

Matrix Transforms for Computer Games
and Animation

John Vince

Matrix Transforms
for Computer
Games and
Animation

Professor Emeritus John Vince, MTech, PhD,
DSc, CEng, FBCS

Bournemouth University
Bournemouth, UK
www.johnvince.co.uk

ISBN 978-1-4471-4320-8 ISBN 978-1-4471-4321-5 (eBook)
DOI 10.1007/978-1-4471-4321-5
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2012942604

© Springer-Verlag London 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to my best friend,
Heidi.

Preface

This is an introductory book on linear matrix transforms, and should be of interest to
animators and programmers working in computer games and animation. Although I
have covered many of the topics in other books, I have never addressed the subject
of matrices as an individual topic—hence the reason for this book.

The book’s structure is very simple: Chap. 1 provides a short introduction to
the book’s objectives. Chapter 2 gives the reader some historical background and
algebraic evidence for the matrix as a valid mathematical object, and its associated
scalar-valued determinant. Chapter 3 describes how the determinant is computed for
different size matrices. Chapter 4 provides a formal description of matrix algebra,
with plenty of worked examples. Chapters 5 and 6 describe 2D and 3D transforms
respectively, again with plenty of worked examples. Chapter 7 provides an introduc-
tion to quaternions with an emphasis on their matrix formulation. Finally, Chap. 8
concludes the book.

I would like to thank Beverley Ford, Editorial Director for Computer Science,
and Helen Desmond, Associate Editor for Computer Science, Springer UK, for their
continuing professional support.

John VinceRingwood, UK

vii

Contents

1 Introduction . 1
1.1 Matrix Transforms . 1
1.2 Mathematics . 2
1.3 The Book’s Structure . 2

2 Introduction to Matrix Notation . 3
2.1 Introduction . 3
2.2 Solving a Pair of Linear Equations 3

2.2.1 Graphical Technique . 3
2.2.2 Algebraic Technique . 4
2.2.3 Matrix Technique . 5

2.3 Matrix Multiplication . 8
2.4 Identity Matrix . 11
2.5 Inverse Matrix . 11
2.6 Worked Examples . 15
2.7 Summary . 16

3 Determinants . 19
3.1 Introduction . 19
3.2 Linear Equations in Three Unknowns 20

3.2.1 The Laplace Expansion 24
3.3 Linear Equations in Four Unknowns 27
3.4 Worked Examples . 28
3.5 Summary . 30

4 Matrices . 31
4.1 Introduction . 31
4.2 Rectangular and Square Matrices 31
4.3 Matrix Shorthand . 32
4.4 Matrix Addition and Subtraction 32
4.5 Matrix Scaling . 33

ix

x Contents

4.6 Matrix Multiplication . 34
4.6.1 Vector Scalar Product . 35
4.6.2 The Vector Product . 37

4.7 The Zero Matrix . 37
4.8 The Negative Matrix . 38
4.9 Diagonal Matrix . 38
4.10 The Identity Matrix . 39
4.11 The Transposed Matrix . 40
4.12 Trace . 43
4.13 Symmetric Matrix . 44
4.14 Antisymmetric Matrix . 45
4.15 Inverse Matrix . 47

4.15.1 Cofactor Matrix . 48
4.16 Orthogonal Matrix . 50
4.17 Worked Examples . 51
4.18 Summary . 54

5 2D Matrix Transforms . 55
5.1 Introduction . 55
5.2 Transforms . 55

5.2.1 Homogeneous Coordinates 57
5.3 Translation . 58
5.4 Scaling . 60
5.5 Reflection . 63

5.5.1 Reflection About the x and y Axis 63
5.5.2 Reflection About a Horizontal or Vertical Axis 64
5.5.3 Reflection in a Line Intersecting the Origin 65

5.6 Shearing . 67
5.7 Rotation . 68

5.7.1 Rotation About an Arbitrary Point 70
5.7.2 Rotation and Translation 72
5.7.3 Composite Rotations . 73

5.8 Change of Axes . 73
5.9 Eigenvectors and Eigenvalues . 75
5.10 Worked Examples . 79
5.11 Summary . 81

6 3D Transforms . 83
6.1 Introduction . 83
6.2 Scaling . 83
6.3 Translation . 84
6.4 Shearing . 85
6.5 Reflection in a Plane Intersecting the Origin 85
6.6 Rotation . 87

6.6.1 Rotation About an Off-Set Axis 88
6.6.2 Composite Rotations . 89

Contents xi

6.7 3D Eigenvectors . 94
6.8 Gimbal Lock . 102
6.9 Yaw, Pitch and Roll . 103
6.10 Rotation About an Arbitrary Axis 106

6.10.1 Matrices . 106
6.10.2 Vectors . 110

6.11 Worked Examples . 113
6.12 Summary . 115

7 Quaternions . 117
7.1 Introduction . 117
7.2 Adding and Subtracting Quaternions 118
7.3 Multiplying Quaternions . 118
7.4 Pure Quaternion . 119
7.5 The Inverse Quaternion . 119
7.6 Unit-Norm Quaternion . 120
7.7 Rotating Points About an Axis 120
7.8 Roll, Pitch and Yaw Quaternions 123
7.9 Quaternions in Matrix Form . 125

7.9.1 Vector Method . 126
7.9.2 Matrix Method . 128
7.9.3 Geometric Verification 131

7.10 Multiple Rotations . 133
7.11 Eigenvalue and Eigenvector . 134
7.12 Rotating About an Off-Set Axis 136
7.13 Frames of Reference . 138
7.14 Euler Angles to Quaternion . 139
7.15 Worked Examples . 142
7.16 Summary . 145

8 Conclusion . 147

Appendix Composite Point Rotation Sequences 149
A.1 Euler Rotations . 149
A.2 Rγ,xRβ,yRα,x . 150
A.3 Rγ,xRβ,yRα,z . 151
A.4 Rγ,xRβ,zRα,x . 152
A.5 Rγ,xRβ,zRα,y . 153
A.6 Rγ,yRβ,xRα,y . 154
A.7 Rγ,yRβ,xRα,z . 156
A.8 Rγ,yRβ,zRα,x . 157
A.9 Rγ,yRβ,zRα,y . 157
A.10 Rγ,zRβ,xRα,y . 158
A.11 Rγ,zRβ,xRα,z . 159
A.12 Rγ,zRβ,yRα,x . 161
A.13 Rγ,zRβ,yRα,z . 162

Index . 165

Chapter 1
Introduction

1.1 Matrix Transforms

Ever since the invention of computers there has been an acute interest in using them
for graphical applications. In the first computers, when cathode ray tubes were used
to display messages, it was possible to manipulate patterns of characters and simu-
late simple games such as ‘noughts and crosses’. When vector graphic devices were
invented, lines could be drawn on display screens and used to represent 2D plans
and eventually perspective views of 3D objects. Computer graphics was eventually
born from these humble beginnings, and today it has become a global industry, and
so large that is difficult to estimate its true value. Computer games and animation
are two important areas of computer graphics, and during the past fifty years soft-
ware systems have been developed to model, animate, render 3D scenes and create
life-like characters.

From small graphic icons on mobile phones, to the complex CAD descriptions
for the Large Hadron Collider in Geneva, computer graphics has emerged as a so-
phisticated science that relies upon mathematics to describe its algorithms. Math-
ematics plays a central role in representing geometry, colour, texture, illumination
and motion. Simultaneously, hardware in the form of high-performance graphics
boards, have become so fast and sophisticated that gaming systems costing a few
tens of dollars, can render complex scenes in real time with incredible realism.

No matter whether computer graphics is used in medical imaging, graphing stock
movements, film special effects or computer games, one finds a common set of
mathematical tools in the form of matrices. These mathematical objects provide a
convenient way to control scale, position, shear, reflection and rotation. However,
they are also widely used to generate curved lines and surfaces. But in order to de-
scribe the role of matrices for curved lines and surfaces, one would have to cover the
algebra of quadratic and cubic curves, which is described in detail elsewhere. (Math-
ematics for Computer Graphics by the author.) So, in this book, I have confined the
application of matrices to the above mentioned transforms.

Out of all the transforms used in computer graphics, rotation causes most prob-
lems. The reason for this is two-fold: First, rotations can be difficult to visualise; sec-

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5_1, © Springer-Verlag London 2012

1

2 1 Introduction

ond, they are frequently combined to rotate about two or three axes. Consequently,
I have described rotation transforms in some detail, and I have also spent some time
describing rotation about an arbitrary axis. I have also included material on quater-
nions from my recent book Quaternions for Computer Graphics, as they have a
useful matrix representation.

1.2 Mathematics

In mathematics one often comes across statements such as: “By definition, the de-
terminant of a matrix is given by. . . .” or “By definition, a quaternion is an ordered
pair. . . .” Personally, I find such statements annoying, as they fail to explain why
such definitions are made. It is unlikely that a mathematician suddenly thinks “I am
going to invent matrices which have a scalar value called a determinant, calculated
as follows.” Or, “I am going to invent quaternions, whose magnitude is computed
by. . . .” No, the reality is that after many months of analysis and trying to under-
stand a subject, a mathematician identifies the salient features of an invention and
formalises various definitions in order to accurately document its characteristics.
In the case of quaternions, Sir William Rowan Hamilton spent many years trying
to generalise 2D complex numbers to a higher dimension, and eventually stumbled
across a four-dimensional object comprising a scalar and a 3D complex number. A
quaternion is not an arbitrary definition by Hamilton, but something that emerged
through years of continuous study and research, until a spark of genius inspired him
to invent the object we know today.

One can understand the need for definitions in mathematics, for without them
there would be anarchy. Furthermore, it would be impractical to explain the history
behind every mathematical invention when introducing a new topic. However, as
this is an introductory book, I have tried to explain why various definitions are made,
which hopefully will improve the reader’s overall understanding of matrices and
their role in transforms.

1.3 The Book’s Structure

Matrix notation is introduced in Chap. 2, where I have shown how the notation
emerges naturally from the algebra associated with solving simultaneous equations.
One of the important expressions found in the algebra of simultaneous equations is
represented by the determinant and is closely associated with a matrix. Chapter 3
shows different ways to compute the determinant. Having shown how matrix no-
tation emerges from everyday algebra, Chap. 4 describes it formally, covering the
zero, negative, diagonal, identity, transposed, symmetric, antisymmetric, orthogonal
and inverse matrix. 2D and 3D transforms are described in Chaps. 5 and 6 respec-
tively. Finally, Chap. 7 introduces quaternions as an object for rotating vectors about
an axis, and develops their matrix form.

Chapter 2
Introduction to Matrix Notation

2.1 Introduction

In this chapter matrix notation is introduced as a tool for solving a pair of linear
equations. This reveals three important features about matrices: The first is the ex-
istence of a scalar value associated with a matrix called the determinant; the second
is matrix multiplication, and the third is matrix inversion. This prepares us for the
next chapter where we investigate the nature of the determinant for larger matrices.

2.2 Solving a Pair of Linear Equations

There are two simple ways to solve a pair of linear equations such as

24 = 6x + 4y (2.1)

10 = 2x + 2y. (2.2)

The first technique is graphical and the second is algebraic.

2.2.1 Graphical Technique

The graphical technique represents the equations as two straight lines which may be
coincident, parallel or intersect. The point of intersection could be located anywhere
with respect to the Cartesian axes, and could make it extremely difficult to identify
an accurate x–y position.

Figure 2.1 shows two lines representing (2.1) and (2.2), where the solution is
the point of intersection (2,3). Although the solution is easy to identify for these
equations, a more reliable and accurate technique is required. So let’s consider an
algebraic approach.

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5_2, © Springer-Verlag London 2012

3

4 2 Introduction to Matrix Notation

Fig. 2.1 Graphs of the
simultaneous linear equations

2.2.2 Algebraic Technique

The algebraic strategy is to manipulate (2.1) and (2.2) such that when they are added
or subtracted, the x or y coefficient disappears, which permits one variable to be
identified. The second variable is revealed by substituting the first in one of the
original equations. We begin by multiplying (2.2) by 2 to turn the 2y term into 4y:

2 × 10 = 2 × 2x + 2 × 2y

20 = 4x + 4y.

The pair of equations now become

24 = 6x + 4y (2.3)

20 = 4x + 4y. (2.4)

Subtracting (2.4) from (2.3) produces

4 = 2x,

which means that x = 2. To discover the corresponding value of y, we substitute
x = 2 in (2.1) to discover that y = 3.

This algebraic approach always provides an accurate result, so long as the orig-
inal equations are linearly independent. Now let’s find a general solution for any
pair of linear equations in two unknowns, with the proviso that they are linearly
independent. We start with the following pair of equations:

r = ax + by (2.5)

s = cx + dy. (2.6)

To eliminate the y coefficient we multiply (2.5) by d and (2.6) by b:

dr = adx + bdy (2.7)

bs = bcx + bdy. (2.8)

2.2 Solving a Pair of Linear Equations 5

Next, we subtract (2.8) from (2.7):

dr − bs = (ad − bc)x,

and

x = dr − bs

ad − bc
. (2.9)

To eliminate the x coefficient we multiply (2.5) by c and (2.6) by a:

cr = acx + bcy (2.10)

as = acx + ady. (2.11)

Next, we subtract (2.10) from (2.11):

as − cr = (ad − bc)y,

and

y = as − cr

ad − bc
. (2.12)

Note that (2.9) and (2.12) share the same denominator, ad − bc, where a, b, c

and d are the coefficients of x and y in the original simultaneous equations. This
denominator becomes zero if the equations are linearly dependent, and no solution
is possible.

Let’s test this general solution using the original equations (2.1) and (2.2) where:

a = 6, b = 4, c = 2, d = 2, r = 24, s = 10

x = dr − bs

ad − bc
= 48 − 40

12 − 8
= 2

y = as − cr

ad − bc
= 60 − 48

12 − 8
= 3.

The algebraic solution reveals some interesting patterns which emerge when we
consider a third technique using matrix notation, which is covered next.

2.2.3 Matrix Technique

Given a pair of linearly independent equations such as (2.1) and (2.2):

24 = 6x + 4y

10 = 2x + 2y

6 2 Introduction to Matrix Notation

their solution must depend on the constants and coefficients 24, 6, 4, 10, 2 and 2.
Matrix notation describes equations such that the coefficients are isolated from the
variables of x and y in a 2 × 2 square matrix:

[
6 4
2 2

]
,

or in the general case:

A =
[
a b

c d

]
,

where A identifies the matrix. The denominator ad − bc in (2.9) and (2.12) is the
difference between the cross-multiplied terms ad and bc. This is called the deter-
minant of the matrix, and is written.

|A| =
∣∣∣∣a b

c d

∣∣∣∣ = ad − bc.

To keep the notation consistent, the values 24 and 10, or the general values r and s,
are represented as a column matrix or column vector:

[
24
10

]
or

[
r

s

]
.

The variables x and y are also represented as a column vector:
[
x

y

]
.

Finally, we bring the above elements together as follows:
[

24
10

]
=

[
6 4
2 2

][
x

y

]
,

or for the general case: [
r

s

]
=

[
a b

c d

][
x

y

]
.

In either case, the original equations are reconstructed using the following rules:

1. Select r followed by ‘=’ and multiply the elements of the top row of the coeffi-
cient matrix by the elements of the x–y vector respectively:

r = ax + by.

2. Select s followed by ‘=’ and multiply the elements of the bottom row of the
coefficient matrix by the elements of the x–y vector respectively:

s = cx + dy.

2.2 Solving a Pair of Linear Equations 7

For example, the following matrix equation
[

30
20

]
=

[
2 3
4 5

][
x

y

]
,

represents the pair of linear equations

30 = 2x + 3y

20 = 4x + 5y.

The power of matrix notation is that there is no limit to the number of linear equa-
tions and variables one can manipulate. For example, the following matrix equation

⎡
⎣10

20
30

⎤
⎦ =

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦

⎡
⎣x

y

z

⎤
⎦ ,

represents the three linear equations

10 = x + 2y + 3z

20 = 4x + 5y + 6z

30 = 7x + 8y + 9z.

Any pair of linear equations can be represented as a matrix equation, and permits
us to write the solution in matrix form. For instance, the solution to the original
equations requires the following matrix equation:

[
x

y

]
=

[
e f

g h

][
r

s

]
,

which is another way of writing

x = er + f s

y = gr + hs.

But we have already computed two such equations:

x = dr − bs

ad − bc

y = as − cr

ad − bc

which can be expressed in matrix form. But before we do this, let’s substitute D =
ad − bc to simplify the equations:

x = 1

D
(dr − bs) (2.13)

8 2 Introduction to Matrix Notation

y = 1

D
(as − cr). (2.14)

Now let’s express (2.13) and (2.14) as a matrix equation
[
x

y

]
= 1

D

[
d −b

−c a

][
r

s

]
. (2.15)

So we now have a matrix solution for any pair of linear equations with two un-
knowns. Let’s test (2.15).

Example Here are two linearly independent equations:

24 = 4x + 3y

11 = x + 2y

where

a = 4, b = 3, c = 1, d = 2, r = 24, s = 11, D = 5

therefore, [
x

y

]
= 1

5

[
2 −3

−1 4

][
24
11

]

x = 1

5
(2 × 24 − 3 × 11) = 3

y = 1

5
(−1 × 24 + 4 × 11) = 4

which is correct.

Although matrix notation provides the same answers as algebra, so far, it does not
appear to offer any advantages. However, these will become apparent as we discover
more about matrix notation, such as matrix multiplication, which we cover next.

2.3 Matrix Multiplication

So far we have seen how to multiply a vector by a matrix. Now let’s discover how
to multiply one matrix by another. For example, given

M =
[
a b

c d

]
, N =

[
e f

g h

]

what is

MN =
[
a b

c d

][
e f

g h

]
?

2.3 Matrix Multiplication 9

We can resolve this problem by solving the same problem using algebra. So let’s
start by declaring two linear equations of the form

x′′ = ax′ + by′ (2.16)

y′′ = cx′ + dy′ (2.17)

where

x′ = ex + fy (2.18)

y′ = gx + hy. (2.19)

Next, we substitute (2.18) and (2.19) in (2.16) and (2.17):

x′′ = a(ex + fy) + b(gx + hy)

y′′ = c(ex + fy) + d(gx + hy)

x′′ = (ae + bg)x + (af + bh)y (2.20)

y′′ = (ce + dg)x + (cf + dh)y. (2.21)

This algebraic answer must be the same as that given using matrix notation. So let’s
set up the same scenario using matrices. We begin with

[
x′′
y′′

]
=

[
a b

c d

][
x′
y′

]
(2.22)

[
x′
y′

]
=

[
e f

g h

][
x

y

]
. (2.23)

Next, we substitute (2.23) in (2.22)
[
x′′
y′′

]
=

[
a b

c d

][
e f

g h

][
x

y

]
. (2.24)

The matrix form of (2.20) and (2.21) is
[
x′′
y′′

]
=

[
ae + bg af + bh

ce + dg cf + dh

][
x

y

]
, (2.25)

which means that

MN =
[
a b

c d

][
e f

g h

]
=

[
ae + bg af + bh

ce + dg cf + dh

]
. (2.26)

Equation (2.26) shows how the product MN must be evaluated.
The terms of the top row of the first matrix: a and b, multiply the terms of the

first column of the second matrix e and g, giving the result ae + bg.

10 2 Introduction to Matrix Notation

Table 2.1 Subscripts for
matrix multiplication (mn)ij = mij × nij + mij × nij

(mn)11 = m11 × n11 + m12 × n21

(mn)12 = m11 × n12 + m12 × n22

(mn)21 = m21 × n11 + m22 × n21

(mn)22 = m21 × n12 + m22 × n22

The terms of the top row of the first matrix: a and b, multiply the terms of the
second column of the second matrix f and h, giving the result af + bh.

The terms of the bottom row of the first matrix: c and d , multiply the terms of
the first column of the second matrix e and g, giving the result ce + dg.

Finally, the terms of the bottom row of the first matrix: c and d , multiply the
terms of the second column of the second matrix f and h, giving the result cf +dh.

Observe that the product result is placed in the common matrix element shared
by the row in the first matrix and the column in the second matrix.

To formalise this operation, let’s reference any matrix element using the sub-
scripts (ij) where i is the row, and j the column.

Let mij be an element in M, nij an element in N, and (mn)ij be an element in
the product MN. For example, m11 = a, n22 = h and (mn)12 = af + bh.

Table 2.1 shows how the four elements of the matrix MN are formed from the
individual elements of M and N, which can be generalised to

(mn)ij = mi1 × n1j + mi2 × n2j .

For example, given

M =
[

1 2
3 4

]
, N =

[
2 3
4 5

]

then

MN =
[

1 2
3 4

][
2 3
4 5

]

=
[

1 × 2 + 2 × 4 1 × 3 + 2 × 5
3 × 2 + 4 × 4 3 × 3 + 4 × 5

]

=
[

10 13
22 29

]
.

Although it may not be immediately obvious, matrix multiplication is non-
commutative. i.e. in general, MN �= NM. For example,

NM =
[

e f

g h

][
a b

c d

]

=
[

ae + cf be + df

ag + ch bg + dh

]

2.4 Identity Matrix 11

which does not equal MN (2.26). Consequently, one has to be careful whenever two
or more matrices are multiplied together.

Now that we know how to form the product of two matrices, let’s look at a special
matrix, which when used to multiply another matrix results in the same matrix.

2.4 Identity Matrix

Algebra contains two important objects: the additive identity 0 and the multiplicative
identity 1, which obey the following rules:

a + 0 = 0 + a = a

a × 1 = 1 × a = a.

The matrix equivalent of 0 is 0 which contains only 0s:

0 =
[

0 0
0 0

]
,

whereas the matrix equivalent of 1 is not a matrix of 1s, but 0s and 1s. It is easy to
discover this matrix, simply by declaring the following pair of linear equations:

x = 1x + 0y

y = 0x + 1y

or in matrix form: [
x

y

]
=

[
1 0
0 1

][
x

y

]
. (2.27)

The matrix in (2.27) is called an identity matrix or a unit matrix I, and it is easy to
see that it has no effect when it pre- or post-multiplies another matrix:

[
a b

c d

]
=

[
1 0
0 1

][
a b

c d

]

[
a b

c d

]
=

[
a b

c d

][
1 0
0 1

]
.

Now that we have an identity matrix, let’s calculate the matrix equivalent of the
multiplicative inverse.

2.5 Inverse Matrix

The multiplicative inverse in algebra is an object that obeys the following rule:

a × a−1 = a−1 × a = 1.

12 2 Introduction to Matrix Notation

This suggests that for any matrix A, there is an inverse matrix A−1 such that

AA−1 = A−1A = I,

where I is the identity matrix. Unfortunately, an inverse matrix is not always possi-
ble, but for the moment let’s assume that this is the case. Thus, if

A =
[
a b

c d

]
and A−1 =

[
e f

g h

]
,

then AA−1 = I:

AA−1 =
[
a b

c d

][
e f

g h

]
=

[
1 0
0 1

]
. (2.28)

We can compute the inverse matrix by expanding (2.28):

[
ae + bg af + bh

ce + dg cf + dh

]
=

[
1 0
0 1

]
. (2.29)

Equating the matrix elements in (2.29) we have

ae + bg = 1,

where

g = 1 − ae

b
. (2.30)

Similarly,

ce + dg = 0,

where

g = −ce

d
. (2.31)

Therefore equating (2.30) and (2.31) we have

1 − ae

b
= −ce

d

d − ade = −bce

e = d

ad − bc
= d

D

where D = ad − bc.
Substituting e in (2.31)

g = −ce

d
= − c

d

d

D
= − c

D
.

2.5 Inverse Matrix 13

Equating the remaining matrix elements in (2.29) we have

af + bh = 0,

where

h = −af

b
. (2.32)

Similarly,

cf + dh = 1,

where

h = 1 − cf

d
. (2.33)

Therefore, equating (2.32) and (2.33) we have

−af

b
= 1 − cf

d

adf = −b + bcf

f = − b

D
.

Substituting f in (2.32)

h = −af

b
= a

b

b

D
= a

D
.

Substituting e, f , g and h in A−1 we have

A−1 =
[

e f

g h

]
= 1

D

[
d −b

−c a

]
,

which is the same matrix we computed in (2.15). Therefore, given an invertible
matrix A:

A =
[
a b

c d

]
,

its inverse A−1 is given by

A−1 = 1

D

[
d −b

−c a

]
,

where D = ad − bc. For example, given

A =
[

6 4
3 3

]
,

14 2 Introduction to Matrix Notation

then D = 6 and

A−1 = 1

6

[
3 −4

−3 6

]
.

The product AA−1 must equal the identity matrix I:

AA−1 =
[

6 4
3 3

]
1

6

[
3 −4

−3 6

]

= 1

6

[
6 0
0 6

]

=
[

1 0
0 1

]
.

The inverse matrix is an extremely useful object and plays an important role
in matrix transformations. It can also be used as an algebraic tool for rearranging
matrix equations. For example, given the following matrix equation

[
r

s

]
=

[
a b

c d

][
x

y

]
,

if we let

v′ =
[
r

s

]
, M =

[
a b

c d

]
, v =

[
x

y

]

then we can write in shorthand

v′ = Mv. (2.34)

Multiplying both sides of (2.34) by M−1 we have

M−1v′ = M−1Mv

= Iv

therefore,

v = M−1v′
[
x

y

]
= 1

D

[
d −b

−c a

][
r

s

]
.

We will employ this strategy later on when we investigate matrix algebra and trans-
formations.

2.6 Worked Examples 15

2.6 Worked Examples

Example 1 Solve the linearly independent equations:

9 = 3x + 2y

1 = 4x − y.

Using
[
x

y

]
= 1

D

[
d −b

−c a

][
r

s

]
,

where

r = 9, s = 1, a = 3, b = 2, c = 4, d = −1

then D = −11, and
[
x

y

]
= − 1

11

[−1 −2
−4 3

][
9
1

]

= − 1

11

[−11
−33

]

=
[

1
3

]
.

Example 2 Solve the linearly independent equations:

7 = 3x − y

0 = −2x − 4y.

Using
[
x

y

]
= 1

D

[
d −b

−c a

][
r

s

]
,

where

r = 7, s = 0, a = 3, b = −1, c = −2, d = −4,

then D = −14, and
[

x

y

]
= − 1

14

[−4 1
2 3

][
7
0

]

= − 1

14

[−28
14

]

16 2 Introduction to Matrix Notation

=
[

2
−1

]
.

Example 3 Solve the trivial, linearly independent equations:

1 = x

1 = y.

Using
[
x

y

]
= 1

D

[
d −b

−c a

][
r

s

]
,

where

r = 1, s = 1, a = 1, b = 0, c = 0, d = 1,

then D = 1, and
[
x

y

]
= 1

1

[
1 0
0 1

][
1
1

]

=
[

1
1

]
.

Example 4 Solve the following equations:

4 = 6x − 4y

2 = 3x − 2y.

Using
[
x

y

]
= 1

D

[
d −b

−c a

][
r

s

]
,

where

r = 4, s = 2, a = 6, b = −4, c = 3, d = −2,

then D = 0, which confirms that the equations are not linearly independent. The
second equation is half the first.

2.7 Summary

Hopefully, this chapter has provided a quick introduction to the ideas behind matrix
notation, which is just another way of representing a collection of linear equations.

2.7 Summary 17

So far, we have only considered two simultaneous linear equations, but there is no
limit—a matrix grows in size as the number of equations increases.

We employ special rules when multiplying matrices to ensure that the result
agrees with that obtained using algebra. These rules apply to all of the matrices
covered in this book.

As we tend to multiply matrices together, rather than add them, we are particu-
larly interested in the identity matrix, which is equivalent to the number 1 in algebra.
We are also interested in the inverse matrix, which when used to multiply the origi-
nal matrix creates the identity matrix.

We have seen that very obvious patterns arise from the coefficients when solv-
ing pairs and triples of linear equations. One reoccurring pattern is given the name
‘determinant’, and is derived from the associated matrix. For a 2 × 2 matrix it is
the difference of the cross products. Other rules are employed for 3 × 3 and 4 × 4
matrices.

Before developing a formal description of matrix algebra, we will explore how
to compute the determinant for any size matrix.

Chapter 3
Determinants

3.1 Introduction

In this chapter we investigate how the determinant evolved as a mathematical object
and how its scalar value is computed for matrices of different sizes. Once again, the
context is simultaneous linear equations, but this time we employ three equations in
three unknowns.

The Babylonians were aware of problems involving three unknowns and knew
that three scenarios are required to solve such problems. For example, given three
types of corn A,B and C, bundled up such that their individual weight is unknown:

1 bag of A, plus 2 bags of B , plus 3 bags of C equals 20 measures
3 bags of A, plus 1 bag of B , plus 2 bags of C equals 17 measures
2 bags of A, plus 1 bag of B , plus 1 bag of C equals 11 measures

the object is to discover the weights of the three corn types.
The Babylonians were aware that this is a linear problem and the three scenar-

ios can be scaled up and down, added or subtracted. To resolve the problem, the
coefficients of A,B and C are represented as a table as shown in Table 3.1.

The objective is to change the coefficients such that one scenario contains two
zeros. Table 3.2 shows the coefficients when we subtract scenario 2 from 3 × 1.

Table 3.3 shows the coefficients when we subtract scenario 3 × 3 from 2 × 2.
Table 3.4 shows the coefficients when we add 5× scenario 2 to 1.
Scenario 1 in Table 3.4 shows that 12×C = 48, which makes C = 4. Substituting

this value in scenario 1 in Table 3.3, makes B = 3. Finally, substituting values of B

and C in scenario 1 of Table 3.1, makes A = 2.
The solution to the problem is A = 2, B = 3, C = 4.
This technique is still used to solve simple linear problems in several unknowns.

However, it does require a deal of numerical pattern recognition, and accurate cal-
culations. Nevertheless, it demonstrates that the Babylonians knew that the matrix
of coefficients held the secret to the problem’s solution.

Let us continue and show how the determinant of a matrix helps us understand
how to develop a general-purpose solution.

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5_3, © Springer-Verlag London 2012

19

20 3 Determinants

Table 3.1 Coefficients for
the three scenarios Corn Scenarios

1 2 3

A 1 3 2

B 2 1 1

C 3 2 1

measures 20 17 11

Table 3.2 Subtracting
scenario 2 from 3 × 1 Corn Scenarios

1 2 3

A 0 3 2

B 5 1 1

C 7 2 1

measures 43 17 11

Table 3.3 Subtracting
scenario 3 × 3 from 2 × 2 Corn Scenarios

1 2 3

A 0 0 2

B 5 −1 1

C 7 1 1

measures 43 1 11

Table 3.4 Adding 5×
scenario 2 to 1 Corn Scenarios

1 2 3

A 0 0 2

B 0 −1 1

C 12 1 1

measures 48 1 7

3.2 Linear Equations in Three Unknowns

So far, we know that given the following matrix equation
[
r

s

]
=

[
a b

c d

][
x

y

]
,

3.2 Linear Equations in Three Unknowns 21

its solution involves the scalar ad −bc, which is the determinant of the matrix. What
we will now investigate is the determinant of a 3 × 3 matrix. We begin by declaring
three linear equations in three unknowns:

r = ax + by + cz (3.1)

s = dx + ey + f z (3.2)

t = gx + hy + iz. (3.3)

The objective is to rearrange the equations such that y and z terms are eliminated,
leaving x. The procedure is as follows: Multiply (3.1) by e and (3.2) by b to create
identical y coefficients:

er = aex + bey + cez (3.4)

bs = bdx + bey + bf z. (3.5)

Subtract (3.5) from (3.4) to eliminate the y term:

er − bs = (ae − bd)x + (ce − bf)z. (3.6)

Equation (3.6) only contains an x and z term. Next, we create another equation
containing an x and z term by combining (3.1) and (3.3).

Multiply (3.1) by h and (3.3) by e to create identical y coefficients:

hs = dhx + ehy + f hz (3.7)

et = egx + ehy + eiz. (3.8)

Subtract (3.8) from (3.7) to eliminate the y term:

hs − et = (dh − eg)x + (f h − ei)z. (3.9)

Equation (3.9) only contains an x and z term, and can be combined with (3.6) to
eliminate the z term.

Multiply (3.6) by (f h − ei) and (3.9) by (ce − bf):

(er − bs)(f h − ei) = (ae − bd)(f h − ei)x + (ce − cf)(f h − ei)z (3.10)

(hs − et)(ce − bf) = (dh − eg)(ce − bf)x + (ce − bf)(f h − ei)z. (3.11)

Subtract (3.11) from (3.10) to eliminate the z term:

(er − bs)(f h − ei) − (hs − et)(ce − bf)

= [
(ae − bd)(f h − ei) − (dh − eg)(ce − bf)

]
x

eir − f hr − bis + chs − cet + bf t

= (aei + bfg + cdh − af h − bdi − ceg)x

22 3 Determinants

eir − f hr − bis + chs − cet + bf t = Dx

therefore,

x = r(ei − f h) − s(bi − ch) + t (bf − ce)

D
, (3.12)

where

D = aei + bfg + cdh − af h − bdi − ceg. (3.13)

Using a similar technique of elimination, we can show that

y = −r(di − fg) + s(ai − cg) − t (af − cd)

D
(3.14)

z = r(dh − eg) − s(ah − bg) + t (ae − bd)

D
. (3.15)

The first observation to make is that (3.12), (3.14) and (3.15) share a common de-
nominator D, which is the determinant of the matrix of coefficients and written:

D =
∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣ = aei + bfg + cdh − af h − bdi − ceg.

The triples aei, bfg, cdh, af h, etc., become apparent if we temporarily extend the
determinant as follows: ∣∣∣∣∣∣

a b c a b

d e f d e

g h i g h

∣∣∣∣∣∣ ,
where

aei =
∣∣∣∣∣∣
a b c a b

d e f d e

g h i g h

∣∣∣∣∣∣ , bfg =
∣∣∣∣∣∣
a b c a b

d e f d e

g h i g h

∣∣∣∣∣∣ ,

cdh =
∣∣∣∣∣∣
a b c a b

d e f d e

g h i g h

∣∣∣∣∣∣
and the negative terms are

−ceg =
∣∣∣∣∣∣
a b c a b

d e f d e

g h i g h

∣∣∣∣∣∣ , −af h =
∣∣∣∣∣∣
a b c a b

d e f d e

g h i g h

∣∣∣∣∣∣ ,

−bdi =
∣∣∣∣∣∣
a b c a b
d e f d e

g h i g h

∣∣∣∣∣∣ .

3.2 Linear Equations in Three Unknowns 23

This expansion is known as Sarrus’s Rule, after the French mathematician, J.P. Sar-
rus (1789–1861), and only works for a 3 × 3 matrix. For example, this determinant
is expanded as follows:

∣∣∣∣∣∣
2 0 4
3 1 0
4 2 2

∣∣∣∣∣∣
= 2 × 1 × 2 + 0 × 0 × 4 + 4 × 3 × 2 − 4 × 1 × 4 − 2 × 0 × 2 − 0 × 3 × 2

= 4 + 24 − 16

= 12.

The second observation concerns the three numerators of (3.12), (3.14) and (3.15):

x = r(ei − f h) − s(bi − ch) + t (bf − ce)

D
(3.16)

y = −r(di − fg) + s(ai − cg) − t (af − cd)

D
(3.17)

z = r(dh − eg) − s(ah − bg) + t (ae − bd)

D
(3.18)

which can be arranged as

x = rei + bf t + csh − cet − rf h − bsi

D

y = asi + rfg + cdt − csg − af t − rdi

D

z = aet + bsg + rdh − reg − ash − bdt

D
.

The numerators are the Sarrus expansion of the following determinants:

x =

∣∣∣∣
r b c
s e f

t h i

∣∣∣∣
D

(3.19)

y =

∣∣∣∣
a r c
d s f

g t i

∣∣∣∣
D

(3.20)

z =

∣∣∣∣
a b r
d e s
g h t

∣∣∣∣
D

. (3.21)

Note that the vector [r s t]T replaces the first column for the x value, the second
column for the y value, the third column for the z value. We now have a compact

24 3 Determinants

way for solving three simultaneous linear equations in three unknowns. For exam-
ple, let’s create three such equations given x = 1, y = 3 and z = 5:

20 = 2x + y + 3z

15 = 4x + 2y + z

26 = 3x + y + 4z.

The determinant D is given by

D =
∣∣∣∣∣∣
2 1 3
4 2 1
3 1 4

∣∣∣∣∣∣
= 2 × 2 × 4 + 1 × 1 × 3 + 3 × 4 × 1 − 3 × 2 × 3 − 2 × 1 × 1 − 1 × 4 × 4

= 16 + 3 + 12 − 18 − 2 − 16

= −5

and

x =

∣∣∣∣ 20 1 3
15 2 1
26 1 4

∣∣∣∣
−5

= −5

−5
= 1

y =

∣∣∣∣ 2 20 3
4 15 1
3 26 4

∣∣∣∣
−5

= −15

−5
= 3

z =

∣∣∣∣ 2 1 20
4 2 15
3 1 26

∣∣∣∣
−5

= −25

−5
= 5

which confirm the original values. Sarrus’s rule only applies for a 2 × 2 and 3 × 3
matrix, and another solution is required for larger matrices.

3.2.1 The Laplace Expansion

The French mathematician, Pierre Simon Laplace (1749–1827), invented a general
method for computing the determinant of any size matrix. To understand this solu-
tion, let’s return to the three equations (3.16), (3.17), (3.18) for x, y and z:

x = r(ei − f h) − s(bi − ch) + t (bf − ce)

D

y = −r(di − fg) + s(ai − cg) − t (af − cd)

D

3.2 Linear Equations in Three Unknowns 25

z = r(dh − eg) − s(ah − bg) + t (ae − bd)

D

which can be rearranged as

x = r(ei − f h) − b(si − f t) + c(sh − et)

D
(3.22)

y = a(si − f t) − r(di − fg) + c(dt − gs)

D
(3.23)

z = a(et − hs) − b(dt − gs) + r(dh − ge)

D
. (3.24)

We need only examine (3.22) to see what’s going on. The three numerator terms can
be expressed as follows:

r(ei − f h) = r

∣∣∣∣ e f

h i

∣∣∣∣
−b(si − f t) = −b

∣∣∣∣ s f

t i

∣∣∣∣
c(sh − et) = c

∣∣∣∣ s e

t h

∣∣∣∣ .
The multipliers r , b and c form the top row of the determinant in (3.22), but the
middle term b has switched signs. The three determinants are constructed from the
second and third rows leaving out the column containing the multiplier:

∣∣∣∣ e f

h i

∣∣∣∣ =
∣∣∣∣∣∣
r b c

s e f
t h i

∣∣∣∣∣∣
∣∣∣∣ s f

t i

∣∣∣∣ =
∣∣∣∣∣∣
r b c

s e f
t h i

∣∣∣∣∣∣
∣∣∣∣ s e

t h

∣∣∣∣ =
∣∣∣∣∣∣
r b c

s e f

t h i

∣∣∣∣∣∣ .

It should be no surprise that the determinant using Sarrus’s technique is identical
to the Laplace expansion, and is confirmed by recomputing the above determinant
using the expansion:

∣∣∣∣∣∣
2 1 3
4 2 1
3 1 4

∣∣∣∣∣∣ = 2

∣∣∣∣2 1
1 4

∣∣∣∣ − 1

∣∣∣∣4 1
3 4

∣∣∣∣ + 3

∣∣∣∣4 2
3 1

∣∣∣∣
= 2 × 7 − 1 × 13 + 3 × (−2)

26 3 Determinants

= 14 − 13 − 6

= −5.

Laplace described his expansion in terms of a determinat’s minor determinants,
which with the associated change of sign, are called cofactors. The cofactor cij

of an element aij is the minor determinant that remains after removing from the
original determinant the row i and the column j .

For example, in (3.25) the minor of a11 is identified by removing the first row
and the first column; the minor of a12 is identified by removing the first row and the
second column; and the minor of a13 is identified by removing the first row and
the third column.

|A| =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ . (3.25)

The three minor determinants for a11, a12 and a13 are respectively:

A11 =
∣∣∣∣a22 a23
a32 a33

∣∣∣∣ , A12 =
∣∣∣∣a21 a23
a31 a33

∣∣∣∣ , A13 =
∣∣∣∣a21 a22
a31 a32

∣∣∣∣
whereas, the three cofactors are

c11 = +a11A11

c12 = −a12A12

c13 = +a13A13.

In general, the minor of aij is denoted Aij .
Laplace proposed the following formulae for selecting the cofactor sign:

(−1)i+j ,

which generates the pattern for any size matrix
∣∣∣∣∣∣∣∣

+ − + . . .

− + − . . .

+ − + . . .

.

∣∣∣∣∣∣∣∣
.

Although we have chosen the first row to expand the above determinants, any row,
or column may be used. For example, computing the above determinant using the
third column we get:

∣∣∣∣∣∣
2 1 3
4 2 1
3 1 4

∣∣∣∣∣∣ = 3

∣∣∣∣4 2
3 1

∣∣∣∣ − 1

∣∣∣∣2 1
3 1

∣∣∣∣ + 4

∣∣∣∣2 1
4 2

∣∣∣∣

3.3 Linear Equations in Four Unknowns 27

= 3 × (−2) − 1 × (−1) + 4 × 0

= −6 + 1 + 0

= −5

or using the second row we get
∣∣∣∣∣∣
2 1 3
4 2 1
3 1 4

∣∣∣∣∣∣ = −4

∣∣∣∣1 3
1 4

∣∣∣∣ + 2

∣∣∣∣2 3
3 4

∣∣∣∣ − 1

∣∣∣∣2 1
3 1

∣∣∣∣
= −4 × 1 + 2 × (−1) − 1 × (−1)

= −4 − 2 + 1

= −5.

3.3 Linear Equations in Four Unknowns

The largest matrix we encounter in this book is a 4 × 4, and Laplace’s expansion
is also used to compute its determinant. Let’s begin with four simultaneous linear
equations in four unknowns:

r = ax + by + cz + dw

s = ex + fy + gz + hw

t = ix + jy + kz + lw

u = mx + ny + oz + pw

which in matrix notation is⎡
⎢⎢⎣

r

s

t

u

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a b c d

e f g h

i j k l

m n o p

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

w

⎤
⎥⎥⎦ . (3.26)

Using the same technique for solving three equations, we can write the solution as

x =

∣∣∣∣∣
r b c d
s f g h

t j k l
u n o p

∣∣∣∣∣
D

, y =

∣∣∣∣∣
a r c d
e s g h

i t k l
m u o p

∣∣∣∣∣
D

z =

∣∣∣∣∣
a b r d
e f s h

i j t l
m n u p

∣∣∣∣∣
D

, w =

∣∣∣∣∣
a b c r
e f g s

i j k t
m n o u

∣∣∣∣∣
D

28 3 Determinants

where

D =

∣∣∣∣∣∣∣∣

a b c d

e f g h

i j k l

m n o p

∣∣∣∣∣∣∣∣
.

Using the Laplace expansion we can write:

x =
r

∣∣∣∣
f g h

j k l
n o p

∣∣∣∣ − b

∣∣∣∣
s g h

t k l
u o p

∣∣∣∣ + c

∣∣∣∣
s f h

t j l
u n p

∣∣∣∣ − d

∣∣∣∣
s f g

t j k
u n o

∣∣∣∣
D

y =
a

∣∣∣∣
s g h

t k l
u o p

∣∣∣∣ − r

∣∣∣∣
e g h

i k l
m o p

∣∣∣∣ + c

∣∣∣∣
e s h
i t l
m u p

∣∣∣∣ − d

∣∣∣∣
e s g

i t k
m u o

∣∣∣∣
D

z =
a

∣∣∣∣
f s h

j t l
n u p

∣∣∣∣ − b

∣∣∣∣
e s h
i t l
m u p

∣∣∣∣ + r

∣∣∣∣
e f h

i j l
m n p

∣∣∣∣ − d

∣∣∣∣
e f s

i j t
m n u

∣∣∣∣
D

w =
a

∣∣∣∣
f g s

j k t
n o u

∣∣∣∣ − b

∣∣∣∣
e g s

i k t
m o u

∣∣∣∣ + c

∣∣∣∣
e f s

i j t
m n u

∣∣∣∣ − r

∣∣∣∣
e f g

i j k
m n o

∣∣∣∣
D

where

D = a

∣∣∣∣∣∣
f g h

j k l

n o p

∣∣∣∣∣∣ − b

∣∣∣∣∣∣
e g h

i k l

m o p

∣∣∣∣∣∣ + c

∣∣∣∣∣∣
e f h

i j l

m n p

∣∣∣∣∣∣ − d

∣∣∣∣∣∣
e f g

i j k

m n o

∣∣∣∣∣∣ .

The 3 × 3 determinants can either be expanded using Sarrus’s rule or using the
Laplace expansion.

3.4 Worked Examples

Example 1

14 = x + 2y + 3z

12 = 2x + 2y + 2z

4 = 2x − 2y + 2z.

3.4 Worked Examples 29

The determinant D is given by

D =
∣∣∣∣∣∣
1 2 3
2 2 2
2 −2 2

∣∣∣∣∣∣
= 1 × 2 × 2 + 2 × 2 × 2 + 3 × 2 × (−2)

− 1 × 2 × (−2) − 2 × 2 × 2 − 3 × 2 × 2

= 4 + 8 − 12 + 4 − 8 − 12

= −16

and

x =

∣∣∣∣
14 2 3
12 2 2
4 −2 2

∣∣∣∣
−16

= −16

−16
= 1

y =

∣∣∣∣ 1 14 3
2 12 2
2 4 2

∣∣∣∣
−16

= −32

−16
= 2

z =

∣∣∣∣
1 2 14
2 2 12
2 −2 4

∣∣∣∣
−16

= −48

−16
= 3

which is correct.

Example 2 Solve the four equations in four unknowns, where we know the answer
in advance. We begin with x = 1, y = 2, z = 3 and w = 4 and four equations:

20 = x + 2y + z + 3w

14 = 2x + y + 2z + w

14 = x + 3y + z + w

12 = 3x + y + z + w.

Therefore, ⎡
⎢⎢⎣

20
14
14
12

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 2 1 3
2 1 2 1
1 3 1 1
3 1 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

w

⎤
⎥⎥⎦ ,

and for x:

x =

∣∣∣∣∣
20 2 1 3
14 1 2 1
14 3 1 1
12 1 1 1

∣∣∣∣∣
D

,

30 3 Determinants

where

D =

∣∣∣∣∣∣∣∣

1 2 1 3
2 1 2 1
1 3 1 1
3 1 1 1

∣∣∣∣∣∣∣∣
.

Computing D using the Laplace expansion, we have

D =
∣∣∣∣∣∣
1 2 1
3 1 1
1 1 1

∣∣∣∣∣∣ − 2

∣∣∣∣∣∣
2 2 1
1 1 1
3 1 1

∣∣∣∣∣∣ +
∣∣∣∣∣∣
2 1 1
1 3 1
3 1 1

∣∣∣∣∣∣ − 3

∣∣∣∣∣∣
2 1 2
1 3 1
3 1 1

∣∣∣∣∣∣
= (1 + 2 + 3 − 1 − 1 − 6) − 2(2 + 6 + 1 − 3 − 2 − 2)

+ (6 + 3 + 1 − 9 − 2 − 1) − 3(6 + 3 + 2 − 18 − 2 − 1)

= −2 − 4 − 2 + 30

= 22

therefore,

x =
20

∣∣∣∣ 1 2 1
3 1 1
1 1 1

∣∣∣∣ − 2

∣∣∣∣ 14 2 1
14 1 1
12 1 1

∣∣∣∣ +
∣∣∣∣ 14 1 1

14 3 1
12 1 1

∣∣∣∣ − 3

∣∣∣∣ 14 1 2
14 3 1
12 1 1

∣∣∣∣
22

= 20(6 − 8) − 2(52 − 54) + (68 − 64) − 3(82 − 100)

22

= −40 + 4 + 4 + 54

22

= 1

which is correct. Using a similar technique it can be shown that y = 2, z = 3 and
w = 4.

3.5 Summary

In this chapter we have seen that a matrix possesses a special scalar value called the
determinant. This value is also found when solving groups of simultaneous equa-
tions algebraically. The determinant of a 2 × 2 matrix is the difference between the
diagonal coefficients, whereas we must employ the rules invented by Sarrus and
Laplace for a 3 × 3 matrix, and that of Laplace for larger matrices.

Chapter 4
Matrices

4.1 Introduction

In Chap. 2 we introduced the basic ideas behind matrices, and in Chap. 3 we saw
that there is scalar value, called the determinant, associated with a matrix. In this
chapter we return to matrix notation and explore matrix algebra. As matrix algebra
is a relatively large subject and includes matrices of complex numbers, this chapter
is confined to topics relevant to computer graphics transforms.

Matrix notation was researched by the British mathematician Arthur Cayley
(1821–1895) around 1858. Cayley formalised matrix algebra, along with the Amer-
ican mathematicians Benjamin and Charles Pierce. At the start of the 19th cen-
tury, the German mathematician Carl Gauss (1777–1855) had shown that transforms
were not commutative, i.e. AB �= BA, and Cayley’s matrix notation would help for-
malise such observations.

4.2 Rectangular and Square Matrices

Now that we know the background to matrices, we can define a matrix as a collection
of elements organised in rows and columns in the form of a rectangle or a square.
Here are two examples:

[
2 4 6
1 2 3

]
,

⎡
⎣3 5 7

2 4 6
1 2 3

⎤
⎦ .

Any element is identified by two indices describing its location in terms of its row
and column. For an element aij , i is the row index and j the column index:

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ .

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5_4, © Springer-Verlag London 2012

31

32 4 Matrices

The number of rows and columns determines the order of a matrix. For example,
the above matrix has m rows and n columns and is called a matrix of order m by
n. A square matrix with n columns and n rows is called a matrix of order n. Given
two matrices A and B with elements aij and bij respectively, they are equal if, and
only if, they are of the same order, and aij = bij for all pairs (ij). For example, in
the following matrices, A = B, but A �= C:

A =
[

3 5
2 4

]
, B =

[
3 5
2 4

]
, C =

[
2 5
2 4

]
.

4.3 Matrix Shorthand

In Chap. 2 we noted that matrix multiplication is non-commutative. We now investi-
gate how matrices behave generally, and we begin by declaring a shorthand notation
as

A ≡ [aij],
where i and j are natural numbers. This notation reminds us that A is a collection
of elements aij arranged as a rectangular or square array.

4.4 Matrix Addition and Subtraction

Matrix addition or subtraction is rarely performed in computer graphics transforms,
however if it is required, the matrices must be of the same order. Therefore, if A and
B are of the same order:

C = A ± B

[cij] = [aij] ± [bij]
where C has the same order as A and B.

As real number addition is commutative:

cij = aij ± bij = bij ± aij ,

for all pairs of ij , it follows that matrix addition is also commutative:

A + B = B + A.

It also follows that as real number addition is associative:

(aij + bij) + cij = aij + (bij + cij),

for all pairs of ij , so too is matrix addition:

(A + B) + C = A + (B + C).

4.5 Matrix Scaling 33

Example Given

A =
[

1 2
3 4

]
, B =

[
3 4
5 6

]

then

A + B =
[

1 2
3 4

]
+

[
3 4
5 6

]

=
[

4 6
8 10

]

A − B =
[

1 2
3 4

]
−

[
3 4
5 6

]

=
[−2 −2
−2 −2

]
.

4.5 Matrix Scaling

Matrix scaling is the action of multiplying each element of a matrix by a scaling
factor. For example, matrix A is scaled by λ as follows:

λA = λ[aij]
= [λaij]

where each element of A is multiplied by λ. If λ = 2 then

A =
[

1 2
3 4

]

λA =
[

2 4
6 8

]
.

It follows that if the elements of a matrix share a common factor, the factor can be
placed outside the matrix. For example,

B =
[

10 20
30 40

]

= 10

[
1 2
3 4

]
.

Example 1 Scale matrix M by −10:

M =
[−9 10
−20 4

]

34 4 Matrices

−10M =
[

90 −100
200 −40

]
.

Example 2 Identify the common factor of matrix N:

N =
[

4 12
32 40

]

= 4

[
1 3
8 10

]
.

4.6 Matrix Multiplication

In Chap. 2 we saw that for matrix multiplication to be consistent with its algebraic
equivalent, matrix multiplication must obey certain rules. For instance, given two
matrices A and B:

A =
[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]

then

AB =
[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
.

This can be generalised as follows:
Given two matrices A and B, where A is a matrix of order m × p with elements

aij , and B is a matrix of order p × n with elements bij , then C = AB is a matrix of
order m × n with elements cij , where

cij = ai1b1j + ai2b2j + ai3b3j + · · · + ainbnj ,

which can be expressed as

cij =
p∑

k=1

aikbkj . (4.1)

For example, two matrices of order 3 are multiplied as follows:

A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ , B =

⎡
⎣11 12 13

14 15 16
17 18 19

⎤
⎦ .

C = AB

=
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦

⎡
⎣11 12 13

14 15 16
17 18 19

⎤
⎦

4.6 Matrix Multiplication 35

=
⎡
⎣1×11+2×14+3×17 1×12+2×15+3×18 1×13+2×16+3×19

4×11+5×14+6×17 4×12+5×15+6×18 4×13+5×16+6×19
7×11+8×14+9×17 7×12+8×15+9×18 7×13+8×16+9×19

⎤
⎦

=
⎡
⎣ 90 144 102

216 231 246
342 366 390

⎤
⎦ .

Reversing the product such that C = BA gives

cij = bi1a1j + bi2a2j + bi3a3j + · · · + binanj ,

which, in general, changes every element of C and is the reason why matrix multi-
plication is non-commutative.

In order to form the product AB of two matrices A and B, the number of columns
in A must equal the number of rows in B. For example, given

A =
⎡
⎣2 4

3 1
4 2

⎤
⎦ , B =

[
1 2 3 4
3 1 2 3

]
.

Then

AB =
⎡
⎣2 4

3 1
4 2

⎤
⎦[

1 2 3 4
3 1 2 3

]

=
⎡
⎣2 × 1 + 4 × 3 2 × 2 + 4 × 1 2 × 3 + 4 × 2 2 × 4 + 4 × 3

3 × 1 + 1 × 3 3 × 2 + 1 × 1 3 × 3 + 1 × 2 3 × 4 + 1 × 3
4 × 1 + 2 × 3 4 × 2 + 2 × 1 4 × 3 + 2 × 2 4 × 4 + 2 × 3

⎤
⎦

=
⎡
⎣14 8 14 20

6 7 11 15
10 10 16 22

⎤
⎦ .

However, the product BA is not possible, because B has 4 columns, whereas A has
only 3 rows. Consequently, even though one matrix can premultiply another, it does
not hold that the reverse is possible. When two matrices satisfy this rule, they are
said to be conformable.

4.6.1 Vector Scalar Product

Vectors are normally represented by a column matrix, which permits them to be
premultiplied by some transforming matrix. However, they may also be represented

36 4 Matrices

by a row matrix. For example, a is a column vector, and b a row vector:

a =
⎡
⎣x

y

z

⎤
⎦ , b = [x y z].

Either type of vector can be transposed into the other by using the following nota-
tion:

b = aT or a = bT.

More will be said about transposing matrices later in this chapter.
In general, given two vectors:

a =
⎡
⎣ax

ay

az

⎤
⎦ , b =

⎡
⎣bx

by

bz

⎤
⎦

then

a • b = axbx + ayby + azbz.

We can express this product using matrices as follows:

aTb = [ax ay az]
⎡
⎣bx

by

bz

⎤
⎦

= [axbx + ayby + azbz].
i.e. a matrix with 1 row and 1 column, which is just a scalar quantity.

It is also possible to premultiply a row vector by a column vector, e.g. c = abT:

c =
⎡
⎣ax

ay

az

⎤
⎦ [bx by bz].

This product is evaluated as follows:

c =
⎡
⎣ax

ay

az

⎤
⎦ [bx by bz]

=
⎡
⎣axbx axby axbz

aybx ayby aybz

azbx azby azbz

⎤
⎦ .

For example, given

a =
⎡
⎣1

2
3

⎤
⎦ , b =

⎡
⎣5

6
7

⎤
⎦ .

4.7 The Zero Matrix 37

Then

abT =
⎡
⎣1

2
3

⎤
⎦ [5 6 7]

=
⎡
⎣1 × 5 1 × 6 1 × 7

2 × 5 2 × 6 2 × 7
3 × 5 3 × 6 3 × 7

⎤
⎦

=
⎡
⎣ 5 6 7

10 12 14
15 18 21

⎤
⎦ .

4.6.2 The Vector Product

Given a pair of vectors

a =
⎡
⎣ax

ay

az

⎤
⎦ , b =

⎡
⎣bx

by

bz

⎤
⎦

their cross product can be encoded as follows:

a × b =
∣∣∣∣∣∣

i j k
ax ay az

bx by bz

∣∣∣∣∣∣ ,

which when expanded is

a × b = aybzi + azbxj + axbyk − azby i − axbzj − aybxk

= (aybz − azby)i + (azbx − axbz)j + (axby − aybx)k

= (aybz − azby)i − (axbz − azbx)j + (axby − aybx)k.

4.7 The Zero Matrix

By definition, all the elements of a zero matrix equal zero and is represented by 0.
Here are some examples:

[0 0], [0 0 0],
[

0
0

]
,

⎡
⎣0

0
0

⎤
⎦ ,

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ .

It follows from the rules of matrix addition that A + 0 = A.

38 4 Matrices

4.8 The Negative Matrix

By definition, given a matrix A with elements aij , its negative form −A is defined
such that

−A = [−aij].
For example, if

A =
⎡
⎣ 1 −2 3

−4 5 −6
7 −8 9

⎤
⎦ ,

then

−A =
⎡
⎣−1 2 −3

4 −5 6
−7 8 −9

⎤
⎦ .

It follows that A + (−A) = 0, because

A + (−A) = [aij] + [−aij] = [0ij].

4.9 Diagonal Matrix

A diagonal matrix is a square matrix whose elements are zero, apart from its diag-
onal:

A =

⎡
⎢⎢⎢⎣

a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

⎤
⎥⎥⎥⎦ ,

consequently, the determinant of a diagonal matrix must be

|A| = a11 × a22 × · · · × ann.

Here is a diagonal matrix with its determinant

A =
⎡
⎣2 0 0

0 3 0
0 0 4

⎤
⎦

|A| = 2 × 3 × 4 = 24.

Now let’s consider the product of two diagonal matrices A and B with the same
order. The general product rule is

cij = ai1b1j + ai2b2j + ai3b3j + · · · + ainbnj ,

4.10 The Identity Matrix 39

for all ij pairs. As the rows of A multiply the columns of B, the only time there will
be a non-zero result, is when the row and column share a common diagonal element.
Consequently, the resulting product is also a diagonal matrix. Let’s illustrate this
using a 2 × 2 and a 3 × 3 matrix:

A =
[
a11 0
0 a22

]
, B =

[
b11 0
0 b22

]

AB =
[
a11 0
0 a22

][
b11 0
0 b22

]

=
[
a11b11 0

0 a22b22

]

which is a diagonal matrix. And for a 3 × 3 matrix:

A =
⎡
⎣a11 0 0

0 a22 0
0 0 a33

⎤
⎦ , B =

⎡
⎣b11 0 0

0 b22 0
0 0 b33

⎤
⎦

AB =
⎡
⎣a11 0 0

0 a22 0
0 0 a33

⎤
⎦

⎡
⎣b11 0 0

0 b22 0
0 0 b33

⎤
⎦

=
⎡
⎣a11b11 0 0

0 a22b22 0
0 0 a33b33

⎤
⎦

which is another diagonal matrix.

Example

A =
⎡
⎣2 0 0

0 4 0
0 0 6

⎤
⎦ , B =

⎡
⎣3 0 0

0 5 0
0 0 7

⎤
⎦

AB =
⎡
⎣6 0 0

0 20 0
0 0 42

⎤
⎦ .

It should be clear that matrix multiplication of diagonal matrices is commutative.
i.e. AB = BA.

4.10 The Identity Matrix

We have already come across the idea of the identity matrix, which corresponds to
the number 1 in algebra. Now that we have a definition of a diagonal matrix, we can

40 4 Matrices

define an identity matrix as a diagonal matrix with its diagonal elements equal to 1.
For example:

I2 =
[

1 0
0 1

]
, I3 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , I4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Thus when we multiply any matrix by In it leaves the matrix unchanged. We can
observe its action using a 4th-order matrix:

A =

⎡
⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦

I4A =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦ .

It is common to employ I as the identity matrix, as its order is determined by the
associated matrix. Note that IA = AI.

4.11 The Transposed Matrix

Once a matrix has been defined, its symmetry permits one to perform various geo-
metric operations. For example, we could rotate the matrix elements about a central
horizontal or vertical axis. However, one useful operation is to interchange rows and
columns. Such a matrix is called a transposed matrix and is denoted by AT. Thus,
given a matrix A:

A =

⎡
⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦

AT =

⎡
⎢⎢⎣

a11 a21 a31 a41
a12 a22 a32 a42
a13 a23 a33 a43
a14 a24 a34 a44

⎤
⎥⎥⎦ .

4.11 The Transposed Matrix 41

Only the diagonal elements remain unchanged. For example:

A =

⎡
⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤
⎥⎥⎦

AT =

⎡
⎢⎢⎣

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

⎤
⎥⎥⎦ .

Any order matrix can be transposed. For instance, the transpose of an n × m matrix
is an m × n matrix:

A =
⎡
⎣1 2

3 4
5 6

⎤
⎦ , AT =

[
1 3 5
2 4 6

]
.

Furthermore, (AT)T = A and (A + B)T = AT + BT. However, it is not true that
(AB)T = ATBT. We can see why by evaluating the transpose of the product of two
order 2 matrices. Given

A =
[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]

then

AT =
[
a11 a21
a12 a22

]
, BT =

[
b11 b21
b12 b22

]

and

AB =
[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
.

However,

(AB)T =
[
a11b11 + a12b21 a21b11 + a22b21

a11b12 + a12b22 a21b12 + a22b22

]
,

and

BTAT =
[
b11 b21
b12 b22

][
a11 a21
a12 a22

]

=
[
a11b11 + a12b21 a21b11 + a22b21

a11b12 + a12b22 a21b12 + a22b22

]

= (AB)T.

42 4 Matrices

Therefore, (AB)T = BTAT, whereas

ATBT =
[
a11 a21
a12 a22

][
b11 b21
b12 b22

]

=
[
a11b11 + a21b12 a11b21 + a21b22

a12b11 + a22b12 a12b21 + a22b22

]

�= (AB)T.

We can generalise the above as follows:
Suppose A is a matrix of order m × p with elements aij , and B is of order p × n

with elements bij . Then, if C = AB, it is of order m × n with elements cij , where

cij =
p∑

k=1

aikbkj .

Consequently,

cT
ij = cji =

p∑
k=1

ajkbki

=
p∑

k=1

bT
ika

T
kj

therefore,

CT = BTAT.

Using a similar technique, one can show that (ABC · · ·N)T = NT · · ·CTBTAT.

Example If

A =
[

2 3
4 2

]
, B =

[
1 2
5 3

]

then

AB =
[

2 3
4 2

][
1 2
5 3

]

=
[

17 13
14 14

]

(AB)T =
[

17 14
13 14

]

= BTAT

4.12 Trace 43

=
[

1 5
2 3

][
2 4
3 2

]

=
[

17 14
13 14

]
.

4.12 Trace

The trace of a square matrix A is defined as the sum of its diagonal elements and
written as Tr(A). For example:

A =

⎡
⎢⎢⎣

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

⎤
⎥⎥⎦

Tr(A) = 1 + 3 + 5 + 7 = 16.

In Chap. 6 we use the trace of a square matrix to reveal the angle of rotation
associated with a rotation matrix. And as we will be using the product of two or
more rotation transforms we require to establish that

Tr(AB) = Tr(BA),

to reassure ourselves that the trace operation is not sensitive to transform order, and
is readily proved as follows.

Given two square matrices A and B:

A =

⎡
⎢⎢⎢⎢⎣

a11 · · · · · · a1n

... a22
. . . a2n

...
. . .

. . .
...

an1 · · · · · · ann

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

b11 · · · · · · b1n

... b22
. . . b2n

...
. . .

. . .
...

bn1 · · · · · · bnn

⎤
⎥⎥⎥⎥⎦

then

AB =

⎡
⎢⎢⎢⎢⎣

a11 · · · · · · a1n

... a22
. . . a2n

...
. . .

. . .
...

an1 · · · · · · ann

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b11 · · · · · · b1n

... b22
. . . b2n

...
. . .

. . .
...

bn1 · · · · · · bnn

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

a11b11 · · · · · · a1n

... a22b22
. . . a2n

...
. . .

. . .
...

an1 · · · · · · annbnn

⎤
⎥⎥⎥⎥⎦

and Tr(AB) = a11b11 + a22b22 + · · · + annbnn.

44 4 Matrices

Hopefully, it is obvious that reversing the matrix sequence to BA only reverses
the a and b scalar elements on the diagonal, and therefore does not affect the trace
operation.

4.13 Symmetric Matrix

It is worth exploring two types of matrices called symmetric and antisymmetric ma-
trices, as we refer to them in later chapters. A symmetric matrix is a matrix which
equals its own transpose:

A = AT.

For example, the following matrix is symmetric:

A =
⎡
⎣1 3 4

3 2 4
4 4 3

⎤
⎦ .

The symmetric part of any square matrix can be isolated as follows. Given a matrix
A and its transpose AT

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ , AT =

⎡
⎢⎢⎢⎣

a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤
⎥⎥⎥⎦

their sum is

A + AT =

⎡
⎢⎢⎢⎣

2a11 a12 + a21 . . . a1n + an1
a12 + a21 2a22 . . . a2n + an2

...
...

. . .
...

a1n + an1 a2n + an2 . . . 2ann

⎤
⎥⎥⎥⎦ .

By inspection, A + AT is symmetric, and dividing by 2 we have

S = 1

2

(
A + AT)

,

which is defined as the symmetric part of A. For example, given

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ , AT =

⎡
⎣a11 a21 a31

a12 a22 a32
a13 a23 a33

⎤
⎦

then

S = 1

2

(
A + AT)

4.14 Antisymmetric Matrix 45

=
⎡
⎢⎣

a11
a12+a21

2
a13+a31

2
a12+a21

2 a22
a23+a32

2
a13+a31

2
a23+a32

2 a33

⎤
⎥⎦

=
⎡
⎢⎣

a11
s3
2

s2
2

s3
2 a22

s1
2

s2
2

s1
2 a33

⎤
⎥⎦

where

s1 = a23 + a32

s2 = a13 + a31

s3 = a12 + a21.

Using a real example:

A =
⎡
⎣0 1 4

3 1 4
4 2 6

⎤
⎦ , AT =

⎡
⎣0 3 4

1 1 2
4 4 6

⎤
⎦

S =
⎡
⎣0 2 4

2 1 3
4 3 6

⎤
⎦

which equals its own transpose.

4.14 Antisymmetric Matrix

An antisymmetric matrix is a matrix whose transpose is its own negative:

AT = −A,

and is also known as a skew symmetric matrix.
As the elements of A and AT are related by

aij = −aji .

When k = i = j :

akk = −akk,

which implies that the diagonal elements must be zero. For example, this is an anti-
symmetric matrix ⎡

⎣ 0 6 2
−6 0 −4
−2 4 0

⎤
⎦ .

46 4 Matrices

In general, we have

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦ , AT =

⎡
⎢⎢⎢⎣

a11 a21 · · · an1
a12 a22 · · · an2
...

...
. . .

...

a1n a2n · · · ann

⎤
⎥⎥⎥⎦

and their difference is

A − AT =

⎡
⎢⎢⎢⎣

0 a12 − a21 · · · a1n − an1
−(a12 − a21) 0 · · · a2n − an2

...
...

. . .
...

−(a1n − an1) −(a2n − an2) · · · 0

⎤
⎥⎥⎥⎦ .

It is clear that A − AT is antisymmetric, and dividing by 2 we have

Q = 1

2

(
A − AT)

.

For example:

A =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ , AT =

⎡
⎣a11 a21 a31

a12 a22 a32
a13 a23 a33

⎤
⎦

Q =
⎡
⎢⎣

0 a12−a21
2

a13−a31
2

a21−a12
2 0 a23−a32

2
a31−a13

2
a32−a23

2 0

⎤
⎥⎦

and if we maintain some symmetry with the subscripts, we have

Q =
⎡
⎢⎣

0 a12−a21
2 − a31−a13

2

− a12−a21
2 0 a23−a32

2
a31−a13

2 − a23−a32
2 0

⎤
⎥⎦

=
⎡
⎢⎣

0 q3
2 − q2

2
− q3

2 0 q1
2

q2
2 − q1

2 0

⎤
⎥⎦

where

q1 = a23 − a32

q2 = a31 − a13

q3 = a12 − a21.

4.15 Inverse Matrix 47

Using a real example:

A =
⎡
⎣0 1 4

3 1 4
4 2 6

⎤
⎦ , AT =

⎡
⎣0 3 4

1 1 2
4 4 6

⎤
⎦

Q =
⎡
⎣0 −1 0

1 0 1
0 −1 0

⎤
⎦ .

Furthermore, we have already computed

S =
⎡
⎣0 2 4

2 1 3
4 3 6

⎤
⎦ ,

and

S + Q =
⎡
⎣0 1 4

3 1 4
4 2 6

⎤
⎦ = A.

4.15 Inverse Matrix

We have already come across the idea of the inverse matrix in Chap. 2, where we
saw that it is possible for a square matrix A to have an inverse form A−1 such that
the product AA−1 = I. When we come onto matrix transforms, we will discover
that a matrix A performs a transformation, such as a rotation about an axis, whilst
its inverse A−1 performs the inverse transformation, which rotates in the opposite
direction.

So a useful definition for an inverse matrix is: Let A be a square matrix of order
n, and A−1 be another square matrix of order n, such that their product AA−1 =
A−1A = I. This definition preempts the possibility of matrices that do not have an
inverse. For example, the matrix A

A =
[

1 1
1 1

]
,

does not have an inverse as its determinant is zero. Therefore, from now on, when
we talk about an inverse matrix, we assume the existence of the inverse form.

One way to derive an inverse matrix employs a cofactor matrix, which is based
upon the cofactors associated with any matrix element. This was introduced in
Chap. 3.

48 4 Matrices

4.15.1 Cofactor Matrix

Although the idea of cofactors has been described in the context of determinants,
they can also be applied to matrices. For example, let’s start with the following
matrix and its cofactor matrix

A =
⎡
⎣0 1 3

2 1 4
4 2 6

⎤
⎦

cofactor matrix of A =
⎡
⎣A11 A12 A13

A21 A22 A23
A31 A32 A33

⎤
⎦

where

A11 = +
∣∣∣∣a22 a23
a32 a33

∣∣∣∣ = +
∣∣∣∣1 4
2 6

∣∣∣∣ = −2

A12 = −
∣∣∣∣a21 a23
a31 a33

∣∣∣∣ = −
∣∣∣∣2 4
4 6

∣∣∣∣ = 4

A13 = +
∣∣∣∣a21 a23
a31 a33

∣∣∣∣ = +
∣∣∣∣2 1
4 2

∣∣∣∣ = 0

A21 = −
∣∣∣∣a22 a23
a32 a33

∣∣∣∣ = −
∣∣∣∣1 3
2 6

∣∣∣∣ = 0

A22 = +
∣∣∣∣a11 a13
a31 a33

∣∣∣∣ = +
∣∣∣∣0 3
4 6

∣∣∣∣ = −12

A23 = −
∣∣∣∣a11 a12
a31 a32

∣∣∣∣ = −
∣∣∣∣0 1
4 2

∣∣∣∣ = 4

A31 = +
∣∣∣∣a12 a13
a22 a23

∣∣∣∣ = +
∣∣∣∣1 3
1 4

∣∣∣∣ = 1

A32 = −
∣∣∣∣a11 a13
a21 a23

∣∣∣∣ = −
∣∣∣∣0 3
2 4

∣∣∣∣ = 6

A33 = +
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = +
∣∣∣∣0 1
2 1

∣∣∣∣ = −2

therefore, the cofactor matrix of A is

⎡
⎣−2 4 0

0 −12 4
1 6 −2

⎤
⎦ .

4.15 Inverse Matrix 49

It can be shown that the product of a matrix with the transpose of its cofactor matrix
has the following form:

A(cofactor matrix of A)T =

⎡
⎢⎢⎢⎣

|A| 0 · · · 0
0 |A| · · · 0
...

...
. . .

...

0 0 0 |A|

⎤
⎥⎥⎥⎦ ,

and dividing throughout by |A| we have

A(cofactor matrix of A)T

|A| = I,

which implies that

A−1 = (cofactor matrix of A)T

|A| .

Naturally, this assumes that the inverse actually exists.
Let’s find the inverse of the above matrix

A =
⎡
⎣0 1 3

2 1 4
4 2 6

⎤
⎦

(cofactor matrix of A) =
⎡
⎣−2 4 0

0 −12 4
1 6 −2

⎤
⎦

(cofactor matrix of A)T =
⎡
⎣−2 0 1

4 −12 6
0 4 −2

⎤
⎦

|A| = 1 × 4 × 4 + 3 × 2 × 2 − 1 × 2 × 6 − 3 × 1 × 4 = 4

A−1 = 1

4

⎡
⎣−2 0 1

4 −12 6
0 4 −2

⎤
⎦ .

Let’s check this result by multiplying A by A−1 which must equal I:

AA−1 =
⎡
⎣0 1 3

2 1 4
4 2 6

⎤
⎦ 1

4

⎡
⎣−2 0 1

4 −12 6
0 4 −2

⎤
⎦

= 1

4

⎡
⎣4 0 0

0 4 0
0 0 4

⎤
⎦

50 4 Matrices

=
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

Finally, let’s compute the inverse matrix of the following matrix using cofactors:

A =
[

2 3
4 −1

]

(cofactor matrix of A) =
[−1 −4
−3 2

]

(cofactor matrix of A)T =
[−1 −3
−4 2

]

|A| = 2 × (−1) − 3 × 4 = −14

A−1 = 1

14

[
1 3
4 −2

]
.

In general, the inverse of a 2 × 2 matrix is given by

A =
[
a11 a12
a21 a22

]

A−1 = 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]

which, for the above matrix is

A−1 = −1

14

[−1 −3
−4 2

]
= 1

14

[
1 3
4 −2

]
.

4.16 Orthogonal Matrix

Many of the matrices used in computer graphics are orthogonal, which means that
their inverse equals their transpose: A−1 = AT, and makes inversion extremely easy.
For example, a 2D rotation matrix is

A =
[

cos θ − sin θ

sin θ cos θ

]
,

and its transpose is

AT =
[

cos θ sin θ

− sin θ cos θ

]
,

4.17 Worked Examples 51

and their product is

AAT =
[

cos θ − sin θ

sin θ cos θ

][
cos θ sin θ

− sin θ cos θ

]

=
[

cos2 θ + sin2 θ 0
0 cos2 θ + sin2 θ

]

=
[

1 0
0 1

]

which confirms that AT = A−1.

4.17 Worked Examples

Example 1 Compute the sum, difference and product of the following matrices:

A =
[

1 2
3 4

]
, B =

[
4 3
6 5

]

A + B =
[

1 2
3 4

]
+

[
4 3
6 5

]
=

[
5 5
9 9

]

A − B =
[

1 2
3 4

]
−

[
4 3
6 5

]
=

[−3 −1
−3 −2

]

AB =
[

1 2
3 4

][
4 3
6 5

]
=

[
16 13
36 29

]
.

Example 2 Transpose the following matrices.

A =
[

6 1
3 2

]
, B = [1 2 3] , C =

⎡
⎣8

2
4

⎤
⎦

AT =
[

6 3
1 2

]
, BT =

⎡
⎣1

2
3

⎤
⎦ , CT = [8 2 4] .

Example 3 Compute abT, given

a =
⎡
⎣1

2
3

⎤
⎦ , b =

⎡
⎣3

4
5

⎤
⎦

abT =
⎡
⎣1

2
3

⎤
⎦ [3 4 5]

52 4 Matrices

=
⎡
⎣1 × 3 1 × 4 1 × 5

2 × 3 2 × 4 2 × 5
3 × 3 3 × 4 3 × 5

⎤
⎦

=
⎡
⎣3 4 5

6 8 10
9 12 15

⎤
⎦ .

Example 4 Find the trace of the following matrices.

A =
[

2 7
1 −2

]
, B =

⎡
⎣2 7 3

6 1 2
1 0 5

⎤
⎦ , C =

⎡
⎣0 4 3

9 1 5
8 3 0

⎤
⎦

Tr(A) = 0, Tr(B) = 8, Tr(C) = 1.

Example 5 Compute the symmetric and anti-symmetric parts of A, and their sum.

A =
⎡
⎣2 5 6

1 1 4
6 2 6

⎤
⎦ .

Given

S = 1

2

(
A + AT)

,

then

AT =
⎡
⎣2 1 6

5 1 2
6 4 6

⎤
⎦ ,

therefore, the symmetric part is

S = 1

2

(
A + AT)

= 1

2

⎛
⎝

⎡
⎣2 5 6

1 1 4
6 2 6

⎤
⎦ +

⎡
⎣2 1 6

5 1 2
6 4 6

⎤
⎦

⎞
⎠

=
⎡
⎣2 3 6

3 1 3
6 3 6

⎤
⎦ .

The anti-symmetric part is

Q = 1

2

(
A − AT)

4.17 Worked Examples 53

= 1

2

⎛
⎝

⎡
⎣2 5 6

1 1 4
6 2 6

⎤
⎦ −

⎡
⎣2 1 6

5 1 2
6 4 6

⎤
⎦

⎞
⎠

=
⎡
⎣ 0 2 0

−2 0 1
0 −1 0

⎤
⎦ .

Their sum is

S + Q =
⎡
⎣2 3 6

3 1 3
6 3 6

⎤
⎦ +

⎡
⎣ 0 2 0

−2 0 1
0 −1 0

⎤
⎦

=
⎡
⎣2 5 6

1 1 4
6 2 6

⎤
⎦

= A.

Example 6 Compute the inverse of A, and show that AA−1 = I.

A =
⎡
⎣0 2 6

1 0 2
2 1 3

⎤
⎦

(cofactor matrix of A) =
⎡
⎣−2 1 1

0 −12 4
4 6 −2

⎤
⎦

(cofactor matrix of A)T =
⎡
⎣−2 0 4

1 −12 6
1 4 −2

⎤
⎦

|A| = 2 × 2 × 2 + 6 × 1 × 1 − 2 × 1 × 3 = 8

A−1 = 1

8

⎡
⎣−2 0 4

1 −12 6
1 4 −2

⎤
⎦

AA−1 =
⎡
⎣0 2 6

1 0 2
2 1 3

⎤
⎦ 1

8

⎡
⎣−2 0 4

1 −12 6
1 4 −2

⎤
⎦

= 1

8

⎡
⎣8 0 0

0 8 0
0 0 8

⎤
⎦

54 4 Matrices

=
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

4.18 Summary

In this chapter we have extended and formalised matrix notation as described in
Chap. 2. Although a matrix can be rectangular or square, computer graphics matrix
transforms are square, which simplifies the associated algebra.

We have noted that matrices can be negated, scaled, added, subtracted, multiplied
and inverted. However, we will discover in the following chapters that only matrix
products and inversions are employed on a regular basis.

We have also seen that two special matrices exist: the zero matrix and the identity
matrix, that are equivalent to 0 and 1 used in real number algebra.

By swapping row elements with column elements a matrix is transposed, which
in the case of orthogonal matrices, inverts the matrix. This is extremely useful in
computer graphics transformations.

In the next chapter we investigate 2D and 3D transforms and discover their matrix
form.

Chapter 5
2D Matrix Transforms

5.1 Introduction

Cartesian coordinates provide a one-to-one relationship between number and shape,
such that when we change a shape’s coordinates, we transform its geometry. In
computer games and animation, the most widely used transforms include scaling,
translation, rotation, shearing and reflection.

Transformations are frequently described using vectors, however, in this intro-
ductory chapter, I have focussed on points belonging to a 2D shape. The difference
is not that important, as the point (x, y) can be regarded as the point a position
vector [x y]T is locating.

5.2 Transforms

A point P(x, y) is transformed into P ′(x′, y′) by the following general transform:

x′ = ax + by

y′ = cx + dy.

By using different values for a, b, c and d we can scale, shear, reflect or rotate a
point about the origin, and is represented by the following matrix transform:

[
x′
y′

]
=

[
a b

c d

][
x

y

]
. (5.1)

The determinant of a matrix transform controls the change of area that occurs to a
shape when its coordinates are transformed. For example, in (5.1) the determinant is
ad − bc, and if we subject the vertices of a unit-square to this transform, we create
the scenario shown in Fig. 5.1.

The vertices of the unit-square are transformed as follows:

(0,0) ⇒ (0,0)

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5_5, © Springer-Verlag London 2012

55

56 5 2D Matrix Transforms

Fig. 5.1 The inner
parallelogram is the
transformed unit square

(1,0) ⇒ (a, c)

(1,1) ⇒ (a + b, c + d)

(0,1) ⇒ (b, d).

From Fig. 5.1 it can be seen that the area of the transformed unit-square A′ is given
by

area = (a + b)(c + d) − B − C − D − E − F − G

= ac + ad + bc + bd − 1

2
bd − bc − 1

2
ac − 1

2
bd − bc − 1

2
ac

= ad − bc

which is the determinant of the matrix transform. But as the area of the original
unit-square is 1, the determinant of the matrix controls the scaling factor applied to
the transformed shape.

Returning to (5.1), it may have occurred to you that it cannot effect a translation,
as we need to increment both x and y by two offsets dx and dy :

x′ = ax + by + dx (5.2)

y′ = cx + dy + dy (5.3)

which in matrix form is [
x′
y′

]
=

[
a b

c d

][
x

y

]
+

[
dx

dy

]
,

and involves a matrix product and an addition. Whereas, all the other transforms
can be represented by a single matrix product. Fortunately, there is a cunning way
around this problem, which entails rewriting (5.2) and (5.3) as

x′ = ax + by + dxz (5.4)

5.2 Transforms 57

y′ = cx + dy + dyz (5.5)

with z = 1. The next problem is how to represent (5.4) and (5.5) in matrix form,
because the 2D point has effectively been turned into a 3D point with its z coordinate
equal to 1? Well, if that is what has happened, let’s place the equations in a 3D space
by adding a z coordinate with a value of 1:

x′ = ax + by + dx

y′ = cx + dy + dy

z′ = 0x + 0y + 1

which has this matrix form:⎡
⎣x′

y′
z′

⎤
⎦ =

⎡
⎣a b dx

c d dy

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

Placing the coordinate system into a space with an extra dimension is known as
homogeneous coordinates, and is widely employed within computer graphics soft-
ware. As you will see from the following section, the extra coordinate serves a
valuable service, and because its value is normally 1, it can be ignored.

5.2.1 Homogeneous Coordinates

Homogeneous coordinates surfaced in the early 19th century where they were in-
dependently proposed by the German mathematician August Ferdinand Möbius
(1790–1868) (who also invented a one-sided curled band, the Möbius strip), Feuer-
bach, Bobillier, and Plücker. Möbius named them barycentric coordinates, and they
have also been called areal coordinates because of their area-calculating properties.

Homogeneous coordinates define a point in a plane using three coordinates in-
stead of two. Initially, Plücker located a homogeneous point relative to the sides
of a triangle, but later revised his notation to the one employed in contemporary
mathematics and computer graphics. This states that for a point (x, y) there exists
a homogeneous point (xt, yt, t) where t is an arbitrary number. For example, the
point (3,4) has homogeneous coordinates (6,8,2), because 3 = 6/2 and 4 = 8/2.
But the homogeneous point (6,8,2) is not unique to (3,4); (12,16,4), (15,20,5)

and (300,400,100) are all possible homogeneous coordinates for (3,4).
The reason why this coordinate system is called ‘homogeneous’ is because it is

possible to transform functions such as f (x, y) into the form f (x/t, y/t) without
disturbing the degree of the curve. To the non-mathematician this may not seem
anything to get excited about, but in the field of projective geometry it is a very
powerful concept.

For our purposes we can imagine that a collection of homogeneous points of the
form (xt, yt, t) exist on an xy plane where t is the z coordinate as illustrated in

58 5 2D Matrix Transforms

Fig. 5.2 2D homogeneous
coordinates can be visualised
as a plane in 3D space where
t = 1, for convenience

Fig. 5.2. The figure shows a triangle on the t = 1 plane, and a similar triangle, much
larger, on a more distant plane. Thus instead of working in two dimensions, we can
work on an arbitrary xy plane in three dimensions. The t or z coordinate of the plane
is immaterial because the x and y coordinates are eventually scaled by t . However,
to keep things simple it seems a good idea to choose t = 1. This means that the point
(x, y) has homogeneous coordinates (x, y,1) making scaling superfluous.

If we substitute 3D homogeneous coordinates for traditional 2D Cartesian coor-
dinates we must attach 1 to every (x, y) pair. When a point (x, y,1) is transformed,
it emerges as (x′, y′,1), and we discard the 1. This may seem a futile exercise, but
it resolves the problem of creating a translation transform.

5.3 Translation

A translation is represented algebraically by

x′ = x + dx

y′ = y + dy

or as a homogeneous matrix transform by
⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣1 0 dx

0 1 dy

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

For example, to translate a shape by (3,1), as shown in Fig. 5.3, dx = 3 and dy = 1:
⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣1 0 3

0 1 1
0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

As the transform is applied to every vertex of a shape, there can be no change in
the shape’s geometry. It is neither rotated nor scaled, and consequently, the shape’s

5.3 Translation 59

Fig. 5.3 The shape has been
translated by (3,1)

area is unchanged. Furthermore, because the transform’s determinant is a measure
of the area change that occurs during the transform, the determinant of a translation
matrix must equal 1: ∣∣∣∣∣∣

1 0 dx

0 1 dy

0 0 1

∣∣∣∣∣∣ = 1.

In Chap. 4 we discovered that for orthogonal matrices, the inverse matrix is its trans-
pose. So, is a translation matrix orthogonal? Well the answer is no, and we can
demonstrate this by forming the product of the translation matrix with its transpose
to see if it equals the identity matrix:

⎡
⎣1 0 dx

0 1 dy

0 0 1

⎤
⎦

⎡
⎣ 1 0 0

0 1 0
dx dy 1

⎤
⎦ =

⎡
⎣1 + d2

x dxdy dx

dxdy 1 + d2
y dy

dx dy 1

⎤
⎦ ,

which is nothing like the identity matrix, therefore a translation matrix is not or-
thogonal.

We also discovered in Chap. 4 that the inverse matrix is given by

T−1 = (cofactor matrix of T)T

|T| ,

and as the determinant equals 1, the inverse translation matrix is

T−1 =
⎡
⎣ 1 0 0

0 1 0
−dx −dy 1

⎤
⎦

T

=
⎡
⎣1 0 −dx

0 1 −dy

0 0 1

⎤
⎦

60 5 2D Matrix Transforms

which should be no surprise. One last test confirms that

⎡
⎣1 0 −dx

0 1 −dy

0 0 1

⎤
⎦

⎡
⎣1 0 dx

0 1 dy

0 0 1

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

5.4 Scaling

Scaling is represented algebraically by

x′ = sx

y′ = sy

or as a matrix transform by

[
x′
y′

]
=

[
s 0
0 s

][
x

y

]
.

The scaling action is relative to the origin, i.e. the point (0,0) remains unchanged.
All other points move away from the origin when s > 1, or move towards the origin
when s < 1. It is also useful to employ independent scaling factors as follows:

[
x′
y′

]
=

[
sx 0
0 sy

][
x

y

]
.

The determinant of a general scaling matrix is given by
∣∣∣∣ sx 0

0 sy

∣∣∣∣ = sxsy,

and when sx = 2 and sy = 1.5, the determinant equals 3, which is the area increase
observed in Fig. 5.4.

To scale relative to another point (px,py), we first subtract (px,py) from (x, y)

respectively, which effectively makes the reference point (px,py) the new origin.
Second, we perform the scaling operation relative to the new origin, and third, add
(px,py) back to the new (x, y) respectively, to compensate for the original subtrac-
tion. Algebraically this is

x′ = sx(x − px) + px

y′ = sy(y − py) + py

which simplifies to

x′ = sxx + px(1 − sx)

5.4 Scaling 61

Fig. 5.4 The scaled shape
results by multiplying the x

coordinates by 2 and the y

coordinates by 1.5

y′ = syy + py(1 − sy)

or as a homogeneous matrix
⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣ sx 0 px(1 − sx)

0 sy py(1 − sy)

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ . (5.6)

For example, to scale a shape by 2 relative to the point (1,1) the matrix is
⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣2 0 −1

0 2 −1
0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

Let’s compute the determinant of (5.6) to ensure that the area change equals sxsy :
∣∣∣∣∣∣
sx 0 px(1 − sx)

0 sy py(1 − sy)

0 0 1

∣∣∣∣∣∣ = sxsy.

Now let’s explore the inverse scaling matrix. To begin with, the basic scaling matrix
is not orthogonal. i.e. the inverse is not its transpose:

S =
[
sx 0
0 sy

]

ST =
[
sx 0
0 sy

]

SST =
[
sx 0
0 sy

][
sx 0
0 sy

]

=
[
s2
x 0
0 s2

y

]

62 5 2D Matrix Transforms

which is not the identity matrix. Intuition, suggests that this is the inverse matrix:

S−1 =
[

1
sx

0

0 1
sy

]
,

because

SS−1 =
[
sx 0
0 sy

][
1
sx

0

0 1
sy

]
= I.

We could have derived this using

S−1 = (cofactor matrix of S)T

|S|

|S| =
∣∣∣∣ sx 0

0 sy

∣∣∣∣ = sxsy

S−1 = 1

sxsy

[
sy 0
0 sx

]T

=
[

1
sx

0

0 1
sy

]
.

Now let’s invert the matrix transform that scales relative to some point, (5.6):

SP =
⎡
⎣ sx 0 px(1 − sx)

0 sy py(1 − sy)

0 0 1

⎤
⎦

|SP | = sxsy

S−1
P = 1

sxsy

⎡
⎣ sy 0 0

0 sx 0
−sypx(1 − sx) −sxpy(1 − sy) sxsy

⎤
⎦

T

=
⎡
⎢⎣

1
sx

0 px(1 − 1
sx

)

0 1
sy

py(1 − 1
sy

)

0 0 1

⎤
⎥⎦

which can be confirmed by forming the product SP S−1
P :

SP S−1
P =

⎡
⎣ sx 0 px(1 − sx)

0 sy py(1 − sy)

0 0 1

⎤
⎦

⎡
⎢⎣

1
sx

0 px(1 − 1
sx

)

0 1
sy

py(1 − 1
sy

)

0 0 1

⎤
⎥⎦ = I.

5.5 Reflection 63

5.5 Reflection

We will investigate three ways of reflecting a point: The first is a reflection about
the x or y axis; the second is a reflection about any horizontal or vertical axis; and
the third is a reflection about an axis passing through the origin.

5.5.1 Reflection About the x and y Axis

When a point is reflected about the x axis, the sign of its y coordinate is reversed:

x′ = x

y′ = −y

which in matrix form is [
x′
y′

]
=

[
1 0
0 −1

][
x

y

]
.

Similarly, to reflect a point about the y axis, the sign of its x coordinate is reversed:

x′ = −x

y′ = y

which in matrix form is [
x′
y′

]
=

[−1 0
0 1

][
x

y

]
.

Note that the determinant of the reflection matrix is −1, which draws our attention
to the reversal of the shape’s spatial orientation. If the original vertex sequence is
clockwise, the reflected vertex sequence is counter-clockwise.

The reflection matrix is orthogonal because its transpose is its inverse:

Rx =
[

1 0
0 −1

]

RT
x =

[
1 0
0 −1

]

RxRT
x =

[
1 0
0 −1

][
1 0
0 −1

]

=
[

1 0
0 1

]
.

64 5 2D Matrix Transforms

5.5.2 Reflection About a Horizontal or Vertical Axis

To make a reflection about a horizontal or vertical axis we need to introduce some
more algebraic deception. For example, to make a reflection about the horizontal
axis y = ay , we first subtract (0, ay) from the point (x, y) respectively. This effec-
tively translates the point (x, y) to the x axis. Next we perform the reflection by
reversing the sign of the modified point’s y coordinate. And finally, we add (0, ay)

to the reflected (x, y) respectively, to compensate for the original subtraction. Alge-
braically, the steps are:

x′ = x

y1 = y − ay

y2 = −y1

y′ = −y1 + ay

= −y + ay + ay

= −y + 2ay

or in matrix form ⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣1 0 0

0 −1 2ay

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

Similarly, to reflect a shape about a vertical y axis, x = ax the following transform
is required:

x′ = −x + 2ax

y′ = y

or in matrix form ⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣−1 0 2ax

0 1 0
0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

Figure 5.5 shows a shape reflected about the x = 1 axis. Now let’s compute the
inverse matrix transform:

Ray =
⎡
⎣1 0 0

0 −1 2ay

0 0 1

⎤
⎦

|Ray | = −1

(cofactor matrix of Ray)
T =

⎡
⎣−1 0 0

0 1 −2ay

0 0 −1

⎤
⎦

5.5 Reflection 65

Fig. 5.5 The shape on the
right is reflected about the
x = 1 axis

R−1
ay

= (cofactor matrix of Ray)
T

|Ray |

=
⎡
⎣1 0 0

0 −1 2ay

0 0 1

⎤
⎦ = Ray .

5.5.3 Reflection in a Line Intersecting the Origin

So far we have considered reflections about horizontal and vertical axes, now let’s
consider a reflection about a line intersecting the origin, as shown in Fig. 5.6. The
line of reflection is specified by a unit vector u, and an associated perpendicular
vector n. The point to be reflected is P with position vector p, and the reflected
point is P ′ with position vector p′. We define vector p as

p = au + bn,

where

b = p · n.

We declare u and n as unit column vectors:

u =
[
ux

uy

]
, n =

[−uy

ux

]
, u2

x + u2
y = 1.

Therefore,

p′ = p − 2bn

= p − 2(p · n)n

= p − 2n(p · n).

66 5 2D Matrix Transforms

Fig. 5.6 Reflecting the point
P about the vector u to P ′

p · n is written in matrix form as nTp. Therefore,

p′ = p − 2nnTp.

We now have two references to p and require a mechanism to isolate it. This is
achieved by premultiplying p by the identity matrix I:

p′ = Ip − 2nnTp

= (
I − 2nnT)

p

where I − 2nnT is the transform R:

R =
[

1 0
0 1

]
− 2

[−uy

ux

]
[−uy ux]

=
[

1 0
0 1

]
− 2

[
u2

y −uxuy

−uxuy u2
x

]

=
[

1 − 2u2
y 2uxuy

2uxuy 1 − 2u2
x

]

=
[
u2

x − u2
y 2uxuy

2uxuy u2
y − u2

x

]
.

Therefore, we have:

[
x′
y′

]
=

[
u2

x − u2
y 2uxuy

2uxuy u2
y − u2

x

][
x

y

]
.

Let’s compute the determinant of R to show that it equals −1:

|R| =
∣∣∣∣u

2
x − u2

y 2uxuy

2uxuy u2
y − u2

x

∣∣∣∣
= (

u2
x − u2

y

)(
u2

y − u2
x

) − (2uxuy)(2uxuy)

5.6 Shearing 67

= u2
xu

2
y − u4

y − u4
x + u2

xu
2
y − 4u2

xu
2
y

= −(
u4

x + 2u2
xu

2
y + u4

y

)
= −(

u2
x + u2

y

)2

= −1.

Now let’s test R by making u intersect the origin at 45◦, where the point P(1,0) is
reflected to P ′(0,1):

uT =
[

1√
2

1√
2

]

P ′ =
[1

2 − 1
2 1

1 1
2 − 1

2

][
1
0

]

=
[

0 1
1 0

][
1
0

]

=
[

0
1

]
.

5.6 Shearing

We can shear a shape along the x or y axis by an angle α. Figure 5.7 shows the
scenario for a shear along the x axis, where we see that the y coordinates remain
unchanged but the x coordinates are a function of y and tanα.

x ′ = x + y tanα

y′ = y

or in matrix form [
x′
y′

]
=

[
1 tanα

0 1

][
x

y

]
.

The determinant equals 1, which confirms that there is no change in area after the
shear transform.

As tan(−α) = − tanα, the direction of shear is determined by the sign of the
angle, which makes the inverse transform equal to:

[
1 − tanα

0 1

]
,

which is confirmed by the transposed cofactor matrix technique.

68 5 2D Matrix Transforms

Fig. 5.7 The shape is sheared
along the x axis by angle α

Similarly, the transform for shearing along the y axis is given by

x′ = x

y′ = y + x tanα

or in matrix form [
x′
y′

]
=

[
1 0

tanα 1

][
x

y

]
.

5.7 Rotation

In 2D there are two rotation transforms: the first is about the origin, and the second
is about some arbitrary point. We will begin with the former.

Figure 5.8 shows a point P(x, y) which is rotated an angle β about the origin to
P ′(x′, y′), and as we are dealing with a pure rotation, both P ′ and P are distance R

from the origin.
From Fig. 5.8 it can be seen that

cos θ = x/R

sin θ = y/R

x′ = R cos(θ + β)

y′ = R sin(θ + β)

and substituting the identities for cos(θ + β) and sin(θ + β) we have

x′ = R(cos θ cosβ − sin θ sinβ)

y′ = R(sin θ cosβ + cos θ sinβ)

5.7 Rotation 69

Fig. 5.8 The point P (x, y) is
rotated through an angle β to
P ′(x′, y′)

x′ = R

(
x

R
cosβ − y

R
sinβ

)

y′ = R

(
y

R
cosβ + x

R
sinβ

)

x′ = x cosβ − y sinβ

y′ = x sinβ + y cosβ

or in matrix form [
x′
y′

]
=

[
cosβ − sinβ

sinβ cosβ

][
x

y

]
,

and is the transform for rotating points about the origin.
For example, to rotate a point 90◦ about the origin the transform becomes

[
x′
y′

]
=

[
0 −1
1 0

][
x

y

]
.

Thus the point (1,0) becomes (0,1).
Rotating a point 360◦ about the origin the transform becomes the identity matrix:

[
x′
y′

]
=

[
1 0
0 1

][
x

y

]
.

The following observations can be made about the rotation matrix Rβ :

Rβ =
[

cosβ − sinβ

sinβ cosβ

]
.

Its determinant equals 1:

|Rβ | = cos2 β + sin2 β = 1,

which confirms that there is no change in area when a shape is rotated.

70 5 2D Matrix Transforms

Its transpose is

RT
β =

[
cosβ sinβ

− sinβ cosβ

]
.

The product RβRT
β = I:

RβRT
β =

[
cosβ − sinβ

sinβ cosβ

][
cosβ sinβ

− sinβ cosβ

]
=

[
1 0
0 1

]
,

and because RβRT
β equals the identity matrix, R−1

β = RT
β :

R−1
β =

[
cosβ sinβ

− sinβ cosβ

]
,

means that Rβ is orthogonal.

5.7.1 Rotation About an Arbitrary Point

Now let’s see how to rotate a point (x, y) about an arbitrary point (dx, dy). The
strategy involves making the point of rotation a temporary origin, which is achieved
by subtracting (dx, dy) from the coordinates (x, y) respectively. Next, we perform a
rotation about the temporary origin, and finally, we add (dx, dy) back to the rotated
point to compensate for the original subtraction. Here are the steps:

1. Subtract (dx, dy) to create a new temporary origin:

x1 = (x − dx)

y1 = (y − dy).

2. Rotate (x1, y1) about the temporary origin by β:

x2 = (x − dx) cosβ − (y − dy) sinβ

y2 = (x − dx) sinβ + (y − dy) cosβ.

3. Add (dx, dy) to the rotated point (x2, y2) to return to the original origin:

x′ = x2 + dx

y′ = y2 + dy

x′ = (x − dx) cosβ − (y − dy) sinβ + dx

y′ = (x − dx) sinβ + (y − dy) cosβ + dy.

5.7 Rotation 71

Simplifying, we obtain

x′ = x cosβ − y sinβ + dx(1 − cosβ) + dy sinβ

y′ = x sinβ + y cosβ + dy(1 − cosβ) − dx sinβ

and in matrix form we have
⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣cosβ − sinβ dx(1 − cosβ) + dy sinβ

sinβ cosβ dy(1 − cosβ) − dx sinβ

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ . (5.7)

For example, if we rotate the point (2,1), 90◦ about the point (1,1), (5.7) becomes

⎡
⎣1

2
1

⎤
⎦ =

⎡
⎣0 −1 2

1 0 0
0 0 1

⎤
⎦

⎡
⎣2

1
1

⎤
⎦ ,

which is confirmed.
The above algebraic approach to derive the rotation transform is relatively easy.

However, it is also possible to use matrices to derive composite transforms, such as
a reflection relative to an arbitrary line or scaling and rotation relative to an arbitrary
point. All of these linear transforms are called affine transforms, as parallel lines
remain parallel after being transformed. Furthermore, the word ‘affine’ is used to
imply that there is a strong geometric affinity between the original and transformed
shape. One can not always guarantee that angles and lengths are preserved, as these
can change when different scaling factors are used. For completeness, let’s derive
this transform using matrices.

The homogeneous transform for rotating a point β about the origin is given by

Rβ =
⎡
⎣cosβ − sinβ 0

sinβ cosβ 0
0 0 1

⎤
⎦ ,

and a transform for translating a point (dx, dy) relative to the origin is given by

Tdx,dy =
⎡
⎣1 0 dx

0 1 dy

0 0 1

⎤
⎦ .

We can use Rβ and Tdx,dy to develop a composite transform for rotating a point
about an arbitrary point (dx, dy) as follows:

⎡
⎣x′

y′
1

⎤
⎦ = [Tdx,dy][Rβ][T−dx,−dy]

⎡
⎣x

y

1

⎤
⎦ , (5.8)

72 5 2D Matrix Transforms

where

[T−dx,−dy] creates a temporary origin
[Rβ] rotates β about the temporary origin
[Tdx,dy] returns to the original position.

Note that the transform sequence starts on the right next to the original coordinates,
working leftwards. Equation (5.8) expands to

⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣1 0 dx

0 1 dy

0 0 1

⎤
⎦

⎡
⎣cosβ − sinβ 0

sinβ cosβ 0
0 0 1

⎤
⎦

⎡
⎣1 0 −dx

0 1 −dy

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

Next, we multiply these matrices together to form a single matrix. Let’s begin by
multiplying the Rβ and T−dx,−dy matrices, which produces

⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣1 0 dx

0 1 dy

0 0 1

⎤
⎦

⎡
⎣cosβ − sinβ −dx cosβ + dy sinβ

sinβ cosβ −dx sinβ − dy cosβ

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ ,

and finally we obtain
⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣cosβ − sinβ dx(1 − cosβ) + dy sinβ

sinβ cosβ dy(1 − cosβ) − dx sinβ

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ ,

which is the same as the previous transform (5.7).

5.7.2 Rotation and Translation

There are two ways we can combine the rotate and translate transforms into a single
transform. The first way starts by translating a point P(x, y) using Tdx,dy to an
intermediate point P ′′(x +dx, y +dy) and then rotating this using Rβ . The problem
with this strategy is that the radius of rotation becomes large and subjects the point
to a large circular motion. The normal way is to first subject the point to a rotation
about the origin and then translate it:

P ′ = [Tdx,dy][Rβ]P⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣1 0 dx

0 1 dy

0 0 1

⎤
⎦

⎡
⎣cosβ − sinβ 0

sinβ cosβ 0
0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦

⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣cosβ − sinβ dx

sinβ cosβ dy

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

5.8 Change of Axes 73

For example, consider rotating the point P(1,0), 90◦ and then translating it by
(1,0). The rotation moves P to (0,1) and the translation moves it to (1,1). This is
confirmed by the above transform:

⎡
⎣1

1
1

⎤
⎦ =

⎡
⎣0 −1 1

1 0 0
0 0 1

⎤
⎦

⎡
⎣1

0
1

⎤
⎦ .

5.7.3 Composite Rotations

It is worth confirming that if we rotate a point β about the origin, and follow this by
a rotation of θ , this is equivalent to a single rotation of the point through an angle
θ + β . Let’s start with the transforms Rβ and Rθ :

Rβ =
[

cosβ − sinβ

sinβ cosβ

]

Rθ =
[

cos θ − sin θ

sin θ cos θ

]
.

We can represent the double rotation by the product RθRβ :

RθRβ =
[

cos θ − sin θ

sin θ cos θ

][
cosβ − sinβ

sinβ cosβ

]

=
[

cos θ cosβ − sin θ sinβ − cos θ sinβ − sin θ cosβ

sin θ cosβ + cos θ sinβ − sin θ sinβ + cos θ cosβ

]

=
[

cos(θ + β) − sin(θ + β)

sin(θ + β) cos(θ + β)

]

which confirms that the composite rotation is equivalent to a single rotation of θ +β .

5.8 Change of Axes

Points in one coordinate system often have to be referenced in another one. For ex-
ample, to view a 3D scene from an arbitrary position, a virtual camera is positioned
in the world space using a series of transforms. An object’s coordinates, which are
relative to the world frame of reference, are computed relative to the camera’s axial
system, and then used to develop a perspective projection. Let’s examine how one
changes axial systems in two dimensions.

Figure 5.9 shows a point P(x, y) relative to the xy axes, but we require to know
the coordinates relative to the x′y′ axes. To do this, we need to know the relation-
ship between the two coordinate systems, and ideally we want to apply a technique

74 5 2D Matrix Transforms

Fig. 5.9 The x′y′ axial
system is translated (dx, dy)

Fig. 5.10 The x′y′ axial
system is rotated β

that works in 2D and 3D. If the second coordinate system is a simple translation
(dx, dy) relative to the reference system, as shown in Fig. 5.9, the point P(x, y) has
coordinates relative to the translated system (x − dx, y − dy):

⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣1 0 −dx

0 1 −dy

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

If the x′y′ axes are rotated β relative to the xy axes, as shown in Fig. 5.10, a
point P(x, y) relative to the xy axes becomes P ′(x′, y′) relative to the rotated axes
is given by ⎡

⎣x′
y′
1

⎤
⎦ =

⎡
⎣cos(−β) − sin(−β) 0

sin(−β) cos(−β) 0
0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ ,

which simplifies to
⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣ cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

5.9 Eigenvectors and Eigenvalues 75

When a coordinate system is rotated and translated relative to the reference sys-
tem, a point P(x, y) becomes P ′(x′, y′) relative to the new axes given by

⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣ cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤
⎦

⎡
⎣1 0 −dx

0 1 −dy

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ ,

which simplifies to
⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣ cosβ sinβ −dx cosβ − dy sinβ

− sinβ cosβ dx sinβ − dy cosβ

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

5.9 Eigenvectors and Eigenvalues

Figure 5.11 shows the result of applying the following transform to a unit square.
There is a pronounced stretching in the first and third quadrants, and reduced stretch-
ing in the second and fourth quadrants.

[
x′
y′

]
=

[
4 1
1 4

][
x

y

]
.

It should be clear from Fig. 5.11 that any point (k, k) is transformed to another
point (5k,5k), and that its mirror point (−k,−k) is transformed to (−5k,−5k).
Similarly, any point (−k, k) is transformed to another point (−3k,3k), and its mirror
point (k,−k) is transformed to (3k,−3k). Thus the transform shows a particular
bias towards points lying on vectors [k k]T and [−k k]T, where k �= 0. These
vectors are called eigenvectors and the scaling factor is its eigenvalue. Figure 5.12
shows a scenario where a transform t moves point R to S, whilst the same transform
moves P —which lies on one of t’s eigenvectors, to Q—which also lies on the same
eigenvector.

We can define an eigenvector and its eigenvalue as follows. Given a square matrix
A, a non-zero vector v is an eigenvector, and λ is the corresponding eigenvalue if

Av = λv,

where λ is a scalar.
The German word eigen means characteristic, own, latent or special, and eigen-

vector means a special vector associated with a transform. The equation that deter-
mines the existence of any eigenvectors is called the characteristic equation of a
square matrix, and is given by

|A − λI| = 0. (5.9)

Let’s derive the characteristic equation (5.9).

76 5 2D Matrix Transforms

Fig. 5.11 Transforming points on four unit squares

Fig. 5.12 How a transform
reacts to different points

Consider the 2D transform t that maps the point (x, y) to another point (ax +
by, cx + dy):

t (x, y) �→ (ax + by, cx + dy).

This is expressed in matrix form as

t : v �→ Av,

or [
x′
y′

]
=

[
a b

c d

][
x

y

]
,

where

A =
[
a b

c d

]
, v =

[
x

y

]
.

5.9 Eigenvectors and Eigenvalues 77

Therefore, if v is an eigenvector of t , and λ its associated eigenvalue, then

Av = λv[
a b

c d

][
x

y

]
= λ

[
x

y

]

or in equation terms:

ax + by = λx

cx + dy = λy.

Rearranging, we have

(a − λ)x + by = 0

cx + (d − λ)y = 0

or back in matrix form: [
a − λ b

c d − λ

][
x

y

]
=

[
0
0

]
.

For a non-zero [x y]T to exist, we must have
∣∣∣∣a − λ b

c d − λ

∣∣∣∣ = 0,

which is called the characteristic equation. Let’s use this on the transform
[

4 1
1 4

][
x

y

]
=

[
x′
y′

]
.

Then ∣∣∣∣4 − λ 1
1 4 − λ

∣∣∣∣ = 0

(4 − λ)2 − 1 = 0

λ2 − 8λ + 16 − 1 = 0

λ2 − 8λ + 15 = 0

(λ − 5)(λ − 3) = 0.

Thus λ = 5 and λ = 3, are the two eigenvalues we observed in Fig. 5.11. Next, we
substitute the two values of λ in[

4 − λ 1
1 4 − λ

][
x

y

]
=

[
0
0

]
,

78 5 2D Matrix Transforms

to extract the eigenvectors. Let’s start with λ = 5:
[−1 1

1 −1

][
x

y

]
=

[
0
0

]
,

which represents the equation y = x or the vector [k k]T. Next, we substitute
λ = 3: [

1 1
1 1

][
x

y

]
=

[
0
0

]
,

which represents the equation y = −x or the vector [−k k]T. Thus we have dis-
covered that the transform possesses two eigenvectors [k k]T and [−k k]T and
their respective eigenvalues λ = 5 and λ = 3, as predicted.

The characteristic equation may have real or complex solutions, and if they are
complex, there are no real eigenvectors. For example, we would not expect the fol-
lowing rotation transform to have any real eigenvectors, as this would imply that it
shows a rotational preference to certain points. Let’s explore this transform to see
how the characteristic equation behaves.

R =
[

cosβ − sinβ

sinβ cosβ

]
.

The characteristic equation is
∣∣∣∣cosβ − λ − sinβ

sinβ cosβ − λ

∣∣∣∣ = 0,

where β is the angle of rotation. Therefore,

(cosβ − λ)2 + sin2 β = 0

λ2 − 2λ cosβ + cos2 β + sin2 β = 0

λ2 − 2λ cosβ + 1 = 0.

This quadratic in λ is solved using

λ = −b ± √
b2 − 4ac

2a
,

where a = 1, b = −2 cosβ , c = 1:

λ = 2 cosβ ± √
4 cos2 β − 4

2

= cosβ ±
√

cos2 β − 1

= cosβ ±
√

− sin2 β

5.10 Worked Examples 79

λ1 = cosβ + i sinβ

λ2 = cosβ − i sinβ

which are complex numbers.
The corresponding complex eigenvectors are

v1 =
[

1
i

]

v2 =
[

1
−i

]
.

The major problem with the above technique is that it requires careful analysis to
untangle the eigenvector, and ideally, we require a deterministic algorithm to reveal
the result. In Chap. 6 we will discover such a technique.

5.10 Worked Examples

Example 1 State the matrix transform to translate −10 units in the x direction and
5 units in the y direction. ⎡

⎣1 0 −10
0 1 5
0 0 1

⎤
⎦ .

Example 2 State the matrix transform to scale 2 in the x direction and 4 in the y

direction. [
2 0
0 4

]
.

Example 3 Derive the matrix transform to scale 2 relative to the point (1,1), and
show that the point (1,1) is not moved.

S = T(1,1)S(2)T(−1,−1)

=
⎡
⎣1 0 1

0 1 1
0 0 1

⎤
⎦

⎡
⎣2 0 0

0 2 0
0 0 1

⎤
⎦

⎡
⎣1 0 −1

0 1 −1
0 0 1

⎤
⎦

=
⎡
⎣2 0 1

0 2 1
0 0 1

⎤
⎦

⎡
⎣1 0 −1

0 1 −1
0 0 1

⎤
⎦

=
⎡
⎣2 0 −1

0 2 −1
0 0 1

⎤
⎦

80 5 2D Matrix Transforms

⎡
⎣1

1
1

⎤
⎦ =

⎡
⎣2 0 −1

0 2 −1
0 0 1

⎤
⎦

⎡
⎣1

1
1

⎤
⎦ .

Example 4 Use the reflection transform to reflect the point (0,1) about the vector
[−1 1]T. [

x′
y′

]
=

[
u2

x − u2
y 2uxuy

2uxuy u2
y − u2

x

][
x

y

]
,

where ux = −
√

2
2 , uy =

√
2

2

[−1
0

]
=

[
0 −1

−1 0

][
0
1

]
,

which is correct.

Example 5 Rotate the point (1,0) 30◦ about the origin.

[
x′
y′

]
=

[
cos 30◦ − sin 30◦
sin 30◦ cos 30◦

][
1
0

]

[√
3

2
1
2

]
=

[√
3

2 − 1
2

1
2

√
3

2

][
1
0

]
.

The rotated point is (
√

3
2 , 1

2).

Example 6 What happens to the unit square when it is transformed by a negative,
unit scaling matrix?

Let the unit-square coordinates be in an counter-clockwise sequence: (0,0),
(1,0), (1,1), (0,1).

Let the negative, unit scaling matrix be

[−1 0
0 −1

]
.

Therefore,

[
0
0

]
=

[−1 0
0 −1

][
0
0

]

[−1
0

]
=

[−1 0
0 −1

][
1
0

]

[−1
−1

]
=

[−1 0
0 −1

][
1
1

]

5.11 Summary 81

[
0

−1

]
=

[−1 0
0 −1

][
0
1

]
.

By inspection, the unit square is rotated 180◦. Furthermore, the rotation matrix is
[

cos θ − sin θ

sin θ cos θ

]
,

and when θ = 180◦, the matrix becomes[−1 0
0 −1

]
.

Example 7 Rotate the unit square in Example 6 180◦ about the point (1,1).
The matrix transform for rotating about an arbitrary point is

⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣cosβ − sinβ dx(1 − cosβ) + dy sinβ

sinβ cosβ dy(1 − cosβ) − dx sinβ

0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ ,

where (dx, dy) is the point of rotation. With β = 180◦:
⎡
⎣x′

y′
1

⎤
⎦ =

⎡
⎣−1 0 2

0 −1 2
0 0 1

⎤
⎦

⎡
⎣x

y

1

⎤
⎦ .

Substituting the unit-square coordinates, we have:
⎡
⎣2

2
1

⎤
⎦ =

⎡
⎣−1 0 2

0 −1 2
0 0 1

⎤
⎦

⎡
⎣0

0
1

⎤
⎦

⎡
⎣1

2
1

⎤
⎦ =

⎡
⎣−1 0 2

0 −1 2
0 0 1

⎤
⎦

⎡
⎣1

0
1

⎤
⎦

⎡
⎣1

1
1

⎤
⎦ =

⎡
⎣−1 0 2

0 −1 2
0 0 1

⎤
⎦

⎡
⎣1

1
1

⎤
⎦

⎡
⎣2

1
1

⎤
⎦ =

⎡
⎣−1 0 2

0 −1 2
0 0 1

⎤
⎦

⎡
⎣0

1
1

⎤
⎦ .

5.11 Summary

In this chapter we have studied various geometric transforms and used algebraic
expressions to derive their matrix equivalent. Hopefully, it is becoming clear that

82 5 2D Matrix Transforms

matrix notation offers a powerful notation for combining these transforms, without
resorting to algebra. Eventually, you should be able to recognise a transform simply
from the pattern of its elements.

The determinant of a matrix controls the area change that a shape undergoes after
being transformed. Often this is unity, which results in no change of area. Naturally,
scaling must introduce a change in area. Reflection, on the other hand, reverses a
shape’s vertex sequence.

Lastly, this chapter showed how it is possible to discover whether a matrix pos-
sesses any preferred directions; these are called its eigenvectors and associated
eigenvalues. We will develop these ideas ion the following chapter.

Chapter 6
3D Transforms

6.1 Introduction

In this chapter we generalise the techniques of 2D transforms into a 3D context,
where scaling, shearing, translation and reflection are very similar to their 2D coun-
terparts, but rotation transforms are complicated by the number of combinations that
arise when rotations about the Cartesian axes are combined together. Because these
composite rotations are flawed, we develop a rotation transform about an arbitrary
axis using vectors and another using matrices.

6.2 Scaling

3D scaling is represented algebraically as

x′ = sxx

y′ = syy

z′ = szz

or in matrix form:
⎡
⎣

x′
y′
z′

⎤
⎦ =

⎡
⎣

sx 0 0
0 sy 0
0 0 sz

⎤
⎦

⎡
⎣

x

y

z

⎤
⎦ .

The scaling is relative to the origin, and the determinant sxsysz represents the change
in volume an object undergoes after the transform. The inverse transform S−1 is
given by

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5_6, © Springer-Verlag London 2012

83

84 6 3D Transforms

S−1 =
⎡
⎢⎣

1
sx

0 0

0 1
sy

0

0 0 1
sz

⎤
⎥⎦ ,

because

SS−1 =
⎡
⎣

sx 0 0
0 sy 0
0 0 sz

⎤
⎦

⎡
⎢⎣

1
sx

0 0

0 1
sy

0

0 0 1
sz

⎤
⎥⎦ =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ .

We can also arrange for it to be relative to an arbitrary point (px,py,pz) by using
the same scenario used in 2D:

x′ = sx(x − px) + px

y′ = sy(y − py) + py

z′ = sz(z − pz) + pz

which as a homogeneous matrix is

⎡
⎢⎢⎣

x′
y′
z′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

sx 0 0 px(1 − sx)

0 sy 0 py(1 − sy)

0 0 sz pz(1 − sz)

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎦ .

Observe that the determinant is still sxsysz.

6.3 Translation

Knowing the matrix for 2D translation, it is a trivial step to write directly the 3D
equivalent:

⎡
⎢⎢⎣

x′
y′
z′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎦ .

The determinant remains equal to 1. The inverse is:

⎡
⎢⎢⎣

1 0 0 −dx

0 1 0 −dy

0 0 1 −dz

0 0 0 1

⎤
⎥⎥⎦ .

6.4 Shearing 85

6.4 Shearing

In 3D there are three axes to shear an object, which means that each shear along an
axis is parallel with one of the two planes sharing the axis. For example, the x axis
shear is determined either by the y coordinate of a vertex, or its z coordinate, which
results in 6 transforms:

Sxy =
⎡
⎣

1 tanα 0
0 1 0
0 0 1

⎤
⎦ , Sxz =

⎡
⎣

1 0 tanα

0 1 0
0 0 1

⎤
⎦

Syx =
⎡
⎣

1 0 0
tanα 1 0

0 0 1

⎤
⎦ , Syz =

⎡
⎣

1 0 0
0 1 tanα

0 0 1

⎤
⎦

Szx =
⎡
⎣

1 0 0
0 1 0

tanα 0 1

⎤
⎦ , Szy =

⎡
⎣

1 0 0
0 1 0
0 tanα 1

⎤
⎦ .

6.5 Reflection in a Plane Intersecting the Origin

Reflecting points in a plane sounds slightly daunting, but it is not; for having derived
a 2D solution, the 3D solution is identical. Figure 6.1 shows a plane intersecting the
origin containing u, and a unit normal vector n = ai+bj+ck. We now have exactly
the same geometry used to solve the 2D case, apart from the vectors being 3D. In
the 2D case the transform was given by

p′ = (
I − 2nnT)

p,

where R = I − 2nnT is the transform, which in a 3D scenario becomes:

R =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ − 2

⎡
⎣

a

b

c

⎤
⎦ [a b c]

=
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ − 2

⎡
⎣

a2 ab ac

ab b2 bc

ac bc c2

⎤
⎦

=
⎡
⎣

1 − 2a2 −2ab −2ac

−2ab 1 − 2b2 −2bc

−2ac −2bc 1 − 2c2

⎤
⎦ .

Let’s compute the determinant of R using Sarrus’ rule to show that it equals −1:

|R| =
∣∣∣∣∣∣
1 − 2a2 −2ab −2ac

−2ab 1 − 2b2 −2bc

−2ac −2bc 1 − 2c2

∣∣∣∣∣∣

86 6 3D Transforms

Fig. 6.1 Reflecting a point in
a plane

Fig. 6.2 Rotating the point
P about the z axis

= (
1 − 2a2)(1 − 2b2)(1 − 2c2) − 8a2b2c2 − 8a2b2c2

− 4a2c2(1 − 2b2) − 4a2b2(1 − 2c2) − 4b2c2(1 − 2a2)

= (
1 − 2a2)(1 − 2b2)(1 − 2c2) − 8a2b2c2 − 8a2b2c2

− 4a2c2 + 8a2b2c2 − 4a2b2 + 8a2b2c2 − 4b2c2 + 8a2b2c2

= (
1 − 2a2 − 2b2 + 4a2b2)(1 − 2c2) − 4a2c2 − 4a2b2 − 4b2c2 + 8a2b2c2

= 1 − 2a2 − 2b2 − 2c2

= 1 − 2
(
a2 + b2 + c2)

= −1.

Now let’s test this transform with an example. Figure 6.2 shows a scenario where a

plane intersects the origin with a normal vector given by n =
√

2
2 i +

√
2

2 j. The point
to be reflected is P = (1,1,0) which makes the reflected point P ′ = (−1,−1,0).
Therefore, the transform becomes:

a =
√

2

2
, b =

√
2

2
, c = 0

6.6 Rotation 87

R =
⎡
⎣

0 −1 0
−1 0 0
0 0 1

⎤
⎦

⎡
⎣

−1
−1
0

⎤
⎦ =

⎡
⎣

0 −1 0
−1 0 0
0 0 1

⎤
⎦

⎡
⎣

1
1
0

⎤
⎦ .

6.6 Rotation

Although we talk about rotating points about another point in space, we require
more precise information to describe this mathematically. We could, for example,
associate a plane with the point of rotation and confine the rotated point to this
plane, but it’s much easier to visualise an axis perpendicular to this plane, about
which the rotation occurs. Unfortunately, the matrix algebra for such an operation
starts to become fussy, and ultimately we have seek the help of quaternions. So let
us begin this investigation by rotating a point about the three fixed Cartesian axes.
Such rotations are called Euler rotations after the Swiss mathematician Leonhard
Euler.

Recall that the transform for rotating a point about the origin in the plane is given
by

Rβ =
[

cosβ − sinβ

sinβ cosβ

]
.

This can be generalised into a 3D rotation Rβ,z about the z axis by adding a z

coordinate as follows

Rβ,z =
⎡
⎣

cosβ − sinβ 0
sinβ cosβ 0

0 0 1

⎤
⎦ ,

which is illustrated in Fig. 6.2.
To rotate a point about the x axis, the x coordinate remains constant whilst the

y and z coordinates are changed according to the 2D rotation transform. This is
expressed algebraically as

x′ = x

y′ = y cosβ − z sinβ

z′ = y sinβ + z cosβ

or in matrix form as Rβ,x

Rβ,x =
⎡
⎣

1 0 0
0 cosβ − sinβ

0 sinβ cosβ

⎤
⎦ .

88 6 3D Transforms

To rotate about the y axis, the y coordinate remains constant whilst the x and z

coordinates are changed. This is expressed algebraically as

x′ = z sinβ + x cosβ

y′ = y

z′ = z cosβ − x sinβ

or in matrix form as Rβ,y

Rβ,y =
⎡
⎣

cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

⎤
⎦ .

Note that the matrix terms don’t appear to share the symmetry enjoyed by the pre-
vious two matrices. Nothing really has gone wrong, it’s just the way the axes are
paired together to rotate the coordinates. Now let’s consider similar rotations about
off-set axes parallel to the Cartesian axes.

6.6.1 Rotation About an Off-Set Axis

To begin, let’s develop a transform to rotate a point about a fixed axis parallel with
the z axis, as shown in Fig. 6.3. The scenario is very reminiscent of the 2D case for
rotating a point about an arbitrary point, and the general transform is given by

⎡
⎢⎢⎣

x′
y′
z′
1

⎤
⎥⎥⎦ = [Tdx,dy ,0][Rβ,z][T−dx,−dy,0]

⎡
⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎦

where

[T−dx,−dy,0] creates a temporary origin
[Rβ,z] rotates β about the temporary z axis
[Tdx,dy ,0] returns to the original position.

and the matrix transform is

[Tdx,dy ,0][Rβ,z][T−dx,−dy,0] =

⎡
⎢⎢⎣

cosβ − sinβ 0 dx(1 − cosβ) + dy sinβ

sinβ cosβ 0 dy(1 − cosβ) − dx sinβ

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Hopefully, you can see the similarity between rotating in 3D and 2D—the x and y

coordinates are updated while the z coordinate is held constant. We can now state

6.6 Rotation 89

Fig. 6.3 Rotating a point
about an axis parallel with the
z axis

the other two matrices for rotating about an off-set axis parallel with the x axis and
parallel with the y axis:

[T0,dy ,dz][Rβ,x][T0,−dy ,−dz] =

⎡
⎢⎢⎣

1 0 0 0
0 cosβ − sinβ dy(1 − cosβ) + dz sinβ

0 sinβ cosβ dz(1 − cosβ) − dy sinβ

0 0 0 1

⎤
⎥⎥⎦

[Tdx,0,dz][Rβ,y][T−dx,0,−dz] =

⎡
⎢⎢⎣

cosβ 0 sinβ dx(1 − cosβ) − dz sinβ

0 1 0 0
− sinβ 0 cosβ dz(1 − cosβ) + dx sinβ

0 0 0 1

⎤
⎥⎥⎦ .

6.6.2 Composite Rotations

So far we have only considered single rotations about a Cartesian axis or a parallel
off-set axis, but there is nothing to stop us constructing a sequence of rotations to
create a composite rotation. For example, we could begin by rotating a point α about
the x axis followed by a rotation β about the y axis, which in turn could be followed
by a rotation γ about the z axis. As mentioned above, these rotations are called Euler
rotations.

One of the problems with Euler rotations is visualising exactly what is happening
at each step, and predicting the orientation of an object after a composite rotation. To
simplify the problem we will employ a unit cube whose vertices are numbered 0 to
7 as shown in Fig. 6.4. We will also employ the following binary coded expression
that uses the Cartesian coordinates of the vertex in the vertex number:

vertex = 4x + 2y + z.

For example, vertex 0 has coordinates (0,0,0), and vertex 7 has coordinates
(1,1,1). All the codes are shown in Table 6.1.

90 6 3D Transforms

Fig. 6.4 A unit cube with
vertices coded as shown in
Table 6.1

Table 6.1 Vertex coordinates
for the cube in Fig. 6.4 vertex 0 1 2 3 4 5 6 7

x 0 0 0 0 1 1 1 1

y 0 0 1 1 0 0 1 1

z 0 1 0 1 0 1 0 1

Let’s repeat the three rotation transforms for rotating points about the x, y and z

axes respectively, in their non-homogeneous form and substitute c for cos and s for
sin to save space:

rotate α about the x axis Rα,x =
⎡
⎣

1 0 0
0 cα −sα
0 sα cα

⎤
⎦

rotate β about the y axis Rβ,y =
⎡
⎣

cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤
⎦

rotate γ about the z axis Rγ,z =
⎡
⎣

cγ −sγ 0
sγ cγ 0
0 0 1

⎤
⎦ .

We can create a composite rotation by placing Rα,x , Rβ,y and Rγ,z in any sequence.
As an example, let’s choose the sequence Rγ,zRβ,yRα,x

Rγ,zRβ,yRα,x =
⎡
⎣

cγ −sγ 0
sγ cγ 0
0 0 1

⎤
⎦

⎡
⎣

cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤
⎦

⎡
⎣

1 0 0
0 cα −sα
0 sα cα

⎤
⎦ . (6.1)

Multiplying the three matrices in (6.1) together we obtain

⎡
⎣

cγ cβ cγ sβsα − sγ cα cγ sβcα + sγ sα
sγ cβ sγ sβsα + cγ cα sγ sβcα − cγ sα
−sβ cβsα cβcα

⎤
⎦ , (6.2)

6.6 Rotation 91

Fig. 6.5 Four views of the unit cube before and during the three rotations

or using the more familiar notation:
⎡
⎣

cosγ cosβ cosγ sinβ sinα − sinγ cosα cosγ sinβ cosα + sinγ sinα

sinγ cosβ sinγ sinβ sinα + cosγ cosα sinγ sinβ cosα − cosγ sinα

− sinβ cosβ sinα cosβ cosα

⎤
⎦ .

Let’s evaluate (6.2) by making α = β = γ = 90◦:
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦ . (6.3)

The matrix (6.3) is equivalent to rotating a point 90◦ about the fixed x axis, followed
by a rotation of 90◦ about the fixed y axis, followed by a rotation of 90◦ about the
fixed z axis. This rotation sequence is illustrated in Fig. 6.5.

Figure 6.5(a) shows the starting position of the cube; (b) shows its orientation
after a 90◦ rotation about the x axis; (c) shows its orientation after a further rotation
of 90◦ about the y axis; and (d) the cube’s resting position after a rotation of 90◦
about the z axis.

From Fig. 6.5(d) we see that the cube’s coordinates are as shown in Table 6.2. We
can confirm that these coordinates are correct by multiplying the cube’s original co-
ordinates shown in Table 6.1 by the matrix (6.3). Although it is not mathematically

92 6 3D Transforms

Table 6.2 Vertex coordinates
for the cube in Fig. 6.5(d) vertex 0 1 2 3 4 5 6 7

x 0 1 0 1 0 1 0 1

y 0 0 1 1 0 0 1 1

z 0 0 0 0 −1 −1 −1 −1

correct, we will show the matrix multiplying an array of coordinates as follows
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 −1 −1 −1 −1

⎤
⎦ ,

which agree with the coordinates in Table 6.2.
Naturally, any three angles can be chosen to rotate a point about the fixed axes,

but it does become difficult to visualise without an interactive cgi system. Note that
the determinant of (6.3) is 1, which is as expected.

An observation we made with 2D rotations is that they are additive: i.e. Rα fol-
lowed by Rβ is equivalent to Rα+β . But something equally important is that rota-
tions in 2D commute:

RαRβ = RβRα = Rα+β = Rβ+α,

whereas, in general, 3D rotations are non-commutative. This is seen by considering
a composite rotation formed by a rotation α about the x axis Rα,x , followed by a
rotation β about the z axis Rβ,z, and

Rα,xRβ,z �= Rβ,zRα,x .

As an illustration, let’s reverse the composite rotation computed above to
Rα,xRβ,yRγ,z:

Rα,xRβ,yRγ,z =
⎡
⎣

1 0 0
0 cα −sα
0 sα cα

⎤
⎦

⎡
⎣

cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤
⎦

⎡
⎣

cγ −sγ 0
sγ cγ 0
0 0 1

⎤
⎦ . (6.4)

Multiplying the three matrices in (6.4) together we obtain
⎡
⎣

cβcγ −cβsγ sβ
sαsβcγ + cαsγ −sαsβsγ + cαcγ −sαcβ

−cαsβcγ + sαsγ cαsβsγ + sαcγ cαcβ

⎤
⎦ , (6.5)

or using the more familiar notation:

6.6 Rotation 93

Fig. 6.6 Four views of the unit cube using the rotation sequence Rα,xRβ,yRγ,z

⎡
⎣

cosβ cosγ − cosβ sinγ sinβ

sinα sinβ cosγ + cosα sinγ − sinα sinβ sinγ + cosα cosγ − sinα cosβ

− cosα sinβ cosγ + sinα sinγ cosα sinβ sinγ + sinα cosγ cosα cosβ

⎤
⎦.

Comparing (6.3) and (6.5) it can be seen that they are completely different.
Let’s evaluate (6.5) by making α = β = γ = 90◦:

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦ . (6.6)

The matrix (6.6) is equivalent to rotating a point 90◦ about the fixed z axis, fol-
lowed by a rotation of 90◦ about the fixed y axis, followed by a rotation of 90◦ about
the fixed x axis. This rotation sequence is illustrated in Fig. 6.6.

From Fig. 6.6(d) we see that the cube’s coordinates are as shown in Table 6.3.
We can confirm that these coordinates are correct by multiplying the cube’s original
coordinates shown in Table 6.1 by the matrix (6.6). We show the matrix multiplying
an array of coordinates as before:

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

94 6 3D Transforms

Table 6.3 Vertex coordinates
for the cube in Fig. 6.6(d) vertex 0 1 2 3 4 5 6 7

x 0 1 0 1 0 1 0 1

y 0 0 −1 −1 0 0 −1 −1

z 0 0 0 0 1 1 1 1

=
⎡
⎣

0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤
⎦ ,

which agree with the coordinates in Table 6.3, and we can safely conclude that, in
general, 3D rotation transforms do not commute. Inspection of Fig. 6.6(d) shows
that the unit cube has been rotated 180◦ about a vector [1 0 1]T.

So far we have created three composite rotations comprising individual rota-
tions about the x, y and z-axes: Rα,xRβ,yRγ,z and Rγ,zRβ,yRα,x . But there is
nothing stopping us from creating other combinations such as Rα,xRβ,yRγ,x or
Rα,zRβ,yRγ,z that include two rotations about the same axis. In fact, there are twelve
possible combinations:

Rα,xRβ,yRγ,x, Rα,xRβ,yRγ,z, Rα,xRβ,zRγ,x, Rα,xRβ,zRγ,y

Rα,yRβ,xRγ,y, Rα,yRβ,xRγ,z, Rα,yRβ,zRγ,x, Rα,yRβ,zRγ,y

Rα,zRβ,xRγ,y, Rα,zRβ,xRγ,z, Rα,zRβ,yRγ,x, Rα,zRβ,yRγ,z

which are covered in detail in Appendix.
Now let’s explore the role eigenvectors and eigenvalues play in 3D rotations.

6.7 3D Eigenvectors

In Chap. 5 we examined the characteristic equation used to identify any eigenvectors
associated with a matrix. The eigenvector v satisfies the relationship

Av = λv,

where λ is a scaling factor.
In the context of a 3D rotation matrix, an eigenvector is a vector scaled by λ

but not rotated, which implies that it is the axis of rotation. To illustrate this, let’s
identify the eigenvector for the composite rotation (6.3) above:

R90◦,zR90◦,yR90◦,x =
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦ .

6.7 3D Eigenvectors 95

Figure 6.5 shows the effect of this composite rotation, which is nothing more
than a rotation of 90◦ about the y axis. Therefore, we should be able to extract this
information from the above matrix.

We begin by writing the characteristic equation for the matrix:
∣∣∣∣∣∣
0 − λ 0 1

0 1 − λ 0
−1 0 0 − λ

∣∣∣∣∣∣
= 0. (6.7)

Expanding (6.7) using the top row we have

−λ

∣∣∣∣
1 − λ 0

0 −λ

∣∣∣∣ + 1

∣∣∣∣
0 1 − λ

−1 0

∣∣∣∣ = 0

−λ
(−λ + λ2) + 1 − λ = 0

λ2 − λ3 + 1 − λ = 0

−λ3 + λ2 − λ + 1 = 0

λ3 − λ2 + λ = 1.

When working with 3 × 3 matrices we always end up with a cubic in λ, for which
there can be three types of solution:

1. One real and two complex conjugate solutions.
2. Three real solutions including the possibility of a double solution.
3. Three distinct real solutions.

It is clear that λ = 1 is one such real root, which satisfies our requirement for an
eigenvalue. We could also show that the other two roots are complex conjugates.

Substituting λ = 1 in the original equations associated with (6.7) to reveal the
eigenvector, we have

⎧⎪⎨
⎪⎩

−x + 0y + z = 0

0x + 0y + 0z = 0

−x + 0y − z = 0.

It is obvious from the 1st and 3rd equations that x = z = 0. However, all three
equations multiply the y term by zero, which implies that the associated eigenvector
is of the form [0 k 0]T, which is the y axis, as anticipated. Now let’s find the
angle of rotation.

Using one of the above rotation matrices Rβ,y and the trace operation:

Rβ,y =
⎡
⎣

cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

⎤
⎦

Tr(Rβ,y) = 1 + 2 cosβ

96 6 3D Transforms

therefore,

β = arccos
((

Tr(Rβ,y) − 1
)
/2

)
.

To illustrate this, let β = 90◦:

R90◦,y =
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

Tr(R90◦,y) = 1

therefore,

β = arccos
(
(1 − 1) /2

) = 90◦.

Let’s choose another matrix and repeat the above:

Rα,x =
⎡
⎣

1 0 0
0 cosα − sinα

0 sinα cosα

⎤
⎦ .

This time, let α = 45◦:

R45◦,x =
⎡
⎣

1 0 0
0

√
2/2 −√

2/2
0

√
2/2

√
2/2

⎤
⎦

Tr(R45◦,x) = 1 + √
2

therefore,

α = arccos
(
(1 + √

2 − 1)/2
) = 45◦.

So we now have a mechanism to extract the axis and angle of rotation from a
rotation matrix. However, the algorithm for identifying the axis is far from satisfac-
tory, and later on we will discover that there is a similar technique which is readily
programable.

For completeness, let’s identify the axis and angle of rotation for the matrix (6.6):

R90◦,xR90◦,yR90◦,z =
⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦ .

Once more, we begin by writing the characteristic equation for the matrix:

∣∣∣∣∣∣
0 − λ 0 1

0 −1 − λ 0
1 0 0 − λ

∣∣∣∣∣∣
= 0. (6.8)

6.7 3D Eigenvectors 97

Expanding (6.8) using the top row we have

−λ

∣∣∣∣
−1 − λ 0

0 −λ

∣∣∣∣ + 1

∣∣∣∣
0 −1 − λ

1 0

∣∣∣∣ = 0

−λ
(−λ + λ2) + 1 − λ = 0

λ2 − λ3 + 1 − λ = 0

−λ3 + λ2 − λ + 1 = 0

λ3 − λ2 + λ = 1.

Again, there is a single real root: λ = 1, and substituting this in the original equations
associated with (6.8) to reveal the eigenvector, we have

⎧⎪⎨
⎪⎩

−x + 0y + z = 0

0x − 2y + 0z = 0

x + 0y − z = 0.

It is obvious from the 1st and 3rd equations that x = z, and from the 2nd equation
that y = 0, which implies that the associated eigenvector is of the form [k 0 k],
which is correct. Using the trace operation, we can write

Tr(R90◦,xR90◦,yR90◦,z) = −1,

therefore,

β = arccos
(
(−1 − 1)/2

) = 180◦.

As promised, let’s explore another way of identifying the fixed axis of rotation,
which is an eigenvector. Consider the following argument where A is a simple rota-
tion transform:

If v is a fixed axis of rotation and A a rotation transform, then v suffers no rota-
tion:

Av = v, (6.9)

similarly,

ATv = v. (6.10)

Subtracting (6.10) from (6.9), we have

Av − ATv = 0 (6.11)
(
A − AT)

v = 0 (6.12)

where 0 is a null vector.

98 6 3D Transforms

In Chap. 4 we defined an antisymmetric matrix Q as

Q = 1

2

(
A − AT)

, (6.13)

therefore,
(
A − AT) = 2Q. (6.14)

Substituting (6.14) in (6.12) we have

2Qv = 0

Qv = 0

which permits us to write

⎡
⎣

0 q3 −q2
−q3 0 q1
q2 −q1 0

⎤
⎦

⎡
⎣

v1
v2
v3

⎤
⎦ =

⎡
⎣

0
0
0

⎤
⎦ , (6.15)

where

q1 = a23 − a32

q2 = a31 − a13

q3 = a12 − a21.

Expanding (6.15) we have

0v1 + q3v2 − q2v3 = 0

−q3v1 + 0v2 + q1v3 = 0

q2v1 − q1v2 + 0v3 = 0.

Obviously, one possible solution is v1 = v2 = v3 = 0, but we seek a solution for v
in terms of q1, q2 and q3. A standard technique is to relax one of the v terms, such
as making v1 = 1. Then

q3v2 − q2v3 = 0 (6.16)

−q3 + q1v3 = 0 (6.17)

q2 − q1v2 = 0. (6.18)

From (6.18) we have

v2 = q2

q1
.

6.7 3D Eigenvectors 99

From (6.17) we have

v3 = q3

q1
,

therefore, a solution is

v =
[
q1

q1

q2

q1

q3

q1

]T

,

which in a non-homogeneous form is

v = [q1 q2 q3]T,

or in terms of the original matrix:

v = [
(a23 − a32) (a31 − a13) (a12 − a21)

]T
, (6.19)

which appears to be a rather elegant solution for finding the fixed axis of revolution.
Now let’s put (6.19) to the test by recomputing the axis of rotation for the pure

rotations Rα,x , Rβ,y and Rγ,z where α = β = γ = 90◦.

R90◦,x =
⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦ ,

using (6.19) we have

v = [
(−1 − 1) (0 − 0) (0 − 0)

] = [−2 0 0]T,

which is the x axis.

R90◦,y =
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦ ,

using (6.19) we have

v = [
(0 − 0) (−1 − 1) (0 − 0)

] = [0 −2 0]T,

which is the y axis.

R90◦,z =
⎡
⎣

0 −1 0
1 0 0
0 0 1

⎤
⎦ ,

using (6.19) we have

v = [
(0 − 0) (0 − 0) (−1 − 1)

] = [0 0 −2]T,

which is the z axis.

100 6 3D Transforms

However, if we attempt to extract the axis of rotation from

R90◦,xR90◦,yR90◦,z =
⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦ ,

we have a problem, because q1 = q2 = q3 = 0. This is because A = AT and the
technique relies upon A �= AT. So let’s consider another approach based upon the
fact that a rotation matrix always has a real eigenvalue λ = 1, which permits us to
write

Av = λv

Av = λIv = Iv

(A − I)v = 0

therefore,
⎡
⎣

(a11 − 1) a12 a13
a21 (a22 − 1) a23
a31 a32 (a33 − 1)

⎤
⎦

⎡
⎣

v1
v2
v3

⎤
⎦ =

⎡
⎣

0
0
0

⎤
⎦ . (6.20)

Expanding (6.20) we have

(a11 − 1)v1 + a12v2 + a13v3 = 0

a21v1 + (a22 − 1)v2 + a23v3 = 0

a31v1 + a32v2 + (a33 − 1)v3 = 0.

Once more, there exists a trivial solution where v1 = v2 = v3 = 0, but to discover
something more useful we can relax any one of the v terms which gives us three
equations in two unknowns. Let’s make v1 = 0:

a12v2 + a13v3 = −(a11 − 1) (6.21)

(a22 − 1)v2 + a23v3 = −a21 (6.22)

a32v2 + (a33 − 1)v3 = −a31. (6.23)

We are now faced with choosing a pair of equations to isolate v2 and v3. In fact, we
have to consider all three pairings because it is possible that a future rotation matrix
will contain a column with two zero elements, which could conflict with any pairing
we make at this stage.

Let’s begin by choosing (6.21) and (6.22). The solution employs the following
strategy: Given the following matrix equation

[
a1 b1
a2 b2

][
x

y

]
=

[
c1
c2

]
,

6.7 3D Eigenvectors 101

then

x∣∣∣ c1 b1
c2 b2

∣∣∣
= y∣∣ a1 c1

a2 c2

∣∣ = 1∣∣∣ a1 b1
a2 b2

∣∣∣
.

Therefore, using the 1st and 2nd equations (6.21) and (6.22) we have

v2∣∣∣−(a11−1) a13
−a21 a23

∣∣∣
= v3∣∣∣ a12 −(a11−1)

(a22−1) −a21

∣∣∣
= 1∣∣∣ a12 a13

(a22−1) a23

∣∣∣
v1 = a12a23 − a13(a22 − 1)

v2 = a13a21 − a23(a11 − 1)

v3 = (a11 − 1)(a22 − 1) − a12a21.

Similarly, using the 1st and 3rd equations (6.21) and (6.23) we have

v1 = a12(a33 − 1) − a13a32

v2 = a13a31 − (a11 − 1)(a33 − 1)

v3 = a32(a11 − 1) − a12a31

and using the 2nd and 3rd equations (6.22) and (6.23) we have

v1 = (a22 − 1)(a33 − 1) − a23a32

v2 = a23a31 − a21(a33 − 1)

v3 = a21a32 − a31(a22 − 1).

Now we have nine equations to cope with any eventuality. In fact, there is nothing
to stop us from choosing any three that take our fancy, for example these three
equations look interesting and sound:

v1 = (a22 − 1)(a33 − 1) − a23a32 (6.24)

v2 = (a33 − 1)(a11 − 1) − a31a13 (6.25)

v3 = (a11 − 1)(a22 − 1) − a12a21. (6.26)

Therefore, the solution for the eigenvector is [v1 v2 v3]T. Note that the sign of
v2 has been reversed to maintain symmetry.

Let’s test (6.24), (6.25) and (6.26) with the transforms used above.

R90◦,x =
⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦

⎧⎪⎨
⎪⎩

v1 = (−1)(−1) − (−1) × 1 = 2

v2 = (−1)(0) − 0 × 0 = 0

v3 = (0)(−1) − 0 × 0 = 0

102 6 3D Transforms

R90◦,y =
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎧⎪⎨
⎪⎩

v1 = (0)(−1) − 0 × 0 = 0

v2 = (−1)(−1) − (−1) × 1 = 2

v3 = (−1)(0) − 0 × 0 = 0

R90◦,z =
⎡
⎣

0 −1 0
1 0 0
0 0 1

⎤
⎦

⎧⎪⎨
⎪⎩

v1 = (−1)(0) − 0 × 0 = 0

v2 = (0)(−1) − 0 × 0 = 0

v3 = (−1)(−1) − (−1) × 1 = 2

R90◦,xR90◦,yR90◦,z =
⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

⎧⎪⎨
⎪⎩

v1 = (−2)(−1) − 0 × 0 = 2

v2 = (−1)(−1) − 1 × 1 = 0

v3 = (−1)(−2) − 0 × (−1) = 2

R90◦,zR90◦,yR90◦,x =
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎧⎪⎨
⎪⎩

v1 = (0)(−1) − 0 × 0 = 0

v2 = (−1)(−1) − (−1) × 1 = 2

v3 = (−1)(0) − 0 × 0 = 0.

We can see why the resulting vectors have components of 2 by evaluating a normal
rotation transform:

Rα,x =
⎡
⎣

1 0 0
0 cα −sα
0 sα cα

⎤
⎦

⎧⎪⎨
⎪⎩

v1 = (cα − 1)(cα − 1) − (−sα) × (sα) = 2(1 − cα)

v2 = (cα − 1)(0) − 0 × 0 = 0

v3 = (0)(cα − 1) − 0 × 0 = 0.

We can see that when α = 90◦, v1 = 2.

6.8 Gimbal Lock

There are two potential problems with all of the above composite transforms. The
first is the difficulty visualising the orientation of an object subjected to several
rotations; the second is that they all suffer from what is called gimbal lock. From
a visualisation point of view, if we use the transform Rγ,zRβ,yRα,x to animate an
object and change γ , β and α over a period of frames, it can be very difficult to
predict the final movement and adjust the angles to achieve a desired effect. Gimbal
lock, on the other hand, is a weakness associated with Euler rotations when certain
combinations of angles are used.

To understand this phenomenon, consider a simple gimbal which is a pivoted
support that permits rotation about an axis, as shown in Fig. 6.7(a). If two gimbals
are combined, as shown in Fig. 6.7(b), the inner cradle remains level with some ref-
erence plane as the assembly rolls and pitches. Such a combination has two degrees
of rotational freedom. By adding a third gimbal so that the entire structure is free to
rotate about a vertical axis, an extra degree of rotational freedom is introduced and
is often used for mounting a camera on a tripod, as shown in Fig. 6.7(c).

6.9 Yaw, Pitch and Roll 103

Fig. 6.7 Three types of gimbal joints

A mechanical gimbal joint with three degrees of freedom is represented math-
ematically by a composite Euler rotation transform. For example, say we choose
R90◦,yR90◦,xR90◦,z to rotate our unit cube as shown in Fig. 6.8(a). The cube’s faces
containing vertices 1, 5, 7, 3 and 0, 2, 6, 4 are first rotated about the perpendicular
z axis, as shown in Fig. 6.8(b). The second transform rotates the cube’s faces con-
taining vertices 0, 4, 5, 1 and 2, 3, 7, 6 about the perpendicular x axis, as shown
in Fig. 6.8(c). If we now attempt to rotate the cube about the y axis, as shown in
Fig. 6.8(d), the cube’s faces containing 0, 2, 6, 4 and 1, 5, 7, 3 are rotated again.
Effectively we have lost the ability to rotate a cube about one of its axes, and such a
condition is called gimbal lock. There is little we can do about this, apart from use
another composite transform, but it, too, will have a similar restriction. For example,
Appendix shows that R90◦,xR90◦,zR90◦,y , R90◦,yR90◦,zR90◦,x , R90◦,zR90◦,xR90◦,y
and R90◦,zR90◦,yR90◦,x all possess a similar affliction. Fortunately, there are other
ways of rotating an object, which we will explore later.

6.9 Yaw, Pitch and Roll

The above Euler rotations are also known as yaw, pitch and roll, and great care
should be taken with these angles when referring to other books and technical pa-
pers. Sometimes a left-handed system of axes is used rather than a right-handed set,
and the vertical axis may be the y axis or the z axis, and might even point down-
wards. Consequently, the matrices representing the rotations can vary greatly. In

104 6 3D Transforms

Fig. 6.8 An example of gimbal lock

this text all Cartesian coordinate systems are right-handed, and the vertical axis is
always the y axis.

The terms yaw, pitch and roll are often used in aviation and to describe the mo-
tion of ships. For example, if a ship or aeroplane is heading in a particular direction,
the axis aligned with the heading is the roll axis, as shown in Fig. 6.9(a). A per-
pendicular axis in the horizontal plane containing the heading axis is the pitch axis,
as shown in Fig. 6.9(b). The axis perpendicular to both these axes is the yaw axis,
as shown in Fig. 6.9(c). Clearly, there are many ways of aligning a set of Cartesian
axes with the yaw, pitch and roll axes, and consequently, it is impossible to define an
absolute set of yaw, pitch and roll transforms. However, if we choose the following
alignment:

• the roll axis is the z axis
• the pitch axis is the x axis
• the yaw axis is the y axis

we have the situation as shown in Fig. 6.10, and the transforms representing these
rotations are as follows:

Rroll,z =
⎡
⎣

cos roll − sin roll 0
sin roll cos roll 0

0 0 1

⎤
⎦

6.9 Yaw, Pitch and Roll 105

Fig. 6.9 Definitions of yaw, pitch and roll

Fig. 6.10 A convention for
roll, pitch and yaw angles

Rpitch,x =
⎡
⎣

1 0 0
0 cos pitch − sin pitch
0 sin pitch cos pitch

⎤
⎦

Ryaw,y =
⎡
⎣

cos yaw 0 sin yaw
0 1 0

− sin yaw 0 cos yaw

⎤
⎦ .

A common sequence for applying these rotations is roll, pitch, yaw, as seen in the
following transform:

⎡
⎣

x′
y′
z′

⎤
⎦ = [Ryaw,y][Rpitch,x][Rroll,z]

⎡
⎣

x

y

z

⎤
⎦ ,

106 6 3D Transforms

and if a translation is involved,
⎡
⎢⎢⎣

x′
y′
z′
1

⎤
⎥⎥⎦ = [Tdx,dy ,dz][Ryaw,y][Rpitch,x][Rroll,z]

⎡
⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎦ .

6.10 Rotation About an Arbitrary Axis

Now let’s examine two ways of rotating a point about an arbitrary axis. The first
technique uses matrices and trigonometry and is rather laborious.The second ap-
proach employs vector analysis and is quite succinct. Fortunately, they both arrive
at the same result!

6.10.1 Matrices

We begin by defining an axis using a unit vector n̂ about which a point P is rotated
α to P ′ as shown in Fig. 6.11. And as we only have access to matrices that rotate
points about the Cartesian axes, this unit vector has to be temporarily aligned with a
Cartesian axis. In the following example we choose the x axis. During the alignment
process, the point P is subjected to the transforms necessary to align the unit vector
with the x axis. We then rotate P , α about the x axis. To complete the operation, the
rotated point is subjected to the transforms that return the unit vector to its original
position. Although matrices provide a powerful tool for undertaking this sort of
work, it is nevertheless extremely tedious, but is a good exercise for improving one’s
algebraic skills!

Figure 6.11 shows a point P(x, y, z) to be rotated through an angle α to
P ′(x′, y′, z′) about an axis defined by

n̂ = ai + bj + ck.

The transforms to achieve this operation can be expressed as follows:
⎡
⎣

x′
y′
z′

⎤
⎦ = [R−φ,y][Rθ,z][Rα,x][R−θ,z][Rφ,y]

⎡
⎣

x

y

z

⎤
⎦ ,

which aligns the axis of rotation with the x axis, performs the rotation of P through
an angle α about the x axis, and returns the axis of rotation back to its original
position. Therefore,

Rφ,y =
⎡
⎣

cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

⎤
⎦ , R−θ,z =

⎡
⎣

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦

6.10 Rotation About an Arbitrary Axis 107

Fig. 6.11 The geometry
associated with rotating a
point about an arbitrary axis

Rα,x =
⎡
⎣

1 0 0
0 cosα − sinα

0 sinα cosα

⎤
⎦ , Rθ,z =

⎡
⎣

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤
⎦

R−φ,y =
⎡
⎣

cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

⎤
⎦ .

Let

R−φ,yRθ,zRα,xR−θ,zRφ,y =
⎡
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ ,

where by multiplying the matrices together we find that:

a11 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα

a12 = cosφ cos θ sin θ − cosφ sin θ cos θ cosα − sinφ cos θ sinα

a13 = cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα + sin2 φ sin θ sinα

+ cos2 φ sin θ sinα − cosφ sinφ cosα

a21 = sin θ cos θ cosφ − cos θ sin θ cosφ cosα + cos θ sinφ sinα

a22 = sin2 θ + cos2 θ cosα

a23 = sin θ cos θ sinφ − cos θ sin θ sinφ cosα − cos θ cosφ sinα

a31 = cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα − cos2 φ sin θ sinα

− cosφ sinφ cosα

a32 = sinφ cos θ sin θ − sinφ sin θ cos θ cosα + cosφ cos θ sinα

a33 = sin2 φ cos2 θ + sin2 φ sin2 θ cosα − cosφ sinφ sin θ sinα

+ cosφ sinφ sin θ sinα + cos2 φ cosα.

108 6 3D Transforms

From Fig. 6.11 we compute the sin and cos of θ and φ in terms of a, b and c, and
then compute their equivalent sin2 and cos2 values:

cos θ = √
1 − b2 ⇒ cos2 θ = 1 − b2

sin θ = b ⇒ sin2 θ = b2

cosφ = a/
√

1 − b2 ⇒ cos2 φ = a2/
(
1 − b2

)
sinφ = c/

√
1 − b2 ⇒ sin2 φ = c2/

(
1 − b2

)
.

To find a11:

a11 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα

= a2 + a2b2

1 − b2
cosα + c2

1 − b2
cosα

= a2 +
(

c2 + a2b2

1 − b2

)
cosα

but

a2 + b2 + c2 = 1 ⇒ c2 = 1 − a2 − b2

a11 = a2 +
(

1 − a2 − b2 + a2b2

1 − b2

)
cosα

= a2 +
(

(1 − a2)(1 − b2)

1 − b2

)
cosα

= a2(1 − cosα) + cosα.

Let

K = 1 − cosα,

then

a11 = a2K + cosα.

To find a12:

a12 = cosφ cos θ sin θ − cosφ sin θ cos θ cosα − sinφ cos θ sinα

= a√
1 − b2

√
1 − b2b − a√

1 − b2
b
√

1 − b2 cosα − c√
1 − b2

√
1 − b2 sinα

= ab − ab cosα − c sinα

= ab(1 − cosα) − c sinα

a12 = abK − c sinα.

6.10 Rotation About an Arbitrary Axis 109

To find a13:

a13 = cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα + sin2 φ sin θ sinα

+ cos2 φ sin θ sinα − cosφ sinφ cosα

= cosφ sinφ cos2 θ + cosφ sinφ sin2 θ cosα + sin θ sinα − cosφ sinφ cosα

= a√
1 − b2

c√
1 − b2

(
1 − b2) + a√

1 − b2

c√
1 − b2

b2 cosα + b sinα

− a√
1 − b2

c√
1 − b2

cosα

= ac + ac
b2

(1 − b2)
cosα + b sinα − ac

(1 − b2)
cosα

= ac + ac
(b2 − 1)

(1 − b2)
cosα + b sinα

= ac(1 − cosα) + b sinα

a13 = acK + b sinα.

Using similar algebraic methods, we discover that

a21 = abK + c sinα

a22 = b2K + cosα

a23 = bcK − a sinα

a31 = acK − b sinα

a32 = bcK + a sinα

a33 = c2K + cosα

and our original matrix transform becomes:

⎡
⎣

x′
p

y′
p

z′
p

⎤
⎦ =

⎡
⎣

a2K + cosα abK − c sinα acK + b sinα

abK + c sinα b2K + cosα bcK − a sinα

acK − b sinα bcK + a sinα c2K + cosα

⎤
⎦

⎡
⎣

xp

yp

zp

⎤
⎦ ,

where

K = 1 − cosα.

110 6 3D Transforms

6.10.2 Vectors

Now let’s solve the same problem using vectors. Figure 6.12 shows a view of the
geometry associated with the task at hand. For clarification, Fig. 6.13 shows a cross-
section and a plan view of the geometry.

The axis of rotation is given by the unit vector:

n̂ = ai + bj + ck.

P (xp, yp zp) is the point to be rotated by angle α to P ′(x′
p, y′

p, z′
p).

O is the origin, whilst p and p′ are position vectors for P and P ′ respectively.
From Figs. 6.12 and 6.13:

p′ = −−→
ON + −−→

NQ + −−→
QP ′.

To find
−−→
ON :

|n| = |p| cos θ = n̂ · p,

therefore,
−−→
ON = n = n̂(n̂ · p).

To find
−−→
NQ:

−−→
NQ = NQ

NP
r = NQ

NP ′ r = cosα r,

but

p = n + r = n̂(n̂ · p) + r,

therefore,

r = p − n̂(n̂ · p),

and
−−→
NQ = (

p − n̂(n̂ · p)
)

cosα.

To find
−−→
QP ′:

Let

n̂ × p = w,

where

|w| = |n̂| · |p| sin θ = |p| sin θ,

but

|r| = |p| sin θ,

6.10 Rotation About an Arbitrary Axis 111

Fig. 6.12 A view of the
geometry associated with
rotating a point about an
arbitrary axis

Fig. 6.13 A cross-section
and plan view of the
geometry associated with
rotating a point about an
arbitrary axis

therefore,

|w| = |r|.
Now

QP ′

NP ′ = QP ′

|r| = QP ′

|w| = sinα,

therefore,
−−→
QP ′ = w sinα = n̂ × p sinα,

then

p′ = n̂(n̂ · p) + (
p − n̂(n̂ · p)

)
cosα + n̂ × p sinα,

and

p′ = p cosα + n̂(n̂ · p)(1 − cosα) + n̂ × p sinα.

This is known as the Rodrigues rotation formula, as it was developed by the
French mathematician, Olinde Rodrigues (1795–1851), who had also invented some
of the ideas behind quaternions before Hamilton.

112 6 3D Transforms

If we let

K = 1 − cosα,

then

p′ = p cosα + n̂(n̂ · p)K + n̂ × p sinα

= (xpi + ypj + zpk) cosα + (ai + bj + ck)(axp + byp + czp)K

+ (
(bzp − cyp)i + (cxp − azp)j + (ayp − bxp)k

)
sinα

= (
xp cosα + a(axp + byp + czp)K + (bzp − cyp) sinα

)
i

+ (
yp cosα + b(axp + byp + czp)K + (cxp − azp) sinα

)
j

+ (
zp cosα + c(axp + byp + czp)K + (ayp − bxp) sinα

)
k

= (
xp

(
a2K + cosα

) + yp(abK − c sinα) + zp(acK + b sinα)
)
i

+ (
xp(abK + c sinα) + yp

(
b2K + cosα

) + zp(bcK − a sinα)
)
j

+ (
xp(acK − b sinα) + yp(bcK + a sinα) + zp

(
c2K + cosα

))
k

and the transform is:

⎡
⎣

x′
p

y′
p

z′
p

⎤
⎦ =

⎡
⎣

a2K + cosα abK − c sinα acK + b sinα

abK + c sinα b2K + cosα bcK − a sinα

acK − b sinα bcK + a sinα c2K + cosα

⎤
⎦

⎡
⎣

xp

yp

zp

⎤
⎦ ,

which is identical to the transform derived using matrices.
Now let’s test the transform with a simple example that can be easily verified. If

we rotate the point P(10,0,0), 180◦ about an axis defined by n = i + j, it should
end up at P ′(0,10,0).

Therefore

α = 180◦, cosα = −1, sinα = 0, K = 2

a =
√

2

2
, b =

√
2

2
, c = 0

and
⎡
⎣

0
10
0

⎤
⎦ =

⎡
⎣

0 1 0
1 0 0
0 0 0

⎤
⎦

⎡
⎣

10
0
0

⎤
⎦ ,

which is correct.

6.11 Worked Examples 113

6.11 Worked Examples
Example 1 Derive the matrix to scale by a factor of two relative to (1,2,3), and
show that the point (1,2,3) is unmoved.

The transform is:

T1,2,3S×2T−1,−2,−3

⎡
⎢⎢⎣

x′
y′
z′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 −1
0 1 0 −2
0 0 1 −3
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2 0 0 −2
0 2 0 −4
0 0 2 −6
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

2 0 0 −1
0 2 0 −2
0 0 2 −3
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎦ .

Let’s test it with the point (1,2,3):
⎡
⎢⎢⎣

1
2
3
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 0 0 −1
0 2 0 −2
0 0 2 −3
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2
3
1

⎤
⎥⎥⎦

which confirms that it is unmoved.

Example 2 Rotate the point (1,1,0) 90◦ about the x axis. The matrix to rotate about
the x axis is: ⎡

⎣
1 0 0
0 cosβ − sinβ

0 sinβ cosβ

⎤
⎦ ,

and when β = 90◦:
⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦ ,

therefore, the transform is
⎡
⎣

1
0
1

⎤
⎦ =

⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦

⎡
⎣

1
1
0

⎤
⎦ ,

which is correct.

114 6 3D Transforms

Example 3 Rotate the point (1,0,0) 180◦ about the vector [1 0 1]T.
The transform is

⎡
⎣

x′
p

y′
p

z′
p

⎤
⎦ =

⎡
⎣

a2K + cosα abK − c sinα acK + b sinα

abK + c sinα b2K + cosα bcK − a sinα

acK − b sinα bcK + a sinα c2K + cosα

⎤
⎦

⎡
⎣

xp

yp

zp

⎤
⎦ ,

where

K = 1 − cosα,

and the unit vector is [a b c]T.
As α = 180◦, K = 2 and a =

√
2

2 , b = 0, c =
√

2
2 .

Therefore,
⎡
⎣

0
0
1

⎤
⎦ =

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣

1
0
0

⎤
⎦ ,

which is correct.

Example 4 Compute the eigenvector and eigenvalue from the transform in Exam-
ple 3.

Using the above equations:

v1 = (a22 − 1)(a33 − 1) − a23a32

v2 = (a33 − 1)(a11 − 1) − a31a13

v3 = (a11 − 1)(a22 − 1) − a12a21

where ⎡
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ =

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦ ,

then

v1 = (−1 − 1)(0 − 1) = 2

v2 = (0 − 1)(0 − 1) − 1 = 0

v3 = (0 − 1)(−1 − 1) = 2

which is the vector [2 0 2]T.
To find the eigenvalue, we use

Tr(R) = 1 + 2 cosβ

−1 = 1 + 2 cosβ

6.12 Summary 115

−1 = cosβ

180◦ = β.

6.12 Summary

In this chapter we have examined various 3D transforms including: scale, translate,
shear, reflection and rotate. We have seen that matrix notation provides an elegant
way to express transforms and develop new ones. Out of all of the transforms, rota-
tion is the most interesting as there are so many combinations to consider. In their
simplest form, rotations are restricted to one of the three Cartesian axes, but by em-
ploying homogeneous coordinates, the translation transform can be used to rotate
points about an off-set axis parallel with one of the Cartesian axes.

Composite Euler rotations are created by combining the matrices representing the
individual rotations about three successive axes, for which there are twelve combi-
nations. Unfortunately, one of the problems with such transforms is that they suffer
from gimbal lock, where one degree of freedom is lost under certain angle com-
binations. Another problem, is that it is difficult to predict how a point moves in
space when animated by a composite transform, although they are widely used for
positioning objects in world space.

We have also seen how to compute the eigenvector associated with a rotation
transform, and how it represents the axis about which rotation occurs, and the eigen-
value represents the angle of rotation.

Finally, matrices and vectors were used to develop a transform for rotating a point
about an arbitrary axis.

In the next chapter we examine how a quaternion is expressed as a matrix, and
how they can be used to rotate points about an axis.

Chapter 7
Quaternions

7.1 Introduction

Quaternions were invented by the Irish mathematician Sir William Rowan Hamil-
ton (1805–1865) in 1843. Sir William was looking for a way to represent complex
numbers in higher dimensions, and it took 15 years of toil before he stumbled upon
the idea of using a 4D notation—hence the name ‘quaternion’. Although a quater-
nion is a hyper-complex number, it does have a matrix form, which is derived in this
chapter.

Knowing that a complex number is the combination of a real and imaginary
quantity: a + ib, it is tempting to assume that its 3D equivalent is a + ib + jc

where i2 = j2 = −1. Unfortunately, when Hamilton formed the product of two
such objects, he could not resolve the dyads ij and ji, and went on to explore an
extension a + ib + jc + kd where i2 = j2 = k2 = −1. This too, presented problems
with the dyads ij , jk, ki and their mirrors ji, kj and ik. But after many years of
thought Hamilton stumbled across the rules:

i2 = j2 = k2 = ijk = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.

Although quaternions had some enthusiastic supporters, there were many mathe-
maticians and scientists who were suspicious of the need to involve so many imagi-
nary terms.

In 1881, the American mathematician Josiah Gibbs (1839–1903), at Yale Univer-
sity, resolved the problem by suggesting that the three imaginary quantities could
be viewed as a 3D vector and changed the ib + jc + kd into bi + cj + dk, where i, j
and k are unit Cartesian vectors. Today, there are two ways of defining a quaternion:

q = [s,v]
q = [s + v].

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5_7, © Springer-Verlag London 2012

117

118 7 Quaternions

The difference is rather subtle: the first creates an ordered pair, and separates the
scalar and the vector with a comma, whereas the second preserves the ‘+’ sign as
used in complex numbers. In this chapter we employ the comma as a separator.

It can be shown that quaternions can rotate points about an arbitrary axis, and
hence the orientation of objects and a virtual camera. In order to develop the equa-
tion that performs this transformation we will have to understand the action of
quaternions in the context of rotations.

A quaternion q is the combination of a scalar and a vector:

q = [s,v],
where s is a scalar and v is a 3D vector. If we express the vector v in terms of its
components, we have in an algebraic form

q = [s, xi + yj + zk],
where s, x, y and z are real numbers.

7.2 Adding and Subtracting Quaternions

Given two quaternions q1 and q2:

q1 = [s1,v1] = [s1, x1i + y1j + z1k]
q2 = [s2,v2] = [s2, x2i + y2j + z2k]

they are equal if, and only if, their corresponding terms are equal. Furthermore, like
vectors, they can be added and subtracted as follows:

q1 ± q2 = [
(s1 ± s2), (x1 ± x2)i + (y1 ± y2)j + (z1 ± z2)k

]
.

7.3 Multiplying Quaternions

When multiplying quaternions we must employ the following rules:

i2 = j2 = k2 = ijk = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.

Note that whilst quaternion addition is commutative, the rules make quaternion
products non-commutative.

Given two quaternions q1 and q2:

q1 = [s1,v1] = [s1, x1i + y1j + z1k]

7.4 Pure Quaternion 119

q2 = [s2,v2] = [s2, x2i + y2j + z2k]
their product q1q2 is given by:

q1q2 = [
(s1s2 − x1x2 − y1y2 − z1z2), (s1x2 + s2x1 + y1z2 − y2z1)i

+ (s1y2 + s2y1 + z1x2 − z2x1)j + (s1z2 + s2z1 + x1y2 − x2y1)k
]

which can be rewritten using the dot and cross products as

q1q2 = [s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2],
where

s1s2 − v1 · v2,

is a scalar, and

s1v2 + s2v1 + v1 × v2,

is a vector.

7.4 Pure Quaternion

A pure quaternion has a zero scalar term:

q = [0,v].
Therefore, given two pure quaternions:

q1 = [0,v1] = [0, x1i + y1j + z1k]
q2 = [0,v2] = [0, x2i + y2j + z2k]

their product is

q1q2 = [0,v1 × v2],
which is another pure quaternion.

7.5 The Inverse Quaternion

Given the quaternion

q = [s, xi + yj + zk],
its inverse q−1 is given by

q−1 = [s,−xi − yj − zk]
|q|2 ,

120 7 Quaternions

where |q| is the magnitude, or modulus of q , and is equal to

|q| =
√

s2 + x2 + y2 + z2.

It can be shown that

qq−1 = q−1q = 1.

7.6 Unit-Norm Quaternion

A unit-norm quaternion has a magnitude equal to 1:

|q| =
√

s2 + x2 + y2 + z2 = 1.

7.7 Rotating Points About an Axis

Basically, quaternions are associated with vectors rather than individual points.
Therefore, in order to manipulate a single vertex, it must be turned into a position
vector, which has its tail at the origin. A vertex is then represented in quaternion
form by its equivalent position vector with a zero scalar term. For example, a point
P(x, y, z) is represented in quaternion form by

p = [0, xi + yj + zk],

which is transformed into another position vector using the process described be-
low. The coordinates of the rotated point are the components of the rotated position
vector. This may seem an indirect process, but in reality it turns out to be rather
simple. Let’s now consider how this is achieved.

It can be shown that a position vector p can be rotated through an angle θ about
an axis using the following operation:

p′ = qpq−1, (7.1)

where p is a pure quaternion encoding the vector p, q is a unit-norm quaternion
encoding the axis and angle of rotation, and p′ encodes the rotated vector p′. (See
the author’s book Quaternions for Computer Graphics.) For example, to rotate a
point P(x, y, z) through an angle θ about an axis û, we use the following steps:

1. Convert the point P(x, y, z) to a pure quaternion p:

p = [0, xi + yj + zk].

7.7 Rotating Points About an Axis 121

Fig. 7.1 The point P (0,1,1)

is rotated to P ′(1,1,0) using
a quaternion coincident with
the y axis

2. Define the axis of rotation as a unit vector û:

û = [xui + yuj + zuk],
where

|û| = 1.

3. Define the transforming quaternion q , where the scalar term is cos θ
2 and the

vector term is sin θ
2 û:

q =
[

cos
θ

2
, sin

θ

2
û
]
.

4. Define the inverse of the transforming quaternion q−1:

q−1 =
[

cos
θ

2
,− sin

θ

2
û
]
.

5. Compute p′:

p′ = qpq−1.

6. Unpack (x′, y′, z′) from p′:

P ′(x′, y′, z′) ⇐ p′ = [
0, x′i + y′j + z′k

]
.

We can verify the action of the above transform with a simple example. Consider
the point P(0,1,1) in Fig. 7.1 which is to be rotated 90◦ about the y axis. We can
see that the rotated point P ′ has the coordinates (1,1,0) which we will confirm
algebraically. The point P is represented by the quaternion p:

p = [0,0i + 1j + 1k],
and is rotated by evaluating the quaternion p′:

p′ = qpq−1,

122 7 Quaternions

which will store the rotated coordinates. The axis of rotation is j, therefore the unit
quaternion q is given by

q =
[

cos
90◦

2
, sin

90◦

2
[0i + j + 0k]

]

= [
cos 45◦,0i + sin 45◦j + 0k

]
.

The inverse quaternion q−1 is given by

q−1 = [cos 90◦
2 ,− sin 90◦

2 [0i + j − 0k]]
|q|2 ,

but as q is a unit-norm quaternion, the denominator |q|2 equals unity and can be
ignored. Therefore

q−1 = [
cos 45◦,−0i − sin 45◦j − 0k

]
.

Let’s evaluate qpq−1 in two stages: (qp)q−1, and zero components will continue to
be included for clarity.

1.

qp = [
cos 45◦,0i + sin 45◦j + 0k

][0 + 0i + j + 0k]
= [− sin 45◦, sin 45◦i + cos 45◦j + cos 45◦k

]
.

2.

(qp)q−1 = [− sin 45◦, sin 45◦i + cos 45◦j + cos 45◦k
]

× [
cos 45◦,−0i − sin 45◦j − 0k

]

= [
0,2 cos 45◦ sin 45◦i + (

cos2 45◦ + sin2 45◦)j

+ (
cos2 45◦ − sin2 45◦)k

]

p′ = [0, i + j + 0k]
and the vector component of p′ confirms that P is indeed rotated to (1,1,0).

We will evaluate one more example before continuing. Consider a rotation about
the z axis as illustrated in Fig. 7.2. The original point has coordinates (0,1,1) and
is rotated −90◦. From the figure we see that this should finish at (1,0,1). This time
the quaternion q is defined by

q =
[

cos
−90◦

2
, sin

−90◦

2
[0i + 0j + k]

]

= [
cos 45◦,0i + 0j − sin 45◦k

]

7.8 Roll, Pitch and Yaw Quaternions 123

Fig. 7.2 The point P (0,1,1)

is rotated −90◦ to P ′(1,0,1)

using a quaternion coincident
with the z axis

with its inverse

q−1 = [
cos 45◦,0i + 0j + sin 45◦k

]
,

and the point to be rotated in quaternion form is

p = [0,0i + i + k].
Evaluating this in two stages we have

1.

qp = [
cos 45◦,0i + 0j − sin 45◦k

][0,0i + j + k]
= [

sin 45◦, sin 45◦i + cos 45◦j + cos 45◦k
]
.

2.

(qp)q−1 = [
sin 45◦, sin 45◦i + cos 45◦j + cos 45◦k

][
cos 45◦,0i + 0j + sin 45◦k

]

= [
0, sin 90◦i + cos 90◦j + k

]

= [0, i + 0j + k].
The vector component of p′ confirms that P is rotated to (1,0,1).

7.8 Roll, Pitch and Yaw Quaternions

As described in the previous chapter, the rotational behaviour of planes and ships
is often described in terms of roll, pitch and yaw. Roll is the rotation about the axis
representing the direction of travel, say the z axis, pitch is the rotation about the hor-
izontal axis perpendicular to the z axis, i.e. the x axis, and yaw is the rotation about
the vertical axis perpendicular to the z axis, i.e. the y axis. These are represented by
the following quaternions:

qroll =
[

cos
θ

2
, sin

θ

2
k
]

124 7 Quaternions

qpitch =
[

cos
θ

2
, sin

θ

2
i
]

qyaw =
[

cos
θ

2
, sin

θ

2
j
]

where θ is the angle of rotation.
These quaternions can be multiplied together to create a single quaternion repre-

senting a compound rotation. For example, if the quaternions are defined as

qroll =
[

cos
roll

2
, sin

roll

2
k
]

qpitch =
[

cos
pitch

2
, sin

pitch

2
i
]

qyaw =
[

cos
yaw

2
, sin

yaw

2
j
]

they can be combined to a single quaternion q:

q = qyawqpitchqroll = [s, xi + yj + zk],
where

s = cos
yaw

2
cos

pitch

2
cos

roll

2
+ sin

yaw

2
sin

pitch

2
sin

roll

2

x = cos
yaw

2
sin

pitch

2
cos

roll

2
+ sin

yaw

2
cos

pitch

2
sin

roll

2

y = sin
yaw

2
cos

pitch

2
cos

roll

2
− cos

yaw

2
sin

pitch

2
sin

roll

2

z = cos
yaw

2
cos

pitch

2
sin

roll

2
− sin

yaw

2
sin

pitch

2
cos

roll

2
.

Let’s examine this compound quaternion with an example. For instance, given the
following conditions let’s derive a single quaternion q to represent the compound
rotation:

roll = 90◦

pitch = 180◦

yaw = 0◦.

The values of s, x, y, z are

s = 0

x = cos 45◦

7.9 Quaternions in Matrix Form 125

Fig. 7.3 The point P (1,1,1)

is subject to a compound roll
of 90◦ to (−1,1,1) and a
pitch of 180◦ and ends up at
P ′(−1,−1,−1)

y = − sin 45◦

z = 0

and the quaternion q is

q = [
0, cos 45◦i − sin 45◦j

]
.

If the point P(1,1,1) is subjected to this compound rotation, the rotated point is
computed using the standard quaternion transform:

p′ = qpq−1.

Let’s evaluate qpq−1 in two stages:

1.

qp = [
0, cos 45◦i − sin 45◦j

][0, i + j + k]
= [

0,− sin 45◦i − cos 45◦j + (
sin 45◦ + cos 45◦)k

]
.

2.

(qp)q−1 = [
0,− sin 45◦i − cos 45◦j + (

sin 45◦ + cos 45◦)k
]

× [
0,− cos 45◦i + sin 45◦j

]

p′ = [0,−i − j − k].
Therefore, the coordinates of the rotated point are (−1,−1,−1) which can be con-
firmed from Fig. 7.3.

7.9 Quaternions in Matrix Form

Having discovered a vector equation to represent the triple qpq−1, let’s continue
and convert it into a matrix. We will explore two methods: The first is a simple

126 7 Quaternions

vectorial method which translates the vector equation representing qpq−1 directly
into matrix form; the second method uses matrix algebra to develop a rather cunning
solution.

7.9.1 Vector Method

For the vector method it is convenient to describe the unit-norm quaternion as

q = [s,v]
= [s, xi + yj + zk]

where

s2 + |v|2 = 1,

and the pure quaternion as

p = [0,p]
= [0, xpi + ypj + zpk].

A simple way to compute qpq−1 is to use (7.1) and substitute |v| for λ:

qpq−1 = [
0,2λ2(v̂ · p)v̂ + (

s2 − λ2)p + 2λsv̂ × p
]

= [
0,2|v|2(v̂ · p)v̂ + (

s2 − |v|2)p + 2|v|sv̂ × p
]
.

Next, we substitute v for |v|v̂:

qpq−1 = [
0,2(v · p)v + (

s2 − |v|2)p + 2sv × p
]
.

Finally, as we are working with unit-norm quaternions to prevent scaling

s2 + |v|2 = 1,

and

s2 − |v|2 = 2s2 − 1,

therefore,

qpq−1 = [
0,2(v · p)v + (

2s2 − 1
)
p + 2sv × p

]
.

If we let p′ = qpq−1, which is a pure quaternion, we have

p′ = qpq−1

= [
0,p′]

7.9 Quaternions in Matrix Form 127

= [
0,2(v · p)v + (

2s2 − 1
)
p + 2sv × p

]

p′ = 2(v · p)v + (
2s2 − 1

)
p + 2sv × p.

We are only interested in the rotated vector p′ comprising the three terms 2(v · p)v,
(2s2 − 1)p and 2sv × p, which can be represented by three individual matrices and
summed together.

2(v · p)v = 2(xxp + yyp + zzp)(xi + yj + zk)

=
⎡

⎣
2x2 2xy 2xz

2xy 2y2 2yz

2xz 2yz 2z2

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

(
2s2 − 1

)
p = (

2s2 − 1
)
xpi + (

2s2 − 1
)
ypj + (

2s2 − 1
)
zpk

=
⎡

⎣
2s2 − 1 0 0

0 2s2 − 1 0
0 0 2s2 − 1

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

2sv × p = 2s
(
(yzp − zyp)i + (zxp − xzp)j + (xyp − yxp)k

)

=
⎡

⎣
0 −2sz 2sy

2sz 0 −2sx

−2sy 2sx 0

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦ .

Adding these matrices together:

p′ =
⎡

⎣
2(s2 + x2) − 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2(s2 + y2) − 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦ (7.2)

or

p′ =
⎡

⎣
1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦ (7.3)

where
[
0,p′] = qpq−1.

Now let’s reverse the product. To compute the vector part of q−1pq all that we have
to do is reverse the sign of 2sv × p:

p′ =
⎡

⎣
2(s2 + x2) − 1 2(xy + sz) 2(xz − sy)

2(xy − sz) 2(s2 + y2) − 1 2(yz + sx)

2(xz + sy) 2(yz − sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦ (7.4)

128 7 Quaternions

or

p′ =
⎡

⎣
1 − 2(y2 + z2) 2(xy + sz) 2(xz − sy)

2(xy − sz) 1 − 2(x2 + z2) 2(yz + sx)

2(xz + sy) 2(yz − sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦ (7.5)

where
[
0,p′] = q−1pq.

Observe that (7.4) is the transpose of (7.2), and (7.5) is the transpose of (7.3).

7.9.2 Matrix Method

The second method to derive (7.1) employs the matrix representing a quaternion
product:

qa = [sa, xai + yaj + zak]
qb = [sb, xbi + ybj + zbk]

and their product is

qaqb = [sa, xa i + yaj + zak][sb, xbi + ybj + zbk]
= [

sasb − xaxb − yayb − zazb,

sa(xbi + ybj + zbk) + sb(xa i + yaj + zak)

+ (yazb − ybza)i + (xbza − xazb)j + (xayb − xbya)k
]

= [
sasb − xaxb − yayb − zazb,

(saxb + sbxa + yazb − ybza)i

+ (sayb + sbya + xbza − xazb)j

+ (sazb + sbza + xayb − xbya)k
]

=

⎡

⎢⎢
⎣

sa −xa −ya −za

xa sa −za ya

ya za sa −xa

za −ya xa sa

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

sb
xb

yb

zb

⎤

⎥⎥
⎦ = Aqb.

At this stage we have quaternion qa represented by matrix A, and quaternion qb

represented as a column vector. Now let’s reverse the scenario without altering the
result by making qb the matrix and qa the column vector:

7.9 Quaternions in Matrix Form 129

qaqb =

⎡

⎢⎢
⎣

sb −xb −yb −zb

xb sb zb −yb

yb −zb sb xb

zb yb −xb sb

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

sa
xa

ya

za

⎤

⎥⎥
⎦ = Bqa.

So now we have two ways of computing qaqb and we need a way of distinguish-
ing between the two matrices. Let L be the matrix that preserves the left-to-right
quaternion sequence, and R be the matrix that reverses the sequence to right-to-left:

qaqb = L(qa)qb =

⎡

⎢⎢
⎣

sa −xa −ya −za

xa sa −za ya

ya za sa −xa

za −ya xa sa

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

sb
xb

yb

zb

⎤

⎥⎥
⎦

qaqb = R(qb)qa =

⎡

⎢⎢
⎣

sb −xb −yb −zb

xb sb zb −yb

yb −zb sb xb

zb yb −xb sb

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

sa
xa

ya

za

⎤

⎥⎥
⎦ .

Remember that L(qa)qb = R(qb)qa , as this is central to understanding the next
stage. Furthermore, don’t be surprised if you can’t follow the argument in the first
reading.

First, let’s employ the matrices L and R to rearrange the quaternion product
qaqcqb to qaqbqc . i.e. move qc from the middle to the right-hand-side. We start with
the quaternion product qaqcqb and divide it into two parts, qaqc and qb. We can do
this because quaternion algebra is associative:

qaqcqb = (qaqc)qb.

We have already demonstrated above that the product qaqc can be replaced by
L(qa)qc:

qaqcqb = L(qa)qcqb.

We now have another two parts: L(qa)qc and qb which can be reversed using R
without disturbing the result:

qaqcqb = L(qa)qcqb = R(qb)L(qa)qc,

which has achieved our objective to move qc to the right-hand-side. But the most
important result is that the matrices R(qb) and L(qa) can be multiplied together to
form a single matrix, which operates on qc .

Now let’s repeat the same process to rearrange the product qpq−1. The objective
is to move p from the middle of q and q−1, to the right-hand-side. The reason for
doing this is to bring together q and q−1 in the form of two matrices, which can be
multiplied together into a single matrix.

We start with the quaternion product qpq−1 and divide it into two parts, qp and
q−1:

qpq−1 = (qp)q−1.

130 7 Quaternions

The product qp can be replaced by L(q)p:

qpq−1 = L(q)pq−1.

We now have another two parts: L(q)p and q−1 which can be reversed using R
without disturbing the result:

qpq−1 = L(q)pq−1 = R
(
q−1)L(q)p,

which has achieved our objective to move p to the right-hand-side.
The next step is to compute L(q) and R(q−1) using q = [s, xi + yj + zk]. L(q)

is easy as it is the same as L(qa):

L(q) =

⎡

⎢⎢
⎣

s −x −y −z

x s −z y

y z s −x

z −y x s

⎤

⎥⎥
⎦ .

R(q−1) is also easy, but requires converting qb in the original definition into q−1

which is effected by reversing the signs of the vector components:

R
(
q−1) =

⎡

⎢⎢
⎣

s x y z

−x s −z y

−y z s −x

−z −y x s

⎤

⎥⎥
⎦ .

So now we can write

qpq−1 = R
(
q−1)L(q)p

=

⎡

⎢⎢
⎣

s x y z

−x s −z y

−y z s −x

−z −y x s

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

s −x −y −z

x s −z y

y z s −x

z −y x s

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0
xp

yp

zp

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

1 0 0 0
0 1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

0 2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

0 2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0
xp

yp

zp

⎤

⎥⎥
⎦ .

If we ignore the first row and column, the matrix computes p′:

p′ =
⎡

⎣
1 − 2(y2 + z2) 2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2(x2 + z2) 2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2(x2 + y2)

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

which is identical to (7.3)!

7.9 Quaternions in Matrix Form 131

Fig. 7.4 The point P (0,1,1)

is rotated 90◦ to P ′(1,1,0)

about the y axis

7.9.3 Geometric Verification

Let’s illustrate the action of (7.2) by rotating the point (0,1,1), 90◦ about the y axis,
as shown in Fig. 7.4. The quaternion takes the form

q =
[

cos
θ

2
, sin

θ

2
v̂
]
,

which means that θ = 90◦ and v̂ = j, therefore,

q = [
cos 45◦, sin 45◦ĵ

]
.

Consequently,

s =
√

2

2
, x = 0, y =

√
2

2
, z = 0.

Substituting these values in (7.2) gives

p′ =
⎡

⎣
2(s2 + x2) − 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2(s2 + y2) − 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

⎡

⎣
1
1
0

⎤

⎦ =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦

where (0,1,1) is rotated to (1,1,0), which is correct.
So now we have a transform that rotates a point about an arbitrary axis intersect-

ing the origin without the problems of gimbal lock associated with Euler transforms.
Before moving on, let’s evaluate one more example. Let’s perform a 180◦ ro-

tation about a vector v = i + k passing through the origin. To begin with, we will
deliberately forget to convert the vector into a unit vector, just to see what happens
to the final matrix. The quaternion takes the form

132 7 Quaternions

Fig. 7.5 The point (1,0,0) is
rotated 180◦ about the vector
v̂ to (0,0,1)

q =
[

cos
θ

2
, sin

θ

2
v̂
]
,

but we will use v as specified. Therefore, with θ = 180◦

s = 0, x = 1, y = 0, z = 1.

Substituting these values in (7.2) gives

p′ =
⎡

⎣
2(s2 + x2) − 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2(s2 + y2) − 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

=
⎡

⎣
1 0 2
0 −1 0
2 0 1

⎤

⎦

⎡

⎣
1
0
0

⎤

⎦

which looks nothing like a rotation matrix, and reminds us how important it is to
have a unit vector to represent the axis. Let’s repeat these calculations normalising
the vector to v̂ = 1√

2
i + 1√

2
k:

s = 0, x = 1√
2
, y = 0, z = 1√

2
.

Substituting these values in (7.2) gives

p′ =
⎡

⎣
2(s2 + x2) − 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2(s2 + y2) − 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

⎡

⎣
0
0
1

⎤

⎦ =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
1
0
0

⎤

⎦

which not only looks like a rotation matrix, but has a determinant of 1 and rotates
the point (1,0,0) to (0,0,1) as shown in Fig. 7.5.

7.10 Multiple Rotations 133

7.10 Multiple Rotations

Say a vector or frame of reference is subjected to two rotations specified by q1
followed by q2. There is a temptation to convert both quaternions to their respective
matrix and multiply the matrices together. However, this not the most efficient way
of combining the rotations. It is best to accumulate the rotations as quaternions
and then convert to matrix notation, if required. To illustrate this, consider the pure
quaternion p subjected to the first quaternion q1:

q1pq−1
1 ,

followed by a second quaternion q2

q2
(
q1pq−1

1

)
q−1

2 ,

which can be expressed as

(q2q1)p(q2q1)
−1.

Extra quaternions can be added accordingly. Let’s illustrate this with two examples.
To keep things simple, the first quaternion q1 rotates 30◦ about the y axis:

q1 = [
cos 15◦, sin 15◦j

]
.

The second quaternion q2 rotates 60◦ also about the y axis:

q2 = [
cos 30◦, sin 30◦j

]
.

Together, the two quaternions rotate 90◦ about the y axis. To accumulate these rota-
tions, we multiply them together:

q1q2 = [
cos 15◦, sin 15◦j

][
cos 30◦, sin 30◦j

]

= [
cos 15◦ cos 30◦ − sin 15◦ sin 30◦, cos 15◦ sin 30◦j + cos 30◦ sin 15◦j

]

=
[√

2

2
,

√
2

2
j
]

which is a quaternion that rotates 90◦ about the y axis. Using the matrix (7.2) we
have

p′ =
⎡

⎣
2(s2 + x2) − 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2(s2 + y2) − 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

=
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

which rotates points about the y axis by 90◦.

134 7 Quaternions

For a second example, let’s just evaluate the quaternions. The first quaternion q1

rotates 90◦ about the x axis, and q2 rotates 90◦ about the y axis:

q1 =
[√

2

2
,

√
2

2
i
]

q2 =
[√

2

2
,

√
2

2
j
]

p = [0, i + j]

therefore,

q2q1 =
[√

2

2
,

√
2

2
j
][√

2

2
,

√
2

2
i
]

=
[

1

2
,

√
2

2

√
2

2
i +

√
2

2

√
2

2
j − 1

2
k
]

=
[

1

2
,

1

2
i + 1

2
j − 1

2
k
]

(q2q1)
−1 =

[
1

2
,−1

2
i − 1

2
j + 1

2
k
]

(q2q1)p =
[

1

2
,

1

2
i + 1

2
j − 1

2
k
]
[0, i + j]

=
[
−1

2
− 1

2
,

1

2
(i + j) + 1

2
i − 1

2
j
]

= [−1, i]

(q2q1)p(q2q1)
−1 = [−1, i]

[
1

2
,−1

2
i − 1

2
j + 1

2
k
]

=
[
−1

2
+ 1

2
,

1

2
i + 1

2
j − 1

2
k + 1

2
i − 1

2
j − 1

2
k
]

= [0, i − k].

Thus the point (1,1,0) is rotated to (1,0,−1), which is correct.

7.11 Eigenvalue and Eigenvector

Although there is no doubt that (7.2) is a rotation matrix, we can secure further
evidence by calculating its eigenvalue and eigenvector. The eigenvalue should be θ

7.11 Eigenvalue and Eigenvector 135

where

Tr
(
qpq−1) = 1 + 2 cos θ.

and Tr is the trace function, which is the sum of the diagonal elements of a matrix.
The trace of (7.2) is

Tr
(
qpq−1) = 2

(
s2 + x2) − 1 + 2

(
s2 + y2) − 1 + 2

(
s2 + z2) − 1

= 4s2 + 2
(
s2 + x2 + y2 + z2) − 3

= 4s2 − 1

= 4 cos2 1

2
θ − 1

= 4 cos θ + 4 sin2 1

2
θ − 1

= 4 cos θ + 2 − 2 cos θ − 1

= 1 + 2 cos θ

and

cos θ = 1

2

(
Tr

(
qpq−1) − 1

)
.

To compute the eigenvector of (7.2) we use the three equations derived in Chap. 6:

xv = (a22 − 1)(a33 − 1) − a23a32

yv = (a33 − 1)(a11 − 1) − a31a13

zv = (a11 − 1)(a22 − 1) − a12a21.

Therefore,

xv = (
2
(
s2 + y2) − 2

)(
2
(
s2 + z2) − 2

) − 2(yz − sx)2(yz + sx)

= 4
(
s2 + y2 − 1

)(
s2 + z2 − 1

) − 4
(
y2z2 − s2x2)

= 4
((

x2 + z2)(x2 + y2) − y2z2 + s2x2)

= 4
(
x4 + x2y2 + x2z2 + z2y2 − y2z2 + s2x2)

= 4x2(s2 + x2 + y2 + z2)

= 4x2.

Similarly, yv = 4y2 and zv = 4z2, which confirm that the eigenvector has compo-
nents associated with the quaternion’s vector. The square terms should be no sur-
prise, as the triple qpq−1 includes the product of three quaternions.

136 7 Quaternions

Let’s test these formulae with the matrix associated with Fig. 7.5, which rotates
a point 180◦ about the vector v̂ = 1√

2
i + 1√

2
k:

M =
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ =
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦ ,

therefore,

xv = −2 × −1 − 0 = 2

yv = −1 × −1 − 1 × 1 = 0

zv = −1 × −2 − 0 = 2

which confirms that the eigenvector is 2i + 2k.
Next, Tr(M) = −1, therefore

cos θ = 1

2

(
Tr

(
qpq−1) − 1

)

= 1

2

(
(−1) − 1

)

= −1

θ = ±180◦

which agrees with the previous results.

7.12 Rotating About an Off-Set Axis

Now that we have a matrix to represent a quaternion rotor, we can employ it to
resolve problems such as rotating a point about an off-set axis using the same tech-
niques associated with normal rotation transforms. For example, in Chap. 6 we used
the following notation

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ = [Ttx ,0,tz][Rβ,y][T−tx ,0,−tz]

⎡

⎢⎢
⎣

x

y

z

1

⎤

⎥⎥
⎦ ,

to rotate a point about a fixed axis parallel with the y axis. Therefore, by substituting
the matrix qpq−1 for Rβ,y we have

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥
⎥
⎦ = [Ttx ,0,tz]

(
qpq−1)[T−tx ,0,−tz]

⎡

⎢
⎢
⎣

x

y

z

1

⎤

⎥
⎥
⎦ .

7.12 Rotating About an Off-Set Axis 137

Fig. 7.6 The cube is rotated 90◦ about the axis intersecting vertices 4 and 6

Let’s test this by rotating our unit cube 90◦ about the vertical axis intersecting ver-
tices 4 and 6 as shown in Fig. 7.6. The unit-norm quaternion to achieve this is

q = [
cos 45◦, sin 45◦j

]
,

with the pure quaternion

p = [0,p].
Consequently,

s =
√

2

2
, x = 0, y =

√
2

2
, z = 0

and using (7.2) in a homogeneous form we have

p′ =

⎡

⎢⎢
⎣

2(s2 + x2) − 1 2(xy − sz) 2(xz + sy) 0
2(xy + sz) 2(s2 + y2) − 1 2(yz − sx) 0
2(xz − sy) 2(yz + sx) 2(s2 + z2) − 1 0

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

xp

yp

zp

1

⎤

⎥⎥
⎦

=

⎡

⎢
⎢
⎣

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

xp

yp

zp

1

⎤

⎥
⎥
⎦ .

The other two matrices are

T−tx ,0,0 =

⎡

⎢⎢
⎣

1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

Ttx ,0,0 =

⎡

⎢⎢
⎣

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

138 7 Quaternions

Multiplying these three matrices together creates

⎡

⎢⎢
⎣

0 0 1 1
0 1 0 0

−1 0 0 1
0 0 0 1

⎤

⎥⎥
⎦ . (7.6)

Although not mathematically correct, the following statement shows the matrix
(7.6) and the array of coordinates representing a unit cube, followed by the rotated
cube’s coordinates.

⎡

⎢⎢
⎣

0 0 1 1
0 1 0 0

−1 0 0 1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

1 2 1 2 1 2 1 2
0 0 1 1 0 0 1 1
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦ .

These coordinates are confirmed by Fig. 7.6.

7.13 Frames of Reference

The product qpq−1 is used for rotating points about the vector associated with the
quaternion q , whereas the triple q−1pq can be used for rotating points about the
same vector in the opposite direction. But this reverse rotation is also equivalent
to a change of frame of reference. To demonstrate this, consider the problem of
rotating the frame of reference 180◦ about i + k as shown in Fig. 7.7. The unit-norm
quaternion for such a rotation is

q =
[

cos 90◦, sin 90◦
(

1√
2

i + 1√
2

k
)]

=
[

0,

√
2

2
i +

√
2

2
k
]
.

Consequently,

s = 0, x =
√

2

2
, y = 0, z =

√
2

2
.

Substituting these values in (7.4) we obtain

7.14 Euler Angles to Quaternion 139

Fig. 7.7 The frame is rotated 180◦ about the vector i + k

q−1pq =
⎡

⎣
2(s2 + x2) − 1 2(xy + sz) 2(xz − sy)

2(xy − sz) 2(s2 + y2) − 1 2(yz + sx)

2(xz + sy) 2(yz − sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

=
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

which, if used to process the coordinates of our unit cube, produces
⎡

⎣
0 0 1
0 −1 0
1 0 0

⎤

⎦

⎡

⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤

⎦

=
⎡

⎣
0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤

⎦ .

This scenario is shown in Fig. 7.7.

7.14 Euler Angles to Quaternion

In Chap. 6 we discovered that the rotation transforms Rα,x , Rβ,y and Rγ,z can be
combined to create twelve, triple combinations to represent a composite rotation.
Now let’s see how such a transform is represented by a quaternion.

To demonstrate the technique we must choose one of the twelve combinations,
then the same technique can be used to convert other combinations. For example,
let’s choose the sequence Rγ,zRβ,yRα,x where the equivalent quaternions are

qx =
[

cos
α

2
, sin

α

2
i
]

140 7 Quaternions

qy =
[

cos
β

2
, sin

β

2
j
]

qz =
[

cos
γ

2
, sin

γ

2
k
]

and

q = qzqyqx. (7.7)

Expanding (7.7):

q =
[

cos
γ

2
, sin

γ

2
k
][

cos
β

2
, sin

β

2
j
][

cos
α

2
, sin

α

2
i
]

=
[

cos
γ

2
cos

β

2
,

cos
γ

2
sin

β

2
j + cos

β

2
sin

γ

2
k − sin

γ

2
sin

β

2
i
][

cos
α

2
, sin

α

2
i
]

=
[

cos
γ

2
cos

β

2
cos

α

2
+ sin

γ

2
sin

β

2
sin

α

2
,

cos
γ

2
cos

β

2
sin

α

2
i + cos

α

2
cos

γ

2
sin

β

2
j + cos

α

2
cos

β

2
sin

γ

2
k

− cos
α

2
sin

γ

2
sin

β

2
i − cos

γ

2
sin

β

2
sin

α

2
k + cos

β

2
sin

γ

2
sin

α

2
j
]

=
[

cos
γ

2
cos

β

2
cos

α

2
+ sin

γ

2
sin

β

2
sin

α

2
,

(
cos

γ

2
cos

β

2
sin

α

2
− cos

α

2
sin

γ

2
sin

β

2

)
i

+
(

cos
α

2
cos

γ

2
sin

β

2
+ cos

β

2
sin

γ

2
sin

α

2

)
j

+
(

cos
α

2
cos

β

2
sin

γ

2
− cos

γ

2
sin

β

2
sin

α

2

)
k
]
.

Now let’s place the angles in a consistent sequence:

s = cos
γ

2
cos

β

2
cos

α

2
+ sin

γ

2
sin

β

2
sin

α

2

xq = cos
γ

2
cos

β

2
sin

α

2
− sin

γ

2
sin

β

2
cos

α

2

yq = cos
γ

2
sin

β

2
cos

α

2
+ sin

γ

2
cos

β

2
sin

α

2

7.14 Euler Angles to Quaternion 141

zq = sin
γ

2
cos

β

2
cos

α

2
− cos

γ

2
sin

β

2
sin

α

2

where

q = [s, xq i + yq j + zqk]. (7.8)

Let’s test (7.8). We start with the three rotation transforms

Rα,x =
⎡

⎣
1 0 0
0 cosα − sinα

0 sinα cosα

⎤

⎦

Rβ,y =
⎡

⎣
cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

⎤

⎦

Rγ,z =
⎡

⎣
cosγ − sinγ 0
sinγ cosγ 0

0 0 1

⎤

⎦ .

Then

Rγ,zRβ,yRα,x

=
⎡

⎣
cosγ cosβ − sinγ cosα + cosγ sinβ sinα sinγ sinα + cosγ sinβ cosα

sinγ cosβ cosγ cosα + sinγ sinβ sinα − cosγ sinα + sinγ sinβ cosα

− sinβ cosβ sinα cosβ cosα

⎤

⎦.

Let’s make α = β = γ = 90◦, then

R90◦,zR90◦,yR90◦,x =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦ ,

which rotates points 90◦ about the y axis:
⎡

⎣
1
1
0

⎤

⎦ =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦ .

Now let’s evaluate (7.8):

s = cos
γ

2
cos

β

2
cos

α

2
+ sin

γ

2
sin

β

2
sin

α

2

=
√

2

2

√
2

2

√
2

2
+

√
2

2

√
2

2

√
2

2

=
√

2

2

142 7 Quaternions

xq = cos
γ

2
cos

β

2
sin

α

2
− sin

γ

2
sin

β

2
cos

α

2

= 0

yq = cos
γ

2
sin

β

2
cos

α

2
+ sin

γ

2
cos

β

2
sin

α

2

=
√

2

2

√
2

2

√
2

2
+

√
2

2

√
2

2

√
2

2

=
√

2

2

zq = sin
γ

2
cos

β

2
cos

α

2
− cos

γ

2
sin

β

2
sin

α

2

= 0

and

q =
[√

2

2
,

√
2

2
j
]
,

which is a quaternion that also rotates points 90◦ about the y axis.

7.15 Worked Examples

Here are some further worked examples that employ the ideas described above.

Example 1 Use qp to rotate p = [0, j] 90◦ about the x axis.
For this to work q must be orthogonal to p:

q = [cos θ, sin θ i]
= [0, i]

and

p′ = qp

= [0, i][0, j]
= [0,k].

Example 2 Use qpq−1 to rotate p = [0, j] 90◦ about the x axis.
For this to work:

q =
[

cos
θ

2
, sin

θ

2
i
]

7.15 Worked Examples 143

=
[√

2

2
,

√
2

2
i
]

and

p′ = qpq−1

=
[√

2

2
,

√
2

2
i
]
[0, j]

[√
2

2
,−

√
2

2
i
]

=
[

0,

√
2

2
j +

√
2

2
k
][√

2

2
,−

√
2

2
i
]

=
[

0,

√
2

2

(√
2

2
j +

√
2

2
k
)

+ 1

2
j + 1

2
k
]

=
[

0,
1

2
j + 1

2
k − 1

2
j + 1

2
k
]

= [0,k]
which agrees with the answer for Example 1.

Example 3 Evaluate the triple qpq−1 for p = [0,p] and q = [cos θ
2 , sin θ

2 v], where
θ = 360◦.

q = [−1,0]
qpq−1 = [−1,0][0,p][−1,0]

= [0,−p][−1,0]
= [0,p]

which confirms that the vector remains unmoved, as expected.

Example 4 Compute the matrix (7.2) for q = [1
2 ,

√
3

2 k], and find its eigenvector and
eigenvalue.

From q:

s = 1

2
, x = 0, y = 0, z =

√
3

2

p′ =
⎡

⎣
2(s2 + x2) − 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2(s2 + y2) − 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2(s2 + z2) − 1

⎤

⎦

⎡

⎣
xp

yp

zp

⎤

⎦

=
⎡

⎢
⎣

− 1
2 −

√
3

2 0√
3

2 − 1
2 0

0 0 1

⎤

⎥
⎦

⎡

⎣
xp

yp

zp

⎤

⎦ .

144 7 Quaternions

If we plug in the point (1,0,0) it is rotated about the z axis by 120◦:

⎡

⎢
⎣

− 1
2√
3

2
1

⎤

⎥
⎦ =

⎡

⎢
⎣

− 1
2 −

√
3

2 0√
3

2 − 1
2 0

0 0 1

⎤

⎥
⎦

⎡

⎣
1
0
0

⎤

⎦ .

Using

cos θ = 1

2

(
Tr

(
qpq−1) − 1

)

= 1

2
(0 − 1)

θ = 120◦.

Using

xv = (a22 − 1)(a33 − 1) − a23a32

=
(

−3

2

)
(0) − 0

= 0

yv = (a33 − 1)(a11 − 1) − a31a13

= (0)

(
−3

2

)
− 0

= 0

zv = (a11 − 1)(a22 − 1) − a12a21

=
(

−3

2

)(
−3

2

)
+

√
3

2

√
3

2

= 3

which makes the eigenvector 3k and the eigenvalue 120◦.

Example 5 Convert the given matrix into a quaternion and identify its function.

M =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦ ,

therefore,

s = 1

2

√
1 + a11 + a22 + a33

7.16 Summary 145

= 1

2

√
1 + 0 + 1 + 0 =

√
2

2

x = 1

4s
(a32 − a23)

=
√

2

4
(0 + 0) = 0

y = 1

4s
(a13 − a31)

=
√

2

4
(1 + 1) =

√
2

2

z = 1

4s
(a21 − a12)

=
√

2

4
(0 + 0) = 0

which is the quaternion [
√

2
2 ,

√
2

2 j] and is a rotation of 90◦ about the y axis.

7.16 Summary

This chapter has demonstrated how unit-norm quaternions can be used to rotate a
vector about a quaternion’s vector. The product qpq−1—discovered by Hamilton
and Cayley—works for all orientations between a quaternion and a vector. It is also
relatively easy to compute. We also saw that the product can be represented as a
matrix, which can be integrated with other matrices.

The reverse product q−1pq reverses the angle of rotation, and is equivalent to
changing the sign of the rotation angle in qpq−1. Consequently, it can be used to
rotate a frame of reference in the same direction as qpq−1.

Chapter 8
Conclusion

The objective of this book was to show the reader how groups of equations can be
expressed using matrices. The notation is very compact and permits one to iden-
tify the action of the matrix transform. Matrices also provide a useful structure for
storing and communicating transforms within a computer system, especially at the
interface with a graphics processor.

I confined the book to the 2D and 3D matrix transforms found in computer
games and animation software. However, matrix notation is widely used in com-
puter graphics to compute perspective views, curves and surfaces, etc. Hopefully,
after reading this book, the reader will understand the direct link between algebra
and matrices, and appreciate the elegance matrix notation brings to the design of
computer graphics algorithms.

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5_8, © Springer-Verlag London 2012

147

Appendix
Composite Point Rotation Sequences

A.1 Euler Rotations

In Chap. 6 we considered composite Euler rotations comprising individual rotations
about the x, y and z axes such as Rγ,xRβ,yRα,z and Rγ,zRβ,yRα,x . However, there
is nothing preventing us from creating other combinations such as Rγ,xRβ,yRα,x or
Rγ,zRβ,yRα,z that do not include two consecutive rotations about the same axis. In
all, there are twelve possible combinations:

Rγ,xRβ,yRα,x Rγ,xRβ,yRα,z Rγ,xRβ,zRα,x Rγ,xRβ,zRα,y

Rγ,yRβ,xRα,y Rγ,yRβ,xRα,z Rγ,yRβ,zRα,x Rγ,yRβ,zRα,y

Rγ,zRβ,xRα,y Rγ,zRβ,xRα,z Rγ,zRβ,yRα,x Rγ,zRβ,yRα,z

which we now cover in detail.
For each combination there are three Euler rotation matrices, the resulting com-

posite matrix, a matrix where the three angles equal 90◦, the coordinates of the
rotated unit cube, the axis and angle of rotation and a figure illustrating the stages
of rotation. To compute the axis of rotation [v1 v2 v3]T we use

v1 = (a22 − 1)(a33 − 1) − a23a32

v2 = (a33 − 1)(a11 − 1) − a31a13

v3 = (a11 − 1)(a22 − 1) − a12a21

where

R =
⎡
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ ,

and for the angle of rotation δ we use

cos δ = 1

2

(
Tr(R) − 1

)
.

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5, © Springer-Verlag London 2012

149

150 Composite Point Rotation Sequences

We begin by defining the three principal Euler rotations:

rotate α about the x-axis Rα,x =
⎡
⎣

1 0 0
0 cα −sα
0 sα cα

⎤
⎦

rotate β about the y-axis Rβ,y =
⎡
⎣

cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤
⎦

rotate γ about the z-axis Rγ,z =
⎡
⎣

cγ −sγ 0
sγ cγ 0
0 0 1

⎤
⎦

where cα = cosα and sα = sinα, etc.
Remember that the right-most transform is applied first and the left-most trans-

form last. In terms of angles, the sequence is always α, β , γ .
For each composite transform you can verify that when α = β = γ = 0 the result

is the identity transform I.
We now examine the twelve combinations in turn.

A.2 Rγ,xRβ,yRα,x

Rγ,xRβ,yRα,x =
⎡
⎣

1 0 0
0 cγ −sγ
0 sγ cγ

⎤
⎦

⎡
⎣

cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤
⎦

⎡
⎣

1 0 0
0 cα −sα
0 sα cα

⎤
⎦

=
⎡
⎣

cβ sβsα sβcα

sγ sβ (cγ cα − sγ cβsα) (−cγ sα − sγ cβcα)

−cγ sβ (sγ cα + cγ cβsα) (−sγ sα + cγ cβcα)

⎤
⎦

R90◦,xR90◦,yR90◦,x =
⎡
⎣

0 1 0
1 0 0
0 0 −1

⎤
⎦

⎡
⎣

0 1 0
1 0 0
0 0 −1

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.1, where the axis of rotation is
[2 2 0]T and the angle of rotation 180◦.

A.3 Rγ,xRβ,yRα,z 151

Fig. A.1 Four views of the unit cube before and during the three rotations R90◦,xR90◦,yR90◦,x

A.3 Rγ,xRβ,yRα,z

Rγ,xRβ,yRα,z =
⎡
⎣

1 0 0
0 cγ −sγ
0 sγ cγ

⎤
⎦

⎡
⎣

cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤
⎦

⎡
⎣

cα −sα 0
sα cα 0
0 0 1

⎤
⎦

=
⎡
⎣

cβcα −cβsα sβ
(cγ sα + sγ sβcα) (cγ cα − sγ sβsα) −sγ cβ

(sγ sα − cγ sβcα) (sγ cα + cγ sβsα) cγ cβ

⎤
⎦

R90◦,xR90◦,yR90◦,z =
⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤
⎦ .

152 Composite Point Rotation Sequences

Fig. A.2 Four views of the unit cube before and during the three rotations R90◦,xR90◦,yR90◦,z

This rotation sequence is illustrated in Fig. A.2, where the axis of rotation is
[2 0 2]T and the angle of rotation 180◦.

A.4 Rγ,xRβ,zRα,x

Rγ,xRβ,zRα,x =
⎡
⎣

1 0 0
0 cγ −sγ
0 sγ cγ

⎤
⎦

⎡
⎣

cβ −sβ 0
sβ cβ 0
0 0 1

⎤
⎦

⎡
⎣

1 0 0
0 cα −sα
0 sα cα

⎤
⎦

=
⎡
⎣

cβ −sβcα sβsα
cγ sβ (−sγ sα + cγ cβcα) (−sγ cα − cγ cβsα)

sγ sβ (cγ sα + sγ cβcα) (cγ cα − sγ cβsα)

⎤
⎦

R90◦,xR90◦,zR90◦,x =
⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

A.5 Rγ,xRβ,zRα,y 153

Fig. A.3 Four views of the unit cube before and during the three rotations R90◦,xR90◦,zR90◦,x

=
⎡
⎣

0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.3, where the axis of rotation is
[2 0 2]T and the angle of rotation 180◦.

A.5 Rγ,xRβ,zRα,y

Rγ,xRβ,zRα,y =
⎡
⎣

1 0 0
0 cγ −sγ
0 sγ cγ

⎤
⎦

⎡
⎣

cβ −sβ 0
sβ cβ 0
0 0 1

⎤
⎦

⎡
⎣

cα 0 sα
0 1 0

−sα 0 cα

⎤
⎦

=
⎡
⎣

cβcα −sβ cβsα
(sγ sα + cγ sβcα) cγ cβ (−sγ cα + cγ sβsα)

(−cγ sα + sγ sβcα) sγ cβ (cγ cα + sγ sβsα)

⎤
⎦

R90◦,xR90◦,zR90◦,y =
⎡
⎣

0 −1 0
1 0 0
0 0 1

⎤
⎦

154 Composite Point Rotation Sequences

Fig. A.4 Four views of the unit cube before and during the three rotations R90◦,xR90◦,zR90◦,y

⎡
⎣

0 −1 0
1 0 0
0 0 1

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.4, where the axis of rotation is
[0 0 2]T and the angle of rotation 90◦.

A.6 Rγ,yRβ,xRα,y

Rγ,yRβ,xRα,y =
⎡
⎣

cγ 0 sγ
0 1 0

−sγ 0 cγ

⎤
⎦

⎡
⎣

1 0 0
0 cβ −sβ
0 sβ cβ

⎤
⎦

⎡
⎣

cα 0 sα
0 1 0

−sα 0 cα

⎤
⎦

A.6 Rγ,yRβ,xRα,y 155

Fig. A.5 Four views of the unit cube before and during the three rotations R90◦,yR90◦,xR90◦,y

=
⎡
⎣

(cγ cα − sγ cβsα) sγ sβ (cγ sα + sγ cβcα)

sβsα cβ −sβcα

(−sγ cα − cγ cβsα) cγ sβ (−sγ sα + cγ cβcα)

⎤
⎦

R90◦,yR90◦,xR90◦,y =
⎡
⎣

0 1 0
1 0 0
0 0 −1

⎤
⎦

⎡
⎣

0 1 0
1 0 0
0 0 −1

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.5, where the axis of rotation is
[2 2 0]T and the angle of rotation 180◦.

156 Composite Point Rotation Sequences

Fig. A.6 Four views of the unit cube before and during the three rotations R90◦,yR90◦,xR90◦,z

A.7 Rγ,yRβ,xRα,z

Rγ,yRβ,xRα,z =
⎡
⎣

cγ 0 sγ
0 1 0

−sγ 0 cγ

⎤
⎦

⎡
⎣

1 0 0
0 cβ −sβ
0 sβ cβ

⎤
⎦

⎡
⎣

cα −sα 0
sα cα 0
0 0 1

⎤
⎦

=
⎡
⎣

(cγ cα + sγ sβsα) (−cγ sα + sγ sβcα) sγ cβ

cβsα cβcα −sβ
(−sγ cα + cγ sβsα) (sγ sα + cγ sβcα) cγ cβ

⎤
⎦

R90◦,yR90◦,xR90◦,z =
⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦

⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣0 0 0 0 1 1 1 1

0 −1 0 −1 0 −1 0 −1
0 0 1 1 0 0 1 1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.6, where the axis of rotation is
[2 0 0]T and the angle of rotation 90◦.

A.8 Rγ,yRβ,zRα,x 157

A.8 Rγ,yRβ,zRα,x

Rγ,yRβ,zRα,x =
⎡
⎣

cγ 0 sγ
0 1 0

−sγ 0 cγ

⎤
⎦

⎡
⎣

cβ −sβ 0
sβ cβ 0
0 0 1

⎤
⎦

⎡
⎣

1 0 0
0 cα −sα
0 sα cα

⎤
⎦

=
⎡
⎣

cγ cβ (sγ sα − cγ sβcα) (sγ cα + cγ sβsα)

sβ cβcα −cβsα
−sγ cβ (cγ sα + sγ sβcα) (cγ cα − sγ sβsα)

⎤
⎦

R90◦,yR90◦,zR90◦,x =
⎡
⎣

0 1 0
1 0 0
0 0 −1

⎤
⎦

⎡
⎣

0 1 0
1 0 0
0 0 −1

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 −1 0 −1 0 −1 0 −1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.7, where the axis of rotation is
[2 2 0]T and the angle of rotation 180◦.

A.9 Rγ,yRβ,zRα,y

Rγ,yRβ,zRα,y =
⎡
⎣

cγ 0 sγ
0 1 0

−sγ 0 cγ

⎤
⎦

⎡
⎣

cβ −sβ 0
sβ cβ 0
0 0 1

⎤
⎦

⎡
⎣

cα 0 sα
0 1 0

−sα 0 cα

⎤
⎦

=
⎡
⎣

(−sγ sα + cγ cβcα) −cγ sβ (sγ cα + cγ cβsα)

sβcα cβ sβsα
(−cγ sα − sγ cβcα) sγ sβ (cγ cα − sγ cβsα)

⎤
⎦

R90◦,yR90◦,zR90◦,y =
⎡
⎣

−1 0 0
0 0 1
0 1 0

⎤
⎦

⎡
⎣

−1 0 0
0 0 1
0 1 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

158 Composite Point Rotation Sequences

Fig. A.7 Four views of the unit cube before and during the three rotations R90◦,yR90◦,zR90◦,x

=
⎡
⎣

0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.8, where the axis of rotation is
[0 2 2]T and the angle of rotation 180◦.

A.10 Rγ,zRβ,xRα,y

Rγ,zRβ,xRα,y =
⎡
⎣

cγ −sγ 0
sγ cγ 0
0 0 1

⎤
⎦

⎡
⎣

1 0 0
0 cβ −sβ
0 sβ cβ

⎤
⎦

⎡
⎣

cα 0 sα
0 1 0

−sα 0 cα

⎤
⎦

=
⎡
⎣

(cγ cα − sγ sβsα) −sγ cβ (cγ sα + sγ sβcα)

(sγ cα + cγ sβsα) cγ cβ (sγ sα − cγ sβcα)

−cβsα sβ cβcα

⎤
⎦

R90◦,zR90◦,xR90◦,y =
⎡
⎣

−1 0 0
0 0 1
0 1 0

⎤
⎦

A.11 Rγ,zRβ,xRα,z 159

Fig. A.8 Four views of the unit cube before and during the three rotations R90◦,yR90◦,zR90◦,y

⎡
⎣

−1 0 0
0 0 1
0 1 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.9, where the axis of rotation is
[0 2 2]T and the angle of rotation 180◦.

A.11 Rγ,zRβ,xRα,z

Rγ,zRβ,xRα,z =
⎡
⎣

cγ −sγ 0
sγ cγ 0
0 0 1

⎤
⎦

⎡
⎣

1 0 0
0 cβ −sβ
0 sβ cβ

⎤
⎦

⎡
⎣

cα −sα 0
sα cα 0
0 0 1

⎤
⎦

160 Composite Point Rotation Sequences

Fig. A.9 Four views of the unit cube before and during the three rotations R90◦,zR90◦,xR90◦,y

=
⎡
⎣

(cγ cα − sγ cβsα) (−cγ sα − sγ cβcα) sγ sβ
(sγ cα + cγ cβsα) (−sγ sα + cγ cβcα) −cγ sβ

sβsα sβcα cβ

⎤
⎦

R90◦,zR90◦,xR90◦,z =
⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣

0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 1 0 1 0 1 0 1
0 0 −1 −1 0 0 −1 −1
0 0 0 0 1 1 1 1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.10, where the axis of rotation is
[2 0 2]T and the angle of rotation 180◦.

A.12 Rγ,zRβ,yRα,x 161

Fig. A.10 Four views of the unit cube before and during the three rotations R90◦,zR90◦,xR90◦,z

A.12 Rγ,zRβ,yRα,x

Rγ,zRβ,yRα,x =
⎡
⎣

cγ −sγ 0
sγ cγ 0
0 0 1

⎤
⎦

⎡
⎣

cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤
⎦

⎡
⎣

1 0 0
0 cα −sα
0 sα cα

⎤
⎦

=
⎡
⎣

cγ cβ (−sγ cα + cγ sβsα) (sγ sα + cγ sβcα)

sγ cβ (cγ cα + sγ sβsα) (−cγ sα + sγ sβcα)

−sβ cβsα cβcα)

⎤
⎦

R90◦,zR90◦,yR90◦,x =
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 −1 −1 −1 −1

⎤
⎦ .

162 Composite Point Rotation Sequences

Fig. A.11 Four views of the unit cube before and during the three rotations R90◦,zR90◦,yR90◦,x

This rotation sequence is illustrated in Fig. A.11, where the axis of rotation is
[0 2 0]T and the angle of rotation 90◦.

A.13 Rγ,zRβ,yRα,z

Rγ,zRβ,yRα,z =
⎡
⎣

cγ −sγ 0
sγ cγ 0
0 0 1

⎤
⎦

⎡
⎣

cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤
⎦

⎡
⎣

cα −sα 0
sα cα 0
0 0 1

⎤
⎦

=
⎡
⎣

(−sγ sα + cγ cβcα) (−sγ cα − cγ cβsα) cγ sβ
(cγ sα + sγ cβcα) (cγ cα − sγ cβsα) sγ sβ

−sβcα sβsα cβ

⎤
⎦

R90◦,zR90◦,yR90◦,z =
⎡
⎣

−1 0 0
0 0 1
0 1 0

⎤
⎦

A.13 Rγ,zRβ,yRα,z 163

Fig. A.12 Four views of the unit cube before and during the three rotations R90◦,zR90◦,yR90◦,z

⎡
⎣

−1 0 0
0 0 1
0 1 0

⎤
⎦

⎡
⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

=
⎡
⎣

0 0 0 0 −1 −1 −1 −1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤
⎦ .

This rotation sequence is illustrated in Fig. A.12, where the axis of rotation is
[0 2 2]T and the angle of rotation 180◦.

Index

Symbols
2D matrix transforms, 55
2D reflection transform, 63
2D scaling transform, 60
2D shearing transform, 67
2D translation transform, 58
3D reflection transform, 85
3D rotation transform, 87
3D scaling transform, 83
3D shearing transform, 85
3D translation transform, 84

A
Adding quaternions, 118
Additive identity, 11
Affine transform, 71
Antisymmetric matrix, 45
Areal coordinates, 57

B
Barycentric coordinates, 57

C
Cayley, Arthur, 31
Change of axes, 73
Characteristic equation, 75, 95
Cofactor matrix, 48
Cofactors, 26
Column index, 31
Column matrix, 6, 35
Column vector, 6, 36
Composite rotations, 1, 89
Conformable matrices, 35

D
Determinant, 6, 19
Diagonal matrix, 38

E
Eigenvalue, 75, 134
Eigenvector, 75, 94, 134
Euler angles, 139
Euler rotations, 1, 87, 89

F
Frames of reference, 138

G
Gauss, Carl, 31
Gibbs, 117
Gimbal lock, 102

H
Hamilton, 117
Hamilton’s rules, 117
Homogeneous coordinates, 57

I
Identity matrix, 11, 39
Inverse matrix, 11, 47
Inverse quaternion, 119

L
Laplace expansion, 24
Linear equations, 3

M
Matrices, 31
Matrix addition, 32
Matrix multiplication, 8, 34
Matrix notation, 5
Matrix scaling, 33
Matrix subtraction, 32
Minor determinant, 26
Möbius, 57
Multiplicative identity, 11

J. Vince, Matrix Transforms for Computer Games and Animation,
DOI 10.1007/978-1-4471-4321-5, © Springer-Verlag London 2012

165

166 Index

Multiplicative inverse, 11
Multiplying quaternions, 118

N
Negative matrix, 38

O
Order of a matrix, 32
Orthogonal matrix, 50

P
Pitch, 103
Pitch quaternion, 123
Pure quaternion, 119

Q
Quaternion matrix, 125
Quaternions, 117

R
Rectangular matrix, 31
Rodrigues, Olinde, 111
Roll, 103
Roll quaternion, 123
Rotating a point about an axis, 120
Rotating about an axis, 88, 106
Row index, 31
Row vector, 36

S
Sarrus’s rule, 23
Shearing, 85
Skew symmetric matrix, 45
Square matrix, 6, 31, 38, 43
Subtracting quaternions, 118
Symmetric matrix, 44

T
Trace of a matrix, 43
Transforms, 55
Transposed matrix, 40
Transposed vector, 36

U
Unit matrix, 11
Unit-norm quaternion, 120

V
Vector scalar product, 35

Y
Yaw, 103
Yaw quaternion, 123

Z
Zero matrix, 37

	Cover
	Matrix Transforms for Computer Games and Animation
	Preface
	Contents

	Chapter 1: Introduction
	1.1 Matrix Transforms
	1.2 Mathematics
	1.3 The Book's Structure

	Chapter 2: Introduction to Matrix Notation
	2.1 Introduction
	2.2 Solving a Pair of Linear Equations
	2.2.1 Graphical Technique
	2.2.2 Algebraic Technique
	2.2.3 Matrix Technique

	2.3 Matrix Multiplication
	2.4 Identity Matrix
	2.5 Inverse Matrix
	2.6 Worked Examples
	2.7 Summary

	Chapter 3: Determinants
	3.1 Introduction
	3.2 Linear Equations in Three Unknowns
	3.2.1 The Laplace Expansion

	3.3 Linear Equations in Four Unknowns
	3.4 Worked Examples
	3.5 Summary

	Chapter 4: Matrices
	4.1 Introduction
	4.2 Rectangular and Square Matrices
	4.3 Matrix Shorthand
	4.4 Matrix Addition and Subtraction
	4.5 Matrix Scaling
	4.6 Matrix Multiplication
	4.6.1 Vector Scalar Product
	4.6.2 The Vector Product

	4.7 The Zero Matrix
	4.8 The Negative Matrix
	4.9 Diagonal Matrix
	4.10 The Identity Matrix
	4.11 The Transposed Matrix
	4.12 Trace
	4.13 Symmetric Matrix
	4.14 Antisymmetric Matrix
	4.15 Inverse Matrix
	4.15.1 Cofactor Matrix

	4.16 Orthogonal Matrix
	4.17 Worked Examples
	4.18 Summary

	Chapter 5: 2D Matrix Transforms
	5.1 Introduction
	5.2 Transforms
	5.2.1 Homogeneous Coordinates

	5.3 Translation
	5.4 Scaling
	5.5 Reﬂection
	5.5.1 Reﬂection About the x and y Axis
	5.5.2 Reﬂection About a Horizontal or Vertical Axis
	5.5.3 Reﬂection in a Line Intersecting the Origin

	5.6 Shearing
	5.7 Rotation
	5.7.1 Rotation About an Arbitrary Point
	5.7.2 Rotation and Translation
	5.7.3 Composite Rotations

	5.8 Change of Axes
	5.9 Eigenvectors and Eigenvalues
	5.10 Worked Examples
	5.11 Summary

	Chapter 6: 3D Transforms
	6.1 Introduction
	6.2 Scaling
	6.3 Translation
	6.4 Shearing
	6.5 Reﬂection in a Plane Intersecting the Origin
	6.6 Rotation
	6.6.1 Rotation About an Off-Set Axis
	6.6.2 Composite Rotations

	6.7 3D Eigenvectors
	6.8 Gimbal Lock
	6.9 Yaw, Pitch and Roll
	6.10 Rotation About an Arbitrary Axis
	6.10.1 Matrices
	6.10.2 Vectors

	6.11 Worked Examples
	6.12 Summary

	Chapter 7: Quaternions
	7.1 Introduction
	7.2 Adding and Subtracting Quaternions
	7.3 Multiplying Quaternions
	7.4 Pure Quaternion
	7.5 The Inverse Quaternion
	7.6 Unit-Norm Quaternion
	7.7 Rotating Points About an Axis
	7.8 Roll, Pitch and Yaw Quaternions
	7.9 Quaternions in Matrix Form
	7.9.1 Vector Method
	7.9.2 Matrix Method
	7.9.3 Geometric Veriﬁcation

	7.10 Multiple Rotations
	7.11 Eigenvalue and Eigenvector
	7.12 Rotating About an Off-Set Axis
	7.13 Frames of Reference
	7.14 Euler Angles to Quaternion
	7.15 Worked Examples
	7.16 Summary

	Chapter 8: Conclusion
	Appendix : Composite Point Rotation Sequences
	A.1 Euler Rotations
	A.2 Rgamma, xRbeta, yRalpha, x
	A.3 Rgamma, xRbeta, yRalpha, z
	A.4 Rgamma, xRbeta, zRalpha, x
	A.5 Rgamma, xRbeta, zRalpha, y
	A.6 Rgamma, yRbeta, xRalpha, y
	A.7 Rgamma, yRbeta, xRalpha, z
	A.8 Rgamma, yRbeta, zRalpha, x
	A.9 Rgamma, yRbeta, zRalpha, y
	A.10 Rgamma, zRbeta, xRalpha, y
	A.11 Rgamma, zRbeta, xRalpha, z
	A.12 Rgamma, zRbeta, yRalpha, x
	A.13 Rgamma, zRbeta, yRalpha, z

	Index

