
Implicit Objects in
Computer Graphics

Luiz Velho
Jonas Gomes

Luiz Henrique de Figueiredo

Springer

Implicit Objects in Computer Graphics

Luiz Velho Jonas Gomes
Luiz Henrique de Figueiredo

Implicit Objects in
Computer Graphics

With 65 Figures

Luiz Velho
Jonas Gomes
Luiz Henrique de Figueiredo
Instituto de Matematica Pura e Aplicada
Rio de Janeiro, RJ 22460-320
Brazil

Library of Congress Cataloging-in-Publication Data
Velho, Luiz.

Implicit objects in computer graphics / Luiz Velho, Jonas Gomes, Luiz Henrique de
Figueiredo.

p. cm.
Includes bibliographical references and index.
ISBN 0-387-98424-0 (alk. paper)
1. Computer graphics. I. Gomes, Jonas. II. Figueiredo, Luiz Henrique de.

III. Title.
TS385 .V45 2002
006.6—dc21 2002016005

ISBN 0-387-98424-0 Printed on acid-free paper.

 2002 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 10658083

Typesetting: Pages created by the authors using a Springer LaTeX2e macro package.

www.springer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH

Preface

Overview

In this book we discuss the role of implicitly defined objects in com-
puter graphics, within a coherent conceptual framework. We are con-
cerned with the mathematical definition of shapes using an implicit
form, as well as with its applications to geometric modeling, visualiza-
tion and animation.

Organization and Features

The book is divided into five parts: mathematical foundations of ge-
ometric models, implicit formulations for the specification of shapes,
implicit primitives, techniques for constructing and manipulating im-
plicit objects, modeling, rendering and animation implicit objects.

Audience

The book is useful to researchers and graduate students in computer
graphics and geometric modeling, and also to professionals in the fields
of CAD/CAM and special effects.

Acknowledgments

We wish to thank our colleagues of the VISGRAF Laboratory for
providing a great research enviroment that stimulated our work in the
area of computer graphics. We also thank our students from IMPA,
PUC-Rio, and UFRJ, that participated in many activities related to
the development of this book.

iv

Rio de Janeiro, November 2001

Luiz Velho
Jonas Gomes
Luiz Henrique Figureiredo

Contents

1. Introduction . 1
1.1 Parametric versus Implicit . 1
1.2 Motivation . 2
1.3 Scope and Overview . 3

2. Manifolds . 5
2.1 Definition . 5
2.2 Local Charts . 6
2.3 Atlases and Structures . 6
2.4 Calculus on Manifolds . 8
2.5 Immersions and Embeddings . 9
2.6 Submanifolds . 9
2.7 Realizations of a Manifold . 10
2.8 Manifolds with Boundary . 11
2.9 Orientability . 12
2.10 Classification of Manifolds . 13
2.11 A Suitable Model . 13

3. Parametric and Implicit Manifolds 15
3.1 Parametrizations . 15
3.2 Stratifications . 16
3.3 Piecewise Descriptions . 17
3.4 Implicit Description . 19
3.5 Regularity and Transversality . 19
3.6 Implicit Manifolds . 20
3.7 Geometric Interpretation . 21
3.8 Algebraic Varieties . 23
3.9 Algebraic Interpretation . 23
3.10 Parametric versus Implicit . 24

vi Contents

4. Space Decompositions . 27
4.1 Types of Space Decompositions . 27

4.1.1 Space Partitions . 28
4.1.2 Cell Decompositions . 28
4.1.3 Affine Cell Decompositions . 29
4.1.4 Simplicial Decompositions . 29

4.2 Properties of Space Decompositions 32
4.2.1 Invariance . 32
4.2.2 Uniqueness . 33
4.2.3 Minimality . 33
4.2.4 Finiteness and Local Finiteness 33
4.2.5 Regularity . 33
4.2.6 Boundary Condition . 33
4.2.7 Refinement . 33

4.3 Algebraic Structure of Space Decompositions 34
4.4 Spatial Data Structures . 34

4.4.1 Topological Graphs . 35
4.4.2 Trees . 35
4.4.3 N -dimensional Arrays . 36

5. Shape and Space . 39
5.1 Tubular Neighborhoods . 39

5.1.1 Definitions . 39
5.1.2 The Projection on the Surface 40
5.1.3 The Maximal Tubular Neighborhood 41

5.2 Medial Axes . 41
5.2.1 Definitions . 42
5.2.2 Intuition . 42
5.2.3 Characteristics . 43

5.3 Morse Theory . 43
5.3.1 Critical Points and the Hessian 44
5.3.2 Morse Function. 44
5.3.3 The CW -Complex . 45
5.3.4 Distance Fields as Morse Functions 46
5.3.5 Topology of Implicit Shapes 47

5.4 Surfaces in Space . 48
5.4.1 Surfaces Structuring Space . 48
5.4.2 What is a Good Implicit Model? 48

5.5 Universal Representation . 49

Contents vii

5.5.1 Medial Axis Models . 49
5.5.2 Distance Function Models . 50

5.6 Summary . 50

6. Implicit Objects . 51
6.1 Definition of an Implict Object . 51
6.2 Mathematical Elements . 53

6.2.1 The Function f . 53
6.2.2 The Domain of f . 54
6.2.3 The Characteristic Function 54
6.2.4 The Gradient of f . 54
6.2.5 The Hessian of f . 55

6.3 Geometrical Characterization . 55
6.3.1 Local Parametrization . 55
6.3.2 Orientation and Surface Normal 56

6.4 Differentiable Attributes . 56
6.4.1 Geodesics . 56
6.4.2 The Gauss Map . 57
6.4.3 The Fundamental Forms . 58
6.4.4 Surface Curvature . 59

6.5 Computational Attributes . 60
6.5.1 Object Oriented Approach . 60
6.5.2 Basic Functions . 61

7. Manipulating Implicit Objects . 63
7.1 The Implicit Function as a Metric 63
7.2 Properties of the Implicit Function 65
7.3 Operations on the Range of F . 66

7.3.1 Density Change . 66
7.3.2 Mapping between Canonical Forms 67
7.3.3 Complement . 67
7.3.4 Dilations and Erosions . 68

7.4 Mappings of the Embedding Space 68
7.4.1 Affine Transformations . 70
7.4.2 Deformations . 70

7.5 Operations on the Domain of F . 71
7.5.1 Analytical Transformation of F 71
7.5.2 Transformation of Points . 71
7.5.3 Transformation of the Tangent Plane 72

viii Contents

8. Combining Implicit Objects . 73
8.1 Compound Objects . 73

8.1.1 Proper Functions . 73
8.1.2 Closure Properties of F . 74

8.2 Boolean Operations . 74
8.2.1 Functional Description . 74
8.2.2 Implicit CSG Objects . 75
8.2.3 Differentiable Boolean Operations 75
8.2.4 R-Functions . 76

8.3 Blending Operation . 78
8.3.1 Developing a Blend . 78
8.3.2 Linear Blend . 78
8.3.3 Hyperbolic Blend . 79
8.3.4 Super-Elliptic Blend . 80
8.3.5 Convolution Blend . 81

8.4 Global and Local Blends . 81
8.4.1 Blends as Boolean Operations 81
8.4.2 Local Blends . 82

9. Computational Methods . 83
9.1 Numeric and Symbolic Computation 84
9.2 Interval Arithmetic . 84
9.3 Root Finding . 85

9.3.1 Interval Subdivision Methods 86
9.3.2 Fixed-Point Methods . 87

9.4 Sampling Implicit Objects . 87
9.4.1 Point Sampling . 88
9.4.2 Curve Sampling . 89
9.4.3 Volume Sampling . 89

9.5 Structuring Implicit Objects . 89
9.5.1 Space-Based Structures . 90
9.5.2 Object-Based Structures . 90
9.5.3 Hybrid Structures . 91

10. Approximating Implicit Objects . 93
10.1 Structuring and Sampling . 93
10.2 Polygonization Methods . 94

10.2.1 Existence of a Polygonization 95
10.2.2 Polygonization Algorithm . 97

10.3 Implicit Solids . 100

Contents ix

10.4 Approximation Theory . 100
10.5 Classification of Polygonization Methods 102

10.5.1 Intrinsic Decomposition . 102
10.5.2 Extrinsic Decomposition . 102

10.6 Extrinsic Polygonization Methods 103
10.6.1 Non-simplicial Methods . 103
10.6.2 Simplicial Methods . 104
10.6.3 Continuation Methods . 105
10.6.4 Adaptive Methods . 105

11. Primitive Implicit Objects . 107
11.1 Analytical . 107

11.1.1 Plane . 108
11.1.2 Quadrics . 108
11.1.3 Torus . 109
11.1.4 Superquadrics . 110

11.2 Procedural . 114
11.2.1 Fractals . 114
11.2.2 Hypertexture . 114

11.3 Sample-Based Implicit Primitives 116
11.3.1 Irregular Samples . 116
11.3.2 Regular Samples . 119

12. Skeleton-Based Implicit Primitives 121
12.1 Point Skeletons . 121

12.1.1 Blobby Models . 121
12.1.2 Metaballs . 122
12.1.3 Soft Objects . 122
12.1.4 Other Formulations . 123

12.2 Curve Skeletons . 124
12.2.1 Lines . 124
12.2.2 Splines . 124

12.3 Surface Skeletons . 125
12.3.1 Polygon . 125
12.3.2 Height Field . 126

12.4 Skeletons and Blending . 126
12.4.1 Blending Schemes . 126

x Contents

13. Multiscale Implicit Objects . 131
13.1 Multiscale Decompositions . 131

13.1.1 Dictionaries . 132
13.1.2 Non-Redundant Dictionaries 133

13.2 Multiresolution Analysis and Wavelets 133
13.2.1 Multiresolution Analysis . 134
13.2.2 Detail Spaces . 135
13.2.3 Scaling Functions and Wavelets 135

13.3 The Wavelet Decomposition . 136
13.3.1 The Wavelet Transform . 136
13.3.2 Wavelet Implicit Models . 137

13.4 The Laplacian Decomposition . 138
13.4.1 The Laplacian Transform . 138

13.5 The Multiscale Representation . 139
13.5.1 Data Structures . 139
13.5.2 Conversion of Implicit Objects 140

14. Modeling . 143
14.1 Representation Schemes . 144

14.1.1 Properties of a Repesentation Scheme 144
14.1.2 Algebraic Structure of a Representation 145
14.1.3 Universal Representation . 147

14.2 The Implicit Representation . 148
14.2.1 Primitive Implicit Objects . 148
14.2.2 Composite Implicit Objects 149
14.2.3 Shape Modifiers . 149
14.2.4 Groups of Objects . 149

14.3 Auxiliary Representations . 150
14.3.1 Space Subdivision Enumeration 150
14.3.2 Polygonal Approximation . 150

14.4 Conversion . 150
14.4.1 Implicit to Parametric . 151
14.4.2 Parametric to Implicit . 151

14.5 Model Specification . 152
14.5.1 Constructive Techniques . 152
14.5.2 Free-Form Techniques . 152
14.5.3 Physically-Based Techniques 153

Contents xi

15. Visualization . 155
15.1 Points . 155
15.2 Curves . 156

15.2.1 Silhouette Curves . 157
15.2.2 Contour Curves . 157

15.3 Surfaces . 158
15.3.1 Scan Line Methods . 158
15.3.2 Polygonal Rendering . 159
15.3.3 Ray Tracing . 159

15.4 Volumes . 160
15.4.1 Slice Rendering . 161
15.4.2 Volume Rendering . 162

15.5 Visualization Modes . 163
15.5.1 Progressive Refinement . 163

15.6 Texture Mapping . 163
15.6.1 Solid Texture . 164
15.6.2 Projection Mapping . 164
15.6.3 Particle-Based Texturing . 165

16. Animation . 167
16.1 Animation Concepts . 167

16.1.1 Geometric Description . 167
16.1.2 Animation Rules . 168
16.1.3 Object Properties . 169
16.1.4 Composite Objects . 169
16.1.5 Constraints and Interference 170
16.1.6 Control Modes and Simulation 170

16.2 Animated Implicit Skeletons . 171
16.2.1 Particle Systems . 171
16.2.2 Articulated Objects . 171

16.3 Dynamic Simulation . 171
16.4 Metamorphosis . 172

16.4.1 Correspondence . 172
16.4.2 Interpolation . 172

17. n-dimensional Implicit Problems . 175
17.1 Example of Implicit Problems . 175

17.1.1 Offset surfaces . 175
17.1.2 Voronoi Surfaces . 176
17.1.3 Variable Radius Blend . 176

xii Contents

17.1.4 Shadow Computation . 176
17.1.5 Collision Detection . 177

17.2 Dimensionality Paradigm. 178

18. Conclusions . 179
18.1 Review . 179
18.2 Research Topics . 180

List of Figures

1.1 Unit circle in parametric and implicit form 2

2.1 Examples of non-manifold 3D objects. 6
2.2 Local change of coordinates . 7
2.3 Phase space of a double pendulum . 8
2.4 Non-embedding conditions . 9
2.5 Embedding S1 × S1 in R

3 . 11
2.6 Manifold with boundary . 12
2.7 Orientation on a manifold . 12
2.8 Two-dimensional manifold of genus 2 . 14

3.1 Parametric Manifold . 15
3.2 Stratification and cell decomposition . 18
3.3 Level Curves . 20
3.4 Implicit surface as a level set . 22

4.1 Coxeter-Freudenthal and J1 triangulations 31
4.2 Triangulation of the cube in R

3 . 31
4.3 Topological graph . 36

5.1 Admissible Normal Radius . 40
5.2 Tubular neighborhood . 40
5.3 Product space . 41
5.4 Maximal Sphere . 43
5.5 Medial axis . 43
5.6 Critical points of a Morse function (a), the CW-complex (b)

and topological structure (c) of a torus 45

6.1 Implicit solids with one (a) and two (b) shells 52
6.2 Local parameterization . 56
6.3 The Gauss map . 57

xiv List of Figures

7.1 The unit ball in different metrics . 64
7.2 Density change . 66
7.3 Dilations and erosions . 68
7.4 Spatial mappings . 69

8.1 CSG operations . 75
8.2 Linear blend . 79
8.3 Hyperbolic blend . 79
8.4 Super-elliptic blend . 80

10.1 (a) Implicit surface geometry; (b) sampling; (c) correct re-
construction using a piecewise linear approximation; (d)
wrong reconstruction. 95

10.2 Intersection of the surface with a 3D-simplex. 97
10.3 Illustration of the polygonization algorithm 98
10.4 Cell classification . 99
10.5 Examples of inadequate space decompositions. 99
10.6 The polygon obtained from F−1∩σ, indicated with a dashed

line, is not the same as the polygon obtained from F̃−1 ∩ σ. 101
10.7 Ambiguous Polygonization . 104

11.1 Main quadric surfaces: Sphere (a); Paraboloid (b); Cone (c);
Cylinder(d) . 110

11.2 Superquadric ellipsoids . 112
11.3 Hypertexture Object . 115

12.1 Isotropic and anysotropic primitive point skeletons 124
12.2 Skeleton-based implicit objects of a line segment 125
12.3 Skeleton Based Implicit Objects . 126
12.4 Skeleton Based Implicit Objects . 127
12.5 Convolution blend . 129

13.1 Slices of the Volume Density Function for the Noisy Sphere 141
13.2 Boundary and Interior Points of the Noisy Sphere 141
13.3 Noisy Sphere, Raytraced from its B-spline Pyramid 142

14.1 Structure of a Modeling System . 143
14.2 Representation Scheme . 144
14.3 Parse tree and algebraic expression: . 146
14.4 Universal Representation . 147

List of Figures xv

15.1 Point display . 156
15.2 Silhouette curve display . 158
15.3 Rendering of a polygonal approximation of the implicit surface159
15.4 Surface display with ray tracing . 160
15.5 Slice Visualization . 161
15.6 Volume visualization . 162
15.7 Solid texture . 164
15.8 Projection mapping . 165
15.9 Particle Texture Mapping . 166

16.1 Metamorphosis using interpolation . 173

This page intentionally left blank

1. Introduction

The use of implicit formulations to describe the geometry of objects is
not new in Computer Graphics. In fact, one of the first visualization
systems developed in the sixties by MAGI [Mat68] was a ray tracing
program based on quadric surfaces, which are specified implicitly by
algebraic equations. Nonetheless, it was only recently that the graph-
ics community began to recognize the specific aspects of this form of
representation and to fully realize its potential applications [BBB+97].

1.1 Parametric versus Implicit

The geometry of an object can be formulated in two different ways:
parametrically or implicitly. In the parametric form, the points be-
longing the object are given directly by a collection of mappings or
parameterizations. These mappings relate a space of parameters to
the object surface such that there is a correspondence between points
in these two spaces. In the implicit form, the points belonging to the
object are given indirectly through a point-membership classification
function. This function defines the relation of points in the ambient
space with the object. These two forms are in a sense complementary.
It is important to notice that the parametric form is a direct descrip-
tion while the implicit form is an indirect one.

Intuitive understanding of the differences between the parametric
and implicit forms is gained by means of a simple example:

Consider the unit circle in the plane (Figure 1.1). It can be de-
scribed by the parametric equation (x, y) = f(θ), where:

f(θ) = (cos θ, sin θ), θ ∈ [0, 2π].

This parameterization maps the interval [0, 2π] of the real line onto
the unit circle S1. It also allows us to directly enumerate all the points
of S1, by varying the parameter θ from 0 to 2π.

2 1. Introduction

0 2

r
p

c

|c-p| = r2

f

π

θ

Fig. 1.1. Unit circle in parametric and implicit form

The unit circle can also be described by the implicit equation
F (x, y) = 0, where:

F (x, y) = x2 + y2 − 1, x, y ∈ R.

The set of points (x, y) that satisfy F (x, y) = 0 is the circle S1. The
function F classifies the points in the plane with respect to the unit
disk D1, which is the region delimited by S1. When we substitute the
coordinates of a point p = (x, y) in the equation F (x, y) = x2 + y2− 1,
the sign of the value of F at p indicates whether p is inside, outside,
or on the circle, as follows: If F (p) is negative, then p is in the interior
of D1; if F (p) is positive, then p is in the exterior of D1; and if F (p)
is zero, then p belongs to the boundary of D1, that is, p is on S1.

It is apparent that one form is better suited to some types of opera-
tions than the other, and vice-versa. For instance, to draw an approx-
imation of the circle we need to connect by straight lines an ordered
set of samples lying on S1. This can be done easily using the para-
metric form stepping θ through [0, 2π]. On the other hand, to detect
interferences between objects we need to test whether points from one
object are inside the other. This is a straightforward operation using
the implicit form: it amounts to simply checking the sign of F (p).

1.2 Motivation

The parametric form has been by far the most popular geometric rep-
resentation used in computer graphics and CAD to date. Parametric

1.3 Scope and Overview 3

objects and the techniques associated with them have been exhaus-
tively investigated and developed. As a consequence, parametric ob-
jects are very well understood and are now part of the common vo-
cabulary of most graphics practitioners. This can be verified when one
notices that all graphics workstations have built-in engines to render
parametric surfaces. Another indication is the large number of differ-
ent types of spline surfaces, as well as the developments in the area of
subdivision surfaces.

In contrast, the implicit form has been used only as a comple-
mentary geometric representation, mainly in the restricted context of
specific applications. Recent developments in graphics are causing this
situation to change and the community is beginning to draw its at-
tention to implicit objects. This is reflected in the current research of
aspects related to this subject.

There is another aspect of parametric and implicit representations
that should be stressed. The equation that describes a point set O
of the space defines the constraints that the points of the space must
undergo in order to belong to the set O. This is true both for implicit
and parametric equations. Implicit equations arise naturally connected
to several important problems in computer graphics, in particular in
geometric modeling. Besides writing the equation that formulates the
problem we must be able to develop “interrogation techniques” in order
to solve it. Robust algorithms to deal with implicit surface interroga-
tions have appeared in the literature.

The main motivation for writing this book is to review what has
been done so far in this area and put it into perspective under a co-
herent conceptual framework.

1.3 Scope and Overview

The structure of the document is logically divided into five parts. The
first part reviews the mathematical foundations of geometric models,
including chapters on manifold models, parametric and implicit mani-
folds, space decompositions, and the realtion of shape and space. The
second part concentrates on the specification of shapes using implicit
formulations. including chapter on definition of implicit objects, as
well as, operations to manipulate and combine implicit objects. The
third part studies the main techniques used to compute with implicit

4 1. Introduction

objects, including chapters on methods for approximating implicit ob-
jects. The fourth part describes the different types of implicit prim-
itives, including chapters on analytical, procedural sample-based im-
plicit objects, as well as, skeleton and multiscale representations. The
fifth part considers the computer graphics techniques to model, render,
and animate implicit objects. The book ends with a chapter discussing
a high-dimensional implicit formulation of some graphics problems and
algorithms to solve them.

2. Manifolds

This chapter reviews some of the main concepts involved in the de-
scription and computation of the geometric aspects of objects. These
concepts are related to the mathematical study of shape and form,
requiring results from Differential Geometry and Topology.

In order to simulate real objects using computers it is necessary to
develop an abstract model that captures the relevant properties of the
object. From this model, a concrete representation can be constructed
describing particular instances of the model. This representation is
made of symbols that are actually processed when we manipulate the
object being simulated.

The concept of a manifold is an appropriate abstraction for de-
scribing the shape of a large class of objects. This mathematical entity
makes it possible to study the geometric and topological properties of
objects.1 Most importantly, when we work with manifolds, all results
are stated in a coordinate-independent manner, and most geometric
notions are defined intrinsically.

2.1 Definition

Intuitively, a manifold is a topological space that is locally Euclidean.
More precisely, a n-dimensional manifold is a separable topological
space having at each point a neighborhood homeomorphic to an open
subset of R

n. The separability requirement means that the manifold is
a Hausdorff space. Furthermore, we suppose that this space admits a
countable base of open sets, that is, any open set on the manifold may
be expressed as a countable union of open sets.
1 The need for more generality motivated the development of non-manifold models.

These are supported by the CSG and B-Rep representation schemes [Wei86]
[RO89]. Nevertheless, these models generalize the previous one and, in general,
can be defined by a collection of manifold structures.

6 2. Manifolds

Therefore, for each point p ∈ M , there exists an open set U � p,
and a homeomorphism ϕ : U ⊂ M → ϕ(U) ⊂ R

n. This means that
we have an open covering {Ui} of M and each set in this covering is
mapped onto an open subset of R

n by the map ϕi.
Figure 2.1 shows examples of subsets of the Euclidean space that

are not manifolds.

Fig. 2.1. Examples of non-manifold 3D objects.

2.2 Local Charts

The pair (U,ϕ) in the definition of a manifold is called a local coordinate
system, or a local chart, where U is the domain of the chart. To each
point p ∈ U , we assign the coordinates (x1, x2, . . . , xn) of ϕ(p) ∈ R

n.
Given two local coordinate systems ϕ1 : U1 � p → R

n and ϕ2 :
U2 � p→ R

n, the map h : ϕ−1
2 ◦ ϕ1 is a homeomorphism with inverse

h−1 = ϕ−1
1 ◦ ϕ2. (See Figure 2.2.) The homeomorphism h is called a

local change of coordinates.
The local change of coordinates guarantees that the local pieces are

nicely glued together. As a consequence, no matter how complex the
manifold may be globally, we can regard the vicinity of each point as
being a piece of an Euclidean space.

2.3 Atlases and Structures

Usually, it is not possible to find a single chart covering M entirely, in
which case we use a collection of charts whose domains taken together
cover M .

2.3 Atlases and Structures 7

U i

U j

ϕ (U) i Ri ϕ (U) j Rj

ϕ
j

ϕ
i
-1

Fig. 2.2. Local change of coordinates

A collection {(Ui, ϕi)}i∈I of charts that covers M (where I is an
index set) is called an atlas.

By imposing restrictions on the nature of the homeomorphism that
defines the change of local coordinates we get a hierarchy of different
types of atlases on the manifold:

h homeomorphism Topological Manifold.
h Ck, k ≥ 1, diffeomorphism Differentiable Ck Manifold.
h analytical Analytical Manifold.
n = 2, h holomorph Riemann Surface.
h piecewise linear Combinatorial Manifold.
h piecewise differentiable Piecewise Differentiable Manifold.

An atlas A = {ϕi, Ui} is called maximal if it contains all local
charts whose change of coordinates with ϕi are of the same type of A.
A maximal atlas on M defines a structure of the manifold. Note that
for a given structure on a manifold M , there is no privileged coordinate
system.

Each type of structure is suitable to study some class of problems,
and is related to different fields of Mathematics. In computer graphics,
we use mainly differentiable, piecewise differentiable or piecewise lin-
ear manifolds. This notion of piecewise linear manifolds will be used in
Chapters 10 and 14. In this book, a differentiable manifold of class Ck,
k ≥ 1, will be called smooth manifold, or simply a differentiable man-
ifold.

8 2. Manifolds

2.4 Calculus on Manifolds

If M is a Ck differentiable manifold it is possible to extend to M con-
cepts from analysis on Euclidean spaces. The most delicate part is the
definition of tangent space, since there is no ambient space involved.
The definition of differentiability and derivative of a map are done
straightforwardly using local coordinates. In other words, we can per-
form local computations on an n-dimensional manifold as if we were
working in R

n. Any function f defined on M can be expressed locally
with the aid of the coordinates x1, x2, . . . , xn defined by ϕ. At a point
p ∈M , we have

f(p) = f(x1(p), x2(p), . . . , xn(p)).

Since we can transport the differential calculus to manifolds, they
become the natural habitat for problems from different areas of Pure
and Applied Mathematics. As an example consider the study of mo-
tions of a double pendulum on a plane, composed of two articulated
segments linked by a rotational joint and connected to a base by an-
other rotational joint. Figure 2.3-a contains a diagram of this configu-
ration. The position of the pendulum can be completely characterized
by the rotation angles φ and θ of the two joints. This problem is
properly formulated as a dynamical system defined on a manifold M ,
parameterized by θ and φ. The topology of M is the topology of a
torus because the angles 0 and 2π are identified. This is shown in
Figure 2.3-b.

φ

θ

φ

θ

0=2π

0=2π

(a) (b)

Fig. 2.3. Phase space of a double pendulum

2.6 Submanifolds 9

It is also possible to define a metric on any differentiable manifold,
if the metric is defined at each tangent space and varies in a differen-
tiable way. This enables us to introduce geometric concepts on these
spaces, generalizing the Euclidean Geometry of R

n. The study of this
Geometry begun with Riemann in the 19th century, and it is called
Riemannian Geometry.

2.5 Immersions and Embeddings

Given two smooth manifolds M and N , a differentiable map f : M →
N is an immersion if the derivative f ′(p) is 1 − 1 for every p ∈ M .
If f : M → N is an immersion and f is a homeomorphism f : M →
f(M), f(M) with the topology induced from N , then f is called an
embedding.

Two conditions can prevent an immersion of being an embedding:

• f is not 1− 1 (See Figure 2.4-a).
• f is not a homeomorphism (See Figure 2.4-b).

a

f

R

f

R

(a) (b)

Fig. 2.4. Non-embedding conditions

An immersion is called in the literature parametric manifold. In
dimensions 1 and 2, their use is widespread in computer graphics under
the name of “parametric curves and surfaces”. We will come to this
subject in Chapter 3.

2.6 Submanifolds

As we have seen, a manifold is a very general and abstract mathemat-
ical concept. It has a structure of its own and exists independently of
any other space.

10 2. Manifolds

For the purposes of modeling geometric objects we need a more
restrictive concept. Real objects are part of the surrounding environ-
ment. This means that we have to regard them as residing in an n-
dimensional ambient space. The proper mathematical concept in this
case is that of a submanifold. This more specialized notion deals with
a manifold S required to lie on another manifold M .

A submanifold S of another manifold M is a subset S ⊂ M with
a manifold structure, such that the inclusion map i : S → M , i(p) =
p, is an embedding. Most of the geometric objects used in computer
graphics are submanifolds of the Euclidean space R

2 or R
3. Usually

these submanifolds are called regular curves in the 1-dimensional case
and regular surfaces in the 2-dimensional case [dC74]. If Sn ⊂ Mm is
an n-dimensional submanifold of an m-dimensional manifold M , with
n ≤ m, then the difference k = m − n is called the codimension of S
in M .

The definition of submanifold given here do not coincide exactly
with the usual definition of submanifolds of R

n found in the literature.
According to the traditional definition, a subset M ⊂ R

m is a n-
dimensional submanifold of R

n if for each point p ∈ M there exists
an open neighborhood U � p in R

m, a neighborhood V ⊂ R
n and an

embedding ϕ : V → U ∩M . Note that the local charts take values in
M . They are called a parameterization of the neighborhood M ∩ U .

2.7 Realizations of a Manifold

It can be shown that any manifold can be embedded in a Euclidean
space R

m of sufficiently high dimension m. For example, the product
manifold N = S1 × S1 can be embedded in R

3 with a “doughnut”
shape. Note however that this embedding does not inherit from R

3 the
“flat metric” naturally defined on N . In order to get the induced “flat
metric” we must to embed it in R

4 = R
2 × R

2. This is depicted in
Figure 2.5.

For Riemannian manifolds, i.e., manifolds with a metric, the em-
bedding result stated above still holds, but the dimension of the em-
bedding space is much higher.

2.8 Manifolds with Boundary 11

a

K = 0K = 0

R3

Fig. 2.5. Embedding S1 × S1 in �3

2.8 Manifolds with Boundary

With the definition given above, the disk {(x, y) ∈ R
2 : x2 + y2 ≤ 1}

is not a manifold: no neighborhood of a point (x, y) on its boundary,
i.e., such that x2 + y2 = 1, is homeomorphic to an open set of R

2.
The class of objects represented by the disk, i.e., a surface plus its
“boundary”, is very common in computer graphics models. In order
to consider them in a unified framework we have to extend the notion
of a manifold to include boundaries.

In a manifold with boundary we must distinguish between interior
and boundary points. This is done by parameterizing the manifold on
the positive halfspace

R
n
+ = {(x1, . . . , xn) ∈ R

n : x1 ≥ 0}

More precisely, a separable topological space M is a manifold with
boundary if each point p ∈ M has a neighborhood homeomorphic to
an open subset of R

n
+. A point p ∈M is called a boundary point if for

any local chart X on M , x(p) is on the boundary of R
n
+ (i.e., its first

coordinate is zero). The boundary of the manifold is the collection of
all its boundary points (See Figure 2.6).

The definitions of charts, atlases, differentiability of a map, and the
notion of submanifold can be extended to manifolds with boundary.

There is an important concept related to submanifolds, when the
manifolds involved have boundary. A submanifold A of a submanifold
with boundary M is called neat if ∂A = A ∩ ∂M .

12 2. Manifolds

a

p

p’

ϕ

ϕ

’

Fig. 2.6. Manifold with boundary

2.9 Orientability

A differentiable manifold is orientable if it admits an atlas A such
that for every pair of overlapping charts (U,ϕ) and (V, ϑ), U ∩ V 	=
∅, the associated coordinate systems (xi) and (yi) are consistently
oriented (i.e., the Jacobian ∂(y1, . . . , yn)/∂(x1, . . . , xn) of the change
of coordinates is positive). The atlas A is called an orientation of M .

The above definition means that for every p ∈ M , it is possible to
orient the tangent plane TpM in such a way that it is compatible with
the canonical orientation of Rm under any local coordinate system of
the atlas A. This is illustrated in Figure 2.7.

ϕ

Fig. 2.7. Orientation on a manifold

That is the most natural and intuitive way to think about the
orientability of a manifold. It is important to realize that orientability
is a global concept. In an orientable manifold there exists an orientation
of the tangent plane at each point and this orientation is globally
compatible.

2.11 A Suitable Model 13

This definition holds for manifolds with or without boundary. If M
is an orientable manifold with boundary, ∂M , and A is an orientation
of M , then A defines in a natural way an orientation of ∂M , called
the induced orientation.

This general definition of orientability is very hard to verify in prac-
tice. It is possible, under certain restrictions, to get better conditions
for orientability. One such case is the study of orientability of subman-
ifolds of the Euclidean space R

m. If Mn ⊂ R
m is a submanifold of

codimension k = m − n > 0, and v1, . . . , vk is a family of k normal,
continuous, vector fields linearly independent at each point p ∈ M ,
then M is an orientable submanifold. When k = 1, the converse of the
statement above is also true. Therefore, a surface in R

3 is orientable if
and only if there exists a non-null normal, continuous, vector field to
it.

With the above result relating orientability and non-vanishing nor-
mal vector fields, it is very easy to prove that the Moebius band is not
orientable.

We defined here the concept of orientability for differentiable mani-
folds. It is possible to extend this notion even to topological manifolds,
but this needs results from algebraic topology.

2.10 Classification of Manifolds

A connected manifold without boundary of dimension 1 is homeomor-
phic either to the unit interval (0, 1) or to the circle S1. Therefore
1-dimensional manifolds are orientable.

The family of connected compact orientable manifolds of dimen-
sion 2, without boundary, consists of the sphere S2 and the surfaces
obtained by “attaching handles” to it. See Figure 2.8.

The boundary of a solid is an orientable manifold of dimension 2.
Therefore, it is a disjoint union of the surfaces described above.

For manifolds of dimension greater than 2, there is no complete
theory of classification.

2.11 A Suitable Model

We finally arrived at a suitable mathematical model to describe a
large class of geometric objects in computer graphics: curves are one-
dimensional submanifolds of R

2 or R
3, surfaces are two-dimensional

14 2. Manifolds

+ +

=

Fig. 2.8. Two-dimensional manifold of genus 2

orientable submanifolds of R
3, and solids are three-dimensional ori-

entable, compact, submanifolds of R
3 with boundary. This allows us

to represent in the computer many types of solids: solids with holes,
solids with multiple shells, etc.

3. Parametric and Implicit Manifolds

A manifold is defined in parametric form if it is given by an atlas. This
specification is not very attractive from a computational point of view
because each chart is defined on an open set and they overlap. In this
chapter we investigate different alternatives to represent a manifold.

3.1 Parametrizations

In Chapter 2 we showed that the natural way to describe a submanifold
in R

n is by parameterizing a neighborhood of each of its points. The
parameterization defines a coordinate system, the differentiability of
the change of coordinates guarantees that adjacent pieces are glued
nicely together. For each point on a surface in three dimensions, There
exists an open set V � p and an embedding f : U ⊂ R

2 → f(U) = V .
For each (u, v) ∈ U , f(u, v) = (x, y, z) where

x = f1(u, v),
y = f2(u, v),
z = f3(u, v).

(See Figure 3.1).

U f(U) R 3

f

Fig. 3.1. Parametric Manifold

16 3. Parametric and Implicit Manifolds

In general, it is impossible to cover the whole surface with a single
parametrization. For compact manifolds without boundary, such as
the sphere, we need at least two parametrizations.

A parametrization of the unit sphere by longitude and latitude is
given by

f(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ),

where f : U → R
3, and U = {(θ, φ) ∈ R

2 : 0 < θ, φ < π}. Note that the
north and south poles are missing. If the points 0 and π are included
in the domain to cover the poles, then f is no longer an immersion.

Of course, different parametrizations of the same surface always
exist. As an example, the sphere can be also parameterized using the
stereographic projection:

f(u, v) = (2u, 2v, u2 + v2 − 1)/(u2 + v2 + 1).

The parametrization f is a one-to-one mapping of R
2 onto S2 − {q}.

Only the north pole q is missing, therefore two charts suffice to get an
atlas of the sphere using these projections.

Definition: A manifold M ⊂ R
n is called parametric if it is the image

of an immersion f : U ⊂ R
m → R

n.

3.2 Stratifications

There is a need to introduce some decomposition scheme based on
manifolds, such that each region has nice properties but its topology
is not so restrictive. Also, the different pieces should have nice glu-
ing properties in order to enable global constructions based on the
decomposition. The intuitive idea of a stratification of a given set is
a partition of the set into a number of manifolds that have nice glu-
ing properties. Stratified sets constitute the natural habitat for the
concept of manifolds with singularities.

A stratification of a subset V of R
n is a partition P of V into a

family of smooth submanifolds of R
n. Each connected decomposing

submanifold is called an strata of the decomposition.
A triangulated manifold is an example of a cell decomposition that

defines a stratification. The different faces of the simplices in the tri-
angulation are the strata of the decomposition. (Chapter 4 discusses
space decompositions in greater detail.)

3.3 Piecewise Descriptions 17

In general the following additional assumptions are required for a
stratification:

• local finiteness;
• boundary condition: the frontier of each strata is the union of lower

dimensional strata;
• Whitney regularity. This guarantees topological homogeneity in the

neighborhood of each point. The exact definition is more involved
and is given in [CGV92].

In computer graphics we are mostly interested in finite stratifica-
tions. In this case, it has been shown that the regularity condition
implies the boundary condition [Wal75].

There is a natural way to define a partial order on the family of
stratifications associated to a given set V . For each stratification P we
define the filtration (V i)

∅ = V 0 ⊂ V 1 ⊂ · · · ⊂ V n = V

by taking V i to be the union of the strata in P of dimension at most i.
Now, if P, P are two stratifications of V with filtrations (V i) and

(V i), we define P < P if there exists an integer i for which V i ⊂ V
i,

and V j = V
j, for all j > i. For finite stratifications this partial order

has a least element. This element is called minimal stratification of the
set V . This notion of minimality eliminates unnecessary subdivisions
in the stratification, producing in this way a decomposition with the
minimum number of strata.

Since each stratum is a smooth manifold, it is triangulable. Also,
since different strata are glued in a well behaved way, it seems reason-
able that we can glue the different triangulations in each stratum to
obtain a triangulation of the whole stratified set. This result is true
and was proved in [Joh83].

3.3 Piecewise Descriptions

We said that in general more than one parametrization is needed to
cover a manifold. Since the parametrizations are defined on open sub-
sets, given two local charts ϕi : Ui → Vi ⊂ M , i = 1, 2, either V1 and
V2 are disjoint or they overlap (i.e., the intersection is open). Compu-
tationally, this situation is not attractive. Ideally, we should cover M

18 3. Parametric and Implicit Manifolds

by parametrized sets that do not overlap. The concept of stratification
is adequate to define precisely good piecewise descriptions of a set.

Example 3.1. The decomposition of the sphere in Figure 3.2-a is a
stratification, but not a cell decomposition. Figure 3.2-b shows a cell
decomposition of the sphere.

U U U
1 2 3

U
1

U
2

Fig. 3.2. Stratification and cell decomposition

A submanifold M ⊂ R
m of dimension n is called piecewise para-

metric manifold if the following conditions are satisfied:

• There exists a finite stratification, M = ∪k
i=0Mi of M ;

• There exists a partition of a set V ⊂ R
n, V = ∪k

i=0Vi;
• There exists a family of parametrizations ϕi : Vi →Mi.

Therefore, if M is a piecewise parametric manifold, we can define a
global parametrization ϕ : V → M , such that for each Vi ⊂ V , the
restriction ϕ|Vi of ϕ to Vi is the parametrization ϕi : Vi → Mi. In
applications we impose, in general, some regularity conditions on ϕ,
e.g., continuity, class Ck, etc.

Example 3.2. The stratification in Example 3.1 can be used to define
a piecewise parametric structure on the sphere by using stereographic
projection to parameterize the two open hemispheres and the equator.
In this case, the piecewise parametrization obtained has a C∞ class.

Example 3.3. Parametric surfaces in computer graphics are usu-
ally constructed in a piecewise fashion. As an example, the classi-
cal “teapot” is defined by a cell decomposition where each cell is
parametrized using a Bézier patch.

3.5 Regularity and Transversality 19

As we have seen, in general a manifold cannot be covered by just
one chart (the sphere needs at least two charts). Nevertheless, every
manifold has a piecewise parametric structure. This result follows from
the theorem bellow.

Theorem 3.1. Every differentiable manifold is triangulable.

The first proof of the above theorem was given by Cairns [Cai34].
A more geometric proof can be seen in [Whi57]. What the above the-
orem shows is that every differentiable manifold has a combinatorial
structure. Later on, we will study computational methods to get combi-
natorial triangulated structures that approximate a class of manifolds.

3.4 Implicit Description

Intuitively, implicit manifolds are manifolds defined as the solutions of
equations of the type F (x) = 0, when F is a Ck real function on the
Euclidean space. The set of points that satisfy such an equation may or
may not be a manifold. For instance, the equation x2

1+x2
2−1 = 0, as we

have seen, defines the unit circle, which is a 1-dimensional manifold. On
the other hand, the equation x2

1− x2
2 = 0 defines a pair of intersecting

lines, which is not a manifold. Therefore, we need to state precisely
under which conditions an implicit form defines a manifold. This allows
us to derive several properties associated with this class of manifolds.

3.5 Regularity and Transversality

Let M and N be differentiable manifolds, and f : M → N be a
differentiable map between them. The inverse image of a point c ∈ N
by f is the set

f−1(c) = {p ∈M : f(p) = c}.

This is illustrated in Figure 3.3.
Note that if M = R

m and N = R, the set f−1(c) is precisely the
solutions of the implicit equation

f(x1, . . . , xm)− c = 0

The point c is called a regular value of f if for all p ∈ f−1(c), the
differential f ′(p) : TpM → TcN is surjective. If c is not a regular value,

20 3. Parametric and Implicit Manifolds

U

F

-1

c

F (c)

Fig. 3.3. Level Curves

it is called a critical value. When M = R
m and N = R, the regularity

condition means that the gradient vector

∇f =
(
∂f

∂x1
, . . . ,

∂f

∂xm

)
does not vanishes at the points of f−1(c). When N = R

n, and f has
coordinate functions f = (f1, . . . , fn), the regularity condition means
that the gradient vector fields ∇f1, . . . ,∇fn are linearly independent.

In order to define a great variety of objects in computer graphics,
we should allow the inverse image by f of subsets with more than
one point. A proper generalization is to take a submanifold A of N
instead of a single point p. In this case, the concept of regular value
should be interpreted as a transversality condition: f is transversal to
a submanifold A of N if for every point p on the inverse image f−1(A)
we have

f ′(p) · TpM ⊕ Tf(p)A = Tf(p)N.

That is, the tangent space of N at f(p) is spanned by the tangent
space of A at f(p) and the image of the tangent space of M at p by
the derivative of f . This means that the derivative at each point of
f−1(A) cannot degenerate too much.

Observe that if the submanifold A reduces to a point c, the concept
of transversality reduces to the concept of regular value.

3.6 Implicit Manifolds

The properties defined above give us several conditions under which
the inverse image of a submanifold is a manifold. The results of the

3.7 Geometric Interpretation 21

theorem below states in which cases a manifold is called an implicit
manifold.

Theorem 3.2. Let f : M → N be a differentiable map between differ-
entiable manifolds. If c ∈ N is a regular value of f , then f−1(c) is a
submanifold of M whose codimension is equal to the dimension of N .

Theorem 3.3. Let M and N be differentiable manifolds, N a manifold
without boundary, and A ⊂ N a submanifold (possibly with bound-
ary). If f : M → N is transversal to A, then the inverse image
f−1(A) is a submanifold (possibly with boundary) of M , such that
codim(f−1(A)) = codim(A).

Theorem 2 above is also true if the manifold N has boundary, but
in this case we have to add one of the conditions bellow:

• A ⊂ N − ∂N , or
• A is neat, or
• A ⊂ ∂N .

In addition, f has to be transversal to ∂A when appropriate (last two
conditions).

Example 3.4. Let f : R
3 → R; be given by f(x, y, z) = x2+y2+z2−1.

Then, f−1((−∞, 1]) is the closed ball of radius one. f−1([12 , 1]) is the
region delimited by the sphere of radius 1

2 and 1. The transversality
condition is immediately verified here.

Let f : U ⊂ R
n+k → R

k be differentiable and c ∈ R
k a regular

value of f . If f1, . . . , fk are the coordinate functions of f , then is easy
to verify that the vector fields

gradf1(p), . . . , gradf1(p)

are normal to the implicit submanifold M = f−1(c).
It follows from this observation that every manifold defined implic-

itly as the inverse image of a regular value is orientable.

3.7 Geometric Interpretation

An implicitly defined manifold of codimension 1 can be interpreted
geometrically as the level set of the graph of a function. This provides
a very good intuition of the real meaning behind the implicit form.

22 3. Parametric and Implicit Manifolds

Consider a function F : U ⊂ R
n → R. Its graph is the subset of

R
n+1 defined by

graph(F) = {(x1, . . . , xn+1) : (x1, . . . , xn) ∈ U, xn+1 = F (x1, . . . , xn)}

This can be visualized as a height field where for each point p ∈ U the
value of F (p) gives the elevation of a hypersurface G at that point.
This type of surface is also called a Monge surface.

The manifold M defined by F−1(c) is given by the intersection of
the graph of F with a hyperplane parallel to U at a distance c from
it: G ∩ {xn+1 = c}.

This is shown in Figure 3.4 for a circle defined implicitly by
x2

1 + x2
2 = c. We use a two-dimensional example for clarity. The

graph of F is a paraboloid of equation x3 = x2
1 + x2

2, and its intersec-
tion with a plane x3 = c is a circle for c > 0. Note that c = 0 is not
a regular value because it is a minimum of F and therefore a singular
point.

a

c

Fig. 3.4. Implicit surface as a level set

In general, we can say that the description of objects in implicit
form is intimately related to the problem of intersection. In the par-
ticular case of codimension 1, the implicit manifold F (p) = c is the
intersection of the graph of F with a hyperplane. For codimension m,
the implicit manifold F (p) = c = (c1, . . . , cm) ∈ R

m is the intersection
of the m hypersurfaces F (p) = c1, . . . , F (p) = cm in R

n.

3.9 Algebraic Interpretation 23

The regularity condition in the geometric interpretation above
means that the manifolds have no tangency along their intersection
set.

3.8 Algebraic Varieties

Consider M = R
m, and take a map F : R

m → R with coordinates
F = (F1, . . . , Fn), such that each coordinate function Fl : R

m → R is
a polynomial of degree g in m variables; that is

Fl(x1, . . . , xm) =
n∑

i=1

aix
ki1
1 . . . xkim

m

where ai ∈ R, and kij are non-negative integers. Each term aix
ki1
i . . . xkim

m

is called a monomial. The degree of the monomial is the sum ki1 + · · · + kim

of the exponents. The degree of F is the highest degree of its constituent
monomials with leading term ai 	= 0. The implicit object defined by
F (x1, . . . , xm) = 0 is called an algebraic variety. The degree of the
polynomial F is the degree of the variety. We will also call an alge-
braic variety an algebraic implicit surface.

Note that an algebraic variety is not necessarily a manifold since
we do not require 0 to be a regular value.

Algebraic varieties constitute a very special class of implicit objects,
because we can use techniques from algebraic geometry to study them.

3.9 Algebraic Interpretation

The possibility of associating some algebraic structure to geometric
objects makes it possible to use algebraic, symbolic computations in
order to solve geometric problems. Suppose M is an algebraic variety,
that is, the zero set of the polynomial f . If g : R

m → R is any polyno-
mial, then M is a subset of the zero set of the polynomial f · g. In this
way, we can characterize M as the zero set of all polynomial multiples
of f . This set of polynomials is called the ideal generated by f , and is
denoted by 〈f〉.

Considering F : R
m → R

n, with coordinate functions (f1, . . . , fn),
the same result is true for the ideal 〈f1, . . . , fn〉 generated by the co-
ordinate functions. This ideal is the set of all polynomials

24 3. Parametric and Implicit Manifolds

g1f1 + · · ·+ gnfn,

where gi is an arbitrary polynomial.
Ideals constitute a very nice algebraic structure: they are closed

under sums and products. Moreover, the product of any polynomial
by a polynomial from an ideal belongs to the ideal.

The association of an implicit algebraic surface with an ideal makes
it possible to use the techniques from algebraic geometry in this area.
The reader interested in more details should consult chapter 8 of
[Hof89] and the references there.

3.10 Parametric versus Implicit

The problem of converting a parametric manifold to an implicit form is
called implicitization. ConsiderM a parametric manifold in R

n, that is,
M is a submanifold of R

n, and ϕ : U →M is a global parametrization
of M . To implicitize M , we must find a function F : R

n → R
m, such

that M = F−1(C).
Note that the function F in the definition above is defined on the

same space where the manifold M lives. Without this dimension con-
straint, the implicitization problem becomes trivial. Without the di-
mension constraint, every parametric manifold can be implicitized eas-
ily. In fact, suppose

x1 = f1(u, v), x2 = f2(u, v), x3 = f3(u, v),

define a parametric surface in R
3, fi : U ⊂ R

2 → R
3. The equation

h = 0, where the map h : U × R
3 ⊂ R

5 → R
3 is defined by

h(u, v, x1, x2, x3) = (x1 − f1(u, v), x2 − f2(u, v), x3 − f3(u, v)),

defines implicitly an embedding of M in R
5. Implicitization without

dimension constraints is very well exploited in the “dimensionality
paradigm” introduced by Hoffmann. For more details the reader should
consult [HV89], [Hof90] and also Chapter 17.

In general, if M is a parametric manifold, there is no implicitization
for M . An easy way to see this is to observe that an implicit mani-
fold is a closed subset of the ambient space, and this is not necessarily
true for an arbitrary parametric manifold. The reader interested in a

3.10 Parametric versus Implicit 25

more complete discussion about the problem of conversion between im-
plicit and parametric manifolds, with several examples, should consult
[Hof89, Sed90a, Sed90b], and the references there.

Locally, the concepts of parametric and implicit manifolds coincide.
This means that if M is an m-dimensional manifold in R

n, then the
following assertions are true:

1. For every p ∈ M there exists a neighborhood M ⊃ V � p, and a
diffeomorphism ϕ : U ⊂ R

m → V .
2. For every p ∈ M there exists a neighborhood U ⊂ R

n, p ∈ U and
a function f : U → R

n−m such that M ∩ U = f−1(0), and 0 is a
regular value of f .

Assertion (1) is the very definition of a manifold. Assertion (2) is
an immediate consequence of the implicit function theorem [Spi65].

It is possible to improve the result in assertion (2) even more:

2′. For every p ∈M , there exists a decomposition R
n = R

m⊕R
k, such

that M is the graph of a function f : U ⊂ R
m → R

k.

The local results stated above have been exploited in the literature
in order to obtain computational methods for surface interrogations.
In [MTV86] approximations of the kind stated in (1) are constructed
(see also [BI89]). Chuang [CH89] describes a technique to construct a
local implicit approximation to a parametric curve or surface. In both
cases, applications are discussed.

Every closed submanifold of R
n can be defined implicitly. An ele-

mentary proof of the result for compact surfaces in R
3 can be found

in [dC74].
It is not difficult to find an implicit equation for every surface of

genus g. For the sphere (g = 0) there is no problem. For g ≥ 1, we take
an implicit equation F (x, y) = 0 that defines a compact curve γ in R

2

with g − 1 crossings. The implicit equation for the genus-g surface is
given by

F (x, y)2 + z2 − ε2 = 0.

Geometrically, the surface consists of the points in the space whose dis-
tance from the curve is some fixed number ε > 0. Of course, ε depends
on the curve F (x, y) = 0.

For the torus we can take the curve γ to be the circle of radius 2,
F (x, y) = x2 + y2 − 1, and ε = 1. The surface equation becomes

26 3. Parametric and Implicit Manifolds

(x2 + y2 − 4)2 + z2 − 1 = 0.

For the 2-torus we can define the curve by F (x, y) = 4x2(1− x2)−
y2 = 0, and ε = 1/4. The surface equation becomes

(4x2(1− x2)− y2)2 + z2 − 1
4

= 0.

Later on, we will describe in detail computational methods to con-
struct a local parametrization to a given implicit surface.

4. Space Decompositions

This chapter presents an overview of the concepts related to space
decompositions and discusses the data structures for their represen-
tation. The existence of certain subdivisions of a space allows us to
obtain valuable information about that space, as shown in Chapter 3.
This will play a very important role in the representation and compu-
tation with implicit objects. A more extensive treatment of the subject
in the context of graphical applications is given in [CGV92].

Space decompositions are used in several ways in applications. They
may serve to represent geometric objects exactly or approximately.
They may also serve as an auxiliary representation to facilitate com-
putation of geometric data. When the space decomposition is used to
represent the geometric object itself it is called object-based. When the
space decomposition is used as an auxiliary representation it is called
space-based.

4.1 Types of Space Decompositions

The intuitive idea of a space decomposition is to subdivide the space
into a collection of disjoint connected subsets. Subdivision of the space
into simpler pieces, along with a structure that links these pieces to-
gether, allows us to obtain precise information about the geometry
and topology of the space. This strategy is related to the “divide and
conquer” paradigm. We get smaller, easier-to-understand pieces of the
space, and structure them together in order to get information about
the space as a whole. There is a trade-off involved when obtaining a
decomposition of a given space: a more structured decomposition cer-
tainly will give us more information about the space, but it is harder
to construct and may not even exist in general.

28 4. Space Decompositions

4.1.1 Space Partitions

A space partition of a set U is a collection (Uα)α∈I , of subsets of U
such that

•
⋃
Uα = U ;

• Uα ∩ Uβ = ∅ if α 	= β.

Every set has a trivial space partition, consisting of the collection of
all of its points. In fact it is easy to see that, for any infinite set U , there
always exists an infinite number of finite partitions. Space partitions
are also called in the literature space decompositions.

A natural way to define space partitions is by using an equivalence
relation defined on the points of the set U . If R is an equivalence
relation, for each point p ∈ U we define its equivalence class Up =
{q ∈ U : (p, q) ∈ R}. It is clear that (Up)p∈U define a partition of the
set U . Conversely, every partition of the space induces in an obvious
way an equivalence relation by defining two elements to be equivalent
if they are in the same set of the partition.

A partition is the most general decomposition scheme that can be
used to subdivide a space. All decomposition schemes studied below
are partitions with some additional structure, which may impose re-
quirements on the geometry or topology of each set of the partition
or on the relationships among these sets. This additional structure
enables us to represent geometrical and topological properties of the
underlying space.

4.1.2 Cell Decompositions

We now discuss a family of finite space decompositions of a set U , in
which further structuring is imposed. Each set of the partition is now
required to be a k-dimensional cell, that is, a set which is homeomor-
phic to an open disk of R

k. Furthermore, we require the boundary of
each cell to be a (finite) union of lower-dimensional cells.

More precisely, a cell complex is a finite collection of subsets cqj
(where q = 0, 1, 2, . . . , d represents the dimension of the cell and j
ranges over some index set Jq) such that:

• each cqj is homeomorphic to the open q-dimensional disk for q > 0
and is a single point if q = 0.

4.1 Types of Space Decompositions 29

• For each q = 0, 1, 2, . . . , d and each j in Jq, the boundary of cqj is
equal to the union of all lower dimensional cells that intersect that
boundary.

4.1.3 Affine Cell Decompositions

Affine cell decompositions are examples of special cases of cell decom-
positions obtained by restricting the geometry of the cells. For this
decomposition scheme, one requires each cell to be a convex polytope.

An affine cell decomposition is a cell decomposition such that every
cell is affine. A cell in R

n is called affine if it is implicitly defined by
the equations

Li(x) ≤ bi, i = 1, . . . ,m,

where each Li is a linear function Li : R
n → R.

Moreover, in order to avoid unnecessary fragmentation, each face
of a cell (that is, a set obtained by turning some of the defining in-
equalities into equalities) must also be a cell. Note that, this concept
generalizes to R

n the concept of a convex polygon on the plane.
The very special cell geometry present in this type of decomposition

allows one to design very efficient algorithms to deal with it. On the
other hand, due to its restrictive geometric nature, exact affine cell
decompositions are not generally available for a given set. However,
important families of subsets of the euclidean space can at least be
approximated by an affine cell complex, which is sufficient for a huge
number of applications.

Although the conditions imposed on the definition of affine cell
decompositions concern mainly the geometry of the cells, they also
imply additional combinatorial structure. In particular, the boundary
of a d-dimensional cell has dimension d − 1. As a consequence, affine
cell decompositions have cells of all dimensions from 0 to the maximum
dimension d. This is not true for arbitrary cell complexes. For instance,
if p is a point on a 2-sphere S, then {p} and S − {p} determine a cell
decomposition of S in which there are only cells of dimension 0 and 2.

4.1.4 Simplicial Decompositions

Simplicial decompositions are special cases of affine cell decompositions
in which cell geometry is as simple as possible: each cell is a (relatively)
open simplex. Given d + 1 points v0, v1, . . . , vd not belonging to the

30 4. Space Decompositions

same d-dimensional hyperplane, the set {
∑

i=0,...,d xivi : 0 < xi <
1} is an open d-dimensional simplex. Furthermore, single points are
considered to be 0-dimensional open simplices.

Every affine cell decomposition can be turned into a simplicial de-
composition by using a refinement operation that consists in triangu-
lating in a standard way each of its convex affine cells [Mun66]. Thus,
the sets that admit an affine cell decomposition are exactly those that
have a simplicial decomposition. There is a natural trade-off between
the two types of decomposition. Simplicial decompositions are par-
ticularly easy to represent due to the fact that each cell of a given
dimension has a fixed number of lower-dimensional bounding cells. On
the other hand, general affine decompositions are more concise.

A simplicial complex T over a domain D ∈ R
n is a family of sim-

plices with the following properties:

1. D = ∪σ∈T
2. σ1 ∩ σ2 is either empty or a common face (lower dimensional sim-

plex) of both simplices.
3. If D is a compact subset of R

n then it intersects only finitely many
simplices.

Triangulations

A triangulation of a subset U ∈ R
n is a homeomorphism h : T → U

from some simplicial complex C to U . The complex C induces a cell
decomposition on U , which is called a triangulation of U . A subset U
of the Euclidean space is triangulable if it admits this homeomorphism.
Triangulable sets are also called topological polyhedra.

There are many possible triangulations of the space R
n. Some im-

portant types of triangulations are the Coxeter-Freudenthal triangu-
lation K1 and the J1 triangulation of Todd [AG90]. Figure 4.1 shows
these triangulations in two dimensions.

It is desirable to have a small number of cell types, e.g., congruent
cells, which differ only by orientation or reflection. If all the cells are
identical, computations are very simple. It can be shown, [Cox63], that
in three dimensions the only type of cell that fills space is the cube.

A hypercube in R
n is the cartesian product of n non-degenerate

intervals:
n∏

i=1

[ai, bi]

4.1 Types of Space Decompositions 31

(a) (b)

Fig. 4.1. Coxeter-Freudenthal and J1 triangulations

It is very easy to obtain a cell decomposition of R
n, where each cell

is a hypercube of appropriate dimension. Therefore, an easy way to
obtain a triangulation of R

n is to use a triangulation of the hypercube.
A classical triangulation obtained with this method is the Coxeter-
Freudenthal triangulation.

This triangulation can be defined as follows: For the square (the
hypercube in R

2), we take its diagonal, and the triangulation obtained
has two simplices of dimension 2. For the cube in R

3 with vertices
p0, . . . , p7, we take the diagonal p0p7 and project it onto each face of the
cube. We obtain in this way the Coxeter-Freudenthal triangulation of
the faces. The simplices of dimension 3 of the triangulation of the cube
are constructed by adding to each 2-simplex ρ of the cube’s faces the
vertex of the diagonal p0p7 that does not belong to ρ. (See Figure 4.2).

p0

p7

p1

p3p2

p4
p5

p6

Fig. 4.2. Triangulation of the cube in �3

32 4. Space Decompositions

We obtain in this way 6 simplices of dimension 3.

ρ0 = (p0, p1, p3, p7)
ρ1 = (p0, p1, p5, p7)
ρ2 = (p0, p2, p3, p7)
ρ3 = (p0, p2, p6, p7)
ρ4 = (p0, p4, p5, p7)
ρ5 = (p0, p4, p6, p7)

It is not too difficult to see that the Coxeter-Freudenthal triangu-
lation of the hypercube in R

n has n! simplices of dimension n 1.
It is also important to observe that not all triangulations of R

3 are
obtained by replicating a triangulation of the cube. An example where
this does not occur is in the already mentioned triangulation of Todd,
shown in Figure 4.1 for the two-dimensional case.

In three dimensions another interesting triangulation is based on
the so-called cubic tetrahedra, which are formed by slicing off the cor-
ners of a cube [HW90].

4.2 Properties of Space Decompositions

Depending on the application, there are some properties associated
with space decomposition schemes that may be very important to im-
pose. We summarize these properties below.

4.2.1 Invariance

Invariance properties associated to space partitions are very impor-
tant. Different types of invariance are possible. Of great interest are
invariance under topological operations (e.g., closure), set operations
(e.g. intersection), and invariance under a certain class of transfor-
mations of the euclidean space (e.g., rigid motions), that is, if F is
such a transformation and C(X) is a decomposition of a set X, then
F (C(X)) = C(F (X)).
1 This is not a problem if we are working in 3-space, but this combinatorial explo-

sion can be a serious issue if we need to work in higher dimensional spaces.

4.2 Properties of Space Decompositions 33

4.2.2 Uniqueness

In general, space decompositions of a certain type are not unique.
However, in many cases there exists a natural way to define the concept
of equivalence between two decomposition schemes, and it is desirable
to define uniqueness up to equivalence (e.g., uniqueness up to rigid
motions).

4.2.3 Minimality

If it is possible to define some order relation on a decomposition
scheme, then we can define a “minimal decomposition scheme”. That
is, one that has the minimum number of decomposing regions. The
existence of a minimal decomposition might imply uniqueness.

4.2.4 Finiteness and Local Finiteness

A decomposition is finite if it has a finite number of decomposing
regions.

A decomposition is locally finite if each point has a neighborhood
that intersects only a finite number of decomposing regions.

4.2.5 Regularity

Regularity conditions come in many different flavors. In general, they
are imposed when we need to have some nice topology across the
boundaries of the decomposing regions, and some homogeneity of the
topology of each decomposing region.

4.2.6 Boundary Condition

Boundary conditions are imposed in order to get some hierarchy of the
space partition. Both regularity and boundary conditions are related to
the desire to have nice gluing properties between the different regions
of the partition.

4.2.7 Refinement

The refinement is an important unary operation, R : C(V) → C(V),
defined on a family C(V) of all space decompositions of a given set V .

34 4. Space Decompositions

This operation acts by subdividing each decomposing region of some
element in C(V), in order to obtain another decomposition of V . The
refinement objective is twofold: to obtain a better geometric behavior
of each decomposing region in the new partition of V , and to get a
better adjacency relationship between the subdividing regions of the
new partition. The refinement operation R in general defines a partial
order � such that PV � R(PV) for all partitions PV of the set V .

4.3 Algebraic Structure of Space Decompositions

If (Ui), i = 1, . . . ,m, is a finite partition of the euclidean space R
n,

consider the set L consisting of the finite unions of the sets Ui in the
partition. It is easy to see that L is a finite Boolean algebra under
the usual set operations ∪, ∩, and complement, −. We say that the
Boolean algebra 〈L,∪,∩,−〉 is generated by the partition (Ui) of R

n,
and has 2m elements.

Different space decompositions generate different Boolean algebras.
These algebras enable us to associate arithmetic expressions to space
decompositions introducing in this way a constructive approach to
space decomposition. A good overview of a hierarchy of algebras of R

n

can be found in [Sha91].

4.4 Spatial Data Structures

The spatial decompositions defined in the previous section possess nat-
ural graphs associated to them. They describe the adjacency relations
between the several elements of the decomposition. Spatial data struc-
tures represent these graphs. They are used to structure interesting
subsets of geometric objects and to provide a means for operating on
them.

There are two ways to describe a region in a space decomposition:
either by the point set that the region represents, or by the boundary
that defines the region.

Some space decompositions are so simple and structured that it is
not necessary to specify their regions explicitly. They are defined indi-
rectly through a canonical model. This can be seen in some tessellations
of space where the space subdivision is composed by the repetition of
a single type of cell.

4.4 Spatial Data Structures 35

Spatial data structures can be divided in two main classes: flat and
hierarchical. The former consists of an enumeration of cells, while the
latter is defined by a recursive decomposition of cells.

Spatial data structures are designed to encode both the geometry
and the topology of space decompositions. Below we analyze these data
structures from the most general to the most specific type.

The most general data structure that can be used to represent
space partitions is a list of cells. This cannot be really considered a
spatial data structure because it does not encode any topological or
hierarchical information. It is just a way to enumerate a set of cells.
Note that this is the only type of data structure that can be used to
describe arbitrary partitions of space.

4.4.1 Topological Graphs

The basic data structure that represent space decompositions is a
topological graph in which the nodes of the graph contain informa-
tion about the geometry of each decomposing region and the links of
the graph give topological information reflecting adjacency relation-
ships between regions. This type of spatial data structure is suitable
to describe a large number of space decomposition schemes.

The fundamental topological information in a space decomposition
is the association between a cell and its boundary elements. Note that
this is a binary relation which is sufficient to completely specify the
topology of a space decomposition. Since the boundary of a decom-
posing region is composed of geometrical elements of dimension lower
than the dimension of the region, the graph in our data structure can
be layered in a hierarchical manner such that each layer contains only
regions of the same dimension. The links of the graph representing inci-
dence relations occur only between layers. Figure 4.3 shows a diagram
of a topological graph.

4.4.2 Trees

Trees encode the hierarchical geometry of nested subdivisions of space.
They consist of a set of nodes linked recursively starting from the top
(or root) node. In this scheme we say that parent nodes are linked
to children nodes. Terminal nodes are the leaves of the tree and do
not have links. Each parent node corresponds to a cell which is subdi-

36 4. Space Decompositions

Layer of
dim. N.

Layer of
dim. N-1.

Layer of
dim. 0.

.

.

.

Fig. 4.3. Topological graph

vided into siblings according to some prescribed rule. For example, a
n-dimensional cube can be subdivided into 2n cubes.

The tree structures are classified according to the type of cell sub-
division performed at the nodes:

N-trees (Quadtrees, Octrees) – Cells are subdivided n subcells by
hyperplanes at regular intervals that are aligned with the axis of the
reference frame.

K-d trees (K-dimensional trees) – Cells are subdivided in two
subcells by a hyperplane arbitrarily positioned and aligned with each
axis of the reference frame cyclically in succession (i.e., x1, x2, . . . , xk).

BSP-trees (Binary Space Partition trees) – Cells are subdivided
in two subcells by a hyperplane arbitrarily positioned and oriented.

Restricted trees are trees that correspond to a balanced partition of
space. In this structure adjacent cells differ at most by a factor of 2
in terms of the level of refinement. This type of tree is important in
adaptive subdivision schemes [vHB87].

All trees can be reduced to binary trees that are constructed by
recursively subdividing n-dimensional space into two regions by a (n−
1)-dimensional hyperplane.

4.4.3 N-dimensional Arrays

N -dimensional arrays reflect the topology of regular packings of n-
dimensional cells. They consist of a set of records specifying: the di-
mension of the array and the number of elements in each dimension,

4.4 Spatial Data Structures 37

followed by the sequence of elements in a prescribed order. Arbitrary
elements can be accessed directly through an n-tuple of indices corre-
sponding respectively to each spatial dimension. Note that the spatial
location of each cell relative to a frame of reference can be derived
from the index of the element in the array and vice versa.

Arrays are flat data structures in which the cell geometry is given
by a canonical model. This data structure tends to be quite large,
because all the elements have to be stored.

It is interesting to note that n-dimensional arrays produce uniform
subdivision that can be also represented by N -trees in which the leaves
are all at the same depth.

This page intentionally left blank

5. Shape and Space

This chapter investigates the relations between the shape of a solid
object and the ambient space in which it is embedded. For this we
will discuss two main concepts: tubular neighbohoods and medial axes.
These concepts are intrisically connected with the shape and boundary
of a solid submanifold O ⊂ R

n.

5.1 Tubular Neighborhoods

The concept of tubular neighborhood is of fundamental importance in
the study of differentiable manifolds, because it relates a surface with
its normal vector field. Thus, by investigating the tubular neighbor-
hood of a surface M , it is possible to make a connection between the
isocontour M = f−1(c) and the associated implicit function f . This
is done indirectly through the vector field normal to f−1(c), given by
the gradient of f .

5.1.1 Definitions

A normal segment [p, b] to a surface M at the point p is a line segment
from p to b such that p ∈ M and [p, b] is contained in T⊥

p M , the
orthogonal complement of the tangent space of M at p. The point p is
called the foot point of b in M . The 1-dimensional set of all segments
normal to M at the point p with length less than ε, is denoted as
B⊥(p, ε).

An admissible normal radius for a subset Z ⊂ M is a real number
ε > 0 such that any two normal segments, [p, x] and [q, y], with p 	=
q ∈ Z and length < ε do not intersect. See Figure 5.1.

An ε-tubular neighborhood Vε of a surface M is defined as the union
of all segments normal to M with radius ε(p) such that ε(p) is an
admissible normal radius for M at p. That is

40 5. Shape and Space

p

< ε

q

x y

Z

Fig. 5.1. Admissible Normal Radius

Vε(M) =
⋃

p∈M

B⊥(p, ε(p)).

Figure 5.2 shows an ε-tubular neighborhood of a two-dimensional
curve.

ε
ε

S

V (S)ε

p
B(p;e)

Fig. 5.2. Tubular neighborhood

It is possible to prove that any regular implicit surface M = f−1(c)
has a tubular neighborhood. This is a consequence of the fact that the
gradient vector field of f does not vanish on M .

5.1.2 The Projection on the Surface

The existence of a tubular neighborhood makes possible to define a
projection function π : Vε(M) → M which, for each point x ∈ Vε, as-
sociates the unique foot point p of the normal segment that contains x.

5.2 Medial Axes 41

This projection is a very powerful mathematical instrument that
can be used for many purposes in the study of surfaces. In particular,
it implies that a tubular neighborhood is equivalent to the product
space M×B(ε), where B(ε) is an open interval ∈ R with center at the
origin and radius ε. This corresponds to a topological open cylinder.
See Figure 5.3.

Vx0

S

V

VxR

φ

Fig. 5.3. Product space

5.1.3 The Maximal Tubular Neighborhood

A tubular neighborhood of a surface is called maximal when it contains
all possible ε-tubular neighborhoods of that surface.

Intuitively the maximal tubular neighborhood extends the normal
fibers of Vε as far as possible without violating the projection condi-
tions above.

The maximal tubular neighborhood Vmax of a surface M = f−1(c)
is unique: Vmax gives the largest open set M ⊂ U ⊂ R

n where a
continuously differentiable distance function f : U → R, associated
with the surface f−1(c), can be defined. In other words, Vmax is the
maximal domain U in which an implicit function f can be constructed
such that f does not have singular points in U (or, equivalently, ∇f
does not vanish in U).

Example 5.1. (Unit Circle) The maximal tubular neighborhood of
the unit circle is the entire plane minus the origin (R2 − {(0, 0)}).

5.2 Medial Axes

The medial axis describes the structural essence of a shape. It pro-
vides a means to characterize the topology of solids and to construct a

42 5. Shape and Space

geometric model of their boundary. In particular, as suggested earlier,
the medial axis may serve as the basis for implicit surface models if it
is associated with a suitable distance function.

The medial axis has also been extensively used in computer vi-
sion for shape recognition and classification purposes [Blu67], [Hof92],
[NP85].

5.2.1 Definitions

The distance from a point p to a surface M in R
n is the minimum of

the Euclidean distance dE(p, s), where s ∈M :

d(p,M) = inf
s∈S

dE(p, s).

When M is compact, d is continuous, and so for every p ∈ R
n there

is at least one point s0 ∈M such that d(p,M) = d(p, s0). Such point s0
is called the foot point of p in M (Note that this definition is equivalent
to the one in Section 5.1).

The medial axis of a region of R
n bounded by a surface M is the

closure of the set of points p ∈ R
n such that p 	∈ M and p has more

than one foot point on M .
The interior medial axis consists of all medial axis points that are

interior relative to M . Similarly, the exterior medial axis consists of
the set medial axis points that are exterior relative to M .

5.2.2 Intuition

Intuitively, the medial axis is formed by all the points of the ambient
space that have more than one geodesic path to the surface M .

An alternative definition of the medial axis with a geometric flavor
employs the notion of maximal spheres. A sphere is called maximal
with respect to a region R if it is contained entirely in R, but not
properly contained by any other sphere in R. See Figure 5.4.

The medial axis can be defined as the locus of the centers of all
spheres that are maximal with respect to the interior and exterior
regions delimited by M .

The definition above was proposed in connection with the medial
axis transform used in vision [Blu67].

5.3 Morse Theory 43

skeleton

Fig. 5.4. Maximal Sphere

5.2.3 Characteristics

The medial axis of a region of dimension d is formed by the union of
elements of dimension d− 1 or lower.

A solid has a unique medial axis. Figure 5.5 shows the medial axis
of a rectangular solid region of R

2.

Fig. 5.5. Medial axis

5.3 Morse Theory

Topology studies the properties of a shape that do not change under
deformations. Morse Theory describes the topology of a manifold based
on configuration of critical points [Mil65]. The relationship between
the topological structure of the manifold and arrangements of critical
points can be encoded using a data structure from algebraic topology
called the CW-complex.

44 5. Shape and Space

5.3.1 Critical Points and the Hessian

Let h : M → R be a smooth function defined on a smooth manifold M .
The critical points of h are the points p ∈ M where the ∇h(p) = 0.
The critical values are the corresponding values h(p) at these critical
points.

The Hessian H(p) of h at p ∈M is the matrix of second derivatives
of h. Let λi be the i-th eigenvalue and vi its corresponding eigenvec-
tor, given in non-decreasing order. Critical points are classified by the
number of negative eigenvalues of the matrix H, which correspond to
a saddle along some of the principal directions given by vi. Therefore,
there are n+ 1 categories of critical points for a n-dimensional mani-
fold: 0-saddles (minima of h), n-saddles (maxima of h), and k-saddles,
with 0 < k < n.

5.3.2 Morse Function

A function h : M → R is called a Morse function if its Hessian is
non-singular for every point p ∈M .

Morse theory gives a connection between arrangements of critical
points of a Morse function on M and the topology of M . This can be
easily understood through a classical example.

Example 5.2. Consider a parametric torus g : U → R
3 encircling

the z-axis, and a Morse function h : g → R, such that h(g(u, v)) = y.
There exist four critical points where the gradient

∇h = (0, 1, 0) · ∇g =
∂g

∂y

vanishes: one type-0 critical point at a, on the bottom of the torus;
one type-2 critical point at d, on the top of the torus; and two type-1
critical points at b and c, respectively the bottom and top of the hole.
See Figure 5.6-(a).

We can imagine the process of constructing this torus from the
bottom up. First, a point is created at the minima a. Then, opposing
sections are glued at the saddles b and c. Finally, the torus is closed
at the top d.

Note that a new surface component is created when a type-0 critical
point is reached, opposing surface components are connected when a
type-1 critical point is found and a hole in the surface is sealed when
a type-2 critical point is reached.

5.3 Morse Theory 45

a

b

c

d (Q)

P

R (R)

Q

S

(a) (b) (c)

Fig. 5.6. Critical points of a Morse function (a), the CW-complex (b) and topo-
logical structure (c) of a torus

5.3.3 The CW -Complex

The topology of a shape is conveniently defined in homotopy theory
by a topological graph. As we have seen in Chapter 4, the topological
graph is constructed using cells of different dimension. An n-cell is the
building block of a shape of dimension n. For example, a 0-cell is a
point, a 1-cell is a curve segment, a 2-cell is a surface patch and a 3-cell
is a solid region.

These cells are closed, i.e., their boundaries are part of the cells.
In that way, higher dimensional cells can be constructed form lower
dimensional cells. Each n-cell is homeomorphic to the n-ball

Bn = {x ∈ R
n : ‖x‖ ≤ 1}

Using this homeomorphism we can map the boundary of a n-cell to
the (n− 1)-sphere

Sn−1 = {x ∈ R
n : ‖x‖ = 1}

The CW -complex is constructed out of cells of increasing dimen-
sions, by identifying the boundary of a n-cell with the union of a
collection of (n− 1)-cells that already belong to the complex.

The construction process of a CW -complex C for a manifold M is
as follows. Starting with the empty set, 0-cells are attached to C as the
union of disjoint points. Next, 1-cells are constructed as curve segments
that lie on these points. The process continues until n-dimensional cells
defining the topology of M are generated.

46 5. Shape and Space

The theorem below relates the topology of a manifold with Morse
functions and CW -complexes.

Theorem 5.3.1. A compact manifold M has the homotopy type of a
CW -complex consisting of a λ-cell for each critical point of type λ for
a given Morse function h defined on M .

The CW -complex can be constructed from the separatrix structure
connecting critical points to each other. 0-cells exist at type-0 critical
points. 1-cells are separatrix curves starting at type-(n − 1) critical
points and ending at type-0 critical points. The process is similar for
n-dimensional cells.

Continuing with our previous example, we can see in Figure 5.6 the
CW-complex and the topological structure of the torus.

The 0-cell P is associated with type-0 critical point a. The 1-cells
Q and R start respectively at type-1 critical points b and c. The 2-cell
S starts at type-2 critical point d.

5.3.4 Distance Fields as Morse Functions

A Morse function h can be interpreted as a smooth height function
on M . We can construct h based on a distance function on M from a
point p ∈M . In this case, h will work as a generalized height function.
The function h may be computed though a front propagation method,
where the points of the evolving front at time t have distance t from p.

This construction is very useful because it allows us to study the
topology of piecewise linear manifolds, such as polygonal meshes [AE98].

As an example, we can define topological distance on a polygonal
mesh using a wave traversal technique. In a pre-process step, all ver-
tices of the mesh are initialized with distance ∞. The process starts
with an initial vertex p0 of the mesh that is assigned distance 0. Then,
the vertices p ∈ N1(p0), in the discrete 1-neighborhood of p0 are as-
signed distance 1. The process continues by propagating the wavefront
until the whole mesh is covered. This is accomplished assigning dis-
tance t + 1 to all vertices of the wavefront that have their distance
greater than t.

As the wavefront traverses the mesh, some vertices are found to be
critical points. The initial vertex is a type-0 critical point because all
of its neighbors have larger distance values. The process terminates at
type-2 critical points, which are vertices whose neighbors have smaller

5.3 Morse Theory 47

distance values. The wavefront is divided or reconnected at type-1
critical points, whose neighbors have distances values that vary with
peridicity 2 around the critical point.

Distance fields will be also instrumental in defining the topology of
implicit shapes, as we will see next.

5.3.5 Topology of Implicit Shapes

We have seen that a Morse function is the fundamental element to
investigate the topology of a manifold M . In the above discussion, we
employed a scalar function h : M → R, defined on the manifold M
itself.

Such a setting is adequate to study parametric shapes. For example,
in the case of a k-dimensional manifold M in R

n, given by a function
g : U ⊂ R

k → R
n, the Morse function can also be defined in the

domain U of g.
However, this setting is not so convenient to study implicit shapes.

If we have the manifold M given in implicit form by a function f : V ⊂
R

n → R
n−k, it is more appropriate to use a Morse function defined

on V , the embedding space of M . Observe that we can consider M as
a submanifold of the manifold V . The topological structure of M is
related to the topological structure of M when the function f is used
to derive the Morse function.

More specifically, the function f can be interpreted as a general-
ized distance function from the boundary of M on V . Note that, in
the case of a codimension-1 surface, the boundary f−1(c) is a level set
of f . Critical points of the distance function occur at key locations
defining the topology of the surface. In 3-space there are 4 types of
critical points. Maxima critical points (3-saddle) are inside the shape.
Minima critical points (0-saddle) are outside the shape. A 2-saddle
occurs between two components of the shape. These components are
connected if the critical value is positive and disconnected if it is neg-
ative. A 1-saddle occurs in the middle of a handle. The handle is filled
if the critical value is positive and is pierced if it is negative.

A key insight is that the distance functions and the medial axis
of a shape are intrinsically related to the topology of implicit shapes.
The distance transform allows us to define a Morse function while the
medial axis.

48 5. Shape and Space

5.4 Surfaces in Space

In order to analyze the effectiveness of implicit models it is necessary
to study the extrinsic properties of its bounding surface. The reason
this is so important lies in the fact that implicit objects are defined by
a function of space. The investigation of how the surface is embedded
provides the required criteria to characterize the implicit function.

5.4.1 Surfaces Structuring Space

The maximal tubular neighborhood of a surface M and the medial
axis of the region enclosed by M provide a structure of the ambient
space that reveals essential aspects of the implicit surface model.

These two geometric entities are dual structures. More than that,
one is the complement of the other in R

n. This is clear from their very
definition.

The concepts of tubular neighborhood and medial axis are totally
independent of the implicit description. But, in some sense, they cap-
ture all properties of a surface which depend on its embedding in the
ambient space. This is precisely the reason why they are important:
they relate a surface with the space in which it lives.

For implicit regular surfaces:

• The medial axis is contained in the set of singular points.
• The tubular neighborhood is contained in the complement of the set

of singular points.

The above statements make clear the duality of these structures.
These instruments are useful to analyze and construct implicit sur-

face models. Tubular neighborhoods provide a way to investigate the
domain of the implicit function; medial axes provide simpler geometric
objects from which the implicit function can be defined.

5.4.2 What is a Good Implicit Model?

There are many properties that a good implicit surface model should
have. Some of them, such as simplicity, conciseness, or completeness,
are of qualitative nature and apply to any type of geometric model.
Others are specific to the implicit model.

In simple terms, specific properties of the implicit surface model
are related to:

5.5 Universal Representation 49

• the information conveyed by the value of f ;
• the extent of the domain of f with valid information.

According to these criteria, a good implicit function should provide
the desired information over a prescribed region of space.

One possible criterion to specify such a function is faithfulness to
a metric of the ambient space. Under this assumption, the optimal
implicit function is the Euclidean distance from the surface. This is
a linear function that is singular at the medial axis points. Such a
function will be briefly described in Section 5.5.2.

Another optimality criterion is smoothness. In that case, it is not
possible to employ a true metric. So, the model has to resort to a
pseudo-metric. Also, some control over the domain of the implicit func-
tion may be required. The most natural choices are, either the entire
R

n, or a prescribed ε-tubular neighborhood of the surface.

5.5 Universal Representation

A universal representation is a canonical description in which any ob-
jects of a certain class can expressed. The medial axis and the distance
function are two of such a description in relation to implicitly defined
surfaces and solids.

5.5.1 Medial Axis Models

The medial axis model of a shape O ∈ Rn is the union of all centers
of all maximal disks which fit in O, along with the radius of these
disks. This defines the set of points equidistant to the boundary of D.
In a sense this representation consists of a medial axis induced by the
Euclidean metric.

The medial axis description represents objects in a form that is
well suited for shape analysis. Although, it has been extensively used
in vision and image processing, only recently it has been explored in
computer graphics.

Although an exact construction of the medial axis transform is
difficult, there are reasonable computational methods to compute a
discrete approximation of it.

An algorithm to obtain the discrete medial axis is as follows: First
generate a set of points on the object boundary. Calculate a Delau-
nay triangulation of these points. Classify the centers of the Delaunay

50 5. Shape and Space

regions and group them into a medial axis which forms the discrete
medial axis. For a sufficiently dense set of points the discrete medial
axis converges to the analytical medial axis.

It must be possible to compute the medial axis of implicit objects
more effectively exploiting the intrinsic characteristics of the implicit
form. This is an open research topic and is related to level sets and
PDE’s [Tei98, Bar01].

5.5.2 Distance Function Models

Distance function models are closely related to cyclographic maps and
to the solution of the eikonal equation [Hof91].

This implicit surface model is based on the Euclidean metric. The
surface M is defined as the zero set f−1(0) of the function f : R

n → R,

f(x) = d(x, p)− r(p),

where d(x, p) is the distance from x to its closest point p on the interior
medial axis of M and r(p) is the distance of p from M (as defined in
Section 5.2).

The value of f gives the signed distance from the point x to its
foot point on M . The gradient of f is a unit vector field, defined over
the maximal tubular neighborhood of M , that points in the normal
direction to the surface.

Observe that this model generalizes an offset surface model with
constant radius r.

5.6 Summary

In this chapter we demonstrated that a solid and an implicit function
are related by dual structures: the medial axis of the solid and the
maximal tubular neighborhood of its boundary. These fundamental
structures define the embedding of a shape in space and, therefore
the characteristics of the implicit function. Finally, we discussed a set
of criteria which could be used for analyzing implicit models. From
an interpretation of the implicit function as a distance function, we
identified two classes of implicit models – the ones based on a true
metric and on a pseudo-metric.

6. Implicit Objects

This chapter studies in detail objects whose geometry is defined in im-
plicit form. We will be mainly concerned with three-dimensional sur-
faces and solids described implicitly. Applications of implicit curves
arise primarily when we need to compute curved edges as intersections
of implicit surfaces [Hof89]. This is important in the conversion be-
tween CSG and boundary representations, but will not be addressed
here. Many important problems in different areas can be reduced to
the computation of n-dimensional implicit manifolds (see Chapter 17).

6.1 Definition of an Implict Object

A subset O ⊂ R
n is called an implicit object if there exists a function

f : U → R
k, O ⊂ U , and a subset V ⊂ R

k, such that O = f−1(V).
That is,

O = {p ∈ U : f(p) ∈ V } .
The definition of implicit object given above is broad enough to

include a large family of subsets of the space. In fact, this definition
is too broad to be tackled with robust tools from Mathematics. To
show the generality of this definition, we just remark that any closed
subset of the space can be represented as an implicit object of a smooth
function [Whi57]. This includes, for instance, fractal sets. Therefore,
without imposing more restrictions on the function f and the set V ,
it is very difficult to develop a computationally sound framework for
implicit objects.

An implicit object is called regular if the function f satisfies some
of the regularity conditions of Chapter 3.4. An implicit object is called
valid if it defines a topological manifold. Note that a regular implicit
object is valid.

The implicit object O = f−1(V) may have many connected com-
ponents. A particular, and very important case, occurs when V = {c},

52 6. Implicit Objects

c ∈ R
k, f is a differentiable function, and c is a regular value of f

(O is a regular object). From Chapter 3.4 we conclude that f−1(c) is
an orientable submanifold of R

3.
When f is a real valued function, that is k = 1, then f is a point-

membership classification function that returns a value according to
the relationship of a point p = (x1, . . . , xn), given as its argument,
with the implicit object O defined by f .

f(p)

> 0 p ∈ exterior of O
= 0 p ∈ boundary of O
< 0 p ∈ interior of O

When O is connected it defines a codimension-1 manifold that sep-
arates the space into two connected components A,B whose common
boundary is the object O. An important situation occurs when one of
the regions A,B is bounded. In this case we are able to define well
behaved implicit solids. We will analise this in dimensions 2 and 3.

Take f : U ⊂ R
2 → R, c ∈ R regular value of f , f−1(c) con-

nected and compact. We may suppose that the set S = {(x, y) ∈ R
2 :

f(x, y) < 0} is the bounded component of the complement of f−1(c)
in R

2. Now consider the set S consisting of the implicit object de-
fined by S = f−1((−∞, c]). If f is conveniently chosen, S is a solid
figure on the plane whose boundary is the implicit curve f−1(c). See
Figure 6.1-a.

f (c)
-1

f (c)
-1

f (b)
-1

(a) (b)

Fig. 6.1. Implicit solids with one (a) and two (b) shells

The implicit object S is regular, as can be easily verified. Note that
if b < c is also a regular value of f , the implicit object R = f−1([b, c])

6.2 Mathematical Elements 53

represents a region with disconnected boundary, constituted by the
curves f−1(c) (one component) and f−1(b) (one or more components).
See Figure 6.1-b.

The above description generalizes easily to define “implicit solids”
in 3-D space. A solid can be defined as the inverse image of an interval
(−∞, a] or [a, b] by a function f : R

3 → R. For a convenient choice
of the function f , the boundary of the solid corresponds respectively
to the sets f−1(a) or f−1(a) ∪ f−1(b). The boundary of the solid is
the union of disjoint implicit surfaces. Note that x ∈ f−1((−∞, a])
is equivalent to f(x) ≤ a and similarly x ∈ f−1([a, b]) is equivalent
to a ≤ f(x) ≤ b. Another important observation is that a solid of
the second form, f−1([a, b]), may also be obtained from a difference of
two solids of the first form, f−1((∞, a]) \ f−1((∞, b]) (see Chapter 8).
Therefore, the first form is sufficient in a modeling system that includes
boolean operations. 1

In the following analysis we will be interested in the properties
of implicitly defined objects from a mathematical and computational
point of view. These properties will be exploited in the development of
models and in the implementation of algorithms for implicit objects.

Now we are able to define implicit objects to be used in geometric
modeling and computer graphics. An implicit curve is a valid implicit
object of dimension 1. An implicit surface in R

3 is a valid implicit
object of dimension 2. An implicit solid is a valid implicit object of
dimension 3 with boundary.

6.2 Mathematical Elements

We were very careful in defining the notion of implicit objects. This
is justified because of the attributes we want to attach to them. The
power and robustness of this definition provides the tools to study
implicit objects.

6.2.1 The Function f

An implicit object O = f−1(V) is completely characterized by the
point membership function f and the subset V .
1 We should also point out that, depending on the choice of an implict function f ,

it is possible to obtain a boundary, f−1(c), consisting of two or more disconnected
surfaces.

54 6. Implicit Objects

Regularity conditions relating f and V are very difficult to be ver-
ified computationally. If V = {c}, Sard’s theorem says that c can be
chosen to be a regular value with probability one (the set of regular
values is open and dense). (See [Mil65].) But this is not of much use
from a computational point of view.

For codimension-one implicit surfaces there are two canonical forms
defined respectively by the value of c = 0 and c = 1. In the first, the
surface is the zero-set of f and in the second, the surface is the set
of level one. These forms will be useful for operations with implicit
objects as will be seen in Chapter 7.

6.2.2 The Domain of f

The domain U of f : U ⊂ R
n → R

k, is the region of space where we
want to evaluate the funtion f .

For a regular implicit object O = f−1(V), it is convenient to choose
the domain U as some tubular neighborhood of O. This guarantees
that gradf(p) 	= 0 for p ∈ U .

6.2.3 The Characteristic Function

The characteristic function χO : R
n → {0, 1} of a solid implicit object

O = f−1(V), V = [−∞, c] is defined as χO(p) = 1 if p ∈ O and
χO(p) = 0 if p 	∈ O.

The function χO can be trivially derived from the function f :

χO(p) =
{

1 if f(p) ≤ c
0 otherwise

6.2.4 The Gradient of f

IfO = f−1(V) is an implicit object, f : U ⊂ R
m+k → R

k and f1, . . . , fk

are the coordinate functions of f , then we can take the k gradient
vector fields, gradf1, . . . , gradfk, for each c ∈ V . These vector fields
are orthogonal to each level set f−1(c) of the object O.

A particular and important case occurs for codimension-one regular
implicit surfaces, S = f−1(c) with f : U ⊂ R

n → R. Then we have

∇f(x) =
(
∂f

∂x1
,
∂f

∂x2
, . . .

∂f

∂xn

)

6.3 Geometrical Characterization 55

The gradient vector points to the direction of greatest change in f .
The gradient field associated with implicit objects have been exten-

sively used in physically-based constructions related to modeling and
animation of implicit objects. (See [VdMG91a], [dFdMGTV92].) This
will be discused in more detail later on.

6.2.5 The Hessian of f

The Hessian form associated with a function f(x1, x2, ...xn), is the
matrix of second-order partial derivatives of f with respect to xi:

Hf(x) =

∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn
...

. . .
...

∂2f

∂xn∂x1
· · · ∂2f

∂xn∂xn

The Hessian indicates the rate of change in the gradient of f and will
be useful, among other things, for computing the curvature of implicit
objects.

6.3 Geometrical Characterization

Using the mathematical elements discussed above we further develop
a geometrical characterization of an implicit surface.

6.3.1 Local Parametrization

We saw in Section 3.10 that an implicitly defined surface can always
be parametrized locally in a trivial way. This parametrization is given
by the graph of a function relative to one of the coordinate axis in R

n.
Let p = (x1, . . . , xn) be a point of M = f−1(c). Since c is a regular

value we can assume, by renaming axis if necessary, that ∂f
∂xn

	= 0. We
construct a parametrization of M in the neighborhood of p such that

f(x1, . . . , xn) = (x1, . . . , h(x1, . . . , xn−1))

The inverse function theorem guarantees that if ∂f
∂xn

	= 0 then there ex-
ists a neighborhood of p where is possible to compute xn = h(x1, . . . , xn−1)
from f(x1, . . . , xn) = c.

Figure 6.2 shows a diagram of the local parametrization of an im-
plicit surface.

56 6. Implicit Objects

X

X

X

1

3

2

X 2

X 1

h(x1, x2)

Fig. 6.2. Local parameterization

6.3.2 Orientation and Surface Normal

The results of Section 3.6 show that regular implicit surfaces and solids
as defined in the beginning of this chapter are always orientable. The
orientation is given by the gradient vector fields of the components of
the implicit function.

In the case of a codimension-one implicit surface, M = f−1(c), the
vector field

N =
∇f(p)
‖∇f(p)‖ , p ∈M

defines an orientation of M .
On a two-dimensional surface in R

3 we use orientation to define a
direction of rotation in the tangent planes of the surface.

6.4 Differentiable Attributes

Differentiable attributes are very important, because they enable us
to use techniques from differential topology and differential geometry
in the study of implicit objects. In this subsection we will describe the
most important of these attributes.

6.4.1 Geodesics

Geodesics are, from a local point of view, curves of minimum length
on a surface. They play the same role as do straight lines in R

n, but

6.4 Differentiable Attributes 57

due to topological complexity of the surface, they might not minimize
length globally.

A geodesic in a surface M is a parametrized curve α : I →M whose
acceleration is orthogonal to M . It has no acceleration component
tangent to the surface. They also have constant speed.

A geodesic α(t) = [x1(t), . . . , xn(t)] has to satisfy this system of
differential equations:

d2xi

dt2
+

n∑
j,k=1

Ni(x1, . . . , xn)
∂Nj

∂xk
(x1, . . . , xn)

dxj

dt

dxk

dt
= 0

Given a point p ∈ M and a velocity vector v at p, then there
is a unique geodesic that is the solution of the system of differential
equations above with these initial conditions.

6.4.2 The Gauss Map

We know that for curves the curvature at a point p is measured by a
number. For surfaces, it is measured by a map.

Let M be an oriented codimension-one submanifold in R
n+1. De-

note by N(p) the unit normal vector to M at p. The Gauss map,
N : M → Sn, associates to each p ∈ M , the point N(p) on the unit
n-dimensional sphere Sn. (See Figure 6.3).

p1

p2

N

N(p1)
N(p2)

Fig. 6.3. The Gauss map

The derivative N ′ of N is a measure of how the normal vector
is changing. Since N is a unit vector, N ′ indicates the change in its
direction, and therefore, N ′ conveys information about the curvature
of the surface. It is easy to show that:

58 6. Implicit Objects

• N ′(p) is a linear operator on TpM .
• N ′(p) is self-adjoint.

N ′(p) is sometimes called in the literature by Weingarten map.

6.4.3 The Fundamental Forms

For any self-adjoint linear transformation on a vector space with dot
product there is a real valued function Q(v) = N(v) · v called the
quadratic form associated with N .

The first fundamental form of M at p is the quadratic form Fp

associated with the identity transformation on TpM .

Fp(v) = v · v

Therefore, this quadratic form defines the inner product in each
tangent plane to the surface. All the metric properties of the surface
are connected to it.

The second fundamental form of M is the quadratic form Sp asso-
ciated with the Weigarten map Np at a point p.

Sp(v) = N ′
p(v) · v

A surface is completely determined up to rigid motion by its first
and second fundamental forms. See [dC74].

If M = f−1(c) is a regular implicit surface in R
n+1 with orientation

given by the normal vector field

∇f
‖∇f‖

and v = (v1, . . . , vn+1) is a tangent vector to M at a point p, v ∈ TpM ,
the second fundamental form is related to the Hessian form of f . More
precisely,

Sp(v) =
−1

‖∇f(p)‖

n+1∑
i,j=1

∂2f

∂xi∂xj
(p)vivj

or in matrix notation

Sp(v) =
−1

‖∇f(p)‖ v
T ·Hf(p) · v

6.4 Differentiable Attributes 59

6.4.4 Surface Curvature

The second fundamental form allows us to investigate the curvature
of a surface.

The normal curvature of M at p in the direction v is defined by

k(v) = Sp(v) = 〈N ′
p(v)v〉

when ‖v‖ = 1.
In other words, k(v), is equal to the normal component of acceler-

ation of any curve, contained in M , passing through p with velocity
v.

Since N ′(p) is a self-adjoint linear transformation of TpM , there
exists an orthonormal basis v1, . . . , vn of TpM whose vectors, vi, are
eigenvectors of N ′(p). The eigenvalues k1(p), . . . , kn(p) of N ′(p) are
called principal curvatures of M at p and the correspondent unit eigen-
vectors of N ′(p) are called principal directions. The principal curva-
tures are stationary values of normal curvature k(p) and among them
k(p) attains its minimum and maximum values.

In general, we can diagonalize the Hessian matrix H to obtain the
eigeinvalues and eigenvetors of N ′(p). Alternatively, the formulas be-
low [MAS91] allow us to compute the principal curvatures ki and prin-
ciple directions vi directly from H. We have

ki =
aTHa+ bTHb±

√
(aTHa− bTHb)2 + 4(aTHb)2)

2‖∇f‖

and

vi =

a1 + b1

‖∇f‖ki − aTHa

btHa

a2 + b2
‖∇f‖ki − aTHa

btHa

a3 + b3
‖∇f‖ki − aTHa

btHa

for i = 1, 2, where

a =
(

1
γ

∂f

∂x2
, −1

γ

∂f

∂x1
, 0

)T

and

60 6. Implicit Objects

b =
(

1
γ‖∇f‖

∂f

∂x1

∂f

∂x3
,

1
γ‖∇f‖

∂f

∂x2

∂f

∂x3
, − γ‖

‖∇f‖

)T

The trace and determinant of the Gauss map are important intrinsic
properties of a surface.

The mean curvature K(p) of M at p is 1/n times the trace of S(p):

K(p) = trace S(p) =
1
n

n∑
i

ki(p)

It is the average value of the principal curvatures at p.
The determinant of S(p) is called the Gauss-Kronecker curvature,

KG of M at p.

KG(p) = det S(p) =
n∏
i

ki(p)

It is equal the product of the principal curvatures.

6.5 Computational Attributes

The elements described in this chapter completely characterize the
general aspects of implicit objects. They represent their essence – the
common properties to the class of objects defined in implicit form.
Different types implicit objects have other properties that are specific
to their particular definitions.

6.5.1 Object Oriented Approach

From a computational standpoint it is important to explore these gen-
eral and specific properties of implicit objects in a computer graphics
system.

The object oriented paradigm [Wis90] establishes a framework
where a uniform representation can coexist with specialized methods.
This is done through the specification of basic functions and operations
that an object has to perform in the system.

This paradigm is well suited to the representation and manipulation
of implicit objects on the computer. An implicit object is associated
with some class, and its methods implement the basic functions de-
scribing the mathematical attributes of the object.

6.5 Computational Attributes 61

6.5.2 Basic Functions

The mathematical elements of Section 6.2 can be used to define basic
functions for the implicit object.

Some of the basic functions for codimension-one implicit objects
are:

• List f domain(f) - returns the list of bounding boxes that encloses
the implicit object.

• Real f value(p) - returns the value of the implicit function at
point p.

• Vector f grad(p) - returns the gradient of the implicit function at
point p.

• Matrix f hessian(p) - returns the hessian of the implicit function
at point p.

This page intentionally left blank

7. Manipulating Implicit Objects

This chapter investigates how implicit objects can be manipulated for
modeling purposes. We study the effects of operations used to modify
objects in different ways.

There are two alternatives to perform transformations on implicit
objects. One is to change the function F , the other is to alter the space
in which F is defined. We will study unary operations that act on the

• range of F ;
• domain of F .

7.1 The Implicit Function as a Metric

The implicit function F : R
n → R can be interpreted to estimate

the distance from a point in space to the surface described by F . The
algebraic distance of p ∈ R

n to F−1(0) is given by F (p). This is essential
to several unary operations considered in this chapter, as well as to
some binary operations studied in the next chapter, such as blends.

In this sense, F : U ⊂ R
n → R gives the signed distance, induced

by some pseudo-metric d : R
n → R, of points p ∈ U to the level surface

S = F−1(0).

Example 7.1. (Circle) The circle with center o and radius r can be
defined as the inverse image F−1(0) of the implicit function F (p) =
d(o, p) − r, where d is the Euclidean metric.

In a finite dimensional vector space all distance functions derived
from a norm are topologically equivalent. Particularly, in R

n we have
the following classical metrics

d1(p, q) = |p1 − q1|+ · · ·+ |pn − qn|
d2(p, q) =

√
|p1 − q1|2 + · · · + |pn − qn|2

d∞(p, q) = max(|p1 − q1|, . . . , |pn, qn|)

64 7. Manipulating Implicit Objects

Note that, although these metrics are equivalent from a topological
standpoint, they produce different geometric results when used to de-
fine an implicit surface. Figure 7.1 shows the circle of Example 7.1
using the metrics above.

d1 d2 d∞

Fig. 7.1. The unit ball in different metrics

The metrics d1, d2 and d∞ can be generalized to form the m-norms,
a one parameter family of distance functions:

dm(p, q) =

[∑
i

‖pi, qi‖m
]1/m

.

The fact that altering the metrics causes shape changes may be ex-
ploited by the implicit surface model if this is incorporated into the
implicit function.

Example 7.2. (Superellipse) The superellipse model allows the con-
trol of shape through a modification of the metric. The function f(x)
is defined as ((x1

a

)e
+

(x2

b

)e) 1
e
,

where e controls the roundness of the shape and a and b are respectively
horizontal and vertical scaling factors.

In the next chapter we will investigate further superquadrics in the
context of blends.

7.2 Properties of the Implicit Function 65

7.2 Properties of the Implicit Function

Several properties of the implicit function will be important to define
operations with implicit objects.

Invariance

Consider, without loss of generality, the boundary of an implicit object
defined as the zero surface F−1(0) of an implicit function F . Then, the
same surface is described by the function G:

G(x) = αF (x) (7.1)

where x = [x1, . . . , xn] ∈ R
n and α ∈ R.

If F is strictly positive and the implicit surface is F−1(c), c > 0,
then

G(x) = F (x)β (7.2)

also describes the same surface.
The surface F−1(0) is said to be embedded in both F and G. Note

that although these two implicit functions describe the same surface,
they do not induce the same metric.

Redundancy

Implicit functions are constructable. Given F−1(0) it is possible to find
a function G(x) such that G−1(0) ≡ F−1(0).

If F is an algebraic function it is possible, at least theoretically, to
factor it into irreducible components.

Level Contours

A level surface of the graph of F is also called an isocontour of F . The
contours of F can be traversed by a function H defined as

H(x) = F (x)− δ (7.3)

where δ ∈ R.
Note that H−1(0) = F−1(δ) does not describe the same surface

as F−1(0). The surface H−1(0) is an offset surface of F−1(0) in the
metric induced by F .

66 7. Manipulating Implicit Objects

7.3 Operations on the Range of F

The properties of the function F discussed above can be used to define
unary operations on implicit objects.

Algebraic operations with the function F reflect in the implicit
object altering its geometry or topology. This will be exploited in this
chapter to define operations that modify the implicit object.

Note that some of these operations may change the implicit surface
defined by F , therefore, it is possible that the regularity condition may
be violated.

7.3.1 Density Change

When the function F is multiplied by a constant, or raised to a power,
the algebraic distance induced by F is altered. This operation affects
the density of the contour sections of F and is useful to control how a
surface blends with other surfaces (Chapter 8).

densityM (d, F (x)) = d ∗ F (x)
densityP (d, F (x)) = F (x)d

where d > 0 ∈ R. Note that d > 1 corresponds to a density expansion,
pushing contours away from the surface; while d < 1 corresponds to a
compression, pulling contours towards the surface.

Fig. 7.2. Density change

Leaving the Surface Invariant.
The density change, depending on the value of c, modifies the func-

tion F without affecting the surface F−1(c).

7.3 Operations on the Range of F 67

If a surface S is defined as the level set F−1(0), then it is also
implicitly defined by any function G:

G(x) = αF (x),

where α ∈ R, α 	= 0.
If F : U → (0,∞) and S is defined as F−1(1), then it is also

implicitly defined by any function G:

G(x) = F (x)β ,

where β is a positive real number.
In these two cases, the surface S is said to be embedded in both F

and G. Note that although these implicit functions describe the same
surface, they are not induced by the same pseudo-metric.

7.3.2 Mapping between Canonical Forms

In the previous subsection, we have seen that the following pairs (R, v)
of range and value

((−∞,+∞), 0)
((0,+∞), 1)

have special properties in relation to the invariance of F−1(v) for
Range(f) ∈ R.

There exists a simple map that can be used to convert between
these two canonical forms as required. Given an arbitrary function
f : U → (−∞,∞) the transformation:

G(x) = exp(F (x)),

maps the range (−∞,∞) into (0,∞) and maps the level surface f−1(0)
into h−1(1).

This transformation has an inverse, defined by taking the logarithm

F (x) = log(G(x)).

7.3.3 Complement

Consider a solid implicit object defined by O = F−1((−∞, b]) or O =
F−1([a,+∞)). If the function F is multiplied by a negative number,

68 7. Manipulating Implicit Objects

the solid object defined by F is replaced by its complement. This
operation changes the polarity of F and is useful in combination with
CSG operations (Chapter 14).

complement(F (x)) = −F (x)

Complementation reverses the sense of inside and outside of an implicit
object.

7.3.4 Dilations and Erosions

When a constant is added to the function F , the contour defined by F
changes. This operation produces a dilation or an erosion of the volume
enclosed by F−1(0).

offset(c, F (x)) = F (x)− c

where c ∈ R. Note that c < 0 results in an offset surface nested inside
the original surface and c > 0 results in an offset surface surrounding
it.

0
c

Fig. 7.3. Dilations and erosions

Note that when F is a distance function these operations are pre-
cisely the morphological operations with the structuring element as a
ball.

7.4 Mappings of the Embedding Space

The space in which the implicit object is embedded can be transformed
by a map M : R

n → R
n. This transformation warps the domain of

7.4 Mappings of the Embedding Space 69

the function F and as a consequence modifies the associated implicit
object. The characteristics of M determine how the object is affected.

One way to get an intuitive feeling of how space mappings work is
through the analogy of a rubber sheet. Consider an elastic sheet where
figures are plotted. If we stretch it in one direction and then draw a
circle on its surface, when the rubber is allowed to relax the circle
becomes an ellipse. The circle has been squashed along the axis which
the sheet was stretched. Note that this type of space transformations
has the inverse effect on the embedded objects.

Although it is possible to do transformations in a different fashion,
they are not so useful, as will become clear with the next example. Re-
turning to the situation in our previous example, we could have drawn
the circle before stretching the rubber sheet. This would have caused
the circle to deform in the same direction as the sheet. But, suppose
we want add another ellipse to the drawing by the same process. If we
keep stretching the rubber and drawing subsequent deformations will
affect the second as well as the first ellipse. This is probably not what
was intended. Now, if we apply the previous scheme we will get better
results. Stretch the rubber and draw a circle. Let the rubber relax:
we have the first ellipse. Stretch the rubber in another direction and
draw a second circle. This distorts the first ellipse, but when the rub-
ber sheet is relaxed to get the second ellipse, the first one is restored!
Space transformations can be applied to different objects without in-
terference. See Figure 7.4.

Fig. 7.4. Spatial mappings

70 7. Manipulating Implicit Objects

7.4.1 Affine Transformations

An affine transformation is a map T : R
n → R

n defined by:

T (x) = L(x) + v

where L is a linear transformation. L is represented by an n×n matrix
and v is a n-vector.

T can be expressed more conveniently as a homogeneous transfor-
mation in real projective space RPn. In this case T is represented by
an (n + 1) × (n + 1) matrix and the vector v is incorporated in this
matrix.

An important subset of the affine transformations is a map R :
R

n → R
n such that ‖R(p) − R(q)‖ = ‖p − q‖ for all p, q ∈ R

n. This
type of mapping preserves distance between points and is called a rigid
motion or isometry of R

n. R is represented by an n × n orthonormal
matrix.

The most common examples of affine transformations are: transla-
tion, scale, rotation, shear and reflection on a plane. Any affine trans-
formation can be obtained as a combination of these ones.

7.4.2 Deformations

A deformation of space is a bijective map W : R
n → R

n of, at least,
class C1. When W is a diffeomorphism (invertible with differentiable
inverse) it maps surfaces into surfaces.

Kleck suggested an intuitive class of deformations based on space
warps [Kle89]. These include operations to fold an object at a given
plane, and to push (pull) it away (towards) a given point.

Another interesting class of global deformations was proposed by
Barr [Bar84]. These include taper, bend, and twist operations.

A free-form deformation technique was introduced in [SP86]. This
involves a mapping of R

n through n-variate tensor product Bernstein
polynomials.

A deeper investigation of space deformations would lead to the
study of elasticity theory and physically-based methods. In what con-
cerns modeling and animation with implicit objects this is still an open
area of research.

7.5 Operations on the Domain of F 71

7.5 Operations on the Domain of F

A transformation is essentially a change of coordinate systems. This
paradigm works in the following way. The function F is defined in a
canonical space called local coordinate system of the implicit object.
This space is related to a global coordinate system where all objects
coexist by the transformation M that maps canonical to global space
and its inverse M−1 that maps global to canonical space.

In general, to transform an implicit object the argument x of F has
to be converted to the local coordinate system through the map M−1

before F is evaluated, that is we evaluate F (M−1(p)). The result of
any computations performed in the local coordinate system have to be
mapped back to the global coordinate system through the map M .

7.5.1 Analytical Transformation of F

In some particular cases, it is possible to transform the description of
the implicit object, incorporating the M directly into the function F
and avoiding the change of coordinate systems. An example is the case
of homogeneous transformations and quadrics [Bli84].

7.5.2 Transformation of Points

A map M : R
n → R

n transforms a point p = [x1, . . . xn] ∈ R
n in a

point p̄ such that M(p) = p̄ or

t(x1, . . . , xn) = [x̄1, . . . , x̄n]

where

x̄1 = t1(x1, . . . , xn);
...

x̄n = tn(x1, . . . , xn);

The functions mi, i = 1, . . . , n are called components of the func-
tion M .

As we have seen, whenM is an affine or a projective transformation,
we can represent M by a, (n+ 1)× (n+ 1), matrix M , and and points
in homogeneous form by an n+1 vector p = [x1, . . . xn, xn +1] ∈ RPn.
In this case, to compute the transformation we simply use the matrix-
vector multiplication p̄ = Mp.

72 7. Manipulating Implicit Objects

7.5.3 Transformation of the Tangent Plane

The derivative dMp of M at a point p is a linear transformation that
constitutes a first order approximation of M at p. The matrix of dM
also denoted by J is called the jacobian matrix

J = dM =

∂M1
∂x1

· · · ∂Mn
∂x1

...
. . .

...
∂M1
∂xn

· · · ∂Mn
∂xn

J transforms tangent planes and can be used to derive the trans-

formations for normal vectors. If v is a normal vector then the trans-
formed normal vector v̄ is

v̄ = detJ(J−1)Tv

Another way to see this is to notice that we can represent a plane n
as a row vector n = (a, b, c, d), corresponding to the coefficients of
the implicit equation of this plane. Thus, all points p ∈ n, satisfy the
equation

{p = (x, y, z, 1) | ax+ by + cz + d = 0}

that can be concisely formulated using the inner product, 〈n, p〉 = 0.
When we apply a transformation given by some projective transfor-

mation matrix W to the plane n, the condition that a point p belongs
to n corresponds, after the transformation by M , to the equation

(nW−1)(Wp) = 0

That is, the transformed point Wp lies on the transformed plane
nW−1.

Therefore, we see that to transform a tangent plane (represented
as a vector), we need to use the transpose of the inverse matrix

n̄ = (W−1)Tn

Note that if the matrix is orthogonal (W−1)T = W . Only in this
case we can transform tangent planes as points.

8. Combining Implicit Objects

This chapter investigates how implicit objects are combined in a mod-
eling system. We analyze binary operations used to create compound
objects. These operations will form an algebra of implicit objects.

8.1 Compound Objects

Implicit objects can be joined to form a compound implicit object.
This is accomplished by combining, according to certain rules, the
corresponding functions describing the individual objects.

Algebraic operations with the implicit functions defining a set ob-
jects produce another implicit function that defines a compound ob-
ject. These operations with the implicit function correspond to com-
position operations with the implicit objects.

It is worth noting that the algebraic structure defining the implicit
objects can be exploited in many ways in a modeling system.

8.1.1 Proper Functions

An implicit function F : R
n → R associated with an implicit object O

and a regular value A is called proper if its inverse image F−1(A) is a
valid implicit object.

Given a proper function F , F (x) ∈ (−∞,∞), then αF and F + c
are also proper functions. Given a strictly positive proper function F ,
then F β is also a proper function.

74 8. Combining Implicit Objects

8.1.2 Closure Properties of F

The set of real valued functions used to describe implicit objects is
closed under the following operations:

• Sum: F1 + F2;
• Product: F1 ∗ F2;
• Composition: F (F1, . . . , Fk);
• Maximum: max(F1, F2);
• Minimum: min(F1, F2);

In other words, if two functions F1 and F2 are proper then their
combination using any of these operations is also a proper function.

Note that the unary operations, αF and Fα, defined in the previous
chapter are respectively particular cases of the n-ary operations F1 +
· · · + Fn and F1 ∗ · · · ∗ Fn, when α = n is a positive integer.

8.2 Boolean Operations

An effective method to build complex objects from simple ones is
through CSG 1 operations. This scheme is based on regularized boolean
operations on point sets. A CSG object is constructed from the union
and intersection of primitive objects. Other operations, such as differ-
ence are defined using complementation [Req80].

8.2.1 Functional Description

Let Pi be a set of primitive functions from R
n to R of class C1. The

set of functions Sj generated by Pi is defined as follows:

1. Pi ⊂ Sj.
2. F ∈ Sj ⇒ −F ∈ Sj.
3. F1, F2 ∈ Sj ⇒ max(F1, F2) ∈ Sj.
4. F1, F2 ∈ Sj ⇒ min(F1, F2) ∈ Sj .

where i = 1, . . . , k, and j = 1, . . . , l.
In other words, if F ∈ Sj is not a primitive function, then it is

constructed from primitives by max and min operations [Ric73].
1 Constructive Solid Geometry

8.2 Boolean Operations 75

8.2.2 Implicit CSG Objects

An implicit CSG solid is defined as any set of points in R
n which satisfy

F (x) ≤ 0 for some F ∈ Sj . The boolean operations are defined as:

F1 ∪ F2 = min(F1, F2).
F1 ∩ F2 = max(F1, F2).
F1 \ F2 = F1 ∩ F2 = max(F1,−F2).

Figure 8.1 shows an example of these operations.

A B

A ∪ B B \ A A ∩ B

Fig. 8.1. CSG operations

A CSG model is usually represented as a tree structure in which
internal nodes are associated with set operations and the leaf nodes
are associated with primitive objects. This will be discussed in more
detail in Chapter 14.

8.2.3 Differentiable Boolean Operations

One drawback of boolean operations is that the functions max and
min are not differentiable in general. Consequently implicit objects
constructed with these operations are not differentiable along of the
intersection of surfaces. Although this problem does not invalidate
the usefulness of previous scheme, it would be desirable to have a

76 8. Combining Implicit Objects

differentiable approximation of boolean operations. One solution for
this problem is proposed in [Ric73].

Assuming strictly positive functions G(x) ∈ (0,∞), define implicit
objects such that G(x) = 1, G(x) < 1 and G(x) > 1 correspond
respectively to the boundary, interior and exterior of objects. 2

Given G1, . . . , Gk differentiable functions as above, the following
limits are true:

lim
p→∞

(Gp
1 + . . .+Gp

k)
1
p = max(G1, . . . , Gk) (8.1)

lim
p→∞

(G−p
1 + . . .+G−p

k)−
1
p = min(G1, . . . , Gk) (8.2)

Ricci’s formulation corresponds, essentially to taking the Ln norm
on E × E as an approximation to the maximum, or L∞, norm on the
ring E of expressions defining the implicit function F . Since (fn

1 +
fn
2)1/n approaches max(|f1|, |f2|), as n→∞.
∂(Gp

1 + . . .+Gp
k)

1
p /∂xi and ∂(G−p

1 + . . .+G−p
k)−

1
p /∂xi are approxi-

mations of the partial derivatives ∂Gj/∂xi of the component functions
Gj in the vicinity of the curves of intersection.

In [TdMG89], it is shown that the convergence in (8.2.3) and (8.2.3)
is uniform up to derivatives of order r, that is

∂r(Gp
1 + . . .+Gp

k)
1
p

∂xr1
1 · · · x

rn
n

→ ∂rGj

xi

outside of an open neighborhood of the intersection points.
Note that for small values of p these formulations result in a blend

of the implicit objects. We will return to this observation in Section 8.3.

8.2.4 R-Functions

A function C : R
n → R is called an R-function if its sign is completely

determined by the sign of its arguments. Intuitively, C(F1, F2, . . . , Fn)
acts as a Boolean switching function, changing its sign only when its
arguments Fi change their signs.

R-functions are a generalization of CSG implicit objects. They con-
stitute n-ary operators that algebraically combine implicit functions
2 This is not a big restriction in practice, since any implicit object F−1(0), de-

scribed by an arbitrary function F (x) ∈ (−∞,∞) could also be represented by
H−1(1) where H is a function defined in terms of F by H(F,x) = exp(F (x))

8.2 Boolean Operations 77

similarly to the way point set operators combine solid objects. This is
due to the fact that every formal logical sentence has a corresponding
class of R-functions. It is immediate to see from their definition that
the sign of the resulting function is determined by the truth table of
the logical sentence.

Just as any logical sentence can be written as a composition of
three logical operations ¬, ∧, ∨, every R-function can be written as a
composition of the three R-functions corresponding to these operators.
Without loss of generality we can consider only the unary negation ¬,
and the binary disjunction ∧ and conjunction ∨. These logical opera-
tors are sufficient to construct any n-ary logical sentence.

It should be clear that R-functions are not unique. Therefore, we
can define various systems of R functions that exhibit different proper-
ties. The negation operation ¬ is naturally accomplished by changing
the sign of the function f . Three systems of R-functions, Rα, Rm

0 , and
Rp, have been identified by the founder of the theory, V. L. Rvachev,
and used in various applications [Sha88]:

Rα(F1, F2) :
1

1 + α

(
F1 + F2 ±

√
F 2

1 + F 2
2 − 2αF1F2

)
(8.3)

where α(F1, F2) is a symmetric function such that −1 < α(F1, F2) ≤ 1.

Rm
0 (F1, F2) :

(
F1 + F2 ±

√
F 2

1 + F 2
2

)(
F 2

1 + F 2
2

)m
2 (8.4)

where m is any even positive integer.

Rp(F1, F2) : F1 + F2 ± (F p
1 + F p

2)
1
p (8.5)

where p is is any even positive integer.
In each case, choosing the (+/−) sign determines the type R-

function operator. For the R-disjunction we use (+) while for the R-
conjunction we use (−).

The most popular system of R-functions is Rα. The simplest class
of this family is defined by setting α = 1. Note that the resulting
functions correspond to the implicit CSG boolean operators, with the
R-conjunction min(F1, F2) and the R-disjunction max(F1, F2).

An analysis of the differencial properties of R-functions can be
found in [ST99].

78 8. Combining Implicit Objects

8.3 Blending Operation

A blend is a surface which forms a smooth transition between inter-
secting surfaces. As we will see, the implicit form is particularly well
suited for the construction of blends.

8.3.1 Developing a Blend

A blend can be conceived as a composition of functions. Define a blend-
ing function B : R

k → R that takes as its argument a list of functions
defining surfaces to be blended B(F1(x), . . . , Fk(x)). This function cre-
ates a transition between the countour lines of those surfaces. Note that
the blend itself is given in implicit form. Consequently, B produces a
new implicit surface in which the other surfaces are embedded.

This approach serves the purpose of separating the intrinsic char-
acteristics of the blend from the effects of functional composition. An
outline of the main steps to develop implicit blending for arbitrary
solid objects is presented in [RO87]:

• Define a blend model in two dimensions.
• Generalize to n dimensions by composition of functions.
• Extend to multiple unions and intersections of primitives.

8.3.2 Linear Blend

The simplest type of blend is the linear blend. It is given by:

B(F1(x), . . . , Fk(x)) =
k∑

i=1

Fi(x)− 1

The two-dimensional model of this blend is the equation y = 1− x
of a line at 45-degree angle of the coordinate axis.

One characteristic of the linear blend is that blending surface is
actually an offset of the original surfaces. This type of blend is the
basis of several implicit primitive objects and will be considered in
greater detail in Chapter 11.

Figure 8.2 illustrates the construction of a linear blend.

8.3 Blending Operation 79

y = 1 − x

Fig. 8.2. Linear blend

8.3.3 Hyperbolic Blend

The hyperbolic blend [Kle89] is given by:

B(F1(x), . . . , Fk(x)) =
k∏

i=1

Fi(x)− 1

The two-dimensional model of this blend is the hyperbolic equation
y = 1/x. The hyperbola puts a smooth curve joining the coordinate
axis.

This blend is also an offset blend. Another of its characteristics is
that if the original surfaces intersect, then the blending surface will
have more than one connected component (as in the hyperbola). The
external surface covers the union of the volume enclosed by the original
surfaces and the internal surface covers the intersection of their volume.

Figure 8.3 illustrates the construction of a hyperbolic blend.

y = 1/x

Fig. 8.3. Hyperbolic blend

80 8. Combining Implicit Objects

8.3.4 Super-Elliptic Blend

The super-elliptic blend [Roc89] is given by:

B(F1(x), . . . , Fk(x)) = 1−
(

k∑
i=1

[1− αiFi(x)]β+

) 1
β

where [�]+ = max(0, �). The parameters α and β are used to change
the shape of the blend. αi bias the blend towards the primitive i and
β controls the overall tightness of the blend.

The two-dimensional model for this blend is a super-elliptic arc that
touches the coordinate axis. It is a generalization of the circular arc of
radius 1 defined by the equation 1−

[
(1− x)2 + (1− y)2

]1/2.
This blend, differently from the previous ones, interpolates the

primitive surfaces involved. To understand how it works, consider a
set of surfaces described by functions of the form f = 0. Then, take
the external 1-contour of their complement. The new surfaces, given
by 1−f = 0, are the internal 1-contours of the fis. Now construct a lin-
ear blend of the external 1-contour of their complement. The resulting
blending surface interpolates the original surfaces because the exter-
nal 1-contours of this function corresponds to the 0-contours of the
original functions. The complementation also restores inside-outside
sense we started with. This can be confirmed from the observation
that this operation is the identity when applied to only one object —
1− (1− f) = 0⇒ f = 0.

Figure 8.4 illustrates the construction of a super-ellipitc blend.

(1− x) + (1− y) = 12 2

Fig. 8.4. Super-elliptic blend

8.4 Global and Local Blends 81

8.3.5 Convolution Blend

A blend can be constructed from a convolution operator. The basic
principle is quite intuitive: the convolution of a function with a low-
pass filter results in a smoother version of this function. When applied
to a collection of primitive functions this operation will produce a
blend of them. The shape of the convolution kernel defines the blend.

[BS91] propose a method based on three-dimensional convolution
to construct a distance function that is used for blending of implicit
objects. Because convolution is a linear operator, the convolution of a
sum of primitives is equal to the sum of convolutions of the primitives.
The implementation of the method exploits the separability property
of convolution filters to reduce the required computations.

8.4 Global and Local Blends

Blends may be applied globally to implicit objects or locally to a par-
ticular intersection of primitives.

8.4.1 Blends as Boolean Operations

It is possible to characterize global blends as an approximation of the
CSG boolean set operations. The union operation corresponds to an
added material blend, and the intersection operation corresponds to a
subtracted material blend.

We will show that the differentiable approximation of boolean oper-
ations discussed in Section 8.2 is equivalent to the super-elliptic blend.

In subsection 7.1, implicit surfaces where defined as the inverse
image G−1(1). The same surfaces could be defined as F−1(0) for
F (x) = G(x)− 1.

The expression in equation 6.1 can be rewritten as[
k∑

i=0

(Fi + 1)p
] 1

p

− 1

since G(x) = F (x) + 1. For uniformity reasons the composite surface
is defined as the inverse image of 0.

The difference between this expression and the one for the super-
elliptic blend is that the former complements the primitive and the
composite surfaces. Thus, in what concerns the blending implicit sur-
face these expressions are totally equivalent.

82 8. Combining Implicit Objects

8.4.2 Local Blends

A local implicit blend is defined by restricting a global blend in one
of two ways: it can be prescribed only to certain pairs of surfaces in a
CSG structure; the other alternative is to limit the domain in which
the blending operation is performed.

9. Computational Methods

This chapter considers the various ways of performing actual compu-
tations with implicit objects. In the previous chapters, we have seen
different types of operations with implicit objects that need to be im-
plemented in a computer. This is done using symbolic and numerical
operations which are the building blocks of higher level computational
methods.

Since the implicit object O is defined indirectly by an implicit func-
tion F , we do not have a direct way of generating the set of points
F−1(A) from it 1. Therefore, we must settle for solutions which gen-
erate a subset S ⊂ F−1(A) of points that are samples of the implicit
object O.

In some applications, we only need local geometric information
about O, and the result of this sampling procedure provides all the
data required to solve the problem. In other situations, we really need
global information about the object, and is necessary to reconstruct
F−1(A) in a piecewise manner from the samples. This involves an ad-
ditional structuring step which supplies the topological data to link
the samples.

Sampling and structuring are the basic procedures used in the com-
putation of implicit objects. Both processes are intimately related to
space decomposition schemes. (See Chapter 4). First, because they
often exploit the coherence of embeddings of implicit objects in the
ambient space. Second, because implicit objects themselves can be in-
terpreted as abstract spaces which are decomposed using structuring
and sampling.

If the implicit function is very complicated, the computational ef-
fort can be too high and even sampling the implicit object becomes
impractical. In those cases is common to substitute the implicit func-
1 This can only be done if we can find a global parametrization f(u) = x of this

set which gives these points explicitly. As we have seen in Chapter 3, it is not
possible, in general, to construct such a parametrization.

84 9. Computational Methods

tion by a suitable approximation with which it is easier to compute
samples.

Below we will talk more about sampling and structuring, discussing
some aspects of the mathematical and computational theory behind
them. In the next chapter, we will address the problem of reconstruct-
ing the implicit object using these two processes.

9.1 Numeric and Symbolic Computation

Although it is possible to perform extensive symbolic computations
with certain classes of implicit objects (such as those defined by alge-
braic implicit functions), numeric computations are always necessary
in one way or another. For this reason, we will concentrate here on
numerical methods.

9.2 Interval Arithmetic

Interval arithmetic provides a robust way to perform numerical cal-
culations and gives, at the same time, a sound basis to implement
approximate computations within a desired accuracy [Moo79]. This is
particularly important in the context of applications of implicit objects
[Sni92], [Duf92].

In practice, it is not possible to work with real numbers on a com-
puter. We really deal with floating-point numbers that approximate
real numbers to a limited precision. For this reason, the machine im-
plementation of arithmetic operations suffers from “round-off” errors.
These errors are a major source of flaws in computer graphics algo-
rithms. Interval arithmetic brings this problem under control. First,
the concept of a real number is substituted by the concept of an inter-
val that is represented by a pair of “real” numbers, i.e., its endpoints 2.

Interval arithmetic defines how to operate with these entities, gen-
eralizing ordinary arithmetic operations:

An interval is a closed bounded set of real numbers [a, b] = {x :
a ≤ x ≤ b}. If X is an interval, its endpoints are denoted by X and X ,
2 Note that when the endpoints of an interval are the same we have a degenerate

interval which can be identified with a real number. Therefore, real quantities
are a subset of interval quantities

9.3 Root Finding 85

with X ≤ X . An n-dimensional interval vector is an ordered n-tuple
of intervals (X1, . . . ,Xn).

The basic interval arithmetic operations are:

X + Y = [X + Y ,X + Y]
X − Y = [X − Y ,X − Y]
X × Y = [min(XY ,XY ,XY ,XY),max(XY ,XY ,XY ,XY)]
X/Y = [1/Y , 1/Y]

We can use the interval arithmetic rules to compute bounds on the
value of a rational expression F (x) inside any interval X.

A function F (X) composed using interval arithmetic operations is
an interval extension of the corresponding real function. Furthermore,
F is inclusion monotonic. That is, if X ⊆ Y , then F (X) ⊆ F (Y).
Consequently, x ∈ X implies that F (x) ∈ F (X).

When applied to implicit functions these techniques are useful for
the implementation of most tasks involving numerical computations.
To mention just a few, this is the case of CSG operations, polygoniza-
tion, rendering, collision detection and calculation of integral proper-
ties of implicit objects.

A flavor of the application of interval arithmetic in the above frame-
work is given in the following example: Consider a solid implicit object
O(F, 0): If F (X) < 0, we know that all points x ∈ X are inside the ob-
ject. Similarly, if F (X) > 0, they are all outside. If F (X) ≤ 0 ≤ F (X),
we can guess that the implicit surface F−1(0) intersects X and, there-
fore, X deserves a closer analysis. This observation is the basis of
powerful robust adaptive algorithms.

9.3 Root Finding

In order to get samples of an implicit surface it is necessary to compute
solutions for F (x) = c, where x = [x1, . . . , xn] ∈ R

n. This is equivalent
to finding the roots of the equation F (x) − c = 0. Root finding is a
well understood problem, and can be done analytically or numerically,
depending on the complexity of the implicit function F and the class
of point set desired.

We want to find the real roots of the equation f(x) = 0, where f
is a piecewise continuous function of x. If x is a scalar variable, the
problem simplifies a great deal and there are efficient numerical tech-
niques to solve it. If x is a vector variable, the problem becomes more

86 9. Computational Methods

complicated, but, as we will see in the next section, is often possible to
reduce its dimensionality, solving several times a reformulated lower
dimensional version of the original problem. In this section we will
concentrate on techniques to solve the one-dimensional case which, in
principle, generalizes to higher dimensions.

Numerical root finding involve the following steps:

• Use some knowledge of the function f to get an approximate solution
of f(x) = 0.

• Improve the previous solution to the required precision.

There are two main classes of methods to compute the roots of
f(x): interval subdivision and fixed-point search.

9.3.1 Interval Subdivision Methods

Interval subdivision methods use the fact that if f is continuous and
there is an interval [a, b] where f(a) and f(b) have opposite signs, then
f has at least one root in this interval. The first step of this method
is to find an interval [a, b] containing the solution. The second step is
to refine this interval until it bounds tightly the solution. This is very
much in the spirit of the interval arithmetic techniques discussed in
the previous section.

Examples of interval subdivision methods are the bisection and the
regula-falsi methods. They both refine the interval [a, b] by splitting
it into two subintervals [a, c], [c, b] and discarding the one for which
the condition f(x)f(c) < 0, x = a, b, is not satisfied. The difference
between them is essentially in the way c is computed.
Bisection Method This is the simplest numerical root finding method.
It computes c as the mid-point c = a+b

2 . Note that it does not use any
additional knowledge about f to bracket the interval.
Regula-Falsi Method This method tries to obtain a faster conver-
sion of the process by subdividing the interval [a, b] at a point c closer
to the root based on the values of f at extremes of the interval. The
assumption behind the regula-falsi method is that if |f(a)| is large and
|f(b)| is small, then the root is probably closer to b. One way to im-
plement this is substituting f in [a, b] by an affine approximation f
given by the linear interpolation of f(a) to f(b). The root of f can be
computed explicitly:

c = a− f(a)(b− a)
f(b)− f(a)

9.4 Sampling Implicit Objects 87

9.3.2 Fixed-Point Methods

Fixed-point methods explore the fact that there are some contraction
mappings M for which the sequence xi defined by the recursion xi+1 =
M(xi) converges to a fixed-point 3 x that is a root of f , (i.e. f(x) =
0). The first step of this method is to obtain an initial value for the
sequence xi. The second step consists in iterating the recursion formula
xi+1 = M(xi) until the fixed point is reached to a desired precision.
Examples of fixed-point methods are Newton’s method and variants
of it.

Newton-Rapson The idea behind Newton’s method is to use the
derivative of f at a point xi to get a new point xi+1 closer to the root.
The tangent to f at xi is given by L(x) = f(xi) + f ′(xi)(x − xi). We
choose as the new point xi+1 for which L(x) = 0, obtaining

xi+1 = xi −
f(xi)
f ′(xi)

9.4 Sampling Implicit Objects

In order to capture the geometry of an implicit object it is necessary
to sample the implicit function defining it. There are several alterna-
tives to do this, depending on the specific task one wants to execute.
Basically, we simplify the original problem of root finding and instead
of trying to compute the k-dimensional point set O = {x : F−1(A)},
k = 2, 3, we compute a family of point sets Si ⊂ O of lower dimension.

For example, in a ray tracing application the intersection of a ray
with the implicit surface must be calculated. This is done by finding
the common roots of a line equation with the implicit function.

The sampling techniques can be classified according to the dimen-
sion of the family of point sets {Si} generated by the process. Thus,
point sampling corresponds to families of zero-dimensional samples;
curve sampling corresponds to families of one-dimensional samples.
Additionally, we have volume sampling which corresponds to families
of three-dimensional cells approximating an implicit solid O.
3 A fixed point of of a mapping M is a value of x such that M(x) = x

88 9. Computational Methods

9.4.1 Point Sampling

Point sampling processes generate a collection of points lying on an
implicit surface, e.g. points x satisfying F (x) − c = 0. These pro-
cesses essentially compute the intersection points of a curve in R

3 with
F−1(c).

Ray Casting Methods. Ray casting methods intersect F−1(c) with
a family of straight lines li in R

3. This amounts to substituting the
equation for l into F and solving F (l) − c = 0. A line can be defined
by the parametric equation x = o + td that when substituted for x
in the implicit function will give a function G(t) in one variable. We
want to find the values of the parameter t for which G(t) = 0. If the
implicit function F is of sufficiently low degree the above equation has
a closed-form solution. When an analytic solution is not available we
have to compute the roots numerically by one of the methods defined
in Section 9.3.

Continuation Methods. Continuation methods start with a point
p lying on the implicit surface F−1(c) and obtain new points on the
surface using the gradient field gradF (x) = ∂F

∂xi
. Since the gradient

gives a vector pointing away from the surface, new points can be found
by taking an orthogonal complement of gradF (p) and integrating along
each direction in this complement. This method is also called moving
frame method [AG90].

Physically-Based Methods. Physically based methods also sample
points on an implicit surface by integrating ordinary differential equa-
tions related to the gradient field of F [dF92]. The main difference
between these two methods is that the equations are based on a mod-
ified gradient field, and do not require an initial point on the surface
(which might not be available). Samples are obtained through a parti-
cle system driven by a force field. The motion of this system is derived
from the potential function |F |. Particles will seek equilibrium posi-
tions on the manifold F−1(0) because these are positions of minimum
potential energy.

We can give two interpretations to this potential force field: kine-
matic and dynamic. In the kinematic interpretation F describes veloc-
ity in terms of position:

dx

dt
+ sign(F)gradF = 0,

9.5 Structuring Implicit Objects 89

In the dynamical interpretation F is a force field in a dissipative
medium:

d2x

dt2
+ γ

dx

dt
+ sign(F)gradF = 0,

where γ is a positive real number representing friction proportional to
the velocity.

The dynamical approach has the advantage that friction guarantees
that the particles will tend to a rest position on F−1(c) [dF92]. A sim-
ilar approach has been used in numerical analysis for solving systems
of nonlinear equations [IPZ79].

9.4.2 Curve Sampling

One-dimensional samples of an implicit object are a set of curves be-
longing to the boundary of the implicit object. Curve sampling can be
obtained by intersecting the implicit surface with a family of surfaces.

Surface intersection is a difficult problem and only in a few partic-
ular cases it is possible to obtain a closed from solution. Therefore, in
general, the intersection has to be computed numerically, and approx-
imated by a set of connected point samples along the curve.

In spite of all the difficulty, curve sampling is an important op-
eration that must be performed in many applications with implicit
objects. Some examples are: the computation of silhouette curves for
rendering purposes [SZ89]; and boundary evaluation of CSG implicit
objects [Hof89]. On the other hand, sometimes curve sampling arises
naturally in some applications. This is the case of volume data pro-
duced by certain types of sensor devices, such as in CT (Computerized
Tomography) and MRI (Magnetic Resonance Imaging).

9.4.3 Volume Sampling

Volume sampling is achieved by intersecting an implicit solid with a
family of three-dimensional cells. This can either be used to calculate
volumetric properties of the implicit object or to construct a spatial
enumeration associated with the implicit object.

9.5 Structuring Implicit Objects

The space decomposition schemes described in Chapter 4 can be em-
ployed to build piecewise descriptions of a subset of the ambient space

90 9. Computational Methods

associated with the domain of the implicit function; or to build piece-
wise descriptions of the implicit object and its boundary. An impor-
tant aspect is the connectivity structure linking the different elements
of the decomposition. This structure is given by the adjacency rela-
tionship between geometric entities, and defines the topology locally
and globally.

The first case employs a space-based decomposition and the struc-
turing process is driven by the topology of the ambient space, while
the second case uses an object-based decomposition and the structur-
ing process is driven by the topology of the implicit object. In both
cases, we may need to sample the geometry of the implicit object to
guide the structuring process.

Note that besides the adjacency information, each cell could also
store several other local attributes of the object.

9.5.1 Space-Based Structures

These structures are used mainly as auxiliary representations in order
to facilitate computation with implicit objects.

All the space decomposition schemes for R
3 can be used for this

purpose.
Most algorithms favor uniform decompositions of space, such as

those derived from a rectangular lattice, because their computational
simplicity.

Adapted and hierarchical space decompositions produced by refine-
ment operations are also very important.

9.5.2 Object-Based Structures

These structures can be used either to subdivide the volume defined
by an implicit object or its bounding surface.

In the case of surfaces, the approximation defines a piecewise man-
ifold that has the same topology of the implicit object and is a good
approximation to its geometry.

In the case of volumes, the decomposition has internal elements
requiring a non-manifold structure to represent it.

Normally, the subdivision will be a piecewise approximation of the
original object which can be linear or higher order.

A common approximation is a polyhedral decomposition given by
a triangulation of the solid object [BdF90]. Polyhedral tesselations

9.5 Structuring Implicit Objects 91

should be built and manipulated using Euler operators to ensure that
their consistency is maintained.

It is usually desirable that triangulations are well adapted to the
geometry of the object and composed of very regular cells. This is
critical to prevent numerical instabilities in some types of computation,
such as finite element analysis [TWM85]. In [VdMG91b] a physically-
based method is presented to create regular triangulations of implicit
objects.

9.5.3 Hybrid Structures

Hybrid structures represent at the same time a decomposition of the
domain of the implicit function, as well as a decomposition of the
implicit surface. The extended octree representation is an example of
hybrid structure which allows the description of general solids [Nav89].
This structure is an octree that encodes at each leaf node information
of the boundary of the solid. It is suited to a variety of geometrical
operations including boolean set operations.

This page intentionally left blank

10. Approximating Implicit Objects

This chapter studies methods for creating discrete representations of
implicit objects. In general it is difficult to compute directly the im-
plicit object F−1(A) associated with a function defined by F : U ⊂
R

n → R
m. This is equivalent to solving the “family” of equations

F (x1, . . . , xn) = p, p ∈ A. Unless we impose some restrictions on the
function F and the set A, the solution set F−1(A) can be a very com-
plicated subset of U . For this reason it is often necessary to employ
indirect computational methods and resort to approximations.

The methods to compute approximations to F−1(A) usually involve
two main processes: sampling the implicit object and structuring the
samples to form a piecewise description of the object and reconstruc-
tion of the object from the samples. The sampling process deals with
geometric information; the structuring process deals with topological
information and the reconstruction process tries to get a geometric de-
scription of the object. These procedures can be combined to produce
piecewise descriptions of implicit objects.

Another good strategy for manipulating implicit objects more ef-
fectively consists in using coarser approximations to them. One such
approximation is to approximate them by spatial subdivision enumera-
tion. This auxiliary structure helps in the execution of operations that
are difficult to perform on the implicit representation alone.

Below we will show how to construct these approximations of the
domain and the boundary of implicit objects.

10.1 Structuring and Sampling

There are two ways to produce approximations of implicit objects
through sampling and structuring. One performs sampling before
structuring; and the other performs structuring before sampling.

94 10. Approximating Implicit Objects

The former approach computes a set of samples from the implicit
function and attempts to derive from them an approximation that
faithfully represents the object. This problem can be viewed as a re-
construction from scattered data.

The latter approach structures the domain of the implicit function
and uses this structure to generate an approximation of the object.

In general, the approximation is a cell decomposition which gives a
piecewise parametrization of the implicit object. The order of the ap-
proximation is determined by the geometry of each cell. In this chapter
we will discuss piecewise linear approximations of implicit objects, in
this case each cell is affine. Higher-order approximations are often de-
sirable (piecewise cubics cells are particularly attractive because of
their flexibility and relatively low degree).

10.2 Polygonization Methods

Piecewise linear (PL) methods to approximate implicit objects gener-
ate a decomposition of the domain of the implicit function, as well as a
piecewise linear parametrization associated with it. Since the latter is
a polygonal approximation to the object’s boundary, it is also known
as polygonization method.

The problem of finding polygonal approximations to a manifold can
be compared to the problem of lapidating a precious stone: we have to
carve planar faces with a minimum loss of material. Mathematically,
it can be stated in the following way:

Polygonization Problem. For a given surface M , find a polygonal
surface M̃ that approximates M and has the same topology.

Since this problem involves sampling, it is a very delicate task as
illustrated in Figure 10.1

We can define precisely the polygonization problem above as fol-
lows:

• The polygonal surface M̃ is a combinatorial manifold (Chapter 3);
• That M̃ and M have the same topology means that there exists a

homeomorphism h : M → M̃ ;
• That M̃ approximates M means that there is a real number ε > 0

such that d(p, h(p)) < ε, where d is the distance in the ambient
space. We should note here that finer, higher order approximations
are sometimes required.

10.2 Polygonization Methods 95

(a) (b)

(c) (d)

Fig. 10.1. (a) Implicit surface geometry; (b) sampling; (c) correct reconstruction
using a piecewise linear approximation; (d) wrong reconstruction.

From our point of view the polygonization problem should be posed
into two steps:

• Existence of the polygonal approximation;
• Algorithm to compute the polygonal approximation.

The importance of the existence of the approximation is twofold:
Besides the guarantee that the problem has a solution it should, ideally,
furnish a clue of how to devise an algorithm, and also indicate its
robustness. In this section we are interested in the computation of the
polygonal approximation for implicit surfaces, but we will first discuss
the existence of the polygonization.

10.2.1 Existence of a Polygonization

The existence of the approximation is given by a classical theorem:

Theorem 10.1. If M is a compact m-dimensional submanifold of
class Ck, k ≥ 1, of the euclidean space R

n, and ε > 0 is arbitrary,
there exists a PL m-dimensional manifold M̃ and a homeomorphism
h : M → M̃ such that d(p, h(p)) < ε for all p ∈M .

96 10. Approximating Implicit Objects

Although not important from our point of view, it should be noted
that from the above theorem it follows that the submanifold M is
triangulable (see [Whi57]).

A proof of the theorem above, with a good geometrical flavor, has
been given by H. Whitney [Whi57] and A. Bing [Bin57]. Whitney’s
proof holds for n-dimensional differentiable manifolds, while Bing’s
proof holds for topological surfaces in euclidean 3-dimensional space.

Sketch of the Proof: A constructive approach to prove the theorem
is based on a very simple idea: construct a sufficient fine triangulation
T of the euclidean space R

n such that for every simplex σ ∈ T , the
intersection M ∩ σ is homeomorphic to an m-dimensional disk Dσ.
Substitute M ∩ σ by the disk Dσ and glue the disks adequately to get
the combinatorial submanifold M̃ .

We will discuss the sketch above for the codimension-one case, with
special emphasis on the case of a two dimensional manifold in 3-space.
The reader should consult [Whi57] for the details of proof for any
dimension.

For each point p ∈ M consider an open ball Bp(δ) with center p
and radius δ such that for each point q ∈ Bp(δ) ∩M , M is a graph
over the tangent space TqM . The family B = Bp(δ), p ∈M is an open
covering of M . Let ε be the Lebesgue number of B, and consider a
tubular neighborhood of M of radius ≤ ε.

We say that a triangulation T of the euclidean space R
n is good if

the following conditions are satisfied:

1. the diameter of each simplex σ ∈ T is ε/2;
2. T has no vertices on the surface M ;
3. M intersects transversally the 1-dimensional skeleton T ;
4. each edge of T intersects M at most at one point.

The above conditions are not difficult to obtain:

1′. T can be a CFK triangulation of the space;
2′. This is obtained with a small perturbation of the triangulation;
3′. Also this condition is attained with a small perturbation by the

transversality theorem;
4′. This condition follows immediately from the size of the diameter

of each simplex of the triangulation.

With the above conditions the intersection of M with a simplex σ
of T is homeomorphic to a disk. In fact, M intersects the edges of a

10.2 Polygonization Methods 97

simplex σ ∈ T in either 3 or 4 points (see Figure 10.2). In the first
case the intersection is approximated by a 2-simplex (triangle); in the
second case the intersection can be approximated by the union of two
2-simplices.

Fig. 10.2. Intersection of the surface with a 3D-simplex.

10.2.2 Polygonization Algorithm

The appeal of the proof of the polygonization theorem is in its con-
structive nature. Is it really possible to devise an algorithm to compute
the approximating PL manifold based on the proof? We can mention
the following difficulties:

• to find a priori estimates of the tubular neighborhood. This is im-
portant to guarantee step 1.

• to devise an algorithm to obtain a triangulation of the space satisfy-
ing conditions (1), (2), (3) and (4). We call this a good triangulation
of the euclidean space;

• to compute the intersection of the manifoldM with the one-dimensional
skeleton of the triangulation;

A priori estimates of the tubular neighborhood is a very difficult
issue and it is a fundamental step in order to obtain good triangulations
of the ambient space. An algorithm to compute the intersection of
the manifold M with the 1-dimensional skeleton of the triangulation
depends on the way M is defined.

We will describe the algorithm with details for implicitly defined
manifolds of codimension 1, that is, M = F−1(0), F : R

m → R is a

98 10. Approximating Implicit Objects

function of class C1 and 0 is a regular value of F . Since we are not able
to estimate the tubular neighborhood we construct a “sufficiently fine”
triangulation in the hope that the condition (1) is satisfied. Condition
(2) is easy to check explicitly; condition (3) can be, possibly, attained
with a small perturbation of the triangulation, and condition (4) is
attained using a “very fine” cell decomposition of the space.

To generate the combinatorial manifold M̃ approximating an im-
plicit surface M we proceed as follows: First we determine all of the
triangles that intersect M . These triangles constitute a spatial enu-
meration of M .

Given that the spatial enumeration C associated with M has al-
ready been computed, M̃ is generated by the following method:

Scan and classify the simplices ci of C.
For all simplices cj intersecting M

Compute the intersection of M and cj .
Create and add the corresponding polygons to M̃ .

The reader should observe each of the above steps in Figure 10.3.
In what follows we will describe the three main steps of the algorithm.

Fig. 10.3. Illustration of the polygonization algorithm

Simplex Classification. The simplex classification relies on the
point membership property of the implicit function F . It is possible to

10.2 Polygonization Methods 99

determine whether a simplex is inside, outside or intersects the bound-
ary of the object according to the values of F at the vertices of the
simplex. Assuming that the subdivision C is sufficiently fine the clas-
sification is as follows: If F is negative at the vertices of c then the
simplex is in the interior of the object. If F is positive at the vertices
of c then the simplex is in the exterior of the object. When the sign of
F is not the same at all vertices of the simplex then c must intersect
the boundary of the object. An intersecting simplex is also called a
transverse simplex. These cases are illustrated in Figure 10.4.

+

+-

-

++ -

-

-

Fig. 10.4. Cell classification

Notice that in the classification scheme above, we rely on the fact
that we have a good triangulation, so that situations such as indicated
in Figure 10.5 do not occur.

Fig. 10.5. Examples of inadequate space decompositions.

Intersection Computation. The problem here is: for each one-
dimensional face σ1 of the simplex, verify whether M intersects σ1 and

100 10. Approximating Implicit Objects

if it is the case, compute M ∩ σ1. From condition (4), the intersection
with each edge consists of just one point. To check for the intersection
we just have to verify the sign of F on each of the two vertices v0 and
v1 of σ1. If F (v0) and F (v1 have opposite signs, M = F−1(0) intersects
the edge σ1. The computation of the intersection point (only one from
condition (4)) reduces to a root finding problem (see Section 9.3): If
γ(t) = tv1 + (1 − t)v0 is the parametric equation of the edge support
line, we must find the roots of the equation F (γ(t)) = 0 on the interval
(0, 1).

Polygon Generation. Polygons are created in two steps: First, the
polygon vertices have already been computed by intersecting the 1-
dimensional faces of each simplex c with the implicit surface M . Then,
the polygons are formed by ordering vertices in a consistent way in-
duced by the orientation of the original space triangulation.

Note that this method takes advantage of the space subdivision
enumeration associated with the implicit object to perform both sam-
pling and structuring.

10.3 Implicit Solids

The above method computes a polygonal approximation for a manifold
M = F−1(0). It can be easily extended to compute approximations to
implicit solids such as F (x) ≤ a or a ≤ F (x) ≤ b. In this case we
proceed as follows:

• compute the spatial enumeration based on the space decomposition,
considering now the inequalities that define the solid;

• For each simplex on the boundary (that is, not contained entirely
in the interior of the solid), compute the polygonal approximation
as before. These polygons constitute faces of new simplices on the
boundary of the solid.

10.4 Approximation Theory

We can view the polygonization method described in the previous
section from the point of view of approximation theory. This will give
a different and useful insight into the problem.

10.4 Approximation Theory 101

As before, let M = F−1(0) be an implicit manifold, such that 0 is
a regular value. Consider a function F̃ : R

3 → R that approximates F
in some metric and 0 is also a regular value for F̃ . Then M̃ = F̃−1(0)
is a manifold that approximates M . Therefore, instead of using the
function F to compute the manifold M̃ that approximates M , we use
the approximating function F̃ to F .

In the polygonal approximation above, the function F̃ is an affine
approximation to F , defined in each simplex σ = (p0, p1, . . . , pn) by a
linear interpolation in barycentric coordinates

F̃ (
n∑

i=0

λipi) =
n∑

i=0

λiF (pi).

The condition of being a good triangulation guarantees that 0 is a
regular value of F̃ , that is, in each simplex σ, the hyperplane F̃−1(0)
contains no faces of σ, therefore its intersections with σ is an affine
cell. The vertices of the affine cell are obtained by solving the system
of linear equations

(
1 1 · · · 1

f(p0) f(p1) · · · f(pn)

)
λ0

λ1
...
λn

 =
(

1
1

)

It should be noted that the polygonal approximation obtained here
is not the same we obtained before, because the roots of F̃ on a simplex
σ are not the same as those of F . This is illustrated in Figure 10.6

Fig. 10.6. The polygon obtained from F−1 ∩ σ, indicated with a dashed line, is

not the same as the polygon obtained from �F−1 ∩ σ.

102 10. Approximating Implicit Objects

Higher order approximations F̃ of F can be used in order to get
better approximations of the implicit manifold M . Some work in this
direction can be found in [BI92].

10.5 Classification of Polygonization Methods

Polygonization methods are classified according to three main criteria:

1. Type of decomposition – It can be either extrinsic, when the
space domain of the implicit function is subdivided, or intrinsic,
when the implicit object itself is subdivided directly.

2. Sampling strategy – It is related to the root finding method
used.

3. Structuring method – It can be carried either before, after or
in parallel with the sampling process.

10.5.1 Intrinsic Decomposition

Intrinsic decomposition methods usually combine sampling and struc-
turing in one single step, and adopt a continuation strategy. They start
with a known sample point p on the implicit surface and construct new
triangles by finding more neigbour points. These points can be gen-
erated on the tangent plane at p and then project onto the implicit
surface. Note that this is always possible for a smooth manifold by the
implicit function theorem. This strategy is used in the following works:
[Hen93], [Har98] [KS01] and [AG01].

Other intrinsic decomposition methods perform sampling before
structuring. Some examples of these methods are [Rhe87] and [dFdMGTV92].

Some hybrid decompositions schemes are also present in the liter-
ature. As an example we can mention [Chu90].

10.5.2 Extrinsic Decomposition

Extrinsic decomposition methods are the most popular. Allgower’s
seminal work, [AS85], is a classical example in this category. The poly-
gonization algorithm described in section 10.2.2 also belongs to this
category.

10.6 Extrinsic Polygonization Methods 103

10.6 Extrinsic Polygonization Methods

According to the three criteria discussed above, the polygonization
methods using extrinsic space decomposition are further subdivided
according to:

(i) the class of cellular complex employed in the space decomposition,
(ii) the tracking strategy adopted to scan intersecting cells, and
(iii) the type of subdivision used.

In relation to the domain decomposition, polygonization methods
can be: simplicial or non-simplicial. Simplicial methods triangulate the
domain of F forming a simplicial complex. Non-simplicial methods
tessellate the domain of F building a general cellular complex.

In relation to the tracking strategy, polygonization methods can
use: continuation or full scan. Continuation methods start with a seed
cell that is known to intersect the surface and search its immediate
neighbor cells to determine which ones also intersect. This process is
repeated until all the transverse cells are found. Full scan methods
visit and classify all elements of the cellular complex to find which
cells intersect the surface.

In relation to the type of space subdivision, polygonization methods
can be: uniform or adaptive. Uniform methods subdivide space at reg-
ular intervals generating a decomposition of fixed resolution. Adaptive
methods partition space unevenly such that the resulting decomposi-
tion is finer where more detail is needed.

We will discuss briefly each of the methods above.

10.6.1 Non-simplicial Methods

The most popular non-simplicial polygonization method is the march-
ing cubes algorithm [LC87]. It employs a rectangular uniform cubic
tessellation of space. The method consists essentially of three steps:
the cellular complex is scanned to identify transverse cubes; the topol-
ogy of polygons in each cube is determined through a table look-up
procedure; and the vertex locations are computed by interpolation.

A similar method was developed independently by [WMW86b] and
[PP88]. The difference between them is in the way polygon topology
is derived.

Non-simplicial methods are fast and very simple to implement. The
main drawback is that they are not robust. This is because the intersec-
tion of F̃−1(0) and a rectangular cell cannot be uniquely determined.

104 10. Approximating Implicit Objects

As a consequence inconsistent decisions may produce holes in the poly-
gonization. Figure 10.7 shows a two dimensional example where an
ambiguous situation arises.

+-

+

+-

+- -

Fig. 10.7. Ambiguous Polygonization

This problem can fixed using different approaches. An ad-hoc dis-
ambiguating approach, proposed by [Bei90], consists of checking the
center points of the cube faces. This only alleviates the problem us-
ing extra samples. The correct solution consists in choosing a glob-
ally consistent way to tesselate each intersecting cell [MSS94, Nat94,
CGMS00].

A polygonization method that follows the same algorithmic struc-
ture of the standard Marching Cubes method and performs feature
sensitive sampling is described in [KBSS01]. It employs distance func-
tions relative to the main coordinate directions in order to compute
exact intersections from a sampled volumetric representation.

10.6.2 Simplicial Methods

The polygonization algorithm described in Section 10.2.2 is in this
category.

Simplicial polygonization methods are theoretically more sound be-
cause they rely on the piecewise linear structure induced by the trian-
gulation of the domain of F . The theoretical formulation of this theory
has been studied for years in the area of algebraic topology. This fact
is reflected in the theoretical discussions preceding the description of
the polygonization algorithm, including the triangulation theorem for
differentiable manifolds.

10.6 Extrinsic Polygonization Methods 105

The work in simplicial polygonization methods was pioneered by
Allgower [AS85, AG87]. His method is based on the Coxeter-Freudenthal
triangulation and it uses a pivoting scheme to move from one simplex
to another [AG91] The simplicial approximation of the implicit surface
in each cell is obtained computing the kernel of F̃ over the simplex.
This requires the solution of a linear system of equations.

A variation of the previous method was suggested by [CFT88]. The
main goal was to improve performance.

10.6.3 Continuation Methods

Continuation methods exploit the coherence of the PL manifold M̃ to
reduce the search space of transverse cells [AG90], [ZJ91].

Given a compact 2-manifold M and a cell c that intersects M it is
possible to generate a closed combinatorial manifold M̃ that approxi-
mates M visiting only the transverse cells in C. The method operates
by processing in a systematic way the neighbors of c. It maintains a
list W of working cells. Neighbors of cells in W are inserted in the list,
and a cell c is kept in W while there are neighbors of c to be inserted.
When the list W is empty all the transverse cells have been processed.

A characteristic of continuation methods is the requirement of an
initial value. In the case of polygonization we need a point in each
connected component of the object. This is usually not a problem
because it cames naturally in most applications.

10.6.4 Adaptive Methods

Since we do not have, in general, a priori, estimates of the tubular
neighborhood of the implicit manifold, we must start with a sufficiently
fine decomposition of the space. This increases the number of cells
and consequently the number of polygons in the final model. This
can be avoided in part by refining the decomposition cells only where
necessary. This is the basis of adaptive methods.

Adaptive methods create spatial decompositions that are sensitive
to some characteristic of the object. They start with an initial sub-
division of domain of the object, and refine it recursively until the
adaptation criteria is met. This is very much application dependent.
In the case of polygonization of implicit surfaces it can measure the
fidelity of the PL approximation. For finite element analysis it is often
related to material properties of the object.

106 10. Approximating Implicit Objects

There are two basic approaches to adaptivity: Their main differ-
ence is in the way they constraint the subdivision. One constraints the
cells of the decomposition, while the other constraints the edges of the
polygonization.

The first approach subdivide cells independently constraining poly-
gon edges based on the refinement criteria. This guarantees that the
resulting polygonization will not have cracks between different levels
of subdivision. A simplicial implementation of this method is given in
[Vel90a]. A similar method is [HJ99]. A variant of this approach that
refines the polygonization as a post-process was suggested by [Bei90].
An implementation of this algorithm is described in [Vel96]. A weak-
ness of such a solution is that it may fail to detect some features of
the surface, since it operates on the polygonization alone.

The second approach generates a restricted tree. In order to main-
tain the subdivision structure balanced, this method performs repeated
refinement steps modifying at each stage only one cell. Whenever a cell
is divided its neighbors are constrained to be at levels immediate above
or bellow. An implementation of this algorithm based on octrees was
introduced by [Blo88]. [HW90] proposed a version of this algorithm
for simplicial complexes. A general adaptive tesselation method for
implicit and parametric surfaces that uses a restricted binary tree by
construction is [VdFG99].

As we have seen in Section 10.2.2, extrinsic polygonization methods
need to start with decomposition of the euclidean space that captures
the topology of the implicit shape. One way to do that is through a
Morse function defined on the domain of F . An adaptive polygoniza-
tion for dynamic surfaces based on this principle is [SH97].

11. Primitive Implicit Objects

This chapter discusses primitive implicit objects. We present formula-
tions to define them and analize their main characteristics.

As we have seen, implicit objects are described by functions of the
embedding n-dimensional space. Primitive implicit objects are defined
by a single function along with its parameters. According to how these
functions are specified, primitives are grouped into tree basic classes:
analytical, procedural, and sample-based.

Although most formulations generalize to n dimensions, we will
consider only surfaces and volumes in three-space.

11.1 Analytical

Analytical primitives are implicit objects defined by analytic functions.
This includes algebraic functions, such as the quadrics, as well as non-
algebraic functions, such as superquadrics.

An algebraic function F (x, y, z) is a polynomial involving the vari-
ables x, y, z.

The general function is given by the equation

F (x, y, z) =
l∑

i=0

m∑
j=0

n∑
k=0

aijkx
iyjzk (11.1)

The degree of this polynomial is the maximum combined degree of
the non-zero terms d = l +m+ n. The number of terms of a function
of degree d is (n+ 1)(n + 2)(n + 3)/6.

Quadrics are given by algebraic functions of degree 2. Superquadrics
generalize quadrics providing control parameters to manipulate the
shape of these primitives [Bar81]. Superquadrics are not algebraic,
because they are defined by polynomial equations involving fractional
powers.

108 11. Primitive Implicit Objects

11.1.1 Plane

A plane is the simplest algebraic primitive. It is given by an affine
polynomial

ax+ by + cz + d (11.2)

where (a, b, c) is a vector orthogonal to the plane and the value of d is
related to the distance of the plane to the origin.

This equation simplifies if the plane is perpendicular to one of the
coordinate axis, a common situation in space subdivision procedures.

A half-space is defined by F (x, y, z) ≤ 0. Polyhedra can be con-
structed from a combination of half-spaces. This modeling scheme em-
ploys CSG operations as discused in Chapter 8.

11.1.2 Quadrics

A quadric is defined by a polynomial of degree 2

ax2 + bxy + cxz + dx
+ ey2 + fyz + gy

+ hz2 + iz
+ j

(11.3)

If a homogeneous representation is used, this can be rewritten in ma-
trix notation as ptQp

[x, y, z, w]

a b c d
b e f g
c f h i
d g i j

x
y
z
w

 (11.4)

The different types of quadric surfaces can be distinguished by ex-
amining the eigenvalues of the matrix Q.

A projective transformation can be directly incorporated into the
representation of a quadric. Given a transformation defined by a 4× 4
homogeneous matrix T , the transformed quadric is

Q = T �QT �t (11.5)

where � indicates the adjoint of a matrix.
A subset of the general quadrics, which contains all non-degenerate

quadrics, are the quadrics of revolution. Below we give the equations
for the main quadrics of revolution in their canonical coordinate sys-
tems.

11.1 Analytical 109

Sphere.

x2 + y2 + z2 − 1 (11.6)

Cylinder.

x2 + y2 − 1 (11.7)

Cone.

x2 + y2 − z2 (11.8)

Paraboloid.

x2 + y2 + z (11.9)

Hyperboloid of One Sheet.

x2 + y2 − z2 − 1 (11.10)

Hyperboloid of Two Sheets.

x2 + y2 − z2 + 1 (11.11)

Figure 11.1 shows a drawing of the main quadric surfaces.
Because of their simplicity, many computational techniques, such

as ray-surface intersection and silhouette extraction [Bli84], can be
specialized in a efficient way to quadric surfaces.

11.1.3 Torus

indexTorus
A torus is the cartesian product of two circles of radius a and b. It

is defined by a polynomial of degree 4:

(x2 + y2 + z2 − (a2 + b2))2 − 4a2(b2 − z2) (11.12)

The torus is an example of surface that has both a parametric and
implicit description. This property can be exploited in many problems.
The particular structure of its algebraic description make it possible
to compute ray-surface intesections in closed form.

110 11. Primitive Implicit Objects

(a) (b)

(c) (d)

Fig. 11.1. Main quadric surfaces: Sphere (a); Paraboloid (b); Cone (c); Cylinder(d)

11.1.4 Superquadrics

Below we give the equations defining the main types of superquadrics
in their canonical coordinate systems.

An interpretation of superquadrics as blend surfaces will be given
later in this section.

Superquadrics constitute another class of surfaces which possess
a natural parametric and implicit description. An example of appli-
cation of this property to model deformable surfaces can be seen
in [SP91], where implicit superquadrics have been used as the base
surface for a displacement field defined on the parametric domain of
the superquadric.

The superquadrics are: the superellipsoid, the superhyperboloid of
one and two sheets, and the supertoroid.

11.1 Analytical 111

Superellipsoid.((
x

a1

) 2
e2

+
(
y

a2

) 2
e2

) e2
e1

+
(
z

a3

) 2
e1 − 1 (11.13)

Superhyperboloid of One Sheet.((
x

a1

) 2
e2

+
(
y

a2

) 2
e2

) e2
e1

−
(
z

a3

) 2
e1 − 1 (11.14)

Superhyperboloid of Two Sheets.((
x

a1

) 2
e2 −

(
y

a2

) 2
e2

) e2
e1

−
(
z

a3

) 2
e1 − 1 (11.15)

Supertoroid.((
x

a1

) 2
e2

+
(
y

a2

) 2
e2

) e2
e1

− a4

2

e1

+
(
z

a3

) 2
e1 − 1 (11.16)

where a4 = r√
a2
1+a2

2

and r is the torus radius.

Superquadrics can be formulated parametrically as spherical prod-
ucts of superconic curves. Superconics are similar to normal conics but
raised to an arbitrary power. Superquadric surfaces are to quadrics as
superconic curves are to conics. The exponent e control the roundness
of the curves. If e ≈ 1 the curve is a conic. If e < 1 the curve tends
to a square. If e < 2 the curve becomes pinched and is concave. The
parameters ei are used to pinch, round, or square off portions of the
surface, and to produce edges, fillets of arbitrary smoothness.

Figure 11.2 shows examples of the superellipsoid varying the pa-
rameters e1 and e2.

For a discussion of applications in computer graphics based on su-
perquadrics see [Bar81].

112 11. Primitive Implicit Objects

(a) (b)

(c) (d)

(e) (f)

Fig. 11.2. Superquadric ellipsoids

11.1 Analytical 113

Two Interpretations of Superquadrics

We now give two different interpretations to superquadrics: one as a
blend primitive and the other as a variable metric distance function.

Let a1 and a2 be the characteristic functions of the half-spaces
whose boundaries are the coordinate axis

A1(x, y) = x

A2(x, y) = y

And let s be the characteristic function of the unit circle

S(x, y) = x2 + y2 − 1

If we use s as a blending function on a1 and a2, the result is

S(A1(x, y), A2(x, y)) = (A1(x, y))2 + (A2(x, y))2 − 1
= x2 + y2 − 1

which is a blend of the two coordinate axis A1 and A2. A general-
ization of the equation above will lead us to the super-ellipse. Note
that the super-elliptic blend is inspired precisely in this equation. (See
Chapter 8.)

Now, consider a distance function D according to the different met-
rics:

‖x‖1 = |x1|+ . . .+ |xn|;
‖x‖2 = (x2

1 + . . .+ x2
n)

1
2 ;

‖x‖∞ = sup(x1, . . . , xn).

D corresponds respectively to the L1, the Euclidean, and the Manhat-
tan distances.

From the super-ellipse equation

f(x, y) =
(
x

a1

2
e2 +

x

a1

2
e2

) e2
e1 − 1

we can get exactly these metrics. To verify that, normalize the axis
of the super-ellipse, a1 = a2 = 1, make the exponent e1 = 1, and set
e2 = 2, e2 = 1 and e2 � 1 to obtain the one-norm, two-norm, and the
infinity-norm respectively.

Note that when e2 → ∞ the shape converges to the union of the
two coordinate axis reinforcing the interpretation of superquadrics as
a blend.

114 11. Primitive Implicit Objects

11.2 Procedural

Procedural primitives are implicit objects whose characteristic func-
tion F is defined algorithmically. This seems too general since any
function can be generated procedurally. For this reason an implicit
object is classified as a procedural primitive only when its descrip-
tion is inherently algorithmic. For a discussion of procedural modeling
see [GV98].

11.2.1 Fractals

Fractals objects have a natural algorithmic description. They can be
specified either through a recursive or an iterative procedure.

The recursive method stars with an approximation of the object
and refine it by repeatedly altering its parts. The iterative method
determines whether or not a point is part of the object based on its
assymptotic behavior. The condition is that the orbit of the point
converges to the basin of attraction of the fractal.

This last method is the most suited to describe fractals implicitly.
A good example of this type of fractal is the Julia set [Nor82].

The basic procedure for fractal evaluation is as follows

F (x, y, z) =
{

1 if In(x, y, z) →∞ as n→∞
0 otherwise

(11.17)

where I : C → C and the subindex means iteration.
Hart and co-authors have investigated techniques for computation

and visualization of fractal implicit objects [HH95] [Har92] [BH97]
[CHF98] [Har89] [HD91] [CLH01].

11.2.2 Hypertexture

Hypertexture is a procedural modeling scheme based on functional
composition [PH89]. Objects are described by implicit primitives whose
characteristic function is controlled by a successive application of shap-
ing functions. The model is conceived as an assemble of density distri-
butions in space.

The characteristic function F gives a base shape which has a hard
solid region and a soft region that is manipulated by the shaping func-
tions. F is also called object density function and is given by:

F : R
3 → [0, 1] (11.18)

11.2 Procedural 115

where the soft region is the set of points that satisfy 0 < F (x) < 1.
The shaping functions gi, also called density modulation functions,

modulate density within the soft region, controlling some spatial char-
acteristic of the object.

A hypertexture primitive H is defined by

H(F (x),x) = gn(. . . g2(g1(F (x))) (11.19)

One essential component of the toolkit of shaping functions is the
noise function [Per85a]. It is an effective means to introduce controlled
randomness into the model. The base level toolkit include the functions
bias and gain, as well as arithmetic and control flow operations.

Boolean operations can also be applied to hypertexture primitives
if they are properly redefined:

F ≡ 1− F (x).
F1 ∩ F2 ≡ F1(x)F2(x).
F1 \ F2 ≡ F1(x)− F1(x)F2(x).
F1 ∪ F2 = F1 ∩ F2 ≡ F1(x) + F2(x)− F1(x)F2(x).

In that sense, hypertexture objects constitute a complete scheme
for modeling with implicit shapes. In this scheme, the primitive is
an object density function, shaping functions are unary manipulation
operations, and the redefined CSG operations are used for combination
of primitives.

Hypertexture was intended to address the shape plus texture prob-
lem, but can also be used to construct fractal shapes. This framework
has been used to generate realistic models of fuzzy geometry such as
in hair, fur, fire, glass, and erosion effects. (See Figure 11.3.)

Fig. 11.3. Hypertexture Object

116 11. Primitive Implicit Objects

11.3 Sample-Based Implicit Primitives

Sample-based primitives are implicit objects defined by a collection of
values {Fi = F (xi)} of the function F , at a discrete set of sampling
locations xi, i = 1, . . . , N .

These samples form a spatial data set which directly specifies the
function F . In order to generate a continuous function from these
discrete samples an interpolation scheme must be used.

Sample-based implicit primitives can be classified based on two
criteria: (i) the sampling pattern and; (ii) the interpolation scheme
employed to reconstruct F (x). The sampling pattern may be regular or
irregular. The reconstruction depends on the type of sampling pattern
and on the order of the interpolationg scheme.

This type of primitive assumes an underlying structure. The pur-
pose of such an structure is twofold — it organizes the data for storage
and also define the topological relations for function reconstruction.

11.3.1 Irregular Samples

Irregular samples are generated from an unorganized collection of data
points. This type of primitive requires some kind of structuring to be
performed before reconstructing the function F . The reconstruction
problem is known as scattered data set interpolation [Alf89].

Piecewise Linear Voronoi Models.
In this type of model sample points are structured by calculating

the Voronoi diagram of their spatial locations and then taking the asso-
ciated Delaunay triangulation. The triangulation provides a simplicial
complex where barycentric interpolation can be performed.

For each tetrahedron T with vertices {v1, v2, v3, v4}, vi ∈ R
3 and

corresponding sample values {f1, f2, f3, f4}. Linear barycentric inter-
polation within T is done in the following way:

F (x)|T =
4∑

i=1

αifi (11.20)

where α1, α2, α3, and α4 are barycentric coordinates, i.e.
∑4

i=1 αi = 1.
Since adjacent tetrahedron of this simplicial complex share sample

values, this gives a piecewise linear reconstruction of F .
Note that in this model, sample points can be anywhere in space

and are not restricted to be on the implicit surface F−1(c).

11.3 Sample-Based Implicit Primitives 117

Simplicial Hull Models.
In this type of model we start with a polyhedron that defines the

shape of the implicit surface. Then, we construct a simplicial hull
that conforms to a triangulation of this polyhedron. Next, a Bézier-
Bernstein polynomial is computed within each tetrahedron of the sim-
plicial complex, such that the zero set of this polynomial is an im-
plicit piecewise polynomial description of the surface. Each of these
pieces of the surface can be considered as an implicit surface patch.
Continuity between adjacent patches is enforced by requiring that the
vertex/edge/face adjacent polynomials be continuous with each other.

A polynomial of degree m over a tetrahedron T is written in Bézier-
Bernstein form as

F (x) =
∑
|λ|=m

bλ1λ2λ3λ4B
m
λ (α) (11.21)

where
Bm

λ (α) =
m!

λ1!λ2!λ3!λ4!
αλ1

1 αλ2
2 αλ3

3 αλ4
4 (11.22)

α = (α1, α2, α3, α4) are barycentric coordinates of the point x relative
to T , |λ| =

∑4
i=1 λi, and Bm

λ is the Bernstein polynomial.
The coefficients bλ1λ2λ3λ4 are control values associated with vertices

of the tetrahedron.
In the interpolating simplicial hull model the implicit surface passes

through the vertices of the original tetrahedron. Therefore, the control
values at these vertices are set to zero and the control values at the
remaining vertices of the hull are computed to guarantee continuity.
Note that in order to achieve higher-order continuity the simplicial
hull must be subdivided.

Smooth interpolation models that produce C1 and even C2 con-
tinuous implicit surface patches based on this framework have been
proposed by many researchers [Dah89] [Guo91b] [Guo91a] [MW91]
[XHB01] [BCX94] [BCX95b] [BCX95a].
Variational Models.

Variational models are defined as an scattered-data interpolation
using a variational approach. Under this framework, an implicit func-
tion is constructed from samples as the minimizer of some energy func-
tional subject to interpolative constraints [PASS95][TO99].

Given a set of sample locations xi and sample values fi, we want
to find a function F , that minimizes the energy EF (x), while inter-
polating the sample values, i.e. F (xi) = fi. The energy functional E

118 11. Primitive Implicit Objects

can measure either the first, second or third order energy of F or a
combination of those [CS96].

Sample points are divided in three categories: surface points si with
f(si) = 0; interior points pi with f(pi) > 0 and exterior points ei with
f(ei) < 0). The surface normal can be used to determine the location
of pi and ei.

The second order energy functional is the most popular and cor-
responds to the thin-plate spline. In three-dimensions the thin-plate
solution is equivalent to interpolating the sample points using radial
basis functions φ(r) = |r|3. Other energy functionals also have a known
closed form solution, with different radial basis functions.

The resulting interpolating function is given by

F (x) =
n∑

i=1

wiφ(‖x− xi‖) + P (x) (11.23)

where wi is the weight of the radial basis function centered at xi, and
P is a first degree polynomial that accounts for the linear and constant
portions of F , ensuring positive definiteness of the numerical solution.

To solve for the set of weights wi that satisfy the interpolation
constraints F (xi) = fi, we substitute each fi into equation 11.23

n∑
j=1

wjφ(‖xi − xj‖) = fi (11.24)

where we assumed that P (x) = 0, for simplicity.
This results in the following linear system:φ11 . . . φ1n

...
. . .

...
φn1 . . . φnn

w1

...
wn

 =

f1
...
fn

 (11.25)

where φij = φ(‖xi − xj‖).
The above matrix is real-symmetric and can be made to be positive-

definite for a proper choice of basis function φ and polynomial P .
Various numerical methods can be used to solve the matrix equation
(11.25), such as LU decomposition of the conjugate gradient method.
Once the weights wi have been computed, equation 11.23 gives the
interpolating implicit function.

11.3 Sample-Based Implicit Primitives 119

The main difficulty with variational model approach is the com-
putational complexity for building, solving, and evaluating the func-
tion F . The complexity of building and solving the system is O(n2)
and the complexity to evaluate F is O(n), where n is the number of
sample points. When the number of points is large, these costs can be
prohibitive.

One way to overcome this difficulty is to employ a locally-supported
radial basis function [Ter01]. The general solution is

φ(r) =
{

(1− r)pP (r) r < 1
0 otherwise

(11.26)

This reduces the complexity to O(n log n) to build the system, and to
O(log n) to evaluate F .

Another option is to resort to faster numerical methods for fit-
ting and evaluating radial basis functions, such as the Fast Multipole
Method [CBC+01].

11.3.2 Regular Samples

Regular samples are generated from an organized colletion of data
points. These points are disposed according to a regular structure and,
in general, are associated with the vertices of a three-dimensional mesh.

Voxel Arrays.
A voxel array is a structured collection of values based on a three-

dimensional grid. Usually, this grid is a uniform rectangular lattice.
Note that the location xijk of datapoints is not explicitly encoded
since is intrinsic to the grid and can be derived from the indices i, j, k.

This type of representation is very common in medical applications,
where the data sets are produced by sensing devices, such as Computer
Assisted Tomography (CAT), Magnetic Resonance Imaging (MRI),
and other techniques. In such applications there is a great emphasis
placed on both surface and volume information [BW01b];

The funtion F is often reconstructed from the samples using trilin-
ear interpolation.

The large amount of data samples demand compression techniques.
For certain classes of data sets, such as sampled distance fields, it
is possible to adopt a more economical adapted structure, based on
octrees [FPRJ00].

120 11. Primitive Implicit Objects

Volume Meshes.
Volume meshes has the structure of a regular or semi-regular grid.

This grid is non-uniform in general. It can be either a tetrahedral or
hexahedral grid.

This type of representation is often employed in scientific visual-
izations, where the data sets are generated by numerical simulations,
such as finite element analysis (FEM).

The regular structure is suitable to reconstruction methods using
higher order polynomial functions.

In the case of hexahedral grids, we can use tensor product basis
functions, such as the Bézier basis

FC(x) =
m∑

i=0

n∑
j=0

p∑
k=0

wijkB
m
i (x1)Bn

j (x2)B
p
k(x3) (11.27)

where

Bm
i (x) =

(
m

i

)
xi(1− x)m−i (11.28)

is the Bernstein polynomial, and Fc is retricted to a hexahedral cell
with normalized parametric coordinates x ∈ [0, 1] × [0, 1] × [0, 1].

The reconstruction function F is defined in a piecewise manner
from the collection of FC and the sample values.

Note that a voxel array can be represented as a volume mesh if
higher order interpolation is desired.

Volume meshes structures and smooth reconstruction schemes based
on the Bézier basis have been investigated by [Las85].

12. Skeleton-Based Implicit Primitives

This chapter studies skeleton-based implicit primitives. Skeleton primi-
tives are implicit objects defined in terms of a distance measure to some
point-set, such as points, curves or surfaces. These sets are called skele-
tons. The boundary of the object is a level surface c units away from
the skeleton in a appropriate metric. Usually c is a parameter of the
primitive and its characteristic function is expressed as F (x, y, z) − c.

Note that a skeleton primitive is a special case of the medial axis
description, where the radius of the maximal balls is constant (equal
to c), and the metric is arbitrary.

Skeletons are also closely related to blending, because a set of prim-
itives can be naturally combined using blend operations, as we will see
in the end of this chapter.

In the next sections, we will describe primitive skeletons according
to the dimensionality of the point set.

12.1 Point Skeletons

The simplest skeleton is formed from a set of isolated points {pi}.
Most of the effort in constructing these primitives goes into creating a
flexible distance function. The properties of the distance function will
determine the shape of primitives and how they blend together.

12.1.1 Blobby Models

Blinn [Bli82] was the first to introduce a skeleton based implicit model.
He was motivated by the need to display molecular structures more
accurately. This model is inspired on electron density maps. The dis-
tance function is a Gaussian centered at each point p of the skeleton.
The parameters a and b are respectively the standard deviation and
the height of the function.

122 12. Skeleton-Based Implicit Primitives

Di(x) = bi exp(−air
2
i) (12.1)

where ri = ‖x − pi‖ is the euclidean distance from x to the skeleton
point pi.

A more intuitive shape specification is given in terms of the radius ρ
of an isolated point skeleton, and the blobbyness factor β that controls
how the point blends with others.

The new equation is

Di(x) = c exp(
βi

ρ2
i

r2i − βi) (12.2)

Since c now is included in the contribution of each term, it can be set
to a standard value such as 1. The effect of changing the level surface
can be achieved through the blobbynes factor.

Note that the function D is symmetric resulting in a spherical
shape. D can be generalized to allow for arbitrary quadric shape func-
tions if r2i is substituted in the equation by xQix.

12.1.2 Metaballs

A variation of Blinn’s model is the metaball model developed by [NHK+85].
The metaball model uses a piecewise quadratic instead of an exponen-
tial function.

Di(x) =

ai(1− 3m2

i) 0 ≤ mi ≤ 1/3
3
2ai(1−m2

i) 1/3 ≤ mi ≤ 1
0 1 ≤ mi

(12.3)

where m2
i = xQx.

One important characteristic of this model in terms of computa-
tional efficiency is that the contribution of each point drops to zero at
certain distance from it. This makes possible to consider only a sub-
set of the points in the calculation of the function value at a given
location.

12.1.3 Soft Objects

A similar point skeleton primitive was proposed by [WMW86b]. In this
model the extent of influence e of each point p is an explicit parameter.
The distance function is based on an Hermite cubic whose value is 1
at p and 0 at e. The slope of the curve is zero at both points, which

12.1 Point Skeletons 123

guarantees smoothness. The square of the distance to p is substituted
into this equation giving rise to the sixth degree polynomial

Di(x) = 1 +
−4w6 + 17w4 − 22w2

9
(12.4)

where w = ‖x − pi‖/ei and ei is the extent of the influence of the
skeleton element pi.

12.1.4 Other Formulations

There are many other formulations for primitive point skeletons.
In [Gas93] and [BS95] a local shaping function is used to control the
hardness of the blend between different primitives.

The hardness parameter is given by hi in the two equations below.
The model proposed in [Gas93] is

Di(x) =

1
4(2 + hi + 2hiri) ri ≤ 1/2

(−2 + hi + 8ri − 2hiri) 1/2 ≤ ri ≤ 1
0 1 ≤ ri

(12.5)

where ri = ‖x− pi‖.
The model proposed in [WW89] employs an anisotropic shaping

function based on non-euclidean metrics, such as the Lm metrics.
A similar, more flexible, scheme was proposed in [BS95]. In this

model, a point source is defined by 3 parameters: a position pi =
(xi, yi, zi), a radius of influence di and a primary direction, specified
by the normalized vector qi = (ai, bi, ci). From these parameters the
following variables are derived:

u =
x− xi

di
v =

y − yi

di
w =

z − zi
di

and
t2 = u2 + v2 + w2 s = uai + vbi +wci

Note that t2 ∈ [0, 1] and s ∈ [−1, 1]. The anysotropic distance functions
are defined using these two variables, where t2 gives the distance of
a point x to the point skeleton xi and s characterizes the its position
relative to the primary direction. More complicated functions can be
constructed by introducing additional directions and radius.

Figure 12.1 shows examples of isotropic and anysotropic primitive
point skeletons.

124 12. Skeleton-Based Implicit Primitives

Fig. 12.1. Isotropic and anysotropic primitive point skeletons

12.2 Curve Skeletons

A curve skeleton is constructed from a curve segment in R
3. This line

defines the axis of a generalized cylinder with possibly variable radius
and cross-section [BS91].

The basic equation for a curve skeleton implicit object is

‖C(x,pi)− x‖ − c (12.6)

where C is the closest point on the curve, and c is the contour value.
Note that c may be a function of the curve parameter t, and the eu-
clidean distance function may be substituted by an arbitrary distance
function.

In this context, curve skeletons are closely related with sweep sur-
face models that are generated by sweeping a shape along a prescribed
trajectory [SW97].

12.2.1 Lines

For a line segment p0p1 the distance from a given point x and the
closest point on the line is

C =

p0 α ≤ 0

p0 + α(p1 − p0) 0 < α < 1
p1 α ≥ 1

(12.7)

where α = l · (x− p0)/(l · l), and l = p1 − p0.

12.2.2 Splines

For a parametric spline curve defined by the vectors a,b, c,d we find
a point on the curve solving at3 + bt2 + ct+ d, where t ∈ [0, 1] is the

12.3 Surface Skeletons 125

spline parameter. The closest point on the curve to a given point x is
obtained from the condition ∂|x− q|/∂t = 0.

∂|x− q|
∂t

= 3a · at5 + 5a · bt4 + 2(2a · c + b · b)t3 +

3(2a · e + b · c)t2 + (2b · e + c · c)t+ c · e (12.8)

where e = d − q. The multiple roots of this equation must be tested
to determine which one gives the closest point.

Figure 12.2 shows an example of primitive curve skeleton for a line
segment.

Fig. 12.2. Skeleton-based implicit objects of a line segment

12.3 Surface Skeletons

This primitive is defined as an offset surface constrained to lie at a
fixed distance normal to another surface. The skeleton can be speci-
fied either in parametric or implicit form, providing a mechanism to
incorporate parametric models in implicit based systems. In practice,
the complexity of the distance calculation dictates only the implemen-
tation of simpler forms of this model which explore special cases.

12.3.1 Polygon

The distance from a point p to a polygon can be computed considering
two cases. If p projects to the inside of the polygon it is the distance
from p to the support plane of the polygon. Otherwise, it is the distance
from p to the closest polygon edge or vertex.

126 12. Skeleton-Based Implicit Primitives

Figure 12.3 shows an example of offset surface primitive for a tri-
angle.

Fig. 12.3. Skeleton Based Implicit Objects

12.3.2 Height Field

If we allow the distance function to vary over a planar skeleton we
obtain a height field surface.

12.4 Skeletons and Blending

Skeleton primitives can be naturally combined using blending opera-
tions. (See Chapter 8.)

The generalized distance D(x) plays an important role in how the
primitives are blended. In many cases, D can be defined as a monotonic
modulation of the euclidean distance, (i.e. D(de(x, S)), where de is the
euclidean distance). In the case of distance functions induced by a non-
euclidean metric it is desirable for shape control that the distance is
evaluated in the local coordinate system of the primitive [WW89].

12.4.1 Blending Schemes

As we have seen in Chapter 8, a blending scheme combines the func-
tions of individual primitives such that their shapes are smoothly
joined.

12.4 Skeletons and Blending 127

This functional composition is usually done using the linear blend or
the convolution blend. Next, we will review these two types of blending
and discuss how they apply to skeletons.

Linear Blend.
The linear blend is defined by summing distance functions to each

skeletal element. The blending equation for a set of primitive skeleton
elements Si is

F (x) =
k∑

i=0

D(x,Si)− c (12.9)

where D(x,S) is a function that gives a measure of the generalized
distance between the points x and the primitive skeleton S.

Figure 12.4 shows an example of blending of point skeletons.

Fig. 12.4. Skeleton Based Implicit Objects

Linear blends work very well for point skeletons. However, when
curve or surface skeletons are combined using linear blend, the result-
ing surface exhibits a bulge at the places where primitive elements
meet [Blo97]. This problem can be solved using convolution blend.

Convolution Blend.
The convolution surface [BS91] is obtained via 3D convolution of

a distance kernel D(x) and a skeleton shape S, by integrating for all
points p ∈ S

χS(x) � D(x) =
∫

S
χS(p)G(p − x)dp (12.10)

where χS is the characteristic function of the skeleton S.

128 12. Skeleton-Based Implicit Primitives

Then, the implicit description is

F (x) = (χS(x) � D(x))− c (12.11)

where c ∈ R is the isovalue of the level surface.
The convolution operation gives a weighted average of the distances

to points p ∈ S on the skeleton that is equivalent to the union opera-
tion.

Since the convolution is a linear operator, the sum of individual
convolutions of separate skeletal pieces is equal to the convolution of
the union of all skeletal elements:

D(x) � (χS1(x) ∪ χS2(x)) = (D(x) � χS1(x)) ∪ (D(x) � χS2(x))

Thus, the convolution blend can be computed simply by summing
the convolutions of individual skeleton elements

F (x) =
k∑

i=0

(χSi(x) � D(x))− c (12.12)

The superposition property of convolution implies that the blend
acts in the same way on all points of the skeleton. Therefore, arbitrary
division of a skeleton into pieces does not introduce any bulge in the
surface near the joins of these pieces.

Note that for point skeletons, convolution blend is equivalent to the
linear blend.

One difficulty with convolution surfaces is that, in general, there
is no closed form solution to the convolution integral, for most skele-
ton shapes and distance kernels. For this reason, [BS91] suggested a
numerical volumetric integration by parts using image processing tech-
niques. Another option, proposed by [She99], is to carefuly design a
kernel distance function that can be convolved analytically with basic
skeleton shapes.

The Cauchy kernel is the most suitable for convolution blends. It
allows a closed form solution of the convolution integral for five types
of skeleton shapes: point, line segment, plane, arc, and triangle.

The Cauchy kernel function is

H(r) =
1

(1 + s2r2)2
(12.13)

12.4 Skeletons and Blending 129

As an example we give the formula for the convolution of H(r) with
a line segment of lenght L, defined as

p(t) = o+ tv (12.14)

where o is the origin of the segment, v is the normalized line direction,
and 0 < t < L.

H(x) � χp(t) =
a

2p2(p2 + s2a2)
+
L− a
2p2q2

+
1

2sp3

(
arctan

sa

p
+ arctan

s(L− a)
p

)
)

where a = (o− x) · v, d = ‖(o− x)‖, p, q are

p2 = 1 + s2(d2 − a2), q2 = 1 + s2(d2 + L2 − 2La)

and we set the kernel width s2 = 0.25.
The formulas for the other primitives can be found in [MS98].
Figure 12.5 shows an example of convolution blend.

Fig. 12.5. Convolution blend

This page intentionally left blank

13. Multiscale Implicit Objects

This chapter studies a model of implicit objects based on a multiscale
decomposition of the implicit function.

This model is adapted to the local variations of the implicit function
at multiple scales. It is described in terms of simple functions that are
suitable for computation.

Decompositions of the implicit function for modeling purposes
should reveal relevant aspects of the function, such as its variations
(or its frequency content). It is also desirable that a functional de-
composition results in a representation that exhibits spatial locality
(an exception to this rule is the case where certain operations are per-
formed more efficiently using a representation without this property,
such as the Fourier series [TL93]).

Spatial and frequency localization are incompatible requirements.
So, if we want a representation that provides frequency information
and has spatial locality, we have to settle for a compromise. Good
localization in both space and frequency is achieved by the wavelet
transform that uses scaled “small waves” [Dau92].

In the next sections we will discuss functional decompositions that
are related to wavelets and are adequate for modeling with implicit
surfaces.

13.1 Multiscale Decompositions

The decomposition of a function in terms of elements at multiple
scales provides a representation that reflects the function behavior over
neighborhoods of variable size. It is a hierarchical structure which is
adapted to the function variations.

132 13. Multiscale Implicit Objects

Definition.
A multiscale decomposition is a description based on a set of func-

tions localized both in space and scale. Under this representation a
function f(x) is expressed as a linear expansion over this set.

A suitable family of functions for this purpose can be generated
by scaling and translating a single function ϕ(x). A member of this
family is denoted by ϕγ , where the index γ = (s, u) specifies the scaling
parameter s and the translation parameter u. Depending upon the
properties of ϕ, different types of decompositions are produced.

We assume that both f and ϕ belong to L2(Rn), the vector space
of measurable, square-integrable real functions of n variables. In the
following exposition, we will consider only the one-dimesional case. The
definition of a multiscale decomposition for n-dimensional functions
f : R

n → R in L2(Rn) is a direct extension.

13.1.1 Dictionaries

The most general kind of decomposition uses the notion of a dictionary.
D = {(ϕγ , ϕ̃γ)}γ∈Γ is constituted by a family of dual functions, ϕ and
ϕ̃. In the case of a multiscale dictionary, the index set Γ is defined as
above.

Given an arbitrary function f ∈ L2(R), we select from the dictio-
nary D a countable subset of elements (ϕγi(x))i∈� , with γi = (j, k),
such that f can be reconstructed by a linear expansion into these se-
lected elements

f(x) =
∞∑
i=0

aiϕγi(x),

where γi is an element of the index set Γ .
The coefficients ai are computed by orthogonal projection on the

duals of the selected elements ϕγi of the dictionary D.

ai = 〈f, ϕ̃γi〉

Intuitively, this decomposition indicates the features of f that are
“in-tune” with each element ϕγ .

A multiscale representation is given by the list of coefficients ai, to-
gether with the corresponding indices γi = (ji, ki) in the dictionary D.

In practice, we use only a finite number of elements from D. For
this reason, it is important to obtain a sequence of decompositions
with increasing number of elements that converges to the function f :

13.2 Multiresolution Analysis and Wavelets 133

‖f −
m∑

i=0

aiϕγi‖ ≤ ε‖f‖

This provides a mechanism to approximate f with a desired precision ε.

13.1.2 Non-Redundant Dictionaries

Two important issues arise in the context of multiscale representation:

• Which is the best multiscale decomposition of a function?
• How to perform computations efficiently with the decomposition?

Obviously, the answer to these questions depends on the choice of
the multiscale dictionary D. A qualitative or a quantitative criterion
could be used choose D: (i) The representation should be adapted to
the function f , i.e., the one whose elements would identify features of
interest in f ; (ii) The representation should be compact, i.e., a linear
expansion of f should have a small number of elements.

The dictionary D may be redundant, which implies that the mul-
tiscale decomposition is not unique in general. Therefore, a third cri-
terion is the uniqueness of the representation of f For that we must
choose a non-redundant dictionary.

Two particular multiscale dictionaries fulfill the three above criteria
— they are based on scaling functions and wavelets.

In the following sections we will discuss in detail these two de-
composition approaches and methods to compute them based on the
wavelet transform.

13.2 Multiresolution Analysis and Wavelets

There is an intimate connection between wavelets and a multireso-
lution analysis. Wavelets can be used to generate a multiresolution
analysis, or conversely, we can derive dyadic wavelets from a multires-
olution analysis.

The idea is to decompose L2(R) into a direct sum of closed sub-
spaces Wj, spanned by the functions ψj,k(t). Consequently, the com-
plementary subspaces

Vj = · · · ⊕Wj−2 ⊕Wj−1, j ∈ Z

134 13. Multiscale Implicit Objects

form a nested sequence of subspaces of different scales. This motivates
the investigation of a scaling function φ(t) that generates the spaces
Vj , j ∈ Z, in the same manner that ψ(t) generates the spaces Wj,
j ∈ Z.

13.2.1 Multiresolution Analysis

A multiresolution analysis (MRA) is a hierarchical decomposition of
L2(R) into a sequence of closed subspaces {Vj}j∈� satisfying

· · ·V−1 ⊂ V0 ⊂ V1 · · ·

with
⋃

j∈�Vj = L2(R),
⋂

j∈�Vj = {0} and

f(t) ∈ Vj ↔ f(2t) ∈ Vj+1

f(t) ∈ Vj ↔ f(t− 2−jk) ∈ Vj

The spaces Vj are called approximation spaces. In a multiresolution
analysis, all approximation spaces are scaled versions of the central
space V0. For this, we require that there exists a function φ ∈ V0 of
the form

φj,k(t) = 2j/2φ(2jt− k)

with j, k ∈ Z, such that {φ0,k : k ∈ Z} is a Riesz basis in V0.
The function φ is called a scaling function of the multiresolution

analysis. A given space V0 may have many functions that satisfy the
above properties, but only one will be an orthonormal basis of V0.

We denote by Pj the orthogonal projection operator onto Vj

Pjf =
∑
k∈�
〈f, φj,k > φj,k

This corresponds to the approximation of f at the resolution 2j .
The fact that the limit of the sequence of spaces {Vj}j∈� is dense

in L2(R) ensures that limj→∞ Pjf = f for all f ∈ L2(R).
Although {φj,k}(j,k)∈�2 spans the space L2(R), it is not a minimal

spanning set, due to the nested nature of the multiresolution analy-
sis. On the other hand, it is possible to construct an orthogonal de-
composition of L2(R) if we exploit the complementary structure of a
multiresolution analysis.

13.2 Multiresolution Analysis and Wavelets 135

13.2.2 Detail Spaces

We define Wj to be the orthogonal complement of Vj in Vj+1. Then
we have

Vj+1 = Vj ⊕Wj

and
Wj ⊥Wj′ , if j 	= j′.

The spaces Wj are called detail spaces, in the sense that they con-
tain the difference in information between the spaces Vj and Vj+1.
Therefore, Wj contains the detail information needed to go from the
approximation at resolution 2j to the approximation at resolution 2j+1.

Observe that, because the spaces Wj ⊂ Vj′ ⊥ Wj′ if j < j′, then
we have

Vj = VJ ⊕
J−j−1⊕

k=0

WJ+k

for j > J .
Also, the family of spaces {Wj}j∈� constitute an orthogonal de-

composition of L2(R) expressed as

L2(R) =
⊕
j∈�

Wj

The spaces Wj inherit from Vj the scaling property of the multires-
olution analysis

f ∈Wj ↔ f(2j) ∈W0

It is possible to find a wavelet ψ such that, for fixed j, {ψj,k : k ∈ Z}
constitute an orthonormal basis of Wj. Therefore, the whole family
{ψj,k}(j,k)∈�2 constitutes an orthonormal basis of L2(R).

13.2.3 Scaling Functions and Wavelets

We are now faced with the problem of defining the scaling and wavelet
functions φ and ψ. This can be done exploiting the 2-scale relation
that exists in a multiresolution analysis.

It is possible to find functions φ and ψ which satisfy the two-scale
relations below:

136 13. Multiscale Implicit Objects

φ(t) =
√

2
∞∑

k=−∞
hkφ(2t− k)

ψ(t) =
√

2
∞∑

k=−∞
gkφ(2t− k)

and that generate an orthogonal basis of, respectively Vj and Wj .
Note that, φ and ψ are uniquely determined respectively by the

l2-sequences H = {hk} and G = {gk}. Also, observe that ψ is defined
in terms of φ.

H and G form a pair of discrete filters that can be used to compute
the wavelet transform.

13.3 The Wavelet Decomposition

Wavelets can be used for constructing a multiscale dictionary. Since
there exists wavelets ψ(x) that form an orthonormal basis of L2(Rn),
the associated dictionary is non-redundant.

The wavelet decomposition a function f is the projection of f onto
the wavelet spaces Wj and is computed using the wavelet transform.

The wavelet representation consists of the coefficients {djk} of the
linear expansion relative to the wavelet basis ψjk

This representation can be interpreted as a decomposition of a sig-
nal in a set of independent frequency channels, as in Marr’s vision
model [Mar82].

13.3.1 The Wavelet Transform

An efficient method to compute the coefficients {dj,k} of the wavelet
transform exploits the hierarchical structure of the multiresolution
analysis. It is based on the two scale relations and the associated pair
of discrete filters H and G.

We start with a function fJ ∈ VJ . Since Vj = Vj−1 ⊕ Wj−1, fJ

has a unique decomposition fJ = fJ−1 + gJ−1 where fJ−1 ∈ VJ−1 and
gJ−1 ∈WJ−1.

By applying this recursively N times we have

fJ = fJ−N + gJ−N + · · ·+ gJ−2 + gJ−1

for fj ∈ Vj and gj ∈Wj . This is called the wavelet decomposition.

13.3 The Wavelet Decomposition 137

Since fJ ∈ VJ , it can be represented as (PJf)(t) =
∑

k cJ,kφJ,k(t)
with cJ,k = 〈fJ , φJ,k〉. But, as we have seen,

〈fJ , φJ〉 = 〈fJ , φJ−1〉+ 〈fJ , ψJ−1〉

where 〈fJ , φJ−1〉 and 〈fJ , ψJ−1〉 are respectively the orthogonal pro-
jections on the spaces Vj−1 and Wj−1.

From the two scale relations we have

cJ−1,k =
∑
n

hn−2kcJ,n = HcJ,n

and
dJ−1,k =

∑
n

gn−2kcJ,n = GcJ,n

where cJ−1,k = 〈f, φJ−1,k〉 and dJ−1,k = 〈f, ψJ−1,k〉
Again, applying the above formulas recursively on the coarse se-

quence of approximation coefficients {cj,k} we get an algorithm to de-
compose the finer approximation coefficients into coarser approxima-
tion and detail coefficients. The algorithm is illustrated in the diagram
below.

{c}j
�H→ {c}j−1

�H→ {c}j−2 · · ·
�G
↘

�G
↘

�G
↘

{d}j {d}j−1 {d}j−2 · · ·

13.3.2 Wavelet Implicit Models

Wavelet-based models of implicit surfaces and solids were proposed in
[Mur93]. Muraki’s model is a direct extension of the orthogonal two-
dimensional wavelet decomposition to three dimensions. Because it
uses a tensor product formulation, the representation is given in terms
of 7 different wavelet functions, which complicates the computations
with the model.

The wavelet representation is very effective in describing the vari-
ations of a function. This makes it attractive from the standpoint of
volumetric processing. The main reason is that the wavelet is designed
to detect changes of the function value at different scales. What it re-
ally encodes is the location and scale of these transitions. Some exam-
ples of applications of wavelets in volume rendering and compression
are [GLDH97], [LG95], [IP98].

138 13. Multiscale Implicit Objects

13.4 The Laplacian Decomposition

From the point of view of geometric modeling, a representation in
terms of the wavelet coefficients is not so desirable. We are looking for
a multiscale representation that is constructive, compact, and express-
ible in terms of a simple function. Intuitively, we want a description of
a function as a summation of “blobs” of different sizes. In that sense,
we want a representation in terms of a scaling function associated with
a wavelet function.

The projection of f onto the spaces Vj gives the multiresolution
analysis of f . Unfortunately, we cannot use this representation directly.
The scaling function coefficients represent approximations of the func-
tion f at each resolution 2j . It is clear that, as a whole, they do not
constitute a linear expansion of f in terms of the scaling function φ.

Instead, we would like to obtain a representation that is a mul-
tiscale decomposition of the function f . Such a representation can
be constructed from the wavelet decomposition. Observe that Vj =
Vj−1 ⊕Wj−1 implies that Wj−1 ⊂ Vj. Therefore, Wj−1 can be repre-
sented in terms of a basis of Vj without any loss of information. All we
need to do is to project the wavelet coefficients in the subspaces Wj−1

back to the subspaces Vj.
This representation is called the Laplacian decomposition’ [Bur83].

It is equivalent to the wavelet decomposition but is given in terms of
the scaling function [VTG94].

13.4.1 The Laplacian Transform

The Laplacian transform exploits the fact that, sinceWj−1 = Vj Vj−1,
the coefficients {ej} of the Laplacian decomposition can be computed
by subtracting the coefficients of the approximations at Vj and Vj−1.
The algorithm is illustrated in the diagram below.

{c}j
�H→ {c}j−1

�H→ {c}j−2 · · ·

−
H
↙ −

H
↙ −

H
↙

{b}j {b}j−1 {b}j−2 · · ·
= = =
{e}j {e}j−1 {e}j−2 · · ·

where it is assumed that we have computed the coefficients
{c}J = 〈f, φ̃J,k〉 of the representation of f in the basis of VJ , such
that f is written as f(x) =

∑
k cJkφJ,k(x).

13.5 The Multiscale Representation 139

13.5 The Multiscale Representation

The results in the previous two sections allow us to create a implicit
multiscale representation of the function f based either on the wavelet
decomposition or on the Laplacian decomposition. Both representa-
tions are adapted to the variations of f at different scales.

The representation contains the coefficients ai of the multiscale
decomposition. The indices γi = (ji, ki) relate these coefficients to ele-
ments ϕγi of the dictionary D. Note that, in the wavelet decomposition,
D = {ψjk}, and while in the Laplacian decomposition D = {φjk}.

In order to produce the representation, we compute the coeffi-
cients ai using the appropriate transform (wavelet or laplacian) and
convert them to a suitable data structure.

13.5.1 Data Structures

We can use three alternative data structures to encode the coefficients
of the multiscale decomposition:

• A list of the coefficients l = {ai, γi}.
The list structure is simply an enumeration of the coefficients of the
multiscale decomposition ai and the indices γi = (si, ui) correspond-
ing to the functions ϕ2j ,k of the dictionary D.

• A pyramid data structure, Aj = (aj,k).
The pyramid structure contains all coefficients associated with the
basis functions ϕ(2j ,k) of the approximating spaces Vj . This is essen-
tially an enumeration of the coefficients corresponding to all elements
in D, such that the functions that are not in γi have a coefficient
aj,k = 0. Such scheme establishes a one-to-one correspondence be-
tween the elements of D and the coefficients of the decomposition,
and eliminates the need for including the indices γi in the represen-
tation.

• A spatial hash table H = {↑ ai, γi}.
The coefficients ai may also be associated with a spatial hash table in
which each cell has pointers to the elements whose support is in the
cell. This cell complex can be formed by any adaptive subdivision of
space, such as an Octree or a BSP tree.

140 13. Multiscale Implicit Objects

The list structure is the most compact, but it requires extra pro-
cessing to find the elements that should be evaluated at a given point.
The pyramid structure has the advantage of simplicity and direct ac-
cess but, since the multiscale decomposition is usually sparse, it has
the disadvantage of using more space than necessary. The hash table
structure offers a good compromise between access time and space.

In practice, the choice of a particular data structure will be dictated
by the characteristics of the implicit function, as well as by the require-
ments of the application. The list structure is the best for models with
a small number of coefficients. The pyramid structure is the best for
models with uniform spatial complexity. The hash table structure is
the best for models with non-uniform spatial complexity.

13.5.2 Conversion of Implicit Objects

To use the multiscale representation we need apply a conversion to
other types of implicit models. In this process the decomposition is
computed from an intermediate volumetric description. The method
takes as input an n-dimensional array of discrete samples and generates
a multiscale implicit representation.

The example shows the use of the method in three dimensions.
The input is a 3D sample array that is converted to the Laplacian
multiscale representation.

Example 13.1. Hypertexture Object
The object is a “noisy sphere”, a procedural implicit shape. It is

defined by functional composition of an object density function with
density modulation functions [PH89]. In this example, the object den-
sity function is of a soft sphere and the modulation function is a ban-
dlimited noise function.

Figure 13.1 shows the volume density array generated by the hy-
pertexture procedure mentioned above. Figure 13.2 shows the points
in the volume corresponding to the boundary and the interior of the
object. Figure 13.3 is a ray-traced image of the noisy sphere. It was
produced by rendering the Laplacian pyramid description of the data
in Figure 13.1. Almost all the information is contained in the bottom
level of the pyramid, indicating that most of variations of the implicit
function are at that scale.

13.5 The Multiscale Representation 141

Fig. 13.1. Slices of the Volume Density Function for the Noisy Sphere

Fig. 13.2. Boundary and Interior Points of the Noisy Sphere

142 13. Multiscale Implicit Objects

Fig. 13.3. Noisy Sphere, Raytraced from its B-spline Pyramid

Unstructured Decompositions

Structured multiscale decompositions have one property that may not
be desirable in some situations. They are not invariant under frac-
tional translations. This means that the representation of two identical
shapes will be different if one is displaced relative to the other by a
non-integer amount.

A possible approach to compute a non-structured multiscale de-
composition that is translation invariant could be to employ a match-
ing pursuit algorithm [MZ93]. This algorithm consists of an iterative
procedure for minimizing the energy of the residual error between the
input function and its linear expansion over a set of elements in the
dictionary. In this case, the model would be formulated in terms of a
dictionary consisting of functions that are the basis of “continuous”
spaces in a dyadic scale sequence.

Unstructured wavelet decomposition have been used by [PZ90] to
construct free-form implicit surfaces. Perlin’s model uses 1-directional
spline wavelet. His method employs an empirical procedure to con-
struct the representation and the model is restricted to a particular
level surface. This model, called surflet, consists of a set of wavelet
functions which act as free-form splines approximating a localized piece
of the surface. The sum of these surflets form the implicit function de-
scribing the whole surface.

Procedural implicit objects and voxel arrays have been successfully
converted to the surflet representation, showing the potential of this
model.

14. Modeling

This chapter is concerned with applications of implicit objects to mod-
eling. We examine the various aspects related to the description and
construction of these objects in a modeling system.

There are two main questions involved in the design of a model-
ing system: representation and specification. The model representation
deals with the problems of how to characterize objects and convert
this characterization into concrete structures. The model specification
deals with the techniques employed to build these structures, as well
as, with the user interface.

Figure 14.1 shows the structure of a modeling system.

User Interface Modeling Techniques

Computation Representation

Conversion

Fig. 14.1. Structure of a Modeling System

144 14. Modeling

14.1 Representation Schemes

A representation scheme translates the abstract model of an object
into a concrete description which allows the analysis of its properties.

Formally, a representation scheme is a relation S : M → R which
maps models into representations. A model is a mathematical charac-
terization of an object and a representation is a symbolic description
of the object.

Let D be the domain of S, i.e., the set of all elements in M for which
there is a corresponding representation in R, and let V be the image
of S, i.e., the set of all elements of R which correspond to some element
of M . Any representation in V is said to be a valid representation.
We point out that, in general D 	= M and V 	= R. That is, some
objects in the space of models M are not representable, and there
are some syntactically correct representations in R that are not valid.
The expression power of a representation scheme S is the size of the
subset D of models that can be represented by S. (See Figure 14.2).

M

D

S R

V

Fig. 14.2. Representation Scheme

14.1.1 Properties of a Repesentation Scheme

A representation scheme has formal and informal properties that
should be taken into account when designing a modeling system [Req80].
The formal properties are uniqueness and completeness.

A representation scheme has the uniqueness property if each ele-
ment in D has only one representation (i.e., S is not a one-to-many
relation). A representation scheme is complete (or unambiguous) if

14.1 Representation Schemes 145

the inverse relation S−1 is not a one-to-many relation, that is, each
valid representation in V represent only one model in the domain D
(we remark that the inverse relation S−1 is very important, because
it defines the correspondence between representations and models and
therefore, it encapsulates the semantics of the representation).

In most applications completeness and uniquenes are desirable
properties of a representation scheme. However, uniqueness is very
difficult, if not impossible, to attain, and therefore, we must still face
the problem of comparison of representations, i.e., decide whether two
given representations in some representation scheme correspond to the
same model.

Other properties of a representation scheme are less formal but also
relevant in modeling applications because they are related computa-
tional issues. Some examples of these properties are: robustness, i.e.,
sensitiveness to numerical errors; conciseness, i.e., size of the represen-
tation; simplicity,i.e., complexity of operations with the representation;
and precision, i.e., whether the representation is exact or approximate.

14.1.2 Algebraic Structure of a Representation

When operations in the model space M have some invariance in rela-
tion to a representation space R, there is a well defined correspondence
between these two spaces. Then, it is possible to create an algebraic
structure for the representation scheme S : M → R.

Let L be an operation in M , s be a representation of a model
m ∈M , and r be a representation of the model L(m) ∈M . The repre-
sentation is invariant under L if there exists a corresponding operation
L∗ in the representation space R, such that L∗ ◦ r = s ◦L. This means
that the diagram below should commute.

M
r � R

M

L

�

s
� R

L∗

�

146 14. Modeling

Such operations L form an algebra that we can incorporate into the
representation scheme.

For example, the universe P of point sets, with the operations of
union ∪, intersection ∩ and complement ¬, define a Boolean alge-
bra (P,∪,∩, \). In the context of implicit models, these operations on
point sets have correspondent operations (i.e., min(a, b), max(a, b) and
neg(a)) on implicit representations F (x). Thus, they lead to a repre-
sentation scheme with an algebraic structure.

Under this scheme, the representation of a model is an expression
of the point set in this algebra. The implementation of such represen-
tation in a modeling system is usually done through a data structure
called parse tree of the expression. It is an ordered binary tree where
the terminal nodes represent primitive point sets and the non-terminal
nodes represent point set operations. Figure 14.3 shows a parse tree
and the corresponding algebraic expression:

� � �
– BLOCK

� �
BLOCK QUADRIC

� �
BLOCK

�

U

U

-

Fig. 14.3. Parse tree and algebraic expression:

14.1 Representation Schemes 147

14.1.3 Universal Representation

A universal representation is a pair (π, R̄), where R̄ is a representation
space and such that for any representation space R, and representation
scheme S : M → R, π : R̄→ R is a surjective map satisfying π◦R = S.
(see Figure 14.4).

R

�
�

�
�

S
�

M
S

� R

π

�

Fig. 14.4. Universal Representation

The representation S̄ is called the universal representation scheme
associated with the representation S. Note that the universal repre-
sentation associated to some representation scheme is not necessarily
unique, and, ideally, it should be possible to define a canonical univer-
sal representation.

Intuitively, the universal representation merges different represen-
tation spaces into the same space S̄ in such a way that any represen-
tation scheme can be associated to a representation scheme on this
space. This merging operation allows us to consider all representation
schemes as being defined in the same representation space, and there-
fore problems that relate two or more representation schemes, such as
representation conversion, can be well posed in this setting.

In the case of implicit objects, both the Medial Axis and the Dis-
tance Transform, discussed in Chapter 5, constitute universal represen-
tations. Moreover, these representation schemes are unique and com-
plete.

148 14. Modeling

14.2 The Implicit Representation

To study the shape and other material properties of physical three-
dimensional objects, we characterize them as point sets in 3-space. In
the context of implicit models, the geometry and topology of these
point sets are defined mathematically by n-dimensional manifolds
given in implicit form by a scalar function F (x), as discussed in Chap-
ter 6. The manifold condition can be relaxed in some cases when ap-
propriate. Nonetheless, manifolds still constitute our fundamental ge-
ometric entity and the implicit form our basic building block.

The implicit representation is a functional constructive representa-
tion scheme, based on primitive point-membership classification func-
tions, binary or n-ary composition functions, and unary modification
functions.

Primitive objects, as defined in Chapter 11 can be analytical, proce-
dural or sample-based. Modification operations, as presented in Chap-
ter 7, can be spatial transforms, such as affine mappings and warpings,
can be modulation functions. Composition operations, as discussed in
Chapter 8 can be boolean set operations or blends.

Additionally, we can include special structures, such as blending
graphs, for certain types of implicit objects like skeletons, discussed in
Chapter 12.

14.2.1 Primitive Implicit Objects

Primitive solid objects are point sets defined as

{(x, y, z) : F (x, y, z) ≤ 0}
The boundary of the primitive is a surface defined by F (x, y, z) = 0 and
the interior of the primitive is the set of points satisfying F (x, y, z) < 0.

A family of objects is described as a generic primitive O(p1, . . . , pn)
that is instantiated to create individual objects. Most primitives are
defined in terms of parameters, (pi), which control their shape and
other properties.

Primitives are often defined in a canonical coordinate system called
local object space.

A characterization of the various families of implicit primitives was
presented in Chapters 11 and 12.

14.2 The Implicit Representation 149

14.2.2 Composite Implicit Objects

Composite objects are generated from primitive objects using either
boolean (see Section 8.2) or blend (see Section 8.3) operations. They
are defined by expressions involving primitives and the CSG operations
of union, intersection and difference.

The standard representation of a composite object is a CSG ex-
pression implemented through an ordered binary tree as we discussed
in the previous section.

14.2.3 Shape Modifiers

Unary operations, in principle, can be applied to any type of implicit
objects (primitive or composite) to modify their properties.

These operations can change the domain or the image of the func-
tion F . Operations that change the domain are geometric transfor-
mations that deform the local ambient space where the object is em-
bedded. Operations that change the image are modulate the value of
the function to alter either boundary level set or the pseudo-metric
induced by the function.

14.2.4 Groups of Objects

Objects can be grouped into different types of structures in order to
make explicit relationships and constraints among them.

The most common grouping method is through a hierarchy which
defines positional and orientation constraints between objects. It sub-
ordinates recursively the local coordinate frames of subgroups to the
coordinate frame of the group. This type of structure is suited to de-
scribe complex objects built from simple parts, as well as, articulated
objects connected by rotational or translational joints.

Arbitrary constraints can be represented by a directed graph. This
structure is maybe too general. Cycles in the graph may cause prob-
lems. A good compromise is a directed acyclic graph (DAG). In a
number of cases, it is possible to break the cycles and convert a gen-
eral directed graph into a DAG. A specific type of constraint is the
blending of primitives that belong to an skeleton. In this case, the
structure is called blending graph.

Note that the group structure associated with unary modification
operations and n-ary composition operations to be incorporated in a
single graph structure that represents the object.

150 14. Modeling

14.3 Auxiliary Representations

Auxiliary representations are used in a modeling system to comple-
ment the main representation. These secondary structures can provide
either an approximate description of the objects or a means to perform
computations more efficiently.

Two natural complementary representations associated with im-
plicit objects are the space subdivision enumeration, discussed in
Chapter 4, and the polygonal approximation discussed in Chapter 10.

14.3.1 Space Subdivision Enumeration

The space subdivision enumeration provides an appropriate structure
to perform local computation with implicit objects. The structure can
be uniform or adaptive. It can be use a single or multiple resolutions.
Common structures are Voxel Arrays, Octrees and BSP trees.

14.3.2 Polygonal Approximation

The polygonization of an implicit object provides an approximate
piecewise parametric representation that can be used for visualization
purposes. Higher order approximations could be explored as a means
to convert from implicit to parametric representation.

14.4 Conversion

Conversion between representations is a desirable capability in a mod-
eling system. It allows to exploit the best characteristics of each rep-
resentation, as well as, to import objects from other systems.

We distinguish between exact and approximate conversions. An ex-
act conversion produces model of the original object, while an approx-
imate conversion produces a model which approximates the original
object.

Exact conversion between representations are usually not practical,
except in some special cases [Mil89].

14.4 Conversion 151

14.4.1 Implicit to Parametric

In general, is not possible to convert exactly an implicit to a parametric
representation. This can be proved for the case of implicit algebraic
surfaces and rational parametric surfaces.

Some types of implicit objects that can be converted exactly to a
parametric form are the conics and quadrics.

However, it should be mentioned that polygonal (or higher order)
approximations constitute a parametric model that approximates the
implicit object.

14.4.2 Parametric to Implicit

Theoretically it is possible to do an exact conversion of an algebraic
parametric representation into an implicit representation. This process
is called implicitization and is based on classical elimination theory. A
rational parametric description can be converted to implicit form using
resultants [MC92] or Groebner bases techniques [SA84],

In practice, this type of conversion is not really used, because it
produces algebraic implicit forms of very high degree for most cases of
interest. For example, consider a rational parametric tensor product
surface given by polynomials in u and v of degree m and n. The corre-
sponding implicit surface is given by a polynomial equation of degree
2mn. Thus, a bilinear patch leads to an implicit surface of degree 2,
a biquadratic patch to an implicit surface of degree 8, and a bicubic
patch to an implicit surface of degree 18.

A method for approximate conversion of parametric to implicit
forms is presented in [VG96], The conversion is performed by first
producing a volumetric representation of the characteristic function of
the solid region enclosed by the parametric surface.

The volumetric representation is produced in two steps:

1. Rasterization the parametric surface.
2. Filling the volume enclosed by the surface.

There are standard algorithms for these two tasks [Kau87], [Pav78].
After the discrete characteristic function has been computed, a

smoothing procedure based on multiscale edge detection is applied
to generate the implicit function. The procedure employs a dyadic
wavelet analysis and allows the control extent of smoothess relative to
the tubular neighorhood of the shape.

152 14. Modeling

14.5 Model Specification

A geometric modeling system must provide the means for creation,
modification, and access to the representations of objects. Objects are
specified through an input description that can be procedural, inter-
active, or a combination of both. Procedural schemes are essentially
programming languages based on modeling commands. Such languages
may include advanced algorithmic structures, such as flow control and
functions. Interactive schemes are graphic programs that present the
user with a set of operations for design and modification of objects.
These two schemes are complementary and can be integrated under a
single user interface, providing a powerful model specification mecha-
nism.

Another important aspect of the model specification problem refers
to paradigms for model construction. The modeling techniques consti-
tute the basic methodology for object creation. Below we discuss some
of these techniques in the context of modeling of implicit objects.

14.5.1 Constructive Techniques

Constructive modeling techniques are used to construct objects by
fitting together basic parts that form a composite structure.

This method is closely related to the CSG scheme [WK85]. Exam-
ples of systems that are based on constructive functional techniques
are the F-Rep system [PS95, PASS95], and the Blob system [WGG99].
They both use a textual language interface, as well as, interactive
graphic model techniques. F-Rep works with R-functions and has its
own language. The Blob system uses the Python extension language.

14.5.2 Free-Form Techniques

Free-form modeling techniques are used to build objects by glueing
pieces and adapting them to fit the desired shape.

This method is normally associated with the parametric form, but
it can applied to the implicit form as well. Implicit objects can be
defined by functions of space in a piecewise manner allowing a large
degree of local control [Las85] [Vel90b].

A very effective way to develop free-form implicit modeling tech-
niques is through a sample-based implicit primitives, where samples
on the surfaces provide a handles to model the shape [TDOY01].

14.5 Model Specification 153

Another method is to specify the implicit object through a parametrized
model, where the parameters control the shape locally and in a differ-
ential manner [WH94].

14.5.3 Physically-Based Techniques

Physically-based techniques can be used in various ways for model-
ing purposes. It has been emploied to reconstruct real objects from
acquired three-dimensional data [SP91]. Many other applications of
physically-based techniques are possible in this context making this a
fruitful area of research.

This page intentionally left blank

15. Visualization

This chapter discusses the visualization of implicit objects. It describes
the various techniques available to render implicit objects.

Visualization plays a fundamental role in most applications. Prac-
tically every system that deals with implicit objects needs to use it.

There are several aspects to consider: different rendering styles,
from simple drawings to photorealistic simulation; different modes of
usage, from interactive display to off-line rendering.

Also, visualization of implicit objects integrates many geometric
representations, such as points, lines, surfaces and volumes.

15.1 Points

The simplest and most efficient visualization technique is to use points.
Implicit objects can be displayed as a cloud of particles distributed over
its surface.

This technique consists of the following steps:

Algorithm 1 : Point Rendering

1. Generate a set of particles in space near the object.

2. Move particles towards the object’s boundary until they reach the surface.

3. Display the particles as a set of points.

The spatial subdivision enumeration associated with the implicit
object can be instrumental in generating particles near the boundary
of the object, and, consequently, supplying good initial values for the
subsequent step. If that is not available, the object’s bounding box
could be employed.

156 15. Visualization

In order to make particles migrate to the boundary of the object a
dynamical particle system can be used, as described in Chapter 9. Par-
ticles move along a modified gradient field associated with the implicit
object to find an equilibrium on its surface.

When particles are projected on a two dimensional screen, the den-
sity of points is usually higher along singularities and silhouette curves,
helping shape perception. Additionally, a depth cueing effect is ob-
tained if closer particles are rendered as brighter points. This con-
tributes to enhance the three dimensionality of the image.

This visualization technique is particularly well suited to interactive
modeling tasks because of its simplicity and efficiency [Blo90]. In this
case, the dynamical particle system may be permanently active so that
when objects are modified the points are automatically updated.

Stochastic point sampling can also be used to produce point ren-
dering [TSYK01].

Figure 15.1 shows an example of visualization using points.

Fig. 15.1. Point display

15.2 Curves

An effective technique to display shape information is using line draw-
ings. If lines are carefully selected, the resulting drawings convey the
main features of the object with few strokes.

15.2 Curves 157

The problem is how to determine which curves can best depict the
important geometric aspects of an object. Two classes of such lines are
silhouette and contour lines.

15.2.1 Silhouette Curves

A silhouette point on a surface M is a point p ∈M such that the line
from the observer’s eye to p is tangent toM . A silhouette curve on M is
a curve constituted by silhouette points. The most common silhouette
curves delimit the boundary between the object and the background.
They are defined as the set curves in which either the dot product
between the surface normal and the vector in the viewing direction is
equal to zero, or the surface normal is discontinuous.

These curves can be computed from a polygonization of the surface
or using ray casting [Rot82], [RO87].

Silhouette curves can be complemented by internal hatching lines [BH98].

15.2.2 Contour Curves

Contour lines are obtained by intersecting the boundary of the object
with a series of planes perpendicular to the line of sight and receding
from the viewpoint. It has been suggested that these lines provide an
exact unambiguous geometric interpretation, and are among the most
useful in determining a shape.

[Blo90] describes a procedure to compute the contour lines corre-
sponding to an implicit surface. Given an implicit object, its associated
spatial decomposition enumeration and a set of parallel planes Li, the
contour curves are computed according to algorithm 2:

Algorithm 2 : Contour Rendering

for (each transverse cell cj that intersects a plane Li) do
Find the intersection points p1 and p2 between the affine approximation of F
on the faces of cj and the plane Li.

Refine the line p1p2, using binary subdivision, according to the local curvature
of the surface.

Line drawing techniques are very attractive for illustration pur-
poses. Figure 15.2 shows a line drawing of an implicit object using
silhouette curves.

158 15. Visualization

Fig. 15.2. Silhouette curve display

15.3 Surfaces

A realistic rendition of an object is achieved through a visualization of
its surface using an illumination model. For this purpose, local or global
shading methods can be applied directly to the implicit description of
the object or to a parametric approximation of it.

15.3.1 Scan Line Methods

[SZ89] developed a visible surface algorithm for implicit algebraic sur-
faces. The basic structure of the method is shown in algorithm 3.

Algorithm 3 : Scan Line Rendering

for (each scan line si of the image) do

Compute the span of visible points by intersecting the surface with a plane
defined by the viewpoint and si.

Interpolate points within the span.

Perform the shading calculations (usually local).

15.3 Surfaces 159

In the case of quadric surfaces, the above equation has a closed
form solution. In the case of more general surfaces, the solution must
be obtained numerically. A similar method is described in [Bli82].

15.3.2 Polygonal Rendering

A piecewise linear approximation of the boundary of the implicit ob-
ject can be used with polygonal rendering algorithms to visualize the
surface of the object. This approach makes possible to incorporate
implicit objects into polygon-based systems. It also allows us to take
advantage of special purpose display hardware available on graphics
workstations.

Figure 15.3 shows the rendition of a polygonal approximation of
the implicit surface using flat shading.

Fig. 15.3. Rendering of a polygonal approximation of the implicit surface

15.3.3 Ray Tracing

Ray tracing is the traditional method to render implicit objects
[Mat68]. The basic ray tracing method is shown in algorithm 4.

A survey of the ray-surface intersection computation methods can
be found in [Han88], [Bar86].

A ray tracing method with anti-aliasing is presented in [Har96].
The method is called sphere tracing.

160 15. Visualization

Algorithm 4 : Ray Tracing Rendering

for (each point [x, y] of the image) do

Compute the closest intersection of a ray from the viewpoint with the surface.

Perform the shading calculations (normally global, using recursive ray tracing).

The space subdivision enumeration associated with the implicit ob-
ject can be used to accelerate ray tracing computations [AK89, Arv90].

Figure 15.4 shows the rendition of an implicit surface using ray
tracing and Phong shading.

Fig. 15.4. Surface display with ray tracing

15.4 Volumes

There are two situations in which the visualization techniques de-
scribed above are not adequate. The first is when the implicit object
becomes so complex that the notion of a surface breaks up. The second
is when it becomes necessary to display some spatial property of the
implicit function F . In both cases, the solution is to use volume visual-
ization techniques. They deal with the problem by rendering volumes

15.4 Volumes 161

as textured density functions. In this way, whenever a surface exhibits
geometric variations bellow a certain level of detail, it is treated as tex-
ture volume representing the collection of surface elements contained
in that region. This also permits to depict continuously varying space
functions.

15.4.1 Slice Rendering

Volume data, sometimes, is difficult to interpret if rendered as a whole.
A simple technique to help inspect the properties of a space function
consists in display its cross sections as planar images. A slicing plane
can be moved through the volume revealing a local view of the volume.

Figure 15.5 shows an example of slice visualization.

Fig. 15.5. Slice Visualization

162 15. Visualization

15.4.2 Volume Rendering

The two main approaches used for volume rendering are: projection
methods and ray casting [WG91].

Projection Methods. In projection methods the volume is decom-
posed into a three dimensional array of voxels. Each voxel is projected
onto the image plane and its contribution to the image is calculated
[DCH88].

Volumetric Ray Casting. In ray casting methods, rays from the
viewpoint through each pixel are cast out into the volume. The contri-
bution to the pixel is calculated integrating the density function along
the ray [Lev90].

Figure 15.6 shows an example of volume the visualization tech-
niques.

Fig. 15.6. Volume visualization

15.6 Texture Mapping 163

15.5 Visualization Modes

There are two basic visualization modes:

• interactive;
• non-interactive;

Interactive visualization requires that rendering is done in real-time
to provide visual feedback to some interactive task. In this case, the
most important aspect is the synchronization between user control and
visual response.

Non-interactive visualization emphasizes high-quality rendering. It
often employs sophisticated lighting models, as well as, antialiasing.

15.5.1 Progressive Refinement

Progressive refinement techniques offer the best compromise between
rendering efficiency and image quality. This visualization strategy con-
sists in starting with a simple, and fast to compute, rendition of the
scene that is gradually improved by adding more features and detail
[BFGS86]. This technique is particularly effective in interactive mod-
eling situations, where idle cpu cycles can be used to refine the image.

15.6 Texture Mapping

Because implicit objects are not defined through a parametrization,
texture mapping is not as straightforward as with surface patches.

One strategy to apply 2D textures onto implicit surfaces focus on
implicit to parametric conversion techniques. Athough there isn’t a
generalized conversion method, it is reasonable to follow this approach,
since applying bidimensional textures onto parametric surfaces is a
”solved problem”. Pedersen [Ped95, Ped96] introduced a method which
estimates geodesics on an implicit surface and performs local parame-
terizations creating patches over it.

At first sight it is unclear how to globally assign texture coordi-
nates to an implicitly defined surface. But, fortunately there are a few
natural solutions for this problem. One is based on solid texture and
the other on projection mappings. A hybrid between these solutions is
particle based texturing.

164 15. Visualization

15.6.1 Solid Texture

This method uses a three dimensional function to define the texture.
For this reason, the generation of texture coordinates is a trivial prob-
lem – usually is the identity map. Most of the effort goes into construct-
ing the texture itself. It can be described by a procedural function or
by a voxel array. Perlin [Per85b] and Peachey [Pea85] introduced the
idea of solid textures. Although limited to materials that have a 3D
structure, this technique is very usefull for texture mapping implicit
surfaces. [WMW87] discuss some of the aspects involved in solid tex-
turing implicit primitives.

Figure 15.7 shows an example of solid texture.

Fig. 15.7. Solid texture

15.6.2 Projection Mapping

This method uses bidimensional textures, normally given as images.
It associates points in texture space with points on a surface in three
space using projection mappings [Bar83]. Intuitively, a projection map-
ping can be understood in the following way: Associate the texture to
a standard surface which has a simple parametrization. Then, project
rays from each point of the surface into a three dimensional space
where the object to be textured is defined. The intersection of these

15.6 Texture Mapping 165

rays with the object gives the texture coordinates. This is how a slide
projector works. Note that all points along a ray have the same tex-
ture coordinate. This approach presents a critical problem: the rays
as a whole may not reach all surface points from the outside, making
impossible the idea of wrapping the surface with the texture map.

The texture mapping function is defined by choosing different stan-
dard surfaces and projection methods. Some simple examples are: the
orthogonal, cylindrical and spherical projections. Figure 15.8 shows an
example of texture mapping using orthogonal projection.

Fig. 15.8. Projection mapping

15.6.3 Particle-Based Texturing

Particle-based texturing allows the application of a 2D texture to im-
plicit surfaces in a natural way [ZGVdF98]. Moreover, it can be applied
equally well to primitive or composite implicit objects with blending
control while maintaining texture consistency [ZGV+98, TW99].

The method establishes a correspondence between points on the
implicit surface and texture attributes with the help of a dynamic
particle system. The implicit surface’s gradient is interpreted as a force
field and used to govern the particle system. Points on the implicit

166 15. Visualization

surface are treated as particles that move in the direction of a support
object where the texture is defined beforehand. The texture attribute
at each point of the surface is associated with the location of the
corresponding particle on the support surface.

Figure 15.9 illustrates the method.

(texture) (particle texturing)

(textured object)

Fig. 15.9. Particle Texture Mapping

s

16. Animation

This chapter investigates some aspects of animating with implicit ob-
jects. We are mainly concerned with how intrinsic characteristics of
these objects can be applied to motion specification problems. For
this purpose, the chapter starts with a short introduction to anima-
tion. Subsequent sections situate implicit objects into this context.

16.1 Animation Concepts

Animation is the study of time-varying phenomena. This discipline
deals with the modeling, specification, control, and simulation of tem-
poral behaviour.

The animation problem, in general, involves a system

D(q1(t), q2(t), . . . , qn(t)) (16.1)

where the parameters qi change with time t ∈ R+.
The system D may be very complex, comprising several objects Oi

interacting in some environment. The system incorporates also a set of
rules, Rj which govern the dynamic interaction between the objects.
The parameters qi are related to dynamic properties of the objects in
the system.

We can classify animation systems based on three criteria: how the
objects Oi are described; what class of rules Rj are used in the system;
and which mechanism is adopted to control the parameters qi.

16.1.1 Geometric Description

One of the main properties of an object is the geometric description
of its shape. For animation, we are interested in the relation between
shape and motion parameters. According to this criterium, we can
distiguish three types of objects.

168 16. Animation

• Particles: are infinitesimal objects associated with a position in
space. Geometrically, a particle is defined as a point p ∈ R

3. The
motion of a particle can be specified by a time-varying translation
vector u(t).

• Rigid Bodies: are solid objects whose shape cannot be deformed.
The geometry of a rigid body is defined as a fixed compact point set
S ⊂ R

3 in space. The motion of a rigid body can be specified by a
time-varying rotation and translation {R(t), u(t)}.

• Deformable Bodies: are objects whose shape changes over time.
The geometry of a deformable body is more complex to define since
deformation parameters have to be incorporated into de model.
Nonetheless, it is possible to decompose the animation of a de-
formable body into a rigid motion {R(t), u(t)} that changes only its
local coordinate system and a warping W (p, t) that acts on points
p ∈ O of the object.

16.1.2 Animation Rules

Animation rules determine how the interaction between the objects
and the environment is simulated in the system. They are related to the
nature of the control parameters. There are three types of simulation
levels:

• Kinematic: this type of simulation controls directly the change of
the parameters by specification of velocities.

• Dynamic: this type of simulation controls the rate of change of the
parameters, by the specification of accelerations and torques.

• Behavioral: this type of simulation controls higher level parameters
that cause self-motivated autonomous motion. These controls can be
specified in the form of tasks or goals.

Note that these three types of simulation form a hierarchy of control
levels.

16.1 Animation Concepts 169

16.1.3 Object Properties

A dynamic system models the effects of time change by applying the
animation rules to the objects in the environment. Depending on the
object description and type of simulation level, different properties of
the objects are considered, as shown in the table below.

kinematic dynamic behavioral
particles position mass relation
rigid bodies position, mass pose

orientation inertia
deformable bodies position, mass emotion

orientation, inertia
displacement plasticity

16.1.4 Composite Objects

Complex objects can be built from simpler shapes that are associated
with each other by a structural relations. Composite objects are classi-
fied according to the nature of relationship and geometric description.

• Particle System: consists of a finite set of particles whose be-
haviour is governed by a function of time. In a physical particle
system, the particles have masses and the Newtonian mechanics dic-
tates their dynamical behaviour. The motion of a particle depends
on its mass, position, velocity, and also on the forces acting on it,
either by other particles or by the ambient medium.

• Articulated Structure: consists of a set of rigid body parts linked
together by mechanical joints that restrict the motion of one part
relative to the other.

• Spring-Mass Model: consists of a physical system of particles that
are connected in pairs with springs. These springs impose internal
forces that depend on the distance between the pair of particles, and
drive the global behaviour of the system. The resulting structure
can be represented as a graph where each particle is a node and two
nodes are connected when there is a spring joining the corresponding
particles. This type of model offer an alternative for the description
of deformable shapes [TPF89b], [DG95, DCG98].

170 16. Animation

16.1.5 Constraints and Interference

Constraints can be used to restrict the motion of a shape relative to the
others in the environment or in a composite object. In that way, they
define degrees of freedom that constitute new animation parameters.

There are two categories of constraints:

• Kinematic Constraints: which impose some geometric relation-
ship between the local coordinate systems of different objects. Usu-
ally these are hard constraints defined by a parametrized rigid mo-
tion.

• Dynamic Constraints, which impose forces that act objects on
the environment. Usually these are soft constraints.

An additional problem in animation is the treatment of interference
among objetcs in the environment. This leads to collision detection and
the computation of reaction forces.

16.1.6 Control Modes and Simulation

The control mode determines how the animation parameters are spec-
ified and also how the system computes the animation. There are two
basic control modes:

• Indirect Control: in this mode, the simulation formulated as an
initial value problem. The initial state of the system (e.g. the value
pi(t0) of the parameters at t = 0) is specified and the temporal evolu-
tion of the system is calculated to the subsequent times t = t1, . . . tn.
The animation system employs a forward simulation, which can be
kinematic or dynamic. It is also possible to have some parameters
that are used to control the system as the simulation progresses.

• Direct Control: in this mode, the simulation is formulated as a
boundary value problem. The configuration of the system is speci-
fied at some time instants, and the proper change of the parameters
must be calculated for the in-between times, such that the tempo-
ral evolution reaches the desired configurations at the right times.
The animation system employs a inverse simulation, which can be
kinematic or dynamic.

16.3 Dynamic Simulation 171

16.2 Animated Implicit Skeletons

Skeleton based implicit primitives provide a natural way to control an-
imation. They are particularly suited to the description of amorphous
time-varying shapes, such as liquids, as well as, moving articulated
objects, such as 3D cartoon characters and human models.

16.2.1 Particle Systems

Point-skeleton primitives can be used to represent objects constituted
by particle aggregates. The model parameters determine how particles
blend together, allowing the description of different types of material.
Animation is generated by simply updating the parameters of all par-
ticles at each time step. The motion of particles may be controlled in
a variety of ways to achieve the desired effect. Animation techniques
include: spline interpolation, particle systems and dynamic simulation
[WMW86a] [TPF89a].

16.2.2 Articulated Objects

Articulated objects can be modeled as a hierarchy of skeleton primi-
tives. The implicit representation unifies the motion control and shape
description of this kind of objects. The global blend capability ensures
that a smooth continuous surface covers the whole object. Additional
control over the blending of primitives is provided by organizing them
into groups. Each group is designated a list of which other groups to
blend with. Animation is generated by controlling the parameters of
the skeleton structure at each joint. Then, local transformations are
determined and applied to primitives.

16.3 Dynamic Simulation

In spite of the large body of work in the area of physically based
animation, very few attempts have been made to apply dynamic simu-
lation techniques to implicit objects. In [PW89] modal analysis is used
to compute the dynamics of objects, generating polynomial deforma-
tion mappings that are coupled to volumetric models. In [VdMG91a]
spring-mass models are used to determine piecewise deformation map-
pings that are applied to implicit objects.

172 16. Animation

Collision detection and avoidance is an important component of
dynamic simulation. This problem can be posed as one of intersection
determination in four dimensional space. This will be discussed in more
detail in Chapter 17.

A different approach to collision detection and modeling of contact
surfaces is proposed in [CG98], [CGD97]. The implicit model is used
in an integrated way for the computation of collision, contact and
reaction forces.

16.4 Metamorphosis

Metamorphosis is the transformation of one shape into another. Since
this transformation is time-varying it can be posed as animation prob-
lem. This is a hard problem mainly due to the difficulty of finding
correspondences between local features in both shapes. Not to men-
tion the aspect of controlling the transition between them.

The implicit formulation is specially adequate for animating meta-
morphosis because objects are defined by a global function of space,
which provides a straightforward mechanism correlation and interpo-
lation.

16.4.1 Correspondence

When objects are composed of more than one element, a correspon-
dence between shape elements must be found before the interpolation
is applied. Depending on the type of the objects involved, different set
of criteria should be used to associate pairs of elements. A general rule
is based on the spatial location of the elements in each configuration.
In the case of articulated objects, the topology of their hierarchical
structures provide a good starting point. [Wyv90] gives a number of
heuristics for correspondence determination.

16.4.2 Interpolation

The metamorphosis of an implicit object can be animated by inter-
polating between its initial and final shapes. These two shapes are
blended together and mixed in different proportions. The transforma-
tion is accomplished by decreasing the contribution of the first shape
while increasing the contribution of the second.

16.4 Metamorphosis 173

Since the implicit form is closed under functional composition the
characteristic functions of various shapes can be combined very easily.

Figure 16.1 shows the metamorphosis of one implicit object into
another using interpolation techniques.

Fig. 16.1. Metamorphosis using interpolation

Some examples of the research in this area are [TO99], [LGL95],
[Hug92], [BW01a].

This page intentionally left blank

17. n-dimensional Implicit Problems

An implicit equation is defined by F = 0, where F is a function. The
importance of implicit equations for geometric problems, and in par-
ticular for geometric modeling, is that it is a very natural and simple
mathematical model to express geometric constraints. Geometric con-
straints are used to describe point sets, i.e. geometric objects. Some-
times we are interested in the objects by themselves and sometimes
we use them as an aid to solve some geometric problem.

As an example the constraint that a point P = (x, y) should be a a
fixed distance R from the origin is expressed by the implicit equation

x2 + y2 = R2.

We might be interested in the circular shape, or we just need that
some point stay in a circular trajectory.

A problem that can be stated using an implicit equation F = 0
is called an implicit problem. The implicit problem is n-dimensional if
the function F is defined in R

n.
In order to solve an implicit problem, we need methods and algo-

rithms to deal with implicit equations F = 0. A substantial effort has
been done by the Purdue group in order to obtain robust solutions for
implicit problems. The expression “dimensionality paradigm” has been
coined in order to describe the techniques and algorithms developed
to get robust solutions to implicit problems.

17.1 Example of Implicit Problems

In this section we will describe some examples of implicit problems
that arise in different applications.

17.1.1 Offset surfaces

Given a surface f = 0, its r-offset consists of the points

176 17. n-dimensional Implicit Problems

Off(f, r) = {p : df (p) = r},

where df (p) is the Euclidean distance of the point p from the surface
f = 0.

17.1.2 Voronoi Surfaces

Given two surfaces f = 0 and g = 0, the Voronoi surface of f and g is
the set of all points in the space that have equal distance from either
surface. Formally the Voronoi surface is defined by

Vor(f, g) = {p : df (p) = dg(P)}.

Voronoi surfaces are closey connected with the computation of the
Medial Axis Transform associated to a givem model.

17.1.3 Variable Radius Blend

Given two surfaces f = 0 and g = 0, a blending surface is a surface F
that intersects both f and g tangentially along some curves. In [Hof90]
it is shown how the problem of surface blending can be reduced to an
implicit problem, using Voronoi surfaces.

17.1.4 Shadow Computation

The shadow silhouette produced by a point light source l and cast by
one sphere s1 of radius r1 onto another sphere s2 of radius r2, can be
expressed as a level set of the function F : R

6 → R
5 [DLTW90]. The

components of F = [f1, f2, f3, f4, f5] are:

f1(p1,p2) = (x1 − cx1)2 + (y1 − cy1)2 + (z1 − cz1)2

f2(p1,p2) = (x2 − cx2)2 + (y2 − cy2)2 + (z2 − cz2)2

where fi is the square distance from the point pi = [xi, yi, zi] to the
center ci = [cxi, cyi, czi] of the sphere si;

f3(p1,p2) = (x1 − cx1)(x1 − lx) + (y1 − cy1)(y1 − ly) + (z1 − cz1)(z1 − lx)
where f3 is equal 0 only if the vector from p1 to c1 is perpendicular
to the vector from p1 to the light source l = [lx, ly, lz], and

f4(p1,p2) = (x1 − lx)(y2 − ly)− (x2 − lx)(y1 − ly)
f5(p1,p2) = (x1 − lx)(z2 − lz)− (x2 − lx)(z1 − lz)

17.1 Example of Implicit Problems 177

where f4 and f5 are equal 0 only if p1 and p2 are collinear with the
light source.

The level set of F (p1,p2) = [r21 , r
2
2, 0, 0, 0] gives all pairs of points

such that the first is on s1 and the second corresponds to its shadow
on s2. The shadow silhouette is the p2-component of this level set.

17.1.5 Collision Detection

Collision detection can be formulated as an intersection problem in
four dimensions. The analysis of interference between moving objects
is based on the three-dimensional volumes swept through time along
their paths of motion [MS90], [Cam90]. The set of all points in the
trajectory of an object can be formulated implicitly as follows.

By allowing a surface F (x, y, z) = 0 to move, a family of surfaces
F (x, y, z, t) = 0 is generated. The envelope of F (x, y, z, t) = 0 encloses
all the members of this family. An envelope surface is a surface which
is tangential to all members of a family of surfaces. This means that, at
time t, the corresponding member of the family will touch the envelope
surface in some curve.

This hypersurface in four dimensions can projected back into three
dimensions maintaining its implicit form. Consider two members of
this family at times t and t+∆t. The first has equation F (x, y, z, t) = 0,
while the second F (x, y, z,∆t) = 0. In order to meet both surfaces, the
envelope must satisfy both equations. Expanding the latter in terms
of ∆t and letting ∆t→ 0, we get

∂F (x, y, z, t)
∂t

= 0

The implicit equation of the envelope surface in three dimensions is
obtained by eliminating t from the these two equations.

If F is algebraic we can use symbolic methods to get the equation
above.

The path of a point p belonging to the impict object can be tested
for collisions by expressing the sweep volume as

F (x, y, z, t) = R(t)F (x, y, z) + T (t)

where R is a rotation and T is a translation.

178 17. n-dimensional Implicit Problems

17.2 Dimensionality Paradigm

When we pose no dimension restrictions on the formulation of a ge-
ometric problem we get easier ways to rewrite geometric constraints.
We have seen in chapter 3.4 that every parametric surface in R

3 can
be easily defined implicitly as a surface embedded in R

5.
The expression in the title of this section was coined by Chris Hoff-

mann in order to describe a systematic approach to solve geometric
problems with constraints by embedding the problem in some higher-
dimensional space, that is, formulate and equivalent problem in higher-
dimensional space, using more variables and more equations.

When restating the problem in higher dimensions we get a new
problem with more variables and more equations, but the equations
are simpler. In order to put the dimensionality paradigm to work, we
need to devise algorithms for implicit surface interrogations in higher
dimensions.

The Purdue group has obtained several algorithms that solve some
interrogation problems that are very important in the solution of n-
dimensional implicit problems. Among these algorithms we could men-
tion:

• Evaluate the intersection of two implicit surfaces in higher-dimensional
spaces;

• Evaluate the curvature of an implicit surface at a given point;
• Obtain global approximations to an implicit surface in higher di-

mensions;

The reader should consult [HV89] and [Hof90] for more details and
references.

18. Conclusions

This chapter summarizes the main characteristics of implicit objects
and gives some pointers to future research in the area.

18.1 Review

The intrinsic properties of the implicit formulation make it the best
model to describe the spatial attributes of objects.

The characteristic function F associated with an implicitly defined
object divides space into regions — inside, boundary and outside —
representing uniformly both surfaces and solids.

Because the implicit form is defined in terms of a function of space,
it can take into account very naturally different levels of detail. This
makes possible to establish a connection between abstract geometric
descriptions and the physical world, which is an essential requirement
in some applications.

The implicit representation has the potential to unify the methods
for describing the various classes of real physical objects. The interpre-
tation of the function F as a measure of spatial density gives a definite
meaning to models of solids, liquids and gases [Koe89].

Implicit objects constitute the ideal choice for CAD/CAM appli-
cations. They fulfill the basic (and apparently incompatible) demands
imposed by the three main phases of the industrial production pro-
cess: design, engineering and manufacturing. At the initial stages of
the design, while concepts are still unclear, there is a need for fuzzy
sketches. During product development, a precise geometric description
is necessary. For production, machine controls must be derived from
shape information. Finally, quality control requires that measurements
of the real object to be compared with the abstract model. Implicit
models provide nice primitives which can be roughed out and refined

180 18. Conclusions

incrementally using the same coherent representation. The blend ca-
pability of implicit objects plays an important role in this type of
application, serving both as an aesthetic feature and as an engineer-
ing solution. The distance function intrinsic to implicit objects is well
suited to generate offset surfaces, as well as cutting paths sequences for
NC machining 1. Scattered data acquired from the production line can
be used to generate an implicit model reconstructing the real object.
This makes possible a direct comparison between the final product and
its specification.

The implicit form is the appropriate mathematical model for de-
scribing volumetric data. This puts implicit objects in a special po-
sition, serving as a common thread between computer graphics and
many scientific fields. In fact, most of the recent development in mod-
eling with implicit objects is due to scientific visualization applications.

Many complex problems in computer graphics can be formulated
implicitly in higher dimensional spaces. Again, implicit objects fit well
into this approach, in the sense that they arise naturally as the re-
quired solutions, as well as, in the sense that these methods can be
incorporated directly into implicit based systems.

18.2 Research Topics

Some topics for future research in the area of implicitly defined objects
for computer graphics include:

The study of local and global transformations as a deformation
technique for implicit objects.

The development of physically based methods compatible with im-
plicitly defined objects.

The analysis of requirements for a testbed modeling and animation
system based on implicit objects that can be used as an environment
to implement and test new concepts in the area.

A theoretical investigation of general models for implicit objects,
and the role of normal forms in this context.

The applications of implicit models in reconstruction problems, par-
ticularly in surface reconstruction from scattered data.

The implications of implicit models for tolerance theory.
1 numerical controlled machines

dFdMGTV92

[AE98] Ulrike Axen and Herbert Edelsbrunner. Auditory morse analysis of trian-
gulated manifolds. Mathematical Visualization, pages 223–236, 1998. Held in
Heidelberg.

[AG87] E. L. Allgower and S. Gnutzmann. An algorithm for piecewise linear ap-
proximation of implicitly defined two-dimensional surfaces. SIAM Journal of
Numerical Analysis, 24(2):2452–2469, April 1987.

[AG90] E. L. Allgower and K. Georg. Introduction to Numerical Continuation
Methods. Springer-Verlag, Berlin, Heildelberg, 1990.

[AG91] E. L. Allgower and K. Georg. Simplicial pivotiong for mesh generation of
implicitly defined surfaces. Comp. Aid. Geom. Des., 1991.

[AG01] Samir Akkouche and Eric Galin. Adaptive implicit surface polygonization
using marching triangles. Computer Graphics Forum, 20(2):67–80, 2001. ISSN
1067-7055.

[AK89] James Arvo and David Kirk. A survey of ray tracing acceleration tech-
niques, 1989.

[Alf89] P. Alfeld. Scattered data interpolation in three or more variables. Mathe-
matical Methods in Computer Aided Geometric Design, pages 1–34, 1989.

[Arv90] James Arvo. Ray tracing with meta-hierarchies, August 1990.
[AS85] E. L. Allgower and P. H. Schmidt. An algorithm for piecewise linear approx-

imation of an implicitly defined manifold. SIAM Journal of Numerical Analysis,
22:322–346, 1985.

[Bar81] A. Barr. Superquadrics and angle-preserving transformations. IEEE Com-
puter Graphics and Applications, 1(1):11–23, 1081.

[Bar83] A. Barr. Decals. ACM Siggraph Course Notes, 1983. State-of-the-Art in
Image Synthesis.

[Bar84] A. Barr. Global and local deformations of solid primitives. Computer
Graphics, 17(3):21–30, 1984.

[Bar86] A. Barr. Ray tracing deformed surfaces. Computer Graphics, 20(4):287–
296, 1986.

[Bar01] Moacyr Alvim Horta Barbosa. Medial Axis Reprsentations. PhD thesis,
IMPA, 2001. (in preparation).

[BBB+97] Chandrajit Bajaj, Jim Blinn, Jules Bloomenthal, Marie-Paule Cani-
Gascuel, Alyn Rockwood, Brian Wyvill, , and Geoff Wyvil. Introduction to
Implicit Surfaces. Morgan-Kaufmann, 1997.

[BCX94] Chandrajit L. Bajaj, Jindon Chen, and Goulaing Xu. Free form surface
design with a-patches. Graphics Interface ’94, pages 174–181, May 1994. Held
in Banff, Alberta, Canada.

[BCX95a] Chandrajit L. Bajaj, Jindon Chen, and Guoliang Xu. Modeling with
cubic a-patches. ACM Transactions on Graphics, 14(2):103–133, April 1995.
ISSN 0730-0301.

182 dFdMGTV92

[BCX95b] Chandrit Bajaj, J. Chen, and G. Xu. Interactive shape control and rapid
display of a-patches. Implicit Surfaces ’95, April 1995.

[BdF90] E. Bruzzone and L. de Floriani. Two data structures for building tetra-
hedralizations. The Visual Computer, 6:266–283, 1990.

[Bei90] T. Beier. Practical uses for implicit surfaces in animation. ACM Siggraph
Course Notes, 1990. Modeling and Animating with Implicit Surfaces.

[BFGS86] L. Bergman, H. Fuchs, F. Grant, and S. Spach. Image rendering by
adaptive refinement. Computer Graphics, 20(4):28–38, 1986.

[BH97] Brandon Burch and John Hart. Linear fractal shape interpolation. Graphics
Interface ’97, pages 155–162, May 1997. ISBN 0-9695338-6-1 ISSN 0713-5424.

[BH98] David Bremer and John F. Hughes. Rapid approximate silhouette rendering
of implicit surfaces, June 1998.

[BI89] C. L. Bajaj and I. Ihm. Hermite interpolation of rational space curves using
real algebraic surfaces. In Proceedings of 5th Annual Symposium on Computa-
tional Geometry, pages 94–103, 1989.

[BI92] C. L. Bajaj and I. Insung. Smoothing polyhedra using implicit algebraic
splines. Computer Graphics, 26(2):79–88, 1992.

[Bin57] R. H. Bing. Approximating surfaces with polyhedral ones. Ann. of Math.,
1(65):456–483, 1957.

[Bli82] J. F. Blinn. A generalization of algebraic surface drawing. ACM Transac-
tions on Graphics, 1(3):235–256, 1982.

[Bli84] J. F. Blinn. The algebraic properties of homogeneous second order surfaces,
1984.

[Blo88] J. Bloomenthal. Polygonization of implicit surfaces. Comp. Aid. Geom.
Des., 5(4):341–355, 1988.

[Blo90] J. Bloomenthal. Techniques for implicit modeling. ACM Siggraph Course
Notes, 1990. Modeling and Animating with Implicit Surfaces.

[Blo97] Jules Bloomenthal. Bulge elimination in convolution surfaces. Computer
Graphics Forum, 16(1):31–41, 1997. ISSN 0167-7055.

[Blu67] H. Blum. A transformation for extracting new descriptors of shape. In
W. Whaten-Dunn, editor, Models for the Perception of Speech and Visual Form,
pages 362–380. MIT Press, Cambridge, MA, 1967.

[BS91] J. Bloomenthal and K. Shoemake. Convolution surfaces. Computer Graph-
ics, 25(4):251–255, 1991.

[BS95] Carole Blanc and Christophe Schlick. Extended fiels functions for soft ob-
jects. In Implicit Surfaces’95, pages 21–32, Grenoble, France, April 1995. is95.

[Bur83] Peter J. Burt. The Laplacian pyramid as a compact image code. IEEE
Transactions on Communications, 31:532–540, April 1983.

[BW01a] David E. Breen and R. T. Whitaker. A level-set approach for the meta-
morphosis of solid models. IEEE Transactions on Visualization and Computer
Graphics, 7(2):173–192, April - June 2001. ISSN 1077-2626.

[BW01b] Ken Brodlie and Jason Wood. Recent advances in volume visualization.
Computer Graphics Forum, 20(2):125–148, 2001. ISSN 1067-7055.

[Cai34] S. S. Cairns. On the triangulation of regular loci. Annals of Math., 35:579–
587, 1934.

[Cam90] S. A. Cameron. Collision detection by four-dimensional intersection test-
ing. IEEE Trans. Robotics and Automation, 6(3):291–302, 1990.

[CBC+01] Jonathan C. Carr, Richard K. Beatson, Jon B. Cherrie, Tim J. Mitchell,
W. Richard Fright, Bruce C. McCallum, and Tim R. Evans. Reconstruction
and representation of 3d objects with radial basis functions. Proceedings of
SIGGRAPH 2001, pages 67–76, August 2001. ISBN 1-58113-292-1.

[CFT88] A. Castelo, S. R. Freitas, and G. Tavares. Simplicial approximation of
implicitly defined manifolds, 1988. (unpublished manuscript).

dFdMGTV92 183

[CG98] Marie-Paule Cani-Gascuel. Layered deformable models with implicit sur-
faces. Graphics Interface ’98, pages 201–208, June 1998. ISBN 0-9695338-6-1.

[CGD97] Marie-Paule Cani-Gascuel and Mathieu Desbrun. Animation of de-
formable models using implicit surfaces. IEEE Transactions on Visualization
and Computer Graphics, 3(1):39–50, January - March 1997. ISSN 1077-2626.

[CGMS00] P. Cignoni, F. Ganovelli, C. Montani, and R. Scopigno. Reconstruction
of topologically correct and adaptive trilinear isosurfaces, 2000.

[CGV92] P. C. Carvalho, J. M. Gomes, and L. Velho. Space decompositions: Theory
and practice. IMPA (preprint), 1992.

[CH89] J. H. Chuang and C. M. Hoffman. On local implicit approximation and its
applications. ACM Transactions on Graphics, 8(4):298–324, 1989.

[CHF98] Wayne O. Cochran, John C. Hart, and Patrick J. Flynn. On approximat-
ing rough curves with fractal functions. Graphics Interface ’98, pages 65–72,
June 1998. ISBN 0-9695338-6-1.

[Chu90] J. H. Chuang. Surface Approximations in Geometric Modeling. PhD thesis,
Purdue University, 1990.

[CLH01] Wayne O. Cochran, Robert R. Lewis, and John C. Hart. The normal of
a fractal surface. The Visual Computer, 17(4):209–218, 2001. ISSN 0178-2789.

[Cox63] H. Coxeter. Regular Polytopes. Macmillan, New York, 1963.
[CS96] F. Chen. and D. Suter. Multiple order laplacian spline - including splines

with tension. Technical report, Monash University - MECSE 1996-5, 1996.
[Dah89] W. Dahmen. Smooth piecewise quadric surfaces. Mathematical Methods

in Computer Aided Geometric Design, pages 181–194, 1989.
[Dau92] I. Daubechies. Ten Lectures on Wavelets. Number 61 in CBMS-NSF Series

in Applied Mathematics. SIAM Publications, Philadelphia, 1992.
[dC74] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-

Hall, 1974.
[DCG98] Mathieu Desbrun and Marie-Paule Cani-Gascuel. Active implicit surface

for animation. Graphics Interface ’98, pages 143–150, June 1998. ISBN 0-
9695338-6-1.

[DCH88] R. A. Debrin, L. Carpenter, and P. Hanrahan. Volume rendering. Com-
puter Graphics, 22(4):65–74, 1988.

[dF92] L. H. de Figueiredo. Computational Morphology of Implicit Curves. PhD
thesis, IMPA - Instituto de Matematica Pura e Aplicada, 1992.

[dFdMGTV92] L. H. de Figueiredo, J. de M. Gomes, D. Terzopoulos, and L. Velho.
Physically-based methods for polygonization of implicit surfaces. In Proceedings
of Graphics Interface 92, 1992.

[DG95] Mathieu Desbrun and Marie-Paule Gascuel. Animating soft substances
with implicit surfaces. Proceedings of SIGGRAPH 95, pages 287–290, August
1995. ISBN 0-201-84776-0. Held in Los Angeles, California.

[DLTW90] D. Dobkin, S. Levy, W. Thurston, and A. Wilks. Countour tracing by
piecewise linear approximations. ACM Transactions on Graphics, 9(4):389–423,
1990.

[Duf92] T. Duff. Interval arithmetic and recursive subdivision for implicit functions
and constructive solid geometry. Computer Graphics, 26(2):131–138, 1992.

[FPRJ00] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R.
Jones. Adaptively sampled distance fields: A general representation of shape
for computer graphics. Proceedings of SIGGRAPH 2000, pages 249–254, July
2000. ISBN 1-58113-208-5.

[Gas93] Marie-Paule Gascuel. An implicit formulation for precise contact modelling
between flexible solids. Computer Graphics, 27:313–320, 1993.

184 dFdMGTV92

[GLDH97] M. H. Gross, L. Lippert, R. Dittrich, and S. Häring. Two methods for
wavelet-based volume rendering. Computers & Graphics, 21(2):237–252, March
1997. ISSN 0097-8493.

[Guo91a] Baining Guo. Shape control in implicit modeling. Graphics Interface ’91,
pages 230–235, June 1991.

[Guo91b] Baining Guo. Surface generation using implicit cubics. Scientific Visu-
alization of Physical Phenomena (Proceedings of CG International ’91), pages
485–503, 1991.

[GV98] Jonas Gomes and Luiz Velho. From Fourier Analysis to Wavelets. SIG-
GRAPH’98 Course Notes, SIGGRAPH-ACM publication, Orlando, Florida,
july 1998.

[Han88] P. Hanrahan. Survey of ray-object intersections. In A. Glassner, editor,
Introduction to Ray Tracing. Academic Press, 1988.

[Har89] John C. Hart. Image space algorithms for visualizing quaternion julia sets,
1989.

[Har92] John C. Hart. The object instancing paradigm for linear fractal modeling.
Graphics Interface ’92, pages 224–231, May 1992.

[Har96] John C. Hart. Sphere tracing: a geometric method for the antialiased ray
tracing of implicit surfaces. The Visual Computer, 12(9):527–545, 1996. ISSN
0178-2789.

[Har98] Erich Hartmann. A marching method for the triangulation of surfaces.
The Visual Computer, 14(3):95–108, 1998. ISSN 0178-2789.

[HD91] John C. Hart and Thomas A. DeFanti. Efficient anti-aliased rendering of 3d
linear fractals. Computer Graphics (Proceedings of SIGGRAPH 91), 25(4):91–
100, July 1991. ISBN 0-201-56291-X. Held in Las Vegas, Nevada.

[Hen93] Michael Henderson. Computing implicitly defined surfaces: two paramater
continuation. Technical report, IBM - Research Division, 1993.

[HH95] Daryl H. Hepting and John C. Hart. The escape buffer: Efficient compu-
tation of escape time for linear fractals. Graphics Interface ’95, pages 204–214,
May 1995. ISBN 0-9695338-4-5.

[HJ99] K. C. Hui and Z. H. Jiang. Tetrahedra based adaptive polygonization of
implicit surface patches. Computer Graphics Forum, 18(1):57–68, March 1999.
ISSN 1067-7055.

[Hof89] C. M. Hoffmann. Solid and Geometric Modeling: An introduction. Morgan
Kauffmann, 1989.

[Hof90] C. M. Hoffmann. A dimensionality paradigm for surface interrogations.
Computer Aided Geometric Design, 7:517–532, 1990.

[Hof91] C. M. Hoffmann. Skeletons, cyclographic maps, and shock waves.
manuscript, 1991.

[Hof92] C. M. Hoffmann. Computer vision, descriptive geometry, and classical
mechanics. In B. Falcidieno and I. rman, editors, Proc. Eurographics Workshop
on Computer Graphics and Mathematics, Eurographics Series, pages 229–244.
Springer Verlag, 1992.

[Hug92] John F. Hughes. Scheduled fourier volume morphing. Computer Graphics
(Proceedings of SIGGRAPH 92), 26(2):43–46, July 1992. ISBN 0-201-51585-7.
Held in Chicago, Illinois.

[HV89] C. M. Hoffmann and George Vanecek. Fundamental techniques for geo-
metric and solid modeling. Technical report, Purdue University, 1989.

[HW90] M. Hall and J. Warren. Adaptive polygonization of implicitly defined
surfaces. IEEE Computer Graphics and Applications, 10(6):33–43, 1990.

[IP98] Insung Ihm and Sanghun Park. Wavelet-based 3d compression scheme for
very large volume data. Graphics Interface ’98, pages 107–116, June 1998. ISBN
0-9695338-6-1.

dFdMGTV92 185

[IPZ79] S. Incerti, V. Parisi, and F. Zirilli. A new method for solving nonlinear
simultaneous equations. SIAM Journal on Numerical Analysis, 16:779–789,
1979.

[Joh83] F. E. A. Johnson. On the triangulation of stratified sets and singular
varieties. Transactions of the American Mathematical Society, 275(1), 1983.

[Kau87] Arie Kaufman. Efficient algorithms for 3d scan-conversion of parametric
curves, surfaces, and volumes. Computer Graphics (SIGGRAPH ’87 Proceed-
ings), 21(4):171–179, July 1987.

[KBSS01] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Sei-
del. Feature-sensitive surface extraction from volume data. Proceedings of SIG-
GRAPH 2001, pages 57–66, August 2001. ISBN 1-58113-292-1.

[Kle89] J. Kleck. Modeling using implicit surfaces. Master’s thesis, University of
California at Santa Cruz, 1989.

[Koe89] K. Koendrick. Solid Shape. MIT Press, 1989.
[KS01] T. Karkanis and A. J. Stewart. Curvature-dependent triangulation of im-

plicit surfaces. IEEE Computer Graphics & Applications, 21(2):60–69, March
/ April 2001. ISSN 0272-1716.

[Las85] D. Lasser. Bernstein-Bezier representation of volumes. Comp. Aid. Geom.
Des., 2:145–149, 1985.

[LC87] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. Computer Graphics, 21(4):163–169, 1987.

[Lev90] M. Levoy. Efficient ray tracing of volume rendering. ACM Transactions
on Graphics, 9(3):245–261, 1990.

[LG95] L. Lippert and M. H. Gross. Fast wavelet based volume rendering by accu-
mulation of transparent texture maps. Computer Graphics Forum, 14(3):431–
444, August 1995. ISSN 1067-7055.

[LGL95] Apostolos Lerios, Chase D. Garfinkle, and Marc Levoy. Feature-based
volume metamorphosis. Computer Graphics, 29(Annual Conference Series):449–
456, 1995.

[Mar82] D. Marr. Vision. Freemann, 1982.
[MAS91] 0. Monga, N. Ayache, and P. Sander. From voxel to curvature. In Proc.

IEEE Computer Vision and Pattern Recognition, 1991.
[Mat68] Mathematical Applications Group Inc. 3D simulated graphics offered by

service bureau. Datamation, 13(1):69, 1968.
[MC92] D. Manocha and J. F. Canny. Algorithm for implicitizing rational para-

metric surfaces. Computer Aided Geometric Design, 9(1):25–51, 1992.
[Mil65] J. Milnor. Topology from the Differentiable Viewpoint. The University Press

of Virginia, 1965.
[Mil89] J. R. Miller. Architecture issues in solid modelers. IEEE Computer Graph-

ics and Applications, 9(5):72–87, 1989.
[Moo79] R. Moore. Methods and Applications of Interval Analysis. SIAM - Society

for Industrial and Applied Mathematics, 1979.
[MS90] R. R. Martin and P. C. Stephenson. Sweeping of three dimensional objects.

Computer Aided Design, 22(4):223–234, 1990.
[MS98] Jon McCormack and Andrei Sherstyuk. Creating and rendering convolution

surfaces. Computer Graphics Forum, 17(2):113–120, 1998. ISSN 1067-7055.
[MSS94] C. Montani, R. Scateni, and R. Scopigno. A modified look-up table for

implicit disambiguation of marching cubes, 1994.
[MTV86] Y. De Montaudoin, W. Tiller, and H. Vold. Applications of power series

in computational geometry. Comp. Aid. Geom. Des., 10(18), 1986.
[Mun66] J. Munkres. Elementary Differential Topology. Princeton University Press,

1966.

186 dFdMGTV92

[Mur93] S. Muraki. Volume data and wavelet transform. IEEE Computer Graphics
and Applications, 13(4):50–56, July 1993.

[MW91] Doug Moore and Joe Warren. Bounded aspect ratio triangulation of
smooth solids. SMA ’91: Proceedings of the First Symposium on Solid Modeling
Foundations and CAD/CAM Applications, pages 455–464, June 1991. ISBN
0-89791-427-9. Held in held June 5-7, 1991 in Austin, Texas, USA. .

[MZ93] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionar-
ies. Technical report, Courant Institute, New York University, 1993.

[Nat94] B. Natarajan. On generating topologically consistent isosurfaces from uni-
form samples, 1994.

[Nav89] I. Navazo. Extended octree representation of general solids with plane
faces: Model structure and algorithms. Computer & Graphics, 13(1):5–16, 1989.

[NHK+85] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa, and
K. Omura. Object modeling by distribution function and a method of image
generation. Japan Electronics Communication Conference 85, J68-D(4):718–
725, 1985.

[Nor82] A. Norton. Generation and display of geometric fractals in 3D. Computer
Graphics, 16(3):61–66, 1982.

[NP85] L. R. Nackman and S. M. Pizer. Three-dimensional shape description using
the symmetric axis transform I. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI 7:187–205, 1985.

[PASS95] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function represen-
tation in geometric modeling: concepts, implementation and applications. The
Visual Computer, 11(8):429–446, 1995. ISSN 0178-2789.

[Pav78] T. Pavlidis. Filling algorithms for raster graphics. Computer Graphics
(SIGGRAPH ’78 Proceedings), 12(3):161–166, August 1978.

[Pea85] Darwyn R. Peachey. Solid texturing of complex surfaces. Computer Graph-
ics (Proceedings of SIGGRAPH 85), 19(3):279–286, July 1985. Held in San
Francisco, California.

[Ped95] Hans Køhling Pedersen. Decorating implicit surfaces. Proceedings of SIG-
GRAPH 95, pages 291–300, August 1995. ISBN 0-201-84776-0. Held in Los
Angeles, California.

[Ped96] Hans Køhling Pedersen. A framework for interactive texturing operations
on curved surfaces. Proceedings of SIGGRAPH 96, pages 295–302, August 1996.
ISBN 0-201-94800-1. Held in New Orleans, Louisiana.

[Per85a] K. Perlin. An image synthesizer. Computer Graphics, 19(3):287–293, 1985.
[Per85b] Ken Perlin. An image synthesizer. Computer Graphics (Proceedings of

SIGGRAPH 85), 19(3):287–296, July 1985. Held in San Francisco, California.
[PH89] K. Perlin and E. Hoffert. Hypertexture. Computer Graphics, 23(3), 1989.
[PP88] A. Pasko and V. Pilyugin. Geometric modeling in the analysis of trivariate

functions. Computer and Graphics, 12(3-4):457–465, 1988.
[PS95] Alexander Pasko and Vladimir Savchenko. Constructing functionnally-

defined surfaces. Implicit Surfaces ’95, April 1995.
[PW89] A. Pentland and J. Williams. Good vibrations: Modal dynamics for graph-

ics and animation. Computer Graphics, 23(3):215–222, 1989.
[PZ90] K. Perlin and B. Zhu. Surflets. ACM Siggraph Course Notes, 1990. Pho-

torealistic Volume Modeling and Rendering Techniques.
[Req80] A. Requicha. Representation for rigid solids: Theory, methods, and sys-

tems. ACM Computing Surveys, 12(4), 1980.
[Rhe87] W. C. Rheinboldt. On a moving frame algorithm and the triangulation of

equilibrium manifolds. In T. Kupper, R. Seydel, and H. Trogger, editors, Bifur-
cation: Analysis, Algorithms, Applications, pages 256–267. Birkhauser-Verlag,
1987.

dFdMGTV92 187

[Ric73] A. Ricci. A constructive solid geometry for computer graphics. The Com-
puter Journal, 16(2):157–160, 1973.

[RO87] A. P. Rockwood and J. Owen. Using implicit surfaces to blend arbitrary
solid models. In G. Farin, editor, Geometric Modeling: Algorithms and Trends.
SIAM, 1987.

[RO89] J. Rossignac and M. O’Connor. SGC: A dimension-independent model for
pointsets with internal structures and incomplete boundaries. Technical report,
IBM Research Division, 1989.

[Roc89] A. P. Rockwood. The displacement method for implict blending surfaces
in solid models. ACM Transactions on Graphics, 8(4):279–297, 1989.

[Rot82] S. Roth. Ray casting as a method for solid modeling. Computer Graphics
and Image Processing, 18(2):109–144, 1982.

[SA84] T. Sederberg and D. Anderson. Implicit representation of parametric curves
and surfaces, 1984.

[Sed90a] T. W. Sederberg. Techniques for cubic algebraic surfaces, part 1. IEEE
Computer Graphics and Applications, 10(4):14–25, 1990.

[Sed90b] T. W. Sederberg. Techniques for cubic algebraic surfaces, part 2. IEEE
Computer Graphics and Applications, 10(5):12–21, 1990.

[SH97] Barton T. Stander and John C. Hart. Guaranteeing the topology of an
implicit surface polygonization for interactive modeling. Proceedings of SIG-
GRAPH 97, pages 279–286, August 1997. ISBN 0-89791-896-7. Held in Los
Angeles, California.

[Sha88] Vadim Shapiro. Theory of r-functions and applications: A primer. Techni-
cal report, Cornell University, November 1988.

[Sha91] V. Shapiro. Representations of semi-algebraic sets in finite algebras gener-
ated by space decompositions. Technical report, Cornell University, 1991.

[She99] Andrei Sherstyuk. Kernel functions in convolution surfaces: a comparative
analysis. The Visual Computer, 15(4):171–182, 1999. ISSN 0178-2789.

[Sni92] J. M. Snider. Interval analysis for computer graphics. Computer Graphics,
26(2):121–130, 1992.

[SP86] T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric
models. Computer Graphics, 20(4):151–160, 1986.

[SP91] S. Sclaroff and A. Pentland. Generalized implicit functions for computer
graphics. Computer Graphics, 25(4):251–256, 1991.

[Spi65] M. Spivak. Calculus on Manifolds. W. A. Benjamin, 1965.
[ST99] Vadim Shapiro and Igor Tsukanov. Implicit functions with guaranteed dif-

ferential properties. In Proceedings of the Fifth ACM Symposium on Solid Mod-
eling and Applications, 1999.

[SW97] G. Sealy and G. Wyvill. Representing and rendering sweep objects using
volume models. Computer Graphics International 1997, June 1997. Held in
Hasselt/Diepenbeek, Belgium.

[SZ89] T. W. Sederberg and A. K. Zundel. Scan line display of algebraic surfaces.
Computer Graphics, 23(3):147–156, 1989.

[TdMG89] G. Tavares and J. de M. Gomes. Concordance operations for implicitly-
defined manifolds. In Proceedings of SIAM Conference on Geometric Design,
1989.

[TDOY01] Greg Turk, Huong Quynh Dinh, James O’Brien, and Gary Yngve. Im-
plicit surfaces that interpolate. Shape Modelling International, pages 62–71,
May 2001.

[Tei98] Ralph Costa Teixeira. Curvature Motions, Medial Axes and Distance Trans-
forms. PhD thesis, Harvard University, Cambridge, Massachusetts, June 1998.

[Ter01] Bryan Morse Terry. Interpolating implicit surfaces from scattered surface
data using compactly supported radial basis functions, 2001.

188 dFdMGTV92

[TL93] Takashi Totsuka and Marc Levoy. Frequency domain volume rendering.
In James T. Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Proceedings),
volume 27, pages 271–278, August 1993.

[TO99] Greg Turk and James O’Brien. Shape transformation using variational
implicit functions. Proceedings of SIGGRAPH 99, pages 335–342, August 1999.
ISBN 0-20148-560-5. Held in Los Angeles, California.

[TPF89a] D. Terzopoulos, J. Platt, and K. Fleischer. Heating and melting de-
formable objects. In Proceedings of Graphics Interface 89, pages 219–226, 1989.

[TPF89b] Demetri Terzopoulos, John Platt, and Kurt Fleischer. Heating and melt-
ing deformable models (from goop to glop). Graphics Interface ’89, pages 219–
226, June 1989.

[TSYK01] S. Tanaka, A. Shibata, H. Yamamoto, and H. Kotsuru. Generalized
stochastic sampling method for visualization and investigation of implicit sur-
faces. Computer Graphics Forum, 20(3), 2001.

[TW99] Mark Tigges and Brian Wyvill. A field interpolated texture mapping algo-
rithm for skeletal implicit surfaces. Computer Graphics International ’99, June
1999. ISBN ISBN 0-7695-0185-0.

[TWM85] J.F. Thompson, Z. U. Z. Waisi, and C. W. Mastin. Numerical Grid
Generation, Foundations and Applications. North Holland, New York, 1985.

[VdFG99] Luis Velho, Luiz Henrique de Figueiredo, and Jonas Gomes. A unified
approach for hierarchical adaptive tesselation of surfaces. ACM Transactions
on Graphics, 18(4):329–360, October 1999. ISSN 0730-0301.

[VdMG91a] L. Velho and J. de M. Gomes. A dynamical simulation environment
for implicit objects using discrete models. In Proceedings of 2nd Eurographics
Workshop on Animation and Simulation, 1991.

[VdMG91b] L. Velho and J. de M. Gomes. Regular triangulations of implicit man-
ifolds using dynamics. In Proceedings of Compugraphics 91, 1991.

[Vel90a] L. Velho. Adaptive polygonization of implicit surfaces using simplicial
decomposition and boundary constraints. In Proceedings of Eurographics 90.
Elsevier Science Publisher, 1990.

[Vel90b] L. Velho. Interactive modeling of soft objects. In Proceedings of Ausgraph
90, 1990.

[Vel96] Luiz Velho. Simple and efficient polygonization of implicit surfaces. Journal
of Graphics Tools, 1(2):5–24, 1996. ISSN 1086-7651.

[VG96] Luiz Velho and Jonas Gomes. Approximate conversion of parametric to
implicit surfaces. Computer Graphics Forum, 15(5):327–338, 1996. Elsevier
Science Publishers.

[vHB87] B. von Herzen and A. Barr. Accurate triangulations of deformed inter-
secting surfaces. Computer Graphics, 21(4):103–110, 1987.

[VTG94] Luiz Velho, Demetri Terzopoulos, and Jonas Gomes. Multiscale implicit
models. In Proceedings of SIBGRAPI ’94, pages 93–100, Curitiba, Novembro
1994.

[Wal75] C. T. C. Wall. Regular stratifications. Lecture Notes on Mathematics,
468:332–344, 1975.

[Wei86] K. J. Weiller. Topological Structures for Geometric Modeling. PhD thesis,
Rensselaer Polytechnic Institute, 1986.

[WG91] J. Wilhelms and A. Van Gelder. A coherent projection approach for direct
volume rendering. Computer Graphics, 25(4):275–284, 1991.

[WGG99] Brian Wyvill, Andrew Guy, and Eric Galin. Extending the csg tree.
warping, blending and boolean operations in an implicit surface modeling sys-
tem. Computer Graphics Forum, 18(2):149–158, June 1999. ISSN 1067-7055.

dFdMGTV92 189

[WH94] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and
control implicit surfaces. Proceedings of SIGGRAPH 94, pages 269–278, July
1994. ISBN 0-89791-667-0. Held in Orlando, Florida.

[Whi57] H. Whitney. Elementary structure of real algebraic varietes. Annals of
Math., 66(3):545–556, 1957.

[Wis90] P. Wisskirchen. Object-oriented graphics. ACM Siggraph Course Notes,
1990.

[WK85] Geoff Wyvill and Tosiyasu L. Kunii. A functional model for constructive
solid geometry. The Visual Computer, 1(1):3–14, July 1985.

[WMW86a] B. Wyvill, C. McPheeters, and G. Wyvill. Animating soft objects. The
Visual Computer, 2(4):235–242, 1986.

[WMW86b] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft
objects. The Visual Computer, 2(4):227–234, 1986.

[WMW87] G. Wyvill, C. McPheeters, and B. Wyvill. Solid texture of soft objects.
IEEE Computer Graphics and Applications, 7(12):20–26, 1987.

[WW89] Brian Wyvill and Geoff Wyvill. Field functions for implicit surfaces. The
Visual Computer, 5(1/2):75–82, March 1989.

[Wyv90] B. Wyvill. Metamorphosis of implicit surfaces. ACM Siggraph Course
Notes, 1990. Modeling and Animating with Implicit Surfaces.

[XHB01] Guoliang Xu, Hongci Huang, and Chandrajit Bajaj. C1 modeling with a-
patches from rational trivariate functions. Computer Aided Geometric Design,
18(3):221–243, April 2001. ISSN 0167-8396.

[ZGV+98] Ruben Zonenschein, Jonas Gomes, Luiz Velho, Luiz Henrique
de Figueiredo, Mark Tigges, and Brian Wyvill. Texturing composite deformable
implicit objects. In Proceedings of SIBGRAPI 98, pages 346–353. SBC - So-
ciedade Brasileira de Computacao, IEEE Press, October 1998.

[ZGVdF98] Ruben Zonenschein, Jonas Gomes, Luiz Velho, and Luiz Henrique
de Figueiredo. Controlling texture mapping onto implicit surfaces with par-
ticle systems. In Jules Bloomenthal and Dietmar Saupe, editors, Proceedings of
the Third International Workshop on Implicit Surfaces, pages 131–138, Seattle,
USA, July 1998. Eurographics - ACM SIGGRAPH, Eurographics.

[ZJ91] C. Zahlten and H. Jurgens. Continuation methods for approximating iso-
valued complex surfaces. In Proceedings of Eurographics 91, pages 5–19, 1991.

This page intentionally left blank

Index

R-Functions, 76
ε-tubular neighborhood, 39
m-norms, 64

Admissible normal radius, 39
Affine cell decompositions, 29
Affine transformation, 70
algebraic distance, 63
Algebraic function, 107
Algebraic varieties, 23
Animation, 167
Atlas, 6

Behavioral, 168
Bernstein polynomial, 117
Bisection, 85
Blend, 78
Blobby models, 121
BSP-trees, 35

Canonical forms, 53
Cauchy kernel function, 128
Cell decompositions, 28
Characteristic function, 54
Conciseness, 145
Continuation methods, 103
Convolution blend, 127
Critical points, 44
CW-complex, 44

Delaunay triangulation, 49
Density change, 66
Density modulation function, 115
Detail spaces, 135
Differentiable boolean operation, 75
Dilation, 68
Distance, 42
Distance field, 46
Distance function, 42
Domain of f , 54
Dynamic, 168

Eikonal equation, 50
Embedding, 9
Erosion, 68
Exterior medial axis, 42

First fundamental form, 58
Fixed-Point, 87
Full scan methods, 103

Gauss map, 57
Gaussian curvature, 59
Geodesic, 56
Geodesic path, 42
Gradient, 54

Height function, 46
Hessian, 44, 55
Hyperbolic blend, 79
Hypertexture, 115

Immersion, 9
Implicit CSG object, 75
Implicit curve, 53
Implicit solid, 53
Implicit surface, 53
Implicitization, 151
Implict object, 51
Interior medial axis, 42
Interval arithmetic, 84
Isocontour, 65
Isometry, 70

Jacobian matrix, 72

K-d trees, 35
Kinematics, 168

Laplacian decomposition, 138
Level Surface, 65
Linear blend, 78
Local Chart, 6

192 Index

Manifold, 5
Marching cubes, 103
Maximal spheres, 42
Maximal tubular neighborhood, 41
Mean curvature, 59
Medial axis, 41
Metaball, 122
Morse function, 44
Morse Theory, 43
Multiresolution Analysis, 134
Multiscale decomposition, 131

N-trees, 35
Normal curvature, 59
Normal segment, 39

Object density function, 115
Offset surface, 65
Orientation, 12

Particle, 167
Partitions, 28
Plane, 108
Point-membership classification, 52
Polygonization, 93
Principal curvatures, 59
Principal directions, 59
Proper function, 73

Quadrics, 108

Ray tracing, 159
Regula-Falsi, 85
Regular implict object, 51
Regular value, 19
Regularity, 19
Representation scheme, 144

Rigid body, 167
Robustness, 145

Saddle, 44
Sampling, 87, 93
Sard’s theorem, 54
Scaling function, 134
Scattered data set interpolation, 116
Second fundamental form, 58
Silhouette curve, 157
Silhouette point, 157
Simplicial methods, 103
Simplicity, 145
Skeleton, 121
Spatial Data Structures, 34
Sphere tracing, 159
Stratification, 16
Structuring, 93
Submanifold, 9
Super-elliptic blend, 80
Superquadrics, 110
Surflet, 142

Topological graph, 45
Topological graphs, 35
transverse simplex, 99
Triangulations, 30
Tubular Neighborhood, 39

Universal representation, 49, 147

Valid implict object, 51
Voronoi surface, 176
Voxel arrays, 119

Wavelet decomposition, 136
Weingarten map, 58

