

N O N- P H O T O R E A L I S T I C C O M P U T E R G R A P H I C S
M O D E L I N G , R E N D E R I N G , A N D A N I M A T I O N

The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling
Series Editor: Brian A. Barsky, University of California, Berkeley

Non-Photorealistic Computer Graphics:
Modeling, Rendering, and Animation
Thomas Strothotte and Stefan Schlechtweg

Pyramid Algorithms for Curves and Surfaces:
A Dynamic Programming Approach to Geometric
Modeling
Ron Goldman

Level of Detail for 3D Graphics: Application and
Theory
David P. Luebke, Martin Reddy, Jonathan
D. Cohen, Amitabh Varshney, Benjamin A.
Watson, and Robert E. Huebner

Texturing and Modeling: A Procedural Approach,
Third Edition
Edited by David S. Ebert, F. Kenton Musgrave,
Darwyn Peachey, Ken Perlin, and Steven
Worley

Understanding Virtual Reality
William Sherman and Alan Craig

Digital Video and HDTV Algorithms & Interfaces
Charles Poynton

Curves and Surfaces for CAGD: A Practical
Guide, Fifth Edition
Gerald Farin

Subdivision Methods for Geometric Design:
A Constructive Approach
Joe Warren and Henrik Weimer

The Computer Animator’s Technical Handbook
Lynn Pocock and Judson Rosebush

Computer Animation: Algorithms and Techniques
Rick Parent

Advanced RenderMan: Creating CGI for Motion
Pictures
Anthony A. Apodaca and Larry Gritz

Curves and Surfaces in Geometric Modeling:
Theory and Algorithms
Jean Gallier

Andrew Glassner’s Notebook: Recreational
Computer Graphics
Andrew S. Glassner

Warping and Morphing of Graphical Objects
Jonas Gomes, Lucia Darsa, Bruno Costa, and
Luiz Velho

Jim Blinn’s Corner: Dirty Pixels
Jim Blinn

Rendering with Radiance: The Art and Science of
Lighting Visualization
Greg Ward Larson and Rob Shakespeare

Introduction to Implicit Surfaces
Edited by Jules Bloomenthal

Jim Blinn’s Corner: A Trip Down the Graphics
Pipeline
Jim Blinn

Interactive Curves and Surfaces: A Multimedia
Tutorial on CAGD
Alyn Rockwood and Peter Chambers

Wavelets for Computer Graphics: Theory and
Applications
Eric J. Stollnitz, Tony D. DeRose, and David
H. Salesin

Principles of Digital Image Synthesis
Andrew S. Glassner

Radiosity & Global Illumination
François X. Sillion and Claude Puech

Knotty: A B-Spline Visualization Program
Jonathan Yen

User Interface Management Systems: Models and
Algorithms
Dan R. Olsen, Jr.

Making Them Move: Mechanics, Control, and
Animation of Articulated Figures
Edited by Norman I. Badler, Brian A. Barsky,
and David Zeltzer

Geometric and Solid Modeling: An Introduction
Christoph M. Hoffmann

An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling
Richard H. Bartels, John C. Beatty, and Brian
A. Barsky

N O N- P H O T O R E A L I S T I C C O M P U T E R G R A P H I C S
M O D E L I N G , R E N D E R I N G , A N D A N I M A T I O N

Thomas Strothotte
Stefan Schlechtweg

Otto-von-Guericke University of Magdeburg
Magdeburg,Germany

Executive Director Diane Cerra
Assistant Publishing Services Manager Edward Wade
Editorial Assistant Mona Buehler
Cover and Interior Design Frances Baca Design
Cover Image Erich Lessing/Art Resource, NY
Composition Windfall Software, using ZzTEX
Copyeditor Robert Fiske
Proofreader Jennifer McClain
Indexer Ty Koontz
Printer Courier Corporation

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
An Imprint of Elsevier Science (USA)
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205, USA
www.mkp.com

© 2002 by Elsevier Science (USA)
All rights reserved
Printed in the United States of America

06 05 04 03 02 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written
permission of the publisher.

Library of Congress Control Number: 2001099792
ISBN: 1-55860-787-0

This book is printed on acid-free paper.

For my daughter Josephine (born 8 November 1995),
already a frequent computer graphics conference attendee,

and my son George (born 17 November 2000).

— T H O M A S

Meiner Familie – meinen Eltern
und meiner Großmutter – gewidmet.
Im Andenken an meinen Großvater.

— S T E F A N

PREFACE xvii.......................................
Structure of the Book xviii...................
Target Audience xviii..........................
Why Study Non- Photorealistic
Computer Graphics as a
Computer Scientist? xx....................
Acknowledgments xxi.......................

INTRODUCTION 1.............................
Before and After Photorealism 3....
Non- Photorealistic Rendering 7.....

Goals and Criteria for Success 7.......
A Point of View 10...............................

Approaches to Algorithms for
NPR 12...

Image Artifacts 13................................
Model Artifacts 14................................
A Framework for Computing
Image and Model Artifacts 17..............

Visions for NPR 24...........................
Scientific and Medical Illustration 25...
Technical Illustration 25.......................
Archaeological Illustration 27...............
Storytelling 27......................................

Exercises 28.....................................
Bibliographic Notes 30......................

PIXEL MANIPULATION OF
IMAGES 31..

Halftoning Methods 32......................

Ordered Dithering 33...........................
Error Diffusion 35.................................
Applications to NPR 37........................

Screening 41....................................
Basic Method 42..................................
Tuning Image and Screen
Intensities 44.......................................
Procedural Screening 48.....................
Embedding Shapes in Dither
Screens 52..

Stippling 60.......................................
Automatic Methods 61.........................
Interactive Methods 67........................

Image Mosaics 72............................
Choosing a Tiling Grid or Pattern 72...
Arranging the Image Tiles 75..............
Choosing Tile Images 75.....................
Color Correction 76.............................

Exercises 79.....................................
Bibliographic Notes 80......................

LINES, CURVES, AND
STROKES 83.......................................

Drawing � Incorrect� Lines 84............
Observations of Human
Drawings 84...
Drawing Wiggly Lines with a
Computer 85..

Drawing � Artistic� Lines� The
Path and Style Metaphor 89.............

Deforming Images 90..........................

Using Path Information� Line
Styles 94..
Simulating Watercolor 99....................

A Generalization:
Multiresolution Curves 106.................

Wavelet Representation of
Curves 107..
Editing Multiresolution Curves 108........

Comparison of the Line-
Drawing Methods 110.........................
Exercises 110.....................................
Bibliographic Notes 111......................

SIMULATING NATURAL MEDIA
AND ARTISTIC TECHNIQUES 113.......

Simulating Painting with Wet
Paint 114..

Simulating Watercolor Using
Cellular Automata 115...........................
Computer- Generated Watercolor
Using Fluid Simulation 123....................
Rendering the Simulation Results 127..

Simulating Pencils Drawing on
Paper 129...

The Microscopic Level 129....................
A Model 130..
Results 137..

Simulating Woodcuts and
Engravings 138...................................

A Raytracing Approach for
Copperplates 139..................................

An Image Processing Approach
for Engravings 144................................

Exercises 151.....................................
Bibliographic Notes 152......................

STROKE-BASED
ILLUSTRATIONS 155............................

Strokes and Stroke Textures 155.......
Defining and Drawing Single
Strokes 156...
Building Stroke Textures 159................

Detail and Orientation 163..................
Outlines and Shadows 163....................
Orientation 166......................................
Abstraction of Detail 168.......................

Rescaling Stroke- Based
Images 171...

Goals for a Rescaling Operation 172....
Approximating the Input as a
Continuous Function 173.......................
Discontinuity Edges 174........................
Creating and Reconstructing
Renditions 177.......................................

Exercises 179.....................................
Bibliographic Notes 180......................

WORKING WITH 2 1/2D DATA
STRUCTURES 183................................

G- Buffers 183....................................
Operations on G- Buffers 185.............
Comprehensible Rendering 188.........

Interactive Painting 191......................
D Parameters for 2D Dithering 194....
Exercises 199.....................................
Bibliographic Notes 200......................

GEOMETRIC MODELS AND
THEIR EXPLOITATION IN NPR 203.....

Geometric Models as Data
Types 204...

Data 206..
Operations on the Data 208..................
Implementation 209...............................

Polygonal Models 211........................
Description of Polygonal Models 212....
Operations for Polygonal Models 213...
Edge Classification for NPR 214...........
Computing Intersections 224.................
Determining Global Shape 226.............

Free- Form Surfaces 233...................
Description of Free- Form
Surface Models 233...............................
Operations on Free- Form
Surface Models for Rendering 235........

Exercises 243.....................................
Bibliographic Notes 244......................

LIGHTING MODELS FOR NPR 247......
Conveying Shape Versus
Illumination 248..................................
A Basic Lighting Model 253................
Colored Illustrations 255.....................

A Component- Based Lighting
Model 260...

Standard Lighting and Shadows 260.....
Rim Shadow, Plateau, and Back
Lighting 260...
Curvature Lighting 261..........................
Transmission and Transparency 262....
Overall Intensity 265..............................

Implementation Issues 266.................
Exercises 267.....................................
Bibliographic Notes 268......................

DISTORTING NON-REALISTIC
RENDITIONS 269..................................

Image- Space Distortion 270..............
Fundamental Algorithm 271..................
Regions of Magnification 273................
The Dropoff Function 275......................
Off- Center Focus Points and
Multiple Foci 278...................................

Object- Space Distortion 281..............
Interval Structures 282..........................
The Resize Operation 283.....................
An Example 284....................................
Discussion of the Algorithm 286............
An Application to Explosion
Diagrams 288..

Making Distortions
Comprehensible 290..........................

Recognition Axis 291.............................
Dominance Axis 292..............................
A Space of Viewing Cues 293...............

Distortions in an Animated
Context 295..

Distorted Transformations 296..............
Morphing the Model 297........................

Exercises 302.....................................
Bibliographic Notes 304......................

APPLICATIONS FOR NPR 305.............
Non- Photorealistic Animation 305.....

Representing Motion in Still
Images 307..
Non- Photorealistic Animation
Based on Particle Systems 310.............

Architectural Illustrations 311.............
An Empirical Study 312.........................
Expressing Uncertainty in
Designs 316...

Rendering Plants 321.........................
Rendering the Trunk, Branches,
and Twigs 321.......................................
Rendering the Foliage 322....................

Illustrating Medical and
Technical Texts 324...........................

Generating Illustrations from
Texts 326...
Generating Labels 327..........................
Generating Figure Captions 330...........

Tactile Rendering for Blind
People 331...

Hardware 331..
Haptic Perception 331...........................

Converting Visualizations into
Tactile Presentations 332......................
Tactile Maps 333...................................

Exercises 334.....................................
Bibliographic Notes 335......................

A CONCEPTUAL FRAMEWORK
FOR NPR 337..

Methodological Disclaimer 337...........
Mathematical Preliminaries:
Equivalence Relations,
Equivalence Classes, and
Quotients 341.....................................

Sets and Elements 342.........................
Cartesian Products and
Relations 342...
Equivalence Relations and
Variants 344..
Equivalence Classes and
Invariants 346..
Quotients, (Iso) morphism, and
Abstraction 352......................................
Summary of Mathematical
Preliminaries 357...................................

Physical Preliminaries:
Communication via Light Rays 358....

Physical Context 359.............................
Detecting Light: Basic Principles
of Viewing 360.......................................
Summary of Viewing- Related (
p-) Equivalence Relations 366...............

Neurobiological Context: Look-
Ahead Sets and Look- Around
Sets 370...

Perceptual Context 377.........................
A Model for Visual
Communication 383............................

Layers and Semantic
Transformations in Visual
Communication 385...............................

Summary and Practical
Connection with NPR 406..................

F O R E W O R D
David Salesin
Senior Researcher, Microsoft Research
Professor, Department of Computer Science & Engineering,
University of Washington

The Quest for Realism has motivated much of the history of rendering, the
process of creating synthetic imagery with computer graphics. The earliest work
in this area concerned the development of plausible local illumination models, the
study of how light reflects off a surface. Later work concerned the problem of
solving for the equilibrium solution of light reaching all surfaces as the light
reflects about an environment, a problem known as global illumination. The careful
characterization of these problems as physical processes that can be simulated
with ever-increasing speed and accuracy ranks among the great successes of the
computer graphics field.

However, with this ability to simulate scenes of ever-increasing realism comes
a new problem: depicting and visualizing these complex scenes in a way that
communicates as effectively as possible. Thus, over the past decade, a new type
of quest has emerged—a quest more subtle and actually more interesting, in my
opinion, than the quest for realism. This new (and in some sense larger) quest
has more to do with creating imagery that is useful, first and foremost, and also
beautiful—rather than just physically realistic. To this end, we can no longer turn
to the physical sciences. Instead, we must look to the cognitive sciences, as well as
to the fields of art, graphic design, and traditional illustration, where the challenges
of structuring and abstracting information so that it can be communicated most
effectively—and attractively—have been most carefully studied.

This new area of endeavor, which by way of contrast with the earlier quest for
realism has become known as non-photorealism, or NPR for short, has provoked
a tremendous level of interest in recent years. Indeed, there has been an absolute
blossoming of fascinating papers and techniques in the research literature: from
artistic screening methods for printing images using microdots with meaningful
shapes that might deliver their own message; to techniques for rendering images
in pen-and-ink, watercolor, or engraved etchings styles; to procedures for lighting
and even distorting three-dimensional models in order to clarify shapes or direct a
viewer’s attention. The variety and cleverness and even audacity of these manifold
techniques never cease to amaze me as I see each new one presented for the first
time at SIGGRAPH (the premier computer graphics conference), or at some
other research forum.

vii

viii Foreword

Now, a great number of these remarkable techniques have been comprehen-
sively assembled, organized, and presented for a larger audience—in the form of
this book that you have in your hands. Non-Photorealistic Computer Graphics: Mod-
eling, Rendering, and Animation provides the most systematic and in-depth study
of the field of NPR that has been published to date, and I believe it will go a long
way toward making the field accessible to practitioners and researchers alike. By
disseminating the many early research results in NPR to a much larger audience,
my sincere hope is that this book will also play a pivotal role both in enticing prac-
titioners to refine these approaches—making them really practical for computer
graphics production—and in inspiring researchers to develop ever more creative
and audacious techniques.

P R E F A C E

The term non-photorealistic computer graphics has come to denote the area of scien-
tific and technological endeavor dealing with the computer generation of images
and animations that, generally speaking, appear to be made in part “by hand.”
Such images often resemble those that, for example, architects, industrial artists,
or scientific illustrators produce to communicate more or less specific information,
often accompanied by text. They are characterized by their use of randomness,
ambiguity, or arbitrariness rather than completeness and adherence to the por-
trayed objects’ properties.

Non-photorealistic computer graphics involves all phases of processing that
computer graphics in general uses. By far the most work has been has been done
in what is denoted in this book by non-photorealistic rendering (NPR). It has its
roots in early papers that appeared in the 1980s (in particular Strassmann, 1986a
or Sasada, 1987). Two very influential papers were published at SIGGRAPH
1990 (Saito and Takahashi, 1990, and Haeberli, 1990), but the techniques they
presented were still treated in isolation. In 1994, the contours of this new area
began to emerge with the papers published at SIGGRAPH (Winkenbach and
Salesin, 1994, and Salisbury et al., 1994) and Eurographics (Strothotte et al., 1994).
These papers effectively broke open the dam by demonstrating the generality of
the underlying principles.

After these publications in 1994, international conferences began having
sessions devoted to non-photorealistic computer graphics. The first international
symposium devoted solely to this topic was organized in Annecy, France, in June
2000. By the time of this writing, it is estimated that the literature on this topic
encompasses some 300 papers.

The time has become ripe for a systematic assessment of the literature. Having
grown “organically,” the methods and techniques that have been developed
have lacked a uniform terminology and notation. The area has thus far been
unstructured, making it increasingly difficult to identify and assess new open
problems. Indeed, sometimes papers have even “reinvented the wheel,” albeit
in a different context and application concern. Indeed, this lack of a systematic

xvii

xviii Preface

study has led to the fact that at the time of this writing there is no single,
all-encompassing tool for non-photorealistic computer graphics, neither in the
market nor in research labs.

Structure of the Book
This book provides a systematic, in-depth insight into non-photorealistic com-
puter graphics as an emerging area within computer science. The text empha-
sizes the structure of the area and unifies the major results reported on in the
literature.

◆ Chapter 1 provides the background for the area by reviewing its historical
roots, why it is of such particular interest today, what fundamental algorithmic
approaches are taken, and what the long-range visions are.

◆ Chapters 2 through 5 structure and treat methods that are based on two-
dimensional data structures. This includes pixel manipulation, drawing lines,
curves, and other graphical primitives, and simulating natural media.

◆ Chapter 6 takes a first step in adding some information about the depth of
objects portrayed within an image. However, this information is again stored
in two-dimesional data structures.

◆ Chapters 7 and 8 move into the realm of exploiting the three-dimensional in-
formation encoded within geometric models for non-photorealistic computer
graphics.

◆ Chapter 9 deals with distorting images and models.
◆ Chapter 10 discusses a variety of applications of non-photorealistic computer

graphics.
◆ Chapter 11 concludes the book by presenting a conceptual framework for

binding everything together.

Target Audience
The book’s use is threefold. First, it is intended to accompany a course within a
computer science curriculum for students at the senior undergraduate or beginning
graduate level. Preliminary drafts of the book were used by the authors for
teaching such a course at the University of Magdeburg on four occasions (fall
1999, summer 2000, fall 2000, and fall 2001). The course encompassed four

Preface xix

hours of lectures per week for a semester of 14 weeks. The students had all had
at least one undergraduate computer graphics course covering the basics of 2D
and 3D computer graphics. The students were expected to be proficient in a
programming language.

The same course was taught by the authors at Simon Fraser University
(Vancouver, Canada) as a two-week crash course with four hours of lectures per
evening in weeks two and three of the semester (fall 2000). The students were
given a take-home midterm in week 7 of the semester, and asked to submit a
final project in week 13. This format worked well and enabled the students to
take several other regular courses at the same time.

Students should be presented the material of the book in the order in which it
is written. A sprinkling of the exercises at the end of the chapters should be given
as homework. If there is not enough time to cover the whole book, some of the
chapters can be thinned out. For example, Sections 2.3, 2.4, 3.3, 4.2, 4.3, 5.3,
7.3, 8.4, and 9.4 can be left out of the classroom but assigned as further reading
without harming the students’ basic understanding of the topic.

Second, the book will be useful to practitioners in the field. It contains a wealth
of examples, particularly in the form of images, which the authors hope will
excite the reader and motivate the use of non-photorealistic computer graphics.
The methods introduced are explained in enough detail that programs can be
written directly without major conceptual effort.

Computer graphics professionals wishing to get into the topic of non-
photorealistic computer graphics either can read the chapters in order or, to
save time in a first pass at the topic, can read more selectively. They should read
Chapter 1, one of Chapters 2 through 5, Chapter 6, Chapter 9, and Chapter 10,
if necessary skipping the sections mentioned above, which can also be skipped by
students.

The third use of the book is for reference by researchers in the field. It unifies
the literature and introduces terminology. Wherever possible, the terminology
introduced in the original papers is used within the book. However, in some cases,
particularly where different articles use varying terminology, the book decides on
one wording. The bibliographic references at the end of the chapters give the
necessary pointers to the important publications.

In the case of researchers in the field of non-photorealistic computer graphics,
the chapters can be read in just about any order because methods that are
built upon are referenced appropriately. A comprehensive index aids in selective
reading.

xx Preface

Why Study Non-Photorealistic Computer Graphics
as a Computer Scientist?
Should a course on a leading-edge topic such as NPR be part of a graduate degree
program in computer science?

This question is really asking what is expected of computer science graduates.
Presumably, students can no longer be endowed with an equally high level of
specific engineering knowledge in all subdisciplines of computer science. Instead,
there is an increasing demand for distilling what is being taught to core skills.
These lie at the heart of the approach a computer scientist is to take when solving
a problem. Such skills should be studied in the context of one another using any
one of a number of example areas. The idea is that if these skills are mastered
within one area, the graduate will be equipped with the ability to transfer the
approach to other areas that may arise at their future workplace.

The area of NPR is one that exemplifies this approach. It takes an area
of scientific endeavor that is treated with the methods and tools of theoretical,
practical, and applied computing. The treatment of the subject matter as it appears
in this book is to be exemplary for how computer scientists decompose problems
into parts, bring individual solutions together again, and embed them in systems
that actually help users carry out their tasks at hand.

Furthermore, you can observe that there has been a shift in the emphasis
during the late 1990s toward providing graduates with a more user-centered
view of their work. Whereas many areas within computer science, even within
computer graphics, can be studied without ever carrying out empirical work with
users, this book treats NPR as a subject area that begins with questions pertaining
to what users really want to get out of using its methods and tools.

In keeping with the trend to more user-centered computing, there has been
a tendency in recent years for Departments of Computer Science to devise new
degree programs to meet the demands of the media industry. One example among
many is the undergraduate and graduate program in computational visualistics
offered at the University of Magdeburg. Here the emphasis is on methods and
tools for visual communication, both from an algorithmic (computer science)
and a user-centered (humanities) point of view. A course in NPR is of particular
importance in this context because it demonstrates one aspect of the flexibility of
graphical communication that will lie at the heart of Web-based systems in the
first decade of the new millennium.

Preface xxi

Acknowledgments
The material presented in this book draws on research results and the thoughts of
many scientists. Our thanks go to Kees van Overveld for contributing his many
deep insights into the topic in the final chapter of the book. A number of other
colleagues spent time with us in Magdeburg and provided their insights into the
topic, among them Lyn Bartram, John Buchanan, Sheelagh Carpendale, Dave
Forsey, and Simon Schofield. Many of the first author’s Ph.D. students produced
results that turned out to be instrumental in the development of this book. Thanks
in this regard to Oliver Deussen, Bert Freudenberg, Frank Godenschweger, Nick
Halper, Jörg Hamel, Knut Hartmann, Stefan Hiller, Axel Hoppe, Tobias Isenberg,
Maic Masuch, Bernhard Preim, Andreas Raab, and Michael Rüger.

We wish to thank those persons who provided the support to make this
book happen, including the administrative, technical, and secretarial staff at our
institute who keep things up and running, even under adverse workloads (Heiko
Dorwarth, Volkmar Hinz, Petra Janka, Thomas Rosenburg, Petra Specht, and
Sylvia Zabel); the students at the University of Magdeburg and Simon Fraser
University who studied the topic with previous versions of the manuscript; and
all of our colleagues around the world who did great research and who gave us
the copyrights to their images.

Finally, our particular thanks goes to the superbly professional staff at Morgan
Kaufmann who turned our loose-leaf pages into a book we are proud of: Mona
Buehler, Diane Cerra, and Edward Wade.

1 I N T R O D U C T I O N

Since its inception in the 1960s, computer graphics has been dominated by the
goal of generating images that mimic the effect of a traditional photographic
camera. At the time, the term photorealism was taken from a style of painting
popular in North America. Artists had developed techniques to simulate by hand
the workings of a camera. The techniques were perfected to the point where the
resultant handmade images could hardly be distinguished from real photographs
(see Figure 1.1). Thus, the term photorealistic computer graphics was chosen to denote
algorithmic techniques that resemble the output of a photographic camera and that
even make use of the physical laws being involved in the process of photography.

After over 30 years of research and development on the problem of generating
photorealistic images by computer, many problems pertaining to the modeling and
rendering of objects with smooth and regular shapes have been solved. Even very
complex scenes with many objects found in nature can be generated: Figure 1.2
shows an example of a rendition of a countryside based on 100,000 individual
plants that were modeled by about 50 million polygons. More recent research
work in this area concentrates now on special effects that increase even more the
realism of the computed images, such as modeling and rendering the influence
of weather phenomena on surfaces consisting of a specific material.

To formulate the goal to be able to generate photorealistic images by computer
was a stroke of genius by the founding fathers of the area. Although it is difficult to
pinpoint who actually set the goal and recognized its potential, perhaps the most
prominent pioneer was Ivan Sutherland working in the early 1960s. As a research

1

2 C H A P T E R 1 Introduction

F I G U R E 1 . 1 Example of a handmade photorealistic image.

goal, photorealism has a number of appealing attributes. First, it is “technology
driven” in that computers are to be used to model the workings of another kind
of machine, a camera; this was certainly en vogue at the time and still has its
fascination today. More important, however, is that it is relatively clear how to
measure scientific progress in the area: by direct comparison with photographs
taken by a camera. Practically all members of our Western society, particularly
non-computer scientists, can appreciate the goal and can assess its progress by
simple inspection. These are the essential ingredients that have contributed to the
success of this area of scientific endeavor.

Since the computer graphics community has made such enormous progress
within the area of photorealistic rendering, the question where new frontiers
may lie was left hanging in the air for most of the 1990s. Indeed, a look at
the spectrum of topics of papers presented at leading scientific meetings on
computer graphics reveals that few papers still address techniques that have a direct
bearing on photorealistic rendering or modeling for it. One major direction in
which attention has shifted is to view photorealism as just one of many rendition
styles.

1.1 Before and After Photorealism 3

F I G U R E 1 . 2 A computer-generated rendition of a countryside.

1.1 Before and After Photorealism
Before the age of photography, humankind was already doing well making images
to convey information. Deviance from such features as a uniform scale, the lifelike
use of color, and the precise reproduction of all details of images as seen by
the human eye were the method of choice. This will be illustrated with two
examples.

Consider first an image taken from literature on the ancient Egyptians, as
illustrated in Figure 1.3. Note how the artist has taken the liberty to draw the
subjects in a way in which they cannot possibly have really looked. Moreover, the
drawing emphasizes shape at the expense of surface texture and other aspects of
realism.

Next, consider the reproduction of a painting of a European town made in
the 16th century, as shown in Figure 1.4. This was a typical style of drawing

4 C H A P T E R 1 Introduction

F I G U R E 1 . 3 Examples of images produced in the times of the ancient Egyptians. Note the posture
of the figures; no human can, in fact, hold his body in this position. However, this “inaccuracy”
probably did not disturb anyone at the time.

views of towns in the period; many paintings such as these exist. Here the artist
has chosen a particular perspective that emphasizes certain aspects of the scene.
Notice how the church in the lower left blends into the background while the
one in the city is dominant. The latter is drawn much larger, even though it is
probably of similar size and is farther away from the viewer.

These examples show how artists, either consciously or unconsciously, have
taken advantage of being able to define a “point of view.” Drawing by hand, it
is possible to free oneself from physical constraints of reality and to convey an
impression rather than just to convey details of a scene’s appearance. Indeed, there

1.1 Before and After Photorealism 5

F I G U R E 1 . 4 View of Nı̂mes (France), as drawn by Sebastian Manster in 1569.

are artists who contend that to draw by hand means to observe; some artists carry
out their work with the primary goal of studying the details of the scene. Such
artists often look down upon photography, which in their opinion circumvents
the process of observation. Indeed, it is possible to take a photograph of a
scene without really looking carefully at it, whereas the same is not true for a
painting!

How did photography change the activity of making images by hand? Aside
from the direction of art called photorealism mentioned at the outset of this
chapter, people have continued to draw and paint, although the styles have evolved
over time. Indeed, even in the 20th century when photography already had a firm
footing in print media, many of those wishing to communicate through pictures
have preferred to work with traditional methods. As a case in point, we will look
at two examples in Figures 1.5 and 1.6, which parallel those of Figures 1.3 and 1.4.

6 C H A P T E R 1 Introduction

F I G U R E 1 . 5 Portrait de Dora Maar , painted in 1937 by Picasso. Note how selected features of the
face—visible only from different points of view—are merged into one painting.

An example of the work of Picasso is shown in Figure 1.5. Like the ancient
Egyptians, he, too, freed himself from reproducing a scene the way it would look
from a single point of view. Instead, the juxtaposition of the individual elements
provides for multiple views in one painting. It is left up to the viewer to merge
these mentally.

Furthermore, Figure 1.6 shows a map of the city of Plzeň taken from a
present-day brochure for visitors to the city. It has been thoroughly distorted so as
to provide the viewer with a great deal of information all at once. Indeed, almost
every map that meets the eye of cartographic laypersons has been distorted in
some way so as to improve the view on the information.

Where do these examples leave us? Both before photography and after its
advent, artists have made effective use of deviating from “realistic” renditions of
scenes. This freedom to encode an impression rather than being forced to follow
physical constraints is considered the key to conveying information.

1.2 Non-Photorealistic Rendering 7

F I G U R E 1 . 6 A map of the city of Plzeň (Czech Republic), as it appears in a brochure for
present-day tourists.

1.2 Non-Photorealistic Rendering
The goal of NPR is to be able to specify formally the way in which a rendition
is to appear and subsequently to write computer programs that produce non-
photorealistic renditions. The first step in our study, however, is to examine in
more detail why this is a useful task. We will show how each goal to be achieved
by NPR suggests criteria that can be used to measure its success. This will then
lead to a discussion of the term non-photorealistic rendering itself.

1.2.1 Goals and Criteria for Success
At a superficial level, NPR can be pursued in its own right, void of any deeper
reason. This can be justified by treating NPR as a scientific challenge, irrespective

8 C H A P T E R 1 Introduction

of the application of the research results. From this point of view, NPR certainly is
an interesting and potentially rewarding area of endeavor. It is unclear, however,
how to measure the success of the work under these circumstances. In photo-
realistic rendering, the measure of success is the closeness of the resulting images
to photographs; although this is a useful measure equally void of an application,
there is no analogous measure for NPR.

The following is a possible list of reasons why it is a good idea to try to produce
non-photorealistic images. Each of the reasons implies a goal to be achieved with
the resultant renditions. These goals enable us to derive criteria to assess the quality
of the images.

1. Simulating intelligence The area of NPR can be pursued on a basis similar
to that of much of the early work in the area of artificial intelligence (AI).
The goal of this work was, and sometimes still is, to be able to model human
intelligence. Analogously, the goal of NPR could be defined as an attempt
to emulate human facilities for producing graphics by hand. Interestingly
enough, rendition styles often result from limitations of the tools available for
making images by hand. For example, using a sharp pencil to draw makes
it hard to shade a surface accurately; cross-hatching based on crisp lines has
developed as a good method of approximation. Interest has been expressed
recently from the AI community to produce what is sometimes provocatively
called smart graphics. However, the goals of the AI community go well
beyond NPR and emphasize more adaptivity in user interfaces. Nonetheless,
this approach has a built-in measure of success: how close computer-generated
images can emulate images rendered by hand. You can imagine a “Turing
test for NPR”: can images be generated by a computer that are mistaken
for renditions that were handmade by people? Still, the fundamental tenet
remains at the level of a purely scientific challenge.

2. Conveying meaning There are other fundamental reasons beyond scientific
curiosity for pursuing NPR. The first is that there is ample evidence that non-
photorealistic renditions are in fact more effective for communicating specific
information than photographs or photorealistic renditions in many situations.
This point was already alluded to in the previous section by showing examples
of handmade graphics that bear practically no resemblance to photographs
being used to convey information. These are used despite the existence of
photography and photorealistic rendering by computer. Over and above this
empirical evidence, many studies have been carried out by cognitive and

1.2 Non-Photorealistic Rendering 9

educational psychologists that attest to the superiority of such handmade
graphics over photolike images. The criterion for assessing NPR under
these circumstances is whether viewers ascertain the intended meaning of
a graphical message. Parameters that can be used in an assessment include the
time to understand a message, the error rate, and intercultural aspects.

3. Clarifying relationship between language and pictures Another fundamental rea-
son for pursuing NPR deals with the study of the relationship between
pictures and language. Using natural languages undisputedly is the domi-
nant method of communication in the world. This is based on hypotheses
about the relationship between language and thinking and the assumption
that language has in fact shaped our mental capabilities. Learning to read and
write is one of the fundamental facilities that schools teach, and the ability to
use these facilities is generally considered to be the ticket to economic pros-
perity. By contrast, pictures are most often used merely as an add-on to show
the major results described in a text that the pictures accompany. Schooling
generally contains little or no education on using pictures for communicating
ideas or for picture interpretation.

An interesting question that arises is whether language is really inherently
so much better for communication or whether its superior development and
its widespread use is just more a matter of habit. Hypothesizing the latter
case, it will be highly useful to master the computer generation of graphical
expressions, since most members of our society are not trained to produce
such materials by hand. NPR will play an important role here because of
its flexibility and large repertoire of possible nuances that can be associated
with an expression. A criterion for measuring the success of NPR under
these circumstances is the uniformity with which a complex message can be
conveyed to users: a test might be to show subjects an extensive graphical
presentation and ask them to write down in a natural language what they
ascertain. Variables pertaining to the similarity of the accounts of several
subjects and how well these match the intended meaning represent possible
variables of assessment.

4. Offering new products and services There are also very good practical goals to
achieve when pursuing NPR. It can be hypothesized that one prerequisite
for online reference materials and so-called e-books to become a serious al-
ternative to printed books is that systems will be developed that can generate
effectively non-photorealistic renditions that approach the quality of hand-
made graphics. Take for instance medical students’ books on a subject like

10 C H A P T E R 1 Introduction

Goals Criteria of assessment

Scientific curiosity None
Similarity to handmade graphics Turing test for NPR
Communication of specific information Comparison with words
Hypothesis of a language of pictures Analysis of natural language intepretation

of graphical expressions
A better understanding of the mechanisms
of meaning transfer

An operational model of meaning transfer

T A B L E 1 . 1 Goals when pursuing NPR and criteria of assessment of the resulting images.

anatomy: such books contain almost exclusively handmade graphics; they are
made by highly skilled illustrators who have undergone specialized training.
If such materials are to be made available online, given the lack of methods
and tools for NPR, such online materials will be able to contain only scanned
versions of these handmade graphics. This will, for example, severely limit
interaction with such images, and it will also be difficult to make changes in
a handmade image. Moreover, it will also restrict which text manipulations
are possible, because image-text coherence cannot be maintained algorith-
mically. All this means that if NPR is not mastered, online materials will not
be able to meet the expectations of an added value associated with interactive
graphics.

To summarize, Table 1.1 gives an overview of the goals to be achieved by
NPR and the success criteria that result.

1.2.2 A Point of View
As with many new and young areas of scientific endeavor, there is no uniform
term by which what we have called NPR is known. Indeed, various researchers
have sought to find a name that best describes what is happening. Nonetheless,
the name is more than just an eye-catcher; it reflects much about the point of
view taken by those developing the area.

When examining the primary literature on the topic, a number of different
points of view are taken. These focus on the following:

1. the process of image production that is being mimicked (or, to be more
precise, processes that are definitely not being mimicked): non-photorealistic
rendering,

1.2 Non-Photorealistic Rendering 11

2. the freedom not to have to reproduce the appearance of objects precisely as
they are: non-realistic rendering,

3. the process of adapting a presentation to a dialog context and the dynamic
information wishes of users: abstraction, although this term covers much more
ground than that just stated,

4. a specific drawing style: the terms sketch rendering, pen-and-ink illustration, and
stipple rendering are examples,

5. the effect a rendition has (or is hopefully to have) on its viewers: comprehensible
rendering,

6. the use of renditions for conveying information, perhaps in the context of
other media of expression: illustrative rendering, or simply illustration, and

7. the possible deformations of images: elastic presentations.

Another term, smart rendering, has recently been introduced to denote image
generation with the goal of emulating what can be imagined as being intelligent
behavior on the part of the computer. Systems incorporating such rendering are
associated with symbolic knowledge representation in applications that themselves
are associated with intelligence, irrespective of the graphical rendition. Hence this
term has a much wider scope than any of the preceding ones.

For the purposes of this book, we chose the term non-photorealistic rendering
(NPR for short). The reason for this choice is twofold. First, the term is the one
most widely used internationally for this area. Second, the term perhaps most
clearly covers all the facets that we cover in our book. Nonetheless, included
in our use of the term NPR are aspects of all the aforementioned terms. We
include all rendition styles that are covered by the term non-photorealistic rendering,
including those of the specific drawing techniques previously mentioned (sketch
rendering, pen-and-ink illustration, stipple rendering), which can be considered
subsets of NPR. The topic covered by this book also encompasses model or image
deformations (pliable, elastic, deformable surfaces); hence the book deals not only
with “non-photos” but also with “non-realism.” The book also deals with aspects
of how users perceive graphics; hence it is important that the renditions being
studied are comprehensible. Usually the renditions are to be used in the context
of linguistic utterances; hence NPR must also be considered to be illustrative in
nature.

Notoriously missing from our list of terms is one that indicates that the
renditions are to be works of art (artistic rendering might be an appropriate term).

12 C H A P T E R 1 Introduction

Indeed, various authors using one of the other terms have stated that their
renditions are to be more or less artistic by nature, but to date no one has seriously
argued for the term artistic rendering for the entire area. Indeed, the position taken
in this book on the place of NPR is that it is not intended to, nor will it in
any way, replace the work of humans involved in making works of art by hand.
Instead, NPR is intended for generating images in such situations as users would
otherwise simply not have any, or at least not as adequate, graphical material at
their disposal.

Despite the goals of NPR and the steps toward realizing them documented
in this book, it is the firm position of the authors that artists and illustrators
will continue to use their creativity for hand-producing graphics. The place of
humans will continue to be one of trendsetters in graphics; they will generate
styles that will be used as role models for rendering software, they will continue
to use drawing or painting as a medium of observing scenes, and they will produce
results worthy of putting a signature on. There is ample evidence from other areas
of computer science where fears came up among other professional groups that
turned out to be unfounded. For example, despite progress in text generation
systems, practically all texts that computer users read have still been formulated
by other humans; no systems exist, nor will exist in the foreseeable future, for
writing computer-formulated novels or poetry or for automatically formulating
complex business letters. Indeed, it is the goal that artists and illustrators will
continue to carry out such creative processes; this will continue to feed the area
of NPR with new challenges and topics of research.

1.3 Approaches to Algorithms for NPR
One of the key distinctions to be made between NPR and photorealistic rendering
pertains to artifacts of the renditions produced. In photorealistic rendering, the
goal is that all artifacts of the image correspond to features of the underlying model.
Another way of formulating this is to say that all object artifacts are to be encoded
in an image, and nothing else. Just as a good photograph taken with a camera
should not contain blurry regions or lines stemming from a dirty or scratched-
up lens, photorealistic images generated by computer should not contain artifacts
stemming solely from the rendering process. For example, aliasing artifacts do
not reflect features of a geometric model but are a side effect of the process
of approximating a continuous function by a set of discrete values. Such image
artifacts are painstakingly removed in photorealistic rendering by the process of

1.3 Approaches to Algorithms for NPR 13

anti-aliasing. This way, each detail of the rendition (ideally) corresponds directly
to a detail in the geometric model.

In NPR, by contrast, artifacts encoded within an image may stem from one
of several sources. We must differentiate between the image, the geometric model
from which it was generated, and the object itself that is modeled and portrayed
in the rendition. Indeed, artifacts in an image may result from the manner or
style in which the geometric model is rendered; we will refer to these as image
artifacts. Moreover, artifacts in an image may result from the way in which the
geometric model represents the original object; we wll call these model artifacts.
We will discuss these in turn.

1.3.1 Image Artifacts
Photorealistic images that are well done do not leave behind image artifacts that
are visible to the naked eye. The reason is that the “primitives” such images are
composed of are very small. Traditional film has a resolution of about 4,000 dpi
(dots per inch). By contrast, the naked eye can distinguish between markings on
paper that are at least two minutes of arc apart. When printing a photograph in a
standard photo album size (say, 6′′ × 4′′), the individual marks are closer together
than can be distinguished. Thus there is the possibility to provide a seemingly
seamless transition between markings, which in turn makes it possible to record
on a photograph the light effects captured by a lens. The same effect can be
achieved for photorealistic rendering.

Since NPR generally tries to mimic images made by hand, the individual
markings are of a larger size. This means that the markings can be distinguished as
image artifacts by the naked eye. For example, in a stipple drawing (see Figure 1.7),
a surface is represented by a collection of stipples (dots). This does not mean,
however, that the surface itself is polka-dotted; instead, the density of the stipples
is typically related to the brightness of the regions they represent. The task of the

F I G U R E 1 . 7 Example of a handmade stipple drawing of an ancient saw. The example illustrates
that NPR makes extensive use of image artifacts that do not correspond directly to the objects
being portrayed. For example, a trained viewer will never think that the saw shown is polka-dotted.

14 C H A P T E R 1 Introduction

F I G U R E 1 . 8 Dots of dubious quality. The white dots represent snowflakes in the scene. Their
regularity makes them appear as though they were applied to the image.

rendering software is to produce images as a collection of such markings such that
information about the underlying model is adequately represented. It is a task of
the viewer to interpret such artifacts of the image and deduce what they say about
the models or objects that they represent.

By contrast, Figure 1.8 shows an example of image artifacts of questionable
quality. Taken from a children’s storybook, the large white dots are to represent
snowflakes; however, their regularity makes them look as though they are polka
dots applied to the image rather than appearing as part of the scene.

1.3.2 Model Artifacts
The other fundamental distinction between photorealistic rendering and NPR
is that the geometric models need not correspond exactly to the object being

1.3 Approaches to Algorithms for NPR 15

F I G U R E 1 . 9 Example of a handmade medical illustration and its figure caption taken from a
textbook on anatomy. An object of interest has been enlarged, and this has been mentioned in the
caption. A translation of the figure caption is “Vestibulocochlear Nerve (VIII), labyrinth strongly
enlarged, lateral view.”

modeled. Through a process called graphical abstraction, certain features of the
model are enhanced so as to convey better information.

One reason for carrying out such graphical abstraction is that this enables
selected features of the geometric model to be exaggerated in the rendition in
order to emphasize them. For example, in medical illustrations an organ of interest
in the given context is often enlarged somewhat compared to the other parts of
the illustration to provide a better view of it (see Figure 1.9). Sometimes an organ
may be rotated somewhat relative to the other parts simultaneously to provide a
better view on all objects in a single image and to be able to study several objects
in the context of one another. This makes it possible to show more of the relevant
parts of an object than would otherwise be possible, while less relevant parts may
no longer be visible; this is a second reason for carrying out graphical abstraction.
Such changes in the model are often mentioned either in the figure caption or in
a disclaimer at the start of the book.

The process of graphical abstraction in NPR can also lead to features of
a geometric model being made smaller or otherwise less dominant so as to
de-emphasize them relative to other more important ones. Indeed, it is very

16 C H A P T E R 1 Introduction

1

2

3

4 11

5

6

10

8

9

12

15 14

7

13

F I G U R E 1 . 1 0 Examples of handmade sketches. In some areas of the portrayed objects, the surface
is indicated by cross-hatching, whereas in other parts the surface is not indicated explicitly.
Nonetheless, viewers generally will not suspect that the surface has disappeared just because it has
not been drawn.

common even to remove small, unimportant details entirely. Nonetheless, trained
viewers tend to interpret images correctly in the sense that a detail missing in the
rendition is not necessarily assumed to be missing in the object being portrayed.
For example, the lack of hatching lines in part of the image of Figure 1.10
will hardly be interpreted as there being a hole in the object; instead, the
viewer will conclude that the surface continues in some smooth manner without
interruption.

A third reason for changing a model is to enable better recognition of certain
features of the object being modeled. For example, in drawings of Disney’s Mickey
Mouse, the ears are drawn basically in a front view, even if Mickey himself is drawn
from the side (Figure 1.11). The ears are one of the fundamental trademarks of
Mickey; a mouse without such ears would not be Mickey. Nonetheless, viewers
would hardly reason that Mickey’s ears were mounted the wrong way.

We contend that it is this reasoning process to interpret non-photorealistic
images that gives them their greatest communicative power. The assumption is
that viewers will be able to build up a mental model of the object being portrayed.
Evidence from psychological research indicates that such mental models may
indeed have “holes” where no data is available. Thus NPR enables appropriate
graphics to build up incomplete or even vague mental models.

On the other hand, it is not only possible to select artifacts to represent certain
features of the objects being portrayed, indeed this selection must take place

1.3 Approaches to Algorithms for NPR 17

F I G U R E 1 . 1 1 Mickey Mouse seen from different views. Note how the ears are almost always seen
from a front view.

(otherwise, we would be back in the photorealistic mode). This makes NPR
in fact more demanding than working with a photorealistic renderer where the
question of which object features are represented by which graphical primitive
is, by definition, never raised. Thus algorithms must be developed to prepare for
this.

1.3.3 A Framework for Computing Image and Model Artifacts
From a computational point of view, the fundamental question in NPR is how to
compute the image and model artifacts. Indeed, information sources are needed
to derive what a rendition is to look like. These information sources are varied and
can be classified by their dimensionality. Generally, the data sources themselves
are not rich enough to determine all parameters needed for a rendition; other
methods are then needed to narrow down further the possible choices. We shall
study these in turn.

Dimensionality of Data Sources for Computing Artifacts

The first aspect that has a marked influence on the kinds of algorithms to be
devised for computing artifacts is its dimensionality. In principle, the algorithms
fall into the following categories, which we will illustrate with examples of image
artifacts.

1. Linear representations We will refer to representations of data based on sym-
bols (language or knowledge representation) as linear representations. In
situations in which such representations are available for the domain of the

18 C H A P T E R 1 Introduction

desired image, they may be processed to obtain information on how to choose
the artifacts. As a simple example, an algorithm for NPR might determine
the subject of a sentence accompanying the rendition and highlight the cor-
responding object in the image using certain graphical methods.

In essence, the area of information visualization deals with some aspects
of this topic. The focus of information visualization is to convert inherently
non-geometric data into geometric data, which can in turn be rendered using
standard graphics tools. This topic is outside the scope of this book, although
we will touch on it as an application of NPR (see Section 10.4).

2. Two-dimensional data Non-photorealistic images can be generated by an-
alyzing other two-dimensional images, extracting certain information, and
assembling the desired non-photorealistic image. For example, to affect im-
age artifacts, a photorealistic rendition can be analyzed with image processing
software to compute the positions of edges; these edges can then be enhanced
by drawing lines into the original photorealistic image. The result is an NPR.
This procedure is common in medical imagery, where a device produces a
two-dimensional image that is augmented to draw the doctor’s attention to
certain features (see Figure 1.12).

3. Encoding selected three-dimensional information in two-dimensional data structures
In some cases, it is possible to devise special data structures that can be
processed to yield directives for non-photorealistic components of an image.
For example, Figure 1.13(a) shows a photorealistic rendition of a nut; since
parts of it are in a shadow, edges cannot be detected using the method just
described. Instead, an additional two-dimensional data structure called a G-
buffer (we will come to this in Chapter 6) is computed that contains the
normal vector for each pixel in the image. Now discontinuities in the normal
vector can be found and lines defining these discontinuities added to the
original image. The result is shown in Figure 1.13(b). We shall refer to these
two-dimensional data structures containing some three-dimensional data as
being 2 1

2D.

4. Three-dimensional data If a three-dimensional geometric model of an object
to be rendered is available, this can be exploited in the rendering process. For
example, Figure 1.14(a) shows a line-drawing rendition of an architectural
structure; Figure 1.14(b) shows a rendition of the same building using depth
cuing by making thinner parts of lines that are farther away.

1.3 Approaches to Algorithms for NPR 19

(a) (b)

F I G U R E 1 . 1 2 Enhancement of a medical image through edge detection and visualization. An
original medical image shows a cross section of a brain (a); edge enhancement software has
determined where discontinuities in the surface exist, and these are shown in the NPR (b).

(a) (b)

F I G U R E 1 . 1 3 Enhancement of an image using selected three-dimensional information in a two-
dimensional data structure. Edge detection on the image of a nut (a) may be inadequate for finding
all edges. Instead, an additional two-dimensional data structure, called a G-buffer, is computed that
contains the object’s normal vector for each pixel in the image. Now discontinuities in the normal
vector can be found and lines defining these added to the original image. The result is shown in (b).

20 C H A P T E R 1 Introduction

(a) (b)

F I G U R E 1 . 1 4 Adding depth cuing using three-dimensional information: a building is shown as a
line drawing (a) and the lines not lying in the image plane are tapered to indicate depth (b).

Artifacts

Model
artifacts

Image
artifacts

1D 2D 21
2D 3D

Dimensionality of data source

F I G U R E 1 . 1 5 Artifacts can be classified and related to the dimensionality of their data source.

Model artifacts can also be classified in the same manner. We will see a variety
of examples later in this book.

In summary, data is necessary to determine which artifacts are to be combined
to yield a non-photorealistic rendition. This data can be classified according to its
dimensionality, as illustrated in Figure 1.15.

1.3 Approaches to Algorithms for NPR 21

(a) (b)

F I G U R E 1 . 1 6 Placement of stipples. A surface of constant light intensity can be stippled by a
regular grid of dots (a). This causes problems when viewers associate the regularity of the grid with
non-existent features of the surface. By contrast, a statistical variation in the distribution, as shown
in (b), yields more pleasing results.

Computing Artifacts from Data Sources

Once data sources for potential artifacts have been analyzed, it quickly becomes
evident that there are many different possible artifacts that can be included in a
rendition to convey information. Hence methods must be developed to choose
among these.

We will first classify these methods according to the properties that the
collection of artifacts is to have:

1. Random statistical variations In some situations, statistical variations dictate
the possible choices for artifacts (see Figure 1.16). Indeed, statistical variation
may be necessary so that a viewer is led to believe that the artifacts are in fact
image artifacts and not model or object artifacts.

2. Arbitrariness Some object or model features can be visualized with any
one of a variety of very different possible choices of artifacts. For example,
Figure 1.17 shows a line drawing in which the important parameters for the
rendition can be set arbitrarily within certain bounds.

3. Determinism Given certain constraints on the properties of a rendition,
parameters can, in some cases, be computed deterministically. For example,
given a size of a grid to cover a model and the constraint that the object’s

22 C H A P T E R 1 Introduction

F I G U R E 1 . 1 7 Arbitrary placement of cross-hatching lines. Note that the hatching is less dense in
the left image than in the right one. In any case, the hatching in these images is used to indicate
curvature. The precise length and thickness of each line as well as the density of the lines are
parameters that can be chosen arbitrarily within certain bounds.

shape is to be recognizable from any orientation, a better parameterization
of the grid can be computed (see Figure 1.18).

From where is the data to make these decisions to come? We will see
throughout this book that three different sources of data can be exploited when
deciding on these properties and their parameterization:

1. Geometric model A considerable amount of information can be extracted
from the geometric model. Note that the information may stem from the
original 3D model, or even some other geometric data structure derived from
it (like 2 1

2D or 2D structures). This information goes beyond that necessary
to determine the details of what the object being modeled looks like and
extends, for example, to a classification of the object’s global shape or the
complexity of its shape. This information can then be used to decide on the
parameterization of the rendition.

2. User input User input is an important aspect of systems for NPR. This
input is generally contributed by the last user who changes the image.
Various methods for enabling user input have been developed specifically
for NPR.

1.3 Approaches to Algorithms for NPR 23

(a) (b)

(c) (d)

F I G U R E 1 . 1 8 Unique positioning of lines. An initial parameterization of a surface is shown in (a).
When viewed from the top, the surface’s curvature is not evident (b). If the object’s curvature is
to be recognizable from any viewing direction, a new parameterization can be computed (c). The
curvature is now more readily evident from the top view (d). This example is studied in detail in
Chapter 7.

3. Additional symbolic representations Experience has shown that to be able to
generate high-quality non-photorealistic renditions, geometric models need
to be enriched over and above being simply a collection of polygons. On the
most fundamental level, this enrichment starts with a hierarchical organization
of the polygons into smaller objects; more complex, the enrichment may
extend to providing pointers to objects in a knowledge-based system. The
latter enables inference mechanisms to be used to compute parameters of the
rendition.

These concepts are summarized in Figure 1.19.

24 C H A P T E R 1 Introduction

Choice of artifacts

Random
staistical
variation

Arbitrary
choices

Deterministic
computation

Geometry End user

Data source

Additional symbolic
representations

F I G U R E 1 . 1 9 Methods for computing artifacts can be classified according to the kinds of algorithms
used and the data source.

1.4 Visions for NPR
The goal of NPR is to enable users to lead human-computer dialogs with
information exchange in a graphical form. The style of the images generated
should be flexible so as to be most appropriate for the dialog at hand. To this end,
a model of information transfer must be assumed or developed, and methods and
tools need to be developed to enable designers and programmers of interactive
systems to have appropriate images rendered for their end users.

In this section, we will present several examples of handmade non-realistic
images that are to serve as role models. The goal of NPR is ultimately to be able to
generate by computer and upon user demand images that are at least as good and
appropriate to the dialog context as the exemplars. For the time being, however,
these images will remain visions; they are indications of “open problems” to be
solved. We will explore images from different areas since each area has its own
requirements and conventions. To be successful in creating non-realistic renditions
in each of the areas, these conventions have to be followed in order to meet the
users’ (or viewers’) expectations.

1.4 Visions for NPR 25

1.4.1 Scientific and Medical Il lustration
Scientific and medical illustration is perhaps the area of illustration that has
achieved the highest level of sophistication. Medical books are full of beautiful
samples of unique illustrations. Some of these are so good that they are reused
in medical books over many decades; the texts change, but some illustrations are
passed on from generation to generation of medical students.

Furthermore, scientific and medical illustration emerged from a field of art
into an area of scientific research. The first medical illustrations were published
in 1543 in Versalius’s book De Humani Corpus Fabrica, the first anatomy textbook
as we know it. Images in this book were accurately and painstakingly drawn and
reproduced as woodcuts by one of Tizian’s apprentices. During that time, medical
illustration was still a form of art. Today, many universities offer degree programs
in scientific illustration or medical illustration.

As a consequence of this development, there exist a number of conventions
and standards of how to communicate scientific and medical facts visually. Many
of these conventions are so “normal” today that readers of anatomy textbooks
do not even notice them as being something special. So, for instance, arteries
and veins are almost always depicted using blue and red, whereas muscle tissue
is drawn in brown and ligaments in white or gray. Further, lighting conditions
are depicted in a way that the light source seems to be placed in the upper right-
hand corner of the subject being portrayed. Although these conventions are used
consistently throughout the literature today, they are explained in most cases in
a special disclaimer to each book. This gives the reader a “translation table” to
enable him or her to effectively decode the illustrations.

Figure 1.20 shows an example of such a medical illustration. Note how
different lighting conditions are encoded by using different wide lines and different
dense hatchings. Also note the use of color to encode additional information (in
this case, emphasis).

1.4.2 Technical Il lustration
Technical illustrations made by hand tend to be simpler and less varied than
scientific or medical illustrations. No doubt this is because they tend to portray
industrial products with a more uniform surface structure than, for example, the
human body. Indeed, technical illustrations tend to be characterized by larger
white surfaces since either the details are not known or unavailable, or they are

26 C H A P T E R 1 Introduction

F I G U R E 1 . 2 0 Example of a handmade medical illustration taken from a textbook on anatomy.

not important for the communicative goal at hand. A second fact is that within the
domain of technical illustration, many efforts have been made to develop standards
in order to make technical illustrations an effective medium for communication
between engineers. This goal has been reached by technical drawings that are
standardized even by ISO norms and that are produced nowadays not only by
trained draftspeople but also with the help of special software (CAD and CAAD
programs).

Nevertheless, technical illustration as an area includes more than just these
technical drawings. More illustrative images, as we see every day in user manuals
(see Figure 1.21), are part of this area, as well as illustrations in other kinds
of technical documentation. Note in these images that they omit many of the
details of the portrayed objects and show only these parts that are of interest
in the context at hand. What’s more, technical illustrations in general tend to
include abstract-graphical symbols to show additional information (for example,
handling instructions or measurements). It is an interesting question whether
these additional symbols can also be generated and placed in the process of non-
photorealistic rendering based on the given data.

1.4 Visions for NPR 27

F I G U R E 1 . 2 1 Example of a technical illustration taken from a user’s manual of a PCI device.

1.4.3 Archaeological Il lustration
In some branches of science, specific styles of graphics have become the methods
of choice for capturing visible phenomena. One such area is archaeology, where
scientists draw as a vehicle for observing both minute details and larger patterns
in their findings. A great many illustrations in archaeology are drawn primarily
using stippling, where the drawing consists of small dots to cover surfaces.

Figure 1.22 shows an example of a handmade archaeological illustration. Note
how the various different materials are represented by different kinds of graphical
representations. Lines are also added to denote sharp contours like around the
edges of individual objects. Note also how the details of the stippling reflect the
nature of the material that it represents. Indeed, similar principles also apply in
other areas apart from archaeology.

1.4.4 Storytell ing
The art of using comics and animation to support telling stories was brought
to perfection by the Walt Disney Company. Visualizations convey information
to augment what is spoken by the characters. Indeed, though up to now such
presentations have been designed manually by human experts, it is an exciting
challange to design and implement methods and tools for automatically generating
the visualizations for such stories. No doubt NPR methods will lie at the heart

28 C H A P T E R 1 Introduction

F I G U R E 1 . 2 2 Example of a handmade archaeological illustration.

F I G U R E 1 . 2 3 Excerpt of a handmade pictorial presentation for storytelling.

of such systems because this enables abstraction, focus, and subtleties needed for
effective communication.

Figure 1.23 shows an excerpt of a handmade graphical presentation repro-
duced on paper. The long-range vision is to be able to produce such images from
verbal descriptions and geometric models.

Exercises
1.1 Find three different handmade images of the same object or the same

kind of object as they are used in any area of science or engineering (for
example, find three drawings of the heart as they are used in anatomy).
Study each image and compare the images.

Exercises 29

a. What do you think the illustrators’ goal was when they drew the
images? How might you assess whether the goals that the illustrators
had have been met?

b. For each image, list some features that you would consider to be (i)
image artifacts, (ii) model artifacts, and (iii) object artifacts.

c. What conventions do the images make use of? Are they used consis-
tently?

d. What different drawing styles do the images use? Hypothesize why
these styles are used.

e. Compare the scale of the drawings. Is each of them to scale?
f. Study the level of detail the illustrators used. Are they the same across

the images? Why or why not?
g. What differences would there be between a photorealistic image of

your object and the images that you chose? Surmise what dimension-
ality (linear, 2D, 2 1

2D, or 3D) of a data structure would be needed
to affect the changes if the illustrator started with a photorealistic
image.

h. Which of the terms that have previously been used for NPR apply to
your images?

i. Talk to an expert in the area of application about your answers to these
questions. Find out how he or she uses these images, what information
he or she expects to take away from them, and in what context this
takes place.

1.2 Use a pencil and a piece of paper to draw a sketch illustrating a night out
you had recently. Include all details that you consider important for the
experience of that evening.
a. Label the objects in the image with respect to the dimensionality of

the data source; that is, how do you know that this object should be
included in the rendition.

b. For each object, assess how close to the appearance of the real object
your drawing is. Is it to scale? Does it have the right orientation?
Classify your observations with respect to the terms statistical variation,
arbitrariness, determinism.

30 C H A P T E R 1 Introduction

Bibliographic Notes
The need for non-photorealistic image generation methods was already stated
quite clearly in the late 1980s. In Foley et al. (1990), one of the standard texts
for photorealistic computer graphics, it is said that “If the ultimate goal of a
picture is to convey information, then a picture that is free of the complications
of shadows and reflections may well be more successful than a tour de force of
photographic realism.” The area of NPR then was of interest at major computer
graphics conferences throughout the 1990s. For example, Eurographics’99 and
SIGGRAPH’98 both already had sessions dedicated to this topic. Some classical
computer graphics textbooks that deal primarily with photorealistic rendering
have sections on specific aspects of NPR, for example, Watt and Policarpo (1998).
Strothotte and Strothotte (1997) analyzes the role of NPR in human-computer
interaction.

In a sense, early papers in rendering can be regarded as having dealt essentially
with NPR because the methods were too crude to be classified as photorealistic,
even though this was their goal. Among the very first to set what we today call
NPR as his goal was Steve Strassman in his paper on hairy brushes (Strassmann,
1986a).

Lansdown and Schofield (1995) were the first to structure in a general way the
problems in NPR. In particular, they were the first to observe that such renditions
have artifacts that can be attributed to the image rather than only to the objects
being modeled.

Various terms have been used in the literature for the general area that we
call NPR: non-realistic rendering was first used by the organizers of the Euro-
graphics’99 conference, non-photorealistic rendering by Lansdown and Schofield
(1995), sketch rendering by Strothotte et al. (1994), pen-and-ink illustration by
Winkenbach and Salesin (1994), stipple rendering by Deussen et al. (1999b),
comprehensible rendering by Saito and Takahashi (1990), artistic rendering by
Lansdown and Schofield (1995), illustrative rendering by Dooley and Cohen
(1990a, 1990b), and finally elastic presentation by Carpendale (1999).

2 P I X E L M A N I P U L A T I O N O F I M A G E S

The first approach to non-photorealistic rendering that we will pursue is to work
on the level of the image’s pixels or of small marks. The input to such algorithms
is generally simply a pixel matrix, where each entry is either a gray level or a
color value (RGB). Indeed, we will concentrate on the former and show how to
transform the gray levels to achieve various visual effects. In the terminology of
Chapter 1, we will induce image artifacts for any one of a number of reasons.
Although in the past many authors working on such topics considered these
artifacts to be a distraction that had to be minimized, we will show how in many
cases this apparent “bug” of having induced image artifacts can be made into an
elegant rendering feature in NPR.

The methods we introduce in this chapter can be applied in one of two ways.
First, they can be used in a post-processing step to a photorealistic renderer. The
renderer initially produces a pixel-based image and then applies algorithms to this
image; the pixels are manipulated to produce various different effects. The second
way in which most of the methods discussed in this chapter can be used is to apply
them to scanned images. Indeed, most of the methods we discuss need no more
information than that directly discernible from a gray-level image.

All methods of this and the next chapter operate on the level of pixel
manipulation and can be illustrated using what is called an intensity ramp. An
intensity ramp based on gray levels is shown in Figure 2.1: the intensity varies
monotonously from 1.0 on the left to 0.0 on the right; that is, black is represented
as intensity value 1.0 and white as 0.0. Hence, the term intensity is connected to
the “blackness” of the image. If for any reason the opposite notation is needed,

31

32 C H A P T E R 2 Pixel Manipulation of Images

F I G U R E 2 . 1 The intensity ramp based on gray levels.

we will use the term brightness, which is represented by a value of 1.0 for white
and 0.0 for black. Each method we introduce in this chapter will yield a different
way of representing the intensity ramp.

In the following, we will first concentrate on the process of halftoning, which
carries out a reproduction of a continuous tone image on a bi-level device, that
is, each pixel is either set (black) or not set (white). A special kind of halftoning
called screening can be employed to control the patterns (dither screens) used to
produce blocks of pixels with given intensity values. In connection with this,
the properties of the dither screens have to be observed. We will show how to
tune these screens in order to achieve the desired results. We will then show how
dither screens can be produced both procedurally and manually, such that they
represent certain shapes and how images can be built by combining these shapes.
We will then move on to the process of stippling in which pencil-point-sized dots
are combined to render images. We first introduce automatic methods before we
show how user interaction can be used to create expressive images. Finally, image
mosaics will be explored, in which the final image is assembled by combining
many small discernible images.

2.1 Halftoning Methods
When producing a newspaper or a book in black and white, a considerable amount
of work has to be done to prepare images for the printing process. Since only two
colors, namely, black and white, are available, all continuous tone images—be they
color or grayscale—have to be represented in a manner that the overall intensity
distribution stays approximately the same. Here, a process called halftoning is the
key for producing images in a quality we are used to seeing in daily newspapers.

Originally, halftoning was a process by which each small resolution unit (we
are not speaking about pixels yet) is imprinted with a circle of black ink whose
area is proportional to the intensity of the corresponding area in the original.
Thus the output image is composed of a set of variably sized circles that can be

2.1 Halftoning Methods 33

0 1 2 3 4

5 6 7 8 9

F I G U R E 2 . 2 Example of patterns for representing ten intensity levels of a 3 × 3 pixel area.

seen when looking at a newspaper photograph using a magnifying glass. Usually,
newspapers use 60 to 80 variably sized and variably shaped areas per inch, whereas
in magazines and books this number is slightly higher, about 110 to 200 per inch.

2.1.1 Ordered Dithering
Modern graphical output devices work with small, indivisible units of uniform
size and shape called pixels that can be addressed separately and given a unique
color (out of a range of colors being determined by the technical specification of
the device in question). Thus it is impossible to perform the halftoning process as
described earlier since it is impossible to draw areas of different sizes. However, if
we consider a group of n × n pixels, we can switch on and off a different number of
them to achieve several intensity levels. Figure 2.2 shows the ten possible patterns
for ten intensity levels when using a 3 × 3 matrix. This process of halftoning—
often also known as ordered dithering—works rather simply by computing the
medium intensity of an n × n pixel area in the original image and replacing this
area with the appropriate n × n pattern for the desired intensity.

The patterns in Figure 2.2 are just one example for setting pixels in a 3 × 3
array. To describe those patterns, so-called dither matrices are used. A dither
matrix contains an intensity level in each cell. To get a specific pattern for a
region, all pixels represented by cells with an intensity level less than the desired
intensity are switched on. For the preceding example, the dither matrix D(3) is

34 C H A P T E R 2 Pixel Manipulation of Images

1 for x := 0 to width(S)//n do
2 for y := 0 to height(S)//n do
3 R := get n × n region of the image S starting at position (nx, ny)
4 i := mediumIntensity(R)

5 P := pattern[i]
6 place P in the output image O starting at position (nx, ny)
7 od
8 od

A L G O R I T H M 2 . 1 Ordered dithering based on dither matrices of size n. The output image O is
composed of dithering patterns that are stored in the array pattern and accessed by the medium
intensity of the respective n × n region of the source image S.

D(3) =
 6 8 4

1 0 3
5 2 7

For an intensity value of 50% (or 5

10) of the maximum intensity, the pixels 0 to 4
are thus switched on. Compare this matrix with the patterns in Figure 2.2 to see
how the desired intensity levels are reached by switching on a specific set of pixels.
To give some more examples, Equation (2.1) shows respective dither matrices for
halftoning using 2 × 2 and 4 × 4 pixel regions. Note that with an n × n dither
matrix, it is possible to display n2 + 1 intensity levels.

D(2) =
(

0 2
3 1

)
D(4) =

0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5

 (2.1)

Putting it all together, Algorithm 2.1 describes the halftoning process using
such dither matrices. The dithered intensity ramp in Figure 2.3 reveals one of
the characteristics of this algorithm. The intensity range is “discretized” into
n2 + 1 regions (given an n × n dither matrix), each of which is then filled
with the appropriate pattern. This yields strong blocking artifacts as would any
discretization method.

Such dither patterns must obey certain properties, the most important of
which is that they do not form regular patterns or visual artifacts. The visual
quality of the dithered image should come close to that of the original image.
However, leaving such artifacts in the image or even deliberately producing such

2.1 Halftoning Methods 35

F I G U R E 2 . 3 Intensity ramp dithered using the dither patterns from Figure 2.2.

3
16

5
16

1
16

7
16

F I G U R E 2 . 4 Distribution of the error within the Floyd-Steinberg algorithm. Note that all portions
sum up to one.

artifacts may be used to create renditions with a certain style. We will have a closer
look at this in Section 2.1.3.

2.1.2 Error Diffusion
The technique described so far is also known as ordered dithering since clusters
of dots are used where the order of the dots is given by the dither matrix and
is not changed during execution of the dithering algorithm. Even when the
dither matrices are designed very carefully, it is sometimes the case that there
are visible artifacts in the resulting image. To circumvent this problem, so-called
error diffusion techniques can be used. As the name implies, the error (difference
between the exact pixel value from the original image and the approximated
value being displayed in the result) is distributed to the neighboring pixels, thus
introducing a kind of “smoothing” into the dithered image.

The best-known error diffusion technique was developed by Robert W. Floyd
and Louis Steinberg in 1975 and can be considered one of the classical algorithms
in computer graphics. The difference between the exact pixel value and the binary
representation is distributed among the neighboring pixels with a certain ratio for
each direction, as can be seen in Figure 2.4. There exist a wide range of other
approaches to error diffusion dithering, which mainly differ in the fractions of
the error term being distributed on the neighboring pixels and in the set of pixels
being involved.

36 C H A P T E R 2 Pixel Manipulation of Images

1 for y := height(S) − 1 to 1 step -1 do
2 for x := 1 to width(S) − 1 do
3 K := approximate(S[x, y]);
4 O[x, y] := K ;
5 error := S[x, y]− K ;
6 S[x + 1, y] := S[x + 1, y]+ 7

16error;

7 S[x − 1, y − 1] := S[x − 1, y − 1]+ 3
16error;

8 S[x, y − 1] := S[x, y − 1]+ 5
16error;

9 S[x + 1, y − 1] := S[x + 1, y − 1]+ 1
16error;

10 od
11 od

A L G O R I T H M 2 . 2 Given an input image S, the Floyd-Steinberg algorithm computes an output
image O by distributing the approximation error to neighboring pixels. The function approximate()
returns the closest intensity value possible to display in the output image of the current pixel.

F I G U R E 2 . 5 Intensity ramp dithered using Floyd-Steinberg error diffusion.

To present the procedure more formally, consider the pseudocode in Algo-
rithm 2.2. Note that the algorithm processes the image from left to right and from
the topmost pixel downwards so that the error terms are always added to pixels
that have not been already involved in the dithering process. Also note that all
fractions of the error term that are distributed sum up to one. (That is, exactly
the error is distributed; any inaccuracy here results in unwanted visual artifacts.)
To show the result, the intensity ramp dithered according to this algorithm can
be found in Figure 2.5.

At the end of this theoretical section on the basics of halftoning, an example
will show the results that are produced by the different methods when applied
to one image. In Figure 2.6(a), an original grayscale image is given. Next, in
Figure 2.6(b), a simple threshold quantization has been performed by setting all

2.1 Halftoning Methods 37

(a) (b) (c) (d)

F I G U R E 2 . 6 Different halftoning techniques for the same original image (a): threshold quantization
(b), ordered dithering (c), and Floyd-Steinberg error diffusion (d). The lower images show an
enlarged part to visualize the pixel distribution.

pixels having an intensity of less than 0.5 to white and all others to black.1 Figures
2.6(c) and (d) show an example of ordered dithering using the dither patterns
from Figure 2.2 and finally the result of the Floyd-Steinberg algorithm.

2.1.3 Applications to NPR
So far we have described the algorithms as they would be described with the
original goal of reducing the artifacts being induced in the images. If we turn the
page, however, and look at what kinds of possibilities arise when using the same
algorithms to introduce artifacts into images, we will find a simple method for
creating non-photorealistic renditions.

Non-Photorealistic Dither Matrices

The goal when designing dither matrices used for ordered dithering is usually
to distribute the pixels as evenly as possible and to prevent patterns from being
introduced in the image. If pixels in the dither matrix are grouped in a way that
they form visual patterns, interesting effects are achievable. We will demonstrate

1. This is actually how the function approximate() in Algorithm 2.2 works.

38 C H A P T E R 2 Pixel Manipulation of Images

F I G U R E 2 . 7 Dither patterns produced by the matrix in Equation (2.2). Note that the empty
pattern (for zero intensity) is not displayed.

this with two examples. The first matrix forms triangular patterns and is built from
the bottom left element diagonally up to the top right element. This matrix is
given in Equation (2.2); the respective dither patterns can be found in Figure 2.7.

D(4) =

6 10 13 15
3 7 11 14
1 4 8 12
0 2 5 9

 (2.2)

As can be seen from this example (a dithered image using this matrix can be
found in Figure 2.8(a)), the patterns are not clearly visible if the matrix is relatively
small. Thus, a larger dither matrix of size, say, 6 × 6 will yield better results. The
strength of the introduced artifacts is increased with the matrix size. As a second
example, a matrix that results in linear artifacts is given in Equation (2.3).

D(4) =

6 12 10 1
2 9 14 5
4 13 8 3
0 11 15 7

 (2.3)

Since in the process of building the dither matrix all pixels have to be used,
for some intensity values the patterns are not clearly recognizable. Hence, the
matrices introduced here are well designed for an image with medium intensity
(many groups of pixels that are replaced by the pattern where the intended shape
is most visible). This means also that when designing such matrices or patterns,
the target images have to be considered. The images in Figure 2.8 are produced
with a 6 × 6 version of the matrices given earlier.

2.1 Halftoning Methods 39

(a) (b)

F I G U R E 2 . 8 Examples for non-photorealistic dither matrices using bigger versions of the patterns
described in the text: derived from Equation (2.2) (a) and derived from Equation (2.3) (b).

Halftoning Using Lines

The following techniques make use of error diffusion to get an initial pixel
distribution that is then changed to introduce image artifacts explicitly. The Floyd-
Steinberg algorithm offers a good starting point for halftoning using lines instead
of dots.

For halftoning with lines, the Floyd-Steinberg algorithm is changed such that

1. short lines are produced as output instead of dots and

2. the error distribution is adjusted so that the image does not get too dark (since
short lines blacken more pixels than just a single dot).

Instead of setting a black pixel in the output image, we draw a short line (that
is, setting more than one pixel) in a given direction. Doing so, the image gets
much darker than we want it to be, so we have to change the error term in
order to compensate. The only thing we need to change are lines 3 through 5 in
Algorithm 2.2. The first approach is Algorithm 2.3, where a line is drawn that
covers m pixels. These m black pixels then have to be compensated for by m white

40 C H A P T E R 2 Pixel Manipulation of Images

1 K := approximate(S[x, y]);
2 if (K = 1) then
3 drawLine(O, x, y, m);
4 error := S[x, y]− K − (m − 1);
5 else error := S[x, y];
6 fi

A L G O R I T H M 2 . 3 Replacement for lines 3–5 of the Floyd-Steinberg algorithm (see Algorithm 2.2)
for hatching lines. The function drawLine(O, x, y, m) draws a line using m pixels, the center of the
line being placed at (x, y) in the output image O.

(a) (b) (c)

F I G U R E 2 . 9 Using the Floyd-Steinberg algorithm to create hatching lines. The lines are drawn
with different slopes, lengths, and densities: slope 30◦, lines approximately 3 pixels long (a), more
dense hatching as in (a) by changing the error compensation (b), slope 45◦, lines 5 pixels long (c).

pixels so the error term is reduced by m − 1.2 This causes the surrounding pixel
values to become much brighter and thus not to contribute to the set of black
pixels or lines. An example output of Algorithm 2.3 can be seen in the images of
Figure 2.9 and the intensity ramp shown in Figure 2.10.

Even though error diffusion approaches generally reduce the number of
artifacts left in the image, there are still a few portions that show some kind

2. The pixel itself already influences the computation of error by the value of K . Thus we only need
to subtract m − 1.

2.2 Screening 41

F I G U R E 2 . 1 0 Intensity ramp dithered using short hatching lines.

of pattern. This is already the case in the dithered image (see Figure 2.6(d)) and
also shows up in the hatched renditions. Here, parallel lines as well as lines being
connected to one another introduce even more artifacts than we might wish. To
remove these, several possibilities can be considered. First, we can introduce some
random changes in the lines’ placement, that is, slightly change the position of
the endpoints by adding a random offset. This procedure will make the image
more vivid but is not a function of the image nor the portrayed geometry itself.
A second way is to incorporate geometric properties of the portrayed model into
the creation process of the rendition. This can be done either by adjusting the
parameters of the halftoning algorithm or—when doing halftoning with lines—
by aligning the lines along a specific attribute of the underlying geometry, like
the surface normal vector. We will study G-buffers, which are the basis for this
kind of application, in more detail in Chapter 6.

2.2 Screening
Using the halftoning techniques introduced so far, the user has no control over
the pattern that is used in a block for representing an intensity value. Indeed,
the patterns used (recall Figure 2.2) are rather unimaginative and decidedly un-
informative. The technique called screening, which we shall now study, takes steps
toward giving the user control over the pattern that is used to convey intensity.
The goal in using such patterns is to employ this level of information display to
convey additional information over and above the information contained in the
original image. For example, when viewed from a distance, this information may
convey texture, or when examined up close, may convey an entirely different mes-
sage. Note that the methods that we introduce in this section can be referred to
as image-independent dithering because the patterns used are chosen independently
of the input image.

42 C H A P T E R 2 Pixel Manipulation of Images

2.2.1 Basic Method
Ordered dithering approaches use a group of pixels and represent their medium
intensity value by a specific pattern (see Section 2.1.1). Error diffusion techniques
utilize the result of a simple threshold quantization and redistribute the resulting
error to the surrounding region of a pixel. There is a third halftoning technique
that is often referred to as screening. Here, two images are combined using
Algorithm 2.4: the input gray-level image S and an n × m (gray-level) threshold
matrix M that contains intensity values. Given an intensity value S[x, y] at the
position (x, y) in the input image, we compute its corresponding binary value
in the output image by comparing the value S[x, y] of the pixel with the value
M [x mod n, y mod m] of the threshold matrix. If the pixel intensity is greater than
the threshold value, then O[x, y] is set; otherwise, it is not set.

To make life easier and eliminate the modulo operations in Algorithm 2.4, the
threshold matrix can be replaced by a second gray-level image—which we call a
dither screen D—of the same size as the input image. D contains the threshold
matrix repeated again and again in the horizontal and the vertical direction.
Algorithm 2.4 is then modified as shown in Algorithm 2.5.

1 for x := 0 to width(S) do
2 for y := 0 to height(S) do
3 if S[x, y]< M [x mod n, y mod m] then O[x, y] := 1 else O[x, y] := 0
4 od
5 od

A L G O R I T H M 2 . 4 Basic screening as a method of halftoning.

1 construct D by repeating Mover the image area
2 for x := 0 to width(S) do
3 for y := 0 to height(S) do
4 if S[x, y]< D[x, y] then O[x, y] := 1 else O[x, y] := 0
5 od
6 od

A L G O R I T H M 2 . 5 Given a dither screen D of the same size as the input image S simplifies
Algorithm 2.4.

2.2 Screening 43

(a) (b) (c) (d)

F I G U R E 2 . 1 1 Example for image-independent dithering: (a) the original image, (b) the threshold
matrix used (enlarged), (c) the dither screen that was formed by repeating the threshold matrix
over the image area, and (d) the resulting image after application of Algorithm 2.5.

Figure 2.11 shows an example of this basic method of screening—(a) shows
a sample input image S, (b) the dither matrix, (c) the dither screen D, and finally
(d) the output image O. As we can see, this technique creates a kind of “texture”
in the output image that is determined by the threshold matrix used. This might
also be the origin of the name screening since it gives the image a look as if a
transparent screen containing a pattern is lowered in front of the image.

Although arbitrary images can be used as threshold matrices, to gain better
results, they have to possess certain qualities that are needed to approximate the
continuous tone image. Those qualities are

1. Uniform distribution of threshold values The dither screen should contain an
equal number p of pixels of each possible intensity value i (0 ≤ i ≤ imax). This
enables the uniform reproduction of the maximum range of gray tones.

2. Homogeneous spatial distribution of threshold values Pixels of like threshold value
should be spread uniformly throughout the dither screen to approximate the
gray tone of the input image in the same fashion in different regions of the
image.

Note that the dither screen used in Figure 2.11(b) in fact has the first of these
qualities, a uniform distribution of threshold values. It was chosen so that an
equally distributed subset of the intensity values between 0 and 255 is present
exactly twice. The intensity ramp created based on this basic screening method is
shown in Figure 2.12. When dither matrices that do have a uniform distribution

44 C H A P T E R 2 Pixel Manipulation of Images

F I G U R E 2 . 1 2 The intensity ramp using the basic method of screening based on the threshold
matrix of Figure 2.11(b).

of threshold values are replicated in tiles over a dither screen covering the input
image, as was illustrated in Figure 2.11(c), the second quality, a homogeneous
spatial distribution of threshold values, is met automatically.

2.2.2 Tuning Image and Screen Intensities
In cases where the two qualities indicated earlier are not met, the dither screens
have to be specially prepared in order to be used properly. To adopt the intensity
distribution, we first have to determine which intensities are in the given dither
screen and how they are distributed. This is a typical procedure in signal and image
processing where histograms are employed.

Histograms and Histogram Equalization

A histogram of an image is actually a statistical measure that is also known as the
probability mass function (PMF) (when normalized to fall in a range between zero
and one). It describes the probability with which a pixel in the image has a certain
intensity value. To compute the histogram, we simply count up how many pixels
there are of each possible intensity and divide these values by the total number of
available pixels. Basically, a histogram is then a list describing the distribution of
the different gray levels in an image. One attribute of such a histogram or PMF
is that its values (probabilities) will always sum up to one. Algorithm 2.6 is used
to compute the histogram of an input image; an example—visualized as a bar
chart—can be seen in Figure 2.13.

To achieve a uniform distribution of the gray values, we need to perform a
histogram equalization on the input image. We first compute the cumulative sums
of the histogram values as follows:

C[i]=
i∑

k=0

H [k] i = 0 . . . 255

2.2 Screening 45

1 for i := 0 to 255 do H [i] := 0 od
2 for y := 0 to height(S) − 1 do
3 for x := 0 to width(S) − 1 do H [S[x, y]] := H [S[x, y]]+ 1 od
4 od
5 for i := 0 to 255 do H [i] := H [i]/(height(S) · width(S)) od

A L G O R I T H M 2 . 6 Computing the histogram H of an input image S in which each pixel has one
of 256 intensity values.

0.02

0.015

0.01

0.005

0
0 50 100 150 200 250

(a) (b)
Gray level

Pr
ob

ab
ili

ty

F I G U R E 2 . 1 3 Gray-level image (a) and the histogram computed for it (b).

As a result, we get the so-called cumulative mass function (CMF), which is a statistical
measure of the probability that a pixel is of a given intensity or less. Both functions,
PMF and CMF, are used in many pixel-level transformation techniques that
basically alter the PMF by using the CMF as a look-up table. One of these
techniques, histogram equalization, computes for each pixel in the image S a
new gray value g′ by 255 · C[g]. As a result, we get an image with a uniform
intensity distribution that can be seen easily by computing the histogram of the
resulting image again and comparing it with the one from the original image.

Putting it all together, Algorithm 2.7 formalizes the process of histogram
equalization, whereas Figure 2.14 shows the resulting image and histogram,
again from the input image in Figure 2.11(a). The term histogram equalization
actually describes a whole class of algorithms, which we shall see shortly. The

46 C H A P T E R 2 Pixel Manipulation of Images

1 H := histogram(S)

2 C[0] := H [0]
3 for i := 1 to 255 do C[i] := C[i − 1]+ H [i] od
4 for x := 0 to width(S) − 1 do
5 for y := 0 to height(S) − 1 do O[x, y] := 255 ∗ C[S[x, y]] od
6 od

A L G O R I T H M 2 . 7 Histogram equalization for a given input image S.

0.02

0.015

0.01

0.005

0
0 50 100 150 200 250

(a) (b)
Gray level

Pr
ob

ab
ili

ty

F I G U R E 2 . 1 4 Example of an output image O after histogram equalization (a) together with the
resulting histogram (b).

algorithm described here is the most common technique and is also called non-
adaptive uniform histogram equalization since it works uniformly on the whole image
and the transformation of one pixel is independent from the transformation of
neighboring pixels.

This process yields an image where the histogram is spread more uniformly,
which was our goal for preparing the dither screen. The non-adaptive uniform
histogram equalization also enhances low-contrast detail; however, it also increases
the contrast of any noise in the input image.

Block-by-Block Histogram Equalization of Dither Screens

In order to achieve the spatial homogeneity of threshold values, you can split the
dither screen into small blocks and apply the histogram equalization independently

2.2 Screening 47

(a) (b)

F I G U R E 2 . 1 5 Block-by-block histogram qualization. The dither screen (a) has been blocked into
regions of 4 × 4 pixels and histogram equalization applied to each block (b).

1 split the input image into small blocks
2 foreach block b do
3 hb = cumulative intensity distribution for block b
4 h∗

b = linear approximation of the hb of all neighboring blocks

5 transform the intensity values of b based on h∗
b

6 od

A L G O R I T H M 2 . 8 Adaptive histogram equalization.

to each block. Thus, the pixels of each block b are transformed using the
cumulative distribution of values hb within this block. Each block is thus equivalent
to a small dither screen within the large one. This yields a good approximation
of the input grayscale values. Unfortunately, this method yields strong blocking
artifacts in the image and destroys some features of the input texture. For example,
Figure 2.15(a) shows the dither screen that is processed with this block-by-block
histogram equalization, whereas Figure 2.15(b) shows it applied to the intensity
ramp. Note that strong blocking artifacts can be seen, and the texture has been
changed significantly with respect to the original dither screen.

Adaptive Histogram Equalization of Dither Screens

To avoid the problems with the last method where each block is processed
independently, we have to take the neighboring blocks into consideration. This
leads to the so-called adaptive histogram equalization (AHE), which also can
be used for local contrast enhancement. Though many variations have been
developed for a wide range of applications, the version shown in Algorithm 2.8
has been found to work in the context of NPR.

48 C H A P T E R 2 Pixel Manipulation of Images

(a) (b)

(c) (d)

F I G U R E 2 . 1 6 Adaptive histogram equalization. The manipulated dither screens are shown on the
left, (a) and (c), whereas their effect when halftoning the intensity ramp is illustrated on the right,
(b) and (d), respectively. In (a), 4 × 4 blocks were used; in (c), 6 × 6 blocks.

Experience has shown that the algorithm works well with blocks of size
between 3 × 3 and 8 × 8 pixels, where the size of the blocks controls the size of the
visible features of the original dither screen. Examples are shown in Figure 2.16.

2.2.3 Procedural Screening
The algorithms outlined earlier can be applied to any gray-level image that is to
be used as a dither screen. In photorealistic rendering, for simply introducing a
certain kind of texture in the image, procedural methods of generating the texture
have proved useful. In the same manner, dither screens can be created for use in
NPR. Procedural dither screens have a number of advantages, as for instance:

◆ they are created directly without using a second input image and image
processing techniques,

◆ they can be produced in any scale, and
◆ non-repeated textures of any size can be produced.

However, there is the disadvantage that such screens can only be created that can
be described in mathematical terms. More figurative dither screens, for example,
a bark texture, can only be used by image processing techniques.

To satisfy the properties required for dither screens, we have to concentrate on
the uniform distribution of values. The spatial homogeneity can then be achieved

2.2 Screening 49

similarly to conventional dither matrices by periodically repeating one matrix over
the whole image region.

For a procedural definition of a dither screen, we thus need a function with
a uniform distribution of values. Let τ(s, t) be such a function defined over the
intervals s ∈ [0, 1], t ∈ [0, 1]. Furthermore, let all values of τ be between zero and
one, that is, τ : [0, 1]× [0, 1]→ [0, 1]. Given such a function, we can now define
τa,b to be a set of points such that a ≤ τ(s, t) ≤ b, where a, b ∈ [0, 1] and a < b.
This set contains all possible points for a certain pair of parameter values s and t.
The value |τa,b| thus counts the number of all elements in such a set. If we want
to achieve a uniform distribution of the values of the function τ(s, t), then we
need a function where for any given value of n (n > 1) the value of |τ i

n , i+1
n

| is a
constant for any value of i with 0 ≤ i < n.

We will refer to these functions τ as dither kernels. They compute an intensity
level for each pair of input values s and t. To use them for dithering, we have
to map this dither kernel to pixel positions in the input image. We will then
compare the input intensity value with the computed intensity value from τ and
thus determine if a pixel in the output image has to be set or not. This mapping is
described by a second function M that transforms input pixel positions (x, y) into
pairs of parameters (s, t) lying between zero and one. Thus, a procedural dither
screen is composed of a dither kernel τ(s, t) and a mapping function M(x, y).

To give an example, we will use the (one-dimensional) function

τ(s, t) =
{

2s if s ≤ 0.5
2 − 2s otherwise

(2.4)

as the dither kernel that constructs a double-sided ramp with which we can
approximate tone variations by parallel lines of variable width. Figure 2.17 shows
a plot of this function. The most simple mapping of this kernel to an image is
to apply the kernel to a small image block and repeat this over the image. Thus
the mapping function M would use the modulo operation to access blocks of
size n × m in the image. To make sure that the input values for τ fall in the
interval [0, 1], they have to be manipulated appropriately. For the example here,
the mapping would be

M(x, y) =
(

x mod n

n
,
y mod m

m

)
This mapping is also illustrated in Figure 2.17 along with the final resulting image
of a gray ramp dithered with this approach.

50 C H A P T E R 2 Pixel Manipulation of Images

Texture

Mapping
Input image Output image

τ(s,t) t

1 1

.5
.5

.5 1 s
0

F I G U R E 2 . 1 7 Procedural screening combines a dither kernel with a mapping function to produce
a dithered image.

We can now choose different mapping functions and different dither kernels
to adjust the image. In general, texture shape is controlled by the dither kernel
τ(s, t), whereas texture scale and orientation are controlled by the mapping
function M(x, y). We will show a few examples in Figure 2.18 to illustrate the
influence of these two functions on the final image. To summarize, Algorithm 2.9
gives a formal outline of the techniques presented.

As we have seen in the preceding examples, texture features depend only on
the dither kernel. If this kernel is one dimensional, only one-dimensional effects
are achievable; if it is two dimensional, 2D effects—for instance, cross-hatching—
can be modeled. For cross-hatching, the following two-dimensional function is
used:

τ(s, t) =
{

It if s ≤ I
(1− I)s + I otherwise

(2.5)

Here, I determines the lightest intensity that is represented by cross-hatching.
Any areas with an intensity below I are hatched using a linear ramp. Moreover,
all textures created from one dither kernel are the same all over the image region.
To add texture variation, we can work with displacement maps as we know it from
photorealistic image generation. The resulting texture (dither screen) is then a
combination of the dither kernel τ(s, t) and two displacement functions for s and
t, respectively:

T(s, t) = τ(s + Ds(s, t), t + Dt(s, t)) (2.6)

Note that the displacement functions for each variable take both variables, s and
t, as input; hence dependencies between s and t can be modeled. Note also

2.2 Screening 51

(a) (b) (c)

(d) (e) (f)

F I G U R E 2 . 1 8 Different parameters for procedural screening. All images were created using modulo
mapping: with an additional 20◦ rotation (a), using a different dither kernel (Equation (2.5) with
I = 0.7) (b), using a sine wave as displacement function (c), with an additional 50◦ rotation (d),
again, using Equation (2.5) as dither kernel with I = 0.3 (e), and 50◦ rotation and sine wave
displacement (f).

that even when using displacement maps, the resulting function has to satisfy
the requirement for uniform distribution of intensity (threshold) values; thus not
all functions may be used as displacement maps. No problem arises when using
smooth piecewise linear continuous functions (for instance, sine or cosine) as well
as procedural noise functions.

Another way to control the features of a procedural texture is to make
them depending on local features of the image to be dithered. This image-based
control of texture features uses so-called auxiliary images, which contain a map
of a specific feature in the image. These features can be of a wide variety;
some examples include regions that are specified in the image by a user or by

52 C H A P T E R 2 Pixel Manipulation of Images

1 define a dither kernel function τ
2 define a mapping function M

3 for x := 0 to width(S) − 1 do
4 for y := 0 to height(S) − 1 do
5 (xm, ym) := M(x, y)
6 is := τ(xm, ym)

7 if S[x, y]< is then O[x, y] := 1 else O[x, y] := 0
8 od
9 od

A L G O R I T H M 2 . 9 Procedural screening.

examining the amount of detail (that is, regions with high detail are rendered
differently from regions with low detail). If we consider these auxiliary images as
being two-dimensional functions C(s, t), we can incorporate them in the general
Equation (2.6)

T(s, t) = τ(s + C(s, t)Ds(s, t), t + C(s, t)Dt(s, t))

If the original image is rendered from a 3D model and we have three-dimensional
information available, this technique can also be used to map 3D properties onto
the texture and thus the rendering style. We will explain this in more detail in
Chapter 6. To finish the section on procedural dither screens, Figure 2.19 shows
two examples of an image dithered using this method.

2.2.4 Embedding Shapes in Dither Screens
Screening as a method of halftoning has several advantages compared to ordered
dithering or error diffusion. The most important is that the shape of the artifacts
being introduced in the image can be controlled by the design of the dither
screen. Manually designing a correct dither screen that meets all requirements
stated earlier, however, is a tedious task. Thus we will first explore a special
screening method where letter shapes or texts are used as dither screens. The
resultant images look like dithered black-and-white images from a distance and
reveal the textual information being brought into the rendition by the dither
screen only when viewed from close up. An extension to this method leads to an
algorithm to construct dither screens from arbitrary contours that are interpolated
so that a smooth transition between different contours is possible.

2.2 Screening 53

(a) (b)

F I G U R E 2 . 1 9 Two examples for the application of procedural screening. Note that this technique
is usable to differentiate between objects in a rendition (as in (a)), whereas for a coverage of the
whole image area (as can be seen in (b)) different techniques should be the method of choice.

Screening with Texts

In the early days of computer graphics when line printers were the output medium
of choice, large graphics were made by combinations of letters to express intensity
levels. Dark regions were made by overprinting several characters, effectively
covering the entire rectangular area of the character, whereas light regions were
denoted by a small character, like a period or an equals sign as can be seen in
Figure 2.20. This was an early form of dithering.

Extensions of this method are still of interest today. For example, very small
characters, called microletters, can be used as the contents of dither screens. This
gives the person determining what the rendition is to look like the opportunity
to choose a text that can be read when looking at the image up close. From a
distance, the image looks like normal digital halftoning. This method has been
suggested for printing counterfeit-safe money (bills).

Figure 2.21 shows an example of what can be considered to be “dither rows.”
The text used is the same for each row, while the intensity varies monotonically
from line to line. The characters vary in width, both within a line and between
lines, but the height of the lines themselves remains constant.

To render an image S using a text T, the system processes S line by line. The
average intensity of the next block is determined and used to select the appropriate

54 C H A P T E R 2 Pixel Manipulation of Images

F I G U R E 2 . 2 0 “Dithering” by combining letters to express different intensity levels.

row of the dither screen. The entry corresponding to the next character in the
text T is selected and transferred to the corresponding spot in the output image.
Care must be taken that if the character is narrower than the original block, its
intensity actually matches that of the smaller block it covers. Around the edges, the
last character placed on each line must be clipped appropriately. This procedure
is formalized in Algorithm 2.10. An example is shown in Figure 2.22. Note that
when the image is printed in a small size or a large rendition is regarded from a
distance, the individual letters cannot be discerned. An additional feature is shown
in this image. The text lines do not necessarily have to be horizontal and parallel
to the image’s edges; they can also be bent or applied to any path.

Note that the method of using symbols as the entries in a dither screen is
relatively straightforward because the text can be read even if adjacent blocks
do not have the same intensity. There are no problems even at the edges of the
blocks because the character set is designed so as to leave a blank edge around
each character.

2.2 Screening 55

F I G U R E 2 . 2 1 Dither rows of varying intensity based on symbol-based screening.

1 foreach row of blocks r in S do
2 foreach block b in row r of S do
3 i := average intensity of block b
4 place letter T [i, r mod t] at the next available position in O
5 od
6 od

A L G O R I T H M 2 . 1 0 Algorithm for screening with texts. Input: matrix S to be screened, one-
dimensional array of characters T of length t with the message to be used for the microletters; letter
matrix L as shown in Figure 2.21.

Note also that using such very small characters as dither elements makes it
very difficult to photocopy the resultant images. Generally, photocopiers cannot
capture very small contours as they are used in such microletters. Thus using such
microletters is a way of denoting an “original” output, that is, one that originated
from a printing process directly from a computer rather than a photocopier.

Embedding Morphed Contours

In some situations, it is desirable to have the dither screens denote graphics rather
than just textual symbols. In this case, the graphics will generally spread over
more than one block, meaning that we must address potential discontinuities at

56 C H A P T E R 2 Pixel Manipulation of Images

(a) (b)

F I G U R E 2 . 2 2 Example of symbol-based screening: full image (a) and enlarged region (b). Note
that in the image, not all letters can be discerned by the naked eye.

F I G U R E 2 . 2 3 The intensity ramp based on contour-based screening. Image based on drawings by
Escher.

the edges of the blocks. In particular, contour-based screening enables interpolating
over block edges so as to enable smooth transitions, even between intensity levels.

This concept was first developed and made popular by M. C. Escher in his
famous drawings in which, for example, geese are transformed smoothly into fish.
Figure 2.23 shows a computer-generated intensity ramp based on this idea. We
will show in the following how the corresponding dither screens can be computed.

2.2 Screening 57

F I G U R E 2 . 2 4 Varying geometric shape across the intensity ramp.

Before showing how to render using a ramp based on Escher’s drawings, we
will discuss the more simple case of varying the pattern across the ramp. Consider
the enlarged dither matrix shown in Figure 2.24: at high-intensity values, it will
produce small white circles on a black background, whereas at low-intensity
values, it will produce small black circles on a white background. In the middle, it
produces a checkerboard-like matrix of squares. This is because the outermost and
innermost layers of the dither matrix form circles, whereas the intermediate ones
form squares; the matrix represents an interpolation between these two geometric
elements.

These notions can now be extended to enable a user to specify any number
of geometric objects between which an interpolation is to take place. Different
shapes can be defined for different intensity regions so that finally different dither
screens are used. The shape of each geometric object is described by a fixed
number p of points along its contour. We choose p = 4k points to define the
contour of each shape, that is, p is an integer multiple of four so that for each
geometric object, k points can be matched with k points on its neighboring
shapes when carrying out an interpolation. The algorithm then interpolates
between these geometric objects by applying shape-blending techniques. Linear
interpolation between two shapes is certainly the simplest technique and works
well for many shapes. This may also result in unwanted artifacts when applied to
non-regular, more complicated shapes. In these cases algorithms as, for instance,
described by Sederberg and Greenwood (1992) can be employed. The whole
process for contour-based screening is outlined in Algorithm 2.11, and we will
now follow it step by step.

The procedure starts by working in the so-called screen element definition
space, which is completely independent of the final image. A screen element is
simply a planar region that defines the boundary of what is comparable to the
threshold matrix from the basic screening method. The first step in the algorithm

58 C H A P T E R 2 Pixel Manipulation of Images

1 define C = {c1, c2, . . . cs} a small set of contours
2 scale each ci such that it covers a fraction i of the surface of the screen element
3 create intermediate contours by interpolation between the ci
4 break up the target image into blocks of n × m pixels
5 foreach block b in the target image do
6 choose the screen element corresponding to the average intensity of b
7 transform and raster the respective screen element
8 od

A L G O R I T H M 2 . 1 1 Contour-based screening overview.

i = 1.0 i = 0.75 i = 0.5 i = 0.25 i = 0.0

F I G U R E 2 . 2 5 Step 1: Designing shape contours for a fixed number of intensity levels.

i = 1.0 i = 0.75 i = 0.5 i = 0.25 i = 0.0

F I G U R E 2 . 2 6 Step 2: Scaling the contours so that the shapes cover the correct amount of space in
the screen element.

is illustrated in Figure 2.25. For a fixed number of intensity levels, contours are
defined. In the second step, these contours have to be scaled so that they cover
exactly the fraction of the screen element that is determined by the intensity level,
at which the shapes are defined. This means that the scaled version of a contour
being defined for an intensity i = 1.0 will cover the whole area, whereas the scaled
shape for i = 0.5 covers exactly 50% of the area. For zero intensity (white), we
regard the shape as being an infinitesimally small dot (which is still defined via its
contour). The result of this scaling process is illustrated in Figure 2.26.

2.2 Screening 59

i = 1.0 i = 0.75 i = 0.5 i = 0.25 i = 0.0

F I G U R E 2 . 2 7 Step 3: Interpolation between the defined contours for all required intensity levels.

Now that we have defined the shapes and their size for the specified intensity
levels, interpolation between these contours is performed to obtain the shapes
for all needed intensity values. Basically, if considering gray value target images,
256 different shapes are needed. Interpolation or shape blending (if needed) always
takes into consideration two of the predefined contours. Thus, the overall intensity
range [0, 1] is subdivided into several intensity regions [ik, ik+1], where the ik are
given by the definition of the contours. In the first interval [0, i1], the first shape
“grows” from an invisible point to the size required at i1. If no contour is defined
for i = 1.0, the last contour also grows until the whole screen element is covered
(see Figure 2.27).

As a result so far, a shape is defined for each possible intensity value i, and
these shapes are scaled to cover exactly a fraction i of the screen element. We
are, however, still working in the screen element definition space. To apply
the shapes to the target image, a rasterization of the screen elements has to be
performed. This includes possible transformations of the screen element such
that it will fit the blocks in the target image that are to be represented by that
element. The target image is divided into a set of blocks, each of which will
be covered later by one screen element. These blocks do not have to be axis
aligned or rectangular. For each block, the medium gray value is calculated, the
respective screen element is transformed to match the form and orientation of
the target image block, and then the block is rasterized. This is done using well-
known shape rasterization techniques as they are, for instance, described in Foley
et al. (1990). For obtaining high-quality results, the target image should have a
rather high resolution so that for each screen element a rather high number of
pixels is available. This helps to reduce aliasing artifacts that cannot be reduced
otherwise since standard anti-aliasing techniques are not applicable (there are only
black and white pixels and no intermediate values). This final step is illustrated in
Figure 2.28.

Compared to the basic screening method, this technique differs in how the
target image block is treated and finally replaced by the “halftoned” block. The

60 C H A P T E R 2 Pixel Manipulation of Images

0.25

F I G U R E 2 . 2 8 Step 4: Choosing the correct shape for each target image block depending on the
average intensity for that block, transforming and rastering the screen elements, and replacing the
target image block.

F I G U R E 2 . 2 9 Final rendition using the jigsaw puzzle tile shapes.

basic method compares the dither screen pixel by pixel with the target block and
uses the dither screen as a threshold matrix. For contour-based screening as well
as for text-based screening, the screen elements associated with every intensity
level are precomputed and simply replace the target image block. This may lead
to unacceptable distortions, especially if rapid transitions (edges) in the target
image appear. To circumvent these, the corresponding gray value at the target
image’s pixel position can be taken into account. The actual pixel being set in
the dithered image is then computed as the interpolation between the two dither
screens, which could be chosen for the intensities given on both sides of the edges.
Nevertheless, the screen shapes have to be designed carefully so that neighboring
shapes fit nicely—as it would be required for the jigsaw puzzle tile shape in the
preceding example (see also Figure 2.29 and Exercise 2.9).

As an application, Figure 2.30 now shows a mosque rendered by screen dots
made of calligraphic Arabic letter shapes and oriental polygonal patterns. Indeed,
such buildings are often enriched by patterns in reality. In the lack of geometric
models to describe the real patterns, this technique of contour-based screening
adds a touch of Islamic culture to the reproduced image.

2.3 Stippling
Another way of reducing the artifacts, which are introduced when using halfton-
ing methods, is by changing the point distribution given by the initial dithering

2.3 Stippling 61

F I G U R E 2 . 3 0 View of the Ibn Tulun Mosque rendered with artistic screening.

algorithm. This brings us to a technique that is quite common in traditional,
handmade illustrations, namely, stippling. With stippling, tone as well as texture
are created by the placement of small dots (stipples) where the dots are equally, but
randomly, distributed. Done properly by hand, stippling is very time consuming
and hard for a beginner to learn. Using the computer may at first help to create
such images—even for people who do not attempt to be an artist. Even artists
may use such a computerized tool to create images quickly as a kind of preview
for their own work to save time.

2.3.1 Automatic Methods
Stippling relies on an even, but random, distribution of dots. To create such a
distribution automatically, several methods are possible. A common approach is
to regard the target density distribution of the dots as a surface where the desired
density is mapped to the height of that surface (varying between zero and one).
The starting point for the so-called rejection method is an appropriate random

62 C H A P T E R 2 Pixel Manipulation of Images

distribution of dots. Each of the dots is then tested in the following way: choose a
random number uniformly between zero and one, and test if this random number
is less than the height of the surface at the given point. If this test is true, keep the
dot; otherwise, discard it. In this way, more dots get discarded in regions where
the desired dot density is low (and thus the intensity surface is low), and more
points are kept in regions with a high desired density. This is exactly the behavior
needed for stippling. An approach could thus be to treat the target image as a
piecewise-continuous surface with each piece being a flat plane covering a pixel
and the height being proportional to the image intensity at this pixel (between
zero and one).

The Intersection Method

Looking at those dots that are kept, a line drawn from the base plane up to
that height, which is given by the chosen random number, would intersect the
surface defined by the image intensities. Taking a randomly distributed collection
of vertical lines of random heights and selecting only those lines that intersect
with the intensity surface should yield a reasonably stippled image, if a dot is
placed at the position of each selected line. Ideally, at an intensity value of i = 1,
the distribution of dots should cover the plane completely, whereas at an intensity
value of i = 0.5, the plane would be half covered, and at an intensity value of i = 0,
there would be no points at all. Since each intersection point is converted into a
small circular disc of radius r (the stipple), only a finite number of intersecting lines
are needed. The general procedure to produce stipple drawings is as formulated
in Algorithm 2.12.

The key point in this algorithm is to find a distribution of lines that has the
following properties:

◆ The distribution should be defined on the unit cube in R
3 : [0, 1] × [0, 1] ×

[0, 1] with the first two coordinates describing the position of the line in the
plane and the third coordinate describing the lines’ height.

◆ The final distribution of stipples should
◆ have a linear intensity response; that is, the ratio between input intensity

value and produced output intensity value is constant,
◆ should not have overlapping stipples (with the exception that it might be

allowed to have overlapping stipples to achieve very high intensities), and
◆ should not produce any visual patterns.

2.3 Stippling 63

1 convert S to a piecewise function S′ : [0, 1]× [0, 1]→ [0, 1] by scaling

2 generate a distribution of lines in the unit cube of R
3

3 intersect each line with the surface defined by S′
4 display intersection points as stipples

A L G O R I T H M 2 . 1 2 Procedure to automatically create a stipple image from an input image S.

The first point is assured by an appropriate parameter selection when generating
the distribution; the second point is somewhat more complicated. We will thus
inspect some distributions to see which results can be achieved.

Distributions

The simplest distribution is just vertical lines positioned uniformly at random in
the unit square with randomly chosen heights between zero and one. As can be
seen in Figure 2.31, this distribution does not have a linear intensity response, nor
does it ensure non-overlapping stipples. Choosing a quasi-random distribution
that is based, for instance, on a Sobol sequence3 does not dramatically improve the
situation. The resulting images are quite similar to those created using a completely
random distribution. However, the Sobol sequence offers a way to improve the
result by taking advantage of its properties.

The Sobol sequence fills the given plane in order at increasingly finer resolu-
tion. This means that the first 10% of the dots are equally distributed on the plane
and the second 10% of the dots fall nicely and evenly in between the first 10%
and so on. It is now possible to treat the dots differently when testing against the
intensity surface. The height of each line is no longer determined randomly but
is set to n/N with n being the number of the current (n-th) line and N being the
total number of lines. With this scheme, an intensity of 0.1 will select the first
10% of the dots (which are nicely distributed), and an intensity of 0.2 will select
the second 10% (which fit nicely in the spaces), and so on. Although the point
distribution now is much better (see Figure 2.32), the intensity response is still
not linear.

3. The Sobol sequence is a quasi-random sequence that generates numbers between zero and one
based on operations on the binary representation of numbers. For a detailed description, see, for
instance, Chapter 7 of Press et al. (1993).

64 C H A P T E R 2 Pixel Manipulation of Images

(a) (b)

Input intensity
O

ut
pu

t
in

te
ns

ity
0

3000 50 100 150 200 250

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F I G U R E 2 . 3 1 Uniform random distribution of 15,000 lines where 7,526 dots are kept: stipple
drawing output (a) and intensity response diagram (b).

(a) (b)
Input intensity

O
ut

pu
t

in
te

ns
ity

0 3000 50 100 150 200 250

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F I G U R E 2 . 3 2 Sobol distribution of 15,000 lines where 7,529 dots are kept: stipple drawing output
(a) and intensity response diagram (b).

Using the scheme as described, the heights of the lines intersecting the
intensity surface are algorithmically determined, whereas the position of the lines
is determined by using a pseudorandom number sequence. Going the other way
around—determining the height of the lines by random numbers and placing
the dots regularly—offers a more regular dot distribution. For this, the plane is
covered with dots that are equally spaced in a way that they overlap just enough

2.3 Stippling 65

(a) (b)

O
ut

pu
t

in
te

ns
ity

Input intensity

0 3000 50 100 150 200 250

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F I G U R E 2 . 3 3 Osculating distribution without jittering: stipple drawing output (a) and intensity
response diagram (b). From the initial set of 15,477 lines 7,749 dots were created.

to allow no gaps in between. These dots serve as anchors for the vertical lines
with random heights. The resulting distribution is very regular in the plane but
introduces visual patterns (see Figure 2.33). However, the intensity response is
very good. To relieve the regularity and thus minimize the patterns, a jittering
can be exploited, which has the disadvantage of resulting in a much worse intensity
response.

As with any randomized method, jittering does not depend on the already
achieved results or on any other input variable. However, an artist creates a stipple
distribution by constantly observing the current results and adding stipples in a
position so as to maintain spacing and desired density. Here, relaxation methods
can be applied to approximate this behavior. Starting point is a uniform random
distribution of dots that is then relaxed into a new distribution with better
interstipple properties than the original. Borrowing from physics, a force on each
dot is introduced to be

f = −
n∑

i=0

vi

di

where vi is the unit vector pointing from the dot to the i-th dot in the direction
and di is the distance between these two dots. This yields a distance-based force
that is highly repulsive at close distance. The movement of the dots under the
influence of those forces is now simulated until the distribution converges into a

66 C H A P T E R 2 Pixel Manipulation of Images

(a) (b)

O
ut

pu
t

in
te

ns
ity

Input intensity

0
3000 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F I G U R E 2 . 3 4 Relaxed distribution with 20,000 initial lines creating 4,972 stipples: stipple drawing
output (a) and intensity response diagram (b).

local minimum of the related energy. Hence, the resulting distribution maximized
the interdot distances. The intensity response of such a distribution is very good
(as can be seen in Figure 2.34) but rather flat. By increasing the number of
dots this can be overcome, although this will also increase the computational
effort.

Compensating for a Non-Linear Intensity Response

As has been seen in the last examples, there are many methods of automatically
distributing dots such that the initially stated properties are met. The shown
techniques offer just a small selection of a vast variety of usable algorithms. The
main problem is to achieve both an evenly spaced distribution of dots and a
linear intensity response at once. If this is not possible, that is, if the intensity
response is still non-linear, a compensation step can be introduced. To compensate
automatically for the intensity response of a particular distribution, a map of input
intensities to corrected intensities is calculated such that when using the corrected
intensities, the resulting stipple image has a linear intensity response.

The map is constructed by rendering stippled images of constant intensities at
several discrete intensity levels ik. For each of these, the average output intensity
ok is computed by averaging the pixel intensities. If the intensity response of the
distribution is linear, then ik = ok for all k. If not, then the corrected intensity

2.3 Stippling 67

(a) (b)

F I G U R E 2 . 3 5 Uncorrected (a) and corrected (b) intensity response for a Sobol distribution.

ik/ok will produce ik when rendered with this particular distribution. In this way,
a correction table is produced containing input intensities ik and corrected inten-
sities ik/ok with which—in a preprocessing step—the input image is transformed.
As an example, Figure 2.35 shows the corrected and the uncorrected version of
a stippled image using the Sobol distribution to place the dots.

As can be seen in Figure 2.35, the intensity response is much better and comes
closer to the original. In particular, the corrected image has an intensity closer to
0.5 in the middle than the uncorrected version. However, the correction map has
stretched the dark regions of the image so that, in general, not only a correction
for non-linear intensity response is needed, but also a correction of the intensity
values of the input image to account for that intensity scaling. This means that
automatic methods would need specially prepared input images in order to achieve
good results. The resulting images from the algorithms described can still be used
as input images for a further interactive treatment, which will be the focus of the
following section.

2.3.2 Interactive Methods
Automatic methods for stippling are well suited if the only goal is to represent
the distribution of gray values in an image by the placement of dots. They do
not take into consideration any additional information or image features that

68 C H A P T E R 2 Pixel Manipulation of Images

might be present. Among these, edges in the image are of utmost importance
for recognizing objects. To correctly represent such edges in a stippled rendition
means to introduce discontinuities in the dot distribution that depend on features
of the underlying image. Even though it is possible to determine the locations
of these discontinuities algorithmically, a better visual result can be achieved by
defining them manually. Further, in some cases a user wants to have influence
on certain parameters of the dot distribution, so it is desirable to come up
with interactive methods to locally or globally change an initially given dot
distribution.

The Problem

The problem to be solved can be stated as follows: we want to approximate a
given grayscale image S by a discrete, dot-based representation D that enables
halftoning and fulfills additional geometric constraints. More formally, a two-
dimensional intensity function (the input image) S(x, y) is to be approximated
by D(x, y) = D(x, y, j), which consists of n discrete elements j (the dots that the
stippled drawing consists of).

Let CI , j be the observable quantities of the input image at position j (for
example, intensity or gradient), and CD, j the same quantities of the desired output
D(x, y, j), which are computed by a different algorithm since D is our discrete
representation. By minimizing the penalty

E = 1

n

n∑
j=1

(
vjED(j) + wjEg(j)

)
(2.7)

we will find a representation that approximates the tonal values and fulfills the
geometric constraints. In Equation (2.7), ED(j) is a function that describes
the approximation error of the discrete representation at the position j, Eg(j)
describes the geometric error, and vj and wj are weights. It is quite simple to obtain
the value for ED(j) by using the difference between the observable quantities
in the input image and the discrete representation:

ED(j) =
(
CI , j − CD, j

)2

Using the fact that, ideally, dots in the image should be spread out evenly, we can
say that the geometric error Eg(j) depends on the dot distribution. We could say
that the deviation of the dot distribution should be as small as possible, and we

2.3 Stippling 69

can therefore use the variance of the dot-to-dot distances to define the geometric
error as follows:

Eg(j) = 1

nj

nj∑
i=1

(
li + |pi − pj|

)2
(2.8)

In Equation (2.8), li is the mean value of the dot-to-dot distances in the neigh-
borhood of the element j, nj is the number of elements in this neighborhood, and
pj denotes the element whose neighborhood is considered, while pi are all other
elements in this neighborhood.

If ED(j) and Eg(j) are continuously differentiable, Equation (2.7) can be
minimized globally by optimization methods like relaxation, gradient descent,
or simulated annealing. However, we need more to find a globally optimal dot
distribution. Some artistic features of stippled drawings require the movement or
a change in the properties of the dots. Thus we need an interactive system where
we can also optimize Equation (2.7) on the basis of a local dot subset.

Obtaining an Initial Dot Distribution

As we already stated, halftoning methods can be used to obtain a first distribution
of the dots for stippling. Halftoning, however, only counts for the approximation
of tonal values of the input image. Since the technique of stippling is actually
stemming from art, there are a few considerations to be made that may modify the
dot distribution gained by a halftoning algorithm. Some of these considerations
are as follows:

◆ Dots should not be placed on white or very bright regions.
◆ Dots should always be inside the object to be stippled.
◆ Different tonal values can be achieved by distributing a different number of

dots but also by changing the dot size.

Thus, given the result of, let’s say, a Floyd-Steinberg error diffusion algorithm,
additional interactive manipulations can be used to prepare this dot set for relax-
ation methods that will then lead to the final stippled drawing. Moreover, dot
distributions that were used for the automatic stippling methods may be consid-
ered. In fact, using the algorithm from Section 2.3.1 provides very interesting
starting points for an interactive manipulation of the dot set.

70 C H A P T E R 2 Pixel Manipulation of Images

Minimizing the Penalty Function

Given an initial dot distribution, a minimization of Eg(j), which is given in
Equation (2.8), can be achieved by an iteration scheme. Given n dots pj in a
region, this scheme works as follows:

1. Compute the Voronoi diagram of the dots. This assigns a Voronoi region to
each of the dots, the boundaries of which are (possibly open) polygons.

2. Intersect the Voronoi regions with the boundaries of the region to be stippled.

3. Move each dot to the center of mass of its Voronoi region.

This process is repeated until the dot distribution achieves its desired state. This
process minimizes only one part of Equation (2.7), namely, the geometric quality.
We need also to minimize the approximation error for preserving the halftoning
property of the output image.

For doing so, we calculate CD for each Delaunay triangle, in the following
demonstrated with intensity values. By three dots, their sizes, and the area covered
by the respective Delaunay triangle, the gray tone of this area is given. We can
now enforce the dots to create triangles of the right size during the iteration
process by moving them appropriately. If a triangle is too big, the dots have to be
moved toward the center of the triangle. This process is unfortunately very time
consuming since it requires the computation of the area of each triangle as well
as the average gray level of the given image by calculating the weighted sum of
each pixel value covered by the region.

To overcome this problem, a second possibility is to prevent the dots from
moving into areas of different tone within the Voronoi iteration. The movement
can be constrained by a grayscale image if during an iteration step dots are allowed
only to move in areas that differ in tone below a given threshold. This results in
dot distributions that preserve, for instance, edges in the input image much better
than unconstrained dot movement would.

Interaction

The preceding method relies on the selection of relatively small regions of the
input image on which the processes have to be performed. Even more, the strict
enforcement of all constraints might result in images that are “correct” in the sense
of fulfilling all necessary requirements but that show also a rather “synthetic” look.
Therefore, user interaction is necessary and should be used. As a metaphor, the
interaction techniques rely on painting with different brushes and are well known

2.3 Stippling 71

from image manipulation and paint programs. In the following, we will give a
few examples of brushes that are useful for the creation of stippled drawings.

◆ Selection brush This brush is used to identify larger regions of the image to
which the application of other brushes can be constrained. This feature allows
a faster application of a brush since the user does not need to take care of
moving outside the desired region.

◆ Relaxation brush This brush performs a local relaxation process within the
area of the brush. By moving the relaxation brush over the image, the dots in
the areas touched with the brush undergo the minimization process.

◆ Jitter brush Using the jitter brush adds small random changes to the positions
of the dots within the area covered by the brush. This helps to remove correct
regions, where the dots are too evenly spaced.

◆ Shape brush This brush allows to modify the shape of the dots. Different
parameterizations lead to different results like enlargement or shrinking.

Figures 2.36 and 2.37 show how images look that are created with an interactive
system covering all the techniques mentioned.

F I G U R E 2 . 3 6 The intensity ramp based on stippling.

F I G U R E 2 . 3 7 Stippled image of a grasshopper.

72 C H A P T E R 2 Pixel Manipulation of Images

2.4 Image Mosaics
Incorporating shapes into renditions—as shown in Section 2.2.4—is one form of
combining different information sources and formats in one image. Another way is
to include several small images and, by doing so, also include the contents of these
into a larger rendition. We will thus move on to image mosaics, which have become
very popular in the last few years as a form of art used for advertisements, posters,
and the like. In art, a mosaic is a surface decoration of small colored components—
such as stone, mineral, glass, tile, or shell—closely set into an adhesive ground.
The mosaic pieces together form a larger image.

An image mosaic is created from other smaller images that together portray
a larger subject. The creation of image mosaics is somewhat connected with
digital halftoning. An input image has to be replaced by an output image that
is constructed from several “tiles” of a size larger than a pixel and that match the
tonal values of the input image. In traditional halftoning, black dots of varying sizes
are arranged in a regular grid to convey various shades of gray. Digital halftoning,
however, uses dither matrices (screens) to replace parts of the image by patterns.

The creation of an image mosaic requires the four major steps that are given
in Algorithm 2.13, which we will describe in turn.

2.4.1 Choosing a Til ing Grid or Pattern
The first step in creating a mosaic is to find a layout for the tiles. There are
several ways to arrange the tiles, each of which has certain issues to be considered.
Figure 2.38 shows the results of different strategies to choose a tiling grid. These
strategies are described next.

One possibility is to use no regular tiling grid at all but place the tiles randomly
on the target image. This scattered layout creates the impression of a huge pile of
photographs that together form a larger image. This impression is even stronger
if we allow the tiles to overlap each other. Here it is important to always compare
the tile with the original image region so that the features of the target image do
not disappear. In addition to this, it is also possible to rotate the tiles at random

1 choose images that are to be used as mosaic tiles
2 choose a tiling grid
3 find an arrangement for the mosaic tiles within the grid
4 possibly perform a color correction on the tiles to match the target image

A L G O R I T H M 2 . 1 3 The four major steps for producing an image mosaic.

2.4 Image Mosaics 73

(a) (b)

(c) (d)

F I G U R E 2 . 3 8 Different strategies for choosing a tiling grid lead to different mosaic structures:
regular arrangement (a), scattered layout (b), angled alignment (c), and hexagonal grid (d). (See
also color insert.)

angles to get away from the impression of a regular arrangement. Rotating the
tiles, however, implies more computational effort.

When using a regular tiling grid, there are, again, several possibilities. Most
often, rectangular grids are chosen, so we will discuss this case in more detail.
Nevertheless, other tilings, like hexagonal grids, are also possible. For rectangular
grids, it is advantageous if all potential tiles have the same aspect ratio as the grid
region. If not, they have to be either cropped or non-uniformly scaled to fit in
the target region, which will lead to unwanted effects. If they are not of the same
size (but the same aspect ratio), a uniform scaling operation can be applied that
makes the tile fit into the target region. Considering a rectangular grid, there are
two ways to subdivide the image into regions:

74 C H A P T E R 2 Pixel Manipulation of Images

1. A regular arrangement places all tiles in rows and columns next to one another.

2. An angled alignment creates a pattern like a brick wall.

Besides these rather simple tilings, we can also apply multiresolution tech-
niques for mosaics. Normally (in the regular arrangements), all tiles and target
regions have the same size irrespective of the detail of the target image. It would
be desirable if more smaller tiles were placed in areas with high detail, and less
but bigger tiles in areas with low detail. This keeps areas with high and low de-
tail unchanged, whereas a regular distribution of the tiles somewhat equalizes the
level of detail over the image.

To break up the target image into the desired regions, we can use a quadtree.
The idea behind this is the subdivision of a (rectangular) area according to a given
criterion. In our case, the criterion is the amount of detail being contained in a
rectangular area of the target image. This amount of detail can be measured in
different ways, two of which are as follows:

◆ Identifying the frequency content of the image region using, for example,
a Fourier or wavelet transform. If a region contains much high-frequency
content, then it can be regarded as being very detailed, and a further subdivision
has to be performed.

◆ Determining the level of detail by computing the average value of an edge
detection algorithm. A high value here means that many edges are present in
the region that can be interpreted as high detail.

To create the quadtree, we start with dividing the target image into four
quadrants. For each of the quadrants, we calculate the amount of detail in it and
decide by a simple threshold if we need to divide any further (if there is much
detail) or not. This procedure stops if the regions get too small or there are no
longer any regions of high detail. Once the subdivision into different-sized re-
gions is done, the image tiles are scaled appropriately and placed into the respective
region.

Another quite simple way of creating multiresolution mosaics is to build the
mosaic using only a few, but relatively large, tiles. This mosaic is then used as
the new tile image in the second step to create a “mosaic of mosaics.” Using this
technique is possible only with color correction since the same image is used in
different places.

2.4 Image Mosaics 75

2.4.2 Arranging the Image Tiles
Once we have agreed on a tiling grid and have subdivided the target image in the
respective regions, we need to place individual images in these regions. There are
a few ways of placing the tiles that significantly influence the final mosaic:

◆ Using the same image everywhere Here, only one image is needed as the tile
image—usually, this is a small version of the target image. Color correction is
necessary to make the tile match.

◆ Choosing a random arrangement of tiles The tiles are placed regardless of the
matching of color to the target region. Color correction is necessary.

◆ Arranging tiles manually by eye This procedure is possible only with very small
mosaics and thus will not be discussed any further.

◆ Placing image tiles by matching their average color to the region of the target image they
cover This is by far the most used placement algorithm. For each target region,
the average color is computed, and the tile whose average color matches best
is chosen.

◆ Placing image tiles by matching several different properties to the region of the target
image they cover Besides matching the average color, other properties can be
used to make the image tiles fit better. One example are edges that are matched
in the target image and the tile. This procedure yields the best results; however,
the computational effort needed is rather high.

2.4.3 Choosing Tile Images
The choice of which images are to be used as tiles is a rather artistic one. There are
no technical limitations or restrictions except that for the reproduction of color
images, colored tiles are necessary. Images that are used as tiles should match the
subject of the target image. Mosaics can be viewed in two ways. From a distance,
the viewer only recognizes the target image, that is, the mosaic as one image.
Getting closer reveals the details of the tiles. If the tiles match the subject, the
viewer has the impression of revealing secrets from the image. For example, the
movie poster for The Truman Show shows only the head of the main character.
The whole poster itself is a mosaic of stills from the movie, so getting closer to
the poster reveals images of other contributing actors, scenes from the movie, and
so on.

In general, there are two ways of selecting images as tiles. First, a small
version of the target image itself can be chosen. Here, a proper scaling of the

76 C H A P T E R 2 Pixel Manipulation of Images

image is necessary to make the subject in the tiles still recognizable. Further, this
approach requires a color correction since all tiles have per se the same color.
Second, different images can be chosen as tiles. Here also the scaling has to be
performed in a way that the images remain visible and recognizable. Each of the
tile images themselves should have a relative uniform brightness distribution that
eases a possible color correction.

Normally, an image database is given, containing many images from which
the tiles can be chosen. In this case, “many” means having far more images in the
database than are needed for the creation of the mosaic. We still need an algorithm
that helps in picking the correct image at a specific tile’s position. For the sake of
simplicity, we assume rectangular regions in the target image and rectangular tiles.
In the following, we will represent the target image regions as well as the tiles by
three matrices, one for each color channel R, G, and B. To find the best matching
tile image, the target region T is compared to each potential replacement image
I by computing the mean squared error J(I , T) between the red, green, and blue
channels. This computation is outlined in Equation (2.9) for n × n pixel regions
and tiles of the same size:

J(I , T) =

n−1∑
x=0

n−1∑
y=0

∑
c∈{r ,g,b}

(Tc(x, y) − Ic(x, y))2

3n2
(2.9)

To replace the target region T , we chose the tile image I with the smallest J(I , T).
This comparison based on the color values is rather complicated and should be
accompanied by a preselection based on other properties so that Equation (2.9)
does not have to be calculated for each tile. Furthermore, other comparison
methods are possible, either by calculating a different value or by choosing a
different color model.

2.4.4 Color Correction
The last step in the creation of a mosaic is the correction of the tile’s color. This
is needed only if the tiles were not chosen in a way that they already match the
target region’s color. In the following, we will restrict ourselves to describing the
color correction for gray-level images by considering the intensity of the pixels.

The actual task can be broken down into solving the following problem:
Given an image tile T having an average color at and a target region R having
an average color ar , change the color of the tile’s pixels in a way that after the
adjustment the tile’s average color is the same as ar . To solve this problem, we use
so-called color correction rules, which take as input an image tile and a desired

2.4 Image Mosaics 77

average color a, and which generate a color correction function F : R → R. Many
families of functions can be used for this purpose:

◆ The constant function F(x) = a Each pixel is set to the color a that yields a
correct average color value of a. However, the original colors of the image tile
are completely ignored. This function would yield a mosaic made of uniformly
colored tiles.

◆ A color scaling function Assume an average tile color at that is larger than the
desired average color a. If we want to scale each pixel’s color to achieve the
correct average, the scaling factor would be a/at, which yields F(x) = (a/at)x
as the correction function.

◆ A color shifting function Here we obtain a correction function that shifts
the colors in the tile by the difference between at and a. This function
F(x) = x + (a − at), however, may shift colors out of the range of reproducible
colors.

◆ More sophisticated functions There are many possible ways of performing color
corrections, for instance, taking into account gamma correction or other more
accurate methods. These functions can also be applied if necessary.

For the purpose of creating image mosaics, a simple combination of scaling and
shifting yields sufficient results, and is relatively easy to compute. Figure 2.39
shows a set of images to compare color scaling and color shifting. The respective
histograms can be found in Figure 2.40.

(a) (b) (c)

F I G U R E 2 . 3 9 Sample image and color correction functions applied: original image (a), color
scaling (b), and color shifting (c).

78 C H A P T E R 2 Pixel Manipulation of Images

(a) (b) (c)

F I G U R E 2 . 4 0 Histogram shapes for the images in Figure 2.39: original image (a), color scaling
(b), and color shifting (c).

(a)

(b)

F I G U R E 2 . 4 1 Mosaics created from only one tile image with applied color correction. In (a) the
tiles are arranged regularly whereas in (b) the angled alignment was chosen.

For the combination of scaling and shifting, the following considerations can
be made. If colors can be shifted without leaving the allowed color range, this
shifting is applied; otherwise, we shift as far as possible and then scale the resulting
colors until they match the desired color a.

To explain this in more detail, let’s look at an example. Assume the average
color a that we will achieve is smaller than the average color at in the given tile:
a < at. If the minimum color mt in the tile is greater than the difference at − a, then
we can shift the colors using the function F(x) = x + (at − a) without leaving the
allowed color range. In the other case, if mt ≤ (at − a), then we combine shifting
and scaling in the function F(x) = a(x − mt)/(at − mt). The formula for all other
(symmetric) cases can be derived easily and is left as an exercise (see Exercise 2.11).
In Figure 2.41, two gray ramps are shown where this color correction technique
has been applied.

Exercises 79

So far, the description was for grayscale images where the brightness was
changed appropriately. Many mosaics, however, are constructed from color images
where a simple change in brightness will not help to make the tile image match
the target region. Here, the same kind of color correction can be performed on
each color channel independently. Although most of the images use the RGB
model to specify colors, other color models, like YIQ, HSV, or LAB, might be
used in this process.

Exercises
2.1 How do the dither patterns that are generated from the matrices D(2) and

D(4) look? Take a sheet of paper and draw the patterns for all intensity
levels.

2.2 Design different sets of dithering patterns from the ones described in
this chapter for 5, 10, and 17 intensity levels (2 × 2, 3 × 3, and 4 × 4
patterns). When designing the patterns think about reducing artifacts as
well as deliberately creating artifacts.

2.3 Implement an ordered dithering algorithm using the patterns D(2), D(3),
and D(4). Experiment with your own patterns (see Exercise 2.2).

2.4 Implement a Floyd-Steinberg algorithm and test it with different gray-
level images.

2.5 Use your implementation of the Floyd-Steinberg algorithm to create
images like the ones in Figure 2.9 by drawing short lines instead of single
dots. Experiment with the parameters of the lines (slope, length).

2.6 Write a program to
a. compute the histogram of a given gray-level image,
b. display the histogram as a bar chart,
c. perform a simple histogram equalization on the given image, and
d. perform an adaptive histogram equalization on the given image and

compare the result to the simple histogram equalization.
Use this program to see if histogram equalization indeed yields a uniform
distribution of the gray levels in a given image.

2.7 Implement the basic screening algorithm from Section 2.2.1 and experi-
ment with your own dither screens. Which effect has a special treatment
of the screens (Exercise 2.3) on the resulting images?

80 C H A P T E R 2 Pixel Manipulation of Images

2.8 Implement text-based screening. Choose a string (for example, your
name) and experiment with different fonts. Can you devise a method
to automatically compute the dither rows for a given font (outline font
or any other font description)?

2.9 Assume the given shapes for contour-based screening as in the example
in the text. Find a way to design the jigsaw puzzle tile shapes so that
neighboring screen dots nicely fit.

2.10 Implement procedural screening. Use different dither kernels, mappings,
and displacement functions to create different renditions. Create an
interactive program where users may select these functions.

2.11 Create different dot distributions for automatic stippling based on dif-
ferent probability distribution functions. Apply these distributions to
gray-level images and evaluate the results.

2.12 Derive the complete set of color correction functions for mosaic tiles
similar to the example given in the text.

2.13 Devise and implement a method for creating hexagonal mosaics (the tiles
have a hexagonal shape).

2.14 Devise and implement a method for creating mosaics where round or
elliptical tiles are arranged in a scattered layout.

Bibliographic Notes
Although this chapter deals with some operations that are very basic in image
processing, it is not intended to replace an introductory text on image processing.
We thus recommend any image processing literature, especially the book by Jähne
(1997). For a quick overview and some basic techniques, the book by Foley et al.
(1990) and the book by Watt and Policarpo (1998) are possible references.

Regarding digital halftoning, the book by Ulichney (1987) is by far the most
complete work. Besides describing the algorithms, this book offers statistical data
to evaluate and compare the different techniques. There is also a wealth of litera-
ture available on different halftoning techniques, for instance, Floyd and Steinberg
(1976), Knuth (1987), Ulichney (1999), Ulichney (2000), Ostromoukhov et al.
(1994), and Ostromoukhov (2001). The use of halftoning techniques in the field of
NPR is mainly focused on by Buchanan (1996), Buchanan et al. (1998), Streit and
Buchanan (1998), and Streit (1998). Texture-based screening is explored in depth

Bibliographic Notes 81

by Veryovka and Buchanan (1999b), Veryovka and Buchanan (2000), and Very-
ovka (1999), whereas procedural screening and adaptive screening are presented
by Veryovka and Buchanan (1999a). There are also other halftoning approaches
like the one by Velho and de Miranda Gomes (1991), who use space-filling curves
as a basis for their algorithms.

Screening as a basic halftoning technique is described in the books already
mentioned. The artistic aspects of screening, especially the embedding of dif-
ferent shapes (be it letters or arbitrary contours) in a rendition is presented by
Ostromoukhov and Hersch (1995). They concentrate on digital halftoning and
image reproduction aspects, and thus also formulate ideas on constructing con-
tours for contour-based screening (Ostromoukhov, 1998; Rudaz et al., 1998) and
are interested in how to use the features of the resulting images (Ostromoukhov
et al., 1996). An interesting comparison of the screening approaches with other
techniques can be found in Ostromoukhov (2000).

The fascination of stippled images inspired Hiller and Deussen to develop
an interactive system for the creation of stippled drawings. This system and the
methods being used are described in Hiller (1999), Deussen et al. (2000), and
Deussen et al. (1999b); an extension of the core algorithm (Voronoi relaxation)
is presented in Hiller and Deussen (2001).

Finally, there exist many programs for the creation of image mosaics based
on a smaller or bigger set of image tiles. The theory behind these programs is
described by Finkelstein and Range (1998), as well as McKenna and Arce (2000).

3 L I N E S , C U R V E S , A N D S T R O K E S

While the last chapter dealt exclusively with techniques that change single pixels
in either their position or color, we will now explore how units extending
over and above the size of a single pixel can be created, and we will consider
how they will be used in non-photorealistic renditions. We have already seen
examples for such techniques in the last chapter—stippling and image mosaics;
they were, however, based on altering the pixels of a given image. Here, the
main focus is on constructing new images from units that extend the size of a
pixel. The reason we explore this area is that it is indeed one of the fundamental
characteristics of non-photorealistic images that their basic “building blocks” are
often markings that can be distinguished as image artifacts by the naked eye (see
Section 1.3.1). Simon Schofield, one of the pioneers in the area of NPR, expressed
that non-photorealistic rendering is actually defined by “the construction of
images from indivisible pictorial subunits that are larger than the pixel, such as
‘brush marks’” (Schofield, 1994). This chapter thus deals with such subunits and
describes how they are constructed and rendered.

Schofield’s definition is understandable when seen from the point of view that
one aim of NPR is to mimic handmade visualization styles. Painters also construct
their pictures by the subsequent addition of brushstrokes (for an oil painting) or
lines (for a pen-and-ink rendition). Thus, to be successful in the creation of non-
photorealistic imagery, it is of utmost importance to clarify how such pictorial
subunits can be defined in terms of modeling their shape and attributes and how
they can be rendered one by one. The question of how they are combined to

83

84 C H A P T E R 3 Lines, Curves, and Strokes

create the desired visual impression at large is not the subject of this chapter;
instead, we will examine this topic later on.

Here we will examine different approaches for the creation of lines. The
introduced techniques can also be exploited for marks that can be regarded as very
short lines. We will see that there exist a wide variety of methods starting from
simple modifications of the line-drawing algorithm to sophisticated simulation
methods that take into account the physical properties of the paper and the dye
particles left behind by a drawing tool. Finally, a method is introduced to describe
lines and strokes using a multiresolution representation. To round out the chapter
we provide a comparison of the introduced methods.

3.1 Drawing “Incorrect” Lines
With the availability of output devices for computers that produce high-resolution
output (like laser printers) or that are capable of transferring vector data onto
paper (like plotters), these devices became popular especially in the area of
computer-aided design (CAD) and computer-aided architectural design (CAAD).
The “sterile” looking output of these printers is perfectly suited to show exact
drawings, construction diagrams, floor plans, and so on. However, as studies (for
instance, in Schumann et al., (1996)) have shown, especially in early design stages
and for discussion with customers, handdrawn images or sketches are much more
appropriate.

There are many different ways to include a “hand-drawn” effect in com-
puter output. The historically first approach was to modify the output hardware
(plotter) to introduce some “wiggliness” in the lines, followed by modifying line
printing routines in computer programs or page description languages (basically
PostScript). Finally, a common denominator was found with the introduction of
multiresolution curves. We will study all these approaches in turn and also come
to an extension of these algorithms to handle “artistic” lines.

3.1.1 Observations of Human Drawings
To be successful in creating more vivid line drawings (we will stick to line drawings
at the moment), some observations of the specifics of human drawings will lead to
the development of algorithms. The most striking feature of hand-drawn images is
their “incorrectness.” Lines drawn by a human artist are never completely straight
(if the artist does not use any aids, such as a ruler); instead, they are more or
less wiggly, their line width may change over the length, they tend to overshoot

3.1 Drawing “Incorrect” Lines 85

the line’s correct endpoints, and so forth. We will investigate each of the features
and their origins in turn to reveal characteristics that can be used to devise new
line-drawing algorithms.

◆ Wiggliness Probably no human being is able to draw a completely straight
line over a certain length without using a tool like a ruler. Small irregular
movements of the hand cause the line to be more or less wiggly; that is, the
line deviates from the intended “analytical” path. Moreover, depending on the
drawing tool and the applied pressure, the paper structure may also create such
deviations since the tip of a pen, for instance, may be “guided” along paper
fibers and thus deviates from the intended straight path.

◆ Line length The inaccuracy of drawn lines increases with the “sketchiness”
of the drawing. While more thoroughly executed drawings almost only show
wiggly lines, one of the more prominent features of sketches is the overshooting
at the line ends. This means that lines do not begin or end at the intended
starting points but instead are somewhat longer or shorter.

◆ Line thickness and brightness The line width or thickness, as well as the line
brightness, depends to a high degree on the pressure applied to the drawing
tool. If a line is drawn with a rather fast hand movement, the pressure on the
pen is rather low and thus the line thinner or brighter. On the other hand, a
more slow and thorough hand movement results in pressing the pen on the
paper slightly harder and thus in darker or wider lines.

◆ Line ends Depending on the drawing speed, the line ends may differ signif-
icantly. In some cases, a line ends in a small hook or in a dot. The dot stems
from ink that flows out of the pen if it is held in place for a longer time when
starting a line. These line ends give the drawing a certain appeal and have to
be taken into account.

3.1.2 Drawing Wiggly Lines with a Computer
Based on the aim to mechanically produce drawings for architectural and en-
gineering applications, a whole area of computer graphics has been developed:
CAD and CAAD systems. The output of these tools, however, demanded pre-
cision and accuracy, and the “toolkits” being used for the development of CAD
and CAAD systems were analogous to the traditional drawing tools that have been
in use for a long time. So, for instance, the requirements for plotting hardware
included speed, precision, and reliability, and soon these machines created better

86 C H A P T E R 3 Lines, Curves, and Strokes

drawings in shorter time than a human draftsperson ever could do. The drawing
quality reached a standard that was equal to the work of an expert draftsperson.

However, especially in the architectural domain, other types of drawings are
needed. There are anecdotes of students in architecture who would buy a wooden
ruler and bang it to an edge in order to create dips in the ruler’s edge and so
be able to draw “perfectly” wiggly lines. Or architects would take a computer-
generated drawing and put tracing paper on top and “redraw” the image this way.
They would show only the traced-over version to their customers since these
more sketchy drawings do not imply that the plans for the portrayed building
are finished and unchangeable. Instead—as the study performed by Schumann et
al. (1996) shows—people are more likely to discuss design variations using such
“sketches.”

As the search for perfection in architectural drawings has driven the devel-
opment of CAD and CAAD software, so did this need for imperfect drawings
inspire the development of NPR algorithms to achieve the desired results.

A Hardware-Based Solution

The first solution to this problem was hardware based and used the properties of
plotting devices. If the pen is detached from the grip of the plotter, deliberate
wobbles into the pen motion are introduced. The pen starts to wobble and even
skips sometimes, which produces hand-drawn effects. By closely observing these
features, the variables that affect the character of the drawing can be identified:
pen looseness, pen type, and pen speed. It is, however, relatively hard to control
each of these variables independently since they strongly depend on each other.
The more loosely the pen is held, the more wobbly the lines are. When the pen is
not securely mounted in the plotter, the only pressure applied to the paper is the
pen’s weight. Thus it is important to select media with free-flowing inks (or very
soft lead pencils). Free-flowing inks naturally lead to wider parts of lines where
the plotter moves slower or even stops. The fluidity of the ink in connection with
the plotting speed thus determines the line width and brightness. The plotting
speed generally has influence on the amplitude of the wobbles and also on the
occurrence and size of gaps in the line. Figure 3.1 shows an example drawing.

A Software-Based Solution

The hardware-based solution already outlined revealed interesting results although
it is not generally applicable. The plotter that is being used has to be modified,
and the parameter control is less accurate and intuitive than desired. Further,

3.1 Drawing “Incorrect” Lines 87

(a)

F I G U R E 3 . 1 Freehand plotting: regular plotter output (a) and freehand plotter output (b). The
image in (b) was generated using a modified plotter based on a CAD model.

with the development of output devices, laser printers started to rule out pen
plotters as the standard device.1 They are smaller, cheaper, and faster and thus very
efficient for concept proofs and printouts in early design stages. These laser printers
are controlled by page description languages like PostScript or PCL. A logical
consequence was thus to change the line-drawing routines in these languages so
as to produce sketchy instead of accurate lines. The following thoughts are not

1. However, for CAD and architectural drawings, plotters are still the choice of output devices for
large and accurate drawings.

88 C H A P T E R 3 Lines, Curves, and Strokes

restricted in any way to page description languages but can be applied to any
graphics package that contains line-drawing routines.

Again, the first step in producing wiggly lines is to identify variables that affect
the character of the line. Here, the following three basic variables are chosen:

1. The line thickness describes how wide (thick) a line is drawn and how this
thickness changes over the length of the line. Here, an additional line end
thickness thickens the line ends and gives the illusion that the person drawing
the lines is pressing harder or moving the pen slower at the beginning and
end of each line. A thickness dropoff parameter enables the line thickness to
change gradually or even abruptly.

2. To achieve the impression that the pen has come to rest at some line ends,
a line end dots parameter is used. Here, the percentage of the lines can be
adjusted at which line end dots should appear, the diameter of the dots, and
the gap between the line end and the dot (if desired).

3. To control the wiggliness of the lines, the line squiggle variable is used. When
drawing the line, it is divided into small segments, where the length is
determined by the average segment length. The deviation of the given straight
line can be controlled by setting a maximal amplitude of the wiggles. Within
the parameter bounds for frequency and amplitude, random displacements
are used to give the final line a vivid and non-regular look.

When printing (or displaying) the line, instead of creating a straight line (as the
original code would have done), the new line-drawing routines jump in and
modify the drawing accordingly. Each set of parameters is valid for the whole
drawing, which leads to a uniform style throughout the drawing.

Viewer Response

This simple approach was one of the first ideas that dealt with producing non-
photorealistic line drawings on the computer. A more thorough investigation led
to more generalized models later on. But also the viewers’ response to the drawings
drove the development further. Besides being astonished that the images were
done using computer hardware, viewers characterized them as being expressive,
sketchy, rich, informal, or even freehanded. Although some of the viewers that
were included in a survey (most of them architecture students) also gave “negative”
comments, there was mainly attraction to the images. Some of the reasons for this
apparent attraction might be as follows:

3.2 Drawing “Artistic” Lines—The Path and Style Metaphor 89

◆ The illusion that these images are hand drawn makes them stand out from the
images being produced on a computer.

◆ As sketches permit interpretation, the incomplete quality of these images leads
to a certain openness and encourages viewers to discuss the portrayed designs.

◆ The wiggly line drawings contain more complexity and therefore hold atten-
tion and interest more effectively than an image that is understood quickly.

◆ Fuzzy images are closer to reality, whereas the hard line computer plots appear
more as an abstraction of the rounded corners and irregular forms in nature.

Although all these reasons are more or less hypotheses, studies have shown later
on that indeed sketches are preferred to computer output in many areas, especially
for design and planning.

3.2 Drawing “Artistic” Lines—The Path
and Style Metaphor

The techniques mentioned include a random factor in the computation or the
output of lines in order to make computer-generated drawings more “vivid” to
achieve a more “handcrafted” look. Artistic techniques, however, do not use
randomness alone as a source for parameters determining the final appearance of
lines being drawn. Actually, every single line is carefully placed and parameterized
by an artist in order to fulfill the artistic or communicative goal.

Observing the way human artists create a line drawing, there are two particular
aspects to be taken care of. First, there is the placement of lines, that is, their
position, which is to a great extent, determined by the scene to be portrayed.
Second, there is the actual look of the lines or how they are drawn with respect
to their width, brightness, color, and so on. Usually first a rough pencil sketch
is drawn, which shows the overall characteristics of the lines to be drawn. This
sketch is then refined using pen and ink or other pencils to work out the local
characteristics of the lines in terms of their width and brightness.

Based on these observations, a model for rendering lines can now be devised.
The pen is moved along a certain path. Depending on the shape of the pen and the
pressure applied, the width of the line changes. The line’s brightness is changed in
accordance with the amount of ink available. In addition, the lines finally drawn
do not correctly match the intended path due to irregular movements of the hand
and to the unevenness of the drawing surface. These distortions of the path are
described collectively as the style with which the line is drawn.

90 C H A P T E R 3 Lines, Curves, and Strokes

The path that determines the placement and course of the line on the display
surface can be given in several ways. It might be specified interactively (using, for
instance, a mouse or a pen on a pressure-sensitive tablet), given as a 2D model (a
CAD drawing), or even created by a rendering program based on a 3D model.
Let us first assume that the path is given as a piecewise polynomial curve or a
polygon. We can then find several techniques to overlay this path by a style to
create the desired effects.

3.2.1 Deforming Images
Many vector-oriented drawing programs still rely on the constant thickness stroke
as the only tool to create an image. This, however, either limits the possibilities
and thus the creativity of the users or burdens them with additional work since
every “stroke” a user wants to apply to the paper has to be put together from
other primitives. For larger drawings, this is a painstaking method, and there is
enough room for improvement.

Stroke Definition and Skeletons

Drawing with skeletal strokes as a new type of stroke is an interaction technique that
uses transformations of predefined pictures along a given path. These transforma-
tions may include bending, twisting, non-uniform compression, and stretching
of the picture.

The basis for all this is the definition of a skeletal stroke, which is a picture
placed around a single reference backbone, and a reference thickness line, which
is perpendicular to the reference backbone and described by the maximum width
of the stroke. Figure 3.2 illustrates this concept. The picture placed around the
reference backbone is called the flesh of the stroke and might be composed of
points, closed polygons, or Bézier curves. The reference backbone provides a
reference x-axis for the points defining the flesh; the reference thickness gives a
scale to specify the lateral distance of these points from the backbone (and might
thus be considered a y-axis).

The stroke’s definition is based on parametric coordinates. The reference
backbone and the reference thickness specify the range of the parametric co-
ordinate system of the stroke by defining the [0, 1] intervals in both directions.

Applying a Stroke to a Path

Once the stroke has been defined, it can be applied to any arbitrary path. There
are no restrictions for the path’s shape or description although it must be possible

3.2 Drawing “Artistic” Lines—The Path and Style Metaphor 91

(b)(a)

F I G U R E 3 . 2 Definition of a skeletal stroke around a reference backbone (a) (the black horizontal
arrow) and a reference thickness (the vertical arrow in (b)).

to compute any position on the path using a parametric formula. To apply the
stroke to the path, the reference backbone is aligned with the given path and the
flesh is distorted accordingly.

In an interactive system, the user may specify the width of the stroke and
the shear angle; otherwise, those parameters are determined from the stroke’s
definition. Within the mapping process of the reference backbone to the path,
each position defining a feature of the stroke (a control vertex for the flesh) is
mapped with respect to its position along the reference backbone. The distance
from the path is determined from the lateral distance this particular point has
from the reference backbone in the stroke definition. The process of applying a
skeletal stroke along an arbitrary path is actually a coordinate transformation of
the parametric space in which the stroke’s definition is given such that the x-axis
is aligned with the path and the y-axis points in the direction of the path normal
at each position.

Controlling the shear angle with which the stroke is applied to the path offers
another degree of freedom when using skeletal strokes. There are basically two
possibilities, which are illustrated in Figure 3.3:

1. In sausage style, the shear angle is relative to the tangent of the path. Thus
in this style, a more literal path is displayed with the skeletal stroke distorted
accordingly. The stroke itself remains perpendicular to the path, turning as
the path curves and turns.

2. In ribbon style, the shear angle is kept constant with respect to the global
coordinate system. This style creates images something like what you get

92 C H A P T E R 3 Lines, Curves, and Strokes

(b)(a)

F I G U R E 3 . 3 Sausage style (a) and ribbon style (b) of stroke application.

(a) (b) (c)

F I G U R E 3 . 4 Problems associated with the bending of the stroke in areas of high curvature: stroke
definition (a), wrinkled areas (b), correct deformation (c).

with a calligraphy pen. The stroke remains oriented along the y-axis or the
paper as it was originally defined.

When bending a physical elastic object, the material on the concave side
of the bend will be compressed axially while that on the convex side will be
stretched axially. The amount of compression and stretching varies depending
on the material properties. The elasticity properties of “real life” materials often
cause local deformations in all three dimensions so that lateral compression and
expansion is also possible and may yield buckles or wrinkles. When deforming the
flesh of a skeletal stroke, similar problems may arise in either style of application.
Such problems arise in areas with high curvature since they are also observable in
the “hairy brushes” model (see Section 3.2.3). Simply drawing the flesh using the
normal to the application path as the local y-axis yields areas in which the flesh
wrinkles or even folds back on itself, as illustrated in Figure 3.4.

To overcome all these problems, a deformation model describing the behav-
ior of the flesh especially in sharp bends is needed. Here, different approaches are

3.2 Drawing “Artistic” Lines—The Path and Style Metaphor 93

possible—for instance, using finite element theory to calculate the deformation
of skin around a complicated bone structure or using algorithms based on kine-
siology. The deformation model proposed in the original literature on “skeletal
strokes” (see Hsu et al., 1993) is based on modeling the deformation of the Carte-
sian space as a whole. As a reference model, an imaginary material is used that
stretches like rubber and compresses like a piece of sponge. This idealized material
is infinitely stretchable and compressible and no lateral changes are induced on
axial deformation. The lateral deformation is handled by spatially constraining
the material to the local center of curvature.

Extended Features

Besides the basic transformation of a stroke along a path, the skeletal stroke model
also allows for more elaborate possibilities: higher order strokes and animation.

A stroke can be defined to consist of simple geometric objects like polylines,
polygons, and curves. If a stroke definition includes other strokes as elements, this
is called a higher order stroke. The substrokes can also be instances of the original
stroke itself, which leads to recursive definitions. In both cases, special algorithms
have to be devised in order to correctly render the final stroke (apply it to a path).
For recursive strokes, which resemble in some way iterated function systems (IFSs),
algorithms from this area can be examined for their use in our case. Here, special
care must be taken on the termination of the drawing process, that is, on limiting
the recursion depth.

Animation has always been an area of application for such computerized
drawing techniques. For creating cartoon-like animation, 3D techniques are less
practical than traditional 2D drawing techniques. Nevertheless, the animation of
2D shapes is still a tedious process if there is no further support by an animation
system since each frame has to be drawn separately. Traditional keyframe tech-
niques can be used with skeletal strokes where the artist defines the keyframes by
directly drawing or manipulating the objects in the drawing. The in-betweens
are then calculated by the system where only the paths have to be interpolated
while for each frame the strokes are applied after calculating the new path. This
reduces the design effort to drawing the keyframes. Since the defined paths are
usually rather simple forms, a proper interpolation between the keyframes can be
ensured. No interpolation has to be performed on the points belonging to the
flesh so that bending and wrinkling will be handled automatically by the stroke
application process.

94 C H A P T E R 3 Lines, Curves, and Strokes

3.2.2 Using Path Information—Line Styles
With the technique just described, the appearance of the lines is exclusively
controlled by the style. However, the path can also carry information that may
determine the visual parameters of a line. If we assume the path stemming from
a rendering process, information on the light distribution in the scene is available
and can be evaluated. Looking at hand-drawn images gives an idea of how such
information is used. Very often—especially in illustrations—the line width varies
with varying light intensities. Lines that lie in rather dark areas are drawn much
wider and darker than those in brightly lit areas. Depth information, which is
gained from a 3D model within a rendering process, can also be mapped onto
the visual properties of the lines as we have already seen in Section 1.3.3 (see
especially Figure 1.14).

Although the skeletal strokes model is very powerful and flexible, all changes
in the line’s appearance result from changes in style parameters. To make the
line also depending on the path’s properties, we will examine a slightly different
model. Instead of deforming an arbitrary image over the length of the path, we
will compute the superposition of two attributed curves.

The Model

Thus the model is based on two different curves:

1. the path describing the position and course of the line on the display surface
and

2. the style describing the distortions of the path that leads to the characteristic
appearance.

The path is simply given as a parametric curve. Here, several variants of splines
can be used that all are specified by control vertices. The style describes how a
straight line would be distorted (see Figure 3.5). The geometric distortion as well
as the change of parameters such as the line width and its brightness over the
length of the line are specified by polynomial functions (in spline representation).
Here the following parameters for each control vertex are supplied:

◆ the position (x- and y-coordinates),
◆ a weight value (w) used by some interpolation methods, and

3.2 Drawing “Artistic” Lines—The Path and Style Metaphor 95

F I G U R E 3 . 5 The style describes the distortions of a straight line.

S0

I0

V0

SS Se

F I G U R E 3 . 6 Calculation of the difference vector v0 for a given parameter value t.

◆ values for pressure (p) and saturation (s) that determine the line width and
brightness. The terms pressure and saturation are chosen since they are appro-
priate metaphors for describing the respective properties of the line.

Furthermore, a specification is required to describe how the control vertices are
interpreted. The following options can be chosen:

◆ The control vertices are regarded as vertices of a polyline and as such interpo-
lated linearly.

◆ The control vertices are approximated using (cubic) B-splines.
◆ An interpolation of the control vertices is performed using Catmull-Rom

splines.

Further interpolation methods can be implemented easily.

Drawing the Lines

So far we have examined how the path and the style are defined. We now describe
the mapping of the style onto the path and thus how to compute the output. To
map the style geometry onto the path, we use the line segment from the style’s
starting point ss to the endpoint se (see Figure 3.6). We then compute for a given
parameter t ∈ [0, 1] the point l0 = ss + t(se − ss). Furthermore, we calculate the
point s0 on the style curve for the same parameter value t and the difference vector
v0 = s0 − l0.

96 C H A P T E R 3 Lines, Curves, and Strokes

Difference vector
(style)

Path’s tangent Path

V0

Vr

F I G U R E 3 . 7 Geometrical superposition of path and style by using the difference vector method.

This difference vector is then added to the point p0, which is the position on
the given path for the parameter t, and we get the final point p. To do so, the path’s
tangent is calculated at p0 and the difference vector is then added perpendicular
to the direction of the tangent; that is, we first rotate v0 by β and then add the
rotated vector to p0. In this case, the angle β is the slope of the tangent at p0 (see
Figure 3.7).

It should be noted that the scale of the difference vector is somewhat prob-
lematic. Since the path and the style might be defined in different scales, the length
of the vector is not necessarily appropriate. Thus scaling is necessary. The ratio
between the path length and the style length is used as the scaling factor. The
user also has the possibility to specify a style scale factor that is applied before the
mapping.

The mapping of the geometric properties leads to a skeleton of the curve to
be drawn. The flesh that is attached to this skeleton is derived from the given
pressure and saturation values, yielding a hull shape for the line. This is done by
interpolating the parameter values over the length of the created skeleton curve.
There are two ways in which the interpolation method can be defined:

1. Having a specific pressure and saturation value given with each of the style’s
control vertices results in interpolation of these values according to the
interpolation method for the geometry given in the style’s definition.

2. In addition, the change of pressure and saturation may be specified by an
explicit interpolation function defined over the parameter range 0 ≤ t ≤ 1.
This function is then used to determine the actual brightness and width values
for a given t. This method leads to very powerful control over the appearance
of the lines.

3.2 Drawing “Artistic” Lines—The Path and Style Metaphor 97

pi+1

pi s

F I G U R E 3 . 8 Drawing the line as a sequence of quadrilaterals. The width of each quadrilateral
results from the pressure values at t = ti and t = ti+1 (pi and pi+1). The brightness is the average
value of the saturation values si and si+1 at t = ti and t = ti+1.

(g)(f)(e)(d)(c)(b)(a)

F I G U R E 3 . 9 The character X drawn in different styles: the path geometry (a); changing the
pressure, pen angle based on the tangent direction (b); like (b), but given a specific pen angle (c);
change in pressure and saturation over the length (d); change in geometry and pressure (e); stroked
style applied to each single stroke (f); and stroked style applied globally (g).

For drawing lines, the position, width, and brightness are computed for
subsequent parameter values ti. For each pair of value sets, a quadrilateral is drawn
according to Figure 3.8. The width of those quadrilaterals is determined from the
pressure values at ti. This width is seen either with respect to the normal direction
of the path or to a given pen angle. The effects resulting from a change of the
pen angle are illustrated in Figures 3.9(b) and (c). In general, similar problems,
as with the skeletal strokes model, arise in regions of high curvature when the
step size (distance between two points for subsequent parameter values ti) is small
compared to the width. In this case, quadrilaterals with self-intersecting bounds
may arise that have to be handled correctly.

98 C H A P T E R 3 Lines, Curves, and Strokes

Advanced Features

More advanced features for creating line drawings can also be derived. The
method of mapping styles onto paths now pays off particularly lucratively in
that information is readily available and manipulatable for post-processing, which
allows customizable control over a variety of visual effects.

A line renderer creates a set of curves out of a 3D model and supplies a
mathematical description of these curves on a 2D surface. Besides this, the renderer
may provide further attributes based on lighting and depth information. For
example, a line should appear darker in a shaded area than in a bright region of the
image. Further, depth cuing determines the fading direction of lines. This means
that the path provided by the renderer contains not only geometric attributes but
also information about the lighting and depth coded as pressure and saturation.

A method for combining attributes defined with the path and the style
addresses this topic. A style dominance value d (0 ≤ d ≤ 1) describes the priority
of the attributes given in the style over those given in the path. A value equal
to zero means that the style has no influence on the final drawing; a value equal
to one gives complete control to the style. Normally, path and style values are
interpolated linearly, that is, v = vp(1− d) + vsd. (Here v is the resulting attribute
value interpolated between the path’s value vp and the style’s value vs.) Other
interpolation methods are also possible and can be chosen by the user.

An observation of traditional drawing techniques reveals another task that can
be tackled thanks to the separation of path and style. Often lines are drawn as a
set of smaller strokes. Here the pen is lifted from the surface and then put back to
draw the next stroke. The subdivision of a style into strokes is also possible in the
model described earlier. It is specified with the following parameters:

◆ strokeNumber determines the number of strokes into which the curve is divided,

◆ strokeGap determines the size of the gap between two strokes, where a positive
value creates real gaps and a negative value creates overlapped lines, and

◆ strokeLength determines the length of a stroke.

Depending on which value is given, either the length or the number of strokes is
computed. As an example, the stroke length is calculated as follows:

strokeLength = pathLength

strokeNumber + strokeGap(strokeNumber − 1)

3.2 Drawing “Artistic” Lines—The Path and Style Metaphor 99

F I G U R E 3 . 1 0 “The Little Worm.” A cartoon character with styles.

Finally, a style must be parameterized with respect to the kinds of strokes used.
Either the style definition is applied to each stroke independently or it is spread
over all strokes, resulting in strokes nicely fitting together at the end in terms of
line brightness and line width. These methods are illustrated in Figures 3.9(f)
and (g).

Applications

This line model is suited for rendering line drawings that are created out of a 3D
model within a rendering process. Other areas of application can be found in 2D
visualization and drawing programs. Since the attributes are connected with the
path, user interaction—for instance, using a pressure-sensitive graphics tablet—
can also influence the final output. In the following, we show a few examples for
images that have been created using the line styles described.

Figure 3.10 shows a cartoon character that was created based on the entered
path shown in Figure 3.11. Even though the style used (Figure 3.12) is very simple,
it results in a remarkable change of the image.

Figure 3.13 shows the bones of a foot rendered with an analytical rendering
system out of a 3D model and drawn with different styles. Note in Figure 3.13(a)
how a light source in the upper left corner affects the rendering, and in Figure
3.13(b) how geometric changes together with changes stemming from evaluating
the lighting information can be used.

3.2.3 Simulating Watercolor
While the first two techniques using the path and style metaphor (skeletal strokes
and line styles) work in a vector-oriented manner and are thus well suited for
high-quality printouts, it is also possible to use this metaphor in a pixel-based

100 C H A P T E R 3 Lines, Curves, and Strokes

F I G U R E 3 . 1 1 The path for Figure 3.10.

F I G U R E 3 . 1 2 The style that is applied.

(a) (b)

F I G U R E 3 . 1 3 Illustrations of the bones of the human foot: lighting information from the rendering
process was used to determine the appearance of the lines (a); this is combined with geometric
deviations introduced via the style (b). In (b), the style shortens the lines so that the impression of
“haloed lines” is given.

environment for the simulation of watercolor painting. The following technique
is a simple simulation of the traditional Japanese art sumi-e, which is characterized
by the composition of the image by placing only a very few strokes all in the same
dark color. The basis for this approach is an object-oriented model consisting
mainly of four parts: the brush, the dip, the stroke, and the paper . We will have a
look at all four parts in turn to see what they represent.

3.2 Drawing “Artistic” Lines—The Path and Style Metaphor 101

◆ The brush can be thought of as a collection of bristles, each of which has its own
amount of ink and its position within the brush. The brush is moved along the
path and leaves a “footprint” at each position. For the sake of simplicity, the
brush is defined as a one-dimensional array of bristles centered at the stroke.
This simplification to a one-dimensional brush has several advantages over a
two-dimensional approach:
1. It can be assumed that the brush is always perpendicular to the stroke.

This eliminates the additional computations that arise when rotating a two-
dimensional brush has to be taken into account.

2. The spreading of the bristles can be modeled by defining the width of the
brush at any point as a function of the pressure applied to the brush at this
point.

3. It is easier to predict the effect of a brushstroke in an image because no two
bristles write over the same region of the paper.

4. The speed of the computation is increased significantly since fewer bristles
are to be observed. Furthermore, the influence of neighboring bristles is
also reduced (there are only two neighbors to each bristle).

In the sense of this section, the brush (in connection with the dip) can be
thought of as the style that determines the final appearance of the brushstroke.

◆ The dip describes the state of the brush when it is dipped into the paint.
The dip must carry enough information to restore the brush’s initial state or a
sufficiently similar state so that it becomes possible to repeat a stroke with an
equivalent result. At the very least, the dip must set the initial color and amount
of ink for each bristle and restore the positions of the bristles within the brush.
This can be achieved by simple rules that set the parameters accordingly or
by storing a snapshot of all parameters. The dip heavily influences the visual
effects of the resulting brushstroke so by selecting the same brush and stroke,
you can still experiment with different dips to create different effects.

◆ The stroke is a set of parameters that evolve as a function of an independent
variable. The parameters in question are the position (x- and y-coordinates)
and the pressure. The independent variable can be seen as the distance the brush
has moved or the elapsed time from the beginning of the painting process. To
be more specific, the shape of the stroke is determined by a 2D spline curve,
where for each control point, not only the coordinates are given but also a
value defining the pressure at this location. The stroke models the path along

102 C H A P T E R 3 Lines, Curves, and Strokes

which the brush is moved and builds thus the second part of our general path
and style model.

◆ The paper is responsible for rendering the ink as it comes off the brush. Each
bristle that is about to leave an imprint on the paper sends a message to the paper
object indicating its position and other relevant parameters. The paper object
then renders the appropriate result—usually a single dot—at the appropriate
position. Since the paper itself renders the result, all additional properties of
the paper need only to be stored here. Hence an additional texture for the
simulation of different paper types or qualities can be taken into account when
rendering the bristles’ imprints.

Algorithms

For drawing a line with this setup, first the stroke has to be defined by a user.
The definition of a stroke consists of a list of position and pressure samples. Both
position and pressure are later interpolated using cubic splines. This spline curve
is then subdivided into sufficiently small intervals that are to be connected by line
segments (see Figure 3.14). The size of the intervals can be chosen small enough
so that the impression of a smooth curve is retained but large enough that it is not
below the size of one pixel. After this subdivision, the stroke path is represented by
a series of n nodes (x, y, p, s)i for i = 0 . . . n − 1. The values x, y, and p represent
position and pressure, whereas s is an approximation of the distance traveled along
the curve. This distance can be computed using Equation (3.1):

si =
i∑

k=1

√
(xk − xk−1)

2 + (yk − yk−1)
2 where s0 = 0 (3.1)

To move the brush along this stroke, a discretized version of the line segment
chain2 is used to give the positions of the brush’s center. To draw the whole
brushstroke, each segment will be drawn in turn by covering the region between
two consecutive nodes by a quadrilateral.

Assume a segment between the two nodes A and B (refer to Figure 3.14
for the following explanations). If this is not the last segment of the curve, the
following point will be called C. For each segment, a quadrilateral (EFGH) is
constructed that has the following properties:

2. Each line segment is discretized using Bresenham’s algorithm (see Foley et al., 1990, pp. 72–80).

3.2 Drawing “Artistic” Lines—The Path and Style Metaphor 103

E

F

B

G

C

A

H

F I G U R E 3 . 1 4 Construction of a quadrilateral on a given path segment.

◆ A bisects EH ,
◆ B bisects FG,
◆ | EH | is the width computed from the pressure at A,
◆ | FG | is the width computed from the pressure at B, and
◆ FG bisects the angle � ABC.

In addition, keep in mind that for the first and the last point of a curve, EH and
FG are perpendicular to the path in A and B, respectively.

Once the polygon’s vertices have been found, it can be filled. However, a
simple filling algorithm would not suffice since it does not take into account that
a brushstroke has to be generated where the actual color distribution is defined
in the brush’s attributes (the bristles). By using bilinear interpolation, the actual
“filling” works as described in Algorithm 3.1.

The overall algorithm thus moves the (center of the) brush along the dis-
cretized stroke, generating the appropriate quadrilateral for each segment, and
then fills the quadrilaterals according to Algorithm 3.1. This basic procedure can
be influenced in different ways to create special effects, which we will discuss in
the following section.

Special Effects

By simply changing some of the parameters of the algorithms, it is possible to
create various effects that are also derived from effects gained by painting by hand.
When painting with a real paintbrush, there will be a point in time when the
brush runs dry. This usually happens in a way that not all bristles at the same time

104 C H A P T E R 3 Lines, Curves, and Strokes

1 P := pixels’ position in the output image (x, y)
2 S := pixels’ position along the stroke by interpolating (SA, SB, SB, SA)

on EFGH
3 B := pixels’ position across the brush by interpolating (1, 1, 0, 0) on EFGH
4 sort all generated data for each pixel by S
5 foreach pixel in order of S do
6 determine the nearest bristle to B
7 invoke the drawing process for this bristle
8 update the bristle’s state
9 od

A L G O R I T H M 3 . 1 Filling a generated quadrilateral when drawing a brushstroke.

stop giving ink to the paper, yielding a scratchy breakup at the tail of the stroke.
Within the model described earlier, the ink supply on each bristle is assumed to
be a reservoir of a finite quantity of fluid that gets refilled each time the brush is
“dipped” into the ink. When dipped, for each bristle the new amount of ink is
defined and how long this ink will last. This might be specified either as a fraction
of the stroke length (if the stroke length is known beforehand) or as an absolute
distance (remember the parameter s in Algorithm 3.1).

Each bristle has an assigned color that, for the sake of simplicity, is a gray
value between 0 and 1. All ink applied to a bristle has the same color; however,
different bristles may have different colors. This color distribution over the brush
has to be specified in the dip and thus gets applied when the brush is dipped into
the ink. During the stroke, neighboring bristles may affect each other leading to
a different color distribution each time the state of the bristles is updated. This
evolution of the color distribution can be modeled in several ways; we will give
a few examples:

◆ A color distribution is specified for the start and the end of a stroke. At any
point in between, the actual color distribution is calculated by interpolating
between those two distributions over the parameter s.

◆ From the starting configuration, diffusion may be simulated by smoothing the
colors of neighboring pixels by partial interpolation. If Cit is the color of the
i-th bristle at time t and D is a parameter between zero and one determining

3.2 Drawing “Artistic” Lines—The Path and Style Metaphor 105

the speed of the diffusion (larger values mean faster diffusion) and if the bristles
are assumed to be equally spaced, then

Cit+1
= Cit(1− D) + Ci−1t

+ Ci+1t

2
D

is the new color of the i-th bristle at time t + 1.
◆ A general algorithm for distributing the color may also be specified.

Besides computing the ink’s color over the course of the stroke, the color that
actually appears on the paper is also of interest. Here, colored paper or previously
colored spots on the paper may yield a color that distinguishes it from the one
specified in the bristle. To achieve this effect, a color combination function has
to be specified that creates the resulting color from the three sources: ink color
Ci, previously drawn color Co, and paper color Cp.

There are many more possibilities to influence the appearance of the brush-
stroke that is finally drawn, and the exercises at the end of this chapter will
encourage you to experiment with parameters and assess the effects. A few more
ideas shall illustrate what can be done:

◆ transferring ink among neighboring pixels so that they not only affect the color
of the ink but also the quantity,

◆ applying more pressure to the brush to either spread the bristles farther apart
or bring more bristles in contact with the paper, and

◆ mapping textures onto the image of the stroke.

With the techniques and algorithms described, a simple but powerful tool for
simulating real brushstrokes has been developed. Figure 3.15 shows an example
of what is possible to create with this model.

The most important disadvantage of this approach is its speed. The state of the
bristles needs to be updated in each step, and if the brush contains many bristles
and if they influence each other in a rather complicated way, the method is very
time consuming. What’s more, the simulation does not take into consideration
some of the more advanced effects that are achievable in watercolor paintings. In
Chapter 4, we will take a closer look at some different techniques that strive for
a physical simulation of such effects.

106 C H A P T E R 3 Lines, Curves, and Strokes

F I G U R E 3 . 1 5 Hairy brushes use a simulation of the behavior of a wet brush on paper to create
images like this. Note that this method is particularly well suited for the Japanese art sumi-e since
here only a few brushstrokes form an image.

3.3 A Generalization: Multiresolution Curves
As we could see from the last section, the path and style metaphor is particularly
well suited for this kind of application and can be used in many different ways
to create images in different styles. However, a more general solution is desirable,
and we will describe such a technique next. We will turn away from “artistic
lines” and look at a representation of curves in general that supports a variety of
operations, for instance:

◆ The ability to change the global shape of a curve while maintaining small
details. This is similar to changing the path and applying the same style in our
earlier model.

◆ The ability to change small details while maintaining the global shape. This
resembles a change in the style being applied to one path.

◆ The ability to represent a curve on multiple levels of detail.
◆ The ability to fit a curve through a given set of points within a maximum

error tolerance. This is particularly interesting if we wish to create a drawing
by giving only a few points and having the lines computed by the computer.

For addressing all these issues, a multiresolution approach for representing the
curve is well suited. Multiresolution techniques have developed within the last few

3.3 A Generalization: Multiresolution Curves 107

years to become powerful tools in many areas of computer graphics. Wavelets have
proved especially useful for representing curves on different levels of detail. The
derivation of a multiresolution representation for curves requires some detailed
mathematics, which we will not cover here. We refer you to the literature, for
instance, Stollnitz et al. (1996).

3.3.1 Wavelet Representation of Curves
In short, consider a curve Cn being described by a set of control points
[cn

1, . . . , cn
m]T . To create a representation with a fewer number of control points,

say, m′, we would apply some kind of filter or downsampling algorithm on Cn

yielding a representation Cn−1 having m′ control points:

Cn−1 = AnCn

The detail Dn−1 being lost in this process can be computed using Equation (3.2):

Dn−1 = BnCn (3.2)

In these equations, An is an m′ × m matrix, and Bn is an (m − m′) × m matrix. Both
matrices are related to each other and collectively referred to as the analysis filter .
This process of splitting a high-resolution curve into a lower-resolution curve and
the respective detail is called decomposition. The other way around, the reconstruction
of a high-resolution curve from a given lower-resolution representation and a
given detail is accomplished by a second pair of matrices, the synthesis filter as
described in Equation (3.3):

Cn = PnCn−1 + QnDn−1 (3.3)

If the decomposition process is applied recursively to the result of the previous
step, we get a hierarchy of lower-resolution curves and details, as can be seen in
Figure 3.16.

Cn −→ Cn−1 −→ Cn−2 −→ . . . −→ C0

↘ ↘ ↘ ↘
Dn−1 Dn−2 . . . D0

F I G U R E 3 . 1 6 Recursive decomposition yields a series of lower-resolution curves and respective
details.

108 C H A P T E R 3 Lines, Curves, and Strokes

To recover the original signal Cn, the lowest-resolution curve C0 and the
sequence of all details D0, . . . , Dn−1 have to be known.3 We can easily see that
this representation technique fits into the path and style metaphor by treating the
lowest-resolution curve C0 as the path and the sequence of details added to that
path in the different steps of the reconstruction process as the style.

3.3.2 Editing Multiresolution Curves
The path and style metaphor has been introduced to support two different types
of editing operations.

1. Changing the “global” shape of the curve. This has been accomplished by
changing the path and using the same style for the edited curve.

2. Changing “local” detail. Here, different styles are applied to the same path.

Both operations can be carried out on a multiresolution representation in a similar
manner.

Changing the overall shape of the curve Cn means changing one of the
lower-resolution representations Cj into Ĉj = Cj + �Cj (see Figure 3.17). Re-
constructing the high-resolution curve is done by applying the reconstruction
process to the changes in the lower-resolution signal:

Ĉn = Cn + �Cn

= Cn + PnPn−1 . . . Pj+1�Cj

Since on lower levels of the representation the curve consists of fewer control
points, a change here means a change in a larger portion of the high-resolution
curve.

On the other hand, changing local detail is also straightforward to derive. The
style, that is, the deviations of the global shape, is expressed by the chain of details
D0, . . . , Dn−1. Now, changing the local detail means replacing these details by
a different chain D̂0, . . . , D̂n−1. A reconstruction using these new details yields a
curve having the same global shape as the original curve but different local detail
(see Figure 3.18).

Even though editing the curve in a multiresolution representation is rather
straightforward, a few issues are to be considered. In contrast to the other methods,

3. Note that the total memory size required to store the sequence C0, D0, D1, . . . , Dn−1 is the same
as for the original curve Cn.

3.3 A Generalization: Multiresolution Curves 109

(a) (b) (c) (d)

F I G U R E 3 . 1 7 Changing the overall shape of the curve given in (a) means changing a lower-
resolution representation (b) into what can be seen in (c) and then adding details again, finally
yielding the curve in (d).

F I G U R E 3 . 1 8 Changing local detail keeps the global course of the lines unchanged.

the curve can be edited on several levels; thus, to achieve the desired result, a
thorough knowledge of the properties of the curve and the algorithms for creating
the final high-resolution representation is necessary. Furthermore, this method is
well suited to controlling the geometry of the lines being drawn. Controlling
the visual attributes, since there is thickness, texture, brightness, or transparency,
is rather difficult to include. These attributes might be considered additional
dimensions in the line’s description (more exactly in the data associated with
each control point). The decomposition and reconstruction algorithm and thus
the whole framework can then be applied to any value associated with the curve.

110 C H A P T E R 3 Lines, Curves, and Strokes

3.4 Comparison of the Line-Drawing Methods
In the last sections, some line-drawing methods were proposed that all rely on
the path and style metaphor. Even though this common principle is shared by
all the presented techniques, many differences result in different conditions for
application.

By far the most general approach is the use of multiresolution curves. This
technique offers the most possibilities to influence the geometry of the resulting
line. One major drawback, however, is that other visual attributes such as line
thickness or line color can not easily be integrated in the model. Hence the
use of multiresolution curves is well suited for images where the geometry of
the line may change but the line width is the same. This is actually the case
for pen-and-ink renditions so that multiresolution curves are a perfect tool for
simulating the appearance of this kind of drawing (see, for instance, Chapter 5 for
an application).

Even though it seems limited at a first glance, the skeletal strokes approach
offers a tool to create a wide variety of images that can be used for illustrations as
well as artwork. The most challenging task when using skeletal strokes is the design
of appropriate strokes for the application at hand. If a library of strokes is available
to choose from, the character of an image can be changed rapidly by selecting
a different stroke. The major disadvantage with this technique is that the path
controls only the geometry of the line so no additional information that may be
gained from a 3D model can be mapped onto line properties. This mapping is one
of the inherent properties of the line styles model, so it is particularly well suited for
illustrative images being rendered from a given 3D model. The achievable styles
range from simple lines of uniform width to mimicking pen-and-ink drawings
done with very different kinds of pens.

Finally, the painting simulation done with hairy brushes is more an artistic
approach to use the path and style metaphor. It nicely demonstrates the possibilities
of this rather general framework.

Exercises
3.1 Review graphical methods for drawing and rastering lines (for instance,

the Bresenham algorithm). Which requirements are set for these algo-
rithms and how are they achieved?

Bibliographic Notes 111

3.2 Implement a procedure for drawing incorrect lines by changing points
on the line (or points in a parametric description of the line) based on
random variations. Which problems arise and how can they be solved?

3.3 Implement an interactive drawing system that allows you to place lines
on a plane. Use this system to experiment with different line-drawing
methods (see the following exercises).

3.4 Implement the skeletal stroke line-drawing method. Design different
stroke shapes, some of which should result in lines that appear to be drawn
with pen and ink or a felt pen. Include this method in your interactive
system from Exercise 3.3. How can the parameters of the lines be set?

3.5 Implement the painting simulation approach and include it in the inter-
active system from Exercise 3.3.

3.6 Experiment with several methods of how the bristles may influence each
other and compare the results.

3.7 Based on your observations with your own implementations, collect ideas
for interaction techniques that are suitable for such a painting or drawing
system. How can a line’s parameters be set (without using a dialog box)?
Implement some of your ideas.

3.8 Implement the multiresolution representation of lines. You will need this
representation in Chapter 5.

3.9 How can the multiresolution representation be extended to also handle
line attributes like width or color (saturation)?

Bibliographic Notes
The theoretical basis of this chapter is built in the Ph.D. thesis of Schofield (1994).
Here, the necessity of picture units of a size larger than a pixel is derived, and it
is shown that the construction of images based on such “marks” is actually one
of the main characteristics of non-photorealistic renditions. Schofield uses the
theoretical principles in a system called Piranesi, which includes many aspects of
NPR and which is also the topic of Lansdown and Schofield (1995) and Richens
and Schofield (1995).

The technique for drawing incorrect lines was first introduced by van Bak-
ergem and Obata (1991). Even though the hardware-based approach by modifying
a plotter seems somewhat outdated from today’s point of view, it has shown the

112 C H A P T E R 3 Lines, Curves, and Strokes

principles behind the development in this area. Starting with the introduction of
random variations in line-drawing routines, it becomes obvious that some kind of
control has to be provided over and above pure stochastic deviations.

The topic of lines and how to draw them, especially in the context of
illustrative images, has been studied by several authors. Dooley and Cohen used
different line parameterizations for their interactive illustration system (1990a;
1990b). Elber explored different variations of lines to better communicate the
spatial structure of geometric models (1995).

The path and style metaphor allows for this kind of control and is well suited
to make line deviations depend on some variables given either with a 3D model
or by user interaction. The latter is thus the key to skeletal strokes, a technique
mainly based on the two publications on this topic by Hsu, Lee, and Wiseman
(1993) and Hsu and Lee (1994). The technique described here has been included
in a few commercially available drawing programs.

Line styles have been developed at the University of Magdeburg in the context
of an analytic rendering system. They are based on the work of Schumann, which
is briefly covered in Strothotte et al. (1994). The line styles are an extension
thereof and have been developed by Schumann. For a detailed description, also
of the analytic rendering context, see Chapter 4 in Strothotte et al. (1998) as well
as Schlechtweg et al. (1998). An interesting application is described by Isenberg
(2000). A similar approach to line styles can be found in Northrup and Markosian
(2000).

Finally, the path and style metaphor also supports the simulation of brush-
strokes, which is described for the first time in the master’s thesis of Strassmann
(1986b) and which was the basis for a SIGGRAPH article (1986a). Even though
other paintbrush simulation methods have evolved (see Chapter 4 and Hertzmann
1998), the general concept of the path and style metaphor was proved useful.

Nonetheless, a general method of representing lines is given by using mul-
tiresolution curves in the context of NPR first introduced by Finkelstein and
Salesin (1994). This representation method builds on wavelets, a technique from
sampling theory; an in-depth study of wavelets can be found in Stollnitz et al.
(1996).

4 S I M U L A T I N G N A T U R A L M E D I A A N D
A R T I S T I C T E C H N I Q U E S

The approaches introduced in the last chapter served mainly one purpose: to
build tools that are then used to enrich the expressiveness of computer graphics
so as to create more vivid images. They are oriented on artistic techniques but
are not seen as an actual simulation of human painting and drawing. Indeed,
the goal to simulate artistic techniques is a rather questionable one. Simulating
artistic techniques means also simulating human thinking and reasoning, especially
creative thinking. This is impossible to do using algorithms or information
processing systems. What computer graphics can do is to mimic the result of
artistic processes and provide tools for doing so. Such tools are again a step toward
an enrichment of the expressiveness of computer graphics techniques.

In this chapter, we will take a closer look at tools that aim to create images
that resemble hand-drawn (or hand-painted) ones. The methods described here
differ from the ones described in Chapters 2 and 3 insofar as they possibly try to
simulate the physical processes connected with painting and drawing. They are a
simulation in the sense of imitating the physical behavior of ink or paint on paper
or imitating the distribution of graphite particles left behind by a pencil, but not
in the sense of imitating the human drawing and painting process. The chapter
concludes with two methods for the simulation of woodcuts and engravings. In
contrast to the first two sections, here computer graphics techniques are used that
do not simulate the real physical processes.

113

114 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

4.1 Simulating Painting with Wet Paint
Besides the artistic qualities of watercolor or oil paintings, such images also are
a challenge from a physicist’s point of view. We will concentrate on watercolor
paintings since the relevant physical processes form the basis for any other tech-
niques. A simulation of applying watercolor on paper includes, especially, the
following:

◆ A simulation of the physical properties of the medium, namely, paper, brushes,
and paint, including
◆ the paper properties (fine or coarse paper, its fiber structure, and so on),
◆ the peculiarities of different brushes, and
◆ the consistency of the paint resulting from the amount of water and paint

particles.
◆ A simulation of effects of the painting processes such as

◆ the flow of paint on the paper,
◆ the interaction between various brushstrokes (actually a simulation of mix-

ing two fluids),
◆ the adsorption of paint particles in the paper,
◆ the adsorption of water in the paper,
◆ the “aging” of paint, that is, the evaporation of water making the paint drier

over time, and
◆ other processes like the flow of paint on paper, which is not perfectly even.

Although all these processes are quite complex, they can be used by a skilled
artist to achieve exactly the effects he or she wants. A simulation is rather
complicated and will not include all aspects in a whole. Moreover, as in many
of these cases in physics, an idealized model will serve the purpose of simulation
well, so for our purposes a more empirically based model is used that incorporates
physically based behavior.

The observed scenario is of continuous nature although the desired output
on a computer screen or in a bitmap file is discrete. This imposes the first real
limitation to the computational models that are being used. There are mainly two
directions in which we can go:

1. choosing a discrete simulation model and

2. simulating in a continuous model and discretizing the simulation result.

4.1 Simulating Painting with Wet Paint 115

We will examine both methods in turn, where in the first case cellular automata are
chosen as the model, and in the second case fluid simulation is exploited directly.
The described simulations work only on abstract models and do not include a
visualization of the “computed image.” Therefore, we will focus on this topic in
a later section.

4.1.1 Simulating Watercolor Using Cellular Automata
The following model simulates the behavior of water and ink “particles” based
on a 2D cellular automaton. Before we explore the model in more detail, we will
introduce the concept of cellular automata as a model of computation. Then we
will identify the main parts of the watercolor simulation model and discuss each
part in turn.

Sidebar: Cellular Automata Basics

A cellular automaton (CA) is a model of computation, almost like a Turing
machine. Formally, a CA is a 4-tuple (L, S, N , f) with the following components:

◆ L is a regular lattice of cells,
◆ S is a finite set of states,
◆ N is a finite set (of size |N | = n) of neighborhood indices such that

∀c ∈ N , ∀r ∈ L : r + c ∈ L, and
◆ f : Sn → S is a transition function.

More informally, a CA is a set of cells arranged in a regular grid (of any dimension)
that are in a certain state at each point in time. With evolving time, a cell’s state
changes depending on the state of the cell itself and the state of neighboring cells.
These state changes are described by the given transition function. We will restrict
ourselves to 2D cellular automata; that is, the cells are arranged in a 2D grid. For
practical reasons, we further assume the lattice to have a finite size. A cellular
automaton is a discrete system in space and time since the space is divided into
discrete cells and the evolution of the cells (the change of states) takes place in
finite time steps. Probably the best known example of a CA is Conway’s game of
life, popularized in Martin Gardner’s Scientific American columns (Gardner, 1983).
We will provide a second example to clarify the concept.

The following cellular automaton models an excitable medium. Excitable
media appear in different situations. An example might be a forest or prairie fire
where each discretized part of the forest can be either burning, burnt down, or

116 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

if no neighbor

if ≥ 1 neighbor

(a) (b) (c)

F I G U R E 4 . 1 Visualization of the CA from the example given in the text: visualizes the lattice of
cells (a), the used 4-neighborhood (b), and the transition rule (c).

recovering. Other examples include nerve and muscle tissue or many chemical
systems. For our model, the lattice L is a regular 2D grid made of square cells
(see Figure 4.1(b)). For each cell, we consider a 4-neighborhood as can be seen
in Figure 4.1(b). S contains three states:

◆ 0, meaning the cell is in a resting state,
◆ 1, meaning the cell is in an excited state, and
◆ 2, meaning the cell is recovering.

The evolution of the cells is characterized by the following rules: a resting
cell remains resting unless one neighbor is excited. In this case the cell becomes
excited. An excited cell becomes recovering in the next step. A recovering cell
becomes resting. To summarize, more formally, the transition function f is as
follows:

f (0) =
{

0 if no neighbor = 2
1 if at least one neighbor = 2

f (1) = 0
f (2) = 1

The example in Figure 4.2 shows the development of a set of cells over ten steps.
Cellular automata provide an intuitive model to simulate water and paint

distribution on paper as we will see in the next section.

4.1 Simulating Painting with Wet Paint 117

F I G U R E 4 . 2 Configuration of the CA for the first ten steps (top left to bottom right).

Ink Transfer and Diffusion Model

To model the transfer of ink from the brush onto the paper as well as the
distribution of ink on the paper, we will use a 2D cellular automaton with a
finite grid size representing the paper plane. Basically, this is an array of cells, each
of which has the ability to hold a certain amount of water and paint (dissolved
in the water). The cell array can be thought of as an ice-cube tray where paint is
filled into the single containers; if a container is full, paint flows into neighboring
ones.

The cellular automaton that is used for the simulation is as follows:

◆ Cells For each cell Pij the position on the grid is given by the two indices i
and j.

◆ States The contents of a cell is described by two variables Wij and Iij rep-
resenting the amount of water and ink, respectively. These numbers can be
interpreted differently, for example, as percentage values or the number of
“paint and water particles,”1 depending on the model used for further com-
putations.

◆ Neighborhood For our purposes it is sufficient to use a 4-neighborhood system
(also called Neumann-neighborhood) where each cell has four neighbors,

1. The term particles in this sense has nothing to do with particle systems; it should emphasize only
that a discrete model is used where the contents of a cell consists of Wi j indivisible “units” of water
and Ii j “units” of ink.

118 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

namely, at the top, bottom, left, and right. Formally, the neighbors to cell
Pij are Pi,j+1, Pi,j−1, Pi+1,j, and Pi−1,j. It is also possible to use the Moore-
neighborhood with eight neighbors to each cell (including diagonal cells), but
this complicates the computations. In both cases, special care has to be taken
with the cells at the grid boundaries.

◆ State transition If we denote the state of the cell Pij at a given time t as
Sij(t) = (Wij(t), Iij(t)), then the transition function f translates this state to

Sij(t + �t) = f (Sij(t), Sk(t) | k ∈ N).

We describe the concrete implementation of the transition function in more
detail later.

Modeling Paper

The paper is represented as the grid of cells of the CA. Using no additional
information would result in an ideal plane and unstructured paper that has no
resemblance in reality. Real-world paper, however, is made out of fibers that give
the paper surface its typical texture and structure. These fibers produce a capillary
attraction that is responsible for the behavior of the ink and thus for the effects
achieved when painting.

To model the fiber structure of the paper, the cells are modified in a way that
each of them can hold only a limited amount of water and paint. We extend the
state of a cell Sij by adding two variables Bij and Cij, which are constants chosen
initially proportional to the thickness of the paper. Bij describes the height of the
cell’s “bottom,” and Cij describes the maximum capacity of the cell. Algorithm 4.1
creates a paper structure by means of modifying these variables (see Figure 4.3).

The fibers can be generated in a variety of ways; the most convenient is a
procedure that creates randomly placed fibers, but an interactive placement is also
possible. For special paper structures, a library of predefined fiber positions could
be created and used. As a result of Algorithm 4.1, each cell is assigned a bottom
height and a maximum fill height, which is then used in the painting process to
limit the amount of water and ink being placed in this cell.

4.1 Simulating Painting with Wet Paint 119

1 foreach cell Pij do
2 choose Cij and Bij proportional to the paper thickness
3 od
4 for i := 1 to m do
5 generate a 2D line segment on the paper
6 foreach cell under the line segment do
7 (Bij, Cij) := (Bij − �B, Cij + �C)

8 od
9 od

A L G O R I T H M 4 . 1 Modeling the fiber structures of the paper. The constant m in the second loop
corresponds to the number of fibers placed on the paper.

Modeling Brushes

The original intention behind the simulation was to produce images resembling
Suibokuga paintings.2 These paintings are made with brushes composed of bristles
that are arranged in a cylindrical cone. The ink that is transferred to the brush is
kept in the narrow spaces between the bristles due to capillary attraction. When
painting, ink flows toward the tip of the brush until the brush runs dry. Additional
effects arise from an unequal ink distribution in the brush or from the change of
pressure or velocity with which the brush is applied to the paper. An unusual but
effective way of simulating this behavior is to use a second CA that represents the
brush.

For every cell in this first CA, the initial states are set appropriately. This
involves the choice of two constants Bij and Cij, which describe the “thickness”
of the brush. These constants are similar to the ones introduced for modeling the
paper structure. At the brush tip, only a small amount of water (ink) can be held
while at the end this amount is much bigger.

When painting with the brush, ink flows toward the tip, which can be
modeled by changing the bottom height for each cell in an appropriate way:
Bij = Bij + θx. In this equation, x is the distance of cell Pij to the brush tip, and
θ is a constant proportional to the gradient of the brush. Moreover, ink flows

2. Suibokuga is a style of traditional Chinese monochrome painting (usually black ink on white
paper).

120 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

Wij

Bij

Cij

Wk

Ck

Bk

(a)

(b) (c)

F I G U R E 4 . 3 Paper model using cellular automata: variables describing the cell’s state (a), placing
line segments to describe paper fibers (b), and height field generated from the line segments (c).

unevenly within the brush, yielding many of the effects that can be observed
in watercolor paintings. In the simulation, a 2D noise function F of the same
resolution as the CA is added to the bottom heights of the cells: Bij = Bij + F(i, j).
Finally, the effect of bristles can be introduced in the model by a process similar
to introducing fibers in the paper model. Line segments parallel to the bristle
direction (typically toward the brush tip) are generated, and for all the cells lying
under these line segments the bottom height and the maximum fill are adapted.

The steps described so far model a brush that is used to paint on the paper.
When painting a stroke, a constant pressure is assumed that is applied to the
brush. The paper contact side of the brush CA moves in the stroke direction
while maintaining horizontal (or vertical) posture against the grid coordinates of
the paper CA. Drawing a stroke means transferring ink from the brush to the

4.1 Simulating Painting with Wet Paint 121

paper. This causes the cells of the CA representing the brush to become empty
and the cells of the CA representing the paper to be filled. After the stroke has
been drawn, in both CAs the cells’ states have to be updated. We will describe
only the paper side of this process since this explains how watercolor effects can
be simulated.

Modeling the Painting Process

The paint process starts with transferring ink and water particles from the brush
to the paper. This adds a certain amount of water and ink to the cells, and the
transition function is then responsible for distributing this among the cells. This
is done in four steps, each of which deals with a certain aspect of water and
ink distribution on the paper. In the following descriptions, we assume that the
computations are carried out for each time step.

1. Transfer and diffusion of water particles If a cell Pij is filled with water, it will
overflow, and water is transferred to the neighboring cells. At the same time,
overflowing water from the neighboring cells is transferred to the cell Pij.
Thus the resulting amount of water in Pij is computed as the sum of water
flowing into Pij (denoted as �Wk→ij) reduced by the amount of water flowing
out of Pij (denoted as �Wij→k).

Wij(t + �t) = Wij(t) +
∑
k∈N

(�Wk→ij − �Wij→k)

If these calculations result in Wij < 0, then Wij = 0 is assumed. The flow
of water between neighboring cells can be computed from the properties of
the involved cells, especially their bottom heights, their fuel capacity, and the
actual fill.

2. Transfer of ink particles accompanying water particles With the transfer of water,
ink is also transported from one cell to another. The number of ink particles
depends on the concentration of ink in the transferred water:

Iij(t + �t) = Iij(t) +
∑
k∈N

(�Ik→ij − �Iij→k) (4.1)

In Equation (4.1), the amount of ink flowing either into Pij (denoted as
�Ik→ij) or out of Pij (denoted as �Iij→k) is computed from the amount of
transferred water and the ink concentration as follows:

122 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

�Ik→ij = �Wk→ij
Ik(t)

Wk(t)

�Iij→k = �Wij→k
Iij(t)

Wij(t)

3. Transfer of ink particles to balance the concentration After water and ink have
been transferred to and from neighboring cells, the ink concentration has to
be balanced out since solutions of two fluids tend to balance the concentration
to the most stable state.

Iij(t + �t) = Iij(t) +
∑
k∈N

�Idk→ij

The change in ink concentration �Idk→ij depends on the diffusion coefficient
of ink in water (β) and the water concentrations in the two cells where the
balancing takes place:

�Idk→ij = β

(
Ik − Wk

Iij + Ik
Wij + Wk

)
= β

IkWij − IijWij

Wij + Wk

4. Evaporation of water In each time step, a certain amount of water evaporates
so that the paint gets drier. This is modeled by subtracting a quantity of water
from the cell’s contents, that is, Wij(t + �t) = Wij(t) − �W . If all water is
evaporated, the ink particles Iij remain in the cell Pij as dry ink.

These four steps describe the local transition function f of the CA and
are carried out in each time step. The model is rather complex and takes into
account several properties of watercolor when applied to paper. Nevertheless, it
is a compromise between a complete simulation that would include many more
steps and that would extend over and above the observed local behavior, and
a simple, much idealized approach. Given the CA model from earlier, almost
any complexity of a transfer and diffusion model can be realized by choosing
an appropriate transition function f . As with any CA-based model, this painting
simulation is particularly well suited for a parallel implementation that reduces the
computation time but creates other bottlenecks since communication between the
processors has to be taken into account.

4.1 Simulating Painting with Wet Paint 123

4.1.2 Computer-Generated Watercolor Using Fluid Simulation
In the first approach, the CA was used as the basis for the development of the
simulation. We will now describe a second, empirically based way of creating the
effects of watercolor on paper. Here also, CAs play a certain role, but more as a tool
for doing the calculations in a discrete, pixel-based plane. The combination of the
CA with a more physically based paper model and a fluid simulation leads to more
effects such as edge darkening, backruns, and glazing. An effective watercolor
simulation does not study only the physical properties of the medium but also the
characteristics that make artists use this technique.

Watercolor Effects

Watercolor is a very interesting artistic technique since it allows for many effects
that are impossible with other media. The most important property of watercolor
that has to be taken into consideration when developing a simulation is that
watercolor paint only spreads freely when the surface (the paper) is wet. This
is the reason for the development of two different painting techniques: wet-on-
wet, where the paint is applied to already wet paper and thus can flow freely, and
wet-on-dry, where the paint is applied to dry paper causing a variety of effects.
The following list contains some of the most important of these effects:

◆ Edge darkening If watercolor paint is applied to dry paper, the surface tension
of the water (which is also applied to the paper since the paint is actually a
solution of paint particles in water) does not allow the paint to spread freely
over the area of the paper. While drying off at the border of the wet areas,
water evaporates and has to be replenished from the interior of the wet area.
This also moves pigment to the borders, causing these areas to be darker than
the interior.

◆ Backruns When water from a brushstroke flows back into a still damp area
from an earlier stroke, it pushes pigment along, creating shapes that are the
result of an uneven water flow depending on the dampness of different parts
of the paper.

◆ Flow patterns In a similar process, patterns are created when using the wet-
on-wet technique where the surface allows the paint to spread freely. Because
of the decreasing water pressure and the paper structure, feathery shapes are
created that follow the direction of water flow.

124 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

F I G U R E 4 . 4 An image is regarded as a stack of layers or washes. Each wash contains a different
simulation process and, when combined, yield the image.

Artists deliberately use these effects when creating watercolor paintings by
adding plain water to the painting or by letting the brushstrokes run into each
other. Since all these effects can be described physically by fluid dynamics, the
simulation process described in the next section is mainly based on this technique.

The Fluid Simulation Setup and Algorithms

To produce the effects mentioned, an approach like the one in Section 4.1.1 can
probably be chosen, but the needed transition functions would be very com-
plicated to develop and compute, resulting in very time-consuming algorithms.
Instead, the model consists of several layers, so-called washes, over a more or less
rough paper surface as can be seen in Figure 4.4. Such a wash can be thought
of as a layer of paint (and water) added one after another to create the painting.
In each wash, a wet-area mask limits the area where the simulation process takes
place. This mask is simply a bitmap where a value of one indicates that the paper
is wet; otherwise, the respective bit is set to zero. The fluid simulation is carried
out in each wash independently; at the end, all washes are combined to yield the
image.

At the bottom of this “stack” of washes lies the paper surface. Modeling the
paper and the paper structure is done in a similar manner as in the CA approach.
Each cell of the paper surface (represented as a lattice in a CA) is assigned a height
that limits the capacity of the cell and thus creates the paper structure.

4.1 Simulating Painting with Wet Paint 125

F I G U R E 4 . 5 A wash is composed of three layers, each of which is responsible for a different part
of the simulation.

For the fluid simulation, each wash itself comprises three layers as shown in
Figure 4.5:

1. Shallow water layer In this layer, water flows across the paper in the areas
indicated by the wet-area mask. Pigment is lifted by the water, transported,
and deposited in a different location. To model this water flow, especially the
velocity of the water, the pressure of the water, the concentration of pigment,
and the slope of the paper (the gradient of the paper’s height) have to be taken
into account.

2. Pigment deposition layer The processes of adsorption and desorption control
the transfer of pigments between the shallow water layer and the pigment
deposition layer.

3. Capillary layer Within the capillary layer, water transport through the pores
of the paper is simulated. This allows the wet area on the paper to expand.
Based on the water saturation or fluid-holding capacity of the paper, the
wet-area mask is manipulated here.

As mentioned, all quantities observed in the simulation are discretized over the
paper and can thus be regarded as the “state” of the cells of the underlying CA.

The simulation itself takes as input for each wash the initial wet-area mask,
the velocity and pressure of the water, and the pigment concentration. All these
values can be obtained from a brushstroke with which wet paint is deposited on
the paper. The simulation main loop iterates over a given number of time steps
and performs basically four different steps (see Algorithm 4.2). We will investigate
each of the steps in turn.

1. Moving water in the shallow water layer To obtain realistic results, the physical
properties of the water flow must be obeyed as well as the effects that occur in

126 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

1 foreach time step do
2 move water in the shallow water layer
3 move pigments
4 simulate pigment adsorption and desorption
5 simulate capillary flow
6 od

A L G O R I T H M 4 . 2 Main loop for the fluid simulation within one wash.

watercolor paintings. Thus, several conditions must be satisfied in this step.
First of all, the water flow has to be restricted to the wet-area mask, and
any water flow has to lead to a concentration equilibrium; that is, water
flows from areas of high concentration to areas of low concentration. This
condition is satisfied by implementing the basic shallow water equations.3

For doing so, these equations have to be discretized in time and solved, for
instance, using Euler’s method. Another condition to be satisfied is that water
flow is influenced by the paper texture, which is done by adding respective
conditions to the fluid simulation.

Finally, an observational quality of watercolor painting is that pigment
tends to flow toward the edges of the wet area over time. This so-called edge
darkening effect is indeed one of the most striking features of watercolor
paintings, and artists make deliberate use of this effect. There is also a physical
explanation for this, which was already given. In the simulation, this effect
can be gained by increasing the water pressure near the edges.

2. Moving pigments The transport of pigments within the shallow water layer
depends on the local velocities of the water. Since these velocities are
computed in the first step of the simulation, these values are now used
to determine how much pigment has to be moved from one cell to its
neighbors.

3. Pigment adsorption and desorption In each time step, a certain amount of
pigment is adsorbed by the pigment deposition layer and also a certain amount

3. The equations that can be found, for instance, in Vreugdenhil (1994) are of the form
δu
δt = −

(
δu2

δx2 + δuv
δy2

)
+ µ∇2u − δp

δx and δv
δt = −

(
δv2

δy2 + δuv
δx2

)
+ µ∇2v − δp

δy .

4.1 Simulating Painting with Wet Paint 127

is desorbed back into the fluid. This transfer of pigment between the shallow
water layer and the pigment deposition layer simulates the deposition of
pigment on the paper, a process that can be described by three variables,
namely, the adsorption and desorption rate and the granulation. The latter
determines how the paper height (and thus the paper structure) affects the
pigment desorption.

4. Capillary flow The wet area on the paper after a brushstroke (the area covered
by the wet-area mask in the simulation) can slowly expand by capillary flow.
Damp areas are created either by drying water or by moving water from wet
areas into dry areas in the capillary layer. In contrast to the shallow water
layer, where water flow is caused by momentum, here the flow of water is
dominated by capillary effects. To simulate these, water is transported from
one cell to its neighbors. If the capacity of a cell is exceeded, the wet-area
mask is expanded to include this cell.

As can be seen from the preceding description, the simulation using fluid
dynamics is more complicated than the first approach where all algorithms are
coded directly in the transition function of the CA. The cellular automaton also
plays an important role in the second approach; however, it can also be used
independently from the actual simulation. The fluid simulation can also be carried
out in the continuous domain and then be discretized to fit in the cells.

After carrying out the simulation, in both approaches the result is a two-
dimensional array of “numbers” (namely, the states of the CA’s cells), which has
to be visualized correctly to finally create the image.

4.1.3 Rendering the Simulation Results
To actually create an image that represents the results of the painting simulation,
the cell’s states have to be visualized. Since the CA is based on a 2D grid of cells,
they can be mapped directly onto color values in a bitmap.

For the first technique, where the cell’s state consists only of two values (the
amounts of water and ink “particles”), this mapping is a straightforward procedure.
Since all ink particles have the same color, the concentration of ink in the water
can be translated directly into color saturation values. If, for instance, we assume a
bitmap where each pixel color is described in terms of the HSV color model, the
hue value is determined from the color used for painting. The values of saturation

128 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

and brightness are then free to be chosen depending on the water-to-ink ratio to
be visualized. In summary, the CA-based technique is well suited for monochrome
paintings as they appear in traditional Japanese art.

The second approach where different layers (washes) that can hold differently
colored paint have to be combined is more challenging. We cannot perform
a physically based computation of the resulting color since in real watercolor
paintings brushes are not independent from each other placed one atop another.
To compute the color for each pixel (CA cell, respectively), an optical composition
of the layers is performed. There are several methods for composition of glazing
layers, such as the Kubelka-Munk model.

This model is a theory describing the optical properties of a medium that
transmits visible radiation largely by diffuse transmission such that objects are not
seen distinctly through it. Each pigment is assigned a set of adsorption coefficients K
and scattering coefficients S. These coefficients control the amount of energy (light)
adsorbed or scattered back in the layer of pigment. The appropriate coefficients
have been determined experimentally and, since they depend on the wavelength,
differ for the red, green, and blue color channel.

Given the coefficients K and S as well as the thickness of the layer, the
reflectance and transmittance through the layer can then be computed. Using
the Kubelka-Munk model, we can then determine the overall reflectance and
transmittance of two abutting layers. Successive computations yield the desired
overall transmittance and reflectance for all layers and from this the respective
color value.

These two approaches should suffice to demonstrate the simulation of water-
color paintings. It should be noted that—even though the results of both ap-
proaches are very promising (see Figure 4.6)—they resemble more a printed
reproduction of a watercolor painting. This would be even more the case if you
try to simulate oil paintings. The reason for this lies in the fact that real paint-
ings are actually three dimensional. Many of the visual sensations when looking
at a painting in a museum stem from reflections and shadows of small three-
dimensional features that are created by adding layers of paint to the image.
Nonetheless, this section has shown that astonishing results are possible when
combining physical simulation with computer graphics methods. Besides phys-
ical simulations, it is also interesting to observe the physical properties of the
result of a drawing or painting process, which will be the topic of the next
section.

4.2 Simulating Pencils Drawing on Paper 129

(a) (b)

F I G U R E 4 . 6 Examples of computer-generated watercolor paintings: (a) was created using the CA
approach, whereas (b) is the result from the fluid simulation technique. (See also color insert.)

4.2 Simulating Pencils Drawing on Paper
A straightforward approach to the generation of line drawings by computer is
to use line-drawing primitives offered by standard graphics packages and to tune
them to account for parameters of hand-drawn sketches such as was shown in
Chapter 3.

Another approach is to examine the physical pencils and the paper more
closely at the level ascertainable with a microscope and to model the drawing
process on this level. The results of such a simulation are then compared to real,
handmade images to determine the extent to which the simulation goals have
been met.

4.2.1 The Microscopic Level
Every pencil has a writing core (or “lead”) that is made of a mixture of graphite,
wax, and clay. The marks that a pencil makes on paper are due to the graphite; the
wax acts as a lubricant; and the clay is used as a binding agent. The hardness of the
lead depends on the ratio of graphite to clay and varies from about 90:4 by weight
in very soft pencils to 4:5 in very hard ones. The wax is generally fixed in amount
(5% by weight). The data for the different kinds of pencils and their composition
is shown in Figure 4.7. The thickness of the lead can be approximated by a linear
interpolation of the thickness of the hardest pencil (2 mm for 9H) and the softest
pencil (4 mm for 8B).

130 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

0.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

8B7B6B5B4B3B2BBHBFH2H3H4H5H6H7H8H9H

Graphite

Clay

Wax

Pencil type SoftHard

C
om

po
sit

io
n

ra
tio

F I G U R E 4 . 7 Relationship between graphite, clay, and wax in the composition of different kinds
of pencils. Hard pencils have roughly equal proportions of graphite to clay, whereas soft pencils are
made mostly of graphite.

While pencils can be modeled in such a straightforward manner, paper is
more involved because it comes in a great variety of weights and textures. The
weight of the drawing paper determines its thickness and is measured in grams
per square inch (gsi), ranging from 48 gsi to 300 gsi. Paper textures for pencil
work (categorized as smooth, semi-rough, or rough) have “teeth” forming peaks
and valleys that enable lead material from pencils to adhere to the paper.

Paper can be studied with an electron microscope to see what effects different
pencils have when applied to the paper. Our example uses moderately toothed
paper of medium weight. Figure 4.8 shows images taken with an electron micro-
scope. In the left column, three top views are given, enlarged 200 times. They
show empty paper and the effect of drawing with a soft and a hard pencil, re-
spectively. The right column shows cross-sectional views that are enlarged 2,000
times for the same kinds of pencils. In the images of paper that has been drawn
on, lead deposited on the paper appears dark. Note how the hard pencil leads to
sharper edges of areas in which the lead is deposited compared to the soft pencil.
Indeed, the paper fibers are in fact damaged by the pencil.

4.2.2 A Model
We will now turn to an abstraction to model the observations made in the real
drawing situation. We will treat this model in three parts corresponding to the
pencil, the paper, and the interaction between these.

4.2 Simulating Pencils Drawing on Paper 131

(a) (b)

(c) (d)

(e) (f)

F I G U R E 4 . 8 Different levels of magnification of a top view and a cross-sectional view of paper
without marks (first row), paper shaded with a soft pencil (second row), and paper shaded with
a hard pencil (third row): (a) enlargement ×200, empty paper; (b) enlargement ×2,000, empty
paper; (c) enlargement ×200, soft pencil; (d) enlargement ×2,000, soft pencil; (e) enlargement
×200, hard pencil; (f) enlargement ×2,000, hard pencil.

132 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

Points

Polygonal tip shapes:

Typical Broad Chisel

Front Thin
edge

y

x

F I G U R E 4 . 9 The model treats pencil tips as convex polygons with three or more edges.

Pencil Model

For this model, important aspects of a pencil are first to what extent and how
it has been sharpened, and second, how much pressure the user applies. For the
first aspect, we consider pencils to be sharpened with a particular shape. We will
define three such shapes (typical, broad, and chiseled) and treat a pencil tip as
comprising a convex polygon with three or more edges. The different shapes are
then modeled by adjusting the shapes of the polygons accordingly. Examples are
shown in Figure 4.9.

The amount of lead deposited on the paper depends in part on the pressure
that the artist applies to the pencil. Computationally, this pressure is treated as a
set of coefficients c that (can) vary over the pencil tip. For a pencil tip defined
by a polygon with n vertices v1, v2, . . . , vn, we consider that there are n + 1
pressure coefficients Pc = {c0, c1, . . . , cn}, where c0 is the coefficient at a primary
location within the polygon (usually at its geometric center) and the other ci
are the coefficients at the respective locations of the vertices vi. The values of
the pressure coefficents at other locations on the pencil tip are defined by linear
interpolation. A higher ci, means more surface area of the pencil is in contact with
the paper.

Figure 4.10 illustrates this concept by showing the distribution of lead on
paper as a function of the pencil tip’s geometry. In the top, a sample polygonal
tip shape is shown in a top view. In the second row, three different sample cross-
sectional views are shown. A value of c0 = 1.0 is used, whereas in (a) c1 = c5 = 0.2,
in (b) c1 = c5 = 0.5, and in (c) c1 = c5 = 0.9. Note how a higher pressure broadens
the bottom surface of the pencil and thus enlarges the contact area with the paper.

4.2 Simulating Pencils Drawing on Paper 133

z

x

c

Linearly
interpolated
values

c 1

(a)

(c)

(b)

y

x

c c c

c 2

c 3 c 4

c 5

c 6

c 7

c 8c 9

y

x

c 1 c 5

c 1 c 1
c 5 c 5

F I G U R E 4 . 1 0 Distribution of lead on paper as a function of the pencil tip’s geometry: top view of
tip shape (a), three possible cross sections between c1 and c5 and the resulting pressure distribution
(b), and visualization of lead deposited on paper (c).

In general, the pressure coefficients represent the ratio of the pencil tip’s surface
that has contact with the paper. The third row in Figure 4.10 shows the respective
pressure distributions over the cross section, while the last row shows the respective
marks deposited by the lead. From this illustration, the effect of varying the pencil
tip geometry and pressure coefficients on the mark left behind is evident.

Paper Model

Paper can be modeled as a height field ranging between zero and one, that
is, 0 ≤ h ≤ 1. This height field either can be generated procedurally or can be
generated by extracting it from a digitized paper sample.

134 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

h 1

h 2

h 3

h 4

h 1

h 2

h 3

h 4

h′1

h′2

h′3

h′4

paper(x,y)

(a) (b) (c)

F I G U R E 4 . 1 1 A paper grain, seen from above in (a), is defined as a volume (b). The empty volume
above the grain (c) can be filled with lead.

The smallest element of the paper’s rough surface is the grain. It can be regarded
as a container that is then filled with lead material from the pencil. A grain itself
is defined by giving the paper heights at the four corners h1, h2, h3, and h4, where
h1 is at the paper location (x, y), and the other coefficients are its three neighbors
as shown in Figure 4.11(a). We assume that each such grain can be filled with
at most an amount Tv of lead, a value that is to be determined beforehand. Two
cases can occur.

1. If for a grain hi = hj ∀i, j : 1≤ i, j ≤ 4, that is, all heights defining the grain
are equal, then Tv is a constant Fs, which is the maximum amount of lead
necessary to fill the flat surface of the grain. Basically, only a bit of lead gets
deposited forming a thin layer. For the sake of clarity, we can assign Fs a
specific value like 500 lpu (lead particle units).

2. If there exists at least one grain height such that ∃i, j : hi �= hj, we define Vg to
be the volume bounded from below by the top of the grain, and from the top
by the lowest possible horizontal plane not cutting the grain (Figure 4.11(c))
(see Exercise 4.4 for how to compute Vg). Now the maximum amount of lead

4.2 Simulating Pencils Drawing on Paper 135

that can be deposited in the grain is Tv = Vg · Fv. Here Fv is the maximum
amount of lead material necessary to completely fill a grain’s volume (for
Fv ∈ [1,000, 3,000] lpu). Fv corresponds to a maximal lead absortion rate
based on the type of paper being used. In principle, this means that lead gets
deposited on uneven parts of the paper, and the amount of lead deposited
here depends on the heights of the respective paper “teeth” (given the grain’s
height coefficients).

The proposed values for Fv and Fs are based on the observations of real
drawings and can be changed to model different paper properties.

Finally, we can compute the distribution of lead Tv among the paper locations
at hk in the grain. The higher the height hk, the more lead will stick to the location.
Each of the locations has assigned a variable Lk, which is the local lead volume
for k. For the location k in one grain g, we set

Lkg
= hk∑4

i=1 hi

· Tv (4.2)

Since each hk is shared by at most four grains, the final value for Lk is the sum of
the values for the (up to) four grains sharing hk.

Model of Pencil-Paper Interaction

With the two models, we now have a basis for exploring the interaction of the
pencil with the paper. The pencil hardness and the pressure applied on the pencil
are the main variables that influence the final drawing. For each grain in the paper,
the amount of lead has to be computed that sticks to this particular location. Be-
fore we can compute this volume, the grains that are touched by the pencil’s tip
have to be identified, and an average pressure value (Pa) for each of them has to
be computed. The amount of lead is then determined in the following four steps:

1. Compute the depth of lead in the grain The depth Dl to which lead penetrates
the height field is proportional to the pressure Pa applied to the pencil
(although it cannot penetrate deeper than hmin):

Dl = max(hmin, Pa · hmax) (4.3)

This means geometrically that a plane is determined that cuts the grains at
the height Dl.

136 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

2. Compute the volume bitten Some of the lead is “bitten” by the paper’s surface
fibers, meaning that it is deposited in that part of a grain’s volume above
the clipping plane defined by Dl. More precisely, this value Bv corresponds
to the volume of the rectilinear polyhedron with four rectilinear sides of
heights Dl − hi, respectively. Note that if all heights of the grain are above or
equal to Dl, then the whole grain “bites” the lead and is filled completely,
that is, Bv = Tv.

3. Scale the volume according to the pencil type The amount of lead deposited in a
grain is scaled according to the hardness of the pencil. A scaling factor s is used
for 0 ≤ s ≤ 1, where a low value corresponds to hard pencils, a high value
to soft pencils. This scaling factor can be modeled as a constant, but more
precise results are achieved when making it depend on the applied pressure.
Hence, the scaled volume computes as Bv = Bv · s(Pa).

4. Compute the lead’s distribution among the grain’s heights The higher a grain
is, the more lead will stick to it. Hence, the amount of lead deposited at a
position of height hk is defined to be proportional to Lkg

.

Putting it all together, the final volume of lead bitten is distributed propor-
tionally to the heights hk in each grain:

Bk = Bv · hk(∑4
i=1 hi

) · s(Pa) (4.4)

Finally, the intensity of light at each grain must be determined. The more
graphite at a grain k, the less light Ik is reflected. The amount of graphite in
the pencil is modeled with the pencil itself by giving the ratio between wax,
graphite, and clay as described in Section 4.2.1. Given an amount of graphite Gk
at a particular grain k, if the total amount of lead needed to completely cover the
paper’s flat surface (including filling the grain’s volume) is Ft = Fs + Fv, then the
reflected intensity Ik can be approximated by

Ik = 1− Gk

Ft
(4.5)

which is the portion of the reflected intensity at the given grain k.

4.2 Simulating Pencils Drawing on Paper 137

(a)

(b)

6H pencil
Light pressure

6B pencil
Medium pressure

4B pencil
Heavy pressure

4B pencil
Medium pressure

F I G U R E 4 . 1 2 Handmade pencil shading (a) compared to simulation results (b) using a medium-
weight, moderate-tooth paper.

4.2.3 Results
Figure 4.12 shows some results of this simulation. The top row is hand-drawn, and
the bottom row shows the corresponding simulation. Note that there is a large
correspondence between the handmade drawings and the simulation. The tone
or intensity of the simulated images especially resemble the original ones, which
leads to the conclusion that the lead material distribution over the paper’s surface
is modeled appropriately. Further, the roughness of the paper is well represented
since it is nicely comparable with the hand-drawn samples. Figure 4.13 shows

138 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

(a) (b) (c)

F I G U R E 4 . 1 3 Simulation results made by automatically sketching predefined images: 3B pencil
(a), 6B pencil (b), and 6H pencil (c).

some other examples of renditions of objects made with the simulation described
in this section.

4.3 Simulating Woodcuts and Engravings
The basis for the development of a model for the simulation of watercolor as well
as pencil drawings was an observation of how the real-world tools work. A re-
spective model was derived by taking into account either physical processes (like
fluid dynamics) or the behavior of the tools on a microscopic level. This often re-
sults in computationally expensive models since the underlying physical processes
are quite complicated. Computer graphics, however, offers a different approach
that mimics the results of artistic techniques. If we can modify well-developed
(standard) computer graphics techniques such that the rendered results visually
resemble handcrafted images, there would be no need to perform physical sim-
ulations or computations on a microscopic level. In the following, this approach
will be demonstrated for the simulation of woodcuts and copperplate engravings.

Both woodcuts and copperplates are engraving techniques and can be traced
to the Middle Ages. Before other reproduction techniques were devised, copper-
plates especially were often used for technical illustrations. Later on, both methods
became well known as artistic techniques. One of the best-known artists in this
field is Albrecht Dürer. Engravings are made by cutting lines into a metal sheet

4.3 Simulating Woodcuts and Engravings 139

(for copperplates) or a wooden block (for woodcuts) with some engraving tool.
These engraved lines are then filled with paint and finally transferred to a sheet
of paper when pressing the plate onto it. This process could be modeled directly
by modeling the engraved plate, the filling with ink, and the transfer process of
ink to the paper. Indeed, this has been done by various authors (see the Bibli-
ography for further information). Another possibility that will be discussed here
is determining the characteristics of the resulting images and reproducing these
characteristics. We will study two of these reproduction techniques. The first uses
a three-dimensional description of the scene to be portrayed and uses a modified
raytracing algorithm to achieve a copperplate impression. The other one is based
on procedural screening and thus works completely in 2D.

A typical copperplate is a drawing that consists of lines of varying thickness
and single dots. Furthermore, copperplates and engravings are bi-level images,
that is, they do not contain gray values. For presenting the scene objects, contour
lines play an important role; they are usually somewhat overemphasized. Shading
is done using hatching lines in various thicknesses, distances, and orientations.

4.3.1 A Raytracing Approach for Copperplates
To modify a raytracer in such a way that the resulting images resemble copperplate
engravings, the geometry processing routines are kept and changes are introduced
only in the computation of the intensity values for each pixel. The basis for
raytracing in general is a so-called ray query, where for each pixel p in the output
image a ray is shot in the scene. The starting point for the ray is the pixel position
p, which travels along the direction r and finally hits a scene object. The result of
the ray query is the first intersection point t = (tx, ty, tz) of the ray with the scene.

For this intersection point, the object being hit as well as different parameters
such as the object’s material, the surface normal at the intersection point, and the
intensity values according to a local or global illumination model are determined
when performing standard raytracing. To mimic copperplates, especially the last
point—the computation of the intensity value at the intersection point—has to
be modified.

In general, the copperplate rendering process is performed in four steps after
determining the intersection point, as is shown in Algorithm 4.3. The five steps
given in the algorithm are performed for each image. Since the first three do not
differ from the general raytracing technique, we will not go into details here. We
will concentrate instead on the remaining two steps.

140 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

1 t = intersection point as a result of a ray query
2 determine material properties at t
3 determine color (intensity) value at t for a given illumination model
4 compute geometric and intensity parameters for hatching lines
5 post-processing to achieve the optical properties of copperplate images

A L G O R I T H M 4 . 3 General procedure for copperplate rendering using raytracing.

Creating Hatching Lines

Looking at copperplate images reveals that in most cases each object is hatched
separately with a slightly different hatching. This means that hatching parameters
can be stored together with material properties for each object. In the most simple
case, a new value a0 is introduced in the material description of an object, and
after the ray query, for each intersection point a value l is computed as

l = (λ mod a0)/a0 (4.6)

These values are calculated for each pixel and yield circular patterns. These
circular patterns are well suited for some objects, but the repertoire of copperplate
images is not limited to these. The use of straight hatching lines will widen the
expressiveness and also give in many cases a better method to convey shape and
illumination. For the creation of straight hatching lines, the objects in the scene
are overlaid with a set of parallel and equidistant planes in 3D space. Each plane
set is described by the plane coefficients e1, e2, e3, e4 for the first plane and an offset
parameter a that models the distance between the parallel planes. Let t = (tx, ty, tz)
be the intersection point of the ray with an object. If we compute f as the distance
of the intersection point from the first plane

f = e1tx + e2ty + e3tz + e4

the normalized distance b from a plane with offset a is given by

b =
{

(f mod a)/a if f ≥ 0
a − (f mod a)/a if f < 0

(4.7)

Plotting the values of b for each pixel creates a structure of parallel lines that is
seen on the object’s surface (see Figure 4.14).

We can combine several hatching patterns generated this way by using several
sets of planes and computing the values of bi for each set i separately. A combination
of the patterns is achieved by a weighted sum b = ∑

i cibi, where the weight

4.3 Simulating Woodcuts and Engravings 141

(a) (b) (c)

F I G U R E 4 . 1 4 Plotting the distances from the planes reveals hatching patterns: image generated
using standard raytracing (a), image generated using the procedure outlined (b), image generated
after post-processing (threshold quantization) (c).

parameter ci, again, depends on the surface material of the objects being rendered.
Summing up two different hatchings results in a triangle pattern, which is not
always desirable. The operator ∪ defined in Equation (4.8) avoids this behavior.
Given two hatchings x1 and x2, an overlay of these hatchings is computed by

x1 ∪ x2 =
{

max(x1, x2) if x2 ≥ 0
min(x1, −x2) if x2 < 0

(4.8)

For successfully mimicking the copperplate look, the thickness of the gen-
erated lines in the hatching patterns depends on the lighting conditions. The
raytracing approach gives the correct lighting calculation for free so that we
need only to modify the hatching calculation with that respect. To take differ-
ent properties of different object materials into account, we introduce two more
parameters—hf and hb—to the material description. The line thickness is then
modified using a term (h − hb)hf with h being a weighted sum of the RGB
components of the computed color value for the given pixel.

For finishing the third step in the generation of a copperplate image, we
connect the preceding computations such that for each pixel value in the output
image a value κ is calculated using

κ =
⋃

i

ci · bi ∪ l · c0 +
∑

i

di · bi + l · d0 + (h − hb) · hf (4.9)

This requires the introduction of two more weight factors ci and di that are to be
defined for the object’s material. This equation combines hatching lines stemming

142 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

from different plane sets and uses Equations (4.6) and (4.7) for calculating l and bi,
respectively. Note that this equation explicitly includes the circular patterns from
Equation (4.6).

Adding Edges and Optical Effects

The image generated in the previous step has to be manipulated in two ways
to finally yield a copperplate look-alike image. First, a discretization has to be
performed, and second, additional information has to be brought into the image.
This additional information pertains especially to edges that greatly enhance the
visual perception of the portrayed objects and that are an integral part of any
copperplate image.

Edges in the sense we are using this term are sudden changes in the image
domain with respect to certain properties. What we are looking for are edges that
describe geometric changes rather than changes in color values as they would
appear in photorealistic rendering caused, for instance, by textures or lighting
conditions. Finding these edges can be done using image processing operators,
but instead of working on the rendered image these operators work on pixel-
based representations of geometric values. This technique is quite common in
non-photorealistic computer graphics and will be covered in depth in Chapter 6.
For the time being, consider an image where for each pixel the z-value of the
intersection point t is stored. Then, applying an edge detection operator on this
image will reveal edges that represent sudden changes in z-depth, which are
almost always associated with object silhouettes. Another possibility is to apply
the same technique on an image that represents the normal vector coordinates at
the intersection point or even the angle between the normal vector and the query
ray.

Raytracing offers several ways to include optical effects in an image that
range from reflection and refraction to special transmission functions and caustics.
Reflection and refraction are computed by considering second or higher order
rays that emanate from the computed intersection point and can be followed
in the same way as the rays shot from the pixel position. Considering these
higher order rays in photorealistic image generation means adding the color value
computed for them to the color value for the initial ray’s pixel position. Even
though reflection and refraction are seldom included in handmade copperplates,
the proposed method allows for a visualization for such properties. Instead of
computing the RGB values in a recursive manner by following higher order
rays, the value κ is computed. Let κi be the value for the current (i-th) depth

4.3 Simulating Woodcuts and Engravings 143

according to Equation (4.9), and κij the value for the j-th ray4 emanating from the
intersection point in depth i. If we further assume cij and dij are proper weighting
factors, then the value of κi,total computes as

κi,total = κi ∪
⋃

j

κi−1,j · cij +
∑

j

κi−1,j · dij

When computing these values from higher order rays, it is necessary to make
some design decisions so that reflection and refraction are actually distinguishable
from the hatchings that visualize the object’s surface (and that are computed
from first order rays). These design decisions are represented in the choice of
the weighting factors cij and dij.

Computing the Final Image

The result of the computations from the last two sections are two images. The first
one contains for each pixel the κ values, and the second one contains the results
from the edge detection algorithm as stated earlier. To create a copperplate image,
these two have to be combined in an appropriate manner. This post-processing
step determines some of the optical properties of the copperplate images.

The first and most important step to be performed is a discretization of the
pattern image. As already said, these images are gray-level images, where each
pixel represents a value for κ . Computer-generated copperplates, however, are
bi-level images, where each pixel represents either the presence or the absence
of color (ink). The discretization can be performed using different techniques;
mainly threshold operators or convolution algorithms are used here. As with any
algorithms that discretize a gray-level image, aliasing problems may occur. This is
already evident from the example images used throughout this section, where no
anti-aliasing techniques have been used. The hatching lines are very sensitive with
respect to aliasing so that—especially when creating low-resolution images—an
anti-aliasing can yield better images.

The second issue that has to be dealt with in this final stage of the image
generation is to combine the (at least two) intermediate images to yield a final
rendition. Here, the computed edges are combined with the hatching lines by

4. j-th in this sense means that all (i + 1)th order rays that are considered here—reflected, refracted,
and others—are enumerated and assigned an index j.

144 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

(a) (b)

F I G U R E 4 . 1 5 “Mobile” as computer-generated copperplate: standard raytracing (a) and copper-
plate (b). (See also color insert.)

merging the bitmaps pixelwise using an OR operator. If anti-aliasing techniques
are used, the combination is somewhat more complicated but can also be done.

Altogether, this process of generating copperplate renditions depends highly
on the resolution of the final image. Thus, the most crucial issue when using this
raytracing approach is to find the correct parameters for the plane sets as well
as the weighting factors in order to avoid moiré patterns. If these values are set
properly, astounding results can be achieved, as can be seen in Figures 4.15 and
4.16.

4.3.2 An Image Processing Approach for Engravings
The raytracing approach for generating copperplates has several advantages but also
some problems. One advantage is certainly the availability of three-dimensional
information. Using raytracing means in this case that for any point in the image
a wealth of information about position, normal vectors, surface materials, or
lighting is readily available. The main drawback is that, at first, raytracing done at
very high resolutions (which would be needed for copperplates) and with rather
complex scenes can become quite time consuming. Furthermore, dealing with

4.3 Simulating Woodcuts and Engravings 145

(a) (b)

F I G U R E 4 . 1 6 “Martian Bananas” as computer-generated copperplate: standard raytracing (a) and
copperplate (b). (See also color insert.)

more complicated object shapes—for instance, human faces—makes raytracing
not the method of choice. Such objects require fine-tuning and manipulating the
parameters, which should even be possible in an interactive environment. What’s
more, objects like human faces are hard to model in three dimensions, and it
would be desirable to work on a 2D image instead.

Taking this into consideration and looking back at the image-oriented tech-
niques that were introduced in Chapter 2, we will find that (procedural) screening
bears a high potential for reproducing the optical effects of copperplates. In the
following, we will describe a technique that is based on screening using de-
composition of the target image into several layers, each of which is treated
with a different dither screen. These layers are then combined to yield the final
image.

146 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

(a) (b)

v V1(v)

V2(v)

U2(u)

U1(u)u u
x

1

10

uv: parametric space xy: image space

v v
Patch TPatch T

F I G U R E 4 . 1 7 Warping a uniform grid (a) yields a transformation in the dither screen (b).

The Basic Engraving Layer

For this purpose, we define a basic engraving layer as a general dither screen that
represents the basic building blocks for an engraving. Handmade copperplates or
woodcuts are composed almost exclusively of lines with different widths. The
line width depends on the light intensity at the respective surface points. To
simulate this behavior, the basic engraving layer should be defined by a sequence
of equidistant lines in such a way that—using it as a dither screen—wider lines are
achieved in darker areas and thinner lines in bright areas. A dither screen like the
one in Figure 4.17(b) serves this purpose well. It can be created by using a function
like Equation 2.4 in Section 2.2.3, which was used for procedural screening. It is
also possible to produce this screen as a bitmap beforehand.

This basic engraving layer is defined in its own uv-coordinate system over
the range [0, 1] × [0, 1]. To achieve different effects in copperplates that result
from lines not being straight, the basic engraving layer is transformed by warping
it such that the lines follow the intended direction. Using, for example, Coons
patches (for details, see Farin, 1996) to model the transformation yields a simple
and intuitive way of specifying the warping parameters. If the lines should follow a
certain direction, then simply the borders of the patch have to be aligned properly.

Warping a regular grid defined in a parametric space uv yields a warped
grid that is then appropriately filled with the basic engraving layer. Thus, a
transformation of the uv unit block into image space also transforms the basic
engraving layer accordingly. This process is illustrated in Figure 4.17.

Combination Rules

The basic engraving layers transformed in such a way have to be combined
in order to create different effects like, for instance, cross-hatching. Since the

4.3 Simulating Woodcuts and Engravings 147

F I G U R E 4 . 1 8 Two examples for engraving layers.

basic engraving layer is used as a dither screen, the combination of two or more
such layers yields another dither screen with different properties. For the sake of
simplicity, we will treat each pair of layers separately and so successively merge
two layers until all layers are processed. The superimposition of two layers is done
according to a set of merging rules.

To define these rules, we consider an engraving layer as consisting of three
parts. First, there is the actual dither screen T (x, y), which is defined as described
earlier. This dither screen may undergo several range transformations to make it
applicable in a concrete case. The grayscale values representing the dither screen
(and thus the engraving layer) may be scaled by a function S(x, y), and they may
also be raised or lowered; that is, a range shifting operation D(x, y) may be applied.
These two functions S and D affect the pixel intensities depending on the pixel
position (x, y) and are defined as two matrices with the same dimension as the
dither screen T (x, y). We can thus write

T ′(x, y) = T (x, y) · S(x, y) + D(x, y)

which yields a more detailed description of an engraving layer. Figure 4.18 shows
two examples that will be used throughout the following explanations.

We will now define a set of rules to superimpose two layers. A subsequent
application of these rules will ultimately lead to a superimposition of several layers.
For simplicity of notation, we say that a current layer (CL) is merged into a
resulting layer (RL) while both CL and RL are given as input and RL is the result
of this operation. To initialize the engraving for the first merging operation, a
special rule copy is defined that simply copies the values from the current layer to
the resulting layer:

RL copy CL : TRL(x, y) = TCL(x, y) · S(x, y) + D(x, y)

Any other rule will alter RL based on the values of RL and CL by combining
the values in a special manner. We will look at a few rules in detail although this
number of possible rules is much bigger than the few ones introduced here.

148 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

(a) (b)

F I G U R E 4 . 1 9 The merging rules add and multiply applied to the engraving layers given in Figure 4.18:
RL add CL (a) and RL multiply CL (b).

(a) (b)

F I G U R E 4 . 2 0 The merging rules smaller and bigger applied to the engraving layers given in
Figure 4.18: RL smaller CL (a) and RL bigger CL (b).

Using basic arithmetic operations on the two layers immediately yields the
two rules multiply and add that can be seen in Figure 4.19. The first one multiplies
the two screen intensities at each position (x, y), whereas the second one adds the
two values:

RL multiply CL : TRL(x, y) · (TCL(x, y) · S(x, y) + D(x, y))
RL add CL : TRL(x, y) + (TCL(x, y) · S(x, y) + D(x, y))

Two other rules smaller and bigger are based on the minimum or maximum of
the two layers at the position (x, y) and defined as follows (see Figure 4.20):

RL smaller CL : min(TRL(x, y), TCL(x, y) · S(x, y) + D(x, y))
RL bigger CL : max(TRL(x, y), TCL(x, y) · S(x, y) + D(x, y))

These basic rules can be combined with different range shift or scale opera-
tions to achieve the desired result. Usually a combination of two layers will result
in threshold values falling out of the range [0, 1] so that in such cases a trimming
operation is needed. Unfortunately, there is another problem. The tone repro-
duction curve of two superimposed layers may show non-linear behavior even if
the two original layers behave linearly. For the resulting engraving, this may mean
that it appears locally darker or brighter than expected. A correction of this be-

4.3 Simulating Woodcuts and Engravings 149

havior is quite complicated and cannot simply be done by performing a histogram
equalization. Instead, local changes have to be introduced that take into account
the output medium and the properties of the human visual system. Basically, local
histogram equalization is performed here such that the modified dither screen—
when applied—must produce visually uniform gray for a uniform input signal.
We refer you to Ostromoukhov and Hersch (1999) for details of this procedure.

Creating an Engraving

In the last paragraphs, we defined the basic building blocks for the creation of
image-based digital engravings. We will now see how they are applied to create
a rendition of a given gray-level image. The overall procedure is as follows:

1. Identification of regions in the image that have to be “engraved” differently.

2. Transformation of the basic engraving layer for each identified region such
that the respective region is covered and the features of the engraving layer
follow the image features. This will create a separate layer for each identified
feature.

3. Specification of the range shift and range scale matrices for each layer. This
can be done by “painting” these matrices interactively.

4. Superimposition of the engraving layers by subsequently merging two layers.

5. Correction of the superimposed dither screen as described earlier.

6. Application of the dither screen to the image.

We will demonstrate this procedure using the example in Figure 4.21. Fig-
ure 4.21(a) shows the placement and deformation of the basic engraving layers.
For the creation of this particular image, five different layers are chosen. Note
how the borders of the grids and thus also the lines are aligned to follow the key
features of the face. Figure 4.21(b) is a visualization of the range shift matrices.
Note that no range scaling is applied for this particular example. For the shifting
matrices, black corresponds to +1, white to −1, and gray means no shift. As can
be seen especially in the first layer, a transition between two layers can be achieved
by a fading in the range shift matrix. Finally, Figure 4.21(c) shows how the layers
are successively combined. In this case, after an initial copy operation to initialize
the first layer, only one merging rule is used: smaller. This yields the following
formula as a description of the combination process:

(((L1 smaller L2) smaller L3) smaller L4) smaller L5

150 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

Layer L5Layer L4Layer L3Layer L2Layer L1

(((L1 smaller L2) smaller L3)
smaller L4) smaller L5

((L1 smaller L2)
smaller L3) smaller L4

(L1 smaller L2) smaller L3L1 smaller L2copy L1

(a)

(c)

(b)

F I G U R E 4 . 2 1 Creating an engraving: parametric grids for successive layers, on top of the original
image (a), range shift matrices (masks) for successive layers (b), and succession of resulting engraving
layers (c).

Exercises 151

F I G U R E 4 . 2 2 Resulting engraving from the process shown in Figure 4.21.

The resulting dither screen is then applied to the input image, which yields the
rendition in Figure 4.22.

Exercises
4.1 Implement the basic concepts of cellular automata and extend your

implementation so that it can be used for a simulation of wet paint on
different paper surfaces.

4.2 Extend your implementation from the last exercise in order to be able
to compare different transition functions. Compare the results. Which
effects are the most important ones to be included in a simulation of
watercolor?

152 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

4.3 Can the CA approach also be used to simulate oil paintings? Find the
main characteristics of an oil painting and discuss how a simulation of
these effects could be performed.

4.4 Show that if a paper grain (as introduced for the pencil simulation in
Section 4.2) has a maximum height of hmax then the volume of a grain is
Vg = 1

4 · ∑4
i=1 hmax − hi.

4.5 Investigate the model for pencils drawing on paper when pencil strokes
are repeated more than once.

4.6 Extend the pencil-and-paper model to handle colored pencils or different
kinds of pencils (crayons). Can this model also serve as a basis for charcoal
or chalk drawings?

4.7 Develop a model for the effect of erasers and blenders on pencil drawings.
Note that such drawing instruments can be considered to have an effect
analogous to that of pencils.

4.8 What are the main drawbacks of the pencil-and-paper model introduced
in this chapter and what are the advantages?

4.9 Develop a systematic method to assess the quality of a simulation model
such as the one presented for pencil drawings.

4.10 If you have the source code of a raytracer available, extend the raytracer
such that copperplate rendering is possible. Note that finding the correct
parameters for aesthetically pleasing images is not intuitive. Experiment
with the raytracer to find usable parameter sets.

4.11 Implement the merging rules and the deformation functions for engrav-
ing layers. Create simulated engravings with these methods and compare
them to the ones obtained by raytracing.

4.12 Can the boundaries of the different regions be found algorithmically?

Bibliographic Notes
The simulation of wet paint on paper emerged very early in the history of NPR.
Already in 1986, Strassmann tried to simulate the Japanese art sumi-e (Strassmann,
1986b; Strassmann, 1986a). He used the path and style metaphor as described in
Chapter 3 to create single brushstrokes. An extension to this model was presented
by Pham, which is also suited for animation (Pham, 1991).

Bibliographic Notes 153

The interaction of wet paint between strokes and between the paint and the
paper was then introduced in a paper “Wet and Sticky: Supporting Interaction
with Wet Paint” by Cockshott and England (1991; Cockshott et al., 1992). Here,
for the first time, cellular automata were used to simulate the behavior of paint on
paper. Even though their main interest has been on interaction techniques and
exploiting parallelism, Cockshott and England have provided the basis for further
research in this area.

The use of cellular automata for paint simulation enabled Zhang et al. to
present a system for the creation of monochrome images resembling the traditional
Chinese art (Zhang et al., 1999). They introduced interesting features like shade,
scratchiness, and blur into a behavioral model of water and ink, and used this
model especially to render images of trees.

Finally, Curtis et al. described the various effects of watercolor and showed
how they can be simulated automatically (Curtis et al., 1997). Their model uses
fluid dynamics in a set of layers to also simulate the mixing of color when several
brushstrokes are applied on top of each other. Their model is so far the most
complex and realistic one.

Some other authors have also spent considerable effort in simulating brush-
strokes although they concentrated only on very specific effects. For instance,
Guo and Kunii simulated the phenomenon of “Nijimi,” a technique in traditional
Chinese art, where ink is diffused into the absorbent paper. Their approach is based
on the physical analysis of the phenomenon and uses the concept of disorder
systems (Guo and Kunii, 1991). A highly parallel algorithm using CAs is also
presented by Small (1991).

Significant work on the simulation of pencil drawings taking into account
the microscopic level has been done by (Sousa, 1999; Sousa and Buchanan,
1999b; Sousa and Buchanan, 2000; Sousa and Buchanan, 1999a). This work
is an excellent example of one direction in which such simulation approaches can
be taken: analyzing the result of the real-world process and trying to build the
same result on a computer.

The first attempt to simulate copperplate engravings was done by Leister using
an extended raytracing method (Leister, 1994). The modification of this method,
which was originally intended to produce highly photorealistic images, yields
astonishingly good results; however, it needs a 3D model as input. Starting from a
2D image, pixel-based methods were developed by Ostromoukhov (1999). With
this, he extends his repertoire of dual tone representation techniques for images

154 C H A P T E R 4 Simulating Natural Media and Artistic Techniques

that were already mentioned in Chapter 2 (see also Ostromoukhov and Hersch,
1995; Ostromoukhov et al., 1996; Ostromoukhov, 2000).

An area that is emerging and has not been covered in this chapter is the
simulation of the woodcut and engraving process itself. In this area, the research
work done by Mizuno et al. (1998) as well as by Sourin (2001) is of interest.

5 S T R O K E- B A S E D I L L U S T R A T I O N S

Having seen in the last chapters how images can be manipulated on the level of
pixels, how lines and strokes as basic building blocks for non-photorealistic im-
agery can be created, and how artistic techniques can be simulated, we now turn
our attention to the question of how individual strokes and lines can be com-
bined to build interesting images. In a certain way, this continues the simulation
approaches described in Chapter 4 since the results obtained here may also resem-
ble handcrafted renditions. The style of the images is thereby determined by the
kinds of strokes that are used. It ranges from paintings, where paintbrush marks
are distributed over an image, to pen-and-ink renditions, where lines are the basic
building blocks.

5.1 Strokes and Stroke Textures
Stroke-based illustrations have a number of features that make them interesting
for the creation of illustrative images but also for artistic purposes. Although the
first application area ought to be in the center of interest in this chapter, the latter
should be kept in mind when designing algorithms. The aesthetic quality of an
image determines to a great extent how the image will be used and whether it
successfully transfers the intended message.

Looking at pen-and-ink illustrations, the strokes from which they are built
have two major properties:

155

156 C H A P T E R 5 Stroke-Based Illustrations

F I G U R E 5 . 1 Depicting shape and illumination by the placement of single strokes.

1. They depict both tone and texture simultaneously.

2. They work together to express tone and texture.

This means that, even though every single stroke is of critical importance for
the image, it has to contribute to tone as well as texture. In the end, each single
stroke is part of a texture that conveys both shape and illumination as can be seen
in Figure 5.1.

Almost the same holds for other types of illustrations. Paintbrushes cover
a surface and provide a sense of shape by depicting the lighting conditions
via colored brushstrokes. Different shape features of the portrayed objects are
conveyed by the use of different-sized strokes. Alternatively, only the object
contours may be drawn by special kinds of strokes so as to depict different materials
like fur, grass, or the foliage of a tree. In the following, we will see how such strokes
are defined and drawn, and how they are used to cover larger areas.

5.1.1 Defining and Drawing Single Strokes
Each single stroke has to be designed carefully with respect to its own properties
and its combination with other strokes. In the case of pen-and-ink-style strokes,
lines with equal thickness are a good starting point. The strokes have to be
irregular; otherwise, a rather synthetic, mechanical look of the illustration would
be the result (see Section 3.1). The procedure to create one stroke thus starts

5.1 Strokes and Stroke Textures 157

with a straight line that is then subdivided to yield a chain of line segments.
The positions of the joints between these segments are perturbed randomly in
order to introduce irregularities. Finally, this line segment chain can act as the
control polygon for a free-form curve to make the stroke more smooth. As
an alternative, multiresolution curves (as described in Section 3.3) can also be
used.

Drawing such a stroke requires not only the rasterization of the line or curve
but also the clipping of the stroke. In typical pen-and-ink renditions, several
situations arise where strokes do not cross specific features in the image. These
features include:

1. the edges of the overall image,

2. tonal edges in the image, that is, abrupt changes in intensity due to lighting,
shadow, or material, and

3. object contours.

Many algorithms for clipping have been developed and have become standard
in computer graphics.1 For the purpose of clipping a stroke, however, a much
simpler approach will suffice. When drawing the stroke, we simply stop at the
respective position (edge) but add a random offset so that we achieve a ragged
edge and thus prevent too much regularity.

For different types of applications, different strokes may be needed. Pen-and-
ink-style strokes are well suited to cover larger regions of the image in a certain
style. Other styles require “marks” to be placed along the contour of the objects
or footprints of a paintbrush (see Figure 5.2).

The Dr. Seuss-like strokes from Figure 5.2(a)—also called graftals—are defined
in different levels of detail such that they can be drawn differently:

◆ as a complete stroke with outline and interior fill if high detail is required,
◆ as just the interior fill and parts of the outline, or simply the outline for medium

detail, or
◆ as just a part of the outline (basically, one line) if very little detail is required.

1. See, for example, Rogers (1998).

158 C H A P T E R 5 Stroke-Based Illustrations

(a) (b)

F I G U R E 5 . 2 Different strokes to create different styles of illustration: marks placed along the object
contour (a) and filling regions with paintbrush strokes (b). (See also color insert.)

Drawing a stroke in this case simply means to scale the graftal accordingly and
draw those parts of the graftal that are needed in the current situation. Clipping
is not performed here because, on the one hand, these strokes do not fill larger
areas in the image, and on the other, scaling and the level of detail replaces the
need for clipping.

Finally, paintbrush-like strokes can be created in a variety of ways. For
covering a surface, the most promising way is to use prerendered brush images.
These are color bitmaps that contain an additional alpha channel for storing
transparency values. In such a way, the shape of the brushstroke can be defined.
The application of such a stroke is a copy operation that transfers the stroke image
into the frame buffer while observing orientation, color, and scale. For orienting
the strokes, a reference coordinate system is established that describes the stroke
and that is then transformed in 2D for the final rendering. Paintbrush strokes are
also not clipped but scaled accordingly so that they resemble original paintings.
Instead of “stopping” to paint at an edge, smaller strokes are used. As opposed to
pen-and-ink-style renditions, where no color information is used, paintbrushes
rely on color. Thus, either the correct stroke has to be selected from a set of strokes
with different colors or the stroke color itself has to be adjusted before rendering
the stroke.

Rendering single strokes is the first step for stroke-based illustrations. Only
a combination of many strokes will cover a surface or depict the outline of an
object. We will see in the following how strokes can be combined and which
additional requirements will arise.

5.1 Strokes and Stroke Textures 159

5.1.2 Building Stroke Textures
Given a method of defining and drawing single strokes, these strokes have to be
combined to fill a surface region of the image. We will refer to sets of strokes
that fill a certain area as stroke textures. In general, using stroke textures, it is
important to represent texture and tone appropriately. Texture suggests the material
properties of the surface in question and thus yields the impression of, for instance,
a brick wall, a sandy beach, or the foliage of a tree. Tone is important to visualize
lighting information especially, and both are indispensable tools for conveying the
shape of the depicted objects. Thus, the key to the composition of individual
strokes into complete renditions lies in finding a way to convey information
about

◆ the form of the object and perhaps also the material of which it is made and
◆ the scene, in particular (but not necessarily limited to) the effect of light.

Equally important is the realization that not only must the underlying ge-
ometric model be considered, but also the size of the paper (or the size and
resolution of the computer screen) on which the resultant image is to be displayed.
A small drawing of a scene cannot, in general, be obtained by photoreducing a
large drawing, or vice versa. Instead, small drawings tend to be made with fewer
strokes though the width of a stroke may remain the same. This problem will be
addressed in more detail in Section 5.3.

Regardless of any features of the underlying geometric model, to reflect the
light intensity, the following naive algorithm might be considered. For each region
in the image, compute the intensity of light v reflected toward the viewer from a
point on the surface. We refer to v as the tone of the surface. In photorealistic
rendering, this can be expressed in a pixel-by-pixel manner by choosing the
color appropriately. In NPR, the same effect is achieved over an entire surface by
adjusting the density of strokes. Given an area A of an image to be covered with
non-overlapping strokes of width w, the total length l of the strokes is thus

l = v · A

w

Note that strokes often actually do overlap one another though covering a surface
with ink twice does not make it darker. Hence this factor must be taken into
account (see also Exercise 5.1).

160 C H A P T E R 5 Stroke-Based Illustrations

The procedure outlined works well for equally spaced strokes if a rather large
area has to be covered with the same tone. However, these conditions are rarely
encountered. More likely the tone will gradually change over a surface so that
the preceding algorithm is not applicable. The basic principle behind texturing a
surface in such cases is that more strokes have to be placed in darker regions while
fewer strokes go to bright regions. This implies an adaptive distribution of the
strokes based on the tone value of the underlying image. To achieve this goal, the
tone of the created illustration has to be compared with the tone of the original
(target) image.

To compare the stroke-based illustration with a gray-level image, consider
a stroke to darken a region of the image when applied. After applying each
stroke, it then remains to be determined how much darker the illustration needs
to become in a specific region in order to match the tone of the target image. The
following difference image algorithm (DIA) yields good results for this problem. Given
a target (gray-level) image and an empty illustration, we would need an additional
difference image buffer to actually perform the tone matching. This buffer is
initialized with the contents of the target image. Each stroke is drawn in the
illustration. After this has been done, a blurred version of the stroke is computed
using adaptive averaging filters on the illustration. The filter radius is inversely
proportional to the target tone of the image since in darker regions strokes are
more closely spaced than in light regions. The blurred version of the stroke is
subtracted from the difference image such that the remaining intensity difference
is recorded. This difference between the target image and the blurred illustration
is a measure for the “success” of achieving the desired tone. The location where
the next stroke will be placed is then selected from this last “difference image”
by choosing the position with the largest value. This procedure is more formally
outlined in Algorithm 5.1.

1 create an empty difference image
2 foreach stroke S do
3 P = position in the difference image with the highest value
4 draw S in the illustration at position P
5 create a blurred image of S
6 subtract this blurred image from the difference image at position P
7 od

A L G O R I T H M 5 . 1 Difference image algorithm for placing strokes.

5.1 Strokes and Stroke Textures 161

This algorithm stops placing new strokes when the difference image contains
only values that are below a given threshold. There is no way to reach a difference
image that contains only zero values since the stroke-based illustration is only
an approximation of the target image. This method of placing strokes matches
the tone of the target image but does not take into account texture or material
properties. It works well for textures where the placement of single strokes depends
only on the target tone. For introducing textures, the strokes have to be placed
in a certain arrangement (so as to draw, for example, a brick wall). To match
tone and texture, the strokes in these arrangements have to be drawn in a certain
order such that for light tones only the most significant strokes are drawn and less
important strokes are filled in for darker regions.

To model this behavior, we need to refine the definition of the stroke textures.
Normally, a stroke texture is a collection of strokes that are given relative to a
reference coordinate system and that are chosen in random order for drawing. To
predefine the drawing sequence, a priority value is assigned to each stroke. This
will yield a so-called prioritized stroke texture. As an example, for a brick wall,
the lines defining the outlines of the bricks are most important to convey the type
of material (see Figure 5.3). If the image gets darker, then the individual bricks
may be shaded using horizontal or vertical lines. Finally, in very dark regions, the
whole texture might be covered with diagonal strokes.

These stroke textures—prioritized or not—can easily be stored for later use.
When using stroke textures, Algorithm 5.1 is affected only in the generation of

0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

F I G U R E 5 . 3 Examples of prioritized stroke textures. Each field represents a tone v in the range
[0, 1] increasing from left to right.

162 C H A P T E R 5 Stroke-Based Illustrations

(a)

(b)

F I G U R E 5 . 4 Comparison of standard and prioritized stroke textures. In the first case (a), strokes
are drawn in random order, whereas in (b) prioritized textures determine the drawing order by
assigning priority values to the strokes.

prospective strokes. They are now no longer computed randomly by choosing a
certain position and testing if it needs darkening, but are selected from the stored
texture. For a prioritized stroke texture, the candidates are tested in priority order,
and if a candidate fails the tone test, no lower prioritized strokes are drawn. For a
standard stroke texture, candidates are chosen in random order (see Figure 5.4).

For monochrome images, where only gray levels have to be handled correctly,
this general approach has proved to work well. If the strokes are colored (for
example, when simulating paintbrushes), this additional complexity has to be
taken into account. The base color of the stroke can be determined from the

5.2 Detail and Orientation 163

target image, and a blurred version of the applied stroke is then subtracted from
the target image, to yield the entries in the difference image. However, since three
color channels have to be observed, a distance metric has to be established. One
option for this is a comparison based on the red, green, and blue color channels,
or on some combination of these.

A simple coverage of areas having different tonal values with some kind of
texture that creates the required tone and texture is in most cases not sufficient for
illustrative purposes. Some features of the image have to be highlighted in order to
enhance the perception of the objects’ shapes. On the other hand, the orientation
of the stroke also plays an important role for recognizing shape features. We will
thus focus on these two issues in the next section.

5.2 Detail and Orientation
Besides covering an area with a texture in order to provide a sense of shape, there
are also other indications for form and shape that ought to be included in an illus-
tration. Surface detail and orientation of the strokes especially aid the perception
of objects in a scene. Though strokes should be oriented along prominent fea-
tures, they also have to convey surface detail. Textures can be used even though
they are in many cases not sufficient. Outline strokes are a very natural means of
subdividing an image into regions and thus separating objects from one another.
Finally, lighting conditions, which are already portrayed by the chosen texture,
can be greatly enhanced in their perception by drawing shadows differently. Shad-
ows themselves are a well-established medium for depicting lighting direction and
intensity.

5.2.1 Outlines and Shadows
Outlines come in two varieties. Boundary outlines surround the visible polygons
of the image. They must be drawn in such a way that the textures of both the
surrounded and the adjacent regions are clearly separated from one another. By
contrast, interior outlines are used within polygons to suggest shadow directions
or to give view-dependent accents to the stroke texture. Each of these must be
treated with care.

◆ Boundary outline line style Each stroke texture has an associated outline bound-
ary of a particular line style. This must be chosen carefully so as to match the

164 C H A P T E R 5 Stroke-Based Illustrations

F I G U R E 5 . 5 Viewer dependence of outlines. Fewer lines are used when the surface is tilted so as
to maintain the original tone.

texture to be indicated. Examples were already shown in the leftmost column
of Figure 5.3.

◆ Minimizing outline Outlines are drawn only if the surfaces that they divide
are not sufficiently different in their tone to be disambiguated by their shading
alone. If a boundary edge is in fact drawn, it uses the boundary outline style
of the texture that belongs to the surface closer to the viewer.

◆ Viewer-dependent outlines Outlines are very sensitive to the viewing direction.
Viewed from above, in most cases, all edges are visible and thus all outlines are
drawn. Viewed from an angle, however, objects tend to blend together and,
hence, not all outlines should be drawn (see Figure 5.5).

Many of these principles can be addressed in an illustration system. However, the
intuitive way in which painters use outline strokes cannot be modeled in general.

A similar challenge exists when drawing shadows. Up to now, the algorithms
have assumed that light falls in an unobstructed manner onto the surfaces. How-
ever, shadows in fact provide important depth cues for viewers and hence are
generally added to illustrations. The most simple procedure uses cross-hatching
to darken the regions lying within shadows. These regions have to be determined
from the 3D model (if available) or given by user interaction. The cross-hatching
can then be chosen so as to orient the lines in the direction of the light source.
As an alternative to cross-hatching, shadows can also be indicated by making lines
denoting the edges of objects thicker if these edges cast shadows. Examples of a
combination of these techniques are shown in Figure 5.6.

Figure 5.7 shows the results of applying the techniques that we have intro-
duced in this section. The object is a house in which the textures were chosen
a priori for each surface. Note that in Figure 5.7(a), the strokes vary nicely over
the image, but the fact that all objects are entirely covered by strokes leads to a

5.2 Detail and Orientation 165

(a) (b) (c)

F I G U R E 5 . 6 Examples of indicating shadows by cross-hatching and by thickening lines representing
edges that cast shadows. In (a), the light source is in the upper right of the wall; in (b), it is above
the wall; in (c), it is to the upper left of the wall.

(a) (b)

D B C D C D D F E B

EDDDDA

D

F I G U R E 5 . 7 Examples of automatic pen-and-ink renditions. The letters indicating interesting
parts have the following meanings: A-texture to indicate shingles, B-texture to indicate bricks,
C-texture to indicate wood, D-cross-hatching added to indicate shadow, E-outlines used to
differentiate surfaces of like tone (window and crossbar), F-indication of shadow by drawing edges
of bricks casting shadows.

certain monotonicity. We will address this issue in the final section of this chap-
ter. Figure 5.7(b) shows an enlargement of the left window and illustrates the
application of the various rules for outlines. The choice of stroke textures for
illuminated surfaces and those with shadows yield an image with many different
stroke combinations.

166 C H A P T E R 5 Stroke-Based Illustrations

5.2.2 Orientation
Orienting strokes is one of the keys for illustrators to provide the viewers with
a sense of shape of the portrayed objects. To successfully create illustrations, two
questions have to be solved: how is the orientation of the strokes computed and
how are the single strokes finally aligned?

The computation of the stroke directions depends on the way in which the
images are produced. If the stroke-based illustrations are the result of some kind
of rendering software where the three-dimensional model is available, then this
data will be used. On the other hand, if only image data is available,2 then user
interaction might be necessary. In this case, the user “paints” the direction vectors
over the given image. The directions are represented as a vector field where for
each pixel (or each group of pixels) a value is stored. The basic operation is thus
to change the directions of the vectors to match the motion of the painting tool.
The length of the direction vectors is not important, so a regular mouse-based
interface is sufficient. Painting over a complete image to match every single pixel
is a tedious task, and irregular movements of the hand might negatively affect
the desired result. Therefore, filling operations—much like gradient fills in paint
programs—help to set the direction in larger areas. The following operations are
some of the possible ways:

◆ Region fill The user selects an image region and a direction, which is then
filled in the selected area.

◆ Interpolation fill The user specifies two curves and the system interpolates be-
tween them. The direction vectors are then the tangents to these interpolated
curves.

◆ Source fill The user specifies a region of the image and a “source pixel.” The
direction vectors are then computed to always point away from this source
pixel.

While using these tools, a visual feedback should be given to control the success
of the operations.

Given three-dimensional information, the direction field can be computed
almost automatically. In most cases, strokes are aligned to the curvature of the
object to be drawn. These curvature values are relatively easy to derive. However,

2. This limits the available data to color or intensity information stored on a per-pixel basis.

5.2 Detail and Orientation 167

1 pick a random control point Pi from the stroke
2 map Pi to the target point X in the illustration
3 θi = angle between vi = Pi+1 − Pi and the vertical in the stroke texture definition
4 foreach point p along the curve segment PiPi+1 do
5 let the angle between the tangent at p and the direction field be θi
6 od

A L G O R I T H M 5 . 2 Determining the orientation and bending of a stroke based on a direction vector
field.

the question here is whether the strokes should follow the maximum, minimum,
or average curvature. The visual result depends strongly on this decision so that
in such cases, user interaction should, again, be considered.

For pen-and-ink-like textures that cover a certain area, this direction field is
the basis to align the strokes properly. For this purpose, the procedure to draw
a stroke is changed. Instead of simply placing the stroke in the image, it has to
be rotated and bent. Since the strokes are given as curves via control points, the
technique in Algorithm 5.2 can be used to align a single stroke along the given
direction vectors. In this algorithm, the original points Pi and Pi+1 are given in
the stroke texture, and new positions for these points are calculated.

This algorithm effectively bends the stroke based on the given direction
field. It aligns the tangent of the strokes (in line 5) in such a way that the angle
between the tangent and the direction vector is approximately the same as the
angle between the tangent and the vertical in the predefined stroke texture. As
an additional constraint, the arc length of the curve between the new computed
positions P ′

i and P ′
i+1 should be approximately the length of vi. This makes the

computation somewhat complicated; effectively, a set of differential equations has
to be solved.3

For strokes that are built as graftals (as described in Section 5.1.1), such
a complicated procedure is not necessary because these strokes rarely cover a
complete area. They are placed along the contour of an object (see, for instance,
the tree image in Figure 5.2), and they are oriented such that they always point
outward from the object. To do so, the surface normal at the target position,

3. Refer to Salisbury (1997) for details.

168 C H A P T E R 5 Stroke-Based Illustrations

(more specifically, the angle between the surface normal and the view direction)
can be consulted to compute the graftal’s rotation.

This strategy is also feasible for paintbrushlike strokes. If three-dimensional
information is available, then such values as curvature and normal vector directions
are used to determine orientation and scale. Furthermore, such strokes are well
suited for an interactive approach, where location, size, and direction are obtained
from user interaction. The challenge is to map user actions while interacting with
the computer in the context of the underlying rendition onto parameters of these
attributes.

The attributes and their parameters can be selected as follows:

◆ Location and color As the user moves the cursor over the image to be manip-
ulated, the image is continuously sampled at the tip of the cursor. The color
of the pixel under the tip is used as the color of a stroke originating at that
point. Variations are to use the color in the middle of the cursor instead of at
its tip or to use a stochastic distribution around the sampled pixel for the start
of the stroke.

◆ Size The speed with which the user moves the mouse while drawing can
be mapped onto the length of the stroke. If the mouse is moved quickly, the
strokes are long and coarse, whereas if the mouse is moved slowly they are
shorter. This enables the overall structure of the image to be painted quickly,
while finer detail can follow.

◆ Orientation The direction of movement of the cursor can be used to derive
the orientation of the strokes. Alternatively, the system can allow the user to
enter a special mode (for example, by pressing the middle mouse button) to
record the direction of a mouse movement; this direction can be used as the
orientation of all subsequent strokes.

◆ Shape The stroke shape can, for example, be selected from a menu. Examples
of stroke shapes include lines, circles, or cones; each of these needs another
parameterization that might be fixed for a given image.

Figure 5.8 shows an example image that can be produced with this method.

5.2.3 Abstraction of Detail
One of the key features of NPR is the possibility of constructing an image without
touching its every pixel, and without covering every surface with strokes or
other image artifacts. Instead, a significant amount of “real estate” can be left

5.2 Detail and Orientation 169

(c)(b)(a)

F I G U R E 5 . 8 Examples of painting over a photorealistic image with the mouse. The inset shows
the original image; (a) shows the results when a small number of fast strokes are made over the
original. In (b) and (c), the strokes have become successively finer. (See also color insert.)

untouched, that is, can be left with the background color. This process has been
called abstraction or indication. Besides arousing curiosity about those areas left
blank, the technique has the convenient side effect that the underlying geometric
models can be incomplete. The psychological process by which viewers “fill in”
the blank spaces with artifacts of their choice or imagination is called projection.

There are basically two ways in which such an abstraction can be carried out
algorithmically. The first is to have some way to compute which of the parts of
an underlying geometric model ought to be drawn, or alternatively, which parts
can in fact be left out. The other way is to enable a user to select interactively the
parts to be left out.

Of course, it is possible to give a user a kind of eraser brush like those
common in the usual paint programs in order to “rub out” those parts of an
image that should be removed. This approach has the problem that it will be
difficult to enable smooth transitions between blank and rendered regions of an
image. Moreover, the approach is not particularly systematic and can lead to self-
contradictory results.

More direct, however, is the approach to give a user tools to express what is
important in an image. Recall, for example, the image in Figure 5.7(a), which
contains all details encoded within the underlying model that are visible from

170 C H A P T E R 5 Stroke-Based Illustrations

(a) (b)

F I G U R E 5 . 9 (a) Sample interactive placement of detail segments; (b) result of applying the detail
segments to (a).

the vantage point of the camera. A user is now given a tool to place thin
rectangular widgets (called “detail segments”) on the image to indicate regions
of interest. These detail segments emit a field that affects each region in the
vicinity. This can be computed according to the following scheme: let w(x, y)
be a field that is generated by the detail segment l at a point (x, y). In texture
space, w(x, y) = (a + b · distance((x, y), l))−c, where a, b, and c are non-negative
constants that are used to change the effect of the field. When several detail
segments affect a single point, a good approach is to define the field at point
(x, y) to be determined by the closest detail segment. So as not to create patterns
that are too regular, the field w(x, y) can also be perturbed by a small random
value.

Textures with building blocks such as bricks evaluate the strength of their
fields at the center of the respective element. The set of strokes for that element
is generated only if the field is above a certain threshold. An example of this
approach is shown in Figure 5.9.

Graftals, on the other hand, which are placed only along the contour of an
object and thus already follow the abstraction paradigm, can be varied in detail on
the level of a single stroke. To determine the amount of detail, the orientation of
the stroke can be used as a criterion. Depending on the angle between the viewing
direction and the surface normal, more or less detail is drawn. The definition of the
strokes has to include different detailed versions that are then chosen appropriately.
Besides the orientation, the distance of the object to the camera is also a valuable
criterion to determine the level of detail for the strokes. This behavior is illustrated
in Figure 5.10.

5.3 Rescaling Stroke-Based Images 171

F I G U R E 5 . 1 0 Different levels of detail when drawing graftals. Notice the differences among the
grass tufts in the three images but also among the trees.

5.3 Rescaling Stroke-Based Images
One of the problems encountered with stroke-based illustrations is that they
cannot readily be changed in their scale without significant changes in their overall
appearance. For example, Figure 5.11(b) shows an image that was made smaller to
yield Figure 5.11(a) and enlarged to yield Figure 5.11(c). In each case, the stroke
endpoints were recalculated based on the resize operation, and then the strokes
were redrawn. The result is that the tone of the images changes significantly, which
presumably is an unwanted side effect.

Some alternatives for solving this problem are as follows:

1. Resize stroke width It is possible to resize the stroke width along with the
overall image. Larger images are rendered with proportionally wider strokes,
smaller ones with thinner strokes. This enables the tone to be maintained;
however, it ultimately yields unusual stroke widths that change the character
of the image.

2. Rescale gray-level image and apply new stroke textures The problem with this
approach is that sharp edges in the original tend to get washed out (see, for
example, Figure 5.12).

3. Replay painting history on the rescaled image This approach depends heavily on
the details of how the image was painted. It is unlikely that this approach yields
good results each time. Further, the size of the representation depends mainly
on the number of editing operations, which does not necessarily correspond
with the image complexity.

172 C H A P T E R 5 Stroke-Based Illustrations

(a) (b) (c)

F I G U R E 5 . 1 1 A stroke-based illustration at three different scales: (b) is the original, represented as
a set of individual strokes; (a) and (c) demonstrate changes in tone and character of the illustrations.

5.3.1 Goals for a Rescaling Operation
To develop a method for changing the size of illustrations, we will borrow from
signal and sampling theory. What is really happening when rescaling a gray-level
image is that the image, which is available at one scale, consists of uniformly
spaced discrete samples, while the new image needs samples at different places in
the plane (see Figure 5.13).

The following two requirements must be met by a rescale operation in order
to be of use in the scenario observed here:

1. Maintain the character of the original.

2. “Sharp” features in the original should remain “sharp”, “smooth” features
should remain “smooth.”

Abrupt changes in intensity along predefined boundaries are regarded as “sharp”
features and are to be maintained. These boundaries are also referred to as

5.3 Rescaling Stroke-Based Images 173

(a) (b)

F I G U R E 5 . 1 2 Stroke-based image (a) based on a gray-level image that was selectively enlarged
about seven times and new strokes applied (b). Notice how the crisp edges of the original have
been washed out in the enlargement.

discontinuity edges. Besides keeping the character of already present image features
the same, the rescaling operation must also not introduce any new discontinuities.

More formally, the problem can be stated as follows:

Given a set {xi} of uniformly spaced discrete sample locations (pixels), a set
{fi} of corresponding intensity values, and a set {li} of (non-overlapping)
discontinuity edges as line segments.

Find a function f (x) that is smooth everywhere except across the disconti-
nuity edges, such that f (x) interpolates the values fi.

The reconstruction function f (x) can then be resampled at a different rate than the
original input data. If resampling is done at a higher rate, then the original image
is magnified. Resampling at a lower rate means to minify the original although,
before doing so, the bandwidth of the given image has to be lowered.

5.3.2 Approximating the Input as a Continuous Function
The reconstruction of a continuous signal f (x) from a set of uniformly spaced
discrete samples (xi, fi) may be performed by convoluting with a reconstruction
kernel k(x):

174 C H A P T E R 5 Stroke-Based Illustrations

F I G U R E 5 . 1 3 Rescaling means converting from one set of uniformly spaced discrete samples
(circles at the crossing points of a grid represented as gray lines) into another such set (x’s at the
crossing points of the grid represented as thin black lines).

f (x) =
∑

i

fik(x − xi) (5.1)

It is important that the function f (x) yields the original value fi for x = xi, that
is, when it is evaluated exactly at the position of an input sample. Figure 5.14(a)
illustrates the situation. Although many different convolution kernels are available
to solve this problem from the signal processing point of view, experience has
shown that a 4 × 4 cubic convolution kernel as in Equation (5.2) works well.

k(x) =
 1.5|x|3 − 2.5|x|2 + 1 0 ≤ |x| < 1

−0.5|x|3 + 2.5|x|2 − 4|x| + 2 1≤ |x| < 2
0 2 ≤ |x|

(5.2)

Figure 5.15 shows a plot of this kernel function. Notice that the values close
to x = 1 contribute the most, whereas values between x = 1 and x = 2 contribute
negatively to counterbalance this. The reconstruction of a value at point x is done
using Equation (5.1) if no discontinuity edge crosses the area of the kernel (the
4 × 4 region). Otherwise, these discontinuities have to be taken into account, and
a different kernel has to be chosen.

5.3.3 Discontinuity Edges
We now assume that there are discontinuity edges anywhere within the 2D image
space; these edges may be either computed by edge detection software or defined
through user interaction. Figure 5.14(b) shows such a situation, where discontinu-
ity edges are present within the 4 × 4 area of the kernel. Intuitively, we would now
expect point a not to make any contribution to f (x) because it is contained within

5.3 Rescaling Stroke-Based Images 175

(a) (b)

a

x

b

a

x

b

F I G U R E 5 . 1 4 Reconstruction function to be evaluated at x. All pixels in the 4 × 4 neighborhood
of x contribute to the value of f (x) at x (a) and the same neighborhood in the presence of
discontinuity edges (b).

1

0.8

0.6

0.4

0.2

0

-0.2
2.221.81.61.41.21

x

k(
x)

0.80.60.40.20

F I G U R E 5 . 1 5 Kernel function k(x) versus x.

a kind of cage whose intensity values ought not to spill over into the other regions.
By contrast, the point b would be expected to make a contribution to x, albeit a
smaller one than if there were no edges disrupting the view from x to b. Indeed,
b’s contribution should reflect the “ease” with which you can move from b to x.

In order to preserve discontinuities in the reconstruction function f (x), we
replace the reconstruction kernel k with a modified kernel k̃ that attenuates k by
a factor α according to each entry’s “reachability”:

k̃(x, xi) = α(x, xi)k(x − xi)

176 C H A P T E R 5 Stroke-Based Illustrations

To compute this attenuation, the distance between x and a respective point has
to be computed in both cases, with and without discontinuity edges. Let d(x, xi)

be the Euclidean distance between x and xi, and let sp(x, xi) be the length of the
shortest unobstructed path between the two points (recall Figure 5.14(b)). We
define the detour cost between x and xi as

detour(x, xi) = sp(x, xi) − d(x, xi)

This detour cost defines the attenuating function α(x, xi) as follows:

α(x, xi) =

1 if detour(x, xi) = 0, that is, if xi is visible from x
0 if detour(x, xi) ≥ r , that is, if xi is too “far”

1− 3t2 + 2t3 if detour(x, xi) < r , where t = detour(x,xi)

r

If a sample is too far away from the given position x, then it should have no
effect. This is ensured by the constant r in the above equation. Experience has
shown that a value of r = 1works well for the 4 × 4 kernel. The cubic polynomial
in the third case ensures that α(x, xi) is C1 continuous and as such does not
introduce any more discontinuities.

Now, the modified kernel k no longer has the property that the value of
f (x) equals the input sample value when x corresponds to an input pixel. To
compensate for this, a weighted average convolution as given in Equation (5.3) can
be used:

f (x) =
∑

fiα(x, xi)k(x − xi)∑
α(x, xi)k(x − xi)

(5.3)

A slight complication occurs in this last equation when the denominator be-
comes very small. This has the effect of amplifying any noise in the reconstructed
image, causing visible bright “speckles” in the reconstructed image. To overcome
this difficulty, a threshold value is introduced. If the denominator falls above this
threshold, then the kernel as defined earlier is used. However, if the denominator
falls below this threshold, it has been recommended to switch to an entirely non-
negative B-spline kernel. The definition for this kernel is given in Equation (5.4),
and a plot can be seen in Figure 5.16.

k(x) = 1

6

 3|x|3 − 6|x|2 + 4 0 ≤ |x| < 1
−|x|3 + 6|x|2 − 12|x| + 8 1≤ |x| < 2
0 2 ≤ |x|

(5.4)

5.3 Rescaling Stroke-Based Images 177

3

2.5

4

3.5

2

1.5

1

0.5

0
2.221.81.61.41.21

x

k(
x)

0.80.60.40.20

F I G U R E 5 . 1 6 B-spline kernel function k(x) versus x.

The switching between two kernel functions bears another potential problem.
If the threshold value is reached and the switch occurs, unwanted discontinuities
could be introduced. We shall thus blend smoothly between both kernels as the
denominator approaches zero.

The resampling method described so far is optimized for a regular arrange-
ment of the intensity samples (the pixel grid). Discontinuity edges can be defined
at arbitrary positions and in any arrangement. This gives a framework in which
the original goal, namely, the rescaling of stroke-based illustrations, can be carried
out.

5.3.4 Creating and Reconstructing Renditions
Any gray-level image can serve as input to the algorithm being described. Dis-
continuity edges can be placed either by hand by a user, or automatically by an
edge detection filter.4 The image can then be changed in scale by the following
steps:

1. Compute a sample value for each pixel Usually, the actual pixel value will serve
as the sample value. Around discontinuity edges, however, the sample value
should be computed from nearby unobstructed pixels.

2. Reduce the resolution of the sample grid This process yields large regions of
almost equal tone when the sample grid is enlarged. Such regions are common

4. For example, algorithms that can be used here are presented in Canny (1986).

178 C H A P T E R 5 Stroke-Based Illustrations

to pen-and-ink illustrations. The reduction process should stop if just enough
detail remains to yield satisfactory results.

3. Assign appropriate stroke textures to each image region This will define the
appearance of the final illustration. The image is separated into several regions,
each of which is—at the end—filled with the assigned texture. For an easier
handling, each region should be defined in a separate layer and then also
handled separately. All layers are overlaid for the final illustration.

4. Assign outline strokes If possible and desired, let a user choose to include
outline strokes for selected regions. In particular, discontinuity edges should
be considered as possible positions for the placement of such outline strokes.

5. Rescale the sample grid to the desired size Now, the rescaling operation, as
described earlier, is applied to the sample grid. This yields a grayscale image
of the desired size where the sharp features are maintained. In order to avoid
a mechanical look of the final illustration, a little blurring can be introduced
in this step. This is done by first scaling the sample grid to half the desired
size using the method described. This intermediate image is then doubled in
size by a standard filter.

6. Apply the textures to the scaled image In this final step, the same approach as
introduced in Section 5.1.2 is used. The defined image regions are filled with
the assigned stroke textures. The strokes are clipped against the outlines of
the regions. Finally, the layers holding the different image regions are merged
to yield one single illustration.

Recalling the illustration in Figure 5.11, we will now see how the tone of the
image stays the same when the preceding method is used. Figure 5.17(b) shows
the same original image that was also used in the naive approach. The other two
images show rescaled versions of the original. Note how the overall tone does not
change regardless of the scale in which the image is presented.

The rescaling and rendering techniques are mainly applicable to pen-and-ink-
style illustrations. For other types of brushes, several new challenges arise, which
have to be mastered. Nonetheless, this algorithm offers a high potential for further
development. One example might be the device-dependent rendering of such
illustrations. The device in question—be it a web browser or a PostScript printer—
gets the desired gray-level image and the set of stroke textures that are to be applied
to certain image regions. The output is then produced in the highest possible
quality by using drawing primitives offered by the device. This might also include
a rescaling of the illustration in order to achieve the device’s resolution. Another

Exercises 179

(a) (b) (c)

F I G U R E 5 . 1 7 Rescaling the same image as in Figure 5.11 using the described method. Note that
the images in (a) and (c) now show almost the same tonal value as in (b).

direction for further development is given by the definition of the textures itself.
The techniques described in this chapter employ the same texture whatever the
resolution or size of the image. This is not completely appropriate for textures with
high structural detail. Here, multiresolution textures are needed, which change
for different scales and resolutions of the target image.

Exercises
5.1 To compute tone accurately, it is important to take into account the

overlap between strokes that cross one another. Suppose a surface of tone
v is to be represented by bi-directional hatching and that the strokes in
each direction deposit a total amount of ink x on the paper. Show that
x can be approximated by x = 1− √

1− v.

5.2 Design stroke textures to indicate wood, plastic, and water. Show that
your stroke textures yield reasonable results by using them in the rendition
of a simple scene.

180 C H A P T E R 5 Stroke-Based Illustrations

5.3 Experiment with the formula w(x, y) = (a + b · distance ((x, y), l))−c to
determine good combinations of the constants a, b, and c.

5.4 We wish to devise an efficient algorithm for applying prioritized stroke
textures:
a. Design and implement a 3D BSP tree to compute visible volumes and

shadow volumes. The result should be a set of convex polygons that
can easily be ordered in depth with respect to the viewpoint.

b. Design and implement a 2D BSP tree to describe a 2D image and show
how it is to be generated from the 3D BSP tree. The 2D BSP forms a
partitioning of the image space in normalized display coordinates with
each cell in the partition corresponding either to a unique frontmost
polygon in the 3D scene or to the background. Show how this data
structure can be used for fast clipping of strokes.

c. Design and implement a planar map (Mäntylä, 1988). Show how this
data structure can be used to efficiently generate outline strokes of
surfaces.

5.5 Design and implement a data structure to manage the collection of
strokes that together form a painting. The following operations are to
be supported and are to be implemented efficiently:
a. Find all strokes that overlap a given stroke.
b. Find the stroke nearest to a given pixel.
Show how to use these operations to delete a stroke in an image. (Hint:
You may find it useful to try a k-D tree and then to modify it.)

5.6 Devise a way of applying stroke textures to a region over which the
intensity varies slightly. See Salisbury et al. (1994) for a possible solution.

5.7 Design and implement an interactive painting program where a user
places paintbrushlike strokes over a given image. The speed and direction
of the mouse movement influences the size and orientation of the strokes.

Bibliographic Notes
The most important papers in the area covered by this chapter are Salisbury et al.
(1994) and Winkenbach and Salesin (1994). They introduce algorithms and data
structures for pen-and-ink illustration, in particular, prioritized stroke textures and
outlines. The first paper by Salisbury, Anderson, Barzel, and Salesin introduces

Bibliographic Notes 181

stroke textures for a 2D illustration system. The second paper by Winkenbach
and Salesin uses this technique to create illustrations of 3D models. The main
focus here is on providing different levels of detail as well as a correct sense of
illumination. In both papers, the drawing of single strokes is based on Finkelstein’s
work on multiresolution curves (Finkelstein and Salesin, 1994).

In Salisbury et al. (1994), the difference image algorithm to select stroke
positions is introduced. It has been used and extended by Kowalski et al. They
present a method to render fur, grass, and trees using graftals (Kowalski et al., 1999)
as well as animating the resulting images in a frame-coherent way (Markosian et al.,
2000) with different levels of detail.

Fundamental ideas for algorithms to leave out parts of a visualization were
introduced in Winkenbach and Salesin (1994). The psychological background to
explain the advantages of this approach was introduced by Weidenmann (1994),
who worked on the use of images for knowledge acquisition (see also Schumann
et al., 1996). More information on the psychological background for illustrations
can be found in a collection of papers edited by Willows and Houghton (1987;
Houghton and Willows, 1987).

The orientation of strokes along “painted” vector fields is the main focus of
the paper by Salisbury et al. (1997). This work continues the research on pen-
and-ink illustrations on the level of strokes. Winkenbach, at the same time, goes
into a different direction and uses parametric surface models directly for rendering
pen-and-ink illustrations (Winkenbach and Salesin, 1996). Here, new problems
arise with respect to stroke spacing and line thickness. The treatment of these,
however, lies over and above our introductory text. The orientation of strokes on
such surfaces and its influence on the recognition of the shape of the depicted
object has been examined by Girshick et al. (2000) and Girshick and Interrante
(1999).

Seminal work on selecting strokes through mouse movements was carried
out by Haeberli (1990) and called “paint by numbers.” Another application of
paintbrushlike strokes that is especially suited for animation was introduced by
Meier (1996).

Finally, work on resizing images has been carried out by Salisbury et al. (1996).
Ideas on replaying an edit history have been explored by Marshall (1995) and by
Perlin and Velho (1995) in systems called “live pictures” and “live paint.”

6 W O R K I N G W I T H 21
2D D A T A S T R U C T U R E S

In the last few chapters—especially in Chapter 2—we have exclusively used two-
dimensional information pertaining to light intensities. All algorithms work on
the basis of altering images that encode light intensities on a per-pixel basis. These
light intensities are created either by a (photorealistic) rendering program or in a
real photographic process when we work with scanned images. We will now start
our exploration of three-dimensional techniques. In this chapter, one of the most
important concepts in NPR is introduced—the encoding of three-dimensional
information in two-dimensional data structures.

These data structures are called G-buffers, and we will first define them and give
some examples of how to create such G-buffers and of some operations defined
on them. We will cover a few applications. The use of additional geometric
information and the inclusion of this information in a rendition can greatly
enhance the perception of an object’s shape. The first application we will describe
in detail thus pertains to such “comprehensible rendering” techniques. G-buffers
can also be used in interactive applications and help to set the parameters for
drawing tools. After studying such methods, we will finally see how G-buffers
can be used in connection with dithering algorithms to create comprehensible
and aesthetically pleasing images.

6.1 G-Buffers
All the images we have been using so far present information that is visible to the
human eye and recordable with a photographic camera. Though the resulting

183

184 C H A P T E R 6 Working with 2 1
2 D Data Structures

(a) (b)

F I G U R E 6 . 1 Special recording equipment allows the creation of images that show normally hidden
properties: infrared image of a car showing regions of different temperature (a), x-ray image of a
part of the vertebral column (b).

photographs are the most widely used kinds of images, there are also other
“images” to look at. Even when we think about photography and take newer
high-tech approaches into account, other information can be recorded provided
we use the proper equipment. As an example, Figure 6.1 shows an infrared and
an x-ray image being taken with highly specialized cameras. The x-ray image
especially shows properties of the object that are normally hidden to the eye of
an observer.

If we translate this to computer graphics, it should be possible to create images
that show properties of the depicted geometric objects other than those we are
used to seeing. For the remainder of this section, we will assume that we have a
particular system that creates the images we need. For a closer look at the rendering
process in general, we recommend the books by Foley et al. (1990) or by Watt
(2000). Normally, a renderer creates a bitmap, where for each pixel a color value
represents the actual color of the scene object at the position that projects onto
the pixel’s coordinates. This color value is computed using information about the
geometry as well as information about the lighting in the scene.

In a similar process, special rendering techniques may now create bitmaps
where each pixel represents, for example, one of the following values:

6.2 Operations on G-Buffers 185

(a) (b) (c)

F I G U R E 6 . 2 Images revealing different scene properties: color of scene objects (RGB-buffer) (a),
object identifiers (ID-buffer) (b), and depth (z-buffer) (c). (See also color insert.)

◆ the ID of the scene object to which the pixel belongs,
◆ the distance of a given point on an object from the view plane (z-depth),
◆ the surface normal coordinates at the respective point, or
◆ the patch coordinates (u, v) for models consisting of spline surfaces.

These bitmaps should encode the respective values in an appropriate manner so
that these geometric properties become visible to the human eye. In Figure 6.2,
several images that are created this way show different scene properties.

Since such bitmaps store geometric properties of a scene, they are called
geometric buffers or, for short, G-buffers. They themselves already reveal a great deal
of information about the observed scene. Applying image processing operations
to them makes it even more appealing to use such bitmaps as an additional source
of input information for the creation of non-photorealistic renditions. We will
look at a few examples to make clear which information can be collected and
how it might be used.

6.2 Operations on G-Buffers
Let us start with a rather simple example. Assume we have an image, generated by
a rendering system, where the projection of each scene object has been assigned
a unique color (or gray value). With this image, we can easily determine the
number of visible objects in the scene from a given viewpoint by simply counting
the number of different colors (or gray values, respectively) in the image. Such
an object ID-buffer also helps with selecting a specific object o in a rendered scene.

186 C H A P T E R 6 Working with 2 1
2 D Data Structures

(a) (b) (c)

F I G U R E 6 . 3 Using an object ID buffer (a) to create a mask (b). This mask is then used to select
all parts of the image (c) that belong to that specific object (here the object itself consists of several
parts).

We may set all those pixels to black that contribute to object o by selecting them
based on the color o is rendered with. All other pixels do not belong to the desired
object and are set to white. In this way, we yield a mask for filtering out exactly
the area covered by o that can be applied to other renditions of the same scene
if they are created with the same camera parameters and in the same size and
resolution. Figure 6.3 shows an example of this technique.

Probably the best-known kind of G-buffer in computer graphics is the z-
buffer although its use is mostly seen in a different context. A z-buffer contains for
each pixel the z-part of the screen coordinates of the respective object’s position.
It is thus a representation of the distance of the object from the point of view, or—
said in a simpler way—a depth map. What can this be used for? First, z-buffers
are a common tool in photorealistic techniques to easily solve hidden surface
removal problems. Second, they can be used to provide structural information of
the scene.

Each pixel in a z-buffer represents the distance of the respective object’s
position to the view plane. Thus, two neighboring pixels that have the same
value (color) tell that the points of the scene being projected on those pixels
have the same distance to the view plane. Taking this further, a smoth transition
between the values of neighboring pixels means that there is a face in the scene
that gradually changes its distance to the view plane. A sudden change in the z-
buffer can then be interpreted as a larger difference in the depth of two points
in the scene. In most cases, such differences appear when an object’s border is
reached and a second object happens to be behind or in front of the first one. So,

6.2 Operations on G-Buffers 187

(a) (b)

F I G U R E 6 . 4 An edge detection filter applied to a z-buffer (a) and the actually rendered image (b).
Note that in (b) not only the object’s contours but also other color changes in the image are found
that do not stem from geometrical properties but instead from differently lit areas or changes in the
material.

detecting sharp discontinuities in the z-buffer helps to detect the contours of the
scene objects.

There are several possibilities to algorithmically detect discontinuities in a
bitmap. The most common one is to apply differential operators or edge detection
operators to the image—a classical operation in image processing. One of the most
widely used first order differential operators is the Sobel operator, as denoted in
Equation (6.1). Here Gi,k means the value of the pixel in line i and row k.

d1(Gi,k) = 1

8

|Gi−1,k−1 + 2Gi,k−1 + Gi+1,k−1

−Gi−1,k+1 − 2Gi,k+1 − Gi+1,k+1|
+|Gi+1,k−1 + 2Gi+1,k + Gi+1,k+1
−Gi−1,k−1 − 2Gi−1,k − Gi−1,k+1|

 (6.1)

If we now apply this operator to the z-buffer from Figure 6.2, we get the result
shown in Figure 6.4(a). Applying the very same operator to the original rendered
(RGB) image yields Figure 6.4(b). As it can be seen easily, the discontinuities
detected in the rendered image not only have their origin in the geometry but
also in changes in texture and lighting. Those few examples have already shown
that G-buffers are a useful tool to obtain information about a scene that could
otherwise not be communicated in an appropriate way (see the example given in

188 C H A P T E R 6 Working with 2 1
2 D Data Structures

Figure 6.4). In the field of NPR, this kind of information is especially valuable
since it can be used as input data for the image generation or modification. Some
examples of this will be explored next.

6.3 Comprehensible Rendering
Many computer-generated images have problems concerning the comprehensibility
of the portrayed scene. This is due to the image generation process that tries
to mimic physical optical phenomena. This often yields images where certain
features are hard to recognize or even completely missing. Such features include,
for instance, the contrast between adjacent objects that have a similar color, a clear
indication for surface shape or curvature, or indications for the internal structure
of a complex object.

Illustrators use certain techniques to enhance such features in handmade il-
lustrations that result in image artifacts that cannot be explained with physical
laws. However, these image artifacts are a valuable tool to increase the compre-
hensibility of an image and help the viewer to “read” the illustration and extract
the information the author wanted to communicate. As already stated, many of
the features that need enhancement are pertaining to three-dimensional prop-
erties of objects in the scene. For example, the distinction between two almost
equally colored objects can be enhanced by drawing silhouette edges of one or the
other object. In a similar manner, curved shapes can be made more recognizable
if curved hatching lines were added, possibly even to a shaded image. Hatching
lines as well as contour lines can be computed from 3D information that is given
in a G-buffer.

If we take the edges detected from the z-buffer, we can greatly enhance
object boundaries, as can be seen in Figure 6.5. The given input data include a
photorealistically rendered image that shows problems in differentiating between
the nut and the background in low-contrast regions as well as estimating the
form of the nut in the front part where the edge disappears in the highlight. Also
given is a z-buffer that may be created within the rendering process. Applying a
differential operator (for instance, the Sobel operator) to this z-buffer yields profile
edges and internal edges (first and second order differential operator, respectively,
see Figure 6.5(c)). Combining the resulting images from this operation with the
input image enhances the edges and thus makes the distinction between the nut
and the background more clear.

6.3 Comprehensible Rendering 189

(a) (b) (c) (d)

F I G U R E 6 . 5 Given a rendered image (a) and a z-buffer (b), the image can be visually improved
by including the discontinuities in the z-buffer (c) as edges in the rendition (d).

The second example that we will talk about in detail is connected to shape
recognition of curved surfaces. Here, shading is already a strong cue, but wrong
or insufficient shading can lead to inappropriate “imaginations” of the visualized
surface. Looking in the area of line drawings, hatching is an even stronger shape
cue that can be incorporated in shaded images to guide the viewer. Hatching
lines usually follow the contour of an object and represent the curvature of
the surface. To create hatching lines, we need different G-buffers than just for
enhancing the contour. If we are working with free-form surfaces as geometric
models, we can derive G-buffers that are particularly well suited to create hatching
lines.

Free-form surface models are based on a parametric description of the sur-
faces; we can thus save the coordinates (u and v) of these parametric descriptions
on a per-pixel basis in a bitmap and create two G-buffers. In these two buffers,
pixels having the same color value represent the same value for one parame-
ter direction. It is now possible to connect pixels with the same color and in
this way to create lines that represent equal parameter values. These lines can
be used as hatching lines in two different directions. Without further process-
ing, the hatching would be equally dense and cover the whole surface. If we
combine these hatching buffers with the photorealistic image by varying the in-
tensity of the hatching image based on the light intensity, we can create images
where the surface shape is clearly communicated by hatching lines (see Figure 6.7).
Furthermore, a combination with the first and second order derivatives from a
z-buffer enhances the contours and makes the image even more comprehensible.
An overview of this technique is given in Algorithm 6.1 and shown schematically
in Figure 6.6.

190 C H A P T E R 6 Working with 2 1
2 D Data Structures

1 generate a shaded image S
2 generate G-buffers for u and v parameter directions
3 U := hatching lines for the whole image in u direction
4 V := hatching lines for the whole image in v direction
5 combine U and S for vertical hatching
6 combine V and S for horizontal hatching
7 combine U , V , and S for cross-hatching

A L G O R I T H M 6 . 1 Generating curved hatching lines using G-buffers.

v-coordinates

u-coordinates

z-buffer

Normal vectors z

Normal vectors y

Hatching curves

Hatching curves

Profile edges

Normal vectors
Image (a)

Image (b)

Image (c)

Normal vectors x

F I G U R E 6 . 6 Combination of different G-buffers to create hatching lines.

These two examples have shown that including three-dimensional informa-
tion in a rendition may enhance the perception of the portrayed scene. There
are many more possibilities to create such renditions while the basic approach is
usually the same—create certain G-buffers, possibly manipulate them to extract
additional features, and finally combine them with the photorealistic image. As
we will see in later sections of this chapter, G-buffers can also be used to choose
and parameterize rendering algorithms based on three-dimensional properties of
a scene.

6.4 Interactive Painting 191

F I G U R E 6 . 7 Results to Figure 6.6.

6.4 Interactive Painting
While the last sections focus more on automatic image processing, G-buffers offer
possibilities to enhance interaction with images or even create new interaction
facilities. Simon Schofield, one of the pioneers in the field, dealt with this kind
of question and set the stage for further development.

Standard painting and drawing systems place geometric elements—like dots
(even pixels), lines, shapes—or brush marks in a bitmap such that these elements
cover a certain region on the image. The placement is simply a copy operation;
that is, the color values from the element’s or mark’s description are copied at
the appropriate pixel positions regardless of what the contents of that particular
position is at that time. Further, painting programs in that sense are inherently
two dimensional; all effects that create the impression of 3D have to be created
manually by the user. This is very often a difficult task if a certain kind of realism
is required since many of the dependencies between features in the image and
the three-dimensional position of the respective object part are hard to estimate.
An incorporation of 3D information in such paint programs would be highly
beneficial.

The key to using 3D information in interactive systems lies in the em-
ployment of G-buffers. An interactive painting system can then be built as a
“post-processing” application to a photorealistic renderer if this renderer sup-
plies the necessary data for each pixel. Among others, the following G-buffers are
particularly useful:

◆ ID-buffer Object identifiers are used to distinguish between model parts and
to selectively apply certain algorithms.

◆ z-buffer The z-buffer contains the z-coordinate of the respective object
point, that is, depth information.

192 C H A P T E R 6 Working with 2 1
2 D Data Structures

◆ n-buffer The n-buffer contains the surface normal at the object’s point.
Usually the normal vector’s x-, y-, and z-coordinates are encoded in the three
color channels of an RGB image.

◆ material-buffer Here, material attributes are encoded in a way that different
materials can be distinguished. More detailed buffers, where distinctive features
of the materials might be treated separately, also fall into that category.

◆ shadow-buffer Shadow masks that are generated for each light source separately
or for all light sources in one mask are stored so that lighting conditions can
be evaluated later on.

As an extension, there are also buffers that contain user-supplied values, for
instance, regions of interest or more subjective descriptions of the model.

Since all these values are stored on a per-pixel basis, they can be combined in
the (extended) bitmap that serves as a background for the following painting and
drawing operations. This makes all data for all points quickly and readily available
within an interactive environment. We can now paint on this “canvas” and make
use of the data that is stored therein to manipulate the painting tools or painting
operations. For these painting operations, we will use an extended definition of
brush marks such that they can be parameterized in a variety of ways (color, size,
shape, and so on).

The extensive description of the scene’s geometry within a bitmap makes
some new algorithms possible. Brush marks can change their size with respect
to the z-depth so that they get smaller with increasing distance from the viewer.
Further, lines can be made thinner this way, achieving the effect of depth cuing.
The most interesting application for the z-values, however, comes with perspec-
tive texturing of an area. Imagine a painting tool with which areas can be filled
with a certain kind of texture. If this texture does not change the size of its struc-
tural elements (for example, bricks) with the distance from the viewer, then the
resulting images look “wrong.” Making the fill algorithm depend on the z-value
will prevent this problem.

For such filling operations, the selection of the area to be filled is a cru-
cial operation. In standard painting programs, this selection is often placed into
the responsibility of the user who identifies a specific area by explicitly provid-
ing the geometry of this area or by giving a color where all pixels sharing this
color are selected. We can now select regions based on more appropriate infor-
mation. It is—especially in architectural illustrations—often the case that several

6.4 Interactive Painting 193

areas have to be selected that lay in one plane, even if these areas are not con-
nected to each other. Such a selection can be performed based on the normal
buffer values since all pixels referring to points lying in the same plane have the
same normal vector coordinates. Further, area filling based on material prop-
erties or object IDs is supported by selecting areas with the same object ID or
material ID.

Finally, we can place additional bitmaps in the image while maintaining the
correct perspective and the correct depth sorting. For this, an interaction tool is
needed with which the bitmap can be moved through the scene in z-direction.
While doing this, the bitmap is appropriately scaled and only drawn in places
where no other object is in front of it. (This is calculated by evaluating the z-
buffer.) This technique is nicely applicable for architectural illustrations to place
trees or other additional elements in the image.

We will illustrate these methods with a number of examples. The scene
in Figure 6.8(a) is rendered from a 3D model and then displayed by show-
ing only contour lines. The user then selected a few different paintbrushes
to achieve this rather pointillist style. More interesting is Figure 6.8(b), where
the effect of placing additional bitmaps (in this case, the trees) can be stud-
ied. They get smaller the further away from the viewer they are placed. Note
also the brick texture at the columns, which changes according to the per-
spective.

The second example (Figure 6.9) shows different stylistic variations that can
be created from one and the same model by choosing different painting tools. In
Figure 6.9(a), the output of a simple photorealistic renderer is given. This will
be used as a reference image for the following renditions. First, some additional
bitmaps showing trees or persons are placed in the scene that change their size
according to the perspective (Figure 6.9(b)). Moreover, these bitmaps are planes
that are added to all underlying G-buffers such that they are treated as scene
objects in subsequent operations. Besides that, the building is textured in a certain
style and the resulting image can easily be used as an architectural illustration. In
Figure 6.9(c), the textures are changed to a more pen-and-ink style that is also
applied to the trees in the background. (This means the textures are drawn on the
planes that are inserted in the G-buffers for the trees.) Note that these trees are
partially occluded by the building in front even though they are not part of the
3D model. Finally, Figure 6.9(d) employs a different set of paintbrushes, giving
the image a more painted appeal.

194 C H A P T E R 6 Working with 2 1
2 D Data Structures

(a) (b)

F I G U R E 6 . 8 Interactive painting based on G-buffers. The paintbrush strokes in (a) are parameter-
ized based on properties of the underlying geometric model. The trees in (b) are additional bitmaps
with placement based on the z-buffer. Note how they change in size and how correct occlusion is
achieved. (See also color insert.)

As can be seen from the examples, adding three-dimensional information
to painting programs and building tools to use this information in the painting
process can help to create highly illustrative images. Even more, creating these
images in an interactive session has the advantage that the user can manipulate
the rendition exactly as he or she wants and hence create images that exactly fit
to the application at hand (see Figure 6.9(b)).

6.5 3D Parameters for 2D Dithering
In the final section of this chapter, we come back to a class of algorithms that can
make extensive use of provided additional information: halftoning algorithms as
explored in Chapter 2. In this earlier chapter, the goal was to reproduce a given
color or grayscale image using just two colors. The resulting bi-level images should
come as close to the original as possible in terms of tone reproduction. Since we
are working only on the given image, no additional information is available that
pertains to three-dimensional features of the underlying model. Our goal now is to
enhance the display of three-dimensional scenes using halftoning textures. This is
useful for displaying rendered images on a bi-level display or for the preparation of

6.5 3D Parameters for 2D Dithering 195

(a) (b)

(c) (d)

F I G U R E 6 . 9 Different stylistic variations achieved by using different drawing tools: photorealistic
rendition (a), added environment (b), pen-and-ink style (c), and painted style (d). (See also color
insert.)

196 C H A P T E R 6 Working with 2 1
2 D Data Structures

rendered images for printing. In particular, we will aim at enhancing the depiction
of geometry, illumination, and user-defined features.

An obvious way to render three-dimensional objects differently depending
on their geometry or other 3D information is to work directly in 3D since it
is the case with many photorealistic approaches. Here, texture mapping plays an
important role since the parameters of the mapping process can be controlled
by the objects’ geometries, and the appearance of the mapped texture depends
on the lighting conditions in the scene. We will not, however, go into detail
for this approach since using G-buffers in this area opens up a different and
promising way to exploit two-dimensional techniques for the display of 3D
features.

The image-based approach to the halftoning of 3D scenes constructs the
dither screens by two-dimensional texture control techniqes as they are described
in Section 2.2.3. The depiction of geometric information can be enhanced by
determining the parameters for the dither screen generation based on G-buffers.
In the next paragraphs, the following G-buffers are exploited:

◆ ID-buffer containing object IDs,

◆ normal-buffer containing normal vector coordinates,

◆ lighting-buffer containing scene illumination information, for instance, shad-
ows, direct and indirect illumination intensities, and

◆ z-buffer and its derivatives.

These G-buffers are given in Figure 6.10 for a sample scene.
The simplest technique to distinguish visually between different objects in a

scene is to render them differently either by using a distinctive texture for each
separate object or by making the parameters for the texture creation depending on
the object’s ID. If we generate the dither screens (textures) based on the method
proposed in Section 2.2.3, then a selection of a different function set consisting
of the displacement functions DS and Dt, the control function C, and even the
dither kernel τ and the mapping function M for each object is possible. This can
be seen in Figure 6.11(a), where the ID-buffer controls the scale and direction
(both mapping), and the waviness (displacement) of the texture.

The enhancement achieved with the application of this technique results in
a better discernibility of the scene objects. However, the recognition of such
geometric features like curvature is still rather poor. Thus, the direction of the

6.5 3D Parameters for 2D Dithering 197

(d) (e) (f)

(a) (b) (c)

F I G U R E 6 . 1 0 Different G-buffers used for the techniques described in this section: ID-buffer (a),
normal-buffer (b), lighting-buffer (c), z-buffer (d), first derivative (e), second derivative (f).

texture should be aligned with some value that describes the geometry. The
normal vector direction can be chosen here, which is seen in Figure 6.11(b).

If we take this last image as a starting point for further enhancements, the
following changes will be rather subtle but nevertheless a contribution to the
comprehensibility and perception of the depicted scene. Illumination is a key
issue in illustrative images since many of the perceptual processes involved with
human vision rely on such visual cues that are generated by light and shadow.
The lighting buffer contains information about whether an area of the image is
directly lit, indirectly lit, or lying in shadow. One possible use for this information
is to apply a different texture in the shadow areas that unifies all those surfaces in
the image that are not illuminated by a light source (see Figure 6.12(a)).

Finally, depth perception and depth cues are very often problematic in
computer-generated images. Photorealistic computer graphics often employs fog
effects to make distant objects appear farther away. By changing the contrast of
the generated halftoning texture (dither screen), a similar effect can be achieved
in NPR, as can be seen in Figure 6.12(b). Here, the error diffusion process is

198 C H A P T E R 6 Working with 2 1
2 D Data Structures

(a) (b)

F I G U R E 6 . 1 1 The ID-buffer is used to control texture waviness, scale, and direction for each
object (a) whereas the normal-buffer controls the direction of the texture (b).

(a) (b)

F I G U R E 6 . 1 2 The lighting-buffer is used to unify the texture in areas that are in the shadow (a)
whereas the distance from the viewing plane (z-buffer) controls the error diffusion algorithm and
thus the contrast in the image (b).

guided by the z-buffer so that the contrast in the image is reduced the farther
away a depicted object is from the viewer.

As an additional enhancement of the scene, edge lines generated from the
first and second order derivatives of the z-buffer can be included in the rendition
yielding the final illustration in Figure 6.13.

Exercises 199

F I G U R E 6 . 1 3 The final illustration shows all techniques together and incorporates geometric
information.

Besides pure geometric information, user-supplied values also can be used
to guide the image generation process. In a similar way as it is done for the
generation of G-buffers, the user creates a buffer where each color or gray-
scale value represents a certain feature. These features can be important values or
additional classification schemes that are then expressed graphically by choosing
different rendering (halftoning) methods and parameters. We have already seen
an example for this method in Section 2.2.3 (recall Figure 2.19). Here, an object
ID-buffer was used to select a specific object that is then treated with a certain
rendering style (dithering).

Exercises
6.1 Use your favorite geometric modeling and rendering software and find

out whether it is capable of creating G-buffers. If not, find software that
has this capability. Create a few different G-buffers from one model and
see how the different geometrical properties are represented.

6.2 Take a set of different G-buffers (created with a rendering program as
described in Exercise 6.1) and use a painting program to manipulate a
photorealistic rendition based on masks that are obtained from the G-
buffers. Use different image processing filters on different regions of the
image.

200 C H A P T E R 6 Working with 2 1
2 D Data Structures

6.3 Extend your implementation of the procedural screening methods (see
Chapter 2) in such a way that G-buffers are included in the image
manipulation process. Find different ways of influencing the kernel,
mapping, and displacement functions.

6.4 Use the techniques introduced in this chapter to create illustrations from
a 3D model that clearly visualize the shape of the scene objects as well as
illumination features. Which methods are useful for illustrations?

6.5 Implement an interactive system to “paint” with parameterizable brush-
strokes. The size and orientation (and possibly other parameters) of the
strokes should be computed from G-buffers.

6.6 Extend your program from Exercise 6.5 to place bitmap images in the
created rendition that can be moved back and forth in z-direction.

6.7 Which user-defined buffers do you think are useful for illustrations?
Create such buffers and test your assumptions.

Bibliographic Notes
G-buffers as a term and as a concept for the creation of more “comprehensi-
ble” renditions were introduced in the paper by Saito and Takahashi (1990).
G-buffers have been used, however, before and after this time under different
terms. Schofield, one of the NPR pioneers, has chosen the term enriched pixel
matrix. The interactive system Piranesi that Schofield introduced in his Ph.D.
thesis (Schofield 1994) used G-buffers to select regions of an image that are
then interactively changed by a user via painting operations. This technique is
also described in Lansdown and Schofield (1995), where it is put in the con-
text of other NPR techniques. Richens and Schofield (1995) have been using
Piranesi for architectural designs and thus report quite extensively on the users’
responses.

G-buffers in connection with halftoning techniques are exploited by
Buchanan and Veryovka. Their paper (1999a) made a big contribution to re-
search in the area of G-buffers. Based on earlier work on halftoning in general
(see Buchanan et al., 1998, Veryovka and Buchanan, 1999b) and on procedu-
ral halftoning (Veryovka and Buchanan, 1999a), they introduce the concept of
comprehensible halftoning, also in (Veryovka and Buchanan, 1999a). The key for

Bibliographic Notes 201

comprehensible halftoning is to make the functions for the generation of the
(procedural) dither screens depending on the contents of G-buffers.

Since then, many authors have been using this technique to achieve different
effects. Among these are Deussen et al., who developed hatching methods that
fall back on G-buffers (1998). The exploitation of G-buffers in the context of
lighting models and illustrative images is presented in more detail in Chapter 8.
This topic is based on the work of Hamel (Hamel, 2000; Hamel et al., 1998;
Deussen et al., 1999a).

7 G E O M E T R I C M O D E L S A N D T H E I R
E X P L O I T A T I O N I N N P R

Whereas in the first few chapters of this book techniques are shown that are
independent of the geometry behind a rendition, we will now move on to meth-
ods where geometric properties of the objects being portrayed in a rendition are
used to determine parameters of the visualization. Geometric models are basically
mathematical descriptions of a scene in terms of shape and other properties. This
chapter explores how different types of models are constructed and what kind of
information can be taken out of the geometric model to be employed in NPR.

In this sense, this chapter continues the line of reasoning from Chapter 6.
There, G-buffers are explored as one way of representing three-dimensional in-
formation. This information is encoded in a two-dimensional data structure (an
image) and used by exploiting image processing and image combination algo-
rithms. Such G-buffers can be produced with modeling and rendering packages
and are in most cases a by-product of the rendering process. Nevertheless, they
offer a wide range of possibilities for non-photorealistic image generation tech-
niques.

Going one step further and looking directly into three dimensions, there are
basically two different types of models from which renditions can be created—
surface models and volume models. While the first concentrate on the description
of an object’s surface, the latter are a description of the contents of the volume
occupied by the object. We will concentrate on surface models since most current
applications of NPR draw on such models. We will discuss the description of
the models and derive their main characteristics. Our goal will be to see how
those characteristics are used in NPR to create effects that were classified as model

203

204 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

artifacts in Chapter 1. The present material, however, only scratches the surface of
the topic. Many possibilities to extend the research here are still open for future
work.

The chapter starts with a general discussion of geometric models as data types.
The description of the geometry together with operations defined thereon can be
regarded as one entity and thus compared with the concept of abstract data types.
Nevertheless, a special treatment is needed for the different kinds of models since
the algorithms depend heavily on the underlying data structures. This dependency
leads to a separate exploration of polygonal models and free-form surface models.
We describe possible data structures and a few algorithms that come in handy
for the creation of non-photorealistic renditions. For polygonal models, these
operations are the classification of edges, the computation of intersections, and
the determination of the global shape of a given model. These together form a
basis to create and place hatching lines. For free-form surfaces, the computation
of lines or points on the object’s surface is treated in detail. Finally, an algorithm
is presented to transform free-form surface models into polygonal meshes.

7.1 Geometric Models as Data Types
The classical view on geometric models—taken in the area of photorealistic com-
puter graphics—considers a geometric model to consist only of the description of
an object’s form, that is, a polygonal, free-form surface or other description of the
shape of the object’s surfaces. In addition, certain information pertaining to the
surface material properties can also be assumed to be available. In photorealistic
computer graphics, such information suffices to describe objects to be rendered.
With the addition of lighting information and camera settings, final renditions
can be created. However, as we will demonstrate in this section, there is in fact
more to modeling for NPR than this.

Certainly, geometric modeling for NPR can be carried out using conven-
tional tools that are available commercially. However, NPR requires a shift in the
emphasis in geometric modeling. This can be summarized by noting that NPR
requires more context information, that is, information pertaining to the geometric
model that normally would have no bearing on its appearance in a photorealistic
rendition. This information influences both how users can interact with geomet-
ric models themselves, and which external data sources can be drawn into the
process of rendering and interaction. Indeed, in the end we will see that while we

7.1 Geometric Models as Data Types 205

are aiming at modeling for NPR, photorealistic rendering systems can benefit,
too, from systematically paying more attention to these aspects.

To motivate further the need for such context information, recall some of
the techniques discussed thus far in this book, and consider from where the
information is to come that is required to use them effectively. In Chapter 1,
we have already seen that different data sources are possible. To combine these
data sources with the rendering process, we want to make full use of presentation
variables. A presentation variable in this context is a value connected to an object
being visualized where changes of this value have a direct influence on the
visualization of this object. Presentation variables are, for example:

◆ Visualization style What is the overall visualization style (shaded, hatched,
stippled) of the rendition or the visualization style used for single objects?

◆ Color Which color is to be used to render an object in a certain context
(normal, highlighted, unimportant)?

◆ Dithering Which dithering technique is to be used or which dither patterns
should be exploited?

◆ Painting Which stroke texture is to be used for a given surface or which stroke
style for a specific line?

◆ Abstraction Where should blank spaces be left in the rendition?

Other examples pertain to some of the techniques that will be presented in the
remainder of this book:

◆ Level of detail How much detail is to be presented?
◆ Distortion By how much is the scaling factor of individual objects changed?
◆ Annotations Which objects are to be labeled by texts giving their names or

information on other aspects of the model?

Much of this can be decided interactively by users. Nonetheless, users will require
a significant amount of support in the form of visualization and editing tools to
be able to make appropriate decisions.

Moreover, NPR is also used in applications in which decisions on the design
of an image have to be made by other programs (we will come to this when
talking about applications of NPR in Chapter 10). This implies that data from
other applications must be linked up with objects, attributes, and parameters of
the geometric models used as a basis for rendering. For example, a system for

206 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

computer-aided learning (CAL) may draw on an NPR system for illustrating
certain concepts. The presentation variables come in handy in such an application
for helping users to focus on the topic at hand.

These considerations are relevant for photorealistic rendering, but they are
absolutely essential in NPR. In particular, NPR systems have a much greater
range of presentation variables than systems for photorealistic rendering because
the former are not bound to obeying the laws of physics. Hence geometric models
for NPR need to be more than only descriptions of what objects are to look like
when rendered photorealistically. In particular, they need to provide access to the
information that is used to decide on the values of presentation variables.

We will now treat geometric models in the sense of data type theory so as to
formalize the requirements placed on them. An abstract data type T is defined as
a mathematically specified collection of data-storing entities with operations to,
for example, create, access, and change instances of these entities. For short, T is
a collection of data and operations defined thereon: T (D, O). In the following,
we will apply this theory to geometric models. We will start with a rather general
treatment of geometric models with this regard and then continue to specific
kinds of models. In what follows, we emphasize the issues relevant to NPR, so
it might be a good idea to derive a description of an abstract data type for your
geometric model as an exercise.

7.1.1 Data
The data portion of an abstract data type describing a geometric model contains
as a minimum a mathematical description of the objects’ shape or volume.1 In
addition to this, there has to be information that is needed to define the appear-
ance of the object in the rendered image. Both types of information are typically
available in geometric models for the purpose of photorealistic image generation
although they are not sufficient for NPR. Geometric models for NPR need to
contain the following components:

◆ Geometric information G consists of the mathematical description of the ob-
ject’s geometry.

1. In the following, we will concentrate on surface models although most of the issues also apply
to volume models.

7.1 Geometric Models as Data Types 207

◆ Graphical information R consists of all the information needed to define the
individual appearance of the geometric objects. Elements of R are, for instance,
surface properties, color, transparency, smoothness, and so forth.

◆ Context information C contains all the information over and above that needed
to model the object’s material properties, which nonetheless are needed to
enhance the rendering process itself or support interaction with an image.

The third point in this list is one that is optional in photorealism but essential
in NPR. All three information sets are interconnected to one another and
form together the data portion for the abovementioned abstract data type. It
is possible to differentiate further within these data sets, which yields different
types of models, as is demonstrated for polygonal models in Section 7.2 and
free-form surface models in Section 7.3. The graphical information and the
context information are rather independent of the way in which the geometric
information is defined. Thus, they can be treated in a more general manner.

We will not go into detail here about the graphical information. The elements
of this set are well known from photorealistic computer graphics. For the context
information, the following two elements are of particular importance:

◆ External references This is data that makes it possible to establish and access links
to external data sources. In particular, knowledge bases and databases can be
accessed by treating symbols used as external references or links. Such external
references can also represent links to the end user’s knowledge. Examples are
the object and subobject identifiers CID as well as records for other information
(keywords, individual annotations provided by users, and so on).

◆ Internal references This is information that is generally not accessed from
outside the geometric model but used primarily for internal structuring. The
most important example of such information is a hierarchical structure Cs of the
geometric model. Such a structure describes a partial order among the objects
in the model, using geometric primitives as the leaves and object identifiers as
the internal nodes of a (sub)object hierarchy.

Given the information space formed by the abovementioned data sets, op-
erations on this data have to be defined to complete the definition of an abstract
data type for a geometric model. Since operations on the geometric data rely to
a great extent on the actual definition of the geometry—be it a polygonal model
or a free-form surface or a volumetric data set—they cannot be dealt with in a

208 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

general way. In the following, the focus is mainly on general operations that are
to be performed on the overall information space.

7.1.2 Operations on the Data
One of the fundamental characteristics of NPR is that not every individual artifact
encoded within a geometric model is actually represented within the resultant
images. Instead, a process of abstraction is used to determine which features will
actually be encoded within the image, and in what way these features will be
encoded. This is in stark contrast to photorealistic rendering where there is an a
priori one-to-one correspondence between features of the model and pixels in a
rendition.

Indeed, NPR algorithms rely on the one hand on a selection of features within
models to determine which features will have a direct bearing on the image. This
implies the design of appropriate algorithms for searching for distinctive elements in
geometric models. These distinctive elements need to be defined, and the results
of the search operations need to be stored in data structures offering efficient
access to them. In general, ways for exploring a model have to be defined. On the
other hand, often several features of a geometric model need to be changed or
refined for the particular application at hand. Thus, sophisticated algorithms for
editing geometric models are required. In summary, the primary operations that
are to be carried out on geometric models are viewing, exploration, and editing. We
will discuss these in turn.

Viewing of geometric and graphical information can generally be carried
out in unison, much as is done for photorealistic rendering. Not so obvious,
however, is how to view this geometric-graphical information in combination
with context information. In some situations, it is possible to blend these into
one view (like labeling a rendition with the object identifiers). In other situations,
this is not feasible and the method of choice is to separate the views on the
geometric-graphical information in one window and the context information in
a second window. Considerable care must then be taken so that users recognize
the correspondence between objects in the different windows.

Perhaps the most important concept in this kind of viewing is that of providing
“detail in context.” Particularly when dealing with two entirely different kinds of
information (geometric and graphical versus context) describing the same objects,
it is of vital importance for the usability of the system to give users clues to help
them assess what is being visualized. Fisheye techniques in visualization are one
way of dealing with this topic.

7.1 Geometric Models as Data Types 209

Exploration requires that high-quality navigation tools are available within and
between the geometric-graphical view and the context view. The crux here is
the visibility and the recognizability of objects in one window as a reaction to
navigation actions in the second window. Consider, for example, the situation that
a rendition of an object is shown in one window and the hierarchical structure
in the second window. If the user selects an object in the hierarchy, you would
expect this object to be accessible in the other window. If it is not directly visible,
changes must be carried out. For example, the object can be rotated, obscuring
objects can be made transparent, or they can be cut away. In any case, smooth
transitions, for example, through animations, must be carried out so as not to
confuse the users with changes they did not affect directly themselves.

Furthermore, it is not sufficient that an object is visible; it must also be
recognizable. This means that it must be discernible, and the viewer’s attention
should be drawn to it in an appropriate manner. Highlighting, enlarging, or
labeling are possible options to achieve this goal.

Editing facilities are finally required so that users can maintain their geometric
models. The most important aspect here is to provide tools that enable users to
deal with the very large number of objects that are generally involved in editing
operations. A common operation in editing is to group many objects together
into a single object and to deal with attributes of the group. For example, when
developing the hierarchical structure of a geometric model, it may be necessary to
combine hundreds of geometric primitives (like polygons). It is entirely infeasible
to expect users to choose all the primitives individually. Instead, for example,
“growing” algorithms should be provided to assist the user in such an operation.

These operations have to be implemented in a way that they can be used
together as well as independent from each other. Some of the operations (like editing)
change the model, and these changes have to be reflected in the visualization so
that viewing and exploration are always carried out on the most current state of the
model. Most modeling and rendering programs that aim to photorealistic image
production include selected facilities for managing data in the sense described
earlier. However, there is still considerable room for improvement, as the following
description will show.

7.1.3 Implementation
In the field of computer graphics editors, geometric and structure information
is integrated in modeling systems. However, not every kind of non-graphical
contextual information can be managed with these systems. Often, even in

210 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

high-end systems, the structuring of a model during the modeling process is not
implemented or only in a very rudimentary manner. Often, the user can define a
hierarchical linking only for selected animation techniques. If a structure editing
tool is available, the actual tasks that can be performed on the structure view are
rather limited. In many cases, the creation of new geometry is possible only in
the three-dimensional model views.

One of the main concerns when working with the provided tools for editing
the model structure and possibly also the assigned graphical and context informa-
tion is the integration of the different views. Usually, hierarchical structures (such
as Cs) are visualized as a tree. These trees can become fairly large, thus methods of
visualizing the details of a node within the context of the complete tree are nec-
essary here. Furthermore, a bidirectional coupling between the different views
has to be established. For example, in the structure view, the tree is collapsed
automatically to include the node selected in the model view. What’s more, the
model view should highlight the selected node in the structure view—this may
include making other occluding objects transparent or rotating the model.

Finally, changes in the graphical or context information should be supported
by special “attribute editors” that are accessible from both the structure and the
model view. These editors represent the more traditional way of providing values
for the presentation variables. More interesting in our context, however, are novel
approaches to set presentation variables based on user interaction. So, for example,
textures might be painted directly on the three-dimensional surface of the model,
or drawing styles could be transferred from example paintings.

Summarizing, we can conclude

◆ Tools for structuring models in commercially available systems are provided
in rudimentary manner. The navigation facilities of structure browsers are
insufficient, however.

◆ The coupling between structure and geometry view alone is of limited value.
An object selected in one view may be selected in another one, but it may
not be visible or it may be too small to be recognized. Users have to struggle
to find the selected object and perform a variety of navigation operations (for
example, scrolling, rotating).

◆ Orientation and navigation in large models (and corresponding large struc-
tures) often is not sufficiently supported.

7.2 Polygonal Models 211

◆ Only graphical information that is directly related to the rendering process (for
example, material description of object surfaces) can be managed. Context
information, such as special textual information, cannot be managed at all.

◆ For NPR, special approaches to define graphical and context information are
possible. These include “texturing by example,” where the user either paints a
texture directly on the object or selects an example image for texture and style
transfer. Such methods can also be used to actually create the 3D geometry.

The support for visualizing and manipulating geometric information is highly
developed; a variety of tools for creating, navigating, and editing in geometric
information sets are provided. Support is limited for modeling tasks on a different
level than the direct manipulation of the geometry.

The discussion of geometric models in general did not include the actual
geometric data. Operations on this data portion depend heavily on the way this
data is defined. Further, depending on the actual geometry definition, different
operations are possible. Since polygonal models are the most common type of
geometry representations, they are the focus of the following section. Many, if
not all, other types of geometry representations can be converted into polygonal
descriptions; an example of such a conversion process is illustrated in Section 7.3.
Hence, any operations described in the following section are applicable to any
kind of geometry after an appropriate transformation.

7.2 Polygonal Models
We will start our discussion of three-dimensional models with the most commonly
used types of models, namely, polygonal models. A polygonal model consists of
any number of polygon meshes, which describe in their entirety the scene to be
modeled.

On an abstract level, a polygon mesh itself is a collection of vertices, edges,
and polygons connected to each other in a way that

◆ each edge is shared by at most two polygons,
◆ each edge connects two vertices,
◆ a polygon is a closed sequence of edges, and
◆ a vertex is shared by at least two edges.

212 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

Polygon meshes can be represented in different ways, each of which has its
pros and cons where the main criteria for evaluating a representation are space
and time to perform operations. Typical operations on a polygon mesh are

◆ finding the edged incident to a vertex,
◆ finding the vertices connected by an edge,
◆ finding the polygons sharing an edge or a vertex,
◆ finding the edges of a polygon,
◆ finding the polygon enclosing a given point on the surface,
◆ simplifying the mesh by reducing the number of edges, vertices, or polygons

while roughly maintaining the shape of the surface being described,
◆ displaying the polygon mesh, or
◆ evaluating the polygon mesh in terms of identifying errors in the represen-

tation.

As we will see, NPR algorithms make heavy use of such operations, more so
than standard algorithms for photorealistic rendering where pipeline processing
of polygons and vertices has come to dominate commercially available systems.
Hence for NPR, considerable care must be taken when deciding on the repre-
sentation so as to be able to produce better space- and time-efficient algorithms.

7.2.1 Description of Polygonal Models
We will show some of the common representations for polygon meshes here and
leave it to you to decide which of them best fits the needs of the application at
hand (see also Exercise 7.1).

In the explicit representation, each polygon P is given by a list of vertex coor-
dinates: P = ((x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)). The vertices of a polygon
are stored in the order in which they would be encountered traveling around the
polygon. Edges are created between two consecutive entries in the list as well as
between the last and the first entry. The surface normal is computed from the
vertices.

For a single polygon, this is a very efficient representation. However, con-
sidering a mesh of many thousand polygons, this representation yields several
problems—especially the spatial efficiency decreases quickly with increasing poly-
gon count in the mesh since shared vertices are stored multiple times. Further,

7.2 Polygonal Models 213

when displaying the mesh, shared edges are drawn twice since they are not mod-
eled explicitly.

Many graphics packages (like PHIGS and OpenInventor) use pointers to a vertex
list to represent polygons. Here, each vertex is stored just once in a vertex list V
containing all vertices of the mesh: V = ((x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)).
A polygon P is defined by a list of indices (also known as pointers) into this list:
P = (i1, i2, . . . , im). This representation is much more space efficient than an
explicit representation since each vertex is stored only once. However, finding
shared edges is still a problem.

Thus, taking a second level of indirection into account yields a representation
of a polygon mesh by pointers to an edge list. Again, we have the vertex list V as
before, but each polygon is defined as a list of pointers to an edge list E. In this
list, each edge occurs just once and is itself defined as a pair of pointers to the
vertex list. Even more, the description of an edge may also contain pointers to the
polygons to which it belongs. Hence, we describe a polygon P = (e1, e2, . . . , en)

and an edge E = (v1, v2, p1, p2). Note that an edge does not necessarily belong to
two polygons. In those cases, either p1 or p2 is set to zero. In this representation,
we have several levels of indirection that help save space and that should make it
easier to carry out special operations.

The three representations discussed earlier fit the needs of general applications.
For special cases and other requirements, more elaborate representations have been
developed.

7.2.2 Operations for Polygonal Models
Polygon meshes are, in general, an approximation of the objects being modeled.
This is rather obvious since modeling round objects is impossible by just using
polygons. To get a more exact representation, you may be tempted to create
the model using smaller polygons, thus making the approximation error smaller.
However, this may dramatically increase the polygon count and the storage
capacity needed for representing the mesh; it will thus increase the processing
time for any operation on the model or for display.

We can see how to exploit these approximation “errors” in NPR by studying
them in somewhat more detail. First, there are unwanted lines and edges in the
rendition. This is even the case in photorealistic images when using certain shading
algorithms. Interestingly enough, computer graphics practitioners put great effort
in developing algorithms to eliminate these artifacts. All those algorithms work
on the assumption that the vertices of a polygonal model lie on the original

214 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

(a) (b) (c) (d)

F I G U R E 7 . 1 Different shading models try to cover the approximation error in a polygonal model:
wireframe (a), flat shading (b), Gouraud-shading (c), Phong-shading (d).

surface (that is approximated by the polygon mesh). Thus, for these vertices a
correct position is given and correct lighting attributes can be calculated. For
all other points, those illumination values have to be interpolated. Here, several
methods have been developed to make a polygonal surface appear smooth again
(see Figure 7.1).

These photorealistic techniques try to hide information that is not needed in
the context of creating a visually pleasing image and of creating the same visual
stimulus as the original scene. However, this information is of interest to the
viewer, and by using NPR techniques we are now in a position to deliver more
information to the viewer than is possible with photorealism.

7.2.3 Edge Classification for NPR
Shading models generally interpolate over multiple polygons in the mesh and
thus information on the internal structure of the model (or the scene objects,
respectively) is lost. This information is determined by edges in the model. We
can differentiate between four basic types of edges (illustrated in Figure 7.2):

1. Contour edges These edges segregate an object from its environment and thus
give an impression of the general shape of the object. They are considered to
be most significant.

2. Sharp edges These edges represent discontinuities between neighboring faces
and give a strong indication of the internal structure of the model.

3. Smooth edges These edges (typically perceived as curvature) indicate the
internal structure at a finer level than the sharp edges.

7.2 Polygonal Models 215

(a) (b) (c) (d)

F I G U R E 7 . 2 Different edge types to visualize different structural information: contour edges (a),
sharp edges (b), smooth edges (c), triangulation edges (d). Each image contains the edges of the
images to its left in addition to those mentioned in the caption.

4. Triangulation edges Although only temporary, these edges can be presented
to show the triangulation of the object. (This is needed only for illustrating
and documenting geometric models.)

Edge Classification Using Normal Vector Information

The classification of the edges can be done automatically by inspecting the mesh
and taking into account the viewer’s position. As a first step, all polygons pointing
away from the viewer have to be removed (backface culling). The dot product
between the polygon’s normal vector N and the line of sight V (a vector from
the polygon to the viewer’s position) determines the visibility of the polygon in
question. If this dot product is positive, that is, if N · V > 0, the polygon is facing
the viewer and is thus visible (see also Exercises 7.4 and 7.5).

The contour edges together represent the border of an object to its environ-
ment, that is, either to other objects or to the background. Hence, contour edges
separate visible polygons from ones that are hidden. Since in the previous step
all hidden polygons are removed, contour edges can be identified easily as those

216 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

edges not being shared between two polygons. The distinction between sharp and
smooth edges is more subjective and depends also on the model. As the distinctive
feature between those two classes, the angle between the normal vectors of the
faces sharing the edge in question is used. The larger this angle, the sharper is
the “peak” between the adjacent faces. Thus, to classify edges as being sharp or
smooth, for each edge the angle between the two faces is calculated and all those
edges that have an angle above a certain threshold are classified as being sharp.

Smooth edges are typically perceived as curvature, and the degree to which
this curvature is visualized can also be controlled by the angle between two
adjacent faces. Displaying edges only up to a certain value makes the curvature
visible up to a certain degree.

Finally, if two faces of a polygon mesh lie in one plane, the edge in between
typically is a triangulation edge. Such edges are introduced when subdividing
polygons into triangles. This is done automatically by most modern modeling
software. Displaying these edges does not, in general, reveal any new information
to the viewer unless the goal of the visualization is the documentation of the
geometric model.

Putting it all together, the model structure can be exploited in NPR by
classifying model edges appropriately and drawing those edges with respect to
the visualization goal. Algorithm 7.1 summarizes this procedure. As can be seen
in Figure 7.3, modifying the maximal angle up to which edges are drawn yields
different effects on the visualization and thus different amounts of information
being conveyed.

Algorithm 7.1 works on the visible part of the model even though it is not
restricted to only this model part. Indeed, information about hidden parts of the
model may be of vital importance for the understanding of the object’s exact
form and structure. If the same algorithm is applied to these hidden parts of the
model, it is possible to visualize also this information. Visualizing both visible and
hidden model parts using the same style, however, may distract the viewer. In
CAD drawings, hidden edges are often drawn using dashed lines (indeed, there
are standards requiring this kind of drawing). Considering the hidden polygons
and drawing the edges shared by two of them as dashed lines leads to this kind of
image. Although tempting to do, not all the hidden edges should be included so
as not to clutter the image with unnecessary detail. Drawing contour edges and
sharp edges in the hidden part usually suffices to communicate enough structural
information to enable easy recognition of the object’s form. An example for such
a visualization can be viewed in Figure 7.4.

7.2 Polygonal Models 217

1 foreach polygon p ∈ M do
2 compute the normal vector np for p
3 if np · V > 0 then mark p as visible
4 else mark p as invisible
5 fi
6 od
7 M ′ := all polygons marked visible in M
8 foreach edge e ∈ M ′ do
9 if e belongs to only one polygon

10 then
11 mark e as being a contour edge
12 else
13 αe := angle between adjacent faces to e
14 if αe > αmax
15 then mark e as sharp edge
16 else if αe = 0 then mark e as triangulation edge
17 else mark e as smooth edge
18 fi
19 fi
20 fi
21 od
22 draw model according to visualization goals

A L G O R I T H M 7 . 1 Algorithm to classify edges based on the angle between adjacent faces in the
model M .

Fast Edge Classification

When rendering objects in a non-photorealistic style (like the kinds of images that
were used throughout this chapter so far or, for instance, in a cartoonlike style),
the distinction between contour edges and internal edges is highly important.
Since many modern rendering systems that work on polygonal models process
all polygons of a given mesh and perform a front and back facing computation,
this can be used to derive an efficient algorithm that uses these features and adds
a minimum overhead to the image generation.

The following algorithm works on an additional data structure called the edge
buffer . For each edge in the model, it stores a bit field that contains several flags.
The first two flags are a front facing flag (F) and a back facing flag (B). To build

218 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

F I G U R E 7 . 3 The angle between two adjacent faces in the model is used to determine the level of
detail in the presentation.

F I G U R E 7 . 4 Explicitly drawing hidden edges to clarify the structure and form of an object.

the edge buffer, we create a table as can be seen in Table 7.1 for the example
in Figure 7.5 where each edge is accessed using the lowest valued vertex index.
The algorithm assumes that the polygonal mesh is stored as an indexed vertex
mesh representation. The second vertex index is part of the edge’s entry in the
table. As an example, edge (3–5) is stored in the third line (for vertex 3) in the
second position since for each vertex the edges are sorted by increasing index of
the second vertex. Note that with this arrangement, the lower half of the table is
completely empty.

The F and B flags for each edge are initially set to 0. The edge buffer is updated
on a per-polygon basis. If the respective polygon is a front facing polygon, the F
flag for each edge is XORed with 1; if it is a back facing polygon, the B flag is
XORed with 1. After having done this for each polygon in the model, the edge
buffer can be processed to determine the edges that form the silhouette of the
object. For the given example, the final state of the edge buffer is illustrated in
Table 7.2. All those edges that have set both the F and the B flag are silhouette
edges and can be rendered accordingly as can be seen in Figure 7.6.

7.2 Polygonal Models 219

Vertex VFB VFB VFB VFB

1 200 300 400 500
2 300 500 x00 x00
3 400 500 x00 x00
4 500 x00 x00 x00
5 x00 x00 x00 x00

T A B L E 7 . 1 Edge buffer setup for the model given in Figure 7.5. Note that each edge is accessed
using the smaller vertex index.

Vertex VFB VFB VFB VFB

1 211 300 411 500
2 311 500 x00 x00
3 411 500 x00 x00
4 500 x00 x00 x00
5 x00 x00 x00 x00

T A B L E 7 . 2 Edge buffer after having processed each polygon in Figure 7.5.

This approach works well for closed objects; however, there are problems if
we deal with “open” objects, that is, meshes that do not completely enclose a
certain volume. An example would be an open box, for example, a cube with
one side missing. We will then get entries in the edge buffer where only one
of the two flags is set. Those entries result from edges that belong to only one
polygon. In our initial approach, these would not be drawn, although they clearly
belong to the object’s silhouette. If we change the algorithm to drawing all edges
whose FB flag combination is not identical to 00, then we correctly render the
boundary edges for the object.

Sometimes, however, it is necessary to render more than just the object
boundaries, especially if an additional edge would make the drawing clearer.
As can be seen in Figure 7.7, the most comprehensible rendering of the open
cube would be the rightmost image where two edges are included with an FB
flag combination of 00. Which edges have to be rendered to make an image
comprehensible cannot be determined algorithmically, so user interaction is
needed. In order to allow a user to define which edges always have to be drawn,
an additional flag A is introduced in the edge buffer. This flag is set to 1 if the
respective edge has to be drawn in any case. Now the decision about which edges

220 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

1

2

3

4

5

F I G U R E 7 . 5 Closed polygonal model defined by five vertices and six edges.

1

2

3

4

F I G U R E 7 . 6 Resulting rendition if only the edges are drawn that have set both the F and the B
bit.

to draw depends on three bits, and the edge is drawn if the AFB flags are not
equal to 000. This method can be extended to decide whether an edge that has
the A bit set is shared by two back facing polygons and thus does not have to be
drawn. We leave the derivation of this extension to you (see Exercise 7.6).

This example of an open cube is not a particularly good example for the
necessity of such an algorithm. If we consider this cube in an interactive or
animated environment where it can be seen from each possible direction, then
we quickly realize that all edges of the cube have to be marked as artist edges in
order to render it correctly in any view. A better example might be a cylinder
modeled as an n-sided prism where only those edges are marked as artist edges
that define the top and bottom polygon. Now, if such a model were viewed from

7.2 Polygonal Models 221

10

0101

10
11

11

11 11

(a) (b) (c) (d)

F I G U R E 7 . 7 Images of a cube, different flags being used to draw the edges: F and B flags for the
model edges (a), all edges drawn where FB = 11 (b), all edges drawn where FB �= 00 (c), more
comprehensible rendition (d).

any angle, these edges would have to be shown together with the two edges that
form the contour along the sides of the prism. These two are detected using only
the F and B flags; for the top and bottom edges, the artist bit is indeed necessary.

The edge buffer method is a simple technique that can be inserted into
the graphics pipeline if in this pipeline all polygons are processed, the model
is stored using indices into a vertex list, and front and back facing computations
are performed anyway. Then it adds very little overhead since all operations to
be performed are bitwise XOR or OR operations. It can be implemented very
efficiently using a hash table as in the earlier examples, but other representations
are also possible. Correct visible line determination is not part of the algorithm;
even if an edge is halfway hidden, it will be handled as a complete edge. Thus,
the edge buffer algorithm has to be combined with a polygon filling algorithm
that overpaints occluded parts of edges.

Classifying edges and drawing them depending on the applied classification
scheme greatly enhances the perception of the geometric forms of rendered
objects. However, visual perception is more than just recognizing forms, and
hence we will investigate which perceptual phenomena can also be supported by
applying NPR techniques in the rendering process.

Enhancing Depth Perception

As can already be seen from Figure 7.4, graphical cues for depth in an image are
important for the understanding of the model, especially for larger scenes. Besides
distinguishing between visible and hidden edges and drawing them differently,

222 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

(a) (b)

F I G U R E 7 . 8 Simulating depth by changing line style parameters. In (b), the line width decreases
with increasing z-distance. Depth perception is much better than in (a) where constant line widths
are used.

there are more techniques to enhance depth perception when rendering a poly-
gonal model. What we are aiming for is just the visualization of the model artifacts;
more elaborate rendering techniques are introduced later on in this chapter.

In general, depth perception is supported by visual cues that simulate the
human’s normal depth perception. Examples of these are

◆ perspective foreshortening,
◆ displaying correct object-object occlusions, and
◆ atmospheric effects (light, fog, and so on).

Perspective foreshortening is achieved by using perspective projections for render-
ing. Atmospheric effects can be simulated in wireframe drawings by evaluating
the z-value of each vertex and parameterizing the line width or brightness in
accordance to this (see Figure 7.8). Furthermore, calculated light intensities can
also be used to parameterize the line styles (see Figure 7.9).

The question remains how occlusions can be displayed in a manner that is
easy to understand to the viewer and that does not require sophisticated shading
techniques. A common technique used in handmade illustrations is to leave a gap
at an intersection; the (partially) hidden edge is slightly trimmed at the intersection
point. An extension of this technique to the display of 3D wireframe models is

7.2 Polygonal Models 223

(a) (b)

F I G U R E 7 . 9 Two renditions from the same model: the “plain” drawing without further attributes
(a), lighting information included and mapped onto the width of the line style (slightly over-
done) (b).

1 I := all intersections of the given line segments
2 foreach valid intersection i ∈ I do
3 δ := angle between intersecting edges
4 trim edge further from the viewer by (t/sin δ) on both sides of i
5 od

A L G O R I T H M 7 . 2 Algorithm for creating the haloed line effect.

known as haloed lines. This technique is based on finding all intersections of the
line segments that are calculated as the projections of the model edges. This can
be done effectively with a plane sweep algorithm (see Exercise 7.7). However,
only so-called valid intersections are of interest, that is, intersections that occur
in the interior of a (projected) edge. For each valid intersection point, the edge
further away from the viewer is trimmed by an amount t at the intersection. This
can either be a fixed, prescribed value or be calculated depending on the angle δ

between the two intersecting line segments (edges). The procedure is summarized
in Algorithm 7.2.

Figure 7.10 shows the result of applying Algorithm 7.2 to a polygonal model.
With haloed lines, the model structure becomes immediately clear to the viewer,
especially the hidden parts of the model, even without sophisticated shading
algorithms.

224 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

(a) (b) (c)

F I G U R E 7 . 1 0 Drawing haloed lines reveals the model structure much more clearly: no haloed
lines (a), thin halos (b), thick halos (c). Note that in (c) the halos are drawn so wide that hidden
lines are completely removed.

We will now turn our attention to a fundamental operation on geometric data
that has far-reaching implications for NPR: that of computing the intersection
between a geometric model and a plane in object space. This is a fundamental
operation deserving special treatment because in practice such intersection curves
turn up very often in NPR.

7.2.4 Computing Intersections
The intersections of a geometric model and a plane in space are of special interest if
it comes to drawing more than just edges of the model. Many methods for creating
hatching lines rely on the computation of curves that result from intersecting a
model with a set of planes. Depending on how the actual computation of these
curves is performed, intersection calculation can be very time consuming. We
shall thus introduce an approach that works in image space and that can make use
of hardware accelerated graphics libraries.

An image-space approach is lucrative over and above analytic approaches
because of its generality. Even though working in image space means that precise
results cannot be obtained, the results of such a method are generally sufficient for
NPR. The key to an algorithm implementing such an operation is to be able to

7.2 Polygonal Models 225

1 render model using a conventional shader and take a snapshot
2 extract the pixels on the boundary (Icontour)
3 display model with an additional clipping plane and take another snapshot
4 extract the pixels on the boundary (Icutcontour)
5 generate I = Icontour − Icutcontour
6 convert I to line segments

A L G O R I T H M 7 . 3 Computing intersections between a geometric model and a plane.

(a) (b) (c) (d)

F I G U R E 7 . 1 1 Image-based generation of intersection lines: z-buffer image of the model (a), image
with additional clipping plane (b), resulting curve after subtracting outline of the complete model
(a) from (b) (c), and the whole set of intersection curves (d).

make use of graphics hardware for at least certain parts. Another aspect to consider
when working in image space is to avoid aliasing problems.

Algorithm 7.3 shows the procedure for computing intersections between
a geometric model and plane in object space. This plane is introduced as an
additional clipping plane and only the part of the model lying on one side of that
plane is kept; the other part is clipped.

We will illustrate this algorithm using the model of the statue shown in
Figure 7.11. The first step can be implemented by drawing the object in white
on a black background. Steps two and four are performed on a pixel-by-pixel
basis by determining the pixels that have a black neighbor. The results of steps

226 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

Intersection lines (li-1, li, li+1) Tube of line li

F I G U R E 7 . 1 2 For halftoning the appearance of each intersection, line li is responsible for
approximating the grayscale values belonging to a tube around the line.

three and four are illustrated in Figure 7.11(b) and (c), respectively. To avoid fat
diagonal lines, it is useful to use only the 4-neighborhood of the pixels. Step five
is a simple image operation that can be performed in an accumulation buffer, if
available. The conversion from pixels to line segments is done by any standard
method, for example, least square fitting.

The rendition can be improved further by carefully drawing long hatching
lines. Each line li is responsible for a tube ti (see Figure 7.12). The overall intensity
of line li equals the average intensity of the pixels in ti. A simple method is to
modulate the width of li according to the intensities along the line. Two example
results are shown in Figures 7.13 and 7.14. Note that in both cases, the geometric
model was decomposed into subobjects. For each such subobject, the orientation
of the cutting plane was decided upon manually by the user. In the next section,
we will see a method of computing such directions automatically for certain cases.

7.2.5 Determining Global Shape
There are a variety of situations in which the style chosen for the rendition of
an object depends in part on its global shape. Long skinny objects may be drawn
differently than more chubby ones. Moreover, details of the parameterization of
the chosen style may also depend on the global shape. For this purpose, it is often
useful to reduce a geometric model down to a simpler data structure from which
the global shape can be assessed.

Topology of a Geometric Model

Our goal is to devise algorithms for extracting information about the topology of
a geometric model. Topology describes the neighborhood relationships between
objects on an abstract level. Often the topology can be represented through a
graph whose edges are labeled with such descriptions as “in front of,” “behind,”
or “above.” Also of interest in this connection is the topography of the geometric

7.2 Polygonal Models 227

(a)

(b) (c)

F I G U R E 7 . 1 3 Example of applying the intersection operator to the model of a foot: (a) shows a
shaded image, and (b) and (c) show two computer-generated copperplates.

model; this describes the concrete spatial relations, like size and distance between
objects. Changes in topology imply changes in topography, but not necessarily
vice versa.

We want to learn about the topology of a geometric object so that we can
exploit this information in NPR. This will enable us to relate the attributes of
a rendition to the overall shape of an object or to the shape of some of its parts.
For example, Figure 7.15(a) shows the outline of a tube (like the inner tube
of a bicycle). If the surface of the object is to be hatched, it would likely be
inappropriate to apply simply vertical or horizontal hatching (Figure 7.15(b));
instead, hatching that accentuates the cylindrical and circular shape is a possible
method of choice (Figures 7.15(c) or (d)). However, it is not obvious how
to determine the global shape of the object so as to derive which kind of

228 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

(a) (b)

F I G U R E 7 . 1 4 Example of applying the intersection operator to the bust of Beethoven (a), yielding
a computer-generated copperplate (b). Note that several sets of hatching lines are used and that the
line thickness is varied according to the illumination of the model.

hatching can be applied best. Although in some situations such hatching may
be ascertained as a by-product of the method of modeling, this is not the case in
general.

Indeed, a simplification of the geometric model must be carried out. The
problem is akin to that of model simplification that has been studied extensively.
Figure 7.16 shows an example of three models of the same object (a car), each
with a different tessellation. The primary goal of most simplification algorithms in
this area is to reduce the number of polygons (so as to reduce the rendering time)
while making as few sacrifices as possible with respect to the visual quality of the
renditions. Though our goals here are quite different, in the following we will
show how an algorithm for model simplification can form the basis of algorithms
for determining the global shape.

7.2 Polygonal Models 229

(a) (b) (c) (d)

F I G U R E 7 . 1 5 Visualizing the shape of an object by shading: (a) shows the outline of a tube and
(b) a simple but inappropriate vertical hatching; whereas in (c) and (d) the hatching is applied
according to the curvature.

(a) (b) (c)

F I G U R E 7 . 1 6 Example of polygonal models of a car in three different resolutions: 1,137 polygons
(a), 22,935 polygons (b), 46,582 polygons (c).

Edge Collapse

We assume that we have a polygon mesh M (V , F , E), where V is a collection
of vertices v, F a collection of surfaces f , and E a collection of edges e. We
further assume—without any limitation—that each f ∈ F is a triangle, that is,
f = f (v1, v2, v3). Edges are characterized by their vertices and their neighboring
surfaces, that is, e = e(v1, v2) = e(f1, f2).

The process of simplifying a geometric model is built around simple opera-
tions that are applied over and over again until the desired level of detail is reached.
One approach in this sense uses the edge collapse operation for that purpose. We
define the edge collapse operation ecol as follows. Two vertices v1 and v2 connected
by an edge e(v1, v2) can be merged into one new vertex v∗ (Figure 7.17). In ho-
mogeneous coordinates, we can compute v∗ = v1 + v2, which is an associative
operation, that is, v∗(v1, v2, v3) = v1 + v2 + v3 = (v1 + v2) + v3 = v1 + (v2 + v3).

230 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

v3 v3

v1

v*v4
v4

ecol

v2

e

F I G U R E 7 . 1 7 The edge collapse operation ecol.

The most important property of v∗, however, is that it is a good approximation
of v1 and v2, that is, that | v1 − v∗ | and | v2 − v∗ | are minimal.

Now we can see that this ecol operation has several useful properties. It reduces
the number of

◆ vertices by one,
◆ surfaces by at least one (usually two), and
◆ edges by at least two (usually three or more).

However, the edge collapse operation in itself does not solve our problem. Given
a polygonal geometric model, the essential further questions to be answered are

1. Which edge should be collapsed next?

2. How many edges in total should be collapsed?

Computing Skeletons

We will define a skeleton as a data structure represented as an undirected, possibly
cyclic graph that describes the global shape of a geometric model. Each node
in the graph also has a position in three-dimensional space. We will use the
aforementioned edge collapse operation, but for the purposes of producing the
skeleton, we must show how it can be applied and developed further. In particular,
we must answer the preceding questions as follows:

1. Which edge should be collapsed next? Always the shortest edge is collapsed,
and as soon as an edge e no longer has a surface attached to it, e is removed
from the model M and added to the skeleton S.

2. How many edges in total should be collapsed? The procedure is continued until
M is empty. This is different from most approaches to polygon simplification

7.2 Polygonal Models 231

1 while there are faces in the model M do
2 sort all edges by length
3 foreach edge e (from shortest to longest) do
4 if either start or end vertex are marked then
5 mark other vertex
6 else
7 collapse edge e
8 mark the new vertex
9 fi

10 od
11 move all edges without valid faces attached to it to the skeleton S
12 od

A L G O R I T H M 7 . 4 Computing the skeleton of a polygon mesh.

algorithms, which terminate much earlier and where the decision when to
stop is much more difficult to make.

Conceptually, we can use the following strategy to build the skeleton. First,
we construct a data structure H of all edges of M such that we always have fast
access to the shortest edge emin. H can be implemented, for example, as a heap
(a min-heap, to be exact). Next, we collapse the successive shortest edges; every
time this potentially yields one or more edges es, each of which is no longer
associated with a surface. In this case, we remove es from M and add it to S. In
each iteration, H is updated appropriately.

This algorithm optimizes local detail but in practice does not yield a good
enough approximation of the global shape. Instead, it has been found better
initially to collapse edges that are disjoint from one another. Short edges are
then collapsed only if their endpoints have not been involved in an edge collapse
operation. Once there are no more edges to collapse, the whole procedure is
repeated. Extending this strategy in this sense yields Algorithm 7.4.

The worst case complexity of this algorithm is O(n2 log n). However, in
practice a positive fraction of the edges are removed in every iteration of the
outermost loop so that a running time of O(n log n) is generally achieved.
Examples of applications of the algorithm are shown in Figures 7.18 and 7.19.

An Application to Hatching

The skeletonization operation can now be used as a preprocessing step in NPR.
Consider Figure 7.20(a) showing a tube with a knot in it. Given that the knot

232 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

F I G U R E 7 . 1 8 Computing the skeleton for a two-dimensional object.

F I G U R E 7 . 1 9 Examples of computing the skeleton of various polygonal geometric models.

is modeled as a polygon mesh describing its surface (Figure 7.20(b)), we wish
to produce an image with hatching lines that indicate curvature and that are
drawn according to the lighting conditions (compare with Figure 1.17). After
having computed the skeleton of the model, this skeleton is then converted into a
spline curve. This curve approximates the skeleton nodes and guarantees a smooth
progression of the skeleton, which is important for the following steps (see Figure
7.20(c)).

We now apply the intersection operator (recall Section 7.2.4) at regu-
lar intervals by moving the clipping plane along the generated spline curve,
keeping the plane always perpendicular to it. Using the original skeleton here
would yield artifacts where two line segments meet since the direction does not
change continuously. The result of this operation is shown in Figure 7.20(e).
The hatching lines themselves still have to be modified to better convey the
shape of the knot (and the tube as well). This can be done via G-buffer op-
erations. A standard shaded image like the one in Figure 7.20(a) gives all
necessary information to shorten hatching lines or even make them more
sparse.

7.3 Free-Form Surfaces 233

(c) (d)

(e) (f)

(a) (b)

Skeleton

F I G U R E 7 . 2 0 A polygonal model that is to be rendered with hatching: the shaded image (a), the
underlying polygonal model rendered as a wireframe (b), the knot and its skeleton as computed
by the algorithm presented (c), the skeleton approximated by a spline through its nodes (d), the
hatched image without taking into account lighting information (e), and the final illustration (f).

7.3 Free-Form Surfaces
While polygonal models are an approximation of the object to be modeled, other
ways of describing an object’s surface are more accurate in terms of representing
the exact geometry. However, the price for more accuracy is a more complicated
description. Free-form surfaces are the tool we will describe next.

7.3.1 Description of Free-Form Surface Models
The geometric description of free-form surfaces is based on a given number of
so-called control points or control vertices. In contrast to polygonal models where
those vertices are connected by straight lines (called edges), free-form surfaces use
interpolation schemes to compute all other points belonging to the actual surface.

234 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

The control vertices do not have to be part of the surface; instead, they define
the surface’s properties based on the used interpolation scheme.

In computer graphics, many different interpolation schemes have been de-
veloped and are used nowadays. Because of this diversity, we will not attempt to
describe all representations here; see, for instance, the book by Bartels et al. (1996)
for a comprehensive source for information on free-form curves and surfaces.

This section concentrates on a widely used kind of surface description,
namely, tensor product surfaces. Tensor product surfaces can be regarded as “curves
of curves,” that is, a curve c1 is moved along a second curve c2 and all points that
are touched when carrying out this movement belong to the surface defined by
c1 and c2.

In mathematical terms, we denote a piecewise polynomial curve F(u) of
degree n by

F(u) =
n∑

i=0

CiNi(u) u ∈ [0, 1]

and a second piecewise polynomial curve G(v) of degree m by

G(v) =
m∑

j=0

CjNj(v) v ∈ [0, 1]

The tensor product S(u, v) of these two curves is then

S(u, v) =
n∑

i=0

m∑
j=0

CijNi(u)Nj(v) u, v ∈ [0, 1] (7.1)

It describes a surface over the given control vertices Cij. Equation (7.1) can also
be rewritten as

S(u, v) =
n∑

i=0

Ni(u)Ci(v) with Ci(v) =
m∑

j=0

Nj(v)Cij

which nicely demonstrates the concept of curves of curves. In all these equations,
the Ci, Cj, and Cij are the control vertices of the surface, while Ni(u) and Nj(v)
are the base function of the polynomials of degree n and m, respectively.

To represent such a surface as a geometric model by means of data structures
and algorithms, similar considerations for polygonal models can be made. Since
the control vertices describe the surface, they have to be present in the model.

7.3 Free-Form Surfaces 235

While in polygonal models the connectivity between the vertices is denoted
explicitly by edges and polygonal faces, for free-form surfaces this connectivity
is established via the interpolation scheme being used for computing points on
the curve (or surface). Thus, unlike for polygon meshes, part of the model is
represented in the form of algorithms, namely, as the definition of the basis
functions.

7.3.2 Operations on Free-Form Surface Models for Rendering
When rendering free-form surface models, a simple projection of the control
vertices and applying the interpolation scheme would not yield the desired result.
Thus, several other methods have to be used to depict such models. In the context
of non-photorealistic rendering, the use of G-buffers is particularly well suited
to portraying the geometric properties of free-form surface models since this
modeling technique is especially chosen for curved surfaces where a visualization
of the curvature will help in recognizing the object and its features. In the case
of free-form surface models, we can use the hatching technique described in
Section 6.1 where u- and v-buffers are used to generate hatching lines.

For creating non-photorealistic renditions of free-form surface models, several
approaches have been investigated and used. Line drawings especially can be
rendered by following some of the inherent features of such a model. But as it is
the case with polygonal models, operations on the data given with the model’s
description lead to more possibilities. In the following, we will first see how curves
on the given surface can be used to produce images. Then, point coverage as an
operation will be treated in more detail before we finally see that all operations
defined for polygonal models can also be used for free-form surface models after
they have been translated into a polygonal representation.

Rendering Using Curves on the Surface

An approximation of a free-form surface with polygons usually results in a vast
amount of data. The surfaces have to be approximated by many small polygons to
correctly model its curved character. If the mathematical description of the curves
from which the surface is built can be used directly to render an image, the amount
of data necessary is reduced. The trade-off, however, is a much higher complexity
of the operations. This complexity results from the need for handling usually cubic
polynomials and their derivatives. We will not go into the mathematical details
here; instead, we point out the main principles behind the algorithms.

236 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

Iso-parametric C1 discontinuity and silhouette

C1 discontinuity

Boundary

Silhouette

F I G U R E 7 . 2 1 Four types of curves on a surface.

To visualize the shape of the model, curves can be extracted from the surface
that correspond to important features. These are, among others, boundary curves,
iso-parametric curves, curves along C1 discontinuities, and silhouette curves (see
Figure 7.21). Whereas the first three types are viewer independent, the silhouette
curves can be computed only if a viewing setup is available.

Boundary curves are the most simple case. These are the surface boundaries
and can be computed by inserting zero or one into the surface equation for each
parameter direction u and v. They are important for any visualization since they
mark the spatial extent of the surface in question. Iso-parametric curves are curves
that contain all points having the same parameter value in either u- or v-direction.
Thus, for a fixed u ∈ [0, 1], all points computed by evaluating the surface equation
for all v ∈ [0, 1] lie on an iso-parametric curve.2 The same computation can be
done for a fixed v- and all u-values. These curves, in general, follow the boundary
of the surface and can thus be used as initial lines for hatching. Curves along C1

discontinuities represent creases or edges in the surface that can occur when the
surface is put together from continuous patches. The discontinuities are then
at the boundaries of the patches and can be computed in the same manner as
boundary curves—treating each patch separately.

Although the curves mentioned all have in common that they are iso-
parametric and independent of the viewing direction, this is generally not the
case for silhouette curves. They are the boundaries of the front facing portion of the
surface. In the following, we suppose a viewing setup in a way that the view point

2. In this sense, boundary curves can be seen as special iso-parametric curves for u = 0, v = 0, u = 1,
or v = 1.

7.3 Free-Form Surfaces 237

is on the positive z-axis at infinity and the image gets projected onto the xy-plane.
Note that all other views can be transformed in such a setup. A silhouette point
is then a point p on the surface whose normal has a zero z-component. Surface
parts with a positive z-component of the normal are front facing; those with a
negative z-component are back facing. Hence, at silhouette points this property
changes. A silhouette curve is then an ordered set of silhouette points forming
a continuous curve. Their computation cannot be done analytically; thus, they
have to be approximated.

This approximation, however, does not introduce any new problems for
rendering free-form surfaces. A direct rendering by projecting the control polygon
and then reevaluating the surface is not possible, so any rendition has to be an
approximation. To render a surface with hatching lines being computed from iso-
parametric curves, for example, a number of points on the curves are evaluated
and then projected onto the viewing plane. How to connect those points can
be derived from the original curves. Here, the line styles from Chapter 3 come
in handy. Polylines (from connecting the projected points) are connected and
converted to a parametric description. An applied line style then creates the
impression of a smooth curve.

Depending on the parameterization of the surface, such curves do not always
visualize the shape of an object in the most appropriate way. Thus, we look for
other ways of rendering free-form surfaces. One of them is to cover the surface
with points that are then anchors to strokes; the other way is to convert the surface
to an appropriate polygonal representation and render it using one of the methods
described earlier.

Point Coverage

Using special curves on the surface and their properties limits the possibilities for
rendering. First, there is a limit of stroke position and direction if we consider
that strokes can only be placed along these curves and that the strokes’ directions
are parallel to them. Further, the position of the lines depends heavily on the
surface’s parameterization scheme. Finally, although the methods indicated have
proved useful for creating relatively long lines, the coverage of a surface with small
strokes is not easy to achieve.

In the following, we introduce a method to compute positions on a free-
form surface where strokes can be placed. This method can be compared with
stippling, a technique described in Section 2.3. The major goal in the development
of stippling algorithms was to cover a 2D plane with dots that are distributed

238 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

uniformly but randomly in the plane. The number of dots and thus their spacing
is used to represent intensity values. A random and even distribution of dots on a
surface allows the computation of positions for strokes that are then drawn in 3D.

The operation to create such a distribution of dots is referred to as point
coverage. Since a surface S(u, v) is defined over two parameters u ∈ [0, 1] and
v ∈ [0, 1], a first attempt would be to generate a uniform point distribution in
the area [0, 1]× [0, 1] in parameter space. This will not yield the desired result. In
general, parametric surfaces are not isometric, or length and area preserving. In
practice, this means that a small rectangular area in parameter space can be mapped
onto an arbitrary small or large area on the surface. Thus, if the parameter space
is uniformly covered with dots, the surface itself does not necessarily have to be
uniformly covered.

Consider a small (differential) rectangular area in parameter space given
by [u, u + du], [v, v + dv]. The size of this area is Ap = du dv. The size of the
corresponding area on the surface is

AS =
∣∣∣∣dS

du
× dS

dv

∣∣∣∣ du dv

Computing the ratio between As and Ap yields R =
∣∣∣ dS

du × dS
dv

∣∣∣. If R is less than
one, the area on the surface is smaller than the area in the parametric domain and
thus fewer points should be placed here. Conversely, if R is bigger than one, more
points should be distributed in the respective area. To create a point coverage for
the surface S, we start by computing a uniform distribution of points in parametric
space. For each of the created points, a decision has to be made to keep the point
or to discard it. The procedure is similar to that in Section 2.3.1 where an intensity
value of a 2D image was chosen as the decision criterion. In the case of covering
a surface with points, the decision criterion is the ratio between the value of R
at the current position and the maximum value Rmax for the whole surface. This
ratio describes the probability with which a point should be kept. If R = Rmax
then the point needs to be kept; that is, the probability for a point to be placed
there equals one. If R

Rmax
= 0.5, the point should be kept with a probability of

50%. Using an additional random value (uniformly distributed in [0, 1]) aids in
this decision, as can be seen in Algorithm 7.5.

Given a point set as computed (see Figure 7.22), this can now be used for
stroke-based illustrations (recall Chapter 5). Some additional requirements arise;
for instance, the direction or the size of a stroke has to be computed. Strokes can

7.3 Free-Form Surfaces 239

1 P = ∅
2 n = number of points to cover the surface
3 calculate Rmax for the given surface
4 i = 0
5 do
6 (u, v) = randomly generated coordinates in parameter space
7 r = random number between zero and one
8 if

R(u,v)
Rmax

> r then

9 P = P ∪ {(u, v)}
10 i = i + 1
11 fi
12 while (i < m)

A L G O R I T H M 7 . 5 Creating a point coverage of a surface. The algorithm computes m coordinate
pairs in parameter space that are stored in the set P .

be aligned along iso-parametric lines as well as based on the local curvature at
the strokes’ position. Indeed, research has shown that aligning strokes along the
principal directions of curvature will greatly enhance the perception of shape.

Nonetheless, in photorealistic computer graphics, free-form surfaces are often
transformed into some kind of polygonal description since these can be treated
easily with well-optimized algorithms. Thus it is reasonable to explore this process
of going from a free-form surface representation to a polygonal representation in
more detail.

Representing Free-Form Surfaces as Polygon Meshes

It is often more appropriate to first convert the free-form surface into a polygon
mesh that approximates the original model and then to render this mesh. As we
have already seen in Section 7.2.1, this yields model artifacts stemming from the
approximation error being introduced in the translation process. Minimizing these
artifacts is one of the goals when producing photorealistic images, and it applies
to NPR in a slightly different manner. In non-photorealistic images, the primary
goal is to control the artifacts and thus control the image generation process.

One way of controlling the creation of artifacts is to use a reparameteriza-
tion scheme to generate polygon meshes from free-form surfaces. We will next
describe one such reparameterization, called normalization. When modeling free-
form surfaces, typically regions of higher curvature are modeled by using more

240 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

(a) (b)

F I G U R E 7 . 2 2 Uniform distribution of points in parameter space leads to non-uniform point
distributions on the surface (a). Computing a point coverage using Algorithm 7.5 yields the image
in (b).

control vertices than in rather flat areas. Algorithms that rely on the parameter-
ization and thus visualize the density of the control vertices will create images
with unwanted side effects. A usual way of converting a free-form representation
into a polygonal mesh is placing the vertices of the mesh along the knot vector of
the given surface. An example of a polygon mesh created this way can be seen in
Figure 7.23. Note that from the top view the curvature is not recognizable and
that this image thus leads to a wrong impression of the surface shown.

When presenting surfaces of high curvature, it would be convenient if the
wireframe adequately suggested the curvature of the surface. One solution that
we will present next is the presentation of the wireframe as an evenly spread mesh.
Evenly spread means that the vertices in each row and column have approximately
the same distance from one another in 3D. Figure 7.24 shows an evenly spread
polygon mesh that was generated from the same surface as in Figure 7.23.

To create such a polygon mesh, we start with an iso-parametric net generated
from a given free-form surface S(u, v) with the assumption that u, v ∈ [0, 1] ×
[0, 1]. An iso-parametric net I being constructed for S is a polygon mesh of size

7.3 Free-Form Surfaces 241

(a) (b)

F I G U R E 7 . 2 3 Regular wireframe created from a given surface: perspective view (a), top view (b).

(a) (b)

F I G U R E 7 . 2 4 Iso-parametric wireframe created from a given surface: perspective view (a), top
view (b).

k × l (k ∈ N; l ∈ N; k, l > 1) with vertices

Vij = S
(

i

k − 1
,

j

l − 1

)
0 ≤ i < k, 0 ≤ j < l

Geometrically, this equation means that we subdivide the parameter range in both
directions (along u and v) into k, respectively, l intervals. In the preceding equation,
k and l are thus the overall number of intervals, and i and j the index of one of
the intervals. With these vertices, we can now form 3D polylines for each value
of i and j, respectively. The polyline that connects the vertices V0j, . . . , V(k−1)j is

242 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

called the j-th column of I , and the one connecting Vi0, . . . , Vi(l−1) we call the
i-th row of I .

While these polylines are equidistant in parameter space, they are not equidis-
tant in 3D. A polygon mesh is called fully evenly spread if adjacent vertices of the
same row (or column, respectively) are equidistant from one another in 3D space.
For the creation of non-photorealistic renditions, it is sufficient to have an ap-
proximation of an evenly spread mesh; that is, we no longer require that adjacent
vertices of a fixed row have equal distances but rather require them to be approxi-
mately equidistant. In the following, we will describe how such an approximately
evenly spread mesh for a free-form surface S is created. This algorithm will result
in a polygon mesh of size n × m.

The algorithm requires the construction of an iso-parametric net I of size s × t
as a first step. Considering the j-th column of I , this polyline Pj is an approximation
of the curve defined on the original surface S by

Cj(u) = S
(

u,
j

t − 1

)
Let lj be the length of the polyline Pj. This length approximates the length of
the curve Cj(u). To get an evenly spread mesh, the distances between vertices in
each row and column have to be approximately equal. Thus the distances of the
vertices on some column that is placed near Cj(u) can be estimated by

dj =
lj

m − 1

By choosing m vertices on each curve Cj(u), an auxiliary net N is constructed in
such a way that the vertices on each curve have a distance of dj from one another.
To approximate the distance, the initial iso-parametric net i is used. The resulting
net N has the size of s × m vertices.

The rows of N approximate curves on S that are equally spaced on S with
respect to the Euclidean distance in 3D space. This is due to the reparameterization
in the last step. The final net is obtained by repeating this last step for the rows of
N . This is done by placing n vertices in the neighborhood of each row Ri where
adjacent vertices have a distance of about

di = li
n − 1

Exercises 243

(a) (c)(b) (d)

F I G U R E 7 . 2 5 Comparison of iso-parametric and regular meshes and their implications to, for
example, the application of hatching algorithms: wireframe, iso-parametric (a), hatching, iso-
parametric (b), wireframe, regular mesh (c), hatching, regular mesh (d).

In this equation, li is the length of the curve Ri, which is again obtained by
approximation from the iso-parametric net I .

Connecting the vertices created in this process yields a normalized polygon mesh
where vertices have roughly the same distances from each other in 3D space. An
example is shown in Figure 7.25.

Exercises
7.1 Give an overview of how the operations on polygon meshes identified in

Section 7.2.1 can be performed on the different types of representations
for polygon meshes. Compare the efficiency of each representation for
the different operations.

7.2 Develop a few algorithms that check a polygon mesh for consistency.

7.3 Develop a program that displays a polygonal model as a wireframe draw-
ing. Use an efficient data structure to store the polygon meshes also with
respect to the operations to be performed on the edges of the mesh.

7.4 Given a polygon mesh with explicitly stored normal vectors at the
vertices, how can the polygon normals for each face be computed? How
can you compute normal vectors for the polygons of a mesh if there are

244 C H A P T E R 7 Geometric Models and Their Exploitation in NPR

no given normals at the vertices? What is the biggest problem with this
method considering the definition of the model?

7.5 Implement Algorithm 7.1. Let your implementation be based on the
assumption that the normal vectors given in the model (if any) are not
correct; that is, in a first step recalculate the normal vectors for each
polygon in the mesh.

7.6 Implement the edge buffer algorithm for fast edge classification. Extend
the algorithm such that it also handles back facing polygons.

7.7 Given a polygon mesh M , projecting the edges of the mesh yields n
line segments that intersect each other k times. An algorithm proposed
by Preparata and Shamos (1985) needs O((n + k) log (n)) operations
to compute all intersections. Implement this algorithm and visualize all
intersections.

7.8 Given the procedure for normalizing a free-form surface, how are the
positions of the new control vertex computed?

7.9 Implement the algorithm for normalizing a given free-form surface.
Visualize both the original surface (by cleverly approximating it with
a polygon mesh) and the resulting mesh.

7.10 Experiment with normalization of free-form surfaces and prioritized
stroke textures as a shading technique.

Bibliographic Notes
Polygonal models, their representations, and renditions have been studied exten-
sively since the beginnings of computer graphics (see, for example, Foley et al.,
1990). The classification of edges of a polygon mesh into contour, sharp, smooth,
and triangulation edges was first suggested by Raab (1998); see also Schlechtweg
and Raab (1998). For several years, it was considered a difficult open problem to
render a geometric model with only a small number of lines; Raab was the first to
provide a useful solution to choosing which lines are to be drawn. The algorithm
for constructing haloed lines goes back to the pioneering work of Appel et al.
(1979) and Elber (1995), and was developed further by Schönwälder (1997).

Saito and Takahashi (1990) first suggested to produce line drawings by fol-
lowing the u- and v-parameters as encoded in special G-buffers. Godenschweger,
Strothotte, and Wagener (1996) were the first to use the edges of polygonal meshes

Bibliographic Notes 245

stemming from free-form surfaces as the starting point for choosing lines in a ren-
dition, and they also suggested the process of normalization of a polygonal mesh
for this purpose; see also Godenschweger and Wagener (1998).

The direct rendering of free-form surfaces is still a hard problem and offers
many facets. The use of different curves on the given surface for displaying model
properties has been studied by Elber (1999; 1998; Elber and Cohen, 1990).

Data management in the context of geometric modeling has been discussed
in detail by Preim and Hoppe (1998). They provide a thorough treatment of this
topic. Early work in this area, particularly with regard to demonstrating the need
for non-geometric data in geometric models, was reported by Schleich and Dürst
(1994). Plaisant et al. (1995) give an extensive survey and classification of image
browsers that are needed in this context.

The algorithm for carrying out the intersection operation was suggested by
Deussen et al. (1999a); see also Deussen (1998). Methods of converting a sequence
of pixels into line segments are presented in detail by Parker (1988) and Sklansky
and Gonzalez (1979).

Thinning algorithms for two-dimensional images have been studied since
the beginnings of image processing. Seminal work on so-called medial axis
representations was reported by Blum (1967). An introduction to the topic is
given by Pavlidis (1980), while a comprehensive survey is given by Lam et al.
(1992). More recent literature uses the term skeleton as a generalization of the
medial axis.

Polygon simplification has also been studied extensively, in particular over
the 1990s (Hoppe et al., 1993; Luebke, 1998). A survey of methods and tools has
been collected by Luebke (2001). The ecol-operation as discussed in this chapter
stems from Hoppe (1996). The algorithm for constructing a skeleton from a 3D
polygonal model presented here was developed by Raab (1998) and first used in
connection with the intersecting planes by Deussen et al. (1999a).

8 L I G H T I N G M O D E L S F O R N P R

In this chapter, we will explore lighting or illumination models as a method to
modify systematically the appearance of images. By way of motivation, we will
start by looking at sample images that were drawn by hand by scientific illustrators
and artists. We will see that though the lighting effects are not straightforward,
many of the effects that can be observed can be traced to a handful of effects that
can be incorporated in a lighting model for NPR. While in photorealistic ren-
dering the lighting models are based on physically determined relations between
light sources, objects’ positions, and surface materials, we have more liberty in
NPR to obey the laws of physics or not. Nonetheless, well-established lighting
models, which are used in photorealistic computer graphics, form the basis for the
development of new models. They include aspects from perceptual psychology,
arts, design, and so forth.

In the following, we will explain some of these design basics before we turn
our attention to the development of alternative lighting models. We will start
with an overview of the Phong lighting model. For colored technical illustrations
especially, we present a lighting model that includes techniques borrowed from
artists—such as cool-to-warm shifts and color undertones. Since such effects
would require changing the possibly built-in lighting model of a rendering systen,
we will then show how we can make use of a traditional lighting model instead of
changing or replacing it. This yields a component-based model that is particularly
well suited for line illustrations.

247

248 C H A P T E R 8 Lighting Models for NPR

8.1 Conveying Shape Versus Illumination
Scientific illustrators see the world and the objects they portray through their own
eyes, and re-create images such that viewers will be able to construct their own
mental models of the objects in question. In doing so, scientific illustrators often
accentuate important objects by using auras, or deaccentuate the background by
lighting it up behind dark foreground objects. What immediately becomes clear
is that the resultant images cannot simply be reproduced by a computer placing
only a single light source in a standard location.

There is a physiological reason why a scientific illustrator has great liberties
with respect to the use of light. Indeed, the human visual system is able to adapt
locally to brightness so that no eye ever sees a scene as it is represented by a camera.
Consider, for example, the photographs shown in Figure 8.1. In Figure 8.1(a), the
photographer reported having been able to discern the details of the dark region
to the left, but these details were not recorded on the film. The photographer’s
own visual system adapted locally to the illumination, enabling the details to
be discerned. As soon as a flashlight was used, objects in the foreground were
brightened (Figure 8.1(b)). This phenomenon turns up in many situations so that
it may not be possible to capture on film and thus in a single photograph what a
person can see at any given time.

Even more, a scientific illustrator will examine an object in detail from all sides
and with various different arrangements of lights and subsequently synthesize these
different views in one image that is passed on to a viewer. Hence, a hand-drawn
image is quite naturally not restricted to encoding any one lighting condition.
This procedure of mixing and matching the illumination of various parts of an
image is often what makes a scientific illustration so much more informative than
a photograph. Obviously, the varying positions of lights are generally not irritating
to viewers; the contradictions, for example, due to impossible configurations of
shadows, do not deter viewers from using such images as sources of information.

Moreover, there is also a pragmatic reason why the illumination of an illustra-
tion is often very different from the illumination of the original scene. This deals
with the history of art. The art historian Rudolf Arnheim argues that historically
and in the development process of an artist, shading is introduced at a late stage,
while contour lines and local coloring are the first features to be mastered—and
indeed are used initially to convey the roundness of objects, not the illumination.
One reason for this order in which the skills are mastered lies in human cognition,
which is focused primarily on objects and their attributes like shape and color. By

8.1 Conveying Shape Versus Illumination 249

(a) (b)

F I G U R E 8 . 1 Two snapshots of a scene. The photographer reported seeing details of the boat while
taking picture (a) on the left. His vision system had adapted to the local intensity, while the camera
had not, leaving the entire region dark. Picture (b) shows the same scene photographed with a
flash, revealing the detail.

contrast, light sources and illumination are secondary effects, and their relation to
our ability to see things at all is generally underrated by human cognition, if not
even ignored. Instead, light is considered an independent entity.1

Even when shading is introduced into an image, it is generally used to add
depth to an otherwise flat medium, but not necessarily to express illumination. For
example, the shading in Figure 8.2 is used to express layers of objects within the
image, rather than the effects of light. Nonetheless, shading used in this manner
may still be interpreted as a result of illumination.

Because of the way human perception works with respect to light sources
and orientations, though, this shading does not even have to be consistent over
a single illustration. For example, it is easy to verify that in Figure 8.3 the light

1. Recall that even the Bible reports that light was created on the first day, while objects (sun, moon,
and stars) only followed later on the third day!

250 C H A P T E R 8 Lighting Models for NPR

F I G U R E 8 . 2 Shading used to present different layers rather than illumination.

F I G U R E 8 . 3 Inconsistent shading used in a hand-drawn image.

reflecting off the upper telescope and the shadow cast by the box on which the
person is standing cannot possibly stem from the same light source.

In general, reviewing illustrations in technical manuals, illustrated textbooks,
or encyclopedias reveals a wealth of conventions that have developed over time and
that are quite different from standard computer graphics models. The following
list, although not exhaustive, presents the most common of these conventions.
Note that here color is considered an integral part of the rendition although
many of the principles also apply for grayscale images or even line drawings.

8.1 Conveying Shape Versus Illumination 251

(a) (b)

1

1

1

6

2

2

2

7

3

3

5

4

4

6
3

F I G U R E 8 . 4 Two renditions of a human skull: a photograph with light from the front (a), a
handmade scientific illustration (b).

◆ Edge lines are drawn with black curves.
◆ Matte objects are shaded with intensities far from black and white. (This limits

the range of usable colors for shading.)
◆ Warmth and coolness of color usually indicate the surface normal.
◆ Shadows are rarely used. If shadows are used, they are placed in a way that they

do not occlude important details or object features.
◆ Special lighting conditions are assumed in areas where important details have

to be shown.
◆ Usually the objects are lit by one light source in standard position (upper left-

hand corner in front of the object).

We will now study two images in detail to see how lighting affects the
graphical details that can be conveyed. Both images are of a human skull; Figure
8.4(a) shows a photograph of the skull illuminated from the front, an image that
could also have been rendered using the Phong illumination model described
later. Next, Figure 8.4(b) shows a handmade illustration of the same object. It
is easy to see that the second of these images does a better job of conveying the
shape of the details than the first.

252 C H A P T E R 8 Lighting Models for NPR

We will examine the differences between the two images with the goal of
being able to derive algorithms for computing the non-photorealistic rendition.
The following observations can be made:

1. Rim shadow lighting (Figure 8.4(b), label 1) Along the edges of the object
facing almost perpendicular to the viewing plane, so-called rim shadows have
been added to highlight the edges.

2. Plateau lighting (Figure 8.4(b), label 4) Large, quite flat areas of the object
are given a high brightness.

3. Back lighting (Figure 8.4(b), label 2) Although the light clearly comes from
one given direction, surfaces facing the other way are sometimes given some
light effects to enhance the 3D appearance of these parts.

4. Curvature lighting (Figure 8.4(b), label 3) Areas of high curvature are drawn
with more shading than areas with little curvature.

5. Transmission and transparency Special care is given to situations in which
light travels through a medium. For example, in some illustrations it may
be desirable to highlight the region through which light travels in a dark
room (volume lighting). Furthermore, the medium through which the light
travels may be something other than air (such as water, which need not be
clear) or glass (such as when drawing an object behind a window pane).

In the following, we will study how these conventions can be simulated using
computer graphics techniques and hence how effective illustrations can be gener-
ated from 3D models. We will draw on research that has been done in the area of
photorealistic rendering, especially pertaining to lighting models. We will show
how photorealistic illumination models, in particular the Phong model—which
is explained in the following section—can be extended over and above a pure
simulation of the physical processes involved.

The development of a lighting model for NPR will be our focus after
describing the Phong model as our general basis. We will examine two different
situations and directions. First, a model for colored illustration is presented. The
main idea here is that for effectively using color in an illustration, it is not sufficient
to derive the color values from the illumination situation alone. Instead, some
techniques that artists would use have to be taken into account. Second, as we
have seen in the illustration of the skull, one light source in standard position is
often not enough to emphasize shape features of the object. Thus we will show

8.2 A Basic Lighting Model 253

L
N

R

Vφ
θθ

F I G U R E 8 . 5 Vectors used in the Phong model of reflection.

how different light sources with specific parameters can be introduced in the scene
to achieve certain effects.

8.2 A Basic Lighting Model
Practically all rendering tools available today make use of a lighting model named
after a Vietnamese graduate student, Phong Bui-Tuong (1975). According to this
model, the intensity of light I that is visible at a given point on a surface can
be calculated as the sum of intensities due to several components of light. All
identifiers used in the following refer to the diagram in Figure 8.5.

1. Ambient light: I = Iaka This component models light of uniform brightness
throughout the image caused by multiple reflections of light from many
surfaces present in the environment. Each object is thus displayed using an
intensity intrinsic to it. The intensity of the ambient light is referred to
as Ia and is assumed to be constant for all objects, while ka, the ambient
reflection coefficient, is a constant related to the material being modeled.
This coefficient is an empirical value that does not correspond to any physical
property of real materials.

Taking into consideration only ambient light, each object appears as a
monochromatic silhouette since the intensity does not depend on geometric
properties such as surface orientation or viewer distance.

2. Diffuse reflection: I = Iikd cos θ = Iikd(L · N) Light reflected by dull matte
surfaces is referred to as diffuse reflection. It is scattered in all directions with
an equal intensity that is proportional to the cosine of the angle between the
incident light Ii and the surface normal N . Following Lambert’s law, for matte

254 C H A P T E R 8 Lighting Models for NPR

surfaces, the viewing angle has no influence on the light intensity; hence we
do not need to consider the vector V in computing the diffuse reflection.
For different surface materials, the reflected light intensity is furthermore
modulated by a factor kd, the diffuse reflection coefficient. In order to have
any effect on the surface, the incident rays have to fall on the surface in an
angle θ between 0◦ and 90◦. The cosine of this angle can be computed as the
dot product of the two normalized vectors L and N .

3. Specular reflection: I = Iiks cosn φ = Iiks(R · V)n This models light reflected
from a shiny surface. As such, the intensity can be expected to drop off with
the angle φ between the reflected ray R and the viewer V since shiny surfaces
reflect light unequally in different directions. On a perfectly shiny surface,
light is reflected only in the direction of reflection R. The speed of the intensity
dropoff from that given direction where R = V to the edge of the resulting
highlight region is modeled by taking the n-th power of cos φ, where n
depends on the surface material. The specular reflection, too, is modulated
by a constant ks, the surface material’s specular reflection coefficient. It is
selected experimentally to produce aesthetically pleasing results.

Putting it all together, the intensity IPhong of a point on an object’s surface can
be calculated according to Equation (8.1). Note that in this equation all vectors
are unit vectors and the reflection coefficients all fall in a range between zero and
one.

IPhong = Iaka + Iikd(L · N) + Iiks(R · V)n (8.1)

Figure 8.6 shows a visualization of the relative intensities of the three com-
ponents under different conditions. Note that Equation (8.1) can also be used to
treat colored light and materials. For doing so, all light intensities as well as the
reflection coefficients are vectors describing the color components (usually red,
green, and blue).

We will now explore how the Phong model can be extended to create
technical and medical illustrations that fulfill partially the requirements stated
earlier. We will focus on color illustrations and see how an artistic handling of
color yields images that emphasize the shape of objects. We will then see how
the requirements from the list that are not met with this particular model can be
fulfilled, especially in the context of line drawings.

8.3 Colored Illustrations 255

(a) (b)

Ambient

Diffuse

Specular

F I G U R E 8 . 6 Phong lighting on a sphere with different coefficients: kd > ks (a) and kd < ks (b).

8.3 Colored Illustrations
Two of the main observations from handmade illustrations, especially from those
done with airbrush and pen, relate to edge lines (contour lines), which are almost
always drawn in black and to the limited range of colors used for shading. To use
these techniques in a computer graphics model, we will first examine the artistic
techniques a little closer in order to derive possible parameters for a technical
realization.

Colored illustrations make use of variations in hue and luminance to com-
municate shape. In order to create color tones, artists can mix in black or white
to darken or lighten a given color. Tones created by adding gray to a given color
usually vary in hue but not much in luminance. This makes different tones useful
if there is only a limited range of intensity values to choose from. This, however,
is the case in the kind of illustrations that we are considering.

Another important concept for illustrators is the color temperature. Colors are
classified as being cool, warm, or temperate. Cool colors include, for example,
blue, violet, and green, whereas warm colors include red, orange, and yellow.
Temperate colors, finally, are red-violets or yellow-greens. The human visual
perception is very sensitive to color temperature; it can generate depth impression
and hence be used as a depth cue. Objects with a cool color are percieved as
being farther away than objects with a warm color. This effect appears when two

256 C H A P T E R 8 Lighting Models for NPR

(a) (b) (c)

F I G U R E 8 . 7 Using the Phong model as a starting point for illustrations reveals some shortcomings
of the model: areas not directly lit appear with constant color (kd = 1, ka = 0) (a), shape information
is lost, especially in regions of high curvature when rendering only highlights and edge lines (b),
and details are lost when including edge lines in a Phong-shaded image (kd = 0.5, ka = 0.1) (c).
(See also color insert.)

surfaces of different color are close together and can be employed in the design
of illustrations.

The Phong model is a good starting point for illustrative images, although it
has some disadvantages that we have to circumvent. The main problen when using
the Phong model lies in areas that are not directly lit by the given light source.
Here, the angles between the two vectors that are used to determine the diffuse
as well as the specular reflection are both out of the valid range and hence only
the ambient term in Equation (8.1) influences the intensity calculation. Since the
ambient term does not depend on any light or viewing direction, the resulting
intensity is constant over the respective area that results in images where shape
features cannot be ascertained (see Figure 8.7(a)).

Edge lines and highlights are invaluable tools for visualization; however, the
pure Phong model makes it hard to incorporate these features into illustrations.
Figure 8.7(b) shows edge lines and highlights that can be created, whereas
Figure 8.7(c) shows their incorporation into a Phong shaded image. For creating
this image, the parameter values for ka and kd have to be hand-tuned to achieve this
result. Moreover, in this illustration, the lack of shape information for indirectly
lit areas is noticeable.

We will now explore how color temperature and color tones can be incor-
porated in the Phong model. We will restrict ourselves to the diffuse component
since our goal is to come up with a lighting model for matte objects. Such objects
are considered to be ideally diffuse reflectors, that is, they reflect incoming light
equally in any direction. We will use the diffuse term of Equation (8.1), more

8.3 Colored Illustrations 257

F I G U R E 8 . 8 Approximately constant luminance tone rendering. Edge lines and highlights are
clearly noticeable. Some details in shaded regions are also visible. The lack of luminance shift makes
these changes subtle. (See also color insert.)

specifically the dependency between the intensity of the reflected light and the
relation between the two vectors (surface normal and vector to the light source).
As a first approach, blending between a cool and a warm color is examined. We
can, for example, formulate

I =
(

1+ L · N

2

)
kcool +

(
1− 1+ L · N

2

)
kwarm (8.2)

which yields an interpolation between kcool and kwarm if we consider the full range
being possible for the term L · N , namely, −1 to 1. To make sure, however, that
the full variation in this interval is used, the lighting should be set up properly. The
light vector L should be perpendicular to the gaze direction. The best position
for the single light source, which we use in that model, would be up and to the
right, which can be explained psychologically. The human visual system assumes
that light comes from above, and many of the ways in which we perceive shape
from shading are related to this assumption. Using Equation (8.2), we can achieve
results as in Figure 8.8 where luminance does not vary much over the image but
tone does. Some details are recognizable now, however, in a very subtle manner.
This subtlety comes from the lack of a strong cool-to-warm shift as well as from
the little variety in luminance.

To bring more luminance variation in the image, the following two ways are
possible:

258 C H A P T E R 8 Lighting Models for NPR

1. Creating color scales by interpolating between two extreme colors, for
instance, blue and yellow.

2. Creating color scales by scaling object color shades.

We will combine both approaches in one model as follows. If we create the scale
from a fully saturated blue (kcool = kblue = (0, 0, b) with b ∈ [0, 1] in RGB space) to
a fully saturated yellow (kwarm = kyellow = (y, y, 0), with y ∈ [0, 1] in RGB space),
it is again independent from the object’s diffuse reflectance. On the other hand,
if we consider creating the scale based on the object’s diffuse reflectance, it would
range from pure black (for kcool) to the object’s color defined by kwarm = kd. The
effect gained herewith resembles the traditional shading except that luminance
also varies in areas where L · N < 0.

A combination of these two strategies would combine the tone scaled object
color and a cool-to-warm shift. This cool-to-warm shift creates an undertone in
the color that can be compared to some effects that artists achieve when mixing
their paints. A linear blend between both tones is achieved using the follwing
equations:

kcool = kblue + αkd (8.3)
kwarm = kyellow + βkd

which are then inserted into Equation (8.2). To tune the image, the four variables
α, β, b, and y can be set to different values to create several effects. Here, b
and y determine the temperature shift by giving the maximum “blueness” and
“yellowness.” The other two values, α and β, determine the amount of which
the actual object color is visible. Since one of the rules for illustrations requires
that the colors that are used for shading are far away from white and black, we
will choose some intermediate values here. Two images with different parameter
settings can be found in Figure 8.9.

If it comes to implementing such an alternative lighting model, it would
be desirable to use already existing libraries and possible hardware acceleration.
The Phong model is well supported by almost any graphics library so that an
approximation of the new shading model using the Phong model would save time
in development and also execution time since we can rely on hardware-accelerated
implementations. The key for an approximation is the use of negative colors for
light sources that are possible in most systems (for instance, OpenGL). We can
imitate the results of Equation (8.2) by placing two light sources in directions L and
−L and adjusting the light intensities to (kwarm − kcool)/2 for the first one and to
(kcool − kwarm)/2 for the second light source. If we assume the object color to be

8.3 Colored Illustrations 259

(a) (b)

F I G U R E 8 . 9 Images created with the introduced shading model: b = 0.4, y = 0.4, α = 0.2, β = 0.6
(a) and b = 0.55, y = 0.3, α = 0.25, β = 0.5 (b). (See also color insert.)

(a) (c)(b) (d)

F I G U R E 8 . 1 0 Comparison of traditional computer graphics techniques and techniques for creating
technical illustrations: Phong shading (a), new shading model without edge lines (b), new
shading model with edge lines and highlights (c), and approximation of the new model using Phong
shading (d). (See also color insert.)

white, the ambient term should be set to (kcool + kwarm)/2. Because of the second
light source, this approach will not create highlights; however, some artifacts may
occur if the highlighting of the Phong shading is turned on. Figure 8.10 shows a
comparison between the different models mentioned in this section.

260 C H A P T E R 8 Lighting Models for NPR

8.4 A Component-Based Lighting Model
We will now build on the Phong lighting model to derive a new model that
is particularly well suited for NPR. We will concentrate on the intensity value
of a light source regardless of what color the emitted light has. This makes the
model particularly well suited for its application for line drawings as well as other
continuous tone illustrations that do not require color. However, the model can be
extended for color by treating each color channel separately or even including the
model for colored illustrations from above. The presented model is component
based; that is, we will consider the intensity of a given point to be composed of
the sum of the intensities of five components: standard lighting with shadows,
rim shadow lighting, curvature shading, transparency, and illumination volume
lighting.

8.4.1 Standard Lighting and Shadows
As already stated, illustrations, especially technical and medical illustrations, are
created following a set of rules that have been developed over time. One of these
rules pertains to the placement of the main—in many cases, single—light source.
Generally, a standard position for this light is chosen at 45° to the object in
the image plane and 45° to the viewer. This ensures that shape cues that we
are used to from our daily experience with objects being lit by the sun are also
usable in the illustration. The human visual system is very sensitive to such shape
cues and assumes light coming from above. For computing the intensity of each
point, the Phong lighting model is used, taking shadows into consideration. The
computation of shadows will not be discussed here. For the purpose at hand,
standard shadow calculation algorithms are being used, for instance, shadow
volumes, shadow z-buffer, or even raytracing.

8.4.2 Rim Shadow, Plateau, and Back Lighting
Rim shadow lighting was introduced to highlight edge lines by rendering them
as if they would be in the shadow. This effect can be modeled with a light
source in front of the object to render. This makes it possible to reuse standard
rendering techniques. Placing the light source at the camera position, as shown in
Figure 8.11, and using just the diffuse term in the Phong lighting model, renders
surface parts with large angle to the viewing plane dark, while rendering others
bright. Hence, Irim can be derived from Phong’s model in Equation (8.1) by
setting ka = 0, ks = 0, and L = V :

8.4 A Component-Based Lighting Model 261

N

V = L

θ

F I G U R E 8 . 1 1 Vectors used for rim shadow lighting.

Irim = kd(V · N) (8.4)

Back lighting can be modeled by placing a light source in the same place as
for rim shadow lighting and calculating Iback by using a negative value for the
intensity:

Iback = −Irim

In the same manner, in fact, plateau lighting can also be modeled by placing the
light source at infinity instead of at the camera position. This yields Equation (8.5),
which on first glance, does not look different from Equation (8.4). However, since
the light source has moved into infinity, all vectors from the light source to the
object (the light rays) have the same direction and are parallel to each other.
Furthermore, all vectors are infinitely long. Hence, L is no longer a unit vector,
nor can it be expressed by a unit vector so that the angle between this vector and
the surface normal can no longer be computed by using the dot product.

Iplateau = kd cos θ (8.5)

8.4.3 Curvature Lighting
In curvature lighting, the effect to be achieved is to shade surfaces with a high
curvature dark, while surfaces with a low curvature are to be bright. The dark
shading is motivated by the shadow cast by raking light. Instead of placing different
light sources at the appropriate positions, it is more convenient to use the value
of the curvature κ directly. If not given directly, the curvature at a given pixel can

262 C H A P T E R 8 Lighting Models for NPR

Ni+1

Ni

N

θi+1
θi

F I G U R E 8 . 1 2 Computing the curvature from surface normals of adjacent surface patches.

be approximated using the surrounding surface normals (see Figure 8.12). Since
we want to shade surface parts of high curvature dark, we can use the inverse
curvature as intensity value:

Iκ = 1− κ

This equation shows that curvature lighting is independent from the actual lighting
condition since no incoming light intensity is considered. This seems to be not
appropriate for calculating the intensity, but keeping in mind that curvature
lighting is just one component of a more complex model and that it is evaluated
on a per object basis makes this approach usable in the context at hand.

We are now in a position to see how rim shadow lighting and curvature
lighting interact with each other. Figure 8.13 shows a wavy surface and illustrates
the rim shadow lighting and curvature lighting analogous to the convention of
Figure 8.4. Note that surface parts that are slanted away from the viewer are
emphasized by rim shadow lighting (the curve is closer to the surface to indicate
dark shading). The curve of the curvature lighting, in contrast, is closest to the
surface in strongly curved areas, indicating that these areas are to be made dark.

8.4.4 Transmission and Transparency
The transmission of light through a transparent or translucent surface should also
be possible to model since it would allow the inclusion of materials like glass and
the proper display of objects that would otherwise be hidden behind such a surface.
In most hand-drawn illustrations, a correct treatment of the laws of transmission
and refraction is not completely considered. Instead, a technique called ghosting
is often used. In a strong sense, ghosting means to reveal the interior parts of an
object by rendering the outer surfaces as if they were transparent. In these cases as

8.4 A Component-Based Lighting Model 263

V

F I G U R E 8 . 1 3 Comparison of rim shadow lighting and curvature lighting on a wavy surface. The
surface is shown in a thick line, the relative intensity of the curvature lighting in the dashed line
with small spaces between the dashes, while the rim shadow lighting is shown in the dashed line
with larger spaces between the dashes.

well as in cases where a “real” transparent surface covers an object part, illustrators
often violate the physical laws by treating the index of refraction as having the
unit value. Hence, if a transparent surface f is in front of an opaque surface b,
the intensity of the front surface If must be mixed with the intensity value of the
back surface Ib. This is done by introducing a parameter α to help compute the
resultant light intensity It:

It = αIb + (1− α)If (8.6)

As can be seen in Figure 8.14, an intensity value for both the front and the back
surface is computed using the same viewing vector. The value α then determines
how both values are combined, that is, how transparent the front surface is. This
approach is also often called non-refractive transparency.

Studying hand-drawn images has shown, however, that the intensity of light
of the object behind a transparent surface is generally not uniform. For example,
Figure 8.15 shows a hand-drawn image in which the intensity of the object
behind the transparent surface actually increases with the distance to the edge
of the transparent object. By contrast, if the object actually progresses beyond the
transparent object, its intensity is very high close to the edge but decreases with
the distance from the edge.

264 C H A P T E R 8 Lighting Models for NPR

Transparent surface

Lb

Lf
Nb

Nf

Rb

Rf

V

θb θb

θf
θf

φf
φb

F I G U R E 8 . 1 4 Mixing the reflection of the front surface with that of the back surface according to
Equation 8.6.

F I G U R E 8 . 1 5 Example of a hand-drawn image. Notice how the contrast of the object hanging in
the tube varies toward the edge of the transparent surface.

Hence, the value of α changes with the distance of the current surface point
from the edge, and this must be considered by adding such a dependency, that is,

It = α(d)Ib + (1− α(d))If (8.7)

An implementation like that proposed in Equation (8.7) will actually change
the perceived transparency of the surface depending on the value of d. Certainly
other variants are possible that depend on the intended rendering style as well as
on the used algorithms. A few example images that mimic the renditions from

8.4 A Component-Based Lighting Model 265

F I G U R E 8 . 1 6 Example of a rendered image mimicking the effect portrayed in Figure 8.15.

Figure 8.15 are given in Figure 8.16 and show that this approach is indeed feasible
and yields appropriate results.

8.4.5 Overall Intensity
After having dealt with all components of the lighting model separately, we will
now see how to compute the overall intensity for a given surface point taking into
account all the different components from before. The intensity INPL (for non-
photorealistic lighting) of a given point in the image can be calculated as the sum
of the components according to the equation

INPL = wPhongIPhong

+ wrimIrim + wbackIback + wplateauIplateau + wκIκ + wtIt (8.8)

The weights w have a function similar to that of the fractions k in the Phong
lighting model. As the fractions k determine the amount of energy that is reflected
from a surface via diffuse, specular, or ambient reflection, and thus determine the
influence of the respective terms, the weights w determine the influence of the
new aspects. Just like the fractions k, the weights w sum up to one. Since the
values for w can be negative, the precise formulation would be∑

|w| = 1

Finally, it has been found to be opportune to add controls for brightness b
and contrast c to enhance Equation (8.8) yielding the final equation

I ′
NPL = (INPL + b − 0.5)c + 0.5

266 C H A P T E R 8 Lighting Models for NPR

1 S := compute image using the Phong model with a light source in standard
position

2 R := compute image using the Phong model with a light source positioned
for rim shading

3 K := compute curvature image
4 T := compute transparency image
5 determine values for the weights wPhong, wκ , wt

6 combine S, R, K , and T according to the weights pixel by pixel

A L G O R I T H M 8 . 1 Implementation of the component-based lighting model via G-buffers.

8.5 Implementation Issues
If it comes down to implementing such a component-based lighting model, it
appears that there have to be many changes to the intrinsics of the actual graphics
system. Most of today’s graphics systems and libraries rely on the Phong model,
which is tightly integrated into the rendering pipeline where parts of it are
often implemented in a way that hardware support can be used. Replacing these
functions with ones based on the component-based lighting model described
earlier would destroy all advantages gained with using standard libraries. Most
important, rendering speed would be dramatically decreased and since for an
adequately rendered image possibly many parameter combinations have to be
tested, the creation of a usable illustration would be very time consuming.

Hence, it is desirable to use standard libraries instead of replacing them. The
components of the lighting model are all independent from each other and can
thus be computed separately using either special rendering algorithms or the
standard graphics pipeline. As a result, a set of G-buffers is obtained that can then
be combined using the weighted sum of the pixel values (see Algorithm 8.1).

The given algorithm is incomplete since it does not contain all aforemen-
tioned components. Further, there are other possible components that can be
incorporated. To do so, only the respective G-buffers have to be created and a
weight value has to be assigned. It can then be incorporated into the combination
in the last step of the algorithm. For creating the buffers that involve the evaluation
of the Phong model, a proper lighting setup is required prior to the rendering.

For rendering the curvature buffer, several methods are possible depending
on the given model type. For free-form surfaces, an analytic curvature calculation
is the method of choice. Here the principal curvature values κmin and κmax as well as

Exercises 267

the Gaussian curvature K = κminκmax or the mean curvature K = 0.5(κmin + κmax)

can be used for our purpose. We will not go into detail here. For polygonal
models, there is generally no curvature defined and hence no straightforward way
to determine curvature values. However, since the change in the size of the angle
between the surface normal and a vector pointing toward the viewer’s position
can be interpreted as curvature, there is a way to approximate curvature values
from a special G-buffer. Remember that the definition of rim shadow lighting
in Section 8.4.2 yields an image where each pixel intensity represents the cosine
of the aforementioned angle. Applying a first order differential operator on the
rim shadow image thus yields the changes in the size of this angle and can be
interpreted as the average curvature.

Exercises
8.1 Find a number of technical or scientific (medical) illustrations in books or

journals. Find out which conventions the illustrators have been using to
depict lighting conditions. Which of these conventions are rather general,
and which can be seen as “personal style” of the respective illustrator?

8.2 Review the Phong illumination model and its components. How do the
different vectors influence the final rendition? How can certain lighting
effects be achieved by placing additional light sources at a particular
position?

8.3 Implement the lighting model for colored illustration and experiment
with your implementation. Which combinations of color and which
parameter settings yield the most promisig results?

8.4 Try the lighting model for colored illustrations with models of different
object classes (mechanical parts, organic shapes, parts of the human body).
Can you use the same parameter settings for all different kinds of models?

8.5 Implement the component-based lighting model introduced in Sec-
tion 8.4. Are there any other components that can be derived from your
observations in Exercise 8.1?

8.6 Extend the component-based model by the parts you have identified
in the previous exercise. Render a few images with different weighting
factors to see how they influence the final result.

268 C H A P T E R 8 Lighting Models for NPR

Bibliographic Notes
The topic of illumination in illustrations has been studied extensively in the
literature. In particular, books by Arnheim (1984) provide valuable insights into
the point of view of art history. The books by Hodges (1989) and Martin (1989)
are excellent sources of inspiration on scientific and technical illustration and
contain extensive material on illumination.

Lighting models in computer graphics are dealt with in practically every basic
computer graphics book. Particularly good surveys can be found in Watt (2000)
and Foley et al.(1990). The original paper on what has come to be known as
the Phong reflection model is Phong (1975). Enhancements to the Phong model
were presented by Gooch et al. (1998; Gooch and Gooch, 1999a; Gooch and
Gooch, 1999b; Gooch et al., 1999; Gooch, 1998). Here, the Phong model was
used and extended by color and tone shifts to yield effects as they are known from
technical illustrations. Hamel (2000; Hamel et al., 1998) introduced the notion
of a component-based illumination model that is introduced in this chapter. He
also made use of G-buffers (see Chapter 6) to make the computations within such
a component-based model more efficient.

Besides actually changing the way lighting calculation is done in a rendering
system, some authors also map light intensities to stylistic changes in the image.
Thus, the results of a standard lighting calculation are taken and interpreted not
as pixel intensities but, for instance, as line width (see Schlechtweg et al., 1998;
Schlechtweg and Raab, 1998). These methods work together with the path and
style metaphor for drawing lines as introduced in Chapter 3. A unified approach in
this sense is presented by Hall (1999). He introduces a texture mapping technique
where the textures adapt to the light intensity.

9 D I S T O R T I N G N O N- R E A L I S T I C R E N D I T I O N S

NPR entails not only adjusting the rendition style to the communication needs
at hand, but also tuning the final image or even the geometric model itself so as
to ensure that the space available for the final image is well used. Indeed, we had
observed that practically all renditions made by hand (like pen-and-ink drawings,
pencil sketches) are not drawn strictly to scale. As the style of art called photorealism
illustrates, the reason for such deviations is not that the artist cannot draw any
better, that is, that the artist may not be able to draw to scale, but rather that in
a conscious or unconscious process, such images are drawn to imply that certain
objects are more important than others. This, in turn, suggests drawing important
objects more prominently by enlarging them and making less important ones
smaller.

Distortions not only serve the purpose of making certain (enlarged) objects
appear more important, they also serve several other purposes. Making objects
or parts of an image smaller makes room to display other information that may
otherwise not have “fit.” While presenting objects smaller means that less detail
can be shown, objects drawn somewhat enlarged have the potential for having
more detail.

The act of changing the scale of an object or a presentation can also be
animated. Rather than showing only the final magnification, this enables users to
see what has happened to their original image. It can be observed that if many
objects in an image get larger or smaller all at once, viewers can ascertain the
overall structure of the objects at a glance. Indeed, viewers of such an animation

269

270 C H A P T E R 9 Distorting Non-Realistic Renditions

can see which objects are held together and which ones can be separated from
one another.

In this chapter, we will approach the topic of distortions from three points of
view. In the first, the distortion will pertain to the 2D plane of the rendition. We
will show how selected regions can be enlarged at the expense of the rest of the
image, particularly at the expense of such parts that lie in the immediate vicinity
of the enlarged portions.

The second method of distortion is one that works in object space. We will
discuss how geometric objects can be scaled selectively. When objects get too
large to fit into the space available in world coordinates without violating certain
contraints, the surrounding objects get appropriately smaller to make room. An
important characteristic of the algorithm discussed here is that it can be applied
to data structures of any dimension.

The term distortion for such changes in shape has a negative connotation.
Indeed, selectively changing the scale of an image or of certain objects within
an image also means that the presentation may become misleading. Viewers may
interpret a distorted object verbatim and think that in reality it actually has the
perceived shape. In the terminology of Chapter 1, a distortion is misleading if the
viewer mistakes the change in scale for an object artifact rather than it being a
model artifact or even only an image artifact.

To help viewers to interpret distorted images correctly with respect to their
varying scale, information can be added to an image to indicate the location and
nature of such changes. We will introduce some techniques to make distortions
comprehensible. Among these is also animation that makes the changes in the
image explicit to the viewer.

Conversely, in the context of animation, distortions play an important role as
a means of communication. They help to clarify shape and form, give spatial cues,
and give the animation an interesting and vital character. In the last section of the
chapter, we will thus turn our attention to distortions in an animated context and
see which methods can be used there.

9.1 Image-Space Distortion
The first method of distorting renditions that we will introduce works completely
in image space. Its effect is much like that of placing a magnifying glass over an
image, except that shape, magnification characteristics, and transition to regions
that are to remain to scale can be adjusted by the user.

9.1 Image-Space Distortion 271

The method in its basic form works independent of the image being displayed.
Hence it can be applied to scanned images or as a post-processing step in a renderer.
In the exercises, we will examine how the basic method can be integrated into a
rendering system. This way, the level of detail or even the aspect of the underlying
information space displayed within a magnified region can be adjusted.

An image-space distortion uses a function f : R
2 → R

2, which converts a
2D image into another 2D image. That is, each point p in the input image is
mapped onto a point p′ in the output image. While it is possible to define such
functions and to work with them, recent work has shown that it is computation-
ally effective to think of a distortion in 2D as a concatenation of two functions.
The first function g maps every point in 2D onto a surface in 3D:

g : R2 → R
3

Subsequently, the resultant 3D surface is rendered to produce a new image in 2D
using a rendering function

r : R3 → R
2

Thus, the image-space distortion is regarded as the concatenation of the two
preceding functions, yielding f = r ◦ g. In the following, we will see how this
concatenation can be interpreted geometrically, which also leads to a possible
way of implementing such image-space distortions in an efficient manner.

9.1.1 Fundamental Algorithm
Consider the construction of Figure 9.1. An image to be distorted is placed on
the base plane, while a camera is placed at the position of the reference viewpoint.
To effect a distortion, the surface is treated as though it were elastic. Selected
points on this surface are raised somewhat in the positive z-direction, while the
positions of all other points fall into place according to the elasticity of the surface.
Finally, the surface is rendered as seen by the camera in the reference view plane. This
rendition represents the distorted image. The placement of the original image on
the base plane together with the elastic deformation of this plane represent the
function g. Each point in the image is assigned a position and a z-height, yielding
a 3D description of a surface. The rendering function r is realized by the viewing
transformation of that surface, which includes a projection to get back to two-
dimensional coordinates.

We will study this method in detail using a single focus point placed at the
center of the image. Consider the cross section of the construction of Figure 9.1

272 C H A P T E R 9 Distorting Non-Realistic Renditions

z
y

x

Reference
view plane

Reference
viewpoint

Base
plane

Central axis

Extreme rays

F I G U R E 9 . 1 Basic setup with reference viewpoint and reference view plane.

as shown in Figure 9.2. The focus point f has been raised by an amount hf . Around
the edges, part of the surface, called the context, is pinned down to the base plane.
The rest of the surface connects the focus point to the context.

Since the focus point has been moved closer to the view plane, it will appear
magnified in the final image, while the context will appear in the final image as it
did before the manipulation of the surface. Those parts of the image connecting
these two will be compressed. What this compression looks like has a marked
effect on the overall image and is determined by the specific dropoff function
being used. Indeed, for a dropoff function D(r), a point p on the surface to be
distorted is raised to a level hp with

hp = hf · D(r). (9.1)

Here, r is the radial distance from the original focus point f to p in the base
plane. This construction is illustrated in Figure 9.3. Figure 9.3(a) shows a focus
point and another point whose height is to be calculated, Figure 9.3(b) shows the

9.1 Image-Space Distortion 273

Reference viewpoint

View plane

Base plane

Dropoff function

Extreme ray

Context (edges of surface
in normal position)

Focal point
(before magnification)

Central axis

Raised surface
at focal point

h f

h f

d s

d b

dv

F I G U R E 9 . 2 A cross-section diagram showing the raised central focus point, the profile of the
dropoff function, and the edge of the surface in normal position.

z-translation of each of these points according to a dropoff function, and Figure
9.3(c) shows these two points in a final rendition on the viewing plane.

We are free to choose any dropoff function defined in the range [0, 1] such
that D(0) ∼= 1 and D(1) = 0, for example, the Gaussian function

D(r) = e−r2/σ

for σ = 0.1. This function is illustrated in Figure 9.4. Figure 9.4(a) shows the
Gaussian function in 3D applied to a regular grid lying on the base plane, Fig-
ure 9.4(b) illustrates the same function in a cross-sectional view, and Figure 9.4(c)
shows the rendition of the distorted surface as seen from the reference viewpoint.

These examples show that raising the surface to be displayed has the effect
of distorting it. The higher a point is raised, the larger it gets. The more sloped
the surface becomes, however, the more it gets compressed. As long as all parts of
the surface are visible from the reference viewpoint, all the original surface will
be visible in the distorted image. We will now study various aspects of this basic
construction to see how it can be generalized.

9.1.2 Regions of Magnification
In the preceding construction, we showed how to magnify a focus point placed
at the center of the surface that is to be distorted. Often it is not a single point we

274 C H A P T E R 9 Distorting Non-Realistic Renditions

(a) (b) (c)

Radial distance

Radial distance

Point p

Point p

Focus

Focus

Dropoff
function

Adjusted
point

z-translated
focus

Magnified
focus

z-translated
point

F I G U R E 9 . 3 The process of creating a single central focus: the selected focus point (a), curve of
the Gaussian dropoff function (b), resulting distorted rendition (c).

(a) (b) (c)

F I G U R E 9 . 4 Single focus at the center of the field of view: 3D side view (a), cross-section view
showing projection vectors (b), the resulting distorted image (c).

wish to magnify, but a larger part of the surface that we want to enlarge uniformly
by a magnification factor m. We will refer to this larger part as the focus region. The
focus region may typically be a circle (emulating a magnifying glass), a rectangle,
any other (concave or convex) polygon, or even a polyline.

To extend the basic algorithm to include focus regions, we must further define
the height hp to which any point p on the original surface is raised. We raise all
points f within the focus region to height hf as necessary to achieve the desired
magnification. To do so, a point-in-region test is needed that determines for each

9.1 Image-Space Distortion 275

point p if it lies within the focus region or not. These tests may considerably slow
down the algorithm since they might not be trivial for arbitrarily shaped focal
regions. Any other points are raised as described earlier depending on the dropoff
function. The distance to the focus region is typically the shortest distance to the
closest edge of that region.

9.1.3 The Dropoff Function
The specific characteristics of the dropoff function being used are important when
it is important to see how the focus region is connected to the context. Which
dropoff function is best depends on the application at hand. This choice has
influence on the final rendition with respect to controlling how much distortion
is introduced, where the distortion is introduced, and how the distortion changes
over the image. Several classes of functions have different characteristics in this
sense. A few examples for such dropoff functions applied to a single focus point
can be seen in Table 9.1. In order to classify these and other functions, they are
compared to one another with respect to the following criteria:

◆ Focal magnification The extent to which the actual focus point is magnified
◆ Adjacent focal magnification The magnification of the regions near the focus

point
◆ Focus integration How well the focus point is visually integrated with the

region affected by the dropoff function
◆ Location of maximal compression Where the area is in which the visualization

appears most cramped
◆ Context integration How well the context blends into areas affected by the

dropoff function

These criteria can then be used to select a class of functions that offers the best
properties for the application at hand. All these and other functions are further
parameterizable by finding constants to get a specific function out of the selected
class. As an example, a linear dropoff function would create a cone-shaped surface.
The slope of this cone can be adjusted by selecting appropriate parameters for the
linear function.

Another way in which the effect of a dropoff function can be changed is to
alter the calculation of the radial distance to the focus point or region. As can
be seen in Equation (9.1), this distance in connection with the dropoff function

Assessment Dropoff functions

Focus type Linear Hemisphere Cosine Hyperbola Gauss

Graph

0.4

0.2 0.4 0.6 0.8 1

0.8

1

0.6

0.2

0

0.4

0.2 0.4 0.6 0.8 1

0.8

1

0.6

0.2

0

0.7

0.20 0.4 0.6 0.8 1

0.9

1

0.8

0.6

0.7

0.20 0.4 0.6 0.8 1

0.9

1

0.8

0.6

0.4

0.2 0.4 0.6 0.8 1

0.8

1

0.6

0.2

0

Image

Focal magnification Good Minimal Fair Fair Great

Adjacent focal
magnification

Minimal Great Good Good Modest

Focal integration Sharp Good Good Good Good

Location of maximal
compression

Context
connection

Context
connection

Context
connection

Context
connection

Mid-distortion

Context integration Abrupt Poor Abrupt Abrupt Good

T A B L E 9 . 1 Assessment of dropoff functions based on certain criteria. Note that whole classes of functions are described by one column
of this table; the actual function to be used is specified by additional parameters.

9.1 Image-Space Distortion 277

(a) (b) (c) (d) (e)

F I G U R E 9 . 5 Varying the L-metric for a focus point: L1 (a), L2 (b), L3 (c), L4 (d), L∞ (e).

directly affects the magnification. To describe the distance of any point on the
surface to the focus point more exactly, the concept of so-called Lp-metrics is used.

Given two points p1(x1, y1) and p2(x2, y2), a general expression of the distance
between these points is

Lp = p
√|x1 − x2|p + |y1 − y2|p

It should be noted that the Euclidean distance is just one example of such an Lp-
metric, namely, the L2-metric. The Euclidean distance of two points is defined
as

L2 =
√

|x1 − x2|2 + |y1 − y2|2

Using p = 1 yields the so-called Manhattan distance L1 = |x1 − x2| + |y1 − y2|,
which is the sum of the distances in both coordinate directions. This resembles
the walking distance in a city assuming a regular street layout.

In the limit, L(∞) = max(|x1 − x2|, |y1 − y2|). The higher the p, the more
rectangular becomes the distorted portion of the grid around the focus point.
Figure 9.5 shows several examples.

Of course, any other concept for measuring distance of a given point in the
image to the focus point can be applied as well. This includes also “conceptual”
distances, for instance, computed from given degrees of interest. As can be seen,
the dropoff function as well as the distance metric offer a flexible way of controlling
the distortion of an image. However, so far the focus point was only considered
as being in the center of the image. Further, only one focus point was present.
In the following, techniques are presented, which deal with an extension of the
algorithm to multiple and possibly off-center focus points.

278 C H A P T E R 9 Distorting Non-Realistic Renditions

(a) (b) (c)

F I G U R E 9 . 6 Single off-center focus point: view of the off-center perpendicular focus (a), the
cross-section view showing perpendicular vectors and the view volume (b), and the projected view
showing that the focus region cannot be seen (c).

9.1.4 Off-Center Focus Points and Multiple Foci
Up to now we have assumed that the manipulation of the surface to be distorted
is carried out such that it is visible in its entirety from the reference viewpoint.
However, if, for example, the focus point is not in the middle of the surface, even
the Gaussian dropoff function will yield a situation in which this constraint no
longer holds. An example is shown in Figure 9.6.

As can be seen, the region of the image that surrounds the focus point is
no longer visible. The reason for this lies in the construction of the image.
Moving an off-center focus point straight upward may cause the final position
to fall outside the view volume and thus to be clipped within the rendering
process. The translation vectors that are calculated for each point on the surface
are always perpendicular to the base plane. A solution to the problem of moving
parts of the surface outside the view volume is to use what is called viewer-aligned
focus. Instead of raising the focus point f by an amount hf straight upward, it is
raised by this amount along a vector vf pointing toward the reference viewpoint.
Now, all other points are raised by a distortion vector vp whose magnitude is the
amount computed earlier (recall Equation 9.1) and whose direction is parallel to
vf . The result of applying this procedure to an off-center focus point is shown in
Figure 9.7.

Note that using this technique, any point on the surface may now be selected
as the focus point. Further, we are now equipped to deal with the situation when
multiple foci are to be used. Suppose two such points on a surface are treated as

9.1 Image-Space Distortion 279

(a) (b) (c)

F I G U R E 9 . 7 Viewer-aligned focus: 3D side view showing the focus directed to the viewpoint
and inside the view volume (a), side profile view showing parallel vectors with the central vector
directed to the viewpoint (b), and the top view of the projected image (c).

(a) (b)

F I G U R E 9 . 8 Buckling: the cross-sectional vector view, clearly showing the surface buckle (a) and
the top or projected view showing the surface buckle (b).

focus points and thus raised by a certain amount. If these two points are close to
each other, a situation can be encountered that we will call buckling. If in an area
the two viewer-aligned vectors intersect, a self-intersecting area of the surface
is the result. This creates visual discontinuities since the saddle between the two
focus points may be hidden between parts of the surface. Figure 9.8 illustrates this
situation.

280 C H A P T E R 9 Distorting Non-Realistic Renditions

(a) (b)

F I G U R E 9 . 9 A blended interfocus region shown in a side profile view (a) and in a top view (b).

The solution would ideally be to interpolate the viewer-dependent vectors
given at the focus points over the interfocal regions by maintaining the features
defined by the dropoff functions. This “interpolation” happens by adjusting the
alignment of the translation vectors so that they do not change abruptly. The key
here is to compute the distortion vector vpi

for each point p on the surface and
for each focus region i. The final displacement of the point p is then given by a
weighted sum of the contributions from each focus region,

vp =
∑

i

ωivpi

The weights are computed from the final heights to which the respective
points would be raised. This ensures that a more dominant focus point also affects
these special regions more than a not so dominant one. This procedure finally
leads to a blending of the effects of different focus points, as Figure 9.9 shows.

At the end of this section, an example should show what pixel images (in this
case, a photograph) look like if the distortion algorithm is applied. Figure 9.10(a)
shows a photograph of the campus of Simon Fraser University in Vancouver,
Canada. You might recognize that there are people walking along one of the
paths, but it is already hard to tell how many of them are there. Enlarging the
respective point in the image (see Figure 9.10(b)) yields a detailed insight while
keeping the overview character of the image.

9.2 Object-Space Distortion 281

(a) (b)

F I G U R E 9 . 1 0 Application of the image-space distortion algorithm to a photograph. Note in (b)
that the persons are discernible.

9.2 Object-Space Distortion
While image-space algorithms like the one just shown are very good at yielding
relatively smooth and predictable transitions from magnified parts to the context, a
significant drawback of such methods is indeed that the actual distortion does not
take into account the underlying geometric model. There are many situations in
which applications rather call for the magnification of specific objects than for
the magnification of 2D regions. For example, the user of an online medical
book may want an illustration of the heart with specific parts enlarged. At the
same time, other objects that are not of particular interest may be made smaller.
Their presence, irrespective of their scaling factor, may enable the viewer to
recognize the visualized objects and the camera location, as long as the topological
correctness is maintained.

To employ image-space distortion algorithms in such situations would require
a segmentation of the image into such regions that contain exactly one object. As
a result of applying the dropoff function, objects will get distorted. This may also
be unwanted in certain situations since a non-uniform scaling can make objects
unrecognizable.

282 C H A P T E R 9 Distorting Non-Realistic Renditions

(a) (b)

A C

D

B

A C

D

B

y6

y5

y4

y3

y2

y1
x5x4x3x2x1

F I G U R E 9 . 1 1 Rectangles to be zoomed (a) and their interval structures (b).

We thus call for object-based distortion techniques that circumvent such
problems. Algorithmically, we shall rely on the context information (recall Chap-
ter 7) of our models. In particular, the geometric model needs to be structured
into the objects that the user wants to magnify. We can apply scaling operations
in object space to change the magnification of the objects directly. Rendering
the distorted objects should then produce the intended illustrations. The key
for the development of an object-space algorithm is to derive the scaling fac-
tors from the original objects, the intended magnification, and the space being
available.

9.2.1 Interval Structures
Consider the case of a collection of non-overlapping rectangles on a two-
dimensional display as illustrated in Figure 9.11(a). We wish to be able to enlarge
one rectangle (say, B) while maintaining its shape. Once the white space between
the objects and between the objects and the edge of the viewing area have been
used up, any further enlargements of B should result in A and C being made
smaller.

The first step in the algorithm that we will devise is to establish data structures
to work with. In the following, we will work with axis-aligned rectangles that
can be seen as actual objects. More important, however, these rectangles can also
be regarded as bounding boxes that enclose the actual objects. This makes the
algorithm independent from the specific geometry of each object. To describe the
arrangement of objects in the scene, so-called interval structures are established.
These are constructed by computing the extremal values of each object in each

9.2 Object-Space Distortion 283

dimension and projecting each of these onto the corresponding axis.1 For the case
of the rectangles in Figure 9.11(a), the interval structure is shown in Figure 9.11(b).

For defining the interval structures, each interval Ii is characterized by its
bounds pi1, pi2 and is represented by an interval descriptor

Ii = (pi1, pi2, si0, si, Xi)

where si0 is the initial size of the interval, si is its current size (which will be
changed in the algorithm), and Xi is a set of names of those objects falling within
the interval. For the sake of simplicity, in the following derivation of the algorithm,
the interval bounds are no longer considered. They can easily be computed from
the sizes of the respective intervals. Hence, each interval descriptor is a triple

Ii = (si0, si, Xi)

The following object-space distortion technique works completely on this interval
structure and is based on a resize operation that is described next.

9.2.2 The Resize Operation
We assume the display to have some defined size D. This size may or may not be
limited (that is, D = ∞). The unlimited case leads to interesting applications and
will be discussed later. For now, D has a finite value. We first define the empty
space L within a given interval structure as the sum of the sizes of intervals with
no objects:

L =
∑

i: Xi=λ

si

We now assume that an object k is to be scaled by a factor f > 1. To do so, a list
of scaling factors fi for each interval is defined as follows:

fi =
{

f ∀i : k ∈ Xi
1 otherwise

In this way, the scaling factor for each interval containing object k is set to the
scaling factor for the object. All other intervals are to remain unchanged, and their
scaling factor is thus set to one.

1. Note that this implicitly includes the construction of the bounding boxes. Projecting the extremal
positions of an object in each dimension onto the coordinate axes yields the coordinates for an axis-
aligned enclosing box.

284 C H A P T E R 9 Distorting Non-Realistic Renditions

The first step in the algorithm is to use up the space of any empty intervals.
For this purpose, the amount of space S required to carry out the magnification
is computed as

S =
 ∑

i: k∈Xi

fisi

 − L

Now if S ≤ 0, the necessary space S to magnify object k can be obtained by
collecting it from the empty intervals. If not, more space is needed, which will
be claimed from other objects. In any case, if L > 0, then empty space is available
and is used as follows. The order in which the space is taken away is chosen so
as to make the object being magnified move as little as possible. Space is taken
away as evenly as possible from either side of the object, starting with the empty
intervals closest to it.

If S > 0, we have the case that more space is required than is available in empty
intervals. We now scale every interval that contains any object with its respective
scale factor. This may yield a final size of all objects that exceeds the display size D.
Thus, an adjustment is needed, which can be achieved by an additional uniform
scaling. Both steps, the actual scaling of the intervals and the correction, yield the
final interval size

si = fisi

 D∑
i

fisi

 (9.2)

Note that this equation includes the empty intervals that are already used up.
Their size is zero so that no new changes are introduced in these cases. For an
n-dimensional model, Algorithm 9.1 summarizes the procedure of object-space
distortion for selected objects.

In the following, a specific example is given that will illustrate the preceding
steps in detail.

9.2.3 An Example
For the sake of simplicity, we will demonstrate the algorithm using a one-
dimensional example shown in Figure 9.12. This corresponds to the x-axis of
Figure 9.11.

The scene consists of four objects and five intervals. The interval structure
for this example is described by the following entries:

9.2 Object-Space Distortion 285

1 foreach dimension d do
2 set up the interval structure I d

3 compute the maximum display space Dd

4 od
5 while there is a scale request for an object o do
6 foreach dimension d do
7 calculate the scaling factors f d in each dimension d
8 multiply the interval sizes with the scaling factors
9 correct the interval sizes with respect to the display space

10 od
11 od
12 calculate the new object coordinates

A L G O R I T H M 9 . 1 Object-space distortion.

0
A

B
C

D

42 6 8 10

I1 I2 I3 I4 I5

F I G U R E 9 . 1 2 Details of an interval structure for the x-axis in Figure 9.11.

I1 = (4, 4, {A})
I2 = (1, 1, {B})
I3 = (1, 1, {B, C})
I4 = (1, 1, {C, D})
I5 = (3, 3, {D})

Of particular relevance are the current sizes si, which for convenience of notation,
we represent by a vector s:

s = (4, 1, 1, 1, 3)

The overall display size D = 10 corresponds to the sum of the interval sizes in s.
In this case, there are no empty intervals that can be used up in a first step.

We now assume a request to enlarge object B by a factor of two. This object
is present in the second and the third interval. Hence, the scaling factors f2 and
f3 are set to 2; the others are set to 1. This yields the following factors fi, one for

286 C H A P T E R 9 Distorting Non-Realistic Renditions

0
A

B
C

D

42 6 8 10

I1 I2 I3 I4 I5

F I G U R E 9 . 1 3 Final interval structure for the above example.

each interval, again, represented as a vector f :

f = (1, 2, 2, 1, 1)

The magnification is performed by scaling all intervals with the respective scale
factors, that is, by multplying all si and fi, yielding the vector (4, 2, 2, 1, 3). This is
the first part of Equation (9.2) giving the new interval sizes before the correction.
Note that the sum of the sizes is 12, which exceeds the value D = 10. Hence,
each interval must be scaled down by a correction factor of 10

12 , that is,

sf 10
12 = (

31
3, 12

3 , 12
3 , 5

6 , 2 1
2

)
.

This vector represents the final interval sizes after the resize operation. The
resulting interval structure is illustrated in Figure 9.13.

9.2.4 Discussion of the Algorithm
Quite a number of issues must be dealt with before the algorithm as indicated
earlier can be implemented. The most important point that should be noted is
that the algorithm does not perform an absolute magnification. The display size has
to be taken into account and must not be exceeded. The algorithm thus realizes
a relative scaling compared to the other intervals. We shall explain this using a
simple example. Given an interval structure consisting of three intervals of sizes
s1 = 1

4 , s2 = 1
4 , and s3 = 2

4 , and an overall (display) space that is limited to D = 1,
doubling the size of the second interval with the algorithm yields the new interval
sizes s1 = 1

5, s2 = 2
5, and s3 = 2

5. The second interval is not actually doubled in size,
but its size has doubled relatively compared to the other intervals. The size ratio
between intervals 1 and 2 was initially 1:1. After the performed magnification, it
is 1:2, that is, interval 2 is twice as big as interval 1. Further, the ratio between
intervals 2 and 3, which was 1:2 before, is now 1:1 (or better 2:2). This means
that interval 2 now has the same size as an interval that had initially the double
size—the second interval has doubled its size relatively.

9.2 Object-Space Distortion 287

Some other issues that have to be considered are as follows:

1. Reversibility Interestingly enough, it can be noted that the algorithm is
reversible. If a magnification of a factor α is carried out, and immediately
thereafter another magnification of 1/α is carried out, the original image is
reproduced. Even more, the same holds for a series of magnifications. In this
case, the order of the application of the inverse operations does not matter.

2. Recognizability of objects It is useful to define a lower limit on the size that
an object can take on. Otherwise, objects may become too small to be
recognized. This can be implemented quite simply by observing the sizes
of the intervals. Magnification requests need to be fulfilled only up to that
point where the first object that is made smaller to “give room” would fall
below the size limit.

3. Deformations Since the algorithm works independently on each axis for two-
or three-dimensional data, the case may arise that the scaling factor is different
for each dimension. Several strategies are imaginable, which can be applied
here. Using the computed scale factors in each dimension will change the
aspect ratio of the objects. This will lead to deformations of the objects, which
in many cases are not wanted. It is more apt to scale objects uniformly. Hence,
only one scale factor for all dimensions has to be applied to the objects. We
choose the minimum of all factors so that the space request can be fulfilled
in all dimensions.

Finally, it should be pointed out that the introduced algorithm works for data
with any dimensionality. This makes it applicable not only to 1D, 2D, and 3D
geometries but also in the context of visualization of n-dimensional data.

Within an NPR system, object-space distortions are carried out before
rendering begins or, at the latest, during rendering. Hence, the renderer can adjust
the level of detail to the available space. The algorithm, which has a complexity
of O(n) for n objects with a preprocessing time of O(p) for p polygons,2 runs
in real time for all but extremely large models or outdated computers. Although
it is used within a renderer, the algorithm is designed to be used interactively
for exploring an information space of which the geometry is a part. One such
method to explore the geometry of a given model is the creation of explosion

2. Preprocessing is needed to compute the bounding boxes of the objects and thus the interval
bounds.

288 C H A P T E R 9 Distorting Non-Realistic Renditions

diagrams. Used in an interactive context, explosion diagrams help to understand
the internal structure of a model. Aside from this, they are a widely used tool for
illustrating technical devices in manuals and documentations.

9.2.5 An Application to Explosion Diagrams
The method just described can be used to generate explosion diagrams auto-
matically directly from a geometric model. Considering a resize operation, it is
noticeable that actually only the interval sizes are enlarged within the algorithm.
The objects enclosed by the intervals are rendered within the resized intervals,
filling them completely. Besides computing a new size, the preceding algorithm
also moves the interval bounds relative to other intervals. This behavior can be
used to move objects apart in the model and so create explosion diagrams. The
key in the application of the resize operation lies in resizing the intervals but ren-
dering the objects in their original sizes in those cases when an interval has been
enlarged. If an interval gets smaller, then the object is rendered smaller because
there is not enough space available. This together yields objects that are reposi-
tioned with larger distances from each other. To achieve larger distances, more
space should be available. Thus, the limit in display size (D in the algorithm) has
to be loosened. It is even possible to work with unlimited display size (D = ∞),
which will result in pure object displacement since no objects have to be made
smaller to give room.

The prerequisite for the generation of explosion diagrams in this way is
that the model is structured into objects and that it includes a description of
its structure. This structural description is in this case a hierarchy, which we will
call an explosion hierarchy. Parts of the model (objects and subobjects) that are to be
explained together are grouped. Either the resize operations can be limited to an
explosion group or the explosion groups can be treated as one object when scaling
on a higher level in the hierarchy. The first approach keeps the complete model
together except for the objects belonging to the selected group. They are scaled
and moved according to the algorithm. The second approach changes the model
(or a part of it) without breaking the group in its components. Both techniques,
when used in connection with each other in an interactive program, are very
effective tools.

Figure 9.14 shows two examples of explosion diagrams generated with this
approach along with the original renditions. Note in Figure 9.14(d) that several
objects are connected to groups that are not broken up by the algorithm. This is

9.2 Object-Space Distortion 289

(a) (b)

(c) (d)

F I G U R E 9 . 1 4 Examples of explosion diagrams: original rendition of the bones of a human foot
(a), generated explosion diagram by moving all objects (b), original rendition of a space station (c),
generated explosion diagram by exploiting an explosion hierarchy (d).

the case for the left and right part of the space station, which actually consists of
several subparts.

Explosion diagrams in their own right are nothing particularly new. They
have previously been made by hand, and CAD systems have the functionality

290 C H A P T E R 9 Distorting Non-Realistic Renditions

to produce them, too. However, in such CAD systems additional information is
generally included within the models, specifically on how the explosion diagram
is to be generated. Thus, the projections of the objects during the explosion
are precomputed and not as general as the method described here. The object-
space distortion algorithm needs only geometric information to create explosion
diagrams. If additional structural information is available, the resulting images can
profit from this.

Explosion diagrams make the structure of a model comprehensible to a viewer
by explicitly visualizing the parts that together form the model and their spatial
relations. However, distortions themselves need to be explained to the viewer in
many cases. We will see in the next section how changes in the image (which are
introduced via distortions) can be made comprehensible to the viewer.

9.3 Making Distortions Comprehensible
A delicate aspect of carrying out distortions of objects, be they in image space
or in object space, is that viewers may mistake features of the distorted image as
being linear representatives of the underlying models.

In print media, scientific illustrators and others conveying information
through images routinely work with distortions. They rely on their context to
convey such information insofar as it is deemed necessary by the author. For
example, some medical books include comments in figure captions such as “left
ventricle slightly enlarged”; others include such disclaimers once and for all at
the start of the book. More often than not, however, changes in scale go unmen-
tioned because the authors consider that such changes do not adversely affect the
message they are trying to convey with the image.

In interactive systems, changes to scale must be analyzed somewhat differently
than in traditional media. On the one hand, images in interactive media are more
likely to be used outside the context they were designed for. A distorted image may
be used to illustrate a text without the person arranging the illustration ever having
seen the surrounding text. Furthermore, such images may be tuned by application
programs directly rather than by an author or by a user. Users may not want to
rely entirely on the distortion by the system, but may wish to receive information
pertaining to the distortion’s parameterization. These scenarios suggest that it is
crucial that a system carrying out distortions of images be able to convey such
information to users.

9.3 Making Distortions Comprehensible 291

On the other hand, in many interactive situations it is in fact even less
important than in traditional media that the nature of a distortion be conveyed
to a viewer. The reason is that a user’s interaction may in fact have led directly
to the changes in scale. In particular in such cases where the distortion is carried
out continuously and visualized in an animation, observant users already know
that a distortion has been carried out, and exactly what has been changed in an
image. However, as soon as the image leaves the context in which the distortion
was affected, for example, by being reused at a later point in time or by being
passed on to another user, the potential for misinterpretations rises again.

In summary, a goal for visualization is to be able to convey information
about a possible distortion without distracting from the primary information to
be conveyed, and without taking away from it. We will call such information as
pertains to the distortion a viewing cue, and classify such cues by the way in which
they are perceived and the way in which they are integrated into a rendition.

9.3.1 Recognition Axis
One way to analyze how information pertaining to distortion can be conveyed to
viewers is through their mechanisms of perception. The resulting axis is a cultural
axis in that the distinctions between viewing cues are made primarily by which
communities within society might be expected to be familiar with them. This axis
considers human perceptual capabilities and education. They can be classified into
the following four types:

1. Precognitive skills Viewers’ precognitive perceptual abilities can be harnessed
for the purpose of communicating distortion information in a visualization.
For example, it is well known that humans recognize the shape of objects
from their shading using precognitive processing. Hence the challenge is to
find a mapping of the distortion parameters onto such attributes of an image
that can be recognized with precognitive processing. Care must be taken since
there is not an agreed list of which perceptual skills are precognitive and which
ones are not. There are, however, several skills for which arguments can be
made for declaring them as precognitive. In this sense, we will concentrate
on these.

2. Acquired skills Certain skills of recognition are common to practically all
members of society, even though they have to be acquired; humans are
seemingly not born with them. For example, perspective foreshortening and
depth cuing are examples of such skills. Thus, distortion parameters can safely

292 C H A P T E R 9 Distorting Non-Realistic Renditions

be mapped onto such image attributes with little risk that they will not be
ascertained by viewers.

3. Formalisms Some skills for recognizing aspects of images can only be as-
sumed to be known within small groups of users, for example, specialists
within certain subject areas. For example, cartographic grids, orthographic
projections, or the different kinds of lines used in CAD drawings can, in
their generality, only be deciphered by appropriate specialists. Within such
restricted domains, an encoding may be designable for conveying distortion
information.

4. Constructions In some situations, specific image attributes may be designed
for a specific purpose without any a priori knowledge about the users.
These types of viewing cues are created to fit the particular information
representation at hand and are a task to be accomplished by the viewers.
It may not be immediately apparent how to create a useful viewing cue as
a construction. Further, constructed cues need a large amount of cognitive
processing to be understood.

There are a variety of ways in which users may perceive and recognize distortion
information that is to be conveyed to them.

9.3.2 Dominance Axis
Another issue in conveying distortion information pertains to the certainty with
which users will actually perceive it, or conversely, the probability with which
the information may be overlooked by viewers. With this in mind, the following
three methods of placing distortion information differentiate how the visual
cues dominate the viewer’s perception. The distinction between viewing cues
is made primarily by their location with respect to the visualized model, and the
classification can be established as follows:

1. Integrated cues These cues are actually part of a rendition and cannot be
separated from it. For example, if the distortion information is mapped onto
the color scale, the cues cannot be removed without destroying the entire
image. In general, such integrated viewing cues can even be recognized by
viewers without much conscious effort. In other words, an integrated viewing
cue can be quite dominant.

2. Augmented cues These are cues that are added to an otherwise complete
rendition so as to convey the extra information pertaining to the distortion

9.3 Making Distortions Comprehensible 293

Dominance axis

Recognition
axis

Integrated
viewing cues

Augmented
viewing cues

Accompanying
viewing cues

Viewing cues as
constructions

Transparency to
indicate scale

Motion to create
groupings

Difference bitmap
images

Viewing cues as
visual formalisms

Cartographic grids,
dashed lines to indicate
hidden parts

Insets, wireframe
backgrounds

Orthographic
projections

Viewing cues relying
on acquired skills

Perspective foreshort-
ening, depth cuing,
edge enhancement

People in architec-
tural drawings to
indicate scale

Cursor to indicate
point of interest

Viewing cues relying
on precognitive skills

Occlusion, shape
from shading

Spotlights

T A B L E 9 . 2 Examples of viewing cues according to the proposed classification.

parameters. An example is to use labels added to an image to provide
information about specific objects. Another example would be an overlaid
grid that shows how equal spaces get distorted.

3. Accompanying cues These are cues that are presented separately from the
image. For example, they may be encoded in the text that forms the context
of the image. From the users’ perspective, the recognition of an accompany-
ing viewing cue is possible but optional since it can be skipped if this is desired.
It can be examined for clues or easily ignored.

9.3.3 A Space of Viewing Cues
Both dominance and recognition axes form a 2D matrix where viewing cues can
be characterized based on both criteria. Table 9.2 shows this matrix together with
a few examples. The same characterization can also be applied to viewing cues
other than the ones mentioned for the visualization of distortions. Such cues are
indicated by italic type in the given table.

Note that the treatment gives only one possibility of a classification of viewing
cues. On the one hand, more detailed classifications can be established by further
subdividing the categories in Table 9.2. On the other hand, different criteria can
be used to build the categories. In the following, a few examples are given that
follow the classification in Table 9.2.

We will study the distortion of a rendition of a foot in which one part has
been enlarged, resulting in most other parts being made smaller. Figure 9.15

294 C H A P T E R 9 Distorting Non-Realistic Renditions

F I G U R E 9 . 1 5 Example of a foot with the scaling factor mapped onto the degree of transparency
for each object.

shows the foot rendered such that the scaling factor for each object is mapped
onto the transparency factor. Large objects appear with little or no transparency,
whereas objects with a small scaling factor have a high level of transparency. This
is an example of a viewing cue as a construction (recognition axis) implemented
as an integrated cue (dominance axis). Although no exact measurements can be
made with respect to the distortion simply by inspecting the image, the viewer
nonetheless can get a feeling for the distortion and assess it qualitatively.

By contrast, Figure 9.16 shows the distorted foot with a surrounding grid.
The foot in its undistorted state has a uniform grid around it, while the spacing
between the grid lines reflects the amount of distortion. This is an example of an
augmented cue; the method is well known in some areas like cartography, hence
it qualifies as a formalism.

Finally, figure captions can be generated and used to describe the distortion.
The following would be an example:

The face of a man from the ventral side. The skin and bones are rendered
translucent. Pars lacrimalis is slightly enlarged.

This caption names the part of the face that was enlarged (also see Section 10.4.3)
and refers to all other parts as having been reduced in size. Such captions can be
generated automatically by having the system collect the relevant information
during user interaction and using templates to produce the natural language
sentences. It makes use of an acquired skill (since all literate members of society

9.4 Distortions in an Animated Context 295

(a) (b)

F I G U R E 9 . 1 6 A distortion of the foot bones indicated by an augmented grid in the image:
undistorted (a) and distorted (b).

know what a figure caption is and can work with them), which presents an
accompanying cue.

9.4 Distortions in an Animated Context
While in the last sections the main focus was on the actual technique of how to
distort an image or a model, the applications we have shown were limited to still
images. Even though animation is needed to communicate changes in the scene
while the distortion process is going on, we have not discussed the application
of distortion techniques in animations. If we look at cel animation, for example,
animated distortions are a widely used tool to give the animation itself a vital
and interesting character. One example of this has already been mentioned in the
introductory chapter. In every cartoon or animated movie, the ears of Disney’s
Mickey Mouse are almost always drawn from a front view, even if Mickey’s head
posture would normally require the ears to be drawn from the side. Another
example is distorted buildings that are sometimes used in cartoon animations and
that look much bigger and more detailed if seen from the front than from the
side.

We will refer to distortions or deformations that appear in animations and
that depend on the viewer’s current position as viewer-dependent distortions. All

296 C H A P T E R 9 Distorting Non-Realistic Renditions

these methods have in common that the observer’s or viewer’s position is taken
into account when computing the distortion. In an animation, when the viewer’s
position changes over time, differently distorted images will result.

There are basically two different approaches to making distortions viewer
dependent. First, we can include the distortion in the transformations of the
model, and second, the model can be morphed according to previously specified
shapes that are themselves calculated depending on a given viewer position. We
will study both methods in more detail in the following.

9.4.1 Distorted Transformations
As we have seen throughout the book so far, many attempts are made to realize
illustrative effects with the computer. However, changing the drawing style alone
or simulating “natural” drawing tools is only one way of achieving these effects.
Many illustrations are—as already stated—not drawn to scale. These distortions are
not only applied to single objects or regions in still images but also very effectively
used in animations. Depending on the viewer’s position and distance from an
object, distortions are introduced to emphasize the spatial structure of the scene.
So, for example, a row of houses in a street “bends” backwards when moving
along so that it creates the impression that the houses are really high.

To create this kind of distortion, we need better control of the transformation
of the model. Normally, model transformations use static factors to determine
the amount of rotation, scale, or translation. Further, the viewing transformation
is not model dependent but instead depends on the parameters of the synthetic
camera. The distortion is controlled by the distance of the viewing plane from the
viewpoint and by the field of view. These constant factors should be replaced by
control functions that themselves express the dependency of some viewer- or object-
related feature. In order to make the model simple and controllable, the use of
1D control functions is preferable. This yields a technique known as non-linear
transformation (and its derivatives).

For example, a regular translation of a three-dimensional point is expressed
by the following transformation matrix:

M =

1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

 .

9.4 Distortions in an Animated Context 297

The transformed point P ′ is computed by multiplying the original point P with
this matrix: P ′ = PM . The translation vector (tx, ty, tz) is a constant. Given a
transformation M , a point (x, y, z) is tranformed into (x′, y′, z′) = (x, y, z)M .
As in the translation example, M is defined as a constant. We can now make the
function M depend on, for example, the (changing) position of the viewpoint.
This will turn M into a function of three variables M = f (x, y, z). Such functions
are hard to control; hence, usually one axis is selected that determines the change
in the transformation. If we consider, for example, the z-axis, then M turns into
M = f (z). Applied to the translation example, a non-linear translation matrix
would be

M =

1 0 0 0
0 1 0 0
0 0 1 0

fx(zo) fy(zo) fz(zo) 1

 .

Note that the translation vector now is a function that depends on the z-value
of the observer’s position (or viewpoint). In general, this introduces deformations
in the image or model since not all points are transformed the same. The functions
fx, fy, and fz define how the parameters that control the deformation change. An
example is given in Figure 9.17. The distortion effect is yielded by a combination
of two transformations. The first is a non-linear zoom function that shrinks distant
areas more than close areas. It is combined with another non-linear and non-
uniform zoom that stretches the areas near the observer.

The use of non-linear transformations offers a way of introducing distortions
in an image without directly changing the model. Instead, the rendering process is
changed in a way that non-standard transformations are used. Most promising, the
control functions for the distortions depend on the distance from the position of
the viewpoint. The use of viewer-dependent control functions does not change
the underlying geometry. It can be incorporated in the rendering process since it
is actually only a change in the viewing transformation.

In some cases, however, a direct change of the geometry based on the viewer’s
position is desirable. This will introduce distortions in the model and thus in the
final rendition as we will see in the following.

9.4.2 Morphing the Model
When creating cartoon-style animations, the first step is usually to hand-draw a
set of reference drawings that then serve as the basis for the modeling process.

298 C H A P T E R 9 Distorting Non-Realistic Renditions

(a) (b) (c) (d)

F I G U R E 9 . 1 7 Distance-dependent deformations of a house. Images (a) and (c) show undistorted
renditions.

These drawings typically show the object in question from different viewpoints.
However, in most cases, it is not possible to create a 3D model that matches exactly
those drawings from every point of view. This may have several reasons, the most
important of which certainly is that the artist wanted to achieve the best visual
and aesthetical appearance of the object from the respective viewpoint. For the
modeling, this would mean that many different models had to be created and used
depending on the camera’s position. Considering the modeling effort, this is not
acceptable. More promising would be to use one geometric model and distort it
according to the viewer’s position.

In order to use this technique, a 3D geometric model as well as some reference
drawings have to be given. These reference drawings show how the rendered
image will look if viewed from a given position. By modifying the model in
a way that rendering the modified model will yield images that correspond to
the reference drawings, the viewer dependency is turned into an inherent model
feature instead of a feature of the rendering process as described earlier. The model
changes its shape according to the direction it is viewed from.

As already stated, to create such a viewer-dependent model, a conventional
(in our case, polygonal) model of the object is needed as well as a set of reference
drawings. These reference drawings together with the position of the viewer define

9.4 Distortions in an Animated Context 299

1 foreach reference drawing do
2 define camera position and orientation for key viewpoint
3 deform parts of the model to get the key deformation
4 od
5 save key viewpoints and key deformations along with the model

A L G O R I T H M 9 . 2 Extending the modeling process by these steps yields a view-dependent model.

F I G U R E 9 . 1 8 Creating the view-dependent model.

a set of key viewpoints and key deformations that are created in an extension to the
modeling process as described in Algorithm 9.2. Figure 9.18 shows an example
for clarification.

We will now see how the two main steps in the algorithm can be accom-
plished. For defining the key viewpoints, we find a camera position and orien-
tation where the projected image best matches the reference drawing. This is an
interactive process where the user manually adjusts the camera until in his or her
opinion the best fit is reached. Since the reference drawings are usually done by
an artist who does not exactly match the features of the models, automatic align-
ment methods are not very promising. However, they are not necessary since a
more exact match of the model’s projection with the reference drawing will be
achieved in the next step by deforming the model.

Once the key viewpoint is found, in the next step the given 3D model is
deformed in a way that all features (or all important features) exactly match the
reference drawing. In most cases, the main concern here is to match the features in
this given viewing direction so that complete 3D deformations are barely needed.

300 C H A P T E R 9 Distorting Non-Realistic Renditions

1 find the three nearest key viewpoints to the current viewpoint
2 calculate blending weights
3 interpolate key deformations
4 render interpolated model

A L G O R I T H M 9 . 3 Rendering a view-dependent model.

F I G U R E 9 . 1 9 Finding the three closest key viewpoints.

Instead, the deformations are performed in 2D parallel to the image plane by
selecting a set of vertices and dragging them in the right position. In some cases,
an adjustment in the z-direction might be required since earlier deformation
operations might create unwanted features in the polygon mesh.

Now that the view-dependent model is created, the rendering step consists
of an interpolation between the key deformations and a final rendering. This can
be expressed as in Algorithm 9.3.

In the following, we consider only the viewing direction; that is, we do not
differentiate between different distances between the camera position and the
object itself. Further, we assume that the view direction always points toward the
center of the model. We now consider a sphere that encloses the model and that
is intersected by the viewing direction vectors of all key viewpoints. For a given
viewing direction that is to be rendered, the intersection point of this direction
vector with the sphere is calculated, and the three closest key viewpoints are
those whose spherical triangle encloses the calculated intersection point. This
is equivalent to the corresponding planar triangle on the convex hull of sphere
points as can be seen in Figure 9.19.

9.4 Distortions in an Animated Context 301

(a)

(b)

F I G U R E 9 . 2 0 Example frames from an animation of an undistorted model (a) and a view-
dependent model (b). The model is animated over time while the camera rotates around the
character.

The distortion of the model for the given viewpoint can now be computed by
interpolating between these three closest key viewpoints according to the distances
from the intersection points. The blending weights for this interpolation are thus
given by the barycentric coordinates of the intersection point.

Since the morphing operations performed to generate the key deformations
do not alter the topology of the model, that is, the vertex connectivity is the
same for all key deformations, an interpolation between corresponding vertices
with respect to the blending weights yields the deformed model for the given
viewpoint. Each vertex v is the linear interpolation of the respective vertices v1,
v2, and v3 in the three nearest key deformations.

v = w1v1 + w2v2 + w3v3 (9.3)

This interpolation scheme is certainly the most simple one, but it can be gener-
alized. However, this scheme only interpolates between vertex positions without
taking into account any possible changes that appear in a region of many vertices.
There is a compromise between the quality of the resulting mesh and allowable
deformations that needs to be observed. Figure 9.20 shows a comparison between

302 C H A P T E R 9 Distorting Non-Realistic Renditions

an undistorted model and a view-dependent model in an animation. Compare,
especially, the bending of the arms and legs of the character.

In an animation, this technique can be used without any changes. No changes
are necessary in the distortion algorithm or in the rendering pipeline. This has
the big advantage that properly distorted images can be created for every possible
viewpoint. Considering this more thoroughly yields the observation that the key
viewpoints and key deformations have to be specified and computed for every
frame. This is a very tedious task and enlarges the risk for introducing errors in
the animation model. In this case, a technique borrowed from standard computer
animation can be used. Along with the undistorted model, key viewpoints and
key deformations are specified only for a small number of frames (points in time
in the animation). All deformations for the same viewpoint are interpolated over
time such that finally the technique described earlier can be applied for the specific
frame.

To summarize, the two techniques to introduce distortions in animations
extend the possibilities of computer graphics and animation. If only traditional
animation techniques are applied (regardless of the rendering method), part of
the aesthetic appeal of hand-drawn animation is lost. Many of the astonishing
effects that are well known from cartoon animations are based on physically incor-
rect behavior (especially deformations) of the animated objects. The introduced
algorithms open up a new area to create interesting and aesthetically pleasing
computer-generated animations.

Exercises
9.1 Given a magnification factor m, we wish to determine the height hf to

which a focus point must be raised to achieve this magnification. Show
that

hf = db − db

m
.

Show also that, conversely, given an hf , m = db/(db − hf) = db/ds.

9.2 Study how the image-space distortion presented in this chapter can be
integrated into a rendering system based on raytracing. Assume that the
geometric model remains to scale, but that the “rays” meeting the eye
are no longer straight but curved as they shoot into the geometric model.

Exercises 303

9.3 Does the usage of viewer-aligned focus have any effect on the mag-
nification? If so, how can the magnification be computed in this case,
and by how much must the height hf be changed to achieve the same
magnification as in the basic method?

9.4 Design and implement a graphical user interface for the image-space
distortion algorithms.

9.5 Extend your implementation of the user interface to the image-space
distortion algorithms to incorporate a standard renderer. Achieve the
effect of having the renderer include more or other details in the focus
region.

9.6 Integrate image-space distortion into a stipple rendering system (recall
Chapter 2). Investigate alternative ways in which the distortion can or
should affect the density of stipples in the image.

9.7 The approach to image-space distortion emphasizes regions of magnifi-
cation by a factor greater than one. Suggest ways in which a magnification
by a factor of less than one can be handled within the framework. This
means that regions should be made smaller.

9.8 Design a dropoff function that guarantees that the final image will have
exactly the same size and shape as the original. Note that as the algorithm
was presented, this is not the case (see Figure 9.4 where the grid is slightly
warped around the edges).

9.9 Discuss the use of the 2D method for enlarging stroke-based images (recall
Chapter 5) within an image-space distortion algorithm.

9.10 Implement the object-space distortion algorithm and apply it to geomet-
ric models before rendering them. Compare the images with images that
have been created by applying image-space distortions to renditions of
the same model.

9.11 Show that the resize operation in the object-space distortion algorithm
is reversible and that a series of operations can be reversed in any order.

9.12 How might the object-space distortion algorithm be applied to scanned
images in 2D?

304 C H A P T E R 9 Distorting Non-Realistic Renditions

9.13 Implement different non-linear transformations that depend on the
viewer’s position as well as the distance and apply them to simple models.
Describe how each distortion works. Create an animation and compare
the effects of different transformations.

9.14 Build models corresponding to Figures 9.17(a) and (c). Determine the
exact distortion function to produce Figures 9.17(b) and (d).

Bibliographic Notes
The method of image-space distortion presented in this chapter was developed
by Carpendale (1999; Carpendale et al., 1995). It was Carpendale’s idea to effect
a 2D distortion by warping the object plane in the third dimension. Her method
subsumes a variety of previous methods of carrying out such 2D distortions, like
the methods of Sarkar and Brown (1992) and Keahey and Robertson (1996).

The algorithm for distortion in object space was developed by Rüger and
Raab (1996) and is described in more detail in Raab’s Ph.D. thesis (1998).
Its origins are in detail-and-context visualization techniques that themselves
originate in an article by Furnas (1986) on fisheye views. This work was extended
by Shaffer, Bartram, Dill, and others (Schaffer et al., 1993; Schaffer et al., 1996;
Bartram et al., 1995; Dill et al., 1994) to a 2D visualization and navigation method
for large graphs.

The topic of making distortions comprehensible was studied independently
by Carpendale et al. (1997) and Strothotte et al. (1998). The former developed
the recognition axis described in this chapter; the latter, the dominance axis. The
use of figure captions as viewing cues was studied by Hartmann et al. (1998).

Distortions in an animated context were investigated by Rademacher who
also introduced the viewer-dependent geometry (Rademacher, 1999). The appli-
cation of non-linear transformations to incorporate viewer-dependent distortions
in images was proposed by Martı́n, Garcı́a, and Torres (2000). The technique
relies on work done by Alan Barr on global and local deformation of solid prim-
itives (1984).

10 A P P L I C A T I O N S F O R N P R

Throughout the book, the methods that have been introduced have also been
illustrated directly using several different application domains. This has served to
demonstrate the methods and at the same time suggest areas in which they are
useful. This chapter now expands on selected applications and studies NPR in
them per se.

We will start with animation, an area of application that is slowly emerging
to a separate field of research in NPR. Indeed, animation data can be visualized
either as moving images using NPR or even as still images with some additional
markings to indicate movement. Next, we move to the area of visualization in
architecture where handmade sketches are still being used extensively. Within this
section, we also treat the problem of rendering trees and other plants. We then
turn to two areas of application that take NPR further afield. First, we discuss
illustrations in medical textbooks, where traditionally illustrations drawn by hand
are used. The challange here is to coordinate images and the text that refers to
them. Finally, we discuss a specific kind of graphical output in haptic form that
is used by blind people.

10.1 Non-Photorealistic Animation
The word animation stems from the Latin word animare, which means to fill with
life. In this sense, non-photorealistic animation makes use of aspects of NPR to
bring still images to life, or non-photorealistic renditions themselves are changed

305

306 C H A P T E R 1 0 Applications for NPR

(a) (b)

F I G U R E 1 0 . 1 Using slight perturbations in the starting and endpoints of the strokes in this image
yields to induced motion. In an animation, it looks like the car is actually moving down the street
even though the geometric model does not change: start frame of the animation (a), intermediate
frame of the animation (b).

over time to create the illusion of movement. In the following, examples of each
will be given.

The major problem in this type of animation is that many algorithms for
NPR to generate single frames have a non-deterministic element. For example,
the “wiggliness” of an individual line within a line drawing is determined by a
random number generator. When the random numbers are applied to each frame
separately, the drawing elements like strokes jump around yielding a, presumably
unwanted, disturbance in the image. Before going on, it is useful to note, however,
that the lack of frame coherence can be harnessed to achieve special effects. For
example, when the individual strokes of Figure 10.1 are allowed to vary even just
slightly from frame to frame, motion is induced into the image. Watching this
animation gives the impression that the car is actually moving down the street
even though in the geometric model all objects (including the camera) remain
stationary.

Another phenomenon to watch out for when generating non-photorealistic
animations is the so-called shower-door effect. Imagine watching a person move
behind a shower door that itself is filled with a pattern of squares. It quickly
becomes obvious that it is not the person who is drawn, rather the door is; the
latter is simply modulated in its gray level to account for the moving person. In
the same way, when strokes are applied in screen coordinates to simulate a figure
moving in model coordinates, an animation will look like the (static) screen has
been textured rather than the (moving) object.

10.1 Non-Photorealistic Animation 307

F I G U R E 1 0 . 2 Speedlines can show the direction of movement. The three images are identical
except for the speedlines.

F I G U R E 1 0 . 3 Alternative visualizations of a given movement.

10.1.1 Representing Motion in Stil l Images
Although the word animation is generally associated with moving images, it is
noteworthy that still images can also convey movement. A classical example of this
phenomenon can be found in cartoons where various techniques are applied to
indicate movement. Figure 10.2 shows an example of three images that differ only
in the direction in which so-called speedlines are drawn. These images illustrate
the need for indicating the direction of movement.

Indeed, given a direction of movement, a number of techniques are used in
comics to express movement in a still image, as can be seen in Figure 10.3. Note
that such techniques can be used as a single stylistic element or that they can be
combined.

308 C H A P T E R 1 0 Applications for NPR

Maximal
vertex

Minimal
vertex

Direction of
movement

Rendered object

Selected vertices

x

y

F I G U R E 1 0 . 4 Geometric construction for computing the positions of speedlines.

Methods have been devised to compute automatically such visualizations of
movement. In particular, it is possible to compute the positions of speedlines given
a geometric model and the direction of movement of an individual object. Con-
sider a three-dimensional geometric object moving in the positive x-direction. An
algorithm must compute positions on the geometric object from which speedlines
will emanate. The computation is done for a single frame in two dimensions. The
three-dimensional coordinates of the points from which the speedlines emanate
are determined by referring to the geometric model. This then enables the com-
putation of speedlines for each frame in which they are needed, taking hidden
line removal into account also for the speedlines. The variable controlled by the
user is the number of speedlines to be used to visualize the movement.

Finally, an algorithm is needed to compute the actual positions from which
speedlines are to emanate. For a movement in the positive x-direction, the
extremal positions in the y-direction are used. This yields the positions of two
speedlines. Now the y-extent of the image is divided up into n strips of like
height, and one speedline placed near the middle of each strip on each trailing
edge. In particular, for each strip, each trailing edge of the object is analyzed and
the vertices are selected that lie closest to the middle of the strip. The situation is
illustrated in Figure 10.4, whereas the actual procedure to compute the speedlines
can be found in Algorithm 10.1. Examples are shown in Figure 10.5.

10.1 Non-Photorealistic Animation 309

1 foreach moving object o in scene do
2 compute candidate points
3 if number of candidate points < desired number of speedlines
4 then
5 foreach stripe without candidate point do
6 interpolate candidate point
7 od
8 fi
9 foreach candidate point c do

10 foreach animation frame do
11 cp := projection of c
12 add cp to the path of the speedline
13 od
14 remove hidden parts from the computed path
15 draw path with a certain style
16 od
17 od

A L G O R I T H M 1 0 . 1 Computing speedlines from a given animation.

(a) (b)

(c) (d)

F I G U R E 1 0 . 5 The appearance of the speedlines can be varied using line styles: to follow the
algorithm (a), to make the speedlines fade away (b), to break up the speedlines to provide more
variation (c), and to use more and longer speedlines (d).

310 C H A P T E R 1 0 Applications for NPR

10.1.2 Non-Photorealistic Animation Based on Particle Systems
Perhaps the most successful method of non-photorealistic animation is based on
particle systems. In this approach, many points in the three-dimensional space
of the geometric model are identified as positions of so-called particles. These
particles serve as placeholders for drawing artifacts, such as strokes, marks, or
dots. In the following, this approach will be demonstrated in an algorithm that
simulates oil paintings on canvas. As opposed to real oil paintings, however, the
algorithm that is presented enables walk-throughs of the underlying geometric
model while maintaining frame coherence.

The algorithm is an elegant composition involving the idea behind the paint-
by-numbers system (as described in Chapter 5) along with G-buffers (recall
Chapter 6). The algorithm can be divided into three steps as follows:

1. Generate particles Any one of the many methods is used to populate the
surface of the object to be rendered with particles. A simple method is first
to triangulate the surface and compute its area S. Next, for each triangle
t, compute its surface area s(t) and derive that fraction f (t) covered by t in
relation to the overall area S, that is,

f (t) = s(t)/S.

Now if in total p particles are to be distributed over the entire surface, place
f (t)p of them randomly over t. Along with each particle, store additional
parameters of the surface under it, like its orientation (normal vector). Each
particle will ultimately contribute one stroke to the final image emanating
from the position of the particle.

2. Specify and apply stroke attibutes For each frame in the animation, several
G-buffers are generated from which stroke parameters are then derived.
The parameters needed are in particular its color, size, and orientation. For
example, the orientation of the stroke can be taken from the corresponding
entry in the n-buffer (containing the normal vector coordinates). The size of
the stroke can be computed by a combination of a standard size in x- and y-
directions, modified by a value computed from the z-buffer (containing depth
values). The color can be computed from a G-buffer for colors (for example,
a photorealistically rendered image) by computing the average color under
the stroke. Depending on the kind of stroke to be used, other parameters may
be needed, too, and computed similarly from these or other G-buffers.

10.2 Architectural Illustrations 311

3. Add randomness, render frames, and animate parameters Given that the particle
system is specified once and for all for the geometric model, and that the
previous step of the algorithm is deterministic, frame coherence is achieved
when repeating these steps for an animation. However, the resultant images
will have a mechanical look, for example, because many strokes will be
alligned perfectly. To alleviate this problem, parameters like the orientation
of the stroke are perturbed slightly from frame to frame. For example, the
user may specify that he or she is willing to have brush orientations fall within
a range of −10 to +20 degrees from the orientation given in the n-buffer.
To achieve coherence, a seed is associated with each particle so that the same
random perturbations will be used for a particular particle throughout the
animation and to ensure that the value changes only slightly from iteration
to iteration.

Notice that it can happen that not all areas of the image are actually
covered by at least one stroke. Hence, it is advisable to cover each area of the
image with a base color before actually drawing the strokes. A different color
is advisable for the background, ambient light, highlights, and shadows. This
corresponds to a technique common in handmade paintings and yields good
results.

Finally, all strokes are drawn in the order from back to front using the
so-called painter’s algorithm.

Note that even hidden particles must be rendered in practice. This is because
while a particle itself may be hidden, the stroke that emanates from it may not be
entirely hidden. This makes the algorithm run more slowly, but is unavoidable.

In general, the techniques for stroke-based illustrations, which have been de-
scribed in Chapter 5, are well suited for an application in animations that are
based on particle systems. An example of a sequence of images generated with
the preceding algorithm is shown in Figure 10.6.

10.2 Architectural Il lustrations
Perhaps one of the most important applications for NPR is in architecture. Indeed,
this area was the one that provided the primary motivation for the early work in
the area of NPR. The reason is that architects generally prefer to use handmade
sketches to show the results of their work to their clients rather than polished,
photolike images. Intuitively, it would appear that the motivation for this is

312 C H A P T E R 1 0 Applications for NPR

F I G U R E 1 0 . 6 Four frames of a painterly animation.

that sketches are a good way of conveying to clients that the results represent
“work in progress” rather than finished products. In this sense, NPR renditions
accompany other developments in computer-aided architectural design (CAAD)
since there are photorealistic rendering methods to show the building in its future
environment or even virtual reality setups to “visit” the building before it is
finished.

10.2.1 An Empirical Study
The area of NPR is one in which very little empirical work has been carried out.
This section will provide a detailed account of what was probably the first such
study. It was carried out in 1995 with architects in Germany. This is important
to keep in mind because subjects’ assessment of images is certainly a function of
time and cultural conditioning. At the time of this writing (2001), some rendering
software packages already contain a certain amount of functionality with respect
to NPR. Its availability no doubt will change the attitude of professionals working
with it over time.

One of the goals of the study was to determine in which situations an architect
would use the various kinds of images. Since an architect’s goal is in general to
attract attention to the image, the following hypothesis was put forward:

10.2 Architectural Illustrations 313

(a) (b) (c)

F I G U R E 1 0 . 7 Three variants of rendering a design: CAD plot (a), shaded image (b), rendered
sketch (c).

H1: For presentations of early drafts of architectural designs, sketches are preferred to
CAD plots and shaded images.

It was also assumed that there is a marked difference in the way the three images
in Figure 10.7 affect their viewers. To structure the hypothesis, the possible effects
of an image are divided into three groups:

◆ a cognitive group, pertaining to aspects like the understandability, clarity, or
spatiality of the image,

◆ an affective group, to assess emotional aspects, like how interesting or imagi-
native an image seems, and

◆ a motivational group, measuring to what extent users are encouraged to
participate in the design process.

The following was thus hypothesized:

H2: Sketches perform better in the communication of affective and motivational aspects,
while exact plots and shaded images perform better in cognitive aspects.

Finally, it was expected that the exact plot would arouse more interest in the
actual design of the object being visualized. This leads to the following hypothesis:

H3: Sketches stimulate viewers more than shaded images to discuss and actively
participate in design development.

To test these hypotheses, an experiment was carried out in which a ques-
tionnaire was given to approximately 150 architects and architectural students in
several cities in Germany. Of these, 54 (36%) answered the questions and returned
it. Of those returning it, 67% said they regularly use CAD or CAAD software.

314 C H A P T E R 1 0 Applications for NPR

Subjects were shown three different images, each portraying the same object
(see Figure 10.7). Subjects were then asked various questions. First, they should
indicate which image(s) they would want to use to show a first draft to a client
and which image they would use for a final presentation. They were also asked
to provide a verbal justification of their choice. Next, subjects were asked about
a number of (possible) effects of the images, classified according to the scheme
mentioned. These were to be rated on a scale of 5 (“strongly disagree”) to 1
(“strongly agree”). To test the third hypothesis, subjects were asked to say how
they would make changes to the design being visualized. They were given four
options to choose from:

1. using a verbal description,

2. gesturing or by pointing to the image,

3. drawing on another sheet of paper, or

4. drawing directly onto the image.

The results from the questionnaires were analyzed with regard to the following
three issues:

1. Use of images during the design process Of those subjects using CAD, 53%
chose the sketch as a suitable way to present a first draft to a client. This
is significantly more than those suggesting the shaded image (22%), or the
exact plot, which was chosen by 33% of the subjects (p < 0.05). Those
preferring the sketch generally argued that it best shows the preliminary
character of the draft and does not focus on details that at this stage are
not yet fixed. Many of those who chose the shaded image commented that
they appreciated the ability to present the spatial concept of the design.
Considering the development of NPR, there are now techniques available
to put more emphasis on the spatial structure of a scene in the rendition
(see Chapters 5, 6, and 8) so that a new study would confirm the obtained
results.

By contrast, only 8% chose the sketch to present a final result to a client,
which is significantly less than those choosing the exact plot (50%) or the
shaded image (42%) (p < 0.05). Subjects who chose the exact plot or the
shaded image often argued that the selection committee or the client “wants

10.2 Architectural Illustrations 315

to see exact renditions,” while those few who chose the sketch commented
on its originality and the desire to stand out against competitors.

2. Impression made by the images Subjects were asked to assess the impression
made by the three images in more detail. The results show that sketches
were found significantly more interesting, lively, imaginative, creative, and
individual, and less artificial than both the other media (affective group).
Furthermore, they were found to stimulate significantly more discussions
and active changes, in which shaded images performed worst. These results
correspond to the observations made in early NPR projects, for instance, the
freehand plotting as described in Section 3.1.

In sharp contrast to these affective criteria, the CAD plot performed
significantly better in the cognitive group, being more comprehensible, more
recognizable, and clearer than both the other media. The shaded image was
found to support spatial concepts better, but differences were not significant.

3. Expressing changes in the design The observations so far were concerned with
assessing the impression architectural presentations make on viewers, but it is
an important goal of the communication between architects and their clients
to explain ideas mutually and to develop them further. A major criterion in
the assessment of the effectiveness of a presentation medium is its ability to
provoke the active participation of the partners within a discussion.

The results illustrate that in both the sketch and the shaded image,
the methods 1, 2, and 3 were used almost equally often (the differences
are not significant). However, drawing directly into the image was chosen
significantly more often in sketches than in shaded images (69% versus 33%)
(p < 0.05).

As far as the interpretation of the results is concerned, evidence has been gathered
in support of all three of the hypotheses by the experiments carried out. To explain
the results, let us look at them from a more theoretical point of view. The cognitive
effort required by viewers would be expected to be greater for sketches than for
the other two kinds of images tested. This is because sketches are more irregular
in their form, which means that higher normalization demands are placed on a
viewer deciphering an image. By this reasoning, these normalization demands and
thus also the cognitive effort to understand the image is higher for sketches than
CAD plots or shaded images. Normalization, on the other hand, is also linked to
interest and creativity, resulting in a high level of motivation.

316 C H A P T E R 1 0 Applications for NPR

Going back now to the hypothesis H2, the less favorable score of the sketch
in the cognitive group can be explained because of the difficulty involved in
deciphering the irregular forms; the resultant ambiguities are then responsible for
the better scores in the affective and hence also motivational groups.

This reasoning also explains the results of H1. In a first draft, architects reported
they want to arouse interest in their designs, which according to our reasoning
is higher with sketches. For a final draft, a good score in the cognitive group is
more important; hence, the shaded images and CAD plots are preferred.

To explain H3, a step to the theoretic background is necessary. Gom-
brich (Gombrich, 1977) speaks of the process of projection of our experience
and expectations onto the phenomena seen. The empty spaces in the CAD plots
and sketches can act as the required “projection screen.” According to this argu-
ment, sketches and CAD plots provide more projection space than shaded images
(because in these practically the whole area of the image is filled, and hence can-
not act quite as well as a projection space). Sketches also provide more projection
space than CAD plots because in the latter there is no room for interpretation of
where and how lines (edges in the object visualized) meet. The larger projection
space can thus explain the greater willingness of viewers of sketches to enter into
a discussion about the design.

It is still unclear how far the results can be generalized to explain other
observations. Furthermore, because of the rapid development in the field of NPR,
more and different rendering methods are now becoming available. A new study
of this kind should then include these methods to get more differentiated results
and to add even more evidence for the application of NPR techniques in the field
of architectural design.

10.2.2 Expressing Uncertainty in Designs
The use of NPR methods for architectural design has even more advantages than
those being described in the last section. They are connected with the visual-
ization of uncertainty in designs and with the visualization of design decisions.
Architectural sketches are often drawn with relatively little detail. This is typically
for one of the following three reasons:

1. The architect may not have worked out more details yet. A photorealistic rendition
in this case would raise false assumptions at the client’s side. Details being

10.2 Architectural Illustrations 317

shown in such renditions may stem from calculations within the rendering
system (textures, and so on) and not from actual design decisions.

2. The architect has more details but wants to focus on certain aspects of the design. Here
an abstraction process has to be carried out that emphasizes only those parts
needed in the current project stage. Showing more would result in unwanted
discussions about areas that are not relevant at the moment.

3. The architect wants to present several design variants. The client should then de-
cide which of these variants would best fit his or her intentions. Nevertheless,
all presented variants are to be visualized in the context of the whole building.
A visualization might be helpful with respect to distinguishing these variants
from those parts that were already discussed and where an agreement already
exists.

Closely related to the third point is another area, namely, the visualization of
reconstructions of ancient architecture. Here, also, photorealistically rendered
images are rarely used. Instead, the archaeologists prefer hand-drawn illustrations
to convey information over and above the pure geometry. This information
pertains to the following:

1. the certainty with which details are known Archaeological reconstructions build
on a (probably very small) set of findings and are to some extent speculative.
A visualization of archaeological findings and of reconstructions derived
from them should take into account the uncertainty of a reconstruction and
communicate this uncertainty to the viewer.

2. the reasoning process during an archaeological reconstruction Design decisions for
an archaeological reconstruction are based on different types of reasoning.
Examples are artifacts that actually have been found, physical constraints
that arise from structural properties of buildings, features of the architectural
period in question, analogies to other buildings, as well as deductions. These
different types of reasoning can also be visualized in order to make clear where
the presented information comes from.

In summary, uncertainty in design should be visualized and can, in general,
arise for two reasons:

◆ imprecision, which means that the existence of certain features can safely be
assumed but not their dimensions or their actual details, or

318 C H A P T E R 1 0 Applications for NPR

◆ incompleteness, which means that certain information is not available.

NPR techniques are especially valuable for such tasks since many stylistic varia-
tions are available to render a given model. In this sense, the problem that has
to be solved resembles the general approach to visualization. Given a (three-
dimensional) geometric model and additional values that represent the level of
uncertainty for parts of this model, a mapping of this additional data onto geo-
metric or stylistic properties of the model is needed. Finally, a rendering process
has to be carried out to create the image.

There are many possible ways to map levels of uncertainty to stylistic variations
of a rendition. The methods and tools introduced throughout this book build a
valuable repository that can be used here. Uncertainty (that is, imprecision or
incompleteness) can, for example, be visualized by varying the

◆ sketchiness of lines in a line drawing: the more irregular the lines are, the more
uncertain the shown part of the geometry,

◆ saturation of lines or textures: the less certain the visualized information is, the
less saturated the image,

◆ texture: different levels of uncertainty are visualized with different textures,
which implies discrete levels of uncertainty, or

◆ style of the rendition: different levels of uncertainty are visualized by using
different rendering styles.

To use one of these methods, the geometric model has to be enriched by adding
information pertaining to the desired stylistic changes. The encoding of this
information can be either direct, by adding rendering-specific values (like line
styles or textures) to the respective objects, or indirect, by adding numerical values
that are then used to select or compute rendering-specific values from a database
of styles. One example of such an indirect mapping is given in Section 10.4 for a
different area of application. The theoretical principles are the same for both cases
so that we show a case study here and refer you to the latter section for details of
the implementation.

We will illustrate the visualization of uncertainty in archaeological illus-
trations by using as an example the virtual reconstruction of a building from
the Middle Ages. Excavations performed around 1960 in Magdeburg, Germany
have revealed the remains of a building that was said to be built by Otto the

10.2 Architectural Illustrations 319

F I G U R E 1 0 . 8 Photorealistic rendition of the virtual reconstruction of a building of Otto the Great
in Magdeburg (around 960–1207 a.d.)

Great, the first German emperor (912–973 a.d.). The findings were limited
to parts of the foundations of the building, so a virtual reconstruction is very
speculative. In cooperation with archaeologists, architects, and (art) historians, a
model was created that represents the most probable variant of how the building
would have looked. A photorealistic rendition of this model is shown in Fig-
ure 10.8.

This photorealistic interpretation leaves no room for speculation, even more,
there is no evidence in the image that many of the properties of the building have
been deduced from knowledge about buildings from the same time period or
simply from logical reasonings. This information is included in the visualizations
shown in Figures 10.9(a) and (b).

The connection between the actual findings and the “virtuality” of the
reconstruction can even be made more explicit by combining photographs from
the excavation site with NPR visualizations, as can be seen in Figure 10.10.

320 C H A P T E R 1 0 Applications for NPR

(a) (b)

F I G U R E 1 0 . 9 Visualization of uncertainties and drawn deductions: uncertainty rises with growing
distance from ground; in addition, the back part of the building could not be proved to look
like this from the excavation findings (a); the windows are likely to be in the same style as other
windows from the same stylistic period—Romanesque (b).

(a) (b)

F I G U R E 1 0 . 1 0 Combining photographs and NPR visualizations: the finding of the basis of a
staircase leads to the deduction of how this staircase might have looked (a); combining an NPR
visualization and a photograph of the excavation site clarifies size relations (b).

10.3 Rendering Plants 321

10.3 Rendering Plants
Plants—in particular, trees—are objects that are often needed in rendered scenes.
On the one hand, they may be necessary because the viewers know of their
existence. On the other hand, they can be used to convey size relationships to
viewers who have a general idea of how big trees are and can thus judge the sizes
of other objects with respect to them. For example, a viewer will have a general
idea of the size of a fully grown sugar maple; an object lying beneath such a tree
would be deemed to be much smaller.

The first step to create a tree illustration is to build a model of the tree using
a conventional modeling system.1 This will generally yield either a structured
collection of polygons or some other geometric primitives like spheres and
cylinders. Next, the model must be separated into two parts:

1. the trunk, branches, and twigs If the model is too complex or large, it can
be simplified by storing only first and second order branches. Higher order
branches can be removed since they are generally hidden anyway.

2. the leaves Each leaf is stored as a particle with a position and a normal vector.
Some models have many more leaves (for example, several hundred thousand
leaves) than are really necessary for producing sketches of trees. This number
can be reduced by retaining only one leaf per twig. If there are still too many
leaves, one leaf can be retained at each of the highest order twigs.

Once the model has been created in this manner, each of the two parts is rendered
as described in the following section.

10.3.1 Rendering the Trunk, Branches, and Twigs
It can be assumed that the surface of that part of the model describing the trunk,
the branches, and the twigs is more or less smooth. This enables the application
of any algorithm for computing the silhouette of a geometric model. Perhaps
the simplest method is in two dimensions: a G-buffer (with z-values, or object
IDs) is computed and those pixels retained that separate the background from the
foreground.

1. For example, currently the xfrog system from Greenworks Organic Software
(www.greenworks.de) can be used.

322 C H A P T E R 1 0 Applications for NPR

(a) (b)

F I G U R E 1 0 . 1 1 Renditions of a tree: a tree rendered photorealistically (a), rendition of the trunk
of (a) using silhouette lines and cross-hatching (b).

Next, this part of the model, that is, the trunk and the branches, must be
shaded. To shade the model using conventional gray levels, any one of the methods
described in the earlier chapters can be used (see Figure 10.11).

10.3.2 Rendering the Foliage
The foliage of a tree differs from all smooth surfaces and must therefore be handled
separately. Several thousand individual leaves must be combined visually into a
single shape or a set of strokes. A method of solving this problem that comes to
mind immediately is to define a texture for the foliage and to place it on the leaves
of the model. This is a fast and simple method, but the images do not end up
looking like drawings.

Instead, each leaf is represented by a geometric primitive (usually a two-
dimensional disc); its visualization is computed on the basis of the silhouette of
the primitive, its position is determined by the position of the leaf in the 3D
model, and its size is controlled by the user. However, not the entire outline of
every primitive is actually drawn, but rather a selection process takes place.

The strategy is now to consult an appropriate G-buffer on a pixel-by-pixel
basis to determine which parts of the silhouette should be drawn in the visu-

10.3 Rendering Plants 323

alization. Let Z[x, y] be the z-buffer of the image rendered with conventional
photorealistic methods. Let P be the set of pixels on the silhouette of each of
the primitives representing leaves. For every p in P appearing at position (i, j) in
the silhouette image, a pixel is drawn in position (i, j) if and only if the maxi-
mal difference in the z-value in the neighborhood of (i, j) is greater than a given
threshold. Although this could, in principle, be done analytically, using the appro-
priate G-buffer is more efficient. Indeed, this method works at interactive rates.
For printing purposes, a vectorization is performed to obtain stroke paths.

For the computation of the threshold value, it is convenient to express the
depth of a point as a value z computed as in Equation (10.1).

z =
z1z0(d1−d0)

z1−z0

d − (z1+z0)(d1−d0)

2(z1−z0)
− (d1+d0)

2

(10.1)

Here, d0 and d1 are minimal and maximal values represented in the depth buffer,
and z0 and z1 are the corresponding depth values of the near and far clipping plane
in the camera model. Figure 10.12 shows two examples of varying disc size and
depth thresholds. Note how small discs and a low threshold in Figure 10.12(a)

(a) (b)

F I G U R E 1 0 . 1 2 The tree of Figure 10.11 rendered with different disc sizes for the leaves and
different depth thresholds. For (a), the disc size is 0.15 and the depth threshold is set to 1,000. For
(b), these values are 0.7 and 2,000. In both images, d0 = 0 and d1 = 65, 535, z0 = 1 and z1 = 11.

324 C H A P T E R 1 0 Applications for NPR

(a) (b)

F I G U R E 1 0 . 1 3 The tree of Figure 10.12 rendered at three different distances to the viewer. In
(a), the primitive size and threshold is held constant, and visual abstraction is already achieved
automatically. This effect is enhanced in (b), where the primitive size is enlarged up to the factor
two for the tree at the back.

yields a high level of detail, whereas if these values are enlarged, as in Figure
10.12(b), the resultant image is more abstract.

Interesting effects can be achieved by combining data sources. Figure 10.13(a)
shows the difference in rendition as a tree is duplicated further back in the scene
without changing the threshold or the disc size. In Figure 10.13(b), the disc size
was changed gradually by a factor of two from front to back; notice how the shape
of the tree at the back is more abstract in this case.

Some more examples of renditions of trees generated with the methods
described here are shown in Figure 10.14.

10.4 Il lustrating Medical and Technical Texts
Another highly important motivation for working on NPR pertains to medical
illustrations. Recall the comments in Chapter 1 where it was noted that handmade
illustrations dominate in many medical books. In digital books, such illustrations
will ultimately have to be rendered from three-dimensional geometric models so
as to provide the “added value” users expect from images on computer screens.
This added value pertains to the possibility to interact with the image, to cut away
parts, to have important parts labeled, and other such operations.

When examining such texts, it quickly becomes evident that the handmade
illustrations are intimately related to the surrounding text. Such texts and illustra-

10.4 Illustrating Medical and Technical Texts 325

F I G U R E 1 0 . 1 4 More samples of trees generated with the methods described. The examples use
different primitives and vary their sizes as well as the threshold value.

tions are “formulated” in unison with one another; that is, the illustration makes
those parts of the object in question visible and shows them in detail, which the
text describes. Sometimes labels are used to point out objects that are important
to understand the text. Finally, figure captions capture the essence of the image.

326 C H A P T E R 1 0 Applications for NPR

10.4.1 Generating Illustrations from Texts
We will now show how texts, labeled illustrations, and figure captions can be
interrelated algorithmically. First consider the following problem: Given a (medical)
text, produce an illustration that can accompany the text.It is safe to assume the following
conditions:

1. uniformity of terminology in the text For a systematic use of a given text, it is
imperative that the subject-specific terminology of the area of application is
uniform and used consistently. In the medical domain, this is generally the
case; parts of the body are generally denoted by their Latin names. If these
are not used exclusively, a thesaurus can be used to map common names onto
the Latin ones.

2. structured three-dimensional models An application system for producing il-
lustrations to match a given text must have three-dimensional models from
which they can be generated. Moreover, the models must be structured into
the smallest units that are (to be) named in the text. Finally, the scientific
(Latin) names of the geometric objects must be encoded within the model.

A method for generating an illustration for a given (medical) text segment S
and a given geometric model G is given more formally in Algorithm 10.2. The
main steps to be performed are the following:

1. Match words Isolate all words in S and compare them to the labels on the
parts of G. Use a thesaurus if necessary. Let T be the intersection of the two
sets of words. T now contains a list of all words that appear in the text and
that are present as objects in the geometric model.

2. Compute importance of words in T Just because a word is mentioned in a text
does not mean that the corresponding object must be illustrated. Hence the
text should be analyzed so as to assess the importance of the words. (For
example, if an object is mentioned within parentheses, it is probably not as
important as one mentioned within a chapter heading.)

3. Compute illustration An illustration can now be generated on the basis of the
importance values. An attempt must be made to make all objects in T visible
if possible; in any case, visible objects in T are to be emphasized by using
selected NPR techniques, like drawing them with thicker lines than other
objects. Indeed, objects that are deemed to be more important can be made
somewhat larger using the distortion algorithms presented in this book.

10.4 Illustrating Medical and Technical Texts 327

1 W = all words in S
2 L = all labels in G
3 T = W ∩ L
4 foreach t ∈ T do
5 compute the degree of interest DOI(t)
6 assign this degree of interest to the respective object in G
7 od
8 foreach o ∈ G do
9 determine the drawing style depending on DOI(o)

10 determine drawing parameters depending on attributes of o
11 draw o
12 od

A L G O R I T H M 1 0 . 2 Creating an illustration for a given text segment S.

The degree of interest for an object (DOI(o)) can be determined in several
ways. Based on the position in the text, there is an “a priori importance” for
each object name. A name appearing in a chapter or section heading is then more
important than the same name appearing in the text body or in an additional
explanation in parentheses. This a priori importance is independent from the
user’s interaction. However, to compute the DOI value, user interaction has to
be taken into account. Thus, different kinds of interactions change the importance
value in different ways. A direct manipulation of the respective name should have
a bigger influence than just the fact that while scrolling through the text a name
becomes visible for a short time. Hence, computing the DOI depends on the a
priori importance as well as on user interaction.

Figure 10.15 shows an example of such an illustration taken from a system
called the TextIllustrator. Generally, it is possible to produce such or similar
illustrations in real time. In this case, it is interesting to note that if we let S
be the currently visible portion of text within a text editing or reading system,
manipulating the scroll bar will lead to the illustration changing over time. This
corresponds to an animation of the text.

10.4.2 Generating Labels
Textual labels are an important part of illustrations because they serve as explicit
pointers from parts of the illustration to corresponding tokens and sentences
within the text. Objects that are candidates for being labeled are those that are
visible in an illustration and appear in the text that they accompany.

328 C H A P T E R 1 0 Applications for NPR

F I G U R E 1 0 . 1 5 Example of a medical text and illustrations generated automatically by the
TextIllustrator.

For the sake of clarity, many illustrations in medical books have their labels
neatly aligned on the side of the image. This model has been adapted in the system
called the ZoomIllustrator; Figure 10.16 shows an example. Note that the labels
are dynamic in the sense that the user can manipulate them with well-defined
operations. In particular, each label can be expanded so as to display more text.
The ZoomIllustrator assumes that this text is available; it can either be fixed or
itself generated with a text generation system.

The object-space zoom algorithm of Chapter 9 is applied to the region
in which the labels are placed. This means that if a label is expanded, less
space is available for the other labels, eventually meaning that labels have to

10.4 Illustrating Medical and Technical Texts 329

F I G U R E 1 0 . 1 6 Example of label placement and handling by the zoom algorithm in the
ZoomIllustrator. The second label in the right-hand column is enlarged to show more information.

disappear. Care must then be taken to make sure that the user can retrieve the
missing label (for example, by keeping a reference to the object no longer being
labeled).

A particularly appealing part of the ZoomIllustrator is that the zoom algorithm
now can be applied directly to the relevant parts of the three-dimensional model.
This means that if the user has enlarged a label to get more information, the
corresponding object can also be enlarged so as to show its relationship to the
other objects. Experience has shown that the movement in the illustration as a
result of a zoom operation is very helpful for enabling a user to assess the overall
structure of an object.

Care must be taken in such a system to maintain consistency in the overall
illustration. For example, if a user manipulates the illustration (for example, by
turning it by 180◦ in the image plane), lines from a label to the object that did
not cross beforehand will cross afterward. If the rotation is carried out in one
of the other two planes, objects that were previously visible and labeled may no
longer be visible; what is the system to do with the labels? These and other related
questions are beyond the scope of this book.

330 C H A P T E R 1 0 Applications for NPR

10.4.3 Generating Figure Captions
Illustrations in medical textbooks always are accompanied by figure captions. Two
kinds of captions dominate.

1. descriptive captions These captions describe for the user what is visible. In
principle, these captions describe the use of the NPR resources. For example,
if an object is slightly enlarged, this is generally mentioned in the caption;
objects that are emphasized are also mentioned. Such information is available
as a by-product of the input to the algorithms for generating the illustrations
in the first place (or possible user interaction) and can thus be generated
automatically.

2. instructive captions These captions give the user information about what the
illustration is asking the viewer to do. For example, an illustration might
show how the hand of a surgeon folds back a piece of skin; the caption
may verbalize this operation. Such captions are very difficult to generate
automatically, but would rely heavily on hardwired information associated
with specific geometric models.

Figure 10.17 shows an example of a figure caption generated for a medial illus-
traion in the ZoomIllustrator system. Note that figure captions for automatically
generated illustrations now have appealing interaction possibilities not available
in printed books. For example, a user can manipulate the caption to obtain an
alternative image. Hence the figure caption becomes a possibility to interrogate
the system with the illustration being the output medium. Care must be taken by
the system designer, however, to enable only such manipulations of the caption as
can actually be covered by the illustrator. A solution here is to restrict editing of
the caption to working with menus that provide the alternative objects actually
available in the system.

F I G U R E 1 0 . 1 7 Automatically generated figure caption produced for the image in Figure 10.16
by the ZoomIllustrator.

10.5 Tactile Rendering for Blind People 331

10.5 Tactile Rendering for Blind People
As a final application of NPR, we will study tactile graphics for blind people. In
particular, we will take a closer look at tactile maps.

10.5.1 Hardware
Over the years, a variety of graphical output devices have been developed for
blind people. Most notable are Braille output devices where users are given an
array of, for example, 40 characters with 6 or 8 pins each. Text can be displayed
in Braille without any problem. If the pins are close enough together, they can
be used to display simple graphics.

Force feedback devices have also been used to display information for
blind people. Such devices lend themselves particularly well to displaying three-
dimensional graphical information. However, experience has shown that without
visual feedback, blind people quickly get lost in the three-dimensional space. One
approach that has been used successfully has been to map the three-dimensional
information onto several two-dimensional layers that can be explored separately.

Perhaps the most popular method of producing tactile images uses so-called
swell paper. This is paper with a thin layer of chemical material that expands when
heated. A printer is used to deposit ink on the paper in selected places. The paper
is subsequently placed under a bright light (as used in some photocopy machines);
those parts of the paper that were printed on absorb more heat and swell up. This
is what a blind person can feel when moving his or her fingers over the page.

10.5.2 Haptic Perception
Blind people can perceive graphical information by touching surfaces with their
fingers. Three factors are of particular relevance:

1. Speed of perception It is evident that blind people who touch tactile presenta-
tions are much slower at obtaining information than their sighted counterparts
viewing visualizations. Indeed, it has been estimated that blind people per-
ceive such information at 10% the speed of sighted people. This means that
the information presented in a tactile form must be reduced to a minimum
so as not to overload the user with unnecessary information.

2. Area of perception When blind people run their fingers over a tactile pre-
sentation, at any given time they can perceive only what is directly under the
tip of each finger. This means that they cannot perceive a surface as such,
but must integrate mentally the impressions gained over time when moving

332 C H A P T E R 1 0 Applications for NPR

their fingers about. Care must thus be taken that local graphic attributes do
not confuse the user with respect to the overall structure of a presentation.
For example, in visualizations, it is not uncommon to annotate an object by
drawing a line from the object in question to a text. When presented in a
tactile form, points at which the lines cross may be mistaken for part of the
object. Breaking up the annotation line may also influence the semantics that
the blind user associates with the presentation.

3. Discernibility of a presentation Studies have shown that when a blind person
touches a tactile presentation, objects that are less than about 1.6 mm apart
are perceived as though they were one object. When the user’s hands are
allowed to move about in a tactile presentation, matters are even worse: two
objects less than about 3 mm apart are perceived as one object.

This has far-reaching consequences for the design of computer graphics
for blind people. In principle, the images must have a very low level of detail,
and all objects must be at least 2–3 mm apart so as to be discernible from one
another. Parallel lines must even be 4–6 mm apart so as not to be perceived
as a single object. Individual symbols (like icons) should have edges that are
at least 5 mm in length so that their shape can be ascertained. Objects of
similar or like shape must differ in size by at least 30% if the difference is to
be noticeable.

10.5.3 Converting Visualizations into Tactile Presentations
The material presented in the last section implies that if visualizations are to be
converted into a tactile form for blind people, certain operations either on the
image or on the underlying model must be carried out:

1. Reduction of detail Much of computer graphics emphasizes details of images
just right. In the case of tactile images for blind people, such detail can only
confuse the user. Indeed, the problem is in some sense related to rendering
images for a computer screen without color and of very low resolution.

Some of the methods discussed in this book can be used here. For
example:
◆ Abstraction of detail or indication This method described in Section 5.2

varies the level of detail in an image based on interactively placed “detail
segments.” The user may specify which areas are presented with a high

10.5 Tactile Rendering for Blind People 333

level of detail; the level of detail decreases with increasing distance to the
detail segments.

◆ Dithering with low resolution This “smudges” the image to remove local
detail. In a post-processing step, coarse dither blocks representing lines
must be reunited to form curves. The drawback is that the algorithm
cannot differentiate between important and unimportant details.

◆ Specialized prioritized stroke textures Special stroke textures can be designed
for ease of touch.

2. Image distortion As indicated a tactile representation must satisfy certain
criteria with respect to the distribution of symbols or lines. Hence a distortion
is necessary so as to separate objects by enough space so that they can
be discerned even though they are physically close together. The methods
discussed in Chapter 9 can be adapted to achieve an appropriate distortion.

10.5.4 Tactile Maps
Tactile maps are great because they help blind people find their way around
unknown environments. Indeed, surveys and studies have shown that a large
percentage of blind people say that they do not go out because of the fear of
getting lost.

One of the problems encountered when designing maps for blind people is
that routes (for example, streets, footpaths) must be enlarged. This application
comes up when a blind person has chosen a destination and expects an interactive
system to produce a map that details the way to be taken from a familiar place to
the destination.

The method described in Chapter 9 can be applied to the routes on maps.
Figure 10.18(a) shows an example of a map that was already prepared for blind
people: in keeping with the recommendations given earlier, streets appear quite
wide (over 3 mm in width in the tactile map), while the blocks between the
streets have been made correspondingly smaller. Once a user has defined the path
to be taken, a so-called focus line is applied automatically to it. With respect to
the construction of Figure 9.1, the route in question is enlarged, while a drop-
off function defines how the areas around the route are squeezed together to
make room. Figure 10.18(b) shows an example of the new map emphasizing the
specified route.

334 C H A P T E R 1 0 Applications for NPR

(a) (b)

F I G U R E 1 0 . 1 8 Creating a route map for blind people. The shaded route in (a) is enlarged while
squeezing together all other parts of the route to produce (b).

Exercises
10.1 Extend the algorithm for computing speedlines in various different ways.

For example, compute speedlines for the case when
a. the movement is not straight but follows a curve. First try it when

there are no inflection points on the curve, then try it when there are
one or more inflection points;

b. the speed of the object is also to be visualized;
c. design and implement an algorithm to compute an aesthetically pleas-

ing length for speedlines.

10.2 Devise and study algorithms for computing some of the other visualiza-
tions for object movement in still images (recall Figure 10.3).

10.3 Derive and explain Equation (10.1).

10.4 Experiment with different G-buffers as a source of data to compute
parameters of the illustrations of trees, such as the line quality (line

Bibliographic Notes 335

thickness, line waviness, and other parameters), the disc size, and the
depth threshold. For example, use a shadow buffer to derive the line
thickness and discuss the effect.

10.5 Derive a formula for the disc size as a function of the depth of a tree to
achieve the effect of Figure 10.13(b).

10.6 Suggest a method to integrate shadows into the algorithms presented for
rendering trees.

10.7 Study the effect of different dropoff functions for the distortion of tactile
route maps. In particular, study their effect on rectilinear grids of streets
on a map. Which dropoff function is best? Why?

Bibliographic Notes
An exciting study on how to communicate through comics has recently been
published by McCloud (1993, 2000). These books contain a wealth of ideas on
how to express information, usually through line drawings. Masuch (1999, see
also 2001) first proposed the algorithm for computing speedlines automatically.

Non-photorealistic animation was born by the idea to use image processing
filters on the single frames of an animation to achieve a “painted” look. This
was explored in detail by Litwinowicz (1997) as well as by Hertzmann and
Perlin (2000). Animations produced this way are rather noisy since there is no
frame-coherent behavior of the strokes. The first “animated painting” has been
presented by Meier in her paper on painterly rendering (1996). Since then, frame
coherency has been a major concern for many authors, among them Kowalski
(1999), Markosian et al. (2000), Masuch et al. (1997, 1998), and Curtis (1998).

Schumann et al. (1996) carried out an empirical study on the use of NPR in
architectural drawings in CAD systems. They draw on a classification of effects
of images proposed by Peeck (1987) and make use of the concept of projection
discussed by Gombrich (1977) and normalization in Weidenmann (1994).

Deussen and Strothotte (2000) presented the algorithms for rendering pen-
and-ink illustrations of trees as discussed in this chapter. Very early papers on this
topic are by Guo and Kunii (1991) and Sasada (1987). The article by Lintermann
and Deussen (1999) is a good reference for modeling trees as can be rendered
with the algorithms discussed.

The abstraction and distortion of graphics for blind people have been studied
in the education community. An exhaustive overview is given by Edman (1992).

336 C H A P T E R 1 0 Applications for NPR

However, the methods described there are geared toward practitioners who make
tactile graphics by hand. The same questions have been studied algorithmically in
the literature only to a small extent. An overview can be found in Strothotte and
Strothotte (1997). Somewhat more recent material can be found in Strothotte
et al. (1998). It is interesting to note that when blind people themselves draw
images, certain features look very different than when sighted people are drawing
for sighted people. This phenomenon has been studied from an algorithmic point
of view by Kurze (1999).

Schlechtweg (1999) has carried out research into automatically generat-
ing illustrations from medical and technical texts. Labels in illustrations and a
coherent zoom in labels and three-dimensional graphics were studied by Preim,
Raab, and Strothotte (1997). Algorithms for generating figure captions in the
ZoomIllustrator can be found in Hartmann et al. (1999). More details on
the ZoomIllustrator and TextIllustrator can be found in Strothotte (1998) and
Schlechtweg and Strothotte (1999).

The empirical study on architects discussed in this chapter stems from Schu-
mann et al. (1996). The concept of projection stems from Gombrich (1977), and
the concept of normalization demand stems from Weidenmann (1994). Recent
empirical work has been carried out by Girshik et al. (2000). Empirical work on
distortion has been carried out by Carpendale (1999).

111 A C O N C E P T U A L F R A M E W O R K F O R N P R
Kees van Overveld
Eindhoven University of Technology, The Netherlands

The previous chapters gave an overview of a variety of techniques that have been
developed in NPR over the last few years. The field has developed thanks to
the joint efforts of many researchers, and progress has been obtained in many
different directions. It is not always clear to see the relations between one result
and another, and the identification of promising open areas is therefore not trivial.
Still, it may be expected that a further exploration of the field will add numerous
new algorithms and paradigms. In this concluding chapter, we propose a line
of thinking that may be helpful in this endeavor. We aim to give an onset for a
conceptual background that could facilitate seeing the forest despite the trees.

11.1 Methodological Disclaimer
Many statements in this book are not true, not comprehensible, or not relevant.
However, we assure you that the majority of the statements will be at least
one of the three. Apparently, truthfulness, comprehensibility, and relevance are
very different qualifiers of statements in scientific or technological texts. In
the traditional methodology of science, most emphasis is on the truthfulness of
statements.

For instance, in traditional mathematics texts, you ideally start from axioms
that are true by definition; next, you construct true statements (theorems or lem-
mas) by applying accepted logic methods, such as deduction, complete induction,
or the law of the excluded third. Since mathematics is a system that exists purely
in itself (that is, it does not logically depend on assumptions or observations that

337

338 C H A P T E R 1 1 A Conceptual Framework for NPR

are taken from the world outside mathematics), the goal of producing texts that
are 100% true is, to a large extent, achievable. Notice that, for a pure mathemati-
cian, relevance and comprehensibility (in the sense of interpretability) are not
issues.

In physics, the goal of producing a 100% true statement is already much more
problematic. This is caused by the subtle interplay between empirical observations
and models. Indeed, empirical observations are problematic due to such issues
as reproducibility, intersubjectivity, accuracy, and the question if observations
can be made without prior model assumptions. Models are problematic because
every model is known to be an approximation, and every model is based on
assumptions that never can be completely and formally verified. Further, all
models are formulated in terms of concepts (such as “electric charge”) that only
follow indirectly from empiric observation. The outcomes of the models also can
be verified at best indirectly with empiric observation. Finally, an experimental
outcome that is consistent with a model prediction is nice, but it cannot prove
the model to be true; conversely, an experimental outcome that is inconsistent with
model prediction proves the model to be false (although it is not straightforward
to prove that something is truly inconsistent, either!). Nevertheless, physical
research is considered to be a highly valid endeavor, partially due to its relevance
and its comprehensibility. The relevance of physical results relates to the practical
applications of physics. Even though no one knows if Ohm’s law is, in some
sense, “true,” it has paved the way to introducing electricity as an essential factor
in everyday life. The comprehensibility of physics relates to our feeling that physics
helps to (begin to) understand the world around us. Of course, it is unlikely that
Mother Nature meticulously computes the value of the electric current I that
flows through a resistor R every time when it is exposed to a voltage difference V
by means of the formula I = V /R. Nevertheless, it helps in our comprehension
to think that she still does so. We can effortlessly comprehend things that are not
true. In fact, we do so all the time.

When we shift our attention from mathematics via physics into the direc-
tion of chemistry, biology, and psychology, the mix between truth, relevance,
and comprehensibility gets more and more complicated (see, for instance, Sat-
tler, 1986). Writers are often not explicit in labeling statements regarding their
truthfulness, their relevance, or their comprehensibility. In some cases, the distinc-
tion follows from the context. For instance, a question is not a proposition, and
therefore cannot be labeled true or false. Further, examples that clarify a certain
concept are, strictly speaking, redundant. They carry no new meaning, so they

11.1 Methodological Disclaimer 339

could have been omitted. So they are irrelevant, but they can add to the com-
prehensibility of a text. Finally, consider the case where a first statement inspires1

to a second statement. If this second statement is true, relevant, and comprehen-
sible, the truthfulness of the first statement does not seem to matter. Instead, its
relevance could lay entirely in the fact that it has inspired to a true statement.

In particular in the context of (technological) design, this last case quite
often occurs. During a design project, many different utterances2 are being made
by the designer(s). Only a very small fraction of these will comprise the final
design document. Here, the final design document is intended to be the set of
all utterances about the designed artifact that are necessary to manufacture the
artifact. All utterances that were made prior to writing the final design document
could have been untrue without affecting the final artifact. The quality of these
early utterances is in their relevance (did they inspire to true utterances?) and their
comprehensibility (did they facilitate the communication among the designers?).
Of course, we do not say that designers usually generate wrong utterances prior
to writing the final design document. But if they would like, they are perfectly
allowed to. Indeed, the merit and the validity of the majority of their utterances
is only in their purpose of inspiring to the (true) utterances that make up the final
design document. No more. And certainly no less.

This book is about design. In particular, this book is about the design of
computer programs that play a role in visual communication, using other than
photorealistic means. Given the previous observation, all but the sections that
contain final design documents could contain plenty of wrong (untrue) statements
without jeopardizing the final aim of presenting and explaining methods and
techniques for non-photorealistic rendering. (In the case of software design, the
final design documents are algorithms.)

Now we could have limited this book to a collection of algorithms that are
in some sense useful in non-photorealistic rendering. Then we could have left
out all the other material, and the book would contain only true statements.
But we think that the main merit of this book is in the inspiration to possible
new techniques, rather than only giving an exhaustive survey of known results.

1. If A inspires to B, it does not have to mean that B follows from A in some logic sense. It only
means that we got the idea B as a result of contemplating A.

2. An utterance can be a statement, a question, a hypothesis, a formula, a diagram, a drawing, and
so on.

340 C H A P T E R 1 1 A Conceptual Framework for NPR

In order to be a source of inspiration, we have imposed the structure that
was outlined in the introduction (see Chapter 1). Nevertheless, writing a book
involves ample reflection, looking at much of the material in a more global sense.
Gradually, during the process of writing and reviewing, the outlines of another
structure became apparent. This last chapter will address this alternative structure,
a conceptual framework to argue about NPR. We present it because it may
facilitate classifying future algorithms and techniques; it may inspire to work in
the direction of validation of NPR methods; and in general, it may provide a
language to communicate between workers in the field, computer scientists, and
other professionals.

Our conceptual framework is inspired by various earlier concepts. We men-
tion a few:

◆ The OSI model for data communication (Tanenbaum, 1998). This model
distinguishes information in various semantic layers, and the interfaces between
these layers.

◆ The human perceptual system, with its variety of built-in mechanisms that are
assumed to have arisen from evolution in order to provide better ways to com-
municate with an environment and with other creatures. Now it is generally
assumed that perception cannot be seen independent from cognition, so we
deal with perception and cognition as two aspects of the same phenomenon.
In doing so, we gratefully borrow from the work of Igor Aleksander (1994,
1996), although we use in some places a slightly different terminology.

◆ Some notions from classification theory. Indeed, perception may be seen as
having been developed in order to perform classification tasks with increasing
perfection, and therefore it is essential to be able to argue about classification,
representation, and abstraction.

In the remainder of this chapter, we introduce concepts, such as look-ahead
sets, variants and invariants, semantic levels, equivalence relations and equivalence classes,
and quotients. All these schemes, models, and concepts help to search for relations
between existing techniques, and may point to as yet missing techniques. Our
classification schemes and reference models are based on what may seem to be
physically, biologically, or psychologically correct, or at least plausible, arguments.
To the best of our knowledge, however, the entire biological and psychological
foundation of our approach could be dubious or even wrong. Almost everything
that we write about the biologic evolution of visual perception systems is at best

11.2 Mathematical Preliminaries 341

highly speculative. Much of it is founded neither in sound experiments nor in
well-accepted models. Similarly, for many of our concepts we borrow shamelessly
from mathematics (abstract algebra, linear algebra, function theory) without
verifying the mathematical preliminaries. All this would make this chapter into
obscure pseudoscience if our purpose was to state true claims on (the evolution
of) visual perception, or mathematical models thereof. But as we mentioned, our
only purpose is to inspire software engineers to come up with new ideas for
visual communication and to facilitate arguing about such systems. Therefore,
we think that our frivolous and speculative attitude toward mathematics, biology,
perception theory, and cognitive psychology is, from the point of view of design
methodology, at least partially acceptable.

Of course, we could have considered taking an alternative route, and put
effort in founding our classification schemes and reference models only on well-
established facts of mathematics, biology, perception, and cognitive psychology.
Then this chapter should have been co-authored with representatives from these
disciplines, which would have significantly complicated the process of writing it.
But more important, we have the serious fear that the well-accepted understand-
ing of (the evolution of) visual perception has not yet developed to a sufficiently
mature level so as to cater to our needs. Further, many mathematical constructs
are applicable only in very strict circumstances, and in perception (as a part of
the phenomenology of the physical world) these circumstances are not always
fulfilled. In particular, when we speculate about the higher levels in our semantic
hierarchy, it seems that much understanding of the neurological principles is still
missing—although our speculations are at least not inconsistent with some works
in neural science and perception. We look forward to writing the next edition of
this chapter in cooperation with specialists in the field if only to increase the level
of semantics in our speculations.

11.2 Mathematical Preliminaries: Equivalence
Relations, Equivalence Classes, and Quotients

Mathematical concepts are usually introduced in order to derive (or prove) true
statements. We have a different purpose in mind: we use non-mathematical
concepts that are chosen to be similar to mathematical concepts in order to
facilitate the communication via relevant or comprehensible statements. Since we
do not want to prove anything, we can afford some sloppiness in doing so, as long

342 C H A P T E R 1 1 A Conceptual Framework for NPR

as we indicate precisely when we deviate from standard mathematical practice. The
notions that we use are discussed in turn in the following sections.

11.2.1 Sets and Elements
Sets and elements are the fundamental concepts of modern mathematics. How-
ever, they are not defined (they are assumed to be elementary notions), so we do
not have to attempt to define them either. We will consider such sets as the set
of all shapes, a set of colors, a set of images, but also more esoteric things, such
as the set of all features of an object or the set of interpretations of an image.
We assume such notions as subset, intersection, and difference of two sets to be
known. When necessary, we use the conventional notations for these notions.

11.2.2 Cartesian Products and Relations
A relation between two objects is an often used notion in everyday language: if
John and Mary are married, they have a relation; if two objects have the same
color, they have a relation; and so on. In mathematics, this same idea is introduced
via a slightly less obvious intermediate concept, that of the Cartesian product. For
two sets, U and V, the Cartesian product of U and V, written as U × V, is the
set of all pairs (u, v), where u is taken from U and v is taken from V. So if U is
the set of all men and V is the set of all women, the pair (John, Mary) is one of
the pairs in U × V. But, for example, (Peter, Melany) are also in U × V. We see
that the fact that John and Mary are married (that is, have a marriage relation)
corresponds to the fact that (John, Mary) is one of the pairs in U × V. Every mar-
ried couple corresponds to one of these pairs, and a way to define the relation “is
married to” is to say that this relation corresponds directly to a subset of U × V.
A subset, indeed, since not all pairs in U × V correspond to married couples
(Peter is not married to Melany, but the pair (Peter, Melany) is in U × V). So we
define a relation between u and v, where u in U and v in V is a subset of U × V.
We can also consider the Cartesian product of a set with itself: U × U . Then
we can see how the relation “has the same color as” is also a part of a Carte-
sian product. If U = {tomato, banana, lemon}, then “has the same color as”=
{(tomato, tomato), (banana, lemon), (lemon, banana), (lemon, lemon)}. Exam-
ples from NPR include U = the set of technical drawings with a relation “depicts
the same machine as” or U = a set of geometric objects and V = a set of NPR
styles; then a relation between u in U and v in V is “object u is drawn in style v.” A
relation R between u and v is sometimes written as R(u, v) or uRv. But if we know
what relation we are talking about, we simply write u ∼ v. In the following, we

11.2 Mathematical Preliminaries 343

will reserve the word relation for a subset of the Cartesian product U × U . A subset
of a Cartesian product U × V will be called a mapping. An example of a map-
ping is the set U × V = {(banana, yellow), (tomato, red), (carrot, orange)} where
U = {banana, tomato, carrot} and V = {yellow, red, green, orange}. We write
mappings as prefix operators, so Mbanana = yellow, M tomato = red, Mcarrot =
orange. In NPR, for instance, we can map NPR styles to geometric objects.

A relation between two things is called a binary relation. Relations, however,
do not have to be binary. Red, yellow, and black have as a ternary relation that
they occur in a flag (namely, the Belgian flag and the German flag), and the same
relation holds for red, white, and blue (Dutch, British, French, U.S., and so on)
and numerous other groups of three colors.

One particular type of a ternary relation that will be very important is the
product operation. It takes three elements to define a 3-tuple or triple, which is
an element of (U × V) × W . We will often encounter the special case where
product operations are subsets of (U × U) × U . Some well-known examples
are the ordinary multiplication, with elements such as (2, 3, 6) and (3, 4, 12),
to denote the more familiar expressions 2 × 3 = 6 and 3 × 4 = 12, respectively.
Other important examples are ordering relations, also defined on numbers (but not
only on numbers, as we will see later). For instance, (3, 5, 5) or (4, 0, 0) can be
interpreted as “the maximum of 3 and 5 is 5,” and “the minimum of 4 and 0 is
0,” respectively. A nice property of product operations is that they can be denoted
in tables, so-called product tables, such as the tables of multiplication. Indeed, if a
set is closed under a product operation (as in (U × U) × U , where the result of
taking the product of a first element of U with a second element of U is again an
element of U), a product table completely characterizes everything that is to be
known of the product operation without having to resort to an interpretation.

Consider Table 11.1, where U is some set with three elements {e1, e2, e3}.
This product table defines (e1, e2, e2) to be part of the product operation, or
e1 · e2 = e2, without bothering us with an interpretation of the operator. If we

· e1 e2 e3

e1 e1 e2 e3

e2 e2 e2 e3

e3 e3 e3 e3

T A B L E 1 1 . 1 Product table for the operation · on the set {e1, e2, e3}.

344 C H A P T E R 1 1 A Conceptual Framework for NPR

like, we can assign the interpretation “e2 is the maximum of e1 and e2,” and then
we see that this product table applies to such sets as U = {1, 2, 3}, U ′ = {1, 4, 7},
and U ′′ = {0, 100, 1000}. In NPR, an example of a product operator of the form
e1 · e2 could express, for a set of rendering styles e1, e2, e3, . . . , which one, in
pairwise comparison, would be favorable for a given context. The product table
reveals a structure of the set, ignoring irrelevant details. Indeed, with this product
table, U , U ′, and U ′′ have become in some sense equivalent or isomorphic (we
give a more precise definition of isomorphic later).

11.2.3 Equivalence Relations and Variants
Relations come in various sorts. In particular, a binary relation on a set U (a subset
of U × U) can be reflexive, symmetric, or transitive. A relation R ⊂ U × U is
reflexive if for all u in U , we have that u ∼ u holds. “Has the same age” is an
example of a reflexive relation, but “is cheaper than” is not reflexive. A relation
is symmetric if for all u and v, both from U , we have that either u ∼ v and v ∼ u
or neither of the two. “Is married to” is an example of a symmetric relation, but
“is the father of” is not symmetric. A relation is transitive if, for all u, v, and w
from U , we have that from u ∼ v and v ∼ w, it follows that u ∼ w. We have a
special notation for the repeated application of relation ∼, namely, ∼∗. So a ∼∗ b
means either a ∼ b or there is a c so that a ∼∗ c and c ∼ b. For transitive relations,
we see that ∼ and ∼∗ are the same. This allows us to talk about the so-called
transitive closure of a relation ∼. The transitive closure of a is the set of all b such
that a ∼∗ b. Loosely speaking, it is the set of all elements that can be reached from
a, repeatedly using relation ∼. “Is younger than” is a transitive relation, as well as
“has the same mother as.” The transitive closure of “is younger than,” applied to
me, is the set of all people younger than I.

But, and this is a very important case, “is not too far from” is not transitive.
Indeed, if I walk one meter, I have not moved very far. But if I repeatedly walk
one meter, I can cross arbitrary large distances. The transitive closure of “is not
too far from,” starting at the place where I am, is the set of all possibly reachable
places! So the distinction between “equal” and “almost equal” is very crucial. “Is
equal to,” in all its disguises (such as “has the same shape,” “has the same color,”
“has the same meaning”) is a transitive relation, and “is almost equal to,” in all its
disguises (such as “has almost the same shape,” “has a similar color,” “has about
the same meaning”) is not transitive. As we will see later, this means that relations
with the word almost cannot form so-called equivalence classes, and they cannot
form so-called quotients (see Section 11.2.5). In our approach to form a model for

11.2 Mathematical Preliminaries 345

F I G U R E 1 1 . 1 Two 2D images.

F I G U R E 1 1 . 2 Two 2D images of three-dimensional objects.

visual perception, this is a serious blow, and we will put some effort in mitigating
its effects. Strong mathematical results hold for equivalence classes and quotients,
but much less can be proved in the weaker case where transitivity does not hold.

Relations that fulfill all three, the criteria symmetry, reflexivity, and tran-
sitivity, are called equivalence relations. In the context of perception, equivalence
relations correspond to our notion of variants. We introduce this concept with
some examples. Consider the images in Figure 11.1. There are various equiva-
lence relations that hold between these two images, such as “has the same number
of vertices as,” “has the same area as,” and “has the same perimeter as.” At the
same time, we recognize them as two rotated versions, or variations, of the same
geometric object.

Next consider the example in Figure 11.2. In this case, the equivalence
relations between the images (for now, consider them only as 2D images!) are quite
limited since both the colors and virtually all (2D) geometric features are different.
But if we interpret the images as projections (photographs) of 3D objects, we see
that various equivalence relations between these 3D objects hold (“has the same
3D shape,” “is illuminated from the same direction,” “casts a shadow onto the
same plane”). Again, we are able to identify the two images as variations from the

346 C H A P T E R 1 1 A Conceptual Framework for NPR

same 3D object, thereby ignoring all the differences that result from the projection
to 2D from two different viewpoints.

So it seems as if the mathematical notion of equivalence relation could be used
to model the intuitive notion of variants. Since genuine transitivity in the case
of the physical world is quite rare, there are a few cases where this association
applies. Therefore, we will introduce a weaker concept p-equivalence relation (p for
“pseudo”) if the transitivity almost holds; for now, we do not attempt to give a
precise definition of what “almost” means. Instead, at the end of Section 11.2.4,
we give a construction that takes a p-equivalence relation and, under some special
assumptions, turns it into a true equivalence relation.

11.2.4 Equivalence Classes and Invariants
Consider a set U and an equivalence relation ∼ on U . For example, let U be the
natural numbers 0, 1, 2, 3, . . ., and let ∼ be defined as “has the same remainder
when divided by 3.” Then 6 and 9 are equivalent (both remainder 0). Also 7,
13, 16, and 22 are equivalent (all remainder 1), and 2, 11, and 32 are equivalent
(all remainder 2). So we see that the introduction of this equivalence relation
introduces three sets of numbers,

C0 = {0, 3, 6, 9, 12, . . .}
C1 = {1, 4, 7, 10, 13, . . .}
C2 = {2, 5, 8, 11, 14, . . .}

All numbers in each of these sets are equivalent among themselves. We see that C0
is the transitive closure under ∼ starting in 0, C1 is the transitive closure under ∼
starting in 1, and C2 is the transitive closure of ∼ starting in 2. Further, these sets
are disjoint, and finally, together they form all natural numbers. C0, C1, C2 are said
to partition the natural numbers. This is in fact a very general result: it can be proved
that every equivalence relation on a set U introduces one or more disjoint so-called
equivalence classes C0, C1, C2, . . . that together partition U , such that all elements
in one equivalence class are equivalent among themselves. For example, let U be
the set of all polygons. Then the equivalence relation “has the same number of
vertices” gives rise to the equivalence classes triangles, quadrilaterals, pentagons,
hexagons, heptagons, and so on. The equivalence relation “has the same color”
on the set of all objects gives rise to the equivalence classes red objects, yellow
objects, green objects, and so on. The equivalence relation “has the same diet as”
for animals gives rise to the classes of herbivores, carnivores, omnivores, and so on.
In NPR, the equivalence relation “has the same average density as” gives rise to

11.2 Mathematical Preliminaries 347

classes of hatching patterns (distinguished on the basis of darkness). But so does the
equivalence relation “has the same average line direction as” (distinguished on the
basis of orientation), and “uses the same line thickness as” (distinguished on the
basis of a property that is more difficult to define visually), whereas all these classes
of hatching patterns may be very different with respect to other attributes. In fact,
these examples show that equivalence relations are extremely fundamental to our
attitude of classifying objects (images, perceptual impressions, concepts, and so
on) in the world. With some effort, it is often possible to associate an equivalence
relation to a class of things.

In the context of perception, equivalence classes are associated with the notion
of invariants. Indeed, despite that in Figure 11.1 the two images are different, there
are equivalence relations between them. The equivalence relation “has the same
number of vertices” introduces the equivalence classes triangles, quadrilaterals,
and so on as before. Within each of these classes, the number of vertices is constant,
and this number of vertices is an invariant of all the figures in that equivalence
class. In perception, an invariant allows us to classify objects as being (for a certain
purpose) identical, and all differences between these objects are regarded (for that
same purpose) as irrelevant. You could say that an object, for instance, a dog,
classifies as a dog in virtue of a number of invariants that should be different from
those that classify an object as being a cat.

We can already anticipate that this notion is essential in NPR. There is a huge
variety of images in all sorts of styles that are all being identified by a viewer as
“an apple,” and another (hopefully disjoint) set of images that are identified as “a
pear.” Apparently, there are some invariants among all these images, and NPR is
concerned with conveying these invariants. If only a (sufficient) number of these
invariants are sufficiently conveyed, the viewer will classify the seen object as
“apple.” A set of different invariants causes classification as “pear,” but obviously,
the two sets of invariants are not disjoint. (Both classes of images depict things that
are in the same range of hues, that have a more or less bulky part (the fruit) and a
skinny part (the stem), both have a little crown-like thing opposite the stem, and
so on). A designer of NPR algorithms has to be aware both of the invariants and
the variants of the images he or she wants to produce in order to make sure that
the images will arouse (for an intended purpose) the correct classification.

Notice that it is indeed crucial that the equivalence relation is truly transitive.
Even the slightest failure of transitivity destroys the entire notion of equivalence
classes. A p-equivalence relation does not, unfortunately, introduce equivalence
classes. If we consider the relation “has almost the same color as” (which is

348 C H A P T E R 1 1 A Conceptual Framework for NPR

symmetric and reflexive, and almost transitive; in our terminology, it is a p-
equivalence relation), and the objects in the set under consideration come in all
existing colors, we can get smoothly from one object to another, each time taking
together two objects that have almost the same color. In doing so, we can collect
a series of objects with colors as diverse as in a candy shop, the extremes of this
series having arbitrarily different colors. The transitive closure under “almost the
same color as” starting in any color will produce all colors. So, in our continuum
of colors there are no equivalence classes where one class consists of all red objects
and another class of all green objects, and so on.

Now something curious happens. Suppose that the set of objects is finite,
and that actually a quite limited variety of colors occurs. We see that then our
procedure for getting from one color to an arbitrary other color does not work,
and despite that our p-equivalence relation cannot, in strict mathematical sense,
give rise to equivalence classes, it still does a fair job in separating the objects
in similarly colored classes. We illustrate this with numbers. Consider the set
U = {0.9, 1.1, 2.9, 3.0, 3.1, 9.9, 10.0, 10.2}. Let ∼ be the relation “differs no more
than 0.3.” This is not a transitive relation, so it cannot split U in equivalence classes.
But it can split U in the classes {0.9, 1.1}, {2.9, 3.0, 3.1}, and {9.9, 10.0, 10.2}. We
could call these classes Ui, where i = 1, 2, 3. Then we see that the p-equivalence
relation “differs no more than 0.3,” in virtue of the presence of a universe (the
set U), which is finite and contains some “characteristic” elements, introduces a
true equivalence relation after all, namely, “is in the same Ui.” Notice that this
relation does not contain the words almost or differs no more than. Indeed, the
latter is a true equivalence relation, and its equivalence classes are U1, U2, U3.
This construction of a true equivalence relation out of a p-equivalence relation,
under the conditions of a finite universe and some “characteristic” elements can
be performed in general, and we give it in some length at the end of this section.

For NPR, an example would be the following. Consider simple cartoon faces,
and the equivalence relation “shows the same emotion as.” Then, in Figure 11.3,
we can effortlessly distinguish two equivalence classes, one consisting of the left
two images and the other consisting of the right two images. But the same would
result for the p-equivalence relation “shows almost the same emotion as.”

For now, all the aforementioned inspires us to use the less strict notion of p-
equivalence classes, being the classes that are introduced by p-equivalence relations
assuming that the set U permits this. In other words, the set U should possess
“lumps” of similar objects, where one lump is sufficiently different from the
next lump. A p-equivalence class is just such a lump. Every lump is associated

11.2 Mathematical Preliminaries 349

F I G U R E 1 1 . 3 Simple cartoon faces to be classified with respect to the shown emotions.

(identified) with one of the “characteristic elements.” In the preceding example,
U1 could, for instance, be identified with 1.1, U2 with 3.0, and U3 with 10.2,
making 1.1, 3.0, and 10.2 the characteristic elements in this case, and U1, U2, and
U3 the lumps. In real life, this would be somewhat similar to associating the class
of trees by a prototypical tree, the class of dogs by a prototypical dog, and so on.
In fact, the way children learn new concepts is very similar to this: it is called
ostensive definition. You might conjecture that a mental class (a class as it is used
by the brain to classify a visual impression) consists of a prototypical characteristic
element plus the allowed variants, where these variants are brought forward by
(p-)equivalence relations. The prototypical characteristic element is also called the
default element. For instance, the class “block” might have a red, axis parallel cube
with 3-inch long sides as default. Suppose that relevant equivalence relations are
“is identical up to a change of color,” “is identical up to rotation,” “is identical
up to non-uniform scaling,” and “is identical up to translation,” then the set of
allowed variants include those being generated by scaling, rotating, translating,
and arbitrary coloring.

If we assume that classification in real life is adequately modeled by equiv-
alence relations, equivalent classes, and variants and invariants, we see that this
is only because the objects in real life come in sufficiently “lumpy” sets. There
are, for instance, saxophones (tenor, alto, baritone, and so on) and crocodiles (tall,
short, fat, skinny, mean, living in the Mississippi Delta, and so on) but not a contin-
uum of classes that interpolate these two classes. Therefore, we can unambiguously
distinguish saxophones and crocodiles. There are simply no hybrids like saxodiles
and crocophones, so we should not be worried that we are not able to classify
these hybrids unambiguously. But the p-equivalence relation “has about the same
ethical value,” which should give rise to p-equivalence classes of good things and
bad things, is much more problematic—with all known ethical consequences.

350 C H A P T E R 1 1 A Conceptual Framework for NPR

We will use the notions of variants and invariants extensively when we discuss
(visual) perception. Our own classification of objects in the real world amounts
to distinguishing variants and invariants (large, small, brown, and black horses
are all variants from the generic horse). “Horseness” is an invariant associated to
the equivalence class “horse.” Other invariants associated to the same class are,
for example, “four-leggedness,” “mammalness,” and the like. This equivalence
class is introduced by the equivalence relation “belongs to the same species.”
“Donkeyness” is the invariant that belongs to another equivalence class, namely,
the equivalence class “donkey.” But “belongs to the same species” is, upon closer
inspection, a p-equivalence relation: we can interbreed horse with donkey, giving
mule. So the equivalence classes are really p-equivalence classes. This is in practice
not a serious problem since there is not a continuum of species: you cannot,
for instance, interbreed donkey with dog and dog with cat. Still, the fact that
we have to deal with p-equivalence classes instead of true equivalence classes is
one of the reasons that a more rigorous mathematical foundation of our models
and classifications is cumbersome. Therefore, we proceed with an algorithm that
constructs true equivalence classes out of p-equivalence relations. Informally, the
algorithm amounts to systematically constructing the transitive closure of the p-
equivalence relation, starting in each of the defaults, and identifying the hybrids
and removing these from the universe; the remaining elements can be uniquely
partitioned in (true) equivalence classes, and if there were sufficiently few hybrids
(“crocophones and saxodiles”), the resulting set of equivalence classes will do a
reasonable job in classifying the original universe. The conditions to perform this
construction are as follows:

◆ We are only considering a finite universe of elements (things we would like
to classify).

◆ Among all these things there are a few characteristic elements (defaults, say, a
particular saxophone and a particular crocodile).

The p-equivalence relation to start from does not hold between any two defaults
(so whatever p-equivalence relation we are using, a saxophone and a crocodile
are not p-equivalent). Let U be a finite set, and S ⊂ U the set of defaults. Assume
that for no two defaults, s1 and s2 in S, we have s1 ∼ s2. We start by building
sets Ps, one for each element s ∈ S, where elements v in Ps have v ∼ s or v ∼∗ s.
The sets Ps will form the formal representatives of our pseudoequivalence classes.
We have a function A(v) that tells how many p-equivalence classes v have been
assigned already. Elements v for which A(v) > 1apparently belong to two or more

11.2 Mathematical Preliminaries 351

p-equivalence classes. These elements are hybrid. If A(v) = 0, v has not been
assigned yet to any p-equivalence class. We initialize the entire process by making
A(v) = 0 for all v ∈ U . Next, we iteratively extend the sets Ps one by one by
including those v ∈ U for A(v) = 0, for which v ∼ s for any s ∈ Ps. This is repeated
until every v ∈ U belongs to at least one Ps. Then for U ′ = U\{v : A(v) > 1},
we can form a true equivalence relation, namely, “belongs to the same Ps as.”
The equivalence classes are Ps\{v : A(v) > 1}, and provided that the number of
elements v ∈ U with A(v) > 1 is sufficiently small compared to the number of
elements in U , we have a reasonable classification. For completeness, we write
Algorithm 11.1 in pseudocode as shown below.

Figure 11.4 illustrates this algorithm for the case where U is a set of points
in the plane, and the p-equivalence relation is “is closer by than . . . (some given
distance).”

In NPR applications, the set U may contain, for instance, images or visual
impressions. Provided that these sets are finite (for instance, in an experimental
setup to assess the comprehensibility of NPR images), the algorithm can construct
equivalence classes, and hence, quotient structures (see Section 11.2.5). In such
cases, the equivalence relations are typically left implicit, to be applied by test
subjects, and a meaningful experiment would consist of checking if in a population

1 foreach v ∈ U do A(v) := 0 od
2 foreach s ∈ S do PS = s; A(s) := 1 od
3 while (U\ ∪

s
Ps) �= ∅ do

4 foreach t ∈ S do
5 Qt := ∅
6 foreach q ∈ Pt do
7 if A(q) == 1 then
8 foreach v ∈ (U\ ∪

s
Ps) do

9 if v ∼ q then Qt := v ∪ Qt; A(v) := A(v) + 1 fi
10 od
11 fi
12 od
13 foreach t ∈ S do Pt := Pt ∪ Qt od

A L G O R I T H M 1 1 . 1 Construction of true equivalence classes from p-equivalence relations. For
simplicity, we assume that eventually every element belongs to one of the Ps.

352 C H A P T E R 1 1 A Conceptual Framework for NPR

(a) (b) (c) (d)

F I G U R E 1 1 . 4 Construction of p-equivalence classes: S contains three defaults, indicated by an
upward triangle (s = u), a downward triangle (s = d), and a circle (s = c) (a). After one iteration of
the while loop, all three p-equivalence classes have been extended; Pu with three elements, Pd with
three elements, and Pc with two elements (b). In the second iteration of the while loop, Pu claimed
another three elements, and Pd also three elements. Pc did not acquire any further elements (c).
In the third iteration, the single remaining element, say, v, was claimed both by Pd and Pu (it was
added both to Qu and Qd, and therefore has A(v) = 2 (d)). It is a hybrid element. There are no
further elements w with A(w) = 0, so the algorithm terminates. The entire set U , except for the
single element with A(v) = 2, allows a partitioning in equivalence classes.

of test subjects everybody finds the same quotient structure (the same classification
scheme) over a set of test images—and, for instance, if the found quotient structure
depends on the chosen NPR rendering style. Conversely, the algorithm may be
used to clarify what equivalence relations test subjects (implicitly) use. For our
purposes, the major relevance of the algorithm is to show that equivalence classes
in principle can be constructed out of p-equivalence classes that form a reasonable
model of a classification in real-life situations provided that there are sufficiently
few hybrid cases. The construction in the algorithm clearly shows that the number
of hybrid elements dramatically increases with the tolerance (the “sloppiness”)
implied in the used p-equivalence relation.

11.2.5 Quotients, (Iso)morphism, and Abstraction
We have seen that equivalence relations give rise to equivalence classes. Equiv-
alence classes impose a structure onto a set, such as the structure of biological
species onto the set of all animals, or the structure of emotions on the set of all
images of human faces. Once we have divided the set of all animals into species,
or the set of all images of human faces into emotions, we do not have to take
individual differences between one horse and another horse into account if, for
example, we want to study the difference between horse and cow.

11.2 Mathematical Preliminaries 353

A set that is subdivided in equivalence classes is called a quotient. For in-
stance, let U = {0, 1, 2, 3, 4, 5}, and let ∼ be given as “has the same remain-
der when divided by 2,” then the two equivalence classes C0 = {0, 2, 4} and
C1 = {1, 3, 5} result. The set that has C0 and C1 as elements, which can be written
as {{0, 2, 4}, {1, 3, 5}}, is the quotient that results from partitioning U over ∼. We
write U/∼. The difference between U and U/∼ is that the latter not only tells us
what the contents of U is, but it also reflects how the contents is lumped together
as a result of the equivalence relation ∼. If ∼ would have the meaning “has the
same remainder when divided by 3,” we would find U/∼ = {{0, 3}, {1, 4}, {2, 5}}.
Although U has the same elements in both cases, the elements of U/∼ dif-
fer in dependence of the meaning of ∼. The quotient, or the grouping of
equivalence classes of U , really reflects the structure that is induced by ∼. Let
U = {carrot, lemon, tomato, banana, mandarin}, and let ∼ have the meaning “has
the same color,” then U/∼ = {{lemon, banana}, {tomato}, {carrot, mandarin}}.
If ∼ means “has the same shape” (distinguishing round and oblong), we get
U/∼ = {{lemon, tomato, mandarin}, {banana, carrot}}.

Now let us introduce two sets, the set of shapes V = {round, oblong} and
the set of colors W = {yellow, orange, red}. Then we can see that we can make
a mapping between the elements of U/∼ (∼ in the meaning of “has the same
shape”) and V : M = {m1, m2} = {({lemon, tomato, mandarin}, round), ({banana,
carrot}, oblong)}.

For clarity, we summarize: the mapping M is a set; its elements are pairs, say,
m1 = ({lemon, tomato, mandarin}, round) and m2 = ({banana, carrot}, oblong);
each pair associates (maps) one element from U/∼ to one element from V , and
the elements of U/∼ are the equivalence classes induced by ∼ on the elements of
U . All this is encoded in the various parentheses and braces in the definition of M .
The mapping M is an example of a mapping between a quotient on a concrete set
and a set of abstractions. Shape is an abstraction, for instance, “round” is the shared
property of all round objects. These mappings happen all the time in perception:
we observe things; we classify them on the basis of equivalence (variants) into
the equivalence classes (invariants) in a quotient, and we conclude properties on
the basis of a mapping of this quotient to another, abstract set. It is often more
convenient to argue in the latter abstract set, in particular if there are suitable
relations defined in this abstract set.

We clarify this with an example taken from NPR. Consider the set U
consisting of a set of images of human faces (either photographs, photorealistic
or non-photorealistic images), and the set V of different basic emotions. In

354 C H A P T E R 1 1 A Conceptual Framework for NPR

psychology texts, six basic emotions are normally distinguished, so V has six
elements. An equivalence relation ∼ on U is “according to a particular group
of test subjects, shows the same emotion as,” and in V we use the familiar
equivalence relation denoted by =. Indeed, equality is an equivalence relation.
Notice that V is equal to {happy, sad, angry, startled, . . .}, whereas V /= is equal
to {{happy}, {sad}, {angry}, {startled}, . . .}. This last distinction is not very useful,
so we work with V rather than with V /=. The quotient U/∼ is the set of
equivalence classes, each equivalence class consisting of faces that show the same
emotion according to our test subjects. Notice that U/∼ does not necessarily
have to have six elements. It could be, for instance, that none of the faces in U
is looking happy, or that our test subjects decide that there are two varieties of
happy faces. A relation G that can be defined on U/∼ is the relation “looks more
sympathetic than,” which is again to be decided by our group of test subjects. So
both U/∼ and the relation G have to be established, in this case, by means of
sociopsychological experiments. Notice that G is a transitive relation, in particular
a so-called partial ordering.3 Of course, this is no equivalence relation since it is
not reflexive.

Now we introduce the mapping M , which attributes to every equivalence
class face images showing their same basic emotion (which is an element of V).
Of course, M has not to be 1 to 1: it could be that some elements of V map to
multiple elements of U/∼, and others map to no element of U/∼. Conversely,
every element of U/∼ maps to precisely one element of V (because all elements
of V are basic emotions, no two of them could be considered the same). Next,
assume that the relation G maps to a relation onto the set of emotions, say, a
relation called →. The relation → should also be a binary operator, and it should
also be transitive (hence, a partial ordering). The existence of a mapping between
G and → is not guaranteed. Suppose that there are two equivalence classes in
U/∼ that both map to “sad,” say, sad1 and sad2, and one equivalence class in U/∼
that maps to “startled,” say, startled. Next, assuming that sad1 is considered to look
more sympathetic than startled, and startled is considered to look more sympathetic
than sad2, we have the problem that the relation G (“looks more sympathetic
than”) cannot be mapped to the relation →. On the one hand, we should have
“sad”→“startled,” and at the same time we should have “startled”→“sad.” But
let us assume that this problem does not occur, and indeed a consistency between

3. A partial ordering of a set is an ordering relation that does not have to apply to any pair of
elements in the set.

11.2 Mathematical Preliminaries 355

M

M M

V

U/~

F I G U R E 1 1 . 5 Mapping M between a quotient and an abstract set. Small circles in V denote basic
emotions; small circles in U/∼ denote elements of U (images of human faces). Ellipses in U/∼
are the equivalence classes induced by “has the same emotion”; they form the elements of U/∼.

G and → is found. If we have two sets (in this example, U/∼ and V), each
with a product operator relation defined on them (here G and →), such that
pairs according to the product operator in one set (here G) are mapped to a pair
according to the associated product operator in the other set (here →), we call
this a morphism. If the mapping M is bi-jective (that is, for every element in V
there is at most one element in U/∼ that maps to it, and every element in U/∼
maps to one element in V), it is called an isomorphism. In Figure 11.5, since M is
probably not bi-jective, we do not have an isomorphism.

Let u1 and u2 be two elements of U/∼, and v1 and v2 two elements of V .
Then we see that morphism amounts to the scheme in Figure 11.6.

As we can see from the example, (iso)morphisms that result from mappings
between quotients and abstract sets will turn out to be a very helpful tool to
discuss images, meaning in images, and relations between the various images that,
in some sense, hold the same meaning.

For instance, consider the example where we would like to draw a world map
that is distorted in such a way that countries are drawn schematically as shapes
(polygons) with an area that is proportional to their population—for instance, to
study certain demographic properties. We could describe this problem in terms
of sets, equivalence relations, and morphisms as follows:

◆ V is the set of all the countries we would like to consider.
◆ U is the set of all polygons.

356 C H A P T E R 1 1 A Conceptual Framework for NPR

M M

V

U/~

Relation
(partially orders emotions with respect to being sympathetic)

Relation G (partially orders groups of faces with same emotions
with respect to being sympathetic)

V1

U1

V2

U2

F I G U R E 1 1 . 6 A morphism between U/∼ and V that allows us to transpose relations from one
domain to another, more abstract domain.

◆ An equivalence relation ∼ between two polygons could be “represents the
borderline of the same country.”

◆ An equivalence class (that would represent a country) would consist of all
possible polygons that would be identified as a schematic representation of the
shape of that country.

◆ The quotient U/∼ is the set of all polygons, partitioned in collections of
polygons that each represent one country (note that in this case, there definitely
would be one very big equivalence class containing all polygons that represent
no country at all).

◆ The relation G on elements of U/∼ expresses “has larger area than.”
◆ The relation > on elements of V expresses “has larger population than.”
◆ The (iso)morphism between V and U/∼ is the implied semantics of the map.

Since our main topic is non-photorealistic rendering, where meaning has to be
conveyed via images, we will constantly have to deal with equivalence, equivalence
classes, and (iso)morphisms.

In the following, when we deal with the semantics of images, we will
encounter expressions such as “from (image) A we conclude that B.” This usually
is indicative of the fact that A and B refer to sets, and there is some morphism
between these sets. Consider the following example:

11.2 Mathematical Preliminaries 357

V = 3, 4, 5

U =

Here we see a series of images (elements of U), and when inspecting U we
will after a short while conclude that we see only 3-sided and 4-sided prisms,
but no 5-sided prisms. This classification process can be modeled by assuming
that we first apply an equivalence relation ∼ onto U , meaning “the same when
viewed from a probably different 3D direction and ignoring different sizes.” Under
this equivalence relation, we find two equivalence classes, and the quotient U/∼
contains two elements, namely, the set of 3-sided prisms and the set of 4-sided
prisms. Next, we map each of these sets to the number of sides of the prisms
in each set. This mapping is well defined, since all prisms in each of the sets in
U/∼ have the same number of sides by virtue of the equivalence relation ∼. We
construct the morphism between U/∼ and V , and we conclude that nothing
maps to the element 5.

11.2.6 Summary of Mathematical Preliminaries
We have seen various devices to reveal the structure in sets. The structure
within a set U is expressed by the quotient with respect to a (binary) equivalence
relation, which itself is a subset of U × U that is symmetric, reflexive, and
transitive. This equivalence relation gives rise to equivalence classes, and the
collection of all equivalence classes forms the quotient, U/∼. If a binary relation
is symmetric, reflexive, and almost transitive, we call it a p-equivalence relation,
and the associated concepts are p-equivalence classes and p-quotients. Under the
assumption of a finite universe and some “characteristic” elements in the universe,
we can construct a true equivalence relation out of the p-equivalence relation. If
the universe is sufficiently “lumpy” (that is, there are saxophones and crocodiles
but nothing in between), this equivalence relation introduces a quotient that is in
many respects an adequate model of a classification. Equivalence relations serve
to model the notion of variants in perception; equivalence classes serve to model
invariants in perception. A second way to reveal the structure within U is by
writing down the product table associated to a suitable product operator. This

358 C H A P T E R 1 1 A Conceptual Framework for NPR

product table reveals the structure of the set with respect to that particular product
operator.

The structure that is shared between two sets is expressed with (iso)-
morphisms. For two sets U and V , each equipped with its own product oper-
ation (say, p and q, respectively subsets of (U × U) × U and (V × V) × V),
their individual structures can be reflected in the product tables of these opera-
tors. If a (bi-jective) mapping M can be found between the two sets such that
M (u1pu2) = (v1qv2), we say that there is an (iso)morphism between U and V . In
many cases, one of the two sets will be a set of equivalence classes (say, cow, deer,
tiger, and wolf) and the other set will be a set of abstract notions (say, herbivores
and carnivores). Morphisms help us in arguing about deductions from the set of
equivalence classes to the set of abstract notions (say, the rule that in common
territories, herbivores should watch out for carnivores can be deduced from the
fact that cow and deer are frequently being eaten by tiger and wolf, whereas this
relation is not symmetric).

11.3 Physical Preliminaries: Communication
via Light Rays

Visual perception forms a means of communication between human beings and
their environment. If (part of) the environment is replaced by one or more images,
information can still be regarded as being conveyed from the image to the viewer,
and you can speculate that basically the same perception principles are at play.
This still holds if the image is not generated by a photographic camera, but by a
human being (an artist) or a software program running on a computer connected
to a video screen. Therefore, in order to propose a reference model for visual
communication, such that we can classify non-photorealistic rendering techniques
and propose new ones, it is advisable to start looking at the key elements in
the visual communication process: light rays, visual properties of the physical
environment, and the eye–brain system.

Although our reasoning will be purely speculative, we will try to make it as
reasonable as possible. We will state our assumptions explicitly. Very fundamental
assumptions are as follows:

◆ Biological systems have evolved, from simple to complex, coarsely along the
lines of natural evolution.

11.3 Physical Preliminaries: Communication via Light Rays 359

◆ The physical environment of this natural evolution has behaved largely the
same as it does today.

◆ Natural evolution of neural systems is an optimization process where, with
respect to data processing, the basic resources are time, memory, and connec-
tivity (that is, the number of nervous cells to which information can be passed
directly).

11.3.1 Physical Context
The evolution of higher animals has taken place over the last 108–109 years. During
this period, it is assumed that Maxwell’s laws did not change. Maxwell’s laws
model the propagation of electromagnetic fields through space and time. This
propagation is governed by so-called partial differential equations of the form(

∂2

∂2x
+ ∂2

∂2y
+ ∂2

∂2z

)
E(x, y, z, t) = c−2 ∂2

∂2t
E(x, y, z, t) (11.1)

Here E(x, y, z, t) is a physical quantity (electric or magnetic field) that can vary
as a function of time and space. Variations of these quantities are the information
that is propagated by the equation. The general solution of this equation is a
summation of all possible terms E = E0 sin(kxx + kyy + kzz − wt), where the
vector k = (kx, ky, kz) is the so-called wave vector (the wavelength in a given
direction) and w is a quantity called frequency (the number of oscillations per
second). By substituting back into Equation(11.1), we find that c2|k|2 = w2, where
c is the speed of light. From the form of the solution follows that if a particular
term E takes a certain value at a certain time t and a certain place (x, y, z),
it takes the same value at all other time points t′ and places (x′, y′, z′) with
kxx + kyy + kzz − wt = kxx′ + kyy

′ + kzz′ − wt′. This is the equation of a set
of parallel planes, moving in the direction of k with speed c. The vector k and
the frequency w depend on the initial conditions. In particular, it follows from
symmetry considerations that with a unit pulse of E at t = 0, (x, y, z) = (0, 0, 0),
we get a superposition of these plane waves such that outgoing spherical waves
result (Huygens’s principle). The center, say, (0, 0, 0), of these outgoing spherical
waves will be called a point light source.

The information contained in a point light source is its color, which is light
energy as it is distributed over the various w’s. This distribution is called the
spectrum. In all points p that are visible from a point light source S on a sphere with

360 C H A P T E R 1 1 A Conceptual Framework for NPR

radius r = |p − S| = ct we find the same values4 E for the different frequencies
w, and hence, the same spectra. Here, visible means that there is no opaque
surface blocking the light between S and p. This spectrum is the information
that is propagated. Hence the color is constant during the propagation—at least
if no absorption occurs. Because of atmospheric conditions, however, there is
some absorption of light energy. Low-frequency components are absorbed slightly
more, and light that travels through the atmosphere over large distances turns to
bluish-gray. The energy per square inch surface area also decreases since the same
amount of light energy has to be emitted in all directions. If we call C1 and C2
the colors (spectra) at two different distances from S, both in the same direction,
we see that there is a p-equivalence relation “almost the same color” between C1
and C2. This p-equivalence will be called “light ray attenuation equivalence,” or
LRA.

11.3.2 Detecting Light: Basic Principles of Viewing
The interaction between light and surfaces can be modeled such that every
point of a surface that is either a light source or visible from another (point)
light source acts as a point light source. Hence, the world around us is filled
with a continuum of point light sources. As a result, in a given point p in 3D
space, we get a superposition of the light information that has originated from
a continuum of directions, each direction pointing to one point light source,
distributed spherically around p. The color we receive in p is therefore the result
of summing up all spectra of all point light sources that are visible from p. So we
receive a mixture of all the colors that are present in the visible environment of
p. In order to be able to distinguish one direction from another, and therefore to
distinguish light from different regions, we have to be able to select on the basis
of incoming light direction. Notice that this is not possible with just an array of
light detectors adjacent to each other. In this case, every light detector will receive
more or less the same information.

To study this problem a little better, we refer to Figure 11.7. Here, we have
two different light sources, one with red light and one with green light. One
detector seeing both of them would receive a mixture of both colors. Even if

4. We ignore the fact that E is a vector and hence has a direction. We are interested only in
the information that is propagated by light rays. We do not study the precise way in which this
information is encoded in the electromagnetic quantities.

11.3 Physical Preliminaries: Communication via Light Rays 361

(a) (d)(c)(b)

F I G U R E 1 1 . 7 Different light detector strategies: every light detector sees incoming light of all
directions, and multiple detectors all get the same information (a); if the detector is equipped with
a collimator that restricts the directions of incoming light rays, multiple detectors can receive light
from different directions, and hence can distinguish between different light sources (or different
regions in the environment) (b); instead of one collimator per cell, we can also have one collimator
for multiple cells (pupil) (c); if every cell does not have to have its own collimator, it can get closer
together, hence give a better angular resolution (d).

we have multiple detectors, every detector will detect a mixture of both colors.
But a simple device can overcome this problem. If every detector is equipped
with a collimator that shields incoming light in all but a restricted part of
spherical directions, the different detectors are capable of distinguishing the light
information as it originates from different points in the environment. This is the
way in which faceted eyes of insects work. Notice that all collimators have to
be directed very accurately in a slightly different direction from their neighbors.
Fortunately, the mechanically stable arrangement where the orientation of each
collimator tube is the average of the orientations of its neighbors is also optimal
from an optical point of view. So evolution did not have to cope with awkward
compromises when developing the faceted eye.

Although a faceted eye can see spatial distributions of light, the resolution (the
capability to distinguish colors from light that comes in from nearby directions) is
limited. Indeed, for mechanical reasons, an insect’s eye cannot be arbitrarily large.
Because of the collimator that surrounds it, each light cell (detector) requires
quite a large space—they cannot get too close together, and therefore, there is
only room for a limited number. However, the same effect can be obtained if
not every cell has its own collimator, but multiple cells share one collimator
(the pupil in the eye of higher animals, or the pinhole in a camera obscura).

362 C H A P T E R 1 1 A Conceptual Framework for NPR

There is a strange side effect. Incoming light from below is detected by the
topmost detector, and conversely. The image that is projected onto the retina
that is, the collection of optical cells, is inverted! If the animal would have
no other means for interrogating its environment than via optical means, this
would not matter. But there are also senses (touch, sound, smell) that receive
information that could (and should) correlate with the optical information.
But tactile, sound, and smell information is not geometrically inverted. So it
must have required a significant evolutionary effort to develop the required
neural circuitry to cope with this inconsistency. Even stronger, if we assume that
the single-pupil eye was preceded by the faceted eye, there is no way that—
without the neural system to invert the image—the single-pupil eye had any
advantage over the faceted eye. There is no way to gradually develop inverting
systems: either an image is inverted or it is not. There is no smooth transition
between non-inverting and inverting. If we assume that evolution works along
paths of continuity, we can argue as follows. As long as the inverter is not
operational, the single-pupil eye is worthless, and as long as the single-pupil eye
is worthless (blind), evolution is not going to put effort in developing neural
circuitry for correcting it. So we can provisionally conclude that it is likely that
the single-pupil eye had developed separately from the faceted eye. But once
a rudimentary single-pupil eye is functioning, it is clear that an increase of the
resolution, simply by adding the number of optic cells in the retina, is immediately
advantageous.

In the rest of our argumentation, we will consider only single-pupil eyes. We
already have seen one p-equivalence relation that holds for 3D distributions of
point light sources and their images on the retina. The emitted color of a point
light source S and the color that is detected in the optic cell(s) p onto which S
projects are almost the same, the (small) differences are caused by atmospherical
absorption and the (significant) distance-related attenuation. Indeed, if someone
lights a match in a 500-meter distance, we might be able to see the person
because his or her body corresponds to a vast number of point light sources.
But the visible area of the flame of his or her match is, at this distance, negligible.
We can consider the flame a point light source. Therefore, the attenuation is
proportional to |p − S|−2, which is a direct result from Huygens’s principle and
energy conservation: the same amount of energy propagates to all subsequent
spheres with increasing radii r = ct. Since the energy is distributed uniformly over
each sphere, the energy density, that is, the energy per spherical angle, decreases
inversely proportionally to the area of the sphere, or to r−2.

11.3 Physical Preliminaries: Communication via Light Rays 363

There are quite a few further p-equivalence relations. Some have to do with
geometry. The relation between a position of a point light source S and the
position p on the retina onto which it projects is a mapping M . This mapping
models the mechanism of the pupil. M depends on the position of the pupil, say,
e, and the distance between the pupil and the retina, say, f . We assume that the
retina is a plane with a normal vector k. Further, we complete k to an orthonormal
basis (k, h, v) by introducing two normal vectors in the plane of the retina, h
(defining the horizontal direction) and v (defining the vertical direction). Then,
the mapping M can be derived from intersecting a line through S and e with the
retina plane. We find

ph = MhS = f
(S − e, h)

(S − e, k)
pv = MvS = f

(S − e, v)

(S − e, k)

Here, (a, b) means the dot product of vectors a and b. The mapping produces
the horizontal and vertical coordinates of the position on the retina that receive
the projection of S. But it is not guaranteed that any cell will really be exactly
at this position. Further, there is likely more than one cell activated at once, due
to imperfections of the optical system and cross talk between adjacent optic cells.
So the signal is actually sampled in some positions q, where qh = ph + rh and
qv = pv + rv. The vector r is a small random vector that causes an uncertainty in
the interpretation of a detected color signal in q. This uncertainty means that there
is a relation between various points p, p′, p′′, meaning “causes a color detection
to take place in the same optic cell q.” This relation is a p-equivalence relation,
to be called “retina sample jitter” equivalence or RSJ. We will come back to it in
the following.

A further equivalence relation is directly caused by the fact that a detector
can be placed anywhere on a light ray. Apart from the LRA p-equivalence, all
positions on the light ray carry the same information (provided that no occlusion
occurs). Hence, for a given point p on the retina, there is a 1D set of possible
points S that could have been the source of the detected color signal. All these
points S have a relation, and this is an equivalence relation, to be called “light
ray projection,” or LRP equivalence. As a consequence of this projection, some
additional equivalence relations and invariants have been extensively studied in
projective geometry. We do not go into projective geometry here in a quantitative
way; we merely give some qualitative results. First, there is an equivalence relation
that we will call relative view position equivalence, or RVP. We have illustrated it
in Figure 11.2. Depending on the position of the viewer, an illuminated cylinder

364 C H A P T E R 1 1 A Conceptual Framework for NPR

can appear as in the left or the right image. Two 2D point sets are RVP equivalent
if there is one 3D point set that can project on both of them by assuming different
view positions. All parameters e, h, k, and v can be changed between these two
view positions (here we assume the internal parameter f to be constant). So there
is actually a 6-degrees-of-freedom family of possible projections (all orientations
form a 3D set and all positions in 3D space form a 3D set; a view configuration
consists of a position of the pupil and an orientation of the h, k, v-base). Projective
geometry has studied the invariants under this equivalence relation. The most
important invariants are incidence and double ratio. Incidence means that if two
lines l and m intersect in a point p, then the images under varying projective views,
l′ and m′, will intersect in a point p′, which is the image under the same projective
view of p. Similarly, for a line l that passes through two points p and q the image
l′ will under all projective views pass through the images p′ and q′ of p and q,
respectively. Double ratio means to consider a line with four points, a, b, c, and d.
Then we write c = λ0a + µ0b; d = λ1a + µ1b. This uniquely defines λ0 . . . µ1.
Now the double ratio DR(a, b, c, d) is defined as (µ0/λ0)/(µ1/λ1), and it can be
proved that DR(a, b, c, d) is a projective invariant. It stays the same from whatever
direction we look at the line.

A next p-equivalence has to do with the interaction between the light of an
incoming light ray and the light of a surface onto which this light ray reflects. A red
piece of paper looks red in white light, but it looks almost black in green light. Still,
it is the same piece of paper in both cases, and the apparent color differences form
a p-equivalence relation. Under normal circumstances, the colors of incident light
vary not so dramatically, and we deal with this relation again as a p-equivalence
relation: to be called “proper surface color” p-equivalence, or PSC. So, two shades
of green, observed from a field of grass at dawn (when the sunlight is bluish) and
at sunset (where it may be reddish) are p-equivalent in PSC sense. For mirrorlike
surfaces, this relation is not even a pseudoequivalence. The reflected light from a
mirror takes hardly any information of the proper color of the mirroring surface.
But even humans can sometimes be fooled by mirrors. Mirrors may lead to wrong
conclusions about variants and invariants, and many magicians take advantages of
this.

Also in the realm of color-related pseudoequivalences, we introduce the
“shadow surface color” p-equivalence, abbreviated SSC, and the “incoming light
direction” p-equivalence, ILD. Strictly speaking, they are both special cases of
PSC, but they appear quite often in arguments about lighting circumstances as
distinct phenomena. SSC is illustrated in Figure 11.8.

11.3 Physical Preliminaries: Communication via Light Rays 365

These two regions are
SSC p-equivalent

F I G U R E 1 1 . 8 If a color C1 transforms into a second color C2 as a result of a shadow being cast,
then the colors (and hence, the regions in which these colors are seen) are p-equivalent in SSC
sense.

F I G U R E 1 1 . 9 Five images that are p-equivalent in ILD sense.

The working of the ILD p-equivalence is illustrated in Figure 11.9. Further,
the positions of highlights, which depend on the incoming light direction, are
part of the ILD p-equivalence.

It goes without saying that in all but very specific cases, variants under the ILD,
SSC, and PSC p-equivalences take place all together. Moreover, with a change of
the viewpoint (a p-equivalence in RVP sense), the positions of highlights change,
which gives rise to a variant in PSC sense.

The last p-equivalence class that is a direct result of the physics of light
propagation is the “occlusion” p-equivalence, abbreviated OCC. We illustrate
it in Figure 11.10. It often appears concurrent with p-equivalence in RVP sense,
as is illustrated in Figure 11.11. The p-equivalence associated with the fact that
the retina has a finite area, which means that the projections of objects can be
clipped against the retina border (as illustrated in Figure 11.12), will be considered
as a special case of OCC.

366 C H A P T E R 1 1 A Conceptual Framework for NPR

F I G U R E 1 1 . 1 0 There is a p-equivalence relation in OCC sense between the smileys in the left
and right image.

F I G U R E 1 1 . 1 1 This form of OCC p-equivalence is related to parallax. We move to the left, and
as a result of RVP p-equivalence, objects seem to move to the right. Their amount of movement
depends on their distance, and different occlusion relations result.

F I G U R E 1 1 . 1 2 Because of the finite size of the retina, a special case of OCC p-equivalence occurs
for objects that are in the periphery of our field of view.

11.3.3 Summary of Viewing-Related (p-)Equivalence Relations
In the previous section, we have seen eight (pseudo-)equivalence relations that
were directly caused by the physical properties of light. As we will see in the next
section, for living beings to take advantage of visual communication, there have
to be devices to form the (pseudo-)equivalence classes that are caused by these
(p-)equivalences in order to distinguish variants and invariants. Before we discuss
this, we summarize the (p-)equivalence relations, their causes, and their effects in
Table 11.2.

There are, in fact, many more (p-)equivalence relations, for instance, the
mechanism in human perception that recognizes faces. Someone can make a
virtually infinite range of facial expressions. A nice example can be found on
the back cover of a Paul McCartney and Wings album where each of the artists
being photographed goes over some 20 rather extreme facial expressions. The
equivalence relations here are not simply to be expressed in geometric terms.

11.3 Physical Preliminaries: Communication via Light Rays 367

Name
Abbre-
viation

Equivalence (e) or
p-equivalence (p) Affects

Study
together
with

Light ray
attenuation

LRA p Color and intensity

Retina sample
jitter

RSJ p Geometry (details)

Light ray
projection

LRP e Cannot distinguish an
object shrinking or
getting further away

RVP, OCC

Relative
viewpoint

RVP Special case: in the
absence of occlusion,
it is possible with
two views to invert
the projection, so
to reconstruct the
3D relative positions.
In that case, it is an
equivalence relation.
With one view, it
is not possible, and
RVP is at best a p-
equivalence.

Shape (quantitative): an-
gles and lengths are not
constant; however, dou-
ble ratio and incidences
are invariant. Also quali-
tative: due to occlusions,
some features may be
invisible due to blocking
(OCC).

LRP, OCC

Proper surface
color

PSC p (or not even p with
very shiny surfaces)

Absolute color SSC, ILD

Surface shadow
color

SSC p Color differences in the
shape of shadow patches

PSC, ILD

Incoming light
direction

ILD p Relative intensity. With
light shining from the
left, the left part may
seem brighter than the
right part, and vice versa.

PSC, SSC

Occlusion OCC p Arbitrary features may be
missing.

LRP, RVP

T A B L E 1 1 . 2 Summary of viewing-related (p-)equivalence relations.

The facial muscles apply complicated non-linear warps to the geometry of the
skin. Nevertheless, this group of transformations has a distinct invariant: Paul
McCartney stays Paul McCartney and Linda McCartney stays Linda McCartney.
A skilled cartoon artist is capable of exploiting this invariant while taking the
(p-)equivalence class to the limits.

368 C H A P T E R 1 1 A Conceptual Framework for NPR

More sophisticated equivalence relations result from more advanced physical,
biological, or social mechanisms in our surrounding world. Human beings have
developed into a physical, ecological, social, technical, and cognitive environment
that behaves according to many invariants. The branch of philosophy called
evolutionary epistemology assumes that the way our cognitive system works has
been adapted, over the millions of years of evolution, to all these invariants. For
instance, if I leave home in the morning, I may kiss my wife goodbye while she
is still in her nightgown. When I get back in the evening, I expect to see her
dressed in her regular daytime outfit, so despite the visual difference between
these two outfits, they are equivalent in the sense that they generate perfectly
normal variants within the class “the appearances of my wife during the day.”
(Even stronger, if I found her still in a nightgown when I get back home, I might
assume that she has taken ill.) The same holds for the seasons’ changes of trees
and plants, the fact that sometimes my house is covered with snow and sometimes
has all doors and windows open, though I still classify it as inhabiting the same
category, namely, my house. Similarly, the very different appearances of a baby,
a young child, a teenager, an adult, and an elderly person while all the time he
is John Smith indicate the existence of very complex, but at the same time very
natural, (p-)equivalence classes, and our cognitive system has become so much
acquainted to these changes that we would be surprised if they would not occur.

As a conceptual simplification, we may model the neural processes underlying
perception and cognition as being essentially similar, and in what follows we will
use the same terminology to refer to both. An example where a conflict between
a mainly perception-related p-equivalence relation and a p-equivalence relation
of a much more sophisticated level occurs is exemplified in Figure 11.13.

At first, this image can be explained as being one extraordinary long dog
behind a house, using the working of the OCC p-equivalence relation. Next,
there is (probably) a p-equivalence relation associated to the class “dog” that causes
an object to be classified as a “dog” if it can be transformed by means of a scaling
transformation with a scale factor between (say) 0.5 and 2 from the default “dog.”
Let us call this p-equivalence relation DOG. According to this (p-)equivalence
relation (together with the prototypical default), the observed object cannot be
a dog. We can assume (using our model of perception and cognition that we
propose in Section 11.5) that both p-equivalence relations associate to mental
processes, in this case one in a relatively early stage (mainly perception related,
namely, the OCC), and one in a later stage (mainly cognition related, namely,
the DOG). Often a conflict between two interpretations at two different stages

11.3 Physical Preliminaries: Communication via Light Rays 369

F I G U R E 1 1 . 1 3 Illustration of the conflict between p-equivalence relations on different levels.

of mental processing gives rise to surprise, alienation, or laughter. As we will see
later, many forms of non-naturalistic art as well as many cases of optical illusions
can be directly related to p-equivalence relations, and you may speculate that this
is not only true for the visual arts but also applies to non-strictly visual forms of
mental processing.

However, as far as the topic of this book is concerned, we will focus on variants
and invariants that relate to perception more than to cognition, and therefore we
do not attempt to extend Table 11.2 with (p-)equivalence relations related to, for
instance, the change of seasons, the growth of biological creatures,5 or the social
habit of wearing different clothes during the night and during the day. Most NPR
practitioners do not take these variants into account either.

We have now already several times alluded to layered structures, both in mental
processes (perception and cognition) and in our formal framework (connecting the
semantic contents of layers by means of (iso-)morphisms). Let us try to carry this a
bit further in Section 11.5, where we use the OSI model for data communication
as a template for visual communication. However, for the mechanisms described

5. There is one well-known example where the anticipated variant due to biological growth directly
affects our perception. Baby animals of most higher species have a relatively large forehead (due to the
fact that in newborns, the brains are relatively far developed compared to the other body parts). At the
same time, newborns are volatile and harmless and should receive protection by the adult individuals
in the group more than grown-up individuals. Therefore, there is an almost irresistible affection to
faces with a larger forehead compared to faces with a smaller forehead. Cartoon characters almost
invariably make use of this phenomenon.

370 C H A P T E R 1 1 A Conceptual Framework for NPR

in this model to be at least a bit plausible, we have to go into some aspects of
perception and cognition in neurological systems.

11.4 Neurobiological Context: Look-Ahead Sets and
Look-Around Sets

A vast amount of literature exists on issues related to visual perception and
perception-related cognition. It is certainly not our intention to summarize this
material here. We also think that it may not be necessary for our purpose. Instead,
we want to introduce a simple paradigm that should give sufficient support for
our lines of reasoning. This is the notion of look-ahead sets.

The term look-ahead set, to be abbreviated as LAS (plural, LASses), is taken
from the construction of compilers for computer languages; it is also not uncom-
mon in linguistic studies. In a compiler or translator, the term LAS means the
collection of given tokens (letters, symbols, words, and so on) that could occur
as the next token in a given state. For example, suppose a computer language
contains the construct (grammar rule)

IF (< condition >) THEN < statement1 > [ELSE < statement2 >];

where the terms in capitals refer to literally occurring strings of characters, and
the terms in sharp brackets follow from further grammar rules. The term in
rectangular brackets is optional. Then, after having recognized the word IF , the
only meaningful character to follow can be a (. We say that in the state where
the word IF has been recognized, the LAS equals a singleton (a set with only
one element), namely, (. After having recognized the construct <statement1>,
the LAS equals ELSE, ;, and so forth. We observe the following properties of
LASses:

◆ In the case of a correct piece of text (that is, a piece of text that obeys the
grammar rules of the compiler), in any state the next token is in the current
LAS.

◆ The LAS is, in any state, typically much smaller than the set of all tokens
that are recognized by the compiler. So restricting the search for matching to
the LAS, apart from anything else, has significant efficiency advantages over
exhaustive matching with all tokens.

◆ The collection of LASses in every state of the compiler, in some sense, reflects
“everything that could occur” in a piece of text that is to be recognized by

11.4 Neurobiological Context: Look-Ahead Sets and Look-Around Sets 371

the compiler. All regularities of the language in which the pieces of text are
written are reflected in the set of LASses.

◆ A LAS could easily be extended with a probability distribution, expressing
the chance for each token to follow. For instance, in natural English, the
LAS in the state where the most recently read tokens are “compi,” the
immediate LAS is “l”, and if we look one step further, it is “la,” “le,”
“li,” respectively, for the words “compilation,” “compilations,” “compile,”
“compiled,” “compiler,” “compiles,” and “compiling.” If we have no further
knowledge about the context (higher level semantics), the probabilities of “la,”
“le,” and “li” therefore would be 2/7, 4/7, and 1/7, respectively. However, if
we do have knowledge about the current state at a higher semantic level (for
instance, because the grammar dictates that, if we are attempting to recognize
a correct English sentence, we have to be in the process of recognizing a verb),
the LAS reduces to “le” with 100% certainty. So LASses can co-exist at various
semantic levels, and LASses at a higher semantic level could help reduce the
size of LASses at lower semantic levels.

◆ Conversely, an “intelligent” compiler, that is, a compiler that should try to
figure out what the LASses are of the language it should recognize, could
attempt to acquire information about LASses using statistics. Indeed, this is
the method that is used in various code-breaking techniques. In our context,
we will call this process “learning.” A compiler is fed with vast amounts of text
fragments in a given (fixed) language, and it constructs the LAS statistics under
way. For now, we do not make any allusions about the automatic occurrence
of LASses at higher semantic levels, but it can be easily shown by experiments
that a statistics-based set of LASses for a compiler to recognize words in any
given natural language can be constructed in this way.

To summarize, LASses allow for more efficient recognition (that is, classifi-
cation) of input patterns than exhaustive searching of the entire set of all possible
input patterns. LASses tie in with the statistics of input patterns, and provided
these statistics are sufficiently stable over time, LASses can be learned in an unsu-
pervised manner. One way to put it is that to a compiler (or “classifying agent”
or “recognizer”), the set of LASses represents the pool of patterns that it should
recognize or classify.

Once a set of LASses is constructed that has shown to be adequate in a given
environment (here the word environment refers to the set of input patterns that
the classifying agent has to classify; the word adequate refers to the fact that the
next token to be classified is with sufficient certainty in the current LAS), the

372 C H A P T E R 1 1 A Conceptual Framework for NPR

1 while (true) do
2 fetch new token t
3 q := undefined
4 bestmatchqualitythusfar := −∞
5 foreach possible input p
6 if (matchquality(t, p) > bestmatchqualitythusfar) then
7 q := p;
8 bestmatchqualitythusfar := matchquality(t, p);
9 fi

10 od
11 report found and recognized q
12 od

A L G O R I T H M 1 1 . 2 Strategy 1: exhaustive matching.

1 while (true) do
2 fetch new token t
3 q := undefined
4 bestmatchqualitythusfar := −∞
5 foreach possible input p in current LAS
6 if (matchquality(t, p) > bestmatchqualitythusfar) then
7 q := p;
8 bestmatchqualitythusfar := matchquality(t, p);
9 fi

10 od
11 update LAS on the basis of recognized q
12 report found and recognized q
13 od

A L G O R I T H M 1 1 . 3 Strategy 2: LAS-based matching.

process of classification can be further simplified. Indeed, we can distinguish three
classification strategies:

1. exhaustive matching (see Algorithm 11.2),

2. LAS-based matching (see Algorithm 11.3), and

3. higher semantics LAS-based matching (see Algorithm 11.4).

We shall study these in turn.

11.4 Neurobiological Context: Look-Ahead Sets and Look-Around Sets 373

1 while (true) do
2 fetch new token t
3 q := undefined
4 bestmatchqualitythusfar := 0
5 foreach token p∗ in current highersemanticLAS do
6 generate default input p out of p∗
7 if (matchquality(t, p) > bestmatchqualitythusfar) then
8 q∗ := p∗
9 bestmatchqualitythusfar := matchquality(t, p)

10 fi
11 od
12 update highersemanticLAS on the basis of recognized q∗;
13 report found and recognized q∗
14 od

A L G O R I T H M 1 1 . 4 Strategy 3: higher semantics LAS-based matching.

In order to assess the match quality between t and p, the function matchquality
(t, p) should take into account all the variants ((p-)equivalence relations) that
belong to the semantic level of the input tokens. On the other hand, it should
focus only on the invariants that belong to that level. If, for instance, we take
the p-equivalence relation LRA (see Section 11.3.3) into account, we know that
we do not have to attempt to assess the precise color since it may have turned
a bit bluish gray because of atmospheric attenuation. But at this semantic level,
the shape would be an invariant. In the example of compilers, the distinction
between variants and invariants could amount to ignoring the difference between
capitals or lowercase characters, tabs or redundant spaces. In the more interesting
case of visual recognition, the equivalence relations depend on the semantic layer
we are currently studying (in Section 11.5 we propose a reference model for such
semantic layers in visual communication). For now we give as an example that
an equivalence relation might be that straight lines of different thickness are to be
considered equivalent, and therefore to check if t is a straight line (as opposed to,
for instance, a circle). The function matchquality(t, p) should be resistant against
the difference in thickness between p and t.

In the next strategy, we replace the set of all possible input tokens by a current
LAS. The LAS is thought to have the structure of a quotient, either obtained from
true equivalence relations, or by upgrading from p-equivalence relations under
the assumption of a finite set of input patterns and sufficient defaults. The function

374 C H A P T E R 1 1 A Conceptual Framework for NPR

matchquality(t, p) has to take the allowed equivalence relations of the current LAS
into account. This strategy is clearly more efficient than the first strategy, provided
that

◆ LASses are not too large,
◆ taking the equivalence relations into account is not too expensive,
◆ LASses are adequate with respect to our environment, and
◆ updating a LAS is not too complicated.

The efficiency of this second strategy is largely determined by the efficiency
of dealing with the equivalence relations associated to the current LAS and the
number of elements in that LAS. As we have seen in our example with natural
language recognition, the migration to a higher semantic level might bring a
significant reduction, both of the size of the LASses involved and their associated
(p-)equivalence relations. For instance, the number of words in an average natural
language is O(105)–O(106), but the number of word categories (verbs, nouns, and
so on) is only O(101)–O(102). First assessing which word category we may expect
(based on the quotient structure of a higher-level semantic LAS) significantly
reduces the size of the LAS on the lower semantic level. In visual context, the
number of distinct polygons (triangle, quadrilateral, pentagon, hexagon, and so
on) is by far less than the number of different ways a triangle (quadrilateral,
pentagon, and so on) could be drawn into a raster image. The following strategy
makes use of this fact by performing the actual matching not at the semantic level
of the current token t, but at a higher semantic level.

In the third strategy, we still have the disadvantage of a complicated matching
function (because of the large and complicated set of equivalence relations in the
lower semantic level LAS), but we have the advantage of only using elements p∗
of a higher semantic LAS to perform the match with. An obvious variation of
strategy 3 would therefore be to also do the matching between elements of the
semantically higher quotient. This, however, requires “lifting” t to the higher
semantic level—and that would confront us with a chicken-egg problem since
the entire purpose of matching is to classify things. We conclude the overview of
matching strategies with the following remarks:

◆ Strategy 3 does not necessarily need to be restricted to one higher semantic
level: we can also conceive strategies where we bring in multiple higher
semantic LASses at the same time. We even propose that the classifications as

11.4 Neurobiological Context: Look-Ahead Sets and Look-Around Sets 375

reported by the various (simultaneous) versions of strategy 3 should occur at the
same time. We see that a drawing represents a triangle (and not a quadrilateral)
and that its lines are curved (and not straight) and of unequal width (instead
of equal width), and so on.

◆ When using either strategy 2 or 3, we might find that the reported q (or
q∗) does not give a satisfyingly high value for the best match quality. That
might be a trigger for extending the LASses of the various involved levels with
a new characteristic element (“default”), and applying the already existing
(p-)equivalents to generate an associated equivalence class to it. This could be
called learning.

◆ We notice that strategies 2 and 3 as they are given here (so without the option
for extending LASses) will produce meaningful (seemingly recognized) outputs
even if the token t did not occur in any of the involved LASses. We can
even imagine a scenario where a sequence of input tokens t is offered to
the algorithm that are purely random. The internal sequence of states of the
recognizer, as they are characterized by the subsequent LASses, generated by
the internal “update LAS” steps in the algorithms, still would make sense.
Indeed, they would correspond to a “synthesized” series of environments that
would resemble a sequence of environments that at least locally would be
consistent. You could call this “dreaming.” The recognizer does not receive
its input tokens from a true, physically existing dynamic environment, but
it still goes through a sequence of state transitions (a sequence of LASses at
various semantic levels) that seems to have some local consistency (due to the
update from one LAS to the next, where every individual update would make
sense in a truly occurring sequence of environments). Global consistency, of
course, does not have to occur. In a non-dreaming situation, the experienced
global consistency comes from the (assumed) consistency of the offered input
tokens.

◆ The matching process is described here as a sequential linear search. It is neither
necessary that the search is linear nor that it is sequential. Dropping the first
assumption would give rise to alternative scenarios where statistics comes in.
Check plausible elements p or p∗ first, and stop as soon as a sufficient high
best match quality has been obtained. This scenario could model a type of
mistakes that, for instance, occur in young children that have not fully mastered
reading. They conclude having read a particular word upon recognition of
the first few characters of that word, which may be wrong. Dropping the

376 C H A P T E R 1 1 A Conceptual Framework for NPR

assumption of sequential search gives rise to a slightly broader definition of
LAS that is particularly useful in visual communication: instead of a look-
ahead set, we can just as well consider a “look-around set,” consisting of
elements (equivalence classes) that can be expected in nearby regions of the
visual field, instead of nearby temporal instants. When we come to discuss the
(p-)equivalence relations such as introduced in Table 11.2, we will see that
most of these follow quite naturally from the LAS model when interpreted as
look-around sets.

Of course, we do not claim that perception and cognition in biological systems
take place in the form of (variants of) strategies 1, 2, or 3. Neither do we claim
that somewhere in the brain or the nervous system such things as LASses really
occur. Even stronger, until a couple of years ago (we started thinking of this model
around 1996) we would not even dare publicly speak or write about it, afraid of
being ridiculed by the neurological community. There are a number of reasons
that we dare to do it now.

◆ Our model only has to serve in arguing about (algorithms for) NPR. It
does not have to be true (see our observations in Section 11.1), as long
as it is relevant or comprehensible. It should only inspire to novel NPR
techniques or NPR-related experiments. It seems that an approach in terms of
variants and invariants, enhanced with the model of semantic layers of visual
communication as we will introduce it in Section 11.5, is convenient because
it simplifies the terminology.

◆ Our model seems not inconsistent with the ideas of Igor Aleksander (1996),
in particular as far as the occurrence of dreaming is considered, but also
learning, classification, and various types of mistakes follow both from his
model and ours. In Alexander’s work, however, a much more reductionistic
view is developed as he departs from neural network models.

◆ As we will see, we no longer need to make a distinction between perception
and cognition. There is just one stack of semantic layers where representation
transformations occur that preserve invariants and exploit variants in order
to achieve classification. Each layer has its own (p-)equivalence classes and
defaults, and as a result, each layer can be described in principle as a quotient
structure (more about this stack in Section 11.5).

11.4 Neurobiological Context: Look-Ahead Sets and Look-Around Sets 377

◆ If we assume that biological evolution aims to optimize efficiency, we can see
why a progression from strategy 1 to strategy 2 (the introduction of LASses),
and next a step from 2 to 3 (introducing LASses from different semantic levels)
would be a possible way to go.

◆ Our thinking is consistent with various forms of optic illusions and non-
naturalistic painting (we will say more about optic illusions and non-naturalistic
painting in Section 11.5 since these topics are closely related to NPR). For
now, we refer to well-known phenomena from perception psychology: seeing
faces in clouds and (under poor illumination conditions) in abstract patterns
(for example, wallpaper in children’s bedrooms is known to develop faces of
witches and monsters). These phenomena, known as “gestalt,” can be related
to our scenarios 2 and 3 if the token t is really not in any of the LASses and
just one of the defaults, q or q∗, is reported to have been recognized. Notice
that the gestalt phenomenon in these forms seems to occur predominantly in
states of reduced concentration: maybe concentration helps to enforce (guard?)
global consistency of the sequence of LAS updates.

◆ The way to argue, in our model, about the connection between the LASses of
various semantic levels is in terms of (iso)morphisms. This is convenient since
this is also the language to use in formally specifying computer programs and
designing experimental setups for validating, for example, the comprehensi-
bility or equivalence of various NPR styles.

11.4.1 Perceptual Context
In terms of the LAS model that we presented in the previous section, we now give
a brief discussion of some of the (p-)equivalence relations from Section 11.3.3. In
the last years, much experimental research has been done on the mechanisms of
early vision processing in the retina, the optic nerve, and the first couple of visual
synapses in the pathways between the eye and the visual cortex. Without going
into many technical details, we summarize some salient features of this system.

We start by observing that we assess relative brightness rather than absolute
brightness. Indeed, consider the image in Figure 11.14.

Despite that the small rectangles have all the same absolute luminance, they
appear increasingly bright due to increasingly darker backgrounds when going
from left to right. To understand this, way may conjecture that our sense for
absolute brightness is deduced from relative brightness that is obtained earlier in

378 C H A P T E R 1 1 A Conceptual Framework for NPR

F I G U R E 1 1 . 1 4 Absolute versus relative brightness.

the vision system. A simple model for obtaining relative brightness from readout
values in retina cells is to assume a second layer of neurons, immediately behind
the retina cells, that compute the differences in small groups of adjacent retina
cells. Such neurons will be called operators, mathematically speaking they behave
as differential operators or (in a discrete view) finite difference operators of various
kinds: directional derivatives in various orientations as well as (more or less)
isotropic operators. Microscopic studies of the retina have revealed that these
connections indeed exist in terms of appropriate interconnections of second-
layer neurons and retina cells. A directional derivative in direction v is the
operator (v · ∇), and an example of an isotropic operator is D = (∇ · ∇). Here,
∇ is the operator (∂/∂x, ∂/∂y) and (·) is the dot product of two vectors. A
minor variation to ∇, say, ∇∗, defined as the so-called logarithmic derivative
∇∗I = ∇ log(I) = ∇I/I (where I is the luminance, I = I (x, y)), explains the
invariance for global changes in the luminance. If the luminance is globally
multiplied by a constant factor, I ′ = fI , with f constant, we get ∇∗I ′ = ∇∗I . This
not only implements parts of the p-equivalence relations LRA, PSC, and SSC,
it also makes better use of the limited dynamic range of nerve cells. Indeed, the
absolute difference between maximal brightness (say, direct sunlight) and nearly
absolute darkness would require a signal range of many orders of magnitude.
Using the logarithms brings this down to a much more modest variation. With
a given dynamic range of the firing values of neurons, this allows a much more
fine-grained distinction of (relative) luminance values. Further, we observe that
difference operators implement the LAS that corresponds to the semantically
lowest level (here, LAS is intended to mean look-around set). Indeed, in those
regions where the output of the difference operators vanishes, we can conclude
that the value in one retina cell exactly predicts those of its neighbors. A further
type of connection that has been experimentally verified in the retina is that of

11.4 Neurobiological Context: Look-Ahead Sets and Look-Around Sets 379

F I G U R E 1 1 . 1 5 Schematic representation of a 1D luminance distribution and the result of some
operators.

the (directional) averaging operator. It can be regarded as the opposite of the
(directional) derivative operator. It does not fire in response to the difference of
retina cells, but in response to the equality of retina cells. In our jargon, this
implements part of the RSJ p-equivalence relation. In the schematic image in
Figure 11.15, we give a one-dimensional luminance distribution, and we depict
the output of the directional derivative in the x direction, the directional derivative
in the −x direction, the isotropic derivative (second derivative), and the averaging
operator. If we assume the retina cells to be uniformly distributed, the working of
the three operators can be described as a convolution with footprints, respectively,
(1, 0, −1), (−1, 0, 1), (−1, 2, −1), and (0.25, 0.5, 0.25) (in Figure 11.15, these
are the curves from top to bottom).

Since isotropic operators are (in good approximation) invariant for rotations,
they implement part of the RVP equivalence relation. However, although their
output value may be invariant under rotations and other 2D geometric transfor-
mations associated to LRP and RVP, the region of the retina where they report
geometric singularities still varies. No local operators are able to achieve these
invariants, so in order to explain how the geometric part of the LRP and RVP
equivalences can be obtained, we have to look a bit more in detail. The key
observation seems to be that repeated application of averaging is capable of pro-
ducing a so-called scale space version of the retina’s luminance distribution. A
scale space is a series of images of a given input image at increasingly reduced
scale. In Figure 11.16, we give an example of a scale space of a character K.

This example was obtained by repeatedly applying two anisotropic versions
of the averaging operator. It can be shown that by superimposing various scaled
copies of an image, an approximation of its so-called Fourier transform can be

380 C H A P T E R 1 1 A Conceptual Framework for NPR

F I G U R E 1 1 . 1 6 Scale space for the character K.

obtained. The Fourier transform F(I) of an image I is a mathematical quantity
that has the property that when applying translation or rotation or scaling to
I , for example, I ′ = T (I), the Fourier transform is replaced by the Fourier
transform multiplied by a complex number: F(T (I)) = cF(I). In a similar way as
the logarithmic derivative was capable of dealing with the effect of a global (real)
multiplication factor of the luminance distribution, variants of the logarithmic
derivative can eliminate these complex multiplication factors, and again we
obtain invariants. The combined working of the Fourier transform together
with the post-processing to obtain rotationally invariant representations is called
the Fourier-Mellin transform, and it is considered not unlikely that the neural
processing in the early visual pathway is similar to this transform. The invariants
obtained by the Fourier-Mellin transform are (in reasonable approximation) part
of the invariants associated with LRP and PSC. It is likely that operators, associated
with further details of the LRP and RVP equivalence relations, require more
advanced processing of neural networks higher up in the visual pathways.

We continue our short introduction in the perception of shape and the associ-
ated invariants with an example of how the working of some of the mechanisms,
related to eliminating (p-)equivalence relations, can directly cause perceivable, vi-
sual sensations. First, consider Figure 11.17. We observe two rectangles (Figure

11.4 Neurobiological Context: Look-Ahead Sets and Look-Around Sets 381

(a) (b) (c)

F I G U R E 1 1 . 1 7 Subjective shapes: classification takes place without OCC involved (a), classification
is simplified due to OCC causing a subjective rectangle to appear (b), and the subjective rectangle
has been emphasized (c).

11.17(a)), and these are perceived as two isolated objects. Next, we add the two
circular-shaped objects (Figure 11.17(b)), and suddenly the operator responsible
for eliminating the OCC variants comes into play and generates the default (the
characteristic prototype) of an object that is not at all present, but that can be
explained by following strategy 3. Indeed, assuming the presence of the light-
colored rectangle, as in Figure 11.17(c), makes classification of the four shapes in
the second image easier, and apparently our visual system prefers the introduction
of so-called subjective shapes (shapes that are perceived but do not really exist) if
that can facilitate classification at other semantic levels.

The next example shows that the processes related to the LRP and RVP equiv-
alence relations may force us to interpretations that are inconsistent with OCC.
Consider the seemingly normal perspective drawing of a house (Figure 11.18(a)).
As soon as we add windows, in Figure 11.18(b), the process that accounts for
the LRP and RVP equivalence relations forces us into an interpretation where
the OCC equivalence is violated. It looks as if the front and right walls of the
house are transparent with respect to the windows! This inconsistency is accepted
rather than an interpretation that is fully consistent both with LRP and RVP, and
with OCC, but that would lead to an interpretation where the windows are not
aligned with the horizontal and vertical sides of the walls. Indeed, an architect
could have decided to plan windows as indicated in the two subsequent images—
but rather than accepting this, our visual system overrides the OCC equivalence
process.

As a last example we show that simple interpretations sometimes can enforce
violation of equivalence. Considering Figure 11.19, we would rather interpret the
arrangement of the cubes as representing an impossible figure (similar to the so-
called Penrose triangle, shown in Figure 11.19(b)), than accept an interpretation

382 C H A P T E R 1 1 A Conceptual Framework for NPR

(a) (b) (c) (d)

F I G U R E 1 1 . 1 8 Interpretation of occlusion: perspective image of a house (a), image that is
interpreted as a house with missing walls (b), unconventional window layouts (c) and (d).

where the cubes are glued together in a manner such that incident faces only
overlap for one quarter (which is in fact a construction to really build this object!).
In this case, our visual system assumes that line segments that are on the same
line in 2D also should be on the same line in 3D. This assumption can clearly be
seen to be part of the OCC-related system: indeed, because of occlusion, lines
can appear to be broken, but in reality they should be interpreted as being one
line. This “trick” helps us out in many OCC-related cases, so it is considered
so fundamental to our visual system that it is even applied where this would
lead to inconsistent interpretations at higher semantic levels. The OCC-related
mechanism escapes conscious control, indicating that it takes place in an early
stage of the visual pathway.

Because of an “overenthusiastic” OCC-related process, Figure 11.19(a) is
mistakenly interpreted as a “sort of ” partially fragmented Penrose triangle (Figure
11.19(b)). The latter, however, is fundamentally inconsistent (cannot correspond
to the projection of a solid 3D object), whereas the left figure is perfectly consistent
with an arrangement of nine cubes, stuck face-to-face to each other.

After we have dealt with a layered model of the various semantic layers that can
be thought of to be involved in visual processing, we give some more examples
of optic illusions and non-naturalistic painting styles that can be related to the
hidden working of neural processes, analogous to strategy 3, that aim at exploiting
(p-)equivalence relations.

11.5 A Model for Visual Communication 383

(a) (b)

F I G U R E 1 1 . 1 9 Impossible figures? An arrangement of cubes that can be realized in 3D but that
would require all pairs of adjacent cubes to be nonaligned (a). This arrangement would result in
the need for a non-consistent 3D interpretation by the viewer, and a non-existing 3D object (b).

11.5 A Model for Visual Communication
Long before the advent of computers, information was communicated via me-
chanical or electronic means. Alexander Graham Bell’s invention is only one
example in a vast range. With computer technology, there was a rapid increase
in algorithms and protocols for coding and decoding information from one for-
mat into another. Coding and decoding refer to forms of transformation where
certain characteristics of the processed information are kept, whereas others are
changed. We could call the maintained aspects of information the invariants of the
(de-)coding process, and the aspects that are changed the variants. The notions of
equivalence classes, and of isomorphisms that we introduced earlier, again apply
to the process of (de-)coding. For instance, consider Morse coding. In traditional
Morse coding, no difference is made between capitals and lowercase letters, so
the message SOS and sos are equivalent. In fact, the equivalence class with default
sos is SOS, SOs, SoS, Sos, sOS, sOs, soS, sos. The coded version of this message

384 C H A P T E R 1 1 A Conceptual Framework for NPR

P1

P2

P3

Pn

Q1

Q2

Q3

Q n

F I G U R E 1 1 . 2 0 Simplified view of the OSI model for data communication.

is · · · − − − · · ·, but again, there is an equivalence relation here because the
absolute duration of a dot and a dash can vary; dots as well as dashes each are
in a p-equivalence class defined by “has about the same length as,” that can be
made into a true equivalence class by introducing the default dot of (say) 0.2
second and the default dash of (say) 0.6 second, and next applying Algorithm
11.1 (Section 11.2.4). A hybrid here would be of duration 0.4 second, and every
telegrapher is trained to avoid these hybrids. So we see two representations that
carry the same semantic bearing, both in the form of a quotient structure, and
an (iso-)morphism between them. Indeed, for a trained telegrapher, the message
· · · − − − · · · will cause the same flush of adrenaline as the message SOS for a
layperson. This similarity with respect to the production of adrenaline is the iso-
morphism, tying the representations together. When computer communication
caused the increase of protocols for coding and decoding—in association with
more and more complex sets of variants, invariants, and morphisms to connect
them—the idea of a layered structure was born. This is the so-called OSI model,
and it is extensively described elsewhere (see Tanenbaum, 1998). Schematically,
it can be depicted as in Figure 11.20.

Since we do not go into the details of the OSI model here, we will not explain
what the precise meaning of the boxes P1 . . . Qn is. We only mention the most
salient features of the model.

There are two communicating agents, P and Q, that exchange messages with
certain semantics, that is, the invariants of that message. Box P1 contains the

11.5 A Model for Visual Communication 385

original message. In fact, box P1 can be seen as a quotient structure on all the
messages that can be represented, where the collection of various messages that
carry the same meaning (semantics) is one element, namely, the equivalence class
generated by the equivalence between all messages that have that same semantics.
As an example, suppose that the communication structure is set up to convey
subject-verb-object sentences, and the possible subjects could be “John,” “Peter,”
or “Mary”; the possible verbs could be “paints,” “bakes,” or “buys”; and the
objects could be “the floor,” “a sausage,” and “a new suit.” Then the sentences
“My friend John paints the floor of his room” would have the same semantics as
“Mr. J. colors the ground part of his apartment.” The equivalence class associated
to “subject” is P1 = {John, my friend John, Mr. J., Johnnie, . . .}. In box P2 is
another representation of the message that again can be represented by a quotient
structure, and the relation between P1 and P2 is an isomorphism such that the
semantics (the invariants) of the contents of P1 are preserved. The arrow between
P1 and P2 is a process that transforms you representation into the other. Finally,
the message has been subsequentially transformed in a number of steps until the
format is suitable for physical transfer. This can be in the form of any means that is
understood by boxes Pn and Qn. Finally, by means of a number of isomorphisms
between the boxes Qi, i = 1 . . . n, the message is transformed (preserving the
invariants and making efficient use of the freedom offered by the variants) until
the format is understandable (or serves any other purpose) in Q. Notice that the
actual communication takes place only between Pn and Qn. Nevertheless, you
could pretend that communication takes place between any Pj and Qj, j > n.

In the original OSI model, communication is assumed to be bi-directional.
For visual communication, this is not the case. Our eyes work as one-way
communicators only, and so does the rest of our visual system. Similarly, a
computer graphics rendering pipeline (be it photorealistic or not) is a one-way
device. This significantly simplifies the communication model. This one-way
version of the OSI model will serve as a blueprint for our model of visual
communication in Section 11.5.1.

11.5.1 Layers and Semantic Transformations in Visual
Communication

For our purpose, we propose a model with nine layers. In the diagram in
Figure 11.21, which will serve as our reference model for the semantic layers
in visual communication, the top-level information transfer is indicated by T18.

386 C H A P T E R 1 1 A Conceptual Framework for NPR

P1: initial cause

T1

T8

T7

T6

T5

T4

T3

T2

P9: distributed color in 2D

P8: singular regions in 2D

P7: areas in 2D

P6: areas in 3D

P5: objects in 3D

P4: material objects in 4D

P3: scene in 4D, including all relations

P2: chain of events

Q1: semantic conclusion drawn from
 the scene and its context

T17

T18

T9

T10

T11

T12

T13

T14

T15

T16

Q9: excited neurons in the retina

Q8: detected geometric singularities
 in the field of view

Q7: detected segments in the field
 of view

Q6: reconstructed areas in 3D space

Q5: recognize objects in 3D space

Q4: recognized objects in 3D, including
 their motion behavior

Q3: recognized scene

Q2: recognized context of the scene

F I G U R E 1 1 . 2 1 The layered model of data communication applied to visual communication.

However, it actually is the combined effect of transformations (morphisms)
T1 . . . T5 and T9 . . . T17, where only T9 is the optical communication via light
rays. First, we explain the process steps P1 . . . P9 in Table 11.3 and Q9 . . . Q1 in
Table 11.4 by means of an example; next, we describe the transformations.

Most transformations, in particular those in the lower regions of the Q-stack
(T10 . . . T12) can be related to the equivalence classes introduced in Section 11.3.
For example, at level T10 we can see the p-equivalence relation RSJ in action.
In order not to be confused by the jitter due to the discrete distribution of retina
cells, we assume that we have developed neural “correction hardware.” In this case,
cells near the LAS, associated with one optic cell receiving a color, may very well

11.5 A Model for Visual Communication 387

Interpretation Some invariants Some variants

P1 A week ago, I bought an expensive Chinese vase
and put it on top of a cabinet in my office so that
everybody could have a good look at it.

“I,” “expen-
sive,” “on top
of”

“about a week
ago,” “cabinet”

P2 Because of construction work going on near
the office building, there is heavy traffic. Small
vibrations in the ground propagate through the
walls and the floors, and make the cabinet tremble
slightly. The cumulated effect of all this, however,
is that the vase has moved to the rim of the cabinet
and now topples over.

“vibrations,”
“topples over”

“due to
construc-
tion work,”
“through
the walls and
floors”

P3 A falling Chinese vase that goes through a
complicated trajectory due to the combined effects
of gravity, the inertia of the solid object, air friction,
and a first light collision with the side of the cabinet.

“gravity,”
“inertia,”
“collision”

“side of”

P4 The relevant objects are the cabinet, the ground
floor, and the Chinese vase. At this very instance,
the cabinet and the floor are not moving, and the
vase is taking part in a rotation around a given point
P with a given axis A and a translation over a given
vector T . Notice the parameters of this so-called
rigid motion, i.e., P , A, and T themselves depend
on time, and at the next time point they will be
different. All this is described by suitable evolution
equations.

P , A, T and all
relevant objects

The time
dependence
of P , A, and T

P5 If we only consider a static description of the
situation, we have the cabinet and the floor in
their usual positions and orientations, and the
Chinese vase in a somewhat peculiar position and
orientation.

All relevant
objects, their
positions and
orientations

“peculiar”

P6 The outside of the vase consists of, say, 12 piecewise
smooth surfaces with given reflectivity (due to the
glaze) and texture; moreover, there is a shadow of
the cabinet on some of these surfaces. Each of these
surfaces can be seen as a collection of light sources
(as described in Section 3.1). All these light sources
emit light rays in all directions in the hemisphere
of directions above the surface. However, by far
most light rays cannot contribute to the visual
communication because they are not directed to
the pupil of the observer.

All surfaces that
are visible from
the viewpoint
of the viewer;
shadows and
textures

All surfaces
that are not
visible from the
viewpoint of
the viewer

T A B L E 1 1 . 3 Example to clarify the proposed model (continued).

388 C H A P T E R 1 1 A Conceptual Framework for NPR

Interpretation Some invariants Some variants

P7,
P8,
P9

P7, P8, and P9 normally don’t refer to physical
processes. However, they can be brought into
correspondence with the layers Q7, Q8, and Q9 in
the stack of representation transformations on the
side of the receiving agent (the viewer), therefore
we include them in the stack of representation
transformations of the sender (the object that the
viewer is watching). Moreover, in a computer
graphics model (either photorealistic or non-
photorealistic), they are typically included, and the
associated transformations T6 . . . T8 correspond
with meaningful classes of computer graphics
algorithms.

T A B L E 1 1 . 3 (continued)

receive the same color. Having these LASses available in the early vision process
means that one LAS represents the part of continuous color distribution, to be
projected on the retina, which is consistent with the various patterns of adjacent
optic cells that report the detection of a certain color. So, the p-equivalence
class associated with a small collection of adjacent firing optic cells is in fact the
collection of all continuous color distributions that could have given rise to the
observed firing pattern. All further conclusions (distinctions between variants and
invariants) are based on this equivalence class, not on the individual cell readings
anymore.

This mechanism allows us to replace a continuous color shade by a stochastic
stippling. At the lowest level of firing patterns of optic cells, these will be different
in response; the produced equivalence class, however, will be the same, and we
are willing to believe that the pattern should be interpreted as a continuous color
distribution. If we force ourselves, we can “see” through the stack of subsequently
lower and lower semantic contents (as we mentioned in Section 11.4, we can
think of executing strategy 3 with various semantic layers in parallel, including
low levels). We cannot help getting our interpretations immediately from the
higher levels, and drawing a conclusion, “aha, this is a smoothly curved surface
that is part of the back plate of a grass hopper” before we see “oh by the way, it
was rendered using stippling, and oh by the way, it is actually a 2D projection,
and oh by the way, the colors are really those of black toner on white paper,

11.5 A Model for Visual Communication 389

Interpretation Some invariants Some variants

Q9 Every color-sensitive retina cell receives a color
spectrum and samples it in three quantities.

Relative
luminance,
rough color
distribution

Spectral energy
distribution,
precise location

Q8 Cells along the visual pathway report local extremes
in luminance, saddle points, contour lines, and
dominant directions of texture.

Parallelism,
periodicity,
incidences

Orientation,
distance and ab-
solute position,
number

Q7 Segments that correspond to projected visual
portions of surfaces of the Chinese vase, shadow
regions are “automatically” attributed to the
segment they belong to.

Proper color
distribution due
to the texture

Shadow borders

Q6 A representation of the spatial shape of the surfaces
that project onto the segments in Q7. Occlusions
are resolved, perspective distortions are adequately
interpreted (so despite the fact that, due to the
apparent non-rigid movement of the shape of the
2D segments, we conclude that the shape of the 3D
surfaces is only subject to translation and rotation).

The current
3D shape of
the perceived
surface

Silhouette
borders (indeed,
the perception
of a silhouette
border depends
on the position
of the viewer)

Q5 The Chinese vase in its current position and
orientation.

The Chinese
vase, the fact
that it is not in
a stable upright
position

Its reflection
into the shiny
cabinet window

Q4 The Chinese vase in its current state of motion. Its global speed The lack of
perceived
sharpness due
to motion

Q3 A falling Chinese vase that soon will collide with
the ground.

Its collision
course

The internal
centrifugal
forces due to
the rotation of
the vase

Q2 A falling Chinese vase that soon will shatter due to
a collision to the ground.

The prospective
damage that
will occur

The number of
fragments that it
will break into

Q1 I was stupid putting the expensive vase in a high
position.

My feeling
bad about the
accident

Insurance may
be paying for
the damage

T A B L E 1 1 . 4 Example to clarify the proposed model.

390 C H A P T E R 1 1 A Conceptual Framework for NPR

and” For the stippling artist (or algorithm), it has to be such that the correct
equivalence class is generated as a result of the stipples.

In Table 11.5, we present three versions of all the layers in our model: one from
a physical point of view, one from a point of view of “photorealistic rendering
(PR),” and one from a point of view of “non-photorealistic rendering (NPR).”
Now we should treat the notion “(non-)photorealistic rendering” in a liberal
way. Of course, the levels P1 up to and including P5 do not have anything to do
with rendering. There we interpret the abbreviation (N)PR as “(non-)physical
realization.”

In general, to each of the transformation steps T1 . . . T8, an algorithm or a
procedure could be attributed (either physical, physically based modeled, or non-
physically based modeled); to each of the semantic levels, P1 up to and including
P9, a data representation can be attributed. For the layers Q9 up to Q1, we could
do similarly, but then we embark onto the field of image processing and image
understanding, where the distinction between PR and NPR loses its meaning.

After the transition from the external, objective representation layers of
reality to the internal, perceived representation layers, the distinction between
photorealistic and non-photorealistic representations vanishes. In the layers in
Table 11.6, we only give the physical processes as they may occur in the human
perceptive system, and the analogous computer algorithms.

In the image in Figure 11.22, we classify the various types of singularities
in a static configuration. Of these singularities, we indicate their cause and their
dimension. For simplicity, we leave out color information here. The depicted
configuration consists of a rectangular block B with a rectangular patch P of
different color on the top face, and two cylinders. The left cylinder L is attached
to the top face of B, and the right cylinder is at some distance above B. The entire
configuration is illuminated with a point light source. The numbers in the image
refer to 1D singularities (lines or curves) of various kinds. Notice that various lines
classify in more than one category. Some (but not all) 0D singularities (points) are
indicated by lowercase letters. For the 1D singularities, we get the categories in
Table 11.7.

In Table 11.7, C0 refers to discontinuities (“jumps”), and C1 refers to dis-
continuous derivatives (creases or folds). The latter can be convex or concave.
C∞ means that the discontinuity does not result from any shape singularity, the
surface can be infinitely smooth, that is, all derivatives exist, but the line results
from a discrete jump in optic qualities. In computer graphics, this is often mod-
eled with texture mapping. Some of the 0D singularities are indicated. Most often

Reality Photorealistic (PR) Non-photorealistic (NPR)

P1 The Big Bang? Some historical state that denotes the starting
point of a simulation, a film, a story, or a
documentary account by any other medium,
from whereon the course of events is assumed
to follow by causal relations. This may be on
a large historical scale, such as “the fall of the
Roman empire,” but also of a much smaller scale
(like setting up a collection of domino stones
and toppling over the first one—all of this being
simulated in a computer program).
Representation
A synopsis that has a connection to history and
is internally consistent. Currently, this abstract
level of semantics is only represented informally.

Most philosophical and religion systems start
with creation myths. These could be considered
to be initial causes. In the realm of fiction, it
is the “Once upon a time” phrase that sets the
stage for anything to follow.
Representation
A synopsis that does not necessarily have to
have a connection to history and only has to be
locally consistent. (For instance, Donald Duck is
supposed to live in a house. But in some scenes,
the kitchen in this house may be west of the
living room, whereas in other scenes it may be
east of the living room. “Local consistency”
now means that within one scene, the relative
position of the kitchen and the living room don’t
change, so presumably nobody will notice, but
for aesthetic reasons (or from oversight) globally
inconsistent discontinuities are allowed.) As
with PR, this abstract level of semantics is only
represented informally.

T1 Transition between P1
and P2.

The transformations consist of all physical laws
we want to take into account.

For a given didactic, artistic, or propagandistic
purpose, we may want to allow non-physical
cause-and-effect relations. A significant
example is non-Newtonian physics where
force is assumed to be proportional to speed
instead of acceleration. Strictly speaking, all
approximations that are necessary even in
intended “exact” physics belong in this layer.

T A B L E 1 1 . 5 Topmost levels of the reference model for semantic layers in visual communication. Column one: identification of levels
(P1, P2, . . .) and identification of transitions (T1, T2, . . .). Second column: issues as found in reality. Third column: representation of
these issues in PR applications. Last column: representation of these issues in NPR applications (continued).

Reality Photorealistic (PR) Non-photorealistic (NPR)

P2 The flow of mechanical
causality by means of all
known physical laws and
processes plus the actions
in biological systems
that are initiated by
intentions. P2 represents
the interconnectedness of
the whole universe.

Since computers are finite, it is fundamentally
impossible that in PR a simulation of the total
universe can be achieved (for one reason since
the universe would include the computer on
which the simulation is running, and no finite
system can contain itself completely). So the
distinction between P2 and P3, which is basically
a whole-part relation, does not make sense.

Same as PR

T2 Transition between P2
and P3.

The translation of the synopsis into either a
storyboard or a simulation script is typically
performed by hand.

Same as PR

P3 A physical system that can
be considered on its own,
because interactions with
other systems outside P3
either do not occur or
can be assumed to be
adequately represented
by given boundary
conditions and initial
conditions.

A simulation script.
Representation
Representations for the part of reality that
gives rise to visual phenomena can be globally
classified into 4 types.
1) Descriptions of the occurring objects,
including their geometric and dynamic
properties (inertia, stiffness, internal degrees
of freedom, resistance against breaking, . . .).
2) Descriptions of the (mostly mechanical)
interactions between them (forces, force fields,
handling of collision conditions, . . .).
3) Active controllers (to impose intentionality,
e.g., simulated humans or animals) including
their high-level behavior (AI scripts, neural
networks, . . .) or tools for human interaction
(motion capturing, . . .).
4) Models for participating media (water, air
(damping, friction, . . .)).
All this resulting in a set of coupled (partial)
algebraic differential equations.

In NPR, we can either work with simulation
scripts (see PR), where the equations or other
components may be altered for artistic, didactical,
or propagandistic reasons, or with keyframe
animation (KFA).
Representation for KFA
In KFA, the storyboard is translated to a number
of characteristic states (either stills or stills with
instantaneous motion states), and interpolation
is performed in between them. There are two
variations that link KFA to simulation:
(a) simulation could be used to generate
keyframes, and if the motion sequences are
smooth enough, it might save simulation effort
not to explicitly solve for the simulation equa-
tions for all time steps but do cheaper interpola-
tions instead and (b) the interpolation between
keyframes might involve some form of (pseudo)
physics, for instance, to achieve smooth motion,
ensure constraints are being met, effort (energy)
is minimized, or a final goal is being achieved
(e.g., a thrown ball that should land in a bucket).

T A B L E 1 1 . 5 (continued)

Reality Photorealistic (PR) Non-photorealistic (NPR)

T3 Transition between P3
and P4.

To go from P3 to P4, we simply leave out all
the terms in the simulation script that do not
correspond to objects that can be visualized.

If we used KFA, the transition from P3 to P4 is
void since P3 and P4 are identical.

P4 The manifestation of
physical interactions
as far as they are
observed visually (e.g.,
electromagnetic waves
that are part of P3 are
removed by T3, but the
visible behavior of a
radio-controlled model
race car are part of P4).

Representation
In common practice, geometric object
components are represented either as polygon
(typically triangle) meshes (well-suited for
rendering) or implicit surfaces (object borders
are the null sets of well-chosen functions,
f (x, y, z) = 0; well-suited for non-linear
deformations and collision detection).
For convenient motion representation, compo-
nents are arranged in a hierarchical structure,
where the nodes correspond to (time-
dependent) affine transformations. An affine
transformation is a linear transformation plus
an optional translation. In order to account
for motion blurring (see P5), it is necessary to
represent motion information explicitly.

Representation
The motion state is not necessarily encoded as
affine transforms. In particular, the interpolation
between keyframes in KFA may give rise to
motion patterns that are defined on the vertex
level in polygon meshes.

T A B L E 1 1 . 5 (continued)

Reality Photorealistic (PR) Non-photorealistic (NPR)

T4 Transition between P4
and P5.

Between P4 and P5, time dependency has
to be removed. Removing time dependency
amounts, physically speaking, to taking a
snapshot. Any measurement (a snapshot is a
form of measurement), however, requires a finite
amount of time, since otherwise the information
transmission rate from the measured object to the
measuring device would be infinitely high. In
general, the measured system will move during
the measurement, and motion uncertainty
results. In physical systems, this gives rise to
convolution with an apparatus-specific temporal
filter profile. In PR rendering, the effect of
this temporal filtering is realized with motion
blurring. If motion blurring is omitted, temporal
aliasing occurs: a moving object may appear to
pop in and out.

In NPR, the impression of motion in a single
frame may be conveyed by all sorts of devices,
including velocity lines, repeated copies,
blurring in motion direction, simulated dust
particles, and wavy lines.

P5 Any frozen snapshot of a
part of reality, projected
on its attributes of
shape, size, position, and
orientation; photometric
properties—optional
emission of light (light
sources) and interaction
with light (reflection,
absorption, transmission).

Representation
One way in PR to achieve motion blurring is
to supersample the animation (i.e., to compute
a number of frames at time instances in between
those time instances for which animation
frames are required). The resulting images
should be accumulated and weighted with
suitable coefficients that represent the apparatus-
specific temporal filtering profile. This so-called
explicit approach amounts to repeated traditional
rendering.
Alternatively, an implicit approach that falls in
the raytracing paradigm, consists of, per pixel P,
estimating the convolution with the temporal
profile over that part of the scene that was
visible through pixel P during the time interval
associated to the exposure time of the snapshot.

Representation
The additional visual attributes that were
obtained in T4 (either as 3D graphical objects,
such as 3D speedlines or simulated dust particles,
or in 2D, such as 2D speedlines) are joined to
the object representation and merged in the
rendering phases.

T A B L E 1 1 . 5 (continued)

Reality Photorealistic (PR) Non-photorealistic (NPR)

T5 Transition between P5
and P6.

The decomposition of objects into 3D surfaces
is typically performed during the design of the
objects.

Same as PR

P6 T5 doesn’t have an intrin-
sic physical interpretation.
The difference between
P5 and P6 is that an “area”
refers to a connected re-
gion of homogeneous
geometric and photomet-
ric properties. Whether
or not an “area” could
be equipped with a dis-
tribution of photometric
properties (“texture,”
including distributions
of reflectivity, trans-
parence, etc.), or if it
should be considered as
a collection of smaller
areas, each with constant
photometric properties
(“constant color,” etc.) is
left undecided.

For the two types of rendering paradigms, 3D
surfaces should satisfy different requirements.
For explicit rendering, or scan converting, it
should be possible to enumerate all pixels
that fall within (a projection of) the surface
onto the image plane, where for every pixel,
the photometric properties should be known.
Suitable representations are triangle (meshes)
or parametric patches that in turn are subdivided
into meshes. Subdivision should be compatible
with level of detail (LOD) strategies, where more
triangles are generated upon demand (if more,
smaller details are visible, more triangles should
be rendered for an accurate image).
For implicit rendering, or raytracing, it should
be possible to find the intersection between a
3D surface and a straight line. This means that
apart from polygon meshes, representations
can also include algebraic primitives, such as
spheres, quadrics, implicit surfaces, and Boolean
combinations thereof.
The control flow in explicit rendering is
characterized by a per-surface approach;
implicit rendering is characterized by a per-pixel
approach.

Regarding the control flow, NPR is not different
from PR. Here, as well, we might loop over
the surfaces and perform rendering per surface,
or we might loop over the pixels and perform
rendering per pixel (or screen region—where
a screen region could be any NPR drawing
primitive, such as a hatch line, a brush trace, a
blotch of simulated paint). An interesting hybrid
consists of first using a PR rendering algorithm
(e.g., to obtain a 2D segmentation in screen
space in accordance to screen regions and their
coverage by projected 3D surface, and next
apply NPR techniques in accordance to the
optometric properties of the 3D surface that
projects onto that region. In this case, occlusion
handling and perspective projection are being
taken care of by PR.

T A B L E 1 1 . 5 (continued)

Reality Photorealistic (PR) Non-photorealistic (NPR)

T6 Transition between P6
and P7.

The transformation from 3D to 2D can take place
in either of two forms. For explicit rendering,
every surface element (typically a triangle) is
projected onto a 2D screen region (a collection
of pixels). In this projection, occlusion is to be
taken into account—most often using a depth
buffer.
For implicit rendering, projection takes place by
computing the closest intersection to the eye of
a backwardly traced light ray. Taking the closest
intersection automatically solves the occlusion
problem; using a ray that passes through the optic
center (pupil) automatically gives the correct
perspective transformation.

NPR variations to traditional 3D→2D mapping
should be distinguished to the achieved
transformations that take place as a result of
this mapping. Geometric (central projective)
deformation can be replaced by non-standard,
non-central perspective (fisheye, local zoom,
warping). Occlusion handling can be replaced
by non-standard occlusion handling, such as
partial transparency, priority-based ordering,
and exploded views.

T A B L E 1 1 . 5 (continued)

Reality Photorealistic (PR) Non-photorealistic (NPR)

P7 Physically speaking, it
does not make sense
to argue about 2D
surfaces with photometric
properties: even toner
grains on a piece of paper
are 3D. However, in
many circumstances, it is
convenient to consider
2D images as physical
entities because for
any practical purpose
their shape in the
3rd dimension can be
ignored. Therefore,
T6 can be seen as the
projection operator that
simply “flattens” the 3rd
dimension in 2D images.

The 2D regions that result in explicit rendering
can be shaded with any of a variety of shading
techniques. Some issues are smooth interpolation
of photometric conditions (Gouraud shading,
Phong shading, and more advanced techniques;
this includes also rendering of scenes that
have been processed with radiosity-type
global illumination algorithms), (perspective
correct) texture mapping, where a texture can
represent any varying photometric parameter,
and transparency, environment mapping, and
reflection mapping.
Representation
In its most complete form, local photometric
conditions are represented in the bi-directional
reflection function (bdrf) that, per wavelength,
represents the reflected energy intensity for an
incoming light ray in any one direction and an
outgoing light ray in any other direction. In
most cases, the bdrf is simplified, for instance,
to be isotropic (i.e., it depends only on the angle
between incoming and outgoing light rays).
A full account of the bdrf is only possible in
implicit rendering.

NPR rendering of 2D areas in screen space
includes all forms of hatching, stippling,
mosaicing, simulated brushstrokes, pencil
strokes, airbrushes, interactions between paper
and medium, and so on. Often, the algorithms to
achieve these effects take their input from a PR
rendering for that same region. Also techniques
that imply screen space transformations to the
2D region, such as enlarging, highlighting,
annotating, and replacing simulated shading by
text fall into this semantic layer.

T A B L E 1 1 . 5 (continued)

Reality Photorealistic (PR) Non-photorealistic (NPR)

T7 Transition between P7
and P8.

In PR, 1D or 0D singularities in 2D images
occur in the rendering process, either they
directly follow from singularities in 3D (e.g., a
local maximum of the surface curvature), or they
follow from the mapping T6, or they result from
discontinuities (C0 or C1) in the illumination
(shadow borders, but also highlights may fall
in this category). Their purpose in explicit
rendering is to impose boundary conditions
for the scan conversion algorithm. In implicit
rendering they normally don’t play a role, unless
for efficiency reasons (e.g., for contour anti-
aliasing it may be useful to know which pixels
are on contours. For a general classification of
1D and 0D singularities, see Figure 11.22.

In NPR, singularities may be very relevant clues
to determine rendering styles. In particular,
an outline drawing is nothing but a rendition
based on singularities. 1D (lines, curves) and 0D
(points) singularities can be achieved from the
segments in P7 relatively straightforwardly with
standard flood fill algorithms that can build on
distributions of photometric values as obtained
by PR rendering in P6.

P8 Singularities border two
adjacent areas of relative
homogeneous photo-
metric or geometric
properties. In Figure
11.22, we classify the
various singularities.

In explicit rendering methods, the singularities
of a geometric nature (either intrinsic or resulting
from the 3D→2D mapping as mentioned above)
are represented as projected corner vertices of
triangles. The singularities related to illumination
are most often not explicitly represented, unless
by techniques that treat shadows as explicitly
represented objects (e.g., shadow volumes). In
implicit rendering, they typically don’t occur.

Similarly as in P6, a variety of line style options
can be thought of. In particular, it may be
useful to explicitly maintain the classification as
presented after this table. Labeling the various
singularities with their type may be useful to
adjust the render styles in accordance with the
singularity type.

T A B L E 1 1 . 5 (continued)

Reality Photorealistic (PR) Non-photorealistic (NPR)

T8 Transition between P8
and P9.

Scan conversion enumerates the pixels within
the 2D regions (P7), delimited by the singular
regions (P8). In order to assign a color to
pixels, however, anti-aliasing has to be taken
into account. Anti-aliasing basically comes in
two varieties: (a) shape-related anti-aliasing
should appropriately blur the geometry-related
singularities from P8 and (b) texture-related
anti-aliasing should assure that single texture
elements (often called texels) are adequately
low-pass filtered.
Many techniques have been developed for both
types of anti-aliasing, where techniques in the
context of implicit rendering are directly related
to convolution (supersampling and filtering
with well-chosen low-pass filters). Techniques
in explicit rendering still can use filtering to
treat with texture anti-aliasing, but for shape
anti-aliasing other methods have to be followed.
Indeed, the projected shape of a geometric
object is not simply represented as a signal on a
discrete domain that can be convolved. (A full
treatment of anti-aliasing falls outside our scope.)

If, in NPR, a rendering style is chosen with
certain picture elements (say, stipples), the region
is determined onto which stippling should be
applied, and the luminance distribution that
should be approximated is known, decisions
should be made for the location of each
individual stipple.
This could be a priori fixed (dithering), adjusted
to give pleasing distributions (e.g., no regular
patterns and no clusters), adjusted to the
luminance distribution, and adjusted to give
uniform or variable density and/or shape of
stipples.
All these dimensions for choices apply in
principle to all types of picture elements.

T A B L E 1 1 . 5 (continued)

Reality Photorealistic (PR) Non-photorealistic (NPR)

P9 Layer P9 models the
coupling between
individual surface points
with given photometric
(optic) properties and
the light rays that depart
from these points in the
direction of the pupil of
the eye of a beholder.

In PR, this is the representation of the image
in terms of colored pixels.

In NPR, this is the representation of the image
in terms of whatever picture elements have been
chosen.

T9 Physical transition by
means of light rays
from external reality
to perceived reality.

In transferring from computer-generated images
to computer-understandable images, of course
the physics of light ray plays no role.

Same as PR

T A B L E 1 1 . 5 (continued)

Human perceptive system Computer algorithm

Q9,
T10

The first few layers of neurons behind the retina contain
operators that detect 0D and 1D geometric singularities.
Many of these operators have the character of differential
operators. The LRA, RSJ, and part of the PSC, SSC, and
ILD equivalence relations can be thought of to be handled
here. That is, the semantic representation to be handed
over to Q8 largely consists of invariants with respect to the
mentioned (p-)equivalence relations.

Examples of algorithms that mimic the behavior of the first
few layers of neurons in the optical pathway fall into two
categories. First, the operators that deal with the LRA,
PSC, and SSC equivalence relations are commonly called
image-enhancing algorithms. They operate, for instance, by
means of histogram equalization in order to ensure that an
optimal usage is made from the available dynamic range
of luminance values throughout the image.
The second category is formed by various feature
detectors, such as edge—or corner—detectors, and
Laplacian-of-Gaussian operators. Often, these have
filter profiles that actually resemble the neurobiological
structures that have been found in the visual pathway. This
is also true for multiscale operators and so on.

Q8,
T11

Following layers are active in shape analysis. These
operators cannot be purely local, and a commonly used
model works on the basis of the multiscale and Fourier-
Mellin transforms.

Identifying segments requires segmentation algorithms.
Basically two types are commonly used: (1) those that start
from borders as found in Q8 and build the segments in an
inward growing manner and (2) those that start from areas
that are guaranteed inside a segment (very homogenous
areas) and grow outward.
During the segmentation process, size and shape of
segments should be controlled, for instance, by appropriate
merging and splitting of segments under construction.

T A B L E 1 1 . 6 Lowermost levels of the reference model for semantic layers in visual communication. Column one: identification of levels
(Q9, Q8, . . .) and identification of transitions (T10, T11, . . .). Second column: issues as found in reality. Third column: representation
of these issues in computer software. Note: because these levels regard the interpretation and reconstruction of meaning out of images,
we do not need the distinction between PR and NPR (continued).

Human perceptive system Computer algorithm

Q7,
T12

Once sufficient confidence has been obtained that
perceived shapes are equivalent (with the LRP, RVP,
and OCC (p-)equivalence relations) to simple shapes,
the backward mapping from perspectively distorted and
maybe even partially occluded 2D areas in the retina to 3D
areas can be performed. Notice the condition of simplicity
here: as we have seen, the vision system sometimes prefers
to “live” with inconsistencies at higher semantic levels
if an interpretation in terms of simple shapes at lower
levels can be obtained. Simplicity here refers to, among
other things, few objects preferred over many objects (see
Figure 11.13), and parallel and coincident lines in 2D are
preferably assumed to be projections from parallel and
incident lines in 3D as well (see Figure 11.19). 2D lines
that move in the direction of a vanishing point are assumed
to be projections of 3D lines that are parallel.∗

The inverse mapping from 2D regions to 3D regions
traditionally takes place via the inverse mapping of
the features (singularities) that border the 2D regions.
If features can be found in several images that were
taken with different camera settings, the 3D position
of such a feature can be obtained by (advanced forms
of) triangulation, similar to the technique followed by
surveyors that measure positions in a landscape. Direct
reconstruction of 3D surfaces on the basis of matched 2D
regions is not (yet) a common technique in the image
recognition literature.

T A B L E 1 1 . 6 (continued)
∗ From a point of view of evolutionary epistemology, this preoccupation with interpretations that involve straight lines in them is curious.
In the natural environment, where humans are supposed to have evolved, very few straight lines occur, except from the horizontal
lines in water surfaces and the horizon. It may seem that the human visual system has “invented” straight lines before technology has
introduced them: this makes us curious about what other geometric objects we may not yet be familiar with, we have built-in detectors.

Human perceptive system Computer algorithm

Q6,
T13

At this level, the borderline between “perception” and
“cognition” is commonly assumed to be crossed. What is
understood to be “an object” is closely related to language
and linguistics. It would carry us too far from our topic to
go over these issues here.

Automated recognition of objects out of images of these
objects (where perspective viewing, various illumination
conditions, and possibly partial occlusion come into
play) almost invariably requires world knowledge in the
form of descriptions of the objects that can be expected.
Recognition is then accomplished by a matching process,
similar to our strategy 3. Every element in this finite
set of defaults gives rise to an equivalence class, and the
classification process amounts to identifying in which
equivalence class a given image belongs. This field of
applications is called model-based image understanding, and
it is the counterpart of cognition-based image understanding
in humans (i.e., those parts of the viewing process that can
be thought of to involve the higher semantic layers). The
opposite collection of techniques, called model-independent
image understanding, then correspond to those semantic
layers that we called perception-based viewing.

Q5,
T14

In attributing motions to objects, successful subsequent
matches in the LRP and RVP-induced equivalence classes
may play a role, as well as in the OCC-induced class.
Also the interpretation of lacking interpretation (e.g.,
due to frequency bandwidth limitation of the neural-
optical system, it is impossible to assess if a fast-spinning
object rotates clockwise or counterclockwise) should be
mentioned here.

These two areas of computer-based image understanding
are still largely unexplored except in very specific,
application-domain specific applications (e.g., tracking
of vehicles in automated surveillance systems).

T A B L E 1 1 . 6 (continued)

Human perceptive system Computer algorithm

Q4,
T16,
Q3,
T16,
Q2,
T17,
Q1

These layers and the involved mappings between them
rely on a substantial body of world knowledge, but also
cognitive faculties such as memorizing and reasoning.
Therefore they fall outside the scope of the current study.
Still the concept of LASses may be useful here, for instance,
to argue about stereotypic high-level classifications (e.g.,
associated to social background, political preference,
confession, or developed taste).

See Q5, T14

T A B L E 1 1 . 6 (continued)

11.5 A Model for Visual Communication 405

c

a

b

6

1

5

2

3

1,7

6,3

7

1,4

F I G U R E 1 1 . 2 2 Possible singularities in a static image.

(a, b), these come from bifurcations where three or more 1D singularities meet.
However, they can also result from a geometric singularity in just one 1D singu-
larity (for example, c). A comprehensive scheme to classify a shape or an image
in terms of its 0D, 1D, 2D and (in case of a shape, 3D) singular components or
cells is by means of cellular structures. A cellular structure is a graph where the
nodes are cells (either 0D, 1D, 2D, or 3D singularities). Edges between two cells
indicate an incidence relation. For instance, a curve that terminates in two points
corresponds to three nodes: one for a 1D cell and two for the two 0D cells, and
two edges that connect the two 0D cells to the 1D cell.6 We leave it as an exer-
cise to verify for what sorts of incidents 1D singularities and 0D singularities can
exist.

6. A full treatment of cellular structures falls beyond the scope of this text; we refer to textbooks on
algebraic topology and the work of T. L. Kunii on the application of cellular structures in computer
graphics, geometric modeling, and image processing (Kunii, 1999).

406 C H A P T E R 1 1 A Conceptual Framework for NPR

Number Name (if any)
Type of
discontinuity

View dependent,
light dependent,
or shape intrinsic

Related to
shape or related
to shadow

1 Silhouette C0 View dependent Shape
2 C1, concave Shape intrinsic Shape
3 C1, convex Shape intrinsic Shape
4 Occlusion border C1, convex Shape intrinsic Shape
5 Texture or coplanar

feature border
C∞ Shape intrinsic None

6 Separatrix (e.g.,the line
that divides dark and
light parts of the moon
when it is in first or last
quarter phase)

C1 Light dependent Shadow

7 C0 Light dependent Shadow

T A B L E 1 1 . 7 Possible singularities in a static image (the numbers refer to Figure 11.22).

11.6 Summary and Practical Connection with NPR
We introduce a terminology that allows us to argue about “similar” and “dissim-
ilar” images. Similarity is expressed in terms of (p-)equivalence classes, and we
show that under the assumption of a finite set of stimuli, and a sufficient set of de-
faults, p-equivalence classes can be turned into true equivalence classes. With true
equivalence classes, we can build a quotient structure, which is basically a partition
of a collection of things into categories of things that are similar—according to
particular definitions of the notion “similar.” When studying the physics of the
viewing process, we see that a number of (p-)equivalence relations are inevitable
because a certain object can give rise to large varieties of visual impressions on the
retina. We conjecture that, apart from the eight p-equivalence relations that we
identify and that can be related immediately to the physics of optical communi-
cation, there are many more p-equivalence relations, and we adopt the notion of
(p-)equivalence relations as a generic concept to argue about images and image
classification. With respect to classification, we observe that an object should be
identified under a variety of viewing conditions as the same object each time,
and therefore the p-equivalences (due to the physical particularities) should be

11.6 Summary and Practical Connection with NPR 407

“filtered out.” Therefore, it is convenient to depict images (represented in some
semantic layer) as quotient structures.

Next, we see that between quotient structures relations can be defined, so-
called (iso-)morphisms, and these relations help to express transforming a piece
of information from one format into another format. Particular features of that
piece of information are preserved (the so-called invariants), whereas other pieces
of information may get lost (variants). The pieces that get lost impose again an
equivalence relation upon the elements that we are considering.

We use this notion of mappings between various representations of images
because there is strong evidence that the human visual process takes place as
a sequence of transformations where at each step, the semantic contents of
the representation increases. This notion of layers that each specialize on one
semantic level is taken from a successful model for data communication, the OSI
model.

To tie our thinking about mappings between various semantic levels into
a conjectured mechanism of how this might work, we postulate the notion of
look-ahead sets (or look-around sets, abbreviated as LAS and LASses). LASses
are convenient to think about how the effect of (p-)equivalence relations may be
dealt with, and we propose some strategies for how viewing and classification at
various semantic levels indeed might take place.

After all this preparatory work, we propose our layered semantic structure
since this gives a convenient classification of rendering algorithms (rendering is
seen as a transformation from one semantic layer to a next lower layer, where
these transformations are the matching transformations with those that could
be conjectured in the vision system). Conventional rendering attempts, at ev-
ery transformation, to be a close model of a physical (photorealistic) process,
but confronting every step with the invariants that should be conveyed to the
next lower level, automatically inspire to variants that may be used for non-
photorealistic rendering. The main result of this section can therefore be seen
as a classification structure for NPR algorithms, with ample open slots for future
extensions.

For a practitioner of NPR, we dare to give the following recommendations:

1. Try to formulate the semantic levels between which your algorithm should
transform.

408 C H A P T E R 1 1 A Conceptual Framework for NPR

2. For these levels, and for your application domain, try to formulate what
the governing invariants are. In any case, the algorithm should map these
invariants between the input and the output of your algorithm.

3. Once the invariants are clear, try to identify the variants. These variants span
the design space (the space of your “fantasy”) because any variant should give
rise to equivalent semantic transfer.

4. Experiment with algorithms that exploit the variants as much as possible.

R E F E R E N C E S

Aleksander, I. (1994). Artificial Consciousness? In Thalmann, N. M., and Thalmann, D.,
editors, Artificial Life and Virtual Reality, pages 73–81. New York: John Wiley and Sons.

Aleksander, I. (1996). Impossible Minds: My Neurons, My Consciousness. London: Imperial
College Press.

Appel, A., Rohlf, F. J., and Stein, A. J. (1979). The Haloed Line Effect for Hidden Line
Elimination. In Proceedings of SIGGRAPH’79 (Chicago, August 1979), Computer
Graphics Proceedings, Annual Conference Series, pages 151–157. New York: ACM
SIGGRAPH.

Arnheim, R. (1984). Art and Visual Perception. A Psychology of the Creative Eye. Berkeley:
University of California Press.

Barr, A. H. (1984). Global and Local Deformations of Solid Primitives. In Proceedings of
SIGGRAPH’84 (Minneapolis, July 1984), Computer Graphics Proceedings, Annual
Conference Series, pages 21–30. New York: ACM SIGGRAPH.

Bartels, R. H., Beatty, J. C., and Barsky, B. A. (1996). An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling. San Francisco: Morgan Kaufmann.

Bartram, L., Ho, A., Dill, J., and Henigman, F. (1995). The Continous Zoom: A Constrained
Fisheye Technique for Viewing and Navigating Large Information Spaces. In UIST ’95:
Proceedings of the ACM Symposium on User Interface Software and Technology, pages 207–216.
New York: ACM Press.

Bartram, L., Ho, A., Dill, J. C., and Henigman, F. (1995). The Continous Zoom: A Graphical
Interface Technique for Viewing and Navigating Large Information Systems. Technical
Report CCS-IS 95-01, Simon Fraser University.

Bleser, T. W., Sibert, J. L., and McGee, J. P. (1988). Charcoal Sketching: Returning Control
to the Artist. ACM Transactions on Graphics, 7(1):76–81.

409

410 References

Blum, H. (1967). A Transformation for Extracting New Descriptors of Shape. In Wathen-
Dunn, W., editor, Models for the Perception of Speech and Visual Form, pages 362–380.
Cambridge: The MIT Press.

Buchanan, J. W. (1996). Special Effects with Half-Toning. Computer Graphics Forum, 15(3):97–
108.

Buchanan, J. W., and Sousa, M. C. (2000). The Edge Buffer: A Data Structure for Easy
Silhouette Rendering. In Proceedings of NPAR 2000, Symposium on Non-Photorealistic
Animation and Rendering (Annecy, France, June 2000), pages 39–42. New York: ACM
Press.

Buchanan, J. W., Streit, L. M., and Veryovka, O. (1998). Edge Enhancement Issues in Half-
Toning. In Davis, W., Booth, K., and Fournier, A., editors, Proceedings of Graphics
Interface’98 (Vancouver, Canada, June 1998), pages 209–216. San Francisco: Morgan
Kaufmann.

Buck, I., Finkelstein, A., Jacobs, C., Klein, A., Salesin, D. H., Seims, J., Szeliski, R., and
Toyama, K. (2000). Performance-Driven Hand-Drawn Animation. In Proceedings of
NPAR 2000, Symposium on Non-Photorealistic Animation and Rendering (Annecy, France,
June 2000), pages 101–108. New York: ACM Press.

Canny, F. J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6):679–698.

Carpendale, M. S. T. (1999). A Framework for Elastic Presentation Space. Ph.D. thesis, School of
Computer Science, Simon Fraser University.

Carpendale, M. S. T., Cowperthwaite, D. J., and Fracchia, F. D. (1995). 3-Dimensional Pliable
Surfaces: For the Effective Presentation of Visual Information. In Proceedings of the ACM
Symposium on User Interface Software and Technology, UIST’95 (Pittsburgh, November
1995), pages 217–226. New York: ACM Press.

Carpendale, M. S. T., Cowperthwaite, D. J., and Fracchia, F. D. (1997). Making Distortions
Comprehensible. In IEEE Symposium on Visual Languages’97 (Capri, Italy, September
1997), pages 36–45. Los Alamitos: IEEE Computer Society Press.

Cockshott, T., and England, D. (1991). Wet and Sticky: Supporting Interaction with Wet
Paint. In Diaper, D., and Hammond, N. G., editors, People and Computers IV, Proceedings of
the HCI’91 Conference (Edinburgh, August 1991), British Computer Society Conference
Series, pages 199–208. Cambridge: Cambridge University Press.

References 411

Cockshott, T., Patterson, J., and England, D. (1992). Modelling the Texture of Paint. In
Kilgour, A., and Kjelldahl, L., editors, Proceedings of Eurographics’92 (Cambridge, UK,
September 1992), pages 217–226. Oxford: NCC Blackwell Ltd.

Cohen, J. M., Hughes, J. F., and Zeleznik, R. C. (2000). Harold: A World Made of Drawings.
In Proceedings of NPAR 2000, Symposium on Non-Photorealistic Animation and Rendering
(Annecy, France, June 2000), pages 83–90. New York: ACM Press.

Curtis, C. (1998). Loose and Sketchy Animation. In SIGGRAPH’98 Conference Abstracts and
Applications, page 317. New York: ACM SIGGRAPH.

Curtis, C. J., Anderson, S. E., Seims, J. E., Fleischer, K. W., and Salesin, D. H. (1997).
Computer-Generated Watercolor. In Whitted, T., editor, Proceedings of SIGGRAPH’97
(Los Angeles, August 1997), Computer Graphics Proceedings, Annual Conference
Series, pages 421–430. New York: ACM SIGGRAPH.

Decaudin, P. (1996). Rendu de scènes 3D imitant le style “dessin animé.” Technical Report
2919, INRIA, Rocquencourt, France.

Deussen, O. (1998). Pixel-Oriented Rendering of Line Drawings. In Strothotte (1998),
Chapter 6, pages 105–119.

Deussen, O., Hamel, J., Raab, A., Schlechtweg, S., and Strothotte, T. (1999a). An Illustration
Technique Using Intersections and Skeletons. In Proceedings of Graphics Interface’99
(Kingston, Canada, June 1999), pages 175–182. San Francisco: Morgan Kaufmann.

Deussen, O., Hiller, S., van Overveld, C. W. A. M., and Strothotte, T. (1999b). Computer-
Generated Stipple Drawings. In Girod, B., Niemann, H., and Seidel, H.-P., editors,
Proceedings of VMV’99, Workshop on Vision, Modelling and Visualization (Erlangen,
Germany, November 1999), Sankt Augustin, Germany: infix.

Deussen, O., Hiller, S., van Overveld, C. W. A. M., and Strothotte, T. (2000). Floating
Points: A Method for Computing Stipple Drawings. In Gross, M., and Hopgood,
F. R. A., editors, Proceedings of Eurographics 2000 (Interlaken, Switzerland, August 2000),
volume 19, pages 40–51. Oxford: NCC Blackwell Ltd.

Deussen, O., and Strothotte, T. (2000). Computer-Generated Pen-and-Ink Illustration of
Trees. In Akeley, K., editor, Proceedings of SIGGRAPH 2000 (New Orleans, July 2000),
Computer Graphics Proceedings, Annual Conference Series, pages 13–18, New York:
ACM SIGGRAPH.

412 References

Dill, J. C., Bartram, L., Ho, A., and Henigman, F. (1994). A Continuosly Variable Zoom for
Navigating Large Hierarchical Networks. In Proceedings of the IEEE Conference on Systems,
Man and Cybernetics (San Antonio, October 1994), pages 386–390. Los Alamitos: IEEE
Computer Society Press.

Dooley, D. L., and Cohen, M. F. (1990a). Automatic Illustration of 3D Geometric Models:
Lines. In Riesenfeld, R., and Sequin, C., editors, Proceedings of 1990 Symposium on
Interactive 3D Graphics (Snowbird, UT, March 1990), pages 77–82. New York: ACM
SIGGRAPH.

Dooley, D. L., and Cohen, M. F. (1990b). Automatic Illustration of 3D Geometric Models:
Surfaces. In Proceedings of Visualization’90 (San Francisco, October 1990), pages 307–314.
Los Alamitos: IEEE Computer Society Press.

Duden (1977). Duden. Bildwörterbuch. Mannheim, Germany: Dudenverlag.

Edman, P. K. (1992). Tactile Graphics. American Foundation for the Blind, New York.

Elber, G. (1995). Line illustrations ∈ computer graphics. The Visual Computer , 11(6):290–296.

Elber, G. (1998). Line Art Illustrations of Parametric and Implicit Forms. IEEE Transactions
on Visualization and Computer Graphics, 4(1):71–81.

Elber, G. (1999). Interactive Line Art Rendering of Freeform Surfaces. In Brunet, P., and
Scopigno, R., editors, Proceedings of Eurographics’99 (Milano, Italy, September 1999),
pages 1–12. Oxford: NCC Blackwell Ltd.

Elber, G. (2001). Rendering with Parallel Stripes. IEEE Computer Graphics and Applications,
21(3):44–52.

Elber, G., and Cohen, E. (1990). Hidden Curve Removal for Free Form Surfaces. In Baskett,
F., editor, Proceedings of SIGGRAPH’90 (Dallas, August 1990), Computer Graphics
Proceedings, Annual Conference Series, pages 95–104. New York: ACM SIGGRAPH.

ELSA AG (1999). ELSA Microlink TM56k PCI Manual. ELSA AG.

Emhardt, J., and Strothotte, T. (1992). Hyper-Rendering. In Proceedings of Graphics Interface’92
(Vancouver, Canada, May 1992), pages 37–43. Toronto: Canadian Computer-Human
Communications Society.

Farin, G. E. (1996). Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide.
Boston: Academic Press.

References 413

Fekete, J., Bizouarn, É., Cournarie, É., Galas, T., and Taillefer, F. (1995). TicTacToon: A
Paperless System for Professional 2-D Animation. In Cook, R., editor, Proceedings of
SIGGRAPH’95 (Los Angeles, August 1995), Computer Graphics Proceedings, Annual
Conference Series, pages 79–90. New York: ACM SIGGRAPH.

Finkelstein, A., and Range, M. (1998). Image Mosaics. Technical Report TR-574-98,
Computer Science Department, Princeton University.

Finkelstein, A., and Salesin, D. H. (1994). Multiresolution Curves. In Glassner, A., editor,
Proceedings of SIGGRAPH’94 (Orlando, July 1994), Computer Graphics Proceedings,
Annual Conference Series, pages 261–268. New York: ACM SIGGRAPH.

Floyd, R. W., and Steinberg, L. (1976). An Adaptive Algorithm for Spatial Gray Scale. In
Society for Information Display Digest, volume 17, pages 75–77.

Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1990). Computer Graphics. Principle
and Practice, second edition. Reading, MA: Addison-Wesley.

Freeman, W. T., Tenenbaum, J. B., and Pasztor, E. (1999). An Example-Based Approach to
Style Translation for Line Drawings. Technical Report TR-99-11, Mitsubishi Electric
Research Laboratory.

Furnas, G. W. (1986). Generalized Fisheye Views. In Proceedings of CHI’86 Conference on
Human Factors in Computing Systems (Boston, April 1986), pages 16–23. New York:
ACM SIGCHI.

Gardner, M. (1983). The Game of Life, Parts I–III. In Wheels, Life, and Other Mathematical
Amusements, Chapters 20–22. New York: W. H. Freeman.

Girshick, A., and Interrante, V. (1999). Real-Time Principal Direction Line Drawings of
Arbitraty 3D Surfaces. In SIGGRAPH’99 Conference Abstracts and Applications, page 271.
New York: ACM SIGGRAPH.

Girshick, A., Interrante, V., Haker, S., and Lemoine, T. (2000). Line Direction Matters: An
Argument for the Use of Principal Directions in 3D Line Drawings. In Proceedings of
NPAR 2000, Symposium on Non-Photorealistic Animation and Rendering (Annecy, France,
June 2000), pages 43–52. New York: ACM Press.

Godenschweger, F., Strothotte, T., and Wagener, H. (1996). Presentation of Freeform Surfaces
as Line Drawings. In Girod, B., Niemann, H., and Seidel, H.-P., editors, 3D Image Analysis
and Synthesis’96 (Erlangen, Germany, November 1996), pages 87–93. Sankt Augustin,
Germany: infix.

414 References

Godenschweger, F., and Wagener, H. (1998). Rendering Line Drawings of Curved Surfaces.
In Strothotte (1998), Chapter 5, pages 91–103.

Gombrich, E. H. (1977). Art and Illusion. A Study in the Psychology of Pictorial Representations,
fifth edition. London: Phaidron Press.

Gooch, A. A. (1998). Interactive Non-Photorealistic Technical Illustration. Master’s thesis,
Department of Computer Science, University of Utah.

Gooch, A. A., and Gooch, B. (1999a). Using Non-Photorealistic Rendering to Communicate
Shape. In Green, S., editor, SIGGRAPH’99 Course Notes. Course on Non-Photorelistic
Rendering, Chapter 8. New York: ACM SIGGRAPH.

Gooch, A. A., Gooch, B., Shirley, P., and Cohen, E. (1998). A Non-Photorealistic
Lighting Model for Automatic Technical Illustration. In Cohen, M., editor, Proceedings
of SIGGRAPH’98 (Orlando, July 1998), Computer Graphics Proceedings, Annual
Conference Series, pages 447–452. New York: ACM SIGGRAPH.

Gooch, B., and Gooch, A. A. (1999b). Interactive Non-Photorealistic Rendering. In Green,
S., editor, SIGGRAPH’99 Course Notes. Course on Non-Photorelistic Rendering, Chapter 10.
New York: ACM SIGGRAPH.

Gooch, B., and Gooch, A. (2001). Non-Photorealistic Rendering. Natick: AK Peters, Ltd.

Gooch, B., Sloan, P.-P. J., Gooch, A. A., Shirley, P., and Riesenfeld, R. (1999). Interactive
Technical Illustration. In Spencer, S. N., editor, Proceedings of the Conference on the 1999
Symposium on Interactive 3D Graphics, pages 31–38. New York: ACM Press.

Goss, J. (1991). City Maps of Europe. London: Studio Editions, Ltd.

Grafton, C. B., editor (1990). Trades and Occupations. A Pictorial Archive from Early Sources. New
York: Dover Publications.

Guo, Q., and Kunii, T. L. (1991). Modeling the Diffuse Paintings of Sumie. In Kunii,
T. L., editor, Modeling in Computer Graphics. Proceedings of the IFIP WG 5.10 Working
Conference (Tokyo, April 1991), IFIP Series on Computer Graphics, pages 329–338.
Tokyo: Springer-Verlag.

Haeberli, P. (1990). Paint by Numbers: Abstract Image Representations. In Baskett, F., editor,
Proceedings of SIGGRAPH’90 (Dallas, August 1990), Computer Graphics Proceedings,
Annual Conference Series, pages 207–214. New York: ACM SIGGRAPH.

References 415

Hall, P. (1995a). Comic-Strip Rendering. Technical Report CS-TR-95/2, Department of
Computer Science, Victoria University of Wellington, New Zealand.

Hall, P. (1995b). Non-Photorealistic Shape Cues for Visualization. In Skala, V., editor,
Proceedings of WSCG’95 (Pilzeň, February 1995), pages 113–122.

Hall, P. (1999). Nonphotorealistic Rendering by Q-Mapping. Computer Graphics Forum,
18(1):27–39.

Hamel, J. (2000). A New Lighting Model for Computer Generated Line Drawings. Ph.D. thesis,
School of Computer Science, Otto-von-Guericke University of Magdeburg.

Hamel, J., Schlechtweg, S., and Strothotte, T. (1998). An Approach to Visualizing
Transparancy in Computer-Generated Line Drawings. In Proceedings of Information
Visualization ’98 (London, July 1998), pages 151–156. Los Alamitos: IEEE Computer
Society.

Hamel, J., and Strothotte, T. (1999). Capturing and Re-using Rendition Styles for Non-
Photorealistic Rendering. In Proceedings of Eurographics’99 (Milano, Italy, September
1999), pages 173–182. Oxford: NCC Blackwell Ltd.

Hartmann, K., Preim, B., and Strothotte, T. (1998). Describing Abstraction in Rendered
Images through Figure Captions. In Rist, T., editor, Workshop on Combining AI and
Graphics for Intelligent User Interfaces of the Future. European Conference on Artificial
Intelligence (ECAI’98), pages 235–246. Brighton, UK.

Hartmann, K., Preim, B., and Strothotte, T. (1999). Describing Abstraction in Rendered
Images Through Figure Captions. In Linköping Electronic Articles in Computer and
Information Science, www.ep.liu.se/ea/cis/1999/015/, volume 15. Linköping University
Electronic Press.

Hawkes, J. (1993). The Atlas of Early Man. New York: St. Martin’s Press.

Hertzmann, A. (1998). Painterly Rendering with Curved Brush Strokes of Multiple Sizes.
In Cohen, M., editor, Proceedings of SIGGRAPH’98 (Orlando, July 1998), Computer
Graphics Proceedings, Annual Conference Series, pages 453–460. New York: ACM
SIGGRAPH.

Hertzmann, A. (1999). Introduction to 3D Non-Photorealistic Rendering: Silhouettes and
Outlines. In Green, S., editor, SIGGRAPH’99 Course Notes. Course on Non-Photorelistic
Rendering, Chapter 7. New York: ACM SIGGRAPH.

416 References

Hertzmann, A. (2000). Paint by Relaxation. Technical Report 2000-801, Media Research
Laboratory, Department of Computer Science, New York University.

Hertzmann, A. and Perlin, K. (2000). Painterly Rendering for Video and Interaction. In
Proceedings of NPAR 2000, Symposium on Non-Photorealistic Animation and Rendering
(Annecy, France, June 2000), pages 7–12. New York: ACM Press.

Hertzmann, A., and Zorin, D. (2000). Illustrating Smooth Surfaces. In Akeley, K., editor,
Proceedings of SIGGRAPH 2000 (New Orleans, July 2000), Computer Graphics
Proceedings, Annual Conference Series, pages 517–526. New York: ACM SIGGRAPH.

Hiller, S. (1999). Generierung relaxierter Punktmengen. Master’s thesis, Department of
Simulation and Graphics, Otto-von-Guericke University Magdeburg.

Hiller, S., and Deussen, O. (2001). Voronoi-Relaxierung allgemeiner Objekte. In Schulze, T.,
Schlechtweg, S., and Hinz, V., editors, Simulation und Visualisierung 2001 (Magdeburg,
Germany, March 2001), pages 223–234. Erlangen, Germany: SCS Europe.

Hodges, E. R. S. (1989). The Guild Handbook of Scientific Illustration. New York: van Nostrand
Reinhold.

Hoppe, H. (1996). Progressive Meshes. In Rushmeier, H., editor, Proceedings of SIG-
GRAPH’96 (New Orleans, August 1996), Computer Graphics Proceedings, Annual
Conference Series, pages 99–108. New York: ACM SIGGRAPH.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1993). Mesh
Optimization. In Kajiya, J. T., editor, Proceedings of SIGGRAPH’93 (Anaheim, August
1993), Computer Graphics Proceedings, Annual Conference Series, pages 19–26. New
York: ACM SIGGRAPH.

Houghton, H. A., and Willows, D. M., editors (1987). The Psychology of Illustration. Instructional
Issues, volume 2. New York: Springer-Verlag.

Hsu, S. C., and Lee, I. H. H. (1994). Drawing and Animation Using Skeletal Strokes. In
Glassner, A., editor, Proceedings of SIGGRAPH’94 (Orlando, July 1994), Computer
Graphics Proceedings, Annual Conference Series, pages 109–118. New York: ACM
SIGGRAPH.

Hsu, S. C., Lee, I. H. H., and Wiseman, N. E. (1993). Skeletal Strokes. In UIST’93 Proceedings
of the ACM SIGGRAPH and SIGCHI Symposium on User Interface Software and Technology
(Atlanta, November 1993), pages 197–206. New York: ACM Press.

References 417

Isenberg, T., Masuch, M., and Strothotte, T. (2000). 3D Illustrative Effects for Animating Line
Drawings. In Proceedings of the IEEE Conference on Information Visualization, (London, July
2000), pages 413–418. Los Alamitos: IEEE Computer Society.

Jähne, B. (1997). Digital Image Processing. Berlin: Springer-Verlag.

Kaplan, M., Gooch, B., and Cohen, E. (2000). Interactive Artistic Rendering. In Proceedings of
NPAR 2000, Symposium on Non-Photorealistic Animation and Rendering (Annecy, France,
June 2000), pages 67–74. New York: ACM Press.

Kaplan, C. S., and Salesin, D. H. (2000). Escherization. In Proceedings of SIGGRAPH 2000
(New Orleans, July 2000), Computer Graphics Proceedings, Annual Conference Series,
pages 499–510. New York: ACM SIGGRAPH.

Keahey, T. A., and Robertson, E. L. (1996). Techniques for Nonlinear Magnification
Transformations. In Proceedings of the IEEE Symposium on Information Visualization (San
Francisco, October 1996), pages 38–45. Los Alamitos: IEEE Computer Society Press.

Klein, A. W., Li, W. W., Kazhdan, M. M., Correa, W. T., Finkelstein, A., and Funkhouser,
T. A. (2000). Non-Photorealistic Virtual Environments. In Akeley, K., editor, Proceedings
of SIGGRAPH 2000 (New Orleans, July 2000), Computer Graphics Proceedings,
Annual Conference Series, pages 527–534. New York: ACM SIGGRAPH.

Knuth, D. E. (1987). Digital Halftones by Dot Diffusion. ACM Transactions on Graphics,
6(4):245–273.

Kowalski, M. A., Markosian, L., Northrup, J. D., Bourdev, L., Barzel, R., Holden, L. S., and
Hughes, J. F. (1999). Art-Based Rendering of Fur, Grass, and Trees. In Proceedings of
SIGGRAPH’99 (Los Angeles, August 1999), Computer Graphics Proceedings, Annual
Conference Series, pages 433–438. New York: ACM SIGGRAPH.

Kunii, T. L. (1999). Homotopy Modeling as World Modeling. In Proceedings of Computer
Graphics International ’99 (CGI 99) (Canmore, Canada, June 1999), pages 130–141. Los
Alamitos: IEEE Computer Society Press.

Kurlander, D., Skelly, T., and Salesin, D. H. (1996). Comic Chat. In Rushmeier, H.,
editor, Proceedings of SIGGRAPH’96 (New Orleans, August 1996), Computer Graphics
Proceedings, Annual Conference Series, pages 225–236. New York: ACM SIGGRAPH.

Kurze, M. (1999). Methoden zur computergenerierten Darstellung räumlicher Gegenstände für Blinde
auf taktilen Medien. Ph.D. thesis, Department of Mathematics and Computer Science,
Free University of Berlin.

418 References

Lake, A., Marshall, C., Harris, M., and Blackstein, M. (2000). Stylized Rendering Techniques
for Scalable Real-Time 3D Animation. In Proceedings of NPAR 2000, Symposium on Non-
Photorealistic Animation and Rendering (Annecy, France, June 2000), pages 13–20. New
York: ACM Press.

Lam, L., Lee, S.-W., and Suen, C. Y. (1992). Thinning Methodologies—A Comprehensive
Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9):869–884.

Lansdown, J., and Schofield, S. (1995). Expressive Rendering: A Review of Nonphotorealistic
Techniques. IEEE Computer Graphics and Applications, 15(3):29–37.

Leister, W. (1994). Computer Generated Copper Plates. Computer Graphics Forum, 13(1):69–
77.

Lintermann, B., and Deussen, O. (1999). Interactive Modeling of Plants. IEEE Computer
Graphics and Applications, 19(1).

Litwinowicz, P. (1997). Processing Images and Video for an Impressionist Effect. In Whitted,
T., editor, Proceedings of SIGGRAPH’97 (Los Angeles, August 1997), Computer Graphics
Proceedings, Annual Conference Series, pages 407–414. New York: ACM SIGGRAPH.

Luebke, D. P. (1998). View-Dependent Simplification of Arbitrary Polygonal Environments. Ph.D.
thesis, Department of Computer Science, University of North Carolina at Chapel Hill.

Luebke, D. P. (2001). A Developer’s Survey of Polygonal Simplification Algorithms. IEEE
Computer Graphics and Applications, 21(3):24–35.

Mäntylä, M. (1988). An Introduction to Solid Modelling. Rockville: Computer Science Press.

Markosian, L., Kowalski, M. A., Trychin, S. J., Bourdev, L. D., Goldstein, D., and Hughes, J. F.
(1997). Real-Time Nonphotorealistic Rendering. In Whitted, T., editor, Proceedings of
SIGGRAPH’97 (Los Angeles, August 1997), Computer Graphics Proceedings, Annual
Conference Series, pages 415–420. New York: ACM SIGGRAPH.

Markosian, L., Meier, B. J., Kowalski, M. A., Holden, L. S., Northrup, J. D., and Hughes,
J. F. (2000). Art-Based Rendering with Continouous Levels of Detail. In Proceedings of
NPAR 2000, Symposium on Non-Photorealistic Animation and Rendering (Annecy, France,
June 2000), pages 59–64. New York: ACM Press.

Marshall, T. (1995). Lively Pictures (Power Mac Image Editing). Byte Magazine, 20(1):171–
172.

References 419

Martı́n, D., Garcı́a, S., and Torres, J. C. (2000). Observer Dependent Deformations in
Illustrations. In Proceedings of NPAR 2000, Symposium on Non-Photorealistic Animation and
Rendering (Annecy, France, June 2000), pages 75–82. New York: ACM Press.

Martin, J. (1989). Technical Illustration. London: MacDonald Orbis.

Masuch, M. (2001). Nicht-photorealistische Visualisierungen: Von Bildern zu Animationen. Ph.D.
thesis, School of Computer Science, Otto-von-Guericke University of Magdeburg.

Masuch, M., Schlechtweg, S., and Schönwälder, B. (1997). dali!—Drawing Animated Lines!
In Deussen, O., and Lorenz, P., editors, Simulation und Animation ’97 (Magdeburg,
Germany, March 1997), pages 87–96. Erlangen, Germany: SCS Europe.

Masuch, M., Schlechtweg, S., and Schulz, R. (1999). Speedlines: Depicting Motion in
Motionless Pictures. In SIGGRAPH’99 Conference Abstracts and Applications, page 277.
New York: ACM SIGGRAPH.

Masuch, M., Schumann, L., and Schlechtweg, S. (1998). Animating Frame-to-Frame
Consistent Line Drawings for Illustrative Purposes. In Lorenz, P., and Preim, B., editors,
Simulation und Visualisierung’98 (Magdeburg, Germany, March 1998), pages 101–112.
Erlangen, Germany: SCS Europe.

McCloud, S. (1993). Understanding Comics. New York: HarperCollins.

McCloud, S. (2000). Reinventing Comics. New York: HarperCollins.

McKenna, T., and Arce, G. R. (2000). New Image Mosaic Structures. Technical Report,
Department of Electrical and Computer Engineering, University of Delaware.

Meier, B. J. (1996). Painterly Rendering for Animation. In Rushmeier, H., editor, Proceedings
of SIGGRAPH’96 (New Orleans, August 1996), Computer Graphics Proceedings,
Annual Conference Series, pages 477–484. New York: ACM SIGGRAPH.

Meisel, L. K. (1989). Photorealism. New York: Harry N. Abrams.

Milne, A. A. (1992). Winnie-the-Pooh. New York: Puffin Books.

Mizuno, S., Okada, M., and Toriwaki, J. (1998). Virtual Sculpting and Virtual Woodcut
Printing. The Visual Computer , 14(2):39–51.

420 References

Mohr, A., and Gleicher, M. (2001). Non-Invasive, Interactive, Stylized Rendering. In
Proceedings of the 2001 ACM Symposium on Interactive 3D Graphics (Research Triangle
Park, March 2001), pages 175–178. New York: ACM Press.

Northrup, J. D., and Markosian, L. (2000). Artistic Silhouettes: A Hybrid Approach. In
Proceedings of NPAR 2000, Symposium on Non-Photorealistic Animation and Rendering
(Annecy, France, June 2000), pages 31–37. New York: ACM Press.

Ostromoukhov, V. (1998). Mathematical Tools for Computer-Generated Ornamental
Patterns. In Hersch, R. D., André, J., and Brown, H., editors, Electronic Publishing,
Artistic Imaging and Digital Typography, pages 193–223. Berlin: Springer-Verlag.

Ostromoukhov, V. (1999). Digital Facial Engraving. In Proceedings of SIGGRAPH’99 (Los
Angeles, August 1999), Computer Graphics Proceedings, Annual Conference Series,
pages 417–424. New York: ACM SIGGRAPH.

Ostromoukhov, V. (2000). Artistic Halftoning—Between Technology and Art. SPIE,
3963:489–509.

Ostromoukhov, V. (2001). A Simple and Efficient Error-Diffusion Algorithm. In Fiume, E.,
editor, Proceedings of SIGGRAPH 2001 (Los Angeles, August 2001), Computer Graphics
Proceedings, Annual Conference Series, pages 567–572. New York: ACM SIGGRAPH.

Ostromoukhov, V., and Hersch, R. D. (1995). Artistic Screening. In Cook, R., editor,
Proceedings of SIGGRAPH’95 (Los Angeles, August 1995), Computer Graphics
Proceedings, Annual Conference Series, pages 219–228. New York: ACM SIGGRAPH.

Ostromoukhov, V., and Hersch, R. D. (1999). Multi-Color and Artistic Dithering. In
Rockwood, A., editor, Proceedings of SIGGRAPH’99 (Los Angeles, August 1999),
Computer Graphics Proceedings, Annual Conference Series, pages 425–432. New York:
ACM SIGGRAPH.

Ostromoukhov, V., Hersch, R. D., and Amidror, I. (1994). Rotated Dispersion Dither: A New
Technique for Digital Halftoning. In Glassner, A., editor, Proceedings of SIGGRAPH’94
(Orlando, July 1994), Computer Graphics Proceedings, Annual Conference Series, pages
123–130. New York: ACM SIGGRAPH.

Ostromoukhov, V., Rudaz, N., Amidror, I., Emmel, P., and Hersch, R. D. (1996). Anti-
Counterfeiting Feature of Artistic Screening. SPIE, Proceedings on Holographic and
Diffractive Techniques, 2951:126–133.

References 421

Parker, J. R. (1988). Extracting Vectors from Raster Images. Computers and Graphics, 12(1):75–
79.

Pavlidis, T. (1980). Thinning Algorithm for Discrete Binary Images. Computer Graphics and
Image Processing, 13(2):142–157.

Peeck, J. (1987). The Role of Illustration in Processing and Remembering Illustrated Text.
In Willows and Houghton (1987), Chapter 4, pages 115–151.

Perlin, K., and Velho, L. (1995). Live Paint: Painting with Procedural Multiscale Textures. In
Cook, R., editor, Proceedings of SIGGRAPH’95 (Los Angeles, August 1995), Computer
Graphics Proceedings, Annual Conference Series, pages 153–160. New York: ACM
SIGGRAPH.

Pham, B. (1991). Expressive Brush Strokes. Computer Vision, Graphics, and Image Processing:
Graphical Models and Image Processing, 53(1):1–6.

Phong, B.-T. (1975). Illumination for Computer Generated Pictures. Communications of the
ACM , 18(6):311–317.

Plaisant, C., Carr, D., and Shneiderman, B. (1995). Image-Browser Taxonomy and Guidelines
for Designers. IEEE Software, 12(2):21–32.

Pnueli, Y., and Bruckstein, A. M. (1996). Gridless Halftoning: A Reincarnation of the Old
Method. Graphical Models and Image Processing: GMIP , 58(1):38–64.

Preim, B., and Hoppe, A. (1998). Enrichment and Reuse of Geometric Models. In Strothotte
(1998), Chapter 3, pages 45–62.

Preim, B., Raab, A., and Strothotte, T. (1997). Coherent Zooming of Illustrations with 3D-
Graphics and Text. In Proceedings of Graphics Interface’97 (Kelowna, Canada, May 1997),
pages 105–113. Toronto: Canadian Computer-Human Communications Society.

Preim, B., and Strothotte, T. (1995). Tuning Rendered Line-Drawings. In Skala, V., editor,
Proceedings of WSCG’95 (Pilzeň, February 1995), pages 228–238.

Preparata, F. P., and Shamos, M. I. (1985). Computational Geometry—An Introduction, second
edition. New York: Springer-Verlag.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1993). Numerical Recipes
in C: The Art of Scientific Computing, second edition. Cambridge: Cambridge University
Press.

422 References

Putz, R., and Pabst, R., editors (1993). Sobotta. Atlas der Anatomie des Menschen, 20th edition.
München, Germany: Urban & Schwarzenberg.

Raab, A. (1998). Techniken zur Interaktion mit und Visualisierung von geometrischen Modellen. Ph.D.
thesis, School of Computer Science, Otto-von-Guericke University of Magdeburg.

Raab, A., and Rüger, M. (1996). 3D-ZOOM Interactive Visualisation of Structures and
Relations in Complex Graphics. In Girod, B., Niemann, H., and Seidel, H.-P., editors,
3D Image Analysis and Synthesis ’96 (Erlangen, Germany, November 1996), pages 87–93.
Sankt Augustin, Germany: infix.

Rademacher, C. (2000). Die Spur der Heiligen Zeichen. GEO Epoche, (3):86–98.

Rademacher, P. (1999). View-Dependent Geometry. In Rockwood, A., editor, Proceedings of
SIGGRAPH’99 (Los Angeles, August 1999), Computer Graphics Proceedings, Annual
Conference Series, pages 439–446. New York: ACM SIGGRAPH.

Richens, P., and Schofield, S. (1995). Interactive Computer Rendering. Architectural Research
Quarterly, 1(1).

Rogers, D. F. (1998). Procedural Elements for Computer Graphics, second edition. Boston:
McGraw-Hill.

Rössl, C., and Kobbelt, L. (2000). Line Art Rendering of 3D-Models. In Barsky, B. A.,
Shinagawa, Y., and Wang, W., editors, Proceedings of Pacific Graphics 2000 (Hong Kong,
October 2000), pages 87–96. Los Alamitos: IEEE Computer Society Press.

Rössl, C., Kobbelt, L., and Seidel, H.-P. (2000). Line Art Rendering of Triangulated Surfaces
Using Discrete Lines of Curvature. In Skala, V., editor, Proceedings of WSCG 2000
(Pilzeň, February 2000), pages 168–175.

Rudaz, N., Hersch, R. D., and Ostromoukhov, V. (1998). An Interface for the Interactive
Design of Artistic Screens. In Hersch, R. D., André, J., and Brown, H., editors, Electronic
Publishing, Artistic Imaging and Digital Typography, pages 1–10. Berlin: Springer-Verlag.

Ruttkay, Z., and Noot, H. (2000). Animated CharToon Faces. In Proceedings of NPAR 2000,
Symposium on Non-Photorealistic Animation and Rendering (Annecy, France, June 2000),
pages 91–100. New York: ACM Press.

Saito, T., and Takahashi, T. (1990). Comprehensible Rendering of 3-D Shapes. In Baskett,
F., editor, Proceedings of SIGGRAPH’90 (Dallas, August 1990), Computer Graphics
Proceedings, Annual Conference Series, pages 197–206. New York: ACM SIGGRAPH.

References 423

Salisbury, M. P. (1997). Image-Based Pen-and-Ink Illustration. Ph.D. thesis, Department of
Computer Science and Engineering, University of Washington, Seattle.

Salisbury, M. P., Anderson, C., Lischinski, D., and Salesin, D. H. (1996). Scale-Dependent
Reproduction of Pen-and-Ink Illustration. In Rushmeier, H., editor, Proceedings of
SIGGRAPH’96 (New Orleans, August 1996), Computer Graphics Proceedings, Annual
Conference Series, pages 461–468. New York: ACM SIGGRAPH.

Salisbury, M. P., Anderson, S. E., Barzel, R., and Salesin, D. H. (1994). Interactive Pen-
and-Ink Illustration. In Glassner, A., editor, Proceedings of SIGGRAPH’94 (Orlando,
July 1994), Computer Graphics Proceedings, Annual Conference Series, pages 101–108.
New York: ACM SIGGRAPH.

Salisbury, M. P., Wong, M. T., Hughes, J. F., and Salesin, D. H. (1997). Orientable
Textures for Image-Based Pen-and-Ink Illustration. In Whitted, T., editor, Proceedings of
SIGGRAPH’97 (Los Angeles, August 1997), Computer Graphics Proceedings, Annual
Conference Series, pages 401–406. New York: ACM SIGGRAPH.

Sarkar, M., and Brown, M. H. (1992). Graphical Fisheye Views of Graphs. In Bauersfeld, P.,
Bennett, J., and Lynch, G., editors, Proceedings of CHI’92 Conference on Human Factors in
Computing Systems (Monterey, May 1992), pages 83–91. New York: ACM SIGCHI.

Sasada, T. T. (1987). Drawing Natural Scenery by Computer Graphics. Computer-Aided Design,
19(4):212–218.

Sattler, R. (1986). Bio-Philosophy: Analytic and Holistic Perspectives. Berlin: Springer-Verlag.

Schaffer, D., Zuo, Z., Bartram, L., Dill, J., Dubs, S., Greenberg, S., and Roseman, M.
(1993). Comparing Fisheye and Full-Zoom Techniques for Navigation of Hierarchically
Clustered Networks. Proceedings of Graphics Interface’93 (Toronto, Canada, May 1993),
pages 87–96.

Schaffer, D., Zuo, Z., Greenberg, S., Bartram, L., Dill, J., Dubs, S., and Roseman, M.
(1996). Navigating Hierarchically Clustered Networks Through Fisheye and Full-Zoom
Methods. ACM Transactions on Computer-Human Interaction, 3(2):162–188.

Schlechtweg, S., and Raab, A. (1998). Rendering Line Drawings for Illustrative Purposes. In
Strothotte (1998), Chapter 4, pages 65–89.

Schlechtweg, S., Schönwälder, B., Schumann, L., and Strothotte, T. (1998). Surfaces to Lines:
Rendering Rich Line Drawings. In Skala, V., editor, Proceedings of WSCG’98, The 6th
International Conference in Central Europe on Computer Graphics and Visualization (Pilzeň,
February 1998), pages 354–361.

424 References

Schlechtweg, S., and Strothotte, T. (1999). Illustrative Browsing: A New Method of Browsing
in Long On-Line Texts. In Sasse, M. A., and Johnson, C., editors, Computert Human
Interaction. Proceedings of INTERACT’99 (Edinburgh, UK, September 1999), pages
466–473. Amsterdam: IOS Press.

Schleich, R., and Dürst, M. J. (1994). Beyond WYSIWYG: Display of Hidden Information
in Graphics Editors. In Proceedings of Eurographics’94 (Oslo, Norway, September 1994),
pages 185–194. Oxford: NCC Blackwell Ltd.

Schofield, S. (1994). Non-photorealistic Rendering: A Critical Examination and Proposed System.
Ph.D. thesis, School of Art and Design, Middlesex University.

Schönwälder, B. (1997). Generierung charakteristischer Linienzüge aus 3D-Modellen.
Master’s thesis, Department of Simulation and Graphics, Otto-von-Guericke University
of Magdeburg.

Schumann, J., Strothotte, T., Raab, A., and Laser, S. (1996). Assessing the Effect of Non-
photorealistic Rendered Images in CAD. In Proceedings of CHI’96 Conference on Human
Factors in Computing Systems (Vancouver, Canda, April 1996), pages 35–42. New York:
ACM SIGCHI.

Sederberg, T. W., and Greenwood, E. (1992). A Physically Based Approach to 2D Shape
Blending. In Catmull, E. E., editor, Proceedings of SIGGRAPH’92 (Chicago, July 1992),
Computer Graphics Proceedings, Annual Conference Series, pages 25–34. New York:
ACM SIGGRAPH.

Shiraishi, M., and Yamaguchi, Y. (2000). An Algorithm for Automatic Painterly Rendering
Based on Local Source Image Approximation. In Proceedings of NPAR 2000, Symposium
on Non-Photorealistic Animation and Rendering (Annecy, France, June 2000), pages 53–58.
New York: ACM Press.

Sklansky, J., and Gonzalez, V. (1979). Fast Polygonal Approximation of Digitized Curves.
Journal of the ACM , 18(2):255–264.

Small, D. (1991). Simulating Watercolor by Modeling Diffusion, Pigment, and Paper Fibers.
In Bender, W. R., and Plouffe, W., editors, Image Handling and Reproduction Systems
Integration, volume 1460 of Proceedings of SPIE.

Sourin, A. (2001). Functionally Based Virtual Computer Art. In Proceedings of the ACM
Symposium on Interactive 3D Graphics, I3D 2001, pages 77–84. New York: ACM Press.

References 425

Sousa, M. C. (1999). Computer-Generated Graphite Pencil Materials and Rendering. Ph.D. thesis,
Department of Computing Science, University of Alberta, Edmonton, Canada.

Sousa, M. C., and Buchanan, J. W. (1999a). Computer-Generated Graphite Pencil Rendering
of 3D Polygonal Models. In Brunet, P., and Scopigno, R., editors, Proceedings of
Eurographics’99 (Milano, Italy, September 1999), pages 195–207. Oxford: NCC Blackwell
Ltd.

Sousa, M. C., and Buchanan, J. W. (1999b). Observational Model of Blenders and Erasers
in Computer-Generated Pencil Rendering. In Proceedings of Graphics Interface’99
(Kingston, Canada, June 1999), pages 157–166. Toronto: Canadian Computer-Human
Communications Society.

Sousa, M. C., and Buchanan, J. W. (2000). Observational Model of Graphite Pencil Materials.
Computer Graphics Forum, 19(1):27–49.

Stollnitz, E. J., DeRose, T. D., and Salesin, D. H. (1996). Wavelets for Computer Graphics:
Theory and Applications. San Francisco: Morgan Kaufmann.

Strassmann, S. (1986a). Hairy Brushes. In Evans, D. C., and Athay, R. J., editors, Proceedings
of SIGGRAPH’86 (Dallas, August 1986), Computer Graphics Proceedings, Annual
Conference Series, pages 225–232. New York: ACM SIGGRAPH.

Strassmann, S. (1986b). Hairy Brushes in Computer-Generated Images. Master’s thesis,
Department of Architecture, Massachusetts Institute of Technology.

Streit, L. (1998). Importance Driven Halftoning. Master’s thesis, Department of Computing
Science, University of Alberta, Edmonton, Canada.

Streit, L., and Buchanan, J. W. (1998). Importance Driven Halftoning. In Proceedings of
Eurographics’98 (Lisbon, Portugal, August 1998), pages 207–217. Oxford: NCC Blackwell
Ltd.

Strothotte, C., and Strothotte, T. (1997). Seeing Between the Pixels. Pictures in Interactive Computer
Systems. Berlin: Springer-Verlag.

Strothotte, T., (1998). Computational Visualization: Graphics, Abstraction, and Interactivity. Berlin:
Springer-Verlag.

Strothotte, T., Masuch, M., and Isenberg, T. (1999). Visualizing Knowledge about Virtual
Reconstructions of Ancient Architecture. In Proceedings of CGI’99 (Canmore, Canada,
June 1999), pages 36–43. Los Alamitos: IEEE Computer Society Press.

426 References

Strothotte, T., Preim, B., Raab, A., Schumann, J., and Forsey, D. R. (1994). How to Render
Frames and Influence People. In Proceedings of Eurographics’94 (Oslo, Norway, September
1994), pages 455–466. Oxford: NCC Blackwell Ltd.

Tanenbaum, A. S. (1998). Computer Networks. Englewood Cliffs: Prentice-Hall.

Tortora, G. J. (1996). Introduction to the Human Body: The Essentials of Anatomy and Physiology,
fourth edition. Menlo Park: Addison-Wesley Longman.

Treavett, S. M. F. (1998). Art in the Pipeline. In Proceedings of the 16th Eurographics UK Conference
(Leeds, UK, March 1998).

Treavett, S. M. F., and Chen, M. (1997). Statistical Techniques for the Automatic Generation
of Non-Photorealistic Images. In Proceedings of the 15th Eurographics UK Conference.

Ulichney, R. (1987). Digital Halftoning. Cambridge: The MIT Press.

Ulichney, R. (1999). Halftoning. In Wiley Encyclopedia of Electrical and Electronics Engineering,
volume 8, pages 588–600. New York: John Wiley and Sons.

Ulichney, R. (2000). A Review of Halftoning Techniques. In Color Imaging: Device-Independent
Color, Color Hardcopy, and Graphic Arts V , volume 3963 of Proceedings of SPIE.

van Bakergem, W. D., and Obata, G. (1991). Free Hand Plotting. Is It Live or Is It Digital?
In Schmitt, G. N., editor, CAAD Futures ’91. International Conference for Computer Aided
Architectural Design, pages 567–582. Braunschweig, Germany.

Velho, L., and de Miranda Gomes, J. (1991). Digital Halftoning with Space Filling Curves. In
Sederberg, T. W., editor, Proceedings of SIGGRAPH’91 (Las Vegas, July 1991), Computer
Graphics Proceedings, Annual Conference Series, pages 81–90. New York: ACM
SIGGRAPH.

Vermeulen, A. H., and Tanner, P. P. (1989). PencilSketch—A Pencil-Based Paint System.
In Proceedings of Graphics Interface’89 (London, Canada, June 1998), pages 138–143. San
Francisco: Morgan Kaufmann.

Veryovka, O. (1999). Texture Control in Digital Halftoning. Ph.D. thesis, Department of
Computing Science, University of Alberta, Canada.

Veryovka, O., and Buchanan, J. W. (1999a). Comprehensive Halftoning of 3D Scenes.
In Brunet, P., and Scopigno, R., editors, Proceedings of Eurographics’99 (Milano, Italy,
September 1999), pages 13–22. Oxford: NCC Blackwell Ltd.

References 427

Veryovka, O., and Buchanan, J. W. (1999b). Halftoning with Image-Based Dither Screens.
In Proceedings of Graphics Interface’99 (Toronto, Canada, June 1999), pages 167–174. San
Francisco: Morgan Kaufmann.

Veryovka, O., and Buchanan, J. W. (2000). Texture-Based Dither Matrices. Computer Graphics
Forum, 19(1):51–64.

Viewpoint Digital (2000). Viewpoint Premier Catalog 2000 Edition.

Walther, I. F. (1992). Pablo Picasso. Das Genie des Jahrhunderts. Köln, Germany: Benedikt
Taschen Verlag.

Watt, A. (2000). 3D Computer Graphics, third edition. Reading: Addison-Wesley.

Watt, A., and Policarpo, F. (1998). The Computer Image. Reading: Addison-Wesley.

Weidenmann, B., editor (1994). Wissenserwerb mit Bildern. Bern: Verlag Hans Huber.

Willows, D. M., and Houghton, H. A., editors (1987). The Psychology of Illustration—Basic
Research, volume 1. New York: Springer-Verlag.

Winkenbach, G., and Salesin, D. H. (1994). Computer-Generated Pen-and-Ink Illustration.
In Glassner, A., editor, Proceedings of SIGGRAPH’94 (Orlando, July 1994), Computer
Graphics Proceedings, Annual Conference Series, pages 91–100. New York: ACM
SIGGRAPH.

Winkenbach, G., and Salesin, D. H. (1996). Rendering Parametric Surfaces in Pen and Ink.
In Rushmeier, H., editor, Proceedings of SIGGRAPH’96 (New Orleans, August 1996),
Computer Graphics Proceedings, Annual Conference Series, pages 469–476. New York:
ACM SIGGRAPH.

Yun-Jie, P., and Hui-Xiang, Z. (1991). Drawing Chinese Traditional Painting by Computer.
In Kunii, T. L., editor, Modeling in Computer Graphics. Proceedings of the IFIP WG 5.10
Working Conference (Tokyo, April 1991), IFIP Series on Computer Graphics, pages
321–328. Tokyo: Springer-Verlag.

Zhang, Q., Sato, Y., Takahashi, J., Muraoka, K., and Chiba, N. (1999). Simple Cellular
Automaton-Based Simulation of Ink Behaviour and Its Application to Suibokuga-like
3D Rendering of Trees. The Journal of Visualization and Computer Animation, 10(1):27–37.

A U T H O R I N D E X

Aleksander, Igor, 340, 376
Amidror, Isaac, 80, 154
Anderson, Corin, 181
Anderson, Sean E., 153, 180
Appel, Arthur, 244
Arce, Gonzalo R., 81
Arnheim, Rudolf, 248, 268

Barr, Alan H., 304
Barsky, Brian A., 234
Bartels, Richard H., 234
Bartram, Lyn, 304
Barzel, Ronen, 180, 181, 335
Beatty, John C., 234
Blum, Harry, 245
Bourdev, Lubomir, 181, 335
Bresenham, Jack, 102
Brown, Marc H., 304
Buchanan, John W., 80, 153,

200

Canny, John, 177
Carpendale, M. Sheelagh T.,

30, 304, 336
Carr, David, 245
Chiba, Norishige, 153
Cockshott, Tunde, 153
Cohen, Elaine, 245, 268
Cohen, Michael F., 30, 112
Cowperthwaite, David J., 304
Curtis, Cassidy J., 153, 335

Dürer, Albrecht, 138
de Miranda Gomes, Jonas, 81
DeRose, Tony D., 112, 245
Deussen, Oliver, 30, 81, 201,

245, 335

Dill, John, 304
Dooley, Debra L., 30, 112
Dubs, Shelli, 304
Duchamp, Tom, 245
Dürst, Martin J., 245

Edman, Polly K., 335
Elber, Gershon, 112, 244,

245
England, David, 153
Escher, Maurits Cornelis, 56

Feiner, Steven K., 30, 80,
102, 184, 229, 244, 268

Finkelstein, Adam, 81, 112,
181

Fleischer, Kurt W., 153
Floyd, Robert W., 35, 80
Foley, James D., 30, 80, 102,

184, 244, 268
Forsey, David R., 30, 112
Fracchia, F. David, 304
Furnas, George, 304

Garcı́a, S., 304
Gardner, Martin, 115
Girshick, Ahna, 181, 336
Godenschweger, Frank, 244,

245
Gombrich, Ernst H., 316,

335, 336
Gonzalez, V., 245
Gooch, Amy, 268
Gooch, Bruce, 268
Greenberg, Saul, 304
Greenwood, Eugene, 57
Guo, Quinglian, 153, 335

Haeberli, Paul, 181
Haker, Steven, 181, 336
Hall, Peter, 268
Hamel, Jörg, 201, 245, 268
Hartmann, Knut, 304, 336
Henigman, Frank, 304
Hersch, Roger D., 80, 81,

149, 154
Hertzmann, Aaron, 112, 335
Hiller, Stefan, 30, 81
Ho, Albert, 304
Hodges, Elaine R. S., 268
Holden, Loring S., 181, 335
Hoppe, Axel, 245
Hoppe, Hughes H., 245
Houghton, Harvay A., 181
Hsu, Siu Chi, 93, 112
Hughes, John F., 30, 80, 102,

167, 181, 184, 244, 268,
335

Interrante, Victoria, 181,
336

Isenberg, Tobias, 112

Jähne, Bernd, 80

Keahey, T. Alan, 304
Knuth, Donald E., 80
Kowalski, Michael A., 181,

335
Kunii, Tosiyasu L., 153, 335,

405
Kurze, Martin, 336

Lam, Louisa, 245
Lansdown, John, 30, 111, 200

429

430 Author Index

Laser, Stefan, 84, 86, 181,
335, 336

Lee, Irene, 93, 112
Lee, Seong-Whan, 245
Leister, Wolfgang, 153
Lemoine, Todd, 181, 336
Lintermann, Bernd, 335
Lischinski, Dani, 181
Litwinowicz, Peter, 335
Luebke, David, 245

Manster, Sebastian, 5
Markosian, Lee, 112, 181,

335
Marshall, Trevor, 181
Martin, Judy, 268
Martı́n, Domingo, 304
Masuch, Maic, 112, 335
McCloud, Scott, 335
McDonald, John, 245
McKenna, Tom, 81
Meier, Barbara J., 181, 335
Mizuno, Shinji, 154
Muraoka, Kazunobu, 153

Northrup, J. D., 112, 181, 335

Obata, Gen, 111
Ostromoukhov, Victor, 80,

81, 149, 153, 154

Parker, James R., 245
Patterson, John, 153
Pavlidis, Theo, 245
Peeck, Joan, 335
Perlin, Ken, 181, 335
Pham, Binh, 152
Phong, Bui-Tuong, 253, 268
Picasso, Pablo, 6
Plaisant, Catherine, 245
Policarpo, Fabio, 30, 80
Preim, Bernhard, 30, 112,

245, 304, 336
Preparata, Franco P., 244

Raab, Andreas, 30, 84, 86,
112, 181, 201, 244, 245,
268, 304, 335, 336

Rademacher, Paul, 304
Range, Marisa, 81
Richens, Paul, 111, 200
Riesenfeld, Richard, 268
Robertson, Edward L., 304
Rogers, David F., 157
Rohlf, F. James, 244
Roseman, Mark, 304
Rudaz, Nicolas, 81, 154
Rüger, Michael, 304

Saito, Takafumi, 30, 200, 244
Salesin, David H., 30, 112,

153, 167, 180, 181
Salisbury, Michael P., 167,

180, 181
Sarkar, Manojit, 304
Sasada, Tsuyoshi Tee, 335
Sato, Youetsu, 153
Sattler, Rolph, 338
Schlechtweg, Stefan, 112,

201, 244, 245, 268, 335,
336

Schleich, Robert, 245
Schofield, Simon, 30, 83,

111, 200
Schulz, Ronny, 335
Schumann, Jutta, 30, 84, 86,

112, 181, 335, 336
Schumann, Lars, 112, 268,

335
Schönwälder, Bert, 112, 244,

268, 335
Sederberg, Thomas W., 57
Seims, Joshua E., 153
Shaffer, Doug, 304
Shamos, Michael I., 244
Shirley, Peter, 268
Shneiderman, Ben, 245
Sklansky, J., 245
Sloan, Peter-Pike J., 268

Small, David, 153
Sourin, Alexei, 154
Sousa, Mario Costa, 153
Stein, Arthur J., 244
Steinberg, Louis, 35, 80
Stollnitz, Eric J., 112
Strassmann, Steve, 30, 112,

152
Streit, Lisa M., 80, 200
Strothotte, Christine, 30, 336
Strothotte, Thomas, 30, 84,

86, 112, 181, 201, 244,
245, 268, 304, 335, 336

Stuetzle, Werner, 245
Suen, Chiang Y., 245
Sutherland, Ivan, 1

Takahashi, Jun-ya, 153
Takahashi, Tokiichiro, 30,

200, 244
Tanenbaum, Andrew S., 340
Torres, Juan Carlos, 304

Ulichney, Robert, 80

van Bakergem, W. Davis, 111
van Dam, Andries, 30, 80,

102, 184, 244, 268
van Overveld, Kees, 30, 337
Velho, Luiz, 81, 181
Veryovka, Oleg, 81, 200

Wagener, Hubert, 244, 245
Watt, Alan, 30, 80, 184, 268
Weidenmann, Bernd, 181,

335, 336
Willows, Dale M., 181
Winkenbach, Georges, 30,

180, 181
Wiseman, Neil, 93, 112
Wong, Michael T., 167, 181

Zhang, Qing, 153
Zuo, Zhengping, 304

S U B J E C T I N D E X

2D data
algorithms for NPR and, 18
encoding selected 3-D information for, 18,

19
G-buffer for edge detection, 18, 19
procedural screening and, 50

2 1
2 D data structures, 183–201
3D parameters for 2D dithering, 194–199
for comprehensible rendering, 188–191
defined, 18
for edge detection, 18, 19
G-buffers overview, 183–188
for interactive painting, 191–194
See also G-buffers

3D data
encoding information for 2-D data

structures, 18, 20
procedural screening and, 52

3D parameters for 2D dithering, 194–199
depth perception and depth cues, 197–199
distinguishing objects in a scene, 196–197,

198
G-buffer types for, 196
See also G-buffers

Absolute brightness, relative brightness vs.,
377–379

abstract data type
data portion of, 206–208
defined, 206
editing operations, 208, 209
exploration operations, 208, 209
implementation, 209–211
operations in, 208–209
viewing operations, 208

abstract-graphical symbols in technical
illustrations, 26

abstraction
of artifacts in NPR, 208
defined, 11, 168–169
of detail for tactile presentations, 332–333
graphical abstraction of model, 15–16
as presentation variable, 205
projection and, 169
in stroke-based illustration, 168–171

acquired skills, distortion and, 291–292, 293
adaptive histogram equalization (AHE), 47–48
add merging rule, 148
adjacent focal magnification in dropoff

functions, 274, 276
adsorption coefficients, 128
Aleksander, Igor, 376
algorithms

adaptive histogram equalization, 47–48
animation based on particle systems,

310–311
approaches for NPR, 12–24
artistic purposes and, 155
basic screening, 42
component-based lighting model via

G-buffers, 266
computing artifacts from data sources, 21–24
constructing true equivalence classes out of

p-equivalence relations, 350–351
contour-based screening, 57, 58
for curved hatching lines, 190
difference image algorithm (DIA), 160–162
dimensionality of data sources and, 17–20
edge buffer updating, 218
edge classification of polygonal models,

216–217

431

432 Subject Index

algorithms (continued)
exhaustive matching, 372
Floyd-Steinberg algorithm modified for

hatching lines, 39–40
Floyd-Steinberg error diffusion, 35–36
fluid simulation approach to watercolor,

125–127
haloed line effect, 223
higher semantics LAS-based matching, 373
histogram computation, 44, 45
illustration generation from given text,

326–327
image mosaics, 72, 76
image-space distortion, 271–273
intersection computation, 225
intersection method for stippling, 62–63
LAS-based matching, 372
non-adaptive uniform histogram

equalization, 45–46
non-deterministic elements in, 306
object-space distortion, 285, 286–288
ordered dithering, 34
painter’s algorithm, 311
paper fiber structures, 118, 119
path and style approach to watercolor,

102–103, 104
point coverage of a surface, 239
procedural screening, 50, 52
raytracing approach for engraving, 139–140
screening with texts, 53–54, 55
skeleton computation for polygon meshes,

231
speedlines computation, 308–309
stroke orientation, 167
for stroke placement, 160–162
for strokes reflecting light intensity, 159
view-dependent model, 299, 300

aliasing artifacts
contour-based screening and, 59
in photorealistic rendering, 12–13

ambient light in Phong model, 253, 256
analysis filter for multiresolution curves,

107

animation, 305–311
computerized drawing techniques for, 93
distorted transformations, 296–297
distortions in, 269–270, 295–302
key deformations, 299
key viewpoints, 299, 300
Latin root of term, 305–306
morphing the model, 297–302
motion representation in still images,

307–309
non-deterministic elements and, 306
non-linear transformations, 296–297
particle systems-based, 310–311, 312
reference drawings, 298–299
shower-door effect, 306
speedlines, 307, 308–309
text illustrations and, 327
view-dependent model algorithms, 299, 300
viewer-dependent distortions, 295–296
visualizations of movement, 207
wiggly lines for, 306

annotations as presentation variable, 205
applications for NPR, 305–336

animation, 305–311
architectural illustrations, 311–320
medical and technical illustrations, 324–330
rendering plants, 321–324
tactile rendering for blind people, 331–334
See also specific applications

approximation errors in polygonal models,
213–214

arbitrariness, 21, 22
archeological illustrations

combining photographs with NPR
visualizations, 319, 320

hand-drawn illustrations preferred for, 317
as NPR role model, 27, 28
photorealistic vs. NPR interpretations,

319–320
for reconstructions of ancient architecture,

317, 318–320
architectural illustrations, 311–320

empirical study of, 312–316

Subject Index 433

expressing uncertainty in designs, 86,
316–320

lack of detail, reasons for, 316–317
as motivation for early work in NPR, 86,

311–312
for reconstructions of ancient architecture,

317, 318–320
See also computer-aided architectural design

(CAAD) programs
area of haptic perception, 331–332
Arnheim, Rudolph, 248
artifacts

abstraction in NPR, 208
aliasing, 12–13, 59
computing from data sources, 21–24
dimensionality of data sources and, 20
image, 13–14, 31, 188
model, 14–17
NPR vs. photorealistic rendering and,

12–13, 14–15
See also specific types

artificial intelligence (AI), NPR to simulate, 8
“artistic” lines, 89–106

applying strokes to paths, 90–93
deforming images, 90–93
in human drawings, 89
line styles, 94–99, 100
path of, 89–90
skeletal strokes, 90
watercolor simulation, 99–106
See also wiggly lines

artistic rendering, 11–12
artistic technique simulation

copperplate engraving using raytracing
approach, 139–145

engraving using image processing approach,
144–151

mimicking results instead of physical
processes, 138

pencil drawing, 129–138
as questionable goal, 113
stroke-based illustration for, 155
watercolor using cellular automata, 115–122

watercolor using fluid simulation, 123–129
artists, NPR not intended to replace, 12
atmospheric effects for depth perception

enhancement, 222
attenuation. See light ray attenuation (LRA)
attribute editors for context information, 210
automatic methods of stippling, 61–67

compensating for non-linear intensity
response, 66–67

distributions, 62–66
intersection method, 62–63
limitations of, 67–68

average curvature, 267

Back lighting
in component-based lighting model, 261
in photography vs. scientific illustrations,

252
backruns in watercolor, 123
base plane for image-space distortion, 271, 272
Bell, Alexander Graham, 383
bi-level images, 139
bigger merging rule, 148
binary relations, 343
blind people. See tactile rendering for blind

people
block-by-block histogram equalization, 46–47
books

e-books (digital books) and NPR, 9–10, 324
halftoning in, 33

boundary curves, 236
boundary outlines, 163–164
Braille output devices, 331
brightness

absolute vs. relative, 377–379
atmospheric effects, 222
intensity vs., 32
of lines, 85, 97

brushes
for interactive stippling, 71
modeling using cellular automata, 119–121
paintbrush-like strokes, 158, 168
for watercolor simulation, 101, 119–121

434 Subject Index

brushes (continued)
z-depth and, 192
See also strokes

buckling in image-space distortion, 279

C1 discontinuities, curves along, 236
CA. See cellular automata (CA); cellular

automata for watercolor simulation
CAAD. See computer-aided architectural

design (CAAD) programs
CAD. See computer-aided design (CAD)

programs
CAL (computer-aided learning), 205–206
capillary layer of washes, 125, 127
captions for figures, 330
Cartesian products, 342–343
cartography, distortion to improve information

in, 6
cartoon characters, line style applications, 99,

100
cellular automata (CA)

basics, 115–117
components, 115
Conway’s game of life, 115
defined, 115
excitable media modeling, 115–117
Neumann-neighborhood, 117–118

cellular automata for watercolor simulation,
115–122

algorithms, 118, 119
brush modeling, 119–121
cellular automata basics, 115–117
evaporation of water, 122
example painting, 129
ink transfer and diffusion model, 117–118
painting process modeling, 121–122
paper modeling, 118–119, 120
rendering the simulation results, 127–128,

129
transfer and diffusion of water particles, 121
transfer of ink particles accompanying water

particles, 121–122

transfer of ink particles to balance the
concentration, 122

clipping strokes
graftals and, 158
paintbrush-like strokes and, 158
technique for, 157

CMF (cumulative mass function), 45
coding and decoding process, 383–384
cognition. See human cognition and perception
color

as presentation variable, 205
proper surface color (PSC) p-equivalence

relation, 364, 367
shadow surface color (SSC) p-equivalence

relation, 364–365, 367
spectrum, 359–360
technical illustration conventions, 251

color correction
for image mosaics, 76–79
interactive, 168

color scales for increasing luminance, 257–258
color scaling function, 77, 78
color shifting function, 77, 78
color temperature, 255–256, 258–259
colored illustrations, 255–259

color scales for increasing luminance,
257–258

color temperature, 255–256, 258–259
Phong model disadvantages for, 256

colored strokes
in animation based on particle systems, 310
stroke textures and, 162–163

communicating information
affective and motivational aspects, 313
architectural illustration study, 312–316
graphical abstraction for, 15–16
handmade image distortions for, 3–5, 6, 7,

8–9
NPR for, 8–9, 10
NPR terms and, 11
in scientific illustrations, 248
visual communication model, 383–406
See also model for visual communication

Subject Index 435

component-based lighting model, 260–267
algorithm, 266
back lighting, 261
curvature lighting, 261–262, 263, 266–267
G-buffers for, 266–267
implementation issues, 266–267
overall intensity, 265
plateau lighting, 261
rim shadow lighting, 260–261, 263
standard libraries and, 266
standard lighting and shadows, 260
transmission and transparency, 262–264

comprehensibility
conceptual framework for NPR and,

341–342
distortion and, 270, 290–295
explosion diagrams for, 290

comprehensible rendering, 188–191
curved hatching lines, 189–190, 191
defined, 11
edge enhancement, 188–189

compression in dropoff functions, maximal,
274, 276

computer-aided architectural design (CAAD)
programs

architectural illustration study, 312–316
imperfect drawings needed in, 86
output devices, 84, 85–86
photorealistic rendering developments in,

312
for technical illustration, 26
See also archeological illustrations;

architectural
illustrations

computer-aided design (CAD) programs
architectural illustration study, 312–316
explosion diagrams using, 289–290
imperfect drawings needed in, 86
output devices, 84, 85–86
for technical illustration, 26

computer-aided learning (CAL), 205–206
computer output devices. See output

devices

conceptual framework for NPR, 337–408
Cartesian products and relations, 342–344
detecting light, 360–366
earlier concepts inspiring, 340
equivalence classes and invariants, 346–352
equivalence relations and variants, 344–346
look-ahead sets (LASses), 370–378
mathematical preliminaries, 341–358
methodological disclaimer, 337–341
model for visual communication, 383–406
neurobiological context, 370–383
perceptual context, 377–383
physical context, 359–360
physical preliminaries: communication via

light rays, 358–370
practical connection with NPR, 406–408
quotients, (iso)morphism, and abstraction,

352–357
sets and elements, 342
truthfulness and, 337–341
viewing-related (p-)equivalence relations,

366–370
constant function for color correction, 77
constructions, distortion and, 292, 293
context for image-space distortion, 272
context information

attribute editors for, 210
external references, 207
in geometric models, 207
internal references, 207
NPR need for, 204–206, 207

context integration in dropoff functions, 274,
276

contour-based screening, 55–60
algorithm, 57, 58
aliasing artifacts and, 59
artistic screening example, 60, 61
basic screening vs., 59–60
dither matrix example, 57
intensity ramps, 56–57, 60
interpolating over block edges and, 55–56
screen element design, 57–59
steps in, 58–60

436 Subject Index

contour edges
defined, 214
identifying, 215–216
illustrated, 215

contours
marks for, 157, 158
not crossed by strokes, 157
z-buffers for detecting, 186–188
See also edge detection

contrast, non-adaptive uniform histogram
equalization and, 46

control functions for distortion in animation,
296

control vertices
connectivity between, 235, 241–242
described, 233–234
higher curvature and, 239–240

copperplate engraving simulation. See
engraving simulation

cosine dropoff function, 276
counterfeit protection, microletters for, 53
criteria for success of NPR, 8–10
cross-hatching

arbitrary placement of lines, 22
graphical abstraction and, 16
medical illustration conventions, 25, 26
procedural screening for, 50
for shadows, 164, 165
sharp pencil limitations and, 8
See also engraving simulation; hatching lines

cumulative mass function (CMF), 45
curvature lighting

in component-based lighting model,
261–262

implementation issues, 266–267
in photography vs. scientific illustrations,

252
rim shadow lighting compared to, 263

curves
algorithm for curved hatching lines, 190
along C1 discontinuities, 236
boundary, 236
decomposition, 107

iso-parametric, 236
multiresolution, 106–109
piecewise polynomial, 234
reconstruction, 107
silhouette, 236–237
See also lines

Data sources
computing artifacts from, 21–24
dimensionality and algorithms for, 17–20
presentation variables, 205
types of, 22–23

De Humani Corpus Fabrica, 25
decomposition of curves, 107
deformations in object-space distortion, 287
deforming images

applying strokes to paths, 90–93
extended features, 93
ribbon style strokes, 91–92
sausage style strokes, 91, 92
shear angle, 91–92
stroke definition and skeletons, 90, 91

degree of interest for an object (DOI), 327
depth cuing in line drawing, 18, 20
depth maps. See z-buffers
depth perception enhancement, 221–224

atmospheric effects for, 222
haloed lines for, 222–224
line style parameters for, 222
object-object occlusions for, 222–224
perspective foreshortening for, 222

depth threshold for leaves, 323–324
descriptive captions for figures, 330
detail

lacking in architectural sketches, 316–317
as presentation variable, 205
for tactile presentations, 332

detail segments, 169–170
determinism, 21–22, 23
difference image algorithm (DIA), 160–162
difference vector for line styles, 95–96
diffuse reflection in Phong model, 253–254,

256–257

Subject Index 437

digital books (e-books), NPR and, 9–10,
324

dip in watercolor simulation
defined, 101
effects of, 103–104

disc size for leaves, 322, 323–324
discernibility in haptic perception, 331
discontinuity edges, 172–173, 174–177
discretization of pattern image, 143
Disney, Walt, 16
displacement maps for procedural screening,

50–51
distortion, 269–304

in animation, 269–270, 295–302
comprehensibility and, 270, 290–295
distorted transformations, 296–297
dominance axis for, 292–293
in handmade images, 269
image-space distortion, 270–281
importance of objects and, 269
interactive systems and, 290–291
morphing the model, 297–302
negative connotation of, 270
non-linear transformations, 296–297
object-space distortion, 281–290
as presentation variable, 205
in print media, 290
recognition axis for, 291–292, 293
for tactile presentations, 333
viewer-dependent, 295–296
viewing cues for, 291–295
See also image-space distortion; object-space

distortion
distributions in stippling

automatic methods, 62–66
interactive methods, 69–70
intersection method, 62–63
jittering and, 65
osculating, 64–65
relaxed, 65–66
Sobol, 63, 64, 67
uniform random, 63, 64

dither kernels, 49, 50

dither matrices
for 2 × 2 pixel regions, 34
for 3 × 3 pixel regions, 33–34
for 4 × 4 pixel regions, 34, 38
for 6 × 6 pixel regions, 38, 39
algorithm for, 34
for contour-based screening, 57
non-photorealistic, 37–39

dither patterns
for 3 × 3 matrix, 33
for 4 × 4 matrix, 38
image-independent dithering, 41
See also halftoning; screening

dither screens
for adaptive histogram equalization, 48
for basic screening, 43
for block-by-block histogram equalization,

47
defined, 42
embedding shapes in, 52–60
in image processing approach for engravings,

146, 149–151
microletters for, 53, 55
procedural definition of, 49
qualities needed for, 43
See also screening

dithering
3D parameters for 2D dithering, 194–199
image-independent, 41
ordered, 33–35, 37–39, 42
as presentation variable, 205
for tactile presentations, 333
See also halftoning; ordered dithering;

screening
DOI (degree of interest for an object), 327
dominance axis for distortions, 292–293
dominance value for line styles, 98
Dr. Seuss-like strokes. See graftals
drawing by hand

line drawing qualities, 84–85
as observation, 5
point of view and, 4
styles and NPR terms, 11

438 Subject Index

drawing by hand (continued)
See also handmade images

drawing simulating pencils on paper. See pencil
drawing simulation

dropoff functions, 275–277
cosine, 276
criteria for comparing, 275
Gaussian, 273, 276, 278
hemisphere, 276
hyperbolic, 276
linear, 276
Manhattan distance, 277

Dürer, Albrecht, 138

E-books (digital books), NPR and, 9–10, 324
edge buffer, 217–219, 221
edge classification of polygonal models,

214–224
algorithm, 216–217
edge buffer method, 217–219, 221
enhancing depth perception, 221–224
fast, 217–221
normal vector information for, 215–217
for open objects, 219–221
types of edges, 214–215

edge collapse operation
for simplifying polygon meshes, 229–230
for skeleton computation, 230–231

edge darkening in watercolor, 123
edge detection

for enhancing 2-D images, 18, 19
G-buffer for, 18, 19
in raytracing approach for copperplates, 142
for rescaling stroke-based images, 174
z-buffers for, 186–189

edge lines
in lighting model comparisons, 259
Phong model and, 256, 257
thicker for shadows, 164, 165

editing operation on geometric model data,
208, 209

elastic presentations, 11
elements, 342

ends of lines, 85, 88
engraving simulation

image processing approach, 144–151
intersection operator for, 227, 228
process of engraving, 138–139
raytracing approach for copperplates,

139–145
See also image processing approach for

engravings; raytracing approach for
copperplates

equivalence classes
constructing true equivalence classes out of

p-equivalence relations, 350–351
equivalence relations and, 346–347
invariants and, 250, 347
p-equivalence classes, 250, 348–349, 406
p-equivalence relations and, 347–348
sets and, 352–355
similarity expressed in terms of, 406

equivalence relations
defined, 345
equivalence classes introduced by, 346–347
light ray projection (LRP), 363, 367, 379,

381
transitive, 347–348
variants and, 344–346

error diffusion
artifacts from, 40–41
compared to other halftoning methods, 37
defined, 35
described, 42
Floyd-Steinberg algorithm, 35–36
intensity ramp, 35
interactive manipulations, 69
overview, 35–36
screening vs., 52
using hatching lines, 39–41
z-buffer for, 197–198

Escher, M. C., 56
evolutionary epistemology, 368
excitable media

cellular automaton model, 116, 117
examples, 115–116

Subject Index 439

explicit representation of polygonal models,
212–213

exploration operation on geometric model
data, 208, 209

explosion diagrams, 288–290
explosion hierarchy, 288, 289
external references, 207

Facial recognition, as p-equivalence relation,
366–367

fast edge classification of polygonal models,
217–221

edge buffer method, 217–219, 221
for open objects, 219–221

fill operations
interpolation fill, 166
region fill, 166
source fill, 166
stroke orientation and, 166
z-depth for texture fills, 192–193

flesh of line stroke, 90
flow patterns in watercolor, 123
Floyd, Robert W., 35
Floyd-Steinberg error diffusion algorithm,

35–36
interactive manipulations, 69
modification for hatching lines, 39–40
See also error diffusion

fluid simulation for watercolor, 123–129
algorithms, 125–127
capillary layer, 125, 127
example painting, 129
fluid simulation setup and algorithms,

124–125
layers in washes, 125
paper modeling, 124
pigment deposition layer, 125, 126–127
rendering the simulation results, 128–129
shallow water layer, 125–126
stack of washes, 124
watercolor effects, 123–124
wet-area mask, 124

focal magnification in dropoff functions, 274,
276

focus for image-space distortion
cross-section diagram of raised central focus

point, 273
focus integration in dropoff functions, 274
focus region, 273–275
off-center focus points and multiple foci,

278–281
single central focus point, 272–273, 274
viewer-aligned, 278–280

foliage, rendering, 321, 322–324
force feedback devices for blind people, 331
formalisms, distortion and, 292, 293
Fourier-Mellin transform of an image, 380
Fourier transform of an image, 380
free-form surface models, 233–243

approximation of, 235
boundary curves, 236
control vertices, 233–234, 235, 239–240,

241–242
curves along C1 discontinuities, 236
description of, 233–235
interpolation schemes, 233, 234
iso-parametric curves, 236
iso-parametric net, 240–241, 242
normalized polygon mesh, 243
operations on, 235–243
piecewise polynomial curves, 234
point coverage, 237–239
polygon meshes representing, 239–243
rendering using curves on, 235–237
silhouette curves, 236–237
tensor product surfaces, 234

G-buffers
3D parameters for 2D dithering, 194,

196–199
in animation based on particle systems, 310
component-based lighting model using,

266–267
for curved hatching lines, 189–190, 191
defined, 184–185

440 Subject Index

G-buffers (continued)
for edge detection, 18, 19
for hatching lines and contour lines, 188
ID-buffer, 185–186, 191, 196, 197, 198,

199, 321
for interactive painting, 1, 191–192
lighting-buffer, 196, 197, 198
material-buffer, 192
n-buffer, 192
normal-buffer, 196, 197
operations on, 185–188
overview, 183–188
shadow-buffer, 192
for shortening hatching lines, 232
for trees, 321, 322–323
user-supplied values in, 192, 199
values represented by, 184–185
See also 2 1

2 D data structures; z-buffers
Gardner, Martin, 115
Gaussian curvature, 267
Gaussian dropoff function, 273, 276, 278
geometric buffers. See G-buffers
geometric models, 203–245

classical view on, 204
context information in, 207
context information needs for NPR,

204–206, 207
as data sources, 22
as data types, 204–211
defined, 203
edge collapse for simplifying, 229–230
editing operations, 208, 209
exploration operations, 208, 209
external references in, 207
free-form surface models, 233–243
geometric information in, 206
graphical information in, 207
internal references in, 207
polygonal models, 211–233
topography of, 226–227
topology of, 226–229
uncertainty in design and, 318
viewing operations, 208

See also abstract data type; free-form surface
models; polygonal models

geometric primitives for leaves, 322
gestalt phenomena, 377
ghosting, 262–263
global shape determination for polygonal

models, 226–233
graftals

abstraction by, 170, 171
levels of detail in, 157
orienting, 167–168
scaling, 158

graphical abstraction
for de-emphasis, 15–16
for emphasis, 15
model artifacts and, 15–16
for recognition improvement, 16, 17

graphical information in geometric models,
207

gray ramps. See intensity ramps

Hairy brush simulation. See watercolor
simulation

halftoning, 32–41
3D parameters for 2D dithering, 194–199
applications to NPR, 37–41
areas per inch, 33
defined, 32
error diffusion, 35–36, 37, 39–41
hatching lines for, 39–41
in magazines and books, 33
in newspapers, 32–33
ordered dithering, 33–35, 37–39
screening as type of, 32
threshold quantization, 37
See also error diffusion; ordered dithering;

screening
haloed lines

algorithm for, 223
for depth perception enhancement, 222–224

handmade images
architectural, 311–312

Subject Index 441

deviance from realism to convey information,
3–5, 6, 7, 8–9

distortion in, 269
line qualities in drawings, 84–85, 89
NPR not intended to replace artists, 12
NPR to emulate, 8, 10, 83
observation needed for, 5
pen-and-ink illustrations, 155–156
photography’s influence on, 1, 5, 6
point of view and, 4
role models for NPR, 24–28
stippling in, 13, 61
tool limitations and, 8
town views, 3–4, 5, 6, 7
transparency in, 263–264
See also drawing by hand

haptic perception, 331–332. See also tactile
rendering for blind people

hatching lines
for comprehensibility, 188
curved, 189–190, 191
in engraving, 139, 140–142
error diffusion using, 39–41
G-buffers for, 188
intersection computation for, 224–226, 227,

228
iso-parametric vs. regular meshes and, 243
skeletonization application, 231–233
topology and, 227, 229
See also cross-hatching; engraving simulation

hemisphere dropoff function, 276
hierarchical structure, as geometric model

internal reference, 207, 210
higher order strokes, 93
highlights

in lighting model comparisons, 259
Phong model and, 256, 257
rim shadow lighting, 252, 260–261, 263

histogram equalization
adaptive, 47–48
algorithms, 45–46, 47–48
block-by-block, 46–47
cumulative mass function (CMF) and, 45

non-adaptive uniform, 45–46
overview, 44–46

histograms
algorithm for computing, 44, 45
defined, 44
as probability mass function (PMF), 44

human cognition and perception
architectural illustration study, 312–316
detecting light: basic principles of viewing,

360–366
distortion and precognitive skills, 291, 293
dominance axis for distortions, 292–293
fundamental assumptions, 358–359
gestalt phenomena, 377
haptic perception, 331–332
illumination and, 248–249
inversion of images, 362
neurobiological context for NPR, 370–383
ostensive definition, 349
p-equivalence relations, 362–370
perceptual context for NPR, 377–383
principles of viewing, 360–366
recognition axis for distortions, 291–292,

293
speculative nature of knowledge about,

340–341
viewer response to non-photorealistic line

drawings, 88–89
viewing cues for distortions, 291, 293–295
viewing-related (p-)equivalence relations,

366–370
Huygen’s principle, 362
hyperbolic dropoff function, 276

Ibn Tulun Mosque, 61
ID-buffer

for dithering, 196, 197, 198, 199
for interactive painting, 191
mask for filtering using, 186
overview, 185–186
for tree trunk and branches, 321

ILD (incoming light direction) p-equivalence
relation, 364, 367

442 Subject Index

illumination. See lighting
illustrative rendering, 11
image artifacts, 13–14

comprehensibility and, 188
in NPR, 13–14
in photography, 13
in photorealistic rendering, 13
pixel manipulation of images and, 31
of questionable quality, 14
resolution and, 13
in stipple drawing, 13–14

image-based control for procedural screening,
51–52

image-independent dithering, 41. See also
screening

image mosaics, 72–79
algorithm, 72
algorithm for picking images, 76
arranging the image tiles, 75
choosing a tiling grid, 72–74
choosing images for tiles, 75–76
color correction, 76–79
defined, 32, 72
mosaic of mosaics, 74
multiresolution techniques, 74
quadtree for, 74
regular grids, 73–74
scattered layout, 72–73
Truman Show poster, 75

image processing approach for engravings,
144–151

basic engraving layer, 146, 147
creating an engraving, 149–151
dither screen, 146, 149–151
merging rules for layers, 146–149
overview, 145

image-space approach for intersection
computation, 224–225

image-space distortion, 270–281
application to photograph, 280–281
base plane, 271, 272
buckling in, 279
context, 272

cross-section diagram of raised central focus
point, 273

dropoff functions, 273, 275–277
focus region for, 273–275
functions for, 271
fundamental algorithm, 271–273
as independent from image, 271
limitations of, 281
magnification regions, 273–275
off-center focus points and multiple foci,

278–281
reference view plane, 271, 272
reference viewpoint, 271, 272
single central focus point, 272–273, 274
viewer-aligned focus, 278–280

incoming light direction (ILD) p-equivalence
relation, 364, 367

indication, 168–169. See also abstraction
information visualization, 18
infrared images, 184
instructive captions for figures, 330
intelligence, NPR simulation of, 8, 11
intensity

brightness vs., 32
in component-based lighting model, 265
in intensity ramp, 31
in Phong model of reflection, 253–255
in raytracing approach to copperplates, 139,

141–142
strokes reflecting light intensity, 159
transparency in hand-drawn images and,

263–264
See also lighting

intensity ramps
for basic screening, 43, 44
for contour-based screening, 56–57, 60
for dithering using hatching lines, 40, 41
for Floyd-Steinberg error diffusion, 36
for gray levels, 31–32
for histogram equalization, 47, 48
for image mosaics (gray ramp), 79
for ordered dithering, 34, 35
overview, 31–32

Subject Index 443

for procedural screening (gray ramp), 49, 50
for stippling, 71

interactive methods of stippling, 67–71
brushes, 71
distributions, 69–70
example image, 71
initial dot distribution, 69
interaction, 70–71
need for, 67–68
penalty function minimization, 70
problem statement, 68–69

interactive painting, 191–194
examples, 193–194, 195
G-buffer types for, 191–192
texture fills, 192–193
z-depth for, 192–193

interactive stroke attributes and parameters,
168

interactive systems, distortion and, 290–291
interior outlines, 163
internal references, 207
interpolation fill, 166
intersection computation for polygonal

models, 224–226
algorithm, 225
examples of applying, 225–226, 227, 228
hatching application for, 232

intersection method of stippling, 62–63
interval structures for object-space distortion,

282–283, 285, 286
invariants

in coding and decoding process, 383
equivalence classes and, 250, 347
recommendations for NPR, 408

irregularity of strokes, 156–157
iso-parametric curves, 236
iso-parametric net, 240–241, 242
isomorphisms

defined, 355
usefulness of, 355–356
See also morphisms

Jitter brush for interactive stippling, 71

jittering
distributions in stippling and, 65
retina sample jitter (RSJ) p-equivalence

relation, 363, 367, 379, 386

Kubelka-Munk model, 128

Labels for illustrations, generating, 327–329
Lambert’s law, 253–254
language

relationship of pictures to, 9, 10
texts for illustration, 324–330

LASses. See look-ahead sets (LASses)
leaves, rendering, 321, 322–324
length of lines, 85, 88
libraries, component-based lighting model

and, 266
light ray attenuation (LRA) p-equivalence

relation, 362, 367, 373
light ray projection (LRP) equivalence relation,

363, 367, 379, 381
lighting, 247–268

ambient light, 253, 256
back lighting, 252, 261
basic model, 253–255
color scales for increasing luminance,

257–258
color temperature, 255–256, 258–259
for colored illustrations, 255–259
comparison of models, 259
component-based model, 260–267
curvature lighting, 252, 261–262, 263,

266–267
detecting light: basic principles of viewing,

360–366
diffuse reflection, 253–254, 256–258
edge lines, 256, 257, 259
G-buffers for, 187–188, 196, 197, 198
highlights, 256, 257, 259
history of art and, 248–249
human cognition and, 248–249
illustration conventions, 250–251
implementation issues, 266–267

444 Subject Index

lighting (continued)
inconsistent, 249–250
line thickness and light intensities, 94
Maxwell’s laws, 359–360
negative colors for light sources, 258
Phong model of reflection, 253–255,

256–257, 266
in photography, 248, 249
in photography vs. scientific illustrations,

248, 251–252
photorealistic rendering vs. NPR, 247
plateau lighting, 252, 261
rim shadow lighting, 252, 260–261, 263
in scientific illustrations, 248, 251–252
shading for layers and, 249–250
shape vs. illumination, 248–253
specular reflection, 254, 256
strokes conveying effect of, 159
transmission and transparency, 252, 262–264
volume lighting, 252
See also component-based lighting model;

intensity; reflection
line ends, 85, 88
line length, 85, 88
line path

applying strokes to, 90–93
for cartoon character, 100
control vertices, 94–95
defining, 94–95
in human drawings, 89
line style and, 94, 95
mapping styles onto, 95–97
methods of specifying, 90
multiresolution curves and, 108
shear angle and, 91–92
visual properties in, 94

line squiggle variable, 88
line styles, 94–99

applications, 99
defining, 94–95
for depth perception enhancement, 222
difference vector for, 95–96
dominance value, 98

interpolation of skeleton curve, 96–97
mapping onto path, 95–97
multiresolution curves and, 108
pen angle and, 97
sets of strokes, 98
for speedlines, 309
style scale factor, 96
watercolor simulation, 99–106
X character examples, 97

line thickness
additional line end thickness parameter, 88
atmospheric effects, 222
depth perception and, 222
in human drawings, 85
light intensities and, 94
line style and, 97
page description languages for controlling,

88
shear angle and, 91–92
thickness dropoff parameter, 88

linear dropoff function, 276
linear representations, algorithms for NPR

and, 17–18
lines

“artistic,” 89–106
brightness of, 85, 97
comparison of line-drawing methods, 110
deforming images, 90–93
ends of, 85, 88
in human drawings, 84–85, 89
“incorrect,” 84–89
length of, 85, 88
multiresolution curves, 106–109
path of, 89–99, 100, 108
for shadows, 164, 165
styles, 94–106, 108, 222, 309
thickness of, 85, 88, 91–92, 94, 97, 222
uncertainty in design expressed by, 318
viewer response to non-photorealistic line

drawings, 88–89
watercolor simulation, 99–106
wiggly, 84, 85–89
See also pencil drawing simulation; strokes

Subject Index 445

look-ahead sets (LASses), 370–378
classification strategies and, 371–377
in compilers or translators, 370–371
defined, 370
exhaustive matching strategy, 372, 373, 376,

377
higher semantics LAS-based matching

strategy, 373, 374–376, 377
LAS-based matching strategy, 372, 373–374,

375, 376, 377
properties of, 370–371
RSJ p-equivalence and, 386, 388
semantic levels of, 371

LRA (light ray attenuation) p-equivalence
relation, 362, 367, 373

LRP (light ray projection) equivalence relation,
363, 367, 379, 381

Magazines and books, halftoning in, 33
Magdeburg building constructed by Otto the

Great, 318–320
magnification

regions of, 273–275
zoom algorithm, 271–273, 329

Manhattan distance, 277
Manster, Sebastian, 5
mapping

defined, 343
function in procedural screening, 49–50
as p-equivalence relation, 363
semantic levels and, 407

maps, tactile, 333–334
marks

along contours, 157, 158
line-drawing techniques and, 84
as very short lines, 84

“Martian Bananas,” 145
material-buffers for interactive painting, 192
mathematical preliminaries, 341–358

Cartesian products and relations, 342–344
equivalence classes and invariants, 346–352
equivalence relations and variants, 344–346

quotients, (iso)morphism, and abstraction,
352–357

sets and elements, 342
summary of, 357–358

maximal compression in dropoff functions,
274, 276

Maxwell’s laws, 359–360
McCartney, Paul and Linda, 366–367
mean curvature, 267
meaning. See communicating information;

human cognition and perception
medical illustrations, 324–330

algorithm, 326–327
conventions, 25
degree of interest for an object (DOI), 327
for e-books (digital books), 9–10, 324
edge detection for enhancing, 18, 19
generating figure captions, 330
generating from texts, 326–327
generating labels, 327–329
graphical abstraction in, 15
line style applications, 99, 100
relationship to text, 324–325
role model for NPR, 25, 26
TextIllustrator system, 327, 328
ZoomIllustrator system, 328–329, 330

merging rules for engraving layers, 146–149
Mickey Mouse, 16, 17
microletters

for counterfeit protection, 53
for dither screens, 53, 55
original output denoted by, 55

Mobile example, 144
model artifacts

graphical abstraction and, 15–16
necessity for, 16–17
photorealistic rendering vs. NPR and,

14–15, 17
See also geometric models

model for visual communication, 383–406
coding and decoding process, 383–384
discontinuities, 390, 405–406

446 Subject Index

model for visual communication (continued)
OSI model for data communication,

384–385, 386
semantic layers in, 385–404
singularities in a static image, 390, 405–406
transformations, 386, 388, 390

modeling
brushes using cellular automata, 119–121
excitable media modeling, 115–117
interaction between light and surfaces,

360–361
painting process using CA, 121–122
paper, 118–119, 120, 124, 133–137
trees, 321

moiré patterns, copperplate engraving
simulation and, 144

morphed contours. See contour-based
screening

morphisms
defined, 355
in visual communication, 386, 388
See also isomorphisms

Morse coding, 383–384
mosaics

in art, 72
image mosaics, 72–79

motion representation in still images, 307–309
multiply merging rule, 148
multiresolution curves, 106–109

analysis filter, 107
compared to other methods, 110
decomposition, 107
editing, 108–109
operations supported, 106
reconstruction, 107
synthesis filter, 107
wavelet representation, 107–108

multiresolution techniques for image mosaics,
74

n-buffers for interactive painting, 192

natural media simulation
copperplate engraving using raytracing

approach, 139–145
engraving using image processing approach,

144–151
mimicking results instead of physical

processes, 138
pencil drawing, 129–138
watercolor using cellular automata, 115–122
watercolor using fluid simulation, 123–129
watercolor using path and style, 99–106

Neumann-neighborhood, 117–118
newspapers, halftoning in, 32–33
Nîmes (France), view of, 5
non-adaptive uniform histogram equalization,

45–46
non-deterministic elements, animation

algorithms and, 306
non-linear transformations, 296–297
non-photorealistic rendering (NPR)

algorithm approaches for, 12–24
artists not replaced by, 12
choice of term in this book, 11
conceptual framework for, 337–408
context information for, 204–206, 207
to convey meaning, 8–9, 10
criteria for success, 8–10
to emulate handmade images, 8, 10, 83
goals of, 7, 8–10, 24
overview, 7–12
points of view about, 10–12
products and services using, 9–10
reasons for, 8–10
role models, 24–28
Schofield’s definition of, 83
semantic layers, 391–404
for simulating intelligence, 8
to study language/picture relationships, 9, 10
table of goals and success criteria, 10
watercolor simulation results, 127–129
See also applications for NPR; conceptual

framework for NPR

Subject Index 447

non-realistic rendering, 11
non-refractive transparency, 263, 264
normal-buffer, 196, 197
normal vector information for edge

classification, 215–217
NPR. See applications for NPR; conceptual

framework for NPR; non-photorealistic
rendering (NPR)

Object ID-buffer. See ID-buffer
object identifiers, as geometric model external

references, 207
object-object occlusions for depth perception

enhancement, 222–224
object-space distortion, 281–290

algorithm, 285, 286–288
deformation issues, 287
example, 284–286
explosion diagrams application, 288–290
interval structures, 282–283, 285, 286
need for, 281–282
recognizability of objects and, 287
resize operation, 283–284
reversibility issues, 287

observation, 5
occlusion (OCC) p-equivalence relation,

365–366, 367, 368, 369, 381–383
occlusions for depth perception enhancement,

222–224
ordered dithering, 33–35

algorithm, 34
artifacts and, 34–35
compared to other halftoning methods, 37
defined, 33
described, 42
dither matrices for, 33–34, 37–39
dither patterns, 33, 38
intensity ramp, 34, 35
screening vs., 52
visual patterns formed by, 37–39

orienting strokes, 166–168
aligning strokes, 167–168
computing, 166–167

fill operations and, 166
interactive approach, 168

osculating distribution in stippling, 64–65
OSI model for data communication, 384–385,

386
ostensive definition, 349
Otto the Great, Magdeburg building

constructed by, 318–320
outline strokes

boundary outlines, 163–164
example using, 165
graftals for, 157
interior outlines, 163
minimizing outlines, 163
rescaling and, 178
viewer-dependent outlines, 164

output devices
for blind people, 331
modification for “wiggliness,” 84, 86, 87
plotters, 84, 85–86, 87
printers, 84
requirements for drafting applications, 85–86
“sterile” looking output from, 84

P-equivalence classes
p-equivalence relations and, 250, 348–349
similarity expressed in terms of, 406

p-equivalence relations
conflict between, 368–369
constructing true equivalence classes out of,

350–351
defined, 346
equivalence classes and, 347–348
facial recognition, 366–367
incoming light direction (ILD), 364, 367
light ray attenuation (LRA), 362, 367, 373
mapping, 363
occlusion (OCC), 365–366, 367, 368, 369,

381–383
p-equivalence classes and, 348–349, 350
for point light sources, 362–370
proper color (PSC), 364, 367

448 Subject Index

p-equivalence relations (continued)
relative view position (RVP), 363–364, 367,

381
retina sample jitter (RSJ), 363, 367, 379, 386
shadow surface color (SSC), 364–365, 367
viewing-related, 366–370

page description languages, modification for
sketchy lines, 84, 87–88

painter’s algorithm, 311
painting, as presentation variable, 205
painting with wet paint. See watercolor

simulation
paper

algorithm for fiber structures, 118, 119
grain of, 134–135, 136
microscopic effects of pencils on, 130, 131
modeling for fluid simulation, 124
modeling for pencil drawing simulation,

133–135
modeling pencil-paper interaction, 135–137
modeling using cellular automata, 118–119,

120
swell paper, 331
watercolor simulation and, 102, 118–119

particle systems-based animation, 310–311,
312

particles, 310
path of lines. See line path
PCL, modification for sketchy lines, 87–88
pen-and-ink illustrations

automatic renditions, 164–165
irregularity of strokes in, 156–157
strokes properties in, 155–156
See also stroke-based illustrations

pen angle, line styles and, 97
pencil drawing simulation, 129–138

example renditions, 138
microscopic level, 129–130
paper effects from pencils, 130, 131
paper grain, 134–135, 136
paper model, 133–135
pencil composition, 129–130
pencil model, 132–133

pencil-paper interaction model, 135–137
pencil pressure and, 132–133
pencil tip geometry, 132, 133
results of, 137–138

Penrose triangle, 381–382, 383
perception. See human cognition and

perception
perspective foreshortening for depth perception

enhancement, 222
Phong Bui-Tuong, 253
Phong model of reflection

ambient light in, 253, 256
diffuse reflection in, 253–254, 256–257
disadvantages for illustrations, 256
edge lines and, 256, 257
highlights and, 256, 257
incorporating color temperature and color

tones in, 256–259
overview, 253–255
specular reflection in, 254, 256
widespread use of, 258, 266

photocopying, microletters and, 55
photography

combining NPR visualizations with
photographs, 319, 320

image-space distortion application, 280–281
influence on handmade images, 1, 5, 6
lighting in, 248, 249
observation not necessary for, 5
resolution of, 13
scientific illustration vs., 248, 251–252

photorealism
archeological illustration and, 319
defined, 1
in painting, 1, 2
reasons for distortion and, 269

photorealistic computer graphics
artifacts in, 12–13
defined, 1
development of, 1
example, 1, 3
illustration conventions vs., 250–251
lack of frontiers for, 2

Subject Index 449

lighting models, 247
procedural screening in, 48
as research goal, 1–2
semantic layers, 391–404
See also computer-aided architectural design

(CAAD)
programs; computer-aided design (CAD)
programs

physical preliminaries, 358–370
detecting light, 360–366
physical context, 359–360
viewing-related (p-)equivalence relations,

366–370
Picasso, Pablo, 6
piecewise polynomial curves, 234
pigment deposition layer of washes, 125,

126–127
pixel manipulation of images

halftoning, 32–41
image mosaics, 72–79
intensity ramp, 31–32
in post-processing, 31
scanned images, 31
screening, 41–60
stippling, 60–71
See also specific methods

pixels
defined, 33
values represented in G-buffers, 184–185

plants. See rendering plants
plateau lighting

in component-based lighting model, 261
in photography vs. scientific illustrations,

252
plotters

modification for “wiggliness,” 84, 86, 87
requirements for drafting applications, 85–86
“sterile” looking output from, 84
See also output devices

Plzeň (Czech Republic), map of, 6, 7
PMF (probability mass function), 44. See also

histograms
point, depth of, 323

point coverage of a surface, 237–239
point light sources

defined, 359–360
modeling interaction between light and

surfaces, 360–361
p-equivalence relations for, 362–370

pointers for representing polygonal models,
213

points of view
in handmade images, 4
in NPR literature, 10–12

polygon meshes
connections within, 211
edge collapse operation, 229–230
free-form surfaces represented as, 239–243
normalized, 243
operations on, 212
skeleton computation, 230–231

polygonal models, 211–233
approximation errors in, 213–214
description of, 212–213
edge classification for NPR, 214–224
edge collapse operation, 229–230
enhancing depth perception, 221–224
explicit representation, 212–213
global shape determination, 226–233
haloed lines for, 222–224
intersection computation, 224–226
operations for, 213–214
pointers to a vertex list for representing, 213
pointers to an edge list for representing, 213
polygon meshes, 211–212
shading models, 214
skeletonization operation, 230–233
topography of, 226–227
topology of, 226–229

Portrait de Dora Maar , 6
post-processing

pixel manipulation of images in, 31
in raytracing approach for copperplates,

143–144
PostScript, modification for sketchy lines, 84,

87–88

450 Subject Index

precognitive skills, distortion and, 291, 293
presentation variables, 205
principal curvature, 266
printers, 84. See also output devices
prioritized stroke textures, 161–162
probability mass function (PMF), 44. See also

histograms
procedural screening, 48–52

advantages and disadvantages, 48
algorithm, 50, 52
for cross-hatching, 50
displacement maps, 50–51
dither kernels, 49, 50
examples, 53
image-based control for, 51–52
in image processing approach to engravings,

144–151
mapping function, 49–50
in photorealistic rendering, 48

product operation, 343–344
projection, 169
proper surface color (PSC) p-equivalence

relation, 364, 367

Quadtree for image mosaics, 74

Random statistical variations, 21
ray query, 139
raytracing approach for copperplates, 139–145

advantages and disadvantages, 144–145
algorithm, 139–140
combining edges and hatching lines,

143–144
computing the final image, 143–144
creating hatching lines, 140–142
determining material properties at

intersection point, 140
discretization of pattern image, 143
edge detection, 142
hatching patterns, 140–141
intensity values, 139, 141–142
“Martian Bananas” example, 145
Mobile example, 144

optical effects (reflection and refraction),
142–143

post-processing, 143–144
ray query for intersection point, 140

recognition axis for distortions, 291–292, 293
recognizability of objects

dominance axis for distortions, 292–293
object-space distortion issues, 287
recognition axis for distortions, 291–292,

293
viewing cues for distortions, 291, 293–295

reconstruction of curves, 107
recursive decomposition of curves, 107
recursive strokes, 93
reference backbone for skeletal strokes, 90, 91
reference thickness for skeletal strokes, 90, 91
reference view plane for image-space

distortion, 271, 272
reference viewpoint for image-space distortion,

271, 272
reflection

diffuse, 253–254, 256–258
Phong model of, 253–255, 256–257
in raytracing approach for copperplates,

142–143
specular, 254, 256
See also lighting

reflexive relations, 344
refraction

non-refractive transparency, 263, 264
in raytracing approach for copperplates,

142–143
region fill, 166
relations

binary, 343
Cartesian products and, 342–343
defined, 343
equivalence relations and variants, 345–346
p-equivalence, 346
reflexive, 344
symmetric, 344
ternary, 343–344
transitive, 344

Subject Index 451

transitive closure of, 344
relative brightness, absolute brightness vs.,

377–379
relative view position (RVP) p-equivalence

relation, 363–364, 367, 379, 381
relaxation brush for interactive stippling, 71
relaxed distribution in stippling, 65–66
rendering

artistic, 11–12
comprehensible, 188–191
NPR vs. photorealistic, artifacts and, 12–13,

14–15
plants, 321–324
smart, 11
tactile rendering for blind people, 331–334
uncertainty in design expressed by, 318
using curves on free-form surface models,

235–237
See also non-photorealistic rendering (NPR)

rendering plants, 321–324
depth threshold for leaves, 323–324
disc size for leaves, 322, 323–324
examples, 322, 323, 324, 325
foliage, 321, 322–324
modeling, 321
trunk, branches, and twigs, 321–322

rescaling stroke-based images, 171–179
approximating input as continuous function,

173–174
attenuating function, 176
creating and reconstructing renditions,

177–179
discontinuity edges, 172–173, 174–177
goals for, 172–173
noise issues, 176
problems with, 171–172
reconstruction function, 173–174, 175
replaying the painting history for, 171
rescaling gray-level image and applying new

stroke
textures, 171

resizing stroke width, 171
steps for, 177–178

uniformly spaced discrete samples and, 172,
174

resize operation for object-space distortion,
283–284

resolution
image artifacts and, 13
multiresolution curves, 106–109
multiresolution techniques for image

mosaics, 74
of photography, 13
stroke textures and, 159

retina sample jitter (RSJ) p-equivalence
relation, 363, 367, 379, 386

reversibility issues for object-space distortion,
287

ribbon style strokes, 91–92
rim shadow lighting

in component-based lighting model,
260–261

curvature lighting compared to, 263
in photography vs. scientific illustrations,

252
role models for NPR, 24–28

archeological illustration, 27, 28
scientific and medical illustration, 25, 26
storytelling, 27–28
technical illustration, 25–27

route maps for blind people, 333–334
RSJ (retina sample jitter) p-equivalence

relation, 363, 367, 379, 386
RVP (relative view position) p-equivalence

relation, 363–364, 367, 379, 381

Sausage style strokes, 91, 92
scaling

color scaling function, 77, 78
graftals, 158
line style scale factor, 96
rescaling stroke-based images, 171–179
See also distortion

scanned images, pixel manipulation of, 31
scattered layout for image mosaics, 72–73
scattering coefficients, 128

452 Subject Index

Schofield, Simon, 83
scientific illustrations

conventions, 25, 250–251
emphasis in, 248
explosion diagrams, 288–290
lighting liberties in, 248, 251
photography vs., 248, 251–252
role model for NPR, 25, 26
See also technical illustrations

screening, 41–60
adaptive histogram equalization, 47–48
advantages of, 48, 52
algorithms, 42, 45–46, 47–48, 50, 52,

53–54, 55, 57, 58
basic method, 42–44
block-by-block histogram equalization,

46–47
contour-based, 55–60, 61
defined, 32
dither screen, 42, 43
embedding shapes in dither screens, 52–60
histogram equalization overview, 44–45
as image-independent dithering, 41
intensity ramps, 43, 44, 47, 48, 56–57, 60
non-adaptive uniform histogram

equalization, 45–46
procedural, 48–52, 53, 145
with texts, 53–55
threshold matrices, 42, 43
tuning image and screen intensities, 44–48
See also specific types

selection brush for interactive stippling, 71
semantic layers, 385–404
semantic levels, 371, 407
sets

equivalence classes and, 352–355
overview, 342

shading
for distinguishing layers, 249, 250
inconsistent, 249–250
tree trunk and branches, 322
See also lighting

shadow-buffers for interactive painting, 192

shadow surface color (SSC) p-equivalence
relation, 364–365, 367

shadows
in component-based lighting model,

260–261
cross-hatching for, 164, 165
in photography vs. scientific illustrations,

252
rim shadow lighting, 252, 260–261, 263
shadow surface color (SSC) p-equivalence

relation, 364–365, 367
thicker edge lines for, 164, 165

shallow water layer of washes, 125–126
shape brush for interactive stippling, 71
shapes

embedding in dither screens, 52–60
global shape determination for polygonal

models, 226–233
illumination vs., 248–253
of interactive strokes, 168
subjective, 380–381

sharp edges
defined, 214
identifying, 216
illustrated, 215
smooth edges vs., 216

shear angle of strokes, 91–92
ribbon style strokes, 91–92
sausage style strokes, 91, 92

shower-door effect in animation, 306
silhouette curves, 236–237
size

disc size for leaves, 322, 323–324
image size and stroke textures, 159
of interactive strokes, 168
trees for conveying, 321
See also distortion; scaling

skeletal strokes
animation applications, 93
applying to a path, 90–93
compared to other methods, 110
defined, 90
defining, 90, 91

Subject Index 453

deformation model for, 92–93
flesh of, 90
reference backbone, 90, 91
reference thickness, 90, 91
shear angle, 91–92
See also strokes

skeleton curve
interpolation of, 96–97
mapping line style to path and, 96

skeletonization
computing for polygon meshes, 230–231
edge collapse operation for, 230–231
hatching application, 231–233
skeleton defined, 230

smaller merging rule, 148, 149, 150
smart graphics, AI community interest in, 8
smart rendering, 11
smooth edges

defined, 214
identifying, 216
illustrated, 215
sharp edges vs., 216

Sobel operator, 187–188
Sobol distribution in stippling, 63, 64, 67
source fill, 166
special effects in watercolor simulation,

103–106
spectrum, 359–360
specular reflection in Phong model, 254, 256
speed of haptic perception, 331
speedlines for motion representation

algorithm for computing, 308–309
direction of, 307
geometric construction for computing, 308
line styles for, 309

SSC (shadow surface color) p-equivalence
relation, 364–365, 367

statistical variations, random, 21
Steinberg, Louis, 35
still images, representing motion in, 307–309
stippling, 60–71

algorithms, 62–63
in archeological illustration, 27, 28

automatic methods, 61–67
brushes for, 71
compensating for non-linear intensity

response, 66–67
defined, 32, 61
distributions, 62–66, 67, 69–70
handmade example, 13
image artifacts, 13–14
intensity ramp, 71
interactive methods, 67–71
intersection method, 62–63
overview, 60–61
stochastic, 388, 390
See also distributions in stippling

stochastic stippling, 388, 390
storytelling as role model for NPR, 27–28
stroke-based illustrations, 155–181

abstraction of detail, 168–171
algorithms, 159, 160–162, 167
for animation based on particle systems, 311
clipping strokes, 157
difference image algorithm (DIA) for stroke

placement, 160–162
graftals, 157–158, 167–168, 170, 171
image features not crossed by strokes, 157
orientation, 166–168
outlines, 163–164, 165
rescaling stroke-based images, 171–179
shadows, 164–165
single strokes, defining and drawing,

156–158
stroke textures, 159–163

stroke textures, 159–163
algorithm for light intensity, 159
colored strokes and, 162–163
defined, 159
difference image algorithm (DIA) for stroke

placement, 160–162
image size or resolution and, 159
prioritized, 161–162
for tactile presentations, 333
tone and texture combined in, 156, 159

strokeGap parameter, 98

454 Subject Index

strokeLength parameter, 98
strokeNumber parameter, 98
strokes

abstraction of detail using, 168–171
algorithm for light intensity, 159
animation applications, 93
in animation based on particle systems,

310–311
applying to a path, 90–93
clipping, 157
constant thickness, 90
contours and, 157
defining, 90, 91
deformation model, 92–93
difference image algorithm (DIA) for

placing, 160–162
edges and, 157
graftals, 157–158, 167–168, 170, 171
higher order, 93
image features not crossed by, 157
image size or resolution and, 159
irregularity of, 156–157
marks, 84, 157, 158
orientation, 166–168
outlines, 163–164, 165
paintbrush-like, 158, 168
pen-and-ink style, 155–157
recursive, 93
rescaling stroke-based images, 171–179
ribbon style, 91–92
sausage style, 91, 92
sets of, 98
shadows, 164–165
shear angle, 91–92
single strokes, defining and drawing,

156–158
skeletal strokes, 90, 91
stroke-based illustrations, 155–181
stroke textures, 159–163
substrokes, 93
tone and texture combined in, 156, 159
in watercolor simulation, 101–102, 120–121
See also lines; skeletal strokes

style dominance value, 98
subjective shapes, 380–381
subobject identifiers, 207
Suibokuga paintings, 119
sumi-e simulation. See watercolor simulation
Sutherland, Ivan, 1
swell paper, 331
symbolic representations as data sources, 23
symmetric relations, 344
synthesis filter for multiresolution curves, 107

Tactile maps, 333–334
tactile rendering for blind people, 331–334

converting visualizations into tactile
presentations, 332–333

haptic perception, 331–332
hardware, 331
tactile maps, 333–334

technical illustrations, 324–330
abstract-graphical symbols in, 26
algorithm, 326–327
artistic lighting in, 247
conventions, 250–251
degree of interest for an object (DOI), 327
explosion diagrams, 288–290
generating figure captions, 330
generating from texts, 326–327
generating labels, 327–329
role model for NPR, 25–27
standards for, 26
See also scientific illustrations

tensor product surfaces, 234
ternary relations, 343–344
TextIllustrator system, 327, 328
texts for illustrations

algorithm for illustration generation,
326–327

degree of interest for an object (DOI), 327
generating figure captions, 330
generating illustrations from, 326–327
generating labels for illustrations, 327–329
relationship of illustrations to text, 324–325
uniformity of terminology in, 326

Subject Index 455

texts, screening with, 53–55
algorithm, 53–54, 55
dither rows, 53, 55
early computer graphics, 53, 54
microletters for, 53, 55

texture
combined with tone in strokes, 156, 159
stroke textures, 156, 159–163
uncertainty in design expressed by, 318
z-buffers for, 187–188, 192–193

thickness of lines. See line thickness
three-dimensional data

encoding information for 2-D data
structures, 18, 20

procedural screening and, 52
three-dimensional parameters for 2D dithering,

194–199
depth perception and depth cues, 197–199
distinguishing objects in a scene, 196–197,

198
G-buffer types for, 196
See also G-buffers

threshold quantization, 37
tiles for image mosaics

arranging, 75
choosing grid for, 72–74
color correction, 76–79

Tizian, 25
tone

combined with texture in strokes, 156, 159
prioritized stroke textures and, 161
rescaling stroke-based images and, 171, 172,

178, 179
topography of geometric models, 226–227
topology

defined, 226
of geometric models, 226–229
topography affected by, 227

town views, handmade and non-photorealistic,
3–4, 5, 6, 7

transformations
in animation, 296–297
distorted, 296–297

in model for visual communication, 386,
388, 390

non-linear, 296–297
transitive closure of relations, 344
transitive relations

defined, 344
equivalence relations, 347–348

transmission of light
in component-based lighting model,

262–264
ghosting for, 262–263
in photography vs. scientific illustrations,

252
transparency

in component-based lighting model,
262–264

intensity of light in hand-drawn images and,
263–264

non-refractive, 263, 264
in photography vs. scientific illustrations,

252
trees. See rendering plants
triangulation edges, 215, 216
Truman Show, The, 75
truthfulness

in context of (technological) design, 339
issues for this book, 337, 339–341
in methodology of science, 337–339

Turing test for NPR, 8, 10
two-dimensional data

algorithms for NPR and, 18
encoding selected 3-D information for, 18,

19
G-buffer for edge detection, 18, 19
procedural screening and, 50

Uniform random distribution in stippling, 63,
64

user input, as data sources, 22

Van Overveld, Kees, 337
variants

in coding and decoding process, 383

456 Subject Index

variants (continued)
equivalence relations and, 345–346
recommendations for NPR, 408

Versalius, 25
viewer-dependent distortions, 295–296
viewer-dependent outlines, 164
viewing cues for distortions, 291–295

accompanying cues, 293
acquired skills and, 291–292, 293
augmented cues, 292–293
captions, 294–295
constructions and, 292, 293
defined, 291
dominance axis, 292–293
formalisms and, 292, 293
integrated cues, 292, 293
precognitive skills and, 292, 293
recognition axis, 291–292, 293
scaling factor mapped onto degree of

transparency, 293–294
space of, 293–295
surrounding grid, 294, 295
table classifying, 293

viewing operation on geometric model data,
208

vision. See human cognition and perception
visual communication model. See model for

visual communication
visualization style as presentation variable, 205
visualizations

converting into tactile presentations,
332–333

of movement, 207
volume lighting, 252

Walt Disney Company, 27
washes for fluid simulation

capillary layer, 125, 127
pigment deposition layer, 125, 126–127
shallow water layer, 125–126
stack of, 124

watercolor simulation
algorithms, 102–103, 104

brushes, 101, 119–121
cellular automata for, 115–122
color distribution, 104–105
compared to other methods, 110
dip, 101, 103–104
effects of the painting processes, 114
fluid simulation for, 123–129
paper, 102, 118–119, 120
path and style for, 99–106
physical properties of the medium, 114
rendering the results, 127–129
special effects, 103–106
stroke, 101–102, 120–121
sumi-e qualities, 100, 106
watercolor effects, 123–124
wet-on-wet vs. wet-on-dry painting, 123
See also cellular automata for watercolor

simulation; fluid simulation for watercolor
wavelet representation of curves, 107–108
wet-area mask for watercolor simulation, 124
wet-on-wet vs. wet-on-dry painting, 123
wet paint simulation. See watercolor simulation
width of lines. See line thickness
wiggly lines

animation effects using, 306
computer generated, 85–89
hardware-based solutions, 84, 86, 87
in human drawings, 85
line squiggle variable, 88
need for, 86
software-based solutions, 86–88
viewer response to, 88–89
See also “artistic” lines

woodcut simulation. See engraving simulation

X-ray images, 184

z-buffers, 186–188
in animation based on particle systems, 310
for curved hatching lines, 189–190, 191
defined, 186
for dithering, 196, 197–198
for edge detection, 186–189

Subject Index 457

for error diffusion, 197–198
for interactive painting, 191, 192–193
for lighting detection, 187–188
Sobel operator applied to, 187–188
for texture information, 187–188, 192–193

for trees, 321, 322–323
uses for, 186

zoom algorithm, 271–273, 329
ZoomIllustrator system, 328–329, 330

F I G U R E C R E D I T S

Figure 1.1 Ralph Goings’ Hot Fudge Sundae Interior, 1972, oil on canvas. ©
Luis K. Meisel Gallery, New York. Used by permission.

Figures 1.2, 1.17, and 7.11–7.14 courtesy of Oliver Deussen.

Figure 1.3 from “Die Spur der heilige Zeichen” by Cay Rademacher, GEO
Epoche, April 2000. Used by permission.

Figure 1.4 from City Maps of Europe by John Gross. Studio Editions, Ltd.,
London, 1991. Used by permission.

Figure 1.5 Pablo Picasso’s Portrait de Dora Maar, 1937, oil on canvas. Das Genie
des Jahrhunderts by Ingo F. Walther. Benedikt Taschen Verlag, Köln, 1992. Used
by permission.

Figure 1.6 courtesy of the City of Plzeň, Czech Republic.

Figures 1.7 and 1.22 from The Atlas of Early Man by Jacquetta Hawkes. St.
Martin’s Press, New York, 1993. Used by permission.

Figure 1.9 from Atlas der Anatomie des Menschen, 20th edition, vol. 1, edited
by R. Putz and R. Pabst. Urban & Schwarzenberg, Munich, 1993. Used by
permission.

Figure 1.10 from Duden Bildwörterbuch. BI Mannheim, Vienna and Zurich,
1977. Used by permission.

Figure 1.11 from Micky Maus, Das is mein Leben.Silva-Verlag, Zurich, Switzer-
land, p. 20. © The Walt Disney Company. Used by permission.

Figure 1.12 courtesy of Regina Pohle.

459

460 Figure Credits

Figures 1.13, 6.5, and 6.7 from “Comprehensible Rendering of 3-D Shapes”
by Takafumi Saito and Tokiichiro Takahashi, Proceedings of SIGGRAPH ’90.
© 1990 Association for Computing Machinery, reprinted with permission.

Figure 1.14 courtesy of Bert Freudenberg.

Figure 1.16 courtesy of Stefan Hiller.

Figure 1.18 courtesy of Frank Goldenschweger.

Figure 1.20 from Introduction to the Human Body: The Essentials of Anatomy
and Physiology by Gerard T. Tortora. Addison-Wesley, Reading 1996. Used by
permission.

Figure 1.21 based on an illustration from the ELSA Microlink TM56k PCI
Technical Manual.

Figure 1.23 from Winnie-the-Pooh by A. A. Milne. Puffin Books, New York,
1992. Used by permission.

Figures 2.15, 2.16, and 6.11–6.14 from “Halftoning with Image-Based Dither
Screens” by Oleg Veryovka and John Buchanan. Proceedings of Graphics Interface
’99, Morgan Kaufmann, San Francisco, 1999.

Figure 2.20 from “Gridless Halftoning: A Reincarnation of the Old Method”
by Yachin Pruell and Alfred Bruckstein, Graphical Models and Image Processing,
January 1996.

Figures 2.21–2.23 and 2.30 from “Artistic Screening” by Victor Ostro-
moukhov and Roger D. Hersch, Proceedings of SIGGRAPH ’95. © 1995
Association for Computing Machinery, reprinted with permission.

Figures 2.24 and 2.29 courtesy of Peilian Yuan.

Figures 2.31–2.35 courtesy of Adrian Secord.

Figures 2.36 and 2.37 courtesy of Stefan Hiller.

Figure 2.38 courtesy of Marcel Götze.

Figure Credits 461

Figure 2.41 from Image Mosaics by Adam Finkelstein and Marisa Range. Tech-
nical Report TR-574–98, Princeton University, Computer Science Depart-
ment, March 1998.

Figure 3.1 from “Free Hand Plotting: Is it Live or Is It Digital?” by W. Davis van
Bakergem and Gen Obata. CAAD Futures ’91, Vieweg Verlag, Braunschweig,
1991.

Figures 3.10–3.12 courtesy of Lars Schumann.

Figure 3.15 courtesy of Steve Strassmann.

Figures 3.17 and 3.18 from “Multiresolution Curves” by Adam Finkelstein
and David H. Salesin, Proceedings of SIGGRAPH ’94. © 1994 Association for
Computing Machinery, reprinted with permission.

Figure 4.5 based on an illustration from “Computer Generated Watercolor”
by Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer,
and David H. Salesin, Proceedings of SIGGRAPH ’97. © 1997 Association for
Computing Machinery.

Figure 4.6 from “Computer Generated Watercolor” by Cassidy J. Curtis,
Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer, and David H. Salesin,
Proceedings of SIGGRAPH ’97.© 1997 Association for Computing Machinery,
reprinted with permission.

Figures 4.7 and 4.11 based on an illustration from Computer-Generated Graphite
Pencil Materials and Rendering by Mario Costa Sousa. Ph.D. Thesis, Department
of Computing Science, University of Alberta, 1999.

Figures 4.8–4.10, 4.12 and 4.13 from Computer-Generated Graphite Pencil Ma-
terials and Rendering by Mario Costa Sousa. Ph.D. Thesis, Department of
Computing Science, University of Alberta, 1999.

Figures 4.15 and 4.16 from “Computer Generated Copper Plates” by Wolf-
gang Leister. Computer Graphics Forum, March 1994. Used by permission.

462 Figure Credits

Figures 4.17–4.22 from “Digital Facial Engraving” by Victor Ostromoukhov,
Proceedings of SIGGRAPH ’99.© 1999 Association for Computing Machinery,
reprinted with permission.

Figures 5.1, 5.11–5.12, and 5.18 from “Scale Dependant Reproduction of
Pen-and-Ink Illustration” by Mike Salisbury, Corin Anderson, Dani Lischin-
ski, and David H. Salesin, Proceedings of SIGGRAPH ’96. © 1996 Association
for Computing Machinery, reprinted with permission.

Figure 5.2(a) from “Art-Based Rendering of Fur, Grass, and Trees” by Kowal-
ski et al., Proceedings of SIGGRAPH ’99. © 1999 Association for Computing
Machinery, reprinted with permission.

Figures 5.2(b) and 10.6 from “Painterly Rendering for Animation” by Barbara
J. Meier, Proceedings of SIGGRAPH ’96. © 1996 Association for Computing
Machinery, reprinted with permission.

Figures 5.3, 5.5–5.7, and 5.9 from “Computer-Generated Pen-and-Ink Il-
lustration” by George Winkenbach and David H. Salesin. Proceedings of SIG-
GRAPH ’94. © 1994 Association for Computing Machinery, reprinted with
permission.

Figure 5.4 from “Interactive Pen-and-Ink Illustration” by Mike P. Salisbury,
Sean E. Anderson, Ronen Barzel, and David H. Salesin, Proceedings of SIG-
GRAPH ’94. © 1994 Association for Computing Machinery, reprinted with
permission.

Figure 5.8 from “Paint by Numbers: Abstract Image Representations” by Paul
Haeberti, Proceedings of SIGGRAPH ’90. © 1990 Association for Computing
Machinery, reprinted with permission.

Figure 5.10 from “Art Based Rendering with Continuous Levels of Detail” by
Lee Markosian, Barbara J. Meier, Michael Kowalski, Loring S. Holden, J.D.
Northrup, and John F. Hughes, Proceedings of the First International Symposium of
Non-Photorealistic Animation and Rendering. © 2000 Association for Computing
Machinery, reprinted with permission.

Figure Credits 463

Figures 5.16 based on an illustration from “Scale Dependant Reproduction of
Pen-and-Ink Illustration” by Mike Salisbury, Corin Anderson, Dani Lischin-
ski, and David H. Salesin, Proceedings of SIGGRAPH ’96. © 1996 Association
for Computing Machinery.

Figures 6.2 and 6.3 courtesy of Axel Hoppe.

Figure 6.8 from the University of Cambridge, Department of Architecture
Web site www.arct.cam.ac.uk.research/cadlab/irender/gallery/.Used by permission.

Figure 6.9 from Informatix Software International Web site www.informatix
.co.uk/pir_gallery_styles.htm. Used by permission.

Figures 6.10 and 6.15 from Texture Control in Digital Halftoning by Oleg
Veryovka. Ph.D. Thesis, Department of Computing Science, University of
Alberta, 1999.

Figures 7.2–7.4, 7.18, 7.19, and 9.14–9.16 courtesy of Andreas Raab.

Figures 7.5 and 7.7 based on an illustration from “The Edge Buffer: A Data
Structure for Easy Silhouette Rendering,” Proceedings of the First International
Symposium on Non-Photorealistic Animation and Rendering. © 2000 Association
for Computing Machinery.

Figures 7.8 and 7.9 courtesy of Bert Freudenberg.

Figure 7.10 from Procedural Elements for Computer Graphics, 2nd Edition by
David F. Rogers. McGraw Hill, Boston, 1998. Used by permission.

Figure 7.15 based on an illustration from the Viewpoint Digital Catalog,
Summer 2000 edition. Used by permission.

Figures 7.20, 8.1, and 8.16 courtesy of Jörg Hamel.

Figure 7.21 from “Hidden Curve Removal for Free Form Surfaces,” by
Gershon Elber and Elaine Cohen. Proceedings of SIGGRAPH ’90. © 1990
Association for Computing Machinery, reprinted with permission.

464 Figure Credits

Figure 7.22 from “Line Art Illustrations of Parametric and Implicit Forms,”
by Gershon Elber. IEEE Transactions on Visualization and Computer Graphics,
January 1998. Used by permission.

Figures 7.23–7.25 courtesy of Frank Godenschweger.

Figure 8.2 from Art and Visual Perception: A Psychology of the Creative Eye by
Rudolph Arnheim, University of California Press, Berkeley, 1994. Used by
permission.

Figure 8.3 from Trades and Occupations: A Pictorial Archive from Early Sources
edited by Carol Grafton, Dover Publications, 1990. Used by permission.

Figures 8.4 and 8.15 from The Guild Handbook of Scientific Illustration by Elaine
R.S. Hodges, van Nostrand Reinhold, New York, 1989. Used by permission.

Figures 8.7–8.10 from “A Non-Photorealistic Lighting Model for Automatic
Technical Illustration” by Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine
Cohen, Proceedings of SIGGRAPH ’98. © 1998 Association for Computing
Machinery, reprinted with permission.

Figures 9.3–9.9 from A Framework for Elastic Presentation Space by Sheelagh
Carpendale. Ph.D. thesis, School of Computer Science, Simon Fraser Univer-
sity, 1999. Used by permission.

Figure 9.10 courtesy of Sheelagh Carpendale.

Figure 9.17 from “Observer Dependent Deformations on Illustrations” by
D. Martin, S. Garcia, and J.C. Torres, Proceedings of the First International
Symposium on Non-Photorealistic Animation and Rendering. © 2000 Association
for Computing Machinery, reprinted with permission.

Figures 9.18–9.20 from “View-Dependent Geometry” by Paul Rademacher,
Proceedimgs of SIGGRAPH ’99. © 1999 Association for Computing Machin-
ery, reprinted with permission.

Figures 10.1–10.3 and 10.5 courtesy of Maic Masuch.

Figure Credits 465

Figure 10.7 “Assessing the Effect of Non-Photorealistic Rendered Images in
CAD” by Jutta Schumann, Thomas Strothotte, Andreas Raab, and Stefan
Laser, Proceedings of CHI ’96 Conference on Human Factors in Computing Systems.
© 1996 Association for Computing Machinery, reprinted with permission.

Figures 10.8–10.10 from “Visualizing Knowledge about Virtual Reconstruc-
tions of Ancient Architecture” by T. Strothotte, Maic Masuch, and Tobias
Isenberg, Proceedings of CGI ’99. IEEE Computer Society Press, 1999. Used
by permission.

Figures 10.11–10.15 from “Computer-Generated Pen-and-Ink Illustration of
Trees” by Oliver Deussen and Thomas Strothotte, Proceedings of SIGGRAPH
’2000.© 2000 Association for Computing Machinery, reprinted with permis-
sion.

Figures 10.16 and 10.17 courtesy of Bernhard Preim.

Figure 10.18 courtesy Rainer Michel.

A B O U T T H E A U T H O R S

Thomas Strothotte has a fundamental interest in scientific methods for studying
language and graphics for communication between computers and users. His
long-range goal is to equip computers with the expertise to communicate even
subtle nuances to users through images. This goal has led him to carry out research
combining the areas of language systems, human-computer interaction, and
computer graphics in unison with one another. He considers non-photorealistic
modeling, rendering, and animation, the topic of the current book, to be one
of the important building blocks in future systems for communication of ideas
between computers and users.

Strothotte is a Canadian citizen who was born in 1959 in Regina
(Saskatchewan) and grew up in Vancouver, British Columbia. There he attended
Simon Fraser University to earn a B.Sc. in 1980, majoring in physics with a mi-
nor in computing science. He continued for one more year to earn an M.Sc. in
1981 in computing science with a thesis on a parallel algorithm for specialized
geometric transformations in graphics systems (see “Raster Display of a Rotating
Object Using Parallel Processing” (1983) (with Brian Funt), Computer Graphics
Forum, 2(4):209–217).

In his doctoral studies, he concentrated on studying differences between
natural languages and computer languages. In particular, he found out that
the subjunctive case in natural languages is intimately related to the notion of
backtracking as expressed in computer algorithms. This led to the definition of
a subjunctive construct for algorithmic programming languages that enables easy
expression of backtracking and can be implemented efficiently (see “Structured
Program Lookahead” (1987) (with Gordon V. Cormack), Computer Languages,
12(2):95–108). For various reasons, he moved twice during the three years of
his doctoral studies, carrying out his research on scholarships for a year each at
the University of Stuttgart (Germany), at McGill University (Montréal, Québec),
and at the University of Waterloo (Ontario). He received his Ph.D. from McGill
in 1984.

Concurrently with his thesis work, Strothotte developed his interest in the
area of design and analysis of algorithms. He worked extensively with J. Sack at

467

468 About the Authors

Carleton University (Ottawa) and others (see, for example, “MinMax Heaps and
Generalized Priority Queues” (1986), Communications of the ACM , 29(10):996–
1000) and spent a year as postdoctoral fellow at the Institut National de Recherche
en Informatique et Automatique in Rocquencourt, France, in the research group
ALGO of Phillippe Flajolet.

In December 1985, Strothotte went to Germany to specialize in human-
computer interaction. He concentrated on knowledge-based systems for inte-
grated language and picture communication in dialog systems in the group of
Rul Gunzenhäuser at the Universität Stuttgart where he completed a German
postdoctoral degree (“Habilitation”) in 1989. After that he worked for one year
as a researcher in the software ergonomics department of the IBM Scientific Cen-
ter in Heidelberg. From 1987 to 1991, he was a frequent visiting lecturer at the
Institution für Teknisk Databehandlung at the Universitetet i Uppsala, Sweden.

Strothotte took a faculty position in computer science at the Freie Universität
Berlin in 1990, and after a sabbatical at the University of British Columbia
(Vancouver) in 1993, he moved to the Institut für Simulation und Graphik of
the Otto-von-Guericke-Universität Magdeburg in Germany as a full professor of
computer science. There he heads the Computer Graphics and Interactive Systems
Laboratory, which has about 20 graduate students and 5 postdoctoral fellows at
any given time. In the last five years, he has graduated 14 Ph.D. and 18 M.Sc.
students, and was the driving force behind the establishment of undergraduate
and graduate degree programs in computational visualistics, as well as development
of their curricula.

In Magdeburg, he has also contributed extensively as an administrator. He
was the dean of his faculty from 1994 to 1996, the Vice President for Academic
Planning and Budget of his university from 1996 to 1998, and the President pro
tem of the university during 1998. Since March 2001, he has been the director
of the Office of Information Technology of the State of Saxony-Anhalt, where
he reports directly to the state’s prime minister.

The results of Strothotte’s research and those of the members of his laboratory
have appeared in all major conferences in his areas of expertise, including ACM
SIGGRAPH, ACM CHI, and Eurographics, as well as various scientific journals.
He is the senior author of Seeing Between the Pixels: Pictures in Interactive Systems
(Springer-Verlag, Heidelberg, 1997) and Abstraction in Computational Visualization
(Springer-Verlag, Heidelberg, 1998). He has worked on and headed EU-funded
research projects and served as a scientific advisor to the European Union in
Brussels. He has also contributed to various international conferences by engaging

About the Authors 469

in their program committees (for example, Eurographics, Computer Graphics
International, Pacific Graphics, and currently the International Symposium on
Non-Photorealistic Animation and Rendering, NPAR 2002). While living in
Germany for over 15 years now, he proudly keeps up contact to his native Canada
through frequent visits home, as well as by regularly serving on the program
committee of the Canadian Graphics Interface conferences, and teaching as an
adjunct professor at Simon Fraser University.

Stefan Schlechtweg has been interested in non-photorealistic computer graph-
ics since he started his master’s thesis in 1994. He mainly focused on the area of
computer-generated line drawings but also on the overall structure and develop-
ment of NPR. Together with Thomas Strothotte, he developed a graduate course
on this topic, which has become a regular teaching subject at the University of
Magdeburg, Germany, and which was also held at Simon Fraser University in
Canada. This course had a major influence on the development of this book.

Schlechtweg was born in 1971 in Bad Salzungen, in the state of Thuringia in
Germany. He went to the University of Magdeburg to study Computer Science
in 1990. During his studies, his main focus was on artificial intelligence and infor-
mation systems before he became acquainted with the idea of non-photorealism
in computer graphics. Fascinated with this area, he decided to focus on this in his
master’s thesis. Schlechtweg finished his studies in 1995 with a thesis on the topic
“Limitation of Drawing Resources in Computer Generated Line Drawings” and
received the Best Annual Graduate Award from the School of Computer Science
of his university.

Schlechtweg then moved to Ann Arbor, Michigan, for five months where he
worked in the virtual reality laboratory at the University of Michigan. There he
was involved in projects on VR design studies and human computer interaction
in virtual environments, which were supported by the automotive industry. He
then went back to the Otto-von-Guericke-Universität Magdeburg to work as
a research assistant under the supervision of Thomas Strothotte. Starting with a
publicly funded project on “Adaptive Graphical Zoom,” Schlechtweg began to
focus on the connection of NPR techniques and user interaction that set the stage
for his thesis topic. He received his Ph.D. in 1999 for his work on “Interactive
Scientific Illustration of Texts.”

Currently, Schlechtweg is an assistant professor at the Institut für Simula-
tion und Graphik of the Otto-von-Guericke-Universität Magdeburg working
on his German postdoctoral degree. The results of Schlechtweg’s work have been

470 About the Authors

published in several papers on smaller and major conferences, including INTER-
ACT and SIGGRAPH. He also contributes to the community as a reviewer for
conferences and journals. His current research focus lies on the use of NPR tech-
niques in visualization and on visualizations for small screens. He is co-chairing
the International Symposium on Non Photorealistic Animation and Rendering,
NPAR 2002, and is serving in the organizing committee of the International
Symposium on Smart Graphics 2002.

Kees van Overveld, born in 1957, obtained both an M.Sc. (1981) and a Ph.D.
in physics (1985) at Eindhoven University of Technology (EUT). Also in 1985,
he joined the computing science department of the faculty of mathematics and
computer science of EUT as a university lecturer; since 1990, he has been an asso-
ciate professor. From 1989 to 1998, he was head of the computer graphics group.
In 1992–1993, he worked at the University of Calgary and at the University of
Pennsylvania in Philadelphia. As of December 1995, he became research consul-
tant for Philips Research. In June 1998, he founded Van Overveld Coaching, a
consultancy company in the field of creativity, innovation, and the methodology
of technological design. In May 2000, he joined the Stan Ackermans Institute
(SAI, the EUT institute for post-graduate programs in technological design) as
associate professor. He is now head of the SAI research group in design method-
ology. He joined IEEE as an adjunct member (1995–1997), and he was a member
of ACM (1996–1997).

	Cover
	Table of Contents
	Foreword
	Preface
	Acknowledgments
	Introduction
	Pixel Manipulation of Images
	Lines, Curves, and Strokes
	Simulating Natural Media and Artistic Techniques
	Working with 2 1/2 D Data Structures
	Geometric Models and their Exploitation in NPR
	Lighting Models for NPR
	Distorting Non-Realistic Renditions
	Applications for NPR
	A Conceptual Framework for NPR
	References
	Author Index
	Subject Index
	Figure Credits
	About the Authors

