

Rotation Transforms for Computer Graphics

John Vince

Rotation
Transforms
for Computer
Graphics

Professor Emeritus, John Vince, MTech, PhD,
DSc, CEng, FBCS
Bournemouth University, Bournemouth, UK
url: www.johnvince.co.uk

ISBN 978-0-85729-153-0 e-ISBN 978-0-85729-154-7
DOI 10.1007/978-0-85729-154-7
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: deblik

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to my grandchildren,
Megan, Mia and Lucie

Preface

Every time I complete a manuscript my attention turns quickly to the title of my
next book. And after completing the latest version of Mathematics for Computer
Graphics, I began to think of what should follow. It didn’t take too long to iden-
tify the subject of this book: rotation transforms, which have always interested me
throughout my career in computer graphics.

I knew that I was not alone in finding some of the ideas difficult, as every time
I searched the Internet using search keys such as ‘quaternions’, ‘Euler angles’, ‘ro-
tors’, etc., I would come across websites where groups were discussing the meaning
of gimbal lock, the matrix representation of a quaternion, eigenvectors, etc., and I
knew straight away that I had to do my bit to clarify the subject.

One of the main problems why there is so much confusion arises through the
different forms of vector and matrix notation. Some authors work with matrices that
involve row vectors, rather than column vectors, which leads to a transposed matrix.
In some cases, the direction of rotation is clockwise, rather than the normal posi-
tive, anti-clockwise direction. Quaternions are treated as a four-dimensional object
where one has to visualise a hyper-sphere before they can be mastered. Some of the
algorithms for extracting eigenvectors and their associated eigenvalue can be very
sensitive to the type of matrix in use. This is all rather disconcerting.

The experienced mathematician will take all of this in his or her stride, but to a cg
programmer trying to implement the best rotation algorithm and design some stable
code, this is not good news. So about a year ago, I started to collect my thoughts on
how to approach this subject. After a few false starts and chapter rewrites, I decided
to write an introductory book that would take the reader through the foundations of
rotation transforms from complex numbers to Clifford algebra rotors, touching on
vectors, matrices and quaternions on the journey.

Illustrations are vital to understanding rotation transforms, especially the differ-
ence between rotated points and rotated frames. I came across many websites, tech-
nical literature and books where the illustrations confused rather than clarified what
was going on, and I explored various approaches before settling for a unit cube with
numbered vertices. This book contains over a hundred illustrations, which, I hope
will help the reader understand the underlying mathematics.

vii

viii Preface

In order to create some sort of structure, I have separated transforms for rotating
points in a fixed frame, from transforms that rotate frames with fixed points. I have
also separated transforms in the plane from transforms in 3D space. In all, there are
thirteen chapters, including an introduction and summary chapters.

Chapter 2 provides a quick introduction to complex numbers and the rotational
qualities of imaginary i. The reader should be comfortable with these objects, as we
find imaginary quantities in quaternions and multivectors.

Chapter 3 covers vectors and their products, whilst Chap. 4 describes matrices
and their associated algebra. It also explores other relevant topics such as matrix
inversion, symmetric and antisymmetric matrices, eigenvectors and eigenvalues.

Chapter 5 covers quaternions and their various forms, but I leave their rotational
abilities for Chap. 11. I play down their four-dimensional attributes as I don’t believe
that this characteristic is too important within this introductory book.

Chapter 6 introduces multivector rotors that are part of Clifford’s geometric al-
gebra, and again, their rotational qualities are delayed until Chap. 12.

Chapter 7 covers rotation transforms in the plane and establishes strategies used
for transforming points in space, whilst Chap. 8 addresses rotating frames of refer-
ence in the plane.

Chapter 9 is an important chapter as it introduces the classic techniques for han-
dling 3D rotations, composite rotations, gimbal lock, and provides a stable technique
for extracting eigenvectors and eigenvalues from a matrix.

Chapter 10 develops the ideas of Chap. 9 to explain how coordinates are com-
puted in rotating frames of reference.

Chapter 11 takes quaternions from Chap. 5 and shows how they provide a pow-
erful tool for rotating points and frames about an arbitrary axis.

Chapter 12 takes the multivectors from Chap. 6 and shows how they provide a
unified system for handling rotors. Finally, Chap. 13 draws the book to a conclusion.

I would like to take this opportunity to acknowledge the authors of books, tech-
nical papers and websites who have influenced my writing over recent years. From
these dedicated people I have discovered new writing techniques, how to format
equations, and how to communicate complex ideas in an easy manner. Without
them this book would not have been possible. However, there is one author that
I must acknowledge: Michael J. Crowe. His book A History of Vector Analysis [1]
is an amazing description of how vectors and quaternions evolved, and is highly
recommended.

In particular, I would like to thank Dr Tony Crilly, Reader Emeritus at Middlesex
University, who read a draft manuscript and made many important recommenda-
tions. Tony read the book through the eyes of a novice and questioned my writing
style when clarity started to sink below the surface. Forty years ago, when I was
struggling with gimbal lock and Euler transforms, Tony brought to my attention the
rotation transform developed by Olinde Rodrigues, who had invented quaternions
before Hamilton, but that’s another story. I included this transform in my animation
software system PICASO, running on a mainframe computer with a 24 KB store!
I was very nervous about using it as sines and cosines were evaluated at a software
level and extremely slow.

Preface ix

I would also like to thank Prof. Patrick Riley for providing me with a harmono-
gram that has formed the book’s cover design, and for his feedback on early drafts
of the manuscript when I needed to know whether I was managing to communicate
my ideas effectively.

Once again, I am indebted to Beverley Ford, General Manager, Springer UK,
and Helen Desmond, Assistant Editor for Computer Science, for their support and
reminding me of the importance of deadlines. I would also like to thank Springer’s
technical support team for their help with LATEX 2ε .

John VinceRingwood

Contents

1 Introduction . 1
1.1 Rotation Transforms . 1
1.2 Mathematical Techniques . 1
1.3 The Reader . 2
1.4 Aims and Objectives of This Book 2
1.5 Assumptions Made in This Book 2
1.6 How to Use the Book . 3

2 Complex Numbers . 5
2.1 Introduction . 5
2.2 Complex Numbers . 5

2.2.1 Axioms . 6
2.3 The Modulus . 6
2.4 Addition and Subtraction . 7
2.5 Multiplication by a Scalar . 7
2.6 Product of Two Complex Numbers 7
2.7 The Complex Conjugate . 8
2.8 Division of Two Complex Numbers 8
2.9 The Inverse . 9
2.10 The Complex Plane . 10
2.11 Polar Representation . 11
2.12 Rotors . 13
2.13 Summary . 15

2.13.1 Summary of Complex Operations 16

3 Vectors . 17
3.1 Introduction . 17
3.2 Vector Notation . 17
3.3 Graphical Representation of Vectors 18
3.4 Magnitude of a Vector . 18
3.5 3D Vectors . 19

xi

xii Contents

3.6 Vector Manipulation . 19
3.6.1 Multiplying a Vector by a Scalar 20
3.6.2 Vector Addition and Subtraction 20

3.7 Position Vectors . 20
3.8 Unit Vectors . 21
3.9 Cartesian Vectors . 21
3.10 Scalar Product . 22
3.11 The Vector Product . 24
3.12 The Right-Hand Rule . 27
3.13 Deriving a Unit Normal Vector 27
3.14 Interpolating Vectors . 28
3.15 Summary . 31

3.15.1 Summary of Vector Operations 31

4 Matrices . 33
4.1 Introduction . 33
4.2 Matrices . 34
4.3 The Transpose of a Matrix . 35
4.4 The Identity Matrix . 35
4.5 Adding and Subtracting Matrices 35
4.6 Multiplying a Matrix by a Scalar 36
4.7 Product of Two Matrices . 36
4.8 The Inverse Matrix . 37

4.8.1 Calculation of Inverse 37
4.9 Determinant of a Matrix . 39

4.9.1 Sarrus’s Rule . 39
4.9.2 The Laplace Expansion 41

4.10 Cofactors and Inverse of a Matrix 42
4.11 Orthogonal Matrix . 45
4.12 Diagonal Matrix . 45
4.13 Trace . 46
4.14 Symmetric Matrix . 47
4.15 Antisymmetric Matrix . 48
4.16 Inverting a Pair of Matrices . 50
4.17 Eigenvectors and Eigenvalues 50
4.18 Vector Products . 55
4.19 Summary . 56

4.19.1 Summary of Matrix Operations 56

5 Quaternions . 59
5.1 Introduction . 59
5.2 Definition . 59

5.2.1 Axioms . 60
5.3 Adding and Subtracting Quaternions 60
5.4 Multiplying Quaternions . 61

Contents xiii

5.5 Pure Quaternion . 62
5.6 Magnitude of a Quaternion . 62
5.7 Unit Quaternion . 62
5.8 The Quaternion Conjugate . 63
5.9 The Inverse Quaternion . 64
5.10 Summary . 65

5.10.1 Summary of Quaternion Operations 65

6 Multivectors . 67
6.1 Introduction . 67
6.2 Symmetric and Antisymmetric Functions 67
6.3 Trigonometric Foundations . 68
6.4 Vectorial Foundations . 68
6.5 Inner and Outer Products . 69
6.6 The Geometric Product in 2D 69
6.7 The Geometric Product in 3D 71
6.8 The Outer Product of Three 3D Vectors 73
6.9 Axioms . 74
6.10 Notation . 75
6.11 Grades, Pseudoscalars and Multivectors 75
6.12 Redefining the Inner and Outer Products 76
6.13 The Inverse of a Vector . 77
6.14 The Imaginary Properties of the Outer Product 78
6.15 Duality . 80
6.16 The Relationship Between the Vector Product and the Outer

Product . 81
6.17 The Relationship Between Quaternions and Bivectors 81
6.18 Reverse of a Multivector . 82
6.19 Summary . 83

6.19.1 Summary of Multivector Operations 83

7 Rotation Transforms in the Plane . 85
7.1 Introduction . 85
7.2 2D Transforms . 85

7.2.1 Homogeneous Coordinates 85
7.3 Matrix Transforms . 86

7.3.1 Translate a Point . 87
7.3.2 Rotate a Point About the Origin 87
7.3.3 Rotate a Point About an Arbitrary Point 89
7.3.4 Rotate and Translate a Point 91
7.3.5 Composite Rotations 91

7.4 Inverse Transforms . 92
7.5 Multivector Transforms . 93

7.5.1 Translate a Point . 93
7.5.2 Rotational Qualities of the Unit Bivector 94

xiv Contents

7.5.3 Rotate a Point About the Origin 97
7.5.4 Rotate a Point About an Arbitrary Point 99

7.6 Summary . 100
7.6.1 Summary of Matrix Transforms 100
7.6.2 Summary of Multivector Transforms 101

8 Frames of Reference in the Plane . 103
8.1 Introduction . 103
8.2 Frames of Reference . 103
8.3 Matrix Transforms . 104

8.3.1 Translated Frame of Reference 104
8.3.2 Rotated Frame of Reference 106
8.3.3 Rotated and Translated Frame of Reference 107

8.4 Direction Cosines . 109
8.5 Multivector Transforms . 110

8.5.1 Translated Frame of Reference 110
8.5.2 Rotated Frame of Reference 111
8.5.3 Rotated and Translated Frame of Reference 112

8.6 Summary . 113
8.6.1 Summary of Matrix Transforms 113
8.6.2 Summary of Multivector Transforms 114

9 Rotation Transforms in Space . 115
9.1 Introduction . 115
9.2 3D Transforms . 115

9.2.1 Translate a Point . 115
9.2.2 Rotate a Point About the Cartesian Axes 116
9.2.3 Rotating About an Off-Set Axis 117

9.3 Composite Rotations . 118
9.3.1 3D Eigenvectors . 123

9.4 Gimbal Lock . 130
9.5 Yaw, Pitch and Roll . 132
9.6 Rotating a Point About an Arbitrary Axis 134

9.6.1 Matrices . 134
9.6.2 Vectors . 137

9.7 Summary . 140
9.7.1 Summary of Matrix Transforms 141

10 Frames of Reference in Space . 143
10.1 Introduction . 143
10.2 Frames of Reference . 143
10.3 Matrix Transforms . 144

10.3.1 Translated Frames of Reference 144
10.3.2 Rotated Frames of Reference About Cartesian Axes . . . 145
10.3.3 Rotated Frames About Off-Set Axes 147

10.4 Composite Rotations . 149

Contents xv

10.5 Rotated and Translated Frames of Reference 150
10.6 Rotated Frames of Reference About Arbitrary Axes 152
10.7 Summary . 153

10.7.1 Summary of Transforms 153

11 Quaternion Transforms in Space . 155
11.1 Introduction . 155
11.2 Definition . 155
11.3 Quaternions in Matrix Form . 162

11.3.1 Quaternion Products and Matrices 164
11.3.2 Geometric Verification 166

11.4 Multiple Rotations . 168
11.5 Eigenvalue and Eigenvector . 169
11.6 Rotating About an Off-Set Axis 170
11.7 Frames of Reference . 171
11.8 Interpolating Quaternions . 173
11.9 Converting a Rotation Matrix to a Quaternion 177
11.10 Summary . 178

11.10.1 Summary of Quaternion Transforms 178

12 Bivector Rotors . 181
12.1 Introduction . 181
12.2 The Three Reflections Theorem 181
12.3 Reflecting a Vector . 182
12.4 3D Rotations . 184
12.5 Rotors as Matrices . 188

12.5.1 2D Rotor . 188
12.5.2 3D Rotor . 189
12.5.3 Extracting a Rotor . 191

12.6 Summary . 195
12.6.1 Summary of Bivector Transforms 195

13 Conclusion . 197

Appendix A Composite Point Rotation Sequences 199
A.1 Euler Rotations . 199
A.2 Rγ,xRβ,yRα,x . 200
A.3 Rγ,xRβ,yRα,z . 201
A.4 Rγ,xRβ,zRα,x . 202
A.5 Rγ,xRβ,zRα,y . 203
A.6 Rγ,yRβ,xRα,y . 204
A.7 Rγ,yRβ,xRα,z . 205
A.8 Rγ,yRβ,zRα,x . 206
A.9 Rγ,yRβ,zRα,y . 207
A.10 Rγ,zRβ,xRα,y . 208
A.11 Rγ,zRβ,xRα,z . 209

xvi Contents

A.12 Rγ,zRβ,yRα,x . 210
A.13 Rγ,zRβ,yRα,z . 211

Appendix B Composite Frame Rotation Sequences 213
B.1 Euler Rotations . 213
B.2 R−1

γ,xR−1
β,yR−1

α,x . 214

B.3 R−1
γ,xR−1

β,yR−1
α,z . 214

B.4 R−1
γ,xR−1

β,zR−1
α,x . 215

B.5 R−1
γ,xR−1

β,zR−1
α,y . 216

B.6 R−1
γ,yR−1

β,xR−1
α,y . 217

B.7 R−1
γ,yR−1

β,xR−1
α,z . 218

B.8 R−1
γ,yR−1

β,zR−1
α,x . 219

B.9 R−1
γ,yR−1

β,zR−1
α,y . 220

B.10 R−1
γ,zR−1

β,xR−1
α,y . 221

B.11 R−1
γ,zR−1

β,xR−1
α,z . 222

B.12 R−1
γ,zR−1

β,yR−1
α,x . 223

B.13 R−1
γ,zR−1

β,yR−1
α,z . 224

Appendix C The Four n-Square Algebras 227
C.1 Introduction . 227

References . 229

Index . 231

Chapter 1
Introduction

1.1 Rotation Transforms

In computer graphics the position of an object is expressed by two transforms:
translation and rotation. It is relatively easy to visualise a translation and express
it mathematically, however rotations do present problems. Furthermore, it is not just
objects that require rotating and translating – frames of reference have to be posi-
tioned within the world coordinate system in order to secure different views of the
virtual world. In order to do this, it is necessary to combine rotation and translation
transforms.

When rotating and translating objects, the angles and translation offsets are often
relative to a fixed frame of reference. However, when rotating and translating frames
of reference, the angles and offsets are relative to a changing frame of reference,
which requires careful handling. Primarily, this book is about rotation transforms,
and how they are used for moving objects and frames of reference in the plane and
in 3D space. But in order to do this within a real computer graphics context, it is
necessary to include the translation transform, which introduces some realism to the
final solution.

The world of mathematics offers a wide variety of rotation techniques to choose
from such as direction cosines, Euler angles, quaternions and multivectors. Each has
strengths and weaknesses, advocates and critics, therefore no attempt will be made
to identify a ‘best’ technique. However, I will attempt to draw your attention to their
qualities in order that you can draw your own conclusions.

1.2 Mathematical Techniques

Six branches of mathematics play an important role in rotations: trigonometry, com-
plex numbers, vectors, matrices, quaternions and multivectors, which are described
in the following chapters and ensure that this book is self contained. We only require
to consider certain aspects of trigonometry which will become foundations for the

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_1, © Springer-Verlag London Limited 2011

1

2 1 Introduction

other topics. Complex numbers are extremely useful from two perspectives: the first
is that they pave the way to the idea of a rotational operator, and second, they play
an intrinsic part in quaternions and multivectors. Vectors provide a mechanism for
representing oriented lines, and together with complex numbers form the basis for
quaternions, which provide a mechanism for rotating points about an arbitrary axis.
Lastly, multivectors introduce the concept of oriented areas and volumes, and pro-
vide an algebra for undertaking a wide range of geometric operations, especially
rotations.

1.3 The Reader

This is an introductory book and is aimed at readers studying or working in com-
puter graphics who require an overview of the mathematics behind rotation trans-
forms. They are probably the same people I have encountered asking questions on
Internet forums about Euler angles, quaternions, gimbal lock and how to extract a
direction vector from a rotation matrix.

Many years ago, when writing a computer animation software, I encountered
gimbal lock and had to find a way around the problem. Today, students and pro-
grammers are still discovering gimbal lock for the first time, and that certain mathe-
matical techniques are not completely stable, and that special cases require detection
if their software is to remain operational.

1.4 Aims and Objectives of This Book

The aim of this book is to take the reader through the important ideas and mathemat-
ical techniques associated with rotation transforms, without becoming too pedantic
about mathematical terminology. My objective is to make the reader confident and
comfortable with the algebra associated with complex numbers, vectors, matrices,
quaternions and rotors, which seems like a daunting task. However, I believe that
this is achievable, and is why I have included a large number of worked examples,
and shown what happens when we ignore important rules.

1.5 Assumptions Made in This Book

I only expect the reader to be competent in handling algebraic expansions, and to
have a reasonable understanding of trigonometry and geometry. They will probably
be familiar with vectors but not necessarily with matrices, which is why I have
included chapters on these topics.

1.6 How to Use the Book 3

1.6 How to Use the Book

The book has a linear narrative and readers with different backgrounds can jump in
at any convenient point. Apart from explaining the mathematical techniques, I have
tried to introduce the reader to the mathematicians behind the techniques. Math-
ematicians such as Hamilton, Cayley, Gibbs, Clifford, Euler, Laplace, Sarrus and
Grassmann have all played a part in rotation transforms and associated mathemat-
ics, and are responsible for the techniques we use today. Hopefully, you will find
this background material relevant and interesting.

Chapter 2
Complex Numbers

2.1 Introduction

Complex numbers have been described as the ‘king’ of numbers, probably because
they resolve all sorts of mathematical problems where ordinary real numbers fail.
For example, the rather innocent looking equation

1 + x2 = 0

has no real solution, which seems amazing when one considers the equation’s sim-
plicity. But one does not need a long equation to show that the algebra of real num-
bers is unable to cope with objects such as

x = √−1.

However, this did not prevent mathematicians from finding a way around such an
inconvenience, and fortuitously the solution turned out to be an incredible idea that
is used everywhere from electrical engineering to cosmology. The simple idea of
declaring the existence of a quantity i, such that i2 = −1, permits us to express the
solution to the above equation as

x = ±i.

All very well, you might say, but what is i? What is mathematics? One could also
ask, and spend an eternity searching for an answer! i is simply a mathematical object
whose square is −1. Let us continue with this strange object and see how it leads us
into the world of rotations.

2.2 Complex Numbers

A complex number has two parts: a real part and an imaginary part. The real part
is just an ordinary number that may be zero, positive or negative, and the imaginary
part is another real number multiplied by i. For example, 2+3i is a complex number

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_2, © Springer-Verlag London Limited 2011

5

6 2 Complex Numbers

where 2 is the real part and 3i is the imaginary part. The following are all complex
numbers:

2, 2 + 2i, 1 − 3i, −4i, 17i.

Note the convention to place the real part first, followed by i. However, if i is as-
sociated with a trigonometric function such as sin or cos, it is usual to place i in
front of the function: i sin θ or i cos θ , to avoid any confusion that it is part of the
function’s angle.

All that we have to remember is that whenever we manipulate complex numbers,
the occurrence of i2 is replaced by −1.

2.2.1 Axioms

The axioms defining the behaviour of complex numbers are identical to those asso-
ciated with real numbers. For example, given two complex numbers z1 and z2 they
obey the following rules:
Addition:

Commutative z1 + z2 = z2 + z1

Associative (z1 + z2) + z3 = z1 + (z2 + z3) .

Multiplication:

Commutative z1z2 = z2z1

Associative (z1z2) z3 = z1 (z2z3)

Distributive z1 (z2 + z3) = z1z2 + z1z3

(z1 + z2) z3 = z1z3 + z2z3.

2.3 The Modulus

The modulus of a complex number a + bi is defined as
√

a2 + b2. For example, the
modulus of 3+4i is 5. In general, the modulus of a complex number z is written |z|:

z = a + bi

|z| =
√

a2 + b2.

We’ll see why this is so when we cover the polar representation of a complex num-
ber.

2.4 Addition and Subtraction 7

2.4 Addition and Subtraction

Given two complex numbers:

z1 = a + bi

z2 = c + di

z1 ± z2 = (a ± c) + (b ± d) i

where the real and imaginary parts are added or subtracted, respectively. For exam-
ple:

z1 = 5 + 3i

z2 = 3 + 2i

z1 + z2 = 8 + 5i

z1 − z2 = 2 + i.

2.5 Multiplication by a Scalar

A scalar is just an ordinary number, and may be used to multiply a complex number
using normal algebraic rules. For example, the complex number a +bi is multiplied
by the scalar λ as follows:

λ (a + bi) = λa + λbi

and a specific example:

2 (3 + 5i) = 6 + 10i.

2.6 Product of Two Complex Numbers

The product of two complex numbers is evaluated by creating all the terms alge-
braically, and collecting up the real and imaginary terms:

z1 = a + bi

z2 = c + di

z1z2 = (a + bi) (c + di)

= ac + adi + bci + bdi2

= (ac − bd) + (ad + bc) i

which is another complex number. For example:

8 2 Complex Numbers

z1 = 3 + 4i

z2 = 5 − 2i

z1z2 = (3 + 4i) (5 − 2i)

= 15 − 6i + 20i − 8i2

= 15 + 14i + 8

= 23 + 14i.

Remember that the addition, subtraction and multiplication of complex numbers
obey the normal axioms of algebra. Also, the multiplication of two complex num-
bers, and their addition always results in a complex number, that is, the two opera-
tions are closed.

2.7 The Complex Conjugate

A special case exists when we multiply two complex numbers together where the
only difference between them is the sign of the imaginary part:

(a + bi) (a − bi) = a2 − abi + abi − b2i2

= a2 + b2.

As this real value is such an interesting result, a −bi is called the complex conjugate
of a + bi. In general, the complex conjugate of

z = a + bi

is written either with a bar z̄ symbol or an asterisk z∗ as

z∗ = a − bi

and implies that

zz∗ = a2 + b2 = |z|2.

2.8 Division of Two Complex Numbers

The complex conjugate provides us with a mechanism to divide one complex num-
ber by another. For instance, consider the quotient

a + bi

c + di
.

This can be resolved by multiplying the numerator and denominator by the complex
conjugate c − di to create a real denominator:

2.9 The Inverse 9

a + bi

c + di
= (a + bi) (c − di)

(c + di) (c − di)

= ac − adi + bci − bdi2

c2 + d2

=
(

ac + bd

c2 + d2

)
+

(
bc − ad

c2 + d2

)
i.

Another special case is when a = 1 and b = 0:

1

c + di
= (c + di)−1 =

(
c

c2 + d2

)
−

(
d

c2 + d2

)
i

which is the inverse of a complex number.
Let’s evaluate the quotient:

4 + 3i

3 + 4i
.

Multiplying top and bottom by the complex conjugate 3 − 4i we have

4 + 3i

3 + 4i
= (4 + 3i) (3 − 4i)

(3 + 4i) (3 − 4i)

= 12 − 16i + 9i − 12i2

25
= 24

25
− 7

25
i.

2.9 The Inverse

Although we have already discovered the inverse of a complex number, let’s employ
another strategy by declaring

z1 = 1

z

where z is a complex number.
Next, we divide both sides by the complex conjugate of z to create

z1

z∗ = 1

zz∗ .

But we have previously shown that zz∗ = |z|2, therefore,

z1

z∗ = 1

|z|2
and rearranging, we have

z1 = z∗

|z|2 .

In general

1

z
= z−1 = z∗

|z|2 .

10 2 Complex Numbers

As an illustration let’s find the inverse of 3 + 4i

1

3 + 4i
= (3 + 4i)−1

= 3 − 4i

25

= 3

25
− 4

25
i.

Let’s test this result by multiplying z by its inverse:

(3 + 4i)

(
3

25
− 4

25
i

)
= 9

25
− 12

25
i + 12

25
i + 16

25
= 1

which confirms the correctness of the inverse.

2.10 The Complex Plane

Leonhard Euler (1707–1783) (whose name rhymes with boiler) played a significant
role in putting complex numbers on the map. His ideas on rotations are also used
in computer graphics to locate objects and virtual cameras in space, as we shall see
later on.

Consider the scenario depicted in Fig. 2.1. Any number on the number line is
related to the same number with the opposite sign via a rotation of 180°. For exam-
ple, when 2 is rotated 180° about zero, it becomes −2, and when −3 is rotated 180°
about zero it becomes 3.

But as we know that i2 = −1 we can write

−n = i2n.

If we now regard i2 as a rotation through 180°, then i could be a rotation through
90°!

Figure 2.2 shows how complex numbers can be interpreted as 2D coordinates
using the complex plane where the real part is the horizontal coordinate and the

Fig. 2.1 Rotating numbers
through 180° reverses their
sign

2.11 Polar Representation 11

Fig. 2.2 The graphical representation of complex numbers

imaginary part is the vertical coordinate. The figure also shows four complex num-
bers:

p = 1 + 2i, q = −2 + i, r = −1 − 2i, s = 2 − i

which happen to be 90° apart. For example, the complex number p in Fig. 2.2 is
rotated 90° to q by multiplying it by i:

i (1 + 2i) = i + 2i2

= −2 + i.

The point q is rotated another 90° to r by multiplying it by i:

i (−2 + i) = −2i + i2

= −1 − 2i.

The point r is rotated another 90° to s by multiplying it by i:

i (−1 − 2i) = −i − 2i2

= 2 − i.

Finally, the point s is rotated 90° back to p by multiplying it by i:

i (2 − i) = 2i − i2

= 1 + 2i.

2.11 Polar Representation

The complex plane provides a simple mechanism to represent complex numbers
graphically. This in turn makes it possible to use a polar representation as shown

12 2 Complex Numbers

Fig. 2.3 Polar representation
of a complex number

in Fig. 2.3 where we see the complex number z = a + bi representing the oriented
line r . The length of r is obviously

√
a2 + b2, which is why the modulus of a com-

plex number has the same definition. We can see from Fig. 2.3 that the horizontal
component of z is r cos θ and the vertical component is r sin θ , which permits us to
write

z = a + bi

= r cos θ + ri sin θ

= r (cos θ + i sin θ) .

Note that i has been placed in front of the sin function.
The angle θ between r and the real axis is called the argument and written arg(z),

and in this case

arg(z) = θ.

One of Euler’s discoveries concerns the relationship between the series for expo-
nential e, sin and cos:

eiθ = cos θ + i sin θ

which enables us to write

z = reiθ .

We are now in a position to revisit the product and quotient of two complex
numbers using polar representation. For example:

z = r (cos θ + i sin θ)

w = s (cosφ + i sinφ)

zw = rs (cos θ + i sin θ) (cosφ + i sinφ)

= rs
(
cos θ cosφ + i cos θ sinφ + i sin θ cosφ + i2 sin θ sinφ

)

= rs
(
(cos θ cosφ − sin θ sinφ) + i (sin θ cosφ + cos θ sinφ)

)

and as

2.12 Rotors 13

Fig. 2.4 The product of two complex numbers

cos (θ + φ) = cos θ cosφ − sin θ sinφ

sin (θ + φ) = sin θ cosφ + cos θ sinφ

zw = rs
(
cos (θ + φ) + i sin (θ + φ)

)
.

So the product of two complex numbers creates a third one with modulus

|zw| = rs

and argument

arg(zw) = arg(z) + arg(w) = θ + φ.

Let’s illustrate this with an example. Figure 2.4 shows two complex numbers

z = 1 + i, w = 2i

therefore,

|z| = √
2, arg(z) = 45°

|w| = 2, arg(w) = 90°

|zw| = 2
√

2

arg(zw) = 135°

which is another complex number −2 + 2i.

2.12 Rotors

The above observations imply that multiplying a complex number by another, whose
modulus is unity, causes no scaling. For example, multiplying 3 + 4i by 1 + 0i

creates the same complex number, unscaled and unrotated. However, multiplying
3 + 4i by 0 + i rotates it by 90° without any scaling.

14 2 Complex Numbers

Fig. 2.5 Rotating a complex
number about another
complex number

So to rotate 2 + 2i by 45° we must multiply it by

cos 45° + i sin 45° =
√

2

2
+

√
2

2
i

(√
2

2
+

√
2

2
i

)
(2 + 2i) = √

2 + √
2i + √

2i + √
2i2

= 2
√

2i.

So now we have a rotor to rotate a complex number through any angle. In general,
the rotor to rotate a complex number a + bi through an angle θ is

Rθ = cos θ + i sin θ.

Now let’s consider the problem of rotating 3 + 3i, 45° about 2 + 2i as shown
in Fig. 2.5. From the figure, the result is z ≈ 2 + 3.414i, but let’s calculate it by
subtracting 2 + 2i from 3 + 3i to shift the operation to the origin, then multiply the
result by

√
2/2 + √

2/2i, and then add back 2 + 2i:

z =
(√

2

2
+

√
2

2
i

)(
(3 + 3i) − (2 + 2i)

) + 2 + 2i

=
(√

2

2
+

√
2

2
i

)
(1 + i) + 2 + 2i

=
√

2

2
+

√
2

2
i +

√
2

2
i −

√
2

2
+ 2 + 2i

= 2 + (2 + √
2)i

≈ 2 + 3.414i

which is correct. Therefore, to rotate any point (x, y) through an angle θ we convert
it into a complex number x + yi and multiply by the rotor cos θ + i sin θ :

2.13 Summary 15

x ′ + y′i = (cos θ + i sin θ) (x + yi)

= (x cos θ − y sin θ) + (x sin θ + y cos θ) i

where (x′, y′) is the rotated point.
But as we shall see in Chap. 4, this is the transform for rotating a point (x, y)

about the origin:
[
x′
y ′

]
=

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
.

Before moving on let’s consider the effect the complex conjugate of a rotor has
on rotational direction, and we can do this by multiplying x +yi by the rotor cos θ −
i sin θ :

x ′ + y ′i = (cos θ − i sin θ) (x + yi)

= x cos θ + y sin θ − (x sin θ + y cos θ) i

which in matrix form is
[
x ′
y ′

]
=

[
cos θ sin θ

− sin θ cos θ

][
x

y

]

which is a rotation of −θ .
Therefore, we define a rotor Rθ and its conjugate R†

θ as

Rθ = cos θ + i sin θ

R†
θ = cos θ − i sin θ

where Rθ rotates +θ , and R†
θ rotates −θ . The dagger symbol ‘†’ is chosen as it is

used for rotors in multivectors, which are covered later.

2.13 Summary

There is no doubt that complex numbers are amazing objects and arise simply by
introducing the symbol i which squares to −1. It is unfortunate that the names
‘complex’ and ‘imaginary’ are used to describe them as they are neither complex
nor imaginary, but very simple. We will come across them again in later chapters
and see how they provide a way of rotating 3D points.

In this chapter we have seen that complex numbers can be added, subtracted,
multiplied and divided, and they can even be raised to a power. We have also come
across new terms such as: complex conjugate, modulus and argument. We have also
discovered the rotor which permits us to rotate 2D points.

In the mid-19th century, mathematicians started to look for the 3D equivalent
of complex numbers, and after many years of work, Sir William Rowan Hamilton
invented quaternions which are the subject of a later chapter.

16 2 Complex Numbers

2.13.1 Summary of Complex Operations

Complex number

z = a + bi where i2 = −1.

Addition and subtraction

z1 = a + bi

z2 = c + di

z1 ± z2 = (a ± c) + (b ± d) i.

Scalar product

λz = λa + λbi.

Modulus

|z| =
√

a2 + b2.

Product

z1z2 = (ac − bd) + (ad + bc) i.

Complex conjugate

z∗ = a − bi.

Division

z1

z2
=

(
ac + bd

c2 + d2

)
+

(
bc − ad

c2 + d2

)
i.

Inverse

z−1 = z∗

|z|2 .

Polar form

z = r (cos θ + i sin θ)

r = |z|
θ = arg(z)

z = reiθ .

Rotors

Rθ = cos θ + i sin θ

R†
θ = cos θ − i sin θ.

Chapter 3
Vectors

3.1 Introduction

Vectors can be used to represent all sorts of data from weather maps to magnetic
fields, and in computer graphics they are used to represent oriented lines and lo-
cate points in space. In 1853 Sir William Rowan Hamilton (1805–1865) published
his book Lectures on Quaternions [2] in which he described terms such as vector,
transvector and provector. Hamilton had been looking for a 3D equivalent to com-
plex numbers and discovered quaternions. However his work was not widely ac-
cepted until 1884, when the American mathematician Josiah Willard Gibbs (1839–
1903) published his treatise Elements of Vector Analysis, [3] describing modern
vector analysis.

3.2 Vector Notation

As a vector contains two or more numbers, its symbolic name is generally printed
using a bold font to distinguish it from a scalar variable. Examples being n, i and q.
When a vector is assigned its numeric values, the following notation is used

n =
[

2
3

]
.

The numbers 2 and 3 are the components of n and their position within the brackets
is very important.

Two types of notation are in use today: column vectors and row vectors. In this
book we use column vectors, although they can be transposed into a row vector
using this notation: n = [2 3]T. The superscript T reminds us of the column to row
transposition.

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_3, © Springer-Verlag London Limited 2011

17

18 3 Vectors

Fig. 3.1 A vector is
represented by an oriented
line segment

3.3 Graphical Representation of Vectors

Cartesian coordinates provide an excellent mechanism for representing vectors and
allows them to be incorporated within the classical framework of mathematics. Fig-
ure 3.1 shows an oriented line segment used to represent a vector. The length of the
line represents the vector’s magnitude, and the line’s orientation and arrow define
its direction.

The line’s direction is determined by the vector’s head (xh, yh) and tail (xt , yt)

from which we compute its x- and y-components �x and �y :

�x = xh − xt

�y = yh − yt .

For example, in Fig. 3.1 the vector’s head is (6,4) and its tail is (1,1), which
makes its components �x = 5 and �y = 3 or [5 3]T. If the vector is pointing in the
opposite direction, its components become �x = −5 and �y = −3 or [−5 − 3]T.

One can readily see from this notation that a vector does not have a unique posi-
tion in space. It does not matter where we place a vector, so long as we preserve its
length and orientation its components will not alter.

3.4 Magnitude of a Vector

The length or magnitude of a vector r is written |r| and is computed by applying the
theorem of Pythagoras to its components �x and �y :

|r| =
√

�2
x + �2

y .

For example, the magnitude of vector [3 4]T is
√

32 + 42 = 5. Figure 3.2 shows
eight vectors, with their geometric properties listed in Table 3.1. The subscripts h

and t stand for head and tail respectively.

3.5 3D Vectors 19

Fig. 3.2 Eight vectors whose
coordinates are shown in
Table 3.1

Table 3.1 Values associated
with the eight vectors in
Fig. 3.2

xh yh xt yt �x �y |vector|

2 0 0 0 2 0 2

0 2 0 0 0 2 2

−2 0 0 0 −2 0 2

0 −2 0 0 0 −2 2

1 1 0 0 1 1
√

2

−1 1 0 0 −1 1
√

2

−1 −1 0 0 −1 −1
√

2

1 −1 0 0 1 −1
√

2

3.5 3D Vectors

A 3D vector simply requires an extra component to represent its z-component �z:

r = [
�x �y �z

]T

and its length is given by

|r| =
√

�2
x + �2

y + �2
z.

3.6 Vector Manipulation

Vectors are very different to scalars, and rules have been developed to control how
the two mathematical entities interact with one another. For instance, we need to
consider vector addition, subtraction and multiplication, and how a vector is modi-
fied by a scalar. Let’s begin with multiplying a vector by a scalar.

20 3 Vectors

3.6.1 Multiplying a Vector by a Scalar

Given a vector n, 2n means that the vectors components are doubled. For example,
given

n = [3 4 5]T then 2n = [6 8 10]T.

Similarly, dividing n by 2, its components are halved. Note that the vector’s direction
remains unchanged – only its magnitude changes. However, the vector’s direction is
reversed if the scalar is negative:

λ = −2 then λn = [−6 − 8 − 10]T.

In general, given

n =
⎡

⎣
n1
n2
n3

⎤

⎦ then ± λn =
⎡

⎣
±λn1
±λn2
±λn3

⎤

⎦ where λ is a scalar.

3.6.2 Vector Addition and Subtraction

Given vectors r and s, r ± s is defined as

r =
⎡

⎣
xr

yr

zr

⎤

⎦ , s =
⎡

⎣
xs

ys

zs

⎤

⎦ then r ± s =
⎡

⎣
xr ± xs

yr ± ys

zr ± zs

⎤

⎦ .

Vector addition is commutative:

a + b = b + a

e.g.

⎡

⎣
1
2
3

⎤

⎦ +
⎡

⎣
4
5
6

⎤

⎦ =
⎡

⎣
4
5
6

⎤

⎦ +
⎡

⎣
1
2
3

⎤

⎦ .

However, like scalar subtraction, vector subtraction is not commutative

a − b �= b − a

e.g.

⎡

⎣
4
5
6

⎤

⎦ −
⎡

⎣
1
2
3

⎤

⎦ �=
⎡

⎣
1
2
3

⎤

⎦ −
⎡

⎣
4
5
6

⎤

⎦ .

3.7 Position Vectors

Given any point P(x, y, z), a position vector p is created by assuming that P is
the vector’s head and the origin is its tail. Because the tail coordinates are (0,0,0)

the vector’s components are x, y, z. Consequently, the vector’s length |p| equals

3.8 Unit Vectors 21

√
x2 + y2 + z2. For example, the point P(4,5,6) creates a position vector p relative

to the origin:

p = [4 5 6]T and |p| =
√

42 + 52 + 62 ≈ 20.88.

3.8 Unit Vectors

By definition, a unit vector has a length of 1. A simple example is i where

i = [1 0 0]T and |i| = 1.

Converting a vector into a unit form is called normalising and is achieved by di-
viding the vector’s components by its length. To formalise this process consider the
vector r = [x y z]T with length |r| = √

x2 + y2 + z2. The unit form of r is given
by

r̂ = 1

|r| [x y z]T.

This process is confirmed by showing that the length of r̂ is 1:

|r̂| =
√(

x

|r̂|
)2

+
(

y

|r̂|
)2

+
(

z

|r̂|
)2

= 1

|r̂|
√

x2 + y2 + z2

|r̂| = 1.

To put this into context, consider the conversion of r = [1 2 3]T into a unit form:

|r| =
√

12 + 22 + 32 = √
14

r̂ = 1√
14

⎡

⎣
1
2
3

⎤

⎦ ≈
⎡

⎣
0.267
0.535
0.802

⎤

⎦ .

3.9 Cartesian Vectors

We begin by defining three Cartesian unit vectors i, j, k aligned with the x-, y- and
z-axes respectively:

i =
⎡

⎣
1
0
0

⎤

⎦ , j =
⎡

⎣
0
1
0

⎤

⎦ , k =
⎡

⎣
0
0
1

⎤

⎦ .

Any vector aligned with the x-, y- or z-axes can be defined by a scalar multiple of
the unit vectors i, j and k respectively. For example, a vector 10 units long aligned

22 3 Vectors

with the x-axis is 10i, and a vector 20 units long aligned with the z-axis is 20k. By
employing the rules of vector addition and subtraction we can compose a vector r
by summing three Cartesian unit vector as follows:

r = ai + bj + ck

which is equivalent to writing r as

r =
⎡

⎣
a

b

c

⎤

⎦

and means that the length of r is computed as

|r| =
√

a2 + b2 + c2.

Any pair of Cartesian vectors such as r and s are combined as follows

r = ai + bj + ck

s = di + ej + f k

r ± s = (a ± d) i + (b ± e) j + (c ± f)k.

For example:

r = 2i + 3j + 4k

s = 5i + 6j + 7k

r + s = 7i + 9j + 11k.

3.10 Scalar Product

The mathematicians who defined the structure of vector analysis provided two ways
to multiply vectors together: one gives rise to a scalar result and the other a vector
result. For example, we could multiply two vectors r and s by using the product of
their magnitudes: |r||s|. Although this is a valid operation it ignores the orientation
of the vectors, which is one of their important features. The idea, however, is readily
developed into a useful operation by including the angle between the vectors.

Figure 3.3 shows two vectors r and s that have been drawn, for convenience,
such that their tails touch. Taking s as the reference vector – which is an arbitrary
choice – we compute the projection of r on s, which takes into account their relative
orientation. The length of r on s is |r| cosβ . We can now multiply the magnitude of
s by the projected length of r: |s||r| cosβ .

This scalar product is written

r · s = |r||s| cosβ. (3.1)

The dot symbol ‘·’ is used to denote a scalar multiplication, which is why the product
is often referred to as the dot product. We now need to discover how to compute it.

3.10 Scalar Product 23

Fig. 3.3 Visualising the
scalar product

To begin, we define two Cartesian vectors r and s, and proceed to multiply them
together using the dot product definition:

r = ai + bj + ck

s = di + ej + f k

therefore,

r · s = (ai + bj + ck) · (di + ej + f k)

= ai · (di + ej + f k) + bj · (di + ej + f k) + ck · (di + ej + f k)

= adi · i + aei · j + af i · k + bdj · i + bej · j + bf j · k

+ cdk · i + cek · j + cf k · k.

Before we proceed any further, we can see that we have created various dot product
terms such as i · i, i · j, i · k, etc. These terms can be divided into two groups: those
that reference the same unit vector, and those that reference different unit vectors.

Using the definition of the dot product (3.1), terms such as i · i, j · j and k · k = 1,
because the angle between i and i, j and j, or k and k, is 0°, and cos 0° = 1. But
because the other vector combinations are separated by 90°, and cos 90° = 0, all
remaining terms collapse to zero. Bearing in mind that the magnitude of a unit vector
is 1, we can write

r · s = |r||s| cosβ = ad + be + cf.

This result confirms that the dot product is indeed a scalar quantity.
Let’s use the scalar product to find the angle between two vectors r and s:

r = [2 0 4]T

s = [5 6 10]T

|r| =
√

22 + 02 + 42 ≈ 4.472

|s| =
√

52 + 62 + 102 ≈ 12.689

|r||s| cosβ = 2 × 5 + 0 × 6 + 4 × 10 = 50

12.689 × 4.472 × cosβ = 50

24 3 Vectors

cosβ = 50

12.689 × 4.472
≈ 0.8811

β = cos−1 0.8811 ≈ 28.22°.

The angle between the two vectors is approximately 28.22°, and β is always the
smallest angle associated with the geometry.

3.11 The Vector Product

The second way to multiply vectors is by using the vector product, which is also
called the cross product due to the ‘×’ symbol used in its notation. It is based on the
observation that two vectors r and s can be multiplied together to produce a third
vector t:

r × s = t

where

|t| = |r||s| sinβ (3.2)

and β is the angle between r and s.
The vector t is normal (90°) to the plane containing the vectors r and s, which

makes it an ideal way of computing surface normals in computer graphics applica-
tions. Once again, let’s define two vectors and proceed to multiply them together
using the ‘×’ operator:

r = ai + bj + ck

s = di + ej + f k

r × s = (ai + bj + ck) × (di + ej + f k)

= ai × (di + ej + f k) + bj × (di + ej + f k) + ck × (di + ej + f k)

= adi × i + aei × j + af i × k + bdj × i + bej × j + bf j × k

+ cdk × i + cek × j + cf k × k.

As we found with the dot product, there are two groups of vector terms: those that
reference the same unit vector, and those that reference different unit vectors.

Using the definition for the cross product (3.2), operations such as i × i, j × j and
k × k result in a vector whose magnitude is 0. This is because the angle between the
vectors is 0°, and sin 0° = 0. Consequently these terms vanish and we are left with

r × s = aei × j + af i × k + bdj × i + bf j × k + cdk × i + cek × j. (3.3)

The mathematician Sir William Rowan Hamilton struggled for many years to gener-
alise complex numbers – and in so doing created a means of describing 3D rotations.
At the time, he was not using vectors – as they had yet to be defined – but the imag-
inary terms i, j and k. Hamilton’s problem was to resolve the products ij , jk, ki

and their opposites ji, kj and ik.

3.11 The Vector Product 25

One day in 1843, when he was out walking, thinking about this problem, he
thought the impossible: ij = k, but ji = −k, jk = i, but kj = −i, and ki = j , but
ik = −j . To his surprise, this worked, but it contradicted the commutative multipli-
cation law of scalars. Although Hamilton had discovered “3D complex numbers”,
to which he gave the name quaternion, they were not popular with everyone. And as
mentioned above, Josiah Gibbs saw that converting the imaginary i, j and k terms
into the unit vectors i, j and k created a non-complex algebra for manipulating vec-
tors, and for over a century we have been using Gibbs’ vector notation.

Let’s continue with Hamilton’s rules and reduce the cross product terms of (3.3)
to

r × s = aek − af j − bdk + bf i + cdj − cei. (3.4)

Equation (3.4) can be tidied up to bring like terms together:

r × s = (bf − ce) i + (cd − af) j + (ae − bd)k. (3.5)

Now let’s repeat the original vector equations to see how (3.5) is computed:

r = ai + bj + ck

s = di + ej + f k

r × s = (bf − ce) i + (cd − af) j + (ae − bd)k. (3.6)

To compute i’s scalar we consider the scalars associated with the other two unit
vectors, i.e. b, c, e, and f , and cross-multiply and subtract them to form (bf − ce).

To compute j’s scalar we consider the scalars associated with the other two unit
vectors, i.e. a, c, d , and f , and cross-multiply and subtract them to form (cd − af).

To compute k’s scalar we consider the scalars associated with the other two unit
vectors, i.e. a, b, d , and e, and cross-multiply and subtract them to form (ae − bd).

The middle operation seems out of step with the other two, but in fact it pre-
serves a cyclic symmetry often found in mathematics. Nevertheless, some authors
reverse the sign of the j scalar term and cross-multiply and subtract the terms to
produce −(af − cd) which maintains a visual pattern for remembering the cross-
multiplication. Equation (3.6) now becomes

r × s = (bf − ce) i − (af − cd) j + (ae − bd)k. (3.7)

Although we have not yet covered determinants, their notation allows us to write
(3.7) as

r × s =
∣∣∣∣
b c

e f

∣∣∣∣ i −
∣∣∣∣
a c

d f

∣∣∣∣ j +
∣∣∣∣
a b

d e

∣∣∣∣k.

A 2 × 2 determinant is the difference between the product of the diagonal terms.
Therefore, to derive the cross product of two vectors we first write the vectors

in the correct sequence. Remembering that r × s does not equal s × r. Second, we
compute the three scalar terms and form the resultant vector, which is perpendicular
to the plane containing the original vectors.

Let’s illustrate the vector product with two examples. First, we will confirm that
the vector product works with the unit vectors i, j and k. We start with

26 3 Vectors

Fig. 3.4 The vector t is
normal to the vectors r and s

r = 1i + 0j + 0k

s = 0i + 1j + 0k

and then compute (3.7)

r × s = (0 × 0 − 0 × 1)i − (1 × 0 − 0 × 0)j + (1 × 1 − 0 × 0)k.

The i scalar and j scalar terms are both zero, but the k scalar term is 1, which makes
i × j = k.

Now let’s show what happens when we reverse the vectors:

s × r = (1 × 0 − 0 × 0)i − (1 × 0 − 0 × 0)j + (0 × 0 − 1 × 1)k.

The i scalar and j scalar terms are both zero, but the k scalar term is −1, which
makes j × i = −k. So we see that the vector product is antisymmetric, i.e. there is a
sign reversal when the vectors are reversed. Similarly, it can be shown that

j × k = i

k × i = j

k × j = −i

i × k = −j.

Now let’s consider two vectors r and s and compute the normal vector t. The vec-
tors are chosen so that we can anticipate approximately the answer. For the sake of
clarity, the vector equations include the scalar multipliers 0 and 1. Normally, these
would be omitted. Figure 3.4 shows the vectors r and s and the normal vector t, and
Table 3.2 contains the coordinates of the vertices forming the two vectors.

r =
⎡

⎣
x3 − x2
y3 − y2
z3 − z2

⎤

⎦ , s =
⎡

⎣
x1 − x2
y1 − y2
z1 − z2

⎤

⎦

then

P1 = (0,0,1), P2 = (1,0,0), P3 = (0,1,0)

r = −1i + 1j + 0k

3.12 The Right-Hand Rule 27

Table 3.2 Coordinates of the
vertices used in Fig. 3.4 Vertex x y z

P1 0 0 1

P2 1 0 0

P3 0 1 0

s = −1i + 0j + 1k

r × s = (1 × 1 − 0 × 0)i − (−1 × 1 − (−1) × 0)j + (−1 × 0 − (−1) × 1)k

t = i + j + k.

This confirms what we expected from Fig. 3.4. Now let’s reverse the vectors to
illustrate the importance of vector sequence:

s × r = (0 × 0 − 1 × 1)i − (−1 × 0 − (−1) × 1)j + (−1 × 1 − (−1) × 0)k

t = −i − j − k

which is in the opposite direction to r × s and confirms that the vector product is
non-commutative.

3.12 The Right-Hand Rule

When we cover multivectors we will see that lines, planes and volumes are all ori-
ented and can be described mathematically. In particular, 3D space is described as
being left- or right-handed, and in this book we choose to work with a right-handed
space. Consequently, the right-hand rule is an aide mémoire for working out the
orientation of the cross product vector. Given the operation r × s, if the right-hand
thumb is aligned with r, the first finger with s, and the middle finger points in the
direction of t.

3.13 Deriving a Unit Normal Vector

Figure 3.5 shows a triangle with vertices defined in an anti-clockwise sequence from
its visible side. This is the side from which we want the surface normal to point.
Using the following information we will compute the surface normal using the cross
product and then convert it to a unit normal vector.

Create vector r between P1 and P3, and vector s between P2 and P3:

r = −1i + 1j + 0k

s = −1i + 0j + 2k

r × s = (1 × 2 − 0 × 0)i − (−1 × 2 − 0 × −1)j + (−1 × 0 − 1 × −1)k

t = 2i + 2j + k

28 3 Vectors

Fig. 3.5 The normal vector t
is derived from the cross
product r × s

|t| =
√

22 + 22 + 12 = 3

t̂u = 2

3
i + 2

3
j + 1

3
k.

3.14 Interpolating Vectors

In computer animation we need to vary quantities such as height, width, depth, light
intensity, radius, etc., such that they change over a sequence of animation frames.
The change may be linear or non-linear, and a variety of techniques exist for chang-
ing one numeric value into another. This process is called interpolating.

To interpolate between two values v1 and v2 we often use the linear interpolant:

v = (1 − t)v1 + tv2

where the parameter t varies between 0 and 1. For example, given v1 = 2 and v2 =
10 we can compute a half-way point by making t = 0.5:

v = 0.5 × 2 + 0.5 × 10 = 6

where t is linked to the animation frame number.
However, this technique cannot be used for changing quantities such as a light

source direction, dust-cloud particle velocity, or the direction and intensity of a
flame. This is because these quantities possess both magnitude and direction – they
are vector quantities.

For example, if we interpolated the x- and y-components of the vectors [2 3]T

and [4 7]T, the in-between vectors would carry the change of orientation but ignore
the change in magnitude. To preserve both, we must design a spherical interpolant
that is sensitive to a vector’s length and orientation.

Figure 3.6 shows two unit vectors v1 and v2 separated by an angle θ . The inter-
polated vector v can be defined as a portion of v1 and a portion of v2:

v = av1 + bv2.

Let’s define the values of a and b such that they are a function of the separating
angle θ . Vector v is tθ from v1 and (1 − t) θ from v2, and it is evident from Fig. 3.6
that using the sine rule

a

sin (1 − t) θ
= b

sin tθ
. (3.8)

3.14 Interpolating Vectors 29

Fig. 3.6 Vector v is derived
from a part of v1 and b part
of v2

Furthermore,

m = a cos tθ

n = b cos (1 − t) θ

where

m + n = 1. (3.9)

From (3.8)

b = a sin tθ

sin (1 − t) θ

and from (3.9) we get

a cos tθ + a sin tθ cos (1 − t) θ

sin (1 − t) θ
= 1.

Solving for a we find that

a = sin (1 − t) θ

sin θ

b = sin tθ

sin θ
.

Therefore, the final spherical interpolant is

v = sin (1 − t) θ

sin θ
v1 + sin tθ

sin θ
v2. (3.10)

To see how this operates, let’s consider a simple exercise of interpolating be-
tween two unit vectors [1 0]T and [−1/

√
2 1/

√
2]T. The angle θ between the

vectors is 135°. Equation (3.10) is used to interpolate individually the x- and the
y-components individually:

vx = sin(1 − t)135°

sin 135°
× (1) + sin t135°

sin 135°
×

(
− 1√

2

)

vy = sin(1 − t)135°

sin 135°
× (0) + sin t135°

sin 135°
×

(
1√
2

)
.

30 3 Vectors

Fig. 3.7 Curves of the interpolated angles

Fig. 3.8 A trace of the
interpolated vectors between
[1 0]T and [− 1√

2
1√
2
]T

Figure 3.7 shows the interpolating curves and Fig. 3.8 shows the positions of the
interpolated vectors, and a trace of the interpolated vectors.

Two observations to note about (3.10):

• First, the angle θ is the angle between the two vectors, which, if not known, can
be computed using the dot product.

• Second, the range of θ is given by 0 < θ < 180°, for when θ = 0°,180° the
denominator collapses to zero. To illustrate this we will repeat (3.10) for θ =
179°.

The result is shown in Fig. 3.9, which reveals clearly that the interpolant works
normally over this range. One more degree, however, and it fails! Nevertheless, one
could still leave the range equal to 180° and test for the conditions t = 0 then v = v1
and when t = 180° then v = v2.

So far, we have only considered unit vectors. Now let’s see how the interpolant
responds to vectors of different magnitudes. As a test, we can input the following
vectors to (3.10):

v1 =
[

2
0

]
and v2 =

[
0
1

]
.

The separating angle θ = 90°, and the result is shown in Fig. 3.10. Note how the
initial length of v1 reduces from 2 to 1 over 90°. It is left to the reader to examine
other combinations of vectors.

3.15 Summary 31

Fig. 3.9 Interpolating between two unit vectors 179° apart

Fig. 3.10 Interpolating
between the vectors [2 0]T

and [0 1]T

3.15 Summary

This chapter has covered the important features of vectors relevant to rotations. Ba-
sically, we need to know how to create a position vector, normalise a vector, and
multiply two vectors using the scalar and vector product. In Chap. 6, we explore the
ideas of multivectors, which build upon the contents of this chapter.

3.15.1 Summary of Vector Operations

Vector

v = [x y z]T

v = xi + yj + zk.

Addition and subtraction

v1 = x1i + y1j + z1k

v2 = x2i + y2j + z2k

v1 ± v2 = (x1 ± x2) i + (y1 ± y2) j + (z1 ± z2)k.

32 3 Vectors

Scalar product

λv = λxi + λyj + λzk.

Magnitude

|v| =
√

x2 + y2 + z2.

Unit vector

|v| = 1.

Scalar product

v1 · v2 = |v1||v2| cosβ

v1 · v2 = x1x2 + y1y2 + z1z2.

Vector product

v1 × v2 = t

|t| = |v1||v2| sinβ

v1 × v2 = (y1z2 − z1y2) i + (z1x2 − x1z2) j + (x1y2 − y1x2)k.

Interpolating vectors

v = sin (1 − t) θ

sin θ
v1 + sin tθ

sin θ
v2 [0 < t < 1].

Chapter 4
Matrices

4.1 Introduction

Matrix notation was investigated by the British mathematician, Arthur Cayley
(1821–1895), in 1858, fifteen years after the invention of quaternions. Cayley and
others had realised that it was possible to express a collection of equations by sepa-
rating constants and variables. For example, the following simultaneous equations

2x + 3y = 18 (4.1)

4x − y = 8 (4.2)

have a solution x = 3 and y = 4, which can be discovered by eliminating one vari-
able, such as x, and computing y, which in turn can be substituted into one of the
equations to reveal the value of x. However, matrix notation allows us to express the
equations as follows

[
2 3
4 −1

][
x

y

]
=

[
18
8

]
(4.3)

where the array of four numbers is a matrix and the other two columns are vectors.
When multiplying the matrix and the vector [x y]T together we must multiply the
respective terms of the top row of the matrix with the column vector to equal 18 and
create (4.1). Similarly, we must multiply the respective terms of the bottom row of
the matrix with the column vector to equal 8 and create (4.2).

Matrix notation also allows us to express these equations as

Av = c (4.4)

where

A =
[

2 3
4 −1

]
, v =

[
x

y

]
, c =

[
18
8

]
.

There happens to be a special matrix such that when it multiplies a vector it
results in no change – this matrix is called an identity matrix and has the form

I =
[

1 0
0 1

]
.

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_4, © Springer-Verlag London Limited 2011

33

34 4 Matrices

It is also possible to compute another matrix A−1, called the inverse of A, such that
A−1A = I. Therefore, if we assume that A is still

A =
[

2 3
4 −1

]

and is invertible, we can compute A−1 and use it to multiply both sides of (4.4), we
have

A−1Av = A−1c

Iv = A−1c

v = A−1c

which reveals the components of the vector v, and the solution to the equations.
Without showing its derivation, the inverse of A is

A−1 = 1

14

[
1 3
4 −2

]
(4.5)

and when we multiply c by A−1 we get

A−1c = 1

14

[
1 3
4 −2

][
18
8

]
=

[
3
4

]

which is the desired result.
Matrices can also be regarded as rectangular arrays of numbers, which may pos-

sess various properties. For instance, we can imagine a matrix where all the elements
have the same value. We could also create a matrix where all the elements are zero,
apart from the diagonal elements. There are many more such configurations, which
are explored in this chapter.

If this is the first time you have met matrices, then the author’s book Mathematics
for Computer Graphics [4] will provide you with the necessary background. So for
the moment, let’s continue and discover more about matrices.

4.2 Matrices

Let’s begin by defining a matrix as a rectangular array of numbers with row rows and
col columns, where any element in the matrix is addressed by arow,col. The matrix
of numbers can be represented in shorthand as

A = [arow,col]
where row and col are natural numbers. However, matrices representing 2D and 3D
rotations are all square, where the number of rows equals the number of columns.
The following are all examples of square matrices:

[
1 2
3 4

]
,

⎡

⎣
1 2 3
4 5 6
7 8 9

⎤

⎦ ,

⎡

⎢⎢
⎣

1 2 3 4
5 6 7 8
9 8 7 6
5 4 3 2

⎤

⎥⎥
⎦ .

4.3 The Transpose of a Matrix 35

We will discover in later chapters that a 4 × 4 matrix is the largest matrix we will
require to represent a 3D rotation. Now let’s look at some of the ways we manipulate
matrices.

4.3 The Transpose of a Matrix

One useful matrix operation is the transpose where every element arow,col is ex-
changed with its transpose acol,row, and is written

AT = [arow,col]T = [acol,row].
For example, here is a matrix A and its transpose AT

A =
[

1 2
3 4

]
, AT =

[
1 3
2 4

]
.

It is possible that the elements of A are such that A = AT. Such a matrix is called a
symmetric matrix, and we will examine this later.

4.4 The Identity Matrix

As mentioned above, the identity matrix I is a matrix such that

IA = AI = A.

The three identity matrices we will encounter in later chapters are

[
1 0
0 1

]
,

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

and it should be obvious that IT = I.

4.5 Adding and Subtracting Matrices

It is possible to add and subtract matrices so long as they have the same number of
rows and columns. For example, in matrix notation

A ± B = [arow,col ± brow,col].
For example:

A =
[

5 6
7 8

]
, B =

[
1 2
3 4

]

then

A + B =
[

6 8
10 12

]
, A − B =

[
4 4
4 4

]
.

36 4 Matrices

4.6 Multiplying a Matrix by a Scalar

Multiplying a matrix by a scalar λ is the same as multiplying an equation by the
same scalar. Therefore,

±λA = [±λarow,col].
For example, if λ = 2

A =
[

1 2
3 4

]
, λA =

[
2 4
6 8

]
.

4.7 Product of Two Matrices

As already mentioned, every element in a matrix has a unique address specified
by its row and column: arow,col where a comma separates the values of row and
col. However, these commas can make the notation very fussy and are not always
employed. For example, a11 represents the element for row = 1 and col = 1, and
a23 represents the element for row = 2 and col = 3. In this book, we never need
to manipulate matrices with more that 4 rows or columns, therefore, there is no
confusion.

Matrices have their origins in algebra, therefore matrix algebra must agree with
its algebraic counterpart. Bearing this in mind, let’s investigate the product of two
matrices:

A =
[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]

then their product is given by

AB =
[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
.

For example, given

A =
[

5 6
7 8

]
, B =

[
1 2
3 4

]

then

AB =
[

5 × 1 + 6 × 3 5 × 2 + 6 × 4
7 × 1 + 8 × 3 7 × 2 + 8 × 4

]

=
[

5 + 18 10 + 24
7 + 24 14 + 32

]

=
[

23 34
31 46

]
.

4.8 The Inverse Matrix 37

Now let’s compute BA

BA =
[

1 × 5 + 2 × 7 1 × 6 + 2 × 8
3 × 5 + 4 × 7 3 × 6 + 4 × 8

]

=
[

19 22
43 50

]

which confirms that, in general, matrix multiplication is non-commutative.
It can also be shown that

[AB]T = BTAT

and

[A + B]T = AT + BT.

4.8 The Inverse Matrix

Most mathematics software systems include a matrix inversion package, but for
completeness, let’s demonstrate how we arrived at the inverse matrix A−1 (4.5):

A−1 = 1

14

[
1 3
4 −2

]
.

Initially, we started with the simultaneous equations

2x + 3y = 18 (4.6)

4x − y = 8. (4.7)

Solving these algebraically we multiply (4.7) by 3 and add it to (4.6) to eliminate y:

2x + 3y = 18

12x − 3y = 24

14x = 42

x = 3.

Substituting x = 3 in (4.6) gives

6 + 3y = 18

which makes y = 4.

4.8.1 Calculation of Inverse

Now let’s solve (4.6) and (4.7) using matrix notation. We begin with

Av = c

38 4 Matrices

where

A =
[

2 3
4 −1

]
, v =

[
x

y

]
, c =

[
18
8

]
.

Next we introduce an identity matrix, which does not disturb anything:

Av = Ic (4.8)
[

2 3
4 −1

][
x

y

]
=

[
1 0
0 1

][
18

8

]
. (4.9)

The objective is to multiply both sides of (4.8) by A−1 and turn the LHS matrix A
into an identity matrix, and at the same time turn the RHS matrix I into A−1. But
as we don’t know A−1 we will have to do this in a number of steps. Like the above
simultaneous equations, we can scale, add, subtract or divide matrix rows, so long
as we manipulate the entire matrix equation.

We start by subtracting 2 × row(1) from row(2) in (4.9):
[

2 3
0 −7

][
x

y

]
=

[
1 0

−2 1

][
18

8

]
. (4.10)

Next, multiply row(1) × 7
3 in (4.10):

[
14
3 7
0 −7

][
x

y

]
=

[7
3 0

−2 1

][
18

8

]
. (4.11)

Next, add row(2) to row(1) in (4.11):
[

14
3 0
0 −7

][
x

y

]
=

[
1
3 1

−2 1

][
18

8

]
. (4.12)

Next, multiply row(1) × 3
14 in (4.12):

[
1 0
0 −7

][
x

y

]
=

[1
14

3
14−2 1

][
18

8

]
. (4.13)

Finally, divide row(2) by −7 in (4.13):

[
1 0
0 1

][
x

y

]
=

[
1

14
3

14
2
7 − 1

7

][
18

8

]
. (4.14)

As the LHS matrix is an identity matrix, the RHS matrix in (4.14) must be A−1 and
is tidied up to become

A−1 = 1

14

[
1 3
4 −2

]
.

Later on, we will explore another technique that does not involve any overt algebraic
skills.

4.9 Determinant of a Matrix 39

4.9 Determinant of a Matrix

When solving a pair of simultaneous equations such as

ax + by = r

cx + dy = s

the expression ad − bc arises in the solution. For example, in the simultaneous
equations (4.6) and (4.7) the corresponding expression has a value 2 × (−1) − 3 ×
4 = −14 whose magnitude appears in the solution of A−1. Because this expression
is so useful, it is identified by the name determinant and is written

det A = |A| = ad − bc

where

A =
[
a b

c d

]
.

Determinants are formed from square arrays, in that they have the same number
of rows and columns, which permits us to classify them in terms of their order.
Some texts classify a scalar quantity as a first-order determinant – for example a.
A second-order determinant has two rows and columns – for example

∣∣∣∣
a b

c d

∣∣∣∣ .

When dealing with three simultaneous equations

ax + by + cz = r

dx + ey + f z = s

gx + hy + iz = t

the corresponding matrix is

A =
⎡

⎣
a b c

d e f

g h i

⎤

⎦

and the equivalent determinant is

aei + bfg + cdh − ceg − af h − bdi.

4.9.1 Sarrus’s Rule

The French mathematician, J.P. Sarrus (1789–1861), noted that a third-order de-
terminant is easily computed by exploiting a pattern which is very obvious if the
determinant’s columns are extended as follows:∣∣∣∣∣∣

a b c a b

d e f d e

g h i g h

∣∣∣∣∣∣
.

40 4 Matrices

aei, bfg and cdh are strings of elements sloping downwards to the right, whereas,
ceg, af h and bdi are strings of elements sloping downwards to the left. For exam-
ple, the determinant

det A =
∣∣∣∣∣∣

2 0 4
3 1 0
4 2 2

∣∣∣∣∣∣

has a value of

|A| = (2 × 1 × 2) + (0 × 0 × 4) + (4 × 3 × 2)

− (4 × 1 × 4) − (2 × 0 × 2) − (0 × 3 × 2)

= 4 + 0 + 24 − 16 − 0 − 0

|A| = 12.

In general

det A = |A| = aei + bfg + cdh − ceg − af h − bdi (4.15)

and the expansion is known as Sarrus’s rule.
Equation (4.15) can be rearranged to reveal another pattern:

|A| = a(ei − f h) + b(fg − di) + c(dh − eg)

where the expressions

(ei − f h), (fg − di), (dh − eg)

are regarded as minor determinants. Let’s pause at this juncture and examine |A|’s
minor determinants:

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a

e f

h i

∣∣∣∣∣∣
−

∣∣∣∣∣∣

b

d f

g i

∣∣∣∣∣∣
+

∣∣∣∣∣∣

c

d e

g h

∣∣∣∣∣∣
. (4.16)

Equation (4.16) shows how a third-order determinant can be represented as the sum
of three minor determinants:

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
= a

∣∣∣∣
e f

h i

∣∣∣∣ − b

∣∣∣∣
d f

g i

∣∣∣∣ + c

∣∣∣∣
d e

g h

∣∣∣∣ .

Note that the middle minor determinant is prefixed with a negative sign. This ensures
that the equation’s value is the same as (4.15). The reason for this is that mathematics
is not interested in forming convenient visual patterns on the page – its patterns are
created from cycles of elements or subscripts. Consequently, if we prefer a visual
pattern as an aide-mémoire, we must make the necessary algebraic adjustments to
maintain the equation’s integrity. For example, by repeating the first column of |A|
as follows

∣∣∣∣∣∣

a b c a

d e f d

g h i g

∣∣∣∣∣∣

4.9 Determinant of a Matrix 41

the pattern (fg − di) is now very obvious. However, it is widely agreed that it is
best to ignore this and embrace a simple visual pattern. The price to be paid for this
is a negative sign as follows:

|A| = a(ei − f h) − b(di − fg) + c(dh − eg).

4.9.2 The Laplace Expansion

The French mathematician, Pierre Simon de Laplace (1749–1827), developed a
method of expanding a determinant in terms of its minors, which, with the associ-
ated change of sign, is called a cofactor. The cofactor crow,col of an element arow,col

is the minor that remains after removing from the original determinant the row row
and the col column.

For example, in (4.17) the minor of a11 is identified by removing the first row
and the first column; the minor of a12 is identified by removing the first row and the
second column; and the minor of a13 is identified by removing the first row and the
third column:

det A =
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
. (4.17)

The three minor determinants for a11, a12 and a13 are respectively:

A11 =
∣∣∣∣
a22 a23
a32 a33

∣∣∣∣ , A12 =
∣∣∣∣
a21 a23
a31 a33

∣∣∣∣ , A13 =
∣∣∣∣
a21 a22
a31 a32

∣∣∣∣

whereas, the three cofactors are

c11 = +a11A11

c12 = −a12A12

c13 = +a13A13.

In general, the minor of arow,col is denoted Arow,col.
Laplace proposed the following formulae for selecting the cofactor sign:

(−1)row+col

which generates the pattern
∣∣∣∣∣∣∣∣

+ − + . . .

− + − . . .

+ − + . . .

.

∣∣∣∣∣∣∣∣

.

Although we have chosen the first row to expand the above determinants, any row,
or column may be used.

42 4 Matrices

The above Laplace expansion can be used for any order determinant, and for
the purposes of this book, the highest order we will encounter is a fourth-order
determinant. So let’s expand the following determinant

det A =

∣∣∣∣∣∣∣∣

0 4 −1 0
1 0 1 4
0 6 3 3
3 5 2 2

∣∣∣∣∣∣∣∣

.

The first column and the first row both contain two zeros, which helps our expansion,
so let’s expand |A| using the first row. The two relevant minor determinants are

A12 =
∣∣∣∣∣∣

1 1 4
0 3 3
3 2 2

∣∣∣∣∣∣
, A13 =

∣∣∣∣∣∣

1 0 4
0 6 3
3 5 2

∣∣∣∣∣∣
.

Next, we expand A12 and A13 with their cofactors as follows

c12 = −4

[
1 (−1)1+1

∣∣∣∣
3 3
2 2

∣∣∣∣ + 1 (−1)1+2
∣∣∣∣
0 3
3 2

∣∣∣∣ + 4 (−1)1+3
∣∣∣∣
0 3
3 2

∣∣∣∣

]

= −4 [0 + 9 − 36]

= 108

c13 = −1

[
1 (−1)1+1

∣∣∣∣
6 3
5 2

∣∣∣∣ + 4 (−1)1+3
∣∣∣∣
0 6
3 5

∣∣∣∣

]

= −1 [−3 − 72]

= 75.

Therefore,

det A = c12 + c13 = 108 + 75 = 183.

4.10 Cofactors and Inverse of a Matrix

Although the idea of cofactors has been described in the context of determinants,
they can also be applied to matrices. For example, let’s start with the following
matrix and its cofactor matrix

A =
⎡

⎣
0 1 3
2 1 4
4 2 6

⎤

⎦

cofactor matrix of A =
⎡

⎣
A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤

⎦

4.10 Cofactors and Inverse of a Matrix 43

where

A11 = +
∣∣∣∣
a22 a23
a32 a33

∣∣∣∣ = +
∣∣∣∣
1 4
2 6

∣∣∣∣ = −2

A12 = −
∣∣∣∣
a21 a23
a31 a33

∣∣∣∣ = −
∣∣∣∣
2 4
4 6

∣∣∣∣ = 4

A13 = +
∣∣∣∣
a21 a23
a31 a33

∣∣∣∣ = +
∣∣∣∣
2 1
4 2

∣∣∣∣ = 0

A21 = −
∣∣∣∣
a22 a23
a32 a33

∣∣∣∣ = −
∣∣∣∣
1 3
2 6

∣∣∣∣ = 0

A22 = +
∣∣∣∣
a11 a13
a31 a33

∣∣∣∣ = +
∣∣∣∣
0 3
4 6

∣∣∣∣ = −12

A23 = −
∣∣∣∣
a11 a12
a31 a32

∣∣∣∣ = −
∣∣∣∣
0 1
4 2

∣∣∣∣ = 4

A31 = +
∣∣∣∣
a12 a13
a22 a23

∣∣∣∣ = +
∣∣∣∣
1 3
1 4

∣∣∣∣ = 1

A32 = −
∣∣∣∣
a11 a13
a21 a23

∣∣∣∣ = −
∣∣∣∣
0 3
2 4

∣∣∣∣ = 6

A33 = +
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = +
∣∣∣∣
0 1
2 1

∣∣∣∣ = −2

therefore, the cofactor matrix of A is

cofactor matrix of A =
⎡

⎣
−2 4 0

0 −12 4
1 6 −2

⎤

⎦ .

It can be shown that the product of a matrix with the transpose of its cofactor matrix
has the following form:

A (cofactor matrix of A)T =

⎡

⎢⎢
⎣

det A 0 . . . 0
0 det A . . . 0
.

0 0 0 det A

⎤

⎥⎥
⎦

and multiplying throughout by 1/det A we have

(1/det A)A (cofactor matrix of A)T = I

which implies that

A−1 = (cofactor matrix of A)T

det A
.

Naturally, this assumes that the inverse actually exists, and it will if det A �= 0.

44 4 Matrices

Let’s find the inverse of the above matrix

A =
⎡

⎣
0 1 3
2 1 4
4 2 6

⎤

⎦

(cofactor matrix of A) =
⎡

⎣
−2 4 0

0 −12 4
1 6 −2

⎤

⎦

(cofactor matrix of A)T =
⎡

⎣
−2 0 1

4 −12 6
0 4 −2

⎤

⎦

det A = 1 × 4 × 4 + 3 × 2 × 2 − 1 × 2 × 6 − 3 × 1 × 4 = 4

A−1 = 1

4

⎡

⎣
−2 0 1

4 −12 6
0 4 −2

⎤

⎦ .

Let’s check this result by multiplying A by A−1 which must equal I:

AA−1 =
⎡

⎣
0 1 3
2 1 4
4 2 6

⎤

⎦ 1

4

⎡

⎣
−2 0 1

4 −12 6
0 4 −2

⎤

⎦

= 1

4

⎡

⎣
4 0 0
0 4 0
0 0 4

⎤

⎦

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

Finally, let’s compute the inverse matrix for (4.6) and (4.7) using cofactors:

A =
[

2 3
4 −1

]

(cofactor matrix of A) =
[−1 −4
−3 2

]

(cofactor matrix of A)T =
[−1 −3
−4 2

]

det A = 2 × (−1) − 3 × 4 = −14

A−1 = 1

14

[
1 3
4 −2

]

which confirms the original result.
In general, the inverse of a 2 × 2 matrix is given by

A =
[
a11 a12
a21 a22

]

4.11 Orthogonal Matrix 45

A−1 = 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]

which, for the above matrix is

A−1 = −1

14

[−1 −3
−4 2

]
= 1

14

[
1 3
4 −2

]
.

4.11 Orthogonal Matrix

Although many matrices have to be inverted using the transpose of their cofactor
matrix, an orthogonal matrix implies that its transpose is also its inverse. For exam-
ple:

A =
[

cosβ − sinβ

sinβ cosβ

]

is orthogonal because

AT =
[

cosβ sinβ

− sinβ cosβ

]

and

AAT =
[

cosβ − sinβ

sinβ cosβ

][
cosβ sinβ

− sinβ cosβ

]
=

[
1 0
0 1

]
.

Orthogonal matrices play an important role in rotations because they leave the origin
fixed and preserve all angles and distances. Consequently, an object’s geometric
integrity is maintained after a rotation, which is why an orthogonal transform is
known as a rigid motion transform.

A rotation transform also preserves orientations, which means that left-handed
and right-handed axial systems (frames) remain unaltered after a rotation. Such
changes in orientation will occur with a reflection transform.

4.12 Diagonal Matrix

A diagonal matrix is a square matrix whose elements are zero, apart from its diag-
onal:

A =

⎡

⎢⎢⎢
⎣

a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...

0 0 . . . ann

⎤

⎥⎥⎥
⎦

.

The determinant of a diagonal matrix must be

det A = a11 × a22 × · · · × ann.

46 4 Matrices

Here is a diagonal matrix with its determinant

A =
⎡

⎣
2 0 0
0 3 0
0 0 4

⎤

⎦

|A| = 2 × 3 × 4 = 24.

The identity matrix I is a diagonal matrix with a determinant of 1.

4.13 Trace

The trace of a square matrix A is the sum of its diagonal elements and written as
Tr (A). For example:

A =

⎡

⎢⎢
⎣

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

⎤

⎥⎥
⎦

Tr (A) = 1 + 3 + 5 + 7 = 16.

In Chap. 9 we use the trace of a square matrix to reveal the angle of rotation
associated with a rotation matrix. And as we will be using the product of two or
more rotation transforms we require to establish that

Tr (AB) = Tr (BA)

to reassure ourselves that the trace operation is not sensitive to transform order, and
is readily proved as follows.

Given two square matrices A and B:

A =

⎡

⎢⎢
⎣

a11 · · · · · · a1n

· · · a22 · · · a2n

· · · · · · · · · · · ·
an1 · · · · · · ann

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

b11 · · · · · · b1n

· · · b22 · · · b2n

· · · · · · · · · · · ·
bn1 · · · · · · bnn

⎤

⎥⎥
⎦

then,

AB =

⎡

⎢⎢
⎣

a11 · · · · · · a1n

· · · a22 · · · a2n

· · · · · · · · · · · ·
an1 · · · · · · ann

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

b11 · · · · · · b1n

· · · b22 · · · b2n

· · · · · · · · · · · ·
bn1 · · · · · · bnn

⎤

⎥⎥
⎦

AB =

⎡

⎢⎢
⎣

a11b11 · · · · · · a1n

· · · a22b22 · · · a2n

· · · · · · · · · · · ·
an1 · · · · · · annbnn

⎤

⎥⎥
⎦

and Tr (AB) = a11b11 + a22b22 + · · · + annbnn.

4.14 Symmetric Matrix 47

Hopefully, it is obvious that reversing the matrix sequence to BA only reverses
the a and b scalar elements on the diagonal, and therefore does not affect the trace
operation.

4.14 Symmetric Matrix

It is worth exploring two types of matrices called symmetric and antisymmetric ma-
trices, as we refer to them in later chapters. A symmetric matrix is a matrix which
equals its own transpose:

A = AT.

For example, the following matrix is symmetric:

A =
⎡

⎣
1 3 4
3 2 4
4 4 3

⎤

⎦ .

The symmetric part of any square matrix can be isolated as follows. Given a matrix
A and its transpose AT

A =

⎡

⎢⎢⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤

⎥⎥⎥
⎦

, AT =

⎡

⎢⎢⎢
⎣

a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤

⎥⎥⎥
⎦

their sum is

A + AT =

⎡

⎢⎢⎢
⎣

2a11 a12 + a21 . . . a1n + an1
a12 + a21 2a22 . . . a2n + an2

...
...

. . .
...

a1n + an1 a2n + an2 . . . 2ann

⎤

⎥⎥⎥
⎦

.

By inspection, A + AT is symmetric, and if we divide throughout by 2 we have

S = 1

2

(
A + AT)

which is defined as the symmetric part of A. For example, given

A =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ , AT =
⎡

⎣
a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤

⎦

then

S = 1

2

(
A + AT)

=
⎡

⎣
a11 (a12 + a21)/2 (a13 + a31)/2

(a12 + a21)/2 a22 a23 + a32
(a13 + a31)/2 (a23 + a32)/2 a33

⎤

⎦

48 4 Matrices

=
⎡

⎣
a11 s3/2 s2/2

s3/2 a22 s1/2
s2/2 s1/2 a33

⎤

⎦

where

s1 = a23 + a32

s2 = a13 + a31

s3 = a12 + a21.

Using a real example:

A =
⎡

⎣
0 1 4
3 1 4
4 2 6

⎤

⎦ , AT =
⎡

⎣
0 3 4
1 1 2
4 4 6

⎤

⎦

S =
⎡

⎣
0 2 4
2 1 3
4 3 6

⎤

⎦

which equals its own transpose.

4.15 Antisymmetric Matrix

An antisymmetric matrix is a matrix whose transpose is its own negative:

AT = −A

and is also known as a skew symmetric matrix.
As the elements of A and AT are related by

arow,col = −acol,row.

When k = row = col:

ak,k = −ak,k

which implies that the diagonal elements must be zero. For example, this is an anti-
symmetric matrix

⎡

⎣
0 6 2

−6 0 −4
−2 4 0

⎤

⎦ .

In general, we have

A =

⎡

⎢⎢⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤

⎥⎥⎥
⎦

, AT =

⎡

⎢⎢⎢
⎣

a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤

⎥⎥⎥
⎦

4.15 Antisymmetric Matrix 49

and their difference is

A − AT =

⎡

⎢⎢⎢
⎣

0 a12 − a21 . . . a1n − an1
− (a12 − a21) 0 . . . a2n − an2

...
...

. . .
...

− (a1n − an1) − (a2n − an2) . . . 0

⎤

⎥⎥⎥
⎦

.

It is clear that A − AT is antisymmetric, and if we divide throughout by 2 we have

Q = 1

2

(
A − AT)

.

For example:

A =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ , AT =
⎡

⎣
a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤

⎦

Q =
⎡

⎣
0 (a12 − a21) /2 (a13 − a31) /2

(a21 − a12) /2 0 (a23 − a32) /2
(a31 − a13) /2 (a32 − a23) /2 0

⎤

⎦

and if we maintain some symmetry with the subscripts, we have

Q =
⎡

⎣
0 (a12 − a21) /2 − (a31 − a13) /2

− (a12 − a21) /2 0 (a23 − a32) /2
(a31 − a13) /2 − (a23 − a32) /2 0

⎤

⎦

=
⎡

⎣
0 q3/2 −q2/2

−q3/2 0 q1/2
q2/2 −q1/2 0

⎤

⎦

where

q1 = a23 − a32

q2 = a31 − a13

q3 = a12 − a21.

Using a real example:

A =
⎡

⎣
0 1 4
3 1 4
4 2 6

⎤

⎦ , AT =
⎡

⎣
0 3 4
1 1 2
4 4 6

⎤

⎦

Q =
⎡

⎣
0 −1 0
1 0 1
0 −1 0

⎤

⎦ .

Furthermore, we have already computed

S =
⎡

⎣
0 2 4
2 1 3
4 3 6

⎤

⎦

50 4 Matrices

and

S + Q =
⎡

⎣
0 1 4
3 1 4
4 2 6

⎤

⎦ = A.

4.16 Inverting a Pair of Matrices

In later chapters we form the products of two or more matrices, and in some cases
require to find their inverse. In anticipation of this requirement, let’s compute the
inverse of a pair of matrices.

Given two transforms T and R, the product TR and its inverse (TR)−1 must
equal the identity matrix I:

(TR)(TR)−1 = I

and multiplying throughout by T−1 we have

T−1TR(TR)−1 = T−1

R(TR)−1 = T−1.

Multiplying throughout by R−1 we have

R−1R(TR)−1 = R−1T−1

(TR)−1 = R−1T−1.

Therefore, if T and R are invertible, then

(TR)−1 = R−1T−1.

Generalising this result to a triple product such as STR we can reason that

(STR)−1 = R−1T−1S−1.

4.17 Eigenvectors and Eigenvalues

Matrices represent linear transforms that scale, translate, shear, reflect or rotate
points, whilst leaving the origin untouched. For example, the following 2D trans-
form

[
4 1
1 4

][
x

y

]
=

[
x ′
y ′

]

transforms the points on four unit squares as shown in Fig. 4.1 where we see a
pronounced stretching in the first and third quadrants, and reduced stretching in the
second and fourth quadrants.

It should be clear from Fig. 4.1 that any point (k, k) is transformed to another
point (5k,5k), and that its mirror point (−k,−k) is transformed to (−5k,−5k).

4.17 Eigenvectors and Eigenvalues 51

Fig. 4.1 Transforming points
on four unit squares

Fig. 4.2 How a transform
reacts to different points

Similarly, any point (−k, k) is transformed to another point (−3k,3k), and its mirror
point (k,−k) is transformed to (3k,−3k). Thus the transform shows a particular
bias towards points lying on vectors [k k]T and [−k k]T, where k �= 0.

These vectors are called eigenvectors and the scaling factor is its eigenvalue.
Figure 4.2 shows a scenario where a transform t moves point R to S, whilst the
same transform moves P – which lies on one of t’s eigenvectors, to Q – which also
lies on the same eigenvector.

We can define an eigenvector and its eigenvalue as follows. Given a square ma-
trix A, a non-zero vector v is an eigenvector, and λ is the corresponding eigenvalue
if

Av = λv

where λ is a scalar.
The German word eigen means characteristic, own, latent or special, and eigen-

vector means a special vector associated with a transform. The equation that deter-
mines the existence of any eigenvectors is called the characteristic equation of a
square matrix, and is given by

det(A − λI) = 0. (4.18)

52 4 Matrices

Let’s derive the characteristic equation (4.18).
Consider the 2D transform t that maps the point (x, y) to another point (ax +

by, cx + dy):

t (x, y) �→ (ax + by, cx + dy) .

This is expressed in matrix form as

t : v �→ Av

or
[
x′
y ′

]
=

[
a b

c d

][
x

y

]

where

A =
[
a b

c d

]
, v =

[
x

y

]
.

Therefore, if v is an eigenvector of t , and λ its associated eigenvalue, then

Av = λv
[
a b

c d

][
x

y

]
= λ

[
x

y

]

or in equation terms:

ax + by = λx

cx + dy = λy.

Rearranging, we have

(a − λ)x + by = 0

cx + (d − λ)y = 0

or back in matrix form:
[
a − λ b

c d − λ

][
x

y

]
=

[
0
0

]
.

For a non-zero [x y]T to exist, we must have

det

[
a − λ b

c d − λ

]
= 0

which is called the characteristic equation. Let’s use this on the transform
[

4 1
1 4

][
x

y

]
=

[
x′
y′

]
.

4.17 Eigenvectors and Eigenvalues 53

Then
∣∣∣∣
4 − λ 1

1 4 − λ

∣∣∣∣ = 0

(4 − λ)2 − 1 = 0

λ2 − 8λ + 16 − 1 = 0

λ2 − 8λ + 15 = 0

(λ − 5) (λ − 3) = 0.

Thus λ = 5 and λ = 3, are the two eigenvalues we observed in Fig. 4.1. Next, we
substitute the two values of λ in

[
4 − λ 1

1 4 − λ

][
x

y

]
=

[
0
0

]

to extract the eigenvectors. Let’s start with λ = 5:
[−1 1

1 −1

][
x

y

]
=

[
0
0

]

which represents the equation y = x or the vector [k k]T. Next, we substitute
λ = 3:

[
1 1
1 1

][
x

y

]
=

[
0
0

]

which represents the equation y = −x or the vector [−k k]T.
Thus we have discovered that the transform possesses two eigenvectors [k k]T

and [−k k]T and their respective eigenvalues λ = 5 and λ = 3, as predicted.
The characteristic equation may have real or complex solutions, and if they are

complex, there are no real eigenvectors. For example, we have already come across
the 2D transform for rotating points about the origin:

A =
[

cosβ − sinβ

sinβ cosβ

]

and we would not expect this to have any real eigenvectors, as this would imply that
it shows a rotational preference to certain points. Let’s explore this transform to see
how the characteristic equation behaves.

The characteristic equation is
∣∣∣∣
cosβ − λ − sinβ

sinβ cosβ − λ

∣∣∣∣ = 0

where β is the angle of rotation. Therefore,

(cosβ − λ)2 + sin2 β = 0

λ2 − 2λ cosβ + cos2 β + sin2 β = 0

λ2 − 2λ cosβ + 1 = 0.

54 4 Matrices

This quadratic in λ is solved using

λ = −b ± √
b2 − 4ac

2a

where a = 1, b = −2 cosβ , c = 1:

λ = 2 cosβ ± √
4 cos2 β − 4

2

= cosβ ±
√

cos2 β − 1

= cosβ ±
√

− sin2 β

λ1 = cosβ + i sinβ

λ2 = cosβ − i sinβ

which are complex numbers.
The corresponding complex eigenvectors are

v1 =
[

1
i

]

v2 =
[

1
−i

]
.

Now let’s investigate the eigenvectors associated with a 3D transform. We start
with the arbitrary transform

A =
⎡

⎣
3 0 1

−1 3 3
1 0 3

⎤

⎦

and its characteristic equation is
∣∣∣∣∣∣

3 − λ 0 1
−1 3 − λ 3
1 0 3 − λ

∣∣∣∣∣∣
= 0.

Expanding the determinant using the top row we have

(3 − λ)

∣∣∣∣
3 − λ 3

0 3 − λ

∣∣∣∣ − 0 +
∣∣∣∣
−1 3 − λ

1 0

∣∣∣∣ = 0

(3 − λ) (3 − λ)2 − (3 − λ) = 0

(3 − λ)
[
(3 − λ)2 − 1

] = 0

(3 − λ)
(
λ2 − 6λ + 8

) = 0

(3 − λ) (λ − 4) (λ − 2) = 0

which has solutions λ = 2, 3, 4. Let’s substitute these values of λ in the original
equations to reveal the eigenvectors:

⎧
⎨

⎩

(3 − λ)x + z = 0
−x + (3 − λ)y + 3z = 0

x + (3 − λ)z = 0.

4.18 Vector Products 55

With λ = 2 we have z = −x from the 1st equation. Substituting this in the 2nd
equation we have y = 4x, which permits us to state that the associated eigenvector
is of the form [k 4k − k]T.

With λ = 3 we have z = 0 from the 1st equation, and x = 0 from the 3rd equation,
which permits us to state that the associated eigenvector is of the form [0 k 0]T.

With λ = 4 we have z = x from the 1st equation. Substituting this in the 2nd
equation we have y = 2x, which permits us to state that the associated eigenvector
is of the form [k 2k k]T.

Therefore, the eigenvectors and eigenvalues are

[k 4k − k]T λ = 2

[0 k 0]T λ = 3

[k 2k k]T λ = 4

where k �= 0.
The major problem with the above technique is that it requires careful analysis to

untangle the eigenvector, and ideally, we require a deterministic algorithm to reveal
the result. We will discover that such a technique is available in Chap. 9.

4.18 Vector Products

Vectors are regarded as single column or single row matrices, which permits us to
express their products neatly. For example, given two vectors

v =
⎡

⎣
a

b

c

⎤

⎦ , w =
⎡

⎣
x

y

z

⎤

⎦

then

v · w = vTw

= [
a b c

]
⎡

⎣
x

y

z

⎤

⎦ = ax + by + cz.

Similarly, the vector cross product is written

v × w =
⎡

⎣
a

b

c

⎤

⎦ ×
⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
i j k
a b c

x y z

⎤

⎦

= (bz − cy) i − (az − xc) j + (ay − bx)k

=
⎡

⎣
bz − cy

−az + xc

ay − bx

⎤

⎦ .

56 4 Matrices

4.19 Summary

Matrices play an important role in representing rotations, especially orthogonal ma-
trices, which is why they have been reviewed in this chapter. The inverse matrix is
also an important concept to grasp as this provides the mechanism for reversing a
rotation or change of frame. We will also come across eigenvectors in later chapters,
which is why they were explained in some detail.

4.19.1 Summary of Matrix Operations

Matrix (2 × 2)

A =
[
a b

c d

]
.

Matrix (3 × 3)

B =
⎡

⎣
a b c

d e f

g h i

⎤

⎦ .

Transpose

AT =
[
a c

b d

]
, BT =

⎡

⎣
a d g

b e h

c f i

⎤

⎦ .

Identity

I =
[

1 0
0 1

]
, I =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

Adding and subtracting

M ± N = [mrow,col ± nrow,col].
Multiplying by a scalar

±λM = [±λmrow,col].
Product transpose

[MN]T = NTMT.

Sum/difference transpose

[M ± N]T = MT ± NT.

Determinant

det A = |A| = ad − bc

det B = |B| = aei + bfg + cdh − ceg − af h − bdi.

4.19 Summary 57

Inverse

M−1 = (cofactor matrix of M)T

det M
[MN]−1 = N−1M−1.

Orthogonal

M is orthogonal if MT = M−1.

Trace

Tr(A) = a + d

Tr(B) = a + e + i

Tr(MN) = Tr(NM).

Symmetric

M is symmetric if M = MT.

Symmetric part S

S = 1

2

(
M + MT)

.

Antisymmetric

M is antisymmetric if M = −MT.

Antisymmetric part Q

Q = 1

2

(
M − MT)

.

Eigenvector

v is the eigenvector of M if Mv = λv.

Eigenvalue

λ is the eigenvalue of M if Mv = λv.

Chapter 5
Quaternions

5.1 Introduction

As mentioned earlier, quaternions were invented by Sir William Rowan Hamilton in
1843. Sir William was looking to generalise complex numbers in higher dimensions,
and it took 14 years of toil before he stumbled upon the idea of using a 4D notation
– hence the name ‘quaternion’.

5.2 Definition

The definition and associated rules for a quaternion are:

q = a + bi + cj + dk

where a, b, c and d are scalars, and i, j and k are imaginary and obey the following
rules:

i2 = −1, j2 = −1, k2 = −1, ijk = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.

Although quaternions had some enthusiastic supporters, there were many mathe-
maticians and scientists who were suspicious of the need to involve so many imag-
inary terms. Towards the end of the nineteenth century Josiah Gibbs resolved the
problem by declaring that the three imaginary quantities could be viewed as a 3D
vector and changed the original bi + cj + dk into bi + cj + dk, where i, j and k
are unit Cartesian vectors. Today, it is convenient in computer graphics to write a
quaternion in two ways:

q = s,v (5.1)

q = s + v (5.2)

where s is a scalar, and v is a 3D vector.

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_5, © Springer-Verlag London Limited 2011

59

60 5 Quaternions

The difference is rather subtle: in (5.1) the scalar and vector are separated by a
comma, whereas in (5.2) a ‘+’ sign is used as in complex numbers. Although the
idea of adding a scalar to a vector seems strange, this notation is used in this book
as it helps us understand the ideas behind multivectors, which are covered in the
next chapter. Since Hamilton’s invention, mathematicians have successfully applied
quaternions to rotate points about an arbitrary axis, which is why we are interested
in them.

A quaternion then, is the combination of a scalar and a vector:

q = s + v

where s is a scalar and v is a 3D vector. If we express the vector v in terms of its
components, we have

q = s + xi + yj + zk where s, x, y, z are all scalars.

Later on we will discover that in the context of a rotation transform, v is used to
represent the axis of rotation, and the scalar s encodes the angle of rotation.

5.2.1 Axioms

Quaternions share the same axioms as complex numbers apart from multiplication,
where they do not commute.

Addition:

Commutative q1 + q2 = q2 + q1

Associative (q1 + q2) + q3 = q1 + (q2 + q3).

Multiplication:

Associative (q1q2)q3 = q1(q2q3)

Non-commutative q1q2 �= q2q1.

5.3 Adding and Subtracting Quaternions

Two quaternions q1 and q2

q1 = s1 + x1i + y1j + z1k

q2 = s2 + x2i + y2j + z2k

are equal if, and only if, their corresponding terms are equal. Furthermore, like vec-
tors, they can be added and subtracted as follows:

q1 ± q2 = (s1 ± s2) + (x1 ± x2)i + (y1 ± y2)j + (z1 ± z2)k.

5.4 Multiplying Quaternions 61

For example:

q1 = 0.6 + 2i + 4j − 3k

q2 = 0.2 + 3i + 5j + 7k

q1 + q2 = 0.8 + 5i + 9j + 4k

q1 − q2 = 0.4 − i − j − 10k.

5.4 Multiplying Quaternions

When multiplying quaternions we must employ the following rules:

i2 = −1, j2 = −1, k2 = −1, ijk = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.

Note that quaternion addition is commutative, however, the rules make quaternion
products non-commutative. For example:

q1 = s1 + v1 = s1 + x1i + y1j + z1k

q2 = s2 + v2 = s2 + x2i + y2j + z2k

q1q2 = (s1s2 − x1x2 − y1y2 − z1z2) + (s1x2 + s2x1 + y1z2 − y2z1)i

+ (s1y2 + s2y1 + z1x2 − z2x1)j + (s1z2 + s2z1 + x1y2 − x2y1)k

= s1s2 − (x1x2 + y1y2 + z1z2) + s1(x2i + y2j + z2k) + s2(x1i + y1j + z1k)

+ (y1z2 − y2z1)i + (z1x2 − z2x1)j + (x1y2 − x2y1)k

which can be rewritten using the dot and cross product notation as

q1q2 = s1s2 − v1 · v2 + s1v2 + s2v1 + v1 × v2

where

s1s2 − v1 · v2 is a scalar, and

s1v2 + s2v1 + v1 × v2 is a vector.

For example:

q1 = 1 + 2i + 3j + 4k

q2 = 2 − i + 5j − 2k

q1q2 = (1 + 2i + 3j + 4k)(2 − i + 5j − 2k)

q1q2 = (
1 × 2 − 2 × (−1) + 3 × 5 + 4 × (−2)

)

+ 1(−i + 5j − 2k) + 2(2i + 3j + 4k)

+ (
3 × (−2) − 4 × 5

)
i − (

2 × (−2) − 4 × (−1)
)
j + (

2 × 5 − 3 × (−1)
)
k

= −3 + 3i + 11j + 6k − 26i + 13k

= −3 − 23i + 11j + 19k

62 5 Quaternions

which is another quaternion. You may wish to evaluate q2q1 and show that q1q2 �=
q2q1.

5.5 Pure Quaternion

A pure quaternion has a zero scalar term:

q = 0 + v

which is a vector. Therefore,

q1 = 0 + v1

q2 = 0 + v2

q1q2 = −v1 · v2 + v1 × v2

which leads to a rather strange result for the square of a pure quaternion:

qq = −v · v + v × v

= −v · v

= −|v|2
a negative real number! In Hamilton’s day, physicists found this result difficult to
accept, and on top of all the imaginary terms refused to adopt quaternions and em-
braced the vector analysis proposed by Gibbs et al.

5.6 Magnitude of a Quaternion

The magnitude, norm or modulus of a quaternion is written |q| and equals

q = s + xi + yj + zk

|q| =
√

s2 + x2 + y2 + z2.

For example:

q = 1 + 2i + 4j − 3k

|q| =
√

12 + 22 + 42 + (−3)2 = √
30.

5.7 Unit Quaternion

A unit quaternion has a magnitude equal to 1:

|q| =
√

s2 + x2 + y2 + z2 = 1.

5.8 The Quaternion Conjugate 63

Any quaternion q can be normalised to a unit quaternion q̂ by dividing by its mag-
nitude:

q̂ = q
|q| .

5.8 The Quaternion Conjugate

We have already discovered that the complex conjugate of a complex number z =
a + bi is given by

z∗ = a − bi

and is very useful in computing the inverse of z. The quaternion conjugate plays a
similar role in computing the inverse of a quaternion. Therefore, given

q = s + v

= s + xi + yj + zk

its conjugate is defined as

q∗ = s − v

= s − xi − yj − zk.

If we compute the product qq∗ we obtain

qq∗ = (s + v)(s − v)

= s2 + v · v + sv − sv + v × (−v) = s2 + v · v

= s2 + x2 + y2 + z2

which is a scalar and implies that

qq∗ = |q|2
or

|q| = √
qq∗.

Similarly, we can show that qq∗ = q∗q.
Now let’s show that (q1q2)

∗ = q∗
2q∗

1. We start with quaternions q1 and q2:

q1 = s1 + v1

q2 = s2 + v2

q1q2 = (s1 + v1)(s2 + v2)

= s1s2 − v1 · v2 + s1v2 + s2v1 + v1 × v2

(q1q2)
∗ = s1s2 − v1 · v2 − s1v2 − s2v1 − v1 × v2. (5.3)

64 5 Quaternions

Next, we compute q∗
2q∗

1

q∗
1 = s1 − v1

q∗
2 = s2 − v2

q∗
2q∗

1 = (s2 − v2)(s1 − v1)

= s1s2 − v1 · v2 + s2(−v1) + s1(−v2) + (−v2) × (−v1)

= s1s2 − v1 · v2 − s1v2 − s2v1 − v1 × v2 (5.4)

and as (5.3) equals (5.4), (q1q2)
∗ = q∗

2q∗
1.

5.9 The Inverse Quaternion

Given a quaternion q we can compute its inverse q−1 as follows.
By definition, we require that

qq−1 = q−1q = 1. (5.5)

First, we multiply (5.5) by q∗

q∗qq−1 = q∗q−1q = q∗ (5.6)

and from (5.6) we can write

q−1 = q∗

q∗q
= q∗

|q|2 .

If q is a unit quaternion, then q−1 = q∗, which is useful when reversing a rotational
sequence. Therefore, as

(q1q2)
∗ = q∗

2q∗
1

then

(q1q2)
−1 = q−1

2 q−1
1 .

For completeness let’s evaluate the inverse of q where

q = 1 + 1√
3

i + 1√
3

j + 1√
3

k

q∗ = 1 − 1√
3

i − 1√
3

j − 1√
3

k

|q|2 = 1 + 1

3
+ 1

3
+ 1

3
= 2

q−1 = 1

2

(
1 − 1√

3
i − 1√

3
j − 1√

3
k
)

= 1

2
− 1√

12
i − 1√

12
j − 1√

12
k.

5.10 Summary 65

5.10 Summary

Quaternions offer a powerful algebra for rotating points about an arbitrary axis and
it is important that they are fully understood before proceeding. We have yet to see
how quaternions actually perform this rotational task, which is covered in Chap. 11.

5.10.1 Summary of Quaternion Operations

q = s + v

= s + xi + yj + zk

where s, x, y, z are scalars, and

i2 = −1, j2 = −1, k2 = −1, ijk = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.

Addition and subtraction

q1 ± q2 = (s1 ± s2) + (x1 ± x2)i + (y1 ± y2)j + (z1 ± z2)k.

Product

q1q2 = (s1s2 − x1x2 − y1y2 − z1z2) + (s1x2 + s2x1 + y1z2 − y2z1)i

+ (s1y2 + s2y1 + z1x2 − z2x1)j + (s1z2 + s2z1 + x1y2 − x2y1)k

q1q2 = (s1s2 − v1 · v2) + s1v2 + s2v1 + v1 × v2.

Pure

q = 0 + v.

Magnitude

|q| =
√

s2 + x2 + y2 + z2.

Unit

|q| =
√

s2 + x2 + y2 + z2 = 1.

Quaternion conjugate

q∗ = s − v = s − xi − yj − zk

(q1q2)
∗ = q∗

2q∗
1.

Inverse

q−1 = q∗

q∗q
= q∗

|q|2
(q1q2)

−1 = q−1
2 q−1

1 .

Chapter 6
Multivectors

6.1 Introduction

This is a brief introduction to multivectors of geometric algebra and we only ex-
plore those elements associated with rotations. Those readers who wish to pursue
the subject further may wish to consult the author’s books: Geometric Algebra for
Computer Graphics [5] or Geometric Algebra: An Algebraic System for Computer
Games and Animation [6].

We regard vectors as directed lines or oriented lines, but if they exist, why
shouldn’t oriented planes and oriented volumes exist? Well they do, which is what
geometric algebra is about. Unfortunately when vectors were invented, the work of
the German mathematician, Hermann Grassmann (1809–1877), was not understood
and consequently ignored. In retrospect this was unfortunate, as Grassmann had
invented an exceedingly powerful algebra for geometry, and it has taken a further
century for it to emerge through the work of William Kingdon Clifford (1845–1879)
and David Hestenes. So let’s explore an exciting algebra that offers new ways of
handling rotations.

6.2 Symmetric and Antisymmetric Functions

Symmetric (even) and antisymmetric (odd) functions play an important role in un-
derstanding multivectors. For example, f (β) is a symmetric function if

f (−β) = f (β)

an example being cosβ where cos(−β) = cosβ . Whereas, f (β) is an antisymmetric
function if

f (−β) = −f (β)

an example being sinβ where sin(−β) = − sinβ .

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_6, © Springer-Verlag London Limited 2011

67

68 6 Multivectors

Fig. 6.1 Two line segments a

and b separated by +β

6.3 Trigonometric Foundations

Figure 6.1 shows two line segments a and b with coordinates (a1, a2) and (b1, b2)

respectively. The lines are separated by an angle β , and it is a trivial exercise to
show that

ab sinβ = a1b2 − a2b1

which equals the area of the parallelogram formed by a and b. What is interesting is
that reversing the relative orientation of the lines such that b is rotated −β relative
to a makes

ab sinβ = −(a1b2 − a2b1)

which means that this is antisymmetric due to the sine function.
We know from the definition of the scalar product of vectors that

ab cosβ = a1b1 + a2b2

which remains unaltered if the relative orientation of the lines is reversed, which
means that this is symmetric due to the cosine function.

6.4 Vectorial Foundations

If we form the algebraic product of two 2D vectors a and b we have:

a = a1i + a2j

b = b1i + b2j

ab = a1b1i2 + a2b2j2 + a1b2ij + a2b1ji. (6.1)

It is clear from (6.1) that a1b1i2 + a2b2j2 has something to do with ab cosβ , and
a1b2ij + a2b1ji has something to do with ab sinβ . The product ab creates the terms
i2, j2, ij and ji, which are resolved as follows.

6.5 Inner and Outer Products 69

6.5 Inner and Outer Products

Let’s assume that the products ij and ji in (6.1) anticommute: ji = −ij. Therefore,

ab = a1b1i2 + a2b2j2 + (a1b2 − a2b1)ij (6.2)

and if we reverse the product to ba we obtain

ba = a1b1i2 + a2b2j2 − (a1b2 − a2b1)ij. (6.3)

From (6.2) and (6.3) we see that the product of two vectors contains a symmetric
component

a1b1i2 + a2b2j2

and an antisymmetric component

(a1b2 − a2b1)ij.

Geometric algebra defines the product ab as the sum of two other products called
the inner and outer products. The inner product has the form

a · b = |a||b| cosβ (6.4)

where

a · b = (a1i + a2j) · (b1i + b2j)

= a1b1i · i + a1b2i · j + a2b1j · i + a2b2j · j

= a1b1 + a2b2

which is the familiar scalar product. The outer product uses the wedge ‘∧’ symbol,
which is why it is also called the wedge product and has the form

a ∧ b = |a||b| sinβi ∧ j (6.5)

where

a ∧ b = (a1i + a2j) ∧ (b1i + b2j)

= a1b1i ∧ i + a1b2i ∧ j + a2b1j ∧ i + a2b2j ∧ j

= (a1b2 − a2b1)i ∧ j

which enables us to write

ab = a · b + a ∧ b (6.6)

ab = |a||b| cosβ + |a||b| sinβi ∧ j. (6.7)

6.6 The Geometric Product in 2D

Clifford named the sum of the two products the geometric product, which means
that (6.6) reads: The geometric product ab is the sum of the inner product “a dot b”
and the outer product “a wedge b”.

70 6 Multivectors

Given the definition of the geometric product, let’s evaluate i2:

ii = i · i + i ∧ i.

Using the definition for the inner product (6.4) we have

i · i = 1 × 1 × cos 0° = 1

whereas using the definition of the outer product (6.5) we have

i ∧ i = 1 × 1 × sin 0°i ∧ i = 0.

Thus i2 = 1 and j2 = 1, and aa = |a|2:

aa = a · a + a ∧ a

= |a||a| cos 0° + |a||a| sin 0°i ∧ j

aa = |a|2.
This result is much more satisfying than the square of a pure quaternion q:

qq = −|q|2.
Now let’s evaluate ij:

ij = i · j + i ∧ j.

Using the definition for the inner product (6.4) we have

i · j = 1 × 1 × cos 90° = 0

whereas using the definition of the outer product (6.5) we have

i ∧ j = 1 × 1 × sin 90°i ∧ j = i ∧ j.

Thus ij = i∧ j. But what is i∧ j? Well, it is a new object called a bivector and defines
the orientation of the plane containing i and j. As the order of the vectors is from i
to j, the angle is +90° and sin(+90)° = 1. Whereas, if the order is from j to i the
angle is −90° and sin(−90°) = −1. Consequently,

ji = j · i + j ∧ i

= 0 + 1 × 1 × sin(−90°)i ∧ j

= −i ∧ j.

A useful way of visualising the bivector i ∧ j is to imagine moving along the
vector i and then along the vector j, which creates an anticlockwise rotation. Con-
versely, for the bivector j∧ i, imagine moving along the vector j followed by vector i,
which creates a clockwise rotation. Another useful picture is to sweep vector j along
vector i to create an anticlockwise rotation, and vice versa for j ∧ i. These ideas are
shown in Fig. 6.2.

The following equation

ab = 9 + 12i ∧ j

6.7 The Geometric Product in 3D 71

Fig. 6.2 An anticlockwise
and clockwise bivector

means that the geometric product of two vectors a and b creates a scalar, inner
product of 9, and an outer product of 12 on the i–j plane. For example, given

a = 3i

b = 3i + 4j

ab = (3i) · (3i + 4j) + (3i) ∧ (3i + 4j)

= 9 + 9i ∧ i + 12i ∧ j

= 9 + 12i ∧ j.

The 9 represents |a||b| cosβ , whereas the 12 represents an area |a||b| sinβ on the
i–j plane. The angle between the two vectors β is given by

β = cos−1(3/5).

However, reversing the product, we obtain

ba = (3i + 4j) · (3i) + (3i + 4j) ∧ (3i)

= 9 + 9i ∧ i + 12j ∧ i

= 9 − 12i ∧ j

where the sign of the outer (wedge) product has flipped to reflect the new orientation
of the vectors relative to the accepted orientation of the basis bivector.

So the geometric product combines the scalar and wedge products into a single
product, where the scalar product is the symmetric component and the wedge prod-
uct is the antisymmetric component. Now let’s see how these products behave in
3D.

6.7 The Geometric Product in 3D

Before we begin let’s introduce some new notation to simplify future algebraic ex-
pressions. Rather than use i, j and k to represent the unit basis vectors let’s employ
e1, e2 and e3 respectively. This implies that (6.7) can be written

ab = |a||b| cosβ + |a||b| sinβe1 ∧ e2.

We also remind ourselves that we are working with a right-handed axial system,
where, using our right-hand, the thumb aligns with e1, the x-axis, the first finger

72 6 Multivectors

Fig. 6.3 The 3D bivectors

aligns with e2, the y-axis, and the middle finger aligns with e3, the z-axis. We begin
with two 3D vectors:

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3

and their inner product is

a · b = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3)

= a1b1 + a2b2 + a3b3

and their outer product is

a ∧ b = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= a1b2e1 ∧ e2 + a1b3e1 ∧ e3 + a2b1e2 ∧ e1

+ a2b3e2 ∧ e3 + a3b1e3 ∧ e1 + a3b2e3 ∧ e2

= (a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1.

(6.8)

This time we have three unit basis bivectors: e1 ∧e2, e2 ∧e3, e3 ∧e1, and three asso-
ciated scalar multipliers: (a1b2 − a2b1), (a2b3 − a3b2), (a3b1 − a1b3) respectively.
These bivectors are the basis for a right-handed oriented axial system.

Continuing with the idea described in the previous section, the three bivectors
represent the three planes containing the respective vectors as shown in Fig. 6.3, and
the scalar multipliers are projections of the area of the vector parallelogram onto the
three bivectors as shown in Fig. 6.4. Note that this is the accepted definition for a
right-handed space. The orientation of the vectors a and b determine whether the
projected areas are positive or negative.

Equation (6.8) should look familiar as it looks similar to the cross product a × b:

a × b = (a1b2 − a2b1)e3 + (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2. (6.9)

This similarity is no accident, for when Hamilton invented quaternions he did not
recognise the possibility of bivectors, and invented some rules which eventually

6.8 The Outer Product of Three 3D Vectors 73

Fig. 6.4 The projections on
the three bivectors

became the vector product. In fact, we show later that quaternions are bivectors in
disguise. We can see that a simple relationship exists between (6.8) and (6.9):

e1 ∧ e2 and e3

e2 ∧ e3 and e1

e3 ∧ e1 and e2.

The wedge product bivectors are perpendicular to the vector components of the cross
product. So the wedge product is just another way of representing the cross product.
However, the wedge product introduces a very important bonus – it works in space
of any dimension; whereas, the cross product is only comfortable in 3D. Not only
that, the wedge (outer) product is a product that creates volumes, hypervolumes, and
can also be applied to vectors, bivectors, trivectors, etc.

6.8 The Outer Product of Three 3D Vectors

Having seen that the outer product of two 3D vectors is represented by areal pro-
jections onto the three basis bivectors, let’s compute the outer product of three 3D
vectors:

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3

c = c1e1 + c2e2 + c3e3

a ∧ b ∧ c = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3) ∧ (c1e1 + c2e2 + c3e3)

= ((a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1)

∧ (c1e1 + c2e2 + c3e3).

At this stage we introduce another axiom: the outer product is associative. This
means that a ∧ (b ∧ c) = (a ∧ b) ∧ c. Therefore, knowing that a ∧ a = 0:

74 6 Multivectors

a ∧ b ∧ c = c3(a1b2 − a2b1)e1 ∧ e2 ∧ e3 + c1(a2b3 − a3b2)e2 ∧ e3 ∧ e1

+ c2(a3b1 − a1b3)e3 ∧ e1 ∧ e2

= (c3(a1b2 − a2b1) + c1(a2b3 − a3b2) + c2(a3b1 − a1b3))e1 ∧ e2 ∧ e3

or using a determinant:

a ∧ b ∧ c =
∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
e1 ∧ e2 ∧ e3

which is the well-known expression for the volume of a parallelpiped formed by
three vectors.

The term e1 ∧ e2 ∧ e3 is a trivector and implies that the volume is oriented. If
the sign of the determinant is positive, the original three vectors possess the same
orientation of the three basis vectors. If the sign of the determinant is negative, the
three vectors oppose the orientation of the basis trivector.

6.9 Axioms

One of the features of geometric algebra is that it behaves very similar to the every-
day algebra of reals:

Axiom 6.1 The associative rule:

a(bc) = (ab)c.

Axiom 6.2 The left and right distributive rules:

a(b + c) = ab + ac

(b + c)a = ba + ca.

The next four axioms describe how vectors interact with a scalar λ:

Axiom 6.3

(λa)b = λ(ab) = λab.

Axiom 6.4

λ(φa) = (λφ)a.

Axiom 6.5

λ(a + b) = λa + λb.

Axiom 6.6

(λ + φ)a = λa + φa.

6.10 Notation 75

Axiom 6.7

a2 = |a|2.

6.10 Notation

Having abandoned i, j, k for e1, e2, e3, it is convenient to convert geometric products
e1e2 · · · en to e12···n. For example, e1e2e3 ≡ e123. Furthermore, we must get used to
the following substitutions:

eieiej = ej

e21 = −e12

e312 = e123

e112 = e2

e121 = −e2.

6.11 Grades, Pseudoscalars and Multivectors

As geometric algebra embraces such a wide range of objects, it is convenient to
grade them as follows: scalars are grade 0, vectors are grade 1, bivectors are grade 2,
and trivectors are grade 3, and so on for higher dimensions. In such a graded algebra
it is traditional to call the highest grade element a pseudoscalar. Thus in 2D the
pseudoscalar is e12 and in 3D the pseudoscalar is e123.

One very powerful feature of geometric algebra is the idea of a multivector,
which is a linear combination of a scalar, vector, bivector, trivector, or any other
higher dimensional object. For example the following are multivectors:

A = 3 + (2e1 + 3e2 + 4e3) + (5e12 + 6e23 + 7e31) + 8e123

B = 2 + (2e1 + 2e2 + 3e3) + (4e12 + 5e23 + 6e31) + 7e123

and we can form their sum:

A + B = 5 + (4e1 + 5e2 + 7e3) + (9e12 + 11e23 + 13e31) + 15e123

or their difference:

A − B = 1 + (e2 + e3) + (e12 + e23 + e31) + e123.

We can even form their product AB.
We can isolate any grade of a multivector using the following notation:

〈multivector〉g
where g identifies a particular grade. For example, say we have the following mul-
tivector:

2 + 3e1 + 2e2 − 5e12 + 6e123

76 6 Multivectors

we extract the scalar term using:

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉0 = 2

the vector term using

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉1 = 3e1 + 2e2

the bivector term using:

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉2 = −5e12

and the trivector term using:

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉3 = 6e123.

It is also worth pointing out that the inner vector product converts two grade 1
elements, i.e. vectors, into a grade 0 element, i.e. a scalar, whereas the outer vector
product converts two grade 1 elements into a grade 2 element, i.e. a bivector. Thus
the inner product is a grade lowering operation, while the outer product is a grade
raising operation. These qualities of the inner and outer products are associated
with higher grade elements in the algebra. This is why the scalar product is renamed
as the inner product, because the scalar product is synonymous with transforming
vectors into scalars. Whereas, the inner product transforms two elements of grade n

into a grade n − 1 element.

6.12 Redefining the Inner and Outer Products

As the geometric product is defined in terms of the inner and outer products, it
seems only natural to expect that similar functions exist relating the inner and outer
products in terms of the geometric product. Such functions do exist and emerge
when we combine the following two equations:

ab = a · b + a ∧ b (6.10)

ba = a · b − a ∧ b. (6.11)

Adding and subtracting (6.10) and (6.11) we have

a · b = 1

2
(ab + ba) (6.12)

a ∧ b = 1

2
(ab − ba). (6.13)

Equations (6.12) and (6.13) are used frequently to define the products between dif-
ferent grade elements.

6.13 The Inverse of a Vector 77

6.13 The Inverse of a Vector

In traditional vector analysis we accept that it is impossible to divide by a vector, but
that is not so in geometric algebra. In fact, we don’t actually divide a multivector by
another vector but find a way of representing the inverse of a vector. For example,
we know that a unit vector â is defined as

â = a
|a|

and using the geometric product

â2 = a2

|a|2 = 1

therefore,

b = a2b
|a|2

and exploiting the associative nature of the geometric product we have

b = a(ab)

|a|2 . (6.14)

Equation (6.14) is effectively stating that, given the geometric product ab we can
recover the vector b by pre-multiplying by a−1:

a−1 = a
|a|2 .

Similarly, we can recover the vector a as follows by post-multiplying by b−1:

a = (ab)b
|b|2 .

For example:

a = e1 + 2e2

b = 3e1 + 2e2

their geometric product is

ab = 7 − 4e12.

Therefore, given ab and a, we can recover b as follows:

b =
(

e1 + 2e2

5

)
(7 − 4e12)

= 1

5
(7e1 − 4e112 + 14e2 − 8e212)

= 1

5
(7e1 − 4e2 + 14e2 + 8e1)

= 3e1 + 2e2.

78 6 Multivectors

Similarly, given ab and b, a is recovered as follows:

a = (7 − 4e12)

(
3e1 + 2e2

13

)

= 1

13
(21e1 + 14e2 − 12e121 − 8e122)

= 1

13
(21e1 + 14e2 + 12e2 − 8e1)

= e1 + 2e2.

Note that the inverse of a unit vector is the original vector:

â−1 = â
|â|2 = â.

6.14 The Imaginary Properties of the Outer Product

So far we know that the outer product of two vectors is represented by one or more
unit basis vectors, such as

a ∧ b = λ1e12 + λ2e23 + λ3e31

where, in this case, the λ terms represent areas projected onto their respective unit
basis bivectors. But what has not emerged is that the outer product is an imaginary
quantity, which is revealed by expanding e2

12:

e2
12 = e1212

but as

e21 = −e12

then

e1(21)2 = −e1(12)2

= −e2
1e2

2

e2
12 = −1.

Consequently, the geometric product effectively creates a complex number! Thus in
a 2D scenario, given:

a = a1e1 + a2e2

b = b1e1 + b2e2

their geometric product is

ab = (a1b1 + a2b2) + (a1b2 − a2b1)e12

and knowing that e12 = i, then we can write ab as

ab = (a1b1 + a2b2) + (a1b2 − a2b1)i. (6.15)

6.14 The Imaginary Properties of the Outer Product 79

However, this notation is not generally adopted by the geometric algebra commu-
nity. The reason being that i is normally only associated with a scalar, with which it
commutes. Whereas in 2D, e12 is associated with scalars and vectors, and although
scalars present no problem, under some conditions, it anticommutes with vectors.
Consequently, an upper-case I is used so that there is no confusion between the two
elements. Thus (6.15) is written as

ab = (a1b1 + a2b2) + (a1b2 − a2b1)I

where

I 2 = −1.

It goes without saying that the 3D unit basis bivectors are also imaginary quantities,
so too, is e123.

Multiplying a complex number by i rotates it 90° on the complex plane. There-
fore, it should be no surprise that multiplying a 2D vector by e12 rotates it by 90°.
However, because vectors are sensitive to their product partners, we must remember
that pre-multiplying a vector by e12 rotates a vector clockwise and post-multiplying
rotates a vector anticlockwise. For instance, post-multiplying e1 by e12 creates e2,
which is an anticlockwise rotation, whereas, pre-multiplying e1 by e12 creates −e2,
which is a clockwise rotation.

Whilst on the subject of rotations, let’s consider what happens in 3D. We begin
with a 3D vector

a = a1e1 + a2e2 + a3e3

and the unit basis bivector e12 as shown in Fig. 6.5. Next we construct their geomet-
ric product

e12a = a1e12e1 + a2e12e2 + a3e12e3

= a1e121 + a2e122 + a3e123

= −a1e2 + a2e1 + a3e123

= a2e1 − a1e2 + a3e123

which contains two parts: a vector (a2e1 − a1e2) and a volume a3e123.
Figure 6.5 shows how the projection of vector a is rotated anticlockwise on the

bivector e12. A volume is also created perpendicular to the bivector. This enables us
to predict that if the vector is coplanar with the bivector, the entire vector is rotated
90° and the volume component is zero.

Post-multiplying a by e12 creates

ae12 = −a2e1 + a1e2 + a3e123

which shows that while the volumetric element has remained the same, the projected
vector is rotated anticlockwise. You may wish to show that the same happens with
the other two bivectors.

80 6 Multivectors

Fig. 6.5 The effect of
multiplying a vector by a
bivector

6.15 Duality

The ability to exchange pairs of geometric elements such as lines and planes in-
volves a dual operation, which in geometric algebra is relatively easy to define. For
example, given a multivector A its dual A∗ is defined as

A∗ = IA

where I is the local pseudoscalar. For 2D this is e12 and for 3D it is e123. Therefore,
given:

a = a1e1 + a2e2

its dual is

a∗ = e12(a1e1 + a2e2)

= a1e121 + a2e122

= a2e1 − a1e2

which is another vector rotated 90° anticlockwise.
It is easy to show that (a∗)∗ = −a, and two further dual operations return the

vector back to a.
In 3D the dual of a vector e1 is

e123e1 = e1231 = e23

which is the perpendicular bivector. Similarly, the dual of e2 is e31 and the dual of
e3 is e12.

For a general vector a1e1 + a2e2 + a3e3 its dual is

e123(a1e1 + a2e2 + a3e3) = a1e1231 + a2e1232 + a3e1233

= a3e12 + a1e23 + a2e31.

The duals of the 3D basis bivectors are:

e123e12 = e12312 = −e3

e123e23 = e12323 = −e1

e123e31 = e12331 = −e2.

6.16 The Relationship Between the Vector Product and the Outer Product 81

Table 6.1 Hamilton’s
quaternion product rules i j k

i −1 k −j

j −k −1 i

k j −i −1

6.16 The Relationship Between the Vector Product and the
Outer Product

We have already discovered that there is a very close relationship between the vector
product and the outer product, and we will see what happens when we form the cross
and wedge product of two 3D vectors:

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3

a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (6.16)

a ∧ b = (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1 + (a1b2 − a2b1)e1 ∧ e2

= (a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12. (6.17)

Multiplying (6.17) by I123 we obtain

I123(a ∧ b) = (a2b3 − a3b2)e123e23 + (a3b1 − a1b3)e123e31

+ (a1b2 − a2b1)e123e12

= −((a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3)

which is identical to the cross product (6.9) apart from its sign. Therefore, we can
state:

a × b = −I123(a ∧ b).

6.17 The Relationship Between Quaternions and Bivectors

Hamilton’s rules for the imaginaries i, j and k are shown in Table 6.1, whilst Ta-
ble 6.2 shows the rules for 3D bivector products. Although there is some agreement
between the table entries, there is a sign reversal in some of them. However, if we
switch to a left-handed axial system the bivectors become e32, e13, e21 and their
products are as shown in Table 6.3. If we now create a one-to-one correspondence
(isomorphism) between the two systems:

i ↔ e32, j ↔ e13, k ↔ e21

there is a true correspondence between quaternions and a left-handed set of bivec-
tors.

82 6 Multivectors

Table 6.2 3D bivector
product rules e23 e31 e12

e23 −1 −e12 e31

e31 e12 −1 −e23

e12 −e31 e23 −1

Table 6.3 Left-handed 3D
bivector product rules e32 e13 e21

e32 −1 e21 −e13

e13 −e21 −1 e32

e21 e13 −e32 −1

6.18 Reverse of a Multivector

You will have noticed how sensitive geometric algebra is to the sequence of vectors,
and it should not be too much of a surprise to learn that a special function exists to
reverse sequences of elements. For example, given

A = ab

the reverse of A is denoted using the dagger symbol A†

A† = ba

or the tilde symbol Ã

Ã = ba.

The dagger symbol is used in this book.
Obviously, scalars are unaffected by reversion, neither are vectors. However,

bivectors and trivectors flip their signs:

(e1e2)
† = e2e1 = −e1e2

and

(e1e2e3)
† = e3e2e1 = −e1e2e3.

When reversing a multivector containing terms up to a trivector, it’s only the bivector
and trivector terms that are reversed. For example, given a multivector A

A = λ + v + B + T

where

λ is a scalar

v is a vector

B is a bivector, and

T is a trivector

6.19 Summary 83

then

A† = λ + v − B − T.

Let’s illustrate this reversion process with an example.
Given three vectors

a = 2e1 + 3e2

b = 4e1 − 2e2

c = e1 + e2

the products ab and ba are

ab = (2e1 + 3e2)(4e1 − 2e2) = 2 − 16e12

ba = (4e1 − 2e2)(2e1 + 3e2) = 2 + 16e12.

Thus

(ab)† = ba.

Furthermore, the products abc and cba are

abc = (2e1 + 3e2)(4e1 − 2e2)(e1 + e2) = −14e1 + 18e2

cba = (e1 + e2)(4e1 − 2e2)(2e1 + 3e2) = −14e1 + 18e2.

And as there are only vectors terms there are no sign changes.
Reversion plays an important role in rotors and we will meet them again in the

next chapter.

6.19 Summary

This chapter has covered the basic ideas behind geometric algebra which offers
an algebraic framework for oriented lines (vectors), oriented planes (bivectors) and
oriented volumes (trivectors), not to mention higher dimensional objects. We have
yet to discover how they offer an alternative way of rotating points in the plane and
in 3D space.

6.19.1 Summary of Multivector Operations

Inner product: 2D vectors

a = a1e1 + a2e2

b = b1e1 + b2e2

a · b = |a||b| cosβ = a1b1 + a2b2.

84 6 Multivectors

Inner product: 3D vectors

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3

a · b = |a||b| cosβ = a1b1 + a2b2 + a3b3.

Outer product: 2D vectors

a = a1e1 + a2e2

b = b1e1 + b2e2

a ∧ b =
∣∣∣∣
a1 a2
b1 b2

∣∣∣∣ e1 ∧ e2.

Outer product: 3D vectors

a = a1e1 + a2e2 + a3e3

b = b1e1 + b2e2 + b3e3

c = c1e1 + c2e2 + c3e3

a ∧ b =
∣∣∣∣
a1 a2
b1 b2

∣∣∣∣ e1 ∧ e2 +
∣∣∣∣
a2 a3
b2 b3

∣∣∣∣ e2 ∧ e3 +
∣∣∣∣
a3 a1
b3 b1

∣∣∣∣ e3 ∧ e1

a ∧ b ∧ c =
∣∣∣∣∣∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
e1 ∧ e2 ∧ e3

|a ∧ b| = |a||b| sinβ.

Geometric product

ab = a · b + a ∧ b

ba = a · b − a ∧ b

a · b = 1

2
(ab + ba)

a ∧ b = 1

2
(ab − ba).

Inverse of a vector

a−1 = a
|a|2 .

Duality

A� = IA

I = the local pseudoscalar.

Reverse of a multivector

A = ab

A† = ba.

Chapter 7
Rotation Transforms in the Plane

7.1 Introduction

In this chapter we investigate the techniques for rotating points in the plane using
geometry, matrices and multivectors. These ideas will be developed further in the
next chapter where we consider rotating frames of reference in the plane.

7.2 2D Transforms

2D transforms are used to scale, translate, rotate, reflect and shear shapes. For ex-
ample, a point P(x, y) is transformed into P ′(x′, y′) by modifying x and y using

x′ = ax + by

y′ = cx + dy.

By using different values for a, b, c and d we can scale, shear, reflect or rotate a
point about the origin. However, this transform cannot effect a translation as we
need to increment both x and y by values which are spatial offsets. To achieve this
we employ homogeneous coordinates.

7.2.1 Homogeneous Coordinates

Homogeneous coordinates are used to define a point in the plane using three coordi-
nates instead of two. This means that for a point (x, y) there exists a homogeneous
point (xt, yt, t) where t is an arbitrary number. The values of x and y are found by
dividing xt and yt by t . For example, the point (2,3) has homogeneous coordinates
(4,6,2), because (4/2,6/2,2/2) = (2,3,1). But the homogeneous point (4,6,2)

is not unique to (2,3) – (8,12,4), (10,15,5) and (200,300,100) are all possible
homogeneous coordinates for (2,3).

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_7, © Springer-Verlag London Limited 2011

85

86 7 Rotation Transforms in the Plane

Fig. 7.1 2D homogeneous
coordinates can be visualised
as a plane in 3D space where
t = 1, for convenience

For our purposes we can imagine that a collection of homogeneous points of
the form (xt, yt, t) exist on an xy-plane where t is the z-coordinate as illustrated
in Fig. 7.1. The figure shows a triangle on the t = 1 plane, and a similar, larger
triangle on a more distant plane. Thus, instead of working in two dimensions, we
can work on an arbitrary xy-plane in three dimensions. The t-coordinate of the plane
is immaterial because the x- and y-coordinates are eventually scaled by t . To keep
things simple it is convenient to choose t = 1, which means that the point (x, y) has
homogeneous coordinates (x, y,1) making scaling unnecessary.

If we substitute 3D homogeneous coordinates for traditional 2D Cartesian coor-
dinates we must attach 1 to every (x, y) pair. When a point (x, y,1) is transformed,
it emerges as (x ′, y′,1), and we discard the 1. This may seem a futile exercise, but
it resolves the problem of creating a translation transform.

Consider the following transform on the homogeneous point (x, y,1):

x′ = ax + by + e

y′ = cx + dy + f

this is represented in matrix form as
⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
a b e

c d f

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦

and resolves the problem of translation by adding e and f to x′ and y ′ respectively.
However, this has to be paid for in terms of extra memory required to store the larger
matrix.

7.3 Matrix Transforms

In this section we investigate strategies for designing matrix transforms to translate
and rotate points about the origin and an arbitrary point. We will also see how the
inverse transform is used to establish new frames of reference.

7.3 Matrix Transforms 87

Fig. 7.2 The point P (x, y) is
rotated through an angle β to
P ′(x′, y′)

7.3.1 Translate a Point

Perhaps the simplest transform is that of point translation. For example, to translate
a point P(x, y) by (tx, ty), we only require

x′ = x + tx

y ′ = y + ty

which is represented by this homogeneous matrix
⎡

⎣
x′
y ′
1

⎤

⎦ =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ .

We will refer to this translate matrix as Ttx ,ty .
As an example, let’s translate the point P(2,3) by (4,5), which moves it to

P ′(6,8):
⎡

⎣
6
8
1

⎤

⎦ =
⎡

⎣
1 0 4
0 1 5
0 0 1

⎤

⎦

⎡

⎣
2
3
1

⎤

⎦ .

7.3.2 Rotate a Point About the Origin

Figure 7.2 shows a point P(x, y) which is rotated an angle β about the origin to
P ′(x′, y′), and as we are dealing with a pure rotation, both P ′ and P are distance R

from the origin.
From Fig. 7.2 it can be seen that

cos θ = x/R

sin θ = y/R

x ′ = R cos (θ + β)

y′ = R sin (θ + β)

88 7 Rotation Transforms in the Plane

and substituting the identities for cos (θ + β) and sin (θ + β) we have

x′ = R (cos θ cosβ − sin θ sinβ)

= R
(x

R
cosβ − y

R
sinβ

)

= x cosβ − y sinβ

y′ = R (sin θ cosβ + cos θ sinβ)

= R
(y

R
cosβ + x

R
sinβ

)

= x sinβ + y cosβ

or in matrix form
⎡

⎣
x′
y ′
1

⎤

⎦ =
⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦

and is the homogeneous transform for rotating points about the origin. For example,
to rotate a point 90° about the origin the transform becomes

⎡

⎣
0
1
1

⎤

⎦ =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
1
0
1

⎤

⎦

where we see the point (1,0,1) becomes (0,1,1) and we ignore the homogeneous
scaling factor of 1.

Rotating a point 360° about the origin the transform becomes the identity matrix:
⎡

⎣
x ′
y ′
1

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ .

The following observations can be made about the rotation matrix Rβ :

Rβ =
⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦ .

Its determinant equals 1:

det Rβ = cos2 β + sin2 β = 1.

Its transpose is

RT
β =

⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦ .

The product RβRT
β = I:

RβRT
β =

⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

7.3 Matrix Transforms 89

and because RβRT
β equals the identity matrix, R−1

β = RT
β :

R−1
β =

⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦

confirms that Rβ is orthogonal.

7.3.3 Rotate a Point About an Arbitrary Point

Now let’s see how to rotate a point (x, y) about an arbitrary point (tx, ty). The
strategy involves making the point of rotation a temporary origin, which is achieved
by subtracting (tx, ty) from the coordinates (x, y) respectively. Next, we perform a
rotation about the temporary origin, and finally, we add (tx, ty) back to the rotated
point to compensate for the original subtraction. Here are the steps:
1. Subtract (tx, ty) to create a new temporary origin:

x1 = x − tx

y1 = y − ty .

2. Rotate (x1, y1) about the temporary origin by β:

x2 = (x − tx) cosβ − (y − ty) sinβ

y2 = (x − tx) sinβ + (y − ty) cosβ.

3. Add (tx, ty) to the rotated point (x2, y2) to return to the original origin:

x′ = x2 + tx

y ′ = y2 + ty

x ′ = (x − tx) cosβ − (y − ty) sinβ + tx

y ′ = (x − tx) sinβ + (y − ty) cosβ + ty .

Simplifying, we obtain

x′ = x cosβ − y sinβ + tx(1 − cosβ) + ty sinβ

y ′ = x sinβ + y cosβ + ty(1 − cosβ) − tx sinβ

and in matrix form we have
⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sinβ tx (1 − cosβ) + ty sinβ

sinβ cosβ ty (1 − cosβ) − tx sinβ

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ . (7.1)

For example, if we rotate the point (2,1), 90° about the point (1,1) the transform
(7.1) becomes

⎡

⎣
1
2
1

⎤

⎦ =
⎡

⎣
0 −1 2
1 0 0
0 0 1

⎤

⎦

⎡

⎣
2
1
1

⎤

⎦ .

90 7 Rotation Transforms in the Plane

The above algebraic approach to derive the rotation transform is relatively easy.
However, it is also possible to use matrices to derive composite transforms, such as
a reflection relative to an arbitrary line or scaling and rotation relative to an arbitrary
point. All of these linear transforms are called affine transforms, as parallel lines
remain parallel after being transformed. Furthermore, the word ‘affine’ is used to
imply that there is a strong geometric affinity between the original and transformed
shape. One cannot always guarantee that angles and lengths are preserved, as these
can change when different scaling factors are used. For completeness, let’s derive
the above transform using matrices.

A transform for rotating a point β about the origin is given by

Rβ =
⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

and a transform for translating a point (tx, ty) relative to the origin is given by

Ttx ,ty =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦ .

We can use Rβ and Ttx ,ty to develop a composite transform for rotating a point about
an arbitrary point (tx, ty) as follows:

⎡

⎣
x′
y′
1

⎤

⎦ = Ttx ,ty RβT−tx ,−ty

⎡

⎣
x

y

1

⎤

⎦ (7.2)

where
T−tx ,−ty creates a temporary origin
Rβ rotates β about the origin
Ttx ,ty returns to the original position.

Note that the transform sequence starts on the right next to the original coordinates,
working leftwards.

Equation (7.2) expands to⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ .

Next, we multiply these matrices together to form a single matrix. Let’s begin by
multiplying the Rβ and T−tx ,−ty matrices, which produces

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

⎡

⎣
cosβ − sinβ −tx cosβ + ty sinβ

sinβ cosβ −tx sinβ − ty cosβ

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦

and finally we obtain
⎡

⎣
x′
y ′
1

⎤

⎦ =
⎡

⎣
cosβ − sinβ tx (1 − cosβ) + ty sinβ

sinβ cosβ ty (1 − cosβ) − tx sinβ

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦

which is the same as the previous transform (7.1).

7.3 Matrix Transforms 91

7.3.4 Rotate and Translate a Point

There are two ways we can combine the rotate and translate transforms into a single
transform. The first method starts by translating a point P(x, y) using T(tx, ty) to an
intermediate point, which is then rotated using Rβ . The problem with this strategy
is that the radius of rotation becomes large and subjects the point to a large circular
motion. The normal way is to first subject the point to a rotation about the origin
and then translate it:

P ′ = Ttx ,ty RβP
⎡

⎣
x ′
y ′
1

⎤

⎦ =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦

⎡

⎣
x ′
y ′
1

⎤

⎦ =
⎡

⎣
cosβ − sinβ tx
sinβ cosβ ty

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ .

For example, consider rotating the point P(1,0), 90° and then translating it by
(1,0). The rotation moves P to (0,1) and the translation moves it to (1,1). This is
confirmed by the above transform:

⎡

⎣
1
1
1

⎤

⎦ =
⎡

⎣
0 −1 1
1 0 0
0 0 1

⎤

⎦

⎡

⎣
1
0
1

⎤

⎦ .

7.3.5 Composite Rotations

It is worth confirming that if we rotate a point β about the origin, and follow this
by a rotation of θ , this is equivalent to a single rotation of θ + β , so Rθ Rβ = Rθ+β .
Let’s start with the transforms Rβ and Rθ :

Rβ =
⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

Rθ =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ .

We can represent the double rotation by the product Rθ Rβ :

Rθ Rβ =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

92 7 Rotation Transforms in the Plane

=
⎡

⎣
cos θ cosβ − sin θ sinβ − cos θ sinβ − sin θ cosβ 0
sin θ cosβ + cos θ sinβ − sin θ sinβ + cos θ cosβ 0

0 0 1

⎤

⎦

=
⎡

⎣
cos (θ + β) − sin (θ + β) 0
sin (θ + β) cos (θ + β) 0

0 0 1

⎤

⎦

which confirms that the composite rotation is equivalent to a single rotation of θ +β .

7.4 Inverse Transforms

Given a transform A, its inverse A−1 is defined as such that

AA−1 = A−1A = I

where I is the identity matrix. So let’s identify the inverse translation and rotation
transforms.

We know that the translation matrix is given by

Ttx ,ty =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

and we could reason that the inverse of Ttx ,ty must be a translation in the opposite
direction:

T−1
tx ,ty

=
⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦ .

We can confirm this by computing T−1
tx ,ty

from the cofactor matrix of Ttx ,ty , trans-
posing it and dividing by its determinant:

cofactor matrix of Ttx ,ty =
⎡

⎣
1 0 0
0 1 0

−tx −ty 1

⎤

⎦

TT
tx ,ty

=
⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦

and as det Ttx ,ty = 1, we can write

T−1
tx ,ty

=
⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦ .

So our reasoning is correct. Furthermore, Ttx ,ty T−1
tx ,ty

= I:

Ttx ,ty T−1
tx ,ty

=
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

7.5 Multivector Transforms 93

Similarly, we know that the rotation transform is given by

Rβ =
⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

and we can reason that the inverse of Rβ must be a rotation in the opposite direction,
i.e. a rotation of −β:

R−1
β =

⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦ .

We can also compute R−1
β by forming the cofactor matrix of Rβ , transposing it and

dividing by its determinant:

cofactor matrix of Rβ =
⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

RT
β =

⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦

and as det Rβ = 1, we can write

R−1
β =

⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦ .

So our reasoning is correct. Furthermore, RβR−1
β = I:

RβR−1
β =

⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦

⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

7.5 Multivector Transforms

Multivectors are linear combinations of vectors, bivectors, trivectors, etc., plus a
scalar. They possess imaginary qualities and consequently have the ability to rotate
vectors. Although it is unusual to employ multivectors in 2D computer graphics,
they have been included to introduce their rotational qualities.

7.5.1 Translate a Point

Figure 7.3 shows a point P(x, y) with position vector p, and is translated by (tx, ty)

using

p′ = p + t

94 7 Rotation Transforms in the Plane

Fig. 7.3 Translate a point by
(tx , ty)

where t = [tx ty]T. The position vector p′ points to the translated point P ′ with
components:

p′ = (x + tx) e1 + (
y + ty

)
e2

and agrees with the translation matrix
⎡

⎣
x′
y ′
1

⎤

⎦ =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ .

7.5.2 Rotational Qualities of the Unit Bivector

We know from Chap. 2 that multiplying a complex number by imaginary i rotates
that complex number by 90°. In geometric algebra the 2D pseudoscalar e12 is also
imaginary in that e2

12 = −1, and has similar rotational properties, but has the extra
feature of controlling the direction of rotation. For example, Fig. 7.4 shows pe12
which rotates p, 90°:

p = p1e1 + p2e2

pe12 = (p1e1 + p2e2) e12

= p1e2 − p2e1

= −p2e1 + p1e2.

Fig. 7.4 pe12 rotates p, 90°

7.5 Multivector Transforms 95

Fig. 7.5 e12p rotates p, −90°

However, the reverse product e12p rotates p, −90°:

p = p1e1 + p2e2

pe12 = e12 (p1e1 + p2e2)

= −p1e2 + p2e1

= p2e1 − p1e2

as shown in Fig. 7.5.
We also discovered in Chap. 2 that a complex number z = a + bi can be repre-

sented in exponential form as

z = |z|eiβ = |z| (cosβ + i sinβ)

which, if used to multiply another complex number, scales it by |z| and rotates it β .
Figure 7.6 shows a plane defined by m ∧ n and the vectors n and m such that n

is rotated β further than m:

n = n1e1 + n2e2

m = m1e1 + m2e2

nm = n · m − m ∧ n

= |n||m| cosβ − |m||n| sinβe12

= |n||m| (cosβ − sinβe12) .

Fig. 7.6 The bivector m ∧ n

96 7 Rotation Transforms in the Plane

Pre-multiplying a vector p by the product nm creates p′ such that given:

p = p1e1 + p2e2

nmp = |n||m| (cosβ − sinβe12) (p1e1 + p2e2)

= |n||m| (cosβp1e1 + cosβp2e2 + sinβp1e2 − sinβp2e1)

p′ = |n||m|[(cosβp1 − sinβp2) e1 + (sinβp1 + cosβp2) e2
]

[
p′

1

p′
2

]

= |n||m|
[

cosβ − sinβ

sinβ cosβ

][
p1
p2

]

and confirms that the vector p is rotated β and scaled by |n||m|.
Post-multiplying a vector p by the product nm creates p′ such that given:

p = p1e1 + p2e2

pnm = (p1e1 + p2e2) |n||m| (cosβ − sinβe12)

= |n||m| (p1e1 cosβ − p1e2 sinβ + p2e2 cosβ + p2e1 sinβ)

p′ = |n||m|((p1 cosβ + p2 sinβ) e1 + (−p1 sinβ + p2 cosβ) e2
)

[
p′

1

p′
2

]

= |n||m|
[

cosβ sinβ

− sinβ cosβ

][
p1
p2

]

and confirms that the vector p is rotated −β and scaled by |n||m|. By making n
and m unit vectors, the product nm rotates a vector without scaling, which is an
essential quality for a rotation transform.

Before proceeding, we should clarify the effect of reversing the product nm to
mn. Therefore, assuming that vectors n and m remain unchanged, the product mn
is given by:

n = n1e1 + n2e2

m = m1e1 + m2e2

mn = m · n + m ∧ n

= |n||m| cosβ + |m||n| sinβe12

= |n||m| (cosβ + sinβe12) .

Pre-multiplying a vector p by the product mn creates p′ such that given:

p = p1e1 + p2e2

mnp = |n||m| (cosβ + sinβe12) (p1e1 + p2e2)

= |n||m| (cosβp1e1 + cosβp2e2 − sinβp1e2 + sinβp2e1)

p′ = |n||m|((cosβp1 + sinβp2) e1 + (− sinβp1 + cosβp2) e2
)

[
p′

1

p′
2

]

= |n||m|
[

cosβ sinβ

− sinβ cosβ

][
p1
p2

]

and confirms that the vector p is rotated −β and scaled by |n||m|.

7.5 Multivector Transforms 97

It should be no surprise that post-multiplying a vector p by the product mn rotates
it β .

The above results are summarised as follows:

nmp = pmn rotates p, β

pnm = mnp rotates p, −β.

7.5.3 Rotate a Point About the Origin

In Chap. 9 on 3D rotations we show the origins of rotors in geometric algebra using
double reflections. The plane containing the vectors n and m is defined by the wedge
product m ∧ n, which means we can write the product mn as

mn = m · n + m ∧ n

and the product nm in the same plane as

nm = m · n − m ∧ n

which accounts for the negative sign in the following bivector term

nm = |n||m| (cosβ − sinβe12) .

Furthermore, if we make n and m unit vectors we can replace them by a rotor Rβ

whose magnitude is 1 because

|Rβ | =
√

cos2 β + sin2 β = 1

therefore no scaling occurs, which means that

Rβp rotates p, β i.e. anticlockwise, and

pRβ rotates p,−β i.e. clockwise.

The effect of this rotor is illustrated as follows:

p = e1 + e2

R45° = cos 45° − sin 45°e12

=
√

2

2
−

√
2

2
e12

p′ = R45°p =
(√

2

2
−

√
2

2
e12

)
(e1 + e2)

=
√

2

2
e1 +

√
2

2
e2 +

√
2

2
e2 −

√
2

2
e1

= √
2e2

as shown in Fig. 7.7.

98 7 Rotation Transforms in the Plane

Fig. 7.7 The effect of rotor
R45° on vector p

Similarly, reversing the product to pR45° we obtain

p′ = pR45° = (e1 + e2)

(√
2

2
−

√
2

2
e12

)

=
√

2

2
e1 −

√
2

2
e2 +

√
2

2
e2 +

√
2

2
e1

= √
2e1

as shown in Fig. 7.7.
Geometric algebra also employs a reversion function which reverses the sequence

of elements in a multivector by switching the signs of bivector and trivector ele-
ments. Instead of reversing the sequence of p and Rβ , we can reverse Rβ using R†

β :

Rβ = cosβ − sinβe12

R†
β = cosβ + sinβe12

therefore,

p′ = R†
45°p =

(√
2

2
+

√
2

2
e12

)
(e1 + e2)

=
√

2

2
e1 +

√
2

2
e2 −

√
2

2
e2 +

√
2

2
e1

= √
2e1

and

p′ = pR†
45° = (e1 + e2)

(√
2

2
+

√
2

2
e12

)

=
√

2

2
e1 +

√
2

2
e2 +

√
2

2
e2 −

√
2

2
e1

= √
2e2

which means that

7.5 Multivector Transforms 99

R†
βp rotates p,−β i.e. clockwise

pR†
β rotates p, β i.e. anticlockwise

and

Rβp = pR†
β

pRβ = R†
βp.

Using the rotor Rβ in a single-sided transformation only works for vectors in the
plane of rotation, which satisfies everything we do in 2D. However, in 3D we have
to employ a double-sided, half-angle formula of the form RβpR†

β , which is covered
in Chap. 11.

7.5.4 Rotate a Point About an Arbitrary Point

Earlier in this chapter we developed a transform for rotating a point about an ar-
bitrary point. Let’s show how we can approach the same problem using geometric
algebra. Figure 7.8 shows the geometry describing how the point P is rotated β

about T to P ′, and by inspection we can write

p′ = t + Rβ (p − t) .

Using the previous example, where T = (1,1),P = (2,1) and β = 90° we have

R90° = cos 90° − sin 90°e12 = −e12

t = e1 + e2

p = 2e1 + e2

p′ = e1 + e2 − e12 (2e1 + e2 − e1 − e2)

= e1 + e2 − e12e1

= e1 + e2 + e2

= e1 + 2e2

which is correct.

Fig. 7.8 Using a rotor Rβ to
rotate P about T

100 7 Rotation Transforms in the Plane

If we expand the definition of p′ we obtain:

p′ = t + Rβ (p − t)

= txe1 + tye2 + (cosβ − sinβe12)
(
(x − tx) e1 + (y − ty)e2

)

= txe1 + tye2 + (
x cosβ − y sinβ − tx cosβ + ty sinβ

)
e1

+ (x sinβ + y cosβ − tx sinβ − ty cosβ)e2

= (
x cosβ − y sinβ + tx (1 − cosβ) + ty sinβ

)
e1

+ (
x sinβ + y cosβ + ty (1 − cosβ) − tx sinβ

)
e2

which in matrix form is
⎡

⎣
x′
y ′
1

⎤

⎦ =
⎡

⎣
cosβ − sinβ tx (1 − cosβ) + ty sinβ

sinβ cosβ ty (1 − cosβ) − tx sinβ

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦

and agrees with the original transform (7.1).

7.6 Summary

In this chapter we have seen how the translation and rotation transforms are used
to rotate points about the origin and arbitrary points. We have also seen how the
inverse transforms translate and rotate in the opposite directions which will be used
in the next chapter to relate points in different frames of reference.

We have also seen how multivectors provide an alternative approach based upon
vectors, bivectors and rotors, and can undertake the same tasks. However, we have
discovered that fundamentally they are matrix transforms in disguise, albeit, an ef-
fective one.

In order to show the patterns that exist between these two mathematical ap-
proaches, all the commands are summarised.

7.6.1 Summary of Matrix Transforms

Translate a point

Ttx ,ty =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦ .

Rotate a point

Rβ =
⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦ .

7.6 Summary 101

Rotate a point about (tx, ty)

Ttx ,ty RβT−tx ,−ty =
⎡

⎣
cosβ − sinβ tx (1 − cosβ) + ty sinβ

sinβ cosβ ty (1 − cosβ) − tx sinβ

0 0 1

⎤

⎦ .

7.6.2 Summary of Multivector Transforms

Rotor definition

Rβ = cosβ − sinβe12

R†
β = cosβ + sinβe12.

Translate a point

p′ = p + t = (x + tx)e1 + (y + ty)e2.

Rotate a point

p′ = Rβp = (cosβ − sinβe12) (xe1 + ye2)

p′ = pR†
β = (xe1 + ye2) (cosβ + sinβe12) .

Rotate a point about (tx, ty)

p′ = t + Rβ (p − t) = txe1 + tye2 + (cosβ − sinβe12)
(
(x − tx) e1 + (y − ty)e2

)

p′ = t + (p − t)R†
β = txe1 + tye2 + (

(x − tx) e1 + (y − ty)e2
)
(cosβ + sinβe12) .

Chapter 8
Frames of Reference in the Plane

8.1 Introduction

In the previous chapter we covered the transforms for rotating points in the plane
with respect to a fixed frame of reference. In this chapter we investigate the trans-
forms for computing the coordinates of points in rotated frames of reference using
geometry, matrices and multivectors. We will employ many of the concepts previ-
ously described in order to develop inverse transforms and rotors.

8.2 Frames of Reference

You have probably been on a train waiting to depart from a railway station, and
through the window see another stationary train. Then suddenly you notice move-
ment. To begin with, it is difficult to decide which train is moving, and the problem
is often resolved when the entire scenario is seen with reference to some fixed object
such as a tree or a building. This phenomena reminds us that motion is relative, and
plays an important role in understanding transforms and frames of reference.

When a frame of reference moves – such as a train – the relationship between
the seated passengers and the train remains fixed. The only thing that does change
is the relationship between the train and other frames of references such as a tree or
a building.

One can describe the relative motion between the train and a tree by assuming
that the train remains stationary and the tree moves in an equal and opposite direc-
tion. So if the train’s translation is described by T, the tree’s translation relative to
the train is described by the inverse transform T−1.

Similarly, the rotation of a swivel chair can be described in two ways. The usual
way is to assume that the swivel chair rotates relative to the desk where it’s lo-
cated. The relative motion interpretation proposes that the chair is stationary, whilst
the desk rotates in an equal and opposite direction. So if the chair’s rotation is de-
scribed by R, the desk’s rotation relative to the chair is described by the inverse
transform R−1.

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_8, © Springer-Verlag London Limited 2011

103

104 8 Frames of Reference in the Plane

Let’s assume that a tree is located in a 3D frame of reference labelled XYZ and
the train’s frame of reference is labelled X′Y ′Z′. When the two frames are coinci-
dent, the tree has identical coordinates in both frames. However, if the train’s frame
X′Y ′Z′ is translated by the transform T relative to XYZ, the tree’s coordinates rel-
ative to the train have effectively moved in the opposite direction given by T−1.

Similarly, let’s assume that a desk is located in a frame of reference labelled
XYZ and a chair’s frame of reference is labelled X′Y ′Z′. When the two frames are
coincident, the desk has identical coordinates in both frames. However, if the chair’s
frame X′Y ′Z′ is rotated by the transform R relative to XYZ, the desk’s coordinates
relative to the chair have effectively rotated in the opposite direction given by R−1.

8.3 Matrix Transforms

Having established the equivalence between transforms for moving points in a fixed
frame, and the inverse transforms for fixed points in a moving frame, let’s explore
how we construct the transforms for translated and rotated frames of reference in
the plane. As in the previous chapter, we will show how matrices and multivectors
offer two approaches to this problem.

In computer graphics most frame of reference transforms are expressed by a
translation or a rotation, or a combination of both. We will explore these different
scenarios and develop transforms for converting coordinates in the original frame of
reference to coordinates in the second frame.

8.3.1 Translated Frame of Reference

Figure 8.1 shows two coincident 2D frames of reference X′Y ′ and XY , where a
point in one frame has identical coordinates in the other. Therefore, the two frames
of reference are related as follows

⎡

⎣
x′
y ′
1

⎤

⎦ = I

⎡

⎣
x

y

1

⎤

⎦

where I is the identity transform

I =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

which ensures that P ′ = P .

8.3 Matrix Transforms 105

Fig. 8.1 The X′Y ′ axial
system is coincident with XY

Fig. 8.2 The X′Y ′ axial
system is translated (tx , ty)

Figure 8.2 shows the frame X′Y ′ translated by (tx, ty) which is equivalent to
translating P by T−tx ,−ty which is also the inverse transform T−1

tx ,ty
. Therefore,

a point P(x, y) in XY has coordinates P ′(x′, y ′) in X′Y ′ given by
⎡

⎣
x′
y ′
1

⎤

⎦ = T−1
tx ,ty

⎡

⎣
x

y

1

⎤

⎦

where

T−1
tx ,ty

=
⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦ .

For example, the point (tx, ty) in XY should have coordinates (0,0) in X′Y ′:
⎡

⎣
0
0
1

⎤

⎦ =
⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦

⎡

⎣
tx
ty
1

⎤

⎦

which is confirmed.

106 8 Frames of Reference in the Plane

Fig. 8.3 The X′Y ′ axial
system is rotated β

8.3.2 Rotated Frame of Reference

Figure 8.3 shows the frame X′Y ′ rotated β which is equivalent to rotating P by
−β and is effected by the transform R−1

β . Therefore, a point P(x, y) in XY has
coordinates P ′(x′, y′) in X′Y ′ given by

⎡

⎣
x′
y′
1

⎤

⎦ = R−1
β

⎡

⎣
x

y

1

⎤

⎦

where

R−1
β =

⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦ .

We can also confirm this using the geometry shown in Fig. 8.3,

x = R cos θ

y = R sin θ

x ′ = R cos(θ − β)

y′ = R sin(θ − β)

x′ = R cos θ cosβ + R sin θ sinβ

= x cosβ + y sinβ

y′ = R sin θ cosβ − R cos θ sinβ

= −x sinβ + y cosβ

which as a homogeneous matrix is
⎡

⎣
x′
y ′
1

⎤

⎦ =
⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦

8.3 Matrix Transforms 107

which is the inverse rotation transform R−1
β or R−β . For example, the point (1,1)

in XY , will have coordinates (
√

2,0) in the frame of reference rotated 45°:
⎡

⎣

√
2

0
1

⎤

⎦ =
⎡

⎣

√
2/2

√
2/2 0

−√
2/2

√
2/2 0

0 0 1

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦

which is confirmed.
We have previously shown that two separate rotations of a point is equivalent

to a single composite rotation of a point. Similarly, it is a trivial exercise to prove
that two separate rotations of a frame is equivalent to single composite rotation of a
frame.

8.3.3 Rotated and Translated Frame of Reference

Having looked at translated and rotated frames of reference, let’s combine the two
operations and develop a single transform. This is not too difficult to follow, so long
as we are careful with our definitions and diagrams.

When a point is rotated and translated we use the operation

P ′ = Ttx ,ty RβP .

We know that the transform for moving a frame of reference – whilst keeping a point
fixed – is the inverse of that used for moving points – whilst keeping the frame fixed.
Which suggests that the transform for a rotated and translated frame of reference is
the inverse of Ttx ,ty Rβ which is

(Ttx ,ty Rβ)−1 = R−1
β T−1

tx ,ty

and makes

P ′ = R−1
β T−1

tx ,ty
P

or

P ′ = R−βT−tx ,−tyP .

Substituting the matrices for R−β and T−tx ,−ty we have
⎡

⎣
x′
y ′
1

⎤

⎦ =
⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦

which simplifies to
⎡

⎣
x ′
y ′
1

⎤

⎦ =
⎡

⎣
cosβ sinβ −tx cosβ − ty sinβ

− sinβ cosβ tx sinβ − ty cosβ

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ . (8.1)

Equation (8.1) is the homogeneous matrix for converting points in the XY coordi-
nate system to the translated and rotated X′Y ′ coordinate system.

108 8 Frames of Reference in the Plane

Fig. 8.4 The X′Y ′ axial
system translated (tx , ty) and
rotated β

A quick test confirms that Ttx ,ty RβR−1
β T−1

tx ,ty
= I, i.e.

Ttx ,ty RβR−1
β T−1

tx ,ty
= Ttx ,ty T−1

tx ,ty
= I

or⎡

⎣
cosβ − sinβ tx
sinβ cosβ ty

0 0 1

⎤

⎦

⎡

⎣
cosβ sinβ −tx cosβ − ty sinβ

− sinβ cosβ tx sinβ − ty cosβ

0 0 1

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

Figure 8.4 shows how the frame of reference XT YT is created for the intermedi-
ate translated frame, followed by a rotation of β about the new origin, ending with
the final frame of reference X′Y ′.

Let’s test (8.1) with the example shown in Fig. 8.5 where

β = 90°

(tx, ty) = (10,5)

(x, y) = (9,6)
⎡

⎣
1
1
1

⎤

⎦ =
⎡

⎣
0 1 −5

−1 0 10
0 0 1

⎤

⎦

⎡

⎣
9
6
1

⎤

⎦ (8.2)

and we see that (9,6) in XY becomes (1,1) in X′Y ′.

Fig. 8.5 The X′Y ′ axial
system is translated (10,5)

and rotated 90°

8.4 Direction Cosines 109

Fig. 8.6 If the X′- and
Y ′-axes are assumed to be
unit vectors, their direction
cosines form the elements of
the rotation matrix

8.4 Direction Cosines

Direction cosines are the cosines of the angles between a vector and the Cartesian
axes, and for a unit vector they are its components.

Figure 8.6 shows the rotated frame X′Y ′, and by inspection the direction cosines
for a vector lying on X′ are cosβ and cos(90° −β), which can be rewritten as cosβ

and sinβ . The direction cosines for a vector lying on Y ′ are cos(90° +β) and cosβ ,
which can be rewritten as − sinβ and cosβ . But these direction cosines cosβ , sinβ ,
− sinβ and cosβ are the four elements of the inverse rotation matrix R−1

β :

R−1
β =

[
cosβ sinβ

− sinβ cosβ

]
.

The top row contains the direction cosines for the X′-axis and the bottom row con-
tains the direction cosines for the Y ′-axis. This relationship also holds in 3D. Conse-
quently, if we have access to these cosines we can construct a transform that relates
rotated frames of reference.

Figure 8.7 shows an axial system X′Y ′ rotated 45°, and the associated transform
is

⎡

⎣
x ′
y ′
1

⎤

⎦ ≈
⎡

⎣
0.707 0.707 0

−0.707 0.707 0
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ .

Fig. 8.7 The four vertices of
the unit square shown in both
frames

110 8 Frames of Reference in the Plane

The four vertices on a unit square become

(0,0) → (0,0)

(1,0) → (0.707,−0.707)

(1,1) → (1.1414,0)

(0,1) → (0.707,0.707)

which by inspection of Fig. 8.7 are correct.

8.5 Multivector Transforms

Geometric algebra is relatively new compared to other branches of mathematics and
has still not found its way into mainstream computer graphics software. Neverthe-
less, it has been included in this chapter to demonstrate that it can be used alongside
matrix transforms and quaternions.

8.5.1 Translated Frame of Reference

Figure 8.8 shows a frame of reference X′Y ′ translated (tx, ty) relative to the original
frame of reference XY . Therefore, if p points to a point P(x, y) in XY , and t points
to the origin of X′Y ′, then p′ = p − t points to the point P ′(x′, y′) relative to the
X′Y ′ frame of reference, and means that p′ is given by

p′ = (x − tx)e1 + (y − ty)e2.

Fig. 8.8 The X′Y ′ axial
system translated (tx , ty)

8.5 Multivector Transforms 111

Fig. 8.9 Using a rotor R to
rotate XY to X′Y ′

8.5.2 Rotated Frame of Reference

We have already shown that in order to compute the coordinates of a point P in
a rotated frame of reference X′Y ′, we rotate the point by an angle in the opposite
direction as shown in Fig. 8.9 to P ′. Thus if the new frame of reference is rotated β ,
and p is P ’s position vector, then p′ points to the new point P ′ and is computed as
follows:

p′ = R†
βp

where

R†
β = cosβ + sinβe12.

Let’s test this with the same example used above by rotating the frame of reference
45° and computing the coordinates of the point (1,1)

p = e1 + e2

R†
45° = cos 45° + sin 45°e12

=
√

2

2
+

√
2

2
e12

p′ =
(√

2

2
+

√
2

2
e12

)
(e1 + e2)

=
√

2

2
e1 +

√
2

2
e2 −

√
2

2
e2 +

√
2

2
e1

= √
2e1

and P ′ = (
√

2,0), which is correct.

112 8 Frames of Reference in the Plane

Fig. 8.10 The X′Y ′ axial
system is rotated 90° and
translated (10,5)

8.5.3 Rotated and Translated Frame of Reference

Earlier, we saw how two inverse transforms are used to compute the coordinates of a
point in a rotated and translated frame of reference. We can achieve the same result
using multivectors as follows.

We begin with point P and its frame of reference XY . The first step is to establish
a translated frame of reference XT YT with position vector t. Which means that

pT = p − t. (8.3)

Next, as shown in Fig. 8.10, we rotate pT by −β to effectively rotate the frame of
reference XT YT to X′Y ′. Which means that

p′ = R†
βpT . (8.4)

Substituting (8.3) in (8.4) we have

p′ = R†
β(p − t)

or

p′ = (cosβ + sinβe12)
(
(x − tx)e1 + (y − ty)e2

)
. (8.5)

Let’s test (8.5) using the same values in the previous example where

β = 90°

(tx, ty) = (10,5)

(x, y) = (9,6)

p′ = (
cos 90° + sin 90°e12

)(
(9 − 10)e1 + (6 − 5)e2

)

= e12(−e1 + e2)

= e1 + e2

which makes P ′ = (1,1) the same as (8.2).
Although multivectors provide an alternative way of solving vector-based prob-

lems, they still have a matrix background. For example, expanding (8.5) we have

8.6 Summary 113

p′ = (cosβ + sinβe12)
(
(x − tx)e1 + (y − ty)e2

)

= (x cosβ−tx cosβ)e1 + (y cosβ−ty cosβ)e2

− (x sinβ−tx sinβ)e2 + (y sinβ−ty sinβ)e1

= (x cosβ + y sinβ − tx cosβ − ty sinβ)e1

+ (−x sinβ + y cosβ + tx sinβ − ty cosβ)e2

or in matrix form
⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ sinβ −tx cosβ − ty sinβ

− sinβ cosβ tx sinβ − ty cosβ

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦

which is identical to (8.1).

8.6 Summary

In this chapter we have discovered that if a transform such as Ttx ,ty or Rβ is used

for moving points, whilst keeping the frame fixed, their inverses T−1
tx ,ty

and R−1
β can

be used for moving the frame, whilst keeping the point fixed. It goes without saying
that the converse also holds, in that we could have declared a transform for moving
a frame, and its inverse could be used for moving a point.

We have also seen how geometric algebra provides an alternative approach to
transforms based upon vectors, bivectors and rotors, and can undertake the same
tasks.

In order to show the patterns that exist between these two mathematical ap-
proaches, all the commands are summarised.

8.6.1 Summary of Matrix Transforms

Given

Ttx ,ty =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

Rβ =
⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦ .

Translate frame

T−1
tx ,ty

=
⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦ .

114 8 Frames of Reference in the Plane

Rotate frame

R−1
β =

⎡

⎣
cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤

⎦ .

Translate and rotate frame

R−1
β T−1

tx ,ty
=

⎡

⎣
cosβ sinβ −tx cosβ − ty sinβ

− sinβ cosβ tx sinβ − ty cosβ

0 0 1

⎤

⎦ .

8.6.2 Summary of Multivector Transforms

Frame rotor

R†
β = cosβ + sinβe12.

Translate frame

p′ = p − t = (x − tx)e1 + (y − ty)e2.

Rotate frame

p′ = R†
βp = (cosβ + sinβe12)(xe1 + ye2).

Translate and rotate frame

p′ = R†
β(p − t) = (cosβ + sinβe12)

(
(x − tx)e1 + (y − ty)e2

)
.

Chapter 9
Rotation Transforms in Space

9.1 Introduction

In this chapter we generalise the 2D transforms covered in Chap. 7 to three dimen-
sions. In particular, we examine rotating points about the fixed three Cartesian axes
and off-set, parallel axes, and about an arbitrary axis. We also explore Euler an-
gles, and their Achilles’ heel – gimbal lock. Matrices will be used to describe these
geometric scenarios.

9.2 3D Transforms

3D transforms include the scale, translate, reflect, shear and rotate transforms, and
in this chapter we need only consider the translate and rotate operations, which we
will explore individually and in combination. Let’s start with the translate transform.

9.2.1 Translate a Point

The matrix for a 3D point translation is basically the same as previously described
but with one extra dimension Ttx ,ty ,tz . It requires the homogeneous form and is
written

Ttx ,ty ,tz =

⎡

⎢⎢
⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤

⎥⎥
⎦

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_9, © Springer-Verlag London Limited 2011

115

116 9 Rotation Transforms in Space

where tx , ty , tz are the x-, y-, z-offsets respectively. It goes without further explana-
tion that the inverse transform T−1

tx ,ty ,tz
is

T−1
tx ,ty ,tz

=

⎡

⎢⎢
⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤

⎥⎥
⎦ .

9.2.2 Rotate a Point About the Cartesian Axes

Although we talk about rotating points about another point in space, we require
more precise information to describe this mathematically. We could, for example,
associate a plane with the point of rotation and confine the rotated point to this plane,
but it’s much easier to visualise an axis perpendicular to this plane, about which the
rotation occurs. Unfortunately, the matrix algebra for such an operation starts to be-
come fussy, and ultimately we have seek the help of quaternions or multivectors.
So let us begin this investigation by rotating a point about the three fixed Carte-
sian axes. Such rotations are called Euler rotations after the Swiss mathematician
Leonhard Euler.

Recall that the transform for rotating a point about the origin in the plane is given
by

Rβ =
⎡

⎣
cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤

⎦ .

This can be generalised into a 3D rotation Rβ,z about the z-axis by adding a z-
coordinate as follows

Rβ,z =

⎡

⎢⎢
⎣

cosβ − sinβ 0 0
sinβ cosβ 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

which is illustrated in Fig. 9.1
To rotate a point about the x-axis, the x-coordinate remains constant whilst the

y- and z-coordinates are changed according to the 2D rotation transform. This is
expressed algebraically as

x ′ = x

y′ = y cosβ − z sinβ

z′ = y sinβ + z cosβ

9.2 3D Transforms 117

Fig. 9.1 Rotating the point
P about the z-axis

or in matrix form as Rβ,x

Rβ,x =

⎡

⎢⎢
⎣

1 0 0 0
0 cosβ − sinβ 0
0 sinβ cosβ 0
0 0 0 1

⎤

⎥⎥
⎦ .

To rotate about the y-axis, the y-coordinate remains constant whilst the x- and z-
coordinates are changed. This is expressed algebraically as

x′ = z sinβ + x cosβ

y ′ = y

z′ = z cosβ − x sinβ

or in matrix form as Rβ,y

Rβ,y =

⎡

⎢⎢
⎣

cosβ 0 sinβ 0
0 1 0 0

− sinβ 0 cosβ 0
0 0 0 1

⎤

⎥⎥
⎦ .

Note that the matrix terms don’t appear to share the symmetry enjoyed by the pre-
vious two matrices. Nothing really has gone wrong, it’s just the way the axes are
paired together to rotate the coordinates. Now let’s consider similar rotations about
off-set axes parallel to the Cartesian axes.

9.2.3 Rotating About an Off-Set Axis

To begin, let’s develop a transform to rotate a point about a fixed axis parallel with
the z-axis, as shown in Fig. 9.2. The scenario is very reminiscent of the 2D case for
rotating a point about an arbitrary point, and the general transform is given by

⎡

⎢⎢
⎣

x′
y ′
z′
1

⎤

⎥⎥
⎦ = Ttx ,ty ,0Rβ,zT−tx ,−ty ,0

⎡

⎢⎢
⎣

x

y

z

1

⎤

⎥⎥
⎦

118 9 Rotation Transforms in Space

Fig. 9.2 Rotating a point
about an axis parallel with the
z-axis

where

T−tx ,−ty ,0 creates a temporary origin
Rβ,z rotates β about the temporary z-axis
Ttx ,ty ,0 returns to the original position

and the matrix transform is

Ttx ,ty ,0Rβ,zT−tx ,−ty ,0 =

⎡

⎢⎢
⎣

cosβ − sinβ 0 tx(1 − cosβ) + ty sinβ

sinβ cosβ 0 ty(1 − cosβ) − tx sinβ

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

I hope you can see the similarity between rotating in 3D and 2D – the x- and
y-coordinates are updated while the z-coordinate is held constant. We can now state
the other two matrices for rotating about an off-set axis parallel with the x-axis and
parallel with the y-axis:

T0,ty ,tzRβ,xT0,−ty ,−tz =

⎡

⎢⎢
⎣

1 0 0 0
0 cosβ − sinβ ty(1 − cosβ) + tz sinβ

0 sinβ cosβ tz(1 − cosβ) − ty sinβ

0 0 0 1

⎤

⎥⎥
⎦

Ttx ,0,tzRβ,yT−tx ,0,−tz =

⎡

⎢⎢
⎣

cosβ 0 sinβ tx(1 − cosβ) − tz sinβ

0 1 0 0
− sinβ 0 cosβ tz(1 − cosβ) + tx sinβ

0 0 0 1

⎤

⎥⎥
⎦ .

9.3 Composite Rotations

So far we have only considered single rotations about a Cartesian axis or a parallel
off-set axis, but there is nothing to stop us constructing a sequence of rotations
to create a composite rotation. For example, we could begin by rotating a point α

about the x-axis followed by a rotation β about the y-axis, which in turn could be

9.3 Composite Rotations 119

Fig. 9.3 A unit cube with
vertices coded as shown in
Table 9.1

Table 9.1 Vertex coordinates
for the cube in Fig. 9.3 vertex 0 1 2 3 4 5 6 7

x 0 0 0 0 1 1 1 1

y 0 0 1 1 0 0 1 1

z 0 1 0 1 0 1 0 1

followed by a rotation γ about the z-axis. As mentioned above, these rotations are
called Euler rotations.

One of the problems with Euler rotations is visualising exactly what is happening
at each step, and predicting the orientation of an object after a composite rotation. To
simplify the problem we will employ a unit cube whose vertices are numbered 0 to
7 as shown in Fig. 9.3. We will also employ the following binary coded expression
that uses the Cartesian coordinates of the vertex in the vertex number:

vertex = 4x + 2y + z.

For example, vertex 0 has coordinates (0,0,0), and vertex 7 has coordinates
(1,1,1). All the codes are shown in Table 9.1.

Let’s repeat the three rotation transforms for rotating points about the x-, y- and
z-axes respectively, in their non-homogeneous form and substitute c for cos and s

for sin to save space:

rotate α about the x-axis Rα,x =
⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦

rotate β about the y-axis Rβ,y =
⎡

⎣
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤

⎦

rotate γ about the z-axis Rγ,z =
⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦ .

120 9 Rotation Transforms in Space

We can create a composite, moving-point, fixed-frame rotation by placing
Rα,x , Rβ,y and Rγ,z in any sequence. As an example, let’s choose the sequence
Rγ,zRβ,yRα,x

Rγ,zRβ,yRα,x =
⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤

⎦

⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦ . (9.1)

Multiplying the three matrices in (9.1) together we obtain
⎡

⎣
cγ cβ cγ sβsα − sγ cα cγ sβcα + sγ sα
sγ cβ sγ sβsα + cγ cα sγ sβcα − cγ sα
−sβ cβsα cβcα

⎤

⎦ (9.2)

or using the more familiar notation:
⎡

⎣
cosγ cosβ cosγ sinβ sinα − sinγ cosα cosγ sinβ cosα + sinγ sinα

sinγ cosβ sinγ sinβ sinα + cosγ cosα sinγ sinβ cosα − cosγ sinα

− sinβ cosβ sinα cosβ cosα

⎤

⎦ .

Let’s evaluate (9.2) by making α = β = γ = 90°:
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦ . (9.3)

The matrix (9.3) is equivalent to rotating a point 90° about the fixed x-axis, followed
by a rotation of 90° about the fixed y-axis, followed by a rotation of 90° about the
fixed z-axis. This rotation sequence is illustrated in Fig. 9.4 (a)–(d).

Figure 9.4 (a) shows the starting position of the cube; (b) shows its orientation
after a 90° rotation about the x-axis; (c) shows its orientation after a further rotation
of 90° about the y-axis; and (d) the cube’s resting position after a rotation of 90°
about the z-axis.

From Fig. 9.4 (d) we see that the cube’s coordinates are as shown in Table 9.2. We
can confirm that these coordinates are correct by multiplying the cube’s original co-
ordinates shown in Table 9.1 by the matrix (9.3). Although it is not mathematically
correct, we will show the matrix multiplying an array of coordinates as follows

⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 −1 −1 −1 −1

⎤

⎦

which agree with the coordinates in Table 9.2.
Naturally, any three angles can be chosen to rotate a point about the fixed axes,

but it does become difficult to visualise without an interactive cgi system.
Note that the determinant of (9.3) is 1, which is as expected.

9.3 Composite Rotations 121

Fig. 9.4 Four views of the unit cube before and during the three rotations

Table 9.2 Vertex coordinates
for the cube in Fig. 9.4 (d) vertex 0 1 2 3 4 5 6 7

x 0 1 0 1 0 1 0 1

y 0 0 1 1 0 0 1 1

z 0 0 0 0 −1 −1 −1 −1

An observation we made with 2D rotations is that they are additive: i.e. Rα fol-
lowed by Rβ is equivalent to Rα+β . But something equally important is that rota-
tions in 2D commute:

RαRβ = RβRα = Rα+β = Rβ+α

whereas, in general, 3D rotations are non-commutative. This is seen by considering
a composite rotation formed by a rotation α about the x-axis Rα,x , followed by a
rotation β about the z-axis Rβ,z, and

Rα,xRβ,z �= Rβ,zRα,x.

As an illustration, let’s reverse the composite rotation computed above to
Rα,xRβ,yRγ,z:

Rα,xRβ,yRγ,z =
⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦

⎡

⎣
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤

⎦

⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦ . (9.4)

122 9 Rotation Transforms in Space

Fig. 9.5 Four views of the unit cube using the rotation sequence Rα,xRβ,yRγ,z

Multiplying the three matrices in (9.4) together we obtain
⎡

⎣
cβcγ −cβsγ sβ

sαsβcγ + cαsγ −sαsβsγ + cαcγ −sαcβ

−cαsβcγ + sαsγ cαsβsγ + sαcγ cαcβ

⎤

⎦ (9.5)

or using the more familiar notation:
⎡

⎣
cosβ cosγ − cosβ sinγ sinβ

sinα sinβ cosγ + cosα sinγ − sinα sinβ sinγ + cosα cosγ − sinα cosβ

− cosα sinβ cosγ + sinα sinγ cosα sinβ sinγ + sinα cosγ cosα cosβ

⎤

⎦ .

Comparing (9.3) and (9.5) it can be seen that they are completely different.
Let’s evaluate (9.5) by making α = β = γ = 90°:

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦ . (9.6)

The matrix (9.6) is equivalent to rotating a point 90° about the fixed z-axis, fol-
lowed by a rotation of 90° about the fixed y-axis, followed by a rotation of 90° about
the fixed x-axis. This rotation sequence is illustrated in Fig. 9.5 (a)–(d).

From Fig. 9.5 (d) we see that the cube’s coordinates are as shown in Table 9.3.
We can confirm that these coordinates are correct by multiplying the cube’s original

9.3 Composite Rotations 123

Table 9.3 Vertex coordinates
for the cube in Fig. 9.5 (d) vertex 0 1 2 3 4 5 6 7

x 0 1 0 1 0 1 0 1

y 0 0 −1 −1 0 0 −1 −1

z 0 0 0 0 1 1 1 1

coordinates shown in Table 9.1 by the matrix (9.6). We show the matrix multiplying
an array of coordinates as before:

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦

which agree with the coordinates in Table 9.3, and we can safely conclude that, in
general, 3D rotation transforms do not commute. Inspection of Fig. 9.5 (d) shows
that the unit cube has been rotated 180° about a vector [1 0 1]T.

Now let’s explore the role eigenvectors and eigenvalues play in 3D rotations.

9.3.1 3D Eigenvectors

In Chap. 4 we examined the characteristic equation used to identify any eigenvectors
associated with a matrix. The eigenvector v satisfies the relationship

Av = λv

where λ is a scaling factor.
In the context of a 3D rotation matrix, an eigenvector is a vector scaled by λ

but not rotated, which implies that it is the axis of rotation. To illustrate this, let’s
identify the eigenvector for the composite rotation (9.3) above:

R90°,zR90°,yR90°,x =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦ .

Figure 9.4 (a)–(d) shows the effect of this composite rotation, which is nothing
more than a rotation of 90° about the y-axis. Therefore, we should be able to extract
this information from the above matrix.

We begin by writing the characteristic equation for the matrix:
∣∣∣∣∣∣

0 − λ 0 1
0 1 − λ 0

−1 0 0 − λ

∣∣∣∣∣∣
= 0. (9.7)

124 9 Rotation Transforms in Space

Expanding (9.7) using the top row we have

−λ

∣∣∣∣
1 − λ 0

0 −λ

∣∣∣∣ + 1

∣∣∣∣
0 1 − λ

−1 0

∣∣∣∣ = 0

−λ
(−λ + λ2) + 1 − λ = 0

λ2 − λ3 + 1 − λ = 0

−λ3 + λ2 − λ + 1 = 0

λ3 − λ2 + λ = 1.

When working with 3 × 3 matrices we always end up with a cubic in λ, for which
there can be three types of solution:

1. One real and two complex conjugate solutions.
2. Three real solutions including the possibility of a double solution.
3. Three distinct real solutions.

It is clear that λ = 1 is one such real root, which satisfies our requirement for an
eigenvalue. We could also show that the other two roots are complex conjugates.

Substituting λ = 1 in the original equations associated with (9.7) to reveal the
eigenvector, we have

⎧
⎨

⎩

−x + 0y + z = 0
0x + 0y + 0z = 0
−x + 0y − z = 0.

It is obvious from the 1st and 3rd equations that x = z = 0. However, all three
equations multiply the y term by zero, which implies that the associated eigenvector
is of the form [0 k 0]T, which is the y-axis, as anticipated. Now let’s find the
angle of rotation.

Using one of the above rotation matrices Rβ,y and the trace operation:

Rβ,y =
⎡

⎣
cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

⎤

⎦

Tr(Rβ,y) = 1 + 2 cosβ

therefore,

β = arccos((Tr(Rβ,y) − 1)/2).

To illustrate this, let β = 90°:

R90°,y =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

Tr(R90°,y) = 1

therefore,

β = arccos ((1 − 1) /2) = 90°.

9.3 Composite Rotations 125

Let’s choose another matrix and repeat the above:

Rα,x =
⎡

⎣
1 0 0
0 cosα − sinα

0 sinα cosα

⎤

⎦ .

This time, let α = 45°:

R45°,x =
⎡

⎣
1 0 0
0

√
2/2 −√

2/2
0

√
2/2

√
2/2

⎤

⎦

Tr(R45°,x) = 1 + √
2

therefore,

α = arccos((1 + √
2 − 1)/2) = 45°.

So we now have a mechanism to extract the axis and angle of rotation from a
rotation matrix. However, the algorithm for identifying the axis is far from satisfac-
tory, and later on we will discover that there is a similar technique which is readily
programable.

For completeness, let’s identify the axis and angle of rotation for the matrix (9.6):

R90°,xR90°,yR90°,z =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦ .

Once more, we begin by writing the characteristic equation for the matrix:
∣∣∣∣∣∣

0 − λ 0 1
0 −1 − λ 0
1 0 0 − λ

∣∣∣∣∣∣
= 0. (9.8)

Expanding (9.8) using the top row we have

−λ

∣∣∣∣
−1 − λ 0

0 −λ

∣∣∣∣ + 1

∣∣∣∣
0 −1 − λ

1 0

∣∣∣∣ = 0

−λ
(−λ + λ2) + 1 − λ = 0

λ2 − λ3 + 1 − λ = 0

−λ3 + λ2 − λ + 1 = 0

λ3 − λ2 + λ = 1.

Again, there is a single real root: λ = 1, and substituting this in the original equations
associated with (9.8) to reveal the eigenvector, we have

⎧
⎨

⎩

−x + 0y + z = 0
0x − 2y + 0z = 0
x + 0y − z = 0.

It is obvious from the 1st and 3rd equations that x = z, and from the 2nd equation
that y = 0, which implies that the associated eigenvector is of the form [k 0 k],
which is correct.

126 9 Rotation Transforms in Space

Using the trace operation, we can write

Tr(R90°,xR90°,yR90°,z) = −1

therefore,

β = arccos ((−1 − 1)/2) = 180°.

As promised, let’s explore another way of identifying the fixed axis of rotation,
which is an eigenvector. Consider the following argument where A is a simple rota-
tion transform:

If v is a fixed axis of rotation and A a rotation transform, then v suffers no rota-
tion:

Av = v (9.9)

similarly,

ATv = v. (9.10)

Subtracting (9.10) from (9.9), we have

Av − ATv = 0 (9.11)
(
A − AT)

v = 0 (9.12)

where 0 is a null vector.
In Chap. 4 we defined an antisymmetric matrix Q as

Q = 1

2

(
A − AT)

(9.13)

therefore,
(
A − AT) = 2Q. (9.14)

Substituting (9.14) in (9.12) we have

2Qv = 0

Qv = 0

which permits us to write
⎡

⎣
0 q3 −q2

−q3 0 q1
q2 −q1 0

⎤

⎦

⎡

⎣
v1
v2
v3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ (9.15)

where

q1 = a23 − a32

q2 = a31 − a13

q3 = a12 − a21.

Expanding (9.15) we have

9.3 Composite Rotations 127

0v1 + q3v2 − q2v3 = 0

−q3v1 + 0v2 + q1v3 = 0

q2v1 − q1v2 + 0v3 = 0.

Obviously, one possible solution is v1 = v2 = v3 = 0, but we seek a solution for v
in terms of q1, q2 and q3. A standard technique is to relax one of the v terms, such
as making v1 = 1. Then

q3v2 − q2v3 = 0 (9.16)

−q3 + q1v3 = 0 (9.17)

q2 − q1v2 = 0. (9.18)

From (9.18) we have

v2 = q2

q1
.

From (9.17) we have

v3 = q3

q1

therefore, a solution is

v =
[
q1

q1

q2

q1

q3

q1

]T

which in a non-homogeneous form is

v = [
q1 q2 q3

]T

or in terms of the original matrix:

v = [
(a23 − a32) (a31 − a13) (a12 − a21)

]T
(9.19)

which appears to be a rather elegant solution for finding the fixed axis of revolution.
Now let’s put (9.19) to the test by recomputing the axis of rotation for the pure

rotations Rα,x,Rβ,y and Rγ,z where α = β = γ = 90°:

R90°,x =
⎡

⎣
1 0 0
0 0 −1
0 1 0

⎤

⎦

using (9.19) we have

v = [
(−1 − 1) (0 − 0) (0 − 0)

] = [−2 0 0]T

which is the x-axis.

R90°,y =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

128 9 Rotation Transforms in Space

using (9.19) we have

v = [
(0 − 0) (−1 − 1) (0 − 0)

] = [0 − 2 0]T

which is the y-axis.

R90°,z =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

using (9.19) we have

v = [
(0 − 0) (0 − 0) (−1 − 1)

] = [0 0 − 2]T

which is the z-axis.
However, if we attempt to extract the axis of rotation from

R90°,xR90°,yR90°,z =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

we have a problem, because q1 = q2 = q3 = 0. This is because A = AT and the
technique relies upon A �= AT.

So let’s consider another approach based upon the fact that a rotation matrix
always has a real eigenvalue λ = 1, which permits us to write

Av = λv

Av = λIv = Iv

(A − I)v = 0

therefore,
⎡

⎣
(a11 − 1) a12 a13

a21 (a22 − 1) a23
a31 a32 (a33 − 1)

⎤

⎦

⎡

⎣
v1
v2
v3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ . (9.20)

Expanding (9.20) we have

(a11 − 1)v1 + a12v2 + a13v3 = 0

a21v1 + (a22 − 1)v2 + a23v3 = 0

a31v1 + a32v2 + (a33 − 1)v3 = 0.

Once more, there exists a trivial solution where v1 = v2 = v3 = 0, but to discover
something more useful we can relax any one of the v terms which gives us three
equations in two unknowns. Let’s make v1 = 0:

a12v2 + a13v3 = − (a11 − 1) (9.21)

(a22 − 1) v2 + a23v3 = −a21 (9.22)

a32v2 + (a33 − 1) v3 = −a31. (9.23)

We are now faced with choosing a pair of equations to isolate v2 and v3. In fact, we
have to consider all three pairings because it is possible that a future rotation matrix

9.3 Composite Rotations 129

will contain a column with two zero elements, which could conflict with any pairing
we make at this stage.

Let’s begin by choosing (9.21) and (9.22). The solution employs the following
strategy: Given the following matrix equation

[
a1 b1
a2 b2

][
x

y

]
=

[
c1
c2

]

then

x
∣∣∣∣
c1 b1
c2 b2

∣∣∣∣

= y
∣∣∣∣
a1 c1
a2 c2

∣∣∣∣

= 1
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣ .

Therefore, using the 1st and 2nd (9.21) and (9.22) we have

v2∣∣∣∣
−(a11 − 1) a13

−a21 a23

∣∣∣∣

= v3∣∣∣∣
a12 −(a11 − 1)

(a22 − 1) −a21

∣∣∣∣

= 1
∣∣∣∣

a12 a13
(a22 − 1) a23

∣∣∣∣

v1 = a12a23 − a13(a22 − 1)

v2 = a13a21 − a23(a11 − 1)

v3 = (a11 − 1)(a22 − 1) − a12a21.

Similarly, using the 1st and 3rd (9.21) and (9.23) we have

v1 = a12(a33 − 1) − a13a32

v2 = a13a31 − (a11 − 1)(a33 − 1)

v3 = a32(a11 − 1) − a12a31

and using the 2nd and 3rd (9.22) and (9.23) we have

v1 = (a22 − 1)(a33 − 1) − a23a32

v2 = a23a31 − a21(a33 − 1)

v3 = a21a32 − a31(a22 − 1).

Now we have nine equations to cope with any eventuality. In fact, there is nothing
to stop us from choosing any three that take our fancy, for example these three
equations look interesting and sound:

v1 = (a22 − 1)(a33 − 1) − a23a32 (9.24)

v2 = (a33 − 1)(a11 − 1) − a31a13 (9.25)

v3 = (a11 − 1)(a22 − 1) − a12a21. (9.26)

Therefore, the solution for the eigenvector is [v1 v2 v3]T. Note that the sign of
v2 has been reversed to maintain symmetry.

Let’s test (9.24), (9.25) and (9.26) with the transforms used above:

130 9 Rotation Transforms in Space

R90°,x =
⎡

⎣
1 0 0
0 0 −1
0 1 0

⎤

⎦

⎧
⎨

⎩

v1 = (−1)(−1) − (−1) × 1 = 2
v2 = (−1)(0) − 0 × 0 = 0
v3 = (0)(−1) − 0 × 0 = 0

R90°,y =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎧
⎨

⎩

v1 = (0)(−1) − 0 × 0 = 0
v2 = (−1)(−1) − (−1) × 1 = 2
v3 = (−1)(0) − 0 × 0 = 0

R90°,z =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎧
⎨

⎩

v1 = (−1)(0) − 0 × 0 = 0
v2 = (0)(−1) − 0 × 0 = 0
v3 = (−1)(−1) − (−1) × 1 = 2

R90°,xR90°,yR90°,z =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎧
⎨

⎩

v1 = (−2)(−1) − 0 × 0 = 2
v2 = (−1)(−1) − 1 × 1 = 0
v3 = (−1)(−2) − 0 × (−1) = 2

R90°,zR90°,yR90°,x =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎧
⎨

⎩

v1 = (0)(−1) − 0 × 0 = 0
v2 = (−1)(−1) − (−1) × 1 = 2
v3 = (−1)(0) − 0 × 0 = 0.

We can see why the resulting vectors have components of 2 by evaluating a normal
rotation transform:

Rα,x =
⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦

⎧
⎨

⎩

v1 = (cα − 1)(cα − 1) − (−sα) × (sα) = 2(1 − cα)

v2 = (cα − 1)(0) − 0 × 0 = 0
v3 = (0)(cα − 1) − 0 × 0 = 0.

We can see that when α = 90°, v1 = 2.
So far we have created three composite rotations comprising individual rota-

tions about the x-, y- and z-axes: Rα,xRβ,yRγ,z and Rγ,zRβ,yRα,x . But there is
nothing stopping us from creating other combinations such as Rα,xRβ,yRγ,x or
Rα,zRβ,yRγ,z that include two rotations about the same axis. In fact, there are twelve
possible combinations:

Rα,xRβ,yRγ,x, Rα,xRβ,yRγ,z, Rα,xRβ,zRγ,x, Rα,xRβ,zRγ,y

Rα,yRβ,xRγ,y, Rα,yRβ,xRγ,z, Rα,yRβ,zRγ,x, Rα,yRβ,zRγ,y

Rα,zRβ,xRγ,y, Rα,zRβ,xRγ,z, Rα,zRβ,yRγ,x , Rα,zRβ,yRγ,z

which are covered in detail in Appendix A.

9.4 Gimbal Lock

There are two potential problems with all of the above composite transforms. The
first is the difficulty visualising the orientation of an object subjected to several
rotations; the second is that they all suffer from what is called gimbal lock. From
a visualisation point of view, if we use the transform Rγ,zRβ,yRα,x to animate an
object and change γ , β and α over a period of frames, it can be very difficult to
predict the final movement and adjust the angles to achieve a desired effect. Gimbal

9.4 Gimbal Lock 131

Fig. 9.6 Three types of gimbal joints

lock, on the other hand, is a weakness associated with Euler rotations when certain
combinations of angles are used.

To understand this phenomenon, consider a simple gimbal which is a pivoted
support that permits rotation about an axis, as shown in Fig. 9.6 (a). If two gimbals
are combined, as shown in Fig. 9.6 (b), the inner cradle remains level with some ref-
erence plane as the assembly rolls and pitches. Such a combination has two degrees
of rotational freedom. By adding a third gimbal so that the entire structure is free to
rotate about a vertical axis, an extra degree of rotational freedom is introduced and
is often used for mounting a camera on a tripod, as shown in Fig. 9.6 (c).

A mechanical gimbal joint with three degrees of freedom is represented math-
ematically by a composite Euler rotation transform. For example, say we choose
R90°,yR90°,xR90°,z to rotate our unit cube as shown in Fig. 9.7 (a). The cube’s
faces containing vertices 1, 5, 7, 3 and 0, 2, 6, 4 are first rotated about the perpen-
dicular z-axis, as shown in Fig. 9.7 (b). The second transform rotates the cube’s
faces containing vertices 0, 4, 5, 1 and 2, 3, 7, 6 about the perpendicular x-axis,
as shown in Fig. 9.7 (c). If we now attempt to rotate the cube about the y-axis,
as shown in Fig. 9.7 (d), the cube’s faces containing 0, 2, 6, 4 and 1, 5, 7, 3 are
rotated again. Effectively we have lost the ability to rotate a cube about one of its
axes, and such a condition is called gimbal lock. There is little we can do about this,
apart from use another composite transform, but it, too, will have a similar restric-
tion. For example, Appendix A shows that R90°,xR90°,zR90°,y , R90°,yR90°,zR90°,x ,
R90°,zR90°,xR90°,y and R90°,zR90°,yR90°,x all possess a similar affliction. Fortu-
nately, there are other ways of rotating an object, which we will explore later.

132 9 Rotation Transforms in Space

Fig. 9.7 An example of gimbal lock

9.5 Yaw, Pitch and Roll

The above Euler rotations are also known as yaw, pitch and roll, and great care
should be taken with these angles when referring to other books and technical pa-
pers. Sometimes a left-handed system of axes is used rather than a right-handed set,
and the vertical axis may be the y-axis or the z-axis, and might even point down-
wards. Consequently, the matrices representing the rotations can vary greatly. In
this text all Cartesian coordinate systems are right-handed, and the vertical axis is
always the y-axis.

The terms yaw, pitch and roll are often used in aviation and to describe the mo-
tion of ships. For example, if a ship or aeroplane is heading in a particular direction,
the axis aligned with the heading is the roll axis, as shown in Fig. 9.8 (a). A perpen-
dicular axis in the horizontal plane containing the heading axis is the pitch axis, as
shown in Fig. 9.8 (b). The axis perpendicular to both these axes is the yaw axis, as
shown in Fig. 9.8 (c).

Clearly, there are many ways of aligning a set of Cartesian axes with the yaw,
pitch and roll axes, and consequently, it is impossible to define an absolute set of
yaw, pitch and roll transforms. However, if we choose the following alignment:

• the roll axis is the z-axis
• the pitch axis is the x-axis
• the yaw axis is the y-axis

we have the situation as shown in Fig. 9.9, and the transforms representing these
rotations are as follows:

9.5 Yaw, Pitch and Roll 133

Fig. 9.8 Definitions of yaw, pitch and roll

Fig. 9.9 A convention for
roll, pitch and yaw angles

Rroll,z =
⎡

⎣
cos roll − sin roll 0
sin roll cos roll 0

0 0 1

⎤

⎦

Rpitch,x =
⎡

⎣
1 0 0
0 cos pitch − sin pitch
0 sin pitch cos pitch

⎤

⎦

Ryaw,y =
⎡

⎣
cos yaw 0 sin yaw

0 1 0
− sin yaw 0 cos yaw

⎤

⎦ .

134 9 Rotation Transforms in Space

A common sequence for applying these rotations is roll, pitch, yaw, as seen in the
following transform:

⎡

⎣
x′
y ′
z′

⎤

⎦ = Ryaw,yRpitch,xRroll,z

⎡

⎣
x

y

z

⎤

⎦

and if a translation is involved,
⎡

⎢⎢
⎣

x′
y ′
z′
1

⎤

⎥⎥
⎦ = Ttx ,ty ,tzRyaw,yRpitch,xRroll,z

⎡

⎢⎢
⎣

x

y

z

1

⎤

⎥⎥
⎦ .

9.6 Rotating a Point About an Arbitrary Axis

Now let’s examine two ways of rotating a point about an arbitrary axis. The first
technique uses matrices and trigonometry and is rather laborious. The second ap-
proach employs vector analysis and is quite succinct. Fortunately, they both arrive
at the same result!

9.6.1 Matrices

We begin by defining an axis using a unit vector n̂ about which a point P is rotated
α to P ′ as shown in Fig. 9.10. And as we only have access to matrices that rotate
points about the Cartesian axes, this unit vector has to be temporarily aligned with a
Cartesian axis. In the following example we choose the x-axis. During the alignment
process, the point P is subjected to the transforms necessary to align the unit vector
with the x-axis. We then rotate P , α about the x-axis. To complete the operation, the
rotated point is subjected to the transforms that return the unit vector to its original
position. Although matrices provide a powerful tool for undertaking this sort of

Fig. 9.10 The geometry
associated with rotating a
point about an arbitrary axis

9.6 Rotating a Point About an Arbitrary Axis 135

work, it is nevertheless extremely tedious, but is a good exercise for improving one’s
algebraic skills!

Figure 9.10 shows a point P(x, y, z) to be rotated through an angle α to
P ′(x′, y′, z′) about an axis defined by

n̂ = ai + bj + ck.

The transforms to achieve this operation can be expressed as follows:
⎡

⎣
x′
y ′
z′

⎤

⎦ = R−φ,yRθ,zRα,xR−θ,zRφ,y

⎡

⎣
x

y

z

⎤

⎦

which aligns the axis of rotation with the x-axis, performs the rotation of P through
an angle α about the x-axis, and returns the axis of rotation back to its original
position. Therefore,

Rφ,y =
⎡

⎣
cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

⎤

⎦ , R−θ,z =
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦

Rα,x =
⎡

⎣
1 0 0
0 cosα − sinα

0 sinα cosα

⎤

⎦ , Rθ,z =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

R−φ,y =
⎡

⎣
cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

⎤

⎦ .

Let

R−φ,yRθ,zRα,xR−θ,zRφ,y =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

where by multiplying the matrices together we find that:

a11 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα

a12 = cosφ cos θ sin θ − cosφ sin θ cos θ cosα − sinφ cos θ sinα

a13 = cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα + sin2 φ sin θ sinα

+ cos2 φ sin θ sinα − cosφ sinφ cosα

a21 = sin θ cos θ cosφ − cos θ sin θ cosφ cosα + cos θ sinφ sinα

a22 = sin2 θ + cos2 θ cosα

a23 = sin θ cos θ sinφ − cos θ sin θ sinφ cosα − cos θ cosφ sinα

a31 = cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα − cos2 φ sin θ sinα

− cosφ sinφ cosα

a32 = sinφ cos θ sin θ − sinφ sin θ cos θ cosα + cosφ cos θ sinα

a33 = sin2 φ cos2 θ + sin2 φ sin2 θ cosα − cosφ sinφ sin θ sinα

+ cosφ sinφ sin θ sinα + cos2 φ cosα.

136 9 Rotation Transforms in Space

From Fig. 9.10 we compute the sin and cos of θ and φ in terms of a, b and c, and
then compute their equivalent sin2 and cos2 values:

cos θ =
√

1 − b2 ⇒ cos2 θ = 1 − b2

sin θ = b ⇒ sin2 θ = b2

cosφ = a/
√

1 − b2 ⇒ cos2 φ = a2/
(
1 − b2)

sinφ = c/
√

1 − b2 ⇒ sin2 φ = c2/
(
1 − b2).

To find a11:

a11 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα

= a2 + a2b2

1 − b2 cosα + c2

1 − b2 cosα

= a2 +
(

c2 + a2b2

1 − b2

)
cosα

but

a2 + b2 + c2 = 1 ⇒ c2 = 1 − a2 − b2

a11 = a2 +
(

1 − a2 − b2 + a2b2

1 − b2

)
cosα

= a2 +
(

(1 − a2)(1 − b2)

1 − b2

)
cosα

= a2(1 − cosα) + cosα.

Let

K = 1 − cosα

then

a11 = a2K + cosα.

To find a12:

a12 = cosφ cos θ sin θ − cosφ sin θ cos θ cosα − sinφ cos θ sinα

= a√
1 − b2

√
1 − b2b − a√

1 − b2
b
√

1 − b2 cosα − c√
1 − b2

√
1 − b2 sinα

= ab − ab cosα − c sinα

= ab(1 − cosα) − c sinα

a12 = abK − c sinα.

9.6 Rotating a Point About an Arbitrary Axis 137

To find a13:

a13 = cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα + sin2 φ sin θ sinα

+ cos2 φ sin θ sinα − cosφ sinφ cosα

= cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα + sin θ sinα − cosφ sinφ cosα

= a√
1 − b2

c√
1 − b2

(
1 − b2) + a√

1 − b2

c√
1 − b2

b2 cosα + b sinα

− a√
1 − b2

c√
1 − b2

cosα

= ac + ac
b2

(1 − b2)
cosα + b sinα − ac

(1 − b2)
cosα

= ac + ac
(b2 − 1)

(1 − b2)
cosα + b sinα

= ac(1 − cosα) + b sinα

a13 = acK + b sinα.

Using similar algebraic methods, we discover that:

a21 = abK + c sinα

a22 = b2K + cosα

a23 = bcK − a sinα

a31 = acK − b sinα

a32 = bcK + a sinα

a33 = c2K + cosα

and our original matrix transform becomes:
⎡

⎢
⎣

x ′
p

y′
p

z′
p

⎤

⎥
⎦ =

⎡

⎣
a2K + cosα abK − c sinα acK + b sinα

abK + c sinα b2K + cosα bcK − a sinα

acK − b sinα bcK + a sinα c2K + cosα

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

where

K = 1 − cosα.

9.6.2 Vectors

Now let’s solve the same problem using vectors. Figure 9.11 shows a view of the
geometry associated with the task at hand. For clarification, Fig. 9.12 shows a cross-
section and a plan view of the geometry.

The axis of rotation is given by the unit vector:

n̂ = ai + bj + ck.

138 9 Rotation Transforms in Space

Fig. 9.11 A view of the
geometry associated with
rotating a point about an
arbitrary axis

Fig. 9.12 A cross-section
and plan view of the
geometry associated with
rotating a point about an
arbitrary axis

• P(xp, ypzp) is the point to be rotated by angle α to P ′(x′
p, y ′

p, z′
p).

• O is the origin, whilst p and p′ are position vectors for P and P ′ respectively.

From Fig. 9.11 and Fig. 9.12:

p′ = −−→
ON + −−→

NQ + −−→
QP ′.

To find
−−→
ON :

|n| = |p| cos θ = n̂ · p

therefore,
−−→
ON = n = n̂(n̂ · p).

To find
−−→
NQ:

−−→
NQ = NQ

NP
r = NQ

NP ′ r = cosα r

but

p = n + r = n̂(n̂ · p) + r

therefore,

r = p − n̂(n̂ · p)

9.6 Rotating a Point About an Arbitrary Axis 139

and
−−→
NQ = (

p − n̂(n̂ · p)
)

cosα.

To find
−−→
QP ′:

Let

n̂ × p = w

where

|w| = |n̂| · |p| sin θ = |p| sin θ

but

|r| = |p| sin θ

therefore,

|w| = |r|.
Now

QP ′

NP ′ = QP ′

|r| = QP ′

|w| = sinα

therefore,
−−→
QP ′ = w sinα = n̂ × p sinα

then

p′ = n̂(n̂ · p) + (
p − n̂(n̂ · p)

)
cosα + n̂ × p sinα

and

p′ = p cosα + n̂(n̂ · p)(1 − cosα) + n̂ × p sinα.

This is known as the Rodrigues rotation formula, as it was developed by the French
mathematician, Olinde Rodrigues (1795–1851), who had also invented the ideas be-
hind quaternions before Hamilton. This has been documented by Simon Altmann in
the Mathematics Magazine under the title “Hamilton, Rodrigues and the quaternion
scandal” [7].

If we let

K = 1 − cosα

then

p′ = p cosα + n̂(n̂ · p)K + n̂ × p sinα

= (xpi + ypj + zpk) cosα + (ai + bj + ck)(axp + byp + czp)K

+ (
(bzp − cyp)i + (cxp − azp)j + (ayp − bxp)k

)
sinα

= (
xp cosα + a(axp + byp + czp)K + (bzp − cyp) sinα

)
i

+ (
yp cosα + b(axp + byp + czp)K + (cxp − azp) sinα

)
j

140 9 Rotation Transforms in Space

+ (
zp cosα + c(axp + byp + czp)K + (ayp − bxp) sinα

)
k

= (
xp(a2K + cosα) + yp(abK − c sinα) + zp(acK + b sinα)

)
i

+ (
xp(abK + c sinα) + yp

(
b2K + cosα

) + zp(bcK − a sinα)
)
j

+ (
xp(acK − b sinα) + yp(bcK + a sinα) + zp

(
c2K + cosα

))
k

and the transform is:
⎡

⎣
x ′
p

y′
p

z′
p

⎤

⎦ =
⎡

⎣
a2K + cosα abK − c sinα acK + b sinα

abK + c sinα b2K + cosα bcK − a sinα

acK − b sinα bcK + a sinα c2K + cosα

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

which is identical to the transform derived using matrices.
Now let’s test the transform with a simple example that can be easily verified. If

we rotate the point P(10,0,0), 180° about an axis defined by n = i + j, it should
end up at P ′(0,10,0).

Therefore

α = 180°, cosα = −1, sinα = 0, K = 2

a =
√

2

2
, b =

√
2

2
, c = 0

and ⎡

⎣
0
10
0

⎤

⎦ =
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦

⎡

⎣
10
0
0

⎤

⎦

which is correct.

9.7 Summary

In this chapter we have seen how the 2 × 2 matrix for rotating a point in the plane
is developed for rotating points in space. In its simplest form, the rotations are re-
stricted to one of the three Cartesian axes, but by employing homogeneous coor-
dinates, the translation transform can be used to rotate points about an off-set axis
parallel with one of the Cartesian axes.

Composite Euler rotations are created by combining the matrices representing the
individual rotations about three successive axes, for which there are twelve combi-
nations. Unfortunately, one of the problems with such transforms is that they suffer
from gimbal lock, where one degree of freedom is lost under certain angle com-
binations. Another problem, is that it is difficult to predict how a point moves in
space when animated by a composite transform, although they are widely used for
positioning objects in world space.

We have also seen how to compute the eigenvector associated with a rotation
transform, and how it represents the axis about which rotation occurs, and the eigen-
value represents the angle of rotation.

Finally, matrices and vectors were used to develop a transform for rotating a point
about an arbitrary axis.

9.7 Summary 141

9.7.1 Summary of Matrix Transforms

Translate a point

Ttx ,ty ,tz =

⎡

⎢⎢
⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤

⎥⎥
⎦ .

Rotate a point about the x-, y-, z-axes

Rβ,x =

⎡

⎢⎢
⎣

1 0 0 0
0 cosβ − sinβ 0
0 sinβ cosβ 0
0 0 0 1

⎤

⎥⎥
⎦

Rβ,y =

⎡

⎢⎢
⎣

cosβ 0 sinβ 0
0 1 0 0

− sinβ 0 cosβ 0
0 0 0 1

⎤

⎥⎥
⎦

Rβ,z =

⎡

⎢⎢
⎣

cosβ − sinβ 0 0
sinβ cosβ 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

Rotate a point about off-set x-, y-, z-axes

T0,ty ,tzRβ,xT0,−ty ,−tz =

⎡

⎢⎢
⎣

1 0 0 0
0 cosβ − sinβ ty(1 − cosβ) + tz sinβ

0 sinβ cosβ tz(1 − cosβ) − ty sinβ

0 0 0 1

⎤

⎥⎥
⎦

Ttx ,0,tzRβ,yT−tx ,0,−tz =

⎡

⎢⎢
⎣

cosβ 0 sinβ tx(1 − cosβ) − tz sinβ

0 1 0 0
− sinβ 0 cosβ tz(1 − cosβ) + tx sinβ

0 0 0 1

⎤

⎥⎥
⎦

Ttx ,ty ,0Rβ,zT−tx ,−ty ,0 =

⎡

⎢⎢
⎣

cosβ − sinβ 0 tx(1 − cosβ) + ty sinβ

sinβ cosβ 0 ty(1 − cosβ) − tx sinβ

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

Rotate a point about an arbitrary axis

p′ = p cosα + n̂(n̂ · p)(1 − cosα) + n̂ × p sinα

Rα,n̂ =
⎡

⎣
a2K + cosα abK − c sinα acK + b sinα

abK + c sinα b2K + cosα bcK − a sinα

acK − b sinα bcK + a sinα c2K + cosα

⎤

⎦

K = 1 − cosα

n̂ = ai + bj + ck.

142 9 Rotation Transforms in Space

Extracting the angle and axis of rotation from a transform

Rα,v =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

α = arccos((Tr(Rα,v) − 1)/2)

v = v1i + v2j + v3k

v1 = (a22 − 1)(a33 − 1) − a23a32

v2 = (a33 − 1)(a11 − 1) − a31a13

v3 = (a11 − 1)(a22 − 1) − a12a21.

Chapter 10
Frames of Reference in Space

10.1 Introduction

In Chap. 8 we discovered how to compute the coordinates of a point in a frame of
reference in the plane. In this chapter we study the same problem but in 3D space.
Again, we employ many of the concepts previously described in order to develop
the transforms for translating and rotating frames in space.

The relativity of motion, previously discussed, implies that we cannot absolutely
claim that one frame of reference is stationary whilst another is in motion – it is sim-
ply a question of interpretation and convenience. Fortunately, a matrix transform can
be used to support moving points and moving frames, which means that the trans-
form used for rotating a point in a fixed frame of reference, can be used for rotating
the frame of reference in the opposite direction, whilst keeping the point fixed.

In a 3D space context, this implies that the rotation transform Rα,x , which rotates
a point α about the fixed x-axis, can be used to rotate the frame of reference −α

about the x-axis, whilst the point remains fixed. Similarly, the rotation transform
R−α,x , which rotates a point −α about the fixed x-axis, can also be used to rotate
the frame of reference α about the x-axis, whilst the point remains fixed.

We employ a simple notation to distinguish transforms that rotate points from
those that rotate frames. For example, Rα,x rotates a point α about the x-axis,
whilst R−1

α,x rotates a frame α about the x-axis. Similarly, R−α,x rotates a point −α

about the x-axis, whilst R−1−α,x rotates a frame −α about the x-axis. Also, Ttx ,ty ,tz

translates a point (tx, ty, tz), whilst T−1
tx ,ty ,tz

translates a frame (tx, ty , tz). Similarly,

T−tx ,−ty ,−tz translates a point (−tx,−ty ,−tz), whilst T−1−tx ,−ty ,−tz
translates a frame

(−tx,−ty,−tz).

10.2 Frames of Reference

We have already discussed frames of reference in Chap. 8, and even though the
frames were 2D, the same ideas can be generalised to 3D space without having to
introduce any new concepts – we simply add an extra z-coordinate.

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_10, © Springer-Verlag London Limited 2011

143

144 10 Frames of Reference in Space

Fig. 10.1 The point P is
translated by (tx , ty , tz) with a
fixed frame

10.3 Matrix Transforms

In general, if points in the frame X′Y ′Z′ are related to points in the frame XYZ by
the transform A using

P = AP ′,
then a point P in XYZ has coordinates in X′Y ′Z′ using

P ′ = A−1P.

In computer graphics most frame of reference transforms involve a translation or
a rotation, or a combination of both. We now explore these different scenarios and
develop transforms for converting coordinates in the original frame of reference to
another frame.

10.3.1 Translated Frames of Reference

Figure 10.1 shows a point P translated by (tx, ty, tz) to P ′ using the transform
Ttx ,ty ,tz

Ttx ,ty ,tz =

⎡

⎢⎢
⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤

⎥⎥
⎦

where the translated point P ′ is given by

P ′ = Ttx ,ty ,tzP .

Thus the coordinates of P are updated relative to the fixed frame of reference XYZ.
However, there is a second interpretation for Ttx ,ty ,tz , where P remains fixed and

the frame of reference XYZ is translated by (−tx,−ty ,−tz), as shown in Fig. 10.2.
Consequently, the point P(x, y, z) in XYZ has coordinates P ′(x′, y ′, z′) in X′Y ′Z′
given by

P ′ = T−1−tx ,−ty ,−tz
P .

10.3 Matrix Transforms 145

Fig. 10.2 The point P

remains fixed whilst the
frame XYZ is translated
(−tx ,−ty ,−tz)

For example, the origin of XYZ becomes (tx, ty, tz) in X′Y ′Z′:
⎡

⎢⎢
⎣

tx
ty
tz
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦ .

Therefore, the transform for translating a frame by (tx, ty, tz) is

T−1
tx ,ty ,tz

=

⎡

⎢⎢
⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤

⎥⎥
⎦ .

Now we consider rotated frames of reference in space.

10.3.2 Rotated Frames of Reference About Cartesian Axes

A 2D frame of reference can only be rotated within its plane, whereas a 3D frame
can be rotated about any axis, whether it be a Cartesian axis or some arbitrary axis.
Let’s look at how Rα,x behaves when rotating frames about the x-axis, and apply
the results to the other axes.

We know that we can rotate a point, α about the x-axis using

Rα,x =
⎡

⎣
1 0 0
0 cosα − sinα

0 sinα cosα

⎤

⎦ .

However, Rα,x can also be used to rotate a frame −α about the x-axis. Similarly,
R−1

α,x rotates a frame α about the same axis. Therefore, in general, we can use the
same technique for all three Cartesian axes.

Figure 10.3 (a) and (b) show our unit cube rotated by −90° about the x-axis,
whilst (c) and (d) show the frame rotated 90° about the same axis, with the cube
fixed.

146 10 Frames of Reference in Space

Fig. 10.3 (a) and (b) The cube is rotated −90°. (c) and (d) The XYZ frame is rotated 90°

The transform for R−1
90°,x is

R−1
90°,x = R−90°,x =

⎡

⎣
1 0 0
0 0 1
0 −1 0

⎤

⎦

which when used on the cube’s coordinates create
⎡

⎣
1 0 0
0 0 1
0 −1 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1

⎤

⎦

which are confirmed by Fig. 10.3 (d).
In summary, the transforms for rotating frames α about the x-, y- and z-axes are:

R−1
α,x =

⎡

⎣
1 0 0
0 cosα sinα

0 − sinα cosα

⎤

⎦

R−1
α,y =

⎡

⎣
cosα 0 − sinα

0 1 0
sinα 0 cosα

⎤

⎦

10.3 Matrix Transforms 147

Fig. 10.4 (a) and (b) The off-set axis and rotated frame. (c) and (d) The unit cube and rotated
frame

R−1
α,z =

⎡

⎣
cosα sinα 0

− sinα cosα 0
0 0 1

⎤

⎦ .

10.3.3 Rotated Frames About Off-Set Axes

In Chap. 9 we developed three transforms for rotating a point about an off-set axis
parallel with one of the three Cartesian axes. Let’s develop three complementary
transforms for rotating a frame about the same off-set axes.

To ensure that we compute the correct transform, we must be very clear in our
own minds what we are attempting to do. The objective is to identify an off-set axis
parallel with the z-axis, for example, in the current XYZ frame of reference, about
which a frame is rotated. The first step, then, is to translate the frame, and then
rotate it.

Let’s assume that the axis passes through the point (tx, ty ,0), as shown in
Fig. 10.4 (a). Therefore, given the following definitions for T−1

tx ,ty ,0 and R−1
α,z

T−1
tx ,ty ,0 =

⎡

⎢⎢
⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

148 10 Frames of Reference in Space

R−1
α,z =

⎡

⎢⎢
⎣

cosα sinα 0 0
− sinα cosα 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

R−1
α,zT−1

tx ,ty ,0 =

⎡

⎢⎢
⎣

cosα sinα 0 −tx cosα − ty sinα

− sinα cosα 0 −ty cosα + tx sinα

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

Let’s test this transform by making α = 90°, and tx = ty = 1, as shown in
Fig. 10.4 (b):

R−1
90°,zT−1

1,1,0 =

⎡

⎢⎢
⎣

0 1 0 −1
−1 0 0 1
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

which, if used on the unit cube shown in Fig. 10.4 (c), produces
⎡

⎢⎢
⎣

0 1 0 −1
−1 0 0 1
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

−1 −1 0 0 −1 −1 0 0
1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦

as confirmed by Fig. 10.4 (d).
Let’s explore what happens if we swap the rotation and translation transforms to

T−1
tx ,ty ,0R−1

α,z. This now implies that the frame of reference is rotated α about the z-
axis, and then translated (tx, ty,0) in the rotated frame’s space, which is not what we
had planned. Here are the three transforms for rotating a frame of reference about
an off-set axis:

R−1
α,xT−1

0,ty ,tz
=

⎡

⎢⎢
⎣

1 0 0 0
0 cosα sinα −ty cosα − tz sinα

0 − sinα cosα −tz cosα + ty sinα

0 0 0 1

⎤

⎥⎥
⎦

R−1
α,yT−1

tx ,0,tz
=

⎡

⎢⎢
⎣

cosα 0 − sinα −tx cosα + tz sinα

0 1 0 0
sinα 0 cosα −tz cosα − tx sinα

0 0 0 1

⎤

⎥⎥
⎦

R−1
α,zT−1

tx ,ty ,0 =

⎡

⎢⎢
⎣

cosα sinα 0 −tx cosα − ty sinα

− sinα cosα 0 −ty cosα + tx sinα

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

10.4 Composite Rotations 149

10.4 Composite Rotations

In Chap. 9 we went into some detail describing how point rotation transforms can be
combined into composite rotations about the three Cartesian axes. There are twelve
possible combinations that are listed in Appendix A. As any rotation transform can
be used to rotate a point in one direction, or a frame of reference in the opposite
direction, the previously computed composite transforms for rotating points, can be
used for rotating frames in the opposite direction.

For example, we previously computed Rγ,zRβ,yRα,x :

Rγ,zRβ,yRα,x =
⎡

⎣
cγ cβ cγ sβsα − sγ cα cγ sβcα + sγ sα
sγ cβ sγ sβsα + cγ cα sγ sβcα − cγ sα
−sβ cβsα cβcα

⎤

⎦

which rotates a point about a fixed frame of reference. But it can also be used to
rotate a frame of reference in the opposite directions:

R−1−γ,zR−1
−β,yR−1−α,x =

⎡

⎣
cγ cβ cγ sβsα − sγ cα cγ sβcα + sγ sα
sγ cβ sγ sβsα + cγ cα sγ sβcα − cγ sα
−sβ cβsα cβcα

⎤

⎦ .

In order to compute R−1
γ,zR−1

β,yR−1
α,x we only have to reverse the sign of the sine terms

in the transform for Rγ,zRβ,yRα,x :

R−1
γ,zR−1

β,yR−1
α,x =

⎡

⎣
cγ cβ cγ sβsα + sγ cα −cγ sβcα + sγ sα

−sγ cβ −sγ sβsα + cγ cα sγ sβcα + cγ sα
sβ −cβsα cβcα

⎤

⎦ . (10.1)

Let’s test (10.1) by making α = β = γ = 90°:

R−1
90°,zR−1

90°,yR−1
90°,x =

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦ .

Figure 10.5 (a) shows the initial scenario, Fig. 10.5 (b) shows the frame rotated 90°
about the local x-axis, Fig. 10.5 (c) shows the frame rotated 90° about the local
y-axis, and Fig. 10.5 (d) shows the frame rotated 90° about the local z-axis. If we
subject the coordinates of the unit cube to this composite transform we have

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦

which are confirmed by Fig. 10.5 (d).

150 10 Frames of Reference in Space

Fig. 10.5 (a) The original frame. (b) Rotated frame about the x-axis. (c) Rotated frame about the
y-axis. (d) Rotated frame about the z-axis

Note that this specific transform also suffers from gimbal lock, where it is impos-
sible to rotate the cube through an axis passing through vertices 0 and 2. Whereas,
the cube is rotated twice about the axis passing through vertices 0 and 4. Effec-
tively, the axial system has been rotated 180° about the vector [1 0 1]T, which could
be confirmed by calculating the eigenvalue and eigenvector.

10.5 Rotated and Translated Frames of Reference

One of the most important frame changing transforms in cgi enables us to view an
object from any location in space. The transform uses a rotation, which is often a
composite transform, for example R−1

γ,zR−1
β,yR−1

α,x , and a translation T−1
tx ,ty ,tz

. And as
the position of the translated frame is normally specified in the original frame, we
begin by translating the frame followed by the rotation:

⎡

⎢⎢
⎣

cγ cβ cγ sβsα + sγ cα −cγ sβcα + sγ sα 0
−sγ cβ −sγ sβsα + cγ cα sγ sβcα + cγ sα 0

sβ −cβsα cβcα 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤

⎥⎥
⎦ . (10.2)

It is not worth multiplying these matrices together as it creates too many terms.
However, we can test it with a simple example.

10.5 Rotated and Translated Frames of Reference 151

Fig. 10.6 (a) The translated frame. (b) The rotated frame about the y-axis

Using the unit cube, let’s position the new frame 2 units along the initial x-axis,
and then rotate the frame 270° about its local y-axis so that its z-axis is looking
back towards the original origin. Figure 10.6 (a) shows the translated frame, and
Fig. 10.6 (b) shows the rotated frame. Thus tx = 2, ty = tz = 0, α = 0°, β = 270°
and γ = 0°. Substituting these values in (10.2) we have

R−1
0°,zR−1

270°,yR−1
0°,xT−1

2,0,0 =

⎡

⎢⎢
⎣

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 −2
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ (10.3)

=

⎡

⎢⎢
⎣

0 0 1 0
0 1 0 0

−1 0 0 2
0 0 0 1

⎤

⎥⎥
⎦ . (10.4)

Using (10.4) to process the coordinates of the unit cube we have
⎡

⎢⎢
⎣

0 0 1 0
0 1 0 0

−1 0 0 2
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦

which are confirmed by Fig. 10.6 (b).
To obtain a perspective view of the cube we simply divide its transformed x- and

y-coordinates by the associated z-coordinate:
⎡

⎢⎢
⎣

0 0.5 0 0.5 0 1 0 1
0 0 0.5 0.5 0 0 1 1
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦

152 10 Frames of Reference in Space

Fig. 10.7 Perspective view
of the unit cube

and as the x-axis of the display screen is in the opposite direction to that of the
frame, we have to switch the sign of the x-coordinates:

⎡

⎢⎢
⎣

0 −0.5 0 −0.5 0 −1 0 −1
0 0 0.5 0.5 0 0 1 1
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦ .

The x- and y-coordinates are used in Fig. 10.7 to show the perspective view seen
from this translated, rotated frame.

10.6 Rotated Frames of Reference About Arbitrary Axes

In Chap. 9 we developed the following transform to rotate a point α about an arbi-
trary axis n̂:

Rα,n̂ =
⎡

⎣
a2K + cosα abK − c sinα acK + b sinα

abK + c sinα b2K + cosα bcK − a sinα

acK − b sinα bcK + a sinα c2K + cosα

⎤

⎦

K = 1 − cosα

n̂ = ai + bj + ck.

Therefore, there is nothing to stop us using the same transform to rotate a frame −α

about n̂, or its inverse R−1
α,n̂ to rotate a frame α about n̂. To compute the latter, we

simply transpose the matrix, or change the sign of α which implies reversing the
sign of the sine terms:

R−1
α,n̂ =

⎡

⎣
a2K + cosα abK + c sinα acK − b sinα

abK − c sinα b2K + cosα bcK + a sinα

acK + b sinα bcK − a sinα c2K + cosα

⎤

⎦ . (10.5)

Let’s test (10.5) using the previous example where we rotated a frame 270° about
the y-axis, which makes α = 270°, n̂ = j and K = 1:

R−1
270°,j =

⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

10.7 Summary 153

which agrees perfectly. Naturally, this can be combined with a translation transform
using

R−1
α,n̂T−1

tx ,ty ,tz
=

⎡

⎢⎢
⎣

a2K + cosα abK + c sinα acK − b sinα 0
abK − c sinα b2K + cosα bcK + a sinα 0
acK + b sinα bcK − a sinα c2K + cosα 0

0 0 0 1

⎤

⎥⎥
⎦

×

⎡

⎢⎢
⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤

⎥⎥
⎦ .

10.7 Summary

Hopefully, this chapter has covered most of the scenarios involving rotated and
translated frames of reference in 3D space. Although composite rotation transforms
offer a powerful mechanism for creating complex rotations, they are difficult to
visualise and suffer from gimbal lock. Perhaps, the most useful transform is for ro-
tating a frame about an arbitrary axis. For completeness, the important transforms
are summarised below.

10.7.1 Summary of Transforms

Translating a frame

T−1
tx ,ty ,tz

=

⎡

⎢⎢
⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤

⎥⎥
⎦ .

Rotating a frame about a Cartesian axis

R−1
α,x =

⎡

⎣
1 0 0
0 cosα sinα

0 − sinα cosα

⎤

⎦

R−1
α,y =

⎡

⎣
cosα 0 − sinα

0 1 0
sinα 0 cosα

⎤

⎦

R−1
α,z =

⎡

⎣
cosα sinα 0

− sinα cosα 0
0 0 1

⎤

⎦ .

154 10 Frames of Reference in Space

Rotating a frame about an off-set axis

R−1
α,xT−1

0,ty ,tz
=

⎡

⎢⎢
⎣

1 0 0 0
0 cosα sinα −ty cosα − tz sinα

0 − sinα cosα −tz cosα + ty sinα

0 0 0 1

⎤

⎥⎥
⎦

R−1
α,yT−1

tx ,0,tz
=

⎡

⎢⎢
⎣

cosα 0 − sinα −tx cosα + tz sinα

0 1 0 0
sinα 0 cosα −tz cosα − tx sinα

0 0 0 1

⎤

⎥⎥
⎦

R−1
α,zT−1

tx ,ty ,0 =

⎡

⎢⎢
⎣

cosα sinα 0 −tx cosα − ty sinα

− sinα cosα 0 −ty cosα + tx sinα

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

Rotating a frame using a composite transform

R−1
γ,zR−1

β,yR−1
α,x =

⎡

⎣
cγ cβ cγ sβsα + sγ cα −cγ sβcα + sγ sα

−sγ cβ −sγ sβsα + cγ cα sγ sβcα + cγ sα
sβ −cβsα cβcα

⎤

⎦ .

Rotating and translating a frame

R−1
γ,zR−1

β,yR−1
α,xT−1

tx ,ty ,tz
=

⎡

⎢⎢
⎣

cγ cβ cγ sβsα + sγ cα −cγ sβcα + sγ sα 0
−sγ cβ −sγ sβsα + cγ cα sγ sβcα + cγ sα 0

sβ −cβsα cβcα 0
0 0 0 1

⎤

⎥⎥
⎦

×

⎡

⎢⎢
⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤

⎥⎥
⎦ .

Rotating a frame about an arbitrary axis

R−1
α,n̂ =

⎡

⎣
a2K + cosα abK + c sinα acK − b sinα

abK − c sinα b2K + cosα bcK + a sinα

acK + b sinα bcK − a sinα c2K + cosα

⎤

⎦

K = 1 − cosα

n̂ = ai + bj + ck.

Chapter 11
Quaternion Transforms in Space

11.1 Introduction

Quaternions were introduced in Chap. 5 as a mathematical object that combines a
scalar with a vector, in the same way a complex number combines a scalar with an
imaginary quantity. Quaternions, like complex numbers, possess rotational qualities,
but work in four dimensions rather than on the complex plane.

Hamilton invented quaternions in October 1843, and by December of the same
year his friend, John T. Graves, had invented octonions. Arthur Cayley had also
been intrigued by Hamilton’s quaternions, and independently discovered octonions
in 1845.

There are four such composition algebras: real R, complex C, quaternion H,
and octonion O that obey an n-square identity used to compute their magnitudes.
Adolf Hurwitz (1859–1919) proved that the product of the sum of n squares by
the sum of n squares is the sum of n squares only when n is equal to 1, 2, 4 and
8, which are represented by reals, complex, quaternions and octonions. No other
system is possible, which shows how important quaternions are within the realm of
mathematics. Appendix C provides further information on this topic.

In this chapter we investigate how quaternions are used to rotate 3D vectors about
an arbitrary axis.

11.2 Definition

A quaternion q is the union of a scalar and a vector:

q = s + v

where s is a scalar and v is a 3D vector. If we express the vector v in terms of its
components, we have

q = s + xi + yj + zk

where s, x, y and z are all real numbers.

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_11, © Springer-Verlag London Limited 2011

155

156 11 Quaternion Transforms in Space

Fig. 11.1 Three orthogonal
vectors u, v̂ and v̂ × u

Hamilton had hoped that a quaternion could be used like a complex rotor, where
we saw in Chap. 2 that

Rθ = cos θ + i sin θ

rotates a complex number by θ . Could the product of a quaternion q and a vector u
rotate u about the quaternion’s vector? Well yes, but only in a restricted sense. To
understand this, consider the scenario where we form the product of a unit quater-
nion q and a pure quaternion p. The unit quaternion q is defined as

q = s + λv̂

where

s2 + λ2 = 1

and the pure quaternion p encodes the vector u with a zero scalar term

p = 0 + u.

In Chap. 5 we computed product qp, which in this context is

qp = (s + λv̂)(0 + u)

= −λv̂ · u + su + λv̂ × u.

However, if v̂ is orthogonal to u, the dot product term −λv̂ · u vanishes, and we are
left with

qp = su + λv̂ × u.

Figure 11.1 illustrates this scenario, where u is perpendicular to v̂, and v̂ × u is
perpendicular to the plane containing u and v̂.

Now because v̂ is a unit vector, the length of v̂ × u is |u|, which means that we
have two orthogonal vectors, i.e. u and v̂ × u, with the same length. Therefore, to
rotate u about v̂, all that we have to do is to substitute cos θ for s and sin θ for λ:

qp = cos θu + sin θ v̂ × u.

For example, if we create a quaternion whose vector is aligned with the z-axis as
shown in Fig. 11.2 with

q = cos θ + sin θk

11.2 Definition 157

Fig. 11.2 The vector 2i is
rotated 45° by the quaternion
q = cos θ + sin θk

and a pure quaternion to represent the vector 2i

p = 0 + 2i

then

qp = 2 cos θ i + sin θk × 2i.

With θ = 45° then

qp = 2

√
2

2
i +

√
2

2
k × 2i

= √
2i + √

2j

which is a pure quaternion, i.e. a vector, and p has been rotated 45°.
Let’s see what happens when θ = 180°:

qp = 2 cos 180°i + sin 180°k × 2i = −2i

which is also a pure quaternion, and p has been rotated 180°. Note that the vector has
not been scaled during the rotation. This is because we are using a unit quaternion.

Now let’s see what happens when we reduce the angle between v̂ and p. Let’s
reduce the angle to 45° and retain the quaternion’s magnitude at unity, as shown in
Fig. 11.3. Therefore,

v̂ = 1√
2

i + 1√
2

k

q = cos θ + sin θ

(
1√
2

i + 1√
2

k
)

p = 0 + 2i.

This time we must include the dot product term:

qp = − sin θ v̂ · u + cos θu + sin θ v̂ × u.

We let θ = 45°

qp = −
√

2

2

(
1√
2

i + 1√
2

k
)

· (2i) +
√

2

2
2i +

√
2

2

(
1√
2

i + 1√
2

k
)

× 2i

= −1 + √
2i + j

158 11 Quaternion Transforms in Space

Fig. 11.3 Rotating the vector
2i by the quaternion
q = cos θ + sin θ(1√

2
i + 1√

2
k)

which, unfortunately, is not a pure quaternion. It has not been rotated 45° and the
vector’s magnitude is reduced to

√
3! Multiplying the vector by a non-orthogonal

quaternion seems to have converted some of the vector information into the quater-
nion’s scalar component.

Not to worry. Could it be that an inverse quaternion reverses the operation? Let’s
see what happens if we multiply this result, i.e. qp, by q−1.

Given

q = cos θ + sin θ

(
1√
2

i + 1√
2

k
)

then

q−1 = cos θ − sin θ

(
1√
2

i + 1√
2

k
)

=
√

2

2
−

√
2

2

(
1√
2

i + 1√
2

k
)

= 1

2
(
√

2 − i − k).

Therefore,

qpq−1 = 1

2
(−1 + √

2i + j)(
√

2 − i − k)

= 1

2

(−√
2 − (

√
2i + j) · (−i − k) + (i + k) + √

2(
√

2i + j) − i + √
2j + k

)

= 1

2
(−√

2 + √
2 + i + k + 2i + √

2j − i + √
2j + k)

= i + √
2j + k

which is a pure quaternion. Furthermore, its magnitude is 2, but what is strange, the
vector has been rotated 90° rather than 45° as shown in Fig. 11.4.

If this ‘sandwiching’ of the vector by q and q−1 is correct, it implies that increas-
ing θ to 90° should rotate p = 2i by 180° to 2k. Let’s try this.

11.2 Definition 159

Fig. 11.4 The vector 2i is
rotated 90° to i + √

2j + k

Let θ = 90°, therefore,

qp =
(

0 + 1

(
1√
2

i + 1√
2

k
))

(0 + 2i)

= 2√
2
(−1 + j).

Next, we post-multiply by q−1

qpq−1 = 2√
2
(−1 + j)

(
0 − 1√

2
i − 1√

2
k
)

= 2√
2

(
1√
2

i + 1√
2

k − 1√
2

i + 1√
2

k
)

= i + k − i + k

= 2k

which confirms our prediction. Now let’s show how this double angle arises.
We begin by defining a unit quaternion q:

q = s + λv̂

and we will eventually assign values to s and λ. The vector u to be rotated is a pure
quaternion:

p = 0 + u.

The inverse quaternion q−1 is

q−1 = s − λv̂

therefore, the triple qpq−1 is

qpq−1 = (s + λv̂)(0 + u)(s − λv̂)

= (−λv̂ · u + su + λv̂ × u)(s − λv̂)

= −λsv̂ · u + λsu · v̂ + λ2(v̂ × u) · v̂

+ λ2(v̂ · u)v̂ + s2u + λsv̂ × u

− λsu × v̂ − λ2(v̂ × u) × v̂

= λ2(v̂ × u) · v̂ + λ2(v̂ · u)v̂ + s2u + 2λsv̂ × u − λ2(v̂ × u) × v̂.

160 11 Quaternion Transforms in Space

Note that

(v̂ × u) · v̂ = 0

and

(v̂ × u) × v̂ = (v̂ · v̂)u − (u · v̂)v̂ = u − (u · v̂)v̂.

Therefore,

qpq−1 = λ2(v̂ · u)v̂ + s2u + 2λsv̂ × u − λ2u + λ2(u · v̂)v̂

= 2λ2(v̂ · u)v̂ + (
s2 − λ2)u + 2λsv̂ × u.

Obviously, this is a pure quaternion as there is no scalar component. However, it is
not obvious where the angle doubling comes from. But, look what happens when
we make s = cos θ and λ = sin θ :

qpq−1 = 2 sin2 θ(v̂ · u)v̂ + (
cos2 θ − sin2 θ

)
u + 2 sin θ cos θ v̂ × u

= (1 − cos 2θ)(v̂ · u)v̂ + cos 2θu + sin 2θ v̂ × u.

The double angle trigonometric terms emerge! Now, if we want this triple to actually
rotate the vector by θ , then we must build this in from the outset by halving θ in q:

q = cos(θ/2) + sin(θ/2)v̂

which makes

qpq−1 = (1 − cos θ)(v̂ · u)v̂ + cos θu + sin θ v̂ × u. (11.1)

Equation (11.1) is the same equation we came across in Chap. 9 discovered by
Rodrigues a few years before Hamilton, hence the scandal!

Let’s test (11.1) using the previous example where we rotated a vector u = 2i,
90° about the quaternion’s vector v̂ = 1√

2
i + 1√

2
k:

qpq−1 = 2√
2

(
1√
2

i + 1√
2

k
)

+ √
2j

= i + √
2j + k

which agrees with the previous result.
Thus, when a quaternion takes on the form

q = cos(θ/2) + sin(θ/2)v̂

it rotates a vector p, anticlockwise θ using the triple

qpq−1.

It can be shown that this triple always preserves the magnitude of the rotated vector.
You may be wondering what happens if the triple is reversed to q−1pq? A guess

would suggest that the rotation sequence is reversed, but let’s see what an algebraic
solution predicts:

11.2 Definition 161

q−1pq = (s − λv̂)(0 + u)(s + λv̂)

= (λv̂ · u + su − λv̂ × u)(s + λv̂)

= λsv̂ · u − λsu · v̂ + λ2v̂ × u · v̂ + λ2v̂ · uv̂

+ s2u − λsv̂ × u + λsu × v̂ − λ2v̂ × u × v̂

= λ2(v̂ × u) · v̂ + λ2(v̂ · u)v̂ + s2u − 2λsv̂ × u − λ2(v̂ × u) × v̂.

Once again

(v̂ × u) · v̂ = 0

and

(v̂ × u) × v̂ = u − (u · v̂)v̂.

Therefore,

q−1pq = λ2(v̂ · u)v̂ + s2u − 2λsv̂ × u − λ2u + λ2(u · v̂)v̂

= 2λ2(v̂ · u)v̂ + (
s2 − λ2)u − 2λsv̂ × u.

Again, let’s make s = cos θ and λ = sin θ :

q−1pq = (1 − 2 cos θ)(v̂ · u)v̂ + cos 2θu − sin 2θ v̂ × u

and the only thing that has changed is the sign of the cross-product term, which
reverses the direction of its vector. However, we must remember to compensate for
the angle-doubling by halving θ :

q−1pq = (1 − cos θ)(v̂ · u)v̂ + cos θu − sin θ v̂ × u. (11.2)

Let’s see what happens when we employ (11.2) to rotate u = 2i, 90° about the
quaternion’s vector v̂ = 1√

2
i + 1√

2
k:

q−1pq = 2√
2

(
1√
2

i + 1√
2

k
)

− √
2j

= i − √
2j + k

which has rotated u clockwise 90° about the quaternion’s vector. Therefore, the
rotor qpq−1 rotates a vector anticlockwise, and q−1pq rotates a vector clockwise:

qpq−1 = (1 − cos θ)(v̂ · u)v̂ + cos θu + sin θ v̂ × u

q−1pq = (1 − cos θ)(v̂ · u)v̂ + cos θu − sin θ v̂ × u.

However, we must remember that the rotor interprets θ as 2θ .
Let’s compute another example. Consider the point P(0,1,1) in Fig. 11.5 which

is to be rotated 90° about the y-axis. We can see that the rotated point P ′ has the
coordinates (1,1,0) which we will confirm algebraically. The point P is represented
by the pure quaternion

p = 0 + u.

The axis of rotation is v̂ = j, and the vector to be rotated is u = j + k. Therefore,

162 11 Quaternion Transforms in Space

Fig. 11.5 The point
P (0,1,1) is rotated 90° to
P ′(1,1,0) about the y-axis

qpq−1 = (1 − cos θ)(v̂ · u)v̂ + cos θu + sin θ v̂ × u

= j · (j + k)j + j × (j + k)

= i + j

and confirms that P is indeed rotated to (1,1,0).
Before moving onto the next section it is worth clarifying the interpretation of the

two triples described above. As with the rotation transforms previously covered, we
have used Rθ,v to describe a point rotation, θ about the vector v, and R−1

θ,v to describe
a frame rotation θ about the vector v. Therefore, in keeping with this convention, we
will use qpq−1 to describe a point rotation of the point represented by p about the
quaternion’s vector. And q−1pq to describe a frame rotation about the same vector.

11.3 Quaternions in Matrix Form

Having discovered a vector equation to represent the triple qpq−1, let’s continue
and convert it into a matrix. We will explore two methods: the first is a simple vec-
torial method which translates the vector equation representing qpq−1 directly into
a matrix form; the second method uses matrix algebra to develop a rather cunning
solution. Let’s start with the vectorial approach, for which it is convenient to de-
scribe the unit quaternion as

q = s + v

= s + xi + yj + zk

and the pure quaternion as

p = 0 + u

which means that the triple becomes

qpq−1 = 2(v · u)v + (
s2 − |v|2)u + 2sv × u.

And as we are working with unit quaternions to prevent scaling

s2 + |v|2 = 1

11.3 Quaternions in Matrix Form 163

therefore,

s2 − |v|2 = 2s2 − 1

and

qpq−1 = 2(v · u)v + (
2s2 − 1

)
u + 2sv × u.

We can now represent the three terms 2(v · u)v, (2s2 − 1)u and 2sv × u as three
individual matrices, which can be summed together:

2(v · u)v = 2(xxu + yyu + zzu)(xi + yj + zk)

=
⎡

⎣
2x2 2xy 2xz

2xy 2y2 2yz

2xz 2yz 2z2

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦

(
2s2 − 1

)
u = (

2s2 − 1
)
xui + (

2s2 − 1
)
yuj + (

2s2 − 1
)
zuk

=
⎡

⎣
2s2 − 1 0 0

0 2s2 − 1 0
0 0 2s2 − 1

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦

2sv × u = 2s
(
(yzu − zyu)i + (zxu − xzu)j + (xyu − yxu)k

)

=
⎡

⎣
0 −2sz 2sy

2sz 0 −2sx

−2sy 2sx 0

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦ .

Adding these matrices together produces

qpq−1 =
⎡

⎣
2(s2 + x2) − 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2(s2 + y2) − 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦

(11.3)

or

qpq−1 =
⎡

⎣
1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦ .

(11.4)

To compute the equivalent matrix for q−1pq all that we have to do is reverse the
sign of 2sv × u:

q−1pq =
⎡

⎣
2(s2 + x2) − 1 2(xy + sz) 2(xz − sy)

2(xy − sz) 2(s2 + y2) − 1 2(yz + sx)

2(xz + sy) 2(yz − sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦

(11.5)

or

164 11 Quaternion Transforms in Space

q−1pq =
⎡

⎣
1 − 2(y2 + z2) 2(xy + sz) 2(xz − sy)

2(xy − sz) 1 − 2(x2 + z2) 2(yz + sx)

2(xz + sy) 2(yz − sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦

(11.6)

which is the transpose of (11.3) for qpq−1.

11.3.1 Quaternion Products and Matrices

The second way to derive (11.3) depends upon representing a quaternion product in
matrix form. For example, given

q1 = s1 + x1i + y1j + z1k

q2 = s2 + x2i + y2j + z2k

their product is

q1q2 = (s1 + x1i + y1j + z1k)(s2 + x2i + y2j + z2k)

= s1s2 − x1x2 − y1y2 − z1z2

+ s1(x2i + y2j + z2k)

+ s2(x1i + y1j + z1k)

+ (y1z2 − y2z1)i + (x2z1 − x1z2)j + (x1y2 − x2y1)k

= s1s2 − x1x2 − y1y2 − z1z2

+ (s1x2 + s2x1 + y1z2 − y2z1)i

+ (s1y2 + s2y1 + x2z1 − x1z2)j

+ (s1z2 + s2z1 + x1y2 − x2y1)k

q1q2 =

⎡

⎢⎢
⎣

s1 −x1 −y1 −z1
x1 s1 −z1 y1
y1 z1 s1 −x1
z1 −y1 x1 s1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

s2
x2
y2
z2

⎤

⎥⎥
⎦ .

At this stage we have quaternion q1 represented by a matrix, and q2 represented by a
column vector. Now let’s reverse the scenario without altering the result by making
q2 the matrix and q1 the column vector:

q1q2 =

⎡

⎢⎢
⎣

s2 −x2 −y2 −z2
x2 s2 z2 −y2
y2 −z2 s2 x2
z2 y2 −x2 s2

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

s1
x1
y1
z1

⎤

⎥⎥
⎦ .

So now we have two ways of computing q1q2 and we need a way of distinguish-
ing between the two matrices. Let’s call the matrix that preserves the left-to-right
quaternion sequence L and the matrix that reverses the sequence to right-to-left, R:

11.3 Quaternions in Matrix Form 165

q1q2 = L(q1)q2 =

⎡

⎢⎢
⎣

s1 −x1 −y1 −z1
x1 s1 −z1 y1
y1 z1 s1 −x1
z1 −y1 x1 s1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

s2
x2
y2
z2

⎤

⎥⎥
⎦

q1q2 = R(q2)q1 =

⎡

⎢⎢
⎣

s2 −x2 −y2 −z2
x2 s2 z2 −y2
y2 −z2 s2 x2
z2 y2 −x2 s2

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

s1
x1
y1
z1

⎤

⎥⎥
⎦ .

Remember that L(q1)q2 = R(q2)q1, as this is central to understanding the next
stage. Furthermore, don’t be surprised if you don’t understand the logic of the argu-
ment in the first reading. It took the author many hours of anguish trying to decipher
the original algorithm, and the explanation has been expanded to ensure that you do
not suffer the same experience!

First, let’s employ the matrices L and R to rearrange the quaternion triple product
acb to abc: i.e. move c from the middle to the right-hand side.

We start with the quaternion triple product acb and divide it into two parts, ac
and b. We can do this because quaternion algebra is associative:

acb = (ac)b.

We have already demonstrated above that the product ac can be replaced by L(a)c:

acb = L(a)cb.

We now have another two parts: L(a)c and b which can be reversed using R without
disturbing the result:

acb = L(a)cb = R(b)L(a)c

which has achieved our objective to move c to the right-hand side.
Now let’s repeat the same process to rearrange the triple product qpq−1. The

objective is to remove p from the middle of q and q−1 and move it to the right-hand
side. The reason for doing this is to bring together q and q−1 in the form of two
matrices, which can be multiplied together into a single matrix.

We start with the quaternion triple product qpq−1 and divide it into two parts,
qp and q−1:

qpq−1 = (qp)q−1.

The product qp can be replaced by L(q)p:

qpq−1 = L(q)pq−1.

We now have another two parts: L(q)p and q−1 which can be reversed using R

without disturbing the result:

qpq−1 = L(q)pq−1 = R
(
q−1)L(q)p

which has achieved our objective to move p to the right-hand side.
The next step is to compute L(q) and R(q−1) using q = s + xi + yj + zk. L(q)

is easy as it is the same as L(q1) without any subscripts:

166 11 Quaternion Transforms in Space

L(q) =

⎡

⎢⎢
⎣

s −x −y −z

x s −z y

y z s −x

z −y x s

⎤

⎥⎥
⎦ .

R(q−1) is also easy, but requires converting q2 in the original definition into q−1
2

which is effected by reversing the signs of the vector components:

R
(
q−1) =

⎡

⎢⎢
⎣

s x y z

−x s −z y

−y z s −x

−z −y x s

⎤

⎥⎥
⎦ .

So now we can write

qpq−1 = R
(
q−1)L(q)p

=

⎡

⎢⎢
⎣

s x y z

−x s −z y

−y z s −x

−z −y x s

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

s −x −y −z

x s −z y

y z s −x

z −y x s

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0
xu

yu

zu

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

1 0 0 0
0 1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

0 2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

0 2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0
xu

yu

zu

⎤

⎥⎥
⎦ .

If we remove the first row and column and treat p as a vector, rather than a quater-
nion, we have

=
⎡

⎣
1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦

which is identical to (11.4)!

11.3.2 Geometric Verification

Let’s illustrate the action of (11.3) by rotating the point (0,1,1), 90° about the y-
axis, as shown in Fig. 11.6. The quaternion must take the form

q = cos(θ/2) + sin(θ/2)v̂

which means that θ = 90° and v̂ = j, therefore,

q = cos 45° + sin 45°ĵ.

Consequently,

s =
√

2

2
, x = 0, y =

√
2

2
, z = 0.

11.3 Quaternions in Matrix Form 167

Fig. 11.6 The point
P (0,1,1) is rotated 90° to
P ′(1,1,0) about the y-axis

Substituting these values in (11.3) gives
⎡

⎣
1
1
0

⎤

⎦ =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦

where (0,1,1) is rotated to (1,1,0), which is correct.
So now we have a transform that rotates a point about an arbitrary axis intersect-

ing the origin without the problems of gimbal lock associated with Euler transforms.
Before moving on, let’s evaluate one more example. Let’s perform a 180° ro-

tation about a vector v = i + k passing through the origin. To begin with, we will
deliberately forget to convert the vector into a unit vector, just to see what happens
to the final matrix. The quaternion should take the form

q = cos(θ/2) + sin(θ/2)v̂

but we will use v as specified. Therefore, with θ = 180°

s = 0, x = 1, y = 0, z = 1.

Substituting these values in (11.3) gives
⎡

⎣
1 0 2
0 −1 0
2 0 1

⎤

⎦

which looks nothing like a rotation matrix, and reminds us how important it is to
have a unit vector to represent the axis. Let’s repeat these calculations normalising
the vector to v̂ = i/

√
2 + k/

√
2:

s = 0, x = 1√
2
, y = 0, z = 1√

2
.

Substituting these values in (11.3) gives
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

168 11 Quaternion Transforms in Space

Fig. 11.7 The point (1,0,0)

is rotated 180° about the
vector v to (0,0,1)

which not only looks like a rotation matrix, but has a determinant of 1 and rotates
the point (1,0,0) to (0,0,1) as shown in Fig. 11.7,

⎡

⎣
0
0
1

⎤

⎦ =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
1
0
0

⎤

⎦ .

11.4 Multiple Rotations

Say a vector or frame of reference is subjected to two rotations specified by q1
followed by q2. There is a temptation to convert both quaternions to their respective
matrix and multiply the matrices together. However, this not the most efficient way
of combining the rotations. It is best to accumulate the rotations as quaternions and
then convert to matrix notation, if required.

To illustrate this, consider the vector p subjected to the first quaternion q1:

q1pq−1
1

followed by a second quaternion q2

q2
(
q1pq−1

1

)
q−1

2

which can be expressed as

(q2q1)p(q2q1)
−1.

Extra quaternions can be added accordingly. Let’s illustrate this with an example.
To keep things simple, the first quaternion q1 rotates 30° about the y-axis:

q1 = cos 15° + sin 15°j.

The second quaternion q2 rotates 60° also about the y-axis:

q1 = cos 30° + sin 30°j.

Together, the two quaternions rotate 90° about the y-axis. To accumulate these ro-
tations, we must multiply them together:

11.5 Eigenvalue and Eigenvector 169

q1q2 = (
cos 15° + sin 15°j

)(
cos 30° + sin 30°j

)

= cos 15° cos 30° − sin 15° sin 30° + cos 15° sin 30°j + cos 30° sin 15°j

=
√

2

2
+

√
2

2
j

which is a quaternion that rotates 90° about the y-axis. Using the matrix (11.4) we
have

⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

which rotates points about the y-axis by 90°.

11.5 Eigenvalue and Eigenvector

Although there is no doubt that (11.3) is a rotation matrix, we can secure further
evidence by calculating its eigenvalue and eigenvector. The eigenvalue should be θ ,
where

Tr
(
qpq−1) = 1 + 2 cos θ.

The trace of (11.3) is

Tr
(
qpq−1) = 2

(
s2 + x2) − 1 + 2

(
s2 + y2) − 1 + 2

(
s2 + z2) − 1

= 4s2 + 2
(
s2 + x2 + y2 + z2) − 3

= 4s2 − 1

= 4 cos2(θ/2) − 1

= 4 cos θ + 4 sin2(θ/2) − 1

= 4 cos θ + 2 − 2 cos θ − 1

= 1 + 2 cos θ

and

cos θ = 1

2

(
Tr

(
qpq−1) − 1

)
.

To compute the eigenvector of (11.3) we use the three equations derived in Chap. 9:

v1 = (a22 − 1)(a33 − 1) − a23a32

v2 = (a33 − 1)(a11 − 1) − a31a13

v3 = (a11 − 1)(a22 − 1) − a12a21.

170 11 Quaternion Transforms in Space

Therefore,

v1 = (
2
(
s2 + y2) − 2

)(
2
(
s2 + z2) − 2

) − 2(yz − sx)2(yz + sx)

= 4
(
s2 + y2 − 1

)(
s2 + z2 − 1

) − 4
(
y2z2 − s2x2)

= 4
((

x2 + z2)(x2 + y2) − y2z2 + s2x2)

= 4
(
x4 + x2y2 + x2z2 + z2y2 − y2z2 + s2x2)

= 4x2(s2 + x2 + y2 + z2)

= 4x2.

Similarly, v2 = 4y2 and v3 = 4z2, which confirms that the eigenvector has compo-
nents associated with the quaternion’s vector. The square terms should be no sur-
prise, as the triple qpq−1 includes the product of two quaternions.

11.6 Rotating About an Off-Set Axis

Now that we have a matrix to represent a quaternion rotor, we can employ it to
resolve problems such as rotating a point about an off-set axis using the same tech-
niques associated with normal rotation transforms. For example, in Chap. 9 we used
the following notation

⎡

⎢⎢
⎣

x ′
y ′
z′
1

⎤

⎥⎥
⎦ = Ttx ,0,tzRβ,yT−tx ,0,−tz

⎡

⎢⎢
⎣

x

y

z

1

⎤

⎥⎥
⎦

to rotate a point about a fixed axis parallel with the y-axis. Therefore, by substituting
qpq−1 for Rβ,y we have

⎡

⎢⎢
⎣

x ′
y ′
z′
1

⎤

⎥⎥
⎦ = Ttx ,0,tzqpq−1T−tx ,0,−tz

⎡

⎢⎢
⎣

x

y

z

1

⎤

⎥⎥
⎦ .

Let’s test this by rotating our unit cube 90° about the vertical axis intersecting ver-
tices 4 and 6 as shown in Fig. 11.8 (a) and (b).

The quaternion to achieve this is

q = cos 45° + sin 45°j

with the pure quaternion

p = 0 + u

and using (11.3) this creates the homogeneous matrix

qpq−1 =

⎡

⎢⎢
⎣

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

xu

yu

zu

1

⎤

⎥⎥
⎦ .

11.7 Frames of Reference 171

Fig. 11.8 The cube is rotated 90° about the axis intersecting vertices 4 and 6

The other two matrices are

T−tx ,0,0 =

⎡

⎢⎢
⎣

1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

Ttx ,0,0 =

⎡

⎢⎢
⎣

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

Multiplying these matrices together creates
⎡

⎢⎢
⎣

0 0 1 1
0 1 0 0

−1 0 0 1
0 0 0 1

⎤

⎥⎥
⎦

which when applied to the cube’s coordinates produces
⎡

⎢⎢
⎣

0 0 1 1
0 1 0 0

−1 0 0 1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

1 2 1 2 1 2 1 2
0 0 1 1 0 0 1 1
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦ .

These coordinates are confirmed by Fig. 11.8 (a) and (b).

11.7 Frames of Reference

Chapter 10 explored various techniques for changing the coordinates of objects in
different frames of reference. Now that we have covered quaternions, and especially

172 11 Quaternion Transforms in Space

Fig. 11.9 The frame is rotated 180° about the vector [i + k]

the matrix representing the triple q−1pq, (11.5) we can show how quaternions can
be added to these techniques.

The triple qpq−1 is used for rotating points about the vector associated with
the quaternion q, whereas the triple q−1pq is used for rotating points about the
same vector, but in the opposite direction. But we have already reasoned that this
reverse rotation is equivalent to a change of frame of reference. To demonstrate this,
consider the problem of rotating the frame of reference 180° about i + k as shown
in Fig. 11.9 (a) and (b). The unit quaternion for such a rotation is

q = cos 90° + sin 90°

(
1√
2

i + 1√
2

k
)

= 0 +
√

2

2
i +

√
2

2
k.

Consequently,

s = 0, x =
√

2

2
, y = 0, z =

√
2

2
.

Substituting these values in (11.5) we obtain

q−1pq =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦

which if used to process the coordinates of our unit cube produces
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦ .

This scenario is shown in Fig. 11.9 (a) and (b).

11.8 Interpolating Quaternions 173

Fig. 11.10 The point
(0,1,1) is rotated 90° about
the vector v to (1,1,0)

11.8 Interpolating Quaternions

Like vectors, quaternions can also be interpolated to compute an in-between quater-
nion. However, whereas two interpolated vectors results in a third vector that is
readily visualised, two interpolated quaternions results in a third quaternion that
acts as a rotor, and is not immediately visualised.

We have already seen that the spherical interpolant for vectors is

v = sin(1 − t)θ

sin θ
v1 + sin tθ

sin θ
v2

and requires no modification for quaternions:

q = sin(1 − t)θ

sin θ
q1 + sin tθ

sin θ
q2. (11.7)

So, given

q1 = s1 + x1i + y1j + z1k

q2 = s2 + x2i + y2j + z2k

θ is obtained by taking the 4D dot product of q1 and q2:

cos θ = q1 · q2

|q1||q2|
cos θ = s1s2 + x1x2 + y1y2 + z1z2

|q1||q2|
and if we are working with unit quaternions, then

cos θ = s1s2 + x1x2 + y1y2 + z1z2. (11.8)

Let’s use (11.7) in a scenario with two simple quaternions.
Figure 11.10 shows one such scenario where the point (0,1,1) is rotated 90°

about v, the axis of q1. Figure 11.11 shows another scenario where the same point
(0,1,1) is rotated 90° about v, the axis of q2. The quaternions are

q1 = cos 45° + sin 45°j =
√

2

2
+

√
2

2
j

q2 = cos 45° + sin 45°i =
√

2

2
+

√
2

2
i.

174 11 Quaternion Transforms in Space

Fig. 11.11 The point
(0,1,1) is rotated 90° about
the vector v to (0,−1,1)

Therefore, using (11.8)

cos θ =
√

2

2

√
2

2
= 0.5

θ = 60°.

Before proceeding, let’s compute the two matrices for the two quaternion triples.
For q1

s =
√

2

2
, x = 0, y =

√
2

2
, z = 0

which when substituted in (11.3) gives

q1pq−1
1 =

⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦ .

Substituting the coordinates (0,1,1) gives
⎡

⎣
1
1
0

⎤

⎦ =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦

which is correct.
For q2

s =
√

2

2
, x =

√
2

2
, y = 0, z = 0

which when substituted in (11.3) gives

q2pq−1
2 =

⎡

⎣
1 0 0
0 0 −1
0 1 0

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦ .

Substituting the coordinates (0,1,1) gives
⎡

⎣
0

−1
1

⎤

⎦ =
⎡

⎣
1 0 0
0 0 −1
0 1 0

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦

which is also correct.

11.8 Interpolating Quaternions 175

Fig. 11.12 The point
(0,1,1) is rotated 90° about
the vector v to (1,0,1)

Using (11.7) with t = 0.5 should compute a mid-way position for an interpolated
quaternion, with its vector at 45° between the x- and y-axes, as shown in Fig. 11.12.
We already know that θ = 60°, therefore sin θ = √

3/2, and using (11.7)

q = sin 1
2 60°

sin 60°

(√
2

2
+

√
2

2
j
)

+ sin 1
2 60°

sin 60°

(√
2

2
+

√
2

2
i
)

= 1√
3

(√
2

2
+

√
2

2
j
)

+ 1√
3

(√
2

2
+

√
2

2
i
)

=
√

2

2
√

3
+

√
2

2
√

3
j +

√
2

2
√

3
+

√
2

2
√

3
i

=
√

2√
3

+ 1√
6

i + 1√
6

j

therefore,

s =
√

2√
3
, x = 1√

6
, y = 1√

6
, z = 0

which when substituted in (11.3) gives

qpq−1 =
⎡

⎢
⎣

1 − (2
6) 2(1

6) 2(1
3)

2(1
6) 1 − 2(1

6) 2(− 1
3)

2(− 1
3) 2(1

3) 1 − 2(1
6 + 1

6)

⎤

⎥
⎦

⎡

⎣
xu

yu

zu

⎤

⎦

and

qpq−1 =
⎡

⎢
⎣

2
3

1
3

2
3

1
3

2
3 − 2

3

− 2
3

2
3

1
3

⎤

⎥
⎦

⎡

⎣
xu

yu

zu

⎤

⎦ .

Substituting the coordinates (0,1,1) gives
⎡

⎣
1
0
1

⎤

⎦ =
⎡

⎢
⎣

2
3

1
3

2
3

1
3

2
3 − 2

3

− 2
3

2
3

1
3

⎤

⎥
⎦

⎡

⎣
0
1
1

⎤

⎦ (11.9)

which gives the point (1,0,1).

176 11 Quaternion Transforms in Space

Fig. 11.13 Spherical
interpolation between q1
and q2

One of the reasons for using this spherical interpolant is that it linearly inter-
polates the angle between the two quaternions, which creates a constant-angular
velocity between the quaternions. However, one of the problems with visualising
quaternions is that they reside in a four-dimensional space and create a hyper-sphere
with a radius equal to the quaternion’s magnitude. With our 3D brains, this is diffi-
cult to visualise. Nevertheless, we can convince ourselves into thinking we see what
is going on with a simple sketch, as shown in Fig. 11.13, where we see part of the
hyper-sphere and two quaternions q1 and q2. In this example, the angle φ is a con-
stant angle between two values of the interpolant t . The spherical interpolant also
ensures that the magnitude of the interpolated quaternion remains constant at unity
and prevents any unwanted scaling.

Figure 11.14 provides another sketch to help visualise what is going on. For ex-
ample, when t = 0, the interpolated quaternion is q1 which rotates the point (0,1,1)

to (1,1,0), and when t = 1, the interpolated quaternion is q2 which rotates the point
(0,1,1) to (0,−1,1). When t = 0.5, the interpolated quaternion rotates the point
(0,1,1) to (1,0,1) as computed above. Two other curves show what happens for
t = 0.25 and t = 0.75.

A natural consequence of the interpolant is that the angle of rotation is 90° for
t = 0 and t = 1, but for t = 0.5 the angle of rotation (eigenvalue) is approximately
70.5°. Corresponding angles arise for other values of t .

Fig. 11.14 Sketch showing
the actions of the interpolated
quaternions

11.9 Converting a Rotation Matrix to a Quaternion 177

11.9 Converting a Rotation Matrix to a Quaternion

The matrix transform equivalent to qpq−1 is

qpq−1 =
⎡

⎣
2(s2 + x2) − 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2(s2 + y2) − 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦

=
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦ .

Inspection of the matrix shows that by combining various elements we can isolate
the terms of a quaternion s, x, y, z. For example, by adding the terms a11 +a22 +a33
we obtain:

a11 + a22 + a33 = (
2
(
s2 + x2) − 1

) + (
2
(
s2 + y2) − 1

) + (
2
(
s2 + z2) − 1

)

= 6s2 + 2
(
x2 + y2 + z2) − 3

= 4s2 − 1

therefore,

s = ±1

2

√
1 + a11 + a22 + a33.

To isolate x, y and z we use

x = 1

4s
(a32 − a23)

y = 1

4s
(a13 − a31)

z = 1

4s
(a21 − a12).

We can confirm their accuracy using the matrix (11.9):

s = ±1

2

√

1 + 2

3
+ 2

3
+ 1

3
=

√
2√
3

x =
√

3

4
√

2

(
2

3
+ 2

3

)
= 1√

6

y =
√

3

4
√

2

(
2

3
+ 2

3

)
= 1√

6

z =
√

3

4
√

2

(
1

3
− 1

3

)
= 0

which agree with the original values.
Say, for example, the value of s had been close to zero, this could have made the

values of x, y, z unreliable. Consequently, other combinations are available:

178 11 Quaternion Transforms in Space

x = ±1

2

√
1 + a11 − a22 − a33

y = 1

4x
(a12 + a21)

z = 1

4x
(a13 + a31)

s = 1

4x
(a32 − a23)

y = ±1

2

√
1 − a11 + a22 − a33

x = 1

4y
(a12 + a21)

z = 1

4y
(a23 + a32)

s = 1

4y
(a13 − a31)

z = ±1

2

√
1 − a11 − a22 + a33

x = 1

4z
(a13 + a31)

y = 1

4z
(a23 + a32)

s = 1

4z
(a21 − a12).

11.10 Summary

Quaternion algebra offers a simple and efficient way for computing rotations, but
can also be evaluated in matrix form. We have also shown that it is possible to move
between both forms of notation. It is left to the reader to code up some of these ideas
and explore issues of accuracy and efficiency.

11.10.1 Summary of Quaternion Transforms

Given

q = s + v̂ = cos(θ/2) + sin(θ/2)(xi + yj + zk)

p = 0 + u.

11.10 Summary 179

Rotating a point about a vector

qpq−1 = (1 − cos θ)(v̂ · u)v̂ + cos θu + sin θ v̂ × u.

Rotating a frame about a vector

q−1pq = (1 − cos θ)(v̂ · u)v̂ + cos θu − sin θ v̂ × u.

Matrix for rotating a point about a vector

qpq−1 =
⎡

⎣
1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦ .

Matrix for rotating a frame about a vector

q−1pq =
⎡

⎣
1 − 2(y2 + z2) 2(xy + sz) 2(xz − sy)

2(xy − sz) 1 − 2(x2 + z2) 2(yz + sx)

2(xz + sy) 2(yz − sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
xu

yu

zu

⎤

⎦ .

Matrix for a quaternion product

q1q2 = L(q1)q2 =

⎡

⎢⎢
⎣

s1 −x1 −y1 −z1
x1 s1 −z1 y1
y1 z1 s1 −x1
z1 −y1 x1 s1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

s2
x2
y2
z2

⎤

⎥⎥
⎦

q1q2 = R(q2)q1 =

⎡

⎢⎢
⎣

s2 −x2 −y2 −z2
x2 s2 z2 −y2
y2 −z2 s2 x2
z2 y2 −x2 s2

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

s1
x1
y1
z1

⎤

⎥⎥
⎦ .

Interpolating two quaternions

q = sin(1 − t)θ

sin θ
q1 + sin tθ

sin θ
q2

where

cos θ = q1 · q2

|q1||q2|
cos θ = s1s2 + x1x2 + y1y2 + z1z2

|q1||q2| .

Quaternion from a rotation matrix

s = ±1

2

√
1 + a11 + a22 + a33

x = 1

4s
(a32 − a23)

y = 1

4s
(a13 − a31)

z = 1

4s
(a21 − a12)

180 11 Quaternion Transforms in Space

x = ±1

2

√
1 + a11 − a22 − a33

y = 1

4x
(a12 + a21)

z = 1

4x
(a13 + a31)

s = 1

4x
(a32 − a23)

y = ±1

2

√
1 − a11 + a22 − a33

x = 1

4y
(a12 + a21)

z = 1

4y
(a23 + a32)

s = 1

4y
(a13 − a31)

z = ±1

2

√
1 − a11 − a22 + a33

x = 1

4z
(a13 + a31)

y = 1

4z
(a23 + a32)

s = 1

4z
(a21 − a12).

Chapter 12
Bivector Rotors

12.1 Introduction

In Chap. 6 we explored multivectors, and in Chap. 11 we saw how quaternions are
used to rotate points and frames of reference about an arbitrary vector. In this chapter
we will see how these two ideas merge into one to form bivector rotors. In order to
show how such rotors operate, we begin with reflections and show how these can
effect a rotation.

12.2 The Three Reflections Theorem

The three reflections theorem states that ‘each isometry of the Euclidean plane is
the composite of one, two, or three reflections.’ To begin with, an isometry of the
Euclidean plane is a way of transforming the plane that preserves length. Such
isometries include rotation, translation, reflection and glide reflections. The latter is
a combination of a reflection in a line and a translation along that line. John Stillwell
provides an elegant proof for this theorem in his book Numbers and Geometry [8].

The isometry we are particularly interested in is reflection, where the distance
between two points is preserved in their reflection. Consider, for example, the 2D
scenario shown in Fig. 12.1 where two lines M and N are imaginary mirrors sepa-
rated by an angle θ . The real point P subtends an angle α to mirror M and creates
a virtual image PR which subtends an equal but opposite angle.

Although it is not physically possible, we can imagine that the virtual image PR

is reflected in the second mirror N . To begin with, PR subtends an angle θ − α to
mirror N and creates another virtual image P ′ which subtends an equal and opposite
angle. What is interesting about this configuration is that although the mirrors are
separated by θ , the angle between P and P ′ is 2θ . In order to take advantage of this
effect we need to know how vectors are reflected using multivectors, which is the
subject of the next section.

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_12, © Springer-Verlag London Limited 2011

181

182 12 Bivector Rotors

Fig. 12.1 Rotating a point by
a double reflection

12.3 Reflecting a Vector

Figure 12.2 shows a mirror with a unit normal vector n̂ and a vector a with its
reflection a′. Vector a has a perpendicular component a⊥ and a parallel component
a‖ with n̂, and our objective is to derive a definition of the reflection a′ in terms of
vector a and any other essential vectors.

From our knowledge of multivectors, we know that n̂2 = 1 which permits us to
write

a = n̂2a = n̂(n̂a).

This has created the geometric product n̂a which equals

n̂a = n̂ · a + n̂ ∧ a (12.1)

therefore,

a = n̂(n̂ · a + n̂ ∧ a). (12.2)

We can see that (12.2) has two parts: n̂(n̂ · a) and n̂(n̂ ∧ a). The first part is another
way of expressing a‖:

a‖ = (n̂ · a)n̂

and as

a = a⊥ + a‖

Fig. 12.2 Reflecting a vector
in a mirror

12.3 Reflecting a Vector 183

the second part must be

a⊥ = n̂(n̂ ∧ a).

From Fig. 12.2 we see that

a′ = a⊥ − a‖ (12.3)

= n̂(n̂ ∧ a) − (n̂ · a)n̂. (12.4)

Equation (12.4) contains the product of a vector n̂ and a bivector n̂ ∧ â which anti-
commute:

n̂(n̂ ∧ a) = n̂
2
(n̂a − an̂)

= 1

2
(a − n̂an̂)

whereas,

(n̂ ∧ a)n̂ = 1

2
(n̂a − an̂)n̂

= 1

2
(n̂an̂ − a)

therefore, we can write (12.4) as

a′ = −(n̂ · a)n̂ − (n̂ ∧ a)n̂

which simplifies to

a′ = −(n̂ · a + n̂ ∧ a)n̂. (12.5)

By substituting (12.1) in (12.5) we have

a′ = −n̂an̂ (12.6)

which is rather elegant!
To illustrate (12.6), consider the scenario shown in Fig. 12.3 where we see a

mirror placed on the zx-plane with normal vector j or e2. The vector to be reflected
is

a = i + j − k

which can also be expressed as

a = e1 + e2 − e3.

Using (12.6) we have

a′ = −e2(e1 + e2 − e3)e2

which, using the rules of multivectors simplifies to

a′ = −e2e1e2 − e2e2e2 + e2e3e2

= e1 − e2 − e3

= i − j − k

and is confirmed by Fig. 12.3. Now let’s see how these ideas can be generalised into
3D rotations.

184 12 Bivector Rotors

Fig. 12.3 Reflecting a vector
in a mirror

12.4 3D Rotations

Figure 12.4 shows a plan view of two mirrors M and N with their respective unit
normal vectors m̂ and n̂ separated by an angle θ . The plane containing m̂ and n̂ is
readily defined by their wedge product m̂ ∧ n̂. Using (12.6) we can compute vector
a’s reflection by

b = −m̂am̂ (12.7)

and b’s reflection by

a′ = −n̂bn̂. (12.8)

Substituting (12.7) in (12.8) we obtain

a′ = n̂m̂am̂n̂, (12.9)

which is extremely compact. However, we must remember that a is rotated twice
the angle separating the mirrors, i.e. 2θ . Within geometric algebra n̂m̂ is called a
rotor, and is represented by R, which means that using the reverse operation † we
can write (12.9) as

a′ = RaR† (12.10)

which reminds us of the way quaternions work.
To illustrate the action of (12.10) consider the 2D scenario shown in Fig. 12.5

with two mirrors M and N and their unit normal vectors m̂, n̂ and position vector p:

Fig. 12.4 Rotating a point by
a double reflection

12.4 3D Rotations 185

Fig. 12.5 Rotating a point by
180°

m̂ = e2

n̂ = −e1

p = e1 − e2.

As the mirrors are separated by 90° the point P is rotated 180°:

p′ = n̂m̂pm̂n̂

= −e1e2(e1 − e2)e2(−e1)

= e12121 − e12221

p′ = −e1 + e2.

Let’s now define a rotor in terms of its bivector and the actual angle a vector is
rotated as follows. The bivector defining the plane is m̂ ∧ n̂ and θ is the rotor angle,
which means that the bivector angle is θ/2. Let

Rθ = n̂m̂

R†
θ = m̂n̂

where

n̂m̂ = n̂ · m̂ − m̂ ∧ n̂

m̂n̂ = n̂ · m̂ + m̂ ∧ n̂

n̂ · m̂ = cos(θ/2)

m̂ ∧ n̂ = sin(θ/2)B̂.

Therefore,

Rθ = cos(θ/2) − sin(θ/2)B̂

R†
θ = cos(θ/2) + sin(θ/2)B̂.

We now have an equation that rotates a vector p through an angle θ about an axis
defined by B̂:

p′ = Rθ pR†
θ

186 12 Bivector Rotors

or

p′ = (
cos(θ/2) − sin(θ/2)B̂

)
p
(
cos(θ/2) + sin(θ/2)B̂

)
. (12.11)

Let’s demonstrate how (12.11) works with two examples.

Example 1 Figure 12.6 shows a scenario where vector p is to be rotated 90° about
e2 which is perpendicular to B̂, where

θ = 90°, a = e2, p = e1 + e2, B̂ = e31.

Therefore,

p′ = (
cos 45° − sin 45°e31

)
(e1 + e2)

(
cos 45° + sin 45°e31

)

=
(√

2

2
−

√
2

2
e31

)
(e1 + e2)

(√
2

2
+

√
2

2
e31

)

=
(√

2

2
e1 +

√
2

2
e2 −

√
2

2
e3 −

√
2

2
e312

)(√
2

2
+

√
2

2
e31

)

= 1

2
(e1 − e3 + e2 + e231 − e3 − e1 − e312 − e31231)

= e2 − e3

which is correct.
Observe what happens when the bivector’s sign is reversed to −e31:

p′ = (
cos 45° + sin 45°e31

)
(e1 + e2)

(
cos 45° − sin 45°e31

)

= 1

2
(1 + e31)(e1 + e2)(1 − e31)

= 1

2
(e1 + e2 + e3 + e312)(1 − e31)

Fig. 12.6 Rotating a vector
by 90°

12.4 3D Rotations 187

Fig. 12.7 Rotating a vector
by 120°

= 1

2
(e1 + e3 + e2 + e231 + e3 − e1 + e312 − e31231)

p′ = e2 + e3

the rotation is clockwise about e2.

Example 2 Figure 12.7 shows a scenario where vector p is to be rotated 120° about
the bivector B, where

m = e1 − e3, n = e2 − e3, θ = 120°, p = e2 + e3.

First, we compute the bivector:

B = m ∧ n

= (e1 − e3) ∧ (e2 − e3)

= e12 + e23 + e31.

Next, we normalise B to B̂:

B̂ = 1√
3
(e12 + e23 + e31)

and

p′ = (
cos 60° − sin 60°B̂

)
p
(
cos 60° + sin 60°B̂

)

=
(

1

2
−

√
3

2

1√
3

(
e12 + e23 + e31

))
(e2 + e3)

(
1

2
+

√
3

2

1√
3
(e12 + e23 + e31)

)

=
(

1

2
− e12

2
− e23

2
− e31

2

)
(e2 + e3)

(
1

2
+ e12

2
+ e23

2
+ e31

2

)

= 1

4
(e2 + e3 − e1 − e123 + e3 − e2 − e312 + e1)(1 + e12 + e23 + e31)

= 1

2
(e3 − e123)(1 + e12 + e23 + e31)

= 1

2
(e3 − e2 + e1 + e3 + e1 + e2)

= e1 + e3.

188 12 Bivector Rotors

These examples show that rotors behave just like quaternions. Rotors not only
rotate vectors, but they can be used to rotate any multivector, irrespective of their
dimension.

12.5 Rotors as Matrices

Although rotors can be computed using geometric algebra, there is a one-to-one
correspondence with matrix algebra, which we will now demonstrate.

12.5.1 2D Rotor

To begin with we will show that a 2D rotor is nothing more that a 2 × 2 matrix in
disguise for rotating a point 2θ about the origin.

Given

m̂ = m1e1 + m2e2

n̂ = n1e1 + n2e2

p = p1e1 + p2e2

and θ is the angle between m̂ and n̂. Therefore, we can write

n̂m̂ = n̂ · m̂ − m̂ ∧ n̂

m̂n̂ = n̂ · m̂ + m̂ ∧ n̂

where

n̂ · m̂ = cos θ

m̂ ∧ n̂ = sin θe12.

Therefore, using the definition of a rotor

p′ = n̂m̂pm̂n̂

= (cos θ − sin θe12)(p1e1 + p2e2)(cos θ + sin θe12)

= (p1 cos θe1 + p2 cos θe2 + p1 sin θe2 − p2 sin θe1)(cos θ + sin θe12)

= (
(p1 cos θ − p2 sin θ)e1 + (p1 sin θ + p2 cos θ)e2

)
(cos θ + sin θe12)

= ((
cos2 θ − sin2 θ

)
p1 − 2 cos θ sin θp2

)
e1

+ (
2 cos θ sin θp1 + (

cos2 θ − sin2 θ
)
p2

)
e2

= (p1 cos 2θ − p2 sin 2θ)e1 + (p1 sin 2θ + p2 cos 2θ)e2

or in matrix form
[

p′
1

p′
2

]

=
[

cos 2θ − sin 2θ

sin 2θ cos 2θ

][
p1
p2

]

12.5 Rotors as Matrices 189

which is the matrix for rotating a point 2θ about the origin. Now let’s do the same
for a 3D rotor.

12.5.2 3D Rotor

We begin with a unit bivector defining the plane m̂ ∧ n̂, about which the rotation is
effected, where

m̂ = m1e1 + m2e2 + m3e3

n̂ = n1e1 + n2e2 + n3e3

and we deliberately define

Rθ = n̂m̂

where θ is half the angle between m̂ and n̂.
The rotor will take the form

Rθ = s − xe23 − ye31 − ze12

which permits us to define

R†
θ = m̂n̂

which is

R†
θ = s + xe23 + ye31 + ze12.

Therefore, given an arbitrary vector

v = v1e1 + v2e2 + v3e3

the rotated vector is given by

v′ = Rθ vR†
θ .

To keep the algebra simple it is best to compute the individual components of v′
using Rθ v1e1R†

θ , Rθv2e2R†
θ and Rθ v3e3R†

θ :

Rθ v1e1R†
θ = (s − xe23 − ye31 − ze12)v1e1(s + xe23 + ye31 + ze12)

= v1(se1 − xe123 − ye3 + ze2)(s + xe23 + ye31 + ze12)

= v1
((

s2 + x2 − y2 − z2)e1 + 2(xy + sz)e2 + 2(xz − sy)e3
)

but

s2 + x2 = 1 − y2 − z2

therefore,

Rθ v1e1R†
θ = v1

((
1 − 2

(
y2 + z2))e1 + 2(xy + sz)e2 + 2(xz − sy)e3

)
.

190 12 Bivector Rotors

Next,

Rθ v2e2R†
θ = (s − xe23 − ye31 − ze12)v2e2(s + xe23 + ye31 + ze12)

= v2(se2 + xe3 − ye123 + ze1)(s + xe23 + ye31 + ze12)

= v2
(
2(xy − sz)e1 + (

s2 − x2 + y2 − z2)e2 + 2(yz + sx)e3
)
.

Substituting

s2 + y2 = 1 − x2 − z2

we have

Rθ v2e2R†
θ = v2

(
2(xy − sz)e1 + (

1 − 2
(
x2 + z2))e2 + 2(yz + sx)e3

)
.

Next,

Rθ v3e3R†
θ = (s − xe23 − ye31 − ze12)v3e3(s + xe23 + ye31 + ze12)

= v3(se3 − xe2 + ye1 − ze123)(s + xe23 + ye31 + ze12)

= v3
(
2(xz + sy)e1 + 2(yz − sx)e2 + (

s2 − x2 − y2 + z2)e3
)
.

Substituting

s2 + z2 = 1 − x2 − y2

we have

Rθ v3e3R†
θ = v3

(
2(xz − sy)e1 + 2(yz − sx)e2 + (

1 − 2
(
x2 + y2))e3

)
.

Therefore,

Rθ vR†
θ = Rv1e1R† + Rv2e2R† + Rv3e3R†

or as a matrix
⎡

⎢
⎣

v′
1

v′
2

v′
3

⎤

⎥
⎦ =

⎡

⎣
1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
v1
v2
v3

⎤

⎦

which is the same matrix representing the quaternion triple qpq−1.
The reader should not be put off by the above algebraic proof. It has been in-

cluded to demonstrate that bivector rotors behave just like quaternions and are rep-
resented by identical matrices.

You may wish to investigate the matrix for the reverse rotor triple R†
θ pRθ , which

you will discover is
⎡

⎢
⎣

v′
1

v′
2

v′
3

⎤

⎥
⎦ =

⎡

⎣
1 − 2(y2 + z2) 2(xy + sz) 2(xz − sy)

2(xy − sz) 1 − 2(x2 + z2) 2(yz + sx)

2(xz + sy) 2(yz − sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
v1
v2
v3

⎤

⎦

and is the transpose of the above matrix for Rθ vR†
θ . Thus the matrices confirm that

12.5 Rotors as Matrices 191

Rθ vR†
θ rotates a vector anticlockwise by θ

R†
θ vRθ rotates a vector clockwise by θ.

Furthermore, maintaining our convention about rotating points and frames:

Rθ vR†
θ rotates a frame clockwise by θ

R†
θ vRθ rotates a frame anticlockwise by θ.

12.5.3 Extracting a Rotor

Say we are presented with

b̂ = Rθ âR†
θ

where we know â and b̂ and have to discover Rθ . Here is one way we can undertake
the task, which is cunning, rather than obvious!

Figure 12.8 shows vectors â and b̂ and a third vector n̂, mid-way between the
two vectors. Vector n̂ bisects the angle θ separating â and b̂, therefore, the product
b̂n̂ must be a rotor capable of rotating any vector in the plane n̂ ∧ b̂ by θ , which
permits us to write

b̂ = b̂n̂ân̂b̂

or

b̂ = Rθ âR†
θ

where

Rθ = b̂n̂ (12.12)

R†
θ = n̂b̂. (12.13)

Next, to eliminate n̂ we compute

n̂ = â + b̂

|â + b̂|

Fig. 12.8 Vector n̂ bisects θ

192 12 Bivector Rotors

and substitute it in (12.12):

Rθ = b̂n̂

= b̂
(

â + b̂

|â + b̂|
)

= 1 + b̂â

|â + b̂| .

Similarly,

R†
θ = n̂b̂

=
(

â + b̂

|â + b̂|
)

b̂

= 1 + âb̂

|â + b̂| .

It is possible to show that

|â + b̂| =
√

2(1 + â · b̂)

which permits us to propose an alternative solution

Rθ = 1 + b̂â
√

2(1 + â · b̂)

(12.14)

R†
θ = 1 + âb̂

√
2(1 + â · b̂)

. (12.15)

Now let’s put these definitions to the test.
Figure 12.9 shows vector â aligned with the e1 axis and b̂ aligned with the e2

axis. Therefore, the rotor is acting in the e12 plane with an angle of 45° to effect a
rotation of 90°. Using our knowledge of rotors, it is obvious that

Fig. 12.9 Vector â rotates
to b̂

12.5 Rotors as Matrices 193

R90° = cos 45° − sin 45°e12

= 1 − e12√
2

R†
90° = cos 45° + sin 45°e12

= 1 + e12√
2

.

So let’s confirm these using (12.14) and (12.15):

R90° = 1 + e2e1√
2(1 + e1 · e2)

= 1 − e12√
2

R†
90° = 1 + e1e2√

2(1 + e1 · e2)

= 1 + e12√
2

which confirm our predictions.
In a previous example above, we used

R120° = cos 60° − sin 60°B̂

R†
120° = cos 60° + sin 60°B̂

B̂ = 1√
3
(e12 + e23 + e31)

to rotate e2 + e3 to e1 + e3.
Let’s use (12.14) and (12.15) to invert the process, but remember that we are

dealing with unit vectors, which means that we have to normalise a and b:

â = 1√
2
(e2 + e3)

b̂ = 1√
2
(e1 + e3).

Furthermore, although the bivector B̂ formed the plane of rotation in the previous
example, this time, the plane of rotation is â ∧ b̂. Therefore,

R120° = 1 + b̂â
√

2(1 + â · b̂)

=
1 + 1√

2
(e1 + e3)

1√
2
(e2 + e3)

√
2(1 + 1√

2
(e2 + e3) · 1√

2
(e1 + e3))

194 12 Bivector Rotors

= 1 + 1
2 (e12 − e31 − e23 + 1)

√
2(1 + 1

2)

= 1 + 1
2 e12 − 1

2 e23 − 1
2 e31 + 1

2√
3

=
√

3

2
+

√
3

6
e12 −

√
3

6
e23 −

√
3

6
e31

which makes

R†
120° =

√
3

2
−

√
3

6
e12 +

√
3

6
e23 +

√
3

6
e31.

But does it work? Well, let’s find out by forming the product

R120°
1√
2
(e2 + e3)R

†
120° = 1

12
√

2
(3 + e12 + e32 + e13)

× (e2 + e3)(3 − e12 − e32 − e13)

= 1

6
√

2
(e1 + e2 + 2e3)(3 − e12 − e32 − e13)

= 1

6
√

2
(6e1 + 6e3)

= 1√
2
(e1 + e3)

which is correct.
Finally, let’s employ the rotor matrix. But remember that its definition of Rθ has

a negative bivector term, which means that we have to switch the bivector terms in
R120° or use the bivector terms from R†

120°:

R†
120° =

√
3

2
−

√
3

6
e12 +

√
3

6
e23 +

√
3

6
e31

where

s =
√

3

2
, x =

√
3

6
, y =

√
3

6
, z = −

√
3

6

R120°vR†
120° =

⎡

⎣
1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
v1
v2
v3

⎤

⎦

=
⎡

⎢
⎣

1 − 2(1
12 + 1

12) 2(1
12 + 3

12) 2(− 1
12 + 3

12)

2(1
12 − 3

12) 1 − 2(1
12 + 1

12) 2(− 1
12 − 3

12)

2(− 1
12 − 3

12) 2(− 1
12 + 3

12) 1 − 2(1
12 + 1

12)

⎤

⎥
⎦

⎡

⎣
v1
v2
v3

⎤

⎦

=
⎡

⎢
⎣

2
3

2
3

1
3

− 1
3

2
3 −2

3

− 2
3

1
3

2
3

⎤

⎥
⎦

⎡

⎣
v1
v2
v3

⎤

⎦ .

12.6 Summary 195

Substituting a = [e2 + e3] we obtain

⎡

⎣
1
0
1

⎤

⎦ =
⎡

⎢
⎣

2
3

2
3

1
3

− 1
3

2
3 − 2

3

− 2
3

1
3

2
3

⎤

⎥
⎦

⎡

⎣
0
1
1

⎤

⎦

which is correct.
You may also like to verify that the determinant of the matrix is 1.

12.6 Summary

It is very interesting to see the close relationship between quaternions and geomet-
ric algebra. It demonstrates that although it is possible to describe the low-level
arithmetic that actually does the work behind the scenes, such as a matrix, it is also
possible to invent objects such as quaternions or bivectors, trivectors, etc., that pro-
vide a conceptual high-level framework that allow mathematicians to work more
productively and creatively. In the end, Hamilton, Grassman and Clifford have pro-
vided us with some extraordinary mathematical inventions that have found their way
into computer graphics, and I hope that this chapter has shown you another way of
handling rotations.

12.6.1 Summary of Bivector Transforms

Reflecting a vector in a plane

v′ = −n̂vn̂.

Rotating a vector using rotors

v′ = Rθ vR†
θ

where

Rθ = cos(θ/2) − sin(θ/2)B̂

R†
θ = cos(θ/2) + sin(θ/2)B̂.

Rotor as a matrix

Rθ vR†
θ =

⎡

⎣
1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
v1
v2
v3

⎤

⎦

R†
θ vRθ =

⎡

⎣
1 − 2(y2 + z2) 2(xy + sz) 2(xz − sy)

2(xy − sz) 1 − 2(x2 + z2) 2(yz + sx)

2(xz + sy) 2(yz − sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
v1
v2
v3

⎤

⎦

196 12 Bivector Rotors

where

Rθ = s − xe23 − ye31 − ze12

R†
θ = s + xe23 + ye31 + ze12.

Extracting a rotor
If

b̂ = Rθ âR†
θ

then

Rθ = 1 + b̂â

|â + b̂| = 1 + b̂â
√

2(1 + â · b̂)

R†
θ = 1 + âb̂

|â + b̂| = 1 + âb̂
√

2(1 + â · b̂)

.

Chapter 13
Conclusion

The aim of this book was to take the reader through the important ideas and mathe-
matical techniques associated with rotation transforms. I mentioned that I would not
be too pedantic about mathematical terminology and would not swamp the reader
with high-level concepts and axioms that pervade the real world of mathematics.
My prime objective was to make the reader confident and comfortable with com-
plex numbers, vectors, matrices, quaternions and bivector rotors. I knew that this
was a challenge, but as they all share rotation as a common thread, hopefully, this
has not been too onerous for the reader.

The worked examples will provide the reader with real problems to explore. As
far as I know, they all produce correct results. But that was not always the case, as it
is so easy to switch a sign during an algebraic expansion that creates a false result.
However, repeated examination eventually leads one to the mistake, and the correct
answer emerges so naturally.

The real challenge for the reader is the next level. There are some excellent books,
technical papers and websites that introduce more advanced topics such as the B-
spline interpolation of quaternions, the kinematics of moving frames, exponential
rotors and conformal geometry. Hopefully, the contents of this book has prepared
the reader for such journeys.

What I have tried to show throughout the previous dozen chapters is that rotations
are about sines and cosines, which are ratios associated with a line sweeping the unit
circle. These, in turn, can be expressed in various identities, especially half-angle
identities.

Imaginary quantities also seem to play an important role in rotations, and it is just
as well that they exist otherwise life would be extremely difficult! We have seen that
complex numbers, quaternions and bivector rotors all include imaginary quantities,
and at the end of the day, they just seem to be different ways of controlling sines and
cosines. I am certain that you now appreciate that quaternions are just one of four
possible algebras that require an n-square identity, and that they are closely related
to Clifford algebra. Which one is best for computer graphics? I don’t know. But I am
certain that if you attempt to implement these ideas, you will discover the answer.

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7_13, © Springer-Verlag London Limited 2011

197

Appendix A
Composite Point Rotation Sequences

A.1 Euler Rotations

In Chap. 9 we considered composite Euler rotations comprising individual rotations
about the x, y and z-axes such as Rγ,xRβ,yRα,z and Rγ,zRβ,yRα,x . However, there
is nothing preventing us from creating other combinations such as Rγ,xRβ,yRα,x or
Rγ,zRβ,yRα,z that do not include two consecutive rotations about the same axis. In
all, there are twelve possible combinations:

Rγ,xRβ,yRα,x, Rγ,xRβ,yRα,z, Rγ,xRβ,zRα,x, Rγ,xRβ,zRα,y

Rγ,yRβ,xRα,y, Rγ,yRβ,xRα,z, Rγ,yRβ,zRα,x, Rγ,yRβ,zRα,y

Rγ,zRβ,xRα,y, Rγ,zRβ,xRα,z, Rγ,zRβ,yRα,x, Rγ,zRβ,yRα,z

which we now cover in detail.
For each combination there are three Euler rotation matrices, the resulting com-

posite matrix, a matrix where the three angles equal 90°, the coordinates of the
rotated unit cube, the axis and angle of rotation and a figure illustrating the stages
of rotation. To compute the axis of rotation [v1 v2 v3]T we use

v1 = (a22 − 1)(a33 − 1) − a23a32

v2 = (a33 − 1)(a11 − 1) − a31a13

v3 = (a11 − 1)(a22 − 1) − a12a21

where

R =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

and for the angle of rotation δ we use

cos δ = 1

2

(
Tr(R) − 1

)
.

We begin by defining the three principal Euler rotations:

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7, © Springer-Verlag London Limited 2011

199

200 A Composite Point Rotation Sequences

rotate α about the x-axis Rα,x =
⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦

rotate β about the y-axis Rβ,y =
⎡

⎣
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤

⎦

rotate γ about the z-axis Rγ,z =
⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦

where cα = cosα and sα = sinα, etc.
Remember that the right-most transform is applied first and the left-most trans-

form last. In terms of angles, the sequence is always α, β , γ .
For each composite transform you can verify that when α = β = γ = 0 the result

is the identity transform I.
We now examine the twelve combinations in turn.

A.2 Rγ,xRβ,yRα,x 201

A.2 Rγ,xRβ,yRα,x

Rγ,xRβ,yRα,x =
⎡

⎣
1 0 0
0 cγ −sγ
0 sγ cγ

⎤

⎦

⎡

⎣
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤

⎦

⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦

=
⎡

⎣
cβ sβsα sβcα

sγ sβ (cγ cα − sγ cβsα) (−cγ sα − sγ cβcα)

−cγ sβ (sγ cα + cγ cβsα) (−sγ sα + cγ cβcα)

⎤

⎦

R90°,xR90°,yR90°,x =
⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.1 (a)–(d), where the axis of rotation
is [2 2 0]T and the angle of rotation 180°.

Fig. A.1 Four views of the unit cube before and during the three rotations R90°,xR90°,yR90°,x

202 A Composite Point Rotation Sequences

A.3 Rγ,xRβ,yRα,z

Rγ,xRβ,yRα,z =
⎡

⎣
1 0 0
0 cγ −sγ
0 sγ cγ

⎤

⎦

⎡

⎣
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤

⎦

⎡

⎣
cα −sα 0
sα cα 0
0 0 1

⎤

⎦

=
⎡

⎣
cβcα −cβsα sβ

(cγ sα + sγ sβcα) (cγ cα − sγ sβsα) −sγ cβ

(sγ sα − cγ sβcα) (sγ cα + cγ sβsα) cγ cβ

⎤

⎦

R90°,xR90°,yR90°,z =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.2 (a)–(d), where the axis of rotation
is [2 0 2]T and the angle of rotation 180°.

Fig. A.2 Four views of the unit cube before and during the three rotations R90°,xR90°,yR90°,z

A.4 Rγ,xRβ,zRα,x 203

A.4 Rγ,xRβ,zRα,x

Rγ,xRβ,zRα,x =
⎡

⎣
1 0 0
0 cγ −sγ
0 sγ cγ

⎤

⎦

⎡

⎣
cβ −sβ 0
sβ cβ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦

=
⎡

⎣
cβ −sβcα sβsα

cγ sβ (−sγ sα + cγ cβcα) (−sγ cα − cγ cβsα)

sγ sβ (cγ sα + sγ cβcα) (cγ cα − sγ cβsα)

⎤

⎦

R90°,xR90°,zR90°,x =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.3 (a)–(d), where the axis of rotation
is [2 0 2]T and the angle of rotation 180°.

Fig. A.3 Four views of the unit cube before and during the three rotations R90°,xR90°,zR90°,x

204 A Composite Point Rotation Sequences

A.5 Rγ,xRβ,zRα,y

Rγ,xRβ,zRα,y =
⎡

⎣
1 0 0
0 cγ −sγ
0 sγ cγ

⎤

⎦

⎡

⎣
cβ −sβ 0
sβ cβ 0
0 0 1

⎤

⎦

⎡

⎣
cα 0 sα
0 1 0

−sα 0 cα

⎤

⎦

=
⎡

⎣
cβcα −sβ cβsα

(sγ sα + cγ sβcα) cγ cβ (−sγ cα + cγ sβsα)

(−cγ sα + sγ sβcα) sγ cβ (cγ cα + sγ sβsα)

⎤

⎦

R90°,xR90°,zR90°,y =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.4 (a)–(d), where the axis of rotation
is [0 0 2]T and the angle of rotation 90°.

Fig. A.4 Four views of the unit cube before and during the three rotations R90°,xR90°,zR90°,y

A.6 Rγ,yRβ,xRα,y 205

A.6 Rγ,yRβ,xRα,y

Rγ,yRβ,xRα,y =
⎡

⎣
cγ 0 sγ
0 1 0

−sγ 0 cγ

⎤

⎦

⎡

⎣
1 0 0
0 cβ −sβ
0 sβ cβ

⎤

⎦

⎡

⎣
cα 0 sα
0 1 0

−sα 0 cα

⎤

⎦

=
⎡

⎣
(cγ cα − sγ cβsα) sγ sβ (cγ sα + sγ cβcα)

sβsα cβ −sβcα

(−sγ cα − cγ cβsα) cγ sβ (−sγ sα + cγ cβcα)

⎤

⎦

R90°,yR90°,xR90°,y =
⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.5 (a)–(d), where the axis of rotation
is [2 2 0]T and the angle of rotation 180°.

Fig. A.5 Four views of the unit cube before and during the three rotations R90°,yR90°,xR90°,y

206 A Composite Point Rotation Sequences

A.7 Rγ,yRβ,xRα,z

Rγ,yRβ,xRα,z =
⎡

⎣
cγ 0 sγ
0 1 0

−sγ 0 cγ

⎤

⎦

⎡

⎣
1 0 0
0 cβ −sβ
0 sβ cβ

⎤

⎦

⎡

⎣
cα −sα 0
sα cα 0
0 0 1

⎤

⎦

=
⎡

⎣
(cγ cα + sγ sβsα) (−cγ sα + sγ sβcα) sγ cβ

cβsα cβcα −sβ
(−sγ cα + cγ sβsα) (sγ sα + cγ sβcα) cγ cβ

⎤

⎦

R90°,yR90°,xR90°,z =
⎡

⎣
1 0 0
0 0 −1
0 1 0

⎤

⎦

⎡

⎣
1 0 0
0 0 −1
0 1 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1
0 0 1 1 0 0 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.6 (a)–(d), where the axis of rotation
is [2 0 0]T and the angle of rotation 90°.

Fig. A.6 Four views of the unit cube before and during the three rotations R90°,yR90°,xR90°,z

A.8 Rγ,yRβ,zRα,x 207

A.8 Rγ,yRβ,zRα,x

Rγ,yRβ,zRα,x =
⎡

⎣
cγ 0 sγ
0 1 0

−sγ 0 cγ

⎤

⎦

⎡

⎣
cβ −sβ 0
sβ cβ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦

=
⎡

⎣
cγ cβ (sγ sα − cγ sβcα) (sγ cα + cγ sβsα)

sβ cβcα −cβsα
−sγ cβ (cγ sα + sγ sβcα) (cγ cα − sγ sβsα)

⎤

⎦

R90°,yR90°,zR90°,x =
⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.7 (a)–(d), where the axis of rotation
is [2 2 0]T and the angle of rotation 180°.

Fig. A.7 Four views of the unit cube before and during the three rotations R90°,yR90°,zR90°,x

208 A Composite Point Rotation Sequences

A.9 Rγ,yRβ,zRα,y

Rγ,yRβ,zRα,y =
⎡

⎣
cγ 0 sγ
0 1 0

−sγ 0 cγ

⎤

⎦

⎡

⎣
cβ −sβ 0
sβ cβ 0
0 0 1

⎤

⎦

⎡

⎣
cα 0 sα
0 1 0

−sα 0 cα

⎤

⎦

=
⎡

⎣
(−sγ sα + cγ cβcα) −cγ sβ (sγ cα + cγ cβsα)

sβcα cβ sβsα
(−cγ sα − sγ cβcα) sγ sβ (cγ cα − sγ cβsα)

⎤

⎦

R90°,yR90°,zR90°,y =
⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.8 (a)–(d), where the axis of rotation
is [0 2 2]T and the angle of rotation 180°.

Fig. A.8 Four views of the unit cube before and during the three rotations R90°,yR90°,zR90°,y

A.10 Rγ,zRβ,xRα,y 209

A.10 Rγ,zRβ,xRα,y

Rγ,zRβ,xRα,y =
⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cβ −sβ
0 sβ cβ

⎤

⎦

⎡

⎣
cα 0 sα
0 1 0

−sα 0 cα

⎤

⎦

=
⎡

⎣
(cγ cα − sγ sβsα) −sγ cβ (cγ sα + sγ sβcα)

(sγ cα + cγ sβsα) cγ cβ (sγ sα − cγ sβcα)

−cβsα sβ cβcα

⎤

⎦

R90°,zR90°,xR90°,y =
⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.9 (a)–(d), where the axis of rotation
is [0 2 2]T and the angle of rotation 180°.

Fig. A.9 Four views of the unit cube before and during the three rotations R90°,zR90°,xR90°,y

210 A Composite Point Rotation Sequences

A.11 Rγ,zRβ,xRα,z

Rγ,zRβ,xRα,z =
⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cβ −sβ
0 sβ cβ

⎤

⎦

⎡

⎣
cα −sα 0
sα cα 0
0 0 1

⎤

⎦

=
⎡

⎣
(cγ cα − sγ cβsα) (−cγ sα − sγ cβcα) sγ sβ
(sγ cα + cγ cβsα) (−sγ sα + cγ cβcα) −cγ sβ

sβsα sβcα cβ

⎤

⎦

R90°,zR90°,xR90°,z =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.10 (a)–(d), where the axis of rota-
tion is [2 0 2]T and the angle of rotation 180°.

Fig. A.10 Four views of the unit cube before and during the three rotations R90°,zR90°,xR90°,z

A.12 Rγ,zRβ,yRα,x 211

A.12 Rγ,zRβ,yRα,x

Rγ,zRβ,yRα,x =
⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤

⎦

⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦

=
⎡

⎣
cγ cβ (−sγ cα + cγ sβsα) (sγ sα + cγ sβcα)

sγ cβ (cγ cα + sγ sβsα) (−cγ sα + sγ sβcα)

−sβ cβsα cβcα

⎤

⎦

R90°,zR90°,yR90°,x =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 −1 −1 −1 −1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.11 (a)–(d), where the axis of rota-
tion is [0 2 0]T and the angle of rotation 90°.

Fig. A.11 Four views of the unit cube before and during the three rotations R90°,zR90°,yR90°,x

212 A Composite Point Rotation Sequences

A.13 Rγ,zRβ,yRα,z

Rγ,zRβ,yRα,z =
⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤

⎦

⎡

⎣
cα −sα 0
sα cα 0
0 0 1

⎤

⎦

=
⎡

⎣
(−sγ sα + cγ cβcα) (−sγ cα − cγ cβsα) cγ sβ

(cγ sα + sγ cβcα) (cγ cα − sγ cβsα) sγ sβ
−sβcα sβsα cβ

⎤

⎦

R90°,zR90°,yR90°,z =
⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. A.12 (a)–(d), where the axis of rota-
tion is [0 2 2]T and the angle of rotation 180°.

Fig. A.12 Four views of the unit cube before and during the three rotations R90°,zR90°,yR90°,z

Appendix B
Composite Frame Rotation Sequences

B.1 Euler Rotations

This appendix lists the twelve combinations of creating a composite frame rotation
sequence from R−1

α,x,R−1
β,y and R−1

γ,z, which are

R−1
γ,xR−1

β,yR−1
α,x, R−1

γ,xR−1
β,yR−1

α,z, R−1
γ,xR−1

β,zR−1
α,x, R−1

γ,xR−1
β,zR−1

α,y

R−1
γ,yR−1

β,xR−1
α,y, R−1

γ,yR−1
β,xR−1

α,z, R−1
γ,yR−1

β,zR−1
α,x, R−1

γ,yR−1
β,zR−1

α,y

R−1
γ,zR−1

β,xR−1
α,y, R−1

γ,zR−1
β,xR−1

α,z, R−1
γ,zR−1

β,yR−1
α,x, R−1

γ,zR−1
β,yR−1

α,z.

For each combination there are three Euler frame rotation matrices, the resulting
composite matrix, a matrix where the three angles equal 90°, the coordinates of the
unit cube in the rotated frame, the axis and angle of rotation and a figure illustrating
the stages of rotation. To compute the axis of rotation [v1 v2 v3]T we use

v1 = (a22 − 1)(a33 − 1) − a23a32

v2 = (a33 − 1)(a11 − 1) − a31a13

v3 = (a11 − 1)(a22 − 1) − a12a21

where

R =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

and for the angle of rotation δ we use

cos δ = 1

2

(
Tr(R) − 1

)
.

We begin by defining the three principal inverse Euler frame rotations:

rotate the frame α about the x-axis R−1
α,x =

⎡

⎣
1 0 0
0 cα sα
0 −sα cα

⎤

⎦

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7, © Springer-Verlag London Limited 2011

213

214 B Composite Frame Rotation Sequences

rotate the frame β about the y-axis R−1
β,y =

⎡

⎣
cβ 0 −sβ
0 1 0

sβ 0 cβ

⎤

⎦

rotate the frame γ about the z-axis R−1
γ,z =

⎡

⎣
cγ sγ 0

−sγ cγ 0
0 0 1

⎤

⎦

where cα = cosα and sα = sinα, etc.
Remember that the right-most transform is applied first and the left-most trans-

form last. In terms of angles, the sequence is always α, β , γ .
For each composite transform you can verify that when α = β = γ = 0 the result

is the identity transform I.
We now examine the twelve combinations in turn.

B.2 R−1
γ,xR−1

β,yR−1
α,x 215

B.2 R−1
γ,xR−1

β,yR−1
α,x

R−1
γ,xR−1

β,yR−1
α,x =

⎡

⎣
1 0 0
0 cγ sγ
0 −sγ cγ

⎤

⎦

⎡

⎣
cβ 0 −sβ
0 1 0

sβ 0 cβ

⎤

⎦

⎡

⎣
1 0 0
0 cα sα
0 −sα cα

⎤

⎦

=
⎡

⎣
cβ sβsα −sβcα

sγ sβ (cγ cα − sγ cβsα) (cγ sα + sγ cβcα)

cγ sβ (−sγ cα − cγ cβsα) (−sγ sα + cγ cβcα)

⎤

⎦

R−1
90°,x

R−1
90°,y

R−1
90°,x

=
⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.1 (a)–(d), where the axis of rotation
is [2 2 0]T and the angle of rotation 180°.

Fig. B.1 Four views of the frame before and during the three rotations R−1
90°,x

R−1
90°,y

R−1
90°,x

216 B Composite Frame Rotation Sequences

B.3 R−1
γ,xR−1

β,yR−1
α,z

R−1
γ,xR−1

β,yR−1
α,z =

⎡

⎣
1 0 0
0 cγ sγ
0 −sγ cγ

⎤

⎦

⎡

⎣
cβ 0 −sβ
0 1 0

sβ 0 cβ

⎤

⎦

⎡

⎣
cα sα 0

−sα cα 0
0 0 1

⎤

⎦

=
⎡

⎣
cβcα cβsα −sβ

(−cγ sα + sγ sβcα) (cγ cα + sγ sβsα) +sγ cβ

(sγ sα + cγ sβcα) (−sγ cα + cγ sβsα) cγ cβ

⎤

⎦

R−1
90°,x

R−1
90°,y

R−1
90°,z

=
⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 −1 0 −1 0 −1 0 −1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.2 (a)–(d), where the axis of rotation
is [0 2 0]T and the angle of rotation 90°.

Fig. B.2 Four views of the frame before and during the three rotations R−1
90°,x

R−1
90°,y

R−1
90°,z

B.4 R−1
γ,xR−1

β,zR−1
α,x 217

B.4 R−1
γ,xR−1

β,zR−1
α,x

R−1
γ,xR−1

β,zR−1
α,x =

⎡

⎣
1 0 0
0 cγ sγ
0 −sγ cγ

⎤

⎦

⎡

⎣
cβ sβ 0

−sβ cβ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cα sα
0 −sα cα

⎤

⎦

=
⎡

⎣
cβ sβcα sβsα

−cγ sβ (−sγ sα + cγ cβcα) (−sγ cα + cγ cβsα)

sγ sβ (−cγ sα − sγ cβcα) (cγ cα − sγ cβsα)

⎤

⎦

R−1
90°,x

R−1
90°,z

R−1
90°,x

=
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.3 (a)–(d), where the axis of rotation
is [2 0 2]T and the angle of rotation 180°.

Fig. B.3 Four views of the frame before and during the three rotations R−1
90°,x

R−1
90°,z

R−1
90°,x

218 B Composite Frame Rotation Sequences

B.5 R−1
γ,xR−1

β,zR−1
α,y

R−1
γ,xR−1

β,zR−1
α,y =

⎡

⎣
1 0 0
0 cγ sγ
0 −sγ cγ

⎤

⎦

⎡

⎣
cβ sβ 0

−sβ cβ 0
0 0 1

⎤

⎦

⎡

⎣
cα 0 −sα
0 1 0

sα 0 cα

⎤

⎦

=
⎡

⎣
cβcα sβ −cβsα

(sγ sα − cγ sβcα) cγ cβ (sγ cα + cγ sβsα)

(cγ sα + sγ sβcα) −sγ cβ (cγ cα − sγ sβsα)

⎤

⎦

R−1
90°,x

R−1
90°,z

R−1
90°,y

=
⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.4 (a)–(d), where the axis of rotation
is [2 2 0]T and the angle of rotation 180°.

Fig. B.4 Four views of the frame before and during the three rotations R−1
90°,x

R−1
90°,z

R−1
90°,y

B.6 R−1
γ,yR−1

β,xR−1
α,y 219

B.6 R−1
γ,yR−1

β,xR−1
α,y

R−1
γ,yR−1

β,xR−1
α,y =

⎡

⎣
cγ 0 −sγ
0 1 0

sγ 0 cγ

⎤

⎦

⎡

⎣
1 0 0
0 cβ sβ
0 −sβ cβ

⎤

⎦

⎡

⎣
cα 0 −sα
0 1 0

sα 0 cα

⎤

⎦

=
⎡

⎣
(cγ cα − sγ cβsα) sγ sβ (−cγ sα − sγ cβcα)

sβsα cβ sβcα

(sγ cα + cγ cβsα) −cγ sβ (−sγ sα + cγ cβcα)

⎤

⎦

R−1
90°,y

R−1
90°,x

R−1
90°,y

=
⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.5 (a)–(d), where the axis of rotation
is [2 2 0]T and the angle of rotation 180°.

Fig. B.5 Four views of the frame before and during the three rotations R−1
90°,y

R−1
90°,x

R−1
90°,y

220 B Composite Frame Rotation Sequences

B.7 R−1
γ,yR−1

β,xR−1
α,z

R−1
γ,yR−1

β,xR−1
α,z =

⎡

⎣
cγ 0 −sγ
0 1 0

sγ 0 cγ

⎤

⎦

⎡

⎣
1 0 0
0 cβ sβ
0 −sβ cβ

⎤

⎦

⎡

⎣
cα sα 0

−sα cα 0
0 0 1

⎤

⎦

=
⎡

⎣
(cγ cα − sγ sβsα) (cγ sα + sγ sβcα) −sγ cβ

−cβsα cβcα sβ
(sγ cα + cγ sβsα) (sγ sα − cγ sβcα) cγ cβ

⎤

⎦

R−1
90°,y

R−1
90°,x

R−1
90°,z

=
⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.6 (a)–(d), where the axis of rotation
is [0 2 2]T and the angle of rotation 180°.

Fig. B.6 Four views of the frame before and during the three rotations R−1
90°,y

R−1
90°,x

R−1
90°,z

B.8 R−1
γ,yR−1

β,zR−1
α,x 221

B.8 R−1
γ,yR−1

β,zR−1
α,x

R−1
γ,yR−1

β,zR−1
α,x =

⎡

⎣
cγ 0 −sγ
0 1 0

sγ 0 cγ

⎤

⎦

⎡

⎣
cβ sβ 0

−sβ cβ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cα sα
0 −sα cα

⎤

⎦

=
⎡

⎣
cγ cβ (sγ sα + cγ sβcα) (−sγ cα + cγ sβsα)

−sβ cβcα cβsα
sγ cβ (−cγ sα + sγ sβcα) (cγ cα + sγ sβsα)

⎤

⎦

R−1
90°,y

R−1
90°,z

R−1
90°,x

=
⎡

⎣
0 1 0

−1 0 0
0 0 1

⎤

⎦

⎡

⎣
0 1 0

−1 0 0
0 0 1

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 1 1 0 0 1 1
0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.7 (a)–(d), where the axis of rotation
is [2 2 0]T and the angle of rotation 180°.

Fig. B.7 Four views of the frame before and during the three rotations R−1
90°,y

R−1
90°,z

R−1
90°,x

222 B Composite Frame Rotation Sequences

B.9 R−1
γ,yR−1

β,zR−1
α,y

R−1
γ,yR−1

β,zR−1
α,y =

⎡

⎣
cγ 0 −sγ
0 1 0

sγ 0 cγ

⎤

⎦

⎡

⎣
cβ sβ 0

−sβ cβ 0
0 0 1

⎤

⎦

⎡

⎣
cα 0 −sα
0 1 0

sα 0 cα

⎤

⎦

=
⎡

⎣
(−sγ sα + cγ cβcα) cγ sβ (−sγ cα − cγ cβsα)

−sβcα cβ sβsα
(cγ sα + sγ cβcα) sγ sβ (cγ cα − sγ cβsα)

⎤

⎦

R−1
90°,y

R−1
90°,z

R−1
90°,y

=
⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.8 (a)–(d), where the axis of rotation
is [0 2 2]T and the angle of rotation 180°.

Fig. B.8 Four views of the frame before and during the three rotations R−1
90°,y

R−1
90°,z

R−1
90°,y

B.10 R−1
γ,zR−1

β,xR−1
α,y 223

B.10 R−1
γ,zR−1

β,xR−1
α,y

R−1
γ,zR−1

β,xR−1
α,y =

⎡

⎣
cγ sγ 0

−sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cβ sβ
0 −sβ cβ

⎤

⎦

⎡

⎣
cα 0 −sα
0 1 0

sα 0 cα

⎤

⎦

=
⎡

⎣
(cγ cα + sγ sβsα) sγ cβ (−cγ sα + sγ sβcα)

(−sγ cα + cγ sβsα) cγ cβ (sγ sα + cγ sβcα)

cβsα −sβ cβcα

⎤

⎦

R−1
90°,z

R−1
90°,x

R−1
90°,y

=
⎡

⎣
1 0 0
0 0 1
0 −1 0

⎤

⎦

⎡

⎣
1 0 0
0 0 1
0 −1 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.9 (a)–(d), where the axis of rotation
is [2 0 0]T and the angle of rotation 90°.

Fig. B.9 Four views of the frame before and during the three rotations R−1
90°,z

R−1
90°,x

R−1
90°,y

224 B Composite Frame Rotation Sequences

B.11 R−1
γ,zR−1

β,xR−1
α,z

R−1
γ,zR−1

β,xR−1
α,z =

⎡

⎣
cγ sγ 0

−sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cβ sβ
0 −sβ cβ

⎤

⎦

⎡

⎣
cα sα 0

−sα cα 0
0 0 1

⎤

⎦

=
⎡

⎣
(cγ cα − sγ cβsα) (cγ sα + sγ cβcα) sγ sβ

(−sγ cα − cγ cβsα) (−sγ sα + cγ cβcα) +cγ sβ
sβsα −sβcα cβ

⎤

⎦

R−1
90°,z

R−1
90°,x

R−1
90°,z

=
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.10 (a)–(d), where the axis of rota-
tion is [2 0 2]T and the angle of rotation 180°.

Fig. B.10 Four views of the frame before and during the three rotations R−1
90°,z

R−1
90°,x

R−1
90°,z

B.12 R−1
γ,zR−1

β,yR−1
α,x 225

B.12 R−1
γ,zR−1

β,yR−1
α,x

R−1
γ,zR−1

β,yR−1
α,x =

⎡

⎣
cγ sγ 0

−sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
cβ 0 −sβ
0 1 0

sβ 0 cβ

⎤

⎦

⎡

⎣
1 0 0
0 cα sα
0 −sα cα

⎤

⎦

=
⎡

⎣
cγ cβ (sγ cα + cγ sβsα) (sγ sα − cγ sβcα)

−sγ cβ (cγ cα − sγ sβsα) (cγ sα + sγ sβcα)

sβ −cβsα cβcα

⎤

⎦

R−1
90°,z

R−1
90°,y

R−1
90°,x

=
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.11 (a)–(d), where the axis of rota-
tion is [2 0 2]T and the angle of rotation 180°.

Fig. B.11 Four views of the frame before and during the three rotations R−1
90°,z

R−1
90°,y

R−1
90°,x

226 B Composite Frame Rotation Sequences

B.13 R−1
γ,zR−1

β,yR−1
α,z

R−1
γ,zR−1

β,yR−1
α,z =

⎡

⎣
cγ sγ 0

−sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
cβ 0 −sβ
0 1 0

sβ 0 cβ

⎤

⎦

⎡

⎣
cα sα 0

−sα cα 0
0 0 1

⎤

⎦

=
⎡

⎣
(−sγ sα + cγ cβcα) (sγ cα + cγ cβsα) −cγ sβ
(−cγ sα − sγ cβcα) (cγ cα − sγ cβsα) sγ sβ

sβcα sβsα cβ

⎤

⎦

R−1
90°,z

R−1
90°,y

R−1
90°,z

=
⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
−1 0 0

0 0 1
0 1 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤

⎦ .

This rotation sequence is illustrated in Fig. B.12 (a)–(d), where the axis of rota-
tion is [0 2 2]T and the angle of rotation 180°.

Fig. B.12 Four views of the frame before and during the three rotations R−1
90°,z

R−1
90°,y

R−1
90°,z

Appendix C
The Four n-Square Algebras

C.1 Introduction

The magnitude of a real quantity is its positive value. However, when dealing with
objects such as complex numbers, quaternions and octonions, their magnitude is
expressed using the Pythagorean formula which takes the square root of the sums of
the terms squared.

For example, the magnitude of a complex number z1 = a + bi is

|z1| =
√

a2 + b2

and the magnitude of a quaternion q = s + xi + yj + zk is

|q| =
√

s2 + x2 + y2 + z2

and something similar for an octonion, which has 8 terms.
In their book On Quaternions and Octonions [9], John Conway and Derek Smith

use the Euclidean norm N to represent the sums of the squares, although other au-
thors define the Euclidean norm as

√
N . However, for the purpose of this description

I will employ Conway and Smith’s definition. Thus

N(a + bi) = a2 + b2

and

N(q) = s2 + x2 + y2 + z2.

We know from the algebra of complex numbers that

|z1||z2| = |z1z2|
or

N(z1)N(z2) = N(z1z2)

and from the algebra of quaternions that

|q1||q2| = |q1q2|

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7, © Springer-Verlag London Limited 2011

227

228 C The Four n-Square Algebras

or

N(q1)N(q2) = N(q1q2).

The algebra of octonions also includes this composition law.
In the algebra of reals R, we have

x2
1y2

1 = (x1y1)
2.

In the algebra of complex numbers C, we have

z1 = x1 + x2i

z2 = y1 + y2i
(
x2

1 + x2
2

)(
y2

1 + y2
2

) = (x1y1 − x2y2)
2 + (x1y2 + x2y1)

2.

In the algebra of quaternions H, we have

q1 = x1 + x2i + x3j + x4k

q2 = y1 + y2i + y3j + y4k

(
x2

1 + x2
2 + x2

3 + x2
4

)(
y2

1 + y2
2 + y2

3 + y2
4

) = (x1y1 − x2y2 − x3y3 − x4y4)
2

+ (x1y2 + x2y1 + x3y4 − x4y3)
2

+ (x1y3 − x2y4 + x3y1 + x4y2)
2

+ (x1y4 + x2y3 − x3y2 + x4y1)
2.

And in the algebra of octonions O, we have something similar, but with many more
terms.

The above algebras are called composition algebras because of their inherent
composition law, and Adolf Hurwitz proved that such algebras can only exist in 1,
2, 4 and 8 dimensions.

References

1. Crowe, M.J.: A History of Vector Analysis. Dover, New York (1994)
2. Hamilton, W.R.: Lectures on Quaternions. Hodges and Smith, Dublin (1853)
3. Gibbs, J.W.: Elements of Vector Analysis. Tuttle, Moorehouse & Taylor, New Haven (1884)
4. Vince, J.A.: Mathematics for Computer Graphics. Springer, London (2010)
5. Vince, J.A.: Geometric Algebra for Computer Graphics. Springer, London (2008)
6. Vince, J.A.: Geometric Algebra: An Algebraic System for Computer Games and Animation.

Springer, London (2009)
7. Altmann, S.: Hamilton, Rodrigues and the quaternion scandal. Math. Mag. 62(5), 291–308

(1989)
8. Stillwell, J.: Numbers and Geometry. Springer, New York (1998)
9. Conway, J., Smith, D.: On Quaternions and Octonions. AK Peters, Natick (2003)

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7, © Springer-Verlag London Limited 2011

229

Index

2D frames of reference, 103
2D rotation transform, 87
2D rotor, 188
2D transforms, 85
3D frames of reference, 143
3D rotations, 184
3D rotor, 189
3D transforms, 115
3D vectors, 19

A
Adding quaternions, 60
Affine transform, 90
Antisymmetric functions, 67
Antisymmetric matrix, 48

B
Bivector, 70, 93
Bivector rotors, 181

C
Cartesian vector, 21
Cayley, Arthur, 33, 155
Characteristic equation, 52, 123
Clifford, William Kingdon, 67
Cofactors of a matrix, 41
Column vector, 17
Commutative, 20
Complex addition, 7
Complex argument, 12
Complex conjugate, 8
Complex division, 8
Complex inverse, 9
Complex number axioms, 6
Complex numbers, 5
Complex plane, 10
Complex product, 7

Complex rotor, 13
Composite rotations, 91, 118, 149
Composition algebras, 155
Cross product, 24

D
Determinant of a matrix, 39
Diagonal matrix, 45
Direction cosines, 2D, 109
Dot product, 22
Duality, 80

E
Eigenvalue, 50, 169
Eigenvector, 50, 123, 169
Euler, Leonhard, 10
Euler rotations, 116
Extracting a rotor, 191

F
Frames of reference, 103, 143, 171

G
Geometric product, 69, 71
Gibbs, Josiah, 25, 59
Gimbal lock, 130
Grades, 75

H
Hamilton, William Rowan, 17, 24, 59, 155
Hamilton’s rules, 25, 59, 81
Hestenes, David, 67
Homogeneous coordinates, 85
Hurwitz, Adolph, 155

I
Identity matrix, 35
Imaginary, 5

J. Vince, Rotation Transforms for Computer Graphics,
DOI 10.1007/978-0-85729-154-7, © Springer-Verlag London Limited 2011

231

232 Index

Inner product, 69
Interpolating quaternions, 173
Interpolating vectors, 28
Inverse matrix, 37
Inverse of a vector, 77
Inverse quaternion, 64
Inverse transforms, 92

L
Laplace, Pierre Simon, 41
Laplace expansion, 42

M
Magnitude of a quaternion, 62
Magnitude of a vector, 18
Matrices, 33
Matrix addition, 35
Matrix inverse, 42
Matrix notation, 33
Matrix product, 36
Matrix transforms, 86
Matrix transpose, 35
Minor determinant, 40
Modulus of a complex number, 6
Multiplying quaternions, 61
Multivector axioms, 74
Multivector rotor, 97
Multivector transforms, 93
Multivectors, 67, 75

N
Non-commutative, 37, 60

O
Octonions, 155
Orthogonal matrix, 45
Outer product, 69
Outer product of three vectors, 73

P
Pitch, 132
Polar representation, 11
Position vector, 20
Pseudoscalars, 75
Pure quaternion, 62

Q
Quaternion addition, 60
Quaternion axioms, 60
Quaternion conjugate, 63
Quaternion matrix, 162
Quaternion multiplication, 61
Quaternions, 59, 81, 155

R
Reflecting a vector, 182

Reverse of a multivector, 82
Right-hand rule, 27
Rodrigues, Olinde, 139
Roll, 132
Rotate a point, 116
Rotated frames, 106
Rotating about an axis, 117, 134
Rotation in the plane, 85
Rotation transform, 45
Rotation transforms in space, 115
Rotor matrices, 188
Row vector, 17

S
Sarrus, J.P., 39
Scalar product, 22
Skew symmetric matrix, 48
Spherical interpolant, 176
Square matrix, 39, 46
Subtracting quaternions, 60
Symmetric functions, 67
Symmetric matrix, 47

T
Three reflections theorem, 181
Trace of a matrix, 46
Translate a point, 115
Translated frames, 104
Translation transform, 87
Trivector, 74, 75, 93

U
Unit bivector, 94
Unit normal vector, 27
Unit quaternion, 62
Unit vector, 21

V
Vector addition, 20
Vector interpolation, 28
Vector inverse, 77
Vector magnitude, 18
Vector notation, 17
Vector product, 24, 55
Vector subtraction, 20

W
Wedge product, 73

Y
Yaw, 132

	Cover
	Rotation Transforms for Computer Graphics
	ISBN 9780857291530
	Preface
	Contents

	Chapter 1Introduction
	Rotation Transforms
	Mathematical Techniques
	The Reader
	Aims and Objectives of This Book
	Assumptions Made in This Book
	How to Use the Book

	Chapter 2Complex Numbers
	Introduction
	Complex Numbers
	Axioms

	The Modulus
	Addition and Subtraction
	Multiplication by a Scalar
	Product of Two Complex Numbers
	The Complex Conjugate
	Division of Two Complex Numbers
	The Inverse
	The Complex Plane
	Polar Representation
	Rotors
	Summary
	Summary of Complex Operations

	Chapter 3Vectors
	Introduction
	Vector Notation
	Graphical Representation of Vectors
	Magnitude of a Vector
	3D Vectors
	Vector Manipulation
	Multiplying a Vector by a Scalar
	Vector Addition and Subtraction

	Position Vectors
	Unit Vectors
	Cartesian Vectors
	Scalar Product
	The Vector Product
	The Right-Hand Rule
	Deriving a Unit Normal Vector
	Interpolating Vectors
	Summary
	Summary of Vector Operations

	Chapter 4Matrices
	Introduction
	Matrices
	The Transpose of a Matrix
	The Identity Matrix
	Adding and Subtracting Matrices
	Multiplying a Matrix by a Scalar
	Product of Two Matrices
	The Inverse Matrix
	Calculation of Inverse

	Determinant of a Matrix
	Sarrus's Rule
	The Laplace Expansion

	Cofactors and Inverse of a Matrix
	Orthogonal Matrix
	Diagonal Matrix
	Trace
	Symmetric Matrix
	Antisymmetric Matrix
	Inverting a Pair of Matrices
	Eigenvectors and Eigenvalues
	Vector Products
	Summary
	Summary of Matrix Operations

	Chapter 5Quaternions
	Introduction
	Definition
	Axioms

	Adding and Subtracting Quaternions
	Multiplying Quaternions
	Pure Quaternion
	Magnitude of a Quaternion
	Unit Quaternion
	The Quaternion Conjugate
	The Inverse Quaternion
	Summary
	Summary of Quaternion Operations

	Chapter 6Multivectors
	Introduction
	Symmetric and Antisymmetric Functions
	Trigonometric Foundations
	Vectorial Foundations
	Inner and Outer Products
	The Geometric Product in 2D
	The Geometric Product in 3D
	The Outer Product of Three 3D Vectors
	Axioms
	Notation
	Grades, Pseudoscalars and Multivectors
	Redefining the Inner and Outer Products
	The Inverse of a Vector
	The Imaginary Properties of the Outer Product
	Duality
	The Relationship Between the Vector Product and the Outer Product
	The Relationship Between Quaternions and Bivectors
	Reverse of a Multivector
	Summary
	Summary of Multivector Operations

	Chapter 7Rotation Transforms in the Plane
	Introduction
	2D Transforms
	Homogeneous Coordinates

	Matrix Transforms
	Translate a Point
	Rotate a Point About the Origin
	Rotate a Point About an Arbitrary Point
	Rotate and Translate a Point
	Composite Rotations

	Inverse Transforms
	Multivector Transforms
	Translate a Point
	Rotational Qualities of the Unit Bivector
	Rotate a Point About the Origin
	Rotate a Point About an Arbitrary Point

	Summary
	Summary of Matrix Transforms
	Summary of Multivector Transforms

	Chapter 8Frames of Reference in the Plane
	Introduction
	Frames of Reference
	Matrix Transforms
	Translated Frame of Reference
	Rotated Frame of Reference
	Rotated and Translated Frame of Reference

	Direction Cosines
	Multivector Transforms
	Translated Frame of Reference
	Rotated Frame of Reference
	Rotated and Translated Frame of Reference

	Summary
	Summary of Matrix Transforms
	Summary of Multivector Transforms

	Chapter 9Rotation Transforms in Space
	Introduction
	3D Transforms
	Translate a Point
	Rotate a Point About the Cartesian Axes
	Rotating About an Off-Set Axis

	Composite Rotations
	3D Eigenvectors

	Gimbal Lock
	Yaw, Pitch and Roll
	Rotating a Point About an Arbitrary Axis
	Matrices
	Vectors

	Summary
	Summary of Matrix Transforms

	Chapter 10Frames of Reference in Space
	Introduction
	Frames of Reference
	Matrix Transforms
	Translated Frames of Reference
	Rotated Frames of Reference About Cartesian Axes
	Rotated Frames About Off-Set Axes

	Composite Rotations
	Rotated and Translated Frames of Reference
	Rotated Frames of Reference About Arbitrary Axes
	Summary
	Summary of Transforms

	Chapter 11Quaternion Transforms in Space
	Introduction
	Definition
	Quaternions in Matrix Form
	Quaternion Products and Matrices
	Geometric Verification

	Multiple Rotations
	Eigenvalue and Eigenvector
	Rotating About an Off-Set Axis
	Frames of Reference
	Interpolating Quaternions
	Converting a Rotation Matrix to a Quaternion
	Summary
	Summary of Quaternion Transforms

	Chapter 12Bivector Rotors
	Introduction
	The Three Reflections Theorem
	Reflecting a Vector
	3D Rotations
	Rotors as Matrices
	2D Rotor
	3D Rotor
	Extracting a Rotor

	Summary
	Summary of Bivector Transforms

	Chapter 13Conclusion
	Appendix A Composite Point Rotation Sequences
	Euler Rotations
	Rgamma, xRbeta, yRalpha, x
	Rgamma, xRbeta, yRalpha, z
	Rgamma, xRbeta, zRalpha, x
	Rgamma, xRbeta, zRalpha, y
	Rgamma, yRbeta, xRalpha, y
	Rgamma, yRbeta, xRalpha, z
	Rgamma, yRbeta, zRalpha, x
	Rgamma, yRbeta, zRalpha, y
	Rgamma, zRbeta, xRalpha, y
	Rgamma, zRbeta, xRalpha, z
	Rgamma, zRbeta, yRalpha, x
	Rgamma, zRbeta, yRalpha, z

	Appendix B Composite Frame Rotation Sequences
	Euler Rotations
	R-1gamma, xR-1beta, yR-1alpha, x
	R-1gamma, xR-1beta, yR-1alpha, z
	R-1gamma, xR-1beta, zR-1alpha, x
	R-1gamma, xR-1beta, zR-1alpha, y
	R-1gamma, yR-1beta, xR-1alpha, y
	R-1gamma, yR-1beta, xR-1alpha, z
	R-1gamma, yR-1beta, zR-1alpha, x
	R-1gamma, yR-1beta, zR-1alpha, y
	R-1gamma, zR-1beta, xR-1alpha, y
	R-1gamma, zR-1beta, xR-1alpha, z
	R-1gamma, zR-1beta, yR-1alpha, x
	R-1gamma, zR-1beta, yR-1alpha, z

	Appendix C The Four n-Square Algebras
	Introduction

	References
	Index

