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Preface

Mathematical optimization has a fundamental importance in solving
many problems in computer graphics and vision. This fact is apparent
from a quick look at the SIGGRAPH proceedings and other relevant
publications in these areas, where a significant percentage of the papers
use mathematical optimization techniques.

The book provides a conceptual analysis of the problems in computer
graphics and discusses the mathematical models used to solve these
problems. This motivates the reader to understand the importance of
optimization techniques in graphics and vision.

The book gives an overview of combinatorial, continuous, and varia-
tional optimization methods, focusing on graphical applications. The
prerequisites for the book are (i) background on linear algebra and cal-
culus of one and several variables; (ii) computational background on
algorithms and programming; and (iii) knowledge of geometric mod-
eling, animation, image processing, image analysis, and visualization.

This book originated from a set of notes in Portuguese that we wrote
for a course on this topic at the Brazilian Mathematical Colloquium in
July 1999 and at Brazilian Congress of Applied Mathematics in October
2000. After that, these notes were expanded and translated to English.
This material was then presented in two highly successful SIGGRAPH
tutorial courses in August 2002 and 2003.

xxi



xxii PREFACE

Mathematical optimization is vast and has many ramifications, encom-
passing many disciplines ranging from pure mathematics to computer
sciences and engineering. Consequently, there exists a vast literature
on this subject, including textbooks, tutorials, and research papers
that cover in detail practically every aspect of the field. The sheer
amount of information available makes it difficult for a nonspecialist to
explore the literature and find the right optimization technique for a
specific application.

From the comments above, it becomes apparent that any attempt to
present the whole area of mathematical optimization in detail would
be a daunting task, probably doomed to failure. This endeavor would
be even more difficult if the goal is to understand the applications of
optimization methods to a multidisciplinary and diversified area such
as computer graphics.

The objective of this book is to give an overview of the different
aspects of mathematical optimization to enable the reader to have a
global understanding of the field and pursue studies of specific tech-
niques related to applications in graphics and vision. Since mathemat-
ical optimization is so pervasive in graphical applications, we decided
to present in detail only the seminal techniques that appeared in early
papers. The more recent research is discussed in a section at the end of
every chapter devoted to comments and references. This section also
includes pointers to the literature.

The book is conceptually divided into five parts: computer graphics
and optimization; variational and continuous optimization; combina-
torial optimization; global optimization methods; and probability and
optimization.

The first part of the book gives a conceptual overview of computer gra-
phics, focusing on problems and describing the mathematical models
used to solve these problems. This is a short introduction to motivate
the study of optimization techniques. The subject is studied in such a
way to make clear the necessity of using optimization techniques in the
solution to a large family of problems.
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The second part of the book discusses the optimization of functions
f : S → R, where S is a subset of the Euclidean space R

n. Optimality
conditions are discussed for optimization with and without
restrictions. Different algorithms are described such as Newton meth-
ods, linear programming, conjugate gradient, sequential quadratic
programming. Applications to camera calibration, color correction,
animation, and visualization are given. The problem of variational
optimization is properly posed, with special emphasis on variational
modeling using plane curves.

In the third part of the book, the problem of combinatorial optimiza-
tion is posed and different strategies to devise good algorithms are
discussed. Special emphasis is given to dynamic programming and
integer programming. Algorithms of Dijkstra and branch-and-bound
are discussed. Examples are given to image and color quantization,
level of detail computation, interactive visualization, minimum paths
in maps, and surface reconstruction from sections.

In the fourth part of the book, the difficulties of global optimiza-
tion are clearly pointed and some strategies to find solutions are dis-
cussed, including simulated annealing and genetic algorithms. The
role of interval and affine arithmetic in the solution to problems is
also discussed. Applications to geometric modeling and animation are
given.

The fifth part of the book discusses the subtle relationships between
probability theory and mathematical optimization. It covers informa-
tion theory and applications to coding and compression. Notions such
as entropy and mutual information are discussed together with appli-
cations to image processing and computer vision.
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1 COMPUTER GRAPHICS

1.1 WHAT IS COMPUTER GRAPHICS?

The usual definition of computer graphics is the following: a set of
models, methods, and techniques to transform data into images that are
displayed in a graphics device. The attempt to define an area is a difficult,
if not an impossible, task. Instead of trying to devise a good definition,
perhaps the best way to understand an area is through a deep knowl-
edge of its problems and the methods to solve them. From this point of
view, the definition above has the virtue of emphasizing a fundamental
problem of computer graphics: the transformation of data into images
(Figure 1.1).

In applied mathematics, the solution to problems is directly related to
the mathematical models used to understand and pose the problem.
For this reason, the dividing line between solved and open problems
is more subtle than in the case of pure mathematics. In fact, in pure
mathematics, different solutions to the same problem, in general, do
not constitute great innovations from the scientific point of view; on
the other hand, in applied mathematics, different solutions to the same

1
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Computer
graphics

Data Image

Figure 1.1: Computer graphics: transforming data into images.

problem as a consequence of the use of different models usually bring
a significant advance in terms of applications.

This book discusses the solution to various problems in computer
graphics using optimization techniques. The underlying idea is to serve
as a two-way channel: stimulate the computer graphics community
to study optimization methods and call attention of the optimization
community to the extremely interesting real-world problems in com-
puter graphics.

1.1.1 RELATED AREAS

Since its origin, computer graphics is concerned with the study of
models, methods, and techniques that allow the visualization of infor-
mation using a computer. Because, in practice, there is no limita-
tion to the origin or nature of the data, computer graphics is used
today by researchers and users from many different areas of human
activity.

The basic elements that constitute the fundamental problem of com-
puter graphics are data and images. There are four related areas that
deal with these elements, as illustrated in Figure 1.2.

Geometric modeling deals with the problem of describing, structuring,
and transforming geometric data in the computer.



SECTION 1.1 WHAT IS COMPUTER GRAPHICS? 3

Geometric
modeling

Data

Image

VisualizationComputer
vision

Image
processing

Figure 1.2: Computer graphics: related areas.

Visualization interprets the data created by geometric modeling to
generate an image that can be viewed using a graphical output
device.

Image processing deals with the problem of describing, structuring, and
transforming images in the computer.

Computer vision extracts from an input image various types of infor-
mation (geometric, topological, physical, etc.) about the objects depic-
ted in the image.

In the literature, computer graphics is identified with the area called
visualization (Figure 1.2). We believe it is more convenient to consider
computer graphics as the mother area that encompasses these four
subareas: geometric modeling, visualization, image processing, and
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computer vision. This is justified because these related areas work with
the same objects (data and images), which forces a strong trend of
integration. Moreover, the solutions to certain problems require the
use of methods from all these areas under a unified framework.

As an example, we can mention the case of a Geographical Informa-
tion System (GIS) application, where a satellite image is used to obtain
the elevation data of a terrain model and a three-dimensional (3D)
reconstruction is visualized with texture mapping from different view
points.

Combined techniques from these four related subareas comprise a
great potential to be exploited to obtain new results and applications of
computer graphics. This brings to computer graphics a large spectrum
of models and techniques providing a path for new achievements: the
combined result is more than the sum of parts.

The trend is so vigorous that new research areas have been created.
This was the case of image-based modeling and rendering, a recent area
that combines techniques from computer graphics, geometric model-
ing, image processing, and vision. Furthermore, in some application
domains such as GIS and medical image, it is natural to use techniques
from these related areas to the point that there is no separation between
them.

We intend to show in this book how mathematical optimization meth-
ods can be used in this unified framework in order to pose and solve a
reasonable number of important problems.

1.1.2 IS THERE SOMETHING MISSING?

The diagram given in Figure 1.2 is classical. But it tells us only part of
the computer graphics script: the area of geometric modeling and the
related areas. In our holistic view of computer graphics, several other
areas are missing on the diagram. Where is animation? Where is digital
video?
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Motion
specification

Scene

Image
sequence

Motion
visualization

Motion
analysis

Motion
processing

Figure 1.3: Animation and related areas.

In fact, it is possible to reproduce a similar diagram for animation, and
this is shown in Figure 1.3.

Note the similarity to the previous diagram. Motion modeling is the area
that consists in describing the movement of the objects on the scene.
This involves time, dynamic scene objects, trajectories, and so on. This
is also called motion specification. Similarly, we can characterize motion
analysis, motion synthesis, and motion processing.

We could now extend this framework to digital video, but this is not
the best approach. In fact, this repetition process is an indication that
some concept is missing, a concept that could put together all of these
distinct frameworks into a single one. This is the concept of graphical
object.
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In fact, once we have devised the proper definition of a graphical object,
we could associate with it the four distinct and related areas: mod-
eling, visualization, analysis, and processing of graphical object. The
concept of graphical object should encompass, in particular, the geo-
metric models of any kind, animation, and digital video.

We introduce this concept and develop some related properties and
results in the next two sections.

1.2 MATHEMATICAL MODELING
AND ABSTRACTION PARADIGMS

Applied mathematics deals with the application of mathematical meth-
ods and techniques to problems of the real world. When computer
simulations are used in the solution to problems, the area is called com-
putational mathematics. In order to use mathematics in the solution
to real-world problems, it is necessary to devise good mathematical
models that can be used to understand and pose the problem cor-
rectly. These models consist in abstractions that associate real objects
from the physical world with mathematical abstract concepts. Follow-
ing the strategy of dividing to conquer, we should create a hierarchy of
abstractions, and for each level of the hierarchy, we should use the most
adequate mathematical models. This hierarchy is called an abstraction
paradigm.

In computational mathematics, a very useful abstraction paradigm
consists of devising four abstraction levels, called universes: the phys-
ical universe, the mathematical universe, the representation universe,
and the implementation universe (Figure 1.4).

The physical universe contains the objects from the real (physical)
world, which we intend to study; the mathematical universe contains
the abstract mathematical description of the objects from the physi-
cal world; the representation universe contains discrete descriptions of
the objects from the mathematical universe; and the implementation
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Implementation
universe

Representation
universe

Mathematical
universe

Physical
universe

Figure 1.4: The four-universe paradigm.

universe contains data structures and machine models of computation
so that objects from the representation universe can be associated with
algorithms in order to obtain an implementation in the computer.

Note that by using this paradigm, we associate with each object from
the real (physical) world three mathematical models: a continuous
model in the mathematical universe, a discrete model in the representa-
tion universe, and a finite model in the implementation universe. This
abstraction paradigm is called the four-universe paradigm (Gomes and
Velho, 1995).

In this book, we take the computational mathematics approach to com-
puter graphics. That is, a problem in computer graphics will be solved
considering the four-universe paradigm. This amounts to saying that
computer graphics is indeed an area of computational mathematics.
As a consequence, the four-universe paradigm will be used throughout
the book.

Example 1 [length representation]. Consider the problem of
measuring the length of objects from the real world. To each object, we
should associate a number that represents its length. In order to attain
this, we must introduce a standard unit of measure, which will be com-
pared with the object to be measured in order to obtain its length.

From the point of view of the four-universe paradigm, the mathemat-
ical universe is the set R of real numbers. In fact, to each measure,
we associate a real number; rational numbers correspond to objects
that are commensurable with the adopted unit of measure, and
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irrational numbers are used to represent the length of objects that are
incommensurable.

In order to represent the different length values (real numbers), we
must look for a discretization of the set of real numbers. A widely used
technique is the floating-point representation. Note that in this repre-
sentation, the set of real numbers is discretized in a finite set of rational
numbers. In particular, this implies that the concept of commensura-
bility is lost when we pass from the mathematical to the representation
universe.

From the point of view of the implementation universe, the floating-
point representation can be attained by use of the IEEE standard,
which is implemented in most of the computers. A good reference for
this topic is Higham (1996).

The previous example, although simple, illustrates the fundamental
problem of modeling in computational mathematics. Of particular
importance in this example is the loss of information we face when
moving from the mathematical universe to the representation universe
(from real numbers to their floating-point representation), where the
concept of commensurability is lost. In general, passing from the math-
ematical universe to the representation universe implies a loss of infor-
mation. This is a very subtle problem we must face when working with
modeling in computational mathematics and, in particular, in com-
puter graphics.

The modeling process consists in choosing an object from the phys-
ical world, associate with it a mathematical model, discretize it, and
implement it. This implementation should provide solutions to prop-
erly posed problems involving the initial physical object. Note that
the loss of information we mentioned above is a critical factor in this
chain.

We should remark that by the nature of the modeling process, the
relationship between an object defined at one level of abstraction
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(universe) with the same object defined at another level of abstraction
can be the most generic possible. In fact, the same object from one
abstraction level may have distinct correspondents in the next abstrac-
tion level (we leave to the reader the task of providing examples for
this). Instead, in the next two sections, we provide two examples that
show that different objects from the physical world may be described
by the same mathematical model.

1.2.1 TERRAIN REPRESENTATION

Consider the problem of representing a terrain in the computer (a
mountain for instance). In cartography, a terrain may be described
using a height map: we devise a reference level (e.g., the sea level),
and we take for each point the terrain height at this point. In the
mathematical universe, this map of heights corresponds to a function
f : U ⊂ R

2 → R, z = f (x, y), where (x, y) are the coordinates of a point
of the plane R

2 and z is the corresponding height. Geometrically, the
terrain is described by the graph G( f ) of the height function f :

G( f ) = {(x, y, f (x, y)); (x, y) ∈ U}.

Figure 1.5 shows a sketch of the graph of the height function of part of
the Aboboral mountain in the state of São Paulo, Brazil (Yamamoto,
1998).

How can we represent the terrain? A simple method consists in taking
a uniform partition

Px = {x0 < x1 < · · · < xn}
of the x-axis,1 a uniform partition

Py = {y0 < y1 < · · · < ym},

1 Uniform indicates that Δj = xj − xj−1 is constant for any j = 1, . . . , n.
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Figure 1.5: Aboboral mountain, scale 1:50000 (Yamamoto, 1998).

of the y-axis, and the Cartesian product of both partitions to obtain
the grid of points

(xi, yj), i = 1, . . . , n, j = 1, . . . , m

in the plane as depicted in Figure 1.6. In each vertex (xi, yj) of the grid,
we take the value of the function zij = f (xi, yj) and the terrain rep-
resentation if defined by the height matrix (zij). This representation
is called representation by uniform sampling because we take the ver-
tices of a uniform grid and we sample the function at these points.
The implementation can be easily attained using a matrix as a data
structure.

1.2.2 IMAGE REPRESENTATION

Now we consider the problem of image modeling. We take a photo-
graph as the image model in the real world. This physical image model
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Figure 1.6: A grid on the function domain.

is characterized by two properties:

• It has a support set (a rectangular piece of paper).
• There is a color attribute associated with each point of the sup-

port set.

Suppose that we have a black and white photo, indicating that we asso-
ciate a different luminance of black (gray value) with each point of
the support set. This is called a grayscale image in the computer graph-
ics literature. In this case, the “color” of each point can be modeled by a
real number in the interval [0, 1], where 0 represents black, 1 represents
white, and each number 0 < t < 1 represents a gray value in between.
The rectangular support set of the image can be modeled in the math-
ematical universe as a rectangular subset U ⊂ R

2 of the plane.

Therefore, the mathematical model of a grayscale image is a function
f : U ⊂ R

2 → R that maps each point (x, y) to the value z = f (x, y),
which gives the corresponding gray value at the point. This function
is called the image function. Figure 1.7 shows an image on the left and
the graph of the corresponding image function on the right.
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Figure 1.7: Grayscale image and the graph of the image function.

In sum, we see that an image and a terrain can be modeled by the same
mathematical object: a function f : U ⊂ R

2 → R. Therefore, we can use
uniform sampling to represent the image as we did for the terrain.

The representation of a terrain and an image by a function is not
accidental. In fact, a huge number of objects from the physical world
are represented by functions f : X → Y, where X and Y are properly cho-
sen topological spaces (in general, they are subsets of Euclidean spaces).
On the other hand, in the next section, we characterize a graphical
object by a function.

1.3 GRAPHICAL OBJECTS

In the quest for a better definition of computer graphics, we could
define computer graphics as the area that deals with the description,
analysis, and processing of graphical objects. This definition only makes
sense if we are able to devise a precise definition of the concept of a
graphical object. We do this as follows. A graphical object is a subset
S ⊂ R

m together with a function f : S ⊂ R
m → R

n.
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The set S is called geometric support, and f is called attribute function of
the graphical object. The dimension of the geometric support S is called
dimension of the graphical object. This concept of graphical object was
introduced in the literature by Gomes et al. (1996).

Let us take a look at some concrete examples to clarify the definition.

Example 2 [subsets of Euclidean space]. Any subset of the
Euclidean space R

m is a graphical object. Indeed, given S ⊂ R
m, we

define immediately an attribute function

f (p) =
{

1 if p ∈ S,
0 if p /∈ S.

It is clear that p ∈ S if and only if f (p) = 1. In general, the values of
f (p) = 1 are associated with a color, called object color. The attribute
function in this case simply characterizes the points of the set S,
and for this reason, it is called characteristic function of the graphical
object.

The characteristic function completely defines the geometric support
of the graphical object, that is, if p is a point of the space R

m, then p ∈ S
if and only if f (p) = 1.

The two problems below are, therefore, equivalent:

1. Devise an algorithm to compute f (p) at any point p ∈ R
m.

2. Decide if a point p ∈ R
n belongs to the geometric support S of

the graphical object.

The second problem is called a point-membership classification prob-
lem. A significant part of the problems in the study of graphical objects
reduces to a solution of point-membership classification. Therefore,
the existence of robust and efficient algorithms to solve this problem is
of great importance.
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Example 3 [image]. A grayscale image (see Section 1.2.2) is a
function f : U ⊂ R

2 → R, therefore it is a graphical object. More
generically, an image is a function f : U ⊂ R

2 → R
n, where R

n is the
representation of a color space. In this way, we see that an image is a
graphical object whose geometric support is the subset U of the plane
(in general, a rectangle), and the attribute function associates a color
with each point of the plane.

Example 4 [circle and vector field]. Consider the unit circle S1

centered at the origin, whose equation is given by

x2 + y2 = 1.

A mapping of the plane N : R
2 → R

2, given by N (x, y) = (x, y),
defines a field of unit vectors normal to S1. The map T : R

2 → R
2,

given by T (x, y) = (y,−x), defines a field of vectors tangent to the circle
(Figure 1.8).

N
T

P

O

Figure 1.8: Circle with normal and tangent vector fields.
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The circle is a 1D graphical object of the plane, and the two vector fields
are attributes of the circle (they can represent, for example, physical
attributes such as tangential and radial accelerations). The attribute
function is given by f : S1 → R

4 = R
2 ⊕ R

2, f (p) = (T (p), N (p)).

1.3.1 REVISITING THE DIAGRAM

Now that we have discussed the concept of graphical object, it is time
to go back to Figure 1.2.

Every output graphics device has an internal representation of the
class of graphical objects that the device is able to display. The space
of graphical objects with this representation is called the representa-
tion universe of the graphical display. As an example, the representation
universe of a regular personal computer (graphics card + monitor)
is a matrix representation of an image. Thus, for each output graph-
ics device, the operation of visualization on the device consists of an
operator R : O → O′ from the space of graphical objects to be dis-
played to the representation universe of the graphics display.

Besides the generic visualization operation described above, we have
the operations of graphical object description, graphical object proces-
sing, and graphical object analysis. This completes the elements for
obtaining a generic diagram for graphical objects, which contains, as
particular cases, the diagrams in Figures 1.2 and 1.3.

1.4 DESCRIPTION, REPRESENTATION,
AND RECONSTRUCTION

In this section, we discuss the three most important problems related
to graphical object:

• How to describe a continuous graphical object?
• How to discretize a graphical object?
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• How to obtain a continuous graphical object from one of its
discretizations?

1.4.1 DESCRIPTION

Describing a graphical object consists in devising its (continuous)
mathematical definition. Therefore, this is a problem posed in the
mathematical universe. Depending on the nature of the graphical
object, this topic is an important one in different areas of computer
graphics. The description of the geometry and topology of objects is
coped with geometric modeling, the description of motion is studied
in the area of animation, and so on (See Figure 1.9).

Independent of the nature of the graphical object, there are essen-
tially three mathematical techniques to describe a graphical object:
parametric description, implicit description, and piecewise descrip-
tion. For more details about these methods, the reader should take a
look at Velho et al. (2002).

Mathematical
universe

Representation
universe

Representation Reconstruction

Figure 1.9: Representation and reconstruction.
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1.4.2 REPRESENTATION

The representation of graphical objects constitutes a separate chapter
in computer graphics. Because discretization is the essence of compu-
tational methods, representation techniques assume great importance
in the area.

We have pointed out that the representation process implies a loss of
information about the graphical object. In fact, representing a graph-
ical object amounts to representing its geometric support and attri-
bute function. Therefore, we may lose geometry and some attribute
information.

From the mathematical point of view, we can formulate this problem
in the following way. Given a space of graphical objects O1 and a space
of discrete graphical objects O2, an operator R : O1 → O2 is called a
representation operator. This operator associates with each graphical
object x ∈ O1 its discrete representation R(x) ∈ O2.

1.4.3 RECONSTRUCTION

An important problem consists in recovering the continuous graphi-
cal object in the mathematical universe from its representation. This is
called the reconstruction problem.

Given an object y ∈ O2, a reconstruction of y is a graphical object x ∈
O1 such that R(x) = y. The reconstruction of y is denoted by R+(y).
When R is an invertible operator, we have that R+(y) = R−1(y). Note,
however, that invertibility is not a necessary condition for reconstruc-
tion. In fact, it suffices that the operator R possesses a left inverse,
R+(R(x)) = x, to make reconstruction possible.

We should remark that the representation problem is a direct problem,
while the reconstruction problem is an inverse problem.2 A represen-
tation that allows more than one possibility of reconstruction is called

2 Direct and inverse problems are discussed in Chapter 1.
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an ambiguous representation.3 In this case, the reconstruction problem
is ill posed (it has more than one solution).

Although the representation problem constitutes a direct problem, the
computation of the representation operator could lead to an inverse
problem. An example of such a situation can be seen in the point sam-
pling representation of an implicit shape, F −1(0), where F : R

3→R.
In this case, the representation consists in obtaining solutions to the
equation F (x, y, z) = 0, which constitutes an inverse problem.

The representation takes a continuous graphical object O and asso-
ciates with it a discrete representation Od. The reconstruction pro-
cess does the opposite, that is, from the discrete representation Od,
we obtain a reconstructed graphical object Or. When Od = Or, we say
that we have exact reconstruction, and the representation is also called
exact. We should remark, however, that in general we do not have exact
reconstruction, that is, in general, we obtain upon reconstruction only
an approximation Or � O, and this approximation is enough for most
of the applications.

The reader might be intrigued because we are talking about a contin-
uous graphical object in the context of computer applications. How is
it possible to have a continuous graphical object on the computer? Let
us make this clear: we say that a graphical object f : U → R

n is contin-
uous when we are able access any point x ∈ U and compute the value
f (x) of the attribute function at that point.

Example 5 [circle]. Consider the unit circle S1 = {(x, y) ∈ R
2; x2 +

y2 = 1} of the plane. A representation of S1 can be obtained as follows.
Take the parameterization ϕ : [0, 1] → S1, ϕ(θ) = (cos 2πθ, 2π sin θ),
a partition 0 = θ1 < θ2L · · · < θn, and the representation is given by
the sample vector S1

r = (ϕ(θ1), . . . ,ϕ(θn)) (Figure 1.10(a) shows a
representation for n = 5). A nonexact reconstruction of the circle

3 It would be more correct to adopt the term “ambiguous reconstruction,” but the term
“ambiguous representation” is already widely adopted in computer graphics.
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(a) (b)

Figure 1.10: Uniform sampling of the circle with reconstruction.

from S1
r is given by the polygon with vertices ϕ(θ1), . . . ,ϕ(θn),ϕ(θ1)

(Figure 1.10(b) illustrates this reconstruction for n = 5).

However, we know that the circle is completely defined by three distinct
points; therefore, by taking a three-sample representation, we are able
to obtain an exact representation of the circle.

We should remark that exact representations, although very useful in
the solution to many problems, do not constitute the “saint graal.” In
fact, the polygonal representation of the circle, in spite of being non-
exact, is very useful to visualize it (i.e., draw the circle on some output
graphics device). In fact, drawing line segments is a very effective oper-
ation for any output graphical device; however, as the number of sam-
ples increase, the reconstructed polygon converges uniformly to the
circle; thus, the reconstructed object provides a good approximation
to the circle both visually and numerically.

Example 6 [terrain]. The uniform representation of a terrain (see
Section 1.2.1) contains only height information of the terrain in a finite
number of points. This implies a severe loss of information about the
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terrain. Is it possible to reconstruct the terrain data from their uniform
representation? This is a very important question that can be restated
as follows. Is it possible to devise an interpolation techique that allows
us to interpolate the uniform samples of the height function in order
to obtain the terrain height at any point (x, y) of the domain? Shannon
theorem (see Gomes and Velho, 1997) provides a very general answer
to this question.

Figure 1.11 shows two different reconstructions from the same terrain
data. Note that the reconstructed terrain on the left has more geometric
detail.

1.4.4 SEMANTICS AND RECONSTRUCTION

The reconstruction of a graphical object determines its semantics.
Therefore, it is of great importance in the various processes of
computer graphics. We can listen to a sound when it is reconstructed
by a loudspeaker; we can see an image when it is reconstructed on
the screen of a graphics display or printed on a paper. Therefore,
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Figure 1.11: Different reconstructions from the same terrain data.
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reconstruction techniques are present, at least, whenever we need to
“display” information about the graphical object.

For the nonconvinced reader, we provide below four reasons to high-
light the importance of reconstruction techniques:

1. When we need to obtain an alternative representation of an
object, we can reconstruct it and then build a new representa-
tion from the reconstructed object.

2. The reconstruction is useful when we need to work in the con-
tinuous domain to minimize numerical errors.

3. In the visualization process, the output graphics device performs
a reconstruction of the graphical object from its representation.

4. In general, the user describes a graphical object directly on some
representation because a user interface allows only the input of a
finite set of parameters. The object must be reconstructed from
this “user representation.”

In this way, reconstruction methods play a fundamental role in visual-
ization. It is desirable to avoid ambiguous representations, which can
make the reconstruction problem nonunique. A geometric example of
an ambiguous representation is shown in Figure 1.12, where the object
in image (a) is represented by a wireframe model. In images (b), (c),
and (d), we can see three possible reconstructions of this object.

The reconstruction operation is totally dependent on the representa-
tion and, in general, it is difficult to be computed. Exact representations
are rare. In the following chapters, we investigate how optimiza-
tion techniques allow us to obtain good reconstructions of graphical
objects.

1.5 COMMENTS AND REFERENCES

Until recently, many computer graphics books included a historical
synopsis of the field’s evolution. This started in early days when the field
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(d)

Figure 1.12: Ambiguous representation.

was new and relatively little known as a way to acquaint the public with
the potential of computer graphics; later the tradition was maintained
in a large measure because the explosive growth in the body of knowl-
edge and applications demanded constant updating of the literature.

Today, although still a young discipline in comparison with other
areas of science, computer graphics has developed to the point where
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the historical dimension plays a different role. A history of computer
graphics must cover not only applications but also the evolution of
mathematical and physical models, the algorithms, and even the hard-
ware. Such a history, or even a bare chronology, would be far too long
to be adequately dealt with in a single chapter. What is needed is a book
entirely devoted to the history of computer graphics.

Nonetheless, we list below some work that has been done discussing
Computer Graphics from a historical point of view.

The seminal work of Ivan Sutherland, Ph.D. thesis (Sutherland, 1963),
marked a watershed between early rudimentary uses of the computer
for graphics and the modern notion of interactive computer graphics.
Sutherland’s “Sketchpad” allowed the user to interactively manipulate
plane geometric figures. The constraint-based modeling techniques
used in the Sketchpad are among the first examples of optimization
methods in graphics applications.

The first texts that refer to computer graphics as such were connected
with computer-aided design (CAD) in high-technology industries,
especially the automobile, aircraft, and shipbuilding industries (see,
for example, Parslow, 1969, and Prince, 1971). An important issue in
such systems is the design of fair surfaces that can be defined through
variational optimization.

Although it can be appropriately applied to all areas of applied
mathematics that involve computational methods, the four-universe
paradigm first appeared explicitly in the literature in Requicha (1980)
in the context of geometric modeling. More details on the use of this
paradigm in various areas of computer graphics can be found in Gomes
and Velho (1995).

As the subject of computer graphics matured, textbooks started to
appear on specific subfields, such as ray tracing (Glassner, 1989) and
lighting (Hall, 1989). The book (Fiume, 1989), devoted to raster graph-
ics, is an effort to lay a solid conceptual foundation for this subject.
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These textbooks cover to some extent graphic algorithms that use opti-
mization methods.
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2 OPTIMIZATION: AN
OVERVIEW

2.1 WHAT IS OPTIMIZATION?

Intuitively, optimization refers to the class of problems that consists in
choosing the best among a set of alternatives.

Even in this simple, imprecise statement, one can identify the two fun-
damental elements of an optimization problem: best, which conveys a
choice of criterion used to choose the solution and is usually expressed
by means of a function that should be minimized or maximized; and
alternatives, which refers to the set of possible solutions that must be
satisfied by any candidate solution. A simple example will help us clar-
ify these remarks.

Example 7 [hotel-to-conference problem]. Find the best street
to go from the hotel where you are staying to the convention center.
The alternatives here consist of all the streets (or parts of streets) that

25
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when joined provide a path to go from your hotel to the convention
center. It is clearly a finite set (provided that we avoid paths containing
loops). We have different choices for the term best:

• the street that takes the smallest time;
• the shortest street;
• the street that has the best view of the landscape, etc.

From a mathematical viewpoint, an optimization problem may be
posed as follows: minimize the function f : S → R, that is, compute
the pair (x, f (x)) such that f (x) is the minimum value element of the
set {f (x); x ∈ S}. We also use the two simplified forms below:

min
x∈S

f (x) or min{f (x); x ∈ S}.

The function f : S → R is called objective function, and its domain S,
the set of possible solutions, is called the solution set. We may restrict
attention to minimization problems since any maximization prob-
lem can be converted into a minimization problem by just replacing f
with −f. An optimality condition is a necessary or a sufficient condition
for the existence of a solution to an optimization problem.

The nature of the solution set S is quite general as illustrated by the
three examples below.

1. The hotel-to-conference problem in Example 7.
2. Maximize the function f : S2 ⊂ R

3 → R, defined by f (x, y, z) = z,
where S2 is the unit sphere.

3. Find the shortest path that connects two points p1 and p2 of a sur-
face M ⊂ R

n.

In the first problem, S is a finite set; in the second problem, S = S2,
a 2D surface of R

3; in the third problem, S is the set of rectifiable
curves of the surface joining the two points (in general, an infinite
dimenional set).
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2.1.1 CLASSIFICATION OF OPTIMIZATION
PROBLEMS

The classification of optimization problems is very important because
it will guide us to devise strategies and techniques to solve the prob-
lems from different classes. Optimization problems can be classified
according to several criteria related to the properties of the objective
function and also of the solution set S. Thus, possible classifications
take into account

• the nature of the solution set S
• the description (definition) of the solution set S
• the properties of the objective function f.

The most important classification is the one based on the nature of the
solution set S, which leads us to classify optimization problems into
four classes: continuous, discrete, combinatorial, and variational.

A point x of a topological space S is an accumulation point, if and only
if for any open ball Bx, with x ∈ Bx, there exists an element y ∈ S such
that y ∈ Bx. A point x ∈ S, which is not an accumulation point, is called
an isolated point of S. Thus, x is isolated if there exists an open ball Bx,
such that x ∈ Bx and no other point of S belongs to Bx.

A topological space is discrete if it contains no accumulation points. It
is continuous when all its points are accumulation points.

Example 8 [discrete and continuous sets]. Any finite subset of
an Euclidean space is obviously discrete. The set R

n itself is continuous.
The set Z

n={(i1, . . . , in); ij ∈ Z} is discrete. The set {0} ∪ {1/n; n ∈ Z}
is not discrete because 0 is an accumulation point (no matter how small
we take a ball with center at 0, it will contain some element 1/n for some
large n); this set is not continuous either because with the exception of
0, all the points are isolated. However, the set {1/n; n ∈ Z} (without
the 0) is discrete.
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2.2 CLASSIFICATION BASED ON THE
NATURE OF SOLUTION

In this section, we discuss optimization methods according to the nat-
ure of the solution set.

2.2.1 CONTINUOUS OPTIMIZATION PROBLEMS

An optimization problem is called continuous when the solution set S
is a continuous subset of R

n.

The most common cases occur when S is a differentiable m-dimen-
sional surface of R

n (with or without boundary), or S ⊆ R
n is a region

of R
n:

• Maximize the function f (x, y) = 3x + 4y + 1 on the set S =
{(x, y) ∈ R

2; x2 + y2 = 1}. The solution set S is the unit circle S1,
which is a curve of R

2, a 1D surface (see Figure 2.1(a)).
• Maximize the function f (x, y) = 3x + 4y + 1 on the set S =
{(x, y) ∈ R

2; x2 + y2 ≤ 1}. The solution set is the disk of R
2, a

2D surface with boundary (see Figure 2.1(b)).

(a) (b) (c)

Figure 2.1: Three examples of a solution set.
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• Maximize the function f (x, y) = 3x + 4y + 1 on the set S, defined
by the inequalities x2 + y2 ≤ 1 and y − x2 ≥ 0. The solution set is
a region defined by the intersection of two surfaces with bound-
ary (see Figure 2.1(c)).

2.2.2 DISCRETE OPTIMIZATION PROBLEMS

An optimization problem is called discrete when the solution set S is a
discrete set (i.e., S has no accumulation points).

The most frequent case in the applications occurs for S ⊆ Z
n=

{(i1, . . . , in); in ∈ Z}.

• Maximize the function f (x, y) = x + y on the set S={(x, y) ∈ Z
2;

6x + 7y = 21, x ≥ 0, y ≥ 0}. The solution set S is a finite set,
namely, the set of points with integer coordinates in a trian-
gle whose sides are the axes and the line 6x + 7y = 21 (see
Figure 2.2(a)).

21
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21
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(1, 6)

3 5

(a) (b)

Figure 2.2: Discrete solution sets.
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• Maximize the function f (x, y)= (x − 1)2 + (y − 6)2 on the set
S = {(x, y); y ≤ x, x ≥ 0, y ≥ 0}. The solution set S is infinite; the
problem asks for finding among all points with integer coordi-
nates in a cone, the one that is closest to the point (1, 6) (see
Figure 2.2(b)).

There is a close relationship between continuous and discrete opti-
mization problems. In this respect, it is important to remark that some
types of discrete problems min{f (x); x ∈ S} with solution set S may
be solved more easily by embedding S into a continuous domain S′,
solving the new continuous optimization problem min{f (x); x ∈ S′},
and obtaining the solution to the original problem from the solu-
tion in the continuous domain. The example below illustrates this
approach.

Example 9. Consider the discrete optimization problem max{f (x) =
3x − 2x2; x ∈ Z}. In order to solve this problem, we consider a similiar
problem on R, that is, max{f (x) = 3x − 2x2; x ∈ R}.

The solution to the continuous problem is simple. In fact, since f (x)
is a quadratic function with negative second derivative, it has a unique
maximum point given by f ′(x) = 0, that is, 3 − 4x = 0. Therefore, the
solution is m = 3/4, and the maximum value is 9/8. Now we obtain the
solution to the discrete problem from this solution.

Note that the solution obtained for S = R is not a solution for the dis-
crete case (because m 
∈ Z). But it is possible to compute the solution
for the discrete case from the solution to the continuous problem. For
this, we just need to choose the integer number that is closest to m. It is
possible to prove that this provides indeed the solution. In fact, since f
is an increasing function in the interval [−∞, m] and decreasing func-
tion in the interval [m,∞] and its graph is symmetrical with respect
to the line x = m, the furthest x is from m, the smaller is the value of
f (x). From this, we conclude that the integer n closest to m is indeed
the point where f attains its maximum on the set Z.
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We should remark that in general the solution to a discrete problem
cannot be obtained from a corresponding continuous problem in such
a simple way as shown in the example above. As an example, consider
the polynomial function f : R → R, f (x) = x4 − 14x. It has a mini-
mum at x ≈ 1. 52. The closest integer value to this minimum point
is 2, where f assumes the value −12. Nevertheless, the minimum of
f (x) when x is an integer number occurs for x = 1, where f attains the
value −13.

Thus, although solving the continuous version of a discrete problem is
part of the several existing strategies in computing a solution to a dis-
crete problem, in general, finding the discrete solution requires more
specific techniques that go beyond rounding off solutions.

2.2.3 COMBINATORIAL OPTIMIZATION PROBLEMS

An optimization problem is said to be combinatorial when its solution
set S is finite. Usually, the elements of S are not explicitly determined.
Instead, they are indirectly specified through combinatorial relations.
This allows S to be specified much more compactly than by simply enu-
merating its elements.

In contrast to continuous optimization, whose study has its roots
in classical calculus, the interest in solution methods for combinato-
rial optimization problems is relatively recent and significantly asso-
ciated with computer technology. Before computers, combinatorial
optimization problems were less interesting since they admit an obvi-
ous method of solution that consists in examining all possible solu-
tions in order to find the best one. The relative efficiency of the possible
methods of solution was not a very relevant issue: for real problems,
involving sets with a large number of elements, any solution method,
efficient or not, was inherently unfeasible for requiring a number of
operations too large to be done by hand.

With computers, the search for efficient solution methods became
imperative: the practical feasibility of solving a large-scale problem
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by computational methods depends on the availability of an efficient
solution method.

Example 10 [the traveling salesman problem]. This need is
well illustrated by the traveling salesman problem. Given n towns, one
wishes to find the minimum length route that starts in a given town,
goes through each one of the other towns, and ends in the starting
town.

The combinatorial structure of the problem is quite simple. Each pos-
sible route corresponds to one of the (n − 1)! circular permutations of
the n towns. Thus, it suffices to enumerate these permutations, evaluate
their lengths, and choose the optimal route.

This, however, becomes unpractical even for moderate values of n.
For instance, for n=50, there are approximately 1060 permutations to
examine. Even if 1 billion of them were evaluated per second, exam-
ining all would require about 1051 seconds, or 1043 years! However,
there are techniques that allow solving this problem, in practice, even
for larger values of n.

2.2.4 VARIATIONAL OPTIMIZATION PROBLEMS

An optimization problem is called a variational problem when its solu-
tion set S is an infinite dimensional subset of a space of functions.

Among the most important examples, we could mention the path and
surface problems. The problems consist in finding the best path (best
surface) satisfying some conditions that define the solution set.

Typical examples of variational problems are the following.

Example 11 [geodesic problem]. Find the path of minimum
length joining two points p1 and p2 of a given surface.
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Example 12 [minimal surface problem]. Find the surface of
minimum area for a given boundary curve.

Variational problems are studied in more detail in Chapter 4.

2.3 OTHER CLASSIFICATIONS

Other forms of classifying optimization problems are based on char-
acteristics that can be exploited in order to devise strategies for the
solution.

2.3.1 CLASSIFICATION BASED ON CONSTRAINTS

In many cases, the solution set S is specified by describing constraints
that must be satisfyed by its elements. A very common way to define
constraints consists in using equalities and inequalities. The classifi-
cation based on constraints takes into account the nature of the con-
straints and the properties of the functions that describe them.

With respect to the nature of the constraint functions, we obtain the
following classification:

• equality constraints: hi(x) = 0, i = 1, . . . , m;
• inequality constraints: gj(x) ≤ 0.

In the first case, the solution set S consists of the points that satisfy
simultaneously the equations hi(x) = 0. We should remark that in gen-
eral the equation hi(x) = 0 defines an m-dimensional surface of R

n;
therefore, the simultaneous set of equations hi(x) = 0, i = 1, . . . , m
define the intersection of m surfaces.

In the second case, each inequality gj(x) ≤ 0 in general represents a
surface of R

n with boundary (the boundary is given by the equality
gj(x) = 0). Thus, the solution set is the intersection of a finite num-
ber of surfaces with boundary; in general, this intersection is a region
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of R
n (see Figure 2.1(c)). A particular case of great importance occurs

when the functions gj are linear. Then, the region is a solid polyhedron
of R

n.

As we will see in Chapter 5, equality and inequality constraints lead us
to different algorithmic strategies when looking for a solution.

The algorithms are also affected by the properties of the functions that
define the constraints. Among the particular and relevant special cases
that can be exploited are the ones where the constraint functions are
linear, quadratic, convex (or concave), or sparse.

Proposition below shows that the nature of the restriction functions
influences the geometry of the solution set, and this geometry is widely
exploited in the strategies to compute a solution to the problem.

Proposition 1. If the restriction functions are convex, the solution set
S is also convex.

The result of this proposition can be exploited both to determine opti-
mality conditions and to develop algorithms.

2.3.2 CLASSIFICATION BASED ON THE
OBJECTIVE FUNCTION

The properties of the objective function are also fundamental in order
to devise strategies for the solution to optimization problems. The spe-
cial cases that lead to particular solution strategies are the ones where
the objective function is linear, quadradic, convex (or concave), sparse,
or separable.

Linear Programs

A very important situation occurs when both the objective and the
constraint functions are linear and, moreover, the constraints are
defined either by equalities or by inequalities, that is, the constraints are
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given by linear equations and linear inequalities. As we have remarked
before, the solution set is a solid polyhedron of the Euclidean space.
Optimization problems of this nature are called linear programs, and
their study constitute a subarea of optimization. In fact, several practi-
cal problems can be posed as linear programs, and there exists a num-
ber of techniques that solve them, exploiting their characteristics: the
linearity of the objective function and the piecewise linear structure
of the solution set (polyhedra).

2.4 THE PROBLEM OF POSING PROBLEMS

Most of the problems in general and the problems of computer graph-
ics in particular can be posed using the concept of operator between
two spaces.1 These problems can be classified into two categories: direct
and inverse problems.

Direct problem. Given are two spaces O1 and O2 of graphical objects,
an operator T : O1 → O2, and a graphical object x ∈ O1. Problem:
compute the object y = T(x) ∈ O2. That is, we are given the operator T
and a point x in its domain, and we must compute the image y = T(x).

Because T is an operator, it is not multivalued; therefore, the direct
problem always has a unique solution.

Inverse problems. There are two types of inverse problems.

Inverse problem of first kind. Given two spaces O1 and O2 of graphic
objects, an operator T : O1 → O2, and an element y ∈ O2, determine
an object x ∈ O1 such that T(x) = y. That is, we are given an operator T
and a point y belonging to the arrival set of the operator, and we must
compute a point x in its domain whose image is y.

1 In some books the use of the term operator implies that it is linear. Here we use the term
to mean a continuous function.
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Inverse problem of second kind. Given a finite sequence of elements
x1, x2, . . . , xn ∈ O1 and a finite sequence y1, y2, . . . , yn ∈ O2, determine
an operator T : O1 → O2 such that T(xi) = yi, i = 1, 2, . . . , n. That is,
we are given a finite sequence (xi) of points in the domain and its image
(yi) = (T(xi)), we must compute the operator T.

If the operator T is invertible with inverse T−1, the inverse problem of
first kind admits a unique solution x = T−1(y). However, invertibility
is not necessary. In fact, a weaker condition occurs when T has a left
inverse T+ (i.e., T+T = Identity), and the solution is given by T+(y).
In this case, we cannot guarantee uniqueness of the solution because
we do not have uniqueness of the left inverse.

The inverse problem of second type has two interesting interpretations:

1. We are given an operator T : {x1, . . . , xn} → {y1, . . . , yn}, and

we must compute an extension T of T to the entire space O1.
Clearly, in general, this solution, if it exists, is not unique.

2. The solution operator T defines an interpolation from the sam-
ples (xi, T(xi)), i = 1, . . . , n.

From the above interpretations, it is easy to conclude that, in general,
the solution to any type of inverse problems is not unique.

2.4.1 WELL-POSED PROBLEMS

Hadamard2 has established the concept of a well-posed problem as a
problem in which the following conditions are satisfied:

1. There is a solution.
2. The solution is unique.
3. The solution depends continuously on the initial conditions.

2 Jacques Hadamard (1865–1963), French mathematician.
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When at least one of the above conditions is not satisfied, we say that
the problem is ill posed.

We have seen previously that, in general, inverse problems of the first
and second kinds are ill posed in the sense of Hadamard because of the
nonuniqueness of the solution.

The concept of an ill-posed problem needs to be further investigated
very carefully. The continuity condition is important because it guar-
antees that small variations in the initial conditions will cause only
small perturbations of the solution. Recall that, in practical prob-
lems, small variations in the initial conditions are quite common (and
sometimes, inevitable) due to measurement imprecision or numerical
errors. The nonuniqueness of solutions, however, should not be neces-
sarily an obstacle. An example will make this point clear.

Example 13. Consider the operator F : R
2 → R defined by F(x, y) =

x2 + y2 − 1 and the inverse problem of the first kind F(x, y) = 0. That
is, we must solve the quadratic equation x2 + y2 − 1 = 0. It is clear that
it admits an infinite number of solutions and therefore it is ill posed in
the sense of Hadamard. Geometrically, these solutions constitute the
unit circle S1 of the plane. The nonuniqueness of the solutions is very
important in the representation of the circle. In fact, in order to obtain
a sampled representation of the circle, we need to determine a finite
subset of these solutions. Figure 2.3 shows the use of seven solutions of
the equation that allows us to obtain an approximate reconstruction of
the circle by an heptagon.

The use of the term ill posed to designate the class of problems that
do not satisfy one of the three Hadamard conditions may induce the
reader to conclude that ill-posed problems cannot be solved, but this
is far from the truth. Interpreting ill-posed problems as a category of
intractable problems, the reader would be discouraged to study com-
puter graphics, an area in which there is a large number of ill-posed
problems, as we will see in this chapter.
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Figure 2.3: Polygonal representation of a circle.

In fact, ill-posed problems constitute a fertile ground for the use of
optimization methods. When a problem presents an infinite number
of solutions and we wish to have unicity, optimization methods make
it possible to reformulate the problem, so that a unique solution can
be obtained. The general principle is to define an objective function
such that an “optimal solution” can be chosen among the set of possi-
ble solutions. In this way, when we do not have a unique solution to a
problem, we can have the best solution (which is unique).

It is interesting to note that, sometimes, well-posed problems may not
present a solution due to the presence of noise or numerical errors. The
example below shows one such case.

Example 14. Consider the solution of the linear system

x + 3y = a

2x + 6y = 2a,

where a ∈ R. In other words, we want to solve the inverse problem
TX = A, where T is the linear transformation given by the matrix

(
1 3
2 6

)
,
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T(P)

A

Figure 2.4: Well-posed formulation of a problem.

X = (x, y) and A = (a, 2a). It is easy to see that the image of R
2 by T is

the line r given by the equation 2x − y = 0. Because the point A belongs
to the line r, the problem has a solution (in fact, an infinite number of
solutions).

However, a small perturbation in the value of a can move the point A
out of the line r, and the problem fails to have a solution.

To avoid this situation, a more appropriate way to pose the prob-
lem uses a formulation based on optimization: determine the element
P ∈ R

2 such that the distance from T(P) to the point A is minimal. This
form of the problem always has a solution. Moreover, this solution
will be close to the point A. Geometrically, the solution is the point P,
such that its image T(P) is the closest point of the line r to the point A
(see Figure 2.4).
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2.4.2 PROBLEM REDUCTION

Another important concept related to problem characterization is the
notion of problem reduction. It constitutes a powerful conceptual device
that makes possible to analyze and compare problems in the same class.
Problem reduction also has practical relevance because it enables find-
ing the right algorithm to resolve a problem.

Imagine you have a problem that you do not know how to solve.
Very often, using a reduction technique, you can turn this prob-
lem into a prototypical one that can be solved. This not only gives
you the methodology for implementing the solution but usually
comes with guarantees associated with the knowledge of the problem
nature.

A variation in the above strategy is when you can decompose a complex
problem that you do not know how to solve into the aggregate solution
of simpler subproblems that you can solve. This leads to some of the
basic algorithm design methodologies in computer science, such as the
divide and conquer technique.

Moreover, if your problem can be reduced to any instance of a known
hard problem, then you can be sure that your problem is at least as
hard. This issue will be discussed in more detail in the next section.

2.5 HOW TO SOLVE IT?

It is the purpose of this book to use optimization techniques to solve
computer graphics problems.

Later, we present several examples of computer graphics problems that
can be posed, in a natural way, as optimization problems. Nevertheless,
we should remind that posing a problem as an optimization problem
does not mean that it is automatically solved, at least in the sense of
obtaining an exact solution.
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In fact, optimization problems are, in general, very difficult to solve.
Some of the difficulties are discussed below.

2.5.1 GLOBAL VERSUS LOCAL SOLUTIONS

In continuous optimization problems, most of the optimality condi-
tions are related to local optimality problems. The computation of
global optimality solutions is, in general, very expensive from the com-
putational point of view. Thus, in practice, we have to settle for the best
local optimal solution found by the algorithm.

2.5.2 NP3-COMPLETE PROBLEMS

There are combinatorial problems—for example, the so-called NP-
complete problems—for which there are no efficient methods (i.e.,
running in polynomial time on the size of the instance to be solved)
that provide exact solutions in all cases. The traveling salesman problem,
mentioned before, is in that class. These problems are related in such
a way that if an algorithm with polynomially bounded running time is
found for one of the problems, then polynomial time algorithms will
be available for all. This makes it unlikely that such an algorithm will
ever be found. When solving such problems, many times, we have to
use heuristic solution processes that provide good (but not optimal)
solutions.

2.6 COMMENTS AND REFERENCES

The bibliography about optimization is vast, and it is not our inten-
tion to go over a complete review of the area. In this section, we sug-
gest some textbooks that cover, with more details, the topics we have
discussed in this chapter.

3 Complexity class of “nondeterministic polynomial time” problems.
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Luenberger (1984) provides a broad overview of continuous optimi-
zation, covering both linear and nonlinear problems. For discrete
and combinatorial optimization, refer to Papadimitriou and Steiglitz
(1982). Weinstock (1974) gives an excellent introduction to variational
optimization, with emphasis on applications.

There are many books in the literature dedicated to linear prog-
ramming and its applications to combinatorial problems (and in
particular for net flows). Chvatal (1983) is a good example. Fang and
Puthenpura (1993) is a more recent book, which emphasizes the most
recent algorithms of interior points for linear programming. Gill et al.
(1981) mostly deal with nonlinear optimization, emphasizing the prac-
tical aspect of choosing the most appropriate algorithm for some given
optimization problem.
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3 OPTIMIZATION AND
COMPUTER GRAPHICS

In this chapter, we show the importance of optimization methods in
computer graphics. We pose several problems in the area, whose solu-
tions use optimization techniques. The problems we pose here will
be solved in the following chapters with the appropriate optimization
techniques: continuous, discrete, combinatorial, or variational.

3.1 A UNIFIED VIEW OF COMPUTER
GRAPHICS PROBLEMS

Computer graphics problems are, in general, posed by considering two
spaces O1 and O2 of graphical objects and relations between them.1

In several practical situations, the spaces O1 and O2 are topological
spaces, and the relation is an operator (i.e., a continuous function)

1 A relation is a subset of the Cartesian product O1 × O2.

43



44 OPTIMIZATION AND COMPUTER GRAPHICS CHAPTER 3

from O1 to O2. An even more well-behaved condition occurs when
O1 and O2 are vector spaces and the operator is linear.

We consider the intermediate case when we have two topological spaces
of graphical objects O1 and O2 and an operator R : O1 → O2 from O1
to O2.

From this, we have the following generic problems:

• For a given graphical object x ∈ O1, compute T(x) (direct prob-
lem).

• Given y∈O2, compute the graphical object T−1(y) (inverse
problem).

• Given graphical objects x, y, with x ∈ O1 and y ∈ O2, compute
the operator T such that T−1(y) (inverse problem).

In this chapter, we study several specific cases of the above problems.

3.1.1 THE CLASSIFICATION PROBLEM

Classification problems, also called discrimination problems, allow the
recognition of graphical objects based on the identification of the class
to which they belong.

In this section, we give a generic description of the classification prob-
lem and demonstrate how it leads to optimization methods in a natural
manner.

A relation ≡ defined on a set O of graphical objects is an equivalence
relation if it satisfies the following conditions:

1. Oα ≡ Oα (reflexivity)
2. Oα ≡ Oβ ⇒ Oβ ≡ Oα (symmetry)
3. Oα ≡ Oβ and Oβ ≡ Oθ ⇒ Oα ≡ Oθ (transitivity).

The equivalence class [x] of an element x ∈ O is the set [x] = {y ∈ O;
y ≡ x}. From the properties of the equivalence relation, it follows that
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two equivalence classes coincide or are disjoint. Moreover, the union of
all equivalence classes is the set O. Thus, the equivalence classes consti-
tute a partition of the space O of graphical objects.

Thus, whenever we have an equivalence relation in a set O of graphical
objects, we obtain a classification technique, which consists in obtain-
ing the corresponding partition of the set O.

How to obtain a classification on a set O of graphical objects? A pow-
erful and a widely used method consists in using a discriminating func-
tion, which is a real function F : O → U ⊂ R. The equivalence relation
≡ in O is defined by

x ≡ y if and only if F(x) = F(y).

It is easy to prove that ≡ is indeed an equivalence relation. For each
element u ∈ U, the inverse image F−1(u) = {x ∈ O; F(x) = u} defines
an equivalence class of the relation.

When we have a classification of a set O of graphical objects, a natu-
ral problem consists in choosing an optimal representative, u in each
equivalence class F−1(u). For this, we define a distance function d :
O × O → R on the space O.2 Then, we choose the best representative
element u of the class [u] as the element that minimizes the function

∑
o∈[u]

d(o, u ).

An interesting case occurs when the set O of graphical objects is finite,
O ={o1, . . . , om}. A classification amounts to dividing O in a partition
with n sets. [u1], . . . , [un], n < m (in general, n much smaller than m).
This problem can be naturally posed as an optimization problem: What
is the optimal partition of the space O?

2 A distance function differs from a metric function because it does not necessarily satisfy
the triangle inequality.
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In some classification problems, it is possible to define a probability
distribution p on the set O of graphical objects. In this case, a more
suitable measure for an optimal partition would be

E =
m∑

i=1

∑
o∈[u ]

p(o)d(o, u ).

The function E depends on the partition in classes and the choice of
representative for each class. The minimization of the function E over
all possible partitions of the set O is a problem of combinatorial
optimization. This problem is known in the literature as cluster
analysis.

Example 15 [database queries]. In the area of multimedia data-
bases (e.g., image databases), the classification methods play a funda-
mental role in the problem of indexation and query of objects in the
database.

3.2 GEOMETRIC MODELING

Large part of the problems in modeling is related to the description,
representation, and reconstruction of geometric models. As we have
already mentioned, there are essentially three methods to describe a
geometric shape:

1. Implicit description
2. Parametric description
3. Piecewise description (implicit or parametric).

The description is usually given in a functional form, either determin-
istic or probabilistic.

A model is called procedural when its describing function is an algo-
rithm over some virtual machine.
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In general, the geometry of a model is specified by the user through a
finite number of parameters; based on this specification, the model is
reconstructed.

Some common cases are the following:

• Reconstruction of a curve or a surface from a set of points. In
this case, the reconstruction uses some interpolation method for
scattered data.

• Reconstruction of surfaces based on a finite set of curves.

It is clear that the two problems above lack uniqueness of solution.
Additional conditions are required for unicity. These conditions can
be obtained by algebraic methods or by using optimization. In the
first case, we may impose that a curve or a surface belong to some spe-
cific class, for example, defined by a polynomial of degree 3. In the sec-
ond case, we may look for a curve or a surface that minimizes some
given objective function.

3.2.1 MODEL RECONSTRUCTION

This is a very important problem in geometric modeling. In general, a
model is specified by a finite number of parameters that represent its
geometry, topology, and attributes.

An important task consists in reconstructing the model from these
finite number of parameters.

1. The user specifies a finite number of parameters using some
input device.

2. We obtain samples from a terrain data.
3. Samples from a computerized tomography (CT) or magnetic

resonance imaging (MRI).

As specific cases of this model, we have the problems of curve modeling
and surface modeling. The methods to create models using optimiza-
tion are known in the literature as variational modeling.



48 OPTIMIZATION AND COMPUTER GRAPHICS CHAPTER 3

3.3 VISUALIZATION

The visualization process consists in the generation of images from
geometric models. Formally, we define a rendering operator that asso-
ciates each point in the ambient space with a corresponding point in
the image with its respective color.

The rendering operator, R : O1 → O2, maps graphical objects from the
space of scene O1 to graphical objects on the space of the visualization
device O2. Usually, O1 is the space of 3D objects, and O2 is the space
of 2D regions of the screen.

It is possible to formalize the complete rendering pipeline in terms of
operators on graphical objects. John Hart has used this method to ana-
lyze the hardware rendering pipeline on OpenGL accelerated graphics
cards (Hart et al., 2002).

However, the solution to this direct problem is not simple because the
rendering operator depends on many factors: light sources, camera
transformation, geometry, and material properties of the objects of the
scene and ultimately of the propagation of radiant energy through the
scene reaching the image plane. Depending on the type of illumina-
tion model adopted, the rendering computation can be a direct or an
inverse problem.

There are many optimization problems that arise from the inverse
computation of the rendering operator. For example, we may wish to
determine where to position light sources in a scene such that the shad-
ows they cast into the objects have a certain effect.

Also, effective representation of the rendering operator is the funda-
mental factor for interactive and real-time visualization. In this respect,
optimization techniques for finding the most efficient and compact
representations, such as factorization of the reflectance functions, and
precomputation of light transport play a key role.
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3.4 COMPUTER VISION

In this area, we are looking for physical, geometrical, or topological
information about the objects of a scene that is depicted in an image. In
a certain way, the image is a representation of the scene, and the vision
problem consists in the reconstruction of the 3D scene from its 2D rep-
resentation. In the visualization process that generates an image, there
is a great loss of information implied by the projection that changes
the dimensionality of the representation. The image, therefore, is an
extremely ambiguous representation.

As described above, computer vision is clearly an inverse problem.

Even the reconstruction of the scene by our sophisticated visual sys-
tem may present ambiguities. Two classic examples of such a seman-
tic ambiguity are shown in Figure 3.1. In (a), we can see an image

(a) (b)

Figure 3.1: Ambiguous reconstructions.
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that can be interpreted as the face of either an elderly woman or a
young lady (the nose of the old woman is the chin of the lady). In
(b), we can interpret the figure either as the silhouette of two faces
over a white background or as a white glass over a black background.
Note that the ambiguity of the second image is related to the prob-
lem of distinguishing between foreground and background in the
reconstruction.

The complexity of reconstruction in computer vision originates differ-
ent versions of the reconstruction problem. Two important cases of the
problem are as follows.

• Shape from shading: Obtain the geometry of the objects based
on information about the radiance of the pixels in the image.

• Shape from texture: Obtain information about the geometry of
the scene based on a segmentation and an analysis of the textures
in the image.

3.5 THE VIRTUAL CAMERA

The virtual camera is the main link between the areas of visualization
and vision of 3D scenes.

It is the element that maps 3D objects in the scene into 2D information
in the image, and it is used in a dual manner in visualization and vision
processes.

The simplest model of a virtual camera is the pinhole camera, which
has 7 degrees of freedom representing the parameters

• position (3 degrees of freedom)
• orientation (3 degrees of freedom)
• focal distance (1 degree of freedom).

These parameters determine a projective transformation T that asso-
ciates with each point p ∈ R

3 a point in the image plane (for more
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details, see Gomes and Velho, 1998). In other words, given a point p ∈
R

3, the virtual camera transformation generates the point T(p) = p′ in
the image.

We have two inverse problems related in a natural way to the virtual
camera:

1. Given a point p′ in the image, determine the point p of the scene,
assuming that the camera parameters are known.

2. Given points p and p′, determine the camera transformation T
such that T(p) = p′.

In the first problem, we could have many points in the scene, which
correspond to the point p′ in the image (i.e., 3D points that are pro-
jected in the same 2D image point). In the second case, it is clear that
the knowledge of just one 3D point and its 2D projection is not suffi-
cient to determine the seven camera parameters.

One important problem is the application of point (2) to the case
of images produced by real cameras. In other words, given an image
acquired by some input device (video camera or photographic cam-
era), determine the camera parameters (position, orientation, focal
length, etc.). This problem is known as camera calibration.

Camera calibration has a large number of applications:

• In virtual reality applications, it is often necessary to combine
virtual images with real ones. In this case, we need to synchro-
nize the parameters of the virtual camera with those of the real
camera in order to obtain a correct alignment of the elements in
the image composition.

• TV broadcast of soccer often uses 3D reconstruction of a given
play to help spectators better understand what has happened. In
order to do this, it is necessary to know the camera parameters.
More information about this type of application can be obtained
from http://www.visgraf.impa.br/juizvirtual/.
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3.5.1 CAMERA SPECIFICATION

An important problem in graphics is the camera specification. In the
direct specification, the user provides the seven camera parameters that
are required to define the transformation T. Then, we have the direct
problem of computing image points p′ = T(p).

A related inverse problem arises in the study of user interfaces for cam-
era specification. In general, as we have seen, the user specifies the
transformation T through the seven camera parameters, leading to an
easy-to-solve direct problem. However, this interface is not appropriate
when the user wants to obtain specific views of the scene (e.g., keeping
the focus of attention on a certain object). A suitable interface should
allow the user to frame an object directly on the image. Such a tech-
nique is called inverse camera specification.

In the inverse specification, the 7 degrees of freedom of the camera
is specified indirectly by the user. The user wishes to obtain a certain
framing of the scene, and the specification must produce the desired
result.

The idea of the inverse specification is to allow the definition of camera
parameters inspired on the “cameraman paradigm”: the user (in the
role of a film director) describes the desired view directly on the image,
and the system adjusts the camera parameters to obtain that view.

The inverse camera specification facilitates the view description by the
user at the cost of having to solve an ill-posed mathematical problem.
Let us see how it works using a concrete example.

Example 16 [framing a point in the image]. Consider the situa-
tion illustrated in Figure 3.2. Point P in space is fixed, and the observer
is at point O; this point is projected in point A on the screen. The user
requests a new view, subject to the constraint that point A is at the cen-
ter of the image. Therefore, we need to obtain camera parameters such
that point P will now be projected in point B that is located at the center
of the screen.
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A

A

P

O

B

O�

Figure 3.2: Inverse specification to frame a point in the image
(Gomes and Velho, 1998).

Figure 3.2 shows a new position O′ and a new orientation of the camera
that solves the problem. Observe that this camera setting is not a unique
solution to the problem.

From the mathematical point of view, we have a transformation T :
R

7 → R
2, where y = T(x) is the projection of the parametrization

space of the camera on the Euclidean plane. The solution to our prob-
lem is given by the inverse T−1(B). However, the transformation T is
not linear, and, in general, it does not have an inverse (why?). There-
fore, the solution has to be computed using optimization techniques.
That is, we need to look for the “best” solution in some sense.

3.6 IMAGE PROCESSING

Image processing studies different operations with images. These oper-
ations are characterized by operators in spaces of images.
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Among the many problems that need to be solved in image processing,
we can highlight the classification problem. Two important cases of
classification problems are image segmentation and image quantiza-
tion. In the first case, classification is posed on the geometric support
of the image, and in the second case, classification is done in the range
of the image function (i.e., the color space).

3.6.1 WARPING AND MORPHING

An important operation consists in the warping of the domain U of an
image f : U ⊂ R

2 → R. More specifically, given an image f : U → R,
a warping of U is a diffeomorphism g : V ⊂ R

2 → U. This diffeomor-
phism defines a new image given by h : V → R, h = f◦g−1. An exam-
ple of such an operation is illustrated in Figure 3.3.

f

R

g

h = f g21

g21

Figure 3.3: Image deformation.
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Image warping has many applications, such as image morphing,
registration, and correction.

Image morphing. It deforms an image into another in a continuous
way (see Figure 3.4).

Registration of medical images. The comparison of different medi-
cal images is very common in diagnosis. It is also common to combine
images of the same part of the body obtained from different sources.
In all these cases, the images need to be perfectly aligned.

Correcting image distortions. Many times, the process of capturing
or generating an image introduces distortions. In such cases, it is nec-
essary to correct the distortions with a warping. We use a standard pat-
tern to measure distortions, and based on those measures, we correct
other images produced by the process. Figure 3.5 shows an example
of a standard pattern and its deformation due to some image capture
process.

One of the main problems in the area of warping and morphing is
the specification of the warping operator. There are many techniques
for this purpose. A simple and a very popular method is the punctual
specification (Figure 3.6). In order to deform the bird into the dog,
we select some points in the outline curve of the bird and their corre-
sponding points in the outline of the dog. Through the knowledge of
the deformation acting on this set of points, it is possible to reconstruct
the desired deformation over the whole space.

Figure 3.4: Image metamorphosis.
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Figure 3.5: Correcting distortions.

Figure 3.6: Punctual specification.

With punctual specification, the problem of finding a deformation
reduces to the problem of determining a warping g : R

2 → R
2 such

that
g(pi) = qi, i = 1, . . . , n,

where pi and qi are points of R
2. It is clear that this problem does not

admit a unique solution, in general.
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Suppose that g(x, y)= (g1(x, y), g2(x, y)), where g1, g2 : U → R are the
components of g. In this case, the equations g(pi) = qi can be written
in the form

g1(pi
x, pi

y) = qi
x;

g2(pi
x, pi

y) = qi
y,

with i=1, . . . , n. That is, the problem amounts to determining two
surfaces

(x, y, g1(x, y)), (x, y, g2(x, y)),

based on the knowledge of a finite number of points on each surface.
Note that we encounter the same problem in the area of modeling.

The way that the deformation problem was posed using point specifi-
cation is too rigid. If we restrict the class of warpings that are allowed,
the problem may not have a solution. In addition, the above formula-
tion makes the problem very sensitive to noise. A more convenient way
to pose the problem consists in forcing g(pi) close to pi. In this new
formulation, the solution is less sensitive to noise, and it is possible to
restrict the class of deformations and still obtain a solution. The new
problem is, therefore, an optimization problem.

Particularly interesting cases of the formulation above consist in con-
sidering space deformations induced by rigid motions or linear or pro-
jective transformations. A survey discussing several approaches to solve
the problem using rigid motions can be seen in Goodrich et al. (1999).
A comprehensive treatment of warping and morphing of graphical
objects can be found in Gomes et al. (1998).

3.7 IMAGE ANALYSIS

Image analysis deals with the inference of models from images. These
techniques are used in vision and pattern recognition. Depending on
the level of the model, it can fall into the category of low-level, midlevel,
or high-level vision. In this section, we give two examples: one is a
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low-level problem (edge detection) and the other a midlevel problem
(character recognition).

3.7.1 EDGE DETECTION

A classical problem in the area of image analysis is edge detection.
Intuitively, edges are the boundaries of objects in the image. This is
shown in Figure 3.7, where the white pixels in image (b) indicate the
edges of image (a).

The first researcher to call attention to the importance of edge detec-
tion in image analysis was D. Marr.3 He posed an important problem
in this area, which became known as the Marr’s Conjecture: an image
is completely characterized by its edges. In order to pose this problem
more precisely, it is necessary to define the concept of edge, but we do
not define here. We resort, instead, to a high-level discussion of the
problem.

Edge detection methods can be divided into two categories:

• Frequency-based methods
• Geometric methods.

Frequency-based methods characterize edges as regions of high fre-
quency of the image (i.e., regions where the image function exhibits
large variations). The theory of operators over images is used to deter-
mine those regions. The reconstruction of an image from its edges is,
therefore, related to the invertibility of these operators. The wavelet
transform plays a significant role.

Geometric methods try to describe edges using planar curves over the
image support. This approach uses largely optimization methods. A
classic example is given by the snakes.

3 David Marr (1945–1980), English scientist and MIT researcher, was one of the pioneers in
the field of computer vision.
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(a)

(b)

Figure 3.7: Edges of an image.

Snakes. These curves reduce the edge detection problem to a vari-
ational problem of curves in the domain of the image. We use the
image function to define an external energy in the space of curves. This
external energy is combined with an internal energy of stretching and
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bending in order to create an energy functional. The functional is such
that minimizer curves will be aligned with the edges of regions in the
image. The computation of snakes is usually done using a relaxation
process starting with an initial curve near the region. Figure 3.8 illus-
trates edge detection using snakes: (a) the initial curve and (b) the final
curve fully aligned with the edges of a region.

3.7.2 CHARACTER RECOGNITION

A classification problem of practical importance is the automatic
character recognition. Given a binary image of a scanned text, identify

(a)

(b)

Figure 3.8: Edge detection using snakes: (a) initial curve; (b) final edge curve
(Brigger and Unser, 1998).
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all the printed glyphs of the text. This problem has applications in opti-
cal character recognition systems, which transform a scanned image in
a text that can be edited in a word processor.

Note that each character represents a region of the plane, which can be
interpreted as a planar graphical object. We need to identify the asso-
ciated letter of the alphabet for each of these regions. If we define the
depiction of a character as another planar graphical object, then the
problem is to find a discriminating function to measure the similarity
of this type of objects (Atallah, 1984). After that, we proceed as in the
general classification problem described above.

3.8 ANIMATION AND VIDEO

The area of animation is concerned with the problem of time-varying
graphical objects. There are three important problems in animation:

• Motion synthesis
• Motion analysis
• Motion processing.

In general, motion synthesis is a direct problem, and motion analysis
leads to various types of inverse problems.

Motion synthesis is closely related to the area of motion control and
uses optimization methods extensively (e.g., optimal control).

Motion visualization, or animation, is done through a sequence of
images, which constitute essentially a temporal sampling of the motion
of the objects in a scene. Such an image sequence is also known as digital
video. Note that this opens up a perspective for new problems: analysis
and processing of video.

A particularly interesting problem consists in recovering the motion
of 3D objects in the scene based on the analysis of their 2D motion
in the video, which is known as motion capture. This is another
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example of a highly ill-posed problem in the sense of Hadamard, where
optimization methods are largely used to find adequate solutions.

3.9 COMMENTS AND REFERENCES

The importance of mathematical optimization methods for computer
graphics and vision has been apparent since the early developments in
these fields. It has gained increasing importance as the fields evolved
and the problems to be solved became more complex. Perhaps, the
awareness of the need for optimization tools reached its peak with the
integration of graphics and vision applications in areas such as image-
based modeling and rendering (Szeliski et al., 1998).
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4 VARIATIONAL
OPTIMIZATION

4.1 VARIATIONAL PROBLEMS

A large number of the optimization problems that occur in computer
graphics are variational problems. In those problems, the set of pos-
sible solutions is the space of functions defined on a continuous
domain.

The most classical variational problem is the following:

Problem 0. Find a function y : [x1, x2] → Rn, satisfying the con-
ditions y(x1) = y1 and y(x2) = y2, that minimizes the integral∫x2

x1
f (x, y′, y)dx, where f is a known real function.

The optimality conditions for the problem above are expressed by a
system of partial differential equations, given below.

63
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Theorem 1 [Euler–Lagrange conditions]. Let y : [x1, x2] → Rn

be a twice-differentiable function that solves the problem above. Then,
y must satisfy the following system of partial differential equations:

∂f

∂yi
=

∂

∂x

(
∂f

∂yi
′

)
, i = 1, . . . , n.

In most cases, one cannot solve these equations analytically. For this
reason, the solution to these problems are usually based on numer-
ical techniques, which require some kind of discretization. There is
no general rule to obtain this discretization, and different techniques
of numerical methods for partial differential equations are found in
the literature. We use the example below to discuss possible solution
strategies.

Example 17. Let us consider the problem of finding a min-
imum length curve joining points P1 = (x1, y1, g(x1, y1)) and
P2 = (x2, y2, g(x2, y2)) on a surface in R

3 having equation z = g(x, y)
(see Figure 4.1).

P1

P2

Figure 4.1: Minimum length path on a surface.



SECTION 4.1 VARIATIONAL PROBLEMS 65

Let u : [0, 1] → R2 be a parametrization of the curve. Its length can be

written as
∫1
0 ||u′(t)||dt. Therefore, the problem to be solved is that of

minimizing this integral subject to the condition that u(0) = P1 and
u(1) = P2. Hence, this is a specific case of the problem above.

With little modification, this mathematical formulation applies to
problems that are apparently quite different in nature. For instance,
consider the problem of detecting a segment of the boundary (between
two given points) of the region corresponding to the brain, in the image
in Figure 4.2. An image can be seen as a surface z = g (x, y), where z is
the gray level at position (x, y).

Figure 4.2: Detecting a boundary segment.
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The boundary segment can again be found by minimizing an appro-
priate functional of the form

1∫
0

||u′(t)||w(u(t))dt (4.1)

over all curves u(t) joining the two given points. The w factor should
be small at the boundary points in order to make them more attractive
when minimizing the functional. Observe that the case of the mini-
mum length curve is a specific instance of the this formulation, for
w(u) = 1.

For boundary detection, we observe that the magnitude of the gradient
tends to be large at points on the boundary. Thus, for the case at hand,
choosing w(u) = 1

1+|∇f (u)| gives good results.

Once the problem has been formulated as a variational problem, we
face the task of finding a solution. There are three possible approaches.

4.1.1 SOLVE THE VARIATIONAL PROBLEM DIRECTLY

This requires solving directly the partial differential equation that exp-
resses the optimality conditions for the problem. Even for this simple
case, the Euler–Lagrange conditions result in a system of differential
equations that cannot be solved analytically, except for special cases
(for instance, when the surface is a plane).

Since analytical solutions are not available, the equations must be
solved numerically, which demands the introduction of some dis-
cretization scheme.

4.1.2 REDUCE TO A CONTINUOUS OPTIMIZATION
PROBLEM

This strategy consists in projecting the infinite dimensional solution
space into a space of finite dimension. In general, the solution obtained
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is only an approximation to the solution to the original problem. As an
example, we could consider the problem of minimizing the length of
parametric cubic curves, which are defined by the the equation

α(t) = (c10 + c11t + c12t2 + c13t3, c20 + c21t + c22t2 + c23t3).

This reduces our search to an 8D space of the parameters cij on which
we can use methods and techniques from continuous optimization.
We should remark, however, that even in this continuous problem, we
must resort to some discretization in order to compute, approximately,
the integral that provides the length of the curve.

4.1.3 REDUCE TO A DISCRETE OPTIMIZATION
PROBLEM

Here, the discretization occurs in the beginning of the process. The
domain of the objective function f is discretized using a regular grid,
and we consider the graph G whose vertices are the grid intersections,
whose edges correspond to pairs of vertices, and the length of each edge
is the length, on the surface geometry, of the curve generated by the line
segment that connects the two vertices (see Figure 4.3).

P1

P2

Figure 4.3: Discretizing a variational problem.
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The curve of minimal length is found by solving a problem of
minimum path in the graph G (see Chapter 6). The quality of the
approximation obtained by this method certainly depends on the res-
olution of the grid (number of vertices). We should remark, however,
that the more we increase the grid resolution, the greater the compu-
tational cost of the solution.

4.2 APPLICATIONS IN COMPUTER GRAPHICS

In this section, we study the problem, from computer graphics, that
can be modeled as a variational problem: variational modeling of
curves.

This problem originates from the area of variational modeling, which
consists in using variational techniques in the area of geometric
modeling.

4.2.1 VARIATIONAL MODELING OF CURVES

The basic problem of describing curves is related to the creation of
geometric objects in the context of specific applications. A generic
method consists in determining a curve that passes through a finite
set of points p1, . . . , pn and at the same time satisfy some application-
dependent criteria. In general, besides obtaining a curve with a given
shape, many other conditions that measure the “quality” of the curve
can be imposed, such as continuity, tangent line at control points, and
continuous curvature.

Each condition imposes some constraint on the curve to be con-
structed. These constraints can be of analytical, geometric, or topo-
logical nature. A convenient way to obtain curves that satisfy some set
of conditions is to pose the problem in the context of optimization:
define an energy functional such that the curves that are minimizers of
this functional automatically satisfy the desired criteria.
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D. Bernoulli1 was the first mathematician to propose a functional to
measure the energy associated with the tension of a curve. This energy
is called tension energy and is proportional to the square of the curva-
ture k of the curve:

Etension(α) =
∫
α

k2ds, (4.2)

where s is the arc length of the curve α. Note that the tension energy of
a straight line is zero because its curvature is identically null. However,
if the tension energy of a curve is high, then it “bends” significantly.
Curves that minimize the tension energy are called nonlinear splines.

The geometric constraints that are imposed can be of a punctual or a
directional nature. An example of punctual constraint is to force the
curve to pass through a finite set of points. An example of directional
constraint is to force the tangent vector of the curve to have a certain
direction, previously specified.

The geometric constraints are, in general, modeled by an energy
functional associated with external forces that act on the curve. The
tension energy discussed earlier is an internal energy to the curve. In
this way, we have a unification of the optimization problem looking for
the minima of an energy functional E that has an internal component
and an external component:

Etotal(α) = Eint(α) + Eext(α).

A simplification adopted very often consists in decomposing the inter-
nal energy into a bending and a stretch component. In this way, the
internal energy is given by the linear combination

Eint(α) = μEbending + (1 − μ)Estretch,

1 Daniel Bernoulli (1700–1782), Swiss mathematician known for his work in hydrodynamics
and mechanics.
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μ ∈ [0, 1]. The bending energy is given by Equation (4.2), and the
stretch energy is given by

Estretch(α) =
∫
α
||α′(t)|| dt.

Therefore, the internal energy controls the energy accumulated by the
curve when it is bent or stretched. A minimization of this functional
results in a curve that is as short and straight as possible. If the curve is
constrained to pass through two points, the solution to the minimiza-
tion problem is certainly a line segment. The external energy results in
nontrivial solutions to the problem.

Intuitively, the external energy deforms the curve in many ways, bend-
ing and stretching it. In general, the user specifies various components
of external energy, which are linearly combined in order to obtain the
desired deformation. This energy is defined in the form of attractors
or repulsors, which can be of two kinds: positional and directional. We
give below two examples to clarify these concepts.

Example 18 [punctual attractors]. An example of a positional
attractor is the punctual attractor, whose energy functional is given by

Epunctual(α) = d(α, p)2 = mint||α(t) − p||2.

Figure 4.4(a) shows an example of a curve that passes through points
p0 and p1 while being deformed by attraction to point p.

Example 19 [directional attractor]. An example of a directional
attractor is based on specifying a line r(t) = p + tv. The curve starts at
point p0 and ends at point p1. The external energy makes the curve to
approach point p and the tangent to the curve at points near p will line
up with vector v (see Figure 4.4(b)). This condition can be obtained by
an energy functional given by the equation

Edir(α) = min
t

||α′(t) ∧ v||2.

According to the classification in Chapter 2, the problem of varia-
tional modeling of curves consists in finding a curve satisfying certain
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r

p1

p0

p

p0

p1

(a) (b)

Figure 4.4: Attractors: punctual (a) and directional (b).

constraints (e.g., pass through a finite number of points p1, p2, . . . , pn)
that minimize a certain energy functional (the objective function). This
functional is defined in such a way that the curves that minimize it have
some of the desired characteristics, such as being smooth and staying
close to some prespecified points.

In order to fix the ideas, we consider the case of finding a curve α that
passes through p1, p2, . . . , pn and minimizes the energy functional

E = Eint + Eext, (4.3)

where

Eint(α) = μEtension + (1 − μ)Estretch = μ

∫
α

k2ds + (1 − μ)
∫
α
|α′(t)| dt

and

Eext = c
m∑

j=1

min
t

d(α(t), qj)2.

In the above equations, μ and c are constants, and {q0, q1, . . . , qm} is a
set of attractors.
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This is a variational problem. That is, the solution set has infinite
dimension, and its elements consist of all the smooth curves that pass
through the given points. An approach to solve the problem consists in
using the Euler–Lagrange equation to formulate it as a partial deriva-
tive problem. Another approach, which we adopt here, is that of solving
an approximation to the problem by projecting it onto an appropriate
finite dimensional space.

Wesselink (1996) has used the space of uniform cubic B-spline curves
for this purpose. These curves are described by the equations

α(t) =
n−1∑
i=0

PiN
3
i (t), t ∈ [2, n − 1], (4.4)

where P0, P1, . . . , Pn are called control points and N3
1, N3

2, . . . , N3
n−1 con-

stitute a basis of cubic uniform B-splines (see Bartels et al., 1987)
defined by

N0
i (u) =

{
1, if i − 1 ≤ t < i

0, otherwise

Nd
i (u) = t−i+1

d
Nd−1

i (t) + i+d−t
d−1 Nd−1

i+1 (t).

It is possible to prove that for every t ∈ [2, n − 1], we have∑n−1
i=1 N3

i (t) = 1. Moreover, N3
i (t) ≥ 0 (i = 1, . . . , n − 1). Therefore,

each point α(t) of the curve is a convex combination of control points.
The basis functions, whose graphs are depicted in Figure 4.5., deter-
mine the weight of each control point in α(t) (Figure 4.6).

There are several reasons to justify the choice of the space of cubic
B-spline curves:

• Cubic B-splines are frequently used in interactive modeling of
curves (mainly because of the properties described below). This
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Figure 4.5: Basis of B-spline curves.
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Figure 4.6: Control points and B-spline curves.

enables us to add variational modeling techniques to the existing
modeling systems.

• Cubic B-splines are piecewise polynomial curves, with the small-
est degree in such a way as to provide an adequate level of
continuity for most of the applications (of first order in the
entire curve and of second order except at a finite number of
points).

• Cubic B-splines have local control. That is, each basis function
has compact support, and as a consequence, each control point
influences only part of the curve that is very useful. In an inter-
active modeling, it implies that changes in control points affect
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only part of the curve. However, it results from the compactness
of the support that the interpolation constraints are expressed by
a sparse system of equations.

The problem of finding a curve given by Eq. 4.4, which minimizes the
functional given in Eq. 4.3, is still difficult from the computational
point of view because the terms of external energy involve integrals for
which there are no analytical expression available. Moreover, the con-
straints associated with the requirement that the curve contain a set of
points, as formulated above, do not specify the values of the param-
eter t corresponding to those points. If the variables corresponding to
these parameter values are introduced in the problem, such constraints
become nonlinear. An analogous difficulty occurs when computing the
attraction energy.

Thus, it is necessary to introduce additional simplifications:

• The energies of stretching and bending can be approximated by
quadratic functions of the control points, using

Ebending ≈
∫
α
|α(t)′′|2dt

and

Estretching ≈
∫
α
|α(t)′|2dt.

Both integrals above are of the form
∑

i,j aijPiPj, where the

constants aij are integrals expressed in terms of the basis
functions.

• In the interpolation constraints and in the attraction functionals,
we specify the corresponding parametric values. This forces that
the interpolation constraints become linear as a function of the
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control points and the attraction functional becomes a quadratic
function of the same points.

Thus, the problem is reduced to the one of minimizing a quadratic
function of the control points subject to linear constraints, and it can
be solved using the first-order optimality condition.

The modeling process described in Wesselink (1996) is the following:

1. An initial curve is modeled in the conventional way using the
manipulation of the control points.

2. On this curve, the user specifies the interpolation points and
outside of the curve the user specifies the attractor points.

3. The control points are then recomputed in such a way to min-
imize the total energy according to the the interpolation con-
straints.

4. The user may insert new control points or adjust the curve man-
ually and return to step 2 above.

Figure 4.7 shows, on the right, the result of specifying two attractors
to the curve on the left, which was required to pass through the two
extreme points and the central point and maintain the vertical direc-
tion at the other two marked points.

Figure 4.7: Interactive variational modeling.
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4.3 COMMENTS AND REFERENCES

The bibliography on variational methods is quite extensive and can be
mathematically challenging. We refer the reader to Weinstock (1974)
for an introductory text on variational optimization, with emphasis on
applications.

BIBLIOGRAPHY

Bartels, R., J. C. Beatty, and B. Barsky. An Introduction to Splines for Use
in Computer Graphics and Geometric Modeling. San Fransisco, CA:
Morgan and Kaufman, 1987.

Weinstock, R. Calculus of Variations with Applications to Physics and
Engineering. Weinstock Press, Dover: 1974.

Wesselink, J. W. Variational Modeling of Curves and Surfaces. Ph.D.
Thesis, Technische Universiteit Eindhoven, 1996.



5 CONTINUOUS
OPTIMIZATION

In this chapter, we study the continuous optimization methods and
techniques. As we know from Chapter 2, continuous optimization
problems are posed in the form

min
x∈S

f (x),

where f is a real function and S is a subset of R
n, described using a, pos-

sibly empty, set of equations and inequalities. Thus, the general prob-
lem that we study is

min f (x)

subject to hi(x) = 0, i = 1, . . . , m

gj(x) ≥ 0, j = 1, . . . , p.

We pay special attention to the case where m = p = 0. In this case, the
solution set is the entire space R

n, and the optimization problem is
called unconstrained.

77
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Consider a continuous optimization problem minx∈Rnf (x) and a point
x0 ∈R

n. The methods and techniques studied in this chapter provide
answers to the following questions:

• Is x0 a solution to the optimization problem?
• If not, how can we compute a better alternative than the one

provided by x0?

As we will see, the answers are extensions, to R
n, of the well-known

classical theory of maxima and minima for real functions of real
variables. The main tool used in the proofs is Taylor’s theorem, which
provides a polynomial approximation to a function f : R

n → R in a
neighborhood of a point a using the value of f and its derivatives at the
point a.

In particular, we use the second-order approximation given by the
infinitesimal version of Taylor’s theorem (see Rudin, 1976).

Theorem 2. Consider a function f : R
n → R and a point x0, h ∈ R

n.
Suppose that f is twice differentiable at x0. Define r : R

n → R by

f (x0 + h) = f (x0) + ∇f (x0) · h +
1
2

h�∇2f (x0) · h + r(h).

Then, limh→0 r(h)/|h| = 0.

In the above theorem,∇f and∇2f denote, respectively, the gradient vec-
tor and the Hessian matrix of the function f, defined by

∇f (x) =
(

∂f
∂x1

(x) · · · ∂f
∂xn

(x)
)

and

∇2f (x) =

⎛
⎜⎜⎜⎝

∂2f
∂x1∂x1

(x) · · · ∂2f
∂x1∂xn

(x)
...

. . .
...

∂2f
∂xn∂x1

(x) · · · ∂2f
∂xn∂xn

(x)

⎞
⎟⎟⎟⎠.
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5.1 OPTIMALITY CONDITIONS

The theorems that follow establish necessary and sufficient conditions
in order that x0 ∈ R

n be a local minimum or maximum point of a
function f.

We start with the theorem that establishes for functions of n variables
that the derivative must vanish at the local extrema.

Theorem 3 [first-order necessary conditions]. Let f : R
n → R

be a function of class C1. If x0 is a local minimum (or maximum) point
of f, then ∇f (x0) = 0.

Proof. Suppose that ∇f (x0) �= 0. Take an arbitrary vector d such that
∇f (x0) · d < 0 (e.g., we may choose d = −∇f (x0)). We have from
the first-order Taylor’s formula (or simply from the definition of
derivative)

f (x0 + λd) = f (x0) + λ∇f (x) · d + r(λ)

= f (x0) + λ(∇f (x0) · d +
r(λ)
λ

),

where r(λ) is such that limλ→0
r(λ)
λ = 0. For λ > 0 and sufficiently

small, ∇f (x0) · d + r(λ)
λ < 0, which implies that f (x0 + λd) < f (x0),

and this shows that x0 is not a local minimum. By taking −d instead
of d, we show, in the same way, that x0 is not a local maximum
either. �

The above proof is based on an important idea, which is used by sev-
eral algorithms: if ∇f (x0) �= 0, then it is possible, starting from x0,
to find direction vectors d such that the value of f decreases along
these directions (at least locally). These directions, which are character-
ized by satisfying the inequality ∇f (x0)d < 0, are called descent direc-
tions (see Figure 5.1). Note that the condition∇f (x0) = 0 expresses the
fact that there does not exist either descent or ascent directions at x0.
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Descent directions

Level curve of f

(x0, y0)

=f (x0, y0)

Figure 5.1: Descent directions.

For this reason, the points where this condition is satisfied are called
stationary points of f.

We should remark that the condition stated in Theorem 3 is only
necessary. The points that satisfy these conditions, i.e., the points where
the gradient vector is null are called critical points of the function f. As
in the 1D case, it is possible to use the second derivative of f at x0 in
order to obtain more information about the critical point x0.

Theorem 4 [second-order necessary conditions]. Let f : R
n →

R be a function of class C 2. If x0 is a local minimum of f, then∇f (x0) = 0
and the Hessian matrix H = ∇2f (x0) is nonnegative (i.e., the Hessian
matrix satifies d�Hd ≥ 0 for every d ∈ R

n).

Proof. Let x0 be a local minimum of f. From the first-order conditions,
we have∇f (x0) = 0. Suppose then there exists a direction vector d such
that d�Hd < 0. From Theorem 2, we have

f (x0 + λd) = f (x0) + λ∇f (x0) · d +
1
2
λ2d�Hd + r(h)

= f (x0) + λ2
(

1
2

d�Hd +
r(λ)

λ2

)
,
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where limλ→0
r(λ)
λ2 = 0. Since d�Hd < 0, it follows that d�Hd +

r(λ)
λ2 < 0. Therefore, we have f (x0 + λd) < f (x0) for |λ| sufficiently

small, and this contradicts the fact that x0 is a local minimum. There-
fore, we must have d�Hd ≥ 0 for every d. �

The condition d�Hd ≥ 0 for every d is analogous to the nonnegative-
ness of the second derivative at a local minimum of a real function of
one real variable. We must impose extra conditions on H in order to
guarantee that x0 is indeed a local minimum of f. In the 1D case, it
is sufficient to impose that the second derivative be positive at x0; in a
similar way, in the case of n variables, we must demand that the Hessian
matrix be positive.

Theorem 5 [second-order necessary and sufficient conditions].
Let f : R

n → R be a function of class C 2. Suppose that ∇f (x0) = 0 and
that the Hessian matrix H = ∇2f (x0) is positive (i.e., d�Hd > 0, for every
d �= 0). Then, x0 is a strict local minimum of f.

Proof. Let x0 be a point of R
n satisfying the conditions of the theorem.

Since d�Hd > 0 for every d �= 0, there exists a > 0 such that d�Hd >
a|d|2 for every d �= 0 (it is enough to consider a as being the maximum
value of d�Hd in the compact set {d ∈ R

n||d| = 1}). Then, from the
second-order Taylor’s formula,

f (x + d) = f (x0) + f (x0) · d +
1
2

d�Hd + r(d)

> f (x0) +
1
2

a|d|2 + r(d)

= f (x0) + |d|2
(

a

2
+

r(d)

|d|2
)

,

where r is such that limd→0
r(d)
|d|2 = 0. Hence, for |d| sufficiently small,

we have a + r(d)
|d|2 > 0 and as a consequece, we obtain f (x + d) > f (x0).

Therefore, f has a strict local minimum at x0. �
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Summarizing this discussion, if x0 is a critical point of f (i.e., such that
∇f (x0) = 0) and H is the Hessian matrix of f at x0, then we have the
following cases:

a) If d�Hd > 0 for every d �= 0, then x0 is a relative minimum point
of f.

b) If d�Hd < 0 for every d �= 0, then x0 is a relative maximum point
of f.

c) If there exist d1 and d2 such that d�1 Hd1 > 0 and d�2 Hd2 < 0,
then x0 is neither a relative minimum nor a relative maximum
of f. In fact, f has a minimum at x0 along the direction d1 and a
maximum at x0 along the direction d2. In this case, we say that
x0 is a saddle point of f.

d) If d�Hd≥ 0 for every d (with d�1 Hd1 = 0 for some direction

d1 �= 0 and d�2 Hd2 > 0 for some direction d2), then f may
have a local minimum at x0 (and certainly does not have
a local maximum there). Similarly, if d�Hd ≤ 0 for every
d (with d�1 Hd1 = 0 for some direction d1 �= 0 and d�2 Hd2 <
0 for some direction d2), then f may have a local maxi-
mum at x0 (and certainly does not have a local minimum
there).

It is possible to illustrate all the cases described above using quadratic
functions of two variables. That is, functions of the form f (x) = c +
b�x + 1

2x�Hx, where b and c are 2 × 1 vectors and H is a symmetric 2 ×
2 matrix. It is easy to verify that the gradient of f is ∇f (x) = (b + Hx)�
and that its Hessian matrix is∇2f (x) = H. Therefore, the critical points
of f are the solutions to the equation Hx = −b. If H is not singular,
then there exists a unique critical point x0 = −H−1b. In this case, the
occurrence of a maximum or a minimum point at this critical point
depends on the positivity or negativity of the matrix H, that is, on the
sign of its eigenvalues. If H is singular, f may or may not have critical
points. The examples below illustrate these situations.

a) H has two positive eigenvalues (e.g., if f (x, y) = 2x + x2 + 2y2).
In this case, f has a unique local minimum at the point
x0 = −H−1b = (1, 0). The level curves of f are illustrated in
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Figure 5.2. In fact, f has a global minimum at x0 since one can
easily verify that

f (x) =
1
2

(x − x0)�H(x − x0) + f (x0).

(Analogously, if H has two negative eigenvalues, then f has a
unique local maximum, which will also be a global maximum).

b) H has a positive and a negative eigenvalue (e.g., if f (x, y) =
2x + x2 − 2y2). In this case, the unique critical point of f (which
is x0 = −H−1b = (1, 0)) is a saddle point and f does not have

x
42�2�4

y

4

2

�2

�4

Point of
minimum

Figure 5.2: Quadratic function with a unique local minimum.
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Figure 5.3: Quadratic function without local extrema.

relative extrema. Figure 5.3 shows the level curves of f for
this case.

c) H has a positive and a null eigenvalue. If b does not belong to
the 1D space generated by the columns of H, then f does not
have critical points and therefore does not have relative extrema
(Figure 5.4). This is the case for the function f (x) = 2x + 2y2.
However, if b belongs to the space generated by the columns
of H, then the set of solutions to the equation Hx0 = −b is a
straight line. Each point x0 of this line is a critical point of f.
Moreover, since f (x) = (x − x0)�H(x − x0) + f (x0), each one of
these critical points is a local (and global) minimum point of f.
(This illustrates the fact that the sufficient conditions of second
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Figure 5.4: Quadratic function without local extrema.

order are not necessary conditions for optimality: H is not pos-
itive at the critical points, but the latter are local minima). As an
example, for f (x) = 2x + x2, the minima are the points of the
line x = 1. Figure 5.5 illustrates this last situation.

5.1.1 CONVEXITY AND GLOBAL MINIMA

The theorems of the previous section provide necessary and sufficient
conditions to verify the occurrence of local minima or maxima of a
function. In practice, however, we are interested in global maxima and
minima. General techniques to obtain these extrema are studied in
Chapter 7. However, there exists a class of functions, called convex, for
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Figure 5.5: Quadratic function with an infinite number of local extrema.

which we can guarantee the ocurrence of the same phenomena that we
observed in the examples (a) and (c) above, where the local minima
that we computed were, in fact, global minima.

A function f : R
n → R is convex when

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2)

for every x1, x2 ∈ R
n and 0 < λ < 1. That is, the value of f at an interior

point of a segment with extremes x1 and x2 is at most equal to the result
obtained by linear interpolation between f (x1) and f (x2).
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Theorem 6. If f : R
n → R is convex and f has a local minimum at x0,

then f has a global minimum at x0.

Proof. Suppose that x0 is not a global minimum point of f. Then, there
exists x1 such that f (x1) < f (x0). Thus, for every point λx0 + (1 − λ)x1
in the line segment x0x1, we have

f (λx0 + (1 − λ)x1) ≤ λf (x0) + (1 − λ)f (x1) < f (x0).

Thus, f cannot have a local minimum at x0. Therefore, if x0 is a local
minimum, then it is also necessarily a global minimum point. �

It is not always easy to verify the convexity of a function using the defi-
nition. The following characterization, for functions of class C 2, is used
in practice (see Luenberger, 1984).

Theorem 7. A function f : R
n → R, of class C 2, is convex if and only

if the Hessian matrix H(x) = ∇2f (x) is nonnegative for every x (i.e.,
d�H(x)d ≥ 0 for every x and every d).

The examples given in the previous sections with quadratic functions
are, therefore, specific cases of the results stated above: functions of
type f (x) = b�x + x�Hx are convex when H is nonnegative. Therefore,
when they possess a local minimum at a given point, they also have a
global minimum there.

5.2 LEAST SQUARES

Probably the most frequent optimization problem in applied mathe-
matics is the one of adjusting a certain linear model to a data set in such
a way that the error is as small as possible. The simplest case is the fol-
lowing: given a list of ordered pairs of observations (xi, yi), i = 1, . . . , n,
we must find numbers a and b in such a way that the straight line of
equation y = ax + b provides the best adjustment to the data set (see
Figure 5.6).
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y 5 ax 1 b

Figure 5.6: Linear regression.

This problem known as the linear regression problem can be given the
following interpretation. We would like, if possible, to find values of
a and b such that yi = axi + b for i = 1, . . . , n. That is, we wish to solve
the system of n equations with two variables:

Xβ = Y,

where

β =
(

a

b

)
, X =

⎛
⎜⎝

x1 1
...

...

xn 1

⎞
⎟⎠, and Y =

⎛
⎜⎝

y1
...

yn

⎞
⎟⎠.

Typically, n is greater than 2 and, in general, the above system has no
solutions. That is, the vector Y is not in the subspace generated by the
columns of X. Thus, we must settle for a vector β for which the error
|Y − Xβ| is as small as possible. That is, we need to minimize |Y − Xβ|
(or, equivalently, |Y − Xβ|2) for β ∈ R

2. But

|Y − Xβ|2 = (Y − Xβ)�(Y − Xβ) = β�(X�X)β − 2Y�Xβ + Y�Y.



SECTION 5.2 LEAST SQUARES 89

Therefore, the problem is a special case of the problem of minimizing
a quadratic function in two variables, studied in Section 5.1.

Clearly, the matrix X�X is nonnegative. Moreover, since the space
generated by the columns of X�X is equal to the space generated by
the columns of X, the vector Y�X belongs to the subspace generated
by the columns of X�X. Therefore, f has a minimum at every point β0
satisfying

(X�X)β0 = Y�X

(the so-called normal equations of the least squares problem). If X�X
is nonsingular (this occurs when the columns of X are linearly inde-
pendent), then the system of normal equations has a unique solution,
given by

β0 = (X�X)−1Y�X.

If X�X is nonsingular, then there exists an infinite number of vectors β0
satisfying the equation (but only one β0 of minimum length). In fact,
we have the following general result.

Theorem 8. Let A be an arbitrary matrix of order m × n. For each
b ∈ R

m, there exists a unique vector x0 of minimal length such that
|Ax0 − b| is minimum. Moreover, the transformation that associates with
each b the corresponding x0 is linear. That is, there exists an n × m matrix
A+ such that A+b = x0 for all b.

Proof. We use geometric arguments in the proof (a more algebraic
proof is provided in Strang, 1998). In the subspace L = {Ax|x ∈ R

n},
there exists a unique vector y0 whose distance to b is minimum (y0 is the
orthogonal projection of b on L) (see Figure 5.7). Moreover, there
exists a unique vector x0 of minimum length in the linear manifold
M(y0) = {x|Ax = y0} (x0 is the orthogonal projection of the origin
over M(y0)). Thus, we have proved the existence and the uniqueness
of x0. Moreover, x0 is obtained by the composition of two linear trans-
formations: the one that maps b ∈ R

m to its orthogonal projection y0
onto L and the one that maps y0 to the projection of the origin onto
M(y0). �
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Figure 5.7: Geometric interpretation of the pseudoinverse.

The matrix A+ in Proposition 8 is called the pseudoinverse of A. When
A is n × n and is nonsingular, we have min|Ax0 − b| = 0, which occurs
exactly at x0 = A−1b. Thus, the concept of pseudoinverse generalizes
the concept of inverse matrix.

We should remark that the geometric interpretation given above can be
related to the normal equations of the least squares problem. In fact, the
normal equations can be written in the form A�(Ax0 − b) = 0, which
says that x0 must be chosen in such a way that the vector Ax0 − b is
orthogonal to the vector subspace {Ax|x ∈ R

n}.

5.2.1 SOLVING LEAST SQUARES PROBLEMS

As we discussed above, it is natural to model the problem of “solving”
an overconstrained system Ax = b with more equations than variables
(therefore, in general, without solutions) as the problem of minimizing
the error |Ax − b|. Also, the resulting problem is equivalent to minimiz-
ing a quadratic function and therefore can be solved using the system
of normal equations (A�A)x0 = A�b.

This assertion, however, hides some difficulties with respect to the
computation of x0. It is very common, in this type of problem, that
although the matrix A�A is nonsingular, it is “almost” singular. As
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a result, the solution to normal equations using traditional methods
(e.g., Gaussian elimination) is unstable from the numerical point of
view (i.e., small perturbations in b might result in huge changes in
x0). One way to avoid this difficulty (or this problem) is to use spe-
cific methods for symmetric positive matrices, such as Cholesky’s
method (see Golub and Loan, 1983). Another alternative, which has
the advantage of contemplating also the case where ATA is singu-
lar, consists in using the technique of singular value decomposition.
The following theorem, whose proof may be found in Golub and
Loan (1983), can be interpreted as being an extension of the spectral
theorem.

Theorem 9 [singular value decomposition]. If A is a matrix of
order m × n (with m > n), then there exist orthogonal matrices U
and V of order, respectively, m × m and n × n, such that A = U

∑
V,

where

∑
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1 · · · 0
...

. . .
...

0 · · · σn

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and σ1 ≥ σ2 ≥ · · · ≥ σp > 0 = σp+1 = · · · = σn.

There are efficient methods to compute such a decomposition (see, for
instance, Press et al., 1988). This decomposition deals very well with
the fact that the columns of the matrix A might be “almost” linearly
dependent. This reflects in the magnitude of the factors σi. Thus, we
may fix a threshold T such that every σi < T is made equal to 0.

The explanation of why this decomposition solves the problem of
least squares resides in the fundamental fact that orthogonal trans-
formations preserve distance. In fact, minimizing |Ax − b| is equiva-
lent to minimizing |UAx − Ub|. Also, |y| = |Vy| for every y. Thus, by
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substituting x = Vy, the problem reduces to the one of obtaining y
having minimum norm such that |UAVy − Ub| = |∑y − c| is minimum
(where c = Ub). But because of the specific form of

∑
, this problem is

trivial. We must have yi =
ci
σi

, for i = 1, . . . , p and yi = 0, para i > p.
Once we have y, the desired solution is obtained by taking x = Vy.

5.3 ALGORITHMS

In the previous sections, we studied unconstrained optimization prob-
lems having quadratic objective function. For those problems, it is pos-
sible to apply the optimality conditions to obtain optimal solutions.
They are obtained by solving, in an appropriate form, a system of linear
equations. Moreover, quadratic problems have the outstanding quality
that the optimal local solutions are also global solutions. For generic
optimization problems, this does not occur: local extrema are not nec-
essarily global. Even the determination of local extrema is complicated
since the optimality conditions generate nonlinear equations, which
makes it difficult to find the critical points. To find these points, one has
to resort to iterative algorithms, almost always inspired in the behavior
of quadratic functions: the basic idea is that, close to a local minimum,
a function can be approximated, using Taylor’s formula, by a quadratic
function with the same point of minimum.

5.3.1 NEWTON’S METHOD

One of the better known methods to solve optimization problems is
Newton’s method. The fundamental idea of this method is to replace the
function f, to be minimized or maximized, with a quadratic approxi-
mation based on the first and second derivatives of f. More precisely,
let f : R

n → R be a function of class C2 and x0 a point sufficiently close
to the desired solution. Taylor’s formula of second order at x0 provides
a quadratic approximation to f :

f̃ (x0 + h) = f (x0) + ∇f (x0)h + h�∇2f (x0)h.
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The approximation f̃ has minimum for h= (∇2f (x0))−1∇f (x0)�
(provided that the Hessian matrix ∇2f (x0) is nonnegative).

This step h generates a new approximation x1 = x0 + h for the
optimal solution, which is the starting point for the next iteration.
Thus, Newton’s method generates a sequence defined recursively by

xk+1 = xk + (∇2f (xk))−1∇f (xk)�.

It is interesting to observe that the terms of the sequence depend only
on the derivatives of f and not on the values of the function f itself. In
fact, Newton’s method tries to find a stationary point of f, a point where
the gradient is null. We have seen that this is a necessary condition,
but it is not sufficient in order that f has a minimum at this point. If
the sequence (xk) converges (which is not guaranteed), it will converge
to a point where ∇f = 0. But this point is not necessarily a minimum
of f. What is possible to guarantee is that if the point x0 is chosen
sufficiently close to a minimum x∗ of f, then the sequence will converge
to x∗, provided that f be sufficiently well behaved in the neighborhood
of x∗. There are several criteria that define this good behavior. One such
criterion is given by the theorem below, whose proof may be found in
Luenberger (1984).

Theorem 10. Let f : R
n → R be a function of class C 2. Suppose that f

has a local minimum at x∗, and there exists a constant M and a neigh-
borhood of x∗ such that |∇2f (x)| > M in this neighborhood. Then, there
exists a neighborhood V of x∗ such that if x0 ∈ V, then the sequence
defined by xk+1 = xk + (∇2f (xk))−1∇f (xk)� converges to x∗. Moreover,
the rate of convergence is quadratic, i.e., there exists c such that |xk+1 −
x∗| < c|xk − x∗|2 for every k.

Newton’s method is eminently local and cannot be used as a general
minimization method, starting from an arbitrary initial solution. Its
use requires that other methods, such as the ones described below, be
used to obtain a first approximation of the desired solution. Once this
is done, Newton’s method is an excellent refinement method, with an
extremely fast convergence to a local extremum.
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5.3.2 UNIDIMENSIONAL SEARCH ALGORITHMS

The fundamental idea of these algorithms is that of, at each iteration,
reducing the n-dimensional problem of minimizing a function
f : R

n → R to a simpler 1D optimization problem. To do that, a promis-
ing search direction at the current solution is chosen, and the 1D
optimization problem obtained by restricting the domain of f to this
direction is solved.

As an example, a more robust form of Newton’s method can be
obtained if xk+1 is the point that minimizes f along the line containing
xk and has the direction (∇2f (xk))−1∇f (xk)� provided by the method.

Another natural choice for the search direction is the direction where
f has the greatest local descent rate, i.e., the direction along which the
directional derivative of f has the smallest negative value. It is easy to
prove that this direction is given by −∇f. Therefore, from a given point
xk, the next value is found by taking

xk+1 = min f (xk + αkd),

where d = −∇f (xk). This algorithm is known as the steepest descent
method.

Depending on the problem, obtaining the exact solution to the above
problem might not be practical. In fact, it is possible to prove the con-
vergence of the method to a stationary point of f, even if the search of
the next solution along d is inexact; it suffices for this that f be suffi-
ciently reduced at each iteration (see Luenberger, 1984).

The steepest descent method has both advantage and disadvantage.
The advantage is that under reasonable conditions, it has a guar-
anteed convergence to a point where ∇f (x∗) = 0. The disadvantage
is that this convergence may be very slow. This can be easily illus-
trated by observing its behavior for quadratic functions, represented
in Figure 5.8 for f (x, y) = x2 + 4y2. Evidently, the minimum of f
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Figure 5.8: Gradient descent.

is attained at (0, 0). Starting from an arbitrary point, the sequence
of solutions determines an infinite oscillation (in each step, the
search is done in the direction of the normal to the level curve
corresponding to the current solution, which never contains the
origin).

It is possible to show that for quadratic functions of the form f (x) =
b�x + x�Hx, with H positive, the sequence generated by the method
converges to the minimum point x∗ in such a way that

|xk+1 − x∗|
|xk − x∗| <

(A − a)2

(A + a)2
,

where a and A are, respectively, the smallest and the largest eigenvalues
of H. If the ratio A

a is large, then the gain in each iteration is small, and
this leads to a slow convergence process.
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5.3.3 CONJUGATE GRADIENT

The conjugate gradient algorithm also uses the idea, present in the
steepest descent algorithm, of doing searches along promising direc-
tions, but it tries to choose these directions in such a way that the
minimum point is reached after a finite number of steps (at least for
quadratic functions).

Again, we use the 2D case to illustrate these ideas. There exists a case
in which the steepest descent algorithm works in a finite number of
steps for a quadratic function: when the level curves are circles, the
normal to one of these curves at any point passes through the cen-
ter. Therefore, the algorithm converges in a single iteration. When
the level curves are ellipses, it is also possible to do the same, pro-
vided that the search direction be chosen not as a direction perpen-
dicular to the tangent to the level curve but as a direction conjugate
to it.

This can be understood in the following way. The level curves of a
quadratic function f (x) = x�(G�G)x (ellipses, in the general case) can
be obtained from the level curves of f (x) = x�x (which are circles)
by applying the linear transformation x → Gx. Conjugate directions
of the ellipse are the images, by G, of the orthogonal directions (see
Figure 5.9).

In general, if H is a positive matrix, two directions d1 and d2 are con-
jugate with respect to H when d�1 Hd2 = 0.

Given n mutually conjugate directions of R
n, the minimum of a

quadratic function f : R
n → R is computed by making n 1D searches,

each along one of these directions.

For nonquadratic objective functions, the algorithm uses the Hes-
sian matrix at x0 to generate a set of n mutually conjugate
directions. After searching along these directions, a better approxi-
mation to optimal solution is found, and a new set of directions is
found.
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d

d9

Figure 5.9: d and d ′ are conjugate directions.

The rate of convergence of the algorithm, under hyphothesis similar to
those of Theorem 10, is quadratic, but with a constant greater than
in Newton’s method. However, because it incorporates information
about the way the function decreases, the algorithm is more robust,
and it is not necessary to provide an initial solution too close to the
minimum point.

5.3.4 QUASI-NEWTON ALGORITHMS

The conjugate gradient algorithm, studied in the previous section, puts
together good qualities of both Newton’s method (rate of convergente)
and steepest descent (robustness). These features are also found in the
class of methods known as quasi-Newton methods.

These algorithms produce a sequence of solutions of the form

xk + 1 = xk − αkSk∇f (xk)�,
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where Sk is a symmetric matrix and αk is usually chosen in such a
way as to minimize f (xk+ 1). Both Newton’s method (for which Sk =
(∇2f (xk))−1) and steepest descent method (where Sk = I) are specific
cases of this general form.

An important aspect that is considered in the construction of these
algorithms is the fact that it may be impractical to compute the
Hessian matrix of f (e.g., in the cases where f is not known analyt-
ically). Thus, the methods of this family usually construct approx-
imations to the Hessian matrix based on the values of f and of ∇f
in the last elements of the iteration sequence (see Luenberger, 1984, for
details).

5.3.5 THE LEVENBERG–MARQUARDT ALGORITHM

A very common situation in applied mathematics in general and in
computer vision in particular is parameter estimation. In this kind of
problem, output data y depend on input data x through a function
g(θ, x), where θ is a vector of unknown parameters to be estimated
based on a sample of n pairs (xi, yi). Usually, the problem of finding
the optimal parameter vector is set as the problem of minimizing the

total squared error
∑n

i=1

∣∣g(θ, xi) − yi
∣∣2

.

In Section 5.2, we studied the special case where g is linear on θ, for
which an analytical solution is available. For the general case of a non-
linear g, one has to resort to an iterative algorithm. Although a general-
purpose optimization algorithm can be used, one can take advantage
of the special structure of the problem (minimizing a sum of squares).
The Levenberg–Marquardt (LM) algorithm is a variant of Newton’s
algorithm that exploits such structure.

The two main ideas behind the LM algorithm are

a) taking advantage of the special form of the objective function to
compute the gradient and an approximation to the Hessian of
the objective function



SECTION 5.3 ALGORITHMS 99

b) applying a strategy that finds a suitable combination of steepest
descent and Newton’s iteration.

The problem to be solved by the LM algorithm can be written as

min f (θ) =
1
2

n∑
i=1

ri(θ)2,

where ri(θ) is the i-th residual |g(θ, xi) − yi| (the 1
2 is just for conve-

nience in expressing derivatives).

The gradient G(θ) = ∇f (θ) and the Hessian H(θ) = ∇2f (θ) of the
objective function f can be expressed in terms of the residuals ri and

their Jacobian matrix J
(

with Jij(θ) = ∂ri

∂θj

)
as

G(θ) =
n∑

i=1

ri(θ)∇ri(x) = J(θ)Tr(θ)

H(θ) = J(θ)TJ(θ) +
n∑

i=1

ri(θ)∇2ri(θ).

A key assumption about the LM algorithm is that the residual function
is either small or near linear on θ (in such a way that ∇2ri(θ) is small).
In either case, it is reasonable to approximate the Hessian H as

H(θ) = J(θ)TJ(θ).

This assumption is reasonable when a good initial guess for θ is avail-
able. If this is not the case, the LM algorithm may perform badly com-
pared to general-purpose optimization algorithms.

As mentioned above, the other key idea of the LM algorithm is the use
of an adaptive update step, which provides a blend of Newton-type
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and steepest descent algorithms. The original update proposed by
Levenberg (1944) was

θk+ 1 = θk − (H(θk) + λI)−1G(θk), (5.1)

where λ is a parameter that changes appropriately during the execution
of the algorithm (as explained below). When λ is small, the update is
similar to a Newton update; when λ is large, the algorithm behaves as
a descent algorithm (with a step size that decreases with λ).

In the variant proposed by Marquardt (1963), the update is

θk+ 1 = θk − (H(θk) + λ diag(H(θk)))−1G(θk). (5.2)

Using the diagonal of H instead of the identity allows one to take
into account information about the curvature of H even when λ is
large.

In both versions, the scaling parameter λ changes dynamically, accord-
ing to whether a given update was successful or not at reducing the
value of the objective function. If it was successful, the value of λ is
decreased, moving closer to a (more efficient) Newton-type update.
Otherwise, the algorithm adopts a more conservative strategy, increas-
ing the value of λ, thus leaning toward a less efficient but safer descent
strategy.

The entire algorithm can be described as follows:

1. Obtain a starting solution θ0 (usually using some heuristic pro-
cedure); start with a moderate value of λ (for instance, λ = 1).

2. From a given solution θk, find θk+1 according to the update given
in 5.1 or 5.2.

3. If f (θk+1) < f (θk), accept the update and decrease λ by a factor
(10 is a common choice).

4. Otherwise, reject the update, increase λ by a factor (10, again, is
a common choice), and try again an update.



SECTION 5.4 CONSTRAINED OPTIMIZATION 101

Implementations of the LM algorithm are available at a number of
sources ( Press et al., 1988 and the GNU and MINPACK scientific
libraries).

5.4 CONSTRAINED OPTIMIZATION

In this section, we briefly discuss continuous optimization problems
with constraints defined by equations or inequalities. That is, problems
of the form

min f (x)
subject to hi(x) = 0, i = 1, . . . , m

gj(x) ≤ 0, j = 1, . . . , p,

where every function is smooth (typically of class C 2).

5.4.1 OPTIMALITY CONDITIONS

The central idea of the first-order necessary conditions in the uncon-
strained case is that a local minimum occurs at points where every
direction is stationary, i.e., those points where∇f (x) · d = 0 for every d,
which is equivalent to the condition∇f (x) = 0. In the proof, we argued
that if f were not stationary along some direction d, we could obtain
values smaller than f (x) by moving along d or −d.

When the problem has constraints, there may be nonstationary direc-
tions at a local minimum point. Consider, for instance, the case where
we wish to minimize f (x) subject to the single constraint h(x) = 0.
The feasible solutions to this problem are the points of a surface S of
R

n (Figure 5.10). A point x0 can be a local minimum of f restricted
to S without having ∇f (x0) = 0. In fact, the component of ∇f (x0) in
the direction normal to the plane is irrelevant to the optimality of x0
because, locally, x cannot move along this direction. Thus, we may have
optimality, provided that the projection of ∇f (x0) onto the tangent
plane to S at x0 is null (i.e., when we have ∇f (x0) = λ∇h(x0) for some
real number λ).
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x0

=f (x0)

=h(x0)

h(x0) 5 0

Figure 5.10: Equality constraint.

Suppose now that we have a single constraint of the form g(x) ≤ 0.
Again, it is possible to have optimality at x0 with ∇f (x0) �= 0. This can
occur only if g(x0) = 0, i.e., if x0 is a point of the boundary surface of
the region defined by g(x0) ≤ 0 (we say, in this case, that the inequality
constraint is active at x0). Moreover, ∇f (x0) must be of the form
λ∇g(x0). But now λ must be greater than or equal to zero. On
the contrary, it would be possible to find solutions whose values
are smaller than f (x0) by moving along the direction −∇g(x0) (see
Figure 5.11).

These ideas constitute the basis for the demonstration of the theorem
that follows, which provides first-order necessary conditions for the
general case of m equality constraints and p equality constraints. We
say that x0 is a regular point for these constraints when the vectors
∇fi(x0) (i = 1, . . . , n) and ∇gj(x0) (j such that gj(x0) = 0) are linearly
independent.
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x0

=f (x0)

=g(x0)

g(x0) # 0

Figure 5.11: Inequality constraint.

Theorem 11 [Kuhn-Tucker condition]. Let x0 be a relative mini-
mum point to the problem

min f (x)
subject to hi(x) = 0, i = 1, . . . , m

gj(x) ≤ 0, j = 1, . . . , p,

and suppose that x0 is a regular point for these constraints. Then, there
exists a vector λ ∈ R

m and a vector μ ∈ R
p, with μ ≥ 0, such that

∇f (x0) +
n∑

i=1

λi∇hi(x0) +
p∑

j=1

μj∇gj(x0) = 0

p∑
j=1

μjgj(x0) = 0.

The theorem above generalizes the classical theory of Lagrange multi-
pliers for the case where inequality constraints are present.
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Also, there are theorems that provide second-order necessary and
sufficient conditions to ensure that a given point x0 is a local mini-
mum. In the same way as in the unconstrained case, such conditions
refer to the nonnegativeness (or the positiveness) of a certain Hessian
matrix.

In the constrained case, those conditions apply to the Hessian of the
Lagrangian function, given by

L(x) = f (x) +
n∑

i=1

λihi(x) +
p∑

j=1

μjgj(x0)

at the point x0 (where the λi and the μj are the multipliers provided
by the conditions of first order), and the nonnegativeness (or posi-
tiveness) is imposed only for directions of the tangent space, at x0,
to the surface determined by the active constraints at this point (see
Luenberger, 1984, for details).

5.4.2 LEAST SQUARES WITH LINEAR CONSTRAINTS

We use the least squares problem with linear constraints to exemplify
the use of the above theorem. Let us consider the following problem:

min |Ax − b|
subject to Cx = D,

where A is m × n (with m > n) and C is p × n (with p < n).

In this problem, there exists a set of equations that must be satisfied
exactly and another set of equations that will be satisfied in the best
possible way.

Minimizing |Ax − b| is equivalent to minimizing |Ax − b|2, i.e., the
problem is equivalent to

min x�(A�A)x − 2b�Ax + b�b

subject to Cx = D.



SECTION 5.4 CONSTRAINED OPTIMIZATION 105

In order that x0 be a relative minimum point, it must satisfy the
first-order conditions. In this case, where there are only equality con-
straints, there must exist a vector λ = (λ1, λ2, . . . , λp)� such that

(A�A)x0 − A�b + C�λ = 0.

Since x0 must also satisfy the equality constraints, we obtain the
system (

A�A C�

C 0

)(
x

λ

)
=
(

A�b

d

)
.

It is possible to prove that, provided that the rows of C are linearly inde-
pendent, the above system always has at least one solution x0 obtained
by finding the closest point to b among the points of the linear manifold
{Ax|Cx = d}. As it happens in the unconstrained case, such solutions
are, in fact, global minima of the least squares problem.

In order to effectively solve the above system, it is advisable, again, to
use the singular value decomposition of A�A to avoid the numerical
instability that originates from the possible quasi-singularity of A�A.

5.4.3 ALGORITHMS

There is a variety of algorithms for continuous optimization problems
with constraints. Some of these algorithms are general, and they are
capable of dealing with any combination of constraints by equalities
or inequalities. Others try to exploit the nature of the constraints—
equality or inequality—and properties of the functions that define
them (and those of the objective function).

In what follows, we describe two classes of algorithms for optimization
with constraints. As we will see, these algorithms exploit the following
ideas:

• reduce the constrained problem to a problem without constraints
(or a sequence of problems of this kind) in such a way as to allow
the use of the algorithms previously described.
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• adapt an algorithm for unconstrained optimization to take
constraints under consideration.

Penalty and Barrier Methods

Methods in this class exploit the first idea above by modifying the
objective function in such a way as to take constraints into account.

Penalty methods are more general than barrier methods and work with
both equality and inequality constraints. Moreover, they do not require
(in contrast to other methods), as we know, a feasible initial solution. In
fact, penalty methods constitute a good method to find such a feasible
initial solution.

The basic idea of the method consists in, for each constraint, intro-
ducing in the objective function a penalty term that discourages the
violation of this constraint. For a constraint of the form h(x) = 0, we
introduce a penalty of the form ch(x)2, and for a constraint of the form
g(x) ≤ 0, a penalty of the form c max{0, g(x)2} is appropriate. In this
way, for the constrained problem

min f (x)
subject to hi(x) = 0, i = 1, . . . , m

gj(x) ≤ 0, j = 1, . . . , p,
(5.3)

we obtain an unconstrained problem of the form

min qc(x) = f (x) + c

⎛
⎝ m∑

i=1

h(x)2 +
p∑

j=1

max(0, g(x)2)

⎞
⎠.

The simple introduction of penalties in the objective function does not
guarantee that the resulting problem has an optimal solution satisfy-
ing the constraints. The strategy of the penalty method is to solve a
sequence of problems as the one above, with c taking the values of an
increasing sequence (ck) such that ck → ∞.
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The following theorem guarantees that this strategy works.

Theorem 12. Let (ck) be an increasing sequence such that ck → ∞. For
each k, let xk = arg min qck (x). Then, every adherence point of 1 (xk) is a
solution to 5.3.

Barrier methods are quite similar to penalty methods. The difference
is that they operate in the interior of the solution set. For this reason,
they are typically used for problems with inequality constraints.

The idea is to add for each inequality g(x) ≤ 0 a term in the objec-
tive function that avoids the solutions to get too close to the surface
g(x) = 0. The introduction of this term, which can be, for instance, of
the form − c

g(x) , works as a barrier that avoids this approximation. The

resulting problem is given by

min qc(x) = f (x) − c

p∑
j=1

1
g(x)

subject to gj(x) ≤ 0, j = 1, . . . , m.

In spite of the fact that the constraints are still present in the formula-
tion of the problem, they may be ignored if the optimization method
used does searches starting from a solution that belongs to the interior
of the solution set S : the barrier introduced in the objective function
automatically ensures that the solutions stay in the interior of S.

Again, it is not enough to solve the above problem; it is necessary to
consider a sequence (ck) of values of c. Here, however, we must take this
sequence in such a way that it is decreasing and has limit 0 (this is equiv-
alent to removing, progressively, the barriers in such a way as to include
all of the set S). As in the case of penalty methods, the sequence of solu-
tions (xk) generated in the process has the property that its adherence
points are solutions to the original problem.

1 An adherence point of a sequence is the limit of any of its subsequences.
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Penalty methods and barrier methods have the virtue of being very
general methods and relatively simple to be implemented because
they use optimization methods without constraints. Nevertheless, their
convergence is typically slow.

Projected Gradient Methods

Here, we consider only problems with equality constraints:

min f (x)
subject to hi(x) = 0, i = 1, . . . , m.

(x ∈ R
n)

(5.4)

In principle, the solution set S is a manifold of dimension n − m, and
ideally, the above problem could be reduced to an unconstrained prob-
lem of the same dimension.

One of the few cases where this can be done in practice is when the
constraints are linear. In fact, if the constraints are of the form Cx = d
(where C is a matrix m × n of rank m), S is a linear manifold of dimen-
sion n, and it can be expressed in the form

S = {Py + q|y ∈ R
n−m}.

We obtain, therefore, the equivalent unconstrained problem of mini-
mizing g(y) = f (Py + q). The derivative of the new objective function
may, naturally, be obtained from that of f by using the chain rule.

The above ideas are useful even when the constraints are not linear. Let
x0 be a feasible solution to 5.4, and consider the plane H, tangent to S
at x0, which can be defined by

H = {Py + x0|y ∈ R
n−m},

where the columns of P constitute a basis for the orthogonal comple-
ment of the subspace generated by ((∇h1(x0))�, . . . (∇hm(x0))�).
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x'

=h(x0) =f (x0)

h(x0) 5 0

x0

x1

Figure 5.12: Projected gradient algorithm.

The plane H can be interpreted as an approximation to S. Moreover,
the problem of minimizing f on H can be reduced to an unconstrained
problem, as seen above. The steepest descent algorithm, applied to this
problem, performs a search along the direction given by the projec-
tion, onto H, of the gradient vector in x0. The new solution x ′, thus,
obtained does not satisfy, in general, the constraints hi(x) = 0 but is
near the manifold S. From x′ a new feasible solution x1 can be com-
puted (e.g., using a 1D search in the direction normal to S, as illustrated
in Figure 5.12). The process is then iterated, resulting in the projected
gradient algorithm, which has convergence properties similar to those
of the steepest descent for the unconstrained case.

Other unconstrained optimization algorithms (e.g., the conjugate
gradient method) can be similarly adapted to operate on the tangent
space.

5.5 LINEAR PROGRAMMING

Now we study a class of optimization problems called linear pro-
grams, which have, simultaneously, characteristics of continuous and
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combinatorial optimizations. A linear program is a problem of the
form

min
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, . . .m.

That is, linear programs ask for minimizing a linear function subject
to linear inequalities. In fact, the constraints can be constituted by any
combination of linear equalities and inequalites: it is always possible to
convert such a problem into another equivalent one of the above form.
As an example, an equation of the form

n∑
j=1

ajxj = b

can be replaced with the pair of inequalities

n∑
j=1

ajxj ≤ b;

n∑
j=1

ajxj ≥ b.

Linear programs are clearly continuous optimization programs with
inequality constraints and can be solved by iterative algorithms such
as those described in Section 5.4. In fact, algorithms of this form,
specially formulated for linear programs, produce some of the most
efficient methods to solve them, the so-called interior point methods.

Nevertheless, the first successful approach to linear programs—
making it possible to solve problems having hundreds of thousands
of variables—was combinatorial in nature. This work was done,
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in the ’50s, by Dantzig, who introduced perhaps the most famous
optimization algorithm—the simplex method.

In order to use the simplex method, it is more interesting to write a
linear program in the canonical form:

max
∑

cjxj

subject to
∑

aijxj = bi, i = 1, . . . , m

xj ≥ 0

or, using matrix notation,

max cx

subject to Ax = b

x ≥ 0,

where A is an m × n matrix.

In general, we suppose that the rank of A is equal to m (i.e., the rows of A
are linearly independent). In this case, {x|Ax = b} is a linear manifold
(i.e., the translated vector subspace) of dimension n − m.

The fact that linear programs have an important combinatorial struc-
ture follows from the fact that the solution set S = {x|Ax = b, x ≥ 0}
is a convex polyhedra and that all relevant information for the opti-
mization of a linear function is concentrated on the vertices of the
polyhedra.

We say that x is a vertex of S when x is not an interior point of any line
segment with extremes in S. That is, x = λx1 + (1 − λ)x2 implies that
x = x1 = x2, for x1, x2 ∈ S, and 0 < λ < 1.

The importance of vertices in the solution to linear programs is given
by the following theorem.

Theorem 13. If a linear program has an optimal solution, then it has
a vertex that is an optimal solution (see Figure 5.13).
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P

c

Figure 5.13: Optimal solutions to linear programs.

The geometric notion of vertex has an algebraic equivalent. We say that
x is a basic solution to S = {x|Ax = b}, when

1. Ax = b
2. the columns j of A such that xj > 0 are linearly independent (they

may, therefore, the set of such columns can be extended to a basis
of the space generated by the columns of A).

Theorem 14. x is a vertex if and only if x is a feasible basic solution.

A consequence of the above theorems is that in order to solve a linear
program, it suffices to examine each subset of m columns of A. We have,
therefore, an naive algorithm to solve a linear program, which consists
of the following steps:

1. Select m columns of A and verify if they constitute a basis.
2. Compute the solution corresponding to the previous step by

attributing the value 0 to the other variables.
3. Verify if the solution obtained is feasible.
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This sequence of steps must be repeated for every possible basis, and,
among them, the one that produces the greatest value is the optimal
solution. Note that there are

( n
m

)
possible bases, i.e., approximately nm

alternatives to be compared.

Thus, this algorithm, although finite, is clearly inefficient, and it is
not useful to solve real problems of linear programming. In what fol-
lows, we describe the simplex method, which also restricts attention
to the basic points. However, it uses the adjacency structure of the
polyhedra vertices, producing a very efficient algorithm for practical
problems.

5.5.1 SIMPLEX ALGORITHM FOR LINEAR
PROGRAMS

The simplex algorithm generates a sequence of vertices of the solu-
tion set S = {x|Ax = b}, always decreasing the value of f (x) = cx, until
it finds the minimum value or obtains a proof the the problem is
unbounded.

The algorithm consists in executing, repeatedly, the following steps:

1. Verify if the current basic solution x is optimal. (For this, we
just have to verify if f (x) ≥ f (x) for all of the vertices adjacent
to x. If this occurs, x is optimal. If not, we execute the following
step.)

2. Move along an edge on which the objective function decreases
until it hits a new vertex. (If no vertex is found when moving
over an edge where f is decreasing, the problem is unbounded.)

As we have already seen, each basic solution is associated with a set
of linearly independent columns of A. The variables corresponding to
these columns are called basic variables for the solution.

The simplex method maintains an algebraic representation of the sys-
tem Ax = b, where the nonbasic variables are expressed in terms of
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basic variables. With this representation, it is simple to execute, at each
step, the optimality test and the passage to an adjacent vertex. Once
this is done, it is necessary to update the system representation in such a
way that the nonbasic variables are again expressed in terms of the basic
variables. This updating, called pivoting, is executed using elementary
operations on the equations of the system Ax = b (see Chvatal, 1983,
for details).

The simplex algorithm needs an initial feasible basic solution, which
is not always obvious. However, it is interesting to remark that such
a solution may be found by solving another linear program (using
again the simplex method) for which a feasible basic solution is imme-
diately available. For example, to obtain a feasible basic solution to
S = {x|Ax = b}, we may solve the problem below, in which we intro-
duce artificial variables xa:

min 1 · xa (i.e.,
∑

xai)

Ax + Ixa = b

x, xa ≥ 0.

This second problem has an obvious feasible basic solution given by
x = 0 and xa =(1, 1, . . . , 1). Moreover, it always has an optimal solu-
tion because 0 is a lower bound of the objective function. If the value
of this optimal solution is 0, all the artificial variables xa have value 0
and therefore the nonartificial variables provide a feasible solution to
the original problem. Otherwise, the original problem does not have
feasible solutions.

5.5.2 THE COMPLEXITY OF THE SIMPLEX METHOD

In the worst case, the simplex method may demand an exponential
number of iterations to solve a linear program. In practice, however,
the number of iterations is linear in m. However, the algebraic effort
in each step has complexity O(mn), which makes the method prac-
tical even for problems with a huge number of variables (large-scale
problems).
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The searching for guaranteed polynomial algorithms for linear
programs was, during some decades, one of the most important open
problems in optimization. The question was answered in a satisfac-
tory way in the late ’70s, when Khachian (1979) proved that the
so-called ellipsoid algorithm, initially developed to solve nonlinear
problems, could be used to solve linear programs in polynomial
time. Subsequently, other algorithms were discovered that gave the
same result. The most famous among them is Karmarkar’s algorithm
(Karmarkar, 1984). These algorithms instead of moving along the
boundary of the solution set polyhedra S = {x|Ax = b} produce a
sequence of points in the interior of S that converge to an optimal
solution.

The linear programs of greatest interest for computer graphics are, in
general, of dimension 2 or 3. It is interesting to observe that such prob-
lems may be solved in linear time (Meggido, 1984). In fact, there exist
linear algorithms to solve linear programs with any number of variables,
provided that this number is assumed constant. However, such algo-
rithms are practical only for low dimensions (and even in these cases,
in practice the simplex method presents a comparable performance).

5.6 APPLICATIONS IN GRAPHICS

In this section, we discuss problems in computer graphics, which can
be posed as continuous optimization problems. The list of problems
we cover is

• camera calibration
• registration of an image sequence
• color correction of an image sequence
• real-time walk-through.

5.6.1 CAMERA CALIBRATION

Problems involving the estimation of parameters are naturally posed
as a continuous optimization problems, where the objective is to
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determine the set of parameters that minimize the adjustment error.
One important example in computer graphics is the problem of cal-
ibrating a camera, i.e., estimating the intrinsic (characteristics of its
optical system) and extrinsic (position and orientation) parameters.

The simplest camera model is the one that has no optical system (no
lens): it corresponds to the rudimentary model of the pinhole cam-
era where light enters through a small hole in a box, projecting itself
onto a plane, as illustrated in Figure 5.14. The image produced is
simply a perspective projection of the 3D scene. This simple camera
model is the basic model used in computer graphics to define the vir-
tual camera for producing synthetic images. For this reason, applica-
tions that involve capture and synthesis of images commonly use this
model.

The distance between the optical center of the camera and the
plane of projection is called the focal distance and is denoted by
f. This camera model has no other intrinsic parameter other than
the focal distance, and its perspective projection is characterized by
this parameter and a set of extrinsic parameters. In order to iden-
tify these parameters, it is convenient to consider three reference
systems (Figure 5.15): a system Oxyz of world coordinates, used to
reference the position of points in space; a system C ′x ′y ′z ′ of camera

Figure 5.14: The pinhole camera.
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Figure 5.15: Camera coordinate systems.

coordinates, with origin at the optical center and axes aligned with
the camera principal directions (i.e., the directions of the image
boundary and the normal to the image plane); and a system of
2D coordinates, called image coordinate system Cuv, obtained by
projecting the camera reference system on the plane of the virtual
screen.

The camera extrinsic parameters may then be expressed using the the
rotation matrix R and the translation t that expresses the coordinate
transformation between the world coordinate system and the camera
coordinate system. It is important to observe that although the matrix
R has nine elements, it has only 3 degrees of freedom because it is an
orthogonal matrix.

Thus, for a given camera with parameters f, t, and R, the function that
provides the image m = (u, v) of a point M = (x, y, z) of space can be
computed in two steps.
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• In the camera reference system, the coordinates of M are given by⎛
⎝x ′

y ′

z ′

⎞
⎠ = R

⎛
⎝x

y

z

⎞
⎠ + t.

• In the camera reference system, the image of a point (x ′, y ′, z ′) is
given by

u =
fx ′

z ′ , v =
fy ′

z ′ .

Composing the two transformations, we obtain the following equa-
tion: ⎛

⎝u

v

w

⎞
⎠ =

⎛
⎝ r1 tx

r2 ty

fr3 ftz

⎞
⎠
⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠,

which provides, in homogeneous coordinates, the image (u, v, w) of a
point (x, y, z, 1) of the space by a camera with parameters f, t, and R.
In the above equation, r1, r2, and r3 are the vectors that constitute the
rows of the rotation matrix R. These equations are used, for example, to
generate the projection and a synthetic image of a 3D scene.

Suppose now that we are given the image of a scene and that we need
to add to this image some additional synthetic elements. For this, it
is necessary to generate a synthetic camera with the same parameter
values of the camera that captured the scene. If these parameters are
not known, they must be estimated based on information from the
image.

Suppose that there exist n points in the image whose spatial coordi-
natesmi = (xi, yi, zi) (i = 1, . . . , n) areknown.Byassociating thesecoor-
dinates with the corresponding coordinates (ui, vi) on the image, we
obtain 2n equations whose variables are the camera parameters. There-
fore, the computation of the parameters consists in solving this system
of equations.
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However, in general, it is not possible (neither desired) to solve this
system exactly. Typically, we use a large number of points in order to
calibrate the camera because using a small number of samples leads, in
general, to considerable estimation errors. Thus, the system of equa-
tions generated by associating points in space with corresponding
points in the image has more equations than variables and, in gen-
eral, does not have a solution. That is, for any set of parameters, there
will be discrepancies between the observed image (ui, vi) of a point
(xi, yi, zi) and the image (ũi, ṽi) obtained with these parameters. The
set of parameters to be adopted must then be chosen in such a way that
these discrepancies are as small as possible. It is very common to use
the quadratic error as a measure of the discrepancy

n∑
i=1

(ui − ũi)2 + (vi − ṽi)2.

Thus, the camera calibration problem can be posed as

min
t, f, R

n∑
i=1

(ui − ũi)2 + (vi − ṽi)2,

where R must be an orthogonal matrix, i.e., it must satisfy the equations
given by RR� = I. In order that the problem can be treated as uncon-
strained, it is necessary to express R in terms of only three parameters
(e.g., using Euler angles or unit quaternions (Watt, 2000)).

The LM algorithm, described in Section 5.3.5, is commonly used to
solve this optimization problem. However, it requires a good starting
solution, and specific iterative methods have been devised for this pur-
pose. The most popular is Tsai’s algorithm (Tsai, 1987), which also
considers the presence of radial deformations caused by an optical
system.

In some applications, it might not be necessary to recover the
camera parameters. It is sufficient to find a matrix Q such that(

u v w
)�

= Q
(

x y z 1
)�

. This occurs, for example, when we only need
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to associate other points of the space with its projections, without
building a synthetic camera. The problem turns out to be the one of
finding

Q =

⎛
⎝q1 q14

q2 q24

q3 q34

⎞
⎠

in such a way to minimize
∑n

i=1(ui − ũi)2 + (vi − ṽi)2, where

ũi =
q1mi + q14

q3mi + q34
and ṽi =

q2mi + q24

q3mi + q34
.

This problem is still nonlinear, but an acceptable solution can be
obtained by solving the least squares problem obtained by multiply-
ing each term of the above sum by the square of the common denom-
inator of ũi and ṽi. In this way, we can reduce it to the problem of
minimizing

n∑
i=1

(q1mi + q14 − ui(q3mi + q34))2 + (q2mi + q24 − vi(q3mi + q34))2.

It is still necessary to add a normalization constant because the
above expression is obviously minimized when Q = 0. We may adopt,
for instance, |q3| = 1, which leads us to an eigenvector problem,
as the one discussed by Faugeras (1993) or q3m = 1, where m =
1
n

∑n
i=1 mi (which can be solved using the techniques discussed in

Section 5.2).

The matrix Q obtained by the above process does not correspond, in
general, to a camera. Nevertheless, it can be used as a starting point to
obtain a camera if this is necessary for the application (see Carvalho
et al., 1987).
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5.6.2 REGISTRATION AND COLOR CORRECTION
FOR A SEQUENCE OF IMAGES

An area of computer graphics that has received a great attention
recently is image-based rendering. The basic idea of this area is to
reconstruct a 3D scene model from a finite number of images of the
scene.

Several of these applications make this visualization from a single
panoramic image of the scene, i.e., from an image taken using an angle
of 360◦ around a viewpoint as shown in Figure 5.16. An example of an
application that uses visualization based on panoramic images is the
Visorama, which uses a special device to simulate an observer who
observes the scene using a binocular (see Matos et al., 1997).

Although there are special photographic cameras capable of capturing
panoramic images, it is possible to construct such images by matching
a set of conventional photographs taken from the same viewpoint and
covering an angle of 360◦ of the scene. In order to enable the correct
registration in the matching process, consecutive photographs must
have an overlapping area, as illustrated in Figure 5.17.

The construction of the panoramic image requires the solution
to two problems, and both can be tackled using optimization
techniques.

Figure 5.16: A panoramic image.
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Matching pointsA B

Figure 5.17: Image sequence with overlapping.

The first of these problems is geometric registration. This problem has
elements that are common to the camera calibration problem studied
in Section 5.6.1. In order to construct the panoramic image, it is neces-
sary to recover the camera transformations associated with each photo-
graph. This can be done, for instance, by identifying common points in
the overlapping areas of the photos (as indicated in Figure 5.17), allow-
ing us to relate each photo to its neighbors. By taking into consideration
that the position of the camera is the same for both photographs, points
in them are related by a transformation of the form⎛

⎝x ′

y ′

w ′

⎞
⎠=
⎛
⎝1 0 0

0 1 0
0 0 1/f2

⎞
⎠R

⎛
⎝1 0 0

0 1 0
0 0 f1

⎞
⎠
⎛
⎝x

y

w

⎞
⎠, (5.5)

where f1 and f2 are the focal distances of the cameras and R is the
rotation matrix that expresses the position of the second camera with
respect to the first one. These values must be computed in such a way
as to minimize the error in the above transformation.



SECTION 5.6 APPLICATIONS IN GRAPHICS 123

Thus, it is possible from the first photo to recover successively the focal
distance and the orientation (relative to the first camera) of the cameras
used in the other photos of the sequence. However, better results
are obtained by doing, afterward, a joint calibration of all cameras
(this process is called bundle adjustment). After getting the cameras,
the panoramic image can be constructed by applying the appropriate
transformation to each photo.

There also exist methods capable of executing the registration process
automatically, without being necessary to identify manually the corres-
ponding points in the superposition regions. Such methods operate
directly with the images and try to find the camera parameters that
maximize the similarity among them (see Szeliski and Shum, 1997, and
McMillan and Bishop, 1995).

The second problem related to “stitching” the photographs to produce
the panoramic image is the color compatibility between the photos.
Although the photos are obtained by the same camera, from the same
point, and almost at the same time, several factors contribute to the
generation of color differences among the corresponding objects of the
image sequence. In Figure 5.17, for instance, we observe that the over-
lapping region of image A is darker than the corresponding region in
the image B.

The solution to this problem is described by Pham and Pringle (1995)
and consists in finding a transformation that corrects the colors in
image A to make them compatible with those in image B. To compute
such a transformation, we use the colors present in the superpositon
area of A and B. We find an association between the levels (r, g, b) in
the two images of the form

rB = pr(rA, gA, bA)
gB = pg(rA, gA, bA)
bB = pb(rA, gA, bA),

where pr, pg, and pb are polynomials.
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As an example, we use second-degree polynomials of the form

p(rA, gA, bA) = c000 + c100rA + c010gA + c001bA + c200r 2
A + c020g 2

A

+ c002b2
A + c110rAgA + c101rAbA + c011gAbA,

although Pham and Pringle (1995) report better results using third-
degree polynomials. The coefficients of each of the polynomials pr, pg,
and pb are then computed in such a way as to minimize the quadratic
error resulting from the adjustment. That is, we solve a problem of the
form min|Xβ − Y|, where

• β is a 10 × 3 matrix containing the parameters to be determined
(a column for each polynomial)

• Y is an n × 3 matrix where each row contains a color (rB, gB, bB)
of the image B

• X is an n × 10 matrix where each row is of the form(
1 rA gA bA r 2

A g 2
A b 2

A rAgA rAbA gAbA

)
and corresponds to a color of B.

This problem can be solved using the methods discussed in Section 5.2.

5.6.3 VISIBILITY FOR REAL-TIME WALK-THROUGH

Virtual environment real-time walk-through demands the use of pro-
cedures that guarantee that the amount of data sent to the visualization
pipeline be limited in order to maintain an adequate visualization rate
(or frame rate).

We describe here a technique suitable for walk-through in building
environments. Although the modeling of large-scale building environ-
ments demands a huge number of objects, typically only a small num-
ber can be visible simultaneously because most of them are hidden by
obstacles (such as the walls of the building). The strategies described
below can be used to accelerate the visualization of such structures.
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The first consists in organizing the polygons that compose the scene
in a hierarchical structure called binary space partition tree, or BSP
tree The use of this structure allows that the polygons located behind
the observer be eliminated in the visualization process. Moreover, this
structure provides a depth ordering for the other polygons, which
allows us to avoid the use of the z-buffer or other strategies for remov-
ing hidden faces (see Fuchs et al., 1980). Figure 5.18 illustrates this idea.
The plane is initially divided into two half-planes by the line r1; each
of these two half-planes is in turn divided into two regions by lines r2
and r3, and so on. In the end of the process, we have a tree of subdi-
visions where each leaf corresponds to one of the 16 regions (or cells)
delimited in the figure.

The use of the BSP tree structure allows us to reduce the number of
objects for visualization. If the observer is in cell 1, looking in the
indicated direction, the use of the BSP tree structure guarantees that
only the marked walls need to be sent to the visualization pipeline.

In the case of huge environments, this is not sufficient. As an example,
if the observer is in cell 5, looking in the indicated direction, only the
walls to the left would be excluded in the visualization using the BSP
tree analysis, although other walls are also invisible from any observer’s
position in this cell.

To cope with this situation, Teller and Sequin (1991) proposes the
adoption of an additional structure capable of storing visibility infor-
mation, relative to the different cells determined by the BSP tree. This
additional information is stored in a cell–cell visibility graph. In this
graph, there exists an edge connecting two cells when one of them is vis-
ible from the other. That is, when there exist points interior to these two
cells such that the segment that connects them does not cross any wall.
From this graph, the polygons corresponding to one cell are rendered
only if this cell is visible from the cell where the observer is located.

The problem of deciding if two cells are visible from each other can
be formulated as a linear programming problem. Let us analyze, as an
example, the situation in Figure 5.18. Cell 5 is connected through the
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Figure 5.18: Visualization of building enviroments.

door PQ to cell 2, which is connected to cell 3 through the door RS,
which, in turn, is connected to cell 4 through the door TU. Cells 4 and
5 are visible from each other when there exists a line, of equation y =
ax + b, separating points P and Q, points R and S, and points T and U.
That is, there must exist real numbers a and b such that the following
inequalities are satisfied: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yP ≥ axP + b
yQ ≤ axQ + b
yS ≥ axS + b
yR ≤ axR + b
yT ≥ axT + b
yU ≤ axU + b

.
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The problem of verifying if a set of linear inequalities has a solution can
be solved using a linear program, as studied in Section 5.5.

To construct the visibility graph, it is not necessary to test all the pairs
of cells. We can use a propagation strategy. That is, first we identify vis-
ible cells that are adjacent, followed by the pairs of cells that are visible
through a single cell, and so forth.

For huge scenes, the use of this strategy allows us to reduce significantly
the visualization time. Teller and Sequin (1991) report reductions of up
to 94% in the number of polygons to be visualized.

5.7 COMMENTS AND REFERENCES

A very intuitive introduction to the conjugate gradient method is the
technical report by Shewchuk (1994). A tutorial on least square meth-
ods with applications to computer graphics is given in the SIGGRAPH
course notes by Pighin and Lewis (2007).

Continuous optimization is an essential ingredient in computer vision,
especially for procedures that involve parameter estimation, such as
camera calibration or bundle adjustment (i.e., the simultaneous
calibration of several cameras that observe the same scene). The
book by Hartley and Zisserman (2004) describes several of such
applications.

In computer graphics, the use of continuous optimization is more
recent. One of the earliest trendsetting papers to propose the use of
optimization techniques is that of Gleicher and Witkin (1992), where
the authors use constrained optimization to control the movement of
a camera.

The area of computer animation makes heavy use of continuous opti-
mization techniques. The main problems fall into two broad categories:
1) the estimation of time-varying parameters that minimize some
energy functional and 2) the computation of optimal motions that are
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subject to constraints. The first problem is the case of unconstrained
continuous optimization and can be either linear or nonlinear. The sec-
ond problem is the case of a continuous optimization with restrictions.

A classical paper related to optimization with restrictions is “Spacetime
Constraints,” where the problem is formulated as the simulation of a
physically valid motion that interpolate key camera poses specified by
the animator (Witkin and Kass, 1988).

Another important problem, that concerns character animation is
called rigging. This technique allows the control of a character through
a set of handles. Usually, these handles are part of the character skele-
ton. Rigging is associated with the skinning and enveloping techniques.
Basically, all these techniques build an association between motion
control handles and the geometry of a character. In this way, the shape
of the character can be animated and deformed through the influence
of the handles. The problem is that constructing a good set of han-
dles is a nontrivial task. Moreover, once these handles are defined, their
action on the geometry of the character is also nontrivial. Both aspects
of this problem can be solved using continuous optimization meth-
ods. Some recent papers in the area are those of Baran and Popovic
(2007), Wang et al. (2007), Shi et al. (2007), Igarashi et al. (2005),
Sumner et al. (2007), and Au et al. (2007).
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6 COMBINATORIAL
OPTIMIZATION

In this chapter, we study optimization problems in the discrete domain
where the elements are defined by combinatorial relations. As we will
see, besides the problems that are intrinsically discrete, several contin-
uous problems can be discretized and solved in an efficient way using
the methods studied here.

6.1 INTRODUCTION

As described in the overview of optimization problems, Chapter 2, in
combinatorial optimization, the solution set S is finite. Therefore, we
have two possibilities to specify S. The first is a direct specification, using
a simple enumeration of its elements. The second consists of an indirect
specification, using relations that exploit the problem structure.

The first option, enumerating all the elements of S, besides being clearly
uninteresting, may be impractical when the solution set has many

133
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elements. Therefore, we are interested in optimization problems where
the set S is finite and can be characterized by the use of combin-
atorial relations based on structural properties of the solution set S.
This allows us to obtain a compact description and devise efficient
strategies to compute the solution.

6.1.1 SOLUTION METHODS IN COMBINATORIAL
OPTIMIZATION

There are two classes of methods to solve a combinatorial optimiza-
tion problem: specific methods and general methods. We are interested
here in the general methods because of their wide range of appli-
cability. Among the general methods, we can establish the following
classification:

• Exact methods:
– Dynamic programming
– Integer programming

• Approximated methods:
– Graph cuts
– Heuristic algorithms
– Probabilistic algorithms.

For exact methods, in general, it is possible to exploit the combinato-
rial structure to obtain exact solutions using one of the strategies listed
above. Such methods often result in algorithms of polynomial com-
plexity that guarantee the computation of the global minimum for the
problem.

Nevertheless, there are certain types of problems for which no effi-
cient algorithm to compute an exact solution is known. In principle,
the only option to find the global minimum would be the exhaus-
tive investigation of all the possibilities, which, as mentioned above,
is not feasible in practice. When faced with this difficulty, we can
use approximate methods that provide a good solution but cannot
guarantee that the solution is optimal. In many situations, this result
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is acceptable. Among the approximate methods, there is a class called
strong approximate methods. Such methods provide a local solution that
is guaranteed to stay close to the global optimal solution, within some
bounds.

In this chapter, we study exact methods for combinatorial optimiza-
tion; in particular, we cover the methods of dynamic and integer pro-
gramming. We also study graph cuts, which belongs to the class of
strong approximate methods. In Chapter 7, we study generic approxi-
mate methods to solve both discrete and continuous problems.

We present now a concrete example of a combinatorial problem.

Example 20. Consider Figure 6.1 that represents a network with pos-
sible paths connecting the point A to the point B. In this network, as
indicated in the figure, each arc is associated with the cost of traversing
the path from the initial point to the final point of the arc.

The combinatorial optimization problem, in this example, consists in
finding the minimal cost path starting from A and arriving at B.

Two relevant questions to consider are the following:

• What is the size of the problem description?
• What is the size of the solution set S?

We answer the first question using the fact that a network with
(n + 1) × (n + 1) points has 2n(n + 1) arcs. Since the network struc-
ture is fixed for this class of problems, we only need to specify the costs
associated with each arc. That is, the size of the description has an
order n2, which is denoted by O(n2).

To answer the second question, we observe that in order to go from A
to B, it is necessary to traverse, from left to right, 2n arcs. In the trajec-
tory, at each node, we have two options: move upward or downward.
Moreover, from the network structure, the valid paths must have the
same number of upward and downward motion (which is n). That is,
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Figure 6.1: Network of connections between A and B.

the paths have 2n arcs, with n arcs moving upward and n moving down-

ward, which results in
(

2n
n

)
possible solutions. Clearly, the size of the

solution set S is much larger than n2.

The previous analysis shows that the size of the combinatorial descrip-
tion of the problem is much smaller than the size of the solution set.

6.1.2 COMPUTATIONAL COMPLEXITY

The computational complexity of an algorithm can be defined as the
number of operations necessary to solve a problem whose description
has size n. This number is provided as a function of n.

Consider two functions f : N → R and g : N → R. We say that f is O(g),
when there exist numbers K > 0 and N ∈ N such that f (n) ≤ Kg (n),
for every n ≥ N.

The function f = 3n3 + 2n2 + 27, for example, is O (n3).
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An important class is the so-called polynomial algorithms, which have
complexity O(np), for p fixed.

We are interested in solving efficiently the optimization problem. That
is, we need to find algorithms for which the number of operations is
comparable to the combinatorial size of the problem. More specifically,
we must try to find algorithms of polynomial complexity with respect
to the size of the input data.

6.2 DESCRIPTION OF COMBINATORIAL
PROBLEMS

One of the most important features of combinatorial optimization
methods is format description of the problem data. As we have men-
tioned previously, the adequate structuring of the data will allow us to
obtain an efficient solution to the problem.

Graphs are the appropriate mathematical objects to describe the
relations among the data of a combinatorial problem. The network
structure used in Example 20 is a specific case of a graph. The combi-
natorial optimization methods for the different classes of problems will
use graphs of different types and exploit their properties in the search
for an efficient solution to the problem. For this reason, we provide, in
next section, a brief review of the main concepts of graph theory.

6.2.1 GRAPHS

A graph is a pair G = (V, A), where V = {v1, . . . , vn} is the set of vertices
and A = {vi, vj}, vi, vj ∈ V is a set of nonordered pairs of vertices, called
edges of the graph. When two vertices are connected by an edge, they
are called adjacent vertices.

It is possible to represent a graph geometrically by representing each
vertex vj ∈ V as a point in some Euclidean space and each edge {vi, vj}
by a continuous path of the space connecting the vertices vi and vj.
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Figure 6.2: Graph.

Figure 6.2 shows a graph with four arcs and four vertices.

A graph is said to be oriented when the pairs of vertices are ordered
pairs. In this case, the edges are called arcs of the graph.

Figure 6.3 shows an oriented graph with five arcs and four vertices.

Now we describe some structures used to represent a graph.

6.2.2 ADJACENCY MATRIX

A graph can be represented by a matrix that describes the adjacencies
between the vertices of the graph. That is, for each vertex vj, it provides
the other vertices that are connected to vj by an edge. Note that we have
to establish an ordering for the graph vertices in order to associate them
with the indices of the matrix.

Therefore, we have a matrix M|V |×|V | = (aij), where

aij =
{

1 if ij ∈ A

0 if ij �∈ A
.
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Figure 6.3: Oriented graph.

Note that all the elements on the diagonal of the adjacency matrix are
equal to zero. Moreover, the adjacency matrix of a nonoriented graph
is always symmetric, and the adjacency matrix of an oriented graph is
not symmetric, in general.

Below, we show the adjacency matrix of the graph in Figure 6.2 (left),
and the adjacency matrix of the graph in Figure 6.3 (right).

⎛
⎜⎜⎝

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

⎞
⎟⎟⎠;

⎛
⎜⎜⎝

0 1 1 0
0 0 1 0
1 0 0 1
0 0 0 0

⎞
⎟⎟⎠.

6.2.3 INCIDENCE MATRIX

Another useful graph representation is the so-called incidence matrix.
This matrix provides, for each vertex vj, the edges {vj, vk}, vk ∈ A, i.e.,
the edges that are incident to vertex vj (the edges that connect vj to
some other vertex).
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Therefore, we have a matrix K|V |×|A| = (aij), where

aij =
{

1 if the edge j is incident to the vertex i

0 otherwise
.

Below, we show the incidence matrix of the graph in Figure 6.2:⎛
⎜⎜⎝

1 0 1 0
1 1 0 0
0 1 1 1
0 0 0 1

⎞
⎟⎟⎠.

For an oriented graph, the incidence matrix must indicate also the
arc direction. In this case, the incidence matrix is K|V |×|A| = (aij),
where

aij =

⎧⎨
⎩

1 if edge j starts at vertex i

−1 if edge j ends at vertex i

0 if edge j is not incident to vertex i

Below, we show the incidence matrix of the graph in Figure 6.3:

⎛
⎜⎜⎝

1 0 −1 1 0
−1 1 0 0 0

0 −1 1 −1 1
0 0 0 0 −1

⎞
⎟⎟⎠.

6.2.4 NETWORKS

In many problems of combinatorial optimization, we use a special kind
of graph called flow network.

A flow network G(V, A) is defined as a fully connected directed graph
where each edge (u, v) ∈ A has a positive weight c(u, v) ≥ 0, also known
as edge capacity.
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The network has two special vertices designated the source s and the
sink t.

A flow in the network G is a real-valued function f : V × V → R, such
that the following properties are satisfied:

• Capacity constraint:
for all u, v ∈ V, f (u, v) ≤ c (u, v).

• Skew symmetry:
for all u, v ∈ V, f (u, v) = −f (v, u).

• Flow conservation:
for all u, v ∈ (V − {s, t}),

∑
v∈V f (u, v) = 0.

The value of the flow is defined as | f | = ∑vıV f (s, v). In other words, it
is the total flow out of the source node in the flow network G.

6.3 DYNAMIC PROGRAMMING

The method of dynamic programming, also called recursive or
sequenced optimization, applies to combinatorial problems that can be
decomposed into a sequence of stages. The basic operation in each of
these stages consists in taking a partial decision (local decision), which
will lead us to the minimum solution to the problem.

Dynamic programming is based on the optimality principle, which is
stated below.

Proposition 2 [optimality principle]. The best sequence of deci-
sions has the property that whatever the last decision we have taken, the
sequence of decisions that led us to the next to the last stage must also be
optimal.

The optimality principle allows us to elaborate a sequential algorithm
whose solution strategy at each stage depends only on a local deci-
sion. That is, by supposing that we have a partial optimal sequence of
decisions, the current stage depends only on a localized decision, i.e., a
decision that is only based on part of the available information.
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In order to describe the method in more detail, we introduce the
appropriate formalism and methodology.

By assuming that the problem can be decomposed into a sequence of
stages, the method will use

• stage variables and
• state variables.

We should remark that each stage can be associated with the time or
the evolution of the algorithm toward the solution.

Therefore, we may suppose that the problem has N stages, and each
stage has a set Xn of states that describe the partial result obtained.

Then, we define the function fn(x) that provides the optimal value to
attain at the state x of stage n.

Using the optimality principle, we obtain the fundamental equation of
dynamic programming:

fn+1(x) = min
u∈etapa n

{
fn(x) + c(u, x)

}
,

where c (u, x) is the transition cost from state u in stage n to state x in
stage n + 1.

The Equation 6.3 provides the basic mechanism of recursion of the
method and at the same time indicates the computation to be used in
the algorithm sequence. More precisely, at each stage n varying from
1 to N, the algorithm computes the function fn(x) for every state vari-
ables x ∈ Xn and registers the transitions u → x associated with them.
At the end of this process, we have computed the cost of the optimal
path. Thus, we can traverse the reverse trajectory, using the inverse of
the transitions u → x, and obtain the shortest path. This last operation
is called backtrack.

The algorithm needs a number of operations proportional to the num-
ber N of stages multiplied by the number of transitions. By supposing
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that we have M possible transitions at each stage, the complexity of the
algorithm is O(NM).

In order to illustrate the algorithm, we give a concrete example below.

Example 21. Consider the diagram in Figure 6.4, which shows a net-
work of connections between A and B with the associated costs at each
arc. The optimization problem consists in computing the minimal cost
path between A and B.
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Figure 6.4: Network of connections between A and B.
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From the combinatorial structure of the network, it is possible to
decompose the problem into a sequence of stages that correspond to
the partial paths to traverse the network from left to right. Note that
these paths start at A and end in the intermediate vertices aligned with
the vertical lines. In Figure 6.4, these lines are represented by dashed
straight lines.

At each stage of the algorithm, we compute the cost of all optimal par-
tial paths up to the current stage, along with the pointers indicating the
optimal transition.

In Figure 6.5, we add the value of the minimum cost fn(x) associated
with each vertex x of the network, as well as a pointer indicating
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15

Figure 6.5: State variable of the problem.
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the vertex u in the previous stage associated with the minimum path
to that vertex. Moreover, we draw a thin curve around the shortest
path.

6.3.1 CONSTRUCTING THE STATE OF THE PROBLEM

According to the results from previous section, the method of dynamic
programming for combinatorial optimization problems is structured
based on two types of information: stage variables and state variables.

The solution to the problem develops sequentially (by stages), using
the recursion originated from the optimality principle. At each stage,
we have to maintain information about previous stages (the state of
the problem) in order to advance and compute the solution in the next
stage.

An important consequence of the optimality principle is that we need
only local information in our computations. The nature and the scope
of the state information depend on the problem to be solved. In fact,
this is one of the most important aspects of modeling in dynamic pro-
gramming.

In order to better illustrate the formulation and the use of the state
variables, we give another example.

Example 22. Consider Example 21 in which we need to compute the
minimum cost of path in a network connecting the points A and B,
with costs associated with each arc. We now modify the problem by
including one more component in the cost of a path: each change in
direction will imply a penalty (an additional cost of c units).

In Example 21, the decision rule is given by

f (n, y) = min

{
f (n − 1, y − 1) + u(n − 1, y − 1)
f (n − 1, y + 1) + d(n − 1, y + 1),
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where u(n, y) and d(n, y) are the costs of the arcs connecting,
respectively, y − 1 to y (in the direction “up”) and y + 1 to y (in the
direction “down”). The only state information stored at each node
(n, y) of the network is the optimal cost f (n, y) of the partial path from
A to (n, y).

In order to consider in the cost the changes of direction of the path, we
need more state information. Now, the state is given by f (n, y, a), which
is the value of the best path to arrive at the node (n, y) from the direc-
tion a. In order to arrive at node (n, y), it is possible to come either from
(n − 1, y − 1) or from (n − 1, y + 1); we denote these directions, res-
pectively, by↗ and↘. Thus, at each node, we have to store the value of
f (n, y, a) for these two directions.

After including in the cost computation the change of direction, we
obtain

f (n, y,↗) = min

{
f (n − 1, y − 1,↘) + c + u(n − 1, y − 1)
f (n − 1, y − 1,↗) + u(n − 1, y − 1)

and

f (n, y,↘) = min

{
f (n − 1, y + 1,↘) + d(n − 1, y + 1)
f (n − 1, y + 1,↗) + c + d(n − 1, y + 1).

We should remark that since in the computation of stage n we are
using the value of f in stage n − 1, we consider the change of direction
between the stages n − 2, n − 1, and n − 1, n.

6.3.2 REMARKS ABOUT GENERAL PROBLEMS

The adequate modeling of a combinatorial optimization problem rel-
ative to the method of dynamic programming requires that we are able
to express its solution by a sequence of stages where, in each stage, we
use only the localized state information.

In the examples given, we defined the recursion from the end to the
beginning. That is, we computed the state of stage n based on stage
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n + 1. We can think about the solution to this problem also from the
beginning to the end. We leave this as an exercise to the reader.

Another remark is that the solution to the problem corresponds essen-
tially to filling a table where the columns correspond to the stages
n = 1, . . . , N + 1, and the rows to the states x = 0, . . . , M + 1. One of the
consequences of this fact is that it is possible to implement the method
using an electronic spreadsheet program.

6.3.3 PROBLEMS OF RESOURCE ALLOCATION

One class of practical problems that can be solved using dynamic pro-
gramming is the class of resource allocation problems.

Knapsack Problem

The knapsack problem is the simplest version of the general problem
of resource allocation. Intuitively, the knapsack problem consists in
choosing among a set of possible objects that can fit into one bag to
be carried on a trip, such as to maximize their aggregate benefit, con-
sidering that each object has a weight and the bag has a limited capacity.

The precise formulation of the problem is given by

maximize c1x1 + · · · + cnxn

subject to w1x1 + · · · + wnxn ≤ L.

There are two versions for the problem:

• zero-one version: xi ∈ {0, 1}
• linear version: xi ≥ 0, xi ∈ Z.

The recursion equation is given by

s(k, y) = max

{
s(k − 1, y − wk) + ck

s(k − 1, y)
,
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where s(k, y) is the knapsack of maximum value with size smaller than
or equal to y, using only the first k objects. In the first case, we put the
element k in the knapsack. In the second case, we keep the previous
knapsack, i.e., without the element k.

The objective of the problem consists in finding s(n, L), given the initial
conditions

s(0, y) = 0, ∀y

s(k, y) = ∞, if y < 0.

The complexity of the problem is O(nL). At first sight, it would appear
that this algorithm runs in polynomial time. However, storing an inte-
ger M requires only log n bits. Thus, the encoding size of a knapsack
problem is O(n log L). Hence, the running time of the algorithm above
is not polynomial (it is called a pseudopolynomial algorithm).

There is a decision problem that can be associated with the knapsack
problem and is stated as follows: “Given items of different weights and
a knapsack, is there a subset that exceeds a certain value?” This decision
problem is NP-complete.

6.4 SHORTEST PATHS IN GRAPHS

In order to generalize the method of dynamic programming, we study
shortest path problems in general graphs (oriented or not).

6.4.1 SHORTEST PATHS IN ACYCLIC ORIENTED
GRAPHS

Acyclic oriented graphs, or directed acyclic graphs (DAGs), constitute
one of the richest structures to describe combinatorial problems.

Theorem 15 [ordering of DAGs]. The nodes in an acyclic oriented
graph can be numbered from 1 to n, in such a way that every arc is of the
form ij with i < j.
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The proof is constructive, and we leave it as an exercise to the reader.

Given an acyclic oriented graph g = (V, E), we want to find a short-
est path from s to t, where s, t ∈ V. We may suppose, without loss of
generality, that s = 1 and t = |V |.

Algorithm 1

1. Order the nodes in such a way that the arc ij ⇒ i < j,
or verify that the graph is not acyclic and leave the algorithm.

2. Let ci the length of the smaller path from 1 to i.
Then: c1 = 0

for i = 2, . . . , n do
ci = min

j<i
{cj + aji}

end for

We denote by aji the cost of the arc that goes from j to i. Note that if
there does not exist an arc from j to i in the graph, we can take aji = ∞.

In order to study the complexity of the algorithm, consider that the
graph has n arcs. In the worst case, all the arcs are connected to each
other. Thus, the complexity is O(|V |2) or O(|E |) depending on the rep-
resentation of the graph.

Note that the second case requires sparse storage. For sparse graphs, it
is common to replace the incidence matrix with sparse structures, such
as adjacency lists.

Remark. The recursion order is established from the incidence rela-
tions, and the method is equally applicable to shortest or longest paths,
independently of the cost signals.

6.4.2 DIRECTED GRAPHS POSSIBLY WITH CYCLES

In this section, we study problems related to shortest paths in directed
graphs possibly with cycles. In order that the problem has an optimal
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solution, we must assume the following hypothesis. There are no
cycles with negative (positive) total cost for problems of shortest (longest)
path.

In the presence of negative cycles, the shortest path problem is
NP-complete (it may even be unbounded if any path from the source
to the destination reaches such a cycle).

Some classes of problems with negative cycles can be solved using
intelligent enumeration methods such as branch and bound. These
methods, although do not have polynomial complexity, in practice are
reasonably efficient from the computational point of view.

Now we concentrate in the case without cycles, and we postpone the
discussion of the case with cycle to the next section.

The optimality principle for the shortest path in graphs without
negative cycles can be formulated in a concise way using Bellman
equation:

cj = min
i �=j

{ci + aij}, (6.1)

where cj is the length of the smallest path from 1 to j.

Remark. A shortest path from s to t has at most |V | − 1 arcs. That is,
the path has at most |V | − 2 intermediate nodes.

We describe in what follows a shortest-path algorithm for directed
graphs that satisfy the hypothesis of not having cycles with total nega-
tive cost.

Definition of the Problem

Let ck(j) denote the length of the shortest path from 1 to j with, at most,
k arcs, and aij be the cost of transition from i to j. If there exists an arc ij,
this cost is given by the problem, otherwise the cost is ∞.
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Algorithm 2

1. Initialization:
c1(1) = 0
c1( j) = a1j for j �= 1

2. Recursion:
ck( j) = min

i�=j
{ck−1(i) + aij}

We want to obtain c|V |−1(j).

The complexity of the problem is O(|V |3) or O(|V ||A|).

Theorem 16. A graph has no negative cycles if and only if c|V |(j) =
c|V |−1(j) for every j.

Proof. Suppose that there are no negative cycles. A path with |V |
arcs has repeated nodes and therefore has length greater than or equal
to a subpath with less than |V | arcs. Thus, c|V |(j) = c|V |−1(j) for
every j. �

Algorithm 2 also computes, with slightly greater complexity, the short-
est paths from i to j for every pair ij.

ck(i, j) = min
l
{ail + ck−1(lj)}.

The complexity is O(|V |3 log |V |) or O(|V ||A| log |V |). This problem
is known as the multiterminal problem.

6.4.3 DIJKSTRA ALGORITHM

This algorithm assumes that all costs are nonnegative.

Recalling Bellman equations:

c(1) = 0
c( j) = min

i �=j
{c(i) + aij},
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where c is a function that attributes a value for each node of the graph.

It is not difficult to prove that c satisfies Bellman equations if and only
if c(j) is the length of the shortest path from 1 to j.

Dijkstra algorithm computes c(i) in an order v1, v2, . . .v|V |, such that
c(v1) ≤ c(v2) ≤ . . . ≤ c(v|V |)

Algorithm 3 Dijkstra

1. Initialization:
c1(1) = 0 and c1( j) = a1j for j �= 1
p = {1}, p = {2, . . . , |V |}

2. Recursion:
while p �= ∅ do

Choose k such that c(k) = minj∈pc(j)
p = p ∪ {k}
p = p − {k}
for all j ∈ p do

c( j) = min{cj(i), c(k) + akj}
end for

end while

Theorem 17. At the end of each iteration, c( j) is the length of the
shortest path from 1 to j using only intermediate nodes in p. Thus, when all
vertices have been included in p, c( j) is the length of the shortest path from
1 to j.

The proof is by induction.

The complexity of the problem is O(|V |2) or O(|A| log |V |).

6.5 INTEGER PROGRAMMING

In this section, we study problems on integer programming, which
appear when we restrict linear continuous optimization problems to
the set of integer numbers.
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6.5.1 LINEAR AND INTEGER PROGRAMMING

In Chapter 5 on continuous optimization, we defined a linear program-
ming problem as follows:

min
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi,

for i = 1, . . .m.

This is a problem with n variables and m constraints, in which both the
objective function and the constraints themselves are linear functions.

We remark that other inequality or equality constraint can be added
to the above equations. Moreover, the variables have no restrictions on
their values or they might have constraints such as xj ≤ 0; xj ≥ 0 or
xj ∈ [lj, uj], which naturally configures itself as constraints of the
problem.

An integer program is a linear program with the additional constraint
xj ∈ Z.

In what follows, we show that an integer program can be naturally for-
mulated as a combinatorial optimization problem and vice versa.

Example 23 [shortest path]. Consider the graph described by its
incidence matrix⎛

⎜⎜⎝
1 1 0 0 0 0

−1 0 −1 0 0 0
0 −1 1 −1 0 1
0 0 0 0 −1 −1

⎞
⎟⎟⎠,

where the values 1 and −1 at the entry ij of the matrix indicate, respec-
tively, that the arc j arrives or leaves the node i.
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We want to find the shortest path between the initial node s and the
final node t. In the formulation of the problem as an integer program,
we have

• variables:

xj =
{

1, if the arc j is part of the path

0, otherwise

• objective function:

min
∑

cjxj

• constraints:

∑
aijxj =

⎧⎨
⎩

1, if i = s

−1, if i = t

1, if i �= s, t.

6.5.2 MINIMUM COST FLOW PROBLEM

This is a more general case of the shortest path problem.

For each node, we have di, which is the available amount (di > 0) or
the demanded amount (di < 0) associated with the node i.

For each arc, we have μj, which is the capacity of the arc.

The minimum cost flow problem consists in

min
∑

cjxj

subject to
∑

aijxj = di

with 0 ≤ xj ≤ μj.

Intuitively, it consists in finding the cheapest way of sending a certain
amount of flow through a network.
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A variation of this problem is to find a flow that is maximum but has
the lowest cost among the maximums. This is called a minimum-cost
maximum-flow problem.

6.5.3 LINEAR PROGRAMS WITH INTEGER
SOLUTIONS

Theorem 18. A flow problem of minimum cost with integer demands
and capacities has an optimal integer solution.

min cjxj

subject to
∑

j

aijxj = di, i = 1, . . . |V |

for 0 ≥ xj ≥ μj,

where aij are the elements of the incidence matrix A, and xj corresponds
to the amount sent along the arc j.

Proof. We will prove that noninteger solutions are not basic.

Let x be a noninteger solution to the problem. There exists a circle
composed of arcs where xj is a fractionary.

Let x(ε) be a new solution given by

xj(ε) =

⎧⎨
⎩

xj, if j �∈ cycle

xj + ε, if j ∈ cycle with equal orientation

xj − ε, if j ∈ cycle with opposite orientation.

x(ε) satisfies the conservation equations.

x(ε) satisfies 0 ≥ x(ε) of μj for |ε| sufficiently small.

Since x = 1
2 x(ε) = 1

2 x(−ε), x is not a basic solution. �
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Specific cases

Shortest path: one node with d = 1, one node with d = −1, and μj = 1,
∀j; bipartite matching (or assignment matching).

Remark. The linear program has an integer solution in this case but
not in the case of nonbipartite matching.

6.6 GRAPH CUTS

A cut in a graph is a means to partition its vertices into two sets. For-
mally, let G(V, A) be a graph. A cut C = (S, T) induces a partition of G
into the disjoint sets S and T. Consequently, any edge (vi, vj) ∈ A, with
vi ∈ S and vj ∈ T (or vj ∈ S and vi ∈ T, in the case of a directed graph),
crosses the cut and is called a cut edge.

The size of a cut is the total number of cut edges. In a weighted graph,
the size of the cut is defined to be the sum of weights w(u, v) of the
edges crossing the cut and can be interpreted as the cost of making the
cut, denoted by |C |:

cost(S, T) = |C | =
∑

u∈S,v∈T,(u,v)∈A

w(u, v). (6.2)

Graph cut problems are important for various reasons. First, there is a
nontrivial relation between minimum-cut and maximum-flow prob-
lems that sheds light on a class of combinatorial optimization algo-
rithms. Second, cuts in graphs provide an intuitive way to formulate
problems in many areas, particularly in graphics and vision. Third, it
is possible to exploit this problem structure in connection with energy
minimization, which gives a powerful way to discretize some contin-
uous optimization problems. Finally, recent developments introduced
new algorithms that have many applications in vision.

In this section, we discuss the above issues in more detail.
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6.6.1 EQUIVALENCE BETWEEN MIN-CUT AND
MAX-FLOW

A natural way to define a cut, C = (S, T), in a network (e.g., a directed
graph) is to associate one of the sets with the source s and the other
set with the sink t. In this context, the cut (S, T) with s ∈ S and t ∈ T
separates the source from the sink. Therefore, a cut in a network is
a set of arcs, such that if they are removed, there is no path going
from s to t.

Also, in the case of flow problems, the size of a cut is defined as the sum
of the capacities of the cut edges in the graph.

One of the fundamental results in combinatorial optimization is the
theorem below, which states that the minimum cut and the maximum
flow are equivalent problems.

Theorem 19 [max-flow min-cut]. In every network, the maximum
flow equals the minimum capacity of a cut.

This theorem was proved in 1956 independently by Ford and Fulkerson
(1962)) and also by Elias, Feinstein, and Shannon Elias et al. (1956).
The proof by Ford and Fulkerson is constructive and leads to their algo-
rithm for solving the problem, which we present below. The theorem
can also be proved by applying the duality theorem for linear program-
ming (Gale and Tucker, 1951). The reason is that, as we have seen in
Section 6.5.2, determining maximum flows is a special kind of linear
programming problem.

The intuition behind the max-flow/min-cut theorem is as follows. If
we interpret a directed graph as network of water pipes, the maximum
flow through this system is the maximum amount of water that can
be sent from the source to the sink, considering the flux capacity of
the pipes equal to edge weights. The equivalence theorem states that
this maximum flow saturates a subset of the edges C in the graph,
which divides the nodes into two disjoint parts {S, T} such that C
corresponds to a minimum cut. In essence, this interpretation says that
the “throughput” of a network is determined by its “bottlenecks.”
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There are two basic strategies to solve the max-flow/min-cut
problem:

• Augmenting path methods: these algorithms work by repeatedly
finding a nonsaturated path of positive capacity from the source
to the sink and adding it to the solution until the maximum flow
is reached. The difference between algorithms of this type is how
they select the augmenting path. The algorithm might have a
slow convergence if new paths add little to the total flow. The
Ford–Fulkerson algorithm, described below, is the prototypical
example of this class of algorithm.

• Preflow-push methods: these algorithms push flow from one
node to another, ignoring until the very end that the constraint
that the in-flow must be equal to the out-flow at each node of the
network. Preflow-push methods can be faster than augmenting
path methods because multiple paths can be computed simulta-
neously. An example of this class of algorithm is the Goldberg–
Tarjan method (Goldberg and Tarjan, 1988).

We now take a closer look at the Ford–Fulkerson algorithm. The prob-
lem is to find the maximum flow f from the source s to the sink t, given
a directed graph G(V, A), with capacity c(u, v) and flow f (u, v) for each
edge (u, v).

The algorithm maintains for each step a legal flow through the network
by enforcing the following restrictions:

• f (u, v) ≤ c(u, v), i.e., the flow does not exceed edge capacities
• f (u, v) = −f (v, u), i.e., the net flow is balanced
•
∑

v f (u, v) = 0 ⇔ fin(u) = fout(u)∀u ∈ V − {s, t}.

Information about the current flow at each step of the algorithm is
defined through a residual graph Gf, which is identical to G except that
the capacity cf (u, v) reflects the residual capacity left for (u, v) given the
allocated flow f (u, v) in the edge, i.e., cf (u, v) = c(u, v) − f (u, v).

Initially, there is no flow, and each edge has its original capacities.
At each iteration, the algorithm finds the shortest s → t path along
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nonsaturated edges of the residual graph. If a path is found, it is
augmented by pushing an amount of flow that saturates at least one
of the edges in the path. The maximum flow is reached when any s → t
path crosses one saturated edge in the residual graph. The output of
the algorithm is both the maximum flow and the set of saturated edges
(i.e., the minimum cut).

Algorithm 4 shows the pseudocode of the method.

The augmenting path can be found by a breadth-first search or a depth-
first search in Gf (V, A). When the former is used, the algorithm is
called Edmonds–Karp (Edmonds and Karp, 1972) or Dinic (Dinic,
1970).

The complexity of the Ford–Fulkerson algorithm is bounded by O(Af ),
where A is the number of network edges and f is the maximum flow.
The Edmonds–Karp variation of the algorithm has a runtime indepen-
dent of the maximum flow value with complexity O(VA2).

Algorithm 4 Ford–Fulkerson

for all edges (u, v) initialize f (u, v) = 0
while there is a path p from s to t, such that cf (u, v) > 0 for (u, v) ∈ p do

Find cf (p) = min{cf (u, v)|(u, v) ∈ p}
for each edge (u, v) ∈ p do

f (u, v) = f (u, v) + cf (p)
f (v, u) = f (v, u) − cf (p)

end for
end while

6.6.2 THE LABELING PROBLEM

A cut in a graph can be interpreted as a binary labeling. This is useful
in many application areas, such image processing and vision.

More specifically, starting with an original graph describing some
application-dependent domain, we can extend it to create an s−t graph
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Figure 6.6: Labeling a graph s−t.

in order to use graph cuts to label its vertices. Formally, given a graph
Go(V, A), the extended s−t graph is constructed simply by adding two
special vertices s and t to the graph and linking all vertices v ∈ V to both
s and t (see Figure 6.6(a)-(b)).

The labeling is represented by a function l mapping from the set of
original vertices V − {s, t} to {0, 1}, where l(v) = 0 means that v ∈ S
and l(v) = 1 means that v ∈ T (see Figure 6.6(c)).

In this context, a cut is a binary partition of the graph viewed as a
binary-valued labeling of its vertices. We remark that while we can
solve the binary min-cut problem in polynomial time as seen in Sec-
tion 6.6.1, the generalization of min-cut to more than two terminals,
called multiway cut problem (Dahlhaus et al., 1992), is NP-hard.

6.6.3 REPRESENTING ENERGY FUNCTIONS WITH
GRAPHS

It is natural in various applications to represent a problem as the min-
imization of some energy function. Since given a graph G(V, A), each
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cut C = (S, T) has some cost, the graph G can be used to encode an
energy function in the following way.

Consider the graph G(V, A) with terminals s, t, and V =
{v1, . . . , vn, s, t}. G represents the energy function mapping from
all cuts on G to the nonnegative real numbers (i.e., the cost |C |). To
this end, any cut is described by n binary variables x1, . . . , xn, which
correspond to vertices in G (excluding s and t). The variable xi takes a
value xi = 0 when vi ∈ S, and xi = 1 when vi ∈ T.

Thus, the energy E represented by G is a function E(x1, . . . , xn) of n
binary variables, and the value of E is equal to the cost of the cut |C |
associated with the configuration x1, . . . , xn, where xi ∈ {0, 1}.

A question that arises at this point is: What is the class of energy
functions E for which it is possible to construct an s−t graph G that
represents E?

We call this class of energy functions graph representable and define
them as follows.

Definition 1. A function E of n binary values is graph representable
if there exists an s−t graph G(V, A) with a subset of vertices V0 =
{v1, . . . vn} ⊂ V − {s, t} such that for any configuration x1, . . . , xn, the
value of E(x1, . . . , xn) is equal to a constant plus the cost of the minimum
cut C(S, T) among all cuts in which vi ∈ S ⇔ xi = 0 and vi ∈ T ⇔ xi = 1.

Kolmogorov and Zabih (2004) give a characterization of the classes of
functions F2 and F3 that are graph representable and show how to con-
struct the graphs G within these classes. Here we describe the energy
functions of class F2 that has a wide applicability.

The functions of class F2 are energy functions that can be written as a
sum of functions of up to two binary variables.

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj). (6.3)
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It can be observed that the terms Ei(xi) measure the cost of assigning a
label s or t to the vertex vi, while the terms Ei,j(xi, xj) measure the cost
of assigning equal or different labels to the pair of vertices vi, vj.

Theorem 20 [F2 theorem]. Let E be a function of n binary values
from the class F2, as given by Equation 6.3. Then, E is graph representable
if and only if each term Ei,j satisfies the inequality

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0). (6.4)

The functions satisfying condition 6.4 are called regular. Kolmogorov
and Zabih (2004) proved that regularity is a necessary and sufficient
condition for an energy function if F2 be graph representable. Their
proof is constructive and therefore can be used as a tool1 to generate
the graph G, given an energy function E in F2.

The strategy behind the proof is to construct each term of the function
separately in the form of edges of the graph with appropriate weights
and then merge all these subgraphs together to form G. The valid-
ity of this construction is justified by the additivity theorem, which
states that the sum of two graph-representable functions is also graph
representable. We refer the reader to the original paper Kolmogorov
and Zabih (2004) for the details.

Energy functions of the form (6.3) arise in various application con-
texts; in particular, they are used in the Bayesian labeling of first-order
Markov random fields (Li, 1995).

One important remark regarding energy functions of the class F2 is
that when the vertices of the graph come from a discretization of the
spatial domain of some object, such as an image or a surface, these
energy functions can be used to impose spatial smoothness. This is
done by penalizing adjacent vertices to have different labels. However,

1 In fact, the authors developed a software available on the Web (Kolmogorov, 2004) that
takes an energy function as input and automatically constructs the associated graph. Then,
it minimizes the energy using graph cuts.
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in the cases of interest, the functions are piecewise smooth and have
discontinuities on the boundary of regions with different labels. For
this reason, it is important that the energy function does not overpe-
nalize such labelings. Functions with this property are called disconti-
nuity preserving.

An example of discontinuity-preserving function is given by the Potts
model.

V(α, β) = kT(α �= β), (6.5)

where α, β are label assignments and k is a constant, and T(. ) = 1 if
its argument is true and 0 otherwise. This model encourages labelings
consisting of several regions where vertices in the same region have
equal label.

6.6.4 THE EXPANSION-MOVE ALGORITHM

Up to this point, we have seen that the min-cut method can be used
to compute optimal binary labelings. However, for most applications,
we are interested in computing n-ary labelings, which is an NP-hard
problem, as discussed in Section 6.6.2.

In this subsection, we present an algorithm that can generate n-ary
labelings by computing a local minimum in a strong sense of the energy
function (Boykov et al., 2001).

This algorithm is called the expansion-move, and it minimizes an
energy function with nonbinary variables by repeatedly minimizing an
energy function with binary variables using min-cut.

The strong local minimum condition guarantees that the local mini-
mum computed by the algorithm lies within a multiplicative factor of
the global minimum (this factor is at least 2 and depends only on the
binary terms Ei,j of the energy function).

The central operation of the expansion-move algorithm consists in
finding a minimal s−t cut and is called α-expansion. It is defined as
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follows. Consider a labeling f (partition P) and a particular label α.
Another labeling f ′ (partition P ′) is an α-expansion move from f if
Pα ⊂ P ′

α and P ′
l
⊂ Pl for any label l �= α. In other words, the set of

vertices assigned the label α increases when going from f to f ′.

The expansion-move algorithm cycles through the labels α in some
order (fixed or random) and finds the lowest energy α-expansion move
from the current labeling. If this move gives a lower energy than the
current labeling, then it replaces the current labeling. The algorithm
stops when there is no α-expansion move with lower energy, for any α.
The output labeling is a local minimum of the energy with respect to
expansion moves.

This algorithm is guaranteed to terminate in a finite number of cycles.
In fact, it is possible to prove termination in O(|P |) cycles. However,
by the nature of the algorithm, most of the improvement takes place
during the first cycle and, in practice, the algorithm terminates after a
few cycles.

The pseudocode of the expansion-move algorithm is shown in
Algorithm 5.

Algorithm 5 Expansion-Move

Start with an arbitrary labeling f
repeat

success = false
for each label α ∈ L do

Find f̂ = arg minE( f ′) among f ′ within one α-expansion of f
if E( f ′) < E( f ) then

f = f ′
success = true

end if
end for

until (success == false)
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As mentioned above, the central part of the algorithm uses a single
computation of the minimum cut to find the optimal α-expansion
move.

Let us see how this is done and what is the structure of the associated
graph.

The α-expansion computes a labeling corresponding to an elementary
cut on a particular graph Gα(Vα, Aα). The structure of this graph is
defined by the current partition P and by the label α. Note that the
graph changes after each cycle of the algorithm.

The optimality is based on the fact that an elementary cut C on Gα

is in one-to-one correspondence with labelings f C that are within
one α-expansion of the current labeling f and also that the cost of an
elementary cut is |C | = E( f C). Consequently, the desired new labeling
f̂ is f C, where C is a minimum cut on Gα.

The structure of the graph Gα is depicted in Figure 6.7. The set of ver-
tices V consists of the vertices of the original graph p ∈ P and the two

tq�
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tp� ts�

e{p,a}
P2

P1 Pa

e{a,q}
e{q,r}

ta� tq�

p a q r b s

a

a

Figure 6.7: Graph Gα.
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terminals α and α (note that the label α represents all other labels that
are different compared with α). Additionally, a set of auxiliary vertices
is created to take into account the boundaries in the current partition.
That is, for each pair of neighboring vertices {p, q} such that fp �= fq,
an auxiliary vertex a{p,q} is created.

Vα =

⎧⎨
⎩α, α , P,

⋃
{p,q∈N| fp �=fq}

a{p,q}

⎫⎬
⎭ .

In the graph, each original vertex p ∈ P is connected to both termi-

nals α and α by t-edges tαp and tαp , respectively. Also, each pair of
neighboring vertices {p, q} with fp = fq that are not separated by the
current partition are linked by an n-edge e{p,q}. For each pair of label-
separated neighbor vertices {p, q}with fp �= fq, there is a triplet of edges

D{p,q} = {e{p,a}, e{a,q}, tαa } that connect a to p, q, and α .

Aα =
{⋃

{tαp, tαp },
⋃

D{p,q},
⋃

e{p,q}
}

.

The weights assigned to edges are given in Table 6.1.

A natural labeling f C corresponding to a cut C on Gα is defined by

f C
p =

{
α if tαp ∈ C

fp if tαp ∈ C
∀p ∈ P. (6.6)

In this way, a vertex p receives a label α if the cut C separates p from α.
Vertices p �∈ Pα maintain their previous label fp.

Finally, to prove that the optimal α-expansion move generated by an
elementary cut on Gα gives a labeling that is the local minimum of the
energy function, all we need to do is to show that using a graph Gα con-
structed as above, for any elementary cut C, we have |C | = E(f C). That
is, the cost of an elementary cut is equal to the lowest energy labeling.
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Table 6.1: Edge–weight assignments

Edge Weight For
tαp ∞ p ∈ Pα

tαp Ei( fp) p �∈ Pα

tαp Ei(α) p ∈ P

e{p,a} Ei, j( fp, α)
e{a,q} Ei, j(α, fq) {p, q} ∈ N, fp �= fq

tαa Ei, j( fp, fq)

e{p, q} Ei, j( fp, α) {p, q} ∈ N, fp = fq

The cost of an elementary cut is

|C | =
∑
p∈P

|C ∪ {tαp , tαp }| +
∑

{p,q∈N| fp=fq}
|C ∪ e{p,q}| +

∑
{p,q∈N| fp �=fq}

|C ∪ D{p,q}|.

(6.7)

By construction, for the edge–weight assignments of Table 6.1, the
above expression is also equal to

|C | =
∑
p∈P

Ei( f C
p ) +

∑
p,q∈N

Ei,j( f C
p , f C

q ) = E( f C). (6.8)

Therefore, the lowest energy labeling within an α-expansion-move
from f is f̂ = f C, where C is the minimum cut on Gα and |C | = E( f C).

6.7 BRANCH-AND-BOUND METHODS

Branch-and-bound methods are methods of intelligent enumeration
for problems of combinatorial optimization.
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These methods have two ingredients: branch and bound (establish
thresholds). The strategy consists in estimating possible solutions and
subdividing the problem.

6.7.1 CHARACTERISTICS

• Enumerates the alternatives, looking for branches based on
estimates (bound) of the corresponding solution of an “easier”
problem.

• Stops the enumeration in a branch when the estimate (upper
bound) is inferior to the best known solution.

• Uses some heuristics in order to choose the node to be exploited:
the one that has the greatest upper bound.

• Complexity: in the worst case, it is equal to the number of alter-
natives, and in practice, it is much smaller.

These methods are studied in more detail in Chapter 7.

6.8 APPLICATIONS IN COMPUTER GRAPHICS

In this section, we discuss the applications of combinatorial optimiza-
tion the techniques in different areas of computer graphics. We focus
on applications in image synthesis, geometric modeling, and vision.

Most of the applications of optimization methods in image synthe-
sis are related to the problem of resource allocation. In general, the
visualization system has limited processing or memory resources for
exhibiting images. Therefore, it is necessary to use computational tech-
niques to adapt the generated images to the available resources. More
precisely, we consider two examples. The first one is image quanti-
zation, and the second one is interactive visualization using levels of
details.

Most of the applications of optimization methods in geometric
modeling are related to the problem of constructing optimal geometric
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shapes. In general, a modeling system integrates several tools in order
to create and analyze objects. In the applications, the shape of the
objects must comply with certain functional or aesthetic requirements.
For example, a curve must pass through some predetermined points
and, at the same time, it must be smooth. For this reason, normally, it
is very difficult for the user to accomplish such tasks manually, with-
out using appropriate tools. Optimization methods enable the use of
a natural formulation of the problem and its automatic solution. We
study two examples of the use of combinatorial optimization methods
in geometric modeling. The first example is the computation of curves
of minimum length in maps; the second example is the reconstruction
of surfaces from a finite set of transversal sections.

Most applications of optimization methods in computer vision are
related to classification and inference problems. In particular, many
low-level vision problems can be posed as a pixel-labeling problem,
where different formulations are related to the model to be estimated,
such as in stereo correspondence and image segmentation.

We study examples of the use of graph cuts to solve the pixel-labeling
problem. The example is in two-view stereo correspondence.

6.8.1 IMAGE QUANTIZATION

The problem of image quantization is a good example of a problem that
exploits the idea of limited resources in order to model it as a combi-
natorial optimization problem.

The problem of quantization can be stated as follows:

Find a set of k colors that represent the gamut of an image f (u, v) with the
smallest distortion.

The problem is clearly an optimization problem. Moreover, since a dig-
ital image has a discrete representation, the problem can be posed as a
combinatorial problem.
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In order to better formulate the problem, we need some preliminary
definitions.

An image is a graphical object O = (U, f ), with f : U ⊂ R
2 → C, where

C is a color space. The attribute function f is called image function. The
set U is called the image support, and the image set f (U) is called the
image gamut.

In graphical applications, the function f describes a digital image,
which has a discrete representation. In this way, in general, both the
domain and the range set the attribute function f are discretized and,
for this reason, f is called a discrete–discrete image. The image support
is usually a rectangle U = [a, b] × [c, d] sampled according to a uni-
form grid FΔ = {(ui, vj) ∈ R

2}, where ui = a + iΔu and vj = c + jΔv,
with Δu = (b − a)/m, Δv = (d − c)/n, and i = 0, . . .m, j = 0, . . .n. The
points (ui, vj) are called sample points.

The color space C of the image is usually a trichromatic color space
(C ≡ R

3) or a monochromatic one (C ≡ R). Moreover, the values of
f in the sample points are usually represented by an integer num-
ber with l bits (another option would be the representation by a
floating-point number). That is, the image gamut is a finite set with 2l

elements.

Figure 6.8 shows a discrete–discrete monochromatic image with its
domain U and range set C.

Quantization

A quantization of an image is the process of discretization or reduction
of its color gamut. Now we define in a more precise way the problem
of quantization. A quantization is a subjective transformation q : R

n →
Mk, where Mk = {c1, c2, . . . ck} is a finite subset of R

n. The set Mk is
called color map of the quantization transformation. When k = 2l, we
say that q is a quantization with l bits. Given a discrete representation
of an image, it is usual to have a quantization among finite subsets of
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Figure 6.8: Monochromatic discrete image.

color, of the type q : Rj → Mk. If j = 2n and k = 2m. In this case, we say
that we have a quantization from n to m bits.

Consider a quantization map q : R
n → Mk. The elements ci of Mk are

called quantization levels. To each quantization level ci ∈ Mk, there cor-
responds a subset of colors Ci ⊂ R

n, which are the colors mapped on
to the color ci by the transformation q, i.e.,

Ci = q−1(ci) = {c ∈ C;q(c) = ci}

The family of sets Ci constitute a partition of the color space. Each of
the partition sets Ci is called quantization cell. Note that the quantiza-
tion map q assumes a constant value, equal to ci, on each cell Ci.

When the color space is monochromatic (C ≡ R), we say that the quan-
tization is one dimensional. We concentrate here in this simpler case,
although most of the concepts we introduce extend naturally to the
case of color images. Figure 6.9 shows the quantization levels and the
graph of a ID quantization function.
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(a) (b)
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Figure 6.9: Quantization levels (a) and graph of an ID quantization map (b).

Note that the quantization function q is completely determined by
the quantization cells Ci and the quantization levels ci. In fact, using
geometric arguments, we can obtain ci from Ci and vice versa. Thus,
some quantization methods compute first the levels ci and then the cells
Ci, while others use the inverse strategy.

In order to estimate the effectiveness of the quantization transforma-
tion, we have to define the notion of quantization error. Let c be a color
to be quantized and q the quantization map, then c = q(c) + eq. The
quantization error eq = c − q(c) is the distance d(c, q(c)) between the
original color c and the quantized color q(c), using an appropriate
metric. The metric root mean square, given by the square of the
Euclidean norm, is widely used because of its simplicity.

The quantization error associated with a cell Ck is given by

E(k) =
∑
c∈Ck

h(c)d(c, ck), (6.9)
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where h(c) is the number of occurrences of the color c in the image f.
This number is given by the frequency histogram of the image that pro-
vides for each color the number of pixels that is mapped to that color
(note that the normalized histogram is an approximation to the prob-
ability distribution of the colors of the image f ).

Given a quantization cell Ck, it is possible to prove that the opti-
mal level of quantization ck corresponding to Ck is the centroid of
the set of colors {c; c ∈ Ck} weighted by the distribution of the colors
in Ck.

The total quantization error for an image f is the sum of the quantiza-
tion error over all of the samples of the image

E( f, q) =
∑

i

∑
j

d( f (ui, vj), q( f (ui, vj))). (6.10)

We remark that the above equation can be expressed using the quanti-
zation cells and the levels of quantization as E( f, q) =

∑
k E(Ck).

The quantization problem consists in computing ci and Ci in such a
way that the error E( f, q) be minimum. This is equivalent to obtaining
the optimal quantizer q̂ over all the possible K partitions QK of the color
space

q̂ = arg min
q∈QK

E( f, q). (6.11)

Quantization Using Dynamic Programming

We have seen that the problem of color quantization can be stated
as an optimization problem over a discrete set. Nevertheless, the size

of the solution set of the Equation 6.11 is of order |QK| =
(

N−1
K−1

)
=

O(NK−1), where K is the number of quantization levels and N is the
number of distinct colors of the image f.
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Clearly, we need an efficient optimization method to solve the problem.
We will show how to use dynamic programming for the case of
monochromatic quantization (C ≡ R).

Let qn
k

be the optimal quantizer of n to k levels. The first t cells of qn
k
,

1 < t < k with k < n, constitute a partition of the interval [0, xt] of gray
levels. It is possible to prove that these cells constitute an optimum
quantizer for t levels of the subset of the colors c ∈ [0, xt]. This prop-
erty is equivalent to the principle of optimality and allows us to obtain
a solution to the problem using dynamic programming.

Let L(n, k) = xk−1, the superior limit of the (k − 1)-th cell of the opti-
mal quantizer q̂n

k
. Then, by the principle of optimality,

L(n, k) = arg min
xk<xi<xn

{E( f, q̂i
k−1) + E (xi, xn)}, (6.12)

where 2 ≤ k < n ≤ N, and E (a, b) is the total quantization error of the
interval [a, b). Note that we can determine L(n, k) by using linear search
if we know E( f, q̂i

k−1), for k ≤ i < n. Computing L(n, k), we can com-

pute E( f, q̂n
k
)

E( f, q̂n
k
) = E( f, q̂

L(n,k)
k−1 ) + E (L(n, k), xn). (6.13)

The basic idea is to use a recursive process. Given the interval [x0, xN),
we compute the first optimum quantization cell C1 = [x0, x1) of this
interval and we repeat the process for the complementary interval
[x1, xN) until we obtain the K cells of qN

K .

Note that the errors of the quantizers of level 1 are computed triv-
ially E( f, qn

1) = E (0, xn), with 1 < xn < xN. Moreover, using (6.12) and
(6.13), it is possible to compute L(n, 2) and E( f, qn

2), 2 ≤ n ≤ N and
these values are to be used in the recursion of the Algorithm 6.
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Algorithm 6 Quantize ( f, N, K)

E[i] = E (0, xi), for 1 ≤ i ≤ N
L[k, k] = k − 1, for 1 ≤ k ≤ K
for k = 2, . . . , K do

for n = k + 1, . . . , N − K + k do
x = n − 1
e = E[n − 1]
for t = n − 2, . . . , k − 1 do

if E[t] + E (xt, xn) < e then
x = t
e = E[t] + E (xt, xn)

end if
end for
L[n, k] = x
E[n] = e

end for
end for
return qN

K = (L[xk, k])k=1,. . . ,K

In Figure 6.10, we show the result of applying this algorithm to obtain
the quantization of an image from 256 to 4 gray levels.

Final Remarks

The Algorithm 6 depends strongly on the fact that in the monochro-
matic quantization, the cells are intervals, and we have a natural order
of the color space partition. This is the basis for the sequencing of the
stages of the dynamic programming.

This algorithm can be extended to color quantization if we establish
an ordering of the quantization cells. One way to obtain this is to
consider the projection of the colors of the image along a direction
and create quantization cells with orthogonal planes to this direction.
This method works well because, in general, the colors of an image are
concentrated along a principal direction.
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(a)

(b)

Figure 6.10: Quantization from 256 (a) to 4 (b) gray levels.
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Both versions, monochromatic and polychromatic, of this algorithm
were introduced by Wu (1992).

6.8.2 INTERACTIVE VISUALIZATION

Now we cover a problem in the area of visualization, which is in the
category of the use of limited resources in graphics processing.

The main objective of the interactive visualization is to exhibit data,
which can vary dynamically, in such a way to allow their exploration
and manipulation by the user.

For this purpose, images of the data must be generated at interactive
rates, i.e., in a way to make it possible a feedback of the process by the
user based on image updating.

This type of demand exists in every interactive graphical applications,
such as geometric modeling systems and CAD systems.

A stronger constraint is the visualization in real time implemented in
flight simulators and other similar applications. In this case, besides the
time to drawing the image being shorter (typically 1/60 of a second),
no variation in the exhibition rate is allowed.

Based on the above description, the interactive visualization problem
of data can be stated as follows. We should produce the best visual rep-
resentation of the data within the limits of the allocated time interval.

This informal definition of interactive visualization makes it clear that
this is an optimization problem (produce the best image) with con-
straint (allocated time).

We concentrate our efforts in the visualization of 3D scenes, although
most of the concepts can be applied in the visualization of other types
of data, such as 2D scenes, sequence of images (animation), or even
volumetric data.
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A 3D scene is composed of a set of graphical objects positioned in
relation to a common referential, called global coordinate system (or
scene coordinate system).

A graphical object O = (U, f ) consists of its geometric support
U ⊂ R

3 and its attributes f : U → R
p. The geometry of a graphical

object defines its shape. The attributes of a graphical object define its
properties, such as color, reflectance, which, in general, are related to
its visual appearance.

Probably the most common example is a 2D polygonal object embed-
ded in the 3D space. The shape is given by a surface described by a mesh
of triangles, and its attributes are defined on the vertices of this mesh.

A graphical object of variable resolution incorporates in the representa-
tion the possibility of extracting approximate versions of its geometry.
These are simplified representations, also called levels of details, which
can be attained to satisfy two different types of criteria: approximation
error (local or global) and size of the representation.

In Figure 6.11, we show a polygonal graphical object using three levels
of detail,with 32, 428, and 2267 polygons.

(a) (b) (c)

Figure 6.11: Spock represented with three levels of detail.
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A graphical object can be composed of several subgraphical objects.
Moreover, these objects can be structured in a hierarchical form. In the
first case, we have a composed graphical object, and in the second case,
we have a hierarchy of graphical objects.

In general, it is possible to substitute a group of graphical objects with
a unique graphical object that represents the group. This operation is
called clustering. The resulting graphical object is called impostor.

The hierarchical representation is constituted by collections of graph-
ical objects clustered according to logical levels. At each level change,
a group of subordinated objects (sons) may have their representation
substituted with a unique simpler graphical object (father). This type
of hierarchy is called level of detail hierarchy.

Some graphical objects have a natural hierarchy. This is the case of
objects with articulated structures. For example, the human body can
be represented by the following hierarchy:

Body

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Head

Torso

Right Arm

{
Upper Arm

Lower Arm

Left Arm

{
Upper Arm

Lower Arm

Right Leg

{
Thigh

Lower Leg

Left Leg

{
Thigh

Lower Leg.

For graphical objects with hierarchical structure, the creation of a
hierarchy of levels of details is easy. In Figure 6.12, we show the
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(a) (b) (c)

Figure 6.12: Human body with three levels of clustering.

representations corresponding to the three levels of clustering of the
hierarchy of the human body.

We should remark that the clustering operation can be attained in
arbitrary sets of graphical objects in a 3D scene, even if these objects
do not have a natural hierarchical structure. In this case, the clustering
is done based on the proximity relations between the objects. These
groups can be grouped to constitute a hierarchy of the scene objects.

Optimization of Level of Details

Interactive visualization implies the maintenance of a fixed rate in the
generation of images from the scene. That is, the time to depict the
objects of the scene on the screen cannot be greater than a prede-
fined threshold. We have seen that the multiresolution representation
of graphical objects allows us to control their geometric complexity
and, consequently, the time to draw them.

Interactive visualization methods need to determine the level of detail
of the objects in the scene in such a way that the time to draw is below
the threshold.
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There are two types of strategy for this purpose: reactive and predictive
methods. Reactive methods are based on the time spent drawing previ-
ous images. If this time is greater than the threshold, the level of detail
is reduced; otherwise, it is increased. Predictive methods are based on
the complexity of the scene to be visualized. Thus, these methods need
to estimate the drawing time corresponding to each level of detail of
the objects.

Although predictive methods are more difficult to implement, they are
the only ones that allow us to guarantee a fixed rate of image generation.
For this reason, we develop a predictive method using optimization.

Before describing the method, we have to introduce some definitions.

A visual realization of the graphical object O, determined by the triple
(O, L, R), corresponds to a unique instance of O in the level of detail L,
which has been drawn using the algorithm R.

We define two heuristics: cost(O, L, R) and benefit(O, L, R). The cost
function estimates the time necessary to generate a realization of the
object. The benefit function estimates the contribution of the object
realization for the perceptual effectiveness of the scene. We also define
the set V of objects of the scene, which are visualized in the current
frame.

With these definitions, we can pose the interactive visualization
problem as

maximize
∑

(Oi,Li,Ri)∈C

benefit(Oi, Li, Ri) (6.14)

subject to
∑

(Oi,Li,Ri)∈C

cost(Oi, Li, Ri) ≤ T, (6.15)

where T is the time allowed to draw the image.

We should remember that this formulation, besides capturing the
essential aspects of the problem, can be applied in different contexts
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related to image synthesis. This depends on the type of geometric
representation and of the class of algorithms used.

Applying the above method requires that we have an efficient algorithm
to compute the functions cost and benefit. We assume that this is pos-
sible for the practical cases.

We describe now some heuristics to estimate these functions in the case
of multiresolution polygonal meshes using the z-buffer algorithm.

The cost function depends on two factors:

• primitive processing: coordinate transformations, clipping,
illumination.

• pixel processing: rasterization, z-buffer, texture mapping,
Gouraud interpolation.

These factors correspond to the two stages of the visualization process
(see Figure 6.13).

Using this model, we estimate drawing time by

cost(O, L, R) = max

{
c1Rpoly(O, L) + c2Rvert(O, L)

c3Rpix(O)
,

where Rpoly, Rvert, and Rpix are, respectively, the processing times of
polygons, vertices, and pixels of the algorithm R, and c1, c2, and c3 are
constants that depend on the hardware used (i.e., FLOPS).

Per pixel
processing

SCENE IMAGE
Per primitive
processing

Figure 6.13: Visualization process in two stages.
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The function benefit depends mainly on the area occupied by the object
and on the fidelity of its visualization. Moreover, this function depends
on several perceptual factors:

• semantics: define the relative importance of the objects
• focus: given by the region of interest
• speed: depends on the motion (motion blur)
• hysteresis: level of detail must vary smoothly.

Based on these elements, we estimate the effectiveness of the image as

benefit(O, L, R) = area(O) × fidelity(O, R) ×
importance(O) × focus(O) ×
mov(O) × hyst(O, L, R).

The reader should observe that the preponderant factors in the above
equation are the size of the object (i.e., area(O)) and the fidelity of its
realization, which is determined by the reconstruction used in the visu-
alization algorithm.

The interactive visualization method by optimization uses the cost and
benefit functions defined above in order to choose the representation
set C that satisfies the Equation 6.14 for each frame.

The reader should observe that this optimization problem with con-
straints is a version of the knapsack problem in which the items are
partitioned into subsets of candidates and only one item of each subset
can be inserted in the knapsack. In this case, the items in the knap-
sack constitute the set C, and the realizations (Oi, Li, Ri) are the items
inserted in the knapsack of each subset Si.

Unfortunately, this version of the knapsack problem is NP-hard. How-
ever, a reasonable solution is obtained using a greedy algorithm. This
algorithm, at each step, chooses the realization of greatest value v, given
by the ratio

v =
benefit(Oi, Li, Ri)

cost(Oi, Li, Ri)
.
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The items are selected in decreasing order of value until it fills the size
of the knapsack, given by the Equation 6.15. We remark that since only
a realization of each object Oi can be part of the set C, its realization
(Oi, Li, Ri) with greatest value v will be added to the knapsack.

Final Remarks

The interactive visualization by optimization was developed by
Funkhouser and Séquin (1993) for the case of multiple levels of detail
without clustering. The problem was also studied by Mason and Blake
(1997), who extended the method to the case of hierarchical represen-
tation of the scene, with clustering.

6.8.3 SHORTEST PATHS

In some modeling applications, it is necessary to compute curves of
minimum length on a surface. This problem is specially relevant in
GIS applications. In this type of application, we need to find shortest
paths in maps for different purposes, such as in the planning to build a
highway.

Combinatorial optimization methods allow us to compute minimal
curves in general graphs. We show how to reduce the problem of find-
ing optimal paths in maps to the problem of shortest paths in neigh-
borhood graphs.

In GIS, we treat data defined on the earth’s surface. A map is a georefer-
enced region that can be modeled as a 2D graphical object O = (U, f ),
where the geometric support U is a rectangle U = [a, b] × [b, c] and the
attribute function f describes geographic information in U.

Depending on the nature of the attributes, we have two types of geo-
graphic objects:

• entity maps
• property maps.
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In entity maps or thematic maps, f defines a partition of the region U
into subregions Si, with i = 1, . . . , N, each one being associated with a
geographic entity Ei. For example, a geopolitic map, with the division
of a country into its states, is in this category.

In property maps, also called field maps, f defines continuous attributes
that vary on the region U. For example, an elevation map, describing
the topography of a region, is in this category.

We remark that for a given region U, we might have several distinct
attribute functions fU associated with it. This is equivalent to saying
that the range set of the attribute function is multidimensional.

The fundamental operations in a GIS correspond to the analysis of
these geographic objects. In this context, the relevant problems are
related to

1. the data correlation between different attribute functions
2. the inference of new attribute functions from basic data.

The problem of shortest curves in maps is in this last class of operations.

Until now, we have discussed a continuous mathematical model for
geographic objects. The computational implementation requires a dis-
crete representation of this model.

The discretization of a geographic object is, in general, based on a
matrix or a vector representation. The vector representation is more
appropriate to describe entity maps, while the matrix representation is
the choice to describe property maps.

Example 24 [satellite images]. Remote sensing satellites capture
the irradiation from regions on the earth’s surface. These data are dis-
cretized by the sensors and are structured in such a way that they are
ready for a matrix representation. Therefore, we have a discrete image
on a regular grid.



186 COMBINATORIAL OPTIMIZATION CHAPTER 6

From the matrix data, such as satellite images, we are able to extract
other information. For example, the terrain elevation can be computed
from the correlation of points in two images. This operation is known
as aerophotogrametry and is related to the problem of stereographic
vision, which we discuss later.

Map operations can be defined by n variable functions (combination
functions), or by functions of one variable (transformation functions).
For example, we can define a transformation operation to compute the
inclination of a terrain from its topographic map.

The shortest path problem consists in finding a minimal length curve
in U that joins the point p0 ∈ U to the point p1 ∈ U. The metric used
is defined by an attribute function of U. This problem, in its discrete
form, can be solved using combinatorial optimization methods.

Shortest Paths in Neighborhood Graphs

In this section, we pose the discrete problem of optimal paths in maps.
The input data consist of an image represented by a matrix (raster
image) C, the initial point p0, and final point p1 of the path to be com-
puted, both points belonging to C.

The image C is given by a matrix M × N, in which the value c(i, j) ∈ R
+

of entry (i, j) provides the cost to traverse the pixel (we can interpret this
value as the diameter of the pixel using the metric defined by C).

The problem consists in computing the path of minimum cost joining
the points p0 = (i0, j0) and p1 = (i1, j1).

The first step to solve the problem is to construct an adequate graph.
We have two parameters to consider: the density of the graph and the
neighborhood of each graph node.

We define the neighborhood graph G = (V, A), where V is the set of
graph vertices and A is the set of arcs that join two neighbor vertices.
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The set V is a discretization of the input image C. For convenience, we
use the original discretization of C. Thus, V is the set of the M × N
pixels (i, j) ∈ C, where i = 0, . . . , N − 1 and j = 0, . . . , M − 1.

The set A is determined by a topology on the grid cij, from which we
define the discrete neighborhood of a pixel. Two natural options are the
four-connected and eight-connected neighborhoods (see Figure 6.14).

We use the topology defined by the four-connected neighborhood.
Thus, for each pixel (i, j), we construct four arcs,

al = ((i, j), (i + 1, j))
ar = ((i, j), (i − 1, j))
at = ((i, j), (i, j + 1))
ab = ((i, j), (i, j − 1)),

that join (i, j) to its neighbors (i + 1, j), of the left (i − 1, j), from above
(i, j + 1) and from below (i, j − 1).

To each arc a = ((i, j), (k, l)), we associate a cost,

ca((i, j), (k, l)) =
c(i, j) + c(k, l)

2
.

With the problem structured in this form, we can solve it using Dijkstra
algorithm because the costs are all positive. We remark that it is not
necessary to construct the graph directly to obtain the path.

Figure 6.14: Neighborhoods of a pixel.
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Final Remarks

The algorithm Voxel Coding (Zhou et al., 1998) solves a simplified ver-
sion of the problem for n-dimensional volumetric data with functions
of constant cost.

The shortest path problem is related to the computation of geodesic
curves on surfaces. The main difference is that in the case of shortest
paths, the curve is constrained to go through the edges of the mesh that
discretize the surface, while in the case of geodesics, the curve can pass
anywhere in the domain.

6.8.4 SURFACE RECONSTRUCTION

The reconstruction of 3D surfaces from plane curves is a powerful tech-
nique in geometric modeling. This technique has special relevance in
several computer graphics application areas. In particular, it is used in
the area of medical images to create anatomic models from volumet-
ric data. This is the case of CT and MRI. Moreover, the reconstruc-
tion of surfaces using transversal sections is closely related to the lofting
technique, which is widely used in CAD/Computer Aided Manufactur-
ing, which allows us to construct solid shapes using the extrusion of
contours.

The surface reconstruction problem using transversal sections con-
sists in producing the best surface that contains a set of predefined
curves.

This problem is clearly an optimization one, and when the curves have
a discrete description, it can be solved using combinatorial optimiza-
tion methods.

Some Definitions

The data for the problem of surface reconstruction by transversal sec-
tions consist in a set of transversal sections {Si|i = 1, . . . , K} defined in
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planes orthogonal to a given direction z, corresponding to a monotone
sequence (zi), i = 1, . . . , K (i.e., i < i + 1,∀i).

Each transversal section Si consists of one or more contours, given by
polygonal closed curves P = (p0, p1, . . .pn) (i.e., p0 = pn) that repre-
sent the intersection of the surface to be reconstructed with the sup-
port plane zi of the section Si. In order to simplify the problem, we
assume that each section has only one contour, i.e., each contour curve
is connected.

The discrete reconstruction problem consists in finding the mesh of
triangles that contains the given polygonal curves and at the same time
satisfies certain optimality criteria.

We should remark that it is possible to decompose the above problem
into a sequence of simpler subproblems: the construction of meshes
determined by pairs of contours in adjacent transversal sections Si and
Si+1.

A natural interpretation in this context is to see the problem as the
problem of finding the topology of the triangle mesh that corresponds
to the polygonal surface with “best” geometry (we remark that the def-
inition of the optimality criteria depends on the precise definition of a
“good” surface).

In order to construct the surface topology and geometry defined by
consecutive curves, we have to construct the polygons between these
two contours. Essentially, the problem is reduced to the one of find-
ing vertex correspondences in the contours in order to construct the
triangles.

Optimization Methods for Contour Reconstruction

The use of combinatorial optimization methods in the solution to the
problem requires that the topological relations be formulated using a
graph.
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We define the contours P ∈ Si and Q ∈ Si+1 by vertex lists P =
(p0, p1, . . .pm−1) and Q = (q0, q1, . . .qn−1), with pk, ql ∈ R

3. Since the
contours represent closed polygonal curves, p0 follows pm−1 and q0
follows qn−1. That is, the indices of P and Q must be interpreted
modulo m and n, respectively.

Because of the nature of the problem, the valid triangles of the mesh
are elementary triangles, for which one of the edges belongs to one of
the contours (P or Q) and the other two edges join this edge to a ver-
tex in the other contour. That is, an elementary triangle is of the form
(qj, qj+1, pi) or (pi+1, pi, qj) (see Figure 6.15).

In an elementary triangle, we distinguish two types of edges: we call
segments the edges that belong to the contours P and Q; we call span
the edges that join one contour to the other.

A polygonal mesh that reconstructs the region of the surface between
the contours P and Q has the following properties:

M1—each segment is the edge of exactly one triangle of the mesh
M2—if there exists a determined span, it is the common edge of two

triangles adjacent to the mesh.

PiPi Pi11

Qj11 QjQj

Figure 6.15: Elementary triangle.
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The surface defined by this mesh is called acceptable surface.

There exists a great number of meshes that satisfy the requirements,
M1 and M2 above. In order to better understand the valid meshes, we
define the directed graph G = (V, A) in which the nodes v ∈ V corre-
spond to the set of all the possible spans between the vertices of the
contours P and Q, and the arcs a ∈ A correspond to the set of elemen-
tary triangles of the mesh. More precisely,

V = {v = (i, j) : v �→ (pi, qj)}

A = {a = (i, j, k, l) : a �→ (pi+1, pi, qj), a �→ (qj, qj+1, pk)}.

We remark that an edge a = (vi,j, vk,l) represents a triangle delimited by
the spans (pi, qj) and (pk, ql). The other edge, given by (pi, pk) or (qj, ql),
belongs to the contour P or Q. Thus, elementary triangles satisfy one
of the constraints: i = k, l = j + 1, or k = i + 1, l = j.

Since the polygonal curves are closed, G is a toroidal graph (see
Figure 6.16).

Figure 6.16: Toroidal graph.
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A valid mesh corresponds to a cycle S in the graph G. The properties
M1 and M2 of an acceptable surface can be interpreted based on this
graph in the following form:

G1—for each index i = 0, . . . , m − 1, there exists exactly a unique arc
(vi,j, vk,j+1) ∈ S.

G2—if the vertex vi,j ∈ S exists, then exactly one arc aI ∈ S ends at vi,j,
and an arc aO departs from vi,j.

From the above remarks, we conclude that the number of valid
meshes increases exponentially with the number of vertices in the
graph (mn).

It is our goal to find a valid mesh that represents the best surface whose
boundary is defined by the contours P and Q. Thus, we have formulated
the reconstruction problem by contours as a combinatorial optimiza-
tion problem.

“Find the valid cycle of minimal cost in graph G.”

For this, we have to choose an appropriate metric that will be used to
provide quantitative information about the quality of the mesh. A local
metric associates with each arc (vi,j, vk,l) ∈ A a cost c : A → R

+. The
function c(vi,j, vk,l) estimates the triangle contribution corresponding
to the quality of the mesh.

There are several possible local metrics:

• volume—maximizing the volume is a good metric for convex
objects; nevertheless, it does not perform well for concave objects.
Moreover, this metric is very difficult to compute.

• edge length—minimizing the length of spans favors the con-
struction of ruled surfaces. The computation of this metric is
simple.

• area—minimizing the total area of the surface is, probably, the
most general metric. It works very well for concave and convex
surfaces and is easy to compute.
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We remark that we can define variants of the above metrics. For
example, normalize the pairs of contours such that both are mapped
into a unit-evolving box.

Back to our optimization problem, we need to compute the cycle S of
minimum cost according to the chosen metric and that satisfies prop-
erties G1 and G2.

The solution to the problem can be considerably simplified by using an
appropriate transformation in the graph G that reflects the properties
of the valid cycles. We define the graph G′ obtained from gluing two
copies of G. More precisely, G′ = (V ′, A′), where

V ′ = {vi,j : i = 0, . . . , 2m; j = 0, . . . , n}

and A′ is defined in, similarly, analogous to A.

The cost c′ of an edge in G′ is given by

c′(vi,j, vk,l) = c(vi mod m,j mod n, vk mod m,l mod n).

Note that, contrary to G, the transformed graph G′ is acyclic.

With this new formulation of the problem, we conclude that the set
of valid cycles in G is given by the paths γk ∈ G′ that have vk,0 e
vm+k,n, respectively, as initial and final vertices. To recover the cycle
Sk ∈ G equivalent to γk ∈ G′, we just need to take the coordinates vi,j as
vimod m,jmod n.

In this way, the solution to the problem is given by the path γk of
smallest cost for k ∈ (0, . . . , m − 1).

γmin = min
k=0,m−1

OptimalPath(k, m + k),

where the routine OptimalPath computes the shortest path joining the
vertices vk,0 and vm+k,m in G′.
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Note that since all the costs are positive, it is also possible in this case,
use Djkstra algorithm, to implement the routine OptimalPath.

Final Remarks

A more efficient version of the combinatorial optimization algorithm
described above uses the divide-and-conquer strategy. It exploits the
fact that if two optimal paths cross themselves, they must have a part
in common (Fuchs et al., 1977).

We remark that the problem of surface reconstruction from cuts is
more general than we have discussed in this section.

In the general case, there may exist several contours for each sec-
tion (i.e., the contour is not connected), and the complete problem is
divided into the following subproblems (Meyers et al., 1991):

• correspondence—find correspondences between contours in
each pair of adjacent sections

• bifurcation—when a unique contour in a section corresponds to
more than one contour in another section, this section must be
subdivided

• polygonization—find the polygonal mesh between two contours
on adjacent sections (this problem has been discussed here).

Another interesting remark is that the polygonal mesh produced by
the reconstruction algorithm can be coded in a compact form using a
triangle strip.

6.8.5 STEREO

Stereo reconstruction is one of the fundamental problems in com-
puter vision. The goal is to recover 3D information from a pair of 2D
images of a 3D scene. In a broad sense, this problem is the machine
vision equivalent of the binocular natural vision perception that allows



SECTION 6.8 APPLICATIONS IN COMPUTER GRAPHICS 195

humans to infer depth information of real-world scenes based on the
images from both eyes.

Stereo reconstruction has applications in many areas, such as robotic
navigation and geometric modeling.

The Geometry of Stereo Reconstruction

The basic geometric principle of 3D reconstruction from an image
pair is known as triangulation. In this setting, it is assumed that the
images come from cameras that have been calibrated (as presented in
Section 5.6.1). That is, the intrinsic and extrisic parameters of the two
cameras are known, as well as their relative geometric position.

Note that any visible 3D point X in the scene is projected into 2D points
x and x′ in each of the images. In stereo reconstruction, the unknowns
are the 3D coordinates of scene points, and the known information
consists of the corresponding image projections and the camera infor-
mation. Thus, the reconstruction problem can be formulated as fol-
lows. Given two corresponding points x ∈ I and x′ ∈ I′ in images I and
I′, as well as the camera calibration data, find the 3D point X whose
image is projected to x and x′.

The geometry of the problem is depicted in Figure 6.17. For each of the
two cameras, we have their centers of projection c and c′ with associated
coordinate systems. We are given also the corresponding image points
x and X. The triangulation principle is based on the fact that from these
parameters, we can compute two view rays r and r′, one for each cam-
era, such that intersect is exactly at the 3D point X. The construction
is simply done by taking r(t) = c + t(x − c), where c is the origin of the
ray and the vector (x − c) is the direction of the ray. Similarly for the
other ray, r′(t) = c′ + t(x′ − c′). We remark that the term triangulation
is used here because the points X, c, and c′ are the vertices of a triangle,
as can be observed in Figure 6.17.

The description above may give the wrong impression that triangula-
tion is all it is required for 3D stereo reconstruction. On the contrary,
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Figure 6.17: Stereo image pair and epipole geometry.

in a certain sense, triangulation is the easy part of the problem. The
perceptive reader may have noticed that in the statement of the tri-
angulation problem, we assumed known the correspondence between
image points x and x′. However, this knowledge may be automatic for
a human observer who has a high-level understanding of the scene but
is very difficult for a machine to compute just from raw images. So, in
order to perform triangulation, it is necessary first to compute corre-
spondences of points in the two images.

Summarizing, we can say that the problem of 3D reconstruction is
divided into three subproblems: calibration, correspondence, and tri-
angulation. Arguably, the hardest one is the correspondence problem.

The stereo correspondence involves recovering matching pixels cor-
responding to the same 3D feature in the two views of the scene.
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Finding matching pairs for all pixels in the two images is difficult to
solve accurately because such match can be highly ambiguous. This
inherent ambiguity comes from many factors, such as image noise,
specularities of objects, and lack of texture in the scene. The latter fac-
tor of uncertainty is well known in computer vision under the name of
window effect.

In a stereo pair, the difference between the image coordinates of match-
ing pixels is called disparity. The disparity is proportional to the depth
of the associated 3D point relative to the cameras. Also, pixels in one
image and their disparity determine the correspondence. Conversely,
the correspondence problem can be posed as finding the disparity asso-
ciated with each pixel in the image.

At first, it might appear that the correspondence problem requires a 2D
search on the neighborhood of a given pixel in the other image. But the
epipolar constraint reduces this search to a single line, which simplifies
the problem considerably.

To understand the epipolar constraint, let us give some definitions. The
baseline is the line joining the centers of projections c and c ′. The point
of intersection of the baseline with the image plane is called epipole.
Thus, the epipole is the image, in one camera, of the other camera’s
center of projection. The epipolar plane is the plane defined by a 3D
point X and the centers of projection c and c ′. The epipolar line is the
straight line of intersection of the epipolar plane with the image plane.
It is the image in one camera of a ray through the optical center and
image point in the other camera.

All epipolar lines intersect at the epipole (see Figure 6.17). Therefore,
a point x in one image generates a line l ′ in the other image on which
its corresponding point x ′ must lie. From this fact it is clear that the
search for correspondences is reduced from a 2D region to a line. This
is illustrated in Figure 6.17.

A final detail is that the epipolar lines have a general orientation on the
image plane. In order to simplify the computation, stereo algorithms
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Figure 6.18: Rectified stereo image pair.

usually perform a rectification of the images. Rectification determines a
transformation of each image plane such that pairs of conjugate epipo-
lar lines become collinear and parallel to one of the image axes. The rec-
tified images can be imagined as images acquired by a standard stereo
setup obtained by rotating the original cameras. The main advantage
of rectification is that computing stereo correspondences is reduced to
a search along the horizontal lines of the rectified images. Figure 6.18
shows a pair of rectified images and one epipolar line.

Stereo correspondence with graph cuts

The dense stereo correspondence problem can be posed as follows.
Every pixel p(x, y) in the first image has a particular disparity d with
respect to the matching pixel q(x, y) in the second image. Then, we have
set A of pixel pairs that may potentially correspond

A = {(p, q)|py = qy and 0 ≤ qx − px ≤ K}, (6.16)

where d = qx − px is the disparity of the pair (p, q).

Our objective is to find a subset of A containing the actual
corresponding pairs. This is equivalent to computing an assignment
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function f (p, q) for (p, q) ∈ A, such that f (p, q) = 1 if pixels p and q
correspond and f (p, q) = 0 otherwise. When the value of f is 1, the
assignment is called active.

Here, it is assumed that the disparities d belong to the interval [0, K].
This is justified because in a stereo pair, the disparity tends to vary
within a fixed range. Disparity also varies smoothly over the image,
except at depth discontinuities. These characteristics make the dense
stereo correspondence suitable to be posed as an energy-minimization
problem that can be effectively solved by the graph cuts method
(Section 6.6). Furthermore, energy models like the Potts energy can
help incorporate the above contextual properties.

One of the aspects that make stereo correspondence a hard problem
is the presence of occlusions. An occlusion occurs when a 3D point is
visible in only one of the images of a stereo pair. Typically, occlusions
will be present near depth discontinuities in the scene.

To model occlusions, we use the concept of unique configuration. Let
A( f ) be the set of active assignments according to f, and Np( f ) =
{(p, q) ∈ A( f )} be the active assignments that involve the pixel p.
A configuration f is called unique if each pixel is present in, at most,
one active assignment. That is, |Np( f )| ≤ 1 for all pixels p ∈ P. Such
condition guarantees the consistency of the correspondence. However,
occluded pixels are identified by having |Np( f )| = 0.

The energy function associated with a unique configuration f is com-
posed of three terms:

E( f ) = Ed( f ) + Eo( f ) + Es( f ). (6.17)

The first term is a data term that imposes a penalty based on the dif-
ference of intensities between corresponding pixels p and q

Ed =
∑

(p,q)∈A( f )

D(p, q), (6.18)

where usually D(p, q) = (I(p) − I(q))2.
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The second term handles occlusions. It imposes a penalty for occluded
pixels:

Eo =
∑
p∈P

cpT(|Np( f )| = 0), (6.19)

where T is the indicator function and cp is a constant.

The third term is the smoothness term that encourages configurations
in which adjacent pixels have close disparity values.

Es =
∑

{(p,q),(p′,q′)}∈A

V((p, q), (p′, q′))T( f (p, q) �= f (p′, q′)), (6.20)

where V is the Potts model for discontinuity preserving energy (see
Eq. 6.5). Note that here the Potts energy is applied to assignments and
not to pixels.

We remark that the energy function is finite only for unique configu-
rations. A nonunique f has E( f ) = ∞ and is not considered in the
optimization.

Minimizing the correspondence energy function (6.17) is an NP-hard
problem. But it can be solved approximately using the expansion-move
algorithm of Section 6.6.4.

In order to apply the expansion-move algorithm, it is necessary to con-
struct the graph G according to the structure of the problem and set the
edge weights in G based on the energy function.

The key idea for extending the notion of α-expansions to the stereo
problem is that the labels are disparities. Thus, the vertices of the graph
correspond to assignments and the edges are links to assignments with
the same label.

For an assignment a = (p, q), let d(a) = (px − qx) be its disparity value.
Let Aα be the set of all assignments in A for which d(a) = α. In this
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setting, an α-expansion move on a configuration f is a subset of A( f ) ∪
Aα, i.e., some assignments are replaced with new assignments with label
(disparity) α.

The graph G will have active assignments as vertices. In an α-expansion,
active assignments may become inactive and inactive assignments with
disparity α may become active.

At each cycle, the graph is defined by the previous and current α
assignments. Starting with a base configuration f 0, active assignments
for a new configuration f̃ will be a subset Ã = A0 ∪ Aα such that A0 =
{a ∈ A( f 0)|d(a) �= α} and Aα = {a ∈ A|d(a) = α}. The new configu-
ration then is defined by f̃ A( f̃ ) = Ã .

The vertices of G are given by the assignments a ∈ Ã plus the termi-
nals s, t. The edges in G fall into two categories: first, every a is con-
nected to both s and t; second, for a pair of assignments (a1, a2) in the
neighborhood system N ⊂ {(a1, a2)|a1, a2 ∈ A} such that a1 = (p, q) ,
a2 = (p′, q′) with (p, p′) or (q, q′) neighbor pixels, there will be edges
(a1, a2) and (a2, a1), as well as vertices a1 = (p, q) and a2 = (p, r) with
a common pixel p.

The edge weights follow in a straightforward manner from the energy
function E and structure of the graph G.

Now, let us show an example of using graph cuts to solve the stereo
correspondence problem. The example uses a standard data set from
the University of Tsukuba. It is composed of a stereo image pair with
hand-labelled integer disparities. Figure 6.19 depicts the data set. The
images have a resolution of 384 by 288 pixels. In the example, the dis-
parities have been quantized to 16 levels.

Figure 6.20 shows the result of using the α-expansion graph cuts
algorithm with the Tsukuba stereo pair. Figure 6.20(a) shows the
signed disparity error (where gray means zero). Figure 6.20(b) shows
bad pixels (i.e., pixels with absolute disparity error greater than 1.0).
Figure 6.20(c) shows computed disparities.
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(a) (b) (c)

Figure 6.19: Tsukuba data set: (a) left image; (b) right image; (c) ground truth.

(a) (b) (c)

Figure 6.20: Graph cuts solution: (a) signed disparity error; (b) bad pixels; (c) disparities.

For comparison, in Figure 6.21(a), the solution was computed using
the adaptive cost aggregation algorithm from Wang et al. (2006), and
in Figure 6.21(b) the solution was computed using the region-tree algo-
rithm of Lei et al. (2006). Observe that the results produced by these
algorithms are clearly inferior to graph-cuts stereo.

Final Remarks

In this subsection, we discussed the problem of stereo matching using
graph cuts. The stereo reconstruction is a specific case of a more
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(a) (b)

Figure 6.21: Stereo solution computed with other algorithms: (a) Wang et al.

(2006) (b) Lei et al. (2006)

general problem of multicamera scene reconstruction, aiming to
compute the 3D shape of an arbitrary scene from a set of n images
taken from known viewpoints. This problem is considerably harder
than stereo reconstruction esssentially due to the difficulty of reasoning
about visibility. Nonetheless, the graph-cuts method has been applied
successfully to multicamera reconstruction by Kolmogorov and Zabih
(2002). The solution required the use of an energy function of class F3.

6.9 COMMENTS AND REFERENCES

The general problem of multidimensional quantization is NP-
complete. There exist algorithms based on several heuristics, such as
“cluster analysis,” that although do not guarantee an optimal solution,
produce good results. The interested reader should take a look at
Velho et al. (1997).

The problem of optimization for interactive visualization is closely
related to the computation of meshes of variable resolution adapted
to the view-dependent visualization conditions (Hoppe, 1997).
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An evaluation of dense two-frame stereo correspondence algorithms
was made by Scharstein and Szeliski (2002).

Graph-cuts methods have been used to solve many problems in com-
puter graphics and vision. Some of the recent applications include
interactive digital photomontage (Agarwala et al., 2004); texture syn-
thesis (Kwatra et al., 2003), and foreground extraction (Marsh et al.,
2006; Rother et al., 2004).

The shortest path algorithm has several applications in image process-
ing and analysis. A popular technique for segmentation using short-
hest path is called intelligent scissoring (Li et al., 2004; Mortensen and
Barrett, 1995, 1998; Wong et al., 2000).

Discrete optimization can be used in computer animation to synthe-
size motion sequences from a database of motion clips. The database is
typically built from motion-captured data. The basic idea is to generate
complete sequences of motion by concatenating various short motion
clips. In order to do that first the so-called motion graph is constructed.
In this structure, every edge is a clip of motion, and nodes serve as
choice points connecting clips. Any sequence of nodes, or walk, is itself
a valid motion. Optimization techniques are used both to construct the
motion graph and to extract motion sequences from a graph (Kovar
et al., 2002; Safonova and Hodgins, 2007).

The same idea of motion graphs can also be used in the context of
video, in this case to generate cyclic video textures (Schödl et al., 2000)
or nonlinear editing structures (Sand and Teller, 2004).
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Schödl, A., R. Szeliski, D. H. Salesin, and I. Essa. Video textures. ACM
Press Association for Computing Machinery. Computer Graphics
Proceedings, Annual Conference Series. New York, NY: ACM Press,
489–498, 2000.

Velho, L., J. Gomes, and M. R. Sobreiro. Color image quantization
by pairwise clustering. In SIBGRAPI X, Brazilian Symposium Of
Computer Graphics and Image Irocessing. Campos do Jordao, SP,
Los Alamitos, CA: IEEE Computer Society, 203–210, 1997.

Wang, L., M. Liao, M. Gong, R. Yang, and D. Nister. High-quality
real-time stereo using adaptive cost aggregation and dynamic
programming. 3DPVT ’06: Proceedings of the Third International
Symposium on 3D Data Processing, Visualization, and Trans-
mission (3DPVT’06). Washington, DC: IEEE Computer Society,
798–805, 2006.

Wong, K. C.-H., P.-A. Heng, and T.-T. Wong. Accelerating “intelli-
gent scissors” using slimmed graphs. Journal of Graphics Tools,
5(2):1–13, 2000.



208 COMBINATORIAL OPTIMIZATION CHAPTER 6

Wu, X. Color quantization by dynamic programming and principal
analysis. ACM Transactions on Graphics, 11(2):348–372, 1992.

Zhou, Y., A. Kaufman, and A. W. Toga. 3D skeleton and centerline gen-
eration based on an approximate minimum distance field. The
Visual Computer, 14(7):303–314, 1998.



7 GLOBAL OPTIMIZATION

In the preceeding chapters, we have seen general-purpose methods for
continuous and discrete problems. The methods for continuous prob-
lems were only able to find local minima, in general. In the case of
discrete problems, the solution space is frequently too large to find
the global minima in a reasonable time; we need to use heuristics.
In this chapter, we describe some approaches to finding the global
minima, using heuristics for discrete problems and guaranteed
methods for continuous problems.

7.1 TWO EXTREMES

As we have seen in Chapter 2, many optimization problems can be for-
mulated in the following way: among a finite set of candidates, find one
that best fits a given criterion. Since the set of candidates is finite, such
problems are apparently easy to solve, using exhaustive enumeration.
We simply enumerate all candidates in succession, evaluate the opti-
mality criterion on each candidate, and select the best candidate at

209
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the end. In practice, this solution does not work because the set of
candidates is too large although it is finite. This happens for all the
main combinatorial problems, such as the famous traveling salesman
problem.

For problems whose candidate space is huge, an alternative approach
to their solution is to use stochastic methods. We choose a candidate
at random and evaluate the optimality criterion on it. We repeat this
process many times, and we select the best candidate found. In other
words, stochastic methods perform a “random walk” in the space of
candidates.

These two approaches—exhaustive enumeration and random walk—
are two extreme examples of methods that explore the space of
candidates. Exhaustive enumeration is systematic and explores the
candidate space completely, which can be very slow for huge spaces.
Random walk is not at all systematic and explores the candidate space
in no particular order and without any method. In both cases, the only
information “learned” by the method is which is the best candidate at
a given moment. None of the methods learns or exploits the structure
of the space of candidates.

7.2 LOCAL SEARCH

A more clever solution is to use local search, also known as “hill
climbing.” Starting at an initial candidate, we “move” always in the
most promising direction, i.e., the direction in which the objective
function grows (Figure 7.1). When the objective function has a sin-
gle global maximum, then this solution can be very efficient, but in
general, this method tends to get caught and stuck in local maxima
because, at these points, the objective function does not grow in any
direction (i.e., there is no “hill” to climb). In Figure 7.1, starting the
“climb” at the black dot, we can reach the gray dot, which is a local
maximum, but we cannot reach the higher peaks on the right and on
the left.
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local

global

local

Figure 7.1: Local maxima × global maxima in hill climbing (Beasley et al.,
1993).

7.3 STOCHASTIC RELAXATION

From the previous discussion, it is clear that efficient solutions to
the global optimization problem must use methods that perform
a systematic—but not exhaustive—exploration of the space of can-
didates and that are still flexible enough to try several different
candidates to avoid getting stuck in local maxima.

The technique of stochastic relaxation, also known as simulated anneal-
ing, can be seen as a clever combination of local search and random
walk. We start at a random point in the space of candidates. At each
step, we move in a random direction. If this movement takes us to a
higher point, then we accept this point as the new current point. If this
movement takes us to a lower point, then we accept this point with
probability p(t), where t is the simulation time. The value of the func-
tion p starts near 1 but decreases to 0 when t grows, typically in an
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exponential way. Thus, our exploration of the space of candidates starts
as a random walk and ends as a local search.

The physical analogy that motivates this method is the process of cool-
ing of a solid object: when the temperature is high, the solid is soft and
easily shaped; as the temperature increases, the solid becomes more
rigid, and it is more difficult to change its shape.

Simulated annealing is able to escape from local minima, but because
only one candidate is considered in turn, this method also learns very
little about the structure of the space of candidates.

7.4 GENETIC ALGORITHMS

Another class of flexible systematic methods for global optimization
is the class of genetic algorithms. Algorithms in this class are based on
ideas from biology, which we now review briefly.

7.4.1 GENETIC AND EVOLUTION

In the optimization problems that we shall consider, the space of
candidates can be parametrized by a small number of parameters,
as described in Section 2.1. Using the terminology of biology, each
candidate represents an individual of a population. Each individual
is determined by the genetic content, or genotype, which is stored in
chromosomes.1 Each parameter is called a gene. Each gene controls one
aspect of the individual and can take only a finite number of different
states (or values), called alleles. The set of gene values completely deter-
mines the individual; we say that the individual is the phenotype or
expression of the genotype.

1 In nature, individuals possess many chromosomes; for instance, human beings possess 46
chromosomes, totaling fifty to hundred thousand genes.
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Individuals are immersed in an environment, which is under
continuous change. According to Darwin,2 individuals in nature
compete among themselves to get food, shelter, partners, etc.; only the
individuals who are able to face environmental changes manage to sur-
vive, reproduce, and preserve their characteristics. In other words, the
evolution of the individuals is performed by the selection of the fittest.
Genetic algorithms use the objective function (or a monotone variant
of it) as a fitness criterion of individuals.

Two genetic mechanisms are essential so that a population can evolve
and adapt itself to changes in the environment: mutations and sexual
reproduction. Mutations are random variations in genotypes. Some
mutations are favorable to survival; other mutations are unfavor-
able, and the individuals who carry them are eliminated by selection.
Thus, the existence of mutations allows populations to adapt to envi-
ronmental changes. However, if mutations were the sole adaptation
mechanism, evolution would be extremely slow because nature is con-
servative: mutations are not very frequent, and they are not always
favorable. Moreover, an individual would never have only favorable
mutations. Sexual reproduction, which randomly mixes the genetic
material of one or more individuals, allows a much faster evolution
because it allows individuals to inherit favorable characteristics from
more than one source.

7.4.2 GENETIC ALGORITHMS FOR OPTIMIZATION

Inspired by the theory of evolution described in the previous section,
genetic algorithms explore the candidate space of an optimization prob-
lem in a way that is both systematic and stochastic, as described
below:

1. Begin with an initial population with random genotypes or com-
puted using some heuristic that is specific to the given problem.
Each gene represents a parameter of the candidate space.

2 Charles Darwin (1809–1882), English naturalist, who founded the modern theory of evolu-
tion by natural selection, described in his classic work The Origin of Species.
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2. At each step of the evolution, some individuals have mutations
and some individuals reproduce.

3. All individuals are evaluated according to a fitness criterion that
is based on the objective function. Only the fittest individuals
survive to the next generation.

4. Evolution stops when the fittest of the best individual has con-
verged to some value (that we hope is close to the global opti-
mum) or after a fixed number of steps.

There are many variations of this basic scheme; for instance, steps 2
and 3 can be interchanged: only the fittest individuals have mutations
or reproduce.

There are many details to be settled and many parameters to be
adjusted: the representation of genotypes; the size and nature of the
initial population; the frequency and nature of mutations and repro-
ductions; the fitness criterion for choosing the best individuals; the cri-
teria for convergence and divergence of the evolution. The art in the use
of genetic algorithms lies exactly in handling these details according to
each problem to be solved.

In the original work of Holland (1975), who introduced the theore-
tical basis for genetic algorithms, genotypes contained only one chro-
mosome, which was represented by bit strings, one bit for each gene. In
this case, the basic genetic operations—mutation and reproduction—
are easy to define and understand. A mutation in a bit string is simply
a change in a single bit: from 0 to 1 or from 1 to 0. Sexual reproduction
mimics the crossover mechanism that occurs in nature: the chromo-
somes of the parents are cut at a crossing point and recombined in a
crossed fashion, yielding two offsprings, as shown in Figure 7.2. These
are the simplest rules; more complicated rules can (and should) be for-
mulated for specific situations.

More recently, Koza (1992) proposed the use of programs instead of
bit chains as genotypes in the exploration of spaces that are not natu-
rally described by a finite number of parameters but in which the can-
didates still have a finite description. Sims (1991a) was the first to use
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children

point of crossover

parents

point of crossover

1 0 1 0 0 0 1 1 1 0

1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0

0 0 1 1 0 1 0 0 1 0

Figure 7.2: Sexual reproduction by chromosomal crossover (Beasley et al., 1993).

this kind of genetic algorithm in computer graphics for image synthesis
and modeling.

7.4.3 THE TRAVELING SALESMAN PROBLEM

As a concrete example of the use of genetic algorithms in discrete
optimization problems, consider the classic traveling salesman prob-
lem. We wish to visit n cities in a region using a closed circuit of
least length. If we number the cities from 1 to n, a tour for the trav-
eling salesman can be represented by a permutation of the numbers
from 1 to n.

Michalewicz (1994) describes the following genetic model for this
problem. Individuals represent the possible tours. The fitness of an
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individual is given by the length of the tour that the individual
represents, which can be computed by adding the distance between
consecutive cities in the tour. The shortest the tour, the fitter the
individual.

Each individual has a single chromosome with n genes; each gene can
take integer values from 1 to n. (Note that genes are not bit strings in
this formulation.) Not all possible chromosomes represent valid indi-
viduals because only permutations are valid. Thus, the candidate space
has n! elements. (For n=100, we have 100!≈ 10158 elements!) Muta-
tion occurs by changing the value of one or more genes, or the order of
the cities in a chromosome. Crossed reproduction combines segments
of the two tours. If these operations do not take the nature of the prob-
lem into account, it is possible (and even probable) to generate chro-
mosomes that do not represent permutations. These chromosomes
must be considered defective, and the individuals do not survive. In
this case, the candidate space actually has nn elements, only n! of which
are considered valid.

Michalewicz (1994) reports that, for n = 100, starting with an ini-
tial random population, after 20000 generations, we typically obtain
a solution to the traveling salesman problem whose length is less than
10% above the optimal value.

7.4.4 OPTIMIZATION OF A UNIVARIATE FUNCTION

We shall now see an example of continuous optimization (also
from Michalewicz, 1994). We want to maximize the function f (x) =
x sin(10πx) + 1 in the interval [−1, 2]. As shown in Figure 7.3, this
function has many local maxima but only one global maximum, which
occurs at x ≈ 1. 85.

Michalewicz (1994) describes the following genetic model for this
problem. Individuals represent real numbers, and their fitness is mea-
sured directly by the function f : the larger the value of f, the fitter the
individual.
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Figure 7.3: Graph of f (x) = x sin(10πx) + 1 on [−1, 2].

Each individual has a single chromosome with n genes (each gene is a
single bit). The individual corresponding to one such chromosome is
a point in the uniform mesh of points that has 2n points in the interval
[−1, 2]. More precisely, if the genotype is

x = (xn. . .x1),

where each xi is a bit, the the phenotype is the following real number:

x = −1 +
3

2n − 1

n∑
i=1

xi2i−1.

In other words, the integers from 0 to 2n − 1, which are exactly those
representable with n bits, are linearly mapped to the interval [−1, 2].
This mapping transforms the continuous problem into a discrete
problem, whose solution approximates the solution of the continuous
problem. This approximation can be as good as desired: we just need
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to use a sufficiently fine discretization, i.e., a sufficiently large number
of bits in the chromosomes.

Mutations occur by randomly changing one or more bits, with prob-
ability given by a user-defined mutation rate. To mutate a bit in a
genotype x, we randomly select a position k between 1 and n and we
set xk ← 1 − xk. Two individuals mate by mixing their bits: we ran-
domly select a position k between 0 and n; the chromosomes of the par-
ents are split after position k and recombined, yielding two offsprings.
More precisely, if the parents are a = (an . . . a1) and b = (bn . . . b1),
then the offsprings are (an . . . akbk−1 . . . b1) and (bn . . . bkak−1 . . . a1)
(see Figure 7.2).

Michalewicz (1994) reports a solution to this problem that locates
the global maximum with a precision of six decimal places. For
this, he used n = 22, an initial random population of 50 indi-
viduals, mutation rate equal to 0.01, and crossing rate equal
to 0.25. After 150 generations, the fittest individual had geno-
type 1111001101000100000101. This individual corresponds to the
approximate solution x̂ = 2587568/1398101 ≈ 1.850773, whose fit-
ness is f (x̂ ) ≈ 2.850227. The global maximum of f is f ∗ ≈ 2.850273,
attained at x∗ ≈ 1.850547. Thus, the result has an absolute error
less than 5 × 10−5 and a relative error less than 2 × 10−5—a good
solution.

7.5 GUARANTEED GLOBAL OPTIMIZATION

In this section, we revisit the unconstrained continuous minimization
problem, seen in Chapter 4. Given a box3 Ω ⊆ R

d and an objective
function f :Ω → R, find its global minimum f ∗ = min{ f (x) : x ∈ Ω }
and the set of all points in Ω where this minimum value is attained,
Ω∗( f ) = { x∗ ∈ Ω : f (x∗) = f ∗ }.

3 A box is the Cartesian product of d real intervals: [a1, b1] × · · · × [ad, bd].
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In Chapter 4, we saw methods that find local minima. In this section,
we are interested in finding the global minimum. In general, it is not
possible to find this minimum exactly, and so we shall consider an
approximate, numerical version of the problem. Instead of finding f ∗
and all minimum points Ω∗( f ) exactly, we seek only to identify some
real interval M that is guaranteed to contain the global minimum f ∗
and some subset Ω̂ of Ω that is guaranteed to contain Ω∗( f ). The goal
then is to make M and Ω̂ as small as possible for a given computation
budget (i.e., time or memory).

Methods that sample the objective function f at a finite set of points
inΩ cannot reliably find the global minimum f ∗ because f may oscillate
arbitrarily between these sample points.

Consider the following example (Moore, 1991). Choose a small subin-
terval [x1, x2] ⊆ Ω and define

g(x) = f (x) +
{

0, for x 	∈ [x1, x2]
(x − x1)(x − x2)1020, for x ∈ [x1, x2].

The function g coincides with f, except on the interval [x1, x2] in which
it attains a very small minimum. If this interval is sufficiently small
(for instance, if x1 and x2 are consecutive floating-point numbers),
then it is not possible to notice the difference between f and g by point
sampling.

What is needed for the reliable solution to the global optimiza-
tion problems is to replace point sampling by reliable estimates of
the whole set of values taken by f on a subregion X of Ω. (This
would allow us to notice the difference between f and g in the pre-
vious example.) More precisely, if for each X ⊆ Ω we know how
to compute an interval F(X) that is guaranteed to contain f (X) =
{f (x) : x ∈ X}, then it is possible to eliminate parts of Ω that can-
not contain global minimizers. The parts that cannot be elimi-
nated are subdivided so that after reaching a user-defined tolerance,
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whatever is left4 of Ω must contain all global minimizers and so serves
as an approximate solution Ω̂. The aim of this section is precisely
how to compute such interval estimates F(X) and how to use those
estimates to eliminate parts of Ω.

7.5.1 BRANCH-AND-BOUND METHODS

A branch-and-bound algorithm for unconstrained global minimiza-
tion alternates between two main steps: branching, which is a recursive
subdivision of the domain Ω, and bounding, which is the computa-
tion of lower and upper bounds for the values taken by f in a subre-
gion of Ω. By keeping track of the current best upper bound f̂ for the
global minimum f ∗, one can discard all subregions whose lower bound
for f is greater than f̂ because they cannot contain a global minimizer
of f. Subregions that cannot be thus discarded are split and the pieces
are put into a list L to be further processed. Thus, at all times, the
set Ω̂ = ∪L, given by the union of all subregions in L, contains all
possible global minimizers and so is a valid solution to the global
minimization problem, as defined at the beginning of this section.

More precisely, the branch-and-bound solution to the global mini-
mization problems starts with L = {Ω} and f̂ = ∞ and repeats the
steps below while L is not empty:

1. select one subregion from L
2. if X is small enough, then accept X as part of Ω̂
3. compute an interval estimate F(X) for f (X)
4. if inf F(X) > f̂ , then discard X

5. update f̂ ← min( f̂ , sup F(X))
6. subdivide X into X1 and X2
7. add X1 and X2 to L.

4 “When you have eliminated the impossible, whatever remains, however improbable, must
be the truth.”—Sherlock Holmes in The Sign of Four, Arthur Conan Doyle (1889).
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Figure 7.4: Domain decomposition performed by branch-and-bound.

Figure 7.4 shows the decomposition of Ω= [−10, 10] × [−10, 10]
obtained by a branch-and-bound algorithm to minimize Matyas’s
function

f (x1, x2) = 0.26 (x2
1 + x2

2) − 0.48 x1x2,

whose global minimum f ∗ = 0 is attained at Ω∗ = {(0, 0)}. The white
regions have been discarded, and the approximate solution Ω̂ appears
in gray.

The basic branch-and-bound algorithm outlined above admits endless
variations, depending on how the selection, branching, and bounding
steps are implemented.

The main criteria for selecting from L the next box X to be examined
at each step are as follows:

• X is the newest box in L. In this case, the list L is being used as a
stack and Ω is explored in depth.
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• X is the oldest box in L. In this case, the list L is being used as a
queue and Ω is explored in breadth.

• X is the box in L that has the smallest lower bound for f. In this
case, the list L is being used as a priority queue and Ω is explored
at each step by giving priority to the regions that seem more
promising to contain a global minimizer.

The simplest branching method is to bisect the current box orthogo-
nally to its widest direction. Cyclic bisection (Moore, 1979) is another
natural choice for branching. For reviews of branching methods and
strategies for selecting subregions from L, including recent results, see
Berner (1996), and Csendes and Ratz (1997).

In Section 7.6, we describe how to implement the bounding step,
i.e., how to compute interval estimates F(X) for f (X).

7.5.2 ACCELERATING INTERVAL BRANCH-
AND-BOUND METHODS

Due to overestimation in interval estimates F(X), pure branch-and-
bound algorithms tend to spend a great deal of time trying to eliminate
regions close to local minimizers. Therefore, in practice, it is essential
to use additional tests to accelerate convergence.

The simplest additional test is the midpoint test. At each step, the objec-
tive function f is evaluated at the center of the current subregion X,
and this value is used to update the current best upper bound f̂ for the
global minimum f ∗. This test tends to compensate for possible overes-
timation in F(X) by using an actual point of f (X).

The following conditions are sufficient for the convergence of interval
branch-and-bound algorithms: the objective function f is continuous,
the branching step reduces the diameter of boxes to zero, and the diam-
eter of F(X) tends to zero as the diameter of X goes to zero. Better results
are possible when f is sufficiently differentiable; we can apply the nec-
essary first- and second-order tests discussed in Chapter 4.
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The monotonicity test computes interval estimates for the components
of the gradient ∇f in a subregion X. If any of these estimates does not
contain zero, then f is monotone in the corresponding direction and
X cannot contain a local minimizer. The convexity test computes inter-
val estimates for the components of the Hessian ∇2f in X. If these esti-
mates show that the Hessian matrix is positive definite over X, then
again X cannot contain a local minimizer.

These high-order tests are more expensive but can discard large
subregions of Ω. Moreover, they can be combined with the methods
discussed in Chapter 4 to locate subregions X that contain a single local
minimizer, which is then computed with a local method (not an inter-
val method), thus avoiding excessive subdivision of X.

7.5.3 CONSTRAINED OPTIMIZATION

The branch-and-bound method described above for unconstrained
problems can be adapted for solving constrained problems:

min f (x)
subject to gi(x) = 0, i = 1, . . . , m

hj(x) ≥ 0, j = 1, . . . , p.

In addition to the interval estimate F for f, we also need interval
estimates Gi and Hj for the restrictions gi and hj, respectively. At
each step, we test whether the subregion X under examination is
feasible and discard it if it is not. More precisely, if Gi(X) does
not contain zero, then the restriction gi(x) = 0 is not satisfied
in X; if Hj(X) contains only negative numbers, then the restric-
tion hj(x) ≥ 0 is not satisfied in X. Subregions that are too small
and have not been eliminated are considered feasible. Details of this
method can be seen in Baker Kearfott (1996), Hansen (1988), and
Ratschek and Rokne (1988).

An important subproblem is to determine whether a constrained
problem is feasible, i.e., whether it is possible to satisfy all given
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restrictions in Ω. Many times, the goal is precisely to find the feasible
region:

Ω̃ = { x ∈ Ω : gi(x) = 0, hj(x) ≥ 0 }.

In these cases, the objective function is not relevant and can be
taken constant. The goal then becomes simply to solve the system of
equations and inequalities given by the restrictions. In this case, the
elimination of those parts that are not feasible, as described above, is
sufficient to yield an approximation Ω̂ for Ω̃.

7.6 RANGE ANALYSIS

Range analysis is the study of the behavior of real functions based on
interval estimates for their set of values. More precisely, given a func-
tion f :Ω → R, range analysis provides an inclusion function for f, i.e.,
a function F defined on the subsets of Ω such that F(X) is an interval
containing f (X), for all X ⊆ Ω. Thus, the inclusion function F provides
robust estimates for the maximum and minimum values of f in X. The
estimates provided by F must be robust but are not required to be tight.
In other words, F(X) has to contain f (X) but may be strictly larger.
Robust interval estimates, hence, play an essential role in the correct-
ness of interval branch-and-bound algorithms.

Any method that uses an inclusion function to solve a global optimiza-
tion problem actually provides a computational proof that the global
minimum is in the interval M and that all points of Ω where this min-
imum is attained are in Ω̂, which no method based on point sampling
can do.

The efficiency of interval methods depends on the quality of the inclu-
sion functions used, i.e., on how close the estimate F(X) is to the
exact range f (X). Here, as elsewhere, one usually trades quality for
speed: techniques that provide tighter bounds are usually more expen-
sive. However, tighter estimates often allow the algorithm to discard
many regions that contain no minimizer at an earlier stage before
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they get subdivided, indicating that less range estimations need to be
performed, and the algorithm runs faster as a whole.

There are special range analysis techniques for some classes of func-
tions. If f is a Lipschitz function with Lipschitz constant L, then by
definition we have

|f (x) − f (y)| ≤ L|x − y|,

for all x, y ∈ X. So, a simple and fast estimate for f (X) is given by

F(X) = [ f (x0) − Lδ, f (x0) + Lδ],

where x0 is an arbitrary point of X and δ = max{|x − x0| : x ∈ X }. For
instance, we can take x0 as the midpoint of X and δ as half the diameter
of X. Note that if we know how to estimate the derivative of f, then the
mean value theorem implies that f is a Lipschitz function.

If f is a polynomial function of degree n in the interval [0, 1], then we
can represent f in the Bernstein–Bézier basis of degree n:

f (x) =
n∑

i=0

biB
n
i (x),

where

Bn
i (x) =

(n

i

)
xi(1 − x)n−i.

From this representation, we can take F(X) = [minbi, maxbi] because

Bn
i (x) ≥ 0 and

n∑
i=0

Bn
i (x) = 1.

A similar result holds for multivariate function in domains of the form
Ω = [a1, b1] × · · · × [ad, bd].

We shall now describe interval arithmetic, a classical range analysis of
wide applicability.
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7.6.1 INTERVAL ARITHMETIC

One of the main problems with the theory and practice of numeri-
cal algorithms is the control of errors due to representation of the real
numbers as the discrete set of floating-point numbers of fixed preci-
sion in use in digital computers. These rouding errors are not the same
as the approximation errors in each algorithm, which occur because the
desired solutions cannot be found using a finite number of elementary
operations. Rounding errors are present even in elementary arithmetic
operations, such as addition and multiplication.

A simple and a common approach to estimating the error in a floating-
point computation is to repeat it using more precision and compare the
results. If the results agree in many decimal places, then the computa-
tion is assumed to be correct, at least in the common part. However,
this common practice can be seriously misleading, as shown by the fol-
lowing simple example (Rump, 1988).

Consider the evaluation of

f = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y),

for x = 77617 and y = 33096. Note that x, y, and all coefficients in f are
exactly representable in floating point. Thus, the only errors that can
occur in the evaluation of f are rounding errors. Rump (1988) reports
that computing f in FORTRAN on an IBM S/370 mainframe yields

f = 1.172603 . . . using single precision

f = 1.1726039400531 . . . using double precision

f = 1.172603940053178 . . . using extended precision.

Since these three values agree in the first seven places, common prac-
tice would accept the computation as correct. However, the true value
is f = −0.8273960599 . . . ; not even the sign is right in the computed
results! (The problem does not occur only in FORTRAN or only in the
IBM S/370. Repeat this computation using your favorite programming
language or calculator.)
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Interval arithmetic (IA) was invented by Moore (1966) with the explicit
goal of improving the reliability of numerical computation. Even if it
cannot make rounding errors disappear, it can at least be used to track
the occurrence of damaging rounding errors and provide a measure
of the impact of rounding errors in the final result. For instance, in
Rump’s example, IA would probably return a very large interval, which
still contained the correct answer but too large to give its exact location.
Nevertheless, a very large interval would certainly alert the user that the
computation was severely damaged by rounding errors.

For our purposes, the most important feature of IA is that it is the
natural tool for range analysis (Moore, 1966, 1979; Ratschek and
Rokne, 1984), allowing us to implement reliable global optimization
methods (Baker Kearfott, 1996; Hansen, 1988; Ratschek and Rokne,
1988).

In IA, a real number x is represented by a pair of floating-point num-
bers [a, b], corresponding to an interval that is guaranteed to contain x,
such that a ≤ x ≤ b. In this way, IA provides not only an estimate for
the value of x (the midpoint (a + b)/2) but also bounds on how good
this estimate is (the width of the interval, b − a).

The real power of IA is that we can operate with intervals as if they
were numbers and obtain reliable estimates for the results of numerical
computations, even when implemented in floating-point arithmetic.

To implement a numerical algorithm with IA, it is enough to use
interval versions of the elementary operations and function compo-
sition. For instance, we have the following interval formulas for the
elementary arithmetic operations:

[a, b] + [c, d] = [a + c, b + d]
[a, b] − [c, d] = [a − d, b − c]
[a, b] × [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

[a, b]/[c, d] = [a, b] × [1/d, 1/c], if 0 	∈ [c, d].

With a little extra work, we can write formulas for all elementary func-
tions, such as square root, sine, cosine, logarithm, and exponential.
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Therefore, if we know how to write an algorithm for computing a func-
tion f on n variables x1, . . . , xn, then we know how to write an algorithm
for computing an interval estimate F(X) for f over X = [a1, b1] × · · · ×
[an, bn]: simply compose the interval versions of the elementary oper-
ations and functions in the same way they are composed to evaluate f.
This is specially elegant to implement with programming languages
that support operator overloading, such as C++, but IA can be easily
implemented in any programming language. There are several imple-
mentations available on the Internet (Kreinovich, n.d.)

The Dependency Problem

A limitation of IA is that its range estimates tend to be too conserva-
tive: the interval F(X) computed as estimate for the range of values
of an expression f over a region X can be much wider than the exact
range f (X). This overconservatism of IA is particularly severe in long
computation chains—such as the ones in computer graphics—and one
frequently gets interval estimates that are too large, sometimes to the
point of uselessness. This happens even in computations that are not
severely affected by rounding errors.

The main reason for this overconservatism is the implicit assumption
that operands in primitive interval operations are mutually indepen-
dent. If there are dependencies among the operands, then those for-
mulas are not the best possible because not all combinations of values
in the operand intervals will be attained; the result interval will then be
much wider than the exact range of the result quantity. This problem
is called the dependency problem in IA.

An extreme example of this problem is the expression x − x. Although
its value is always zero, this expression is computed blindly in IA as

x = [a, b]
x − x = [a − b, b − a].

Thus, the width of the interval x − x, which should be zero, is twice the
width of x.
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A less extreme and a more typical example is x(10 − x) for x in [4, 6]:

x = [4, 6]
10 − x = [10, 10] − [4, 6] = [4, 6]

x(10 − x) = [4, 6] · [4, 6] = [16, 36].

Note that the result [16, 36] is 20 times larger than [24, 25], which is
the exact range of x(10 − x) over [4, 6]. This discrepancy is due to the
inverse dependency that exists between x and 10 − x, a dependency
that is not taken into account by the interval multiplication formula.
For instance, the upper bound 36 comes from the product of the two
upper bounds, which in this case are both equal to 6. However, these
two upper bounds are never attained simultaneaously: when x = 6, we
have 10 − x = 4, and vice versa.

7.6.2 AFFINE ARITHMETIC

Affine arithmetic (AA) is a model for numeric computation designed
to handle the dependecy problem (Comba and Stolfi, 1993). Like stan-
dard IA, AA can provide guaranteed bounds for the computed results,
taking into account input, truncation, and rounding errors. Unlike IA,
AA automatically keeps track of correlations between computed and
input quantities and is therefore frequently able to compute much bet-
ter estimates than IA, specially in long computation chains.

In AA, each quantity x is represented by an affine form

x̂ = x0 + x1ε1 + x2ε2 + · · · + xnεn,

which is a polynomial of degree 1 with real coefficients xi in the sym-
bolic variables εi (called noise symbols) whose values are unknown but
assumed to lie in the interval [−1,+1]. Each noise symbol εi stands
for an independent component of the total uncertainty of the quan-
tity x; the corresponding coefficient xi gives the magnitude of that
component.
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The main benefit of using affine forms instead of intervals is that two
or more affine forms share common noise symbols, indicating that the
quantities they represent are at least partially dependent on each other.
Since this dependency is represented in AA, albeit implicitly, AA can
provide better interval estimates for complicated expressions, as the
simple example in the end of this section shows.

To obtain interval estimates with AA, first, convert all input intervals
to affine forms. Then, operate on these affine forms to compute the
desired function by replacing each primitive operation with its AA ver-
sion. Finally, convert the resulting affine form back into an interval. We
shall now see these three steps in some detail.

Given an interval [a, b] representing some quantity x, an equivalent
affine form is x̂ = x0 + xkεk, where x0 = (b + a)/2 and xk = (b − a)/2.
Since input intervals usually represent independent variables, they are
assumed to be unrelated, and a new noise symbol εk must be used for
each input interval. Conversely, the value of a quantity represented by
an affine form x̂ = x0 + x1ε1 + · · · + xnεn is guaranteed to be in the
interval [x̂] = [x0 − ξ, x0 + ξ], where ξ = ‖x̂‖ :=

∑n
i=1 |xi|. Note that

the range [x̂] is the smallest interval that contains all possible values
of x̂ because, by definition, each noise symbol εi ranges independently
over the interval [−1,+1].

To evaluate an expression with AA, simply use the AA version of each
elementary operation z = f (x, y, . . . ), as done in IA. Affine operations
are the easiest because they can be computed exactly. Given two affine
forms

x̂ = x0 + x1ε1 + · · · + xnεn

ŷ = y0 + y1ε1 + · · · + ynεn

and a scalar α ∈ R, we have

x̂ ± ŷ = (x0 ± y0) + (x1 ± y1)ε1 + · · · + (xn ± yn)εn

αx̂ = (αx0) + (αx1)ε1 + · · · + (αxn)εn

x̂ ± α = (x0 ± α) + x1ε1 + · · · + xnεn.
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Note that x̂ − x̂ is identically zero in AA. As we saw earlier, the absence
of such trivial cancellations is a major ingredient in the dependency
problem in IA.

For nonaffine operations, we pick a good affine approximation for f
and append an extra term zkεk to represent the error in this approxi-
mation:

ẑ = z0 + z1ε1 + · · · + znεn + zkεk.

Again, εk is a new noise symbol and zk is an upper bound for the
approximation error. In this way, we can write AA formulas for
all elementary operations and functions (for details, see Stolfi and
de Figueiredo, 1997). For instance, the multiplication is given by

z0 = x0y0

zi = x0yi + y0xi (i = 1, . . . , n)

zk = ‖x̂‖ ‖ŷ‖.

To see how AA handles the dependency problem, consider again the
example given earlier: evaluate z = x(10 − x) for x in the interval [4, 6]:

x̂ = 5 + 1ε1

10 − x̂ = 5 − 1ε1

ẑ = x̂(10 − x̂) = 25 + 0ε1 + 1ε2

[ẑ] = [25 − 1, 25 + 1] = [24, 26].

Note that the correlation between x and 10 − x was canceled in the pro-
duct. Note also that the interval associated with ẑ is much closer to
the exact range [24, 25] and much better than the estimate computed
with IA [16, 36]. Expanding the expression to 10x − x2 makes IA give
a much worse result [4, 44], whereas it allows AA to compute the exact
values [24, 25].

Although AA is harder to implement and more expensive to execute
than IA, many times the better estimates provided by AA make algo-
rithms faster as a whole.
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7.7 EXAMPLES IN COMPUTER GRAPHICS

In this section, we give examples of the use of genetic algorithms
and branch-and-bound global optimization in computer graphics
problems.

7.7.1 DESIGNING A STABLE TABLE

We start by describing a genetic formulation for the design of a table
having a square top and four legs and that is stable (Bentley, 1999).
The legs are attached to the top at positions along the diagonals of the
table top, and they can have different lengths (Figure 7.5). Clearly, in
the optimum configuration—the stable one—the legs are attached to
the corners of the table and have the same length.

Here is a genetic model for this problem (Bentley, 1999). Individuals
represent the various possible configurations. Each individual has a
single chromosome with eight genes: four values to measure the dis-
tance of each leg to the center of the table and four values to measure
the length of each leg. Each of these eight values is represented in 8
bits, giving a chromosome with 64 bits. Thus, the candidate space has
264 ≈ 2 × 1019 elements. The objective function evaluates the stabil-
ity of the table from the position and length of the leg. Starting with a
random initial population, the optimum solution is reached.

Figure 7.5: Genetic formulation for the design of a stable table (Bentley,
1999).
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7.7.2 CURVE FITTING

We now consider the classic curve fitting problem: a set of points on
the plane is given and we wish to find the curve that best fits them. If
the search is limited to a fixed class of functions (e.g., polynomials of
degree 3), then the fitting problem can be formulated as a least-squares
problem and solved using continuous optimization on the parameters
of the fitting model, as seen in Chapter 4. The following genetic for-
mulation allows a fitting that is not restricted to a small class of func-
tions (Sokoryansky and Shafran, 1997).

In this genetic model, individuals are curves whose fitness is mea-
sured by how well the curve fits the given data points. The genotype
is an algebraic expression whose tree is represented linearly in LISP.
For instance, the expression t2 − t + 1 can be represented by the list
(+ (—(* t t) t) 1). This representation may be inconvenient
for a human reader but is very suitable to the symbolic manipulations
that are needed during the evolution. For instance, crossed reproduc-
tion takes place by simply mixing branches of the trees (see Figure 7.6).

1

*

x

2.11

2.00

*

x

3.28

sin

x

sin x

*

*

2.00

Figure 7.6: Crossed reproduction of algebraic expressions.
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Figure 7.7 shows an example of curve fitting by expression evolu-
tion. The set of data points {xi, yi} consists of five points sampled
from the curve y = x2 − x + 1. The initial population had 100 random
individuals. The objective function used to measure the fitness of a
curve y = g(x) was

n∑
i=1

|g(xi) − yi|3
yi

.

Figure 7.7: Curve fitting by evolution.
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Figure 7.7 shows the best individuals in generations 1, 10, 37, and 64;
their genotypes are given below:

Generation Genotype of best individual

1 (+ 6.15925 (cos (—0.889367 (% (—t
(—(hsin —0.90455) —1.51327)) t))))

10 (* t (/ t 1.06113))
37 (* t (/ (/ t 1.06113) 1.06113))
64 (* (* (cos (sin —0.632015)) t) t).

Note that although the final fitting is good, its expression,

y = x2 cos(sin(−0.632015)) ≈ 0.830511 x2,

does not correspond to the original expression y = x2 − x + 1. It is
unreasonable to expect that it is possible to evolve to the original
expression because the solution space contains much more than just
polynomial functions (e.g., the best individual in generation 10 is a
rational function). It is even surprising that in this example the algo-
rithm has found a polynomial of the correct degree. In any case, in
practice, we do not know the original expression.

7.7.3 COLLISION DETECTION

Consider a physically based animation in which objects move subject
to the action of internal and external forces, such as gravity. To achieve
a realistic animation, it necessary to know how to detect when two
objects collide because, at that moment, new forces appear instanta-
neously.

The problem of detecting the collision of two objects given parametri-
cally by S1, S2 : R

2 → R
3 can be formulated as a feasibility problem

S1(u1, v1) − S2(u2, u2) = 0,
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for (u1, v1, u2, u2) ∈ R
4. (Note that this problem has three equations,

one for each coordinate in R
3.) If the objects are given implicitly by

S1, S2 : R
3 → R, then the feasibility problem is

S1(x, y, z) = 0, S2(x, y, z) = 0,

for (x, y, z) ∈ R
3.

These problems can be solved reliably using an interval branch-and-
bound method. Note that it is not necessary to compute the whole fea-
sible set in this case: it is enough to establish whether it is empty or not.
When there is a collision, the search for the feasible set Ω̃ can stop as
soon as a subregion is accepted as solution. This frequently happens
quite early in the exploration of the domain Ω.

7.7.4 SURFACE INTERSECTION

When we compute the feasible set for detecting collisions, we actually
solve a surface intersection problem. Figure 7.8 shows two paramet-
ric surfaces that intersect each other: a mechanical part and a cylinder.
Figure 7.8 also shows the object obtained by removing the interior of
the cylinder from the mechanical part. This removal is made by identi-
fying the intersection curve in the parametric domains of the surfaces.
Figure 7.9 shows the projection of the feasible set on each domain; these
projections provide an approximation to the intersection curve that is
used for trimming, as shown in Figure 7.8.

Figure 7.10 shows two other intersecting surfaces. Figure 7.11 shows the
domain decompositions computed with both IA and AA. The two sur-
faces are Bézier surfaces—their expressions contain many correlations,
which are exploited by AA when computing the intersection, yeilding
a better approximation for the same tolerance.

7.7.5 IMPLICIT CURVES AND SURFACES

Another problem that is naturally described as a feasibility problem is
approximating implicit objects: given f : Ω ⊆ R

d → R, where d = 2 or
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Figure 7.8: Intersection of parametric surfaces (Snyder, 1991).

Figure 7.9: Trimming curves (Snyder, 1991).
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Figure 7.10: Intersection of parametric surfaces.

d = 3, compute an approximation to the curve or surface S = f −1(0) =
{x ∈ Ω : f (x) = 0}.

As described earlier, this problem can be solved by interval branch-
and-bound methods. Given an inclusion function F for f , the domain
Ω is subdivided recursively and we discard those subregions X of Ω for
which 0 	∈ F(X). What is left is a collection of small cells that contain S.
This cellular model, which has dimension d, can be used to extract an
approximation of S of the right dimension, d − 1, by linear interpola-
tion of the values of f at the vertices, as shown in Figure 7.12.

Figure 7.13 shows that the use of AA can provide better approximations
than IA within the same tolerance. The curve shown in Figure 7.13 is
the quartic given by

x2 + y2 + xy − (xy)2/2 − 1/4 = 0.

Note how AA was able to exploit the correlations in the terms of
this expression to compute a better approximation. IA was unable
to compute an approximation with the right number of connected
components.
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Figure 7.11: Intersection curves computed with IA and AA.

7.7.6 ADAPTIVE APPROXIMATION OF
PARAMETRIC SURFACES

The simplest method for approximating a parametric surface by a poly-
gonal mesh is to use a uniform decomposition of its domain. However,
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Figure 7.12: Approximating an implicit curve (Snyder, 1991).

Figure 7.13: Approximating an implicit curve with IA and AA.
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it is generally necessary to use a very fine mesh in the domain to capture
all details of the surface. This method is inefficient and generates very
large models because in general surfaces have details on several scales
and it is not necessary to use a fine mesh in the whole domain.

If the goal is to compute a polygonal approximation such that the dis-
tance between any two vertices is at most at user-selected tolerance ε,
then we can formulate the problem of approximating a parametric sur-
face S : R

2 → R
3 as a feasibility problem in which the constraints are

of the form

|S(u, v) − S(u′, v′)| < ε.

Figure 7.14 shows a uniform decomposition and a decomposition
adapted to the criterion above, along with the corresponding polyg-
onal decompositions. Note how the points in the adapted approxima-
tion are concentrated near the details of the surface.

7.8 COMMENTS AND REFERENCES

Global optimization methods encompass different techniques to
approach hard minimization problems for which it is not possible
to find a global minimum efficiently by continuous or combinatorial
methods.

Stochastic and genetic techniques are inspired by physics and biology to
explore the solution space with the hope to find the global minimum.

Simulated annealing is one of the best known stochastic techniques
for global optimization. A seminal paper on this subject that presents
the Metropolis algorithm is that by Metropolis et al. (1953). Another
relevant paper is that of Kirkpatrick et al. (1983).

We remark that there is a connection between stochastic optimization
techniques and probability theory applied to optimization. We discuss
this issue in the next chapter.
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Figure 7.14: Approximating parametric surfaces (Snyder, 1991).

Genetic algorithms have been extensively used in graphics and vision.
Besides the examples discussed in Section 7.4.2, it is worth men-
tioning the work of Karl Sims in animation (Sims, 1994) and image
synthesis (Sims, 1991b).
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8 PROBABILITY AND
OPTIMIZATION

In this chapter, we present the basic principles of the information
theory. We discuss the concept of entropy in thermodynamics and the
optimization principles that are based on entropy.

8.1 BACKGROUND

We begin by exploring the relationships between probability and the
degree of organization of a physical system.

8.1.1 THE SECOND LAW OF THERMODYNAMICS

The science of thermodynamics began in the first part of the nineteenth
century with the study of gases, with a motivation to improve the effi-
ciency of the steam engines. Nonetheless, the principles of thermody-
namics are valid for any physical systems.

245
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Thermodynamics is an experimental science based on a small number
of principles, which are generalizations made from experiments. These
laws are concerned only with the macroscopic properties of matter
(e.g., large scale). Thermodynamics play a fundamental role in physics
and their principles continue valid, even after the advance of physics in
the twentieth century.

In the first part of the nineteenth century, researchers observed that
various processes occur in a spontaneous way. For example, if two bod-
ies of different temperatures are in contact with each other, these bod-
ies will exchange their temperatures such that they both will have the
same temperature. The converse behavior (i.e., two bodies with the
same temperature in contact and one body gets hotter and the other
cooler) never occurs. The second law of thermodynamics determines
the direction in which a process occurs. In short, it can be stated as
follows: the entropy in the universe always increases.

The second law of thermodynamics states that in any process that
occurs (in time) within an isolated system (i.e., which does not
exchange mass or energy with the exterior), the entropy does not
decrease. This is the only physical law that prescribes a preferential
direction for the time domain. For that reason, it is of fundamental
importance in physics, as we can verify from the words of the physi-
cists Arthur Eddington and Albert Einstein.

The law that entropy always increases—the second law of thermodynamics—
holds, I think, the supreme position among the laws of Nature. If someone
points out to you that your pet theory of the universe is in disagreement
with Maxwell’s equations—then so much worse for Maxwell equations. If it is
found to be contradicted by observation—well these experimentalists do bun-
gle things sometimes. But if your theory is found to be against the second law of
Thermodynamics, I can give you no hope; there is nothing for it but to collapse
in deepest humiliation.

—Arthur Eddington (1948)

[A law] is more impressive the greater the simplicity of its premises, the more
different are the kinds of things it relates, and the more extended its range of
applicability. Therefore, the deep impression which classical thermodynamics
made on me. It is the only physical theory of universal content, which I am
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convinced, that within the framework of applicability of its basic concepts will
never be overthrown.

—Albert Einstein Klein (1967)

In thermodynamics, the variation of entropy is defined as the heat
variation over the temperature

dS =
dQ

T
.

From statistical thermodynamics, we have the Boltzmann formula that
defines the entropy of a physical system

S = k log W,

where S is the entropy, k = 1. 381 × 10−16 is the Boltzmann constant,
and W is the number of accessible microstates (they are the possible
values that determine the state of each particle in the system). Quan-
tum mechanics says that W is a finite integer number.

Boltzmann himself noticed that the entropy measures the lack of orga-
nization in a physical system. The identification of information entropy
was clarified later with the explanation of Szilard to the Maxwell devil
paradox (described in the next paragraph) and also with the informa-
tion theory of Shannon.

Maxwell proposed the following. Let a chamber divided in two parts
A and B be separated by a partition (which does not transfer heat), a
small moving door. In each part, we have samples of a gas at the same
temperature. The gas temperature is determined by a statistical “mean”
of the velocities of the gas particles. However, in a gas sample, there are
slow and fast particles (with lower and higher velocities than the statis-
tical mean, respectively). A devil will control the door between A and
B, letting only slow particles from A to B and letting only fast particles
from B to A. With this, the temperature of A will increase and the tem-
perature of B will decrease, which is not according to our intuition and
also contradicts the second law of thermodynamics.
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Szilard1 in 1929 proposed the following explanation for the Maxwell
devil paradox. The devil must be very well informed about the veloc-
ity of all gas particles. Szilard identified information with entropy and
showed that the available information increases the entropy of the sys-
tem chamber and devil. The idea of his argument is that from quan-
tum mechanics, the energy is quantized. By associating a packet of
energy with a bit of information about a particle, he calculated the total
entropy of the system chamber and devil and showed that the entropy
increases. This argument demonstrates that any system that manipu-
lates information (e.g., a brain or a computer) can be considered a ther-
momachine, and the entropy always increases in the system. According
to Resnikoff (1989), a computer (in the ’80s) would dissipate energy in
the order of 1010 times this fundamental physical limit.

8.1.2 INFORMATION AND MEASURES

Before presenting the information theory in the original form
described by Shannon (1948), we comment on the gain of informa-
tion as a measure.

We wish to measure the value of a variable x. Let us assume that the
measure results in an interval [a, b]. We have a previous measure of x
corresponding to the interval [0, 1]. From the new measure, we obtain
that x belongs to an interval Δx (contained in [0, 1]). What is the gain
of information with this new measure?

We can answer this question, considering the space (in bits, or symbols)
required to represent the gain of this new measure. To make it sim-
pler, let us suppose that 0 < x < 1 is a number in decimal format, e.g.,
x = 0, 23765. . . , and that for each new measure, we obtain new digits
of the decimal representation of x. For example, in the first measure, we
obtain 23, and in the second measure, we obtain 765. The space nec-
essary to represent the information gain of the first and second mea-
sures is two and three digits, respectively. Thus, we conclude that for an

1 A German physicist, who was involved in the first experiment on a nuclear reaction in 1942
in the University of Chicago.
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information gain of two digits, it is necessary to divide the measure
interval by 100. For an information gain of three digits, it is neces-
sary to divide it by 1000, and so on. With a little more attention to the
arguments above and with the inclusion of some “desirable” hypothe-
ses for the information gain of a measure, it is possible to demonstrate
that this information gain is

I = − log
(
Δx2

Δx1

)
,

where Δx2 is the interval of the new measure and Δx1 is the interval of
the previous measure. In a binary system, the information is expressed
by the number of bits and the base of the logarithm should be 2. For
the information in decimal digits, the logarithm is in base 10.

Suppose we observe a system with a finite number of states
S1, S2, . . . , Sn. Each state Si has an occurrence probability pi, with

p1 + p2 + · · · + pn = 1.

The gain of information with the observation of the occurence in state

Si is − log
(
Δx2
Δx1

)
= − log

(
pi
1

)
= − log pi. Therefore, the expectation

on the information gain is

S = −
n∑

i=1

pi log pi.

8.2 INFORMATION THEORY

Information theory relates the degree of organization of a system to
information.

8.2.1 BASIC PRINCIPLES

Information theory began with Shannon in 1948. Shannon’s starting
point for the formula of entropy was axiomatic. He imposed that the
entropy (or information) had some properties and demonstrated that



250 PROBABILITY AND OPTIMIZATION CHAPTER 8

there is only one possible formula for the gain of information under
these assumptions. Below we show a small excerpt from his famous
paper (Shannon, 1948), where he describes the desirable properties for
the entropy.

Suppose we have a set of possible events whose probabilities of occurrence are
p1, p2, . . . , pn (p1 + p2 + · · · + pn = 1). These probabilities are known but that
is all we know concerning which event will occur. Can we find a measure of
how much choice is involved in the selection of the event or of how uncertain
we are of the outcome?

If there is such a measure, say H (p1, p2, . . . , pn), it is reasonable to
impose of it the following properties:

1. H should be continuous in the pi.
2. If all the pi are equal, pi = 1

n , then H should be a monotonic
increasing function of n. With equally likely events, there is more
choice or uncertainty when there are more possible events.

3. If a choice is broken down into two successive choices, the orig-
inal H should be the weighted sum of the individual values of
H, which is illustrated in Figure 8.1. On the left, we have three
possibilities p1 = 1

2 , p2 = 1
3 , and p3 = 1

6 . On the right, we first

choose between two possibilities, each with a probability 1
2 , and

if the second occurs, make another choice with probabilities
2
3 and 1

3 . The final results have the same probabilities as before.
We require, in this special case, that

H

(
1
2

,
1
3

,
1
6

)
= H

(
1
2

,
1
2

)
+

1
2

H

(
2
3

,
1
3

)
.

The coefficient 1
2 is because this second choice only occurs half

the time.

Property 3 indicates that if, for example, we have NL symbols with the
same probability and we group these NL symbols into N groups of L
symbols, and if the information for an output symbol is given in two
steps, first indicating the group and second the specific element of this
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Figure 8.1: Decomposition from the choice of three possibilities.

group, then the total information is the sum of information about the
group and the symbol (inside the group), i.e., I(NL) = I(N) + I(L).

Shannon demonstrated that the only H that satisfies these three prop-
erties is of the form

H = −k
∑

i

pi log pi,

where k is a positive constant, and without loss of generality, we can
consider k = 1.

From now on, we denote this quantity by entropy, whose formula is

S = −
n∑

i=1

pi log pi.

Figure 8.2 shows the graph of the entropy in bits for two random vari-
ables. That is, S = −p log2 p − (1 − p) log2(1 − p).

8.2.2 PROPERTIES OF ENTROPY

Before we present the main properties of entropy, we need to establish
the following notation:
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Figure 8.2: Graph of S = −p log2 p − (1 − p) log2(1 − p).

Let p= (p1, p2, . . . , pn) be a probability distribution with pi �0 and∑n
i=1pi = 1.

We denote the entropy as

Sn(p) = −
n∑

i=1

pi log pi.

Since pi log pi is not defined for pi = 0, we take 0 log 0 = lim
p→0

p

log p = 0.

1. For the n degenerate distributions Δ1 = (1, 0, . . . , 0), Δ2 =
(0, 1, . . . , 0), . . . , Δn = (0, 0, . . . , 1), we have Sn(Δi) = 0, which
is desirable because in this case, there is no uncertainty in the
output.

2. For any probability distribution that is not degenerate, we have
Sn(p) > 0, which is desirable because there is uncertainty in the
output.
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3. Sn(p) does not change if we permute in p1, p2, . . . , pn. This prop-
erty is desirable because the order of p′is in the probability distri-
bution cannot change the entropy.

4. The entropy does not change with the inclusion of an impossible
event, i.e.:

Sn+1(p1, p2, . . . , pn, 0) = Sn(p1, p2, . . . , pn).

5. Sn(p) is a concave function with maximum at p1 = p2 = · · · =
pn = 1

n . In this case, the value of the entropy is

Sn(p) = −
n∑

i=1

pi log pi = −n

(
1
n

log
1
n

)
= log n.

8.3 MEASURING MUTUAL INFORMATION

In order to put probability into the context of optimization, we need to
present the concepts of conditional entropy, mutual information, and
divergence.

8.3.1 CONDITIONAL ENTROPY

Before we formulate the concept of conditional entropy, we introduce
the notation for random variables.

We can consider the output of an information source as the realization
of a random variable, denoted by X.

The random variable X is denoted by the alphabet of possible
values X can assume: {x1, x2, . . . , xn} and by its probability distribu-
tion p= (p1, p2, . . . , pn), where pi = P {X = xi}.

The expectation of X is E [X] =
∑n

i=1xipi.

We denote by S(X) the entropy governed by the distribution p.
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With this notation, we consider a new random variable Z(X) = − log
P {X}, thus E [Z] = E

[− log P {X}] = −∑n
i=1pi · log pi = S(X).

From this formula, we have that the entropy is a mean and the value
− log px is the quantity of information supplied by the output of x.

The entropy corresponding to the output sequence of x, y is

S(X, Y) = −
∑
x,y

P
{

X = x, Y = y
}

log P
{

X = x, Y = y
}
.

If the source is independent of time and memoryless, we have

S(X1, X2, . . . , Xn) = nS (X) .

It can be proved that the entropy is maximal if the random variables
are independent. In general, we are interested in the entropy per output
unity, defined as

S =
1
k

lim
k→∞

S(X1, X2, . . . , Xk).

The definition of conditional entropy is

S(X|Y) = −
∑
x,y

P
{

X = x, Y = y
}

log P
{

X = x|Y = y
}
.

We have S(X|Y) = − ∑
y

P
{

Y = y
}

S
{

X|Y = y
}

, i.e., the conditional

entropy is an average of entropies.

An important relation of conditional entropy is that

S(X, Y) = S(X) + S(Y|X).

This equation can be interpreted in the following way: the uncertainty
of two random variables is equal to the uncertainty of the first variable



SECTION 8.3 MEASURING MUTUAL INFORMATION 255

and the mean uncertainty of the second variable with the first variable
known.

The last property of conditional entropy is

S(X1|X2, . . . , Xk, Xk+1) � S(X1|X2, . . . , Xk).

That is, the uncertainty decreases as more information is known.

8.3.2 MUTUAL INFORMATION

The mutual information between two random variables X and Y is
defined as

I(X; Y) = S(X) − S(X|Y).

We have

I(X; Y) = S(X) − S(X|Y) =
∑
x,y

P(x, y) log P(x|y)
P(x)

=
∑
x,y

P(x, y) log P(x,y)
P(x)P(y) = S(X) +S(Y) −S(X,Y) = I(Y;X).

The above equation tells us that the mutual information is symmetric
and also that

0 � I(X; Y) � min {S(X), S(Y)}.

We have I(X; Y) = 0 if and only if X and Y are independent and
I(X; Y) = min{S(X), S(Y)} if and only if X determines Y or Y deter-
mines X.

Finally, we note that

I(X; Y) =
∑
x,y

P(x, y) log
P(x, y)

P(x)P(y)
= E

[
log

P(x, y)
P(x)P(y)

]
.
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We can interpret log P(x,y)
P(x)P(y) as the mutual information between the

symbols x and y.

8.3.3 DIVERGENCE

Often it is necessary to measure the distance between two probability
distributions p and q. The most common measure was developed by
Kullback and Leibler in 1951 and is known as distance (or divergence or
measure) of Kullback–Leibler, relative entropy, discriminant, or simply
divergence.

The divergence is defined as

D
(

p; q
)
=

n∑
i=1

pi · log
pi

qi
,

where we assume that if qi = 0, then pi = 0 and that 0 log 0
0 = 0.

The divergence is not symmetric, i.e., D
(

p; q
) 
=D

(
q; p
)

in general.
Eventually, we can use the symmetric divergence, defined by

J
(

p; q
)
= D

(
p; q
)
+ D
(

q; p
)
.

As the entropy, the divergence has several interesting properties:

1. D
(

p; q
)
= 0 only if p = q. If p 
= q, then D

(
p; q
)

> 0.

2. D
(

p; q
)

is continuous and convex in p and q.

3. D
(

p; q
)

is permutationally symmetric, i.e., D
(

p; q
)

does not
alter if the pairs (p1, q1), . . . , (pn, qn) are permuted.

4. If U =
(1

n , 1
n , . . . , 1

n

)
is the uniform distribution, then

D
(

p; U
)
=

n∑
i=1

pi · log
pi

1/n
= log n +

n∑
i=1

pi · log pi = log n − Sn(p).
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5. I(X; Y) =
∑
x,y

P(x, y) log P(x,y)
P(x)P(y) = D(p; q), where p = P(x, y) and

q = P(x)P(y).

8.3.4 CONTINUOUS RANDOM VARIABLES

In this section, we give definitions of entropy, conditional entropy,
divergence, and mutual information for continuous random variables.
They are similar to the discrete case, with the basic difference of chang-
ing the symbol

∑
by
∫

.

Let X be a continuous random variable, with probability distribution
fX(x). The entropy of X is called differential entropy and is defined by

S(X) = −
∫

fX(x) log fX(x)dx = −E
[
log fX(x)

]
.

The differential entropy has some of the properties of the ordinary
entropy (for discrete variables); however, it can be negative and it is
not an absolute measure of the randomness of X.

The mutual information of continuous variables has the same defini-
tion as in the discrete case:

I(X; Y) = S(X) − S(X|Y),

where the conditional entropy is defined by

S(X|Y) = −
∫ ∫

fX,Y(x, y) log fX(x|y)dxdy.

The relation below is valid:

I(X; Y) =
∫ ∫

fX(x, y) log
fX(x|y)
fX(x)

dxdy

=
∫ ∫

fX,Y(x, y) log
fX,Y(x, y)

fX(x)fY(y)
dxdy.
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The divergence is defined by:

D
(

fX; gX
)
=
∫

fX(x) log
fX(x)
gX(x)

dx.

The divergence for continuous variable has some unique properties:

• D
(

fX; gX
)
= 0 only if fX = gX. If fX 
= gX, then D

(
fX; gX

)
> 0.

• The divergence is invariant in relation to the following variations
in the components of the vector x: permutations in the order
of components, scaling in amplitude, and monotonous nonlin-
ear transformations.

Also, we have I(X; Y) = D
(

fX,Y; fX fY
)

.

8.4 OPTIMIZATION AND ENTROPY

In this section, we discuss optimization principles that are based on
entropy.

8.4.1 PRINCIPLE OF MAXIMUM ENTROPY—MaxEnt

In nature, due to the second law of thermodynamics, the entropy of
a system always increases (or better, it never decreases). However, in
general, the entropy of a physical system tends to the distribution of
maximum entropy, respecting the physical restrictions that the system
imposes.

The principle of maximum entropy is based on this idea, i.e., to find the
distribution of maximum entropy, respecting the imposed restrictions.

Let X be a random variable that can assume the values x1, x2, . . . , xn, but
with the corresponding probabilities p1, p2, . . . , pn unknown. However,
we know some restrictions about the probability distributions, such
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as the mean, variance, and some moments of X. How to choose the
probabilities p1, p2, . . . , pn?

This problem, in general, has infinite solutions. We have to look for
a function to be optimized such that we find a unique solution. The
principle of maximum entropy, initially proposed by Jaynes in 1957,
offers a solution to this problem.

The principle of maximum entropy, which we will call MaxEnt, states
that from the probability distributions that satisfy the restrictions, we
have to choose the one with maximum entropy.

The MaxEnt is a very general principle and has applications in various
fields. The first applications were in statistical mechanics and thermo-
dynamics. There are applications of MaxEnt in many areas, such as
urban planning, economy, queuing theory, spectral analysis models
for population growth, and language. In graphics and vision, it can
be applied to pattern recognition, image processing, and many other
problems. An important application in statistical themodynamics is to
find the probability distribution that describe the (micro)states of a
system, based on measures (average values of functions that are restric-
tions to the problem) done in macroscopic scale.

An intuitive explanation for the MaxEnt is that if we choose a distri-
bution with less entropy than the maximum, this reduction in entropy
comes from the use of information that is not directly provided but
somehow used in the problem inadvertently. For example, if we do not
have any restrictions, the distribution chosen by the MaxEnt is the uni-
form distribution. If for some reason, we do not choose an uniform
distribution, i.e., if for some i and j, we have pi > pj, then some infor-
mation not provided was used to cause this asymmetry in the proba-
bility distribution.

MaxEnt can be formulated mathematically as follows. Let X be a
random variable with alphabet {x1, x2, . . . , xn} and with probability
distribution p = (p1, p2, . . . , pn). We want to maximize the measure of
Shannon subject to several linear restrictions.
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arg max H (X) = −

n∑
i=1

pi log pi

subject to pi � 0,∀i and
n∑

i=1

pi = 1 and
n∑

i=1

pigri = ar, r = 1, 2, . . . , m.

Because the domain is convex and H (X) is concave, we have a prob-
lem of convex optimization, which guarantees the existence of a unique
solution and efficient computational methods to solve the problem.

The above problem has a specific structure that guarantees that in the
solution, we have pi � 0,∀i (because pi are exponentials, as we will see
next). In this way, we do not have to worry about inequality restric-
tions.

Applying the Karush–Kuhn–Tucker conditions (or Lagrange multipli-
ers), we have the solution

pi = exp(−λ0 − λ1g1i − λ2g2i − λmgmi), i = 1, 2, . . . , n,

where λ0, λ1, λ2, . . . , λm are the Lagrange multipliers, which can be cal-
culated with the equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

exp

⎛⎝−λ0 −
m∑

j=1

λjgji

⎞⎠ = 1

n∑
i=1

gri exp

⎛⎝−λ0 −
m∑

j=1

λjgji

⎞⎠ = ar, r = 1, 2, . . . , m.

The formulation of MaxEnt for continuous random variables is anal-
ogous to the discrete case. Consider a continuous random variable x
and its continuous probability f (x). If we know only the expected val-
ues E[ g1(x)] = a1, E[ g2(x)] = a2, . . . , E[ gm(x)] = am of x, we have, in
general, infinite distributions satisfying these moments. According to
MaxEnt, we have to choose the distribution with maximum entropy,
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which is

f (x) = exp(−λ0 − λ1g1(x) − λ2g2(x) − λmgm(x)),

where λ0, λ1, λ2, . . . , λm are the Lagrange multipliers, which can be
determined by the following equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
f (x)dx = 1∫
f (x)gr(x)dx = ar, r = 1, 2, . . . , m.

For more details, see Kapur and Kesavan (1992).

8.4.2 DISTRIBUTIONS OBTAINED WITH MaxEnt

Next we give the domain of a random variable and the known
moments. With the application of MaxEnt and using the formulas
from the previous section, either in the continuous or in the discrete
case, we obtain a probability distribution with maximum entropy
(PDME).

A large part of the distributions in statistics can be characterized from
certain prescribed moments and the application of MaxEnt (or Minx-
Ent, discussed in Section 8.4.3).

1. If the domain of x is [a, b] and there is no restriction (except for
the natural restrictions of probability distributions), the PDME
is the uniform distribution. Thus, the uniform distribution is
characterized by the absence of restrictions in the entropy.

2. If the domain of x is [a, b] and we have an arithmetic mean
m = E[x], the PDME is the truncated exponential distribution
given by

f (x) = ce−kx,
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where c and k can be calculated using the formula

c

b∫
a

e−kxdx = 1 and c

b∫
a

xe−kxdx = m.

3. If the domain of x is [0,∞) and we have the mean m = E[x], the
PDME is the distribution given by

f (x) =
1
m

e−x/m,

and the maximum entropy is

SMAX = 1 + ln m.

4. If the domain of x is [0,∞) and we have the arithmetic mean
m = E[x] and the geometric mean E[ln x], then the PDME is the
gamma distribution given by

f (x) =
aγ

Γ(γ)
e−axxγ−1.

5. If the domain of x is (−∞,∞) and we have the mean m = E[x]
and variance E[(x − m)2] = σ2, then the PDME is the normal
distribution given by

f (x) =
1

σ
√

2π
exp
(
−1

2

(x − m

σ

)2
)

,

whose entropy is

SMAX = ln σ
√

2πe.

6. If the domain of x is (−∞,∞) and we have the moment E[x], the
PDME is the Laplace distribution given by

f (x) =
1
σ

exp
(
−|x|

σ

)
.
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7. An important application in statistical thermodynamics is to
find the probability distribution that describes the (micro)states
of a system based on measures in microscopic scale.
Let p1, p2, . . . , pn be the probabilities of the particles in the system
with energies ε1, ε2, . . . , εn, respectively.
The only information we have about the system is its average
energy ε̂,

p1ε1 + p2ε2 + · · · pnεn = ε̂,

and the natural restrictions of probabilities,

pi � 0,∀i and
n∑

i=1

pi = 1.

According to MaxEnt, we obtain the Maxwell–Boltzmann distri-
bution of statistical mechanics:

pi = e−μεi
/( n∑

i=1

e−μεi

)
, i = 1, 2, . . . , n,

where μ= 1
kT

(T is the temperature and k is the Boltzmann
constant). Other distributions in the statistical mechanics, such
as the Bose–Einstein or the Fermi–Dirac, are also obtained from
the MaxEnt, changing only the (macroscopic) restrictions that
we have about the system.

8.4.3 PRINCIPLES OF OPTIMIZATION BY ENTROPY

The MaxEnt is the most important optimization principle derived
from entropy. However, there are many other optimization princi-
ples based on entropy, depending on the problem at hand. Kapur and
Kesavan (1992) have given a general description of these principles. We
briefly present the second most important principle of optimization
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based on entropy: the principle of mininum crossed entropy, which we
call MinxEnt.

The MinxEnt is used when we do not know the probability distribution
p but we have (as in the case of MaxEnt) restrictions relative to p and
also an a priori probability q and we want to choose p satisfying the
restrictions and be as close as possible to q.

The MinxEnt can be concisely enunciated as follows: from all the
distributions satisfying the given restrictions, choose the one that is
closest to the a priori distribution (prior). The usual distance measure
for probability distributions is the divergence. With this measure, the
MinxEnt says that we have to minimize the divergence D

(
p; q
)

subject
to the restrictions of the problem.

Beacuse the divergence D
(

p; q
)

is convex and the domain (in general)
is convex, we have (as in the case of MaxEnt) a problem of convex
optimization, which guarantees the existence of a unique solution and
computational efficiency.

An interesting fact is that if the prior distribution q is not given, the
most natural choice is to pick the probability distribution p as close
as possible to the uniform distribution U =

(1
n , 1

n , . . . , 1
n

)
. As we have

already seen in the section about divergence, we have

D
(

p; U
)
=

n∑
i=1

pi · log
pi

1/n
= log n +

n∑
i=1

pi · log pi = log n − H (p).

Therefore, we have that to minimize the divergence in relation to the
uniform distribution is equivalent to maximize the entropy. Thus,
MaxEnt is a particular case of MinxEnt in which we minimize the dis-
tance in relation to the uniform distribution.

We can unite MaxEnt and MinxEnt as a general principle. “From all
probability distributions satisfying the given restrictions, we have to
choose the one closest to a given prior distribution. If this prior distri-
bution is not given, choose the one closest to the uniform distribution.”



SECTION 8.5 APPLICATIONS 265

8.5 APPLICATIONS

We now give examples of applications of optimization to symbol cod-
ing and decision trees.

8.5.1 SYMBOL CODING

An interesting application of the information theory is the problem
of optimal signal coding. Let an output alphabet be α = {A, B, . . . , Z}
and we know the probability of the symbols pA, pB, . . . , pZ. What is the
minimum number of bits that are to be used to encode the set of sym-
bols of the output of some information source?

In order to achieve the minimum number of bits, it is necessary to use
a variable-length code for each symbol, with less bits assigned to the
most frequent symbols. Furthermore, we would like to avoid separators
between the symbols (which would be an extra symbol).

A concrete example is given next. We illustrate the symbol coding
problem with a source that only emits the symbols A, B, C, and D with
the respective probabilities 1

2 , 1
4 , 1

8 , and 1
8 . In Table 8.1, we have two

possible encodings.

A sufficient condition for a codification to be uniquely decoded is
that the code of a symbol should not be a prefix of the code for any

Table 8.1: Codes α and β of the symbols A, B, C, and D.

Symbol Probability Encoding α Encoding β

A 1/2 1 00

B 1/4 01 01

C 1/8 001 10

D 1/8 000 11
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other symbol. This is the case of the example above. A codification
that satisfies this condition can be structured in the form of a tree. In
Figure 8.3, we have code trees α and β.

Let l(x) be the size of the code for symbol x and p(x) its probablility of
ocurrence. The average length of a codification can be calculated using
the formula:

L =
∑

x

l(x)p(x).

Shannon (1948) demonstrated in his fundamental theorem for noise-
less channels that there is no codification such that its average length L
is less than the entropy S(X). Furthermore, given ε > 0, there is a cod-
ification such that L < S(X) + ε.

(a) (b)

0 1

0 1

0 1

D C

B

A
0 1 0 1

0 1

A B C D

Figure 8.3: Codification trees (a) α (b) β.



SECTION 8.5 APPLICATIONS 267

The average length of the codes α and β of the example above and the
associated entropy are

Lα =
1
2

. 1 +
1
4

. 2 +
1
8

. 3 +
1
8

. 3 =
7
4

Lβ =
1
2

. 2 +
1
4

. 2 +
1
8

. 2 +
1
8

. 2 = 2

H= −1
2

. log
1
2
− 1

4
. log

1
4
− 2.

1
8

log
1
8
=

1
2
+

1
2
+

3
4
=

7
4

.

Note that the codification α is optimal because Lα = H.

8.5.2 DECISION TREES

In this section, we present the concept of decision trees. Let us see
one example. Imagine a game with two participants P and R. Player R
chooses in secrecy an object O, and player P has to discover the object
by asking questions to R, who can only answer YES or NO. Simplifying
the problem, suppose there are four possible objects for R to choose,
A, B, C, and, D, and that we know the probabilities that R chooses these
objects,

pA =
1
2

, pB =
1
4

, pC =
1
8

, pD =
1
8

.

In Figure 8.4, we have two schemes for questions. The tree of
Figure 8.4(a) indicates that initially we ask “Is the chosen object A?”
If the answer is YES (represented by “1” in the figure), we know with
certainty that the object is A. If the answer is NO (“0”), we ask “Is the
object B?”, and so on. . .

Notice that this problem of decision trees is equivalent to the problem
of symbol coding, as the similarity of Figures 8.3 and 8.4 indicates.

The codification α in Table 8.1 in Section 8.5.1 is the codification of
questions in the tree of Figure 8.4(a). For example, code “1” of sym-
bol A in the table indicates the certainty of A if we have the positive
answer for the first question. Code “01” of symbol B in table indicates
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(a) (b)

0 1 0 1

0 1

A B C D

Is C or D?

Is B or D?Is B or D?

0 1

0 1

0 1

D C

B

A

Is A?

Is B?

Is C?

Figure 8.4: Trees for schemes (a) and (b).

the certainty of symbol B if the first answer is negative and the second is
positive. The codification β in Table 8.1 is the codification of questions
in the tree of Figure 8.4(b).

The results of Section 8.5.1 apply here and therefore the average
number of questions cannot be less than the entropy. The scheme
of questions in Figure 8.4(a) is optima because we have an average
of 7

4 questions, which is the value of the entropy. In the scheme of
questions for Figure 8.4(b), we have an average of two questions to
know the chosen object.

8.6 COMMENTS AND REFERENCES

The connections between probability and optimization are very rich
and complex. In this chapter, we have explored mostly the relations
involving information theory.
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Another important link between the two areas lies in the use of opti-
mization techniques to build statistical models. One example is the use
of dynamic programming methods in the context of hidden Markov
models (Rabiner, 1989). This topic is very relevant to machine learn-
ing and to many applications of computer vision.
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coordinates, 116
extrinsic parameters, 116
focal distance, 116
intrinsic parameters, 116
inverse specification, 52
pinhole, 50, 116
specification, 52
Tsai calibration, 119
virtual, 50
world coordinates, 116

271



272 INDEX

character recognition, 60
Cholesky, 91
circle, 14

reconstruction, 18
representation, 18

cluster analysis, 46
color correction, 121
color map, 170
combinatorial optimization, 168
complexity, 136
computer graphics, 1

definition of, 1, 12
computer vision, 3, 49
conjugate directions, 96
conjugate gradient, see algorithm, 96
CT, 188
curve

B-splines, 72
energy of a, 68
tension energy, 69
variational modeling of, 68

curves
minimal, 184

cut edge, 156

D
David Marr, 58
Decision Trees, 267
descent direction, 80
digital video, 61
Dijkstra algorithm, see algorithm,

151
dynamic programming,

141
backtrack, 142
knapsack problem, 147
optimality principle, 141
resource allocation, 147

E
energy functions, 160
Entropy, 249
epipolar constraint, 197

epipole, 195
equivalence relation, 44

F
flow network, 140
four-universe paradigm, 7
function

attribute, 13
characteristic, 13
concave, 34
convex, 34, 86
critical point, 80
discriminating, 45
gradient of a, 78
height, 9
Hessian matrix of a, 78
image, 11
lagrangian, 104
linear, 34
objective, 26, 34
quadratic, 34
saddle point, 82
separable, 34
sparse, 34
stationary point of a, 80

G
Genetic Algorithms, 212
geometric modeling, 2, see

modeling, 46, 168
GIS, 4, 184, 185
global

maximum, 85
graph, 137

adjacency matrix of a, 138
adjacent vertices, 137
arc of a, 138
edge, 137
neighborhood, 186
oriented, 138
shortest paths in, 148
vertex, 137
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graph cuts, 156
graphical object, 5,

12, 13
attribute function of a, 13
color of a, 13
dimension of a, 13
geometric support of a, 13
implicit description, 16
parametric description, 16
piecewise description, 16
reconstruction of a, 18
subsets as, 13

grid, 9

H
Hadamard, Jacques, 36
Hidden Markov Models, 269
HMM, 269

I
IEEE, 8
image, 14, 170

analysis, 57
coordinate system, 117
correcting distortions of, 55
function, 11
gamut, 170
morphing, 55
panoramic, 121
processing, 3, 53
quantization, 169
registration, 55, 121
representation, 12
satellite, 185
warping, 55

image-based modeling, 4
image-based rendering, 121
implementation universe, 6
integer program, 152, 153
intelligent scissors, 204
Interval Methods, 224
isolated point, 27

K
Karmarkar algorithm, see algorithm,

115
Kuhn-Tucker condition, 103

L
labeling problem, 159
Lagrange multipliers, 103
length representation, 7
level of details, 180
linear program, 35
linear programming, 109
linear regression, 88

M
Marr conjecture, 58
mathematical model, see modeling, 6
mathematical universe, 6
mathematics

applied, 1
computational, 6, 8
pure, 1

matrix
pseudoinverse, 90

MaxEnt, 258
minimal curves on maps, 184
model, see modeling, 6
modeling

abstraction paradigms for, 6
geometric, 2, 46
image, 10
mathematical, 6
procedural, 46
terrain, 9
variational, 47
variational curve, 68

motion
analysis, 5
modeling, 5
processing, 5
specification, 5
synthesis, 5
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motion capture, 61
Motion Graphs, 204
MRI, 188
multi-terminal problem, 151
Mutual Information, 255

N
Newton’s method, 92
NP-complete, 41

O
OCR, 61
operator

rendering, 48
representation, 17

optical character recognition, 61
optimality condition, 26
optimality conditions, 79
optimality principle, 141
optimization, 25

and level of details, 180
branch-and-bound, 167
classification, 27, 33
combinatorial, 27, 31, 133
continuous, 27, 28, 77
discrete, 27, 29
dynamic programming, 134, 141
integer program, 134, 152, 153
linear program, 35
minimun cost flow, 154
nature, 28
objective function, 26, 34
optimality condition, 26
optimality principle, 141
restrictions, 34
solution set, 26
unconstrained problem, 77
variational, 27, 32, 63

P
path

minimal, 148
minimum, 186

physical universe, 6
point-membership classification, 13
polytope, 35
Potts Energy, 199
problem

direct, 35
ill-posed, 37
inverse, 35
knapsack, 147
linear regression, 87
NP-complete, 41
reduction, 40
traveling salesman, 41
well-posed, 36

pseudo-inverse, see matrix, 90

Q
quantization, 170

by dynamic programming, 173

R
Range Analysis, 224
reconstruction, 15, 17

ambiguous, 18
circle, 18
exact, 18
terrain, 19

relation, 43
rendering operator, see operator, 48
representation, 17

ambiguous, 18
by uniform sampling, 10
circle, 18
exact, 18
floating point, 8
image, 10
length, 7
operator, 17
terrain, 9
universe, 6

representation operator
see representation, 16
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S
saddle point, 82
Scissoring, 204
set

solution, 26
Shannon, 248
shortest path, 148
simplex method

complexity, 114
Simulated Annealing, 211
singular value decomposition, 91
size of a cut, 156
Sketchpad, 23
snakes, 58
solution

global, 41
local, 41

solution set, see optimization, 26
stereo correspondence, 196
stereo recosntruction, 194
surface reconstruction, 188
Symbol Coding, 265

T
terrain

reconstruction, 19
representation, 9

theorem
Shannon, 20
spectral, 91

thermodynamics, 245
topological space

continuous, 27
discrete, 27

triangulation, 195

U
universe

implementation, 6
mathematical, 6
physical, 6
representation, 6

V
variational modeling, see modeling,

47
Video Textures, 204
Visorama, 121
visualization, 3, 48

W
window effect, 197
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