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ABSTRACT
Information theory (IT) tools, widely used in scientific fields such as engineering, physics, genetics,
neuroscience, and many others, are also emerging as useful transversal tools in computer graphics.
In this book, we present the basic concepts of IT and how they have been applied to the graphics
areas of radiosity, adaptive ray-tracing, shape descriptors, viewpoint selection and saliency, scientific
visualization, and geometry simplification. Some of the approaches presented, such as the viewpoint
techniques, are now the state of the art in visualization. Almost all of the techniques presented in
this book have been previously published in peer-reviewed conference proceedings or international
journals. Here, we have stressed their common aspects and presented them in an unified way, so the
reader can clearly see which problems IT tools can help solve, which specific tools to use, and how
to apply them. A basic level of knowledge in computer graphics is required but basic concepts in IT
are presented. The intended audiences are both students and practitioners of the fields above and
related areas in computer graphics. In addition, IT practitioners will learn about these applications.

KEYWORDS
radiosity, ray-tracing, complexity, shape descriptors, viewpoint selection, scientific vi-
sualization, level of detail, geometry simplification, information theory, entropy, mu-
tual information, Jensen–Shannon divergence, information bottleneck method, f-
divergences
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Preface
Information Theory (IT) tools, widely used in scientific fields such as engineering, physics, genetics,
neuroscience, and many others, are emerging as useful transversal tools in computer graphics. In
this book, we present the basic concepts of IT and how they have been applied to the graphics
areas of radiosity, adaptive ray-tracing, shape descriptors, viewpoint selection and saliency, scientific
visualization, and geometry simplification. Throughout the presentation of the applications, we aim
to make clear problems that IT tools can help solve, which specific tools to use, and how to apply
them.The reader is expected to have a basic background in computer graphics. IT basics are presented
and self-contained in this book.

The intended audiences include students and practitioners of the fields above, as well as,
related areas in computer graphics and IT. We believe that there will be interest in this book for
several reasons. First, IT techniques are pervading more areas and are gradually gaining momentum
as a technological tool. Second, since global illumination is increasingly used in production, more
efficient techniques will be welcomed. Third, the medical imaging community is already using and
relying on existing IT techniques and the growing importance of this community is influencing both
computer graphics and image processing views. Finally, some of the approaches presented, such as
the viewpoint techniques, are now the state of the art in visualization; receiving increased attention
from practitioners.

This document is organized in the following way. After this preface, the first chapter deals with
the basics of IT.The concept of information channel is introduced, and the quantities of entropy and
mutual information are defined, together with important relationships such as the Jensen-Shannon
inequality. The f-divergences are also introduced, and, finally, a basic idea of generalized entropy is
given.

The second chapter deals with scene complexity measures and their application to radiosity.
Radiosity is a viewpoint independent global illumination technique that discretises the scene into
small polygons or patches to solve a transport system of equations. The way the scene is discretized
is critical for the efficiency of the result. We define first a scene information channel, which allows us
to study the interchange of information between the patches. From the study of this channel, several
refinement oracles, i.e., criteria for subdividing the geometry, are obtained, aimed at maximizing the
transport of information. Both classic and generalized information-theoretic quantities are used to
these means.

Another application of scene complexity measures is presented in the third chapter, where
different shape descriptors based on the complexity of the object are defined. Shape descriptors
are important when classifying and retrieving objects from databases. Inner and outer complexity,
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obtained from mutual information calculation with uniformly distributed lines, will be shown to
classify different families of 2D and 3D objects.

The fourth chapter is about adaptive ray-tracing. This technique is aimed at tracing more
rays only where they are needed. For instance, smoothly illuminated regions of the scene with low
variation do not need as much effort as rapidly varying illumination or geometric discontinuities. IT
quantities will be used again to define adaptive refinement criteria. In this chapter, new oracles are
defined for radiosity, and adaptive ray-tracing using the Kullback–Leibler, Chi-square, and Hellinger
f-divergences are discussed.

In the fifth chapter, we define a viewpoint information channel between the points of view
around an object and the polygons of the object. Several quantities associated to this channel, such as
mutual information and entropy, are interpreted in terms of viewpoint quality measures. Viewpoint
similarity and stability are defined, as well as methods for the selection of best n-views and exploring
the object. Mesh saliency is interpreted in terms of the viewpoint channel and polygonal mutual
information as an ambient occlusion quantity. Importance is introduced into the scheme and saliency
is used as an importance to guide the viewpoint selection.

The sixth chapter deals with view selection in scientific visualization.The problem and context
of the visualization of volumetric data sets is presented, together with the different viewpoint quality
measures that are used. The framework presented in Chapter five is then applied to this context.
Guided navigation, using higher-level semantics, is also studied.

Finally, the seventh chapter is about viewpoint-driven simplification. Several simplification
algorithms are based on the variations perceived in image space, measured in our case through
information-theoretic metrics: entropy, Kullback-Leibler distance, and mutual information. These
techniques are shown to give a better simplified mesh than object-based approaches, although at the
cost of an increased processing time.
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C H A P T E R 1

Information Theory Basics
In 1948, Claude Shannon published a paper entitled “A mathematical theory of communica-
tion” [113] which marks the beginning of information theory. In this paper, Shannon defined
measures such as entropy and mutual information1, and introduced the fundamental laws of data
compression and transmission. Information theory deals with the transmission, storage, and pro-
cessing of information and is used in fields such as physics, computer science, mathematics, statistics,
economics, biology, linguistics, neurology, learning, image processing, and computer graphics.

In information theory, information is simply the outcome of a selection among a finite number
of possibilities, and an information source is modeled as a random variable or a random process.
The classical measure of information, Shannon entropy, expresses the information content or the
uncertainty of a single random variable. It is also a measure of the dispersion or diversity of a
probability distribution of observed events. For two random variables, their mutual information is
a measure of the dependence between them. Mutual information plays an important role in the
study of a communication channel , a system in which the output depends probabilistically on its
input [25, 139, 146].

This chapter presents Shannon’s information measures (entropy, conditional entropy, and mu-
tual information) and their most basic properties.The information bottleneck method, f-divergences,
and generalized entropies are also introduced. Good references of information theory are the books
by Cover and Thomas [25], and Yeung [146].

1.1 ENTROPY

After representing a discrete information source as a random process, Shannon asks himself: “Can
we define a quantity which will measure, in some sense, how much information is produced by such
a process, or better, at what rate information is produced?” [113].

In his answer, Shannon supposes that we have a set of possible events whose probabilities
of occurrence are p1, p2, . . ., pn and asks for the possibility of finding a measure, denoted by
H(p1, p2, . . . , pn), of how much “choice” is involved in the selection of the event or of how uncertain
we are of the outcome. If this uncertainty measure exists, Shannon considers reasonable to require
of it the following properties:

1. H would be continuous in the pi .

1In Shannon’s paper, the mutual information is called rate of transmission.
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2. If all the pi are equal (i.e., pi = 1/n), then H should be a monotonic increasing function of n.
With equally likely events, there is more choice, or uncertainty when there are more possible
events.

3. If a choice is broken down into two successive choices, the original H should be the weighted
sum of the individual values of H . The meaning of this property, called grouping property, is
illustrated in Fig. 1.12.

1/2 1/3 1/6
1/3 1/6 

1/3 2/3
1/2

1/21/2

Figure 1.1: Grouping property of the entropy. On the left, we have three possibilities with probabili-
ties p1 = 1/2, p2 = 1/3, p3 = 1/6. On the right, we first choose between two possibilities, each with
probability 1/2, and if the second occurs, we make another choice with probabilities 2/3, 1/3. The final
results have the same probabilities as before. In this example, it is required that H(1/2, 1/3, 1/6) =
H(1/2, 1/2) + (1/2)H(2/3, 1/3). The coefficient 1/2 is because the second choice occurs with this
probability.

After these requirements, Shannon proved the following theorem:

Theorem 1.1. The only measure H satisfying the three above assumptions is of the form

H = −K

n∑
i=1

pi log pi, (1.1)

where K is a positive constant3. To prove this theorem, Shannon assumed H(1/n, 1/n, . . . , 1/n) =

f (n) and decomposed a choice from sm equally likely possibilities into a series of m choices from
s equally likely possibilities. Thus, from the previous required property (3), f (sm) = mf (s). In
essence, this expression contains the intuition that the uncertainty of m choices should be m times
the uncertainty of only one choice. One function that fulfills this requirement is the logarithm
function (see the complete proof in [113]).

2This example has been used by Shannon in [113]. Another example showing the recursive character of this property is in Fig. 4.1.
3This constant will be taken equal to 1 in the definition of entropy (Equ. 1.2).
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There are other axiomatic formulations which involve the same definition of uncer-
tainty [25, 89]. Shannon called this quantity entropy4, as it can be identified with the entropy
used in thermodynamics and statistical mechanics.

Let X be a discrete random variable5 with alphabet X and probability distribution {p(x)},
where p(x) = Pr{X = x} and x ∈ X . In this book, {p(x)} will be also denoted by p(X) or simply p.
This notation will be extended to two or more random variables. As an example, a discrete random
variable can be used to describe the toss of a fair coin,with alphabet X = {head, tail} and probability
distribution p(X) = {1/2, 1/2}.

Definition 1.2. The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x), (1.2)

where the summation is over the corresponding alphabet and the convention 0 log 0 = 0 is taken.

In this book, logarithms are taken in base 2 and, as a consequence, entropy is expressed in bits. The
convention 0 log 0 = 0 is justified6 by continuity since x log x → 0 as x → 0. The term − log p(x)

represents the information content (or uncertainty) associated with the result x. Thus, the entropy
gives us the average amount of information (or uncertainty) of a random variable. Information
and uncertainty are opposite. Uncertainty is considered before the event, information after. So,
information reduces uncertainty. Note that the entropy depends only on the probabilities. We will
use, interchangeably, the notation H(X) or H(p) for the entropy, where p stands for the probability
distribution p(X).

For example, the entropy of a fair coin toss is H(X) = −(1/2) log(1/2) − (1/2) log(1/2) =
log 2 = 1 bit.For the toss of a fair die with alphabet X = {1, 2, 3, 4, 5, 6} and probability distribution
p(X) = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}, the entropy is H(X) = log 6 = 2.58 bits.

Some relevant properties of the entropy [113] are

• 0 ≤ H(X) ≤ log |X |
– H(X) = 0 when all the probabilities are zero except one with unit value.

– H(X) = log |X | when all the probabilities are equal.

• If the probabilities are equalized, entropy increases.

4In the Eighteenth Century, R. Clausius introduced the term entropy in thermodynamics and L. Boltzmann gave its probabilistic
interpretation in the context of statistical mechanics. The relationship between the Boltzmann entropy and Shannon entropy
was developed in a series of papers by E. Jaynes [59]. The link between the second law of thermodynamics (“The entropy of an
isolated system is non-decreasing”) and the Shannon entropy is analyzed in [25].

5We assume that all random variables used are discrete unless otherwise specified.
6See in Yeung’s book [146] the discussion on probability distributions which are not strictly positive.
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The binary entropy (Fig. 1.2) of a random variable X with alphabet {x1, x2} and probability
distribution {p, 1 − p} is given by

H(X) = −p log p − (1 − p) log(1 − p). (1.3)

Note that the maximum entropy is H(X) = 1 bit when p = 1/2.

Figure 1.2: Plot of binary entropy.

The definition of entropy is now extended to a pair of random variables.

Definition 1.3. The joint entropy H(X, Y ) of a pair of discrete random variables X and Y with a
joint probability distribution p(X, Y ) = {p(x, y)} is defined by

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (1.4)

where p(x, y) = Pr[X = x, Y = y] is the joint probability of x and y. The conditional entropy of

a random variable given another is defined as the expected value of the entropies of the conditional
distributions.

Definition 1.4. The conditional entropy H(Y |X) of a random variable Y given a random variable
X is defined by

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) =
∑
x∈X

p(x)
(

−
∑
y∈Y

p(y|x) log p(y|x)
)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x), (1.5)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability of y given x7. The conditional
7The Bayes theorem relates marginal probabilities p(x) and p(y), conditional probabilities p(y|x) and p(x|y), and joint proba-
bilities p(x, y):

p(x, y) = p(x)p(y|x) = p(y)p(x|y). (1.6)
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entropy can be thought of in terms of a communication or information channel X → Y whose
output Y depends probabilistically on its input X. This information channel is characterized by a
transition probability matrix which determines the conditional distribution of the output given the
input [25]. Hence, H(Y |X) corresponds to the uncertainty in the channel output from the sender’s
point of view, and vice versa for H(X|Y ). Note that in general H(Y |X) �= H(X|Y ). In this book,
the conditional probability distribution of Y given x will be denoted by p(Y |x) and the transition
probability matrix (i.e., the matrix whose rows are given by p(Y |x)) will be denoted by p(Y |X).

The following properties hold:

• H(X, Y ) = H(X) + H(Y |X) = H(Y) + H(X|Y )

• H(X, Y ) ≤ H(X) + H(Y)

• H(X) ≥ H(X|Y ) ≥ 0

• If X and Y are independent, then H(Y |X) = H(Y) since p(y|x) = p(y) and, consequently,
H(X, Y ) = H(X) + H(Y) (i.e., entropy is additive for independent random variables).

As an example, we consider the joint distribution p(X, Y ) represented in Fig. 1.3.left. The

p(X, Y )
Y

p(X)
y1 y2

x1 0.125 0.125 0.25
X x2 0.25 0 0.25

x3 0 0.5 0.5
p(Y ) 0.375 0.625

H(X, Y ) = 1.75

p(Y |X)
Y

H(Y |x ∈ X )
y1 y2

x1 0.5 0.5 H(Y |x1) = 1
X x2 1 0 H(Y |x2) = 0

x3 0 1 H(Y |x3) = 0

H(Y |X) = 0.25

Figure 1.3: Example of joint, marginal, and conditional probability distributions of random variables X

and Y . On the left, joint distribution p(X, Y ), marginal distributions p(X) and p(Y ), and joint entropy
H(X, Y ). On the right, transition probability matrix p(Y |X) and conditional entropy H(Y |X).

marginal probability distributions of X and Y are given by p(X) = {0.25, 0.25, 0.5} and p(Y ) =
{0.375, 0.625}, respectively.Thus,H(X) = −0.25 log 0.25 − 0.25 log 0.25 − 0.5 log 0.5 = 1.5 bits,
H(Y) = −0.375 log 0.375 − 0.625 log 0.625 = 0.954 bits, and H(X, Y ) = −0.125 log 0.125 −
0.125 log 0.125 − 0.25 log 0.25 − 0 log 0 − 0 log 0 − 0.5 log 0.5 = 1.75 bits.

If X and Y are independent, then p(x, y) = p(x)p(y). Marginal probabilities can be obtained from p(x, y) by summation:
p(x) = ∑

y∈Y p(x, y) and p(y) = ∑
x∈X p(x, y).
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From the transition probability matrix p(Y |X) represented in Fig. 1.3.right, we can compute
H(Y |X) as follows:

H(Y |X) =
3∑

i=1

p(xi)H(Y |X = xi)

= 0.25 H(Y |X = x1) + 0.25 H(Y |X = x2) + 0.5 H(Y |X = x3)

= 0.25 × 1 + 0.25 × 0 + 0.5 × 0 = 0.25 bits.

1.2 RELATIVE ENTROPY AND MUTUAL INFORMATION
We now introduce two new measures, relative entropy and mutual information, which quantify the
distance between two probability distributions and the shared information between two random
variables, respectively.

Definition 1.5. The relative entropy or Kullback-Leibler distance DKL(p, q) between two prob-
ability distributions p and q, that are defined over the alphabet X , is defined by

DKL(p, q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (1.7)

The conventions that 0 log(0/0) = 0 and a log(a/0) = ∞ if a > 0 are adopted. The relative

entropy satisfies the divergence or information inequality

DKL(p, q) ≥ 0, (1.8)

with equality if and only if p = q. The relative entropy is also called information divergence [27]
or informational divergence [146], and it is not strictly a metric8 since it is not symmetric and does
not satisfy the triangle inequality.

Definition 1.6. The mutual information I (X; Y ) between two random variables X and Y is defined
by

I (X; Y ) = H(X) − H(X|Y ) = H(Y) − H(Y |X)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
=

∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
p(y|x)

p(y)
. (1.9)

Mutual information represents the amount of information that one random variable, the input of

the channel, contains about a second random variable, the output of the channel, and vice versa.That
8A metric between x and y is defined as a function d(x, y) that fulfills the following properties: (1) non-negativity: d(x, y) ≥ 0,
(2) identity: d(x, y) = 0 if and only if x = y, (3) symmetry: d(x, y) = d(y, x), and (4) triangle inequality: d(x, y) + d(y, z) ≥
d(x, z).
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is, mutual information expresses how much the knowledge of Y decreases the uncertainty of X, and
vice versa. I (X; Y ) is a measure of the shared information or dependence between X and Y . Thus,
if X and Y are independent, then I (X; Y ) = 0. Note that the mutual information can be expressed
as the relative entropy between the joint distribution and the product of marginal distributions:

I (X; Y ) = DKL(p(X, Y ), p(X)p(Y )). (1.10)

Mutual information I (X; Y ) fulfills the following properties:

• I (X; Y ) ≥ 0 with equality if and only if X and Y are independent

• I (X; Y ) = I (Y ; X)

• I (X; Y ) = H(X) + H(Y) − H(X, Y )

• I (X; Y ) ≤ min{H(X), H(Y )}
• I (X; X) = H(X).

The relationship between Shannon’s information measures can be expressed by a Venn dia-
gram, as shown in Fig. 1.49. The correspondence between Shannon’s information measures and set
theory is discussed in [146].

Figure 1.4: The information diagram represents the relationship between Shannon’s information mea-
sures. Observe that I (X; Y ) and H(X, Y ) are represented, respectively, by the intersection and the union
of the information in X (represented by H(X)) with the information in Y (represented by H(Y)).H(X|Y )

is represented by the difference between the information in X and the information in Y , and vice versa
for H(Y |X).

For the example presented in Fig. 1.3, the mutual information can be easily computed:
I (X; Y ) = H(Y) − H(Y |X) = 0.954 − 0.25 = 0.704 bits.
9 The information diagram does not include the universal set as in a usual Venn diagram.
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1.3 INEQUALITIES
In this section, we introduce a group of inequalities that are essential in the study of information
theory and for the development of the concepts presented in this book [25, 146], and, in particular,
to derive most of the refinement criteria.

1.3.1 JENSEN’S INEQUALITY
In this section, we introduce the concepts of convexity and concavity. Many important inequalities
and results in information theory are obtained from the concavity of the logarithmic function.

Definition 1.7. A function f (x) is convex over an interval [a, b] (the graph of the function lies
below any chord) if for every x1, x2 ∈ [a, b] and 0 ≤ λ ≤ 1,

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2). (1.11)

A function is strictly convex if equality holds only if λ = 0 or λ = 1.

Definition 1.8. A function f (x) is concave (the graph of the function lies above any chord) if
−f (x) is convex.

For instance, x2 and x log x (for x > 0) are strictly convex functions, and log x (for x > 0) is
a strictly concave function. Fig. 1.5 plots x log x and log x.

� ��� � ��� � ��� �

��

��

�

�

�

Figure 1.5: Plots of the strictly convex function x log x (red) and the strictly concave function log x

(blue) for x ∈ (0, 3].

Jensen’s inequality can be expressed as follows. If f is a convex function on the interval [a, b],
then

n∑
i=1

λif (xi) − f

(
n∑

i=1

λixi

)
≥ 0, (1.12)
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where 0 ≤ λ ≤ 1,
∑n

i=1 λi = 1, and xi ∈ [a, b]. If f is a concave function, the inequality is reversed.
A special case of this inequality is when λi = 1/n because then

1

n

n∑
i=1

f (xi) − f

(
1

n

n∑
i=1

xi

)
≥ 0, (1.13)

that is, the value of the function at the mean of the xi is less or equal than the mean of the values of
the function at each xi .

Jensen’s inequality can also be expressed in the following way: if f is convex on the range of
a random variable X, then

f (E[X]) ≤ E[f (X)], (1.14)

where E denotes expectation (i.e.,E[f (X)] = ∑
x∈X p(x)f (x)).Observe that if f (x) = x2 (convex

function), then E[X2] − (E[X])2 ≥ 0. Thus, the variance is always positive.
One of the most important consequences of Jensen’s inequality is the divergence inequality

DKL(p, q) ≥ 0 (Equ.1.8).Some properties of Shannon’s information measures presented in Sec.1.1
and Sec. 1.2 can be derived from this inequality.

1.3.2 LOG-SUM INEQUALITY
The log-sum inequality can be obtained from Jensen’s inequality (Equ. 1.12). For non-negative
numbers a1, a2, . . . , an and b1, b2, . . . , bn, the log-sum inequality is expressed as

n∑
i=1

ai log
ai

bi

−
(

n∑
i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

≥ 0, (1.15)

with equality if and only if ai/bi is constant for all i.The conventions that 0 log 0 = 0,0 log(0/0) = 0,
and a log(a/0) = ∞ if a > 0 are again adopted.

From this inequality, the following properties can be proved [25]:

• DKL(p, q) is convex in the pair (p, q).

• H(X) is a concave function of p.

• If X and Y have the joint distribution p(x, y) = p(x)p(y|x), then I (X; Y ) is a concave
function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).

1.3.3 JENSEN-SHANNON INEQUALITY
The Jensen-Shannon divergence, derived from the concavity of entropy, is used to measure the
dissimilarity between two probability distributions and has the important feature that a different
weight can be assigned to each probability distribution.
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Definition 1.9. The Jensen-Shannon ( JS) divergence is defined by

JS(π1, π2, . . . , πn; p1, p2, . . . , pn) = H

(
n∑

i=1

πipi

)
−

n∑
i=1

πiH(pi), (1.16)

where p1, p2, . . . , pn are a set of probability distributions defined over the same alphabet with prior
probabilities or weights π1, π2, . . . , πn, fulfilling

∑n
i=1 πi = 1, and

∑n
i=1 πipi is the probability

distribution obtained from the weighted sum of the probability distributions p1, p2, . . . , pn. From

the concavity of entropy (Sec. 1.3.2), the Jensen-Shannon inequality [10] is obtained:

JS(π1, π2, . . . , πn; p1, p2, . . . , pn) ≥ 0. (1.17)

The JS-divergence measures how far the probabilities pi are from their mixing distribution∑n
i=1 πipi , and equals zero if and only if all the pi are equal. It is important to note that the JS-

divergence is identical to the mutual information I (X; Y ) when πi = p(xi) (i.e., {πi} corresponds to
the marginal distribution p(X)), pi = p(Y |xi) for all xi ∈ X (i.e., pi corresponds to the conditional
distribution of Y given xi), and n = |X | [10, 120].

1.3.4 DATA PROCESSING INEQUALITY
The data processing inequality is expressed as follows. If X → Y → Z is a Markov chain10, then

I (X; Y ) ≥ I (X; Z). (1.18)

This result proves that no processing of Y , deterministic or random, can increase the informa-
tion that Y contains about X. In particular, if Z = f (Y ), then X → Y → f (Y ) and, consequently,
I (X; Y ) ≥ I (X; f (Y )) [25].

1.4 ENTROPY RATE

Using the property H(X1, X2) = H(X1) + H(X2|X1) (Sec. 1.1) and the induction on n [146], it
can be proved that the joint entropy of a collection of n random variables X1, . . . , Xn is given by

H(X1, . . . , Xn) =
n∑

i=1

H(Xi |X1, . . . , Xi−1). (1.19)

We now introduce the entropy rate that quantifies how the entropy of a sequence of n random
variable increases with n.

10For random variables X, Y , and Z, X → Y → Z forms a Markov chain if p(x, y, z) = p(x)p(y|x)p(z|y).That is, the probability
of the future state depends on the current state only and is independent of what happened before the current state. See a more
general definition of Markov chain in Sec. 1.4.
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Definition 1.10. The entropy rate or entropy density HX of a stochastic process11 {Xi} is defined
by

HX = lim
n→∞

1

n
H(X1, X2, . . . , Xn) (1.20)

when the limit exists. The entropy rate represents the average information content per symbol in a

stochastic process. For a stationary stochastic process12, the entropy rate exists and is equal to

HX = lim
n→∞ HX(n), (1.21)

where HX(n) = H(X1, . . . , Xn) − H(X1, . . . , Xn−1) = H(Xn|Xn−1, . . . , X1). Entropy rate can
be seen as the uncertainty associated with a given symbol if all the preceding symbols are known.
It can be also interpreted as the irreducible randomness in sequences produced by an information
source [36].

If {Xi} is a Markov chain13, then Xn is called the state at time n. A stationary Markov
chain is characterized by its initial state and a transition probability matrix P = {Pij }, where Pij =
Pr{Xn+1 = j |Xn = i} is called transition probability. A distribution on the states such that the
distribution w = {wi} at time n + 1 is the same as the distribution at time n is called a stationary
distribution. A Markov chain is called irreducible if it is possible to go from every state to every state
in a finite number of steps, that is, there is always a path between any two states. A Markov chain
is said to be aperiodic if it has no periodic state. A periodic state is a state that can be visited back
by a path starting from it only at multiples of a given period [21]. An irreducible and aperiodic
Markov chain is called ergodic. For an ergodic Markov chain, the stationary distribution w exists
and is unique, and wj = limn→∞(Pn)ij . The stationary distribution satisfies the left eigenvector
equation wP = w. Thus, we can also think of the stationary distribution as a left eigenvector of the
transition probability matrix P.

The entropy rate of a stationary Markov chain, with stationary distribution w and transition
probability matrix P, is given by

HX = lim
n→∞

1

n
H(Xn|Xn − 1, . . . , X1) = lim

n→∞ H(Xn|Xn−1)

= H(X2|X1) = −
n∑

i=1

wi

n∑
j=1

Pij log Pij . (1.22)

11A stochastic process or a discrete-time information source {Xi } is an indexed sequence of random variables characterized by
the joint probability distribution p(x1, x2, . . . , xn) = Pr{(X1, X2, . . . , Xn) = (x1, x2, . . . , xn)} with (x1, x2, . . . , xn) ∈ X n

for n ≥ 1 [25, 146].
12A stochastic process {Xi } is stationary if two subsets of the sequence, {X1, X2, . . . , Xn} and {X1+l , X2+l , . . . , Xn+l}, have

the same joint probability distribution for any n, l ≥ 1: Pr{(X1, . . . , Xn) = (x1, x2, . . . , xn)} = Pr{(X1+l , X2+l , . . . , Xn+l ) =
(x1, x2, . . . , xn)}. That is, the statistical properties of the process are invariant to a shift in time. At least, HX exists for all
stationary stochastic processes.

13A stochastic process {Xi } is a Markov chain if Pr(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = Pr(Xn+1 = xn+1|Xn = xn), for
n = 1, 2, . . . and for all xi ∈ X .
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1.5 ENTROPY AND CODING

In this section, we present different interpretations of the Shannon entropy:

• As we have seen in Sec. 1.1, − log p(x) represents the information associated with the result x.
The value − log p(x) can also be interpreted as the surprise associated with the outcome x. If
p(x) is small, the surprise is large; if p(x) is large, the surprise is small.Thus, entropy (Equ. 1.2)
can be seen as the expectation value of the surprise [35].

• A fundamental result of information theory is the Shannon source coding theorem, which
deals with the encoding of information in order to store or transmit it efficiently.This theorem
can be formulated in the following ways [25, 35]:

– Given a random variable X, H(X) fulfills

H(X) ≤ � < H(X) + 1, (1.23)

where � is the expected length of an optimal binary code for X. An example of an optimal
binary code is the Huffman instantaneous coding14.

– If we optimally encode n identically distributed random variables X with a binary code,
the Shannon source coding theorem can be enunciated in the following way:

H(X) ≤ �n < H(X) + 1

n
, (1.24)

where �n is the expected codeword length per unit symbol. Thus, by using large block
lengths, we can achieve an expected codelength per symbol arbitrarily close to the entropy
[25].

– For a stationary stochastic process, we have

H(X1, X2, . . . , Xn)

n
≤ �n <

H(X1, X2, . . . , Xn)

n
+ 1 (1.25)

and, from the definition of entropy rate HX (Equ. 1.20),

lim
n→∞ �n → HX. (1.26)

Thus, the entropy rate is the expected number of bits per symbol required to describe the
stochastic process.

14A code is called a prefix or instantaneous code if no codeword is a prefix of any other codeword. Huffman coding uses a specific
algorithm to obtain the representation for each symbol. The main characteristic of this code is that the most common symbols
use shorter strings of bits than the ones used by the less common symbols.
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• From the previous Shannon theorem, it can be proved that entropy is related to the difficulty
in guessing the outcome of a random variable [25, 35] since

H(X) ≤ q < H(X) + 1, (1.27)

where q is the average minimum number of binary questions to determine X.This idea agrees
with the interpretation of entropy as a measure of uncertainty.

1.6 CONTINUOUS CHANNEL
In this section, entropy and mutual information are defined for continuous random variables. Let X

be a continuous random variable with continuous cumulative distribution function F(x) = Pr{X ≤
x}. When the derivative F ′(x) = f (x) is defined and

∫ ∞
−∞ f (x)dx = 1, then f (x) is called the

probability density function (pdf ) of X. The support of X is given by SX = {x : f (x) > 0}, that is,
the set of points where the function is non-zero. The statement “if it exists” should be included in
the following definitions involving integrals and probability density functions. See a more detailed
presentation in Cover and Thomas [25], and Yeung [146].

The differential entropy of a continuous random variable X is defined similarly to the entropy
of a discrete random variable (see Equ. 1.2).

Definition 1.11. The continuous or differential entropy h(X) of a continuous random variable X

with a pdf f (x) is defined by

h(X) = −
∫

SX

f (x) log f (x)dx. (1.28)

Definition 1.12. For two continuous random variables X and Y with joint pdf f (x, y), the con-
tinuous conditional entropy h(Y |X) is defined as

h(Y |X) = −
∫

SX

∫
SY (x)

f (x, y) log f (y|x)dxdy, (1.29)

where f (y|x) is the conditional pdf and SY (x) = {y : f (y|x) > 0}.

Definition 1.13. For two continuous random variables X and Y with joint pdf f (x, y), the con-
tinuous mutual information I c(X; Y ) is defined as

I c(X; Y ) = h(X) − h(X|Y ) =
∫

SX

∫
SY (x)

f (x, y) log
f (x, y)

f (x)f (y)
dxdy. (1.30)



14 CHAPTER 1. INFORMATION THEORY BASICS

Following the exposition in [25], we divide the range of the continuous random variable X

into discrete bins of length � (Fig. 1.6.a). Then, assuming the continuity of f (x) within the bins
and using the mean value theorem, for each bin there exists a value xi such that

f (xi)� =
∫ (i+1)�

i�

f (x)dx. (1.31)

The discretised version of X is defined by

X� = xi, if i� ≤ X < (i + 1)�, (1.32)

with probability distribution p(xi) = Pr{X� = xi} = f (xi)�. Thus, the entropy of X� is given by

H(X�) = −
∑

i

p(xi) log p(xi) = −
∑

i

f (xi)� log(f (xi)�)

= −
∑

i

f (xi)� log f (xi) − log �. (1.33)

If f (x) log f (x) is Riemann integrable, we obtain that

lim
�→0

(H(X�) − log �) = h(X), (1.34)

since h(X) = lim�→0(− ∑
i f (xi)� log f (xi)). Thus, in general, the entropy of a continuous ran-

dom variable does not equal the entropy of the discretized random variable in the limit of a finer
discretisation. We can also see that, due to the fact that − lim�→0 log � = ∞, the entropy H(X�)

goes to infinity when the bin size goes to zero:

lim
�→0

H(X�) = ∞. (1.35)

For instance, if f (x) = 1/k in the interval (0, k) (Fig. 1.6.b), then h(X) =
− ∫ k

0 (1/k) log(1/k)dx = log k. Observe that the differential entropy is negative when k < 1.
In contrast with the behavior of the differential entropy, the mutual information between

two continuous random variables X and Y is the limit of the mutual information between their
discretised versions. Thus, in the limit of a finer discretisation we get

I c(X; Y ) = lim
�→0

I (X�; Y�). (1.36)

Kolmogorov [68] and Pinsker [92] defined mutual information as I c(X; Y ) =
supP,QI ([X]P ; [Y ]Q), where the supremum (sup) is over all finite partitions P and Q of X and
Y , respectively. From this definition and Equ. 1.36, two important properties can be derived: the
continuous mutual information is the least upper bound for the discrete mutual information, and re-
finement can never decrease the discrete mutual information. This last property can also be deduced
from the data processing inequality (Equ. 1.18) [51].
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Δ

(a) (b)

Figure 1.6: (a) Probability density function of X. The range of the continuous random variable X is
divided into discrete bins of length �. (b) Constant probability density function f (x) = 1/k.

1.7 INFORMATION BOTTLENECK METHOD
The information bottleneck method, introduced by Tishby et al. [129], is a technique that extracts
a compact representation of the variable X, denoted by X̂, with minimal loss of mutual information
with respect to another variable Y (i.e., X̂ preserves as much information as possible about the control
variable Y ). Thus, given an information channel between X and Y , the information bottleneck
method tries to find the optimal tradeoff between accuracy and compression of X when the bins of
this variable are clustered.

Soft [129] and hard [119] partitions of X can be adopted. In the first case, every x ∈ X can
be assigned to a cluster x̂ ∈ X̂ with some conditional probability p(x̂|x) (soft clustering). In the
second case, every x ∈ X is assigned to only one cluster x̂ ∈ X̂ (hard clustering).

In this book, we consider hard partitions, and we focus our attention on the agglomerative
information bottleneck method [119]. Given a cluster x̂ defined by x̂ = {x1, . . . , xl}, where xk ∈ X
for all k ∈ {1, . . . , l}, and the probabilities p(x̂) and p(y|x̂) defined by

p(x̂) =
l∑

k=1

p(xk), (1.37)

p(y|x̂) = 1

p(x̂)

l∑
k=1

p(xk, y) ∀y ∈ Y, (1.38)

the following properties are fulfilled:

• The decrease in the mutual information I (X; Y ) due to the merge of x1, . . . , xl is given by

δIx̂ = p(x̂)JS(π1, . . . , πl; p1, . . . , pl) ≥ 0, (1.39)



16 CHAPTER 1. INFORMATION THEORY BASICS

where the weights and probability distributions of the JS-divergence are given by πk =
p(xk)/p(x̂) and pk = p(Y |xk) for all k ∈ {1, . . . , l}, respectively. An optimal clustering algo-
rithm should minimize δIx̂ .

• An optimal merge of l components can be obtained by l − 1 consecutive optimal merges of
pairs of components.

1.8 f-DIVERGENCES
Many different measures quantifying the divergence between two probability distributions have been
studied in the past. They are frequently called “distances”, although some of them are not strictly
metrics. Some particular examples of divergences play an important role in different fields such as
statistics and information theory [90].

Next, we present a measure of divergence between two probability distributions called f-
divergence. This measure was independently introduced by Csiszár [26] and Ali and Silvey [1]. The
following definition is taken from Csiszár and Shields [27].

Definition 1.14. Let f (t) be a convex function defined for t > 0, with f (1) = 0.The f-divergence
of a distribution p from q is defined by

Df (p, q) =
∑
x∈X

q(x)f

(
p(x)

q(x)

)
, (1.40)

where the conventions 0f (0/0) = 0, f (0) = limt→0 f (t), 0f (a/0) = limt→0 tf (a/t) =
a limu→∞(f (u)/u) are adopted.

For the purposes of this book, we present three of the most important f-divergences: Kullback-
Leibler, Chi-square, and Hellinger distances.These can be obtained from different convex functions
f (see Fig. 1.7):

• Kullback-Leibler distance or information divergence [69]:
If f (t) = t log t , the Kullback-Leibler distance is given by

DKL(p, q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (1.41)

• Chi-square distance [91]:
If f (t) = (t − 1)2, the Chi-square distance is given by

Dχ2(p, q) =
∑
x∈X

(p(x) − q(x))2

q(x)
. (1.42)



1.9. GENERALIZED ENTROPIES 17

� ��� � ��� � ��� �

����

�

���

�

���

Figure 1.7: Plots for three strictly convex functions: t log t (blue), (t − 1)2 (red), and 1/2(1 − √
t)2

(green). From these functions, the Kullback-Leibler, Chi-square, and Hellinger distances are obtained,
respectively.

• Hellinger distance [54]:
If f (t) = 1/2(1 − √

t)2, the Hellinger distance is given by

Dh2(p, q) = 1

2

∑
x∈X

(
√

p(x) − √
q(x))2. (1.43)

Note that none of the above distances fulfills all the properties of a metric. However, the square root
of the Hellinger distance is a true metric [31].

According to Csiszár and Shields [27], f-divergences generalize the Kullback-Leibler distance.
Using the analogue of the log-sum inequality (Sec. 1.3.2), given by

n∑
i=1

bif

(
ai

bi

)
−

( n∑
i=1

bi

)
f

(∑n
i=1 ai∑n
i=1 bi

)
≥ 0, (1.44)

many of the properties of the information divergence extend to general f-divergences. If f is strictly
convex the equality in Equ. 1.44 holds if and only if ai/bi is constant for all i.

1.9 GENERALIZED ENTROPIES
Rényi [98] proposed a generalized entropy which recovers the Shannon entropy as a special case, and
Harvda and Charvát [53] introduced a new generalized definition of entropy which also includes
the Shannon entropy as a particular case. Sharma and Mittal [114], and Sharma and Taneja [115]
introduced two-parameter entropies where Rényi and Harvda-Charvát entropies are particular cases.
Tsallis [131] used the Harvda-Charvát entropy in order to generalize the Boltzmann entropy in
statistical mechanics. The introduction of this entropy responds to the objective of generalizing
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the statistical mechanics to non-extensive systems15. For the objectives of this book, we review the
so-called Harvda-Charvát-Tsallis entropy.

Definition 1.15. The Harvda-Charvát-Tsallis entropy HT
α (X) of a discrete random variable X is

defined by

HT
α (X) = k

1 − ∑
x∈X p(x)α

α − 1
, (1.45)

where k is a positive constant (by default k = 1) and α ∈ R\{1} is called entropic index. This entropy

recovers the Shannon discrete entropy when α → 1 and fulfills the properties of non-negativity and
concavity (for α > 0). If X and Y are independent, then the Harvda-Charvát-Tsallis entropy fulfills
the non-additivity property:

HT
α (X, Y ) = HT

α (X) + HT
α (Y ) + (1 − α)HT

α (X)HT
α (Y ), (1.46)

hence, superextensivity, extensivity or subextensivity occurs when α < 1, α = 1 or α > 1, respec-
tively [133].

Taneja [126] and Tsallis [132] also introduced the generalized mutual information.

Definition 1.16. The Harvda-Charvát-Tsallis mutual information IT
α (X, Y ) between two discrete

random variables X and Y is defined by

IT
α (X, Y ) = 1

1 − α

⎛⎝1 −
∑
x∈X

∑
y∈Y

p(x, y)α

p(x)α−1p(y)α−1

⎞⎠ . (1.47)

Shannon mutual information is recovered when α → 1. The transition of IT
α (X, Y ) to the

continuous generalized mutual information is straightforward. Some alternative forms for the gen-
eralized mutual information can be seen in Taneja [127].

15An extensive system fulfills that quantities like energy and entropy are proportional to the system size. Similarly, to Shannon
entropy, a fundamental property of the Boltzmann entropy is its additivity. That is, if we consider a system composed by two
probabilistically independent subsystems X and Y (i.e.,p(x, y) = p(x)p(y)), then H(X,Y) = H(X) + H(Y).This property ensures
the extensivity of the entropy but strongly correlated systems present non-extensive properties that require another type of entropy
fulfilling non-additivity. Tsallis proposed the Harvda-Charvát entropy in order to deal with these “pathological” systems.
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C H A P T E R 2

Scene Complexity and
Refinement Criteria for

Radiosity
One of the most important topics in computer graphics is the accurate computation of the global
illumination in a scene (i.e., the computation of the intensities of light taking into account all the
bounces over the surfaces of a scene). This type of simulation is called global illumination and is
represented by the rendering equation [61], which is a Fredholm integral equation of the second
kind. However, obtaining an exact representation of the illumination is an intractable problem.
Many different techniques are used to obtain an approximate quantification of it [20, 117, 44]. In
this chapter, we deal with global illumination using the radiosity method, which only considers
diffuse surfaces, where reflected light does not depend on the incoming direction. Radiosity is a
viewpoint independent global illumination technique that discretises the scene into small polygons
or patches to solve a transport equation system.

In the radiosity setting, the difficulty in obtaining an accurate solution of the global illumi-
nation in a scene mainly depends on the degree of dependence between all the surfaces. In this
chapter, this dependence, called scene complexity, is quantified by the mutual information, which is
a measure of the information transfer between the different parts of a scene [33, 32]. The scene
complexity will be used in obtaining a mutual information-based refinement criterion (oracle) [32]
for the hierarchical radiosity algorithm [52]. Finally, by analogy with this oracle, refinement criteria
based on f-divergences are also introduced [103].

2.1 BACKGROUND

In this section, the radiosity method is shortly reviewed and some basic hints on form factor com-
putation and scene random walk are given.

2.1.1 RADIOSITY METHOD
The radiosity method, introduced by Goral et al. [47], Nishita and Nakamae [82], and Cohen and
Greenberg [19], solves the problem of illumination in a virtual environment (or scene) of diffuse
surfaces. The radiosity of a patch surface is the light energy leaving this patch per discrete time
interval and can be seen as the combination of emitted and reflected energy for the patch. Thus, the
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radiosity algorithm computes the amount of light energy transferred among the surfaces of a scene,
assuming that the scattering at all surfaces is perfectly diffuse.

The radiosity equation can be written in the following form:

B(x) = E(x) + ρ(x)

∫
S

B(y)F (x, y)dAy, (2.1)

where S represents the surface of the environment, x and y are points on S , dAy is a differential area
at point y, B(x) and B(y) are, respectively, the radiosities (W/m2) at points x and y, E(x) is the
emittance or emitted flux of energy per unit area (W/m2) at point x, ρ(x) is the diffuse reflectance
(dimensionless) at point x, and

F(x, y) = cos θx cos θy

πr2
xy

V (x, y), (2.2)

is the point-to-point form factor , where θx and θy are the angles that the line joining x and y form
with the normals at x and y, respectively, rxy is the distance between x and y, and V (x, y) is a
visibility function which is equal to 1 if x and y are mutually visible and 0 if not (Fig. 2.1.a). Equ. 2.1
expresses that the radiosity at point x is equal to the emitted energy at x plus the reflected energy,
given by the reflectance at x multiplied by the arriving energy at x from all points y in a scene.

x

y

θy

θx
rxy

xN

Ny

ω

ω

x

y x

(a) (b)

Figure 2.1: (a) Outgoing and incoming directions at point x. (b) The Cornell box with a mesh of 1, 995
patches.

To solve the radiosity equation, we can use a finite element approach, discretising the environ-
ment into Np patches and considering the radiosities, emissivities, and reflectances constant over the
patches (Fig. 2.1.b). With these assumptions, the integral Equ. 2.1 becomes the system of radiosity
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equations [47]:

Bi = Ei + ρi

Np∑
j=1

FijBj , (2.3)

where Bi , Ei , and ρi are, respectively, the radiosity, emittance (or emissivity), and reflectance of patch
i, Bj is the radiosity of patch j , and Fij is the patch-to-patch form factor, only dependent on the
geometry of the scene and defined by

Fij = 1

Ai

∫
Si

∫
Sj

F (x, y)dAydAx = 1

Ai

∫
Si

∫
�x

cos θx

π
V (x, y)dωxdAx, (2.4)

where Ai is the area of patch i, Si and Sj represent, respectively, the surfaces of patches i and j , and
x and y are, respectively, points on Si and Sj , �x represents the hemisphere of directions around
dAx , dωx = (cos θy/r2

xy)dAy is the differential solid angle from dAx to dAy , and V (x, y) expresses
the visibility of dAy from dAx in direction wx . Form factor Fij between patches i and j expresses
the fraction of energy leaving patch i which goes directly to patch j .

Form factors fulfill the following properties:

• Reciprocity
AiFij = AjFji ∀i, j ∈ {1, . . . , Np}. (2.5)

• Energy conservation
Np∑
j=1

Fij = 1 ∀i ∈ {1, . . . , Np}. (2.6)

In brief, the radiosity method consists of the following steps: discretisation of the surfaces of
the scene into a mesh of polygons called patches, computation of form factors (see Sec.2.1.2), solution
of the system of linear equations, and visualization of the solution [20, 117, 44]. The main problems
of the radiosity method are meshing and form factor computation. The form factor computation is
the most costly step. More specifically, its cost is mainly due to the presence of the visibility term
in the geometric kernel. Scene meshing not only has to accurately represent illumination variations,
but it also has to avoid unnecessary subdivisions of the surfaces that would increase the number of
form factors to be computed, and consequently, the computational time. The best strategy tries to
balance accuracy and computational cost.

To manage the complexity of the radiosity computation, different strategies can be used to
reduce the number of form factors that need to be computed: progressive refinement, substructuring,
adaptive refinement, hierarchical refinement, etc. Other strategies try to reduce the number of form
factors arriving at a solution within a given error bound [117].

For the purposes of this chapter, we focus our attention on the hierarchical refinement algo-
rithm, introduced by Hanrahan and Salzman [52]. Additional information can be found in [117, 44].
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This algorithm is based on the objective of reducing the number of form factors needed to prop-
agate the light through the environment. In hierarchical radiosity, the patches are subdivided into
smaller elements, if necessary, in order to achieve an accurate light transport between them. The
main objective is to obtain an accurate piecewise constant approximation of the radiosity on all the
elements. To do this, the mesh is generated adaptively: when a constant radiosity assumption on
patch i is not valid for the radiosity due to another patch, the refinement algorithm will refine i in
a set of subpatches or elements. Finally, a multiresolution element mesh will enable us to accurately
represent the energy transport between patches [44]. A refinement criterion (or oracle) based on an
error estimation informs us if a subdivision of the surfaces is needed. The oracle takes geometrical
and visibility information about the patches and also the source radiosity and receiver reflectance,
and returns whether or not the interaction is valid. Some of patches will need further refinement
until a certain level where no further refinement is needed or a previously imposed bound on the
area of the patches is reached.

2.1.2 FORM FACTOR COMPUTATION
Due to the importance of form factor computation for the objectives of this chapter, we show how
the form factor integral (Equ. 2.4) can be evaluated by the Monte Carlo method. Monte Carlo
integration enables us to estimate numerically an integral by converting it to an expected value of a
random variable. Suppose we want to solve the integral of a function g(x), which can be factored
into the product (g(x)/f (x))f (x) with f (x) �= 0 when g(x) �= 0. This can be written as

I =
∫

D

g(x)dx =
∫

D

g(x)

f (x)
f (x)dx. (2.7)

If f (x) ≥ 0 (∀x ∈ D) and
∫
D

f (x)dx = 1, then f (x) can be considered as a probability density
function of a random variable X, and the integral of Equ. 2.7 can be read as the expected value of
the random variable g(X)/f (X) with respect to the pdf f (x):

I = Ef

[
g(X)

f (X)

]
. (2.8)

Then, I can be estimated by sampling N independent values x1, x2, . . . , xN from f (x):

ÎN = 1

N

N∑
k=1

g(xk)

f (xk)
. (2.9)

This estimator is unbiased, that is, the expected value of this estimator is the value of the integral:
E[ÎN ] = I (for a more detailed description, see [62]).

Uniform area sampling and local and global lines to estimate a form factor are reviewed here
(for a brief survey, see [109, 4]). The uniform area sampling takes random points x and y on patches
i and j , respectively, (Fig. 2.2.a). This means taking as pdf f (x, y) = 1/(AiAj ). For Ns pairs (x, y)
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of samples, the form factor integral (Equ. 2.4) is approximated by the following estimator:

F̂ij = Aj

1

Ns

Ns∑
k=1

F(xk, yk). (2.10)

We can also consider a set of rays, which we call local lines1, with origin uniformly distributed
over the surface of patch i and directions distributed according to the cosine with respect to the surface
normal on i. So, we estimate the integral of Equ. 2.4 taking as pdf f (x, wx) = (1/Ai) cos θx/π .
The form factor Fij can be interpreted as the fraction of local lines with origin on patch i that have
j as the nearest patch intersected (Fig. 2.2.b). An estimator for Fij is given by

F̂ij = Nij

Ni

, (2.11)

where Ni is the number of local lines with origin on patch i and Nij is the number of local lines
with origin on patch i that hit patch j .

The same estimator can be obtained using uniformly distributed lines2. Uniformly distributed
random lines can be generated by putting the scene within a sphere and selecting pairs of random
points on the surface of this sphere.The lines connecting each pair of points are uniformly distributed
throughout the scene. These lines are also called global lines [108]. So, the form factor Fij can also
be considered as the probability of a global line that, crossing patch i, hits patch j as the first
intersected patch (Fig. 2.2.c). From integral geometry [107, 109] we know that, for a planar patch,
the probability that a global line intersects patch i is proportional to Ai . To sample with global lines
is equivalent to casting, for each patch, a number of local lines proportional to its area. If we identify
the lines connecting two patches with visibility, the form factor will give us the visibility between
patches [108, 109].

(a) (b) (c)

Figure 2.2: Form factors are computed using (a) uniform area sampling, (b) local lines, and (c) global
lines.

1Local in the sense that the lines depend on patch i; in contraposition to the global lines, independent of the patches.
2The study of uniformly distributed lines will be extended in Sec. 3.1.
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2.1.3 SCENE RANDOM WALK
A discrete random walk [62, 106] is a Monte Carlo technique that can be used to solve the radiosity
equation (2.3). A random walk in a scene can be considered as a stationary Markov chain3 [21, 25, 80].
As we have seen in Sec. 1.4, a stationary Markov chain is a discrete stochastic process defined over
a set of states S = {1, 2, . . . , m} which is described by a transition probability matrix P = {Pij }. In
each step, an imaginary particle (or ray) makes a transition from its current state i to a new state
j with transition probability Pij . This transition probability only depends on the current state. If
we are in state i, the probability of being in state j after n steps is (Pn)ij . For an ergodic Markov
chain, the probabilities of finding the particle in each state i converge to a stationary distribution
w = {w1, . . . , wm} after a number of steps.

It is easy to see that a random walk in a scene4 is an ergodic Markov chain (i.e., irreducible
and aperiodic), where the transition probability matrix is given by the form factor matrix F = {Fiij }
and the states correspond to the patches of the scene. Using the left eigenvector equation, we can see
that the stationary or equilibrium distribution for a scene random walk is given by a = {ai}. Thus,
the form factor matrix F fulfills

lim
m→∞(Fm)ij → Aj

AT

= aj ∀i, j ∈ {1, . . . , Np}, (2.12)

where Aj is the area of patch j , AT = ∑Np
i=1 Ai , and aj is the relative area of patch j , and, when

the length of a scene random walk grows to infinity, the number of hits on any patch i becomes
proportional to ai , independently of where the random walk started its trajectory. A scene random
walk is also reversible since, for every pair of patches, wiPij = wjPji .

When the states form a finite set, as stated before, the Markov chain is called a discrete chain.
When the states are not countable, the chain is called continuous. For instance, when the states
are taken as infinitesimal areas dAx at each point x on the surfaces S of the scene as the states and
transition probabilities are given by the differential form factors F(x, y), with x, y ∈ S, a continuous
Markov chain with stationary distribution w(x) = 1/AT results.

The previous results for a 3D scene can be extended to 2D5. It can be shown that in 2D the
stationary probabilities of the resulting discrete Markov chain are given by wi = Li/LT = li , where
LT is the total length of all segments of the scene, Li is the length of segment i and li is the relative
length of segment i. When the sates are taken as infinitesimal lengths dLx at each point x on the
set of segments L of the scene and transition probabilities are given by the differential form factors
F(x, y), with x, y ∈ L, a continuous Markov chain with stationary distribution w(x) = 1/LT is
obtained.

3The notion of Markov chain introduced in Sec. 1.4 is now extended in the context of a scene.
4We consider that in a scene always exists a path which communicates all patches (irreducibility property).
5The notion of continuous Markov chain for a 2D scene will be used to define 2D shape descriptors in Sec. 3.2.3.
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2.2 SCENE INFORMATION CHANNEL

In this section, a scene is interpreted as a discrete information channel. This fact enables us to
introduce the notions of entropy and mutual information to study the visibility and radiosity of a
scene [33, 32].

2.2.1 BASIC DEFINITIONS
From the visibility point of view, the scene can be modelled in two equivalent ways, a random walk
and an information channel:

• A discrete random walk in a discretised scene (Fig. 2.3.a) is a discrete stationary Markov chain
(see Sec.2.1.3) where the states correspond to the patches of a scene, the transition probabilities
Pij are the form factors Fij , and the stationary distribution {wi} is given by the distribution
of relative areas {ai} of patches, where ai = Ai/AT , being Ai the area of patch i and AT the
total area of the scene [109].

• A scene can be interpreted as a discrete information channel X → Y where the input and output
variables take values over the set S = {1, 2, . . . , Np} of patches, both with the same marginal
probability distribution {ai}, and the conditional probabilities are the form factors Fij . Thus,
with respect to the notation introduced in Sec. 1.1, X and Y are discrete random variables
with alphabet S , Np = |S|, p(x) and p(y) are, respectively, given by the relative areas ai and
aj (where ai = Pr{X = i} and aj = Pr{Y = j} with i, j ∈ S), and p(y|x) and p(x, y) are,
respectively, given by Fij and aiFij .

(a) (b)

Figure 2.3: (a) Discrete and (b) continuous random walk in a scene.

From these assumptions and Equations 1.22, 1.5, 1.2, 1.4, and 1.9, Shannon’s information
measures can be defined for a scene.
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Definition 2.1. The discrete scene visibility entropy rate (or conditional entropy), called scene
visibility entropy, is defined by

HS = H(Y |X) = −
∑
i∈S

ai

∑
j∈S

Fij log Fij . (2.13)

The scene entropy can be interpreted as the average uncertainty that remains about the destination

patch of a random walk (or ray) when the source patch is known. It expresses the average information
content of a random walk in a scene and can be seen as the intrinsic unpredictability or the irreducible
randomness associated with the chain. HS is also the expected minimum number of bits per symbol
required to code a random walk in a scene (see Equ. 1.26). Note that the Bayes theorem is expressed
by the reciprocity property of the form factors (Equ. 2.5): aiFij = ajFji . From this property we
obtain that HS = H(Y |X) = H(X|Y ).

Definition 2.2. The discrete scene visibility positional entropy is defined by

HP = H(X) = H(Y) = −
∑
i∈S

ai log ai. (2.14)

HP expresses the average uncertainty on the position (patch) of a ray traveling an infinite random

walk. It is the Shannon entropy of the stationary distribution.

Definition 2.3. The discrete scene visibility joint entropy is given by

HJ = H(X, Y ) = −
∑
i∈S

∑
j∈S

aiFij log(aiFij ). (2.15)

HJ can be interpreted as the average uncertainty of the transition i → j of a ray in an infinite

random walk. It is the Shannon entropy of a random variable with probability distribution {aiFij }.
Definition 2.4. The discrete scene visibility mutual information is defined by

IS = I (X; Y ) = H(Y) − H(Y |X) =
∑
i∈S

∑
j∈S

aiFij log
Fij

aj

. (2.16)

IS expresses the amount of information that the destination patch conveys about the source patch,

and vice versa. It is a measure of the average information transfer or dependence between the different
parts of a scene.

It is especially interesting to ask about the extremal cases of maximum and minimum scene
visibility entropy, which correspond, respectively, to the maximum and minimum unpredictability
in the ray path. Both cases can be illustrated with the following two examples:
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• The maximum entropy is exemplified by the interior of an empty sphere6 divided into equal
area patches. In this case, all the form factors are equal (Fij = aj ) and the uncertainty on
the destination patch of a random walk is maximum: HS = HP = log |S| (i.e., no visibility
direction is privileged). Observe also that the information transfer IS is zero for any discreti-
sation of the sphere since this can be represented by a channel where the variables X and Y

are independent (i.e., aiFij = aiaj ).

• The minimum entropy can be represented by a scene with almost touching objects. In this
case, there are strongly privileged visibility directions. This system is highly correlated and the
information transfer is high.

The behaviour of the entropy and mutual information is illustrated with the scenes of Fig. 2.4.
In these experiments, form factors have been computed using 107 global lines (see Sec. 2.1.2).

In scenes with the same discretisation (Figs. 2.4.a-b), where we have a cubical enclosure with
512 interior cubes and the same HP , observe (Table 2.1) that the increase of entropy is compensated
by a mutual information decrease, and vice versa.

(a) (b) (c)

(d) (e) (f)

Figure 2.4: Different scene configurations with entropy and mutual information values in Table 2.1.

How does scene entropy behave with an increase in the number of patches? According to
Equ. 1.35, the scene entropy goes to infinity when the number of patches also goes to infinity.
On the other hand, in this case, the scene mutual information tends to a finite value. The increase
of entropy and mutual information is illustrated in Figs. 2.4.c-d and Table 2.1, where we have a
6From Equ. 2.4, it can be seen that in a sphere Fij = aj .
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Table 2.1: Entropy and mutual information val-
ues for scenes in Fig. 2.4.

Scene HS IS HP HS

Fig. 2.4.a 6.761 4.779 11.541 0.586
Fig. 2.4.b 5.271 6.270 11.541 0.457
Fig. 2.4.c 7.838 1.391 9.229 0.849
Fig. 2.4.d 10.852 1.547 12.399 0.875
Fig. 2.4.e 7.589 1.861 9.450 0.803
Fig. 2.4.f 7.606 2.112 9.718 0.783

cubical enclosure with two different regular discretisations of their surfaces (600 and 5, 400 patches,
respectively). For these two scenes, HP = log Np, as all the patches have the same area.

In order to account for changes in the proportion of randomness and correlation in a scene,
HS and IS can be normalized by dividing them by the positional entropy HP .

Definition 2.5. The normalized scene visibility entropy is defined by

HS = HS

HP

. (2.17)

Definition 2.6. The normalized scene visibility mutual information is defined by

IS = IS

HP

= 1 − HS. (2.18)

In the literature, the normalized mutual information is considered as a measure of correla-
tion [25]. In Table 2.1, the behavior of the normalized entropy is shown for the scenes of Fig. 2.4.
Observe how HS decreases when we introduce more cubes in the scene. This fact increases the cor-
relation in the scene to the detriment of its randomness, in spite of the fact that HP also increases.

2.2.2 FROM VISIBILITY TO RADIOSITY
The definitions of scene entropy and scene mutual information in Sec. 2.2.1 have been based on
the existence of a Markov chain and the knowledge of its stationary distribution. Thus, to study the
entropy and mutual information of a scene with illumination, we need to find an analog of the form
factor matrix for the radiosity setting. This analog appears when we take the transition probabilities
in a random walk solution of radiosity that lead to null variance estimators [110]:

Pij = pj |i = ρiFijBj

Bi − Ei

. (2.19)
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Then, the left eigenvector equation wP = w (see Sec. 1.4) is used to obtain (without normalization)
the stationary distribution

Ai

Bi − Ei

ρi

Bi = AiB
in
i Bout

i , (2.20)

where Bin
i = (Bi − Ei)/ρi is the incoming radiosity and Bout

i = Bi is the outgoing radiosity. It is
easy to check that these probabilities fulfill the Bayes theorem:

AiBiFijBj = AjBjFjiBi. (2.21)

This expression is an extended reciprocity relation (without normalization). Thus, the analogy is
complete.

From the above assumptions, the entropy and mutual information can be defined straightfor-
wardly for the radiosity setting using the following substitutions:

• Ai → Ai = Ai
Bi−Ei

ρi
Bi

• AT → AT = ∑
i Ai

• ai = Ai

AT
→ ai = Ai

AT

• Fij → Fij = ρiFij Bj

Bi−Ei
.

This analogy can be interpreted as a mapping of a given scene into a new (imaginary) scene,
transforming the areas and the transition probabilities according to the above formulae.

Definition 2.7. The discrete scene radiosity entropy is defined by

HS = −
∑
i∈S

ai

∑
j∈S

Fij log Fij . (2.22)

Definition 2.8. The discrete scene radiosity mutual information is defined by

IS =
∑
i∈S

∑
j∈S

aiFij log
Fij

aj

. (2.23)

Entropy HS and mutual information IS have been computed for three different discretisations
of the Cornell box scene (Fig. 2.5) and for each RGB color component. In Table 2.2, it can be seen
that the finer the mesh, the higher the entropy and mutual information. Observe that IS of the scene
shown in Fig. 2.5.c is higher than the one of Fig. 2.5.b. As we will see in the next sections, a higher
mutual information corresponds to a more accurate mesh. Note also that, in these scenes, mutual
information is very similar for all the channels, whereas entropy in the red channel is clearly the
highest.
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(a) (b) (c)

Figure 2.5: Three different discretisations for the Cornell box scene with 121, 1924, and 1924 patches,
respectively. See mutual information and entropy values in Table 2.2.

Table 2.2: IS and HS for the Cornell box scene (Fig. 2.5).
Scene IS(R, G, B) HS(R, G, B)

Fig. 2.5.a (0.935, 0.965, 0.960) (3.138, 2.636, 2.285)
Fig. 2.5.b (1.004, 1.014, 0.993) (6.170, 5.616, 5.243)
Fig. 2.5.c (1.052, 1.046, 1.020) (6.849, 6.339, 6.059)

2.3 SCENE COMPLEXITY
This section is dedicated to scene complexity, which is interpreted as the difficulty in achieving a
precise discretisation of the scene. We begin by defining the continuous scene mutual information,
independent of any discretisation, as the measure for the scene complexity. Then, the relationship
between the discrete and continuous mutual information is analysed and the difference between
them is taken as the scene discretisation error [33, 32].

The study of complexity has multiple directions and objectives, and also many fields of ap-
plication (automata, computer science, physics, biology, etc.) [3], which reflect the great activity in
this area. But, what is complexity? According to W. Li [73], the meaning of this quantity should
be very close to certain measures of difficulty concerning the object or the system in question: the
difficulty in constructing an object, the difficulty in describing a system, the difficulty in reaching a
goal, the difficulty in performing a task, and so on. Many definitions of complexity, corresponding
to the different ways of quantifying these difficulties, can be found. In the two last decades, diverse
complexity measures, as for instance the mutual information, have been proposed to quantify the
degree of structure, dependence, or correlation of a system [50, 73, 36]. Feldman and Crutchfield [37]
proposed to call them measures of statistical complexity.

Scene complexity has often been expressed as the number of patches into which a scene
is subdivided. But, what do we really expect scene complexity to measure? In our context, scene
complexity has to answer the question of how difficult it is to compute the visibility and radiosity of
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a scene with sufficient accuracy.The difficulty in obtaining a precise illumination solution depends on
the degree of dependence between all the surfaces,how the interaction between these surfaces changes
in dependence when the system is subdivided, and the degree of unpredictability. The two first
considerations can be represented by a statistical complexity measure, which quantifies correlation,
structure, or interdependence between the parts of a system, and the third one by the entropy, which
measures randomness or unpredictability. In this book, the scene complexity is associated with the
mutual information and the scene randomness with the entropy.

2.3.1 CONTINUOUS SCENE VISIBILITY MUTUAL INFORMATION
A scene is a continuous system. Thus, by discretising a scene into patches, some information is
lost and, consequently, a distortion or error is introduced. Obviously, the maximum accuracy of the
discretisation is accomplished when the number of patches tends to infinity. Since the continuous
mutual information expresses with maximum precision the information transfer or correlation in a
scene, it will be considered as the measure of scene complexity.

Similarly, to the previous section, the scene is now modeled by a continuous random walk
(Fig. 2.3.b) or by a continuous information channel. From Equ. 1.36, we know that the mutual
information between two continuous random variables X and Y is the limit of the mutual infor-
mation between their discretised versions, while, from Equ. 1.34, we find that the entropy of a
continuous random variable does not equal the entropy of its discretised version in the limit of a
finer discretisation. Thus, in a scene, discrete mutual information converges to continuous mutual
information when the number of patches tends to infinity (and the size of all the patches tends to
zero), while scene visibility entropy tends to infinity when the number of patches tends to infinity:
limNp→∞ HS = ∞ (see Equ. 1.35). From now on, in this chapter, we focus attention on mutual
information.

As we have seen in Sec. 2.1.3, when the states form an uncountable set, we deal with a
continuous Markov chain. The continuous mutual information of a scene can be obtained from the
discrete mutual information (Equ. 2.16) using the following substitutions:

• Each state is substituted by an infinitesimal area and each summatory by an integral.

• wi = Ai/AT → 1/AT . This means substituting the discrete probability of taking patch i by
the continuous probability of selecting any point.

• Fij → F(x, y).This means substituting the patch-to-patch form factor by the point-to-point
form factor.

The scene continuous mutual information can also be obtained from the continuous mutual
information (Equ. 1.30) by using the following changes:

• dx → dAx , dy → dAy

• f (x) → 1
AT
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• f (y|x) → F(x, y)

• f (x, y) → 1
AT

F (x, y).

Thus, the continuous mutual information for a scene can be defined as follows:

Definition 2.9. The continuous scene visibility mutual information is defined by

I c
S =

∫
S

∫
S

1

AT

F(x, y) log(AT F (x, y))dAxdAy, (2.24)

where S represents the set of surfaces of the scene. For instance, in the interior of an empty sphere,

where F(x, y) = cos θx cos θy/(πr2
xy) = 1/AT (see Equ. 2.2), the result obtained is, as expected,

I c
S = 0. Remember that, in a sphere, IS = 0 and, thus, I c

S = IS = 0.
Like continuous visibility mutual information I c

S , that has been derived from discrete visibility
mutual information IS , continuous radiosity mutual information could also be obtained from discrete
radiosity mutual information IS(Equ. 2.23). For more details, see [32].

2.3.2 COMPUTATION OF SCENE VISIBILITY COMPLEXITY
In this section, we show how the continuous mutual information can be computed by Monte Carlo
using local or global lines (see Sec. 2.1.2). Reparametrizing the continuous mutual information
integral, we obtain

I c
S =

∫
S

∫
S

1

AT

F(x, y) log(AT F (x, y))dAxdAy

=
∫

S

∫
�x

1

AT

cos θx

π
log(AT F (x, y(x, ωx)))dAxdωx, (2.25)

where dωx = (cos θy/r2
xy)dAy and y(x, ωx) is the point visible from x in the direction ωx . We

can now take cos θx/(πAT ) as probability density function (
∫
S

∫
�x

cos θx/(πAT )dAxdωx = 1).
Drawing samples according to this distribution means simply selecting first a random point in the
scene upon the area and a direction upon the form factor distribution. Alternatively, we can directly
use the density F(x, y)/AT , which is achieved by casting global lines. The result obtained is

I c
S ≈ 1

N

N∑
k=1

log(AT F (xk, yk(xk, ωxk
)) = 1

N

N∑
k=1

log
(AT cos θxk

cos θyk

πr2
xkyk

)
. (2.26)

In the case of using global lines, N stands for the total number of segments of the global lines or
the number of pairs of points considered, which is the total number of intersections divided by two
(see Fig. 2.6). In the case of using local lines, N represents the total number of local lines used in a
scene. The quantity Ni of local lines cast from patch i is proportional to its area: Ni = (Ai/AT )N .
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θ

θ

θ

θ

Figure 2.6: 2D representation of a scene where the segments of some global lines used to compute the
continuous mutual information are shown.

The complexity of platonic solids and Cornell box7 (Fig. 2.5) has been computed using
global lines. In Table 2.3, we can observe that, among the platonic solids, the minimum complexity
corresponds to a sphere and the maximum complexity to a tetrahedron.As we expected, the polyhedra
that are nearer to the sphere are less complex, that is, they have less correlation. The complexity of
the Cornell box is clearly greater than the one of the empty cube, since the introduction of objects
in the interior of an empty scene increases its complexity.

2.3.3 COMPLEXITY AND DISCRETISATION
The relationship between the discrete and continuous mutual information is now analyzed and
the scene complexity I c

S is shown to be closely related to the difficulty in obtaining an accurate
discretisation. In a way, to discretise a scene is to model it. “A system is not complex by some abstract
criterion but because it is intrinsically hard to model” [3]. This point of view is compatible with
W. Li’s comment: “An intuitively satisfactory definition of complexity should measure the amount
of effort put in that generates correlations in a sequence. Of course, one cannot be sure that all the
effort is spent on generating correlations. As a result, a measure of correlation typically provides a
lower bound of a measure of complexity, and might be a reasonable estimate of the complexity” [73].

7In our version of the Cornell box scene, prism and cube are slightly separated from the floor.This fact increases the scene visibility
complexity since in the narrow spaces the correlation is higher.
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Table 2.3: Complexity of sphere, pla-
tonic solids, and Cornell box.

Scene I c
S

Figure
Sphere 0

Icosahedron 0.543 Fig. 3.2.e
Dodecahedron 0.825 Fig. 3.2.d

Octahedron 1.258 Fig. 3.2.c
Cube 1.609 Fig. 3.2.b

Tetrahedron 2.626 Fig. 3.2.a
Cornell box 3.274 Fig. 2.7.a

In Sec. 1.6, we have presented the following properties: the mutual information between
two continuous random variables is the limit of the mutual information between their discretised
versions, refinement can never decrease the discrete mutual information, and the continuous mutual
information is the least upper bound for the discrete mutual information. If we now apply these
properties to scene visibility, we find that

• If any patch is divided into two or more patches, the discrete mutual information IS of the
new scene increases or remains the same.

• The continuous scene visibility mutual information is the least upper bound to the discrete
scene visibility mutual information.

Thus, a scene fulfills

I c
S − IS ≥ 0. (2.27)

This difference expresses the loss of information transfer due to the discretisation. Thus, between
different discretisations of the same scene, we can consider that the most precise will be the one
that has a higher discrete mutual information IS , that is, the one that best captures the information
transfer. With this in mind, the discretisation error can be defined.

Definition 2.10. The scene discretisation error δv is defined8 by

δv = I c
S − IS, (2.28)

and the relative scene discretisation error as the quotient

δ
v = I c

S − IS

I c
S

. (2.29)

8The superindex v stands for visibility, meaning that only visibility criteria are taken into account.
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In a complementary way, the relative discretisation accuracy is given by IS/I c
S .

From the following experiments, we can see that continuous mutual information I c
S is closely

related with the difficulty in obtaining an accurate discretisation: the higher the I c
S (i.e., when there

is more information transfer in a scene), the more difficult it is to obtain an accurate discretisation,
and probably more refinements will be necessary to achieve a given precision. From this point of
view, the difficulty in discretising the interior of an empty sphere is null (the discretisation error is
always equal to zero).

Table 2.4: Results for the cubical enclosure of
Figs. 2.4.c-d with two different discretisations
of their surfaces. For each scene, 105, 107, and
109 global lines have been cast.

Scene Lines HS IS Ic
S

105 6.482 2.747 1.610
Fig. 2.4.c 107 7.821 1.408 1.612

109 7.838 1.391 1.610
105 4.313 8.086 1.610

Fig. 2.4.d 107 9.684 2.715 1.611
109 10.852 1.547 1.610

(a) (b) (c) (d)

Figure 2.7: Four different discretisations for the Cornell box.The total number of patches is, respectively,
19, 196, 826, and 1, 924. Mutual information results are shown in Table 2.5.

The above properties and assumptions are tested on different scene configurations (Fig. 2.7,
Fig. 2.8, and Fig. 2.9). As we can see in Table 2.4, corresponding to Figs. 2.4.c-d, the computational
cost of I c

S is much lower than the cost of computing IS . That is, I c
S can be computed with enough

precision using a relatively small number of lines, while the computation of IS requires much more
lines to get a precise measurement. Observe that IS increases with the number of patches but has
to be always less than I c

S when enough precision for IS is obtained. We can also see that, due to
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Table 2.5: I c
S and IS for the scenes in Fig. 2.7.

Scene Patches Lines IS I c
S

Fig. 2.7.a 19 107 0.690 3.273
Fig. 2.7.b 196 107 2.199 3.273
Fig. 2.7.c 826 107 2.558 3.273
Fig. 2.7.d 1924 108 2.752 3.273

(a) (b) (c)

(d) (e) (f)

Figure 2.8: 64 cubes are grouped very closely together in the center of the cubical enclosure and then are
separated and moved outwards until they almost touch the walls. The discretisation of the cubes (1, 536
patches) is finer than the discretisation of the walls (384 patches).

the Monte Carlo integration error, the value of the discrete mutual information decreases (until
convergence is achieved) with the increase in the number of lines cast. In Table 2.5, corresponding
to Fig. 2.7, we also show how discrete mutual information IS increases with the mesh refinement.

In the following experiments,we find that, for a regular discretisation, the relative discretisation
error is lower in the less complex scenes. This hypothesis is analysed from the results shown in
Table 2.6, which have been obtained from the scenes of Fig. 2.8. Initially, 64 cubes are grouped very
closely together in the center of the cubical enclosure and, little by little, they are separated and
moved outwards until they almost touch the walls. In this sequence of scenes, the discretisation of
the cubes is finer than the discretisation of the walls. The relative discretisation accuracy appears to
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Table 2.6: Results for the scenes of Fig. 2.8. For each scene,
108 global lines have been cast.
Scene (a) (b) (c) (d) (e) (f)

IS 5.492 5.054 4.672 4.395 4.356 4.775
I c
S

6.430 5.678 5.177 4.867 5.015 6.055
IS/Ic

S
0.854 0.890 0.902 0.903 0.869 0.789

be higher in the “middle” scenes (Figs. 2.8.b-e), and lower in the “extremal” scenes (Fig. 2.8.a and
Fig. 2.8.f). These last two scenes are the most complex scenes and, consequently, should have a finer
discretisation in order to obtain greater accuracy. In other words, these scenes are the ones most
difficult to discretise. Note also that the relative discretisation accuracy of the scene of Fig. 2.8.a is
higher than the one of Fig. 2.8.f. This is due to the fact that the discretisation is finer in the narrow
spaces between the cubes. In contrast, when the cubes are near the walls, a greater precision would
be obtained when the discretisation of the walls were finer.

In Table 2.7, corresponding to Fig. 2.9, we also observe that the relative discretisation error is
higher for more complex scenes. All these experiments suggest that the discretisation error may be
used to choose the best discretisation from several alternatives.

(a) (b) (c)

Figure 2.9: Three different scenes with a regular discretisation of their surfaces and the same number of
patches (1, 924).

Table 2.7: IS , I c
S , and relative discretisation

error δ
v for the scenes in Fig. 2.9. For each

scene, 108 local lines have been cast.
Scene Fig. 2.9a Fig. 2.9b Fig. 2.9c

IS 2.752 2.823 2.459
Ic
S

3.274 3.375 2.613
δ
v

0.159 0.164 0.059
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2.4 REFINEMENT CRITERION BASED ON MUTUAL INFOR-
MATION

As we have mentioned in Sec. 2.1.1, scene discretisation has to accurately represent illumination
variations, but it has to avoid unnecessary refinements that would increase the computational cost.To
achieve this objective, in this section,we introduce a mutual-information-based oracle for hierarchical
radiosity, which is based on the loss of visibility information transfer between two patches due to
the discretisation [32].

2.4.1 LOSS OF INFORMATION TRANSFER DUE TO DISCRETISATION
To obtain a refinement criterion for hierarchical radiosity, we calculate the difference between both,
continuous and discrete, patch-to-patch visibility information transfers. From Equ. 2.16, the term

Iij = aiFij log

(
Fij

aj

)
, (2.30)

can be considered as an element of a mutual information matrix, and it is easy to see that Iij = Iji .
Each element represents the information transfer between patches i and j . We can also consider
that

Ii = ai

∑
j∈S

Fij log

(
Fij

aj

)
, (2.31)

expresses the information transfer from patch i. Taking into account that the summation is the
Kullback-Leibler distance between {Fij } and {aj } with j ranging in the set of patches, it is easy to
see that Ii ≥ 0. From Equ. 2.16, we can write

IS =
∑
i∈S

Ii =
∑
i∈S

∑
j∈S

Iij . (2.32)

The information transfer between two patches can be accurately calculated if we consider
the continuous mutual information between them. Thus, from the continuous visibility mutual
information (Equ. 2.24), we get

I c
ij =

∫
Si

∫
Sj

1

AT

F(x, y) log(AT F (x, y))dAxdAy. (2.33)

This continuous measure expresses with maximum precision the visibility information transfer be-
tween two elements, and it can be computed with an area-to-area sampling (see Sec. 2.1.2), that is,
using random lines joining both elements i and j (the pdf is 1/(AiAj )). For Nij lines, we have

I c
ij ≈ AiAj

AT

1

Nij

Nij∑
k=1

F(xk, yk) log (F (xk, yk)AT ) , (2.34)
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where xk and yk are, respectively, the end-points on patches i and j of the k-th line.
From Equ. 2.30, Iij can be rewritten as

Iij = AiFij

AT

log

(
FijAT

Aj

)
= AiAj

AT

Fij

Aj

log

(
Fij

Aj

AT

)
. (2.35)

Thus, taking Fij /Aj ≈ (1/Nij )
∑Nij

k=1 F(xk, yk) (Equ. 2.10), we obtain the visibility discretisation
error between patches i and j :

δv
ij = I c

ij − Iij ≈ AiAj

AT

(
1

Nij

( Nij∑
k=1

F(xk, yk) log(F (xk, yk))
)

−
( 1

Nij

Nij∑
k=1

F(xk, yk)
)

log
( 1

Nij

Nij∑
k=1

F(xk, yk)
))

≥ 0.

(2.36)

The positivity of δv
ij is obtained from the log-sum inequality (Equ. 1.15). This difference gives us

the discretisation error between two elements, and it is used as the basis for the mutual-information-
based oracle. Observe also that δv

ij is symmetric: δv
ij = δv

ji . As we expected, it is easy to see that the
discretisation error between two spherical patches is equal to zero.

2.4.2 MUTUAL-INFORMATION-BASED ORACLE FOR HIERARCHICAL RA-
DIOSITY

As the refinement strategy in hierarchical radiosity deals with one pair of elements at a time, an
oracle based on the discretisation error between two patches or elements (Equ. 2.36) is introduced.

The fundamental idea is that the difference between continuous and discrete patch-to-patch
(or element-to-element) mutual information gives us the loss of information transfer or, equivalently,
the maximum potential gain of information transfer between two elements. Hence, this difference
can be interpreted as the benefit to be gained by refining and can be used as a decision criterion.

To create the mutual-information-based oracle (MI oracle), we take a similar approach to
the classic smoothness-based oracles, which multiply ρiBj (from the radiosity equation 2.3) by an
expression of the visibility gradient between the two patches involved. In our case, the visibility
gradient is substituted by the discretisation error δv

ij = I c
ij − Iij , which, in a way, also represents the

variation of the radiosity kernel. Thus, the MI oracle is based on the following two considerations:

• In the radiosity equation (Equ. 2.3)

Bi = Ei + ρi

Np∑
j=1

FijBj ,

the contribution of patch j to the radiosity of patch i is given by ρiFijBj .That is, the geometric
factor (radiosity kernel) is weighted by ρiBj .
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• The kernel-smoothness-based oracles, such as [121]

ρi(F
max
ij − Fmin

ij )AjBj < ε (2.37)

and [48]

ρi max(Fmax
ij − Fav

ij , F av
ij − Fmin

ij )AjBj < ε, (2.38)

try to capture the variation of the radiosity kernel using the maximum and minimum kernel
values.

Taking these two facts on board, that is, weighting the variation of the radiosity kernel (ex-
pressed by the visibility discretisation error δv

ij between two patches) by ρiBj and using the same
oracle scheme, the MI oracle is given by

ρiδ
v
ijBj < ε, (2.39)

which can be computed with Nij element-to-element random lines between elements i and j :

ρiAiAjBj

AT

(
1

Nij

( Nij∑
k=1

F(xk, yk) log(F (xk, yk))
)

−
( 1

Nij

Nij∑
k=1

F(xk, yk)
)

log
( 1

Nij

Nij∑
k=1

F(xk, yk)
))

< ε. (2.40)

Observe that in this expression the receiver area appears weighting the oracle and thus avoiding an
excessively small receiver subdivision.

The performance of the MI oracle is compared with a classic kernel-smoothness-based (KS)
oracle (Equ. 2.38) using the hierarchical Monte Carlo radiosity method [5]9. It has to be noted that
these oracles can be used with any hierarchical radiosity method.

Fig. 2.10 and Fig. 2.11 show the behaviour of the KS and MI oracles for a given scene. Observe
the accurate representation of the shadow of the chair near the right wall (Fig. 2.10.ii) and front wall
(Fig. 2.11.ii) obtained by the MI oracle. Observe also the much better discrimination in the mesh,
seen for instance on the floor and walls, and how the shadows on the table are represented more
accurately in Fig. 2.11.ii. Fig. 2.12 shows a more accurate solution obtained with the MI oracle and
computed with 10 element-to-element random lines for each oracle evaluation and 2, 684, 260 rays
for radiosity computation.

In Rigau et al. [99, 105], the MI oracle has been generalized using the Harvda-Charvát-
Tsallis (HCT) mutual information (Equ. 1.47), so that the discretisation error has been computed
as the difference between the continuous and discrete Harvda-Charvát-Tsallis mutual information.
It is interesting to note that, for entropic indexes α less than one, the HCT oracle produces more
refinements than the MI oracle in the most shadow areas and less refinements in the corners of the
scene, and vice versa for entropic indexes greater than one (see Fig. 2.13). Note that, when α = 1,
the HCT oracle is equivalent to the MI oracle. More details can be seen in [99, 105].
9The hierarchical Monte Carlo radiosity algorithm has been implemented in the RenderPark system [23].
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(a.i) KS (a.ii) MI

(b.i) KS (b.ii) MI

Figure 2.10: Results obtained by (i) KS and (ii) MI oracles with the test scene showing the (a) mesh
and (b) Gouraud shaded solution. The number of patches is (i) 13, 902 and (ii) 13, 878, respectively, and
402, 650 rays have been used for radiosity computation and 10 rays for each oracle evaluation between
two elements.

2.5 REFINEMENT CRITERIA BASED ON f-DIVERGENCES

In this section, f-divergence-based oracles for hierarchical radiosity refinement are presented [103].
The introduction of these refinement criteria was motivated by the observation that the MI oracle
presented in Sec. 2.4 could be rewritten as an f-divergence.

The discretisation error (Equ. 2.36) can be written in the following way:

δv
ij ≈ AiAj

AT

F̂
( 1

Ns

Ns∑
k=1

pk log pk − 1

Ns

Ns∑
k=1

pk log(
1

Ns

Ns∑
k=1

pk)
)

= AiAj

AT

F̂
( 1

Ns

Ns∑
k=1

pk log pk − 1

Ns
log

1

Ns

)
≥ 0 ,

(2.41)

where F̂ = ∑Ns
k=1 F(xk, yk), pk = F(xk, yk)/F̂ for all 1 ≤ k ≤ Ns, and 1/Ns

∑Ns
k=1 pk = 1/Ns.
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(a.i) KS (a.ii) MI

(b.i) KS (b.ii) MI

Figure 2.11: (a) Mesh and (b) Gouraud shaded solution for a different view of the test scene of Fig. 2.10
obtained by (i) KS and (ii) MI oracles.

It can be seen that the expression between parentheses in Equ.2.41, except for a constant factor
1/Ns, is the Kullback-Leibler distance between the distributions pk = F(xk, yk)/F̂ and qk = 1/Ns.
Thus, we get

δv
ij ≈ AiAj

AT

1

Ns
F̂ DKL(p, q) . (2.42)

This fact suggests to try other f-divergences in the kernel of the refinement oracle (Equ. 2.39).
These measures will give us the variability of the distribution {F(x1, y1)/F̂ , . . . , F (xNs, yNs)/F̂ }
with respect to the uniform distribution {1/Ns, . . . , 1/Ns}.

The Kullback-Leibler (Equ. 1.7), Chi-square (Equ. 1.42), and Hellinger (Equ. 1.43) dis-
tances have been tested. Note that the Kullback-Leibler-based oracle coincides with the MI ora-
cle (Equ. 2.39).

The oracles used in the test are the following:

• Kullback-Leibler (KL)

ρiAiAj F̂ DKL(p, q)Bj < ε. (2.43)
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(a) (b)

(c) (d)

Figure 2.12: Results obtained with the MI method for the scene shown in Fig. 2.10. (a) and (c) show
the grids corresponding to (b) and (d) Gouraud shaded solutions. The number of patches is 18, 338 and
2, 684, 260 rays have been used for radiosity computation and 10 rays for each oracle evaluation.

• Chi-square (CS)
ρiAiAj F̂ Dχ2(p, q)Bj < ε. (2.44)

• Hellinger (HE)
ρiAiAj F̂ Dh2(p, q)Bj < ε , (2.45)

based all on their respective distances.Observe that the constants 1/AT and 1/Ns have been removed.
It is important to note that the expression between parentheses in Equ. 2.41 is equal to the

first term in Jensen’s inequality (Equ. 1.13) with f (x) = x log x and x = F(x, y)/F̂ . Moreover, we
can also see that this expression is equal to the first term in the log-sum inequality (Equ. 1.15),
taking bi = 1 and ai = F(xi, yi)/F̂ .

The KS oracle and the f-divergence-based oracles have been implemented in the hierarchical
Monte Carlo radiosity method [5]. In Fig. 2.14, we present the results obtained with the KS oracle
(Fig. 2.14.a) and the f-divergence-based ones (Figs. 2.14.b-d ) for a view of the test scene. Left
column (i) shows the subdivision obtained, while the right one (ii) corresponds to the Gouraud
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(a.i) (a.ii)

(b.i) (b.ii)

(c.i) (c.ii)

Figure 2.13: (a) Mesh and (b) Gouraud shaded solution for the test scene of Fig. 2.10 obtained by
the Harvda-Charvát-Tsallis mutual information oracle using entropic indexes (a) α=1.5, (b) α=1, and (c)
α=0.5.

shaded solution. Each oracle has been evaluated with 10 random lines between the corresponding
pair of elements and a total of 2, 685, 000 rays have been cast for the radiosity computation. The ε

parameter has been tuned so that the grids obtained have approximately 19, 000 patches in all the
methods.
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In Figs. 2.14.b-d, we can see how the f-divergence-based oracles outperform the KS one
(Fig. 2.14.a), especially in the much more-defined shadow of the chair and the cubes on the right
wall. Observe also the superior quality of the grid created on top of the table, and in the corner
between the walls.

On the other hand, comparing the three f-divergence oracles, we conclude that, although they
exhibit a similar quality, the KL (or MI) one is slightly better. For instance, observe how the shadows
on the table are more defined. A possible explanation for this better behaviour could be that the KL
oracle, unlike the other ones, meets Jensen’s inequality (Equ. 1.13). This might confer a distinctive
theoretical advantage to the Kullback-Leibler oracle.



46 CHAPTER 2. SCENE COMPLEXITY AND REFINEMENT CRITERIA FOR RADIOSITY

(a.i) KS grid (a.ii) KS

(b.i) KL grid (b.ii) KL

(c.i) CS grid (c.ii) CS

(d.i) HE grid (d.ii) HE

Figure 2.14: A view of the test scene for comparison of (a) kernel-smoothness-based (KS) and f-
divergence-based oracles: (b) Kullback-Leibler (KL), (c) Chi-square (CS), and (d) Hellinger (HE). Col-
umn (i) shows the grid obtained in the refinement process and column (ii) shows the Gouraud shaded
solution. In all methods, the oracles have been evaluated with 10 random lines between two elements.
In each case, a total of 2, 685, 000 rays are cast for the radiosity computation, obtaining approximately
19, 000 patches. ([103] © The Eurographics Association, 2003.)
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C H A P T E R 3

Shape Descriptors
In the last years, shape complexity has been analysed from different fields, such as computer vi-
sion [86] and psychology [38]. The benefits of a shape complexity theory (with its corresponding
measures) would range from object classification for posterior database retrieval to improvements
in cognitive science. As we have seen in Sec. 2.3, mutual information has been used to quantify the
complexity of a scene and, consequently, can also be used to measure the shape complexity of an
object.

In this chapter, we propose two shape complexity measures based on the continuous mutual
information which are independent of the discretisation and appropriate to describe the shape of any
object [104]. Thus, shape complexity will be analysed from two different perspectives. First, from
the inside of the object, its degree of structure (interdependence between its parts) is quantified. In
this case, we measure the information shared by the interior surfaces of the object. A differential
of surface will be related to another differential of surface by the uniformly distributed lines [108]
that join them, that is, make them visible to each other. Second, from the outside of the object, the
degree of interaction between the object and its circumscribing sphere is calculated using the same
uniformly distributed lines. These complexity measures can be used as shape descriptors in fields
such as object recognition and classification.

3.1 BACKGROUND

In Sec. 2.1.2 and Sec. 2.3.2, we have seen that the density of uniformly distributed lines cross-
ing two differential areas dAx , dAy , centered at inner points x and y, is given by dG =
F(x, y)dAxdAy , where F(x, y) is the point-to-point form factor defined in Sec. 2.1.1 and equal to
cos θx cos θy/(πr2

xy) for mutually visible points, or zero otherwise (Equ. 2.2), where θx and θy are
the angles which the normals at x and y form with the segment joining them, and rxy is the distance
between x and y (Fig. 3.1).

Global lines intersect an object forming random chords, that can be used to measure the
visibility within a body (Fig. 3.1). Visibility directions must be homogeneous and isotropic over
the body, a quality fulfilled by the uniform line density. It can be considered that the form factor
measures this visibility. In Sec. 2.3, the scene visibility complexity has been computed using global
lines. Interestingly, the global line density is related to the curvature function through an integral
relation [107]. For an object K , we have that∫

K∩G�=∅
(

n∑
i=1

κi)dG = Cc, (3.1)
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where κi is the curvature (2D) or Gauss curvature (3D) at the ith intersection point (out of n) of a
line G and the object K , and C = 2 for a planar object and C = π for a 3D-object, being c the total
curvature1. That is, the integral of the sum of curvatures at the intersection points along a global
line is equal to C times total curvature.

θ

θ θ
θ

Figure 3.1: Geometry of one global line (x0, y0) that generates five random chords in a 3D-shape:
(x0, x1), (x1, y1), (y1, x2), (x2, y2), and (y2, y0).

3.2 INNER SHAPE COMPLEXITY
In this section, the shape complexity of an object is analysed from its interior. In Sec. 2.3, continuous
mutual information has been introduced as a complexity measure in order to evaluate the difficulty
of discretising a scene and to obtain a refinement criterion for hierarchical radiosity (Sec. 2.1.1).
Here, continuous mutual information is proposed to measure the shape complexity (Equ. 1.30).

3.2.1 COMPLEXITY MEASURE
The approaches taken by Page [86] and Feldman [38] consider the information or entropy contained
in the curvature of an object. In [86], the quantity measured depends on both the size and positioning
of the (regular) discretisation of the curve or surface. A discretisation that misses some corner would
give an incorrect measurement. Moreover, the entropy is a function that diverges with the number
of discretisation bins (see Equ. 1.35). On the other hand, in [38], the curvature distribution is a

1 The total curvature is related to Gauss curvature by c = ∫
∂K κxdAx .
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generic distribution that is apt for a generic study of local complexity of a region of the curve but
not to compute the whole complexity of the object.

We need a measure able to compute the shape complexity of an object independently of the
discretisation. As we have seen in Chapter 2, continuous mutual information fulfills this requirement.
Remember that the basic idea of this approach is that a distribution of global lines crossing an object
defines a continuous information channel X → Y , where X and Y represent the set of surface points
(or contour points for 2D shapes). Mutual information I c between two continuous random variables
X and Y of ∂K is given by

I c =
∫

∂K

∫
∂K

F (x, y)

μ(∂K)
log(μ(∂K)F(x, y))dAxdAy, (3.2)

where ∂K represents the surface (3D) or the contour (2D) and μ(∂K) its measure (i.e., AT for 3D
objects and LT for 2D objects). Thus, for 3D-objects, the next descriptor can be defined.

Definition 3.1. The inner 3D-shape complexity is given by

I c =
∫

S

∫
S

F(x, y)

AT

log(AT F (x, y))dAxdAy, (3.3)

where S represents the internal surface of the object.

As we have seen in Sec. 2.3.2, the continuous mutual information can be efficiently computed
with Monte Carlo integration by sampling global lines because global lines crossing dAx and dAy

are distributed according to F(x, y)dAxdAy . Thus, sampling the density f (x, y) = F(x, y)/AT in
Equ. 3.3 with global lines (see Equ. 2.26), we obtain

I c ≈ 1

N

N∑
k=1

log
(AT cos θxk

cos θyk

πr2
xkyk

)
, (3.4)

where N is the total number of segments of the global lines or the number of pairs of points
considered, which is the total number of intersections divided by two (see Fig. 3.1). The term of the
summatory is the contribution of each chord to the complexity, and we call it chord complexity.

Continuous mutual information is invariant to translations, rotations and a change of scale.
As we have seen in Sec. 3.1, point-to-point form factor gives the density of uniformly distributed
lines crossing differential areas with centre at these points, and by definition, this density is invariant
under translations and rotations. In addition, scale invariance is easily seen from Equ. 3.4 where a
scaling of the distances is compensated by the corresponding scaling of the total area.

Observe that chord complexity is bigger for small chord lengths and for angles near to zero.
Thus, regions corresponding to corners or narrow spaces will contribute more to mutual information
(shape complexity). As we have previously seen (Sec. 2.3), for the interior of an empty sphere, the
result obtained is I c = 0 since any pair (x, y) fulfills F(x, y) = 1/AT . Analogously to [83, 143, 85],
from chord complexities, we could obtain a shape complexity distribution of the object to be applied
in object recognition, classification, clustering, and retrieval.
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Table 3.1: Mutual information I c and dual-mutual
information I c∗

for the objects in Fig. 3.2 (105

global lines has been used). The dual object of a
sphere is the empty set and its I c∗

is not defined.
Figure Object I c I c∗

Sphere 0
Fig. 3.2.a Tetrahedron 2.626 1.800
Fig. 3.2.b Hexahedron 1.610 3.650
Fig. 3.2.c Octahedron 1.262 3.165
Fig. 3.2.d Dodecahedron 0.813 6.161
Fig. 3.2.e Icosahedron 0.545 5.412
Fig. 3.2.f In-Hexahedron 7.438 2.952
Fig. 3.2.g Out-Hexahedron 0.571 5.599
Fig. 3.2.h Out-Icosahedron 5.914 3.198
Fig. 3.2.i Torus 2.859 4.154
Fig. 3.2.j Cylinder-I 1.027 5.337
Fig. 3.2.k Cone-I 1.648 3.164
Fig. 3.2.l Pencil-I 2.104 0.730
Fig. 3.2.m Plate-I 5.601 1.523
Fig. 3.2.n Glass-I 11.392 3.397
Fig. 3.2.o Cylinder-II 1.125 3.508
Fig. 3.2.p Cone-II 1.475 1.985
Fig. 3.2.q Pencil-II 2.908 0.377
Fig. 3.2.r Plate-II 6.482 1.222
Fig. 3.2.s Glass-II 11.344 2.518

(�) The dual object of a sphere is the empty set and its I c∗
is not defined.

3.2.2 INNER 3D-SHAPE COMPLEXITY RESULTS
In this section, we show the inner shape complexity (column I c of Table 3.1) of a set of 3D objects
(Fig. 3.2). As we have seen, the sphere has the minimum complexity (I c = 0), and among the
platonic solids, the minimum and maximum complexity correspond, respectively, to icosahedron
and tetrahedron since at the corners of a tetrahedron the dependence between the parts is greater
than at the corners of an icosahedron. As expected, the polyhedra that are nearer to the sphere are
less complex, that is, they have less correlation. In fact, it can be considered that mutual information
I c quantifies how “distant” is any object from the sphere. Observe also that the complexity of in-
stellated hexahedron is bigger than the one of the out-stellated icosahedron because the hexahedron
has folded faces that leave very narrow spaces between them.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m) (n)

(o) (p) (q) (r) (s)

Figure 3.2: Collection of test objects of Table 3.1: platonic solids and other geometrical shapes.
([104] © IEEE, 2005.)
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Table 3.2: Exact I c values for a circle and three regu-
lar polygons compared with results obtained by Monte
Carlo simulation (MC, 105 global lines have been used).

Scene Exact value MC
Circle log π

e
� 0.209 0.209

Hexagon log e
√

3−4324(7+4
√

3)

168+97
√

3
� 0.475 0.475

Tetragon log 8(1+√
2)

e1+√
2

� 0.789 0.788

Trigon log 18
e2 � 1.285 1.284

On the other hand, in Fig. 3.2, we have a collection of common objects with some modifica-
tions. Similar shapes should have similar mutual information values (cylinders, cones, pencils, etc.).
Observe that mutual information ranges from a minimal value for the Cylinder-I (Fig. 3.2.j) to a
maximum value for the Glass-I (Fig. 3.2.n). Note that the Plate objects (Fig. 3.2.m and Fig. 3.2.r)
are very simple but have high mutual information values. These values are explained from the fact
that two very near surfaces contribute with high values to the computation of its mutual information.

Note also that Plate-II has a higher mutual information value that Plate-I because it is a
proportionally thinner object. Note that the same kind of behaviour can be observed for both Pencil
objects (Fig. 3.2.l and Fig. 3.2.q).

3.2.3 INNER 2D-SHAPE COMPLEXITY RESULTS
Similarly, to Equ. 3.3, 2D-shape complexity can be defined as follows:

Definition 3.2. The inner 2D-shape complexity is given by

I c =
∫

L

∫
L

F(x, y)

LT

log(LT F (x, y))dLxdLy, (3.5)

where L is the set of segments that form the environment, LT is the total length of the contour,
and F(x, y) = cos θx cos θy/(2rxy)V (x, y) is the point-to-point 2D-form factor between x and y.
As in Equ. 3.4, this integral can be solved by Monte Carlo integration and the computation can be

done efficiently by casting uniformly distributed global lines upon segments [15]. Hence, continuous
mutual information can be approximated by

I c ≈ 1

N

N∑
k=1

log
(LT cos θxk

cos θyk

2rxkyk

)
, (3.6)

where N is the total number of pairs of points considered, which is the total number of intersections
divided by two.
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The closed-form solution of the continuous mutual information integral for the circle and
some regular polygons (hexagon, square, and equilateral triangle) is shown in Table 3.2. The circle
requires special attention. Observe that its complexity is different from zero: I c = log(π/e). Since
a sphere has zero complexity (I c = 0), we could expect the same for a circle. But null complexity for
the sphere can be explained by the fact that a global line can be generated by selecting two random
points on its surface. However, in the case of a circle, selecting pairs of random points on its perimeter
will not yield a uniform density [15]. In 2D, we can not imagine a scene with less complexity than
a circle. In this sense, there is a significant difference between the 3D and 2D worlds.

We have also computed the complexity of a sequence representing the formation of a 12-
pointed star and the von Koch fractal. If we start with a polygon of 24 edges, with a complexity very
similar to the one of a circle, and we continue closing the edges as shown in Fig. 3.3.a, the complexity
increases noticeably, due to the growth of the interaction within the edges. In the von Koch fractal
(Fig. 3.3.b), a similar thing happens: by increasing the number of corners, the correlation increases.

(a.i) 0.232 (a.ii) 1.966 (a.iii) 5.236 (a.iv) 6.915

(b.i) 1.910 (b.ii) 2.950 (b.iii) 4.258 (b.iv) 5.726

Figure 3.3: (a) I c value for a 24-sided regular polygon and three 12-pointed stars and (b) for von Koch
fractals. ([104] © IEEE, 2005.)

3.3 OUTER SHAPE COMPLEXITY
In addition to the mutual information of an object, we introduce a secondary shape complexity
measure given by the mutual information between the object and its minimum circumscribing
sphere (Fig. 3.4). The mutual information of this “new” object (dual-object) is called dual mutual
information (I c∗

). This value can be seen as the increase in mutual information induced by the
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Figure 3.4: The dual-object is formed by the space between the object and its circumscribing sphere.
([104] © IEEE, 2005.)

introduction of the object within an spherical environment. The choice of this environment is
coherent with the fact that the mutual information of a sphere is zero.

The sphere of the smallest radius that contains an object exists and is unique. Following
Gärtner [42], we compute this in linear time with respect to the number of vertices of the object.
The dual mutual information, similarly to mutual information, is also computed from a set of global
lines. Note that the same set of global lines can be used to compute both shape complexities. The
chords that contribute to the dual mutual information are complementary of the ones that are used
for mutual information computation. Note that the sphere-sphere chords do not contribute to the
outer shape complexity since the term within the logarithm in Equ. 3.4 is equal to 1. If the object
is a sphere, a singularity is obtained.

From Table 3.1, we can analyse the behaviour of our secondary descriptor I c∗
. We can see

that the bigger the dual mutual information the bigger the interaction between the object and the
circumscribing sphere. For instance, we observe that, somehow against intuition, hexahedron and
dodecahedron interchange their ordering with octahedron and icosahedron when considering I c∗

.
This is so because the relative volume within the circumscribing sphere is higher for the hexahedron
and dodecahedron than for the octahedron and icosahedron, respectively, and consequently, the
interaction within the dual object becomes stronger. Also, for two similar objects, the more complex
the contour of an object (concavities, rugosities), the higher the I c∗

value.
It can be seen that the dual mutual information clearly discriminates between the Cone-I

(I c∗ = 3.164) and the Cone-II (I c∗ = 1.985). The same happens for Cylinder-I and II with I c∗
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values of 5.337 and 3.508, respectively. Maybe, the most remarkable example are the objects Glass-I
and Glass-II (Fig. 3.2.n and Fig. 3.2.s, respectively), since with very similar I c value, I c∗

clearly
separates both objects.
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C H A P T E R 4

Refinement Criteria for
Ray-Tracing

In ray-tracing, we trace rays from the camera or eye through the pixels in the image plane, and we
obtain the color of the hit point of the scene in a recursive way where a new ray is cast from the hit
point and so on. This allows us to obtain the global illumination in a scene. Although ray-tracing
is a straightforward and powerful image synthesis technique [43, 44, 123], it usually requires many
rays per pixel to eliminate the aliasing or noise in the final image. However, not all the pixels in
the image require the same number of rays. The edge of an object, the contour of a shadow, and a
high illumination gradient will require a much better treatment than a region with almost uniform
illumination. To this effect, many pixel supersampling, refinement criteria have been defined in the
literature (a good overview is [44]). The refinement criteria are mainly based on the homogeneity
encountered in the samples. Heterogeneity should lead to further sampling, possibly with an adaptive
subdivision of the domain. Oracles are then built based on these criteria.

The data obtained by sampling the scene through the pixel can be used to calculate a pixel
homogeneity measure from two different points of view: radiance (color) and visibility (geometry).
Shannon entropy (Sec. 1.1) will be interpreted as a measure of the degree of homogeneity of a pixel
in the sense that the more heterogeneous the pixel, the more difficult it is to obtain an accurate
value [101, 102]. We associate homogeneity with quality, so that the need for pixel refinement is
proportional to the lack of quality (i.e., heterogeneity of the samples).The idea behind this scheme is
to obtain sufficient information in the refinement algorithm in order to find out the sampling needs.
We also introduce refinement criteria based on f-divergences [103] (Sec. 1.8). The introduction of
these measures is motivated by the observation that in the radiosity setting the mutual information-
based oracle can be rewritten as an f-divergence (Sec. 2.5).

4.1 BACKGROUND

Three principal subproblems make up the process of obtaining a good quality image in ray tracing:
efficient sample generation, adaptive control of the sampling rate, and filtering for image reconstruc-
tion [87]. Many approaches deal with them:

1. Different pixel sampling methods have been introduced, among them: jittered sampling [24,
30], Poisson disk sampling [30, 79, 77], hierarchical sampling [61], complete stratification at
each refinement level [112], importance sampling [116], and quasi-Monte Carlo sampling [64,
84].
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2. Diverse refinement criteria for adaptive sampling, based on color intensities and/or scene
geometry, can be found to control the sampling rate: Dippé and Wold [30] present an error
estimator based on the RMS signal to noise ratio and also consider its variance as a function of
the number of samples;Mitchell [79] proposes a contrast [11] based on the characteristics of the
human eye; Lee et al. [72], Purgathofer [96], and Tamstorf and Jensen [125] develop different
methods based on the variance of the samples with their respective confidence intervals.

3. Samples are filtered to produce the final pixel values. Different filter shapes have been used in
image reconstruction:box filter, triangular filter,Gaussian filter,multi-stage filter,etc. (see [44]).

For the purpose of this chapter, we review three commonly used refinement criteria: contrast,
depth difference, and variance of the samples.

Mitchell [79] uses a contrast measure [11] for each RGB channel defined by

C = Imax − Imin

Imax + Imin
, (4.1)

where Imin and Imax are, respectively, the minimum and maximum light intensities of the channel.
Supersampling is done if any contrast is higher than a given threshold. Mitchell proposes RGB
threshold values (0.4, 0.3, and 0.6, respectively) based on the relative sensitivity of the visual system.

In [118], within an interactive rendering context, Simmons uses a priority value pc based on
the above concepts (contrast and perception) [79, 44] defined by

pc = 0.4
rmax − rmin

rmax + rmin
r + 0.3

gmax − gmin

gmax + gmin
g + 0.6

bmax − bmin

bmax + bmin
b, (4.2)

where max, min, and the overline represent, respectively, the maximum, minimum, and average
values for r , g, and b color channels.

On the other hand, a useful and simple geometric measure for refinement is the depth differ-
ence, used in image based rendering [28, 29, 95] and interactive rendering [118]. Depth difference
is given by

pd = 1 − dmin

dmax
, (4.3)

where dmax and dmin represent maximum and minimum distance (i.e., the bigger the gap between
the nearest and farthest object, the more priority is required in the refinement in order to capture
more details inside this scene). In [118], pc and pd measures are combined in

pv = δpc + (1 − δ)pd, (4.4)

with a weight δ = 0.9.
The basic idea of variance-based methods [72, 96, 125] is to continue sampling until the

confidence level or probability that the true value L is within a given tolerance t of the estimated
value L̂ is 1 − α:

Pr[L ∈ (L̂ − t, L̂ + t)] = 1 − α. (4.5)
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Mitchell considers that variance is a poor measure of visual perception of local variation [79]. Kirk
and Arvo showed that these methods are biased and proposed a simple correction scheme [66].

Refinement criteria have also been applied in the image-based rendering field to weight pixel
color for reconstruction purposes [95] and adaptive sampling strategies [28, 29]. Also, Bolin and
Meyer [7] have developed a perceptually-based approach using statistical and vision models.

4.2 PIXEL QUALITY
In this section, we introduce a pixel quality measure, the pixel entropy. This measure will be defined
from the information provided by a set of samples on the image plane. We use the following sets:

• P is the set of Np > 0 pixels of the image plane.

• Sp is the set of N
p
s > 1 samples of pixel p.

• SP is the set of NP
s = ∑

p∈P N
p
s samples of the image plane.

The implementation of a sample consists in casting a ray r(v, �) from a scene viewpoint v with
direction � through the image plane and, in particular, through a pixel. Let us consider that each
sample s ∈ SP that hits a scene surface gives us information about the color, distance and orientation
of the hit point with respect to the viewpoint.

The entropy (Equ. 1.2) measures the expectation of the surprise of a probability distribution
and it can be considered also to be a measure of its homogeneity (Sec. 1.5). From the sample set and
from the entropy, two different quality measures are defined, pixel color entropy and pixel geometry
entropy, based on the color and geometry, respectively.

4.2.1 PIXEL COLOR ENTROPY
Our first objective is to define the pixel color entropy.We start with a definition of entropy concerning
all the samples passing through the image plane. We consider that the color belongs to a color system
c structured in components called color channels. Without loss of generality, in the majority of cases
the color measures will refer to a single channel c ∈ c, c(s) being the color channel data of a sample
s ∈ S (e.g., radiance, luminance, and RGB values).

Let us consider the probability of each image plane sample as its color channel contribution
relative to the whole of the image plane sample set (i.e., the ratio between the color channel value
of each sample and the sum of the color channel values sampled in the plane).

Definition 4.1. Given a channel c, the image plane channel entropy is defined by

Hc(P) = −
NP

s∑
i=1

ri log ri ri = c(si)∑NP
s

j=1 c(sj )
, (4.6)

where ri represents the normalized color of sample si ∈ SP . This measure can be interpreted as the
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color channel homogeneity of the samples passing through the image plane (Sec. 1.5). Analogously,
at the pixel level, we consider the probability of each pixel sample as its color channel contribution
relative to the whole of the pixel sample set.

Definition 4.2. Given a pixel p and a channel c, the pixel channel entropy is defined by

Hc(p) = −
N

p
s∑

i=1

pi log pi pi = c(si)∑N
p
s

j=1 c(sj )
, (4.7)

where pi represents the normalized color of sample si ∈ Sp.

From the properties of the entropy (Sec. 1.1), the image plane channel entropy ranges from
0 to log NP

s and the pixel entropy from 0 to log N
p
s . The maximum values are obtained when the

channel color of all the samples is the same (i.e., we have a uniform probability distribution). Using
the grouping property of entropy (see Sec. 1.1), it is easy to see that the image plane and pixel channel
entropies are related in the following way:

Hc(P) =
Np∑
i=1

qiH
c(pi ) −

Np∑
i=1

qi log qi =
Np∑
i=1

qiH
c(pi ) + Hc

I (P), (4.8)

where qi = ∑N
pi
s

j=1 rj is the importance (sum of probabilities) of pixel pi , Hc(pi ) is the channel

entropy of pixel pi , and Hc
I (P) = −∑Np

i=1 qi log qi is the entropy of the image plane calculated
from the importance of each pixel. That is, the entropy of the image plane is the sum of all the pixel
entropies, weighted by the importance of each pixel, plus the importance entropy obtained from the
importance of each pixel. Observe that Equ. 4.8 can be considered as a recursive formula if each
pixel is divided into subpixels and the same decomposition is applied in turn to the entropy Hc(pi )

of each pixel (see Fig. 4.1). Note also that Hc(P) − Hc
I (P) is the entropy, or information, that will

be captured in the refinement process.
The image plane and pixel entropies can be interpreted as the color homogeneity or uniformity

measured by its sample set and thus can be considered measures of the quality of the color channel.
We can also observe that the entropy increases with the number of samples. In order to give a
normalized pixel quality measure, the pixel channel entropy is divided by log N

p
s .

Definition 4.3. Given a channel c, the pixel channel quality is defined by

Qc(p) = Hc(p)

log N
p
s
. (4.9)

If we want to consider the global quality of a pixel, we mix its set of channels.
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Figure 4.1: Recursiveness of the grouping property of entropy. The entropy of probability distribu-
tions of ©a is H({ 1

6 ,
1

12 ,
1

12 ,
1
6 ,

1
5 ,

3
10 }), of ©b is H({ 1

6 ,
1
3 ,

1
2 }) + 1

3H({ 1
4 ,

1
4 ,

1
2 }) + 1

2 H({ 2
5 ,

3
5 }), and of ©c is

H({ 1
6 ,

1
3 ,

1
2 }) + 1

3 (H({ 1
4 ,

3
4 }) + 3

4 H({ 1
3 ,

2
3 })) + 1

2 H({ 2
5 ,

3
5 }). Observe that in all these cases the entropy is

equal to 2.445. ([102] © Canadian Information Processing Society, 2003.)

Definition 4.4. Given a color system c, the pixel color quality is defined by the weighting of its
pixel channel qualities:

Q c(p) =
∑

c∈c wcQc(p)∑
c∈c wc

, (4.10)

where wc is the weight of channel c. The weights depend on each color system. Without a priori

information, the same weight per channel can be considered; otherwise, we can use a weight based
on the relative luminance of a color1. This measure will enable us to define a color contrast measure
for pixel sampling (Sec. 4.3.1). Note that the larger the number of samples the more accurate the
quality measure.

In Fig. 4.2.b, we present a color quality map of the scene shown in Fig. 4.2.a using an sRGB
color system with the same weight per channel. In the thermal scale used, the minimum quality
corresponds to the blue and the maximum to the red2. A low quality in shadow areas and edges can
be observed.

4.2.2 PIXEL GEOMETRY ENTROPY
Similar concepts introduced in the above section can be defined with respect to a geometric measure.
If h is the hitpoint of a sample ray s = r(v, �)3, the geometric information of each sample is given
by θ−�

nh
(i.e., the angle of the normal at the hit point) and by the distance rvh between this point

1 For an sRGB system, wR = 0.2126, wG = 0.7152, and wB = 0.0722 [22].
2 In order to observe more details in the color quality maps, the outliers (for instance, a sample corresponding to a very low
probability, which when substituted in the denominator of the Monte Carlo estimator, Equ. 2.9, causes a very high luminance
value) are clamped to the borders of the interval [−kσ, kσ ] where σ is the standard deviation of the results and k is a parameter
that modulates the width of the interval.

3That is, a ray with origin at viewpoint v and direction �.
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and the origin of the ray (i.e., ray length). We take

g(s) = cos θ−�
nh

r2
vh

, (4.11)

as the geometry factor of the sample.This value provides a quality measure of the visibility of a scene
point from the observer’s point of view.

Replacing the sample color values by geometry values (i.e., c(·) by g(·)) in Equ. 4.6 and
Equ. 4.7, we obtain the definitions of image plane geometry entropy H g(P) and pixel geometry
entropy H g(p), respectively [102]. An identical relation to Equ. 4.8 can be established between the
geometric entropies of the image plane and the pixel. Given a pixel p, the pixel geometry quality is
given by the normalization of its pixel geometry entropy: Qg(p) = H g(p)/ log N

p
s .

In Fig. 4.2.c, we show the geometry quality map of Fig. 4.2.a using a grey scale. The lowest
entropy corresponds to the darkest part, the highest entropy to the lightest4. Observe that the edges
have a very low entropy and are very clearly emphasised.

(a) Reference (b) Q c (c) Qg

Figure 4.2: Color quality map (thermal scale) and geometry quality map (grey scale). (a) Reference
image obtained with N

p
s = 8. (b) Pixel color quality Q sRGB with the same weight per channel. (c) Pixel

geometry quality Qg. ([101] © Springer-Verlag, 2002.)

4.3 PIXEL CONTRAST

In this section, we present the pixel contrast measures based on pixel entropy (Sec. 4.2). As the
entropy represents the homogeneity of the information brought back by the samples (rays crossing
a pixel), we can define a simple measure which expresses the diversity or contrast of a pixel.

4.3.1 PIXEL COLOR CONTRAST
From the entropy Hc(p), we define the pixel contrast as follows:

4 The outliers have the same treatment as in the color quality maps.
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Definition 4.5. Given a pixel p and a channel c, the pixel channel contrast is defined by

Cc(p) = 1 − Qc(p) = 1 − Hc(p)

log N
p
s
. (4.12)

It represents the color channel heterogeneity or contrast of a pixel and takes a value in [0, 1]. We can

also introduce the pixel binary contrast from minimum and maximum color channel probabilities
captured by this pixel. This measure is obtained from the binary entropy of these values (Sec. 1.1).

Definition 4.6. Given a pixel p and a channel c, the pixel channel binary contrast is defined by

Cc
b (p) = 1 − Hc

b (p) Hc
b (p) = H

({ pmin

pmin + pmax
,

pmax

pmin + pmax

})
, (4.13)

where Hc
b (p) is the binary entropy of the minimum and maximum channel color probabilities, pmin

and pmax, respectively. Both measures, Hc
b (p) and Cc

b(p), range also between 0 and 1 due to the fact

that, in this case, only two values are taken into account. This binary measure yields more radical
contrast than Cc(p).

Similarly, to previous works [79, 44, 118], we can obtain the color contrast of a pixel by
averaging all the color channel contrasts weighted by their respective importances (color channel
average). This avoids oversampling on the areas with low color values.

Definition 4.7. Given a pixel p and a color system c, the pixel color contrast is defined by the
weighting of its pixel channel contrasts:

Cc(p) =
∑

c∈c wcc Cc(p)∑
c∈c wcc

c = 1

N
p
s

N
p
s∑

i=1

c(si), (4.14)

where the channel contrasts are weighted by perceptual coefficients wc, and c is the color average
in channel c of all s ∈ Sp. We can define in a similar way the pixel color binary contrast:

Definition 4.8. Given a pixel p and a color system c, the pixel color binary contrast is defined by

Cc
b(p) =

∑
c∈c wcc Cc

b (p)∑
c∈c wcc

. (4.15)

In an sRGB system, the color contrast measures (CsRGB and CsRGB
b ) have three channels

with coefficients wR, wG, and wB (see Equ. 4.10). In Fig. 4.3, we show different color contrast maps
to compare the heuristic measure pc (Equ. 4.2, Fig. 4.3.b), with measures Cc (Fig. 4.3.c), and Cc

b
(Fig. 4.3.d ). We can observe how these last measures present a very good behaviour in critical areas
(represented by warm colors) such as object edges and shadow contours. Note that Cc and Cc

b are
more discriminating, especially the binary contrast.
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(a) Reference (b) pc

(c) Cc (d) Cc
b

Figure 4.3: Color contrast maps. (a) Reference image obtained with N
p
s = 8. (b) Pixel color contrast

pc (Equ. 4.2). (c) Pixel color contrast Cc. (d) Pixel color binary contrast Cc
b.

Credit: Modelled by Gregory J. Ward, Albany (CA), USA. ([101] © Springer-Verlag, 2002.)

4.3.2 PIXEL GEOMETRY CONTRAST
As we have seen in Sec. 4.2.2, H g represents the degree of geometric homogeneity of a pixel. From
this measure, we define the pixel geometry contrast.

Definition 4.9. Given a pixel p, the pixel geometry contrast is defined by

Cg(p) = 1 − Qg(p) = 1 − H g(p)

log N
p
s
. (4.16)

Similarly, to the previous section, the pixel binary contrast from the minimum and maximum

geometry factor probabilities of this pixel can be introduced:

Definition 4.10. Given a pixel p, the pixel geometry binary contrast is defined by

C
g
b(p) = 1 − H

g
b (p) H

g
b (p) = H

({ pmin

pmin + pmax
,

pmax

pmin + pmax

})
, (4.17)
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where H
g
b (p) is the binary entropy of the minimum and maximum geometry factor probabilities,

pmin and pmax, respectively.

The geometry contrast measures are shown in Figs. 4.4.a-b where the maps can be compared
with Fig. 4.4.c, created using the depth difference heuristic pd (Equ. 4.3). It can be seen that Cg

and C
g
b capture the majority of edges because we take into account two components: distance and

orientation. These geometry contrast maps have been generated by using the same thermal scale
(see Fig. 4.2) of the color contrast maps in order to be able to visually compare them. It can be clearly
seen that color maps show the heterogeneity of regions while geometric maps identify edges.

(a) Cg (b) C
g
b (c) pd

Figure 4.4: Geometry contrast maps from Fig. 4.3.a obtained with N
p
s = 8. (a) Pixel geometry contrast

Cg. (b) Pixel geometry binary contrast C
g
b . (c) Pixel depth difference pd .

Credit: Modelled by Gregory J. Ward, Albany (CA), USA. ([101] © Springer-Verlag, 2002.)

4.3.3 PIXEL COLOR-GEOMETRY CONTRAST
Finally, a combination of color and geometry contrasts is considered. This combination enables us
to graduate, with a coefficient δ between 0 and 1, the influence of both measures.

Definition 4.11. Given a color system c, the pixel contrast is given by

Cc(p) = δCc(p) + (1 − δ)Cg(p). (4.18)

This combination can be made with any type of pixel color contrast and geometry contrast.

We show in Fig. 4.5 two different linear combinations. On the one hand, in Fig. 4.5.a we use
the priority-value combination pv (Equ. 4.4), made up also of color, pc (Equ. 4.2), and geometry, pd

(Equ. 4.3). And, on the other hand, in Fig. 4.5.b, we combine Cc
b (Equ. 4.15) and Cg (Equ. 4.16).

The same values N
p
s = 4 and δ = 0.9 are used in both cases. A significant difference is observed:

the combination in Fig. 4.5.b tends to obtain more radical contrasts as opposed to the other option
which takes more homogeneous values. The explanation lies in the behaviour of the binary color
contrast, which works exclusively with the extreme values of the data.
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(a) pv (b) Cc

Figure 4.5: Pixel contrast obtained with N
p
s = 4 and a linear combination with δ = 0.9. (a) Pixel

priority-value pv (Equ. 4.4). (b) Pixel contrast Cc using Cc
b and Cg.

Credit: Model included in RenderPark [23], Computer Graphics Research Group, Department of Com-
puter Science, Katholieke Universiteit Leuven, Leuven, Belgium. ([101] © Springer-Verlag, 2002.)

4.4 ENTROPY-BASED SUPERSAMPLING
In this section, we apply the previously defined contrast measures to supersampling in a stochastic
ray-tracing implementation.

4.4.1 ALGORITHM
In the algorithm proposed, a pixel is first sampled at a relatively low density. From this set of samples,
a refinement criterion is used to decide whether more sampling is required or not. Finally, all samples
are used to obtain the final pixel color values. We can consider two kinds of adaptive sampling: first,
when the refinement criterion plays the role of an oracle which decides the place and the quantity
of supersampling necessary in one evaluation of the initial sampling only and, second, when the
refinement criterion constantly evaluates the information received because of the supersampling and
acts in consequence until it becomes satisfied. Here, we use the term supersampling exclusively for
the first case and adaptive sampling for the second (Sec. 4.5).

We implement a simple supersampling technique: the sample set S will be proportionally
distributed over the image plane according to the contrast Cc estimated in each p ∈ P . This is
equivalent to the use of the pixel contrast as an oracle. From the definition of the measure itself
(Sec. 4.3), the cost in samples is controlled by the diversity of color and geometry in the pixel (i.e.,
low quality). The measure adapts the densities of sampling to the necessity of improvement in pixel
quality. The generic procedure is made up of three sequentially different phases:

Oracle A pixel contrast measure is selected as oracle and a first estimate of actual contrast per pixel
is obtained using an initial stratified sampling against the image plane. Usual values are 2, 4,
and 8 (np

s ). If we consider that the total number of samples NP
s is prefixed, the final value of
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the average of samples per pixel is N
p
s = NP

s /Np. The result of this phase is the answer from
the oracle: the contrast map.

Sampling The unused samples in the calculation of the contrast, Np(N
p
s − n

p
s ), are proportionally

distributed to the values of contrast obtained per pixel. In each one of them, the sampling is
also carried out with stratification.

Reconstruction The color information gathered in the previous phase is put together with the one
obtained in the initial phase. It only remains for the signal to be recovered and to carry out the
resampling process for each one of the pixels p ∈ P with any of the reconstruction methods
applicable to the sampling system used. The result of this phase is the solution for the image
plane thanks to the assignment of the final color to all of its pixels.

4.4.2 RESULTS
We show an example of the contrast measure Cc (Equ. 4.18) used as a supersampling oracle in
path-tracing [123]. In Fig. 4.6.a.i, we show a supersampling image obtained with N

p
s = 32 in the

following way. First, a uniform stratified sampling with n
p
s = 8 has been carried out in order to obtain

the contrast map in Fig. 4.6.a.ii. Second, this map has been used in the supersampling process with
an average of 24 rays per pixel. And third, in order to analyse the behaviour of the contrast, the
signal reconstruction in the last phase is carried out by a piece-wise continuous reconstruction [87]
using a box filter. The final pixel value corresponds to its signal average. The contrast measure used
is a color and geometry combination with δ = 0.5 based on binary contrasts Cc

b (Equ. 4.15) and C
g
b

(Equ. 4.17).This means that the more heterogeneous the region, the more supersampled it is (warm
colors), and the less heterogeneous, the more undersampled it is (cool colors, with a minimum of
8 rays per pixel). Two close-ups are compared from the supersampling image (Figs. 4.6.b–c.i) and
a similar image obtained by uniform stratified sampling with N

p
s = 32 (Figs. 4.6.b–c.ii). We can

observe a decrease in noise in the supersampled regions, and a better representation of shadow
contours and edges.

4.5 ENTROPY-BASED ADAPTIVE SAMPLING
In Equ. 4.8, we have seen that image plane and pixel channel entropies are related, thanks to the
grouping property. It is important to note that this kind of decomposition can be applied recursively
if the pixels are recursively subdivided.We will show, in this section, that this recursive decomposition
provides us with a natural method of dealing with an adaptive sampling technique. This scheme,
valid for any pixel sampling and ray-tracing method, is applied to stochastic ray-tracing [123] and
compared with other techniques.

4.5.1 ADAPTIVE SAMPLING
We consider three phases in order to describe a generic process of adaptive sampling [44] (Fig. 4.7),
for which the scheme used in the supersampling procedure of Sec. 4.4.1 is a particular case:
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(a.i) Supersampling image (a.ii) Oracle Cc for (a.i)

(b.i) Close-up from (a.i) (b.ii) Close-up from uniform sampling

(c.i) Close-up from (a.i) (c.ii) Close-up from uniform sampling

Figure 4.6: Entropy-based supersampling versus uniform sampling. (a.i) Supersampling with N
p
s = 32.

(a.ii) Binary contrast map Cc used as oracle to obtain (a.i). It has been calculated with n
p
s = 8, Cc

b, C
g
b ,

and δ = 0.5. Close-ups from (a.i) are shown in (b-c.i). They are compared with the same regions, (b-c.ii),
respectively, taken from a uniform stratified sampling image with N

p
s = 32. ([101] © Springer-Verlag,

2002.)
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Initial sampling An initial sampling pattern at a predetermined density is established.

Refinement tree The image space is divided into regions (e.g.,pixels).For each of them,a refinement
test selects a subset of samples for evaluation. If the result is negative, a new set of samples is
generated at the points indicated by the new sampling geometry and the process goes back to
the refinement test until the density of sampling in the region is accurate enough.The result of
this process is a refinement tree of the image space where every node is a region with a density
of sampling adapted to its own signal. In order to control extreme cases, we usually have other
criteria to finish the recursion (e.g., minimum area of the regions and/or maximum depth of
tree).

Reconstruction The information of the signal collected at every region is unified by a reconstruction
process and, if necessary, sent to a filtering process. Finally, a resampling process (e.g., at the
centre of pixel) determines the final values for each of the pixels of the image plane.

refinement
test

geometry

reconstruction filtering resamplingsampling

true

geometry
ref. testinitial

sampling

false

Figure 4.7: Adaptive sampling process with three phases: initial sampling (blue), refinement tree (gold),
and image reconstruction (green).

Note that however much we increase the density of sampling locally, given that the signal is
not usually band-limited, the sampling theory tell us that we can never capture it correctly [44].Thus,
fine details of edges, shadings, textures, and others will hardly have enough quality in the final image.
The approximation done by the method consists in looking for the minimum set of samples which
estimates locally the signal with enough accuracy. A critical problem appears in each of its phases
and many approaches are found to deal with them [87, 44]: efficient sample generation, control of
the sampling rate, and filtering. We focus our attention on obtaining an adaptive algorithm centered
mainly on the refinement tree phase bringing a new perspective to the problem of controlling the
sampling rate (refinement criterion).

The fundamental idea behind our refinement scheme is to capture the information in the
refinement tree which results from the recursive decomposition of the entropy (Equ. 4.8). First and
second terms on the right of Equ. 4.8 represent, respectively, the hidden information (pending to be
discovered) and the information already acquired in the descent of the refinement tree.The following
sampling algorithm will extract more information from the regions with more sample variation.
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4.5.2 ALGORITHM
For the sake of simplicity, in the following analysis, we only consider the color information of
one channel, although in the final algorithm, we will take the combination of color and geometry
contrasts into account (Equ. 4.18).

A general description of the algorithm is as follows. On the image plane, we sample each pixel
to capture the color of hitpoints and thus evaluate the information content (entropy) from the color
probability distribution. If the information of a pixel is high enough (i.e., the rays provide us with
sufficient color homogeneity on that pixel), refinement is not made, and the color reconstruction of
this pixel is done. When the information is not high enough, this pixel is subdivided into regions,
and we proceed in the same way for each region (subpixel). This recursive process defines a tree with
two well-separated phases for a pixel:

• Pixel is refined until enough information is extracted (tree descent).

• Computation of the final color (tree ascent).

The descent in the refinement tree can be interpreted as a progressive gain in information. The
information acquired at each level is added together so that, at the end of the refinement process, the
total information from the tree is the sum of the information obtained over all the branches (Equ.4.8).
The measure used to decide the need of refinement will be the pixel contrast (Sec. 4.3).

Before introducing the algorithm,we will give the definitions of the data used in it.Concerning
the tree data structure, n represents the tree level where

• n = 0 is the image level (root).

• n = 1 is the pixel level (composed of Np pixels of the image).

• n > 1 is a subpixel level.

We consider an n-node as any node of the tree with n > 0 (i.e., not the root). The set of data is
described in Table 4.1. To compute the final color of a pixel, we follow a path through the tree
(Fig. 4.8). In the analysis below, we focus our attention on the tree-path k of length m going from
pixel k0 to subpixel km−1. In this path, pn represents the probability of the tree-branch at level n and
qn the importance of the n-node. In our algorithm, this quantity appears naturally due to recursive
decomposition of the entropy (see Equ. 4.8, Fig. 4.1, and Fig. 4.8). The value of importance is given
by the probability of a node:

qn =
⎧⎨⎩1, if n = 0,

p0 · · · pn−1 = c0,k0∑
i∈R0

c0,i

∏n−1
�=1 p�, if n > 0.

(4.19)

For our purposes, qn does not need to be normalised, thus we omit the normalisation constant∑
i∈R0

c0,i , and we take qn = c0,k0

∏n−1
�=1 p�. Then, the computation of qn can be simplified to the
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fraction between the color average of the node and the number of regions to the power of n − 1 (for
more details, see [102]):

qn ≈ cn

Nr
n−1

. (4.20)

Table 4.1: Description of the data set of the refinement phase of entropy-based
adaptive sampling in an image plane of Np pixels. An n-node is a node of level
n > 0 in the refinement-tree.
id description
Nr Number of regions in which an n-node can potentially be subdivided.
N r

s Number of samples of an n-node.
Rn Set of regions of an n-node.
Sn Set of samples of an n-node.
Sn,i Set of samples of an n-node region i ∈ Rn.
k Path-tree k = (k0, . . . , km−1) where kn is the region chosen at level n.
cn Color data in an n-node.
cn Average color channel data in an n-node.
cn,i Average color in an n-node region i ∈ Rn.
ĉn Color estimation in an n-node leaf.
pn Probability of region kn of an n-node in a path k.
qn Probability of an n-node in a path k.

Now, we can proceed to explain the algorithm. In the descent phase, we sample an n-node
and compute the contrast Cc

n, from the color and geometry contrast combination (Equ. 4.18), using

Cc
n = δCc

n + (1 − δ)C
g
n, (4.21)

where we made explicit the dependence upon the n-node and

Cc
n =

∑
c∈c

wcqc
nC

c
n, (4.22)

where, with respect to the color contrast (Equ. 4.14), we have substituted the importance c by the
importance qn. Note that the Equ. 4.21 could also be calculated from the respective binary versions
of color and geometry contrasts (Sec. 4.3).

In the algorithm, we subdivide the pixel or subpixel when the contrast of an n-node is not less
than a given threshold (Cc

n ≥ ε). Thus, the phase of ascent begins when the test fails (Cc
n < ε). This

happens because either the contrast (which represents the color heterogeneity) or the importance
(qn → 0 for growing n) are low. In this phase, each n-node leaf in the path provides its color
estimation ĉn from the signal reconstructed and weighted using a filter. The final color of an n-node
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Figure 4.8: A refinement-tree-path k = (k0, k1, k2) of length m = 3 of entropy-based sampling. The
number of regions of an n-node is Nr = 4. We show the computation of the k0-pixel color: c0,k0 = c1

from the refinement (red) and reconstruction (blue) phases. The probabilities pn and importances qn are
computed in the refinement phase to evaluate the pixel contrast (Equ. 4.18). ([102] © The Canadian
Information Processing Society, 2003.)

is given by

cn =
{

ĉn, if Cc
n < ε (i.e., a leaf ),∑

i∈Rn
cn,i , otherwise,

(4.23)

where cn,i is the final color of i-region of the n-node. Finally, we get c1 for the color of the pixels (or
equivalently c0,k0 in the path considered). An example of this process is shown in Fig. 4.8. Observe
that importance sampling is naturally integrated in the algorithm. Following importance sampling
criteria, a function should be sampled proportionally to its value, which is what we obtain with our
adaptive descent.

4.5.3 IMPLEMENTATION
We have implemented the entropy-based adaptive algorithm using a path-tracing method. With
respect to the three phases of an adaptive sampling scheme (Sec. 4.5.1), we should consider the
following:

Sampling Generation The subdivision corresponds to a split into k equal subregions. Usually a
binary-tree or quad-tree [141, 61, 87] is used. We use this last option (k = 4). For each region,
we choose an adaptive stratified sampling [44]. In order to simplify the implementation, the
stratification is adapted to the number of subregions and samples (one sample per region).
This makes the re-use of the samples at every new level of subdivision easier.
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Sampling Rate As refinement criteria, our scheme used the pixel contrast Cc (Equ.4.18) in any of its
variants (e.g., binary contrast). The entropy-based refinement tree, built in Sec. 4.5.2, enables
us to evaluate the information from the signal in order to adapt the density of sampling. The
structure implements an importance sampling approach (contrast-based) directed towards the
complex regions (heterogeneity in color and geometry). For extreme situations, the refinement
criterion evaluates additional parameters of stop, independent of the signal sampled, as those
already mentioned in Sec. 4.5.1. We assume the same area for all the pixels.

Filtering The same considerations made in supersampling are valid (Sec.4.4.1).Due to the stratified
system, we use the piecewise-continuous image reconstruction [87] method using a box filter
directly incorporated into the color computation phase (tree ascent).For this case, the final color
is equivalent to adding each one of the sample color weighted by the area of its corresponding
stratum. Other local filters can be applied in this context [44].

4.5.4 RESULTS

(i) General view (ii) Close-up of (i)

Figure 4.9: Reference image used in the test in Fig. 4.10: (i) general view and (ii) close-up of (i). The
image has been obtained with a path-tracing algorithm with 1,024 samples per pixel in a stratified way.
([102] © The Canadian Information Processing Society, 2003.)

In Fig. 4.10, we present the results for different techniques applied to the test scene in Fig. 4.9.
We compare the following methods:

• Classic contrast (CC): A recursive adaptive sampling scheme based on contrast by channel
(Equ. 4.1, with thresholds proportional to the relative luminance) weighted by its respec-
tive channel color average [44, 118]. The maximum recursive level has been limited to 4
(Fig. 4.10.a).

• Importance-weighted contrast (IC): The same as in CC but each channel contrast is weighted
with the respective importance q (Equ. 4.20), as in the entropy-based contrast approach
(Fig. 4.10.b).
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• Confidence test (CT): Statistical approach based on a confidence interval (Equ. 4.5) with a
confidence level of α = 0.1 and a tolerance t = 0.025 (Fig. 4.10.c).

• Entropy-based contrast (EC): The approach presented in the previous section (Equ. 4.23) but
taking only color contrast, that is, with δ = 1 in Equ. 4.21 (Fig. 4.10.d ).

In CC, IC, and EC, the number of subdivisions is Nr = 4 and the number of samples is
N r

s = 8. To compute the contrast measures for the refinement decision, the samples have been cast
in a stratified way at each n-node (i.e., pixel or subpixel) and re-used at the next levels in the
tree. In CT, groups of 8 samples were added in a stratified way until meeting the condition of the
criterion. An implementation of path-tracing with next event estimator was used to compute all
images [123]. The parameters were tuned so that all four test images were obtained with a similar
average number of rays per pixel (Np

s = 60) and computational cost.The resulting images are shown
in Figs. 4.10.∗.i with close-ups in Figs. 4.10.∗.ii. A sampling density map5 (SDM) for each one is
given in Figs. 4.10.∗.iii.

The overall aspect of the images in Figs.4.10.∗.i shows that EC scheme performs best.Observe,
for instance, the reduced noise in the shadows cast by the objects. This is further checked in the
close-up images in Figs. 4.10.∗.ii. Observe also the detail of the sphere shadow reflected on the
pyramid. It is important to note that we managed to improve the classic contrast approach in CC
greatly by including the importance used in the EC scheme (compare results in Fig. 4.10.a with
Fig. 4.10.b). A comparison of the SDMs shows a better discrimination of complex regions of the
scene in the entropy case against the classic contrast case. This explains the better results obtained
by the EC approach. Moreover, the confidence test approach CT (Fig. 4.10.c) also performs better
than the classic contrast-based methods CC (Fig. 4.10.a) and IC (Fig. 4.10.b). The SDM of CT
also explains why it performs better. However, it is unable to render the reflected shadows under the
mirrored pyramid and sphere with precision (see close-up in Fig. 4.10.c.ii).

In Table 4.2, we show two measures (error and quality) obtained from the results shown in
Figs. 4.10.∗.i–ii with respect to the test scene in Figs. 4.9.i–ii, respectively. We select the root of
the mean square error6 (RMSE) and the peak signal to noise ratio7 (PSNR) to evaluate the results.
For each one, we consider a weight balanced by every color channel (RMSEa and PSNRa) and a
perceptual one (RMSEp and PSNRp) in accordance with the sRGB system (weighted by wc).These
measures reflect the good behaviour of the CT and EC oracles (i.e., low RMSEs and high PSNRs).
Although the error obtained using the EC approach is bigger than with the CT method, the visual
results are better in the EC case (observe Figs. 4.10.c–d ). This is due to the fact that the measures
do not manage to reflect exactly the perceptual quality of the image. The EC images look better
because the oracle distributes the samples more accurately in the most complex regions (see SDMs).

5 Generated under the same conditions as the quality (Sec. 4.2) and contrast (Sec. 4.3) maps.
6 It is calculated from the Mean Squared Error (MSE) of each color channel.
7 Measure of the quality of a reconstructed image compared with an original image computing the ratio between the maximum
possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. Because many signals
have a very wide dynamic range, it is usually expressed in terms of the logarithmic decibel scale: 10 log10(I2

max/MSE) dB.
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(a.i) CC (a.ii) Close-up of (a.i) (a.iii) SDM of (a.i)

(b.i) IC (b.ii) Close-up of (b.i) (b.iii) SDM of (b.i)

(c.i) CT (c.ii) Close-up of (c.i) textFIc.iii SDM of (c.i)

(d.i) EC (d.ii) Close-up of (d.i) (d.iii) SDM of (d.i)

Figure 4.10: (a) Adaptive sampling scheme based on classic contrast (CC), (b) importance-weighted
contrast (IC), same as in (a) but weighting with importance q (Equ. 4.20), (c) confidence test method
(CT), and (d) entropy-based method (EC) with color contrast only (δ = 1). By columns: (i) shows the
resulting images, (ii) close-ups of (i), and (iii) the sampling density maps of (i). The average number
of rays per pixel is N

p
s = 60 in all methods, with a similar computational cost. ([102] © The Canadian

Information Processing Society, 2003.)
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Good results are also obtained using the geometry component and the binary contrast with color
and geometry (see [100]).

Table 4.2: The RMSE and PSNR of CC, IC, CT, and EC oracles applied to the general
view (Fig. 4.9.i) and close-up (Fig. 4.9.ii) of the test scene. The average number of rays
per pixel is N

p
s = 60 in all methods (see Fig. 4.10).

oracle general view close-up
RMSEa RMSEp PSNRa PSNRp RMSEa RMSEp PSNRa PSNRp

CC 13.727 13.599 25.379 25.461 20.276 20.024 21.991 22.100
IC 8.124 8.110 29.935 29.951 13.751 13.568 25.364 25.481
CT 5.194 5.174 33.822 33.855 8.407 8.338 29.638 29.710
EC 6.937 7.018 31.308 31.207 9.886 9.933 28.231 28.189

4.6 f-DIVERGENCES IN ADAPTIVE SAMPLING FOR RAY-
TRACING

In this section, we apply the f-divergences (Sec. 1.8) as refinement criteria in the ray-tracing tech-
nique. To do this, we incorporate the divergences into the supersampling scheme using the same
basic idea as in hierarchical radiosity (Sec. 2.5) but considering the luminance information instead of
the geometric information of the form factors. Therefore, we evaluate the homogeneity of a region
of the image plane in accordance with the divergence between its luminance distribution and the
uniform distribution.

4.6.1 ALGORITHM
The f-divergences defined in Sec. 1.8 will be used to evaluate the heterogeneity of a set of samples
in a region. The scheme used is the following:

1. A first batch of N
p
s samples is cast through a pixel and the corresponding luminances

Li∈{1,...,N
p
s } are obtained8.

2. The f-divergences Df (p, q) are taken between the normalised distribution of the obtained
luminances,

p = {pi = Li∑N
p
s

j=1 Lj

| 1 ≤ i ≤ N
p
s }, (4.24)

and the uniform distribution q = {qi = 1/N
p
s | 1 ≤ i ≤ N

p
s }.

3. The refinement criterion, given by

1

N
p
s
L Df (p, q) < ε, (4.25)

8 For an sRGB color system, the luminance corresponds to the value of Y = 0.2126R + 0.7152G + 0.0722B [22].
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is evaluated,where Df represents the Kullback-Leibler9,Chi-square,or Hellinger divergences,
L is the average luminance

L = 1

N
p
s

N
p
s∑

i=1

Li, (4.26)

and ε is a predefined threshold for the refinement test. The divergence measure Df (p, q) in
Equ. 4.25 plays the role of a contrast. Note that to assign an importance to this value, we weight
it with the average luminance (Equ. 4.26), as in Glassner’s version of classic contrast [44], used
also in the method CC in Sec. 4.5.4, and in the pixel color contrast (Equ. 4.14). The division
by the number of samples N

p
s in Equ. 4.25 ensures that the refinement process stops.

4. Successive batches of N
p
s rays are cast until the result of the test is true and no more refinement

is necessary.

The new criteria give good visual results, but the RMSE obtained in the tests (see Table 4.3),
although better than for the classic contrast, is higher than with the confidence test criterion (Equ.4.5
and CT in Sec. 4.5.4). A next logical step is to try the square root of Hellinger divergence, as it is a
true metric. The results obtained are very encouraging and, by analogy, the experimentation can be
extended to the square root of the other divergences.The results also improved the previous ones and
were also better than in the confidence test case. The square root versions of this set of f-divergences
have already been used previously in statistics [97, 145, 130].

Definition 4.12. Three refinement criteria for adaptive ray-tracing, based on their respective f-
divergences (Sec. 1.8), are given by

• Square root of Kullback-Leibler divergence

1

N
p
s
LD

1
2

KL(p, q) < ε, (KL
1
2 )

• Square root of Chi-square divergence

1

N
p
s
LD

1
2
χ2(p, q) < ε, (CS

1
2 )

• Square root of Hellinger divergence

1

N
p
s
LD

1
2
h2(p, q) < ε. (HL

1
2 )

9Note that in this particular case, i.e., obtaining the divergence with respect to the constant distribution 1/N
p
s , KL divergence

reduces to entropy contrast (Equ. 4.12), save for the log N
p
s normalization constant and the direct use of luminances instead of

color channel. Thus, results of KL are consistent with the ones of entropy-based contrast (EC) when compared to confidence test
(CT) and classic contrast (CC).
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4.6.2 RESULTS
In Fig. 4.11 and Fig. 4.12, we present comparative results with different techniques for the test scene
in Fig.4.9.The following two methods are compared with the three f-divergence-based criteria (KL

1
2 ,

CS
1
2 , and HL

1
2 ):

• Classic contrast (CC): Contrast of Equ. 4.1 of the luminance weighted with the importance L.

• Confidence test (CT): Confidence level of α = 0.1 and tolerance t = 0.025 in Equ. 4.5 (as in
Sec. 4.5.4).

In order to evaluate their behaviour, the images are generated by a similar process to that
of adaptive sampling ray-tracing in Sec. 4.4. However, a geometric hierarchical subdivision is not
developed; in all the methods, 8 initial rays are cast in a stratified way at each pixel to compute the
contrast measures for the refinement decision, and 8 additional rays are successively added until the
condition of the criterion is met.An implementation of classic path-tracing with next event estimator
was used to compute all images.The parameters were tuned so that all five test images were obtained
with a similar average number of rays per pixel (Np

s = 60) and a similar computational cost. The
reconstruction method applied is the piecewise-continuous image [87] with box filter. Finally, the
pixel value is the reconstructed signal average at pixel domain.

The resulting images are shown in Figs. 4.11.∗.i (CC and CT) and Figs. 4.12.∗.i (KL
1
2 , CS

1
2 ,

and HL
1
2 ), with the sampling density maps in Figs. 4.11.∗.iii and Figs. 4.12.∗.iii, respectively. The

analysis of the critical regions of the images shows how the proposed sampling scheme performs the
best. Observe, for instance, the reduced noise in the shadows cast by the objects. Observe also the
detail of the shadow of the sphere reflected on the pyramid.

Comparison of the SDMs shows a better discrimination of the most complex regions of
the scene in the three divergence cases against the classic contrast and confidence test cases. This
explains the better results obtained by the f-divergence approach. On the other hand, the confidence
test approach also performs better than the classic contrast-based method. Its SDM also explains
why it performs better than the contrast-based method. However, it is unable to render the reflected
shadows under the mirrored pyramid and sphere with enough precision (ii).

In Table 4.3, we show the RMSE and PSNR of the images obtained with classic
(Figs. 4.11.∗.i), f-divergence, and square root of f-divergence (Figs. 4.12.∗.i) methods with re-
spect to the test image in Fig. 4.9. Visual comparison is in concordance with numerical data. The
f-divergence-based criteria used in the experiments outperform both classic contrast and confidence
test experiments. Finally, the better results of the HL

1
2 criterion could be explained by the fact that

the square root of the Hellinger distance is a true metric.
As a general conclusion, by evaluating the visual (see Fig. 4.10, Fig. 4.11, and Fig. 4.12) and

quantitative (see Table 4.2 and Table 4.3) results, we observe that both entropy-based contrast and
square root versions of f-divergences criteria present the best improvements to the whole visual
aspect of the image, dealing better with the most complex regions and spending less samples in the
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(a.i) CC (a.ii) Close-up of (a.i) (a.iii) SDM of (a.i)

(b.i) CT (b.ii) Close-up of (b.i) (b.ii) SDM of (b.i)

Figure 4.11: Images of the test scene (Fig. 4.9) obtained with an adaptive sampling scheme based on (a)
classic contrast (CC) and (b) confidence test (CT) methods. By columns, (i) shows the resulting images,
(ii) close-ups of (i), and (iii) the sampling density maps of (i). The average number of rays per pixel is 60.
Compare with the images in Fig. 4.12. ([102] © The Canadian Information Processing Society, 2003.)

least complex ones. This is in spite of the RMSE and PSNR values of the entropy case are slightly
worse than for the confidence test. The criteria based on the square root versions of f-divergences,
specially, the Hellinger one, give the best results, both on image quality and numerical error.
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(a.i) KL
1
2 (a.ii) Close-up of (a.i) (a.iii) SDM of (a.i)

(b.i) CS
1
2 (b.ii) Close-up of (b.i) (b.iii) SDM of (b.i)

(c.i) HL
1
2 (c.ii) Close-up of (c.i) (c.iii) SDM of (c.i)

Figure 4.12: Images of the test scene (Fig. 4.9) obtained with an adaptive sampling scheme based on the
square root of (a) Kullback-Leibler (KL

1
2 ), (b) Chi-square (CS

1
2 ), and (c) Hellinger (HL

1
2 ) f-divergences.

By columns, (i) shows the resulting images, (ii) close-ups of (i), and (iii) the sampling density maps of (i).
The average number of samples per pixel is 60 in all the methods. Compare with the images in Fig. 4.11.
([103] © The Eurographics Association, 2003.)
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Table 4.3: The RMSE and PSNR measures of the CC, CT, and f-divergence-based
refinement criteria applied to Fig.4.9.The images for the CC and CT methods are shown
in Fig. 4.11, and for the f-divergence-based ones, in Fig. 4.12. The average number of
samples per pixel is N

p
s = 60.

method oracle RMSEa RMSEp PSNRa PSNRp

Classic Contrast (CC) 6.157 6.126 32.344 32.387
Confidence test (CT) 5.194 5.174 33.822 33.855
Kullback-Leibler (KL) 5.508 5.553 33.311 33.241

f-divergences Chi-square (CS) 5.414 5.452 33.461 33.400
Hellinger (HL) 5.807 5.862 32.852 32.770

Square root of
Kullback-Leibler (KL

1
2 ) 4.824 4.793 34.463 34.519

f-divergences
Chi-square (CS

1
2 ) 4.772 4.736 34.557 34.623

Hellinger (HL
1
2 ) 4.595 4.560 34.884 34.951
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C H A P T E R 5

Viewpoint Selection and Mesh
Saliency

The basic question underlying the viewpoint selection study and application is “what is a good
viewpoint of a scene?” Obviously, this question does not have a simple answer. Depending on our
objective, the best viewpoint can be, for instance, the most representative one or the most unstable
one (i.e., the one that maximally changes when it is moved within its close neighborhood [8]).
Palmer et al. [88] and Blanz et al. [6] have presented different experiments demonstrating that
observers prefer views (called canonical views) that avoid occlusions and that are off-axis (such as a
three-quarter viewpoint), salient (the most significant characteristics of an object are visible), stable,
and with a large number of visible surfaces.

In computer graphics, several viewpoint quality measures have been applied in areas such
as scene understanding [93, 135, 94], scene exploration [2, 122], image-based modeling [136], and
volume visualization [8, 124, 140]. In other areas, such as object recognition and mobile robotics, best
view selection is also a fundamental task.Many works have demonstrated that the recognition process
is view-dependent [88, 9, 128, 6]. Tarr et al. [128] found that “visual recognition may be explained
by a view-based theory in which viewpoint-specific representations encode both quantitative and
qualitative features”.

In this chapter, a set of viewpoint measures that can be grouped in a unified framework are
presented to deal with viewpoint selection and mesh saliency [135, 111,34].Given a set of viewpoints
surrounding an object, an information channel is defined between the viewpoints and the polygons
of the object. From this channel, the viewpoint entropy, the viewpoint mutual information, and the
viewpoint Kullback-Leibler distance are defined to obtain the best views of an object. In particular,
viewpoint mutual information is also used to calculate the stability of a viewpoint and to guide the
object exploration. The channel is reversed and both the information and the saliency associated
with each polygon are computed. Finally, this polygonal saliency is used to calculate how salient
a viewpoint is, and it is incorporated into viewpoint mutual information to drive the viewpoint
selection.

5.1 BACKGROUND

We review now some related work that is not based on information theory. In Plemenos and Be-
nayada [93], the quality of a viewpoint v of a scene is computed using the following heuristic measure.
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Definition 5.1. The heuristic measure (HM) is defined by

C(v) =
∑n

i=1� Pi(v)
Pi(v)+1�
n

+
∑n

i=1 Pi(v)

r
, (5.1)

where Pi(v) is the number of pixels corresponding to the polygon i in the image obtained from the
viewpoint v, r is the total number of pixels of the image (resolution of the image), and n is the total
number of polygons of the scene1. The first term in Equ. 5.1 is the fraction of visible polygons with

respect to the total number of polygons, while the second term is the ratio between the projected
area of the scene (or object) and the screen area (thus, its value is 1 for a closed scene).

Polonsky et al. [94] describe a number of different ways to measure the goodness of a view of
an object. After analyzing different view descriptors, they conclude that no single descriptor does
a perfect job and possibly a combination of them would amplify the advantage that each one has.
Given a sphere of viewpoints, Yamauchi et al. [144] compute the similarity between each pair of
disjoint views using Zernike moments analysis and obtain a similarity weighted spherical graph. A
view is considered to be stable if all incident edges on its viewpoint in the spherical graph have high
similarity weights. Sokolov et al. [122] present two different exploration algorithms guided by the
total curvature of a visible surface.

Based on the investigation on canonical views, Gooch et al. [46] present a new method for
constructing images where the viewpoint is chosen to be off-axis, and Lu et al. [75] obtain the viewing
direction from the combination of factors such as saliency, occlusion, stability, and familiarity. Lee
et al. [71] have introduced the saliency as a measure for regional importance for graphics meshes,
and Kim and Varshney [65] presented a visual-saliency-based operator to enhance selected regions
of a volume. Gal and Cohen-Or [39] introduced a method for partial matching of surfaces by using
the abstraction of salient geometric features and a method to construct them.

5.2 VIEWPOINT CHANNEL
In this section, an information channel (see Sec. 1.1) between a set of viewpoints and the set of
polygons of an object is introduced to define a set of viewpoint measures.

5.2.1 VIEWPOINT ENTROPY AND MUTUAL INFORMATION
A viewpoint selection framework is constructed from an information channel V → Z between the
random variables V (input) and Z (output), which represent, respectively, a set of viewpoints V and
the set of polygons Z of an object (see Fig. 5.1.left) [34]. This channel, called viewpoint channel,
is defined by a transition probability matrix obtained from the projected areas of polygons at each
viewpoint. Viewpoints will be indexed by v and polygons by z. Following the convention introduced
in Sec. 1.1, the capital letters V and Z as arguments of p(.) will be used to denote probability

1�x� denotes the smallest integer, greater than or equal to x.
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distributions. For instance, while p(v) will denote the probability of a single viewpoint v, p(V ) will
represent the input distribution of the set of viewpoints.

The viewpoint channel can be interpreted as an observation channel where the conditional
probabilities represent the probability of “seeing” a determined polygon from a given viewpoint (see
Fig. 5.1.right). The three basic elements of this channel are:

• Transition probability matrix p(Z|V ), where each element p(z|v) = az(v)/AT (v) is defined
by the normalized projected area of polygon z over the sphere of directions centered at view-
point v, az(v) is the projected area of polygon z at viewpoint v, and AT (v) is the projected area
of all polygons over the sphere of directions. Conditional probabilities fulfil

∑
z∈Z p(z|v) = 1.

In this chapter, the background is not taken into account, but it could be considered as another
polygon.

• Input distribution p(V ), which represents the probability of selecting each viewpoint, will
be obtained from the normalization of the projected area of the object at each viewpoint:
p(v) = AT (v)/

∑
v∈V AT (v). This can be interpreted as the probability that a random ray

originated at v hits (or “sees”) the object. This assignation is consistent with the objective
of selecting the viewpoints which “see” more projected area. Let us remember that this is
a characteristic of a canonical view. The input distribution can also be interpreted as the
importance assigned to each viewpoint v. For instance, the input distribution could be defined
by p(v) = 1/Nv , where Nv is the number of viewpoints and, in this case, the same importance
would be assigned to each viewpoint.

• Output distribution p(Z) is given by

p(z) =
∑
v∈V

p(v)p(z|v), (5.2)

which represents the average projected area of polygon z (i.e., the probability of polygon z to
be hit or “seen” by a random ray cast from the viewpoint sphere).

From the previous definitions and Equations 1.2,1.5,and 1.9,Shannon’s information measures
can be defined for the viewpoint channel. We first introduce the viewpoint entropy [135] and the
viewpoint conditional entropy [34].

Definition 5.2. The viewpoint entropy (VE) of viewpoint v is defined by

H(Z|v) = −
∑
z∈Z

p(z|v) log p(z|v). (5.3)

H(Z|v) measures the degree of uniformity of the projected area distribution at viewpoint v. In this

book, H(Z|v) will be also denoted as H(v). The maximum viewpoint entropy is obtained when a
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p(Z|V )
Z

p(V )
z1 · · · zm

v1 p(z1|v1) · · · p(zm|v1) p(v1)

V
...

...
. . .

...
...

vn p(z1|vn) · · · p(zm|vn) p(vn)

p(Z) p(z1) · · · p(zm)

Figure 5.1: On the left, a polygonal model is surrounded by a “sphere of viewpoints” obtained from the
recursive decomposition of an icosahedron.On the right, the viewpoint information channel is represented
by the transition probability matrix p(Z|V ) and the marginal probability distributions p(V ) and p(Z),
where n and m represent the number of viewpoints and polygons, respectively.

certain viewpoint can see the maximum number of polygons with the same projected area. The best
viewpoint is defined as the one that has maximum entropy [135].

Definition 5.3. The conditional entropy of channel V → Z is defined by

H(Z|V ) = −
∑
v∈V

p(v)
∑
z∈Z

p(z|v) log p(z|v) =
∑
v∈V

p(v)H(Z|v). (5.4)

That is, H(Z|V ) is given by the average of all viewpoint entropies. Both measures H(Z|v) and

H(Z|V ) tend to infinity when the polygons are infinitely refined (see Equ. 1.35). This makes these
measures very sensitive to the discretization of the object.

We now focus our attention to the mutual information between V and Z, that expresses the
degree of dependence or correlation between the set of viewpoints and the object [34].

Definition 5.4. The mutual information of channel V → Z is defined by

I (V ; Z) =
∑
v∈V

p(v)
∑
z∈Z

p(z|v) log
p(z|v)

p(z)
=

∑
v∈V

p(v)I (v; Z), (5.5)

where I (v; Z) is the viewpoint mutual information defined as follows:

Definition 5.5. The viewpoint mutual information (VMI) of viewpoint v is defined by

I (v; Z) =
∑
z∈Z

p(z|v) log
p(z|v)

p(z)
. (5.6)

I (v; Z) gives us the degree of dependence between the viewpoint v and the set of polygons, and is
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interpreted as a measure of the quality of viewpoint v.Consequently, the mutual information I (V ; Z)

gives us the average quality of the set of viewpoints. Here, High quality is considered equivalent to
high representativeness, which corresponds to the lowest VMI values. Thus, the best viewpoint is
defined as the one that has minimum VMI. This is due to the fact that the lowest values correspond
to the most representative or relevant views, showing the maximum possible number of polygons in
a balanced way. On the other hand, high values of the measure mean a high dependence between
viewpoint v and the object, indicating a highly coupled view (for instance, between the viewpoint
and a small number of polygons with low average visibility).

Related to this framework, the viewpoint Kullback-Leibler distance [111] can be defined from
Equ. 1.7.

Definition 5.6. The viewpoint Kullback-Leibler distance (VKL) of viewpoint v is defined by

DKL(p(Z|v), a(Z)) =
∑
z∈Z

p(z|v) log
p(z|v)

a(z)
, (5.7)

where a(z) is the normalized area of polygon z obtained from the area of polygon z divided by the
total area of the object. The VKL measure is interpreted as the distance between the normalized

distribution of projected areas and the normalized distribution of the areas of polygons. Note that,
in this case, the background can not be taken into account.The minimum value 0 would be obtained
when p(z|v) = a(z). Since the target is in this case to look for the distribution of projected areas
as much near as possible to the distribution of actual areas, selecting best views means to minimize
VKL.

We have to note that VMI can be rewritten in the following way: I (v; Z) =
DKL(p(Z|v), p(Z)). It is worth observing that p(Z) plays the role of the target distribution in
the Kullback-Leibler distance (Equ. 1.7) and, therefore, the role of the optimal distribution since
the objective is that p(Z|v) becomes similar to p(Z) to obtain the best views. On the other hand,
this role agrees with intuition since p(Z) is the average visibility of polygon z over all viewpoints
(i.e., like a mixed distribution of all views), and we can think of p(Z) as representing, with a sin-
gle distribution, the knowledge about the scene. Note the difference between VMI (Equ. 5.6) and
VKL (Equ. 5.7), due to the fact that in the last case the distance is taken with respect to the actual
areas of polygons.

In Viola et al. [140], it has been shown that the main advantage of VMI over VE is its
robustness to deal with any type of discretisation or resolution of the volumetric dataset. The same
advantage can be observed for polygonal data. Thus, while a highly refined mesh will attract the
attention of VE, VMI will be almost insensitive to changes in the mesh resolution. In general, if we
compare both measures for finer and finer discretisations, VMI will converge to an upper bound and
VE will increase to infinity (see Sec. 1.6) [32, 34]. Note that the heuristic measure HM (Equ. 5.1) is
also highly dependent on the discretisation since the first term in Equ. 5.1 is given by the quotient
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between the number of visible polygons and the total number of polygons. The behavior of all these
measures, with respect to the discretisation, will be experimentally shown in the next section.

5.2.2 RESULTS
In this section, the behavior of VMI (Equ. 5.6) is compared with the one of HM (Equ. 5.1), VE
(Equ. 5.3), and VKL (Equ. 5.7).To compute these viewpoint quality measures, we need a preprocess
step to estimate the projected area of the visible polygons of the object at each viewpoint. Before
projection, a different color is assigned to each polygon. The number of pixels with a given color
divided by the total number of pixels projected by the object gives us the relative area of the polygon
represented by this color (conditional probability p(z|v)).

In this chapter, all measures have been computed without taking into account the back-
ground and using a projection resolution of 640 × 4802. In all the experiments, the objects are
centered in a sphere of 642 viewpoints built from the recursive discretisation of an icosahedron,
and the camera is looking at the center of this sphere. This framework could be extended to any
other placement of viewpoints but the choice of a sphere of viewpoints allows us to analyze an
object in an isotropic manner. Note that all the measures analyzed here are sensitive to the relative
size of the viewpoint sphere with respect to the object. The viewpoint sphere is built in the fol-
lowing way: first, the smallest bounding sphere of the model is obtained, and then, the viewpoint
sphere adopts the same center as the bounding sphere and a radius three times the radius of the
bounding sphere. The experiments shown in this chapter have been created using the 3D-rendering
engine Ogre3D (http://www.ogre3d.org) and run on a 3GHz machine with 2Gb RAM and an
NVIDIA GeForce 8800-GTX with 768Mb.

Four models have been used: a cow (Fig. 5.2.a), a coffee-cup-and-dish with two different
discretisations of the dish (Fig. 5.4.a.i and Fig. 5.4.b.i), a ship (Fig. 5.2.b), and the lady of Elche
(Fig. 5.2.c). In Table 5.1 we show the number of polygons of the models used in this section and the
cost of the preprocess step (i.e., the cost of computing the probability distributions p(V ), p(Z|V )

and p(Z)). Even though a large number of viewpoints have been used, an acceptable quality could
be achieved with less viewpoints and the consequent reduction of timings. To show the behavior of
the measures, the sphere of viewpoints is represented by a thermic scale where red and blue colors
correspond, respectively, to the best and worst views. Note that a high quality viewpoint corresponds
to a high value for both HM (Equ. 5.1) and VE (Equ. 5.3), and to a low value for both VKL
(Equ. 5.7) and VMI (Equ. 5.6).

Fig. 5.3 has been organized as follows. Rows (a), (b) and (c) show, respectively, the behavior of
HM, VE, and VMI measures. Columns (i) and (ii) show, respectively, the best and worst views, and
columns (iii) and (iv) show two different projections of the viewpoint spheres. Fig. 5.3 illustrates
how VMI selects better views than both HM and VE. Observe how VE chooses to “see” the most
highly discretised parts of the cow. The same occurs with HM, although this one also searches for a

2For practical purposes, we use projection on the tangent plane instead of on the sphere of directions.
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Table 5.1: Number of triangles of the models used and computational
time (seconds) of the preprocess step for each model. Models are shown
in Fig. 5.2 and Fig. 5.4.a.i.

Cow Coffee cup Ship Lady of Elche
Number of triangles 9,593 43,935 47,365 51,978
Computational time 41 81 62 80

(a) (b) (c)

Figure 5.2: (a) Cow, (b) ship and (c) lady of Elche wireframe models. ([34] © ACM, 2009.)

view with higher projected area. While the worst views for HM and VE correspond to the ones that
see the less discretised parts, in the VMI case, a more restricted (or low quality) view is obtained.

Fig. 5.4 shows the behavior of HM, VE, and VMI measures when the discretisation of the
object varies outstandingly. Rows (a) and (b) show the viewpoint spheres computed, respectively,
for the coffee-cup-and-dish model of Fig. 5.4.a.i and for the same model with a more refined dish
(Fig. 5.4.b.i). We can clearly observe how the spheres obtained from HM and VE change according
to the discretisation variation, whereas VMI spheres are almost insensitive to this variation. The
different behavior between VKL and VMI is shown in Fig. 5.5. Remember that the main difference
between VMI and VKL is that while the former computes the distance between the projected areas
of polygons, and their average area “seen” by the set of viewpoints, the latter calculates the distance
with respect to the actual areas of polygons. Due to this fact, the reliability of VKL is much affected
by the existence of many non visible or poorly visible polygons, as in the case of the ship and lady of
Elche models.

5.3 VIEWPOINT SIMILARITY AND STABILITY
As we have mentioned in the introduction of this chapter, a basic property of a canonical view is its
stability [6]. That is, observers prefer a view which minimally changes when it is moved within its
nearest neighborhood. In this section, viewpoint stability is defined from the notion of dissimilarity
between two viewpoints, which is given by the Jensen-Shannon divergence between their respective
distributions (Equ. 1.16). The use of Jensen-Shannon divergence as a measure of view similarity has
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

(c.i) (c.ii) (c.iii) (c.iv)

Figure 5.3: (i) The most representative (high quality) and (ii) the most restricted (low quality) views,
and (iii-iv) the viewpoint spheres obtained, respectively, from the (a) HM, (b) VE, and (c) VMI measures.
Red colors on the sphere represent the highest quality viewpoints and blue colors represent the lowest
quality viewpoints. ([34] © ACM, 2009.)

been proposed by Bordoloi and Shen [8] within the volume rendering field. From the information
channel introduced in Sec. 5.2.1, the viewpoint dissimilarity appears naturally from the variation of
mutual information [34].

If we apply the data processing inequality (Equ. 1.18) or the information bottleneck method
(Sec. 1.7) to the channel V → Z, we find that any clustering over V or Z, respectively, denoted by
V̂ and Ẑ, will reduce I (V ; Z). Therefore, if neighbor viewpoints (or polygons) are clustered, then
I (V̂ ; Z) ≤ I (V ; Z) (or I (V ; Ẑ) ≤ I (V ; Z)). The result of clustering (or merging) two viewpoints
vi and vj is defined as a “virtual” viewpoint v̂ such that

p(̂v) = p(vi) + p(vj ) (5.8)

and the conditional probability becomes

p(z|̂v) = p(vi)p(z|vi) + p(vj )p(z|vj )

p(̂v)
. (5.9)
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

Figure 5.4: Column (i) shows the models used to compute the viewpoint spheres where the dish in (b.i)
is more refined than the one in (a.i). The viewpoint spheres are obtained, respectively, from (ii) HM, (iii)
VE, and (iv) VMI measures. ([34] © ACM, 2009.)

The reduction of mutual information when two viewpoints vi and vj are merged is given by

δI = I (V ; Z) − I (V̂ ; Z) = (
p(vi)I (vi; Z) + p(vj )I (vj ; Z)

) − p(̂v)I (̂v; Z)

= p(̂v)

(
p(vi)

p(̂v)
I (vi; Z) + p(vj )

p(̂v)
I (vj ; Z) − I (̂v; Z)

)
= p(̂ (v)D(vi, vj ), (5.10)

where D(vi, vj ) is the viewpoint dissimilarity defined as:

Definition 5.7. The viewpoint dissimilarity between vi and vj is defined by

D(vi, vj ) = p(vi)

p(̂v)
I (vi; Z) + p(vj )

p(̂v)
I (vj ; Z) − I (̂v; Z). (5.11)

Hence, the loss of information when two viewpoints are merged is given by the weighted dissimilarity

between them. It can be seen that the dissimilarity will be null when both viewpoints capture the
same distribution of projected areas: if p(Z|vi) = p(Z|vj ), then δI = 0.

From the definition of the Jensen-Shannon divergence (Equ. 1.16) and the information bot-
tleneck method (Sec. 1.7), it can be shown that the viewpoint dissimilarity can also be written
as

D(vi, vj ) = JS

(
p(vi)

p(̂v)
,
p(vj )

p(̂v)
; p(Z|vi), p(Z|vj )

)
, (5.12)
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

Figure 5.5: Viewpoint spheres obtained, respectively, from (a) VKL and (b) VMI measures.
([34] © ACM, 2009.)

where the second term is the Jensen-Shannon divergence between the distributions p(Z|vi) and
p(Z|vj ) captured by vi and vj with weights p(vi)/p(̂v) and p(vj )/p(̂v), respectively. If two views
are very similar (i.e., the JS-divergence between them is small), the channel could be simplified by
substituting these two viewpoints by their merging, without a significant loss of information. It can
be seen that the clustering V̂ of all viewpoints would give δI = I (V ; Z) and, thus, I (V̂ ; Z) = 0.

View unstability was defined in [8] as the maximum change in view that occur when the
camera position is shifted within a small neighborhood.Thus, a small change corresponds to a stable
viewpoint and a large change to an unstable one. Here, the unstability of a viewpoint v is defined
as the average variation of dissimilarity between v and its neighbor viewpoints. That is, vi is stable
if p(Z|vi) is close to the probability distributions p(Z|vj ) of its neighbors, where vj stands for a
neighbor of vi .

Definition 5.8. The viewpoint unstability of viewpoint vi is defined by

U(vi) = 1

N

N∑
j=1

D(vi, vj ), (5.13)

where vj is a neighbor of vi and N is the number of neighbors of vi .

Fig. 5.6 shows the behavior of the viewpoint unstability measure for the coffee-cup-and-dish,
cow, and lady of Elche models. Observe how the results obtained agree with intuition.
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

(c.i) (c.ii) (c.iii) (c.iv)

Figure 5.6: The (i) most stable and (ii) most unstable viewpoints, and (iii-iv) the unstability spheres
obtained for the (a) coffee-cup-and-dish, (b) cow and (c) lady of Elche models. Red colors on the sphere
represent high unstability values, blue colors represent low unstability values. ([34] © ACM, 2009.)

5.4 BEST VIEW SELECTION AND OBJECT EXPLORATION

In order to understand or model an object, we are interested in selecting a set of representative
views which provides a complete representation of the object. In this section, algorithms based on
viewpoint mutual information are applied to both the selection of the N best representative views
and object exploration [34]. Other algorithms of viewpoint selection and scene exploration based
on viewpoint entropy can be seen in [135, 134, 136, 2].

5.4.1 SELECTION OF N BEST VIEWS
With the goal of obtaining the best representation of the object using the minimum number of
views, a VMI-based viewpoint selection algorithm is presented. If we look for a good set of views
within the set of viewpoints, we will obtain the most representative set by selecting the views such
that their mixing (merging) minimizes VMI. This mixing provide us with a balanced view of the
object.
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Thus, the algorithm proposed should select the N viewpoints so that their merging v̂ min-
imizes the viewpoint mutual information I (̂v; Z), that is, the Kullback-Leibler distance between
p(Z|v) and the target distribution p(Z). Due to the fact that this optimization algorithm is NP-
complete, a greedy strategy is adopted by selecting successive viewpoints that minimize I (̂v; Z).
This algorithm permits us to find in an automated and efficient way a minimal set of views which
represent the object or scene.

The algorithm proceeds as follows. First, we select the best viewpoint v1 with distribu-
tion p(Z|v1) corresponding to the minimum I (v; Z). Next, we select v2 such that the mixed
distribution (p(v1)/p(̂v))p(Z|v1) + (p(v2)/p(̂v))p(Z|v2) will minimize I (̂v; Z), where v̂ rep-
resents the clustering of v1 and v2 and p(̂v) = p(v1) + p(v2). At each step, a new mixed distribu-
tion (p(v1)/p(̂v))p(Z|v1) + (p(v2)/p(̂v))p(Z|v2) + . . . + (p(vn)/p(̂v))p(Z|vn), where p(̂v) =
p(v1) + p(v2) + . . . + p(vn), is produced until the VMI-ratio given by I (̂v; Z)/I (V ; Z) is lower
than a given threshold or a fixed number of views is achieved. This ratio can be interpreted as a
measure of the goodness or representativeness of the selected viewpoints.

Fig. 5.7 shows the six best views obtained with the VMI-based selection algorithm for three
different models. In Table 5.2, for each new viewpoint selected we show the viewpoint mutual
information I (̂v; Z) of the clustering of selected viewpoints and the corresponding VMI-ratio. For
instance, to achieve a degree of representativeness given by a VMI-ratio lower than 0.15, four views
are needed for the coffee-cup-and-dish and lady of Elche models, and five for the armadillo model.
Table 5.2 also shows the computation cost of selecting the six best views. It is important to note
that the best views for the selected models (Fig. 5.7.a) are not the ones our intuition would expect
as more representative. This is due to the fact that, from a purely geometric approach, the best views
of Fig. 5.7 correspond to the viewpoints such that their projected area distribution is more similar
(in the Kullback-Leibler sense) to the average projected area distribution (target distribution). This
problem will be tackled in Sec. 5.6, showing how to introduce additional criteria to select the best
views.

From the N best representative viewpoints, a simple greedy clustering algorithm is proposed
in order to partition the sphere of viewpoints.The two main steps of this algorithm are the following.
First, we select the N best viewpoints from a given VMI-ratio.These viewpoints will play the role of
centroids in the algorithm. Second, each viewpoint is assigned or clustered with the nearest centroid,
where the distance is given by the Jensen-Shannon divergence between two viewpoints.The behavior
of this clustering algorithm is shown in Fig. 5.8 for the (a) coffee cup, (b) cow, (c) ship, and (d) lady
of Elche models.

5.4.2 OBJECT EXPLORATION
In this section, a greedy algorithm is presented to explore an object. In this algorithm, the path visits
a set of N preselected best views which ensure a good exploration of the object.

First, we obtain the list of the N best viewpoints. Then, the algorithm starts at the best
viewpoint and visits all the other best viewpoints as follows. From the best viewpoint, we find
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(i)

(ii)

(iii)

Figure 5.7: From (a) to (f), the six most representative views selected by the VMI-based algorithm for
the (i) coffee-cup-and-dish, (ii) armadillo, and (iii) lady of Elche models. ([34] © ACM, 2009.)

the nearest (minimum JS-divergence) best viewpoint in the list. This is now the target viewpoint.
Then, from the best viewpoint, successive neighbor viewpoints will be selected so that, without any
viewpoint repetition, their distance to the target viewpoint is minimum. The distance between two
viewpoints is always calculated from the JS-divergence. When the first target viewpoint is achieved,
we select a new target one among the rest of best viewpoints in the list.Then we proceed in the same
way until the last best view is reached or the cycle is completed, arriving at the initial best viewpoint.
This algorithm, being a greedy one, is fast but it can cause a small detour over the minimum path.
Fig. 5.9.i shows the exploration of the coffee-cup-and-dish and the lady of Elche models from the
six best views obtained in each case (the blue, green and red light points correspond to the starting,
intermediate and ending viewpoints, respectively).Two different projections of the sphere are shown
to see better the trajectory.
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Table 5.2: For the coffee cup, armadillo, and lady of Elche
models, the values of the pair (I (̂v; Z), VMI-ratio) are shown
after the selection of a new viewpoint. The six best views for
each model can be seen in Fig. 5.7. The computational time
(seconds) of selecting these views is also shown.
Best view Coffe cup Armadillo Lady of Elche

a (1.471, 0.730) (1.791, 0.850) (1.355, 0.703)
b (0.692, 0.343) (0.837, 0.397) (0.644, 0.334)
c (0.346, 0.172) (0.616, 0.292) (0.458, 0.237)
d (0.262, 0.130) (0.416, 0.197) (0.275, 0.143)
e (0.207, 0.103) (0.310, 0.147) (0.219, 0.113)
f (0.190, 0.095) (0.238, 0.113) (0.153, 0.079)

Time 36 77 38

(a) (b) (c) (d)

Figure 5.8: Viewpoint clustering spheres with six clusters for the (a) coffee-cup-and-dish, (b) cow, (c)
ship and (d) lady of Elche models. ([34] © ACM, 2009.)

5.5 VIEW-BASED POLYGONAL INFORMATION
AND SALIENCY

In Sec. 5.2, we have seen that the information associated with each viewpoint has been obtained from
the definition of a channel between the sphere of viewpoints and the polygons of the object. Now, we
want to introduce the information associated with a polygon, which is defined as the contribution
of this polygon to the MI of that channel. To illustrate this approach, the reversed channel Z → V

is considered, so that Z is now the input and V the output [34]. Remember that MI is invariant to
the reversion of the channel: I (V ; Z) = I (Z; V ).
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(a) (b) (c) (d)

Figure 5.9: Exploration around the (a–b) coffee-cup-and-dish and (c–d) lady of Elche models, respec-
tively. ([34] © ACM, 2009.)

5.5.1 VIEW-BASED POLYGONAL INFORMATION
From the Bayes theorem p(v, z) = p(v)p(z|v) = p(z)p(v|z), the mutual information (Equ. 5.5)
can be rewritten as

I (Z; V ) =
∑
z∈Z

p(z)
∑
v∈V

p(v|z) log
p(v|z)
p(v)

=
∑
z∈Z

p(z)I (z; V ), (5.14)

where I (z; V ) is defined as the polygonal mutual information.

Definition 5.9. The polygonal mutual information (PMI) of polygon z is defined by

I (z; V ) =
∑
v∈V

p(v|z) log
p(v|z)
p(v)

. (5.15)

PMI represents the degree of correlation between the polygon z and the set of viewpoints, and

can be interpreted as the information associated with polygon z. Analogously to the behavior of
VMI, low values of PMI correspond to polygons that “see” the maximum number of viewpoints in
a balanced way, that is, p(V |z) is close to p(V ). The opposite happens for high values.

In Fig. 5.10, we show the polygonal information maps of (a) the coffee-cup-and-dish, (b) car,
(c) Hebe, and (d) lady of Elche models. To obtain these images, the PMI has been normalized
between 0 and 1 and subtracted from 1. Thus, low values of PMI, corresponding to non-occluded
or visible (from many viewpoints) polygons, are represented by values near 1 in the grey-map, while
high values of PMI, corresponding to occluded polygons, are represented by values near 0 in the
grey-map. In Fig. 5.10, we show the polygonal information values computed from the center of each
polygon,while in Fig.5.11, these values have been linearly interpolated at the vertices of the polygons.
Observe that these maps look as an ambient occlusion or obscurance map3 (see [70, 16, 148, 57]).
In Fig. 5.11, we show one example of the use of polygonal information as ambient occlusion where
this is added to a textured model.
3Ambient occlusion is a powerful technique that mimics indirect global illumination at a fraction of its cost. Zhukov et al. [148, 57]
introduced obscurances, the first ambient-occlusion technique, in the computer-game context to allow fast editing, and later used
it in production rendering.
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(a) (b) (c) (d)

Figure 5.10: View-based polygonal information for the (a) coffee-cup-and-dish, (b) car, (c) Hebe, and
(d) lady of Elche models. ([34] © ACM, 2009.)

Figure 5.11: The figure shows the application of polygonal information as ambient occlusion.
([34] © ACM, 2009.)

5.5.2 VIEW-BASED MESH SALIENCY
Itti et al. [58] maintain that visual attention is saliency-dependent, and use a saliency map to represent
the conspicuity or saliency at every location in the visual field by a scalar quantity and to guide the
selection of attended locations. In [71], mesh saliency, applied to mesh simplification and viewpoint
selection, is captured from surface curvatures and is considered as a perception-inspired measure of
regional importance.

Analogous to the view unstability (Sec. 5.3), defined from the dissimilarity between two views,
the view-based mesh saliency is defined from the dissimilarity between two polygons, which is given
by the variation of mutual information when two polygons are clustered. In this approach, mesh
saliency is formulated in terms of how the polygons “see” the set of viewpoints. Thus, following the
same scheme developed in Sec. 5.3, the saliency of a polygon is defined as the average dissimilarity
between this polygon and its neighbors.
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Similarly, to Equ. 5.10, the reduction of mutual information when two polygons zi and zj are
clustered is given by

δI = I (Z; V ) − I (Ẑ; V ) = (p(zi)I (zi; V ) + p(zj )I (zj ; V )) − p(̂z)I (̂z; V )

= p(̂z)

(
p(zi)

p(̂z)
I (zi; V ) + p(zj )

p(̂z)
I (zj ; V ) − I (̂z; V )

)
= p(̂z)D(zi, zj ), (5.16)

where ẑ is the result of clustering zi and zj and D(zi, zj ) is defined as the polygonal dissimilarity
between zi and zj :

Definition 5.10. The polygonal dissimilarity between polygons zi and zj is defined by

D(zi, zj ) = p(zi)

p(̂z)
I (zi; V ) + p(zj )

p(̂z)
I (zj ; V ) − I (̂z; V ). (5.17)

This polygonal dissimilarity can also be written (see information bottleneck method in
Sec. 1.7) as

D(zi, zj ) = JS

(
p(zi)

p(̂z)
,
p(zj )

p(̂z)
; p(V |zi), p(V |zj )

)
, (5.18)

where the second term is the Jensen-Shannon divergence (Equ. 1.16) between p(V |zi) and p(V |zj )

with weights p(zi)/p(̂z) and p(zj )/p(̂z), respectively. Hence, two polygons are “similar” when the
JS-divergence between them is small.

Similarly, to the unstability of a viewpoint (Equ. 5.13), the saliency of a polygon is defined as
the average variation of the polygonal dissimilarity between a polygon and its neighbors.

Definition 5.11. The polygonal saliency of polygon zi is defined by

S(zi) = 1

N

N∑
j=1

D(zi, zj ) ≥ 0, (5.19)

where zj is a neighbor polygon of zi and N is the number of neighbor polygons of zi . Thus, a

polygon z will be salient when the average of JS-divergences between z and its neighbors is high.
For example, a polygon at the center of a smooth region will have probably low saliency since the
polygons of this region will present small visibility differences with respect to the set of viewpoints.
Fig. 5.12 shows the behavior of the saliency measure. The most salient parts are represented in red
and the least salient ones in blue. For instance, the handle of the coffee cup and the nose, mouth and
eyes of the other models are the most salient surfaces.

Similarly, to Lee et al. [71], where mesh saliency was used to select the best views, a method
to calculate the saliency of a viewpoint is now proposed. After calculating the saliency of polygons,
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(a) (b) (c) (d)

Figure 5.12: Mesh saliency for the (a) coffee-cup-and-dish, (b) armadillo, (c) Hebe, and (d) lady of Elche
models. ([34] © ACM, 2009.)

we can now convey or project this information to the sphere of viewpoints using the conditional
probabilities of the reverse channel.

Definition 5.12. The viewpoint saliency is defined by

S(v) =
∑
z∈Z

S(z)p(v|z). (5.20)

Fig. 5.13 shows the viewpoint saliency for the coffee-cup-and-dish, armadillo and lady of
Elche models. Columns (i) and (ii) illustrate the most salient view and the least one, respectively.
Columns (iii) and (iv) show two different projections of the corresponding saliency spheres. Observe
how the most salient views show us the most salient parts of each object.

5.6 IMPORTANCE-DRIVEN VIEWPOINT SELECTION
As we have mentioned in the introduction of this chapter, it is desirable that a canonical view of an
object shows its most salient parts and also the largest number of visible surfaces [88, 6]. However,
the viewpoint quality measure VMI only takes into account the geometric relationship between the
object and the set of viewpoints. Therefore, we can not expect that, in general, the best VMI-based
views fulfill the desired properties for a canonical view. This fact motivates the investigation of how
perceptual criteria such as saliency can be introduced into the viewpoint mutual information measure
in order to improve the automatic selection of good views [34].
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

(c.i) (c.ii) (c.iii) (c.iv)

Figure 5.13: The (i) most salient and (ii) least salient views, and (iii-iv) saliency spheres obtained for the
(a) coffee-cup-and-dish, (b) armadillo, and (c) lady of Elche models. Red colors on the sphere represent
high saliency values, blue colors represent low saliency values. ([34] © ACM, 2009.)

In the previous section, we have presented a method to compute how salient a viewpoint
is, but we now aim to incorporate the polygonal saliency to the viewpoint mutual information in
order to take into account different factors concerning, respectively, the amount of projected area,
the geometric representativeness, and the saliency of a polygon. First, we show how the importance
can be introduced into the object space by modifying directly the target distribution p(Z). Second,
we present the results obtained by the use of the polygonal saliency as an importance factor in the
viewpoint mutual information measure.

Due to the fact that VMI represents the distance between the projected visibility distribution
p(Z|v) at viewpoint v and the target distribution p(Z),VMI can be extended by weighting the target
distribution with an importance factor. Thus, adding importance to VMI means simply weighting
the original target distribution by an importance factor in order to obtain the new target distribution.
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(a.i) (a.ii) (a.iii)

(b.i) (b.ii) (b.iii)

Figure 5.14: (a) VMI and (b) saliency-based EVMI spheres for the (i) coffee-cup-and-dish, (ii) ar-
madillo, and (iii) lady of Elche models. ([34] © ACM, 2009.)

The optimal viewpoint would be the one viewing every polygon proportional to its average projected
area multiplied by its importance.

Definition 5.13. The extended viewpoint mutual information (EVMI) is defined by

I ′(v; Z) =
∑
z∈Z

p(z|v) log
p(z|v)

p′(z)
= DKL(p(Z|v), p′(Z)), (5.21)

where

p′(z) = p(z)imp(z)∑
z∈Z p(z)imp(z)

, (5.22)

and imp(z) is the importance of polygon z. In the experiments of this section, imp(z) has been

substituted by the polygonal saliency S(z).We follow the convention that if imp(z) = 0 then polygon
z should not be taken into account4. Other features, such as illumination, could be introduced as
importance factors in the EVMI.In Viola et al. [140], the object importance has been used to calculate
the best views for a volumetric dataset (see Sec. 6.2.2). Note that, if importance is taken as imp(z) =
a(z)/p(z),where a(z) is the normalized area of polygon z, then I ′(v; Z) = DKL(p(Z|v), a(Z)) (i.e.,
EVMI turns into VKL). That is, the more occluded the polygon the more important it is. Observe
that when p(z) = 0, imp(z) is not defined. This is not a problem as, in the sum of Sec. 5.21, terms
with p(z) = 0 are null.
4To avoid having to recalculate all probabilities, we can demand imp(z) > 0.
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(i)

(ii)

(iii)

Figure 5.15: The six most representative views for the (i) coffee-cup-and-dish, (ii) armadillo, and (iii)
lady of Elche models using the saliency-based EVMI algorithm. ([34] © ACM, 2009.)

The effects of incorporating saliency in VMI are illustrated in Fig. 5.14 and Fig. 5.15, which
show for the coffee-cup-and-dish, armadillo, and lady of Elche models the saliency-based EVMI
spheres and the six most representative views, obtained with the best view selection algorithm
(Sec. 5.4.1), where VMI has been substituted by the saliency-based EVMI. The saliency-based
EVMI spheres of Fig. 5.14.b show the perceptual improvement obtained with respect to the corre-
sponding VMI spheres (Fig. 5.14.a). For instance, whereas the VMI-based best view of the coffee-
cup-and-dish shows the bottom of the dish (Fig. 5.7.i.a), the best view based on EVMI shows a
lateral view of the coffee-cup-and-dish (Fig. 5.15.i.a) which is perceptually much better than the
one of Fig. 5.7.i.a. The same conclusion can be obtained for the armadillo and the lady of Elche (see
the respective best views shown in Fig. 5.7 and Fig. 5.15).
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C H A P T E R 6

View Selection in Scientific
Visualization

Many disciplines in science and industry generate huge amounts of digital data on a daily basis.
These data are acquired from various kinds of measurements or simulations. Typical examples in-
clude tomographic scans from diagnostic medicine or reservoir simulations from the oil industry.
Similar examples can be found in climate research, oceanology, astronomy, and other scientific disci-
plines.These domains use various approaches to understand the hidden insights behind the acquired
numbers. Sometimes, fully automatic algorithms can be used to quantitatively obtain insights from
the data, sometimes methods which are borrowed from statistics are utilized. However, acquired
data is often so complex that quantitative measures are not effective in providing insights, and more
qualitative analytical methods have to be employed.

For a human observer, visual perception covers approximately 80% of the entire sensory input.
Therefore, the human visual system is generally considered to be the most effective channel to convey
complex information, such as shape or flow characteristics of objects.Data sets from above mentioned
domains encode information about human anatomy or spatial characteristics of interesting seismic
layers. In analytical software tools, the visual channel is exploited to look into such data. The term
scientific visualization expresses approaches that provide insights by way of visual means into complex
computerized information acquired in scientific disciplines. Visual elements that represent these
complex data utilize computer graphics technology to be brought-up to the computer screen for the
user’s investigation. Visualization is, therefore, often seen as computer graphics technology applied
on particular types of data in order to convey what the digital data represents.

Information theory, applied to three-dimensional computer graphics data representations,
provides measures to evaluate the quality of viewpoints from which a given scene is rendered.
This accommodation of information-theoretic measures has been used in the previous chapter for
estimating the most informative viewpoint or a minimal set of viewpoints that characterize a given
polygonal scene in the most expressive way. Automatic selection of the most informative viewpoint
is a very useful focusing mechanism in visualization of scientific data.The viewer can be immediately
guided to the most interesting information avoiding cumbersome tuning of viewpoint parameters.
Alternatively, a selection of the most informative viewpoints can be used, for example, for generation
of a data storyboard (i.e., a compact representation of the information the data contains).

Approaches for estimation of the most informative viewpoints for scientific data sets are similar
to those developed for polygonal data; however, there are differences that arise due to the different
focus of scientific visualization as compared to more general computer graphics. One difference to
polygonal computer graphics is that the underlying data is generally more complex. Scientific data
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are generated by measurements and simulations that have very heterogeneous output. Some data
types can be aligned to a structured grid, simulations usually generate unstructured finite element
meshes, while other data types are entirely devoid of connectivity information and are represented
as cloud of sparse points. Medical data sets, for example, are often represented as scalar values per
sample point. In other areas, such as meteorological or flow simulations, several attributes per sample
point are common. Many natural phenomena are studied through their development in time. These
studies are stored as time-varying data sets, for which visualization is often the only effective way
of providing insights. Moreover, scientific data often differ in the level of associated semantics.
Some data contain solely measurement in numerical values without any a-priori knowledge about
structures; other data sets contain information about the most relevant structures such as critical
points in flow data or segmentation masks of anatomical objects. Consequently, the heterogeneity
among scientific data types, as opposed to simple polygonal scene, corresponds to the heterogeneity
in visualization approaches for viewpoint quality evaluation.

A second important aspect of scientific visualization, as opposed to standard computer graph-
ics, is that it serves the purpose of gaining insights into complex phenomena.There is always a purpose
that drives visualization, attempting to find answers to open questions of a particular scientific do-
main. Here, visualization can serve three purposes: (a) exploration of new unknown data seeking
for structures and forming hypotheses, (b) visual analysis of partly known data to validate already
drawn hypotheses, and (c) visual presentation of validated findings from the data for the purpose of
dissemination of knowledge gained during the explorative or analytical process. Computer-guided
view selection seems to be a promising tool for addressing all three visualization scenarios, that is,
knowledge gain, knowledge validation, as well as knowledge dissemination.

6.1 ADAPTATION FROM POLYGONS TO VOLUMES
Automatic view selection has been originally designed for polygonal data. Volumetric data sets, in
general, consist of an order of magnitude more data elements as compared to a scene described by
polygons.Therefore, to be able to use view selection approaches with other data types, modifications
to original techniques are necessary. In case of scalar volumetric data, there are essentially two cri-
teria for computation of the most informative viewpoints (i.e., computation time vs. the amount of
processed information). As volume rendering permits to use semi-transparent occlusion, visibility
evaluation of each data element (i.e., voxel), comes with high computational costs. While this is
acceptable when view selection is evaluated during preprocessing, a per-frame view selection calcu-
lation during interactive visualization will significantly drop the performance. Therefore, in such a
case, the visibility has to be computed from a representative subset of the volumetric data.

6.1.1 ISOSURFACES
One of the first approaches in view selection for volume data has been designed for fast evaluation
of viewpoint quality based on the visibility of extracted iso-surfaces or interval volumes [124]. This
approach represents a compromise between surface-based visibility estimation techniques, applied
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to polygons, and purely voxel-based visibility estimation. The algorithm first decomposes the entire
volume into a set of feature components (i.e., surfaces defined as interval volumes). Then, for each
feature component, locally optimal viewpoints are computed using viewpoint entropy for polygonal
data (see Equ. 5.3). A globally optimal viewpoint is defined by the highest global viewpoint entropy,
which is calculated as the weighted sum of per-feature viewpoint entropies Hi(v) (i = 1..n) for
viewpoint v. This importance weighting of feature components can be, for example, the average
opacity of voxels in the interval volume specified by the transfer function αi . Viewpoint quality
considers occlusion among features in the calculation in order to avoid feature overlapping in the
case of the best viewpoints. While evaluating view quality on a specific feature, only the unoccluded
regions of that interval volume are visible to the view selection calculation.

Definition 6.1. The average opacity-weighted feature-driven viewpoint selection is defined by

H(v) =
n∑

i=1

αi∑n
j=1 αj

Hi(v), (6.1)

where the sum of viewpoint entropy Hi(v) for feature i and viewpoint v is weighted by importance
factor which can be proportional to average density values of a feature αi , for example.

This technique performs well during the visibility estimation phase as the computation of
polygonal viewpoint entropy is achieving real-time performance. This can be of considerable ad-
vantage when performance time is critical. However, the approach does not compute visibilities of
the volume but of a set of surfaces representing the volume. Therefore, only a small fraction of the
information contained in the volume is taken into account. Volumetric information is integrated into
the viewpoint estimation process, through an importance weight computed as the average opacity of
the interval volume. Fig. 6.1 shows best and worst views of a set of interval volumes extracted from
the hydrogen data set, including the bounding sphere plot indicating areas of varying viewpoint
quality.

6.1.2 VOLUMETRIC DATA
Visibility estimation using interval volumes enables fast computation of view quality on volumetric
datasets. To compute a precise per-voxel visibility, however, the entire volume has to be considered
in the evaluation. Therefore, viewpoint entropy for volumetric data [8] has been adapted from the
viewpoint entropy approach for polygonal data [135] (see Equ. 5.3). For the probability distribution
function, the area visibility distribution of polygonal faces is replaced by the visual probability qi(v)

of voxel i obtained from the fraction between the voxel visibility νi(v) for a given viewpoint v and
the voxel importance Wi . The term visibility ν denotes the transparency of the material between
the camera and the voxel and is equal to:

νi(v) = 1

Nr

Nr∑
r=1

Ns(r)∏
k=1

(1 − tf (sk).α), (6.2)
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(a) (b)

Figure 6.1: Viewpoint estimation for interval volumes: (a) best and worst views of interval volumes
extracted from a data set containing simulated electron density distribution in a hydrogen atom; (b) the
sphere plot shows the viewpoint quality distribution where bright region encodes low quality viewpoints
and dark region encodes good and informative viewpoints. Worst (top) and best (bottom) views are
indicated by black dots. Used with permission. ([124] © IEEE, 2005.)

where Nr is the number of rays intersecting the voxel i, k is the sample iterator along the ray r from
the first sample s1, which is entering the volume, to the last sample sNs(r) before intersecting the
voxel i. The tf ().α is the opacity transfer function.

The importance distribution can, for example, be defined as the opacity value specified in
the transfer function. This means that more opaque voxels will get more prominence than more
transparent regions. A more advanced voxel relevance function can incorporate shape characteristics
and color in addition to the opacity. The Equ. 6.3 defines the probability distribution function:

qi(v) = νi(v)

Wi

1∑Nv
i=1

νi (v)
Wi

, (6.3)

where Nv is the number of voxels.
The viewpoint entropy of viewpoint v is then analogous to the polygonal case (Equ. 5.3):

H(v) = −
n∑

i=1

qi(v) log qi(v). (6.4)

In addition, this scheme can be extended for the estimation of static viewpoints for time-
varying data. This is realized through conditional entropy where the different random variable
distributions are obtained from neighboring time-steps considering the time series as the Markov
sequence model. The final viewpoint entropy value is a sum of the conditional entropies over the
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entire time series:

H(v) = Hv(t1, t2, . . . , tn)

= H(t1) + H(t2|t1) + . . . + H(tn|t1, . . . , tn−1) (6.5)
= H(t1) + H(t2|t1) + . . . + H(tn|tn−1).

View selection for volumes has been extended to support dynamic viewpoint changes for
static and time-varying data [60] to enable guided flythrough over the most interesting viewpoints.
When the transitional path along the views is defined, the following criteria are considered in the
optimization step: (a) camera should move at a near-constant speed, (b) the view direction should
not change abruptly, and (c) information perceived from the time-varying data should be maximized.

Having evaluated the viewpoint quality for a particular data type, volumetric or polygonal, it
is natural that viewpoints nearby frequently have similar viewpoint qualities. When the visualization
goal is to provide a set of representative viewpoints instead of a single best one, a viewpoint clustering
scheme is needed. Here again information-theoretic measures for clustering views according to
similarity can be used. The viewpoint similarity is computed using the Jensen-Shannon divergence
(Equ. 1.16) and according to these values, views either belong to the same cluster, or in case of strong
dissimilarity, they each belong to a separate cluster. For all clusters, the most representative viewpoint
is selected1. Fig. 6.2 shows a tooth data set from several viewpoints that together capture the most
information about the scene and a static viewpoint on a more complex time-varying shockwave data
set.

6.2 INTEGRATION OF DOMAIN SEMANTICS
Evaluation of viewpoint quality in computer graphics is based on general visibility metrics. In visu-
alization, these metrics are also applicable; however, as the visualization scenario defines what the
user wants to visually analyze, the visibility evaluation can be influenced by these domain scenario
specifics. In the previous section, the adaptation of different data types, typical for visualization tasks,
has been discussed. This section describes how visibility evaluation is extended to serve its purpose
of viewpoint quality evaluation for different visualization tasks.

6.2.1 VISUALIZATION OF MOLECULAR STRUCTURES
Optimal viewpoint selection for the visualization of complex molecular structures is a good example
of where the viewpoint optimality criterion is a property highly dependent on the visualization
task itself. In molecular visualization, a combination of two specific views is interesting in order to
efficiently convey information on the molecular structure [137, 138]. One of these two views provides
the most information about the molecule atoms as well as the distances and angles of the bonds.
In fact, such a condition fulfills the view with the highest entropy value. The second type of view
conveys the ordering and spatial arrangement of structures which determines the physical properties

1See the framework presented in Chapter 5.
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Figure 6.2: View selection for static and time-varying volumes: (top row) four selected views of the tooth
data set from four bounding sphere partitions; (bottom row) time-series of the shockwave data set from
best temporal domain preserving viewpoint. Used with permission. ([8] © IEEE, 2005.)

of the molecules. This type of interesting view on a molecule has a very low viewpoint entropy.
These characteristics are demonstrated in Fig. 6.3 where two different views of the same molecule
are shown. The view with the highest viewpoint entropy shows most of the molecular elements,
and the lowest viewpoint entropy value conveys the information of the molecular structure, such
as symmetry information which is an important property to be communicated for the application
domain.

In case of molecular visualization, we want to measure the amount of information provided
by a single image, which does not cover all the sphere of directions, but only a small sub-region. The
definition of viewpoint entropy (Equ. 5.3) was based on the projected area of polygons on the entire
viewing sphere. To consider only the amount of available image space, the visibility computation of
molecular elements has been modified so that instead of the projected area on the viewing sphere,
the number of pixels of a face Npi

are related to the total count of the pixels Np for all faces Nf
2.The

frustum entropy is similar to initial viewpoint entropy but is more appearance-based as it measures
what can be really seen from one image:

H(v) = −
Nf∑
i=0

Npi

Np
log

Npi

Np
, (6.6)

2For practical reasons, the same implementation has been used to compute the viewpoint quality measures in Chapter 5.
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(a) (b)

Figure 6.3: Images of the same molecule from two different viewpoints: (a) viewpoint with the highest
viewpoint entropy and (b) viewpoint with lowest viewpoint entropy.The combination of these two images
gives better information about the molecular structure. ([137] © Eurographics-IEEE, 2002.)

where i = 0 refers to background.

6.2.2 GUIDED NAVIGATION IN DATA SEMANTICS
In visualization, frequently, a specific region within the data is of more interest than other surrounding
parts. In molecular visualization, the visibility of all structures as well as their structural arrangement
was important. Semantics are present as domain-specific guidelines rather than particular chemical
or physical properties. No special visual emphasis was given to any part of the molecule as the entire
molecule is of viewer’s interest.

In volume visualization, a region of interest (ROI) is defined by interpretation and segmen-
tation operations. Voxels are grouped into clusters forming domain objects. These objects are often
of high interest to the users and good viewpoints are generally those which clearly depict the ob-
ject’s structure. The visualization task can be, for example, to communicate the data interpretation
to another audience. For such a task, viewpoint selection can be utilized to implement high-level
interaction request such as: “Show me object X”. View selection, therefore, should not be based solely
on the visibility of graphic primitives (e.g., voxels). To provide the best view of a certain feature, the
visibility of these objects has to be computed. The simplest and fastest way to compute the opti-
mal viewpoint of domain objects can be along the lines of the feature-driven viewpoint estimation
approach [124].

Importance-driven focus of attention [140] is one example where guided navigation through
pre-classified features in a volumetric data set uses automatic viewpoint selection for setting the view
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to most informative viewpoints on a given object of interest. The object in focus is directly selected
by the user by choosing it from a list of classified objects. A characteristic viewpoint for this object
is selected in combination with a visually pleasing discrimination of the focus from the remaining
context information.By changing the object of interest,both viewpoint settings and visual parameters
are smoothly modified to put emphasis on the newly selected object of interest.The most informative
viewpoints of each structure are pre-computed using viewpoint mutual information (Equ. 5.6). This
measure was used instead of the more common viewpoint entropy as it has better properties when
dealing with view selection for importance-weighted objects within the volumetric data. Viewpoint
mutual information acts as information channel between two random variables, that is, viewpoint
positions and volume objects. For a specific viewpoint position v and set of objects O, VMI expresses
the level of correlation of object visibility with respect to the viewpoint position.The best views of an
object are those with the lowest mutual information. This is in contrast to the view evaluation using
viewpoint entropy, which is maximal for the best views. The low VMI expresses that the viewpoint
change has a small influence on the object visibility, and thus the viewpoint is stable. Similarly, to
Equ. 5.21 for polygonal data, viewpoint mutual information I ′(v; O) for importance-weighted data
objects is defined as:

I ′(v; O) =
∑
o∈O

p(o|v) log
p(o|v)

p′(o)
, where p′(o) = p(o)imp(o)∑

o∈O p(o)imp(o)
, (6.7)

where p(o|v) is the data object o visibility from viewpoint position v and p(o) is the marginal
probability (i.e., the sum of object visibilities from all viewpoints and imp(o) is the importance of
object o). The importance allows flexibly to integrate focusing on object(s) of interest in the view
selection computation. One, two, or more objects can be assigned a high importance value. All these
objects will then have high visibility in the selected viewpoint.

Finding a viewpoint where the characteristics of a specific feature are clearly visible naturally
requires a visibility estimation scheme. Complete visibility information requires ray casting of the
whole data set from various viewpoints, similarly, to the view selection for volumes based on viewpoint
entropy computed from voxels [8]. The visibility computation is based on the opacity contribution
of each voxel, and object visibility is computed as the sum of voxel visibilities corresponding to the
object. Additionally, two weights influence the visibility of an object (i.e., image-space weight and
object-space weight). Image-space weight penalizes the visibility of objects when they are located
outside the image center. Object-space weight assigns higher visibility to objects, which are closer
to the viewing plane and penalizes those that are farther away.

The final object visibility is then mapped to a conditional probability of the object for a given
viewpoint p(o|v). These values are used for the computation of good viewpoints for a given object
by using the viewpoint mutual information weighted with object importance information.

After selecting visual representations of objects and identifying representative viewpoints,
the crucial information to perform interactive focus of attention is available. During the guided
navigation, the object in focus is assigned a higher importance value. This value is directly mapped
to all focusing mechanisms: dense visual style, level of ghosting of cut-away views, and position of
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Figure 6.4: Importance-driven focusing: Smooth guided navigation to focus on the object of interest.
([140] © IEEE, 2006.)

the viewpoint. Thus, the viewpoint transformation is also controlled by the importance distribution,
and its variation during guided navigation smoothly changes to the most informative viewpoint of
the object in focus.

Importance-driven focus of attention guides user’s focus to the object of interest, while still
permitting interactive viewpoint manipulation. Focusing on a specific feature in the human hand
dataset is shown in Fig. 6.4. The viewpoint smoothly changes from the most informative viewpoint
for the entire volume to viewpoint emphasizing the object of interest. As shown, parallel to the
viewpoint change, the focus is discriminated from neighboring structures by using a different visual
style and ghosting is employed to suppress occluding structures.

Guided navigation through semantically-enriched data consisting of anatomical objects and
their textual descriptions can be realized in multiple ways. One approach is, as in the case of
importance-driven focus of attention, by selecting the textual description of a particular object.
However, this link can also be realized in the opposite direction. When a particular view is selected,
the textual description is automatically updated to provide textual information on the object with
best visibility from the user-specified view [49].

Guidance among diagnostically relevant viewpoints for intervention planning in various med-
ical scenarios [81] is an example of how the basic technology of view selection is applied to address
a particular problem in the medical imaging pipeline. The data is first interpreted into anatomi-
cal objects and represented as polygonal meshes. The visibility of objects is calculated from these
extracted iso-surfaces. Good viewpoints are estimated using many parameters with adjustable in-
fluence: object entropy, importance of occluders, size of unoccluded surface, preferred view region
by surgeons, distance to viewpoint, and viewpoint stability. The choice of parameters demonstrate
as how tightly viewpoint estimation is bound to specific domains: the distance to important feature
defines importance of other features (e.g., neck muscles close to lymph node which is in focus).
Furthermore, guided navigation supports zooming to the object of interest. Guided navigation of
lymph nodes for neck intervention planning is shown in Fig. 6.5.

Sometimes domains utilizing visualization have well-defined standardized (also called canon-
ical) views and clear rules for their identification. Usually these rules are based on semantic informa-
tion which is enriching the raw data. View selection for molecular visualization was a very data-near
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Figure 6.5: Semantics-driven view selection: Guided navigation through features in the human neck
data set assists studying the correspondence between focus objects (i.e., lymph nodes and surrounding
tissue such as neck muscle). Used with permission. ([81] © Eurographics-IEEE, 2007.)

approach, where rough structural semantics were assigned to viewpoint entropy values, which has
steered the view selection process. However, as the optimal viewpoint is still not very well defined
in that case, the use of information-theoretic measures is the most effective approach in selection of
informative views on the molecule. When this definition would become more domain-specific, the
utility of information-theoretic measures will become lower.

The current trend in application-oriented visualization research indicates that knowledge-
assisted approaches are a promising direction for optimal viewpoint estimation.This is especially true
for domains such as medicine where anatomical structures already have well defined canonical views,
which are also related to particular treatment procedures. Approaches, such as viewpoint selection
for intervention planning [81] or the LiveSync [67] interaction metaphor, demonstrate this trend in
medical visualization.The latter mentioned allows the automatic generation of meaningful 3D views
based on the selection of a point in a 2D slice. The view selection has several different criteria of
optimality, which are combined as a sum or multiplication of the evaluated weights. However, these
techniques are fine-tuned for specific applications and are not easily transferable to other scenarios.

From the state-of-the-art view selection techniques, only the information-theoretic measures
are truly application-independent. Their potential in view selection utilization is mainly for the
structures in the data, which do not have well-defined canonical views when the structure of studied
phenomenon is unknown, and when data has no associated semantics that would express user’s
interest or domain specifics.

A scenario which matches these characteristics and where the visualization is already employed
to provide insights, is visualization of computer simulations. Simulations can, for example, originate
from a broad spectrum of disciplines within natural sciences. Very often, they are highly dependent
on the choice of input parameters. The user often does not have a clear understanding how these
parameters influence development of particular phenomenon over time. Information-theoretic view
selection algorithms can be, in such a case, employed to generate fast previews of simulation runs.
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These views are selected without a-priori knowledge of what the simulation data sets represent but
provide a good guess of what could be interesting for the human observer.

View selection for visualization of simulations is just one example of a promising application.
In general, automatic technique for obtaining good views on complex data is a useful tool and
should be an integrated part of an entire visualization tool-set provided by various visualization
toolkit libraries. In order to keep general applicability of such a tool-set, the view selection approach
has to be general, without being tailored to a very specific data or application scenario. In such a
case, view selection based on information-theoretic measures is the best way to cover all possible
spectrum of scenarios where visualization could be employed.
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C H A P T E R 7

Viewpoint-based Geometry
Simplification

Currently, polygonal models dominate interactive computer graphics. Polygons are the simplest
primitive and lead to regular rendering algorithms that fit well in hardware. Unfortunately, the
complexity of these models seems to grow faster than the ability of graphics hardware to render
them interactively. Polygonal simplification offers one solution to this problem.

Most common polygonal simplification methods use some technique based on a geometric
distance as a measure of quality between an original mesh and the one obtained from simplification.
With these methods, we can achieve meshes that are very similar to the original. In general, one
of the most important advantages of geometry-oriented methods is their low computational cost.
This fact makes them suitable for scanned models since these models are composed of thousands
or even millions of polygons. In addition, geometric methods are very useful in applications that
require exact geometric tolerances with regard to the original model. Examples of such applications
include collision detection and path planning for part insertion and removal.

In contrast, image-based simplification methods carry out a simplification guided by dif-
ferences between images more than by geometric distances. In other words, their goal is to create
simplified meshes that appear similar according to visual criteria.These methods present a high com-
putational cost compared to geometric ones. The applications that can benefit from image-based
methods are those in which the main requirement is visual similarity. Examples of such applications
are video games, vehicle simulations, and walkthroughs.

7.1 BACKGROUND
The most important improvement in geometry-oriented simplification methods in recent years
was the incorporation of mesh attributes such as color, normals, and textures. For example, Hoppe
extended his initial work [55] by proposing a new quadric metric that includes colors and texture
coordinates [56], and the QSlim algorithm [40] was also extended with those attributes [41]. Cohen
et al. [18] developed an algorithm based on edge collapses that samples the vertex position, normal,
and color attributes of the original mesh and then converts them to normal and texture maps. This
algorithm is based on a texture deviation metric. Lately, a general method to incorporate texture
information for edge collapse-based simplification algorithms has been proposed in [45].

Lindstrom et al. [74] were the first to address the problem of visual similarity by developing a
pure image-based metric. Basically, their method determines the cost of an edge collapse operation
by rendering the model from several viewpoints. The algorithm compares the rendered images to
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the original ones and adds the mean-square error in luminance across all the pixels of all the images.
Then, all the edges are sorted by the total error induced in the images, and after that, the edge collapse
that produces the least error is chosen. Lindstrom et al. used 20 viewpoints in their implementation
to compute the error. The main advantage of this method is that the metric provides a natural way
to balance the geometric and shading properties without requiring the user to perform an arbitrary
weighting of them. On the other hand, its main disadvantage is the high computational cost.

Karni et al. [63] proposed a metric to capture the visual difference between two approximations,
the average of the norm of the geometric distance between models and the norm of the Laplacian
difference. By introducing the Laplacian component, some visual properties that the human eye
appreciates such as smoothness are better captured.

Luebke et al. [76] presented a method to perform a view-dependent polygonal simplification
using perceptual metrics. These metrics derive from a measure of low-level perceptibility of visual
stimuli in humans. Later on, Williams et al. [142] extended this work for lit and textured meshes.

Zhang et al. [147] proposed a new algorithm that takes visibility into account. This approach
defines a visibility function between the surfaces of a model and a surrounding sphere of cameras.
The number of cameras increases both accuracy and calculation time. Zhang et al. used up to 258
cameras. In order to guide the simplification process, they combined their visibility measure with
the quadric measure introduced by Garland et al. [40].

Lee et al. [71] introduced the idea of mesh saliency as a measure of regional importance
for graphic meshes. This measure was incorporated into mesh simplification. Briefly, this approach
consists in generating a saliency map, and then simplifying by using this map in the QSlim algo-
rithm [147]. The new edge collapse cost is that of the quadric multiplied by the saliency of this
edge.

7.2 VIEWPOINT-BASED ERROR METRIC

As we have seen in Chapter 5, information-theoretic-based viewpoint selection metrics have been
successfully applied in different areas of computer graphics, such as scene understanding, virtual
exploration and volume visualization. In this chapter, viewpoint entropy (VE, Equ. 5.3), viewpoint
Kullback-Leibler distance (VKL, Equ. 5.7), and viewpoint mutual information (VMI, Equ. 5.6) are
used to compute the simplification error.

In this section, a new error metric based on information-theoretic viewpoint measures is
presented.This metric can be used to evaluate the cost of a decimation operation.The edge collapse is
chosen as the decimation operation, although any other simplification operation could be performed
such as removing a vertex, replacing a cluster of vertices by a single one, and contracting an edge.

Viewpoint quality measures quantify the accessible information about an object from a partic-
ular viewpoint. For instance, given a viewpoint, we can consider that if the simplification is produced
near the silhouette, it will probably change the shape of the object.Therefore, if the goal is to preserve
the silhouette of the model, we should try to reduce this change. In addition, in order to preserve the
global appearance of the model, several equidistant viewpoints surrounding the model are required,
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so that the whole model will be fully covered. This distribution guarantees a uniform simplification.
Taking into account these facts, the variation of a viewpoint quality measure for each viewpoint (such
as VE, VKL, and VMI) can provide us with an error metric to guide the simplification process:

Definition 7.1. The simplification error deviation for an edge collapse e from all viewpoints V is
defined by

Ce =
∑
v∈V

|Iv − I ′
v|, (7.1)

where Iv represents the viewpoint quality measure before the edge collapse e and I ′
v afterwards.

Clearly, the error associated with the simplification of an edge depends largely on the measure-

ment used. The first work following this idea and uses the entropy to guide the simplification
process [12]. Subsequently, there are studies on other measures such as mutual information [14]
and f-divergences [13]. In this later work, there is an analysis about the following f-divergences:
Kullback-Leibler, Hellinger, and Chi-Square.

7.2.1 ANALYSIS
The viewpoint quality measures mentioned in the previous section are based on the distribution of
areas of polygons seen from a viewpoint. The area of the background is also included as the polygon
number 0 in VE and VMI.This fact allows VE and VMI to better preserve the silhouette. But maybe
the main implication of considering the projected areas in VE and VMI is that the hidden geometry
will be initially removed, because if a polygon is not seen from any point of view, its simplification
will not introduce error. In the following analysis, we focus our attention on the behavior of VMI.

Fig. 7.1 shows the original test model and how the viewpoints are distributed around it.These
viewpoints are associated with the vertices of the cube in which the object is inscribed. Fig. 7.2 shows
the mesh from four viewpoints around the cube. Only 4 viewpoints are shown because the rest are
symmetric. As it can be seen, the different viewpoints have the same VMI (I (v; Z)=0.004097 where
v = {1, .., 8}). This is because the object is equally seen from each viewpoint. In more complex
models, every viewpoint will usually have a different VMI.

Fig. 7.3 and Fig. 7.4 illustrate how VMI can be employed to conduct the simplification.
Fig. 7.3 shows the test model after performing the best edge collapse e and Fig. 7.4 after performing
the worst edge collapse e′. The best edge collapse corresponds to the lowest simplification error Ce

(Equ. 7.1) and the worst to the highest. In the examples shown in Fig. 7.3.a and Fig. 7.4.a, all VMI
values decreased after an edge collapse with respect to Fig. 7.2.a. In these cases, the visible area did not
increase, but in a more general case, it is possible that after an edge collapse some previously hidden
parts of the mesh may now appear, thus increasing the visible area. If we pay attention, for instance,
to Fig. 7.2.b and compare this same viewpoint after the best edge collapse (see Fig. 7.3.b), it can be
appreciated that although the number of triangles NT is reduced to 8, the visible area remains the
same. The simplification error for this viewpoint using VMI is Ce=0.004097-0.003651=0.000446.
If we analyze the same viewpoint in the worst edge collapse operation (see Fig. 7.4.b), it can be
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Figure 7.1: Model example consisting of ten triangles. The vertices of the cube represent the position
of eight cameras pointing toward the center of the figure. These cameras allow us to completely view the
object and are used to demonstrate the behaviour of the proposed measures. ([14] © Elsevier Ltd, 2009.)

(a) (b) (c) (d)

Figure 7.2: Four views of the test model in Fig. 7.1 with I (v; Z)=0.004097, where v ∈ {1, .., 8}. Number
of triangles NT = 10. ([14] © Elsevier Ltd, 2009.)

seen that although the number of triangles is less reduced, the total visible area has decreased. The
simplification error for this viewpoint is Ce′=0.004097-0.003372=0.000725, which is higher than
the error committed in the best edge collapse.

If we consider the VKL, due to the fact that it uses the actual area of polygons, after an edge
collapse, normally one or two polygons will be removed, thus decreasing the total actual area. This
will change the value for VKL after an edge collapse. Therefore, the error committed will be distinct
from zero. The consequence is that even hidden polygons will have error when simplifying and will
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(a) (b) (c) (d)

Figure 7.3: Four views of the test model in Fig. 7.1 after performing the best edge collapse e using VMI.
NT = 8 and Ce = 0.002573. ([14] © Elsevier Ltd, 2009.)

(a) (b) (c) (d)

Figure 7.4: Four views of the test model in Fig. 7.1 after performing the worst edge collapse e′ using
VMI. NT = 9 and Ce′ = 0.006228. ([14] © Elsevier Ltd, 2009.)

not be completely removed during the initial steps of the algorithm. As hidden polygons will be
removed according to their actual area, the smallest polygons will be simplified first, preserving the
main features of the object in its internal parts.

7.3 SIMPLIFICATION ALGORITHM

The simplification process we use, like many other simplification algorithms, is based on the edge
collapse operation. However, we use the half-edge collapse operation. According to this, the remaining
vertex for an edge collapse e(u, v) is vertex u or v (see Fig. 7.5.a). By using half-edge collapses, it
is possible to reuse the simplification process in order to generate multiresolution models. These
models can use the current hardware in a more efficient way because no new vertices are added to
the original model. Furthermore, the half-edge representation is useful for progressive transmission.
The main disadvantage is a slight loss of quality of the final mesh, although the complexity of the
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simplification algorithm is reduced because we do not have to compute the position of the new
vertex v′ resulting from the edge collapse. In any case, the general edge collapse operation can be
applied to the algorithm. However, a strategy is required to compute the position of the resulting
vertex.

(a) The half-edge collapse operation (b) Edges adjacent to vertices ad-
jacent to vertex v.

Figure 7.5: In this example edge e is collapsed into vertex u (see e(v, u)), but it is also collapsed into v

(see e(u, v)). The triangles t10 and t5 are removed. ([14] © Elsevier Ltd, 2009.)

Brute force selection of edges can introduce mesh inconsistencies. In order to avoid these
artifacts, we only take into account the edges which have at most two adjacent polygons, that is 2-
manifold edges. And we also consider boundary edges, that is, edges which have one single adjacent
polygon.

The best half-edge collapse is the decimation operation chosen in the algorithm. Note that
the cost of collapsing vertex u to v may be different from the cost of collapsing v to u. In this strategy,
in order to determine the best orientation of an edge collapse, we would have to render the two pos-
sibilities and compute that error. To avoid this computational cost, we used the approach developed
by Melax [78] that takes into account polygon normals. Within this approach, the two orientations
e(u, v) and e(v, u) are calculated and finally the orientation that produces a minor change in the
curvature of the local region around the edge collapse is applied. Hence, the simplification error
deviation is only computed for that orientation. In Fig. 7.6, we show the simplification algorithm.
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At each iteration, the edge cost has to be evaluated for the entire set of remaining edges. An
edge collapse in our algorithm could, in principle, affect the cost of any remaining edge. But this
does not always happen to each edge. Thus, at each step, we only choose a small group of edges that
are affected by an edge collapse, and then the cost is recalculated for these edges. These edges are
the ones that are adjacent to the vertices that, in turn, are adjacent to the vertex v resulting from a
half-edge collapse (see Fig. 7.5.b).

// Compute initial viewpoint selection
// measure for mesh M

Compute Iv, where v = {1, .., n}

// Build initial heap of edge collapses
for(e ∈ M )

Choose the best orientation of e

Perform collapse e

Compute Iv, where v = {1, .., n}
Compute collapse cost Ce = ∑n

v=1 |Iv − I ′
v |

Insert the tuple (e, Ce) in heap h

Undo collapse e

end for

// Update mesh M

while (heap h not empty)
Delete from heap h edge e with lowest Ce

Perform collapse e

Recalculate cost for the neighborhood of e

and update their location in heap h

end while

Figure 7.6: Pseudo-code of the viewpoint-based simplification algorithm.

7.4 EXPERIMENTS

We show some tests with low complexity models from CAD programs. All models were simplified
on a Pentium Xeon 2GHz with 1Gb RAM and an NVIDIA 7800-GTX 512Mb graphics card
from 20 viewpoints. The results obtained with the viewpoint-driven simplification method were
compared to the results with QSlim v2.0 [40], using the best half-edge collapse, at the same level of
simplification. We chose QSlim because it is a well-known pure geometry-based algorithm, freely
available, and produces high quality simplifications.The images shown were obtained using different
viewpoints from those used during the simplification process.

We have implemented the root mean square error (RMSE) of the pixel-to-pixel image differ-
ence defined in [74] to measure the mean visual error between the original and the simplified model.
This error was taken using 24 viewpoints and 512 × 512 resolution images. We must emphasize
that each viewpoint was different from the one used during the simplification and the resolution
was higher.
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We measured the geometric error using the mesh comparison tool called Metro v4.06 [17].
This tool measures the Hausdorff distance between two meshes.

7.4.1 VIEWPOINT ENTROPY

Table 7.1: Errors measured for the models shown in Fig. 7.7 using VE.
Model Triangles RMSE Metro

Original Final VE QSlim VE QSlim
Fish 815 100 11.40 22.83 0.05 0.09
Galleon 4,698 500 17.74 36.84 0.11 0.22
Octopus 8,468 500 17.35 25.84 0.09 0.16
Unicycle 13,810 1,000 10.32 11.06 0.03 0.07

Table 7.1 presents the error committed in the experiments using VE. It analyzes the visual
error and the geometric error.The obtained results are clearly better than with the geometric method
QSlim. For example, the geometric error committed in the Galleon and Unicycle models using VE
is 50% less than with QSlim.

Fig. 7.7 shows the results for the analyzed models.The VE achieves much better simplification
than QSlim. For example, in the Fish model the tail and the mouth shape is kept better, and in the
Galleon model, the same can be said for the sails and the masts.

Fig. 7.8 shows how VE acts at several degrees of simplification for the Galleon model.We have
measured the RMSE and the geometric error. As shown in Fig. 7.8.a, if the level of simplification
is increased, the difference between VE and QSlim becomes larger and the visual quality of VE is
even much higher. The geometric error of VE is also lower than QSlim, except during the very first
stages as can be observed in Fig. 7.8.b. This could be accounted for by the fact that VE is a global
measure, and it is possible that, at these stages, QSlim could often be better because it evaluates the
error locally.

7.4.2 VIEWPOINT MUTUAL INFORMATION

Table 7.2: Results for VE and VMI measuring visual error (RMSE) and simpli-
fication time in seconds. Models ares shown in Fig. 7.10.

Model Triangles RMSE Time
Original Final VE VMI VE VMI

Shark 734 80 14.78 14.65 10.24 10.23
Galo 6,592 500 9.05 8.38 141.75 142.24
Greekship 9,510 600 13.37 12.85 241.78 246.72
Elephant 31,548 900 13.75 11.60 2,197.67 2,309.79



7.4. EXPERIMENTS 125

(a) Original Fish
model NT = 815

(b) VE NT = 100 (c) QSlim NT = 100

(d) Original Galleon
model NT = 4, 698

(e) VE NT = 500 (f) QSlim NT = 500

(g) Original Octopus
model NT = 8, 468

(h) VE NT = 500 (i) QSlim NT = 500

(j) Original Unicycle
model NT = 13, 810

(k) VE NT = 1, 810 (l) QSlim
NT = 1, 810

Figure 7.7: Comparative results using VE and QSlim.The corresponding errors can be seen in Table 7.1.
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(a) (b)

Figure 7.8: Errors measured for the Galleon model at different levels of simplification using QSlim and
VE.

First of all, in this section, we perform a comparison between VE and VMI for the models
in Fig. 7.10; the results of which appear in Table 7.2. As shown in this table, the visual error is
lower in VMI and the computational cost is a bit lower in VE. This difference lies in the calculation
performed to obtain the mean projected area of the polygons, that is not necessary in VE.

Table 7.3: Results for QSlim and VMI measuring visual error (RMSE),geometric error (Metro)
and simplification time in seconds. Models are shown in Fig. 7.10.

Model Triangles RMSE Metro Time
Original Final QSlim VMI QSlim VMI QSlim VMI

Shark 734 80 33.41 14.65 0.20 0.04 0.02 10.23
Galo 6,592 500 12.40 8.38 0.05 0.01 0.08 142.24
Greekship 9,510 600 17.20 12.85 0.21 0.09 0.11 246.72
Elephant 31,548 900 25.32 11.60 0.08 0.03 0.52 2,309.79

Table 7.3 depicts the visual and geometric error for QSlim and VMI, and the simplification
time. Clearly, the visual error committed with VMI is quite low compared to QSlim, and can even
be 50% lower, as shown in the case of the Shark and the Elephant models.

The obtained results for the geometric error (Metro) with VMI are clearly better than with
QSlim. For example, the geometric error committed in the Galo and Greekship models using VMI
is 50% less than with QSlim and even 75% less in the Shark model. However, it is possible that in
particular models this error will be slightly higher than with QSlim.The reason for this is because the
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Figure 7.9: VMI operating at the first stages of simplification (NT = 7, 400) for the Simpletree model.
VMI is able to remove all the hidden interiors.

model has lots of hidden interiors and these are completely removed, thus increasing the geometric
error but not the visual one.

Results in Table 7.3 also allow us to analyze the computational cost. This cost is proportional
to the complexity of the model and the final number of triangles demanded. However, the QSlim
algorithm is extremely fast. Its times for these models are less than one second. However, despite the
high computational cost, VMI produces high quality simplifications according to visual similarity.

Fig. 7.10 shows the results for different models. For the Shark model VMI achieves much
better simplification than QSlim.The fins, the head, and the tail are kept better in VMI than QSlim.
The tail and the crest of the Galo models are kept better in VMI. The oars of the greekship model
are kept much better in VMI, as well as the rope that comes from the mast, while in QSlim the rope
is removed completely. About the Elephant model, VMI keeps the shape of the ears and the tusks
much better than QSlim. In conclusion, VMI attains a better simplification than the geometric
method QSlim. The difference between VMI and QSlim is bigger if the model presents lots of
hidden interiors, in which case VMI can accomplish much better simplifications.

Fig. 7.9 shows how VMI works at very early simplification levels. In this case, we analyze
the Simpletree model since it presents hidden interiors in the branches which are in contact with
the tree top. The Simpletree model was simplified at around 66% (NT = 7, 400). As shown in this
figure, VMI accomplishes a great level of simplification in this region. At this level, most of the
simplifications focused on hidden interiors.

7.4.3 VIEWPOINT KULLBACK-LEIBLER DISTANCE
Table 7.4 depicts the visual and geometric error using VKL compared with VE and QSlim. Clearly,
the visual error committed with VKL is quite low compared to QSlim, and can even be 50% lower, as
shown in case of the Fish and the Elephant model. However, the visual error is slightly improved in
VE. This is due to the fact that VE removes completely the hidden interiors and non-visible regions
of the model increasing the visual quality.
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(a) Original Shark
model NT = 734

(b) QSlim NT =
80

(c) VMI NT = 80

(d) Original
Galo model
NT = 6, 592

(e) QSlim NT =
500

(f) VMI NT =
500

(g) Original Greek-
ship model NT =
9, 510

(h) QSlim NT =
600

(i) VMI NT = 600

(j) Original
Elephant model
NT = 31, 548

(k) QSlim NT =
900

(l) VMI NT =
900

Figure 7.10: Comparative results using VMI and QSlim. The corresponding errors and times can be
seen in Table 7.3. ([14] © Elsevier Ltd, 2009.)
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(a) Original Shark
model NT = 734

(b) QSlim NT = 80 (c) VE NT = 80 (d) VKL NT = 80

(e) Original Big-atc
model NT = 13, 594

(f) QSlim NT = 1, 000 (g) VE NT = 1, 000 (h) VKL NT = 1, 000

(i) Original Simpletree
model NT = 11, 136

(j) QSlim NT = 600 (k) VE NT = 600 (l) VKL NT = 600

Figure 7.11: Comparative results for QSlim, VE, and VKL. First column shows the original model,
second column the model simplified with QSlim, third column with VE, and fourth column with VKL.
([14] © Elsevier Ltd, 2009.)

The geometric error for VKL is better in all the models than for the QSlim method and VE.
For example, the geometric error committed in the Galo, the Simpletree, and the Big_atc models
using VKL is at least 75% less than with QSlim. Fig. 7.12 shows the Al Capone model rendered with
transparency. This model has lots of hidden interiors. For instance, the hidden joints of the arms
and the hip are preserved better with VKL (see Fig. 7.12.d ) whereas with VE (see Fig. 7.12.c) these
interpenetrating parts are partially removed. Therefore, the approximations produced with VKL
preserve the interior regions better than VE and, consequently, present a lower geometric error.
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(a) Original model (b) QSlim
NT = 1, 000

(c) VE NT = 1, 000 (d) VKL NT = 1, 000

Figure 7.12: The Al Capone model rendered with transparency. Image (a) shows the original model, (b)
the model simplified with QSlim, (c) with VE, and (d) with VKL.

(a) (b) (c)

Figure 7.13: Errors and times measured for some models simplified with VKL using different number
of viewpoints.

As shown in Table 7.5, the computational cost is proportional to the complexity of the model
and the desired number of triangles. As we have seen previously, the QSlim algorithm is extremely
fast.The reader can observe also that VE is faster than VKL due to the fact that VE does not have to
compute the actual areas for the polygons, and its initial value can be updated at every simplification
step because the total projected area is the image resolution. VKL considers the total actual area
and this area changes at every simplification. Accordingly, VKL must be recomputed. In conclusion,
VKL improves the geometric error without decreasing significantly the visual quality and can be
useful in many applications.
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Table 7.4: Errors for some models using QSlim, VKL and VE.
Model Triangles RMSE Metro

Original Final QSlim VE VKL QSlim VE VKL
Fish 815 100 22.83 11.57 12.98 0.09 0.03 0.03
Galo 6,592 500 12.40 9.34 10.48 0.05 0.03 0.01
Al Capone 7,124 1000 17.66 11.47 12.07 0.03 0.08 0.03
Simpletree 11,136 600 20.73 16.98 18.04 0.11 0.13 0.04
Big_atc 13,594 1000 16.50 15.97 15.44 0.08 0.05 0.03
Elephant 31,548 900 25.32 13.18 13.40 0.08 0.14 0.05

Table 7.5: Simplification time (seconds) for some models using QSlim,
VE and VKL.

Model Triangles Time
Original Final QSlim VE VKL

Fish 815 100 0.03 10.01 11.31
Galo 6,592 500 0.08 141.75 237.30
Al Capone 7,124 1000 0.08 150.90 273.18
Simpletree 11,136 600 0.20 332.49 605.49
Big_atc 13,594 1000 0.27 535.23 835.88
Elephant 31,548 900 0.52 2,197.67 4,016.78

Figs. 7.11.a-d show the results for the Shark model. The fins, the head, and the tail are kept
better in VKL and VE than in QSlim. Figs. 7.11.i-l show the Simpletree model. The roots at the
base of the trunk are kept much better in VKL and VE and even both are able to keep the tree top
better than QSlim. To sum up, VKL and VE attain better simplification than the quadric method
QSlim. The difference between VKL and VE is noticeable if the model presents hidden interiors.
In such a case, VE can accomplish a slightly better visual simplifications at the expense of increasing
the geometric error since it may remove completely those hidden interiors (see Fig. 7.12).

Some experiments with more viewpoints for some of the test models are shown in Fig. 7.13.
The different viewpoint configurations correspond to the vertices of Platonic solids.This guarantees
that the viewpoints are distributed uniformly. The last configuration (42 viewpoints) was obtained
by subdivision. The visual and the geometric error is analyzed in this figure together with the
computational cost. Both visual and geometric errors hardly improve when the number of cameras
increases from 20 to 42. Nevertheless, the computational cost is about twice as high (see Fig. 7.13.c).
Therefore, we believe that 20 viewpoints are a good compromise between quality and efficiency.The
two other measures tested in this section (VE and VMI) display the same behavior when different
number of viewpoints are considered.
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Summary
We have presented in this book several applications of Information Theory (IT) to Computer

Graphics. The applications fall broadly into two categories: the mapping of the problem to an
information channel, as in radiosity and viewpoint applications, and the direct use of measures as
entropy, Kullback-Leibler distance, Jensen-Shannon divergence, and f-divergences, to evaluate the
homogeneity of a set of samples and build the corresponding oracle. Sometimes both approaches
are used in combination. Other interesting applications come from the hierarchical properties of the
entropy and the information bottleneck method. They allow us to progressively extract information
from a hierarchical structure.

Do the presented applications exhaust the catalog of prospective utility in computer graphics?
Obviously not. As explained above, whenever we can map a problem to an information channel,
we can use the nice tools provided by IT to study the channel. Whenever there is a question of
homogeneity, upon which an oracle depends, IT measures can be tried. A question arises: why
IT tools and measures should work well? The answer is fundamentally simple: we are measuring
information,be it geometrical or physical, and IT tools are specially designed to measure information.
The decomposition property of the entropy, which was one of its basic required properties for its
definition,captures, for instance, the scalability of information along a tree.A nice result of using these
tools is that unforeseen meaningful relationships and quantities can be obtained. Take, for instance,
the channel paradigm applied to viewpoint selection. Although the mapping was first thought to be
between viewpoints and polygons in an object, by reversing the channel new properties were found.

Some future applications obviously come to mind, as they are a direct translation from instance
of pixels to voxels.Take the simplification of a polygonal model in Chapter seven.This can be ported
to simplification of a volume, in the same way that the information channel in Chapter five can be
ported to the information channel for volume visualization in Chapter six. Other applications are
perhaps not so obvious. Following with the volume visualization example, consider the information
contained in a volume dataset. To visualize it, we need to fix a transfer function. There are infinite
possibilities, from which many of them will be redundant, and others will not give any meaningful
information at all. If the problem is presented as the extraction of information from a dataset,how can
we then use the IT tools at hand to obtain the best informative transfer functions in an automatic
way? Of course, for a well established context in volume rendering, such as some medical image
datasets, there is already a set of known more informative data transfer functions. But automatic
selection could be useful for volume datasets for which we do not have a priori information.
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adaptive
∼ sampling, 66, 67
∼ stratified sampling, 72

algorithm, 70
sampling ∼, 69
simplification ∼, 121

canonical view, 83, 100, 113
channel

color ∼s, 59
continuous information ∼, 49

Chi-square distance, 16, 43
chord complexity, 49
classic

∼ contrast, 73
color

∼ channels, 59
∼ quality map, 61

communication channel, 1, 5
complexity, 48, 50

inner 2D-shape ∼, 52
inner 3D-shape ∼, 49, 50
scene visibility ∼, 47
statistical, 30

concavity, 8
conditional entropy, 4, 86

continuous ∼, 13
conditional probability, 4
confidence

∼ test, 74
continuous

∼ information channel, 49

continuous scene visibility mutual information,
32, 34

contrast
classic ∼, 73
entropy-based ∼, 74
importance-weighted ∼, 73
∼ map, 67
pixel ∼, 65, 66, 70, 73
pixel channel ∼, 63
pixel channel binary ∼, 63
pixel color ∼, 63
pixel color binary ∼, 63
pixel geometry ∼, 64
pixel geometry binary ∼, 64

convexity, 8

data processing inequality, 10
decimation operation, 122
density

global line ∼, 47
discrete scene radiosity entropy, 29
discrete scene radiosity mutual information, 29
discrete scene visibility mutual information, 26,

34
discretisation error, 34

visibility ∼, 39
dissimilarity

viewpoint ∼, 91
distance

Chi-square ∼, 16, 43
geometric ∼, 117
Hellinger ∼, 17, 43
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Kullback-Leibler ∼, 6, 16, 42, 87
viewpoint Kullback-Leibler ∼, 118, 127

distribution
shape complexity ∼, 49

divergence
information ∼, 6
informational ∼, 6
Jensen-Shannon ∼, 10, 91, 99

dual mutual information, 53
dual-object, 53

edge collapse, 121
entropy, 1, 3, 60

binary ∼, 4
conditional ∼, 4, 86
continuous ∼, 13
∼ density, 11
differential ∼, 13
discrete scene radiosity ∼, 29
frustum ∼, 110
Harvda-Charvát-Tsallis ∼, 18
image plane channel ∼, 59
image plane geometry ∼, 62
joint ∼, 4
normalized scene visibility ∼, 28
pixel ∼, 59
pixel channel ∼, 60
pixel color ∼, 59
pixel geometry ∼, 59, 62
∼ rate, 11
relative ∼, 6
scene visibility ∼, 26
scene visibility joint ∼, 26
scene visibility positional ∼, 26
Shannon ∼, 1, 57
viewpoint ∼, 85, 107, 108, 110, 118, 124,

126, 127
entropy-based

∼ contrast, 74

error
discretisation ∼, 34
geometric ∼, 124, 126, 129
simplification ∼, 118
visual ∼, 124, 126

extended viewpoint mutual information, 102

f-divergence, 16, 41, 57, 119
filter

∼ing, 69
focus of attention, 111
form factor, 21, 47

patch-to-patch ∼, 21
point-to-point ∼, 20

frustum entropy, 110

geometric distance, 117
geometric error, 124, 126, 129
geometry

∼ quality map, 62
sampling ∼, 69

geometry-oriented simplification, 117
global illumination, 19
global line

∼ density, 47
∼s, 23, 32, 47, 49, 52, 54

grouping property, 2
guided navigation, 113

half-edge collapse, 121, 123
Hellinger distance, 17, 43
hierarchical radiosity, 22, 38, 41
homogeneity, 57, 59, 60, 62, 76

pixel ∼, 57

image
piecewise-continuous ∼, 73
∼ plane channel entropy, 59
∼ plane geometry entropy, 62

image-based simplification, 117
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importance, 60, 70, 85, 101, 107, 112
∼s, 63
∼ sampling, 72

importance-weighted contrast, 73
inequality

data processing ∼, 10
divergence ∼, 6
information ∼, 6
Jensen’s ∼, 8
log-sum ∼, 9

information, 1, 3, 12, 57
mutual ∼, 1, 6, 86
shared ∼, 7
∼ source, 1
∼ transfer, 38

information bottleneck method, 15
agglomerative ∼, 15

information channel, 5, 15, 25, 84
informative viewpoint, 105, 106
initial sampling, 69
inner

∼ 2D-shape complexity, 52
∼ 3D-shape complexity, 49, 50
∼ shape complexity, 48

Jensen’s inequality, 8
Jensen-Shannon divergence, 10, 91, 99
joint entropy, 4
joint probability, 4

Kullback-Leibler distance, 6, 16, 42, 87
viewpoint ∼, 87

local lines, 23, 32
log-sum inequality, 9

map
color quality ∼, 61
contrast ∼, 67
geometry quality ∼, 62

marginal probability, 4
Markov chain, 24, 25
molecular visualization, 109
Monte Carlo, 52
mutual information, 1, 6, 53, 86

continuous ∼, 13, 14
continuous scene visibility ∼, 32, 34
discrete ∼, 14
discrete scene radiosity ∼, 29
discrete scene visibility ∼, 26, 34
extended viewpoint ∼, 102
Harvda-Charvát-Tsallis ∼, 18
normalized scene visibility ∼, 28
polygonal ∼, 97
viewpoint ∼, 86, 100, 112, 118, 126

normalized scene visibility entropy, 28
normalized scene visibility mutual information,

28

oracle, 22, 66
outer

∼ shape complexity, 53

patch-to-patch form factor, 21
piecewise-continuous

∼ image, 73
pixel

∼ channel binary contrast, 63
∼ channel contrast, 63
∼ channel entropy, 60
∼ channel quality, 60
∼ color binary contrast, 63
∼ color contrast, 63
∼ color entropy, 59
∼ color quality, 61
∼ contrast, 65, 66, 70, 73
∼ entropy, 59
∼ geometry binary contrast, 64
∼ geometry contrast, 64
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∼ geometry entropy, 59, 62
∼ geometry quality, 62
∼ homogeneity, 57

point-to-point form factor, 20
polygonal dissimilarity, 99
polygonal models, 117
polygonal mutual information, 97
polygonal saliency, 99, 101
polygonal simplification, 117
probability density function, 13

quality, 60
pixel channel ∼, 60
pixel color ∼, 61
pixel geometry ∼, 62

radiance, 57
radiosity, 19

hierarchical ∼, 22, 38, 41
radiosity equation, 20
random chords, 47
random process, 1
random variable, 1, 3

continuous ∼, 13
discrete ∼, 3

random walk, 24, 25
ray-tracing, 76
reconstruction, 67, 69
refinement

∼ criteria, 73
∼ criterion, 22, 38, 66

chi-square, 77
Hellinger, 77
Kullback-Leibler, 77

∼ test, 69
∼ tree, 69

relative entropy, 6
rendering equation, 19
representative view, 83

resampling, 69

saliency, 100
polygonal ∼, 99, 101
viewpoint ∼, 100

sampling, 67
adaptive ∼, 66, 67
adaptive stratified ∼, 72
∼ algorithm, 69
∼ geometry, 69
importance ∼, 72
initial ∼, 69
re∼, 69
super∼, 66

scene
∼ visibility complexity, 47

scene complexity, 30
scene visibility entropy, 26
scene visibility joint entropy, 26
scene visibility positional entropy, 26
scientific visualization, 105
Shannon entropy, 57
shape complexity, 47, 48

∼ distribution, 49
inner ∼, 48
outer ∼, 53

shape descriptor
∼s, 47

simplification
geometry-oriented ∼, 117
image-based ∼, 117
polygonal ∼, 117

simplification algorithm, 121
simplification error, 118
stability, 89
stationary distribution, 24
stochastic process, 11
supersampling, 66
surprise, 12
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test
confidence ∼, 74
refinement ∼, 69

transfer function, 107, 108
transition probability matrix, 5, 11, 24, 84, 85

uncertainty, 1–3
uniformly distributed lines, 23
unstable view, 83

view
canonical ∼, 83, 100, 113
representative ∼, 83
unstable ∼, 83

view similarity, 89
view unstability, 92

viewpoint channel, 84, 85
viewpoint dissimilarity, 91
viewpoint entropy, 85, 107, 108, 110, 118, 124,

126, 127
viewpoint Kullback-Leibler distance, 87, 118,

127
viewpoint mutual information, 86, 100, 112,

118, 126
viewpoint saliency, 100
viewpoint unstability, 92
visibility, 57
visibility discretisation error, 39
visual error, 124, 126
volume rendering, 106
voxel importance, 107
voxel visibility, 107
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