are two systems of matrix notation in use.

7.3.1 Systems of Notation

Over time, two systems of matrix notation have evolved: one where the matrix multi-
plies a column vector, as described above, and another where a row vector multiplies
the matrix: [

x′ y′
]

=
[

x y
][

a c

b d

]
=

[
ax+by cx+dy

]
.

Note how the elements of the matrix are transposed to accommodate the algebraic
correctness of the transform. There is no preferred system of notation, and you will
find technical books and papers supporting both. For example, Computer Graph-
ics: Principles and Practice (Foley et al. 1990) employs the column vector notation,
whereas Graphics Gems (Glassner et al. 1990) employs the row vector notation. The
important thing to remember is that the rows and columns of the matrix are trans-
posed when moving between the two systems.
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7.3.2 The Determinant of a Matrix

Given a 2×2 matrix: [
a b

c d

]

its determinant is the scalar quantity ad − cb and represented by
∣∣∣∣∣

a b

c d

∣∣∣∣∣ .

For example, the determinant of [
3 2

1 2

]

is ∣∣∣∣∣
3 2

1 2

∣∣∣∣∣ = 3×2−2×1 = 4.

Later, we will discover that the determinant of a 2 × 2 matrix determines the
change in area that occurs when a polygon is transformed by the matrix. For
example, if the determinant is 1, there is no change in area, but if the determinant
is 2, the polygon’s area is doubled.

7.4 Homogeneous Coordinates

Homogeneous coordinates surfaced in the early nineteenth century where they were
independently proposed by Möbius (who also invented a one-sided curled band, the
Möbius strip), Feuerbach, Bobillier, and Plücker. Möbius named them barycentric
coordinates, and they have also been called areal coordinates because of their area-
calculating properties.

Basically, homogeneous coordinates define a point in a plane using three coordi-
nates instead of two. Initially, Plücker located a homogeneous point relative to the
sides of a triangle, but later revised his notation to the one employed in contempo-
rary mathematics and computer graphics. This states that for a point (x,y) there ex-
ists a homogeneous point (xt,yt, t) where t is an arbitrary number. For example, the
point (3,4) has homogeneous coordinates (6,8,2), because 3 = 6/2 and 4 = 8/2.
But the homogeneous point (6,8,2) is not unique to (3,4); (12,16,4), (15,20,5)
and (300,400,100) are all possible homogeneous coordinates for (3,4).

The reason why this coordinate system is called ‘homogeneous’ is because it
is possible to transform functions such as f (x,y) into the form f (x/t,y/t) without
disturbing the degree of the curve. To the non-mathematician this may not seem
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anything to get excited about, but in the field of projective geometry it is a very
powerful concept.

For our purposes we can imagine that a collection of homogeneous points of
the form (xt,yt, t) exist on an xy-plane where t is the z-coordinate as illustrated in

1

t

Y

X

Fig. 7.4 2D homogeneous coordinates can be visualized as a plane in 3D space generally where
t = 1, for convenience.

Fig. 7.4. The figure shows a triangle on the t = 1 plane, and a similar triangle, much
larger, on a more distant plane. Thus instead of working in two dimensions, we can
work on an arbitrary xy-plane in three dimensions. The t- or z-coordinate of the plane
is immaterial because the x- and y-coordinates are eventually scaled by t. However,
to keep things simple it seems a good idea to choose t = 1. This means that the point
(x,y) has homogeneous coordinates (x,y,1) making scaling superfluous.

If we substitute 3D homogeneous coordinates for traditional 2D Cartesian coor-
dinates we must attach 1 to every (x,y) pair. When a point (x,y,1) is transformed,
it emerges as (x′,y′,1), and we discard the 1. This may seem a futile exercise, but
it resolves the problem of creating a translation transform. Consider the following
transform on the homogeneous point (x,y,1):

⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a b e

c d f

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

This expands to

x′ = ax+by+ e

y′ = cx+dy+ f

1 = 1

which solves the above problem of adding a constant.
Let’s now go on to see how homogeneous coordinates are used in practice.
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7.4.1 2D Translation

The algebraic and matrix notation for 2D translation is

x′ = x+ tx
y′ = y+ ty

or using matrices ⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 tx
0 1 ty
0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

7.4.2 2D Scaling

The algebraic and matrix notation for 2D scaling is

x′ = sxx

y′ = syy

or using matrices
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

sx 0 0

0 sy 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

The scaling action is relative to the origin, i.e., the point (0,0) remains un-
changed. All other points move away from the origin when sx > 1, or move towards
the origin when sx < 1. To scale relative to another point (px, py) we first subtract
(px, py) from (x,y) respectively. This effectively makes the reference point (px, py)
the new origin. Second, we perform the scaling operation relative to the new ori-
gin, and third, add (px, py) back to the new (x,y) respectively to compensate for the
original subtraction. Algebraically this is

x′ = sx(x− px)+ px

y′ = sy(y− py)+ py

which simplifies to

x′ = sxx+ px(1− sx)
y′ = syy+ py(1− sy)
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or as a homogeneous matrix
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

sx 0 px(1− sx)

0 sy py(1− sy)

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ . (7.2)

For example, to scale a shape by 2 relative to the point (1,1) the matrix is
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 0 −1

0 2 −1

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

7.4.3 2D Reflections

The matrix notation for reflecting about the y-axis is
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

or about the x-axis ⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

0 −1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

However, to make a reflection about an arbitrary vertical or horizontal axis we
need to introduce some more algebraic deception. For example, to make a reflection
about the vertical axis x = 1, we first subtract 1 from the x-coordinate. This effec-
tively makes the x = 1 axis coincident with the major y-axis. Next we perform the
reflection by reversing the sign of the modified x-coordinate. And finally, we add 1
to the reflected coordinate to compensate for the original subtraction. Algebraically,
the three steps are

x1 = x−1
x2 = −(x−1)
x′ = −(x−1)+1

which simplifies to

x′ = −x+2
y′ = y
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or in matrix form ⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 2

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

Figure 7.5 illustrates this process.

-1-2 1 2 3 4

3

4

X

Y

2

1

Fig. 7.5 The shape on the right is reflected about the x = 1 axis.

In general, to reflect a shape about an arbitrary y-axis, y = ax the following
transform is required:

x′ = −(x−ax)+ax = −x+2ax

y′ = y

or in matrix form ⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 2ax

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ . (7.3)

Similarly, this transform is used for reflections about an arbitrary x-axis y = ay:

x′ = x

y′ = −(y−ay)+ay = −y+2ay

or in matrix form ⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

0 −1 2ay

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .
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y

X

Y

shearedoriginal

b

y tan b

Fig. 7.6 The original square shape is sheared to the right by an angle β , and the horizontal shear
is proportional to y tanβ .

7.4.4 2D Shearing

A shape is sheared by leaning it over at an angle β . Figure 7.6 illustrates the
geometry, and we see that the y-coordinates remain unchanged but the x-coordinates
are a function of y and tanβ .

x′ = x+ y tanβ
y′ = y

or in matrix form ⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 tanβ 0

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

7.4.5 2D Rotation

Figure 7.7 shows a point P(x,y) which is to be rotated by an angle β about the origin
to P′(x′,y′). It can be seen that

x′ = Rcos(θ +β )
y′ = Rsin(θ +β )

and substituting the identities for cos(θ +β ) and sin(θ +β ) we have

x′ = R(cosθ cosβ − sinθ sinβ )
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Y

Xx

y

b

q

y ¢
P ¢(x ¢,y ¢)

P(x,y)

x ¢

Fig. 7.7 The point P(x,y) is rotated through an angle β to P′(x′,y′).

y′ = R(sinθ cosβ + cosθ sinβ )

x′ = R
( x

R
cosβ − y

R
sinβ

)

y′ = R
( y

R
cosβ +

x
R

sinβ
)

x′ = xcosβ − ysinβ
y′ = xsinβ + ycosβ

or in matrix form ⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosβ −sinβ 0

sinβ cosβ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

For example, to rotate a point by 90◦ the matrix is
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 0

1 0 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

Thus the point (1,0) becomes (0,1). If we rotate through 360◦ the matrix becomes
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

Such a matrix has a null effect and is called an identity matrix.
To rotate a point (x,y) about an arbitrary point (px, py) we first, subtract (px, py)

from the coordinates (x,y) respectively. This enables us to perform the rotation
about the origin. Second, we perform the rotation, and third, we add (px, py) to
compensate for the original subtraction. Here are the steps:
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1. Subtract (px, py):

x1 = (x− px)
y1 = (y− py).

2. Rotate β about the origin:

x2 = (x− px)cosβ − (y− py)sinβ
y2 = (x− px)sinβ +(y− py)cosβ .

3. Add (px, py):

x′ = (x− px)cosβ − (y− py)sinβ + px

y′ = (x− px)sinβ +(y− py)cosβ + py.

Simplifying,

x′ = xcosβ − ysinβ + px(1− cosβ )+ py sinβ
y′ = xsinβ + ycosβ + py(1− cosβ )− px sinβ

and in matrix form⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosβ −sinβ px(1− cosβ )+ py sinβ
sinβ cosβ py(1− cosβ )− px sinβ

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ . (7.4)

If we now consider rotating a point 90◦ about the point (1,1) the matrix operation
becomes ⎡

⎢⎢⎣
x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 2

1 0 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

A simple test is to substitute the point (2,1) for (x,y): which is transformed correctly
to (1,2).

The algebraic approach in deriving the above transforms is relatively easy.
However, it is also possible to use matrices to derive compound transforms, such as
a reflection relative to an arbitrary line and scaling and rotation relative to an arbi-
trary point. These transforms are called affine, as parallel lines remain parallel after
being transformed. Furthermore, the word ‘affine’ is used to imply that there is a
strong geometric affinity between the original and transformed shape. One can not
always guarantee that angles and lengths are preserved, as the scaling transform can
alter these when different x and y scaling factors are used. For completeness, we will
repeat these transforms from a matrix perspective.
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7.4.6 2D Scaling

The strategy used to scale a point (x,y) relative to some arbitrary point (px, py) is to
first, translate (−px,−py); second, perform the scaling; and third translate (px, py).
These three transforms are represented in matrix form as follows:⎡

⎢⎢⎣
x′

y′

1

⎤
⎥⎥⎦ =

[
translate(px, py)

][
scale(sx,sy)

][
translate(−px,−py)

]
⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

which expands to⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 px

0 1 py

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

sx 0 0

0 sy 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 −px

0 1 −py

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

Note the sequence of the transforms, as this often causes confusion. The first trans-
form acting on the point (x,y,1) is translate (−px,−py), followed by scale (sx,sy),
followed by translate (px, py). If they are placed in any other sequence, you will
discover, like Gauss, that transforms are not commutative!

We can now combine these matrices into a single matrix by multiplying them
together. This can be done in any sequence, so long as we preserve the original order.
Let’s start with scale (sx,sy) and translate (−px,−py) matrices. This produces

⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 px

0 1 py

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

sx 0 −sx px

0 sy −sy py

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

and finally ⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

sx 0 px(1− sx)

0 sy py(1− sy)

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

which is the same as the previous transform (7.2).

7.4.7 2D Reflection

A reflection about the y-axis is given by
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .
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Therefore, using matrices, we can reason that a reflection transform about an
arbitrary axis x = ax, parallel with the y-axis, is given by⎡

⎢⎢⎣
x′

y′

1

⎤
⎥⎥⎦ =

[
translate(ax,0)

][
reflection

][
translate(−ax,0)

]
⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

which expands to⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 ax

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 −ax

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

We can now combine these matrices into a single matrix by multiplying them to-
gether. Let’s begin by multiplying the reflection and the translate (−ax,0) matrices
together. This produces⎡

⎢⎢⎣
x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 ax

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 0 ax

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

and finally ⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 2ax

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

which is the same as the previous transform (7.3).

7.4.8 2D Rotation About an Arbitrary Point

A rotation about the origin is given by
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosβ −sinβ 0

sinβ cosβ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

Therefore, using matrices, we can develop a rotation about an arbitrary point (px, py)
as follows:⎡

⎢⎢⎣
x′

y′

1

⎤
⎥⎥⎦ =

[
translate(px, py)

][
rotateβ

][
translate(−px,−py)

]
⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦
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which expands to
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 px

0 1 py

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cosβ −sinβ 0

sinβ cosβ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 −px

0 1 −py

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

We can now combine these matrices into a single matrix by multiplying them to-
gether. Let’s begin by multiplying the rotate β and the translate (−px,−py) matrices
together. This produces

⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 px

0 1 py

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cosβ −sinβ −px cosβ + py sinβ
sinβ cosβ −px sinβ − py cosβ

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

and finally
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosβ −sinβ px(1− cosβ )+ py sinβ
sinβ cosβ py(1− cosβ )− px sinβ

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

which is the same as the previous transform (7.4).
I hope it is now obvious to the reader that one can derive all sorts of transforms

either algebraically, or by using matrices – it is just a question of convenience.

7.5 3D Transforms

Now we come to transforms in three dimensions, where we apply the same reason-
ing as in two dimensions. Scaling and translation are basically the same, but where
in 2D we rotated a shape about a point, in 3D we rotate an object about an axis.

7.5.1 3D Translation

The algebra is so simple for 3D translation that we can simply write the
homogeneous matrix directly:

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .
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7.5.2 3D Scaling

The algebra for 3D scaling is

x′ = sxx

y′ = syy

z′ = szz

which in matrix form is ⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

The scaling is relative to the origin, but we can arrange for it to be relative to an
arbitrary point (px, py, pz) with the following algebra:

x′ = sx(x− px)+ px

y′ = sy(y− py)+ py

z′ = sz(z− pz)+ pz

which in matrix form is
⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

sx 0 0 px(1− sx)

0 sy 0 py(1− sy)

0 0 sz pz(1− sz)

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

7.5.3 3D Rotation

In two dimensions a shape is rotated about a point, whether it be the origin or some
arbitrary position. In three dimensions an object is rotated about an axis, whether it
be the x-, y- or z-axis, or some arbitrary axis. To begin with, let’s look at rotating
a vertex about one of the three orthogonal axes; such rotations are called Euler
rotations after the Swiss mathematician Leonhard Euler (1707–1783).

Recall that a general 2D-rotation transform is given by
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosβ −sinβ 0

sinβ cosβ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦
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Y

X

Z

P(x,y,z)

P¢(x¢,y¢,z¢)

Fig. 7.8 Rotating the point P about the z-axis.

which in 3D can be visualized as rotating a point P(x,y,z) on a plane parallel with
the xy-plane as shown in Fig. 7.8. In algebraic terms this can be written as

x′ = xcosβ − ysinβ
y′ = xsinβ + ycosβ
z′ = z.

Therefore, the 3D transform can be written as
⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cosβ −sinβ 0 0

sinβ cosβ 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

which basically rotates a point about the z-axis.
When rotating about the x-axis, the x-coordinates remain constant whilst the y-

and z-coordinates are changed. Algebraically, this is

x′ = x

y′ = ycosβ − zsinβ
z′ = ysinβ + zcosβ

or in matrix form ⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cosβ −sinβ 0

0 sinβ cosβ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .
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When rotating about the y-axis, the y-coordinate remains constant whilst the x- and
z-coordinates are changed. Algebraically, this is

x′ = zsinβ + xcosβ
y′ = y

z′ = zcosβ − xsinβ

or in matrix form ⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cosβ 0 sinβ 0

0 1 0 0

−sinβ 0 cosβ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

Note that the matrix terms do not appear to share the symmetry seen in the previous
two matrices. Nothing really has gone wrong, it is just the way the axes are paired
together to rotate the coordinates.

The above rotations are also known as yaw, pitch and roll, and great care should
be taken with these angles when referring to other books and technical papers.
Sometimes a left-handed system of axes is used rather than a right-handed set, and
the vertical axis may be the y-axis or the z-axis.

Consequently, the matrices representing the rotations can vary greatly. In this text
all Cartesian coordinate systems are right-handed, and the vertical axis is always the
y-axis.

The roll, pitch and yaw angles are defined as follows:

• roll is the angle of rotation about the z-axis.
• pitch is the angle of rotation about the x-axis.
• yaw is the angle of rotation about the y-axis.

Figure 7.9 illustrates these rotations and the sign convention. The homogeneous
matrices representing these rotations are as follows:

• rotate roll about the z-axis:

X

Y

Z

rollpitch

yaw

Fig. 7.9 The convention for roll, pitch and yaw angles.
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⎡
⎢⎢⎢⎢⎣

cosroll −sinroll 0 0

sinroll cosroll 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

• rotate pitch about the x-axis:

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cos pitch −sin pitch 0

0 sin pitch cos pitch 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

• rotate yaw about the y-axis:

⎡
⎢⎢⎢⎢⎣

cosyaw 0 sinyaw 0

0 1 0 0

−sinyaw 0 cosyaw 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

A common sequence for applying these rotations is roll, pitch, yaw, as seen in
the following transform:

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

[
yaw

][
pitch

][
roll

]
⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

and if a translation is involved,
⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

[
translate

][
yaw

][
pitch

][
roll

]
⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

When these rotation transforms are applied, the vertex is first rotated about the z-axis
(roll), followed by a rotation about the x-axis (pitch), followed by a rotation about
the y-axis (yaw). Euler rotations are relative to the fixed frame of reference. This is
not always easy to visualize as one’s attention is normally with the rotating frame
of reference. Let’s consider a simple example where an axial system is subjected to
a pitch rotation followed by a yaw rotation relative to fixed frame of reference.
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We begin with two frames of reference XY Z and X ′Y ′Z′ mutually aligned.
Figure 7.10 shows the orientation of X ′Y ′Z′ after it is subjected to a pitch of 90◦

about the x-axis. And Fig. 7.11 shows the final orientation after X ′Y ′Z′ is subjected
to a yaw of 90◦ about the y-axis.

X

Y

Z

Y ¢ X ¢

Z ¢

pitch = 90°

Fig. 7.10 The X ′Y ′Z′ axial system after a pitch of 90◦.

7.5.4 Gimbal Lock

Let’s take another example starting from the point where the two axial systems are
mutually aligned. Figure 7.12 shows the orientation of X ′Y ′Z′ after it is subjected
to a roll of 45◦ about the z-axis, and Fig. 7.13 shows the orientation of X ′Y ′Z′ after
it is subjected to a pitch of 90◦ about the x-axis. Now the interesting thing about
this orientation is that if we now performed a yaw of 45◦ about the z-axis, it would
rotate the x′-axis towards the x-axis, counteracting the effect of the original roll.
yaw has become a negative roll rotation, caused by the 90◦ pitch. This situation
is known as gimbal lock, because one degree of rotational freedom has been lost.
Quite innocently, we have stumbled across one of the major weaknesses of Euler

X

Y

Z Z ¢

Y ¢

X ¢

yaw = 90°

Fig. 7.11 The X ′Y ′Z′ axial system after a yaw of 90◦.
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X

Y

Z

X ¢Y ¢

Z ¢

roll = 45°

Fig. 7.12 The X ′Y ′Z′ axial system after a roll of 45◦.

X

Y

Z

Y ¢

X ¢
Z ¢

pitch = 90°

Fig. 7.13 The X ′Y ′Z′ axial system after a pitch of 90◦.

angles: under certain conditions it is only possible to rotate an object about two axes.
One way of preventing this is to create a secondary set of axes constructed from
three orthogonal vectors that are also rotated alongside an object or virtual camera.
But instead of making the rotations relative to the fixed frame of reference, the
roll, pitch and yaw rotations are relative to the rotating frame of reference. Another
method is to use quaternions, which will be investigated later in this chapter.

7.5.5 Rotating About an Axis

The above rotations were relative to the x-, y-, z-axes. Now let’s consider rotations
about an axis parallel to one of these axes. To begin with, we will rotate about an
axis parallel with the z-axis, as shown in Fig. 7.14. The scenario is very reminiscent
of the 2D case for rotating a point about an arbitrary point, and the general transform
is given by
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⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

[
translate(px, py,0)

][
rotateβ

][
translate(−px,−py,0)

]
⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

and the matrix is⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cosβ −sinβ 0 px(1− cosβ )+ py sinβ
sinβ cosβ 0 py(1− cosβ )− px sinβ

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

X

Y

Z

b

P ¢(x ¢, y ¢, z ¢)

P(x, y, z)

px

py

z ¢ = z

Fig. 7.14 Rotating a point about an axis parallel with the x-axis.

I hope you can see the similarity between rotating in 3D and 2D: the x- and
y-coordinates are updated while the z-coordinate is held constant. We can now state
the other two matrices for rotating about an axis parallel with the x-axis and parallel
with the y-axis:

• rotating about an axis parallel with the x-axis:⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cosβ −sinβ py(1− cosβ )+ pz sinβ
0 sinβ cosβ pz(1− cosβ )− py sinβ
0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

• rotating about an axis parallel with the y-axis:⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cosβ 0 sinβ px(1− cosβ )− pz sinβ
0 1 0 0

−sinβ 0 cosβ pz(1− cosβ )+ px sinβ
0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .
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7.5.6 3D Reflections

Reflections in 3D occur with respect to a plane, rather than an axis. The matrix
giving the reflection relative to the yz-plane is

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

and the reflection relative to a plane parallel to, and ax units from the yz-plane is
⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1 0 0 2ax

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

It is left to the reader to develop similar matrices for the other major axial planes.

7.6 Change of Axes

Points in one coordinate system often have to be referenced in another one. For ex-
ample, to view a 3D scene from an arbitrary position, a virtual camera is positioned
in the world space using a series of transforms. An object’s coordinates, which are
relative to the world frame of reference, are computed relative to the camera’s axial
system, and then used to develop a perspective projection. Before explaining how
this is achieved in 3D, let’s examine the simple case of changing axial systems in
two dimensions.

7.6.1 2D Change of Axes

Figure 7.15 shows a point P(x,y) relative to the XY -axes, but we require to know
the coordinates relative to the X ′Y ′-axes. To do this, we need to know the relation-
ship between the two coordinate systems, and ideally we want to apply a technique
that works in 2D and 3D. If the second coordinate system is a simple translation
(tx, ty) relative to the reference system, as shown in Fig. 7.15, the point P(x,y) has
coordinates relative to the translated system (x− tx,y− ty):⎡

⎢⎢⎣
x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 −tx
0 1 −ty
0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .
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Y

X

ty

tx

Y ¢

X ¢

y¢

x¢

x

y
P(x, y) º P ¢(x ¢, y ¢)

Fig. 7.15 The X ′Y ′ axial system is translated (tx, ty).

If the X ′Y ′-axes are rotated β relative to the XY -axes, as shown in Fig. 7.16, a
point P(x,y) relative to the XY -axes becomes P′(x′,y′) relative to the rotated axes is
given by

X

Y

Y¢

y¢
x¢

X¢

b
x

y
P(x, y) º P¢(x¢, y¢)

Fig. 7.16 The X ′Y ′ axial system is rotated β .

⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(−β ) −sin(−β ) 0

sin(−β ) cos(−β ) 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

which simplifies to
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosβ sinβ 0

−sinβ cosβ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .
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When a coordinate system is rotated and translated relative to the reference
system, a point P(x,y) becomes P′(x′,y′) relative to the new axes given by

⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosβ sinβ 0

−sinβ cosβ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 −tx
0 1 −ty
0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

which simplifies to
⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosβ sinβ −tx cosβ − ty sinβ
−sinβ cosβ tx sinβ − ty cosβ

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

X

Y

Y ¢

X ¢

b

b
90° -b

Fig. 7.17 If the X ′- and Y ′-axes are assumed to be unit vectors, their direction cosines form the
elements of the rotation matrix.

7.6.2 Direction Cosines

Direction cosines are the cosines of the angles between a vector and the Cartesian
axes, and for unit vectors they are the vector’s components. Figure 7.17 shows two
unit vectors X ′ and Y ′, and by inspection the direction cosines for X ′ are cosβ and
cos(90◦ −β ), which can be rewritten as cosβ and sinβ , and the direction cosines
for Y ′ are cos(90◦ +β ) and cosβ , which can be rewritten as −sinβ and cosβ . But
these direction cosines cosβ , sinβ , −sinβ and cosβ are the four elements of the
rotation matrix used above [

cosβ sinβ
−sinβ cosβ

]
.
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The top row contains the direction cosines for the X ′-axis and the bottom row
contains the direction cosines for the Y ′-axis. This relationship also holds in 3D.

Before exploring changes of axes in 3D let’s evaluate a simple example in 2D
where a set of axes is rotated 45◦ as shown in Fig. 7.18. The appropriate transform is

⎡
⎢⎢⎣

x′

y′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos45◦ sin45◦ 0

−sin45◦ cos45◦ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦

≈

⎡
⎢⎢⎣

0.707 0.707 0

−0.707 0.707 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

1

⎤
⎥⎥⎦ .

The four vertices on a unit square become

(0,0) → (0,0)
(1,0) → (0.707,−0.707)
(1,1) → (1.1414,0)
(0,1) → (0.707,0.707)

which by inspection of Fig. 7.18 are correct.

X

Y

Y ¢

X ¢

(1,1) º (1.414,0)¢

(1,0) º (0.707,–0.707)¢

(0,1) º (0.707,0.707)¢

Fig. 7.18 The vertices of a unit square relative to the two axial systems.

7.6.3 3D Change of Axes

The ability to reference a collection of coordinates is fundamental in computer
graphics, especially in 3D. And rather than investigate them within this section,
let’s delay their analysis for the next section, where we see how the technique is
used for relating an object’s coordinates relative to an arbitrary virtual camera.
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7.7 Positioning the Virtual Camera

Four coordinate systems are used in the computer graphics pipeline: object space,
world space, camera space and image space.

• The object space is a domain where objects are modeled and assembled.

• The world space is where objects are positioned and animated through appropri-
ate transforms. The world space also hosts a virtual camera or observer.

• The camera space is a transform of the world space relative to the camera.

• Finally, the image space is a projection – normally perspective – of the camera
space onto an image plane.

The transforms considered so far are used to manipulate and position objects
within the world space. What we will consider next is how a virtual camera or ob-
server is positioned in world space, and the process of converting world coordinates
to camera coordinates. The procedure used generally depends on the method em-
ployed to define the camera’s frame of reference within the world space, which may
involve the use of direction cosines, Euler angles or quaternions. We will examine
how each of these techniques could be implemented.

X

Y

Z

aq

b

cos b

cos a
cos q

Fig. 7.19 The components of a unit vector are equal to the cosines of the angles between the vector
and the axes.

7.7.1 Direction Cosines

A 3D unit vector has three components [x y z]T , which are equal to the cosines
of the angles formed between the vector and the three orthogonal axes. These an-
gles are known as direction cosines and can be computed taking the dot product of
the vector and the Cartesian unit vectors. Figure 7.19 shows the direction cosines
and the angles. These direction cosines enable any point P(x,y,z) in one frame
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of reference to be transformed into P′(x′,y′,z′) in another frame of reference as
follows:

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

where:

• r11, r12, r13 are the direction cosines of the secondary x-axis
• r21, r22, r23 are the direction cosines of the secondary y-axis
• r31, r32, r33 are the direction cosines of the secondary z-axis.

X

Y

Z

Y ¢

Z ¢ X ¢

Fig. 7.20 Two axial systems mutually aligned.

To illustrate this operation, consider the scenario shown in Fig. 7.20 which shows
two axial systems mutually aligned. Evaluating the direction cosines results in the
following matrix transformation:

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

which is the identity matrix and implies that (x′,y′,z′) = (x,y,z) .
Figure 7.21 shows another scenario, and the associated transform is

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .
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X

Y

Z

X ¢

Y ¢

Z¢

Fig. 7.21 The X ′Y ′Z′ axial system after a roll of 90◦.

Substituting (1,1,0) for (x,y,z) produces (1,−1,0) for (x′,y′,z′) in the new
frame of reference, which by inspection, is correct.

If the virtual camera is offset by (tx, ty, tz) the transform relating points in world
space to camera space can be expressed as a compound operation consisting of a
translation back to the origin, followed by a change of axial systems. This can be
expressed as

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

As an example, consider the scenario shown in Fig. 7.22. The values of (tx, ty, tz) are
(10,1,1), and the direction cosines are as shown in the following matrix operation:

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 −10

0 1 0 −1

0 0 1 −1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

which simplifies to ⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1 0 0 10

0 1 0 −1

0 0 −1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

Substituting (0,0,0) for (x,y,z) in the above transform produces (10,−1,1) for
(x′,y′,z′), which can be confirmed from Fig. 7.22. Similarly, substituting (0,1,1)
for (x,y,z) produces (10,0,0) for (x′,y′,z′), which is also correct.
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X

Y

Z

Z ¢

Y ¢

X ¢

1

1

10

(0, 1, 1)

Fig. 7.22 The secondary axial system is subject to a yaw of 180◦ and an offset of (10,1,1).

7.7.2 Euler Angles

Another approach for locating the virtual camera involves Euler angles, but we must
remember that they suffer from gimbal lock. However, if the virtual camera is lo-
cated in world space using Euler angles, the transform relating world coordinates
to camera coordinates can be derived from the inverse operations. The yaw, pitch,
roll matrices described above are called orthogonal matrices, as the inverse matrix
is the transpose of the original rows and columns. Consequently, to rotate through
angles −roll, −pitch and −yaw, we use

• rotate −roll about the z-axis:

⎡
⎢⎢⎢⎢⎣

cosroll sinroll 0 0

−sinroll cosroll 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

• rotate −pitch about the x-axis:

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cos pitch sin pitch 0

0 −sin pitch cos pitch 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

• rotate −yaw about the y-axis:

⎡
⎢⎢⎢⎢⎣

cosyaw 0 −sinyaw 0

0 1 0 0

sinyaw 0 cosyaw 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .
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The same result is obtained by substituting −roll, −pitch, −yaw in the original
matrices. As described above, the virtual camera will normally be translated from
the origin by (tx, ty, tz), which implies that the transform from the world space to the
camera space must be evaluated as follows:

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

[
−roll

][
−pitch

][
−yaw

][
translate(−tx,−ty,−tz)

]
⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

which can be represented by a single homogeneous matrix:

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

where

T11 = cos(yaw)cos(roll)+ sin(yaw)sin(pitch)sin(roll)
T12 = cos(pitch)sin(roll)
T13 = −sin(yaw)cos(roll)+ cos(yaw)sin(pitch)sin(roll)
T14 = −(txT11 + tyT12 + tzT13)
T21 = −cos(yaw)sin(roll)+ sin(yaw)sin(pitch)cos(roll)
T22 = cos(pitch)cos(roll)
T23 = −sin(yaw)sin(roll)+ cos(yaw)sin(pitch)cos(roll)
T24 = −(txT21 + tyT22 + tzT23)
T31 = sin(yaw)cos(pitch)
T32 = −sin(pitch)
T33 = cos(yaw)cos(pitch)
T34 = −(txT31 + tyT32 + tzT33)
T41 = T42 = T43 = 0
T44 = 1.

This, too, can be verified by a simple example. For instance, consider the situation
shown in Fig. 7.22 where the following conditions prevail:

roll = 0◦

pitch = 0◦

yaw = 180◦
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tx = 10
ty = 1
tz = 1.

The transform is ⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1 0 0 10

0 1 0 −1

0 0 −1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

which is identical to the equation used for direction cosines. Another example is
shown in Fig. 7.23 where the following conditions prevail:

roll = 90◦

pitch = 180◦

yaw = 0◦

tx = 0.5
ty = 0.5
tz = 11.

The transform is ⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 −1 0 0.5

−1 0 0 0.5

0 0 −1 11

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

Substituting (1,1,1) for (x,y,z) produces (−0.5,−0.5,10) for (x′,y′,z′). Similarly,
substituting (0,0,1) for (x,y,z) produces (0.5,0.5,10) for (x′,y′,z′), which can be
visually verified from Fig. 7.23.

X

Y

Z X ¢

Y ¢
Z ¢

(1, 1, 1)

(0.5, 0.5, 11)

Fig. 7.23 The secondary axial system is subject to a roll of 90◦, a pitch of 180◦ and a translation
of (0.5,0.5,11).
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7.8 Rotating a Point About an Arbitrary Axis

7.8.1 Matrices

Let’s now consider two ways of developing a matrix for rotating a point about an
arbitrary axis. The first approach employs vector analysis and is quite succinct. The
second technique is less analytical and relies on matrices and trigonometric evalua-
tion and is rather laborious. Fortunately, they both arrive at the same result!

Figure 7.24 shows a view of the geometry associated with the task at hand. For
clarification, Fig. 7.25 shows a cross-sectionand a plan view of the geometry.

P

P′

N

n̂

Q
p

n

p′

r

q

a

O

Fig. 7.24 A view of the geometry associated with rotating a point about an arbitrary axis.

O

P
N

n̂

pn

r

q

P �

PN

||r||

ra

Q

w

Fig. 7.25 A cross-sectionand plan view of the geometry associated with rotating a point about an
arbitrary axis.

The axis of rotation is given by the unit vector:

v̂ = ai+bj+ ck.

P(xp, yp zp) is the point to be rotated by angle α to P′(x′p, y′p, z′p).
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O is the origin, whilst p and p′ are position vectors for P and P′ respectively.
From Figs. 7.24 and 7.25:

p′ =
−→
ON +

−→
NQ+

−−→
QP′.

To find
−→
ON:

|n| = |p|cosθ = n̂ ·p
therefore, −→

ON = n = n̂(n̂ ·p).

To find
−→
NQ:

−→
NQ =

NQ
NP

r =
NQ
NP′ r = cosα r

but
p = n+ r = n̂(n̂ ·p)+ r

therefore,
r = p− n̂(n̂ ·p)

and −→
NQ = [p− n̂(n̂ ·p)]cosα.

To find
−−→
QP′:

Let
n̂×p = w

where
|w| = |n̂| · |p|sinθ = |p|sinθ

but
|r| = |p|sinθ

therefore,
|w| = |r|.

Now
QP′

NP′ =
QP′

|r| =
QP′

|w| = sinα

therefore, −−→
QP′ = wsinα = (n̂×p)sinα

then
p′ = n̂(n̂ ·p)+ [p− n̂(n̂ ·p]cosα +(n̂×p)sinα

and
p′ = pcosα + n̂(n̂ ·p)(1− cosα)+(n̂×p)sinα.

Let
K = 1− cosα
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then
p′ = pcosα + n̂(n̂ ·p)K +(n̂×p)sinα

and

p′ = (xpi+ ypj+ zpk)cosα +(ai+bj+ ck)(axp +byp + czp)K
+[(bzp − cyp)i+(cxp −azp)j+(ayp −bxp)k]sinα

p′ = [xp cosα +a(axp +byp + czp)K +(bzp − cyp)sinα]i
+[yp cosα +b(axp +byp + czp)K +(cxp −azp)sinα]j
+[zp cosα + c(axp +byp + czp)K +(ayp −bxp)sinα]k

p′ = [xp(a2K + cosα)+ yp(abK − csinα)+ zp(acK +bsinα)]i

+[xp(abK + csinα)+ yp(b2K + cosα)+ zp(bcK −asinα)]j

+[xp(acK −bsinα)+ yp(bcK +asinα)+ zp(c2K + cosα)]k

and the transform is:⎡
⎢⎢⎢⎢⎢⎣

x′p
y′p
z′p
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

a2K + cosα abK − csinα acK +bsinα 0

abK + csinα b2K + cosα bcK −asinα 0

acK −bsinα bcK +asinα c2K + cosα 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xp

yp

zp

1

⎤
⎥⎥⎥⎥⎦

where
K = 1− cosα.

Now let’s approach the problem using transforms and trigonometric identities.
The following is extremely tedious, but it is a good exercise for improving one’s
algebraic skills!

X

Y

Z

P

P¢

a

f

q

a

b

c

v

Fig. 7.26 The geometry associated with rotating a point about an arbitrary axis.

Figure 7.26 shows a point P(x,y,z) to be rotated through an angle α to P′(x′,y′,z′)
about an axis defined by
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v = ai+bj+ ck

where |v| = 1.
The transforms to achieve this operation can be expressed as follows:

⎡
⎢⎢⎣

x′

y′

z′

⎤
⎥⎥⎦ = [T5] [T4] [T3] [T2] [T1]

⎡
⎢⎢⎣

x

y

z

⎤
⎥⎥⎦

which aligns the axis of rotation with the x-axis, performs the rotation of P through
an angle α about the x-axis, and returns the axis of rotation back to its original
position. Therefore,

T1 rotates +φ about the y-axis
T2 rotates−θ about the z-axis
T3 rotates +α about the x-axis
T4 rotates +θ about the z-axis
T5 rotates−φ about the y-axis

where

T1 =

⎡
⎢⎢⎣

cosφ 0 sinφ
0 1 0

−sinφ 0 cosφ

⎤
⎥⎥⎦ T2 =

⎡
⎢⎢⎣

cosθ sinθ 0

−sinθ cosθ 0

0 0 1

⎤
⎥⎥⎦

T3 =

⎡
⎢⎢⎣

1 0 0

0 cosα −sinα
0 sinα cosα

⎤
⎥⎥⎦ T4 =

⎡
⎢⎢⎣

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

⎤
⎥⎥⎦

T5 =

⎡
⎢⎢⎣

cosφ 0 −sinφ
0 1 0

sinφ 0 cosφ

⎤
⎥⎥⎦ .

Let

[T5] [T4] [T3] [T2] [T1] =

⎡
⎢⎢⎢⎢⎣

E1,1 E1,2 E1,3 0

E2,1 E2,2 E2,3 0

E3,1 E3,2 E3,3 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

where by multiplying the matrices together we find that:

E1,1 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα
E1,2 = cosφ cosθ sinθ − cosφ sinθ cosθ cosα − sinφ cosθ sinα

E1,3 = cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα + sin2 φ sinθ sinα

+ cos2 φ sinθ sinα − cosφ sinφ cosα
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E2,1 = sinθ cosθ cosφ − cosθ sinθ cosφ cosα + cosθ sinφ sinα

E2,2 = sin2 θ + cos2 θ cosα
E2,3 = sinθ cosθ sinφ − cosθ sinθ sinφ cosα − cosθ cosφ sinα

E3,1 = cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα − cos2 φ sinθ sinα
= −cosφ sinφ cosα

E3,2 = sinφ cosθ sinθ − sinφ sinθ cosθ cosα + cosφ cosθ sinα

E3,3 = sin2 φ cos2 θ + sin2 φ sin2 θ cosα − cosφ sinφ sinθ sinα

+ cosφ sinφ sinθ sinα + cos2 φ cosα.

From Fig. 7.26 we compute the sin and cos of θ and φ in terms of a, b and c, and
then compute their equivalent sin2 and cos2 values:

cosθ =
√

1−b2 ⇒ cos2 θ = 1−b2

sinθ = b ⇒ sin2 θ = b2

cosφ =
a√

1−b2
⇒ cos2 φ =

a2

1−b2

sinφ =
c√

1−b2
⇒ sin2 φ =

c2

1−b2

To find E1,1:

E1,1 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα

=
a2

1−b2 (1−b2)+
a2

1−b2 b2 cosα +
c2

1−b2 cosα

= a2 +
a2b2

1−b2 cosα +
c2

1−b2 cosα

= a2 +
(

c2 +a2b2

1−b2

)
cosα

but
a2 +b2 + c2 = 1 ⇒ c2 = 1−a2 −b2

substituting c2 in E1,1

E1,1 = a2 +
(

1−a2 −b2 +a2b2

1−b2

)
cosα

= a2 +
(

(1−a2)(1−b2)
1−b2

)
cosα

= a2 +(1−a2)cosα

= a2(1− cosα)+ cosα.
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Let
K = 1− cosα

then
E1,1 = a2K + cosα.

To find E1,2:

E1,2 = cosφ cosθ sinθ − cosφ sinθ cosθ cosα − sinφ cosθ sinα

=
a√

1−b2

√
1−b2b− a√

1−b2
b
√

1−b2 cosα − c√
1−b2

√
1−b2 sinα

= ab−abcosα − csinα
= ab(1− cosα)− csinα

E1,2 = abK − csinα.

To find E1,3:

E1,3 = cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα + sin2 φ sinθ sinα

+ cos2 φ sinθ sinα − cosφ sinφ cosα

= cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα + sinθ sinα − cosφ sinφ cosα

=
a√

1−b2

c√
1−b2

(1−b2)+
a√

1−b2

c√
1−b2

b2 cosα +bsinα

− a√
1−b2

c√
1−b2

cosα

= ac+ac
b2

(1−b2)
cosα +bsinα − ac

(1−b2)
cosα

= ac+ac
(b2 −1)
(1−b2)

cosα +bsinα

= ac(1− cosα)+bsinα
E1,3 = acK +bsinα.

Using similar algebraic methods, we discover that:

E2,1 = abK + csinα

E2,2 = b2K + cosα
E2,3 = bcK −asinα
E3,1 = acK −bsinα
E3,2 = bcK +asinα

E3,3 = c2K + cosα
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and our original matrix transform becomes:
⎡
⎢⎢⎢⎢⎢⎣

x′p
y′p
z′p
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

a2K + cosα abK − csinα acK +bsinα 0

abK + csinα b2K + cosα bcK −asinα 0

acK −bsinα bcK +asinα c2K + cosα 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xp

yp

zp

1

⎤
⎥⎥⎥⎥⎦

where
K = 1− cosα.

which is identical to the transformation derived from the first approach.
Now let’s test the matrix with a simple example that can be easily verified. If

we rotate the point P(10,5,0) 360◦ about an axis defined by v = i+ j+k, it should
return to itself producing P′(x′,y′,z′).

Therefore
α = 360◦ cosα = 1 sinα = 0 K = 0

a = 1 b = 1 c = 1

and ⎡
⎢⎢⎢⎢⎣

10

5

0

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

10

5

0

1

⎤
⎥⎥⎥⎥⎦ .

As the matrix is an identity matrix P′ = P.

7.8.2 Quaternions

As mentioned earlier, quaternions were invented by Sir William Rowan Hamilton in
the mid-nineteenth century. Sir William was looking for a way to represent complex
numbers in higher dimensions, and it took 15 years of toil before he stumbled upon
the idea of using a 4D notation – hence the name ‘quaternion’.

Knowing that a complex number is the combination of a real and imaginary quan-
tity: a + ib, it is tempting to assume that its 3D equivalent is a + ib + jc where
i2 = j2 = −1. Unfortunately, when Hamilton formed the product of two such ob-
jects, he could not resolve the dyads i j and ji, and went on to explore an extension
a + ib + jc + kd where i2 = j2 = k2 = −1. This too, presented problems with the
dyads i j, jk, ki and their mirrors ji, k j and ik. But after many years of thought
Hamilton stumbled across the rules:

i2 = j2 = k2 = i jk = −1
i j = k, jk = i, ki = j

ji = −k, k j = −i, ik = − j.
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Although quaternions had some enthusiastic supporters, there were many mathe-
maticians and scientists who were suspicious of the need to involve so many imagi-
nary terms.

Towards the end of the nineteenth century Josiah Gibbs resolved the problem
by declaring that the three imaginary quantities could be viewed as a 3D vector and
changed the ib+ jc+kd into bi+cj+dk, where i, j and k are unit Cartesian vectors.
Today, there are two ways of defining a quaternion:

q = [s,v]
q = [s+v].

The difference is rather subtle: the first separates the scalar and the vector with a
comma, whereas the second preserves the ‘+’ sign as used in complex numbers.
Although the idea of adding a scalar to a vector seems strange, this notation is used
for the rest of this section as it will help us understand the ideas behind geometric
algebra, which are introduced later on.

Since Hamilton’s invention, mathematicians have shown that quaternions can be
used to rotate points about an arbitrary axis, and hence the orientation of objects and
the virtual camera. In order to develop the equation that performs this transformation
we will have to understand the action of quaternions in the context of rotations.

A quaternion q is the combination of a scalar and a vector:

q = [s+v]

where s is a scalar and v is a 3D vector. If we express the vector v in terms of its
components, we have in an algebraic form

q = [s+ xi+ yj+ zk]

where s,x,y and z are real numbers.

7.8.3 Adding and Subtracting Quaternions

Given two quaternions q1 and q2:

q1 = [s1 +v1] = [s1 + x1i+ y1j+ z1k]
q2 = [s2 +v2] = [s2 + x2i+ y2j+ z2k]

they are equal if, and only if, their corresponding terms are equal. Furthermore, like
vectors, they can be added and subtracted as follows:

q1 ±q2 = [(s1 ± s2)+(x1 ± x2)i+(y1 ± y2)j+(z1 ± z2)k].
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7.8.4 Multiplying Quaternions

When multiplying quaternions we must employ the following rules:

i2 = j2 = k2 = ijk = −1
ij = k, jk = i, ki = j
ji = −k, kj = −i, ik = −j.

Note that whilst quaternion addition is commutative, the rules make quaternion
products non-commutative.

Given two quaternions q1 and q2:

q1 = [s1 +v1] = [s1 + x1i+ y1j+ z1k]

q2 = [s2 +v2] = [s2 + x2i+ y2j+ z2k]

their product q1q2 is given by:

q1q2 = [(s1s2 − x1x2 − y1y2 − z1z2)+(s1x2 + s2x1 + y1z2 − y2z1)i
+(s1y2 + s2y1 + z1x2 − z2x1)j+(s1z2 + s2z1 + x1y2 − x2y1)k

which can be rewritten using the dot and cross product notation as

q1q2 = [(s1s2 −v1 ·v2)+ s1v2 + s2v1 +v1 ×v2]

where
(s1s2 −v1 ·v2)

is a scalar, and
s1v2 + s2v1 +v1 ×v2

is a vector.

7.8.5 Pure Quaternion

A pure quaternion has a zero scalar term:

q = [v]

which is a vector. Therefore, given two pure quaternions:

q1 = [v1] = [x1i+ y1j+ z1k]
q2 = [v2] = [x2i+ y2j+ z2k]
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their product is
q1q2 = [v1 ×v2].

7.8.6 The Inverse Quaternion

Given the quaternion
q = [s+ xi+ yj+ zk]

its inverse q−1 is given by

q−1 =
s− xi− yj− zk]

|q|2

where |q| is the magnitude, or modulus of q, and is equal to

|q| =
√

s2 + x2 + y2 + z2.

It can also be shown that
qq−1 = q−1q = 1.

7.8.7 Unit Quaternion

A unit quaternion has a magnitude equal to 1:

|q| =
√

s2 + x2 + y2 + z2 = 1.

7.8.8 Rotating Points About an Axis

Basically, quaternions are associated with vectors rather than individual points.
Therefore, in order to manipulate a single vertex, it must be turned into a position
vector, which has its tail at the origin. A vertex can then be represented in quaternion
form by its equivalent position vector with a zero scalar term. For example, a point
P(x,y,z) is represented in quaternion form by

P = [0+ xi+ yj+ zk]

which is transformed into another position vector using the process described be-
low. The coordinates of the rotated point are the components of the rotated position
vector. This may seem an indirect process, but in reality it turns out to be rather
simple. Let’s now consider how this is achieved.
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It can be shown that a position vector P can be rotated through an angle θ about
an axis using the following operation:

P′ = qPq−1

where the axis and angle of rotation are encoded within the unit quaternion q, whose
modulus is 1, and P′ is the rotated vector. For example, to rotate a point P(x,y,z)
through an angle θ about an axis u, we use the following steps:

1. Convert the point P(x,y,z) to a pure quaternion P:

P = [0+ xi+ yj+ zk].

2. Define the axis of rotation as a unit vector û:

û = [xui+ yuj+ zuk]

and

|û| = 1.

3. Define the transforming quaternion q:

q = [cos(θ/2)+ sin(θ/2)û].

4. Define the inverse of the transforming quaternion q−1:

q−1 = [cos(θ/2)− sin(θ/2)û].

5. Compute P′:
P′ = qPq−1.

6. Unpack (x′,y′,z′):

P′(x′,y′,z′) ⇐ P′ = [0+ x′i+ y′j+ z′k].

We can verify the action of the above transform with a simple example. Consider
the point P(0,1,1) in Fig. 7.27 which is to be rotated 90◦ about the y-axis. We
can see that the rotated point P′ has the coordinates (1,1,0) which we will confirm
algebraically. The point P is represented by the quaternion P:

P = [0+0i+1j+1k]

and is rotated by evaluating the quaternion P′:

P′ = qPq−1
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Z X

Y

P (0,1,1) P¢(1,1,0)

Fig. 7.27 The point P(0,1,1) is rotated to P′(1,1,0) using a quaternion coincident with the y-axis.

which will store the rotated coordinates. The axis of rotation is j , therefore the unit
quaternion q is given by

q = [cos(90◦/2)+ sin(90◦/2)[0i+ j+0k]]
= [cos45◦ +0i+ sin45◦j+0k].

The inverse quaternion q−1 is given by

q−1 =
[cos(90◦/2)− sin(90◦/2)[0i+ j−0k]]

|q|2

but as q is a unit quaternion, the denominator |q|2 equals unity and can be ignored.
Therefore

q−1 = [cos45◦ −0i− sin45◦j−0k].

Let’s evaluate qPq−1 in two stages: (qP)q−1, and for clarity, zero components will
continue to be included.
1.

qP = [cos45◦ +0i+ sin45◦j+0k] [0+0i+ j+0k]
= [−sin45◦ + sin45◦i+ cos45◦j+ cos45◦k].

2.

(qP)q−1 = [−sin45◦ + sin45◦i+ cos45◦j+ cos45◦k]
· [cos45◦ −0i− sin45◦j−0k]

= [0+2cos45◦ sin45◦i+(cos2 45◦ + sin2 45◦)j+(cos2 45◦ − sin2 45◦)k]
P′ = [0+ i+ j+0k]

and the vector component of P′ confirms that P is indeed rotated to (1,1,0).
We will evaluate one more example before continuing. Consider a rotation about

the z-axis as illustrated in Fig. 7.28. The original point has coordinates (0,1,1) and
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is rotated −90◦. From the figure we see that this should finish at (1,0,1). This time
the quaternion q is defined by

q = [cos(−90◦/2)+ sin(−90◦/2)[0i+0j+k]]
= [cos45◦ +0i+0j− sin45◦k]

with its inverse

q−1 = [cos45◦ +0i+0j+ sin45◦k]

and the point to be rotated in quaternion form is

P = [0+0i+ i+k].

Evaluating this in two stages we have
1.

qP = [cos45◦ +0i+0j− sin45◦k] · [0+0i+ j+k]
= [sin45◦ + sin45◦i+ cos45◦j+ cos45◦k].

2.

(qP)q−1 = [sin45◦ + sin45◦i+ cos45◦j+ cos45◦k]
· [cos45◦ +0i+0j+ sin45◦k]

= [0+ sin90◦i+ cos90◦j+k]
= [0+ i+0j+k].

The vector component of P′ confirms that P is rotated to (1,0,1).

Z X

Y

P (0,1,1)

P¢(1,0,1)

Fig. 7.28 The point P(0,1,1) is rotated −90◦ to P′(1,0,1) using a quaternion coincident with the
z-axis.
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7.8.9 Roll, Pitch and Yaw Quaternions

Having already looked at roll, pitch and yaw rotations, we can now define them as
quaternions:

qroll = [cos(θ/2)+0i+0j+ sin(θ/2)k]
qpitch = [cos(θ/2)+ sin(θ/2)i+0j+0k]
qyaw = [cos(θ/2)+0i+ sin(θ/2)j+0k]

where θ is the angle of rotation.
These quaternions can be multiplied together to create a single quaternion repre-

senting a compound rotation. For example, if the quaternions are defined as

qroll = [cos(roll/2)+0i+0j+ sin(roll/2)k]
qpitch = [cos(pitch/2)+ sin(pitch/2)i+0j+0k]
qyaw = [cos(yaw/2)+0i+ sin(yaw/2)j+0k]

they can be combined to a single quaternion q:

q = qyawqpitchqroll = [s+ xi+ yj+ zk]

where

s = cos(yaw/2)cos(pitch/2)cos(roll/2)+ sin(yaw/2)sin(pitch/2)sin(roll/2)
x = cos(yaw/2)sin(pitch/2)cos(roll/2)+ sin(yaw/2)cos(pitch/2)sin(roll/2)
y = sin(yaw/2)cos(pitch/2)cos(roll/2)− cos(yaw/2)sin(pitch/2)sin(roll/2)
z = cos(yaw/2)cos(pitch/2)sin(roll/2)− sin(yaw/2)sin(pitch/2)cos(roll/2).

Let’s examine this compound quaternion with an example. For instance, given
the following conditions let’s derive a single quaternion q to represent the compound
rotation:

roll = 90◦

pitch = 180◦

yaw = 0◦.

The values of s, x, y, z are

s = 0
x = cos45◦

y = −sin45◦

z = 0
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and the quaternion q is

q = [0+ cos45◦i− sin45◦j+0k].

If the point P(1,1,1) is subjected to this compound rotation, the rotated point is
computed using the standard quaternion transform:

P′ = qPq−1.

Let’s evaluate qPq−1 in two stages:
1.

qP = [0+ cos45◦i− sin45◦j+0k] · [0+ i+ j+k]
= [0− sin45◦i− cos45◦j+(sin45◦ + cos45◦)k].

2.

(qP)q−1 = [0− sin45◦i− cos45◦j+(sin45◦ + cos45◦)k]
· [0− cos45◦i+ sin45◦j+0k]

P′ = [0− i− j−k].

Therefore, the coordinates of the rotated point are (−1,−1,−1) which can be
confirmed from Fig. 7.29.

X

Z

Y
P (1,1,1)

(–1,1,1)

P¢(–1,–1,–1)

pitch = 180° 

roll = 90°

Fig. 7.29 The point P(1,1,1) is subject to a compound roll of 90◦ to (−1,1,1) and a pitch of 180◦

and ends up at P′(−1,−1,−1).

7.8.10 Quaternions in Matrix Form

There is a direct relationship between quaternions and matrices. For example, given
the quaternion

[s+ xi+ yj+ zk]
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the equivalent matrix is ⎡
⎢⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎥⎦

where

M11 = 1−2(y2 + z2)
M12 = 2(xy− sz)
M13 = 2(xz+ sy)
M21 = 2(xy+ sz)

M22 = 1−2(x2 + z2)
M23 = 2(yz− sx)
M31 = 2(xz− sy)
M32 = 2(yz+ sx)

M33 = 1−2(x2 + y2).

Substituting the following values of s,x,y,z:

s = 0
x = cos45◦

y = −sin45◦

z = 0

the matrix transformation is⎡
⎢⎢⎣

x′

y′

z′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 0

−1 0 0

0 0 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

⎤
⎥⎥⎦ .

Substituting (1,1,1) for (x,y,z) the rotated point (x′,y′,z′) becomes (−1,−1,−1)
as shown in Fig. 7.29.

7.8.11 Frames of Reference

A quaternion, or its equivalent matrix, can be used to rotate a vertex or position
a virtual camera. If unit quaternions are used, the associated matrix is orthogonal,
which means that its transpose is equivalent to rotating the frame of reference in
the opposite direction. For example, if the virtual camera is oriented with a yaw
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rotation of 180◦, i.e., looking along the negative z-axis, the orientation quaternion is
[0+0i+ j+0k] . Therefore s = 0, x = 0, y = 1, z = 0. The equivalent matrix is

⎡
⎢⎢⎣
−1 0 0

0 1 0

0 0 −1

⎤
⎥⎥⎦

which is equal to its transpose. Therefore, a vertex (x,y,z) in world space has coor-
dinates (x′,y′,z′) in camera space and the transform is defined by

⎡
⎢⎢⎣

x′

y′

z′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 0

0 1 0

0 0 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

⎤
⎥⎥⎦ .

If the vertex (x,y,z) is (1,1,0), (x′,y′,z′) becomes (−1,1,0) which is correct.
However, it is unlikely that the virtual camera will only be subjected to a simple
rotation, as it will normally be translated from the origin. Consequently, a translation
matrix will have to be introduced as described above.

7.9 Transforming Vectors

The transforms described in this chapter have been used to transform single points.
However, a geometric database will not only contain pure vertices, but vectors,
which must also be subject to any prevailing transform. A generic transform Q of a
3D point can be represented by

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

[
Q

]
⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦

and as a vector is defined by two points we can write

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

[
Q

]
⎡
⎢⎢⎢⎢⎣

x2 − x1

y2 − y1

z2 − z1

1−1

⎤
⎥⎥⎥⎥⎦
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where we see the homogeneous scaling term collapse to zero. Which implies that
any vector [x y z]T can be transformed using

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

0

⎤
⎥⎥⎥⎥⎦ =

[
Q

]
⎡
⎢⎢⎢⎢⎣

x

y

z

0

⎤
⎥⎥⎥⎥⎦ .

Let’s put this to the test by using a transform from an earlier example. The prob-
lem concerned a change of axial system where a virtual camera was subject to the
following:

roll = 180◦

pitch = 90◦

yaw = 90◦

tx = 2
ty = 2
tz = 0

and the transform is

⎡
⎢⎢⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 −1 0 2

0 0 1 0

−1 0 0 2

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎦ .

When the point (1,1,0) is transformed it becomes (1,0,1) as shown in Fig. 7.30.
But if we transform the vector [1 1 0]T , it becomes [−1 0 − 1]T using the
following transform

Z X

Y

(2, 2, 0)

[1  1  0]
[–1 0 –1] ¢

X ¢

Y ¢

Z¢

Fig. 7.30 Vector [1 1 0]T is transformed to [−1 0 −1]T .
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⎡
⎢⎢⎢⎢⎣

−1

0

−1

0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 −1 0 2

0 0 1 0

−1 0 0 2

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1

1

0

0

⎤
⎥⎥⎥⎥⎦

which is correct with reference to Fig. 7.30.

7.10 Determinants

Before concluding this chapter I would like to expand upon the role of the determi-
nant in transforms. Normally, determinants arise in the solution of linear equations
such as

c1 = a1x+b1y

c2 = a2x+b2y

where values of x and y are defined in terms of the other constants. Without showing
the algebra, the values of x and y are given by

x =
c1b2 − c2b1

a1b2 −a2b1
(7.5)

y =
a1c2 −a2c1

a1b2 −a2b1
(7.6)

provided that the denominator a1b2 −a2b1 �= 0.
It is also possible to write the linear equations in matrix form as

[
c1

c2

]
=

[
a1 b1

a2 b2

][
x

y

]

and we notice that the denominator comes from the matrix terms a1b2 −a2b1. This
is called the determinant, and is only valid for square matrices. A determinant is
defined as follows: ∣∣∣∣∣

a1 b1

a2 b2

∣∣∣∣∣ = a1b2 −a2b1

where the terms are cross-multiplied and subtracted. With this notation it is possible
to rewrite the original linear equations as

x∣∣∣∣∣
c1 b1

c2 b2

∣∣∣∣∣
=

y∣∣∣∣∣
a1 c1

a2 c2

∣∣∣∣∣
=

1∣∣∣∣∣
a1 b1

a2 b2

∣∣∣∣∣
.
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With a set of three linear equations:

d1 = a1x+b1y+ c1z

d2 = a2x+b2y+ c2z

d3 = a3x+b3y+ c3z

the value of x is computed using

x =
d1b2c3 −d1b3c2 +d2b3c1 −d2b1c3 +d3b1c2 −d3b2c1

a1b2c3 −a1b3c2 +a2b3c1 −a2b1c3 +a3b1c2 −a3b2c1

with similar expressions for y and z. Once more, the denominator comes from
the determinant of the matrix associated with the matrix formulation of the linear
equations: ⎡

⎢⎢⎣
d1

d2

d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

⎤
⎥⎥⎦

where ∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣
= a1b2c3 −a1b3c2 +a2b3c1 −a2b1c3 +a3b1c2 −a3b2c1

which can be written as

a1

∣∣∣∣∣
b2 c2

b3 c3

∣∣∣∣∣−a2

∣∣∣∣∣
b1 c1

b3 c3

∣∣∣∣∣+a3

∣∣∣∣∣
b1 c1

b2 c2

∣∣∣∣∣ .

Let’s now see what creates a zero determinant. If we write, for example

10 = 2x+ y

there are an infinite number of solutions for x and y, and it is impossible to solve the
equation. However, if we introduce a second equation relating x and y:

4 = 5x− y

we can solve for x and y using (7.5) and (7.6):

x =
10× (−1)−4×1
2× (−1)−5×1

=
−14
−7

= 2

y =
2×4−5×10

2× (−1)−5×1
=

−42
−7

= 6

therefore x = 2 and y = 6, which is correct.
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But say the second equation had been

20 = 4x+2y

which creates a pair of simultaneous equations:

10 = 2x+ y (7.7)
20 = 4x+2y. (7.8)

If we now solve for x and y we get

x =
10×2−20×1

2×2−4×1
=

0
0

= undefined

y =
2×20−4×10

2×2−4×1
=

0
0

= undefined

which yields undefined results. The reason for this is that (7.7) is the same as (7.8) –
the second equation is nothing more than twice the first equation, and therefore
brings nothing new to the relationship. When this occurs, the equations are called
linearly dependent.

Having shown the algebraic origins of the determinant, let us investigate their
graphical significance. Consider the transform

[
x′

y′

]
=

[
a b

c d

][
x

y

]
.

The determinant of the transform is ad − cb. If we subject the vertices of a unit-
square to this transform, we create the situation shown in Fig. 7.31. The vertices of
the unit-square are transformed as follows:

(0,0) ⇒ (0,0)
(1,0) ⇒ (a,c)
(1,1) ⇒ (a+b,c+d)
(0,1) ⇒ (b,d).

From Fig. 7.31 it can be seen that the area of the transformed unit-square A′ is
given by

area = (a+b)(c+d)−B−C−D−E −F −G

= ac+ad + cb+bd − 1
2

bd − cb− 1
2

ac− 1
2

bd − cb− 1
2

ac

= ad − cb
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X

Y (a+b, c+d )

C D

E

FG

B
(b, d )

(a, c )

(0, 0 )

b a

a b

d

c

A

Fig. 7.31 The inner parallelogram is the transformed unit square.

which is the determinant of the transform. But as the area of the original unit-square
is 1, the determinant of the transform controls the scaling factor applied to the trans-
formed shape.

Let’s examine the determinants of two transforms. The first 2D transform en-
codes a scaling of 2, and results in an overall area scaling of 4:

[
2 0

0 2

]

and the determinant is ∣∣∣∣∣
2 0

0 2

∣∣∣∣∣ = 4.

The second 2D transform encodes a scaling of 3 and a translation of (3,3), and
results in an overall area scaling of 9:

⎡
⎢⎢⎣

3 0 3

0 3 3

0 0 1

⎤
⎥⎥⎦

and the determinant is

3

∣∣∣∣∣
3 3

0 1

∣∣∣∣∣−0

∣∣∣∣∣
0 3

0 1

∣∣∣∣∣+0

∣∣∣∣∣
0 3

3 3

∣∣∣∣∣ = 9.

These two examples demonstrate the extra role played by the elements of a matrix.
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7.11 Perspective Projection

Of all the projections employed in computer graphics, the perspective projection
is one most widely used. There are two stages to its computation: the first stage
involves converting world coordinates to the camera’s frame of reference, and the
second stage transforms camera coordinates to the projection plane coordinates.
We have already looked at the transforms for locating a camera in world space,
and the inverse transform for converting world coordinates to the camera’s frame of
reference. Let’s now investigate how these camera coordinates are transformed into
a perspective projection.

XC

YC

ZC

(xc, yc, zc)

xp

yp

YP

XP

Fig. 7.32 The axial system used to produce a perspective view.

We begin by assuming that the camera is directed along the z-axis as shown in
Fig. 7.32. Positioned d units along the z-axis is a projection screen, which is used
to capture a perspective projection of an object. Figure 7.32 shows that any point
(xc,yc,zc) becomes transformed to (xp,yp,d). It also shows that the screen’s x-axis is
pointing in the opposite direction to the camera’s x-axis, which can be compensated
for by reversing the sign of xp when it is computed.

Figure 7.33 shows a plan view of the scenario depicted in Fig. 7.32, and Fig.
7.34 a side view, which permits us to inspect the geometry and make the following
observations:

xc

zc
=

−xp

d

xp =
−xc

zc/d

and

yc

zc
=

yp

d

yp =
yc

zc/d
.
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(xc, yc, zc )
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Fig. 7.33 The plan view of the camera’s axial system.

screen
Y
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yc(xp, yp, d )

(xc, yc, zc )

d
zc

yp

Fig. 7.34 The side view of the camera’s axial system.

This can be expressed in matrix form as

⎡
⎢⎢⎢⎢⎣

xp

yp

zp

w

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/d 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

xc

yc

zc

1

⎤
⎥⎥⎥⎥⎦ .

At first the transform seems strange, but if we multiply this out we get

[xp yp zp w]T = [−xc yc zc zc/d]T

and if we remember the idea behind homogeneous coordinates, we must divide the
terms xp, yp, zp by w to get the scaled terms, which produces

xp =
−xc

zc/d
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yp =
yc

zc/d

zp =
zc

zc/d
= d

which, after all, is rather elegant. Notice that this transform takes into account the
sign change that occurs with the x-coordinate. Some books will leave this sign re-
versal until the mapping is made to screen coordinates.

7.12 Summary

The purpose of this chapter was to introduce the reader to transforms and matrices –
I hope this has been achieved. This end of the chapter, is not really the end of the
subject, as one can do so much with matrices and quaternions. For example, it would
be interesting to see how a matrix behaves when some of its elements are changed
dynamically, and what happens when we interpolate between a pair of quaternions.
Such topics will be addressed in later chapters.





Chapter 8
Interpolation

8.1 Introduction

Interpolation is not a branch of mathematics but rather a collection of techniques
the reader will find useful when solving computer graphics problems. Basically, an
interpolant is a way of changing one number into another. For example, to change
2 into 4 we simply add 2, which is not very useful. The real function of an inter-
polant is to change one number into another in, perhaps, 10 equal steps. Thus if we
start with 2 and repeatedly added 0.2, it would generate the sequence 2.0, 2.2, 2.4,
2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, and 4. These numbers could then be used to trans-
late, scale, rotate an object, move a virtual camera, or change the position, color or
brightness of a virtual light source.

In order to repeat the above interpolant for different numbers we require a for-
mula, which is one of the first exercises of this chapter. We also need to explore
ways of controlling the spacing between the interpolated values. In animation, for
example, we often need to move an object very slowly and gradually increase its
speed. Conversely, we may want to bring an object to a halt, making its speed less
and less.

We start with the simplest of all interpolants: the linear interpolant.

8.2 Linear Interpolation

A linear interpolant generates equal spacing between the interpolated values for
equal changes in the interpolating parameter. In the introductory example the incre-
ment 0.2 is calculated by subtracting the first number from the second and dividing
the result by 10, i.e., (4−2)/10 = 0.2. Although this works, it is not in a very flexible
form, so let’s express the problem differently. Given two numbers n1 and n2, which
represent the start and final values of the interpolant, we require an interpolated
value controlled by a parameter t that varies between 0 and 1. When t = 0, the result
is n1, and when t = 1, the result is n2. A solution to this problem is given by

J. Vince, Mathematics for Computer Graphics, Undergraduate Topics 119
in Computer Science, DOI 10.1007/978-1-84996-023-6 8,
c© Springer-Verlag London Limited 2010
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Fig. 8.1 The graphs of (1− t) and t over the range 0 to 1.

n = n1 + t(n2 −n1)

for when n1 = 2, n2 = 4 and t = 0.5:

n = 2+
1
2
(4−2) = 3

which is a halfway point. Furthermore, when t = 0, n = n1, and when t = 1, n = n2,
which confirms that we have a sound interpolant. However, it can be expressed
differently:

n = n1(1− t)+n2t (8.1)

which shows what is really going on, and forms the basis for further development.
Figure 8.1 shows the graphs of (1− t) and t over the range 0 to 1. With reference to
(8.1), we see that as t changes from 0 to 1, the (1− t) term varies from 1 to 0. This
effectively attenuates the value of n1 to zero over the range of t, while the t term
scales n2 from zero to its actual value. Figure 8.2 illustrates these two actions with
n1 = 1 and n2 = 5.

Notice that the terms (1− t) and t sum to unity; this is not a coincidence. This
type of interpolant ensures that if it takes a quarter of n1, it balances it with three-
quarters of n2, and vice versa. Obviously we could design an interpolant that takes
arbitrary portions of n1 and n2, but that would lead to arbitrary results.

Although this interpolant is extremely simple, it is widely used in computer
graphics software. Just to put it into context, consider the task of moving an
object between two locations (x1,y1,z1) and (x2,y2,z2). The interpolated position is
given by

x = x1(1− t)+ x2t

y = y1(1− t)+ y2t

z = z1(1− t)+ z2t



8.2 Linear Interpolation 121
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Fig. 8.2 The top line shows the result of linearly interpolating between 1 and 5.

for 0 ≤ t ≤ 1. The parameter t could be generated from two frame values within an
animation. What is assured by this interpolant, is that equal steps in t result in equal
steps in x, y, and z. Figure 8.3 illustrates this linear spacing with a 2D example where
we interpolate between the points (1,1) and (4,5). Note the equal spacing between
the intermediate interpolated points.

0

1

2

3

4

5

x

y

1 2 3 4 5

Fig. 8.3 Interpolating between the points (1,1) and (4,5).

We can write (8.1) in matrix form as follows:

n = [(1− t) t]

[
n1

n2

]

or as

n = [t 1]

[
−1 1

1 0

][
n1

n2

]
.

The reader can confirm that this generates identical results to the algebraic form.
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8.3 Non-Linear Interpolation

A linear interpolant ensures that equal steps in the parameter t give rise to equal
steps in the interpolated values; but it is often required that equal steps in t give
rise to unequal steps in the interpolated values. We can achieve this using a variety
of mathematical techniques. For example, we could use trigonometric functions or
polynomials. To begin with, let’s look at a trigonometric solution.

8.3.1 Trigonometric Interpolation

In Chapter 4 we noted that sin2 β + cos2 β = 1, which satisfies one of the require-
ments of an interpolant: the terms must sum to 1. If β varies between 0 and π/2,
cos2 β varies between 1 and 0, and sin2 β varies between 0 and 1, which can be used
to modify the two interpolated values n1 and n2 as follows:

n = n1 cos2 t +n2 sin2 t [0 ≤ t ≤ π/2]. (8.2)

The interpolation curves are shown in Fig. 8.4.

0
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0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
angle

n

Fig. 8.4 The curves for cos2 β and sin2 β .

If we make n1 = 1 and n2 = 3 in (8.2), we obtain the curves shown in Fig. 8.5.
If we apply this interpolant to two 2D points in space, (1,1) and (4,3), we obtain
a straight-line interpolation, but the distribution of points is non-linear, as shown in
Fig. 8.6. In other words, equal steps in t give rise to unequal distances.

The main problem with this approach is that it is impossible to change the nature
of the curve – it is a sinusoid, and its slope is determined by the interpolated values.
One way of gaining control over the interpolated curve is to use a polynomial, which
is the subject of the next section.
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Fig. 8.5 Interpolating between 1 and 3 using a trigonometric interpolant.
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Fig. 8.6 Interpolating between two points (1,1) and (4,3). Note the non-linear distribution of
points.

8.3.2 Cubic Interpolation

To begin with, let’s develop a cubic blending function that will be similar to the pre-
vious sinusoidal one. This can then be extended to provide extra flexibility. A cubic
polynomial will form the basis of the interpolant:

v1 = at3 +bt2 + ct +d

and the final interpolant will be of the form

n = [v1 v2]

[
n1

n2

]
.

The task is to find the values of the constants associated with the polynomials v1
and v2. The requirements are:

1. The cubic function v2 must grow from 0 to 1 for 0 ≤ t ≤ 1.
2. The slope at a point t must equal the slope at the point (1− t). This ensures slope
symmetry over the range of the function.
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3. The value v2 at any point t must also produce (1− v2) at (1− t). This ensures
curve symmetry.
• To satisfy the first requirement:

v2 = at3 +bt2 + ct +d

and when t = 0, v2 = 0 and d = 0. Similarly, when t = 1, v2 = a+b+ c.
• To satisfy the second requirement, we differentiate v2 to obtain the slope

dv2

dt
= 3at2 +2bt + c = 3a(1− t)2 +2b(1− t)+ c

and equating constants we discover c = 0 and 0 = 3a+2b.
• To satisfy the third requirement:

at3 +bt2 = 1− [a(1− t)3 +b(1− t)2]

where we discover 1 = a+b. But 0 = 3a+2b, therefore a = 2 and b = 3.
Therefore,

v2 = −2t3 +3t2. (8.3)

To find the curve’s mirror curve, which starts at 1 and collapses to 0 as t moves from
0 to 1, we subtract (8.3) from 1:

v1 = 2t3 −3t2 +1.

Therefore, the two polynomials are

v1 = 2t3 −3t2 +1 (8.4)

v2 = −2t3 +3t2 (8.5)

and are shown in Fig. 8.7. They can be used as interpolants as follows:

n = v1n1 + v2n2

which in matrix form is

n = [2t3 −3t2 +1 −2t3 +3t2]

[
n1

n2

]

n = [t3 t2 t 1]

⎡
⎢⎢⎢⎢⎣

2 −2

−3 3

0 0

1 0

⎤
⎥⎥⎥⎥⎦

[
n1

n2

]
. (8.6)
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Fig. 8.7 Two cubic interpolants.

If we let n1 = 1 and n2 = 3 we obtain the curves shown in Fig. 8.8. And if we
apply the interpolant to the points (1,1) and (4,3) we obtain the curves shown in
Fig. 8.9. This interpolant can be used to blend any pair of numbers together. But
say we wished to associate other qualities with the numbers n1 and n2, such as their
tangent vectors s1 and s2. Perhaps we could interpolate these alongside n1 and n2.
In fact this can be done, as we shall see.
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Fig. 8.8 Interpolating between 1 and 3 using a cubic interpolant.

The requirement is to modulate the interpolating curve in Fig. 8.8 with two fur-
ther cubic curves. One that blends out the tangent vector s1 associated with n1, and
the other that blends in the tangent vector s2 associated with n2. Let’s begin with a
cubic polynomial to blend s1 to zero:

vout = at3 +bt2 + ct +d.

vout must equal zero when t = 0 and t = 1, otherwise it will disturb the start and end
values. Therefore d = 0, and

a+b+ c = 0.
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Fig. 8.9 A cubic interpolant between points (1,1) and (4,3).

The rate of change of vout relative to t (i.e., dvout
dt ) must equal 1 when t = 0, so it can

be used to multiply s1. When t = 1, dvout
dt must equal 0 to attenuate any trace of s1:

dvout

dt
= 3at2 +2bt + c

but dvout
dt = 1 when t = 0, and dvout

dt = 0 when t = 1. Therefore, c = 1, and

3a+2b+1 = 0.

Using (8.6) implies that b = −2 and a = 1. Therefore, the polynomial vout has the
form

vout = t3 −2t2 + t. (8.7)

Using a similar argument, one can prove that the function to blend in s2 equals

vin = t3 − t2. (8.8)

Graphs of (8.4), (8.5), (8.6) and (8.7) are shown in Fig. 8.10. The complete interpo-
lating function looks like
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Fig. 8.10 The four Hermite interpolating curves.
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n = [2t3 −3t2 +1 −2t3 +3t2 t3 −2t2 + t t3 − t2]

⎡
⎢⎢⎢⎢⎣

n1

n2

s1

s2

⎤
⎥⎥⎥⎥⎦

and unpacking the constants and polynomial terms we obtain

n = [t3 t2 t1 1]

⎡
⎢⎢⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

n1

n2

s1

s2

⎤
⎥⎥⎥⎥⎦ .

This type of interpolation is called Hermite interpolation, after the French mathe-
matician Charles Hermite (1822–1901). Hermite also proved in 1873 that e is tran-
scendental.

This interpolant can be used as shown above to blend a pair of numerical values
and their tangent vectors, or it can be used to interpolate between points in space.
To demonstrate the latter we will explore a 2D example, and it is very easy to im-
plement the technique in 3D.

Figure 8.11 shows how two points (0,0) and (1,1) are to be connected by a cubic
curve that responds to the initial and final tangent vectors. At the start point (0,1)
the tangent vector is [−5 0]T , and at the final point (1,1) the tangent vector is
[0 −5]T . The x and y interpolants are

x = [t3 t2 t1 1]

⎡
⎢⎢⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0

1

−5

0

⎤
⎥⎥⎥⎥⎦

y = [t3 t2 t1 1]

⎡
⎢⎢⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0

1

0

−5

⎤
⎥⎥⎥⎥⎦

which become

x = [t3 t2 t1 1]

⎡
⎢⎢⎢⎢⎣

−7

13

−5

0

⎤
⎥⎥⎥⎥⎦ = −7t3 +13t2 −5t
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y = [t3 t2 t1 1]

⎡
⎢⎢⎢⎢⎣

−7

8

0

0

⎤
⎥⎥⎥⎥⎦ = −7t3 +8t2.

When these polynomials are plotted over the range 0 ≤ t ≤ 1 we obtain the curve
shown in Fig. 8.11.

0
–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

y

[0  –5]

[–5   0] 0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Fig. 8.11 A Hermite curve between the points (0,0) and (1,1) with tangent vectors [−5 0]T and
[0 −5]T .

We have now reached a point where we are starting to discover how parametric
polynomials can be used to generate space curves, which is the subject of the
next chapter. So, to conclude this chapter on interpolants, we will take a look at
interpolating vectors.

8.4 Interpolating Vectors

So far we have been interpolating between a pair of numbers. Now the question
arises: can we use the same interpolants for vectors? Perhaps not, because a vector
contains both magnitude and direction, and when we interpolate between two vec-
tors, both quantities must be preserved. For example, if we interpolated the x- and
y-components of the vectors [2 3]T and [4 7]T , the in-between vectors would
carry the change of orientation but ignore the change in magnitude. To preserve
both, we must understand how the interpolation should operate.

Figure 8.12 shows two unit vectors v1 and v2 separated by an angle θ . The inter-
polated vector v can be defined as a proportion of v1 and a proportion of v2:

v = av1 +bv2.
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Fig. 8.12 Vector v is derived from a part of v1 and b part of v2.

Let’s define the values of a and b such that they are a function of the separating
angle θ . Vector v is tθ from v1 and (1− t)θ from v2, and it is evident from Fig. 8.12
that using the sine rule

a
sin(1− t)θ

=
b

sin tθ
(8.9)

and furthermore

m = acos tθ
n = bcos(1− t)θ

where
m+n = 1. (8.10)

From (8.9),

b =
asin tθ

sin(1− t)θ
and from (8.10) we get

acos tθ +
asin tθ cos(1− t)θ

sin(1− t)θ
= 1.

Solving for a we find

a =
sin(1− t)θ

sinθ

b =
sin tθ
sinθ

.

Therefore, the final interpolant is

v =
sin(1− t)θ

sinθ
v1 +

sin tθ
sinθ

v2. (8.11)
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To see how this operates, let’s consider a simple exercise of interpolating between
two unit vectors [1 0]T and [− 1√

2
1√
2
]T . The angle between the vectors θ is 135◦.

(8.11) is used to interpolate individually the x- and the y-components individually:

vx =
sin(1− t)135◦

sin135◦
× (1)+

sin t135◦

sin135◦
×

(
− 1√

2

)

vy =
sin(1− t)135◦

sin135◦
× (0)+

sin t135◦

sin135◦
×

(
1√
2

)
.

Figure 8.13 shows the interpolating curves and Fig. 8.14 shows the positions of the
interpolated vectors, and a trace of the interpolated vectors.

–1

–0.5

0

0.5

1

1.5

0 13.5 27 40.5 54 67.5 81 94.5 108 122 135

angle

v

Fig. 8.13 Curves of the two parts of (8.11).

Two observations to note with (8.11):

• The angle θ is the angle between the two vectors, which, if not known, can be
computed using the dot product.

• Secondly, the range of θ is given by 0 ≤ θ ≤ 180◦, but when θ = 180◦ the de-
nominator collapses to zero. To illustrate this we will repeat (8.11) for θ = 179◦.

The result is shown in Fig. 8.15, which reveals clearly that the interpolant works
normally over this range. One more degree, however, and it fails! Nevertheless, one
could still leave the range equal to 180◦ and test for the conditions t = 0 then v = v1
and when t = 180◦ then v = v2.
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Fig. 8.14 A trace of the interpolated vectors between [1 0]T and [− 1√
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2
]T .
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Fig. 8.15 Interpolating between two unit vectors 179◦ apart.

So far, we have only considered unit vectors. Now let’s see how the interpolant
responds to vectors of different magnitudes. As a test, we can input the following
vectors to (8.11):

v1 =

[
2

0

]
and v2 =

[
0

1

]
.

The separating angle θ = 90◦, and the result is shown in Fig. 8.16. Note how the
initial length of v1 reduces from 2 to 1 over 90◦. It is left to the reader to examine
other combinations of vectors. But there is one more application for this interpolant,
and that is with quaternions.
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Fig. 8.16 Interpolating between the vectors [2 0]T and [0 1]T .

8.5 Interpolating Quaternions

It just so happens that the interpolant used for vectors also works with quaternions.
Which means that, given two quaternions q1 and q2, the interpolated quaternion q
is given by
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q =
sin(1− t)θ

sinθ
q1 +

sin tθ
sinθ

q2. (8.12)

The interpolant is applied individually to the four terms of the quaternion.
When interpolating vectors, θ is the angle between the two vectors. If this is not

known, it can be derived using the dot product formula:

cosθ =
v1 ·v2

|v1||v2|

cosθ =
x1x2 + y1y2 + z1z2

|v1||v2|
.

Similarly, when interpolating quaternions, θ is computed by taking the 4D dot
product of the two quaternions:

cosθ =
q1 ·q2

|q1||q2|

cosθ =
s1s2 + x1x2 + y1y2 + z1z2

|q1||q2|
.

If we are using unit quaternions

cosθ = s1s2 + x1x2 + y1y2 + z1z2. (8.13)

We are now in a position to demonstrate how to interpolate between a pair of quater-
nions. For example, say we have two quaternions q1 and q2 that rotate 0◦ and 90◦

about the z-axis respectively:

q1 = [cos(0◦/2)+ sin(0◦/2)[0i+0j+1k]]
q2 = [cos(90◦/2)+ sin(90◦/2)[0i+0j+1k]]

which become

q1 = [1+0i+0j+0k]
q2 ≈ [0.7071+0i+0j+0.7071k] .

Any interpolated quaternion can be found by the application of (8.12). But first,
we need to find the value of θ using (8.13):

cosθ ≈ 0.7071
θ = 45◦.

Now when t = 0.5, the interpolated quaternion is given by

q ≈ sin(45◦/2)
sin45◦

[1+0i+0j+0k]+
sin(45◦/2)

sin45◦
[0.7071+0i+0j+0.7071k]

≈ 0.541196[1+0i+0j+0k]+0.541196[0.7071+0i+0j+0.7071k]
≈ [0.541196+0i+0j+0k]+ [0.382683+0i+0j+0.382683k]
≈ [0.923879+0i+0j+0.382683k].
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Although it is not obvious, this interpolated quaternion is also a unit quaternion,
as the square root of the sum of the squares is 1. It should rotate a point about the
z-axis, halfway between 0◦ and 90◦, i.e., 45◦. We can test that this works with a
simple example.

Take the point (1,0,0) and subject it to the standard quaternion operation:

P′ = qPq−1.

To keep the arithmetic work to a minimum, we substitute a = 0.923879 and
b = 0.382683. Therefore,

q = [a+0i+0j+bk]

q−1 = [a−0i−0j−bk]
P′ = [a+0i+0j+bk]× [0+1i+0j+0k]× [a−0i−0j−bk]

= [0+ai+bj+0k]× [a−0i−0j−bk]

= [0+(a2 −b2)i+2abj+0k]
P′ ≈ [0+0.7071i+0.7071j+0k].

Therefore, (1,0,0) is rotated to (0.7071,0.7071,0), which is correct!

8.6 Summary

This chapter has covered some very interesting, yet simple ideas about changing
one number into another. In the following chapter we will develop these ideas and
see how we design algebraic solutions to curves and surfaces.





Chapter 9
Curves and Patches

9.1 Introduction

In this chapter we investigate the foundations of curves and surface patches. This is
a very large and complex subject and it will be impossible for us to delve too deeply.
However, we can explore many of the ideas that are essential to understanding the
mathematics behind 2D and 3D curves and how they are developed to produce sur-
face patches. Once you have understood these ideas you will be able to read more
advanced texts and develop a wider knowledge of the subject.

In the previous chapter we saw how polynomials are used as interpolants and
blending functions. We will now see how these can form the basis of parametric
curves and patches. To begin with, let’s start with the humble circle.

9.2 The Circle

The circle has a very simple equation:

x2 + y2 = r2

where r is the radius and (x,y) is a point on the circumference. Although this equa-
tion has its uses, it is not very convenient for drawing the curve. What we really
want are two functions that generate the coordinates of any point on the circumfer-
ence in terms of some parameter t. Figure 9.1 shows a scenario where the x- and
y-coordinates are given by

x = r cos t

y = r sin t [ 0 ≤ t ≤ 2π ].

By varying the parameter t over the range 0 to 2π we trace out the curve of the
circumference. In fact, by selecting a suitable range of t we can isolate any portion
of the circle’s circumference.

J. Vince, Mathematics for Computer Graphics, Undergraduate Topics 135
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Fig. 9.1 The circle can be drawn by tracing out a series of points on the circumference.

9.3 The Ellipse

The equation for an ellipse is

x2

r2
ma j

+
y2

r2
min

= 1

and its parametric form is

x = rmaj cos t

y = rmin sin t [ 0 ≤ t ≤ 2π ]

where rma j and rmin are the major and minor radii respectively, and (x,y) is a point
on the circumference, as shown in Fig. 9.2.

rmin

rmax X

Y

Fig. 9.2 An ellipse showing the major and minor radii.
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In the previous chapter we saw how a Hermite curve could be developed using
cubic polynomials and tangent slope vectors:

n = [t3 t2 t1 1]

⎡
⎢⎢⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

n1

n2

s1

s2

⎤
⎥⎥⎥⎥⎦

which give the x- and y-coordinates for a 2D curve, and there is no reason why it can
not be extended to give the z-coordinate for a 3D curve. The tangent slope vectors
would also have to be modified to form the end conditions in three dimensions.

We will now examine a very useful parametric curve called a Bézier curve,
named after its inventor Pierre Bézier.

9.4 Bézier Curves

Two people, working for competing French car manufacturers, are associated with
what are now called Bézier curves: Paul de Casteljau, who worked for Citröen, and
Pierre Bézier, who worked for Rénault. De Casteljau’s work was slightly ahead
of Bézier’s, but because of Citröen’s policy of secrecy it was never published, so
Bézier’s name has since been associated with the theory of polynomial curves and
surfaces. Casteljau started his research work in 1959, but his reports were only dis-
covered in 1975, by which time Bézier had become known for his special curves
and surfaces.

9.4.1 Bernstein Polynomials

Bézier curves employ Bernstein polynomials, which were described by S. Bernstein
in 1912. They are expressed as follows:

Bn
i (t) =

(
n
i

)
ti(1− t)n−1 (9.1)

where
(

n
i

)
is shorthand for the number of selections of i different items from n

distinguishable items when the order of selection is ignored, and equals
(

n
i

)
=

n!
(n− i)!i!

(9.2)
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where, for example, 3! (factorial 3) is shorthand for 3 × 2 × 1. When (9.2) is
evaluated for different values of i and n, we discover the pattern of numbers shown
in Table 9.1. This pattern of numbers is known as Pascal’s triangle. In western coun-
tries they are named after a seventeenth century French mathematician, even though
they had been described in China as early as 1303 in Precious Mirror of the Four
Elements by the Chinese mathematician Chu Shih-chieh. The pattern represents the
coefficients found in binomial expansions. For example, the expansion of (x + a)n

for different values of n is

(x+a)0 = 1

(x+a)1 = 1x+1a

(x+a)2 = 1x2 +2ax+1a2

(x+a)3 = 1x3 +3ax2 +3a2x+1a3

(x+a)4 = 1x4 +4ax3 +6a2x2 +4a3x+1a4

which reveals Pascal’s triangle as coefficients of the polynomial terms.

Table 9.1 Pascal’s triangle

i

n 0 1 2 3 4 5 6

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

Pascal, however, recognized other qualities in the numbers, in that they describe
the odds governing combinations. For example, to determine the probability of any
girl–boy combination in a family of six children, we sum the numbers in the 6th row
of Pascal’s triangle:

1+6+15+20+15+6+1 = 64.

The number (1) at the start and end of the 6th row represent the chances of getting
six boys or six girls, i.e., 1 in 64. The next number (6) represents the next most
likely combination: five boys and one girl, or five girls and one boy, i.e., 6 in 64.
The center number (20) applies to three boys and three girls, for which the chances
are 20 in 64.
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Thus the
(

n
i

)
term in (9.1) is nothing more than a generator for Pascal’s triangle.

The powers of t and (1− t) in (9.1) appear as shown in Table 9.2 for different values
of n and i. When the two sets of results are combined we get the complete Bernstein
polynomial terms shown in Table 9.3. One very important property of these terms
is that they sum to unity, which is an important feature of any interpolant.

Table 9.2 Expansion of the terms t and (1− t)

i

n 0 1 2 3 4

1 t (1− t)

2 t2 t(1− t) (1− t)2

3 t3 t2(1− t) t(1− t)2 (1− t)3

4 t4 t3(1− t) t2(1− t)2 t(1− t)3 (1− t)4

Table 9.3 The Bernstein polynomial terms

i

n 0 1 2 3 4

1 1t 1(1− t)

2 1t2 2t(1− t) 1(1− t)2

3 1t3 3t2(1− t) 3t(1− t)2 1(1− t)3

4 1t4 4t3(1− t) 6t2(1− t)2 4t(1− t)3 1(1− t)4

As the sum of (1− t) and t is 1,

[(1− t)+ t]n = 1 (9.3)

which is why we can use the binomial expansion of (1− t) and t as interpolants. For
example, when n = 2 we obtain the quadratic form

(1− t)2 +2t(1− t)+ t2 = 1. (9.4)

Figure 9.3 shows the graphs of the three polynomial terms of (9.4). The (1− t)2

graph starts at 1 and decays to zero, whereas the t2 graph starts at zero and rises
to 1. The 2t(1−t) graph starts at zero reaches a maximum of 0.5 and returns to zero.
Thus the central polynomial term has no influence at the end points where t = 0 and
t = 1. We can use these three terms to interpolate between a pair of values as follows

v = v1(1− t)2 +2t(1− t)+ v2t2.



140 9 Curves and Patches

0

0.2

0.4
0.6
0.8

1
1.2

0 0.1 0.2 0.3 0.4 0.5
t

0.6 0.7 0.8 0.9 1

Fig. 9.3 The graphs of the quadratic Bernstein polynomials.

If v1 = 1 and v2 = 3 we obtain the curve shown in Fig. 9.4. But there is nothing
preventing us from multiplying the middle term 2t(1−t) by any arbitrary number vc:

v = v1(1− t)2 + vc2t(1− t)+ v2t2. (9.5)
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Fig. 9.4 Bernstein interpolation between the values 1 and 3.

For example, if vc = 3 we obtain the graph shown in Fig. 9.5, which is totally
different from Fig. 9.4. As Bézier observed, the value of vc provides an excellent
mechanism for determining the shape of the curve between two values. Figure 9.6
shows a variety of graphs for different values of vc. A very interesting effect occurs
when the value of vc is set midway between v1 and v2. For example, when v1 = 1,
v2 = 3 and vc = 2, we obtain linear interpolation between v1 and v2, as shown in
Fig. 9.7.
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Fig. 9.5 Bernstein interpolation between the values 1 and 3 with vc = 3.
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Fig. 9.6 Bernstein interpolation between the values 1 for different values of vc.
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Fig. 9.7 Linear interpolation using a quadratic Bernstein interpolant.

9.4.2 Quadratic Bézier Curves

Quadratic Bézier curves are formed by using Bernstein polynomials to interpolate
between the x-, y- and z-coordinates associated with the start- and end-points form-
ing the curve. For example, we can draw a 2D quadratic Bézier curve between (1,1)
and (4,3) using the following equations:

x = 1(1− t)2 + xc2t(1− t)+4t2 (9.6)

y = 1(1− t)2 + yc2t(1− t)+3t2. (9.7)

But what should be the values of (xc,yc)? Well, this is entirely up to us. The position
of this control vertex determines how the curve moves between (1,1) and (4,3).

A Bézier curve possesses interpolating and approximating qualities: the interpo-
lating feature ensures that the curve passes through the end points, while the approx-
imating feature shows how the curve passes close to the control point. To illustrate
this, if we make xc = 3 and yc = 4 we obtain the curve shown in Fig. 9.8, which
shows how the curve intersects the end-points, but misses the control point. It also
highlights two important features of Bézier curves: the convex hull property, and the
end slopes of the curve.

The convex hull property implies that the curve is always contained within the
polygon connecting the start, end and control points. In this case the curve is inside
the triangle formed by the vertices (1,1), (3,4) and (4,3). The slope of the curve at
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Fig. 9.8 Quadratic Bézier curve between (1, 1) and (4,3 ), with (3, 4) as the control.

(1,1) is equal to the slope of the line connecting the start point to the control point
(3,4), and the slope of the curve at (4,3) is equal to the slope of the line connecting
the control point (3,4) to the end point (4,3). Naturally, these two qualities of Bézier
curves can be proved mathematically.

9.4.3 Cubic Bernstein Polynomials

Before moving on, there are two further points to note:
• No restrictions are placed upon the position of (xc,yc) – it can be anywhere.
• Simply including z-coordinates for the start, end and control vertices creates 3D
curves.

One of the problems with quadratic curves is that they are so simple. If we want
to construct a complex curve with several peaks and valleys, we would have to join
together a large number of such curves. A cubic curve, on the other hand, natu-
rally supports one peak and one valley, which simplifies the construction of more
complex curves.

When n = 3 in (9.3) we obtain the following terms:

[(1− t)+ t]3 = (1− t)3 +3t(1− t)2 +3t2(1− t)+ t3

which can be used as a cubic interpolant, as

v = v1(1− t)3 + vc13t(1− t)2 + vc23t2(1− t)+ v2t3.

Once more the terms sum to unity, and the convex hull and slope properties also
hold. Figure 9.9 shows the graphs of the four polynomial terms.

This time we have two control values vc1 and vc2. These can be set to any value,
independent of the values chosen for v1 and v2. To illustrate this, let’s consider an
example of blending between values 1 and 3, with vc1 and vc2 set to 2.5 and −2.5
respectively. The blending curve is shown in Fig. 9.10.
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Fig. 9.9 The cubic Bernstein polynomial curves.
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Fig. 9.10 The cubic Bernstein polynomial through the values 1, 2.5, –2.5, 3.

The next step is to associate the blending polynomials with x- and y-coordinates:

x = x1(1− t)3 + xc13t(1− t)2 + xc23t2(1− t)+ x2t3 (9.8)

y = y1(1− t)3 + yc13t(1− t)2 + yc23t2(1− t)+ y2t3. (9.9)

Evaluating (9.8) and (9.9) with the following points:

(x1, y1) = (1,1) (x2, y2) = (4,3)
(xc1, yc1) = (2,3) (xc2, yc2) = (3,−2)

we obtain the cubic Bézier curve as shown in Fig. 9.11, which also shows the guide-
lines between the end and control points.
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Fig. 9.11 A cubic Bézier curve.
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Just to show how consistent Bernstein polynomials are, let’s set the values to

(x1, y1) = (1,1) (x2, y2) = (4,3)
(xc1, yc1) = (2,1.666) (xc2, yc2) = (3,2.333)

where (xc1, yc1) and (xc2, yc2) are points one-third and two-thirds respectively, be-
tween the start and final values. As we found in the quadratic case, where the single
control point was halfway between the start and end values, we obtain linear inter-
polation as shown in Fig. 9.12.
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Fig. 9.12 A cubic Bézier line.

Mathematicians are always interested in finding how to express formulae in
compact and precise forms, so they have devised an elegant way of abbreviating
Bernstein polynomials. Equations (9.6) and (9.7) describe the three polynomial
terms for generating a quadratic Bézier curve and (9.8) and (9.9) describe the four
polynomial terms for generating a cubic Bézier curve. To begin with, quadratic
equations are called second-degree equations, and cubics are called third-degree
equations. In the original Bernstein formulation,

Bn
i (t) =

(
n
i

)
ti(1− t)n−1 (9.10)

n represents the degree of the polynomial, and i, which has values between 0 and n,
creates the individual polynomial terms. These terms are then used to multiply the
coordinates of the end and control points. If these points are stored as a vector P,
the position vector p(t) for a point on the curve can be written as

p(t) =
(

n
i

)
ti(1− t)n−iPi for [0 ≤ i ≤ n]

or

p(t) =
n

∑
i=0

(
n
i

)
ti(1− t)n−iPi for [0 ≤ i ≤ n] (9.11)
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or

p(t) =
n

∑
i=0

Bn
i (t)Pi for [0 ≤ i ≤ n]. (9.12)

For example, a point p(t) on a quadratic curve is represented by

p(t) = 1t0(1− t)2P0 +2t1(1− t)1P1 +1t2(1− t)0P2.

You will discover (9.11) and (9.12) used in more advanced texts to describe Bézier
curves. Although they initially appear intimidating, you should now find them rela-
tively easy to understand.

9.5 A Recursive Bézier Formula

Note that (9.11) explicitly describes the polynomial terms needed to construct the
blending terms. With the use of recursive functions (a recursive function is a func-
tion that calls itself), it is possible to arrive at another formulation that leads towards

an understanding of B-splines. To begin, we need to express
(

n
i

)
in terms of lower

terms, and because the coefficients of any row in Pascal’s triangle are the sum of the
two coefficients immediately above, we can write

(
n
i

)
=

(
n−1

i

)
+

(
n−1
i−1

)
.

Therefore, we can write

Bn
i (t) =

(
n−1

i

)
ti(1− t)n−i +

(
n−1
i−1

)
ti(1− t)n−i

Bn
i (t) = (1− t)Bn−1

i (t)+ tBn−1
i−1 (t).

As with all recursive functions, some condition must terminate the process: in this
case it is when the degree is zero. Consequently, B0

0(t) = 1 and Bn
j(t) = 0 for j < 0.

9.6 Bézier Curves Using Matrices

As we have already seen, matrices provide a very compact notation for algebraic for-
mulae. So let’s see how Bernstein polynomials lend themselves to this form of nota-
tion. Recall (9.4) which defines the three terms associated with a quadratic Bernstein
polynomial. These can be expanded to

(1−2t + t2) (2t −2t2) (t2)
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and can be written as the product:

[t2 t 1]

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦ .

This means that (9.5) can be expressed as

v = [t2 t 1] =

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v1

vc

v2

⎤
⎥⎥⎦

or

p(t) = [t2 t 1] =

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

P1

Pc

P2

⎤
⎥⎥⎦

where p(t) points to any point on the curve, and P1, Pc and P2 point to the start,
control and end points respectively.

A similar development can be used for a cubic Bézier curve, which has the fol-
lowing matrix formulation:

p(t) = [t3 t2 t 1] =

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

P1

Pc1

Pc2

P2

⎤
⎥⎥⎥⎥⎦ .

There is no doubt that Bézier curves are very useful, and they find their way into
all sorts of applications. But, perhaps their one weakness is that whenever an end or
control vertex is repositioned, the entire curve is modified. So let’s examine another
type of curve that prevents this from happening – B-splines. But before we consider
this form, let’s revisit linear interpolation between multiple values.

9.6.1 Linear Interpolation

To interpolate linearly between two values v0 and v1 we use the following inter-
polant:

v(t) = v0(1− t)+ v1t for [0 ≤ t ≤ 1].

But say we have to interpolate continuously between three values on a linear basis,
i.e., v0, v1, v2, with the possibility of extending the technique to any number of
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values. One solution is to use a sequence of parameter values t1, t2, t3 that are
associated with the given values of v, as shown in Fig. 9.13. For the sake of
symmetry:

v0 is associated with the parameter range t0 to t2.
v1 is associated with the parameter range t1 to t3.
v2 is associated with the parameter range t2 to t4.

This sequence of parameters is called a knot vector. The only assumption we make
about the knot vector is that t0 ≤ t1 ≤ t2 ≤, etc.

t0 t1 t2 t3 t4

v0 v1 v2

Fig. 9.13 Linearly interpolating between several values.

Now let’s invent a linear blending function B1
i (t) whose subscript i is used to

reference values in the knot vector. We want to use the blending function to compute
the influence of the three values on any interpolated value v(t) as follows:

v(t) = B1
0(t)v0 +B1

1(t)v1 +B1
2(t)v2. (9.13)

It’s obvious from this arrangement that v0 will influence v(t) only when t is between
t0 and t2. Similarly, v1 and v2 will influence v(t) only when t is between t1 and t3,
and t2 and t4 respectively.

To understand the action of the blending function let’s concentrate upon one par-
ticular value B1

1(t). When t is less than t1 or greater than t3, the function B1
1(t) must

be zero. When t1 ≤ t ≤ t3, the function must return a value reflecting the proportion
of v1 that influences v(t). During the span t1 ≤ t ≤ t2, v1 has to be blended in, and
during the span t1 ≤ t ≤ t3, v1 has to be blended out. The blending in is effected by
the ratio (

t − t1
t2 − t1

)

and the blending out is effected by the ratio
(

t3 − t
t3 − t2

)
.
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Thus B1
1(t) has to incorporate both ratios, but it must ensure that they only become

active during the appropriate range of t. Let’s remind ourselves of this requirement
by subscripting the ratios accordingly:

B1
1(t) =

(
t − t1
t2 − t1

)
1,2

+
(

t3 − t
t3 − t2

)
2,3

.

We can now write the other two blending terms B1
0(t) and B1

2(t) as

B1
0(t) =

(
t − t0
t1 − t0

)
0,1

+
(

t2 − t
t2 − t1

)
1,2

B1
2(t) =

(
t − t2
t3 − t2

)
2,3

+
(

t4 − t
t4 − t3

)
3,4

.

You should be able to see a pattern linking the variables with their subscripts, and
the possibility of writing a general linear blending term B1

i (t) as

B1
i (t) =

(
t − ti

ti+1 − ti

)
i,i+1

+
(

ti+2 − t
ti+2 − ti+1

)
i+1,i+2

.

This enables us to write (9.13) in a general form as

v(t) =
2

∑
i=0

B1
i (t)vi.

But there is still a problem concerning the values associated with the knot vector.
Fortunately, there is an easy solution. One simple approach is to keep the differ-
ences between t1, t2 and t3 whole numbers, e.g., 0, 1 and 2. But what about the end
conditions t0 and t4? To understand the resolution of this problem let’s examine the
action of the three terms over the range of the parameter t. The three terms are

[(
t − t0
t1 − t0

)
0,1

+
(

t2 − t
t2 − t1

)
1,2

]
v0 (9.14)

[(
t − t1
t2 − t1

)
1,2

+
(

t3 − t
t3 − t2

)
2,3

]
v1 (9.15)

[(
t − t2
t3 − t2

)
2,3

+
(

t4 − t
t4 − t3

)
3,4

]
v2 (9.16)

and I propose that the knot vector be initialized with the following values:

t0 t1 t2 t3 t4

0 0 1 2 2
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• Remember that the subscripts of the ratios are the subscripts of t, not the values
of t.

• Over the range t0 ≤ t ≤ t1, i.e., 0 to 0. Only the first ratio in (9.14) is active and
returns 0

0 . The algorithm must detect this condition and take no action.
• Over the range t1 ≤ t ≤ t2. i.e., 0 to 1. The first ratio of (9.14) is active again,

and over the range of t blends out v0. The first ratio of (9.15) is also active,
and over the range of t blends in v1.

• Over the range t2 ≤ t ≤ t3. i.e., 1 to 2. The second ratio of (9.15) is active,
and over the range of t blends out v1. The first ratio of (9.16) is also active,
and over the range of t blends in v2.

• Finally, over the range t3 ≤ t ≤ t4. i.e., 2 to 2. The second ratio of (9.16) is active
and returns 0

0 . The algorithm must detect this condition and take no action.

This process results in a linear interpolation between v0, v1 and v2. If (9.14), (9.15)
and (9.16) are applied to coordinate values, the result is two straight lines. This
seems like a lot of work just to draw two lines, but the beauty of the technique is
that it will work with any number of points, and can be developed for quadratic and
higher interpolations.

A. Aitken developed the following recursive interpolant:

pr
i (t) =

(
ti+r − t
ti+r − ti

)
pr−1

i (t)+
(

t − ti
ti+r − ti

)
pr−1

i+1 (t);

{
r = 1, .. n;

i = 0, .. n− r;

which interpolates between a series of points using repeated linear interpolation.

9.7 B-Splines

B-splines, like Bézier curves, use polynomials to generate a curve segment. But,
unlike Bézier curves, B-splines employ a series of control points that determine the
curve’s local geometry. This feature ensures that only a small portion of the curve is
changed when a control point is moved.

There are two types of B-splines: rational and non-rational splines, which divide
into two further categories: uniform and non-uniform. Rational B-splines are formed
from the ratio of two polynomials such as

x(t) =
X(t)
W (t)

, y(t) =
Y (t)
W (t)

, z(t) =
Z(t)
W (t)

.

Although this appears to introduce an unnecessary complication, the division by a
second polynomial brings certain advantages:

• They describe perfect circles, ellipses, parabolas and hyperbolas, whereas non-
rational curves can only approximate these curves.
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• They are invariant of their control points when subjected to rotation, scaling,
translation and perspective transformations, whereas non-rational curves lose
this geometric integrity.

• They allow weights to be used at the control points to push and pull the curve.

An explanation of uniform and non-uniform types is best left until you under-
stand the idea of splines. So, without knowing the meaning of uniform, let’s begin
with uniform B-splines.

Pi

Pi+1

Pi+2

Pi+3

Pi+4

Pi+5

Pi+6

Pi+7

Pi+8

Si

Si+1

Si+2
Si+3 Si+4

Si+5 Si+6

Fig. 9.14 The construction of a uniform non-rational B-spline curve.

9.7.1 Uniform B-Splines

A B-spline is constructed from a string of curve segments whose geometry is de-
termined by a group of local control points. These curves are known as piecewise
polynomials. A curve segment does not have to pass through a control point, al-
though this may be desirable at the two end points.

Cubic B-splines are very common, as they provide a geometry that is one step
away from simple quadratics, and possess continuity characteristics that make the
joins between the segments invisible. In order to understand their construction con-
sider the scenario in Fig. 9.14. Here we see a group of (m+1) control points P0, P1,
P2, ..., Pm which determine the shape of a cubic curve constructed from a series of
curve segments S0, S1, S2, ..., Sm−3.

As the curve is cubic, curve segment Si is influenced by Pi, Pi+1, Pi+2, Pi+3, and
curve segment Si+1 is influenced by Pi+1, Pi+2, Pi+3, Pi+4. And as there are (m+1)
control points, there are (m−2) curve segments.

A single segment Si(t) of a B-spline curve is defined by

Si(t) =
3

∑
r=0

Pi+rBr(t) for [0 ≤ t ≤ 1]



9.7 B-Splines 151

where

B0(t) =
−t3 +3t2 −3t +1

6
=

(1− t)3

6
(9.17)

B1(t) =
3t3 −6t2 +4

6
(9.18)

B2(t) =
−3t3 +3t2 +3t +1

6
(9.19)

B3(t) =
t3

6
. (9.20)

These are the B-spline basis functions and are shown in Fig. 9.15.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

B
(t
)

Fig. 9.15 The B-spline basis functions.

Although it is not apparent, these four curve segments are part of one curve. The
basis function B3(t) starts at zero and rises to 0.1666 at t = 1. It is taken over by
B2(t) at t = 0, which rises to 0.666 at t = 1. The next segment is B1(t) and takes
over at t = 0 and falls to 0.1666 at t = 1. Finally, B0(t) takes over at 0.1666 and falls
to zero at t = 1. Equations (9.17)–(9.20) are represented in matrix form by

Q1(t) = [t3 t2 t 1]
1
6

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Pi

Pi+1

Pi+2

Pi+3

⎤
⎥⎥⎥⎥⎦ . (9.21)

Let’s now illustrate how (9.21) works. We first identify the control points
Pi, Pi+1, Pi+2, etc. Let these be (0,1), (1,3), (2,0), (4,1), (4,3), (2,2) and (2,3).
They can be seen in Fig. 9.16 connected together by straight lines. If we take the first
four control points: (0,1),(1,3),(2,0),(4,1), and subject the x- and y-coordinates
to the matrix in (9.21) over the range 0 ≤ t ≤ 1 we obtain the first B-spline curve
segment shown in Fig. 9.16. If we move along one control point and take the next
group of control points (1,3),(2,0),(4,1),(4,3), we obtain the second B-spline
curve segment. This is repeated a further two times.
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Figure 9.16 shows the four curve segments using two gray scales, and it is
obvious that even though there are four discrete segments, they join together per-
fectly. This is no accident. The slopes at the end points of the basis curves are de-
signed to match the slopes of their neighbours and ultimately keep the geometric
curve continuous.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5
x

y

Fig. 9.16 Four curve segments forming a B-spline curve.

9.7.2 Continuity

Constructing curves from several segments can only succeed if the slope of the
abutting curves match. As we are dealing with curves whose slopes are changing
everywhere, it will be necessary to ensure that even the rate of change of slopes is
matched at the join. This aspect of curve design is called geometric continuity and
is determined by the continuity properties of the basis function. Let’s explore such
features.

The first level of curve continuity C0, ensures that the physical end of one basis
curve corresponds with the following, e.g., Si(1) = Si+1(0). We know that this oc-
curs from the basis graphs shown in Fig. 9.15. The second level of curve continuity
C1, ensures that the slope at the end of one basis curve matches that of the following
curve. This can be confirmed by differentiating the basis functions (9.17)–(9.20):

B′
0(t) =

−3t2 +6t −3
6

(9.22)

B′
1(t) =

9t2 −12t
6

(9.23)

B′
2(t) =

−9t2 +6t +3
6

(9.24)

B′
3(t) =

3t2

6
. (9.25)

Evaluating (9.22)–(9.25) for t = 0 and t = 1, we discover the slopes 0.5, 0, −0.5, 0
for the joins between B3, B2, B1, B0. The third level of curve continuity C2, ensures
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that the rate of change of slope at the end of one basis curve matches that of the
following curve. This can be confirmed by differentiating (9.22)–(9.25):

B′′
0(t) = −t +1 (9.26)

B′′
1(t) = 3t −2 (9.27)

B′′
2(t) = −3t +1 (9.28)

B′′
3(t) = t. (9.29)

Evaluating (9.26)–(9.29) for t = 0 and t = 1, we discover the values 1, 2, 1, 0 for
the joins between B3, B2, B1, B0. These combined continuity results are tabulated in
Table 9.4.

Table 9.4 Continuity properties of cubic B-splines

t t t

C0 0 1 C1 0 1 C2 0 1

B3(t) 0 1/6 B′
3(t) 0 0.5 B′′

3(t) 0 1

B2(t) 1/6 2/3 B′
2(t) 0.5 0 B′′

2(t) 1 −2

B1(t) 2/3 1/6 B′
1(t) 0 −0.5 B′′

1(t) −2 1

B0(t) 1/6 0 B′
0(t) −0.5 0 B′′

0(t) 1 0

9.7.3 Non-uniform B-Splines

Uniform B-splines are constructed from curve segments where the parameter spac-
ing is at equal intervals. Non-uniform B-splines, with the support of a knot vector,
provide extra shape control and the possibility of drawing periodic shapes. Unfor-
tunately an explanation of the underlying mathematics would take us beyond the
introductory nature of this text, and readers are advised to seek out other books
dealing in such matters.

9.7.4 Non-uniform Rational B-Splines

Non-uniform rational B-splines (NURBS) combine the advantages of non-uniform
B-splines and rational polynomials: they support periodic shapes such as circles,
and they accurately describe curves associated with the conic sections. They also
play a very important role in describing geometry used in the modeling of computer
animation characters.
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NURBS surfaces also have a patch formulation and play a very important role in
surface modelling in computer animation and CAD. However, tempting though it is
to give a description of NURBS surfaces here, they have been omitted because their
inclusion would unbalance the introductory nature of this text.

9.8 Surface Patches

9.8.1 Planar Surface Patch

The simplest form of surface geometry consists of a patchwork of polygons or tri-
angles, where three or more vertices provide the basis for describing the associ-
ated planar surface. For example, given four vertices P00,P10,P01,P11 as shown in
Fig. 9.17, a point Puv can be defined as follows. To begin with, a point along the
edge P00 – P10 is defined as is defined as

Pu1 = (1−u)P00 +uP10

and a point along the edge P01 – P11 is defined as

Pu2 = (1−u)P01 +uP11.

Therefore, any point Puv is defined as

Puv = (1− v)Pu1 + vPu2

Puv = (1− v)[(1−u)P00 +uP10]+ v[(1−u)P01 +uP11]
Puv = (1−u)(1− v)P00 +u(1− v)P10 + v(1−u)P01 +uvP11.

This, however, can be written in matrix form as

Puv = [(1−u) u]

[
P00 P01

P10 P11

][
(1− v)

v

]

u

v

P01 P11

P10P00

Puv

Fig. 9.17 A flat patch defined by u and v parameters.
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which expands to

Puv = [u 1]

[
−1 1

1 0

][
P00 P01

P10 P11

][
−1 1

1 0

][
v

1

]
.

Let’s illustrate this with an example. Given the following four points: P00 =
(0,0,0),P10 = (0,0,4),P01 = (2,2,1),P11 = (2,2,3), we can write the coordinates
of any point on the patch as

xuv = [u 1]

[
−1 1

1 0

][
0 2

0 2

][
−1 1

1 0

][
v

1

]

yuv = [u 1]

[
−1 1

1 0

][
0 2

0 2

][
−1 1

1 0

][
v

1

]

zuv = [u 1]

[
−1 1

1 0

][
0 1

4 3

][
−1 1

1 0

][
v

1

]

xuv = 2v (9.30)
yuv = 2v (9.31)
zuv = u(4−2v)+ v. (9.32)

By substituting values of u and v in (9.30)–(9.32) between the range 0 ≤ (u,v) ≤ 1
we obtain the coordinates of any point on the surface of the patch.

If we now introduce the ideas of Bézier control points into a surface patch defi-
nition, we provide a very powerful way of creating smooth 3D surface patches.

9.8.2 Quadratic Bézier Surface Patch

Bézier proposed a matrix of nine control points to determine the geometry of a
quadratic patch, as shown in Fig. 9.18. Any point on the patch is defined by

Puv = [u2 u 1]

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

P00 P01 P02

P10 P11 P12

P20 P21 P22

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v2

v

1

⎤
⎥⎥⎦ .

The individual x-, y- and z-coordinates are obtained by substituting the x-, y- and
z-values for the central P matrix.
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P00

P10

P20

P01

P11

P21

P22

P02

P12

Fig. 9.18 A quadratic Bézier surface patch.

Let’s illustrate the process with an example. Given the following points:

P00 = (0,0,0) P01 = (1,1,0) P02 = (2,0,0)
P10 = (0,1,1) P11 = (1,2,1) P12 = (2,1,1)
P20 = (0,0,2) P21 = (1,1,2) P22 = (2,0,2)

we can write

xuv = [u2 u 1]

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 1 2

0 1 2

0 1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v2

v

1

⎤
⎥⎥⎦

xuv = [u2 u 1]

⎡
⎢⎢⎣

0 0 0

0 0 0

0 2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v2

v

1

⎤
⎥⎥⎦

xuv = 2v

yuv = [u2 u 1]

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 1 0

1 2 1

0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v2

v

1

⎤
⎥⎥⎦

yuv = [u2 u 1]

⎡
⎢⎢⎣

0 0 −2

0 0 2

−2 2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v2

v

1

⎤
⎥⎥⎦

yuv = 2(u+ v−u2 − v2)
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zuv = [u2 u 1]

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 0

1 1 1

2 2 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 −2 1

−2 2 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v2

v

1

⎤
⎥⎥⎦

zuv = [u2 u 1]

⎡
⎢⎢⎣

0 0 0

0 0 2

0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v2

v

1

⎤
⎥⎥⎦

zuv = 2u.

Therefore, any point on the surface patch has coordinates

xuv = 2v, yuv = 2(u+ v−u2 − v2), zuv = 2u.

Table 9.5 shows the coordinate values for different values of u and v. In this exam-
ple, the y-coordinates provide the surface curvature, which could be enhanced by
modifying the y-coordinates of the control points.

Table 9.5 The x-, y-, z-coordinates for different values of u and v

v

0 0.5 1

0 (0,0,0) (1,0.5,0) (2,0,0)

u 0.5 (0,0.5,1) (1,0.5,1) (2,0.5,1)

1 (0,0,2) (1,0.5,2) (2,0,2)

9.8.3 Cubic Bézier Surface Patch

As we saw earlier in this chapter, cubic Bézier curves require two end-points, and
two central control points. In the surface patch formulation a 4×4 matrix is required
as follows:

Puv = [u3 u2 u 1]

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v3

v2

v

1

⎤
⎥⎥⎥⎥⎦
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which can be illustrated with an example:
Given the points:

P00 = (0,0,0) P01 = (1,1,0) P02 = (2,1,0) P03 = (3,0,0)
P10 = (0,1,1) P11 = (1,2,1) P12 = (2,2,1) P13 = (3,1,1)
P20 = (0,1,2) P21 = (1,2,2) P22 = (2,2,2) P23 = (3,1,2)
P30 = (0,0,3) P31 = (1,1,3) P32 = (2,1,3) P33 = (3,0,3)

we can write the following matrix equations:

xuv = [u3 u2 u 1]

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v3

v2

v

1

⎤
⎥⎥⎥⎥⎦

xuv = [u3 u2 u 1]

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 3 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v3

v2

v

1

⎤
⎥⎥⎥⎥⎦

xuv = 3v

yuv = [u3 u2 u 1]

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 1 1 0

1 2 2 1

1 2 2 1

0 1 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v3

v2

v

1

⎤
⎥⎥⎥⎥⎦

yuv = [u3 u2 u 1]

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 −3

0 0 0 3

0 −3 3 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v3

v2

v

1

⎤
⎥⎥⎥⎥⎦
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yuv = 3(u+ v−u2 − v2)

zuv = [u3 u2 u 1]

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v3

v2

v

1

⎤
⎥⎥⎥⎥⎦

zuv = [u3 u2 u 1]

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 3

0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v3

v2

v

1

⎤
⎥⎥⎥⎥⎦

zuv = 3u.

Therefore, any point on the surface patch has coordinates

xuv = 3v, yuv = 3(u+ v−u2 − v2), zuv = 3u.

Table 9.6 shows the coordinate values for different values of u and v. In this exam-
ple, the y-coordinates provide the surface curvature, which could be enhanced by
modifying the y-coordinates of the control points.

Complex 3D surfaces are readily modeled using Bézier patches. One simply cre-
ates a mesh of patches such that their control points are shared at the joins. Surface
continuity is controlled using the same mechanism for curves. But where the slopes
of trailing and starting control edges apply for curves, the corresponding slopes of
control tiles apply for patches.

Table 9.6 The x-, y-, z-coordinates for different values of u and v

v

0 0.5 1

0 (0,0,0) (1.5,0.75,0) (3,0,0)

u 0.5 (0,0.75,1.5) (1.5,1.5,1.5) (3,0.75,1.5)

1 (0,0,3) (1.5,0.75,3) (3,0,3)
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9.9 Summary

This subject has been the most challenging one to describe. On the one hand, the
subject is vital to every aspect of computer graphics, and on the other, the reader
is required to wrestle with cubic polynomials and a little calculus. However, I do
hope that I have managed to communicate some essential concepts behind curves
and surfaces, and that you will be tempted to implement some of the mathematics.



Chapter 10
Analytic Geometry

10.1 Introduction

This chapter explores some basic elements of geometry and analytic geometry that
are frequently encountered in computer graphics. For completeness, I have included
a short review of important elements of Euclidean geometry with which you should
be familiar. Perhaps the most important topics that you should try to understand
concern the definitions of straight lines in space, 3D planes, and how points of in-
tersection are computed. Another useful topic is the role of parameters in describing
lines and line segments, and their intersection.

10.2 Review of Geometry

In the third century BCE Euclid laid the foundations of geometry that have been
taught in schools for centuries. In the nineteenth century, mathematicians such
as Bernhard Riemann (1809 –1900) and Nicolai Lobachevsky (1793–1856) trans-
formed this Euclidean geometry with ideas such as curved space and spaces with
higher dimensions. Although none of these developments affect computer graphics,
they do place Euclid’s theorems in a specific context: a set of axioms that apply to
flat surfaces. We have probably all been taught that parallel lines don’t meet, and that
the internal angles of a triangle sum to 180◦, but these are only true in specific situ-
ations. As soon as the surface or space becomes curved, such rules break down. So
let’s review some rules and observations that apply to shapes drawn on a flat surface.

10.2.1 Angles

By definition, 360◦ or 2π [radians] measure one revolution. You should be famil-
iar with both units of measurement, and how to convert from one to the other.

J. Vince, Mathematics for Computer Graphics, Undergraduate Topics 161
in Computer Science, DOI 10.1007/978-1-84996-023-6 10,
c© Springer-Verlag London Limited 2010



162 10 Analytic Geometry

b

b

a

a

a

b

Fig. 10.1 Examples of adjacent, supplementary, opposite and complementary angles.

Figure 10.1 shows examples of adjacent / supplementary angles (sum to 180◦), op-
posite angles (equal), and complementary angles (sum to 90◦).

a

a

b
b

c

c

d d

Fig. 10.2 The first intercept theorem.

10.2.2 Intercept Theorems

Figures 10.2 and 10.3 show scenarios involving intersecting lines and parallel lines
that give rise to the following observations:

• First intercept theorem:

a+b
a

=
c+d

c
,

b
a

=
d
c
.

• Second intercept theorem:
a
b

=
c
d

.
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a

a

bc

c

d d

b

Fig. 10.3 The second intercept theorem.

10.2.3 Golden Section

The golden section is widely used in art and architecture to represent an ‘ideal’ ratio
for the height and width of an object. Its origins stem from the interaction between
a circle and triangle and give rise to the following relationship:

b =
a
2

(√
5−1

)
≈ 0.618a.

The rectangle in Fig. 10.4 has proportions:

height = 0.618×width.

However, it is interesting to note that the most widely observed rectangle – the
television screen – bears no relation to this ratio.

2.5

1.545

Fig. 10.4 A rectangle with a height to width ratio equal to the golden section.

10.2.4 Triangles

The rules associated with interior and exterior angles of a triangle are very useful
in solving all sorts of geometric problems. Figure 10.5 shows two diagrams identi-
fying interior and exterior angles. We can see that the sum of the interior angles is
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180◦, and that the exterior angles of a triangle are equal to the sum of the opposite
angles:

α +β +θ = 180◦

α ′ = θ +β
β ′ = α +θ
θ ′ = α +β .

a ab b

q q
a b

a

a¢

b

b¢

q¢

Fig. 10.5 Relationship between interior and exterior angles.

10.2.5 Centre of Gravity of a Triangle

A median is a straight line joining a vertex of a triangle to the mid-point of the
opposite side. When all three medians are drawn, they intersect at a common point,
which is also the triangle’s centre of gravity. The centre of gravity divides all the
medians in the ratio 2 : 1. Figure 10.6 illustrates this arrangement.

a

a

b

b

c c

Fig. 10.6 The three medians of a triangle intersect at its centre of gravity.

10.2.6 Isosceles Triangle

Figure 10.7 shows an isosceles triangle, which has two equal sides of length l and
equal base angles α . The triangle’s altitude and area are

h =

√
l2 −

( c
2

)2
A =

ch
2

.
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h
ll

c/2 c/2

a a

Fig. 10.7 An isosceles triangle.

10.2.7 Equilateral Triangle

An equilateral triangle has three equal sides of length l and equal angles of 60◦. The
triangle’s altitude and area are

h =
√

3
2

l A =
√

3
4

l2.

10.2.8 Right Triangle

Figure 10.8 shows a right triangle with its obligatory right angle. The triangle’s
altitude and area are

h =
ab
c

A =
ab
2

.

ab

c

h

Fig. 10.8 A right triangle.

10.2.9 Theorem of Thales

Figure 10.9 illustrates the Theorem of Thales, which states that the right angle of a
right triangle lies on the circumcircle over the hypotenuse.
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Fig. 10.9 The Theorem of Thales states that the right angle of a right triangle lies on the circum-
circle over the hypotenuse.

a a

b

b

c

c

Fig. 10.10 The Theorem of Pythagoras states that a2 = b2 + c2.

10.2.10 Theorem of Pythagoras

Although this theorem is named after Pythagoras, there is substantial evidence to
show that it was known by the Babylonians a millennium earlier. However, Pythago-
ras is credited with its proof. Figure 10.10 illustrates the well-known relationship

a2 = b2 + c2

from which one can show that

sin2 α + cos2 α = 1.

10.2.11 Quadrilaterals

Quadrilaterals have four sides and include the square, rectangle, trapezoid, parallel-
ogram and rhombus, whose interior angles sum to 360◦. As the square and rectangle
are familiar shapes, we will only consider the other three.



10.2 Review of Geometry 167

a

b

m
h

Fig. 10.11 A trapezoid with one pair of parallel sides.

10.2.12 Trapezoid

Figure 10.11 shows a trapezoid which has one pair of parallel sides h apart. The
mid-line m and area are given by

m =
a+b

2
A = mh.

10.2.13 Parallelogram

Figure 10.12 shows a parallelogram, which is formed from two pairs of intersecting
parallel lines, so it has equal opposite sides and equal opposite angles. The altitude,
diagonal lengths and area are given by

h = bsinα

d1,2 =
√

a2 +b2 ±2a
√

b2 −h2

A = ah.

a

a

b b h

d1

d2

Fig. 10.12 A parallelogram formed by two pairs of parallel lines.
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10.2.14 Rhombus

Figure 10.13 shows a rhombus, which is a parallelogram with four sides of equal
length a. The area is given by

A = a2 sinα =
d1d2

2
.

a a

aa

d1

d2

a

Fig. 10.13 A rhombus is a parallelogram with four equal sides.

10.2.15 Regular Polygon (n-gon)

Figure 10.14 shows part of a regular n-gon with outer radius Ro, inner radius Ri and
edge length an. Table 10.1 shows the relationship between the area, an, Ri and Ro
for different polygons.

Ri Ro

an

Fig. 10.14 Part of a regular gon showing the inner and outer radii and the edge length.

10.2.16 Circle

The circumference C and area A of a circle are given by

C = πd = 2πr
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Table 10.1 The area An, edge length an, inner radius Ri, and outer radius Ro for different polygons

n an = 2Ri tan(180◦/n) Ri = Ro cos(180◦/n) R2
o = R2

i + 1
4 a2

n

n An = n
4 a2

n cot(180◦/n) An = n
2 R2

o sin(360◦/n) An = nR2
i tan(180◦/n)

5 a5 = 2Ri

√
5−2

√
5 Ri = Ro

4 (
√

5+1) Ro = Ri(
√

5−1)

5 A5 = a2
5

4

√
25+10

√
5 A5 = 5

8 R2
o

√
10+2

√
5 A5 = 5R2

i

√
5−2

√
5

6 a6 = 2
3 Ri

√
3 Ri = Ro

2

√
3 Ro = 2

3 Ri
√

3

6 A6 = 3
2 a2

6

√
3 A6 = 3

2 R2
o
√

3 A6 = 2R2
i

√
3

8 a8 = 2Ri(
√

2−1) Ri = Ro
2

√
2+

√
2 Ro = Ri

√
4−2

√
2

8 A8 = 2a2
8(
√

2+1) A8 = 2R2
o
√

2 A8 = 8R2
i (
√

2−1)

10 a10 = 2
5 Ri

√
25−10

√
5 Ri = Ro

4

√
10+2

√
5 Ro = Ri

5 (
√

50−10
√

5

10 A10 = 5
2 a2

10

√
5+2

√
5 A10 = 5

4 R2
o

√
10−2

√
5 A10 = 2R2

i

√
25−10

√
5

R

r

d

D

Fig. 10.15 An annulus formed from two concentric circles.

A = πr2 = π
d2

4

where the diameter d = 2r.

An annulus is the area between two concentric circles as shown in Fig. 10.15,
and its area A is given by

A = π(R2 − r2) =
π
4

(D2 −d2)

where D = 2R and d = 2r.
Figure 10.16 shows a sector of a circle, whose area is given by

A =
α◦

360◦
πr2.
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a

r

Fig. 10.16 A sector of a circle defined by the angle α .

Figure 10.17 shows a segment of a circle, whose area is given by

A =
r2

2
(α − sinα)

where α is in radians.
The area of an ellipse with major and minor radii a and b is given by

A = πab.

a

r

Fig. 10.17 A segment of a circle defined by the angle α .

10.3 2D Analytic Geometry

In this section we briefly examine familiar descriptions of geometric elements and
ways of computing intersections.

10.3.1 Equation of a Straight Line

The well-known equation of a line is

y = mx+ c
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where m is the slope and c the intersection with the y-axis, as shown in Fig. 10.18.
This is called the normal form.

X

m

c

Y

Fig. 10.18 The normal form of the straight line is y = mx+ c.

Given two points (x1,y1) and (x2,y2) we can state that for any other point (x,y)

y− y1

x− x1
=

y2 − y1

x2 − x1

which yields

y = (x− x1)
y2 − y1

x2 − x1
+ y1.

Although these equations have their uses, the more general form is much more con-
venient:

ax+by+ c = 0.

As we shall see, this equation possesses some interesting qualities.

10.3.2 The Hessian Normal Form

Figure 10.19 shows a line whose orientation is controlled by a normal unit vector
n = [a b]T . If P(x, y) is any point on the line, then p is a position vector
where p = [x y]T and d is the perpendicular distance from the origin to the line.

X

n

d

Y

p
a

P(x, y)

Fig. 10.19 The orientation of a line can be controlled by a normal vector n and a distance d.
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Therefore,
d
|p| = cosα

and
d = |p|cosα.

But the dot product n ·p is given by

n ·p = |n||p|cosα = ax+by

which implies that
ax+by = d|n|

and because |n| = 1 we can write

ax+by−d = 0

where (x, y) is a point on the line, a and b are the components of a unit vector
normal to the line, and d is the perpendicular distance from the origin to the line.
The distance d is positive when the normal vector points away from the origin,
otherwise it is negative.

Let’s consider two examples:
• Example 1
Find the equation of a line whose normal vector is [3 4]T and the perpendicular
distance from the origin to the line is 1.

We begin by normalizing the normal vector to its unit form.
Therefore, if n = [3 4]T , |n| =

√
32 +42 = 5 The equation of the line is

3
5

x+
4
5

y−1 = 0.

• Example 2
Find the Hessian normal form of y = 2x+1

Rearranging the equation we get

2x− y+1 = 0.

If we want the normal vector to point away from the origin we multiply by −1:

−2x+ y−1 = 0.
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Normalize the normal vector to a unit form

i.e.
√

(−2)2 +12 =
√

5

− 2√
5

x+
1√
5

y− 1√
5

= 0.

Therefore, the perpendicular distance from the origin to the line, and the unit normal
vector are respectively

1√
5

and
[
−2√

5
1√
5

]T

.

The two signs from the square root provide the alternate directions of the vector,
and sign of d.

As the Hessian normal form involves a unit normal vector, we can incorporate
the vector’s direction cosines within the equation:

xcosα + ysinα −d = 0

where α is the angle between the normal vector and the x-axis.

10.3.3 Space Partitioning

The Hessian normal form provides a very useful way of partitioning space into two
zones: the partition that includes the normal vector, and the opposite partition. This
is illustrated in Fig. 10.20.

X

Y

ax2 + by2 – d < 0 

ax + by – d = 0 

ax1 + by1 – d > 0 

Fig. 10.20 The Hessian normal form of the line equation partitions space into two zones.

Given the equation
ax+by−d = 0

a point (x, y) on the line satisfies the equation. But if we substitute another point
(x1, y1) which is in the partition in the direction of the normal vector, it creates the
inequality
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ax1 +by1 −d > 0.

Conversely, a point (x2, y2) which is in the partition opposite to the direction of the
normal vector creates the inequality

ax2 +by2 −d < 0.

This space-partitioning feature of the Hessian normal form is useful in clipping lines
against polygonal windows.

10.3.4 The Hessian Normal Form from Two Points

Given two points (x1, y1) and (x2, y2) we can compute the values of a,b and d for
the Hessian normal form as follows. To begin, we observe:

y− y1

x− x1
=

y2 − y1

x2 − x1
=

Δy
Δx

therefore,
(y− y1)Δx = (x− x1)Δy

and
xΔy− yΔx− (x1Δy− y1Δx) = 0 (10.1)

which is the general equation of a straight line. For the Hessian normal form:
√

Δx2 +Δy2 = 1.

Therefore, the Hessian normal form is given by

xΔy− yΔx− (x1Δy− y1Δx)√
Δx2 +Δy2

= 0.

Let’s test this with an example. Given the following points: (x1, y1) = (0, 1) and
(x2, y2) = (1, 0); Δx = 1,Δy = −1. Therefore, using (10.1)

x(−1)− y(1)− (0×−1−1×1) = 0
−x− y+1 = 0

which is the general equation for the line. We now convert it to the Hessian normal
form:

−x− y+1√
12 +(−1)2

= 0

−x− y+1√
2

= 0

− x√
2
− y√

2
+

1√
2

= 0.
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The choice of sign in the denominator anticipates the two directions for the normal
vector, and sign of d.

10.4 Intersection Points

10.4.1 Intersection Point of Two Straight Lines

Given two line equations of the form

a1x+b1y+d1 = 0
a2x+b2y+d2 = 0

the intersection point (xi, yi) is given by

xi =
b1d2 −b2d1

a1b2 −a2b1

yi =
d1a2 −d2a1

a1b2 −a2b1

or using determinants:

xi =

∣∣∣∣∣
b1 d1

b2 d2

∣∣∣∣∣∣∣∣∣∣
a1 b1

a2 b2

∣∣∣∣∣

yi =

∣∣∣∣∣
d1 a1

d2 a2

∣∣∣∣∣∣∣∣∣∣
a1 b1

a2 b2

∣∣∣∣∣
.

If the denominator is zero, the equations are linearly dependent, indicating that there
is no intersection.

10.4.2 Intersection Point of Two Line Segments

We are often concerned with line segments in computer graphics as they represent
the edges of shapes and objects. So let’s investigate how to compute the intersection



176 10 Analytic Geometry

of two 2D-line segments. Figure 10.21 shows two line segments defined by their
end points P1, P2 and P3, P4. If we locate position vectors to these points, we can
write the following vector equations to identify the point of intersection:

pi = p1 + t(p2 −p1) (10.2)
pi = p3 + s(p4 −p3) (10.3)

where parameters s and t vary between 0 and 1. For the point of intersection, we can
write

p1 + t(p2 −p1) = p3 + s(p4 −p3).

Therefore, the parameters s and t are given by

s =
(p1 −p3)+ t(p2 −p1)

p4 −p3
(10.4)

t =
(p3 −p1)+ s(p4 −p3)

p2 −p1
. (10.5)

From (10.5) we can write

t =
(x3 − x1)+ s(x4 − x3)

x2 − x1

t =
(y3 − y1)+ s(y4 − y3)

y2 − y1

which yields

s =
x1(y3 − y2)+ x2(y3 − y1)+ x3(y2 − y1)
(x2 − x1)(y4 − y3)− (x4 − x3)(y2 − y1)

(10.6)

similarly,

t =
x1(y4 − y3)+ x3(y1 − y4)+ x4(y3 − y1)
(x4 − x3)(y2 − y1)− (x2 − x1)(y4 − y3)

. (10.7)

X

Y

P2

P1

P4

P3

Pi

p1

p2

p3

p4

pi

Fig. 10.21 Two line segments with their associated position vectors.
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Let’s test (10.6) and (10.7) with two examples to illustrate how the equations are
used in practice. The first example demonstrates an intersection condition, and the
second demonstrates a touching condition.
• Example 1
Figure 10.22a shows two line segments intersecting, with an obvious intersection
point of (1.5, 0). The coordinates of the line segments are

(x1, y1) = (1, 0) (x2, y2) = (2, 0)
(x3, y3) = (1.5, −1) (x4, y4) = (1.5, 1)

therefore,

t =
1(1− (−1))+1.5(0−1)+1.5(−1−0)
(0−0)(1.5−1.5)− (2−1)(1− (−1))

= 0.5

and

s =
1(−1−0)+2(0− (−1))+1.5(0−0)
(1− (−1))(2−1)− (1.5−1.5)(0−0)

= 0.5.

Substituting s and t in (10.2) and (10.3) we get (xi, yi) = (1.5, 0) as predicted.

• Example 2
Figure 10.22b shows two line segments touching at (1.5,0). The coordinates of the
line segments are

(x1, y1) = (1, 0) (x2, y2) = (2, 0)
(x3, y3) = (1.5, 0) (x4, y4) = (1.5, 1)

therefore,

t =
1(1−0)+1.5(0−1)+1.5(0−0)
(0−0)(1.5−1.5)− (2−1)(1−0)

= 0.5

and

s =
1(0−0)+2(0−0)+1.5(0−0)

(1−0)(2−1)− (1.5−1.5)(0−0)
= 0.

1

1

1

1

2 2X X

YY

–1

a b

–1

Fig. 10.22 (a) Shows two line segments intersecting. (b) Shows two line segments touching.
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The zero value of s confirms that the lines touch, rather than intersect, and t = 0.5
confirms that the touching takes place halfway along the line segment.

10.5 Point Inside a Triangle

We often require to test whether a point is inside, outside or touching a triangle.
Let’s examine two ways of performing this operation. The first is related to finding
the area of a triangle.

10.5.1 Area of a Triangle

Let’s declare a triangle formed by the anti-clockwise points (x1,y1),(x2,y2) and
(x3,y3) as shown in Fig. 10.23. The area of the triangle is given by:

A = (x2 − x1)(y3 − y1)−
(x2 − x1)(y2 − y1)

2
− (x2 − x3)(y3 − y2)

2
− (x3 − x1)(y3 − y1)

2

X

Y

P2

P1

P3

Fig. 10.23 The area of the triangle is computed by subtracting the smaller triangles from the rect-
angular area.

which simplifies to

A =
1
2
[x1(y2 − y3)+ x2(y3 − y1)+ x3(y1 − y2)]

and this can be further simplified to

A =
1
2

∣∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣
.
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Figure 10.24 shows two triangles with opposing vertex sequences. If we calculate
the area of the top triangle with anticlockwise vertices, we obtain

A =
1
2
[1(2−4)+3(4−2)+2(2−2)] = 2

whereas the area of the bottom triangle with clockwise vertices is

A =
1
2
[1(2−0)+3(0−2)+2(2−2)] = −2.

So the technique is sensitive to vertex direction. We can exploit this sensitivity to
test if a point is inside or outside a triangle.

Consider the scenario shown in Fig. 10.25, where the point Pt is inside the trian-
gle (P1, P2, P3).

• If the area of triangle (P1, P2, Pt) is positive, Pt must be to the left of the
line (P1, P2).

• If the area of triangle (P2, P3, Pt) is positive, Pt must be to the left of the
line (P2, P3).

• If the area of triangle (P3, P1, Pt) is positive, Pt must be to the left of the
line (P3, P1).

X

Y

P3

P1

P3

P2 

Fig. 10.24 The top triangle has anti-clockwise vertices, and the bottom triangle clockwise vertices.

If all the above tests are positive, Pt is inside the triangle. Furthermore, if one area is
zero and the other areas are positive, the point is on the boundary, and if two areas
are zero and the other positive, the point is on a vertex.
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X

Y

Pt

P3

P1

P2

Fig. 10.25 If the point Pt is inside the triangle, it is always to the left as the boundary is traversed
in an anti-clockwise direction.

Let’s now investigate how the Hessian normal form provides a similar function.

10.5.2 Hessian Normal Form

We can determine whether a point is inside, touching or outside a triangle by
representing the triangle’s edges in the Hessian normal form, and testing in which
partition the point is located. If we arrange that the normal vectors are pointing
towards the inside of the triangle, any point inside the triangle will create a pos-
itive result when tested against the edge equation. In the following calculations
there is no need to ensure that the normal vector is a unit vector. To illustrate this,
consider the scenario shown in Fig. 10.26 where we see a triangle formed by the
points (1, 1),(3, 1) and (2, 3). With reference to (10.1) we compute the three line
equations:

1: The line between (1, 1) and (3, 1):

0(x−1)+2(1− y) = 0
−2y+2 = 0.

We now multiply by −1 to reverse the normal vector:

2y−2 = 0.

2: The line between (3, 1) and (2, 3):

2(x−3)−1(1− y) = 0
2x+ y−7 = 0.

We now multiply by −1 to reverse the normal vector:

−2x− y+7 = 0.
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3: The line between (2, 3) and (1, 1):

−2(x−2)−1(3− y) = 0.

−2x+ y+1 = 0.

We now multiply by −1 to reverse the normal vector:

2x− y−1 = 0.

X

(1, 1) (3, 1)

(2, 3)

Y

Fig. 10.26 The triangle is represented by three line equations expressed in the Hessian normal
form. Any point inside the triangle can be found by evaluating the equations.

Thus the three line equations for the triangle are

2y−2 = 0
−2x− y+7 = 0

2x− y−1 = 0.

We are only interested in the sign of the left-hand expressions:

2y−2 (10.8)
−2x− y+7 (10.9)

2x− y−1 (10.10)

which can be tested for any arbitrary point (x, y). If they are all positive, the point is
inside the triangle. If one expression is negative, the point is outside. If one expres-
sion is zero, the point is on an edge, and if two expressions are zero, the point is on
a vertex.

Just as a quick test, consider the point (2, 2). The three expressions (10.8) to
(10.10) are positive, which confirms that the point is inside the triangle. The point
(3, 3) is obviously outside the triangle, which is confirmed by two positive results
and one negative. Finally, the point (2, 3), which is a vertex, creates one positive
result and two zero results.
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10.6 Intersection of a Circle with a Straight Line

The equation of a circle has already been given in the previous chapter, so we will
now consider how to compute its intersection with a straight line. We begin by
testing the equation of a circle with the normal form of the line equation:

x2 + y2 = r2 and y = mx+ c.

By substituting the line equation in the circle’s equation we discover the two inter-
section points:

x1,2 =
−mc±

√
r2(1+m2)− c2

1+m2 (10.11)

y1,2 =
c±m

√
r2(1+m2)− c2

1+m2 . (10.12)

Let’s test this result with the scenario shown in Fig. 10.27. Using the normal form
of the line equation we have

y = x+1, m = 1 and c = 1.

Substituting these values in (10.11) and (10.12) yields

x1,2 = −1, 0 y1,2 = 0, 1.

The actual points of intersection are (−1, 0) and (0, 1).

X

Y

x2 + y2 = r2

(–1, 0)

y = x + 1
x – y + 1 = 0
–0.707x + 0.707y – 0.707 = 0

(0, 1)

Fig. 10.27 The intersection of a circle with a line defined in its normal form, general form, and the
Hessian normal form.

Testing the equation of the circle with the general equation of the line ax+by+
c = 0 yields intersections given by

x1,2 =
−ac±b

√
r2(a2 +b2)− c2

a2 +b2 (10.13)
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y1,2 =
−bc±a

√
r2(a2 +b2)− c2

a2 +b2 . (10.14)

From Fig. 10.27, the general form of the line equation is

x− y+1 = 0 where a = 1, b = −1 and c = 1.

Substituting these values in (10.13) and (10.14) yields

x1,2 = −1, 0 and y1,2 = 0, 1

which gives the same intersection points found above.
Finally, using the Hessian normal form of the line ax + by− d = 0 yields inter-

sections given by

x1,2 = ad ±b
√

r2 −d2 (10.15)

y1,2 = bd ±a
√

r2 −d2. (10.16)

From Fig. 10.27 the Hessian normal form of the line equation is

−0.707x+0.707y−0.707 ≈ 0

where a ≈ −0.707,b ≈ 0.707 and d ≈ 0.707. Substituting these values in (10.15)
and (10.16) yields

x1,2 = −1, 0 and y1,2 = 0, 1

which gives the same intersection points found above. One can readily see the com-
putational benefits of using the Hessian normal form over the other forms of equa-
tions.

10.7 3D Geometry

3D straight lines are best described using vector notation, and readers are urged
to develop strong skills in these techniques if they wish to solve problems in 3D
geometry. Let’s begin this short survey of 3D analytic geometry by describing the
equation of a straight line.

10.7.1 Equation of a Straight Line

We start by using a vector b to define the orientation of the line, and a point a in
space through which the line passes. This scenario is shown in Fig. 10.28. Given
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Fig. 10.28 The line equation is based upon the point a and the vector b.

another point P on the line we can define a vector tb between a and P, where t is a
scalar. The position vector p for P is given by

p = a+ tb

from which we can obtain the coordinates of the point P:

xp = xa + txb

yp = ya + tyb

zp = za + tzb.

For example, if b = [1 2 3]T and a = (2, 3, 4), then by setting t = 1 we can
identify a second point on the line:

xp = 2+1 = 3
yp = 3+2 = 5
zp = 4+3 = 7.

In fact, by using different values of t we can slide up and down the line with ease.
If we have two points P1 and P2, such as the vertices of an edge, we can represent

the line equation using the above vector technique:

p = p1 + t(p2 −p1)

where p1 and p2 are position vectors to their respective points. Once more, we can
write the coordinates of any point P as follows:

xp = x1 + t(x2 − x1)
yp = y1 + t(y2 − y1)
zp = z1 + t(z2 − z1).



10.7 3D Geometry 185

10.7.2 Point of Intersection of Two Straight Lines

Given two straight lines we can test for a point of intersection, but must be prepared
for three results:

• A real intersection point
• No intersection point
• An infinite number of intersections (identical lines)

If the line equations are of the form

p = a1 + rb1

p = a2 + sb2

for an intersection we can write

a1 + rb1 = a2 + sb2

which yields

xa1 + rxb1 = xa2 + sxb2 (10.17)
ya1 + ryb1 = ya2 + syb2 (10.18)
za1 + rzb1 = za2 + szb2. (10.19)

We now have three equations in two unknowns, and any value of r and s must
hold for all three equations. We begin by selecting two equations that are linearly
independent (i.e., one equation is not a scalar multiple of the other) and solve for
r and s, which must then satisfy the third equation. If this final substitution fails, then
there is no intersection. If all three equations are linearly dependent, they describe
two parallel lines, which can never intersect.

To check for linear dependency we rearrange (10.17) to (10.19) as follows:

rxb1 − sxb2 = xa2 − xa1 (10.20)
ryb1 − syb2 = ya2 − ya1 (10.21)
rzb1 − szb2 = za2 − za1. (10.22)

If the determinant Δ of any pair of these equations is zero, then they are dependent.
For example, (10.20) and (10.21) form the determinant

Δ =

∣∣∣∣∣
xb1 −xb2

yb1 −yb2

∣∣∣∣∣
which, if zero, implies that the two equations can not yield a solution. As it is impos-
sible to predict which pair of equations from (10.20) to (10.22) will be independent,
let’s express two independent equations as follows:

ra11 − sa12 = b1

ra21 − sa22 = b2
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which yields

r =
a22b1 −a12b2

Δ

s =
a21b1 −a11b2

Δ

where

Δ =

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ .

Solving for r and s we obtain

r =
yb2(xa2 − xa1)− xb2(ya2 − ya1)

xb1yb2 − yb1xb2
(10.23)

s =
yb1(xa2 − xa1)− xb1(ya2 − ya1)

xb1yb2 − yb1xb2
. (10.24)

As a quick test, consider the intersection of the lines encoded by the following vec-
tors:

a1 =

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦ b1 =

⎡
⎢⎢⎣

3

3

3

⎤
⎥⎥⎦ a2 =

⎡
⎢⎢⎣

0

0.5

0

⎤
⎥⎥⎦ b2 =

⎡
⎢⎢⎣

2

3

2

⎤
⎥⎥⎦ .

Substituting the x and y components in (10.23) and (10.24) we discover

r =
1
3

and s =
1
2

but for these to be consistent, they must satisfy the z-component of the original
equation:

rzb1 = szb2 = za2 − za1

1
3
×3− 1

2
×2 = 0

which is correct. Therefore, the point of intersection is given by either

pi = a1 + rb1 or
pi = a2 + sb2.

Let’s try both, just to prove the point:

xi = 0+
1
3

3 = 1 xi = 0+
1
2

2 = 1
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yi = 1+
1
3

3 = 2 yi =
1
2

+
1
2

3 = 2

zi = 0+
1
3

3 = 1 zi = 0+
1
2

2 = 1.

Therefore, the point of intersection point is (1,2,1).
Now let’s take two lines that don’t intersect, and also exhibit some linear depen-

dency:

a1 =

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦ b1 =

⎡
⎢⎢⎣

2

2

0

⎤
⎥⎥⎦ a2 =

⎡
⎢⎢⎣

0

2

0

⎤
⎥⎥⎦ b2 =

⎡
⎢⎢⎣

2

2

1

⎤
⎥⎥⎦ .

Taking the x and y-components we discover that the determinant Δ is zero, which
has identified the linear dependency. Taking the y and z-components the determinant
is non-zero, which permits us to compute r and s using

r =
zb2(ya2 − ya1)− yb2(za2 − za1)

yb1zb2 − zb1yb2

s =
zb1(ya2 − ya1)− yb1(za2 − za1)

yb1zb2 − zb1yb2

r =
1(2−1)−2(0−0)

2×1−0×2
=

1
2

s =
0(2−1)−2(0−0)

2×1−0×2
= 0.

But these values of r and s must also apply to the x-components:

rxb1 − sxb2 = xa2 − xa1

1
2
×2−0×2 �= 0

which they clearly do not, therefore the lines do not intersect.
Now let’s proceed with the equation of a plane, and then look at how to compute

the intersection of a line with a plane using a similar technique.

10.8 Equation of a Plane

We now consider four ways of representing a plane equation: the Cartesian form,
general form, parametric form and a plane from three points.
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10.8.1 Cartesian Form of the Plane Equation

One popular method of representing a plane equation is the Cartesian form, which
employs a vector normal to the plane’s surface and a point on the plane. The equation
is derived as follows.

Let n be a nonzero vector normal to the plane and P0(x0, y0, z0) a point on the
plane. P(x, y, z) is any other point on the plane. Figure 10.29 illustrates the scenario.
The normal vector is defined as

n = ai+bj+ ck

and the position vectors for P0 and P are

p0 = x0i+ y0j+ z0k
p = xi+ yj+ zk

X

p

h

a

n

Z

Y

P
q

P0

p0

Fig. 10.29 The vector n is normal to the plane, which also contains a point P0(x0, y0, z0). P(x, y, z)
is any other point on the plane.

respectively. From Fig. 10.29 we observe that

q = p−p0

and as n is orthogonal to q
n ·q = 0

therefore,
n · (p−p0) = 0

which expands into
n ·p = n ·p0. (10.25)
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Writing (10.25) in its Cartesian form we obtain

ax+by+ cz = ax0 +by0 + cz0

but ax0 +by0 +cz0 is a scalar quantity associated with the plane and can be replaced
by d . Therefore,

ax+by+ cz = d (10.26)

which is the Cartesian form of the plane equation.
The value of d has the following geometric interpretation.

In Fig. 10.29 the perpendicular distance from the origin to the plane is

h = |p0|cosα

therefore,
n ·p0 = |n| |p0|cosα = h|n|

therefore, the plane equation can be also expressed as

ax+by+ cz = h|n|. (10.27)

Dividing (10.27) by |n| we obtain

a
|n|x+

b
|n|y+

c
|n| z = h

where

|n| =
√

a2 +b2 + c2.

This means that when a unit normal vector is used, h is the perpendicular distance
from the origin to the plane. Let’s investigate this equation with an example.

Figure 10.30 shows a plane represented by the normal vector n = j + k and a
point on the plane P0(0, 1, 0). Using (10.26) we have

0x+1y+1z = 0×0+1×1+1×0 = 1

therefore, the plane equation is
y+ z = 1.

If we normalize the equation to create a unit normal vector, we have

y√
2

+
z√
2

=
1√
2

where the perpendicular distance from the origin to the plane is
1√
2

.
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n

(0, 0, 1)
Z

Y

X

O

P0

Fig. 10.30 A plane represented by the normal vector n and a point P0(0, 1, 0).

10.8.2 General Form of the Plane Equation

The general form of the equation of a plane is expressed as

Ax+By+Cz+D = 0

which means that the Cartesian form is translated into the general form by making

A = a, B = b, C = c, D = −d.

10.8.3 Parametric Form of the Plane Equation

Another method of representing a plane is to employ two vectors and a point that
lie on the plane. Figure 10.31 illustrates a scenario where vectors a and b, and the
point T (xT , yT , zT ) lie on a plane. We now identify any other point on the plane
P(x, y, z) with its associated position vector p. The point T also has its associated
position vector t.

X

p

P

c

t

b
la

Z

Y

a

T

eb

Fig. 10.31 A plane is defined by the vectors a and b and the point T (xT , yT , zT ).
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Using vector addition we can write

c = λa+ εb

where λ and ε are two scalars such that c locates the point P . We can now write

p = t+ c (10.28)

therefore,

xP = xT +λxa + εxb

yP = yT +λya + εyb

zP = zT +λ za + εzb

which means that the coordinates of any point on the plane are formed from the
coordinates of the known point on the plane, and a linear mixture of the components
of the two vectors. Let’s illustrate this vector approach with an example.

X

p
P

t
la

Z

Y

eb
T

Fig. 10.32 A plane is defined by the vectors a and b and the point T (1, 1, 1).

Figure 10.32 shows a plane containing the vectors a = i and b = k, and the point
T (1, 1, 1) with its position vector t = i+ j+k . By inspection, the plane is parallel
with the xz-plane and intersects the y-axis at y = 1.

From (10.28) we can write

p = t+λa+ εb

where λ and ε are arbitrary scalars.
For example, if λ = 2 and ε = 1

xP = 1+2×1+1×0 = 3
yP = 1+2×0+1×0 = 1
zP = 1+2×0+1×1 = 2.

Therefore, the point (3, 1, 2) is on the plane.
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10.8.4 Converting from the Parametric to the General Form

It is possible to convert from the parametric form to the general form of the plane
equation using the following formulae:

λ =
(a ·b)(b · t)− (a · t)|b|2

|a|2|b|2 − (a ·b)2

ε =
(a ·b)(a · t)− (b · t)|a|2

|a|2|b|2 − (a ·b)2 .

The resulting point P(xP, yP, zP) is perpendicular to the origin.
If vectors a and b are unit vectors, λ and ε become

λ =
(a ·b)(b · t)−a · t

1− (a ·b)2 (10.29)

ε =
(a ·b)(a · t)−b · t

1− (a ·b)2 . (10.30)

P’s position vector p is also the plane’s normal vector. Then

xP = xT +λxa + εxb

yP = yT +λya + εyb

zP = zT +λ za + εzb.

The normal vector is
p = xPi+ yPj+ zPk

and because |p| is the perpendicular distance from the plane to the origin we can
state xP

|p|x+
yP

|p|y+
zP

|p| z = |p|

or in the general form of the plane equation:

Ax+By+Cz+D = 0

where
A =

xP

|p| , B =
yP

|p| , C =
zP

|p| , D = −|p|.

Figure 10.33 illustrates a plane inclined 45◦ to the y− and z-axes and parallel
with the x-axis. The vectors for the parametric equation are

a = j−k
b = i
t = k.
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Z
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T (0, 0, 1)

(0, 1, 0)

P

p

O

eb

t

la

Fig. 10.33 The vectors a and b are parallel to the plane and the point (0, 0, 1) is on the plane.

Substituting these components in (10.29) and (10.30) we have

λ =
(0)(0)− (−1)×1

2×1− (0)
= 0.5

ε =
(0)(−1)− (0)×2

2×1− (0)
= 0

therefore,

xP = 0+0.5×0+0×1 = 0
yP = 0+0.5×1+0×0 = 0.5
zP = 1+0.5× (−1)+0×0 = 0.5.

The point (0, 0.5, 0.5) has position vector p, where

|p| =
√

02 +0.52 +0.52 =
√

2
2

the plane equation is

0x+
0.5√
2/2

y+
0.5√
2/2

z−
√

2/2 = 0

which simplifies to
y+ z−1 = 0.

10.8.5 Plane Equation from Three Points

Very often in computer graphics problems we need to find the plane equation from
three known points. To begin with, the three points must be distinct and not lie
on a line. Figure 10.34 shows three points R, S and T , from which we create two
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u ⋅ v

T
v

S

P

w

u

R

Fig. 10.34 The vectors used to determine a plane equation from three points R,S and T .

vectors u =
−→
RS and v =

−→
RT . The vector product u×v then provides a vector normal

to the plane containing the original points. We now take another point P(x, y, z)
and form a vector w =

−→
RP. The scalar product w · (u× v) = 0 if P is in the plane

containing the original points. This condition can be expressed as a determinant and
converted into the general equation of a plane. The three points are assumed to be
in an anticlockwise sequence viewed from the direction of the surface normal.

We begin with

u×v =

∣∣∣∣∣∣∣∣
i j k

xu yu zu

xv yv zv

∣∣∣∣∣∣∣∣
.

As w is perpendicular to u×v

w · (u×v) =

∣∣∣∣∣∣∣∣
xw yw zw

xu yu zu

xv yv zv

∣∣∣∣∣∣∣∣
= 0.

Expanding the determinant we obtain

xw

∣∣∣∣∣
yu zu

yv zv

∣∣∣∣∣+ yw

∣∣∣∣∣
zu xu

zv xv

∣∣∣∣∣+ zw

∣∣∣∣∣
xu yu

xv yv

∣∣∣∣∣ = 0

which becomes

(x− xR)

∣∣∣∣∣
yS − yR zS − zR

yT − yR zT − zR

∣∣∣∣∣+(y− yR)

∣∣∣∣∣
zS − zR xS − xR

zT − zR xT − xR

∣∣∣∣∣
+(z− zR)

∣∣∣∣∣
xS − xR yS − yR

xT − xR yT − yR

∣∣∣∣∣ = 0.
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This can be arranged in the form ax+by+ cz+d = 0 where

a =

∣∣∣∣∣
yS − yR zS − zR

yT − yR zT − zR

∣∣∣∣∣ b =

∣∣∣∣∣
zS − zR xS − xR

xT − zR xT − xR

∣∣∣∣∣
c =

∣∣∣∣∣
xS − xR yS − yR

xT − xR yT − yR

∣∣∣∣∣ d = −(axR +byR + czR)

or

a =

∣∣∣∣∣∣∣∣
1 yR zR

1 yS zS

1 yT zT

∣∣∣∣∣∣∣∣
b =

∣∣∣∣∣∣∣∣
xR 1 zR

xS 1 zS

xT 1 zT

∣∣∣∣∣∣∣∣
c =

∣∣∣∣∣∣∣∣
xR yR 1

xS yS 1

xT yT 1

∣∣∣∣∣∣∣∣
d = −(axR +byR + czR).

As an example, consider the three points R(0, 0, 1), S(1, 0, 0), T (0, 1, 0). There-
fore,

a =

∣∣∣∣∣∣∣∣
1 0 1

1 0 0

1 1 0

∣∣∣∣∣∣∣∣
= 1, b =

∣∣∣∣∣∣∣∣
0 1 1

1 1 0

0 1 0

∣∣∣∣∣∣∣∣
= 1, c =

∣∣∣∣∣∣∣∣
0 0 1

1 0 1

0 1 1

∣∣∣∣∣∣∣∣
= 1,

d = −(1×0+1×0+1×1) = −1

and the plane equation is
x+ y+ z−1 = 0.

10.9 Intersecting Planes

When two non-parallel planes intersect they form a straight line at the intersection,
which is parallel to both planes. This line can be represented as a vector, whose
direction is revealed by the vector product of the planes’ surface normals. However,
we require a point on this line to establish a unique vector equation; a useful point
is chosen as P0 , whose position vector p0 is perpendicular to the line.

Figure 10.35 shows two planes with normal vectors n1 and n2 intersecting to
create a line represented by n3, whilst P0(x0, y0, z0) is a particular point on n3 and
P(x, y, z) is any point on the line.

We start the analysis by defining the surface normals:

n1 = a1i+b1j+ c1k
n2 = a2i+b2j+ c2k
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Fig. 10.35 Two intersecting planes create a line of intersection.

next we define p and p0:

p = xi+ yj+ zk
p0 = x0i+ y0j+ z0k.

Now we state the plane equations in vector form:

n1 ·p+d1 = 0
n2 ·p+d2 = 0.

The geometric significance of the scalars d1 and d2 has already been described
above. Let’s now define the line of intersection as

p = p0 +λn3

where λ is a scalar.
Because the line of intersection must be orthogonal to n1 and n2

n3 = a3i+b3j+ c3k = n1 ×n2.

Now we introduce P0 as this must satisfy both plane equations, therefore,

n1 ·p0 = −d1 (10.31)
n2 ·p0 = −d2 (10.32)

and as P0 is such that p0 is orthogonal to n3

n3 ·p0 = 0. (10.33)

Equations (10.31)–(10.33) form three simultaneous equations, which reveal the
point P0. These can be represented in matrix form as
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⎡
⎢⎢⎣

−d1

−d2

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x0

y0

z0

⎤
⎥⎥⎦

or ⎡
⎢⎢⎣

d1

d2

0

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x0

y0

z0

⎤
⎥⎥⎦

therefore,

x0∣∣∣∣∣∣∣∣
d1 b1 c1

d2 b2 c2

0 b3 c3

∣∣∣∣∣∣∣∣

=
y0∣∣∣∣∣∣∣∣

a1 d1 c1

a2 d2 c2

a3 0 c3

∣∣∣∣∣∣∣∣

=
z0∣∣∣∣∣∣∣∣

a1 b1 d1

a2 b2 d2

a3 b3 0

∣∣∣∣∣∣∣∣

=
−1

DET

which enables us to state

x0 =

d2

∣∣∣∣∣
b1 c1

b3 c3

∣∣∣∣∣−d1

∣∣∣∣∣
b2 c2

b3 c3

∣∣∣∣∣
DET

y0 =

d2

∣∣∣∣∣
a3 c3

a1 c1

∣∣∣∣∣−d1

∣∣∣∣∣
a3 c3

a2 c2

∣∣∣∣∣
DET

z0 =

d2

∣∣∣∣∣
a1 b1

a3 b3

∣∣∣∣∣−d1

∣∣∣∣∣
a2 b2

a3 b3

∣∣∣∣∣
DET

where

DET =

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣
.

The line of intersection is then given by

p = p0 +λn3.

If DET = 0 the line and plane are parallel.
To illustrate this, let the two intersecting planes be the xy-plane and the xz-plane,

which means that the line of intersection will be the y-axis, as shown in Fig. 10.36.
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Fig. 10.36 Two intersecting planes creating a line of intersection coincident with the y-axis.

The plane equations are z = 0 and x = 0, therefore,

n1 = k
n2 = i

and d1 = d2 = 0.
We now compute n3, DET , x0, y0, z0:

n3 =

∣∣∣∣∣∣∣∣
i j k
0 0 1

1 0 0

∣∣∣∣∣∣∣∣
= j

DET =

∣∣∣∣∣∣∣∣
0 0 1

1 0 0

0 1 0

∣∣∣∣∣∣∣∣
= 1

x0 =

0

∣∣∣∣∣
0 1

1 0

∣∣∣∣∣−0

∣∣∣∣∣
0 0

1 0

∣∣∣∣∣
1

= 0

y0 =

0

∣∣∣∣∣
0 0

0 1

∣∣∣∣∣−0

∣∣∣∣∣
0 0

1 0

∣∣∣∣∣
1

= 0

z0 =

0

∣∣∣∣∣
0 0

0 1

∣∣∣∣∣−0

∣∣∣∣∣
1 0

0 1

∣∣∣∣∣
1

= 0.

Therefore, the line equation is p = λn3, where n3 = j, which is the y-axis.
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Z
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Fig. 10.37 Three mutually intersecting planes.

10.9.1 Intersection of Three Planes

Three mutually intersecting planes will intersect at a point as shown in Fig. 10.37,
and we can find this point by using a similar strategy to the one used in two inter-
secting planes by creating three simultaneous plane equations using determinants.

Figure 10.37 shows three planes intersecting at the point P(x, y, z) . The three
planes can be defined by the following equations:

a1x+b1y+ c1z+d1 = 0
a2x+b1y+ c2z+d2 = 0
a3x+b1y+ c3z+d3 = 0

which means that they can be rewritten as
⎡
⎢⎢⎣

−d1

−d2

−d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

⎤
⎥⎥⎦

or ⎡
⎢⎢⎣

d1

d2

d3

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

⎤
⎥⎥⎦

or in determinant form

x∣∣∣∣∣∣∣∣
d1 b1 c1

d2 b2 c2

d3 b3 c3

∣∣∣∣∣∣∣∣

=
y∣∣∣∣∣∣∣∣

a1 d1 c1

a2 d2 c2

a3 d3 c3

∣∣∣∣∣∣∣∣

=
z∣∣∣∣∣∣∣∣

a1 b1 d1

a2 b2 d2

a3 b3 d3

∣∣∣∣∣∣∣∣

=
−1

DET
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where

DET =

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣
.

Therefore, we can state that

x = −

∣∣∣∣∣∣∣∣
d1 b1 c1

d2 b2 c2

d3 b3 c3

∣∣∣∣∣∣∣∣
DET

y = −

∣∣∣∣∣∣∣∣
a1 d1 c1

a2 d2 c2

a3 d3 c3

∣∣∣∣∣∣∣∣
DET

z = −

∣∣∣∣∣∣∣∣
a1 b1 d1

a2 b2 d2

a3 b3 d3

∣∣∣∣∣∣∣∣
DET

.

If DET = 0 two of the planes, at least, are parallel. Let’s test these equations with
a simple example.

The planes shown in Fig. 10.38 have the following equations:

x+ y+ z−2 = 0
z = 0

y−1 = 0

2

Z

Y

X

k

P
i+j+k

2

2

j

Fig. 10.38 Three planes intersecting at a point P.
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therefore,

DET =

∣∣∣∣∣∣∣∣
1 1 1

0 0 1

0 1 0

∣∣∣∣∣∣∣∣
= −1

x = −

∣∣∣∣∣∣∣∣
−2 1 1

0 0 1

−1 1 0

∣∣∣∣∣∣∣∣
−1

= 1

y = −

∣∣∣∣∣∣∣∣
1 −2 1

0 0 1

0 −1 0

∣∣∣∣∣∣∣∣
−1

= 1

z = −

∣∣∣∣∣∣∣∣
1 1 −2

0 0 0

0 1 −1

∣∣∣∣∣∣∣∣
−1

= 0

which means that the intersection point is (1, 1, 0), which is correct.

X

n1

Y

Z

n2

a

Fig. 10.39 The angle between two planes is the angle between their surface normals.

10.9.2 Angle Between Two Planes

Calculating the angle between two planes is relatively easy and can be found by
taking the dot product of the planes’ normals. Figure 10.39 shows two planes with
α representing the angle between the two surface normals and n1 and n2.
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Let the plane equations be

ax1 +by1 + cz1 +d1 = 0
ax2 +by2 + cz2 +d2 = 0

therefore, the surface normals are

n1 = a1i+b1j+ c1k
n2 = a2i+b2j+ c2k.

Taking the dot product of n1 and n2:

n1 ·n2 = |n1| |n2|cosα

and

α = cos−1
(

n1 ·n2

|n1| |n2|

)
.

Figure 10.40 shows two planes with normal vectors n1 and n2.
The plane equations are

x+ y+ z−1 = 0

and
z = 0

therefore,
n1 = i+ j+k

1

Z

Y

X

1

1

n1

n2

α

Fig. 10.40 α is the angle between two planes.

and
n2 = k

therefore,
|n1| =

√
3 and |n2| = 1
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and

α = cos−1
(

1√
3

)
≈ 54.74◦.

10.9.3 Angle between a Line and a Plane

The angle between a line and a plane is calculated using a similar technique used for
calculating the angle between two planes. If the line equation employs a direction
vector, the angle is determined by taking the dot product of this vector and between
the plane’s normal. Figure 10.41 shows such a scenario where n is the plane’s sur-
face normal and v is the line’s direction vector.

If the plane equation is
ax+by+ cz+d = 0

then its surface normal is
n = ai+bj+ ck.

If the line’s direction vector is v and T (xT , yT , zT ) is a point on the line, then any
point on the line is given by the position vector p:

p = t+λv

therefore, we can write
n ·v = |n| |v|cosα

X

v

Y

Z

nT

t p

P
a

Fig. 10.41 α is the angle between the plane’s surface normal and the line’s direction vector.

and

α = cos−1
(

n ·v
|n| |v|

)
.

When the line is parallel to the plane n ·v = 0.
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1

Z

Y

X

1

1

a
n

Fig. 10.42 The required angle is between a and b.

As an example, consider the scenario illustrated in Fig. 10.42 where the plane
equation is

x+ y+ z−1 = 0

therefore, the surface normal is given by n:

n = i+ j+k

and the line’s direction vector is a:

a = i+ j

therefore,
|n| =

√
3 and |a| =

√
2

and

α = cos−1
(

2√
6

)
≈ 35.26◦.

10.9.4 Intersection of a Line with a Plane

Given a line and a plane, they will either intersect or are parallel. Either way, both
conditions can be found using some simple vector analysis, as shown in Fig. 10.43.
The objective is to identify a point P that is on the line and the plane. Let the plane
equation be

ax+by+ cz+d = 0

where
n = ai+bj+ ck.
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X

v

Y

Z

n

T

t p

P

Fig. 10.43 The vectors required to determine whether a line and plane intersect.

P is a point on the plane with position vector

p = xi+ yj+ zk

therefore,
n ·p+d = 0.

Let the line equation be
p = t+λv

where
t = xT i+ yT j+ zT k

and
v = xvi+ yvj+ zvk

therefore, the line and plane will intersect for some λ such that

n · (t+λv)+d = n · t+λn ·v+d = 0

therefore,

λ =
−(n · t+d)

n ·v
for the intersection point. The position vector for P is p = t+λv.

If n ·v = 0 the line and plane are parallel. Let’s test this result with the scenario
shown in Fig. 10.44.

Given the plane

x+ y+ z−1 = 0
n = i+ j+k

and the line
p = t+λv
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1

Z

Y

X

1

1

v

P (x, y, z)

n

T

Fig. 10.44 P identifies the point where a line intersects a plane.

where
t = 0

v = i+ j

then

λ =
−(1×0+1×0+1×0−1)

1×1+1×1+1×0
= 0.5

therefore, the point of intersection is P(0.5, 0.5, 0).

10.10 Summary

Mixing vectors with geometry is a powerful analytical tool, and helps us to solve
many problems associated with computer graphics, such as rendering, modelling,
collision detection and physically-based animation. Unfortunately, there has not
been space to investigate every topic, but hopefully, what has been covered, will
enable you to solve other problems with greater confidence.



Chapter 11
Barycentric Coordinates

11.1 Introduction

Cartesian coordinates are a fundamental concept in mathematics and are central to
computer graphics. Such rectangular coordinates are just offsets relative to some
origin. Other coordinate systems also exist such as polar, spherical and cylindrical
coordinates, and they, too, require an origin. Barycentric coordinates, on the other
hand, locate points relative to existing points, rather than to an origin and are known
as local coordinates. The German mathematician August Möbius (1790–1868) is
credited with their discovery.

‘barus’ is the Greek entomological root for ‘heavy’, and barycentric coordinates
were originally used for identifying the centre of mass of shapes and objects. It is
interesting to note that the prefixes ‘bari’, ‘bary’ and ‘baro’ have also influenced
other words such as baritone, baryon (heavy atomic particle) and barometer.

Although barycentric coordinates are used in geometry, computer graphics, rel-
ativity and global time systems, they do not appear to be a major topic in a typical
math syllabus. Nevertheless, they are important and I would like to describe what
they are and how they can be used in computer graphics.

The idea behind barycentric coordinates can be approached from different direc-
tions, and I have chosen mass points and linear interpolation. But before we begin
this analysis, it will be useful to investigate a rather elegant theorem known as Ceva’s
Theorem, which we will invoke later in this chapter.

11.2 Ceva’s Theorem

Giovanni Ceva (1647–1734) is credited with a theorem associated with the concur-
rency of lines in a triangle. It states that: In triangle ΔABC, the lines AA′, BB′ and
CC′, where A′, B′ and C′ are points on the opposite sides facing vertices A, B and C
respectively, are concurrent (intersect at a common point) if, and only if

J. Vince, Mathematics for Computer Graphics, Undergraduate Topics 207
in Computer Science, DOI 10.1007/978-1-84996-023-6 11,
c© Springer-Verlag London Limited 2010
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BA C ¢

C

P

A¢

B¢

Fig. 11.1 The geometry associated with Ceva’s Theorem.

BA C ¢

C

P

A¢

B ¢

S R

Fig. 11.2 The geometry for proving Ceva’s Theorem.

AC′

C′B
· BA′

A′C
· CB′

B′A
= 1.

Figure 11.1 shows such a scenario.
There are various ways of proving this theorem, (see Advanced Euclidean

Geometry by Alfred Posamentier) and perhaps the simplest proof is as follows.
Figure 11.2 shows triangle ΔABC with line AA′ extended to R and BB′ extended

to S, where line SR is parallel to line AB. The resulting geometry creates a number
of similar triangles:

ΔABA′ : ΔRCA′ ⇒ A′C
BA′ =

CR
AB

(11.1)

ΔABB′ : ΔCSB′ ⇒ B′A
CB′ =

AB
SC

(11.2)
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ΔBPC′ : ΔCSP ⇒ C′B
SC

=
C′P
PC

(11.3)

ΔAC′P : ΔRCP ⇒ AC′

CR
=

C′P
PC

. (11.4)

From (11.3) and (11.4) we get
C′B
SC

=
AC′

CR
which can be rewritten as

C′B
AC′ =

SC
CR

. (11.5)

The product of (11.1), (11.2) and (11.5) is

A′C
BA′ ·

B′A
CB′ ·

C′B
AC′ =

CR
AB

· AB
SC

· SC
CR

= 1. (11.6)

Rearranging the terms of (11.6) we get

AC′

C′B
· BA′

A′C
· CB′

B′A
= 1

which is rather an elegant relationship.

11.3 Ratios and Proportion

Central to barycentric coordinates are ratios and proportion, so let’s begin by revis-
ing some fundamental formulae used in calculating ratios.

Imagine the problem of dividing £100 between two people in the ratio 2 : 3. The
solution lies in the fact that the money is divided into five parts (2 + 3), where two
parts go to one person and three parts to the other person. In this case, one person
receives £40 and the other £60. At a formal level, we can describe this as follows.

A scalar A can be divided into the ratio r : s using the following expressions:

r
r + s

A and
s

r + s
A.

Note that r
r + s

+
s

r + s
= 1

and
1− r

r + s
=

s
r + s

.

Furthermore, the above formulae can be extended to incorporate any number of ratio
divisions. For example, A can be divided into the ratio r : s : t by the following:

r
r + s+ t

A,
s

r + s+ t
A and

t
r + s+ t

A
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similarly,
r

r + s+ t
+

s
r + s+ t

+
t

r + s+ t
= 1.

These expressions are very important as they show the emergence of barycentric
coordinates. For the moment, though, just remember their structure and we will
investigate some ideas associated with balancing weights.

mA mB

Fig. 11.3 Two masses fixed at the ends of a massless rod.

mA

xA

x – xA

xB

xB – x

x

A B

mB
mA + mB

Fig. 11.4 The geometry used for equating turning moments.

11.4 Mass Points

We begin by calculating the centre of mass – the centroid – of two masses. Consider
the scenario shown in Fig. 11.3 where two masses mA and mB are placed at the ends
of a massless rod.

If mA = mB a state of equilibrium is achieved by placing the fulcrum mid-way
between the masses. If the fulcrum is moved towards mA, mass mB will have a
turning advantage and the rod rotates clockwise.

To calculate a state of equilibrium for a general system of masses, consider the
geometry illustrated in Fig. 11.4, where two masses mA and mB are positioned xA
and xB at A and B respectively. When the system is in balance we can replace the
two masses by a single mass mA +mB at the centroid denoted by x̄ .

A balance condition arises when the LHS turning moment equals the RHS turn-
ing moment. The turning moment being the product of a mass by its offset from the
fulcrum. Equating turning moments, equilibrium is reached when

mB(xB − x̄) = mA(x̄− xA)
mBxB −mBx̄ = mAx̄−mAxA

(mA +mB)x̄ = mAxA +mBxB

x̄ =
mAxA +mBxB

mA +mB
=

mA

mA +mB
xA +

mB

mA +mB
xB. (11.7)
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For example, if mA = 6 and mB = 12, and positioned at xA = 0 and xB = 12
respectively, the centroid is located at

x̄ =
6

18
×0+

12
18

×12 = 8.

Thus we can replace the two masses by a single mass of 18 located at x̄ = 8.
Note that the terms in (11.7) mA/(mA + mB) and mB/(mA + mB) sum to 1 and

are identical to those used above for calculating ratios. They are also called the
barycentric coordinates of x̄ relative to the points A and B.

Using the general form of (11.7) any number of masses can be analysed using

x̄ =

n
∑

i=1
mixi

n
∑

i=1
mi

where mi is a mass located at xi. Furthermore, we can compute the y-component of
the centroid ȳ using

ȳ =

n
∑

i=1
miyi

n
∑

i=1
mi

and in 3D the z-component of the centroid z̄ is

z̄ =

n
∑

i=1
mizi

n
∑

i=1
mi

.

To recap, (11.7) states that

x̄ =
mA

mA +mB
xA +

mB

mA +mB
xB

therefore, we can write

ȳ =
mA

mA +mB
yA +

mB

mA +mB
yB

which allows us to state

P̄ =
mA

mA +mB
A+

mB

mA +mB
B

where A and B are the position vectors for the mass locations A and B respectively,
and P̄ is the position vector for the centroid P̄.

If we extend the number of masses to three: mA, mB and mC, which are organized
as a triangle, then we can write
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mC

mA mBA B

C

a
b

c

A¢

B ¢

C ¢

P

Fig. 11.5 The geometry used for equating turning moments.

P̄ =
mA

mA +mB +mC
A+

mB

mA +mB +mC
B+

mC

mA +mB +mC
C. (11.8)

The three multipliers of A, B and C are the barycentric coordinates of P̄ relative
to the points A, B and C. Note that the number of coordinates is not associated
with the number of spatial dimensions, but the number of reference points. Now
consider the scenario shown in Fig. 11.5. If mA = mB = mC then we can determine
the location of A′, B′ and C′ as follows:

A

B C1
2a

bc

A�
1
2

a
mB mC

mA

Fig. 11.6 Balancing the triangle along AA′.

1. We begin by placing a fulcrum under A mid-way along BC as shown in Fig. 11.6.
The triangle will balance because mB = mC and A′ is 1

2 a from C and 1
2 a from B.

2. Now we place the fulcrum under B mid-way along CA as shown in Fig. 11.7.
Once more the triangle will balance, because mC = mA and B′ is 1

2 b from C and
1
2 b from A.

3. Finally, we do the same for C and AB. Figure 11.8 shows the final scenario.

Ceva’s Theorem confirms that the medians AA′, BB′ and CC′ are concurrent at P̄
because

AC′

C′B
· BA′

A′C
· CB′

B′A
=

1
2 c
1
2 c

·
1
2 a
1
2 a

·
1
2 b
1
2 b

= 1.
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mC A

B

C

1
2
a

c

B'

1
2 a

A�

1
2 b 1

2 b

mB

mA

Fig. 11.7 Balancing the triangle along BB′.

mA mB

mC

A B

C

A¢B ¢

C ¢

P

1
2
a

1
2
a

1
2
b

1
2
b

1
2
c 1

2
cmA + mB

Fig. 11.8 P̄ is the centroid of the triangle.

Arbitrarily, we select the median C′C. At C′ we have an effective mass of mA + mB
and mC at C. For a balance condition

(mA +mB)×C′P̄ = mC × P̄C

and as the masses are equal, C′P̄ must be 1
3 along the median C′C.

If we use (11.8) we obtain

P̄ =
1
3

A+
1
3

B+
1
3

C

which locates the coordinates of the centroid correctly.
Now let’s consider another example where mA = 1, mB = 2 and mC = 3, as shown

in Fig. 11.9. For a balance condition A′ must be 3
5 a from B and 2

5 a from C. Equally,
B′ must be 1

4 b from C and 3
4 b from A. Similarly, C′ must be 2

3 c from A and 1
3 c

from B.
Ceva’s Theorem confirms that the lines AA′, BB′ and CC′ are concurrent at P̄

because
AC′

C′B
· BA′

A′C
· CB′

B′A
=

2
3 c
1
3 c

·
3
5 a
2
5 a

·
1
4 b
3
4 b

= 1.
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1 2

3

A B

C

A¢

B ¢

C ¢

P

1
4
b

2
5
a

3
4
b

2
3
c 1

3
c

3
5
a

Fig. 11.9 How the masses determine the positions of A′, B′ and C′.

mA

mC

A B

C

A'B'

C'

P

mA

mB

mA + mC

mC

mB + mC

mC

mA + mC

mB

mA + mB

mA

mA + mB

mB

mB + mC

mA + mB

Fig. 11.10 How the masses determine the positions of A′, B′ and C′.

Arbitrarily select C′C. At C′ we have an effective mass of 3 (1+2) and 3 at C, which
means that for a balance condition P̄ is mid-way along C′C. Similarly, P̄ is 1

6 along
A′A and 1

3 along B′B.
Once more, using (11.8) in this scenario we obtain

P̄ =
1
6

A+
1
3

B+
1
2

C.

Note that the multipliers of A, B and C are identical to the proportions of P̄ along
A′A, B′B and C′C. Let’s prove why this is so.

Figure 11.10 shows three masses with the triangle’s sides divided into their vari-
ous proportions to derive P̄.

On the line A′A we have mA at A and effectively mB +mC at A′, which means that
P̄ divides A′A in the ratio mA/(mA +mB +mC) : (mB +mC)/(mA +mB +mC).

On the line B′B we have mB at B and effectively mA +mC at B′, which means that
P̄ divides B′B in the ratio mB/(mA +mB +mC) : (mA +mC)/(mA +mB +mC).
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Similarly, on the line C′C we have mC at C and effectively mA +mB at C′, which
means that P̄ divides C′C in the ratio mC/(mA + mB + mC) : (mA + mB)/(mA +
mB +mC).

To summarize, given three masses mA, mB and mC located at A, B and C respec-
tively, the centroid P̄ is given by

P̄ =
mA

mA +mB +mC
A+

mB

mA +mB +mC
B+

mC

mA +mB +mC
C. (11.9)

If we accept that mA, mB and mC can have any value, including zero, then the
barycentric coordinates of P̄ will be affected by these values. For example, if
mB = mC = 0 and mA = 1, then P̄ will be located at A with barycentric coordi-
nates (1,0,0). Similarly, if mA = mC = 0 and mB = 1, then P̄ will be located at B
with barycentric coordinates (0,1,0). And if mA = mB = 0 and mC = 1, then P̄ will
be located at C with barycentric coordinates (0,0,1).

XZ

Y

4

8
12

24

x

y

z

Fig. 11.11 Three masses can be represented by a single mass located at the centroid.

Now let’s examine a 3D example as illustrated in Fig. 11.11. The figure shows
three masses 4, 8 and 12 and their equivalent mass 24 located at (x̄, ȳ, z̄).

Table 11.1 The magnitude and coordinates of three masses

mi ti xi yi zi tixi tiyi tizi

12 1
2 8 6 2 4 3 1

8 1
3 2 3 3 2

3 1 1

4 1
6 2 6 6 1

3 1 1

x̄ = 5 ȳ = 5 z̄ = 3

The magnitude and coordinates of three masses are shown in Table 11.1, together
with the barycentric coordinate ti. The column headed ti expresses the masses as
fractions of the total mass: i.e.,

ti =
mi

m1 +m2 +m3

and we see that the centroid is located at (5, 5, 3).
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Having discovered barycentric coordinates in weight balancing, let’s see how
they emerge in linear interpolation.

11.5 Linear Interpolation

Suppose that we wish to find a value mid-way between two scalars A and B. We
could proceed as follows:

V = A+
1
2
(B−A)

= A+
1
2

B− 1
2

A

V =
1
2

A+
1
2

B

which seems rather obvious. Similarly, to find a value one-third between A and B,
we can write

V = A+
1
3
(B−A)

= A+
1
3

B− 1
3

A

V =
2
3

A+
1
3

B.

Generalizing, to find some fraction t between A and B we can write

V = (1− t)A+ tB. (11.10)

For example, to find a value 3
4 between 10 and 18 we have

V = (1− 3
4
)×10+

3
4
×18 = 16.

Although this is a trivial formula, it is very useful when interpolating between two
numerical values. Let us explore (11.10) in greater detail.

To begin with, it is worth noting that the multipliers of A and B sum to 1:

(1− t)+ t = 1.

Rather than using (1− t) as a multiplier, it is convenient to make a substitution such
as s = 1− t, and we have

V = sA+ tB

where
s = 1− t
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and
s+ t = 1.

Equation (11.10) is called a linear interpolant as it linearly interpolates between
A and B using the parameter t. It is also known as a lerp. The terms s and t are the
barycentric coordinates of V as they determine the value of V relative to A and B.

Now let’s see what happens when we substitute coordinates for scalars. We start
with 2D coordinates A(xA,yA) and B(xB,yB), and position vectors A, B and C and
the following linear interpolant

V = sA+ tB

where
s = 1− t

and
s+ t = 1

then

xV = sxA + txB

yV = syA + tyB.

Figure 11.12 illustrates what happens when t varies between 0 and 1.

B

X

Y

A

V

xBxVxA

yA

yV

yB

t = 0

t = 1

Fig. 11.12 The position of V slides between A and B as t varies between 0 and 1.

The point V slides along the line connecting A and B. When t = 0, V is coincident
with A, and when t = 1, V is coincident with B. The reader should not be surprised
that the same technique works in 3D.

Now let’s extend the number of vertices to three in the form of a triangle as shown
in Fig. 11.13. This time we will use r, s and t to control the interpolation. We would
start as follows:
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X

Y

xCxBxVxA

yB

yA

yV

yC
t = 1

r = 1

s = 1

V

C

B

A

Fig. 11.13 The position of V moves between A, B and C depending on the value r, s and t.

V = rA+ sB+ tC

where A, B and C are the position vectors for A, B and C respectively, and V is the
position vector for the point V .

Let
r = 1− s− t

and
r + s+ t = 1.

Once more, we begin with 2D coordinates A(xA,yA), B(xB,yB) and C(xC,yC) where

xV = rxA + sxB + txC

yV = ryA + syB + tyC.

When

r = 1, V is coincident with A;
s = 1, V is coincident with B;
t = 1, V is coincident with C.

Similarly, when

r = 0, V is located on the edge BC;
s = 0, V is located on the edge CA;
t = 0, V is located on the edge AB.

For all other values of r, s and t, where r + s + t = 1 and 0 ≤ r,s, t ≤ 1, V is inside
triangle ΔABC, otherwise it is outside the triangle.

The triple (r,s, t) are barycentric coordinates and locate points relative to A, B
and C, rather than an origin. For example, the barycentric coordinates of A, B and C
are (1,0,0), (0,1,0) and (0,0,1) respectively.

All of the above formulae work equally well in three dimensions, so let’s in-
vestigate how barycentric coordinates can locate points inside a 3D triangle. How-
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ever, before we start, let’s clarify what we mean by inside a triangle. Fortunately,
barycentric coordinates can distinguish points within the triangle’s three sides;
points coincident with the sides; and points outside the triangle’s boundary. The
range and value of the barycentric coordinates provide the mechanism for detecting
these three conditions.

Figure 11.14 illustrates a scenario with the points P1(x1,y1,z1), P2(x2,y2,z2) and
P3(x3,y3,z3). Using barycentric coordinates we can state that any point P0(x0,y0,z0)
inside or on the edge of triangle ΔP1P2P3 is defined by

x0 = rx1 + sx2 + tx3

y0 = ry1 + sy2 + ty3

z0 = rz1 + sz2 + tz3

where r + s+ t = 1 and 0 ≤ r,s, t,≤ 1.
If the triangle’s vertices are P1(0,2,0), P2(0,0,4) and P3(3,1,2) then we can

choose different values of r, s and t to locate P0 inside the triangle. However, I would
also like to confirm that P0 lies on the plane containing the three points. To do this
we require the plane equation for the three points, which can be derived as follows.

Given P1(x1,y1,z1), P2(x2,y2,z2) and P(x3,y3,z3), and the target plane equation
ax+by+ cz+d = 0, then

a =

∣∣∣∣∣∣∣∣
1 y1 z1

1 y2 z2

1 y3 z3

∣∣∣∣∣∣∣∣

X

Y

Z

P1

P2

P0

P3

Fig. 11.14 A 3D triangle.

b =

∣∣∣∣∣∣∣∣
x1 1 z1

x2 1 z2

x3 1 z3

∣∣∣∣∣∣∣∣
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c =

∣∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣
d = −(ax1 +by1 + cz1)

thus

a =

∣∣∣∣∣∣∣∣
1 2 0

1 0 4

1 1 2

∣∣∣∣∣∣∣∣
= 0

b =

∣∣∣∣∣∣∣∣
0 1 0

0 1 4

3 1 2

∣∣∣∣∣∣∣∣
= 12

c =

∣∣∣∣∣∣∣∣
0 2 1

0 0 1

3 1 1

∣∣∣∣∣∣∣∣
= 6

d = −24

therefore, the plane equation is

12y+6z = 24. (11.11)

If we substitute a point (x0,y0,z0) in the LHS of (11.11) and obtain a value of 24,
then the point is on the plane.

Table 11.2 shows various values of r, s and t, and the corresponding position
of P0. The table also confirms that is always on the plane containing the three points.
Now we are in a position to test whether a point is inside, on the boundary or outside
a 3D triangle.

Table 11.2 The barycentric coordinates of P0

r s t x0 y0 z0 12y0 +6z0

1 0 0 0 2 0 24

0 1 0 0 0 4 24

0 0 1 3 1 2 24
1
4

1
4

1
2 1 1

2 1 2 24

0 1
2

1
2 1 1

2
1
2 3 24

1
2

1
2 0 0 1 2 24

1
3

1
3

1
3 1 1 2 24
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We begin by writing the three simultaneous equations defining P0 in matrix form
⎡
⎢⎢⎣

x0

y0

z0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1 x2 x3

y1 y2 y3

z1 z2 z3

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

r

s

t

⎤
⎥⎥⎦

therefore,

r∣∣∣∣∣∣∣∣
x0 x2 x3

y0 y2 y3

z0 z2 z3

∣∣∣∣∣∣∣∣

=
s∣∣∣∣∣∣∣∣

x1 x0 x3

y1 y0 y3

z1 z0 z3

∣∣∣∣∣∣∣∣

=
t∣∣∣∣∣∣∣∣

x1 x2 x0

y1 y2 y0

z1 z2 z0

∣∣∣∣∣∣∣∣

=
1∣∣∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣
and

r =

∣∣∣∣∣∣∣∣
x0 x2 x3

y0 y2 y3

z0 z2 z3

∣∣∣∣∣∣∣∣
DET

s =

∣∣∣∣∣∣∣∣
x1 x0 x3

y1 y0 y3

z1 z0 z3

∣∣∣∣∣∣∣∣
DET

t =

∣∣∣∣∣∣∣∣
x1 x2 x0

y1 y2 y0

z1 z2 z0

∣∣∣∣∣∣∣∣
DET

DET =

∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣
.

Using the three points P1(0,2,0), P2(0,0,4), P3(3,1,2) and arbitrary positions
of P0, the values of r, s and t identify whether P0 is inside or outside triangle ΔABC.
For example, the point P0(0,2,0) is a vertex and is classified as being on the bound-
ary. To confirm this we calculate r, s and t, and show that r + s+ t = 1:

DET =

∣∣∣∣∣∣∣∣
0 0 3

2 0 1

0 4 2

∣∣∣∣∣∣∣∣
= 24
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r =

∣∣∣∣∣∣∣∣
0 0 3

2 0 1

0 4 2

∣∣∣∣∣∣∣∣
24

= 1

s =

∣∣∣∣∣∣∣∣
0 0 3

2 2 1

0 0 2

∣∣∣∣∣∣∣∣
24

= 0

t =

∣∣∣∣∣∣∣∣
0 0 0

2 0 2

0 4 0

∣∣∣∣∣∣∣∣
24

= 0

therefore r+s+t = 1, but both s and t are zero which confirms that the point (0,2,0)
is on the boundary. In fact, as both coordinates are zero it confirms that the point is
located on a vertex.

Now let’s deliberately choose a point outside the triangle. For example, P0(4,0,3)
is outside the triangle, which is confirmed by the corresponding values of r, s and t:

r =

∣∣∣∣∣∣∣∣
4 0 3

0 0 1

3 4 2

∣∣∣∣∣∣∣∣
24

= −2
3

s =

∣∣∣∣∣∣∣∣
0 4 3

2 0 1

0 3 2

∣∣∣∣∣∣∣∣
24

=
3
4

t =

∣∣∣∣∣∣∣∣
0 0 4

2 0 0

0 4 3

∣∣∣∣∣∣∣∣
24

=
4
3

therefore,

r + s+ t = −2
3

+
3
4

+
4
3

= 1
5

12
which confirms that the point (4,0,3) is outside the triangle. Note that r < 0 and
t > 1, which individually confirm that the point is outside the triangle’s boundary.
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A

B

C

D

Fig. 11.15 A concave polygon.

11.6 Convex Hull Property

We have already shown that it is possible to determine whether a point is inside or
outside a triangle. But remember that triangles are always convex. So can we test
whether a point is inside or outside any polygon? Well the answer is no, unless the
polygon is convex. The reason for this can be understood by considering the concave
polygon shown in Fig. 11.15.

If we use barycentric coordinates to define a point P0 as

P0 = rA+ sB+ tC+uD

where r + s + t + u = 1. When t = 0, P0 can exist anywhere inside triangle ΔABD.
Thus, if any vertex creates a concavity, it will be ignored by barycentric coordinates.

11.7 Areas

Barycentric coordinates are also known as areal coordinates due to their area divid-
ing properties. For example, in Fig. 11.16 the areas of the three internal triangles are
in proportion to the barycentric coordinates of the point P.

To prove this, let P have barycentric coordinates

P = rA+ sB+ tC

where
r + s+ t = 1

and
0 ≤ (r,s, t) ≤ 1.

If we use the notation areaΔABC to represent the area of the triangle formed
from the vertices A, B and C then areaΔABC equals the sum of the areas of the
smaller triangles:

areaΔABC = areaΔABP+areaΔBCP+areaΔCAP.
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A B

C

P

rDABCsDABC

tDABC

Fig. 11.16 The areas of the internal triangles are directly proportional to the barycentric coordi-
nates of P.

But the area of any triangle ΔP1P2P3 equals

areaΔP1P2P3 =
1
2

∣∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣
therefore,

areaΔABP =
1
2

∣∣∣∣∣∣∣∣
xA yA 1

xB yB 1

xP yP 1

∣∣∣∣∣∣∣∣
but

xP = rxA + sxB + txC

and
yP = ryA + syB + tyC

therefore,

areaΔABP =
1
2

∣∣∣∣∣∣∣∣
xA yA 1

xB yB 1

rxA + sxB + txC ryA + syB + tyC 1

∣∣∣∣∣∣∣∣
which expands to

areaΔABP =
1
2

[
xAyB + rxByA + sxByB + txByC + rxAyA + sxByA + txCyA−
rxAyA − sxAyB − txAyC − xByA − rxAyB − sxByB − txCyB

]

=
1
2

[
xAyB − xByA + r(xByA − xAyB)+ s(xByA − xAyB)+

t(xByC − xCyB)+ t(xCyA − xAyC)

]
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=
1
2

[
xAyB − xByA +(1− t)(xByA − xAyB)+ t(xByC − xCyB)+

t(xCyA − xAyC)

]

=
1
2
[−txByA + txAyB + txByC − txCyB + txCyA − txAyC]

and simplifies to

areaΔABP =
1
2

t

∣∣∣∣∣∣∣∣
xA yA 1

xB yB 1

xC yC 1

∣∣∣∣∣∣∣∣
= t ×areaΔABC

therefore,

t =
areaΔABP
areaΔABC

similarly,

areaΔBCP =
1
2

r

∣∣∣∣∣∣∣∣
xA yA 1

xB yB 1

xC yC 1

∣∣∣∣∣∣∣∣
= r×areaΔABC

r =
areaΔBCP
areaΔABC

and

areaΔCAP =
1
2

s

∣∣∣∣∣∣∣∣
xA yA 1

xB yB 1

xC yC 1

∣∣∣∣∣∣∣∣
= s×areaΔABC

s =
areaΔCAP
areaΔABC

.

Thus, we see that the areas of the internal triangles are directly proportional to the
barycentric coordinates of P.

This is quite a useful relationship and can be used to resolve various geometric
problems. For example, let’s use it to find the radius and centre of the inscribed
circle for a triangle. We could approach this problem using classical Euclidean ge-
ometry, but barycentric coordinates provide a powerful analytical tool for resolving
the problem very quickly. Consider triangle ΔABC with sides a, b and c as shown in
Fig. 11.17. The point P is the centre of the inscribed circle with radius R. From our
knowledge of barycentric coordinates we know that

P = rA+ sB+ tC
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A B

C

P

R

c

b
a

Fig. 11.17 The inscribed circle in triangle ΔABC.

where
r + s+ t = 1. (11.12)

We also know that the area properties of barycentric coordinates permit us to state

areaΔBCP = r×areaΔABC =
1
2

aR

areaΔCAP = s×areaΔABC =
1
2

bR

areaΔABP = t ×areaΔABC =
1
2

cR

therefore,

r =
aR

2×areaΔABC
s =

bR
2×areaΔABC

t =
cR

2×areaΔABC

substituting r, s and t in (11.12) we get

R
2×areaΔABC

(a+b+ c) = 1

and
R =

2×areaΔABC
(a+b+ c)

.

Substituting R in the definitions of r, s and t we obtain

r =
a

a+b+ c
s =

b
a+b+ c

t =
c

a+b+ c

and

xP = rxA + sxB + txC

yP = ryA + syB + tyC.
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To test this solution, consider the right-angled triangle in Fig. 11.18, where a =√
200, b = 10, c = 10 and areaΔABC = 50. Therefore

R =
2×50

10+10+
√

200
≈ 2.929

and

r =
√

200
34.1421

≈ 0.4142 s =
10

34.1421
≈ 0.2929 t =

10
34.1421

≈ 0.2929

therefore,

xP = 0.4142×0+0.2929×10+0.2929×0 ≈ 2.929
yP = 0.4142×0+0.2929×0+0.2929×0 ≈ 2.929.

Therefore, the inscribed circle has a radius of 2.929 and a centre with coordinates
(2.929,2.929).

Let’s explore another example where we determine the barycentric coordinates
of a point using virtual mass points.

10 X

R

10

Y

200

(xP,yP)

Fig. 11.18 The inscribed circle for a triangle.

Figure 11.19 shows triangle ΔABC where A′, B′ and C′ divide BC, CA and AB
respectively, in the ratio 1 : 2. The objective is to find the barycentric coordinates of
D, E and F , and the area of triangle ΔDEF as a proportion of triangle ΔABC.

We can approach the problem using mass points. For example, if we assume D is
the centroid, all we have to do is determine the mass points that create this situation.
Then the barycentric coordinates of D are given by (11.8). We proceed as follows.

The point D is on the intersection of lines CC′ and AA′. Therefore, we begin by
placing a mass of 1 at C. Then, for line BC to balance at A′ a mass of 2 must be
placed at B. Similarly, for line AB to balance at C′ a mass of 4 must be placed at A.
This configuration is shown in Fig. 11.20.
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1

A B

C

C ¢

A¢

B ¢

1

1

2

2

2

D

E

F

Fig. 11.19 Triangle ΔABC with sides divided in the ratio 1 : 2.

A B

C

C ¢

A¢

1

1

2

2

D

4 2

1

Fig. 11.20 The masses assigned to A, B and C to determine D.

The total mass is 7 = (1+2+4), therefore,

D =
4
7

A+
2
7

B+
1
7

C.

The point E is on the intersection of lines BB′ and AA′. Therefore, we begin by
placing a mass of 1 at A. Then, for line CA to balance at B′ a mass of 2 must be
placed at C. Similarly, for line BC to balance at A′ a mass of 4 must be placed at B.
This configuration is shown in Fig. 11.21. The total mass is still 7, therefore,

E =
1
7

A+
4
7

B+
2
7

C.

From the symmetry of the triangle we can state that

F =
2
7

A+
1
7

B+
4
7

C.

Thus we can locate the points and using the vector equations
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1

A B

C

A¢

B ¢

1

2

2
E

1 4

2

Fig. 11.21 The masses assigned to A, B and C to determine E.

A B

C

C ¢

A¢

1

1

3

3

D

9 3

1

Fig. 11.22 The masses assigned to A, B and C to determine D.

D =
4
7

A+
2
7

B+
1
7

C

E =
1
7

A+
4
7

B+
2
7

C

F =
2
7

A+
1
7

B+
4
7

C.

The important feature of these equations is that the barycentric coordinates of D, E
and F are independent of A, B and C they arise from the ratio used to divide the
triangle’s sides.

Although it was not the original intention, we can quickly explore what the
barycentric coordinates of D, E and F would be if the triangle’s sides had been
1 : 3 instead of 1 : 2. Without repeating all of the above steps, we would proceed as
follows.

The point D is on the intersection of lines CC′ and AA′. Therefore, we begin by
placing a mass of 1 at C. Then, for line BC to balance at A′ a mass of 3 must be
placed at B. Similarly, for line AB to balance at C′ a mass of 9 must be placed at
A. This configuration is shown in Fig. 11.22. The total mass is 13 = (1 + 3 + 9),
therefore,
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D =
9
13

A+
3
13

B+
1

13
C

E =
1
13

A+
9
13

B+
3

13
C

F =
3
13

A+
1
13

B+
9

13
C.

We could even develop the general equations for a ratio 1 : n. It is left to the reader
to show that

D =
n2

n2 +n+1
A+

n
n2 +n+1

B+
1

n2 +n+1
C

E =
1

n2 +n+1
A+

n2

n2 +n+1
B+

n
n2 +n+1

C

F =
n

n2 +n+1
A+

1
n2 +n+1

B+
n2

n2 +n+1
C.

As a quick test for the above equations, let n = 1, which make D, E and F con-
current at the triangle’s centroid:

D =
1
3

A+
1
3

B+
1
3

C

E =
1
3

A+
1
3

B+
1
3

C

F =
1
3

A+
1
3

B+
1
3

C

which is rather reassuring!
Now let’s return to the final part of the problem and determine the area of triangle

ΔDEF in terms of ΔABC. The strategy is to split triangle ΔABC into four triangles:
ΔBCF , ΔCAD, ΔABE and ΔDEF as shown in Fig. 11.23.

Therefore,

areaΔABC = areaΔBCF +areaΔCAD+areaΔABE +areaΔDEF

1

A B

C

C'

A¢

B¢

1

1

2

2

2

D

E

F

Fig. 11.23 Triangle ΔABC divides into four triangles ΔABE, ΔBCF , ΔCAD and ΔDEF .



11.7 Areas 231

and

1 =
areaΔBCF
areaΔABC

+
areaΔCAD
areaΔABC

+
areaΔABE
areaΔABC

+
areaΔDEF
areaΔABC

(11.13)

But we have just discovered that the barycentric coordinates are intimately con-
nected with the ratios of triangles. For example, if F has barycentric coordinates
(rF ,sF , tF) relative to the points A, B and C respectively, then

rF =
areaΔBCF
areaΔABC

.

And if D has barycentric coordinates (rD,sD, tD) relative to the points A, B and C
respectively, then

sD =
areaΔCAD
areaΔABC

.

Similarly, if E has barycentric coordinates (rE ,sE , tE) relative to the points A, B
and C respectively, then

tE =
areaΔABE
areaΔABC

.

Substituting rF , sE and tD in (11.7) we obtain

1 = rF + sD + tE +
areaΔDEF
areaΔABC

.

From (11.12) we see that

rF =
2
7

sD =
2
7

tE =
2
7

therefore,

1 =
6
7

+
areaΔDEF
areaΔABC

and
areaΔDEF =

1
7

areaΔABC

which is rather neat!
But just before we leave this example, let’s state a general expression for the

areaΔDEF for a triangle whose sides are divided in the ratio 1 : n Once again, I’ll
leave it to the reader to prove that

areaΔDEF =
n2 −2n+1
n2 +n+1

×areaΔABC.

Note that when n = 1, areaΔDEF = 0, which is correct.
[Hint: The corresponding values of rF , sD and tE are n/(n2 +n+1).]
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P1

X

Y

Z

P2

P3

P

v1
v2

v3

p

Fig. 11.24 A tetrahedron.

11.8 Volumes

We have now seen that barycentric coordinates can be used to locate a scalar within
a 1D domain, a point within a 2D area, so it seems logical that the description should
extend to 3D volumes, which is the case.

To demonstrate this, consider the tetrahedron shown in Fig. 11.24. The volume
of a tetrahedron is give by

V =
1
6

∣∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣
where [x1 y1 z1]T , [x2 y2 z2]T and [x3 y3 z3]T are the three vectors extending from the
fourth vertex to the other three vertices. However, if we locate the fourth vertex at
the origin, (x1,y1,z1), (x2,y2,z2) and (x3,y3,z3) become the coordinates of the three
vertices.

Let’s locate a point P(xP,yP,zP) inside the tetrahedron with the following
barycentric definition

P = rP1 + sP2 + tP3 +uP4 (11.14)

where P, P1, P2 and P4 are the position vectors for P, P1, P2, P3 and P4 respectively.
The fourth barycentric term uP4 can be omitted as P4 has coordinates (0,0,0).

Therefore, we can state that the volume of the tetrahedron formed by the three
vectors P, P2 and P3 is given by

V =
1
6

∣∣∣∣∣∣∣∣
xP yP zP

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣
. (11.15)
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Substituting (11.14) in (11.15) we obtain

V =
1
6

∣∣∣∣∣∣∣∣
rx1 + sx2 + tx3 ry1 + sy2 + ty3 rz1 + sz2 + tz3

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣
(11.16)

which expands to

V =
1
6

∣∣∣∣∣
y2z3(rx1 + sx2 + tx3)+ x2y3(rz1 + sz2 + tz3)+ x3z2(ry1 + sy2 + ty3)

−y3z2(rx1 + sx2 + tx3)− x3y2(rz1 + sz2 + tz3)− x2z3(ry1 + sy2 + ty3)

∣∣∣∣∣

=
1
6

∣∣∣∣∣∣∣∣
r(x1y2z3 + x2y3z1 + x3y1z2 − x1y3z2 − x3y2z1 − x2y1z3)

+s(x2y2z3 + x2y3z2 + x3y1z2 − x2y3z2 − x3y1z2 − x2y2z3)

+t(x3y2z3 + x2y3z3 + x3y3z2 − x3y3z2 − x3y2z3 − x2y3z3)

∣∣∣∣∣∣∣∣
and simplifies to

V =
1
6

r

∣∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣
.

This states that the volume of the smaller tetrahedron is r times the volume of the
larger tetrahedron VT , where r is the barycentric coordinate modifying the vertex
not included in the volume. By a similar process we can develop volumes for the
other tetrahedra:

V (P,P2P4,P3) = rVT

V (P,P1P3,P4) = sVT

V (P,P1P2,P4) = tVT

V (P,P1P2,P3) = uVT

where r + s+ t +u = 1.
Similarly, the barycentric coordinates of a point inside the volume sum to unity.
Let’s test the above statements with an example. Figure 11.25 shows a tetrahe-

dron and a point P( 1
3 , 1

3 , 1
3 ) located within its interior.

The volume of the tetrahedron VT is

VT =
1
6

∣∣∣∣∣∣∣∣
0 0 1

1 0 0

0 1 0

∣∣∣∣∣∣∣∣
=

1
6
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r =
V (P,P2,P4,P3)

VT
=

6
6

∣∣∣∣∣∣∣∣

2
3 − 1

3 − 1
3

− 1
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

∣∣∣∣∣∣∣∣
=

1
3

s =
V (P,P1,P3,P4)

VT
=

6
6

∣∣∣∣∣∣∣∣
− 1

3 − 1
3

2
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3 − 1
3

∣∣∣∣∣∣∣∣
=

1
3

t =
V (P,P1,P2,P4)

VT
=

6
6

∣∣∣∣∣∣∣∣
− 1

3 − 1
3

2
3

2
3 − 1

3 − 1
3

− 1
3 − 1

3 − 1
3

∣∣∣∣∣∣∣∣
=

1
3

u =
V (P,P1,P2,P3)

VT
=

6
6

∣∣∣∣∣∣∣∣
− 1

3 − 1
3

2
3

2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

∣∣∣∣∣∣∣∣
= 0.

The barycentric coordinates (r,s, t,u) confirm that the point is located at the centre
of triangle ΔP1P2P3. Note that the above determinants will create a negative volume
if the vector sequences are reversed.

11.9 Bézier Curves and Patches

In Chapter 9 we examined Bézier curves and surface patches which are based on
Bernstein polynomials:

Bn
i (t) =

(
n
i

)
ti(1− t)n−i.

We discovered that these polynomials create the quadratic terms

(1− t)2 2t(1− t) t2

and the cubic terms

(1− t)3 3t(1− t)2 3t2(1− t) t3

which are used as scalars to multiply sequences of control points to create a para-
metric curve. Furthermore, these terms sum to unity, therefore they are also another
form of barycentric coordinates. The only difference between these terms and the
others described above is that they are controlled by a common parameter t. Another
property of Bézier curves and patches is that they are constrained within the convex
hull formed by the control points, which is also a property of barycentric coordi-
nates.
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11.10 Summary

To summarize, barycentric coordinates are regularly used to determine:

1. How a value is divided into various ratios. For example, a scalar A is divided
into the ratios r : s : t using

r
r + s+ t

A,
s

r + s+ t
A,

t
r + s+ t

A.

2. The mid-point between two points A and B:

P =
1
2

A+
1
2

B.

3. The centroid of triangle ΔABC:

P̄ =
1
3

A+
1
3

B+
1
3

C.

4. A point on a line through two points A and B:

P = (1− t)A+ tB.

5. Whether a point is inside or outside triangle ΔABC:

P = rA+ sB+ tC.

P is inside or on the boundary of triangle ΔABC when 0 ≤ (r,s, t) ≤ 1,
otherwise it is outside.

6. Whether a point is inside a tetrahedron (P1,P2,P3,P4):

P = rP1 + sP2 + tP3 +uP4.

P is inside the tetrahedron when 0 ≤ r,s, t,u ≤ 1, otherwise it is outside.
7. Centres of gravity:

x̄ = ∑n
i=1 mixi

∑n
i=1 mi

ȳ = ∑n
i=1 miyi

∑n
i=1 mi

z̄ = ∑n
i=1 mizi

∑n
i=1 mi

where mi is a mass located at Pi.





Chapter 12
Geometric Algebra

12.1 Introduction

This can only be a brief introduction to geometric algebra as the subject really
demands an entire book. Those readers who wish to pursue the subject further
should consult the author’s books: Geometric Algebra for Computer Graphics or
Geometric Algebra: An Algebraic System for Computer Games and Animation.

Although geometric algebra introduces some new ideas, the subject should not
be regarded as difficult. If you have read and understood the previous chapters, you
should be familiar with vectors, vector products, transforms, and the idea that the
product of two transforms is sensitive to the transform sequence. For example, in
general, scaling an object after it has been translated, is not the same as translating
an object after it has been scaled. Similarly, given two vectors r and s their vector
product r× s creates a third vector t, using the right-hand rule, perpendicular to the
plane containing r and s. However, just by reversing the vectors to s× r, creates a
similar vector but in the opposite direction −t.

We regard vectors as directed lines or oriented lines, but if they exist, why
shouldn’t oriented planes and oriented volumes exist? Well the answer to this ques-
tion is that they do, which is what geometric algebra is about. Unfortunately, when
vectors were invented, geometric algebra was overlooked, and it has taken a further
century for it to emerge through the work of William Kingdon Clifford (1845–1879)
and David Hestenes. So let’s continue and discover an exciting new algebra that will,
in time, be embraced by the computer graphics community.

12.2 Symmetric and Antisymmetric Functions

It is possible to classify functions into two categories: symmetric (even) and anti-
symmetric (odd) functions. For example, given two symmetric functions f (x) and
f (x, y):

f (−x) = f (x)

J. Vince, Mathematics for Computer Graphics, Undergraduate Topics 237
in Computer Science, DOI 10.1007/978-1-84996-023-6 12,
c© Springer-Verlag London Limited 2010
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and
f (y, x) = f (x, y)

an example being cosx where cos(−x) = cosx. Figure 12.1 illustrates how the cosine
function is reflected about the origin. However, if the functions are antisymmetric:

–x +x

cos x 

–1

1

Fig. 12.1 The graph of the symmetric cosine function.

f (−x) = − f (x)

and
f (y, x) = − f (x, y)

an example being sinx where sin(−x) =−sinx. Figure 12.2 illustrates how the sine
function is reflected about the origin.

+1

–x +x

sin x

–1

Fig. 12.2 The graph of the antisymmetric sine function.

The reason why we have examined symmetric and antisymmetric functions is
that they play an important role in geometric algebra. Now let’s continue with this
introduction and explore some important trigonometric foundations.
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12.3 Trigonometric Foundations

Figure 12.3 shows two line segments a and b with coordinates (a1,a2), (b1,b2)
respectively. The lines are separated by an angle θ , and we will compute the ex-
pressions abcosθ and absinθ , as these play an important role in geometric algebra.

a

b

q
f

X

Y

a1b1

b2 a2

Fig. 12.3 Two line segments a and b separated by +θ .

Using the trigonometric identities

sin(θ +φ) = sinθ cosφ + cosθ sinφ (12.1)

cos(θ +φ) = cosθ cosφ − sinθ sinφ (12.2)

and the following observations

cosφ =
a1

a
sinφ =

a2

a
cos(θ +φ) =

b1

b
sin(θ +φ) =

b2

b

we can rewrite (12.1) and (12.2) as

b2

b
=

a1

a
sinθ +

a2

a
cosθ (12.3)

b1

b
=

a1

a
cosθ − a2

a
sinθ . (12.4)

To isolate cosθ we multiply (12.3) by a2 and (12.4) by a1:

a2b2

b
=

a1a2

a
sinθ +

a2
2

a
cosθ (12.5)

a1b1

b
=

a2
1

a
cosθ − a1a2

a
sinθ . (12.6)
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Adding (12.5) and (12.6) we obtain

a1b1 +a2b2

b
=

a2
1 +a2

2
a

cosθ = acosθ

therefore,
abcosθ = a1b1 +a2b2.

To isolate sinθ we multiply (12.3) by a1 and (12.4) by a2

a1b2

b
=

a2
1

a
sinθ +

a1a2

a
cosθ (12.7)

a2b1

b
=

a1a2

a
cosθ − a2

2
a

sinθ . (12.8)

Subtracting (12.8) from (12.7) we obtain

a1b2 −a2b1

b
=

a2
1 +a2

2
a

sinθ = asinθ

therefore,
absinθ = a1b2 −a2b1.

If we form the product of b’s projection on a with a, we get abcosθ which we
have shown equals a1b1 +a2b2. Similarly, if we form the product absinθ we com-
pute the area of the parallelogram formed by sweeping a along b, which equals
a1b2 − a2b1. What is noteworthy, is that the product abcosθ is independent of the
sign of the angle θ , whereas the product absinθ is sensitive to the sign of θ . Con-
sequently, if we construct the lines a and b such that b is rotated −θ relative to a
as shown in Fig. 12.4, abcosθ = a1b1 + a2b2, but absinθ = −(a1b2 −a2b1). The
antisymmetric nature of the sine function reverses the sign of the area.

a

b

f

X

Y

–q b2

a2

b1 a1

Fig. 12.4 Two line segments a and b separated by −θ .

Having shown that area is a signed quantity just by using trigonometric identities,
let’s explore how vector algebra responds to this idea.
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12.4 Vectorial Foundations

When we form the algebraic product of two 2D vectors a and b:

a = a1i+a2j
b = b1i+b2j

we obtain
ab = a1b1i2 +a2b2j2 +a1b2ij+a2b1ji (12.9)

and it is obvious that a1b1i2 +a2b2j2 has something to do with abcosθ , and a1b2ij+
a2b1ji has something to do with absinθ . The product ab creates the terms i2, j2, ij
and ji, which can be resolved as follows.

12.5 Inner and Outer Products

I like to believe that mathematics is a game – a game where we make the rules. Some
rules might take us nowhere; others might take us so far in a particular direction and
then restrict any further development; whilst other rules might open up a fantastic
landscape that would have remained hidden had we not stumbled upon them. There
are no ‘wrong’ or ‘right’ rules – there are just rules where some work better than
others. Fortunately, the rules behind geometric algebra have been tested for over
a 100 years, so we know they work. But these rules were not hiding somewhere
waiting to be discovered, they arose due to the collective intellectual endeavour of
many mathematicians over several decades.

Let’s begin with the products ij and ji in (12.9) and assume that they anticom-
mute: ji = −ij. Therefore,

ab = a1b1i2 +a2b2j2 +(a1b2 −a2b1)ij (12.10)

and if we reverse the product to ba we obtain

ba = a1b1i2 +a2b2j2 − (a1b2 −a2b1)ij. (12.11)

From (12.10) and (12.11) we see that the product of two vectors contains a
symmetric component

a1b1i2 +a2b2j2

and an antisymmetric component

(a1b2 −a2b1)ij.

It is interesting to observe that the symmetric component has 0◦ between its vector
pairs (i2 or j2), whereas the antisymmetric component has 90◦ between its vector
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pairs (i and j). Therefore, the sine and cosine functions play a natural role in our
rules. What we are looking for are two functions that, when given our vectors a and
b, one function returns the symmetric component and the other returns the antisym-
metric component. We call these the inner and outer functions respectively.

It should be clear that if the inner function includes the cosine of the angle be-
tween the two vectors it will reject the antisymmetric component and return the
symmetric element. Similarly, if the outer function includes the sine of the angle
between the vectors, the symmetric component is rejected, and returns the antisym-
metric element.

If we declare the inner function as the inner product

a ·b = |a||b|cosθ (12.12)

then

a ·b = (a1i+a2j) · (b1i+b2j)
= a1b1i · i+a1b2i · j+a2b1j · i+a2b2j · j
= a1b1 +a2b2

which is perfect!
Next, we declare the outer function as the outer product using the wedge “∧”

symbol; which is why it is also called the wedge product:

a∧b = |a||b|sinθ i∧ j. (12.13)

Note that product includes a strange i∧ j term. This is included as we just can’t
ignore the ij term in the antisymmetric component:

a∧b = (a1i+a2j)∧ (b1i+b2j)
= a1b1i∧ i+a1b2i∧ j+a2b1j∧ i+a2b2j∧ j
= (a1b2 −a2b1)i∧ j

which enables us to write
ab = a ·b+a∧b (12.14)

ab = |a||b|cosθ + |a||b|sinθ i∧ j. (12.15)

12.6 The Geometric Product in 2D

Clifford named the sum of the two products the geometric product, which means that
(12.14) reads: The geometric product ab is the sum of the inner product “a dot b”
and the outer product “a wedge b”. Remember that all this assumes that ji = −ij
which seems a reasonable assumption.
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Given the definition of the geometric product, let’s evaluate i2

ii = i · i+ i∧ i.

Using the definition for the inner product (12.12) we have

i · i = 1×1× cos0◦ = 1

whereas using the definition of the outer product (12.13) we have

i∧ i = 1×1× sin0◦ i∧ i = 0.

Thus i2 = 1 and j2 = 1, and aa = |a|2:

aa = a ·a+a∧a
= |a||a|cos0◦ + |a||a|sin0◦i∧ j

aa = |a|2.

Now let’s evaluate ij:
ij = i · j+ i∧ j.

Using the definition for the inner product (12.12) we have

i · j = 1×1× cos90◦ = 0

whereas using the definition of the outer product (12.13) we have

i∧ j = 1×1× sin90◦ i∧ j = i∧ j.

Thus ij = i∧ j. But what is i∧ j? Well, it is a new object and is called a bivector and
defines the orientation of the plane containing i and j.

As the order of the vectors is from i to j, the angle is +90◦ and sin(+90)◦ = 1.
Whereas, if the order is from j to i the angle is −90◦ and sin(−90◦) = −1. Conse-
quently,

ji = j · i+ j∧ i
= 0+1×1× sin(−90◦)i∧ j

ji = −i∧ j.

A useful way of visualizing the bivector i∧ j is to imagine moving along the
vector i and then along the vector j, which creates an anticlockwise rotation. Con-
versely, for the bivector j∧ i, imagine moving along the vector j followed by vector
i, which creates a clockwise rotation. Another useful picture is to sweep vector j
along vector i to create an anticlockwise rotation, and vice versa for j∧ i. These
ideas are shown in Fig. 12.5.
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j

i

j i

j ∧ ii ∧ j

Fig. 12.5 An anticlockwise and clockwise bivector.

So far, so good. Our rules seem to be leading somewhere. The inner product
(12.12) is our old friend the dot product, and does not need explaining. However,
the outer product (12.13) does require some further explanation.

So the equation
ab = 9+12i∧ j

simply means that the geometric product of two vectors a and b creates a scalar,
inner product of 9, and an outer product of 12 on the i–j plane. For example, if

a = 3i
b = 3i+4j

then

ab = 3i · (3i+4j)+3i∧ (3i+4j)
= 9+9i∧ i+12i∧ j

ab = 9+12i∧ j.

The 9 represents |a||b|cosθ , whereas the 12 represents an area |a||b|sinθ on the i–j
plane. The angle between the two vectors θ is given by

θ = cos−1(3/5).

However, reversing the product, we obtain

ba = (3i+4j) ·3i+(3i+4j)∧3i
= 9+9i∧ i+12j∧ i

ab = 9−12i∧ j.

The sign of the outer (wedge) product has flipped to reflect the new orientation of
the vectors relative to the accepted orientation of the basis bivectors.

So the geometric product combines the scalar and wedge products into a single
product, where the scalar product is the symmetric component and the wedge prod-
uct is the antisymmetric component. Now let’s see how these products behave in 3D.



12.7 The Geometric Product in 3D 245

12.7 The Geometric Product in 3D

Before we consider the geometric product in 3D we need to introduce some new
notation, which will simplify future algebraic expressions. Rather than use i, j and
k to represent the unit basis vectors let’s employ e1, e2 and e3 respectively. This
implies that (12.15) can be written

ab = |a||b|cosθ + |a||b|sinθ e1 ∧ e2.

We begin with two 3D vectors:

a = a1e1 +a2e2 +a3e3

b = b1e1 +b2e2 +b3e3

therefore, their inner product is

a ·b = (a1e1 +a2e2 +a3e3) · (b1e1 +b2e2 +b3e3)
= a1b1 +a2b2 +a3b3

and their outer product is

a∧b = (a1e1 +a2e2 +a3e3)∧ (b1e1 +b2e2 +b3e3)
= a1b2e1 ∧ e2 +a1b3e1 ∧ e3 +a2b1e2 ∧ e1 +a2b3e2 ∧ e3

+a3b1e3 ∧ e1 +a3b2e3 ∧ e2

a∧b = (a1b2−a2b1)e1∧e2 +(a2b3−a3b2)e2∧e3 +(a3b1−a1b3)e3∧e1. (12.16)

This time we have three unit basis bivectors: e1 ∧e2, e2 ∧e3, e3 ∧e1, and three asso-
ciated scalar multipliers: (a1b2 −a2b1), (a2b3 −a3b2), (a3b1 −a1b3) respectively.

Continuing with the idea described in the previous section, the three bivectors
represent the three planes containing the respective vectors as shown in Fig. 12.6,
and the scalar multipliers are projections of the area of the vector parallelogram onto
the three bivectors as shown in Fig. 12.7.

e3 ∧ e1

e2 ∧ e3 e1 ∧ e2

e3 e1

e2

Fig. 12.6 The 3D bivectors.
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a
b

e1
e3 ∧ e1

e3

e2 ∧ e3

e2

e1 ∧ e2

Fig. 12.7 The projections on the three bivectors.

The orientation of the vectors a and b determine whether the projected areas are
positive or negative.

You may think that (12.16) looks familiar. In fact, it looks very similar to the
cross product a×b:

a×b = (a1b2 −a2b1)e3 +(a2b3 −a3b2)e1 +(a3b1 −a1b3)e2. (12.17)

This similarity is no accident. For when Hamilton invented quaternions, he did not
recognise the possibility of bivectors, and invented some rules, which eventually
became the cross product! Later in this chapter we discover that quaternions are
really bivectors in disguise.

We can see that a simple relationship exists between (12.16) and (12.17):

e1 ∧ e2 and e3
e2 ∧ e3 and e1
e3 ∧ e1 and e2

the wedge product bivectors are perpendicular to the vector components of the cross
product. So the wedge product is just another way of representing the cross product.
However, the wedge product introduces a very important bonus: it works in space of
any dimension, whereas, the cross product is only comfortable in 3D. Not only that,
the wedge (outer product) is a product that creates volumes, hypervolumes, and can
also be applied to vectors, bivectors, trivectors, etc.

12.8 The Outer Product of Three 3D Vectors

Having seen that the outer product of two 3D vectors is represented by areal pro-
jections onto the three basis bivectors, let’s explore the outer product of three 3D
vectors.
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Given

a = a1e1 +a2e2 +a3e3

b = b1e1 +b2e2 +b3e3

c = c1e1 + c2e2 + c3e3

then

a∧b∧ c = (a1e1 +a2e2 +a3e3)∧ (b1e1 +b2e2 +b3e3)∧ (c1e1 + c2e2 + c3e3)
= [(a1b2 −a2b1)e1 ∧ e2 +(a2b3 −a3b2)e2 ∧ e3 +(a3b1 −a1b3)e3 ∧ e1]
∧ (c1e1 + c2e2 + c3e3).

At this stage we introduce another axiom: the outer product is associative. This
means that a∧ (b∧ c) = (a∧b)∧ c. Therefore, knowing that a∧a = 0:

a∧b∧ c = c3(a1b2 −a2b1)e1 ∧ e2 ∧ e3 + c1(a2b3 −a3b2)e2 ∧ e3 ∧ e1

+ c2(a3b1 −a1b3)e3 ∧ e1 ∧ e2.

But we are left with the products e1 ∧ e2 ∧ e3, e2 ∧ e3 ∧ e1 and e3 ∧ e1 ∧ e2. Not to
worry, because we know that a∧b = −b∧a. Therefore,

e2 ∧ e3 ∧ e1 = −e2 ∧ e1 ∧ e3 = e1 ∧ e2 ∧ e3

and
e3 ∧ e1 ∧ e2 = −e1 ∧ e3 ∧ e2 = e1 ∧ e2 ∧ e3.

Therefore, we can write a∧b∧ c as

a∧b∧ c = c3(a1b2 −a2b1)e1 ∧ e2 ∧ e3 + c1(a2b3 −a3b2)e1 ∧ e2 ∧ e3

+ c2(a3b1 −a1b3)e1 ∧ e2 ∧ e3

or

a∧b∧ c = [c3(a1b2 −a2b1)+ c1(a2b3 −a3b2)+ c2(a3b1 −a1b3)]e1 ∧ e2 ∧ e3

or using a determinant:

a∧b∧ c =

∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣
e1 ∧ e2 ∧ e3

which is the well-known expression for the volume of a parallelpiped formed by
three vectors.

The term e1 ∧ e2 ∧ e3 is a trivector and confirms that the volume is oriented. If
the sign of the determinant is positive, the original three vectors possess the same
orientation of the three basis vectors. If the sign of the determinant is negative, the
three vectors possess an orientation opposing that of the three basis vectors.
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12.9 Axioms

One of the features of geometric algebra is that it behaves very similar to the every-
day algebra of scalars:
Axiom 1: The associative rule

a(bc) = (ab)c.

Axiom 2: The left and right distributive rules:

a(b+ c) = ab+ac
(b+ c)a = ba+ ca.

The next four axioms describe how vectors interact with a scalar (λ ):
Axiom 3:

(λa)b = λ (ab) = λab.

Axiom 4:
λ (φa) = (λφ)a.

Axiom 5:
λ (a+b) = λa+λb.

Axiom 6:
(λ +φ)a = λa+φa.

The next axiom that is adopted is
Axiom 7:

a2 = |a|2

which has already emerged as a consequence of the algebra. However, for non-
Euclidean geometries, this can be set to a2 = −|a|2, which does not concern us
here.

12.10 Notation

Having abandoned i, j, k for e1, e2, e3, it is convenient to convert geometric products
e1e2...en to e12.. n. For example, e1e2e3 ≡ e123. Furthermore, we must get used to the
following substitutions:

eieie j = e j

e21 = −e12

e312 = e123

e112 = e2

e121 = −e2.
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12.11 Grades, Pseudoscalars and Multivectors

As geometric algebra embraces such a wide range of objects, it is convenient to
grade them as follows: scalars are grade 0, vectors are grade 1, bivectors are grade
2, and trivectors are grade 3, and so on for higher dimensions. In such a graded
algebra it is traditional to call the highest grade element a pseudoscalar. Thus in 2D
the pseudoscalar is e12 and in 3D the pseudoscalar is e123.

One very powerful feature of geometric algebra is the idea of a multivector,
which is a linear combination of a scalar, vector, bivector, trivector or any other
higher dimensional object. For example the following are multivectors:

A = 3+(2e1 +3e2 +4e3)+(5e12 +6e23 +7e31)+8e123

B = 2+(2e1 +2e2 +3e3)+(4e12 +5e23 +6e31)+7e123

and we can form their sum:

A+B = 5+(4e1 +5e2 +7e3)+(9e12 +11e23 +13e31)+15e123

or their difference:

A−B = 1+(e2 + e3)+(e12 + e23 + e31)+ e123.

We can even form their product AB, but at the moment we have not explored the
products between all these elements.

We can isolate any grade of a multivector using the following notation:

〈multivector〉g

where g identifies a particular grade. For example, say we have the following
multivector:

2+3e1 +2e2 −5e12 +6e123

we extract the scalar term using:

〈2+3e1 +2e2 −5e12 +6e123〉0 = 2

the vector term using

〈2+3e1 +2e2 −5e12 +6e123〉1 = 3e1 +2e2

the bivector term using:

〈2+3e1 +2e2 −5e12 +6e123〉2 = −5e12

and the trivector term using:

〈2+3e1 +2e2 −5e12 +6e123〉3 = 6e123.
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It is also worth pointing out that the inner vector product converts two grade 1
elements, i.e., vectors, into a grade 0 element, i.e., a scalar, whereas the outer vector
product converts two grade 1 elements into a grade 2 element, i.e., a bivector. Thus
the inner product is a grade lowering operation, while the outer product is a grade
raising operation. These qualities of the inner and outer products are associated
with higher grade elements in the algebra. This is why the scalar product is renamed
as the inner product, because the scalar product is synonymous with transforming
vectors into scalars. Whereas, the inner product transforms two elements of grade n
into a grade n−1 element.

12.12 Redefining the Inner and Outer Products

As the geometric product is defined in terms of the inner and outer products, it
seems only natural to expect that similar functions exist relating the inner and outer
products in terms of the geometric product. Such functions do exist and emerge
when we combine the following two equations:

ab = a ·b+a∧b (12.18)
ba = a ·b−a∧b. (12.19)

Adding and subtracting (12.18) and (12.19) we have

a ·b =
1
2
(ab+ba) (12.20)

a∧b =
1
2
(ab−ba). (12.21)

Equations (12.20) and (12.21) and used frequently to define the products between
different grade elements.

12.13 The Inverse of a Vector

In traditional vector analysis we accept that it is impossible to divide by a vector, but
that is not so in geometric algebra. In fact, we don’t actually divide a multivector by
another vector but find a way of representing the inverse of a vector. For example,
we know that a unit vector â is defined as

â =
a
|a|

and using the geometric product

â2 =
a2

|a|2 = 1
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therefore,

b =
a2b
|a|2

and exploiting the associative nature of the geometric product we have

b =
a(ab)
|a|2 . (12.22)

Equation (12.22) is effectively stating that, given the geometric product ab we can
recover the vector b by pre-multiplying by a−1:

a
|a|2 .

Similarly, we can recover the vector a as follows by post-multiplying by b−1:

a =
(ab)b
|b|2 .

For example, given two vectors

a = e1 +2e2

b = 3e1 +2e2

their geometric product is
ab = 7−4e12.

Therefore, given ab and a, we can recover b as follows:

b =
e1 +2e2

5
(7−4e12)

=
1
5
(7e1 −4e112 +14e2 −8e212)

=
1
5
(7e1 −4e2 +14e2 +8e1)

b = 3e1 +2e2.

Similarly, give ab and b, a is recovered as follows:

a = (7−4e12)
3e1 +2e2

13

=
1
13

(21e1 +14e2 −12e121 −8e122

=
1
13

(21e1 +14e2 +12e2 −8e1)

a = e1 +2e2.
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Note that the inverse of a unit vector is the original vector:

â−1 =
â
|â|2 = â.

12.14 The Imaginary Properties of the Outer Product

So far we know that the outer product of two vectors is represented by one or more
unit basis vectors, such as

a∧b = λ1e12 +λ2e23 +λ3e31

where, in this case, the λi terms represent areas projected onto their respective unit
basis bivectors. But what has not emerged is that the outer product is an imaginary
quantity, which is revealed by expanding e2

12:

e2
12 = e1212

but as
e21 = −e12

then

e1(21)2 = −e1(12)2

= −e2
1e2

2

e2
12 = −1.

Consequently, the geometric product effectively creates a complex number! Thus in
a 2D scenario, given two vectors

a = a1e1 +a2e2

b = b1e1 +b2e2

their geometric product is

ab = (a1b1 +a2b2)+(a1b2 −a2b1)e12

and knowing that e12 = i, then we can write ab as

ab = (a1b1 +a2b2)+(a1b2 −a2b1)i. (12.23)

However, this notation is not generally adopted by the geometric community. The
reason being that i is normally only associated with a scalar, with which it com-
mutes. Whereas in 2D, e12 is associated with scalars and vectors, and although
scalars present no problem, under some conditions, it anticommutes with vectors.
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Consequently, an upper-case I is used so that there is no confusion between the two
elements. Thus (12.23) is written as

ab = (a1b1 +a2b2)+(a1b2 −a2b1)I

where
I2 = −1.

It goes without saying that the 3D unit basis bivectors are also imaginary quantities,
so, too, is e123.

Multiplying a complex number by i rotates it 90◦ on the complex plane. There-
fore, it should be no surprise that multiplying a 2D vector by e12 rotates it by 90◦.
However, because vectors are sensitive to their product partners, we must remember
that pre-multiplying a vector by e12 rotates a vector clockwise and post-multiplying
rotates a vector anti-clockwise.

Whilst on the subject of rotations, let’s consider what happens in 3D. We begin
with a 3D vector

a = a1e1 +a2e2 +a3e3

and the unit basis bivector e12 as shown in Fig. 12.8. Next we construct their geo-
metric product

e12a = a1e12e1 +a2e12e2 +a3e12e3

which becomes

e12a = a1e121 +a2e122 +a3e123

= −a1e2 +a2e1 +a3e123

e12a = a2e1 −a1e2 +a3e123

and contains two parts: a vector (a2e1 −a1e2) and a volume a3e123.

a3

a1

a2

e1

e2

e3

a
e12

Fig. 12.8 The effect of multiplying a vector by a bivector.
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Figure 12.8 shows how the projection of vector a is rotated anticlockwise on the
bivector e12. A volume is also created perpendicular to the bivector. This enables us
to predict that if the vector is coplanar with the bivector, the entire vector is rotated
90◦ and the volume component will be zero.

By post-multiplying a by e12 creates

ae12 = −a2e1 +a1e2 +a3e123

which shows that while the volumetric element has remained the same, the projected
vector is rotated anticlockwise.

You may wish to show that the same happens with the other two bivectors.

12.15 Duality

The ability to exchange pairs of geometric elements such as lines and planes in-
volves a dual operation, which in geometric algebra is relatively easy to define. For
example, given a multivector A its dual A∗ is defined as

A∗ = IA

where I is the local pseudoscalar. For 2D this is e12 and for 3D it is e123. Therefore,
given a 2D vector

a = a1e1 +a2e2

and its dual is

a∗ = e12(a1e1 +a2e2

= a1e121 +a2e122

a∗ = a2e1 −a1e2

which is another vector rotated 90◦ anticlockwise.
It is easy to show that (a∗)∗ = −a, and two further dual operations return the

vector back to a.
In 3D the dual of a vector e1 is

e123e1 = e1231 = e23

which is the perpendicular bivector. Similarly, the dual of e2 is e31 and the dual of
e3 is e12.

For a general vector a1e1 +a2e2 +a3e3 its dual is

e123(a1e1 +a2e2 +a3e3) = a1e1231 +a2e1232 +a3e1233

= a3e12 +a1e23 +a2e31.
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The duals of the 3D basis bivectors are:

e123e12 = e12312 = −e3

e123e23 = e12323 = −e1

e123e31 = e12331 = −e2.

12.16 The Relationship Between the Vector Product
and the Outer Product

We have already discovered that there is a very close relationship between the vector
product and the outer product, and just to recap: Given two vectors

a = a1e1 +a2e2 +a3e3

b = b1e1 +b2e2 +b3e3

then

a×b = (a2b3 −a3b2)e1 +(a3b1 −a1b3)e2 +(a1b2 −a2b1)e3 (12.24)

and

a∧b = (a2b3 −a3b2)e2 ∧ e3 +(a3b1 −a1b3)e3 ∧ e1 +(a1b2 −a2b1)e1 ∧ e2

or

a∧b = (a2b3 −a3b2)e23 +(a3b1 −a1b3)e31 +(a1b2 −a2b1)e12. (12.25)

If we multiply (12.25) by I123 we obtain

I123(a∧b) = (a2b3 −a3b2)e123e23 +(a3b1 −a1b3)e123e31 +(a1b2 −a2b1)e123e12

= −(a2b3 −a3b2)e1 − (a3b1 −a1b3)e2 − (a1b2 −a2b1)e3

which is identical to the cross product (12.24) apart from its sign. Therefore, we can
state:

a×b = −I123(a∧b).

12.17 The Relationship Between Quaternions and Bivectors

Hamilton’s rules for the imaginaries i, j and k are shown in Table 12.1, whilst Table
12.2 shows the rules for 3D bivector products.
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Table 12.1 Hamilton’s quaternion product rules

i j k

i −1 k − j

j −k −1 i

k j −i −1

Table 12.2 3D bivector product rules

e23 e31 e12

e23 −1 −e12 e31

e31 e12 −1 −e23

e12 −e31 e23 −1

Although there is some agreement between the table entries, there is a sign re-
versal in some of them. However, if we switch to a left-handed axial system the
bivectors become e32, e13, e21 and their products are as shown in Table 12.3.

Table 12.3 Left-handed 3D bivector product rules

e32 e13 e21

e32 −1 e21 −e13

e13 −e21 −1 e32

e21 e13 −e32 −1

If we now create a one-to-one correspondence (isomorphism) between the two
systems:

i ↔ e32 j ↔ e13 k ↔ e21

there is a true correspondence between quaternions and a left-handed set of
bivectors.

12.18 Reflections and Rotations

One of geometric algebra’s strengths is the elegance it brings to calculating reflec-
tions and rotations. Unfortunately, there is insufficient space to examine the deriva-
tions of the formulae, but if you are interested, these can be found in the author’s
books. Let’s start with 2D reflections.
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12.18.1 2D Reflections

Given a line, whose perpendicular unit vector is m̂ and a vector a its reflection a′ is
given by

a′ = m̂am̂

which is rather elegant! For example, Fig. 12.9 shows a scenario where

m̂ =
1√
2
(e1 + e2)

a = e1

therefore,

a′ =
1√
2
(e1 + e2)(e1)

1√
2
(e1 + e2)

=
1
2
(1− e12)(e1 + e2)

=
1
2
(e1 + e2 + e2 − e1)

a′ = e2.

m̂

a

a¢

e1

e2

Fig. 12.9 The reflection of a 2D vector.

Note that in this scenario a reflection means a mirror image about the perpendic-
ular vector.

12.18.2 3D Reflections

Let’s explore the 3D scenario shown in Fig. 12.10 where

a = e1 + e2 − e3

m̂ = e2
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m̂ aa′

e2

e1e3

Fig. 12.10 The reflection of a 3D vector.

therefore,

a′ = e2(e1 + e2 − e3)e2

= e212 + e222 − e232

a′ = −e1 + e2 + e3.

As one might expect, it is also possible to reflect bivectors, trivectors and higher-
dimensional objects, and for reasons of brevity, they are summarized as follows:

Reflecting about a line:

scalars invariant
vectors v′ = m̂vm̂

bivectors B′ = m̂Bm̂
trivectors T′ = m̂Tm̂.

Reflecting about a mirror:

scalars invariant
vectors v′ = −m̂vm̂

bivectors B′ = m̂Bm̂
trivectors T′ = −m̂Tm̂.

12.18.3 2D Rotations

Figure 12.11 shows a plan view of two mirrors M and N separated by an angle θ .
The point P is in front of mirror M and subtends an angle α , and its reflection PR
exists in the virtual space behind M and also subtends an angle α with the mirror.
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The angle between PR and N must be θ −α , and its reflection P′ must also lie θ −α
behind N. By inspection, the angle between P and the double reflection P′ is 2θ .

M

P

N

a
a

q - a

q - a

q
PR

P ¢ O

Fig. 12.11 Rotating a point by a double reflection.

If we apply this double reflection transform to a collection of points, they are
effectively all rotated 2θ about the origin where the mirrors intersect. The only
slight drawback with this technique is that the angle of rotation is twice the angle
between the mirrors.

M

P

N
PR

P¢ Op¢

pR

m̂

n̂

p

Fig. 12.12 Rotating a point by a double reflection.

Instead of using points, let’s employ position vectors and substitute normal unit
vectors for the mirrors’ orientation. For example, Fig. 12.12 shows the same mirrors
with unit normal vectors m̂ and n̂. After two successive reflections, P becomes P′,
and using the relationship:

v′ = −m̂vm̂

we compute the reflections as follows:

pR = −m̂pm̂
p′ = −n̂pRn̂
p′ = n̂m̂pm̂n̂

which is also rather elegant and compact. However, we must remember that P is
rotated twice the angle separating the mirrors, and the rotation is relative to the
origin. Let’s demonstrate this technique with an example.
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p

e1

e2

P

p¢

P ¢

m̂

n̂

Fig. 12.13 Rotating a point by 180◦.

Figure 12.13 shows two mirrors M and N with unit normal vectors m̂, n̂ and
position vector p:

m̂ = e2

n̂ = −e1

p = e1 − e2.

As the mirrors are separated by 90◦ the point P is rotated 180◦:

p′ = n̂m̂pm̂n̂
= −e1e2(e1 − e2)e2(−e1)
= e12121 − e12221

p′ = −e1 + e2.

12.19 Rotors

Quaternions are the natural choice for rotating vectors about an arbitrary axis, and
although it my not be immediately obvious, we have already started to discover
geometric algebra’s equivalent.

We begin with
p′ = n̂m̂pm̂n̂

and substitute R for n̂m̂ and R̃ for m̂n̂, therefore,

p′ = RpR̃

where R and R̃ are called rotors which perform the same function as a quaternion.
Because geometric algebra is non-commutative, the sequence of elements, be

they vectors, bivectors, trivectors, etc. is very important. Consequently, it is very
useful to include a command that reverses a sequence of elements. The notation
generally employed is the tilde (˜) symbol:
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R = n̂m̂
R̃ = m̂n̂.

Let’s unpack a rotor in terms of its angle and bivector as follows:
The bivector defining the plane is m̂∧ n̂ and θ is the angle between the vectors.

Let

R = n̂m̂
R̃ = m̂n̂

where

n̂m̂ = n̂ · m̂− m̂∧ n̂
m̂n̂ = n̂ · m̂+ m̂∧ n̂

n̂ · m̂ = cosθ

m̂∧ n̂ = B̂sinθ .

Therefore,

R = cosθ − B̂sinθ
R̃ = cosθ + B̂sinθ .

We now have an equation that rotates a vector p through an angle 2θ about an axis
defined by B̂:

p′ = RpR̂

or

p′ = (cosθ − B̂sinθ)p(cosθ + B̂sinθ).

We can also express this such that it identifies the real angle of rotation α:

p′ = (cos(α/2)− B̂sin(α/2))p(cos(α/2)+ B̂sin(α/2)). (12.26)

Equation (12.26) references a bivector, which may make you feel uncomfortable!
But remember, it simply identifies the axis perpendicular to its plane. Let’s demon-
strate how (12.26) works with two examples.

Example 1: Figure 12.14 shows a scenario where vector p is rotated 90◦ about e2
which is perpendicular to B̂, where

α = 90◦

a = e2

p = e1 + e2

B̂ = e31.
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p

e1

e2

e3

p�
90°

B̂

a

Fig. 12.14 Rotating a vector by 90◦.

Therefore,

p′ = (cos45◦ − e31 sin45◦)(e1 + e2)(cos45◦ + e31 sin45◦)

=

(√
2

2
−

√
2

2
e31

)
(e1 + e2)

(√
2

2
+

√
2

2
e31

)

=

(√
2

2
e1 +

√
2

2
e2 −

√
2

2
e3 −

√
2

2
e312

)(√
2

2
+

√
2

2
e31

)

=
1
2
(e1 − e3 + e2 + e231 − e3 − e1 − e312 − e31231)

p′ = e2 − e3.

Observe what happens when the bivector’s sign is reversed to −e31:

p′ = (cos45◦ + e31 sin45◦)(e1 + e2)(cos45◦ − e31 sin45◦)

=

(√
2

2
+

√
2

2
e31

)
(e1 + e2)

(√
2

2
−

√
2

2
e31

)

=

(√
2

2
e1 +

√
2

2
e2 +

√
2

2
e3 +

√
2

2
e312

)(√
2

2
−

√
2

2
e31

)

=
1
2
(e1 + e3 + e2 + e231 + e3 − e1 + e312 − e31231)

p′ = e2 + e3.

the rotation is clockwise about e2.
Example 2: Figure 12.15 shows a scenario where vector p is rotated 120◦ about

the bivector B, where

m = e1 − e3

n = e2 − e3
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p
n

e1

e2

e3

p′
m

120°

m ∧ n

1

1

1

Fig. 12.15 Rotating a vector by 120◦.

α = 120◦

p = e2 + e3

B = m∧n
= (e1 − e3)∧ (e2 − e3)

B = e12 + e31 + e23.

Next, we normalize B to B̂:

B̂ =
1√
3
(e12 + e23 + e31

therefore,

p′ = (cos60◦ − B̂sin60◦)p(cos60◦ + B̂sin60◦)

=

(
1
2
− 1√

3
(e12 + e23 + e31)

√
3

2

)
(e2 + e3)

(
1
2

+
1√
3
(e12 + e23 + e31)

√
3

2

)

=
(

1
2
− e12

2
− e23

2
− e31

2

)
(e2 + e3)

(
1
2

+
e12

2
+

e23

2
+

e31

2

)

=
1
4

(e2 + e3 − e1 − e123 + e3 − e2 − e312 + e1)(1+ e12 + e23 + e31)

=
1
2
(e3 − e123)(1+ e12 + e23 + e31)

=
1
2
(e3 + e312 − e2 + e1 − e123 − e12312 − e12323 − e12331)

=
1
2
(e3 − e2 + e1 + e3 + e1 + e2)

p′ = e1 + e3.

These examples show that rotors behave just like quaternions. Rotors not only
rotate vectors, but they can be used to rotate bivectors, and even trivectors, although,
as one might expect, a rotated trivector remains unaltered in 3D.
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12.20 Applied Geometric Algebra

This has been a very brief introduction to geometric algebra, and it has been impos-
sible to cover all the algebra’s features. However, if you have understood the above
topics, you will have understood some of the fundamental ideas behind the algebra.
Let’s now consider some practical applications for geometric algebra.

12.20.1 Sine Rule

The sine rule states that for any triangle �ABC with angles α , β and χ , and
respective opposite sides a, b and c, then

a
sinα

=
b

sinβ
=

c
sin χ

.

This rule can be proved using the outer product of two vectors, which we know
incorporates the sine of the angle between two vectors:

|a∧b| = |a||b|sinα.

A B

C

a b

c

ab

c

Fig. 12.16 The sine rule.

With reference to Fig. 12.16, we can state the triangle’s area as

area of �ABC =
1
2
|− c∧a| = 1

2
|c||a|sinβ

area of �BCA =
1
2
|−a∧b| = 1

2
|a||b|sin χ

area of �CAB =
1
2
|−b∧ c| = 1

2
|b||c|sinα
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which means that

|c||a|sinβ = |a||b|sin χ = |b||c|sinα

|a|
sinα

=
|b|

sinβ
=

|c|
sin χ

.

12.20.2 Cosine Rule

The cosine rule states that for any triangle �ABC with sides a, b and c, then

a2 = b2 + c2 −2bccosα

where α is the angle between b and c.
Although this is an easy rule to prove using simple trigonometry, the geometric

algebra solution is even easier.

a

c

b

A B

C

a

Fig. 12.17 The cosine rule.

Figure 12.17 shows a triangle �ABC constructed from vectors a, b and c. From
Fig. 12.17

a = b− c. (12.27)

Squaring (12.27) we obtain

a2 = b2 + c2 − (bc+ cb).

But
bc+ cb = 2b · c = 2|b||c|cosα

therefore,
|a|2 = |b|2 + |c|2 −2|b||c|cosα.

12.20.3 A Point Perpendicular to a Point on a Line

Figure 12.18 shows a scenario where a line with direction vector v̂ passes through a
point T . The objective is to locate another point P perpendicular to v̂ and a distance
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δ from T . The solution is found by post-multiplying v̂ by the psuedoscalar e12,
which rotates v̂ through an angle of 90◦.

As v̂ is a unit vector −→
T P = δ v̂e12

therefore,

p = t+−→
T P

and

p = t+δ v̂e12. (12.28)

T

e1

e2

v̂

t

P

p
d

Fig. 12.18 A point P perpendicular to a point T on a line.

T

e1

e2

v̂P

p

t

d

Fig. 12.19 A point P perpendicular to a point T on a line.

For example, Fig. 12.19 shows a 2D scenario where

v̂ =
1√
2
(e1 + e2)

T = (4,1)
t = 4e1 + e2

δ =
√

32.
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Using (12.28)

p = t+δ v̂e12

= 4e1 + e2 +
√

32
1√
2
(e1 + e2)e12

= 4e1 + e2 +4e2 −4e1

p = 5e2

and
P = (0,5).

If p is required on the other side of the line, we pre-multiply v̂ by e12:

p = t+δe12v̂

which is the same as reversing the sign of δ .

12.20.4 Reflecting a Vector about a Vector

Reflecting a vector about another vector happens to be a rather easy problem for
geometric algebra. Figure 12.20 shows the scenario where we see a vector a re-
flected about the normal to a line with direction vector v̂.

e1

e2
v̂a¢

a

m̂

Fig. 12.20 Reflecting a vector about a vector.

We begin by calculating m̂:
m̂ = v̂e12 (12.29)

then reflecting a about m̂:
a′ = m̂am̂

substituting m̂ we have
a′ = v̂e12av̂e12. (12.30)
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e1

e2

v̂

a¢

a

m̂

Fig. 12.21 Reflecting a vector about a vector.

As an illustration, consider the scenario shown in Fig. 12.21 where

v̂ =
1√
2
(e1 + e2)

a = −e1.

Therefore, using (12.29)

m̂ =
1√
2
(e1 + e2)e12

m̂ =
1√
2
(e2 − e1)

and using (12.30)

a′ =
1√
2
(e2 − e1)(−e1)

1√
2
(e2 − e1)

=
1
2
(e12 +1)(e2 − e1)

=
1
2
(e1 + e2 + e2 − e1)

a′ = e2.

12.20.5 Orientation of a Point with a Plane

In computer graphics we often need to test whether a point is above, below or on
a planar surface. If we already have the plane equation for the surface it is just a
question of substituting the test point in the equation and investigating its signed
value. But here is another way. For example, if a bivector is used to represent the
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orientation of a plane, the outer product of the test point’s position vector with the
bivector computes an oriented volume. Figure 12.22 shows a bivector a∧b and a
test point P with position vector p relative to the bivector.

If

a∧b∧p is +ve, then P is ‘above’ the bivector.
a∧b∧p is –ve, then P is ‘below’ the bivector.
a∧b∧p is zero, then P is coplanar with the bivector.

b

P

p

a

a ∧ b

Fig. 12.22 Point relative to a bivector.

The terms ‘above’ and ‘below’ mean in the bivector’s positive and negative half-
space respectively. As an example, consider the scenario shown in Fig. 12.23 where
the plane’s orientation is represented by the bivector a∧b, and three test points P,
Q and R.

p

e1

e2

e3

a ∧ b

P

Q

q R
r

Fig. 12.23 Three points relative to a bivector.

If P = (0,1,0) Q = (0,−1,0) R = (1,0,0)

a = e1 + e3

b = e1

then

p = e2

q = −e2

r = e1
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and

a∧b∧p = (e1 + e3)∧ e1 ∧ e2

= e123

a∧b∧q = (e1 + e3)∧ e1 ∧ (−e2)
= −e123

a∧b∧ r = (e1 + e3)∧ e1 ∧ e1

= 0.

We can see that the signs of the first two volumes show that P is in the positive
half-space, Q is in the negative half-space, and R is on the plane.

12.21 Summary

Geometric algebra is a new and exciting subject and is destined to impact upon
the way we solve problems in computer games and animation. Hopefully, you have
found this chapter interesting, and if you are tempted to take the subject further, then
look at the author’s books.



Chapter 13
Worked Examples

13.1 Introduction

This chapter examines a variety of problems encountered in computer graphics and
develops mathematical strategies for their solution. Such strategies may not be the
most efficient, however, they will provide the reader with a starting point, which
may be improved upon.

13.2 Area of Regular Polygon

Given a regular polygon with n sides, side length s, and radius r of the circumscribed
circle, its area can be computed by dividing it into n isosceles triangles and summing
their total area.

Figure 13.1 shows one of the isosceles triangles OAB formed by an edge s and
the center O of the polygon. From Fig. 13.1 we observe that

s
2h

= tan
(π

n

)

therefore,

h =
s
2

cot
(π

n

)

areaΔOAB =
sh
2

=
s2

4
cot

(π
n

)

but there are n such triangles, therefore,

area =
ns2

4
cot

(π
n

)
.
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r

ss/2 s/2

h

O

A B

p
n

Fig. 13.1 One of the isosceles triangles forming a regular polygon.

If we let s = 1 the following table shows the area for the first six regular polygons.

n Area

3 0.433

4 1

5 1.72

6 2.598

7 3.634

8 4.828

13.3 Area of any Polygon

Figure 13.2 shows a polygon with the following vertices in counter-clockwise se-
quence, and by inspection, the area is 9.5.

x 0 2 5 4 2

y 2 0 1 3 3

1 2 3 4 5 6

1

2

3

4

X

Y

Fig. 13.2 A five-sided irregular polygon.
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The area of a polygon is given by

area =
1
2

n−1

∑
i=0

(xiyi+1(mod n) − yixi+1(mod n))

=
1
2
(0×0+2×1+5×3+4×3+2×2−2×2−

0×5−1×4−3×2−3×0)

area =
1
2
(33−14) = 9.5.

13.4 Dihedral Angle of a Dodecahedron

The dodecahedron is a member of the five Platonic solids, which are constructed
from regular polygons. The dihedral angle is the internal angle between two touch-
ing faces. Figure 13.3 shows a dodecahedron with one of its pentagonal sides.

72º
108º 108º

Fig. 13.3 A dodecahedron with one of its pentagonal sides.

Figure 13.4 illustrates the geometry required to fold two pentagonal sides through
the dihedral angle γ .

v1

X

v2

Y

Z

P

P�

g

Fig. 13.4 The dihedral angle γ between two pentagonal sides.

The point P has coordinates

P(x,y,z) = (sin72◦,0,−cos72◦)
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and for simplicity, we will use a unit vector to represent an edge, therefore

|v1| = |v2| = 1.

The coordinates of the rotated point P′ are given by the following transform:
⎡
⎢⎢⎣

x′

y′

z′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosγ −sinγ 0

sinγ cosγ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

sin72◦

0

−cos72◦

⎤
⎥⎥⎦

where

x′ = cosγ sin72◦

y′ = sinγ sin72◦

z′ = −cos72◦.

But
v1 ·v2 = |v1||v2|cosθ = xx′ + yy′ + zz′

therefore,
cosθ = cosγ sin2 72◦ + cos2 72◦

but θ = 108◦ (internal angle of a regular pentagon), therefore,

cosγ =
cos108◦ − cos2 72◦

sin2 72◦
=

cos72◦

cos72◦ −1
.

The dihedral angle γ ≈ 116.56505◦.
A similar technique can be used to calculate the dihedral angles of the other

Platonic objects.

13.5 Vector Normal to a Triangle

Very often in computer graphics we have to calculate a vector normal to a plane
containing three points. The most effective tool to achieve this is the vector product.
For example, given three points P1(5,0,0), P2(0,0,5) and P3(10,0,5), we can create
two vectors a and b as follows:

a =

⎡
⎢⎢⎣

x2 − x1

y2 − y1

z2 − z1

⎤
⎥⎥⎦ b =

⎡
⎢⎢⎣

x3 − x1

y3 − y1

z3 − z1

⎤
⎥⎥⎦

therefore,
a = −5i+5k b = 5i+5k.
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The normal vector n is given by

n = a×b =

∣∣∣∣∣∣∣∣
i j k
−5 0 5

5 0 5

∣∣∣∣∣∣∣∣
= 50j.

13.6 Area of a Triangle Using Vectors

The vector product is also useful in calculating the area of a triangle using two of
its sides as vectors. For example, using the same points and vectors in the previous
example:

area =
1
2
|a×b| = 1

2

∣∣∣∣∣∣∣∣
i j k
−5 0 5

5 0 5

∣∣∣∣∣∣∣∣
=

1
2
|50j| = 25.

13.7 General Form of the Line Equation from Two Points

The general form of the line equation is given by

ax+by+ c = 0

and it may be required to compute this equation from two known points. For exam-
ple, Fig. 13.5 shows two points P1(x1,y1) and P2(x2,y2) from which it is possible to
determine P(x,y).

Xx1

Y

x2x

y1

y2

y
P

P2

P1

Fig. 13.5 A line formed from two points P1 and P2.
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From Fig. 13.5

y2 − y1

x2 − x1
=

y− y1

x− x1

(y2 − y1)(x− x1) = (x2 − x1)(y− y1)
(y2 − y1)x− (y2 − y1)x1 = (x2 − x1)y− (x2 − x1)y1

(y2 − y1)x+(x1 − x2)y = x1y2 − x2y1

therefore,
a = y2 − y1 b = x1 − x2 c = −(x1y2 − x2y1).

If the two points are P1(1,0) and P2(3,4), then

(4−0)x+(1−3)y− (1×4−3×0) = 0

and
4x−2y−4 = 0

or
2x− y−2 = 0.

13.8 Angle Between Two Straight Lines

Given two line equations it is possible to compute the angle between the lines using
the scalar product. For example, if the line equations are

a1x+b1y+ c1 = 0
a2x+b2y+ c2 = 0

their normal vectors are n = a1i+b1j and m = a2i+b2j respectively, therefore,

n ·m = |n||m|cosα

and the angle between the lines α is given by

α = cos−1
(

n ·m
|n||m|

)
.

Figure 13.6 shows two lines with equations

2x+2y−4 = 0
2x+4y−4 = 0

therefore,

α = cos−1
(

2×2+2×4√
22 +22

√
22 +42

)
≈ 18.435◦.
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X

Y

a

Fig. 13.6 Two lines intersecting at an angle α .

13.9 Test if Three Points Lie on a Straight Line

Figure 13.7 shows three points P1, P2 and P3 which lie on a straight line. There are
all sorts of ways to detect such a condition. For example, we could assume that the
points are the vertices of a triangle, and if the triangle’s area is zero, then the points
lie on a line. Here is another approach.

Given P1(x1,y1), P2(x2,y2), P3(x3,y3) and r =
−−→
P1P2 and s =

−−→
P1P3, the three points

lie on a straight line when s = λr where λ is a scalar.
If the points are

P1(0,−2) P2(1,−1) P3(4,2)

then

r = i+ j and s = 4i+4j

and

s = 4r

therefore, the points lie on a straight line as confirmed by the diagram.

X

Y

P1

P2

P3

Fig. 13.7 Three points on a common line.
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Another way is to compute ∣∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣
which is twice the area of ΔP1P2P3. If this equals zero, the points must be co-linear.

13.10 Position and Distance of the Nearest Point on a Line
to a Point

Suppose we have a line and some arbitrary point P, and we require to find the near-
est point on the line to P. Vector analysis provides a very elegant way to solve such
problems. Figure 13.8 shows a line and a point P and the nearest point Q on the
line. The nature of the geometry is such that the line connecting P to Q is perpen-
dicular to the reference line, which is exploited in the analysis. The objective is to
determine the position vector q.

Q

n

p
P

q r

X

Y

Fig. 13.8 Q is the nearest point on the line to P.

We start with the line equation

ax+by+ c = 0

and declare Q(x,y) as the nearest point on the line to P .
The normal to the line must be

n = ai+bj

and the position vector for Q is

q = xi+ yj.
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Therefore,
n ·q = −c. (13.1)

r is parallel to n, therefore,
r = λn (13.2)

where λ is some scalar.
Taking the scalar product of (13.2)

n · r = λn ·n (13.3)

but as

r = q−p (13.4)
n · r = n ·q−n ·p. (13.5)

Substituting (13.1) and (13.3) in (13.5) we obtain

λn ·n = −c−n ·p

therefore,

λ =
−(n ·p+ c)

n ·n .

From (13.4) we get
q = p+ r. (13.6)

Substituting (13.2) in (13.6) we obtain the position vector for Q:

q = p+λn.

The distance PQ must be the magnitude of r:

PQ = |r| = λ |n|.

Let’s test this result with an example where the answer can be predicted.
Figure 13.9 shows a line whose equation is x+y−1 = 0, and the associated point

is P(1,1). By inspection, the nearest point is Q( 1
2 , 1

2 ) and the distance PQ ≈ 0.7071.
From the line equation

a = 1 b = 1 c = −1

therefore,

λ = −2−1
2

= −1
2
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Q

n
P

1 X

Y

1

Fig. 13.9 Q is the nearest point on the line to P.

and

xQ = xP +λxn = 1− 1
2
×1 =

1
2

yQ = yP +λyn = 1− 1
2
×1 =

1
2
.

The nearest point is Q( 1
2 , 1

2 ) and the distance is

PQ = |λn| = 1
2
|i+ j| ≈ 0.7071.

13.11 Position of a Point Reflected in a Line

Suppose that instead of finding the nearest point on a line we require the reflection Q
of P in the line. Once more, we set out to discover the position vector for Q. Figure
13.10 shows the vectors used in the analysis. We start with the line equation

ax+by+ c = 0

and declare T (x,y) as the nearest point on the line to O with t = xi+yj as its position
vector.

From the line equation
n = ai+bj

therefore,
n · t = −c. (13.7)

We note that r+ r′ is orthogonal to n, therefore,

n · (r+ r′) = 0

and
n · r+n · r′ = 0. (13.8)
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Q

n

p

P

q

r

X

Y

r'

T

t

O

r + r'

Fig. 13.10 The vectors required to find the reflection of P in the line.

We also note that p−q is parallel to n, therefore,

p−q = r− r′ = λn

where λ is some scalar, therefore,

λ =
r− r′

n
. (13.9)

From the figure we note that
r = p− t. (13.10)

Substituting (13.7) in (13.10)

n · r = n ·p−n · t = n ·p+ c. (13.11)

Substituting (13.8) and (13.11) in (13.9)

λ =
n · r−n · r′

n ·n =
2n · r
n ·n

λ =
2(n ·p+ c)

n ·n
and the position vector is

q = p−λn.

Let’s again test this formula with a scenario that can be predicted in advance.
Given the line equation

x+ y−1 = 0

and the point P(1,1), the reflection must be the origin, as shown in Fig. 13.11.
Now let’s confirm this prediction.
From the line equation

a = 1 b = 1 c = −1
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Q

P

1 X

Y

1

Fig. 13.11 Q is the reflection of P in the line.

and

xP = 1
yP = 1

λ =
2× (2−1)

2
= 1

therefore,

xQ = xP −λxn = 1−1×1 = 0
yQ = yP −λyn = 1−1×1 = 0

and the reflection point is Q(0,0).

13.12 Intersection of a Line and a Sphere

In ray tracing and ray casting it is necessary to detect whether a ray (line) intersects
objects within a scene. Such objects may be polygonal, constructed from patches,
or defined by equations. In this example, we explore the intersection between a line
and a sphere.

There are three possible scenarios: the line intersects, touches or misses the
sphere. It just so happens, that the cosine rule proves very useful in setting up a
geometric condition that identifies the above scenarios, which are readily solved
using vector analysis.

Figure 13.12 shows a sphere with radius r located at C. The line is repre-
sented parametrically, which lends itself to this analysis. The objective is to discover
whether there are points in space that satisfy both the line equation and the sphere
equation. If there is a point, a position vector will locate it.
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v

O

t
X

Y

Z

C

T

P
q

s

r

c

p
λv

q

Fig. 13.12 The vectors required to locate a possible intersection.

The position vector for C is

c = xCi+ yCj+ zCk

and the equation of the line is
p = t+λv

where λ is a scalar, and
|v| = 1. (13.12)

For an intersection at P

|q| = r

|q|2 = r2

|q|2 − r2 = 0.

Using the cosine rule

|q|2 = |λv|2 + |s|2 −2|λv||s|cosθ (13.13)

|q|2 = λ 2|v|2 + |s|2 −2|v||s|λ cosθ . (13.14)

Substituting (13.12) in (13.14)

|q|2 = λ 2 + |s|2 −2|s|λ cosθ . (13.15)

Now let’s identify cosθ :
s ·v = |s||v|cosθ

therefore,
cosθ =

s ·v
|s| . (13.16)
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Substituting (13.16) in (13.15)

|q|2 = λ 2 −2s ·vλ + |s|2

therefore,
|q|2 − r2 = λ 2 −2s ·vλ + |s|2 − r2 = 0. (13.17)

Equation (13.17) is a quadratic in λ where

λ = s ·v±
√

(s ·v)2 −|s|2 + r2 (13.18)

and
s = c− t.

The discriminant of (13.18) determines whether the line intersects, touches or
misses the sphere.

The position vector for P is given by

p = t+λv

where
λ = s ·v±

√
(s ·v)2 −|s|2 + r2

and
s = c− t.

For a miss condition
(s ·v)2 −|s|2 + r2 < 0.

For a touch condition
(s ·v)2 −|s|2 + r2 = 0.

For an intersect condition

(s ·v)2 −|s|2 + r2 > 0.

To test these formulae we will create all three scenarios and show that the equations
are well behaved.

Figure 13.13 shows a sphere with three lines represented by their direction vec-
tors λv1, λv2 and λv3. The sphere has radius r = 1 and is centered at C with position
vector

c = i+ j

whilst the three lines L1, L2 and L3 miss, touch and intersect the sphere respectively.
The lines are of the form

p = t+λv

therefore,

p1 = t1 +λv1
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X

Y

Z

T

c

C

t

P3

L1 L2
L3

P2

λv2
λv3

P3�

λv1

Fig. 13.13 Three lines that miss, touch and intersect the sphere.

p2 = t2 +λv2

p3 = t3 +λv3

where

t1 = 2i v1 =
1√
2

i+
1√
2

j

t2 = 2i v2 = j

t3 = 2i v3 = − 1√
2

i+
1√
2

j

and
c = i+ j.

Let’s substitute the lines in the original equations:

L1: s = −i+ j

(s ·v)2 −|s|2 + r2 = 0−2+1 = −1

the negative discriminant confirms a miss condition.

L2: s = −i+ j

(s ·v)2 −|s|2 + r2 = 1−2+1 = 0

the zero discriminant confirms a touch condition, therefore λ = 1 and the touch
point is P2(2,1,0) which is correct.

L3: s = −i+ j

(s ·v)2 −|s|2 + r2 = 2−2+1 = 1
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the positive discriminant confirms an intersect condition, therefore,

λ =
2√
2
±1 = 1+

√
2 or

√
2−1.

The intersection points are given by the two values of λ :
when λ = 1+

√
2

xP = 2+
(

1+
√

2
)(

− 1√
2

)
= 1− 1√

2

yP = 0+
(

1+
√

2
) 1√

2
= 1+

1√
2

zP = 0.

when λ =
√

2−1

xP = 1+
(√

2−1
)(

− 1√
2

)
= 1+

1√
2

yP = 0+
(√

2−1
) 1√

2
= 1− 1√

2
zP = 0.

The intersection points are

P3′

(
1− 1√

2
,1+

1√
2
,0

)

P3

(
1+

1√
2
,1− 1√

2
,0

)

which are correct.

13.13 Sphere Touching a Plane

A sphere will touch a plane if the perpendicular distance from its center to the plane
equals its radius. The geometry describing this condition is identical to finding the
position and distance of the nearest point on a plane to a point.

Figure 13.14 shows a sphere located at P with position vector p. A potential touch
condition occurs at Q, and the objective of the analysis is to discover its position
vector q. Given the following plane equation

ax+by+ cz+d = 0

its surface normal is
n = ai+bj+ ck.
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X

Y

Z

P

Q

p

q

n
r

Fig. 13.14 The vectors used to detect when a sphere touches a plane.

The nearest point Q on the plane to a point P is given by the position vector

q = p+λn (13.19)

where
λ = −n ·p+d

n
·n

the distance
PQ = |λn|.

If P is the center of the sphere with radius r, and position vector p the touch point
is also given by (13.19) when

PQ = |λn| = r.

Let’s test the above equations with a simple example, as shown in Fig. 13.15,
which shows a sphere with radius r = 1 and centered at P(1,1,1).

The plane equation is
y−2 = 0

therefore,
n = j

and
p = i+ j+k

therefore,
λ = −(1−2) = 1

which equals the sphere’s radius and therefore the sphere and plane touch. The touch
point is

xQ = 1+1×0 = 1
yQ = 1+1×1 = 2
zQ = 1+1×0 = 1

P(1,2,1) which is correct.
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X

Y

Z

r
P

Q

n

Fig. 13.15 A sphere touching a plane.

13.14 Summary

Unfortunately, problem solving is not always obvious, and it is possible to waste
hours of analysis simply because the objective of the solution has not been well
formulated. Hopefully, though, the reader has discovered some of the strategies used
in solving the above geometric problems, and will be able to implement them in
other scenarios. At the end of the day, practice makes perfect!



Chapter 14
Conclusion

In the previous 13 chapters I have attempted to introduce you to some of the im-
portant elements of mathematics employed in computer graphics. I knew from the
start that this would be a challenge for two reasons: one was knowing where to
start, and the other was where to stop. I assumed that most readers would already
be interested in computer animation, games or virtual reality, and so on, and knew
something about mathematics. So perhaps the chapters on numbers, algebra and
trigonometry provided a common starting point.

The chapters on Cartesian coordinates, vectors, transforms, interpolation,
barycentric coordinates, curves and patches are the real core of the book, but
whilst revealing these subjects I was always wondering when to stop. On the one
hand, I could have frustrated readers by stopping short of describing a subject com-
pletely, and on the other hand lost readers by pursuing a subject to a level beyond
the book’s objective. Hopefully, I have managed to keep the right balance.

I do hope that the chapter on geometric algebra will tempt you to explore this
subject further. It’s not often that something completely new comes along and chal-
lenges the way we solve geometric problems.

For many readers, what I have covered will be sufficient to enable them to design
programs and solve a wide range of problems. For others, the book will provide
a useful stepping stone to more advanced texts on mathematics. But what I really
hope that I have managed to show is that mathematics is not that difficult, especially
when it can be applied to an exciting subject such as computer graphics.

J. Vince, Mathematics for Computer Graphics, Undergraduate Topics 289
in Computer Science, DOI 10.1007/978-1-84996-023-6 14,
c© Springer-Verlag London Limited 2010
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algebraic notation, 13
analytic geometry, 161
angle between a line and plane, 203
angle between two planes, 201
angle between two straight lines, 276
annulus, 169
antisymmetric functions, 237
area of a regular polygon, 271

area of a shape, 30
area of a triangle, 178, 223, 275
area of any polygon, 272
areal coordinates, 65
areas, 55
associative law, 15
axioms, 248

B-splines, 149
Bézier curves, 137, 234
Bézier matrix, 145
Bézier, Pierre, 137
back-face detection, 49
barycentric coordinates, 65, 207
Bernstein polynomials, 137
binomial expansion, 139
bivector, 243
blending curve, 142
blending function, 147

camera space, 87
Cartesian plane, 27
Cartesian vectors, 44
centre of gravity, 164
centroid, 210
Ceva’s Theorem, 207
change of axes, 83
circle, 168
circle equation, 135
column vector, 64
commutative law, 15
complex numbers, 8
compound angles, 25
continuity, 152
control point, 141, 150
control vertex, 141
convex hull, 141, 223
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convex hull property, 142
cosine rule, 24, 265
cubic Bézier surface patch, 157
cubic Bernstein polynomials, 142
cubic interpolant, 142
cubic interpolation, 123
curves and patches, 135

de Casteljau, Paul, 137
determinant of a matrix, 65
determinants, 111
dihedral angle of a dodecahedron, 273
direction cosines, 2D, 85
direction cosines, 3D, 87
distributive law, 16
dodecahedron, 273
dot product, 46
duality, 254

ellipse equation, 136
equilateral triangle, 165
Euler angles, 90
Euler rotations, 76
Euler’s rule, 33
exterior angle, 163

frames of reference, 108
function graphs, 28

general form of a line equation, 275
geometric algebra, 237
geometric continuity, 152
Gibbs, 100
gimbal lock, 80
golden section, 163
grades, 249

Hamilton, 99
Hamilton’s rules, 99, 255
Hermite interpolation, 127
Hessian normal form, 171, 180
homogeneous coordinates, 65

identity matrix, 71
image space, 87
indices, 17
inner product, 241
integers, 6
intercept theorems, 162
interior angle, 163
interpolating quaternions, 131
interpolating vectors, 128
interpolation, 119
intersecting lines, 185

intersecting planes, 195
intersection of a line and sphere, 282
intersection of two line segments, 175
intersection of two lines, 175
inverse of a vector, 250
inverse quaternion, 102
inverse trigonometric functions, 23
irrational numbers, 7
isosceles triangle, 164

laws of indices, 17
lerp, 217
lighting calculations, 48
linear interpolation, 119, 140, 146, 216
linearly dependent, 113
local coordinates, 207
logarithms, 18

Möbius, 65
magnitude of a vector, 38
mass points, 210, 227
matrices, 62
matrix multiplication, 63
matrix notation, 64
median, 164
multiplying quaternions, 101
multivectors, 249

natural numbers, 6
nearest point to a line, 278
non-linear interpolation, 122
non-rational B-splines, 149
non-uniform B-splines, 153
non-uniform rational B-splines, 153
number line, 7
NURBS, 154

object space, 87
orthogonal matrices, 90
outer product, 241

parallelogram, 167
Pascal’s triangle, 138
perimeter relationships, 25
perspective projection, 115
pitch, 78, 90
pitch quaternion, 106
planar surface patch, 154
plane equation, 187
plane equation from three points, 193
plane equation, Cartesian form, 188
plane equation, general form, 190
plane equation, parametric form, 190
point inside a triangle, 178, 220
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point reflected in a line, 280
position vectors, 42
prime numbers, 6
pseudoscalars, 249
pure quaternion, 101

quadratic Bézier curve, 141
quadratic Bézier surface patch, 155
quadratic equation, 16
quadrilateral, 166
quaternion matrix, 107
quaternions, 99, 255

radian, 161
radius of the inscribed circle, 225
rational B-splines, 149
rational numbers, 7
ratios, 209
real numbers, 7
recursive Bézier curve, 145
recursive Bézier Formula, 145
reflecting a vector, 267
reflections, 256
regular polygon, 168
rhombus, 168
right triangle, 165
right-hand rule, 54
roll, 78, 90
roll quaternion, 106
rotating a point about an axis, 93, 102
rotating about an axis, 81
rotations, 256
rotors, 260
row vector, 64

scalar product, 45
sine rule, 24, 264
space partitioning, 173

sphere touching a plane, 286
straight line equation, 183
subtracting quaternions, 100
surface patch, 154
symmetric functions, 237

Theorem of Pythagoras, 31, 166
Theorem of Thales, 165
three intersecting planes, 199
transforming vectors, 109
transforms, 59
trapezoid, 167
trigonometric functions, 22
trigonometric interpolation, 122
trigonometric ratios, 22
trigonometric relationships, 23
trigonometry, 21
trivector, 247, 249

uniform B-splines, 150
unit normal vector, 55
unit quaternion, 102
unit vectors, 44

vector addition, 41
vector magnitude, 38
vector normal to a triangle, 274
vector product, 45, 50
vector subtraction, 41
vectors, 36
virtual camera, 87
volume of a tetrahedron, 232

world space, 87

yaw, 78, 90
yaw quaternion, 106
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