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Preface

Interactive curve modeling techniques and their applications are extremely useful
in a number of academic and industrial settings. Specifically, curve modeling plays
a significant role in multidisciplinary problem solving. It is extremely useful in
various situations like font design, designing objects, CAD/CAM, medical imag-
ing and visualization, scientific data visualization, virtual reality, object recogni-
tion, etc. In particular, various problems like iris recognition, fingerprint recog-
nition, signature recognition, etc. can also be intelligently solved and automated
using curve techniques. In addition to its critical importance more recently, the
curve modeling methods have also proven to be indispensable in a variety of mod-
ern industries, including computer vision, robotics, medical imaging, visualiza-
tion, and even media.

This book aims to provide a valuable source that focuses on interdisciplinary
methods and to add up-to-date methodologies in the area. It aims to provide the
user community with a variety of techniques, applications, and systems necessary
for various real-life problems in the areas such as font design, medical visualiza-
tion, scientific data visualization, archaeology, toon rendering, virtual reality, body
simulation, outline capture of images, object recognition, signature recognition,
industrial applications, and many others.

Book Features

It aims to collect and disseminate information in various disciplines including
computer graphics, image processing, computer vision, pattern recognition, artifi-
cial intelligence, soft computing, shape analysis and description, curve and surface
fitting, scientific visualization, shape abstraction and modeling, intelligent CAD
systems, computational geometry, reverse engineering, and levels of details for
curves and surfaces. The major goal of this book is to stimulate views and provide
a source where students, researchers, and practitioners can find the latest devel-
opments in the field of interactive curve modeling and its applications. The book
provides classical and up-to-date theory and practice to get the problems solved in
diverse areas of science and engineering.

All the chapters of the book will contribute toward curve modeling techniques,
applications, and systems. The book will have the best possible utility for stu-
dents, researchers, computer scientists, practicing engineers, and many others who
seek classical and state-of-the-art techniques, applications, and systems with curve
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viii Preface

modeling. It will be an extremely useful book for undergraduate senior students as
well as graduate students in the areas of computer science, engineering, and other
computational sciences.

Suggested Course Outlines

This book is designed to have around fifteen chapters. These chapters will con-
tribute toward interactive curve modeling techniques, applications, systems, and
tools. The book is planned to have the best possible utility for researchers, com-
puter scientists, practicing engineers, and many others who seek classical and
state-of-the-art techniques and applications for computer graphics, vision, and
imaging. It will also be equally and extremely useful for undergraduate senior
students as well as graduate students in the areas of computer science. It is also
beneficial to students in other disciplines including computer engineering, electri-
cal engineering, mechanical engineering, and mathematics. The book is equally
beneficial to researchers and practitioners in the industry and academia.

The book has been designed as a course book for undergraduate as well as grad-
uate students in the area of computer science in particular. The main audience of
the book are the communities related to the field of computer graphics, vision,
and imaging. However, it can be useful for students in other disciplines like com-
puter engineering, electrical engineering, mechanical engineering, mathematics,
etc. The book is equally beneficial to researchers and practitioners in the industry.
The book can formulate at least three courses as follows:

Course I. As an undergraduate course, at senior level, Chaps. 1-3, 8, 9, 11 (any
two corner detectors), 12 (any two methods), 13, and 14 (one heuristic
approach) will comprise a full length three credit hours course for a semester
of 15 weeks. This course can be conducted with practical projects of reason-
able weight.

Course Il. Asa graduate course consisting of Chaps. 1-4, 6-8 (self-study), 9, and
11-14 (one heuristic approach). This course should also have heavy projects
for practical applications.

Course I11. As a slightly different graduate course, if the undergraduate course
described in Course I is considered to be a prerequisite. This course can be
designed with Chaps. 4-7, 9 (using other curve schemes in the book but
different than those in Chap. 9), 11-13 (just a quick review), 14, and 15.
This course design can also consist of some state-of-the-art topics together
with good weighted projects.

The researchers and practitioners can utilize the manuscript as a source as well
as a reference book. Depending on their needs, they can study on pick and choose
basis. They are also advised to study in their leisure time as it may prove to be
fruitful to them.
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Required Background

As such, it is not required to possess a specific qualification as a prerequisite to any
of the undergraduate Course I or graduate courses II or III mentioned above. But,
the user of this book is presumed to have some knowledge of computer program-
ming together with some basic mathematical topics including analytic geometry,
linear algebra, and calculus.

Acknowledgments

This manuscript has been prepared after a lot of struggle and efforts. Many gradu-
ate students and colleagues around the globe have assisted toward its completion.
It is worthwhile to mention Asif Masood, Zulfigar Habib, M. Zawwar Hussain,
S. Ali Rizvi, M. Balah, M. Riyazuddin, Humayun Baig, S. Arshad Raza, Murtaza
Ali Khan, Faisal AbdulRazzak, and M.A. Siddiqui. The author is thankful to all
of them for their valuable efforts and advice. A lot of credit is also due to various
experts who reviewed the chapters and provided helpful feedback.

It is not possible to forget my family here without whose help and support
I would not have completed this work. Their love, support, and patience were
tremendous throughout. In addition to thanking, I should also apologize for hav-
ing taken much of their time during the conduct of my work.

The author is happy to acknowledge the support of King Fahd University of
Petroleum and Minerals (KFUPM) toward the compilation of this book, against
the Book Project #ICS/GRAPHICS/306. This book project was a main source
of funding to this book. A partial funded support of KFUPM, through another
Research Project #/CS/REVERSE ENG./312, also contributed toward a couple of
chapters.

M. Sarfraz



Contents

Preface. . . . . . . .. vii
I Introduction . . . . . . . . ... ... 1
1.1 Strategy in the Construction of Theory . . . . . . ... ... .. 1
1.2 Overview . . . . ... e 2
1.2.1 Splines . . . ... ... ... 2

1.2.2  Shape-Preserving Interpolation . . . . . . ... ... .. 3

1.2.3  Functional Approximation . . . . . ... .. ... ... 3

1.24 SpiralCurves . . . . . . ... 4

1.2.5 Corner Detection and Curve Segmentation . . . . . . . . 4

1.2.6  Vectorizing Planar Shapes . . . . . . ... ... .... 5

1.2.7 Reverse Engineering . . . . .. ... ... ....... 5

1.2.8  Multiresolution Framework . . . . . . . . .. ... ... 6

1.3 Notation and Conventions . . . . . . . . . . . ... ... .... 6
1.4  Review of Some Spline Methods . . . . . ... ... ... ... 7
1.4.1 CubicSpline . ... ..... ... ... ........ 7

1.42 Spline Under Tension . . . . . ... ... ... ..... 8

143 Weighted Spline . . . ... ............... 8

144 Nu-spline . . ... ... ... ... ... ....... 8

1.45 Weighted Nu-spline . . . .. ............... 9

14.6 BetaSplines. . . . .. ... ... ... . ....... 9

1.4.7 Sigma (o) Splines . .. ................. 10

148 B-Splines . . . ... ... ... ... ... ... ... 10

149 BézierSplines . .. ... ... ... ... ....... 11

1.4.10 Hermite Splines . . . . . .. ... ... ......... 11

1.5 Summary . . ... 13
1.6 Exercises . . . . . . ... ... 13
2 Weighted NuSplines . . . ... ... ... ... .. .. ... . .... 21
2.1 Introduction . . . .. ... L 21
2.2 Some Spline Methods . . . . . ... ... ... ......... 23
2.2.1 CubicSplines . . . ... ... ... .. ... ...... 24

2.2.2 Weighted Splines . . . .. ... ............. 24

223 NuSplines . ... ... ... ... ... ... . 26

Xi



xii

Contents
2.2.4  Weighted Nu Splines . . . ................ 27
2.2.5 Demonstration . . . . . ... ... 28
23 Freeform Weighted Nu Spline . . . . . ... ... ....... 28
2.3.1 Local SupportBasis . . ... ... ........... 29
232 DesignCurve . . . . . ... ..o 31
233 ShapeControl . . . . .. ... ... ... ........ 32
234 Demonstration . . . . . ... ... 34
2.3.5 Advantages and Features . . . . ... ... ....... 37
2.4 Surfaces . . . . . . .. 37
2.5 Summary . ... 38
2.6 EXercises . . . . ... 38
Rational Cubic Spline with Shape Control . . . . . . . . ... ... .. 41
3.1 Introduction . . . . . .. ... 41
32 C! Piecewise Rational Cubic Hermite Interpolant . . . . . . . . 42
33 One-Parameter Rational Cubic Spline . . . . ... ... .... 44
34  Two-Parameter Rational Cubic Spline . . . . . ... ... ... 49
35 Demonstration . . . . . . . ... 51
3.6 Freeform Curves . . . . . ... .. ... ... ... ...... 55
3.7 Local SupportBasis . . . . . ... ... ... 56
3.8 DesignCurve . . . . . . . . .. .. ... 58
3.9 Shape Properties . . . . . . ... . ... .. ... ... 60
3.10  Demonstration . . . . . . . . . ..o 64
311 Nurbs . . . . . e 64
312 Surfaces . . . . . ... 70
313 Summary ... 71
3014 EXercises . . . . ... 71
Rational Sigma (¢) Splines . . . . . . ... ... ... ......... 75
4.1 Introduction . . . . . . ... 75
4.2 Generalized Rational Cubic Interpolant. . . . . . . . ... ... 76
4.3 Interpolatory Rational o-Splines . . . . .. ... ... ..... 77
43.1 ShapeControl . . . . . .. ... ... ... ....... 77
4.3.2 Some Special Cases . . . . ... ... ... ...... 78
433 Examples . . ... ... o 78
4.4  Freeform Rational o-Splines . . . . . ... ... ... .... 81
44.1 ShapeControl . . . . .. ... ... ... ....... 84
442 Some Special Cases . . . . ... ... ... ...... 85
443 Examples . . . ... ..o o 87
4.5 Exercises . . . . . . ... 91
Linear, Conic and Rational Cubic Splines . . . . ... ... ... ... 93
5.1 Introduction . . . . . ... Lo 93
5.2 The Rational Cubic Spline . . . ... ... ........... 95

5.2.1 Estimation of Tangent Vectors . . . . ... .. ... .. 97



Contents Xiii

5.3 Design Curve Analysis . . . . .. ... ... ... ... .... 99
5.4  Estimation of End Tangent Vectors . . . . . ... .. ... ... 101
5.5 Conic Splines and Straight Line . . . . ... ... ....... 101
5.5.1 Conic Arc in Cubic Spline . . . ... ... ....... 103

5.5.2 Circular Spline . . . ............ ....... 103

553 CircularArc. . . . ... oL 105

5.5.3.1 Circular Arc for Given Radius . . . . . . .. .. 106

5.5.3.2  Circular Arc for a Given Center . . . . . . . .. 106

554 EllipicArc . . .. ... 107

5.5.5 Intermediate Point Interpolation . . . . . ... ... .. 109

5.5.6  Straight-Line Segment . . . . . ... ... ....... 110

5.6 Examples . . . .. . .. ... .. 110
5.7 Summary . .. ... 113
5.8 Exercises . . . . . ... 113
Shape-Preserving Rational Interpolation for Planar Curves . . . . . . . 117
6.1 Introduction . . . . .. ... oL 117
6.2  The Rational Cubic Interpolant . . . . . . .. ... ... ... 118
6.3 Interpolation of Convex Data . . . . . . ... ... ....... 119
6.4  Interpolation of Monotonic Data . . . . . .. ... ... ... 120
6.5  Interpolation of Convex and Monotonic Data . . . . . ... .. 123
6.6 Choice of Tangent Vectors . . . . . .. ... ... ....... 123
6.7 Examples . . . .. . . .. ... 124
6.8 Summary . ... 126
6.9 Exercises . . . . . ... 126
Visualization of Shaped Data by a Rational Cubic Spline . . . . .. .. 129
7.1 Introduction . . . . . .. ... 129
7.2 Rational Cubic Spline with Shape Control . . . . . . ... ... 133
7.2.1 Shape Control Analysis . . . . ... ... ... ..... 134

7.2.2  Determination of Derivatives . . . . . . . .. ... ... 135

7.2.2.1 Derivative Method I . . . ... ... ... ... 135

7.2.2.2  Derivative MethodII . . . . . ... ... ... 135

7.2.2.3  Derivative Method IIT . . . . . ... ... ... 136

7.2.3 Examples and Discussion . . . . . ... ... ... ... 136

7.3 Positive Spline Interpolation . . . . . ... ... ... .. 139
7.3.1 Examples and Discussion . . . . . ... ... ... ... 142

7.4 Monotone Spline Interpolation . . . . . .. ... ... .. ... 145
7.4.1 Examples and Discussion. . . . . . ... ... ... .. 148

7.5 Convex Spline Interpolation . . . . .. ... ... ....... 148
7.5.1 Demonstration . . . . . . . . ... ... ... .. 153

7.6 Summary . . ... 154
7.7 EXEICISES . . v v v v i e e 154
Visualization of Shaped Data by Cubic Spline Interpolation . . . . . . . 157

8.1 Introduction . . . . . . . . ... 157



Xiv

10

11

Contents

8.2 Cubic Interpolant . . . . . . .. . ... ... ... .. 158
8.2.1 Demonstration . . . ... ... ... ... . .... 159

8.3 Shape-Preserving Interpolation . . . . . . ... .. ... .... 160
84  Convex Cubic Spline . . ... ... ... ... ......... 160
8.4.1 Demonstration . . . . ... ... ... ... ... 162

8.5 Monotone Cubic Spline . . . .. ... .............. 162
8.5.1 Demonstration . . . ... ... .. .. ... ..., 164

8.6 Positive Cubic Spline . . . . .. ... ... ... ... ..., 164
8.6.1 Demonstration . . .. ... ... ... ... ... ... 166

8.7  Extension of Positive Cubic Spline . . . . ... ... ...... 167
8.7.1 Demonstration . . . . . ... .. ... ... ..., 170

8.8 Summary . .. ... 171
8.9 Exercises . . . . . . ... 171
Approximation with B-Splines Curves . . . . . ... ... ... .... 173
9.1 Introduction . . . . . .. ... 173
9.2 B-Splines . . . .. ... ... 174
9.3 Deterministic Approach . . . . . . ... ... L. 174
9.3.1 Approximation Technique . . . ... ... .. ... .. 175

9.3.1.1 Initial Data Points (Step 1) . . . . . ... ... 175

9.3.1.2  Knot Insertion (Step2) . . ... ........ 177

9.3.1.3  Error Minimization (Step3) . . . . . ... ... 178

9.3.2 Demonstration . . . . . ... ... ... 178

9.4  Nondeterministic Approach . . . . . ... ... ... ... ... 180
9.4.1 ABriefOverviewof GAs . . . ... ... ....... 181

9.4.2 Implementation Summary . . ... ........... 181

9.4.3 Demonstration . . . . . . .. ... 183

9.5 Summary . . ... 193
9.6 Exercises . . . . . . ... 193
Spirals . . . .. L 195
10.1 Introduction . . . . . ... .. ... ... 195
10.2  The Rational Quadratic Bézier Curve . . . . . . . .. ... ... 196
10.3  The Conic Spiral . . . . . ... ... ... ... ........ 197
10.4  Comparison of Conic and T-cubic Spirals . . . . . . . ... .. 200
10.5 The Arc/Conic Spiral . . . . . . .. ... ... ... 201
10.6 Examples . . . .. .. ... 205
10.7  Limitations . . . . . . . . .. 206
10.8  Summary . . ... ... ... 206
109 EXercises . . . . . . . o it e 206
Corner Detection for Curve Segmentation . . . . . . . ... ... ... 209
11.1 Introduction . . . . ... ... .. ... ... ... ... ... 209
11.2  Basic Formulation . . . . ... ... ... .. .......... 210

11.3  Summary of Commonly Referred Corner Detectors . . . . . . . 212



Contents XV

11.3.1 Rosenfeld and Johnston (RJ73) Algorithm . . . . . . . . 212

11.3.2 Rosenfeld and Weszka (RW75) Algorithm . . . . . . . . 213

11.3.3 Freeman and Davis (FD77) Algorithm . . . . . . .. .. 213

11.3.4 Beus and Tiu (BT87) Algorithm . . . . . .. ... ... 214

11.4  Chetverikov and Szabo (CS99) Algorithm . . . . . .. ... .. 215
11.4.1 FirstPass . . . . .. . ... ... ... . .. ... 215

1142 SecondPass . . . . .. ... ... ... ... ...... 216

11.4.3 Demonstration . . . . . . . . . . ... . 216

11.4.4 Performance Evaluation . . ... ... ......... 218

11.5 Sarfraz, Asim and Masood (SAMO06) Algorithm . . . . . . . .. 219
11.5.1 FirstPass . . . . .. .. ... .. ... ... .. ..., 219

11.52 SecondPass . . . .. ... ... ... ... ....... 220

11.5.3 Parameters . . . . .. .. ... ... ... ... 221

11.5.4 Demonstration . . . . ... ... ... ......... 221

11.6  Masood and Sarfraz (MS06) Algorithm . . . . ... ... ... 226
11.6.1 Performance Criteria . . . . ... ... ......... 230

11.6.2 Demonstration . . . . . . . . . . . ... 231

11.7 Overall Analysis . . . . . . . . ... .. i 235
11.8 Piecing Boundaries . . . . . ... ... ... ... ....... 236
119 Summary . . . ... ... 237
11.10 EXercises . . . . . . . . . o v i v ittt e 238
12 Linear Capture of Digital Curves . . . . . . . . ... .. ... ..... 241
12.1 Introduction . . . . . . . . . . . . .. ... 241
12.2  Some Important Issues . . . . . . ... ... ... ... ..., 243
12.2.1 Input Parameters . . . ... ... ... ... ...... 243

12.2.2 Regionof Support . . . . . ... ... ... 244

12.2.3 Error Measurement . . . . . . . . .. .. ... ..... 244

12.2.4 Min-# and Min-¢ Problems . . . . . . ... ... .... 245

1225 TestShapes . . . . . . ... ... ... ... 245

12.3  Approximation Techniques . . . . . . . ... ... ... .... 246
12.3.1 Teh and Chin Algorithm . . . . . ... ... ... ... 247

12.3.2 Marji and Siy Algorithm . . . . . ... ... ... ... 248

12.3.3 Wu Algorithm . . . .. ... ... ... ........ 249

12.3.4 Some Other Algorithms . . . . .. ... ... .. ... 250

12.4  Piecewise Polygonal Approximation . . . . . . ... ... ... 251
12.4.1 Preprocessing Stage . . . . . . . .. ... ... .. .. 251

12.4.2 SAMAPA Algorithm . . . . . ... ... ... ... .. 252

12.5 Experimental Results . . . . . ... ... ... ... .. .. .. 256
12.6  Optimal Algorithms . . . . . . . . .. .. ... ... ... ... 259
12.6.1 Dynamic Programming . . . . . .. ... ... ... .. 259

12.6.2 Perez and Vidal Algorithm . . . . . .. ... ... ... 260

12.6.3 Some Remarks on Optimal Algorithms . . . . ... .. 261

127 Summary . . . . ... 262
12.8  EXercises . . . . . . . o i i e e 262



Xvi Contents

13 Digital Outline Capture with Cubic Curves . . . . . . .. ... ... .. 267
13.1 Introduction . . . . ... ... ... ... ... 267
13.2  Finding the Boundary of a Bitmap Image . . . . . . .. ... .. 268
13.3  Detecting Corner Points . . . . . . . .. ... ... ... ..., 270
13.4  FilteringNoise . . . . ... ... ... .. ... 271
13.5 Curve Fitting with Cubic Bézier . . . .. ... ... ... ... 272
13.5.1 Finding Intermediate Control Points . . . . . . . .. .. 273
13.5.2 Comparing the Boundary and Parametric Curve . . . . . 276
13.6 Reparameterization . . . . . . . ... ... ... ... ... .. 276
13.7 Breaking Segment . . . . . . .. ... ... L. 279
13.8  Alternate Method Using Hermite Cubic . . . . ... ... ... 281
13.8.1 Estimation of Tangent Vectors . . . . . ... ... ... 282
13.8.2 Optimal Design Curve . . . .. ... ... ....... 283
13.9 Transformations and Mapping . . . . . ... .. ... .. ... 285
13.9.1 Transformations . . . ... ... ............ 287
13.9.2 Mapping Parametric Surfaces . . . ... ... ... .. 288
13.9.2.1 Two-Dimensional Surface Mapping . . . . . . . 290
13.9.2.2 Three-Dimensional Surface Mapping . . . . . . 293
13.10 Summary . . . . . .. ... 293
13.11 EXercises . . . . . . . . o v v i it 293

14 Computer-Aided Reverse Engineering Using Evolutionary Heuristics
onNURBS . .. ... ... . . ... 297
14.1 Introduction . . . . . . . .. . . ... 297
14.2  Preprocessing . . . . . . . . ... 299
14.2.1 Image Contour Extraction . . ... ... ........ 299
14.2.2 Detection of Corner Points . . . . . .. ... ... ... 299
143 NURBS ... ... . . . 301
14.3.1 Data Fitting Using NURBS Curves . . . ... ... .. 302
14.3.2 Generation of Control Points for Curves . . . . . . . .. 303
14.3.3 Generation of Control Points for Surfaces . . . . . . . . 304
144  ApproachUsingSimE . . . . .. ... ... ... ... ..., 304
14.4.1 Outlineof SiImE . . . ... ... ... ......... 304
14.4.2 Problem Mapping SimE . . . . .. ... ... ... 304
14.42.1 Initialization . . . . . . ... ... ... .... 305
14422 Evaluation . . . ... .. ... ......... 305
14423 Selection . . . . .. ... ... ... ..., . 306
14.4.2.4 Allocation and Weight Optimization for Curves 306
14.4.3 Algorithm Outline for Curves . . . . . ... ... ... 306
14.4.4 Demonstration . . . . . ... ... ........... 309
145 Approach Using SimA . . . . . . ... ... ... ... ... 312
14.5.1 Outlineof SimE . . . ... ... ... ... ...... 313
14.5.2 Problem Mapping . . . . . . . .. ... ... ... 313
14.5.2.1 Weight Optimization Using SimA . . . . . . . . 313

14.5.2.2 [Initial Temperature 7o . . . . . . . . . . .. .. 315



14.6
14.7
14.8

Contents

14523 Decrementof T . . . ... ... ... .....
14.5.2.4 Length of Markov Chain M . . . . .. ... ..
14.5.2.5 Weight Seclection . . . . ... ... ......
14.5.3 Demonstration . . . . . .. .. ... ... ... ....
Surfaces . . . . . . ..o
Summary . .. ... e
Exercises . . . . . . ..

15 Multiresolution Framework for B-Splines . . . . . ... ... .. ...

15.1
15.2
15.3

Introduction . . . . . ... L
Theory of NUBS . . . . ... . ... . ... ... ... ....
Multiresolution Representation of B-Splines . . . . . . . .. ..
15.3.1 Multiresolution Representation of B-Splines

Using Wavelets . . . . ... ... ... ... ......
15.3.2 Multiresolution of NUBS Using Knot Decimation . . . .
Multiresolution of NUBS Using Control Point Decimation
Demonstration . . . . . . . ... Lo o
Summary . ...
Exercises . . . . . ...

Xvil



1

Introduction

Abstract. Interactive curve designing plays an important role not only in the construction
and reconstruction of various objects, but also in the description of geological, physical,
medical, and different other phenomena. This book presents a description and analysis
of a variety of classes of splines for use in CAGD (computer-aided geometric design),
CAD (computer-aided design), CAE (computer-aided engineering), CAM (computer-aided
manufacturing), computer graphics, computer vision, image processing, and other disci-
plines. They are useful for the representation of parametric curves in both interpolatory
and B-spline-like forms. Scalar function forms will also be discussed occasionally. The
specific spline description and the type of continuity constraints between the pieces of the
splines can be used to influence, design, and control the shape of the curves. Different para-
meters in the description of splines can be used for various applications including design in
CAD/CAM, font design, image outline capture, multiresolution, description of motion paths
for moving objects such as robots, data visualization, reverse engineering, curve or surface
editing, object recognition, and so on.

The book is designed specifically for undergraduate as well as graduate students in the
area of computer science. The main audience for the book are the communities related
to the fields of computer graphics, vision, and imaging. However, the book can also be
useful to students in other disciplines such as computer engineering, electrical engineer-
ing, mechanical engineering, mathematics, and so on. The book is equally beneficial for
researchers and practitioners.

1.1 Strategy in the Construction of Theory

This book will mainly discuss spline curves in both rational and nonrational
forms, although some other curve formulations may also be described occasion-
ally. The spline formulation has manifested itself in various forms including
Bézier curves, rational Bézier curves, B-splines, NURBS (nonuniform ratio-
nal B-splines), beta-splines, rational beta-splines, weighted Nu splines, rational
weighted Nu splines, and others. A single function usually does not have enough
freedom to represent a given curve. Thus, several segments are joined together to
generate a spline curve.



2 1. Introduction

There are at least two methods to visualize the mathematics of a rational curve
p(t).

1. The curve p can be thought of as a vector-valued function in RY, each com-
ponent of which is a rational function, i.e., the numerator and denominator are
polynomial functions.

2. The value p can be thought of as the projection of a vector-valued polynomial
function f in R¥*! into RV . The value f is referred to as the homogeneous
curve associated with p.

Method 2 has the advantage that algorithms for manipulating rational curves
such as evaluation, subdivision, degree elevation, etc., can often be obtained by
using the corresponding algorithm for polynomial curves. However, this can be a
restriction in that the numerator and denominator are assumed to obey the same
polynomial spline description. Method 1 is less restrictive and gives us more free-
dom to develop shape control parameters which behave in a well-defined and well-
controlled way. The approach of Method 1 is adopted throughout this book, where
ever applicable, to deal with rational splines. Method 1 is also applicable to non-
rational (polynomial) splines.

Bézier (rational Bézier) and B-spline (or B-spline-like) curves/surfaces are
powerful tools, and are found incorporated into most existing CAD/CAM and
computer graphics systems. This book was produced mainly for developing these
concepts and using them for a variety of applications in the areas of computer
graphics, vision, and imaging.

1.2  Overview

1.2.1 Splines

The generation of spline curves [1-48] is a useful and powerful tool in CAGD.
Although the splines have many elegant properties discussed in Refs. 1-10, 1415,
21, 27-28, 36, and 40-42, the curves sometimes exhibit undesirable oscillations.
Various methods have been developed to control the shape of a curve, such as those
described in Refs. [1-4,9, 13, 16-18,22,28-36,38-45,47,48]. Some methods are
well suited for one type of shape control, but not well suited for another. For this
reason, a multipurpose system was developed in Refs. 36 and 40, which consists
of different spline methods and uses the particular spline that is best suited for the
desired type of shape control. Thus, to avoid a multiplicity of methods, one method
can suffice that is capable of generating a broad range of interpolating curves, is
easy to implement, provides a shape control according to the user’s wishes, and is
computationally economical. This problem is discussed in Chapters 2-5.
Chapter 2 presents a description and analysis of a cubic spline in both interpo-
latory as well as B-spline forms. It is actually a weighted Nu spline. Two shape
parameters are introduced in the description that provide a variety of shape con-
trols such as point and interval tensions. Similarly, Chapter 3 presents a description



1.2. Overview 3

and analysis of a rational cubic spline in both interpolatory and B-spline forms.
This rational spline provides not only a computationally simple alternative to the
exponential based spline under tension, but also provides a C? alternative to the
well-known existing GC? or C' methods such as cubic Nu splines of Nielson [31],
[-spline representation of such cubics by Barsky and Beatty [2], y -splines of
Boehm [6], and weighted Nu splines [17]. This method is the generalization of
the rational spline with tension [28]. Two shape parameters are introduced in each
interval that provide a variety of shape controls such as biased, point, and interval
tensions.

Chapter 4 uses general piecewise rational cubics subject to a general type of
continuity constraint between the pieces; we will call them rational o-splines.
These are a generalization of most of the above-mentioned methods and provide
economical alternatives to the rest of them. Also, the development of a local sup-
port basis for the B-spline-like representation of rational o-splines can be used to
obtain methods in Refs. 1-2, 68, 17, and 28. The B-spline-like basis form of the
curves can also be used to solve the interpolation problems.

Chapter 5 discusses similar issues to those discussed in Chapter 4. But it also
considers linear, quadratic, and cubic splines. Various kinds of continuity con-
straints are believed to have a more interactive and well-controlled spline formu-
lation. It can enable the user to have a formulation that may be desired to model
an object with multiple choice of pieces for designing purposes. Although a local
support basis for the B-spline-like representation of such splines was considered, it
was not desired and hence is not discussed. A brief discussion of touch-to-surface
design (although it is not the main objective of this book) has been also provided
in Chapter 5, as an application of curves. These surfaces are based on just curve
manipulations and can provide only limited control for designing.

1.2.2  Shape-Preserving Interpolation

Shape-preserving problems [11, 19, 23-25, 27, 40, 50-55] for plane curves are
discussed in Chapter 6, which is an extension of the results of Delbourgo and
Gregory [11] who developed the rational cubic of Chapter 2 (with one shape para-
meter in each interval) to solve the problem of shape-preserving interpolation for
scalar curves. The spline curves here explore the shape control parameters, which
depend on the first derivative data in such a way that the interpolant preserves
the monotonic and/or convex shape of the data. Chapters7 and 8 complement
Chapter 6 in the context of scalar shape-preserving curves for the visualization of
shaped data. Chapter 7 is related to a rational spline interpolation, while Chapter 8
uses cubic splines. The nature of the data considered may be positive, monotonic,
Or convex.

1.2.3  Functional Approximation

Chapter 9 is devoted solely to the idea of approximation of curves [56—64] when
they result from complex functions or complex data. Two methods [62-64] are
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presented as a solution to the problem. One scheme is based on a determini-
stic approach [62] using quadratic B-splines. The other scheme uses a genetic
algorithm in its formulation [63] where the B-spline can have any order. Both of
the schemes presented in this chapter automatically compute data points to mini-
mize errors.

1.2.4 Spiral Curves

The spiral curves [65-72] are desirable for applications such as highway route
designing, robot path planning, data-fitting problems, shape design, and curve/
surface fairing in geometric modeling. Due to the success of raster displays, scan
conversion algorithms are fundamental in computer graphics. Most of the time,
straight lines and curved primitives are considered for scan conversion, but compli-
cated curve primitives such as spirals are considered less frequently for direct scan
conversion. In Cartesian coordinates they are typically transcendental functions,
which makes the evaluation on Cartesian grids an inefficient process. Chapter 10
describes the issues concerning the scan conversion of Archimedes spiral. A sim-
ple algorithm [65-67] based on the piecewise circular approximations has been
reported. Variations of the algorithm to convert other types of spirals has also
been considered.

Chapter 10 also presents an efficient geometric algorithm [72] for visualization
of two-point geometric Hermite conic and arc/conic spiral segments. A compara-
tive study is made of Tschirnhausen cubic spirals.

1.2.5 Corner Detection and Curve Segmentation

Chapter 11 highlights the feature of curve segmentation. This is mainly for digital
curves, which may consist of huge amounts of data. The large data set is subdivi-
ded into smaller data sets to overcome the problem on the basis of “divide and
rule.” This is done by detecting the points that appeal to the eye visually, as with
a corner point. Corners [73-84] in digital images give important clues for shape
representation and analysis. If the corner points are identified properly, a shape can
be represented in an efficient and compact way with sufficient accuracy in many
shape analysis problem. Shape representation and image interpretation depends
most of the time on how correctly and efficiently the corner points are located.
Specifically, in the area of vectorizing planar images, contour segmentation is very
often managed by locating the exact corner points.

As many as seven techniques [73-84] have been discussed for the corner detec-
tion. These techniques have been described, implemented and analyzed. Various
practical examples have been given to test and compare the methods. Merits and
demerits of each method together with the default selection or a variable selec-
tion of parameters are stated. Tabular and graphical results are provided for a clear
comparative study so that user can select the best for the need.
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1.2.6  Vectorizing Planar Shapes

Chapters 12 and 13 are aimed at vectorizing planar images [85—101]. Chapter 12 is
devoted to a detailed study of linear or polygonal approximation [102] needed in
various applications, including shape recognition, point-based motion estimation,
coding methods, and so on, in the areas of computer graphics, imaging, and vision.
Some important aspects related to capturing with linear approximation have been
addressed. A detailed survey has been made of many methods [85-101] in the
current literature. Some commonly discussed algorithms are explained, and their
results are demonstrated and compared.

Automatic and efficient algorithms for outline capture of character images,
stored as bitmaps, are presented in Chapter 13. A curve methodology [90] based
on the Bézier cubic formulation is discussed in detail. Various steps have been
described for the completion of the algorithm designed. This method is well suited
for characters of non-Roman languages such as Arabic, Japanese, Urdu, Persian,
and so on. The process of capturing outlines includes various steps including
detection of boundaries, identifying corner points and break points, and fitting
the curve. The chapter thoroughly discusss automating the above process and pro-
vides optimal results. As an alternate smoother scheme, the Hermite cubic spline
curve method [95] is also introduced.

1.2.7 Reverse Engineering

Computer-aided reverse engineering (CARE) is an important area of study in the
modern age of computers. Multiple solutions in advanced and modern industries
are being provided with regard to design and manufacturing [106—108]. In modern
designi, scanned digital data leads us to adopt contour styling [98—102], which
helps to guide visual acceptance after adopting some curve or surface approxi-
mation scheme [103-105].

Various objects including manufactured parts or human body parts are designed
and redesigned with complex free-form geometry. This trend is quite popular and
can be found in various applications in recent years such as vehicle body design.
The wide acceptance of free-form curves and surfaces for component design can
also be attributed to the advances in curve and surface modelling and their imple-
mentations in CAD/CAM/CAE/CARE systems.

This chapter focuses on CARE. Although reported techniques have been pre-
sented for image-based planar objects, they are also extendable to objects in 3D
with some modifications. Two nondeterministic evolutionary approaches [98,108]
have been presented. Nonuniform rational B-splines (NURBS) have been utilized
as an underlying approximation curve scheme. Simulated annealing and simulated
evolution heuristics have both been used as evolutionary methodologies. Opti-
mized NURBS models have been fitted over the contour data of the planar shapes
for the ultimate and automatic output. The output results are visually pleasing with
respect to the threshold provided by the user.
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1.2.8 Multiresolution Framework

In the field of geometric modeling, the construction of efficient, intuitive, and
interactive editors [109—115] for geometric objects is a fundamental objective.
In many freeform geometric modeling systems the users are allowed to work
within the framework of a specific data model such as Bézier or nonuniform
B-splines. This imposes constraints on the set of geometric manipulation oper-
ations that can be performed, the man-machine interface, and the type of objects
that can be modeled.

Multiresolution representation [109-115] is a possible solution that allows the
user to edit objects at different resolution levels. Both local and global operations
can be performed on curves by representing them using multiresolution decompo-
sition. Several approaches have been proposed for multiresolution representation
of splines in the case of curves and surfaces. It often requires specific treatment
of boundary control points. These approaches depend on the given spline model
they manipulate. Chapter 15 presents multiresolution approaches for the uni-
form B-splines or nonuniform B-splines (NUBS). NUBS are specifically useful
because, by manipulating the control points, knot vector, and weights, they facili-
tate design of a large variety of shapes. They offer a common mathematical form
for representing and designing both standard analytic shapes (conics, quadrics)
and free-form curves and surfaces. Evaluation is reasonably fast and computation-
ally stable. NUBS have a clear geometric toolkit (knot insertion/deletion, degree
elevation, etc.), which can be used to design, analyze, process, and interrogate
objects.

1.3 Notation and Conventions

* The symbol RY will be used to denote the N-dimensional real space.
* Knot partitions will be assumed as

fo <11 <...<tp, (1.1)
o <t <...<ty. (1.2)

(1.1) and (1.2) for bivariate case and (1.2) for univariate case.
* For any i the transformations

0=0@)=(t—1)/h,

L I 1.3
929(?):([—[,‘)//’1,‘, (1.3
will be commonly used where
hi =tip1 —ti,hj =141 — i), (1.4)
e F;,i =0,1,...,n will denote the interpolatory points and A; will be used for

the ratios of the type:
Ai = (Fiy1 — Fi)/ h;. (1.5)
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P; can also be used interchangeably with F; whenever needed. However, f; will
replace F; whenever the data is in scalar form.

e D; will be used for the first derivative value at the knot ;. However, d; will be
used for the first derivative value whenever the spline is in scalar form.

* Given a function such as p(¢), we will denote the i derivative by p@(¢). In
the case of scalar functions, s will replace p.

* Given a function such as p(t, t), we use the notation p’~ ! (f , t) to denote the first
partial derivative with respect to 7 and the first partial derivative with respect to

t. That is
52

it (7 p
P =
and so on.
* For brevity, and when no ambiguity can arise, the independent variables are left
off expressions such as p’ (7, r) yielding simply p’
* We will call a function p (t) o-continuous at t = t; if it satisfies the following
constraints:

p(tiy) 10 0 p(ti-)
pPD(@y) | =]001,0 P o) |, (1.6)
@ (1) 0 02 03, p® (tio)

e p € C"[ty, t,] will mean that each component function of p € C™ [1g, t,,] —
RN is m-times continuously differentiable on [f, f,,]. Similarly the notations
GC™ will be fixed for geometric (reparametrization) continuity.

+ We will use || . || to denote the uniform norm, either on [f, #,,] or [#;, fi41].

1.4 Review of Some Spline Methods

In this section a brief review of some of the existing spline methods is given
because these can be considered either as an alternative or as particular cases of the
spline methods which are going to be discussed in the theory of the thesis. For each
of the splines, we assume the knot partition (1.2) and the values F;,i =0,...,n
at the knots. Throughout the discussion, we will denote the spline curve by p (¢).

1.4.1 Cubic Spline

The natural cubic spline [15] is the C? piecewise cubic function that minimizes
n ) 2
vin= [ (r90) ar. (17)
fo

over all functions in H? [19, t,]. H? [to, t,] consists of all functions that have a
first derivative that is absolutely continuous and that has a second derivative that
belongs to L2 (19, 1,].
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1.4.2 Spline Under Tension

The spline under tension was first introduced by Schweikert [39] and then later
discussed by Barsky [3]. The idea was to introduce a new term in equation (1.7)
in such a way that some shape control was obtained. Thus, Barsky [3] constructs
the spline under tension as the interpolating function in H 29, t,] that minimizes

(tn) n-l lit
vin= [ uPoras e [ (rf0w) e as
fo i=0 i

i

where w; > 0, fori =0, ..., n— 1. The minimizing function is a piecewise expo-
nential and linear function that belongs to C2. The constants w;’s can be used to
control the tension of the curve on the interval [ti ) t,~+1] for all i. As w; increases,
the exponential-based spline under tension becomes tighter on that interval.

1.4.3 Weighted Spline

The weighted spline in Refs 17 and 20 is the interpolating function that minimizes

V(f) =/t[n w(r) (f(z)(t))zdt, (1.9)

where w(?) is a positive integrable function. The minimizing function belongs to
Cl. If w(t) is a piecewise constant function, then the weighted spline is a C'
piecewise cubic polynomial. If w(¢) is large on one interval, relative to bordering
intervals, then the weighted spline become fighter on that interval in a manner
similar to the spline under tension. It should be noted that the spline under tension
is C2, but is computationally more expensive because it is a piecewise exponential,
whereas the weighted spline is a piecewise cubic but it only belongs to C!.

1.4.4  Nu-spline

The v-spline in Refs. 32 and 34 is the interpolating function in H 210, 1,] that
minimizes

vin= [ (rP0) Su(Ow)a o
fo i=0

where v; > 0, fori =0, ..., n. Asnoted in Ref. 34, the v-spline is a C! piecewise
cubic function that does not mimic splines in tension well in the functional case.
However, in the parametric case the v-spline has geometric continuity of order 2,
that is, it is C? under an appropriate reparametrization, and as v; increases, the
v-spline curve becomes righter at the i"" interpolation point because the magnitude
of the tangent vector approaches zero.
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1.4.5 Weighted Nu-spline

The weighted v-spline [17] is the marriage of the weighted spline and the v-spline.
It is the C! piecewise cubic interpolatory function P (¢) that minimizes

n—1 tn 2 n 5
V(=D w / (fQ0) dr+ X0 (FO@) ar, 1D
i=0 o i=0
where w; > Ofori =0,...,n—1andv; > 0fori =0, ...,n. The v; are termed

as point tension factors because they tighten a parametric curve at the i’ interval
in the same way as they do for the v — spline in Refs. 32 and 34. The w; are termed
interval weights because they tighten the curve on the (" interval in the same way
as they do for the weighted splines in Ref. 20. If v; = 0 and all w; = ¢, where ¢
is some constant value, then the weighted v — spline is the C? cubic spline. If all
w; = c, then the weighted v — spline equals the » — spline in [32] with tension
factors v; /c. If all v; = 0, then it equals the weighted spline given in [20].

Remark 1.1. It was proven in [17] that if p(¢) is any C! weighted v — spline that
minimizes (1.11), then

w' p® (i) — w1 p® o) =0 pV (@), i=1,...,n— 1. (1.12)

This result generalizes the results of Salkauskas [20] that a weighted spline
satisfies

wip® (1) = wi—1p® (@) (1.13)
and the results of Nielson [32] that a v — spline satisfies
P? i) = p® i) = 0ip™ ). (1.14)

1.4.6 Beta Splines

The B — spline [1] is a piecewise cubic function p(¢) that satisfies the following
derivative constraints:

p(tiy) 10 0 p(ti2)
PV (ti) |=]0p1:0 pV o) |, (1.15)
PP (tiy) 0 fi B7; | Lp® (o)

where f1; > 1,i =0,...,n—1land p2; > 0,i =0, ...,n. The f1;’s are known
as biased tension factors because they pull the curve to one side. The parameters
p.i’s are known as point tension factors because they behave exactly like the v; in
the v —splines. If f ; = 0 and f;; = 1, then the § — spline is the C? cubic spline.
If 1, = 1, then it equals the v — spline. For parametric curves, the constraints
(1.15) mean that the curve is GC? (geometric continuity of order 2).
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1.4.7 Sigma (o) Splines

The o — spline of Sarfraz [12,41] is a piecewise cubic function p(¢) that satisfies
the derivative constraints in Equation (1.6). where o1; > 1,i = 0,...,n — 1
and 02;,03; > 0,i = 0,...,n. The oy ;’s are known as biased tension factors
because they pull the curve to one side. The parameters o ;’s are known as
point tension factors because they behave exactly like the v; in the v — splines.
If 00; =0, 03, = 1 and 01,; = 1, then the o — spline is the C? cubic spline.
If 03, = 1 and 0; = 1, then the o — spline equals the v — spline. Similarly, one
can recover the weighted spline, the weighted Nu spline, and various other splines
as a result of particular assignments of ¢ ’s. For parametric curves, the constraints
(1.6) mean that the o — spline curve is GC' (geometric continuity of order 1). But,
in most of the special cases, the continuity varies from C Lto C2.

1.4.8 B-Splines

The recursive function N f (u) given by the equations

1 if u e [uj,uj+1)

i) 0  otherwise (1.16)
k O u—uj k—1 Ujyp—u k—1
Ni = mmamm N 0+ i mm N @),

is called the normalized B-spline basis function of order k (degree k — 1). The
numbers #; < uj;1 € R are called knot values or simply knots, and 0/0 = 0 by
definition.

The curve S(u) defined by

p) =D NfWP, u€lue1,unsi] (1.17)
=0

is called the B-spline curve of order k (degree k — 1), where N lk (u) is the
1™ normalized B-spline basis function, for the evaluation of which the knots
up, Ui, ..., Uy+r are necessary. The points P; are called control points or de
Boor-points, while the polygon formed by these points is called control polygon.

The j™ span of the B-spline curve can be written in the form

J
pi)y= > Nf@P, uelujuji). (1.18)
I=j—k+1

Modifying the knot u;, the point of this span associated with the fixed parameter
value it € [u;, u ;1) will move along the curve.

Nonuniform rational B-spline (NURB) curves are generated from the following
formula:

i w; P; N i (u)
puy =" (1.19)
> wiN; i (u)

i=0
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where P;,i = 0,1,...,n, are control points, w; are weights, and N; x(u) are
B-spline basis functions.

1.4.9 Bézier Splines

Given (n + 1) points P; : i =0, 1,2, ..., n, Bézier curve is defined as follows:
n
P(t)=Y_PBi(t), 0=t <1, (1.20)
i=0
where

Bi(1) = (:’) (1 — 0",

are Bernstein polynomials. Here we will refer to B;(¢)’s as Bézier blending func-
tions. For example, for n = 3, equation (1.20) will reduce to:

P(t) = D PiBi(1),
(=0

= PyBo(t) + P1B1(t) + P,Ba2(t) + P3B3(2),
((3)) (1—0)3Py+ P, (?) 1—0)%+ P, (;) (1 — 1)1 + Pst°,

=1=0)>Py+3Pi(1 =)t + 3P (1 — 1)1> + P31°. (1.21)

The polynomials
1 —=0)33(1 =), 3(1 — )%, 12,

are called Bézier cubic blending functions. The convex hull of points P;,i =
0, 1,...,n is (roughly speaking) the region surrounded by P;’s. The points P;’s
are also known as control points, and the polygon connected by P;’s is called
control polygon. There are some interesting properties worth noting:

. The degree of a Bézier curve is one less than the given control points.

. The Bézier curve always pass through the first and last points.

. The Bézier curve always remains within the convex hull of the control polygon.

. The Bézier curve always satisfies the variation diminishing property. That is,
the property that curve does not cross any straight line more than the control
polygon crosses.

A~ W =

1.4.10 Hermite Splines

Let
P(0) = Py, P(1) = P;, PV (0) = Dy, PV (1) = Dy.
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Then (1.21) becomes like the following:

P(t)=(1—1)Py+3t(1 —1)? (Po + %) +3t2(1 — 1) (P3 — %) + 13 Ps.
(1.22)

The curve in equation (1.22) is called Hermite cubic curve where 0 < 7 < 1 can
be interchanged with 0 < § < 1 without loss of generality. Higher-degree Hermite
curves can also be defined in a similar manner. To have a more precise and general
notation for a Hermite cubic spline curve, let us adopt the following:

P(0) =P, P(1)= Py, PV 0) = D;, PV (1) = Dy

Then, the Hermite curve takes the following form:

P(t) = (1 —0)*P; +30(1 — 0)? (Pi + hTD)

h; D;
+30%(1 - 0) (Pi+1 — lTlH) + 03P, (1.23)

where 0 and h; are defined in equations (1.3) and (1.4). If we have the points as
follows:
P05P17P2a--‘;Pn (124)

Then, we can fit Hermite curve pieces between each pair of points for i =
0,1,2,...,n — 1. The curve represented in (1.24) is called a Hermite spline pro-
vided the information about the tangents D;’s is given. Let us define D;’s as fol-
lows:

Do =2(P1 — Py) — (P, — Po)/2,

D, =2(Pn - Pnfl)_(Pn - Pn72)/2s (1.25)

Di =ai(P; — Pi-1) + (1 —a;))(Piy1 — ), i =1,2,3,...,n— 1,
where
_ |Pit1 — Pi

|Piy1 — Pil+|P — Pyl

Although the tangents provided in equations (1.25) will produce open curves,
they can be easily oriented to produce closed curves too.

The Hermite spline P (¢) will be called a cardinal spline provided the derivative
values D;’s are changed as follows:

ai

1
D; = 5(1 —a;)(Piy1 — Picy),

1
Diyy =50 —ai)(Piy2 = P).

In this case, we would have the curve segments fori = 1,2,...,n — 2. The
parameter a; is called tension parameter because it tightens or loosens the curve
when it increases or decreases. When a; = 0, the cardinal spline is called Catmull-
Rom spline or Overhauser spline.
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The Hermite spline P (¢) will be called a Kochanek-Bartels spline provided the
derivative values D;’s are changed as follows:

1
Di = (1 —a) [+ 8 =) (P = Picy) + (1= B) (L + ) (Piy1 — P)],
1
Diyy = 5(1 —a;) [(L+ B = 7)) (Pig1 — P)) + (1= B) (L + 7)) (Piga — Piy1)],

where

* 0; is a tension parameter.
e f; is a biased parameter.
* y; is a continuity parameter.

The parameter values f; = 0 = y; produce the cardinal spline.

1.5 Summary

This chapter provides introductory material that is useful before studying the rest
of the book. It provides notation, a summary of spline methods and their history,
and a rich bibliography. The chapter also describes who should study the book.
Some valuable suggestions have also been made regarding the structure of the
book for course work at both the undergraduate and graduate levels.

1.6 Exercises

1. What is this book about?

2. What is a spline?

3. Name at least 10 spline methods in the literature.
4. Write programs to plot the following spline curves:

(a) Quadratic B-spline

(b) Cubic B-spline

(c) Bézier curves of arbitrary degree.
(d) Cubic Hermite spline

(e) Cardinal spline

(f) Kochanek Bartel spline.

5. Name at least 20 applications where a spline can be used.
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2
Weighted Nu Splines

Abstract. Weighted v-splines are the composition of two spline methods, namely, weighted
splines and v-splines. These are the generalization of cubic spline method and are
highly useful for CAD/CAM and various applications in computer graphics. Both—
interpolatory and freeform—schemes are available in the literature. This chapter explains
interpolatory weighted v-splines together with a construction of its B-spline-like form.
The design curves, constructed through B-spline-like form, possess all the ideal geometric
properties such as partition of unity, convex hull, and variation diminishing. The splines
provide not only a variety of very interesting shape control such as point and interval
tensions but also, as a special case, recover the cubic spline method. In addition, these
weighted v-splines also provide, as special cases, the weighted splines and the v-splines.
The method for evaluating these splines is suggested by a transformation to Bézier form.

2.1 Introduction

Designing of curves, especially those curves that are robust and easy to control and
compute, has been one of the significant problems of computer graphics and geo-
metric modeling. Specific applications including font designing, capturing hand-
drawn images on computer screens, data visualization, and computer-supported
cartooning are main motivations toward curve designing. In addition, various other
applications in CAD/CAM/CAGD are also a good reason to study this topic. Many
authors have worked in this direction. For brevity, the reader is referred to [1-22].

A cubic spline curve method is considered to be a considerably decent approach
for designing applications in the area of computer graphics and geometric mod-
eling. However, due to its various limitations, such as lack of freedom in shape
control, a designer may not have much help. In this study, the weighted v-spline
method has been reviewed. This curve design method, in addition to enjoying the
good features of cubic splines, possesses interesting shape design features too.
It has two families of shape parameters working in such a way that one family
of parameters is associated with intervals and the other with points. These para-
meters provide a variety of shape control such as point and interval tension. This
is an interpolatory curve scheme, which utilizes a piecewise cubic function in its
description. However, it is desired to extend this idea to freeform curves, which

21
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can enjoy all the ideal properties related to B-spline theory. This work is mainly
concerned with developing such a theory.

Weighted splines [7] were discovered as a cubic spline method. The method
provides a C! computationally simpler alternative to the exponential spline-under-
tension [4, 13, 20]. Regarding shape characteristics, it has shape control parame-
ters associated with each interval, which can be used to flatten or tighten the curve
locally. Nu-splines [11,12] were discovered as another cubic spline method. It pro-
vides a GC? computationally simpler alternative to the exponential spline-under-
tension [4,13,21]. Regarding shape characteristics, it has shape control parameters
associated with each point, which can be used to tighten the curve both locally and
globally. The ideas of weighted splines and Nu-splines were married together to
formulate another spline called weighted Nu-spline [11, 12, 19, 22]. This curve
design method covers the shape features of both of its counter parts and provides
a C!' computationally economical method.

B-splines are a useful and powerful tool for computer graphics and geometric
modeling. They can be found frequently in the existing CAD/CAM (computer-
aided design/computer -aided manufacturing) systems. They form a basis for the
space of n th degree splines of continuity class C”~!. Each B-spline is a non-
negative n th-degree spline that is nonzero only on n + 1 intervals. The B-splines
form a partition of unity, that is, they sum up to one. Curves generated by summing
control points multiplied by the B-splines have some very desirable shape proper-
ties, including the local convex hull property and variation diminishing property.

It is desirable to generalize the idea of B-spline-like local basis functions for the
classes of splines with shape parameters considered in the description of continu-
ity. The first local basis for GC? splines was developed by Lewis [10]. In 1981,
Barsky [1] generalized B-splines to Beta splines. These splines preserve the geo-
metric smoothness of the design curve while allowing the continuity conditions
on the spline functions at the knots to be varied by certain parameters, thus giving
greater flexibility. Later, in 1984, Bartels and Beatty [2] developed local bases for
Beta spline curves that are equivalent to Boehm’s [3] Gamma splines. Foley [7],
in 1987, constructed a B-spline-like basis for weighted splines; different weights
were built into the basis functions so that the control point curve was a C! piece-
wise cubic with local control of interval tension.

In this work, a constructive approach has been adopted to build B-spline-like
basis for cubic spline curves with the same continuity constraints as those for inter-
polatory weighted v-splines. These are local basis functions with local support
which have the property of being positive everywhere. The design curve, con-
structed through these functions, possesses all the ideal geometric properties like
partition of unity, convex hull, and variation diminishing. This curve method pro-
vides not only a variety of very interesting shape control such as point and interval
tensions, but also, as a special case, recovers the cubic B-spline curve method.
In addition, it also provides B-spline-like design curves for weighted splines,
v-splines and weighted v-splines. The method for evaluating these splines is
suggested by a transformation to Bézier form.
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The approach adopted in the construction of local basis for the weighted
v-splines is quite different from those adopted for different spline methods
in [1-8, 15]. The way for evaluating the weighted v-splines representation of
a curve is suggested by a transformation to piecewise defined Bézier form. This
form will also expedite a proof of the variation diminishing property for the Bézier
representation.

This chapter is related the weighted v-spline method [19, 22] explained in
Section 2.2. It studies, in Section 2.3, a B-spline-like local basis for the weighted
v-spline. The design curve in Section2.4 maintains the C' continuity of the
weighted v-splines. This description of freeform weighted v-spline not only pro-
vides a variety of interesting shape control such as point and interval tensions
but also, as a special case, recovers the cubic B-spline curve method. In addition,
it also provides B-spline like design curves for weighted splines, v-splines and
weighted v-splines. The method has been extended for the construction of surfaces
in Section 2.5. Section 2.6 summarizes the chapter.

2.2 Some Spline Methods

This section gives a brief review of the cubic spline, weighted splines, v-splines,
and weighted v-splines. Detailed description of the weighted v-splines is given in

Sections 2.3 and 2.4. Assume that we are given knot partitionas 1| < fp < .... <
t,, and set of control points Fi, F3, ..., F,. Let us have the Followings:
Point tension factors: v; > 0,i =1,2,...,n, @
Interval weights: wi>0,i=1,2,...,n. | '

Consider the piecewise cubic function:
p() = pi(0) = Fi(1 = 0)° +30(1 = 0)*V; +30>(1 = OW; + Fra0°, (2.2)

where _
0=——, hi=ti1—t, (2.3)

and
h; D; hiDj4+1
Vi=Fi+_3 , Wi= R

It is obvious to see that the piecewise cubic function (2.2) holds the following
interpolatory properties:

pti)=F;, pltit1) = Fiq1 }

(2.4)

2.5)
pW () = Di, pV(tis1) = Diy1

where p() denotes first derivative with respect to ¢ and D; denote derivative values
given at the knots #;. This leads the piecewise cubic (2.2) to the piecewise Hermite
interpolant p € Clin, 1.
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2.2.1 Cubic Splines

The cubic spline interpolant is a C? piecewise cubic function p(z) that minimizes

n—1 lit1
2
vin=3 [ I ofe.
i=1 t
subject to the interpolation conditions f(#;) = F; fori = 1,2, ..., n and one of

the following end conditions:

* Type 1: First derivative end conditions,
* Type 2: Natural end conditions, or
* Type 3: Periodic end conditions.

Given F; and D; fori = 1,2, ..., n, there exists a unique C 2 piecewise cubic
function f(¢) that satisfies f(z;) = F; and f'(t;) = D; fori = 1,2,...,n.
The unknowns are the first derivative values, D;, i = 1,2, ..., n, and once they

are computed, the function f(¢) can be easily evaluated using the standard piece-
wise cubic Hermite form explained in (2.2). Necessary and sufficient conditions
for the function f(¢) to be the cubic spline interpolant are that its derivatives D;’s
satisfy

i—1Dioy + (28-1 +26) Dj + & Dy = bi (Fiyy — Fi) + biy (F; — Fi_y),

fori = 1,2,...,n, where ¢; = 1/h;, b = 3¢;/ h;. The above system of equa-
tions provides (2.n — 2) equations for n unknowns, Dy, ..., D,, and the additional
equations come from the given end conditions. The equations for Type I first deriv-
ative end conditions are D; = f’(t;) and D, = f'(t,). For Type II natural end
conditions they are .
201Dy + 1Dy = by (F2 — 1),
and .
5,,71 Dy + Zénfl Dy = by (Fn - anl)-

For Type 3 periodic end conditions, they are
(261 + 284—1) Dy + &1 D2 + éy—1 Dyt = by (Fo — Fy) + by—1(Fy — Fy1),

and D; = D,. The linear system of equations that occurs when Type 1 or 2
end conditions are used is tridiagonal and diagonally dominant; thus it can be
solved efficiently by using a standard tridiagonal system solver. Figure 2.1 is a
cubic spline curve for a data shown as bullets.

2.2.2  Weighted Splines

The weighted spline interpolant is a C! piecewise cubic function p(¢) that mini-
mizes

n—1 lit+1

vin=2o [ [r'OFd.
i=1

i
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FIGURE 2.1. The default weighted v-spline with periodic end conditions.

subject to the interpolation conditions f(t;) = F; fori = 1,2, ..., n and one of
the Type 1, Type 2, and Type 3 end conditions.

The w;’s are termed as interval weights because they “tighten” the curve on the
ith interval in the same way that they do for the weighted splines in [14]. If and all
w; = q, where g is some constant value, then the weighted spline equals the cubic
spline as in Section2.2.1.

The approach taken in [21] uses piecewise cubic Hermite basis functions to rep-

resent the weighted splines. Given F; and D; fori = 1,2,...,n, there exists a
unique C! piecewise cubic function f(¢) that satisfies f(t;) = F; and f'(t;) =
D; fori = 1,2,...,n. The unknowns are the first derivative values, D;, i =

1,2,...,n, and once they are computed, the function f(z) can be easily evalu-
ated using the standard piecewise cubic Hermite form. Necessary and sufficient
conditions for the function p(z) to be the weighted spline interpolant are that its
derivatives D; satisfy
ci—-1Di—1 + 2ci—1 + 2¢;) Di + ¢i Diy1 = bi (Fiq1 — Fi) + bi—1 (Fi — Fi—1).,

fori = 1,2,...,n, where ¢; = w;/h;, bj = 3ci/h;. The above system of
equations provides (n — 2) equations for n unknowns, Dy, ..., D,, and the addi-
tional equations come from the given end conditions. The equations for Type I first
derivative end conditions are D = f'(¢;) and D,, = f'(t,). For Type II natural
end conditions they are

2c1Dy 4+ c1Dy = by (F2 — Fy),

and
cn—1Dp—1 4+ 2cp—1Dp = bp_1(F, — Fu1).

For Type 3 periodic end conditions, they are

2¢1 +2cp 1Dy + 1Dy + cu1 Dy = b1(F2 — F1) + by 1(Fy — Fuo1),
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and D; = D,,. The linear system of equations that occurs when Type 1 or 2 end
conditions are used is tridiagonal and diagonally dominant; thus it can be solved
efficiently by using a standard tridiagonal system solver.

2.2.3 Nu Splines

The v-spline interpolant is a GC? piecewise cubic function p(¢) that minimizes
n
2
V=D vilr@],
i=1

subject to the interpolation conditions f(#;) = F; fori = 1,2,...,n and one of
the Type 1, Type 2, and Type 3 end conditions.

The v; are termed point tension factors because they “tighten” a parametric
curve at the ith point in the same way that they do for the v-splines in [11, 12].
If v; = 0 v-spline equals the cubic spline in [11, 12].

The approach taken in [11,12,19,21] uses piecewise cubic Hermite basis func-
tions to represent the v-splines. Given F; and D; fori = 1,2, ..., n, there exists a
unique GC? piecewise cubic function f(r) that satisfies f(1;) = F; and f'(t;) =
D; fori = 1,2,...,n. The unknowns are the first derivative values, D;, i =
1,2, ...,n,and once they are computed, the function f () can be easily evaluated
using the standard piecewise cubic Hermite form. Necessary and sufficient condi-
tions for the function p(¢) to be the v-spline interpolant are that its derivatives D;
satisfy

y 1 . . 9 - -
Ci—1Di—1 + (Evi +26 1+ ZCi) D; +¢iDiy1 = bi (Fiy1 — Fi) +bi—1 (Fi — Fi—1),

fori =1,2,...,n, where ¢; = 1/h;, b = 3¢;/ h;. The above system of equa-
tions provides (n — 2) equations for n unknowns, Dy, ..., D,, and the additional
equations come from the given end conditions. The equations for Type I first deriv-
ative end conditions are D; = f/(r;) and D, = f'(t,). For Type II natural end
conditions they are

1
(EW + 201) Dy +c1Dy =by (F, — Fy),

and 1
1Dy + (Evn + 2Cn—l) Dy = by (Fy — Fy1).

For Type 3 periodic end conditions, they are
1 1
(51)1 + 3Vn +2¢1 + 26n1) D1 +c1Dy +cp1Dp1
=b1(F2 - Fl)"‘bnf](Fn - anl)n
and D; = D,,. The linear system of equations that occurs when Type 1 or 2 end

conditions are used is tridiagonal and diagonally dominant; thus it can be solved
efficiently by using a standard tridiagonal system solver.
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2.2.4 Weighted Nu Splines

The weighted v-spline interpolant is a C! piecewise cubic function p(¢) that min-
imizes
tipl

n—1
V(f) = ;“’ /

n
[/ de+ 3 v [f' @]
1 i=1
subject to the interpolation conditions f(#;) = F; fori = 1,2,...... ,n and one
of the Type 1, Type 2, Type 3 end conditions. This is the marriage of Weighted
splines and Nu splines which can be recovered as special cases discussed later in
this chapter.

The v; are termed point tension factors because they ‘tighten’ a parametric
curve at the ith point in the same way that they do for the v-splines in [11, 12].
The w; are termed interval weights because they ‘tighten’ the curve on the ith
interval in the same way that they do for the weighted splines in [14]. If v; = 0
and all w; = g, where ¢ is some constant value, then the weighted v-spline equals
the v-spline in [11, 12] with tension factors v; /¢g. If all v; = 0, then it equals the
weighted spline given in [14].

The approach taken in [8] uses piecewise cubic Hermite basis functions to
represent the weighted v-splines. Given F; and D; for i = 1,2,...,n, there
exists a unique C! piecewise cubic function f(r) that satisfies f(z;) = F; and
f'(t;) = D; fori = 1,2,...,n. The unknowns are the first derivative values, D;,
i =1,2,...,n, and once they are computed, the function f(¢) can be easily eval-
uated using the standard piecewise cubic Hermite form. Necessary and sufficient
conditions for the function p(r) to be the weighted v-spline interpolant are that its
derivatives D; satisfy

1
ci—1Di—1 + (5”1’ +2¢i-1 + ZCi) Di + ¢i Dy

=bi (Fi41 — Fi) + bi—1 (F; — Fi—1), (2.6)
fori = 1,2,...,n. The above system of equations provides (n — 2) equations
for n unknowns, Dy, ..., D,, and the additional equations come from the given

end conditions. The equations for Type I first derivative end conditions are D| =
f'(t1) and D,, = f'(t,). For Type Il natural end conditions they are

1
(Em + 261) Di+c1Dy = by (F2 — Fy),

and

1
Cn—1Dp—1 + (E‘)n + 2cn1) Dy = by—1(Fy — Fy—1).

For Type 3 periodic end conditions, they are

1 1
(EVI + vn +2c1 + 26n—1) Dy +c1Dy+cp—1Dypy

=b1(F2 - F1)+bn—l(Fn - Fn—l)a
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and D; = D,,. The linear system of equations that occurs when Type 1 or 2 end
conditions are used is tridiagonal and diagonally dominant; thus it can be solved
efficiently by using a standard tridiagonal system solver.

The weighted v-spline can be computed by solving for D;’s. This can be done
by re-writing the system of equations in (2.10) as follows:

b
ci—1Di—1 + (3’ +2ci-1 + 26‘i) D; +c¢;iDiy1 =3¢;Aj +3ci—1Ai—1,  (2.7)

where
Ai = (Fiy1 — F) /h.

fori = 2,...,n — 1. For given appropriate end conditions (Type 1, Type 2, or
Type 3), this system of equations is a tridiagonal linear system. This is also diag-
onally dominant for the following constraints on the shape parameters as in (2.1),
and hence has a unique solution for D;’s. As far as the computation method is
concerned, it is much more economical to adopt the LU-decomposition method to
solve the tridiagonal system. Therefore, the above discussion can be concluded in
the following:

Theorem 2.1. For the shape parameter constraints (2.1), the spline solution of
the weighted v-spline exists and is unique.

Remark 2.1. Each component of the parametric weighted v-spline is a C' func-
tion in general, but it has second-order geometric continuity at #; if w;—; = w; and
the tangent vector at #; is non zero and it is CZatt;ifwi_; = w; andv; = 0.

2.2.5 Demonstration

Figure 2.1 is the parametric weighted v-spline interpolant to the points denoted by
circles using periodic end conditions. In Figure 2.2, interval weight,w;, of 30 is
used in the base interval, while point tension factors, v; of 10 are used on the four
vertices defining the “neck.” The rest of the parameters are taken as w; = 1 and
Vi = 0.

2.3 Freeform Weighted Nu Spline

This section is devoted to constructing the freeform weighted Nu spline which has
inherent properties of B-spline curves. This formulation is possible through the
construction of local support basis B;’s to compute the cubic weighted v-spline
p(t) satistying the following constraints:

p(ti+) 10 0 p(ti-)
pVy) =101 D Py |. (2.8)
PP is) 05 % 1 LpPaio)

i
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FIGURE 2.2. The weighted v-spline with periodic end conditions using w; = 30 on the
base interval, w; = 1 otherwise, v; = 10 on the four vertices defining the “neck,” and
v; = 0 otherwise.

2.3.1 Local Support Basis

For the purpose of the analysis, let additional knots be introduced outside the knot
partition 1 < fp < ... < t, of the interval [#1, #,], defined by:

to<t_1<ty<t and t, < el < Ip42 < Ip43. 2.9)
Let
ai = 1/c;, (2.10)
and ¢; be cubic weighted v-spline:
i (1) O r=tiz2n 2.11)
U L = '

Imposing weighted v-spline constraints (2.8), we have:
hi—
$i(ti-1) = == (1),

hi
¢i(ti) =1- ?¢§1)(ti),

) _ A
¢i (ti—l) - a;
and B
(1) i
¢[ (tl) = Ea

1
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where, if d; = %aiai_lvi + ai—1 + a;, then

3a;_
A = 4z i
hi—1
B — 3(1,’ )
i = hi—l i—1>
a; aj—-2
Ci=didi1+ —(hi—1 + hi)di—1 + ——(hi—1 + hi—2)d,.
hi_q hi—
Let
D; = hi_didi—1 + ai(hi—1 + hi)di—1 + ai—2(hi—1 + hi—2)d;,
ui = ¢iv1(t), A =1 — ¢ (1),
. 1 5 1
i = o), 0 = ¢V @),
Then
3 3a;di—1 .  3ai_1diy1
i = B ,ul = >
D; Dy
hi—y . hi A
:ui - lTlulaii - ?1/119
and hence
0<u; <1,0<4; <1 and O0<yu;+4; <1
Now define

Bi(t) = ¢i(t) — pi1(2).

Then B; has the local support (#;_2, f;12) and an explicit representation of B;
on any interval (¢, t;+1) (in particular, fori = j —2,j — 1, j, j + 1) can be
calculated as:

Bj(1) = (1 —0)*B;(t) + 0(1 — 0> (3B (1)h; BY" (1)
+02(1 = 0)3B;(ti41) — hiBY" (1:41)) + 0°Bj(ti11), (2.12)

where 1
Bj(t) = B (4) = 0fori # j— 1, j,j+1,
and W
Bj(tj—1) = uj-1, B (tj—1) = itj-1,
Bi(tj) =1-4j—p;. B =lj— i, (2.13)
1 ~
Bj(tjt1) = 4j+1, B](- Ytj41) = =2y

Careful examination of the Bézier vertices of B;(¢) in (2.12) shows these to be
non-negative for v;, e; satisfying (2.7) and thus B;(t) > 0, V. This leads to the
following:
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Proposition 2.1. The local support basis functions (2.12) are such that the foll-
owing properties hold:

(i) (Local support) B;(t) =0fort & (tj—2,tj12),
n+1
(ii) (Partition of unity) > Bj(t) = 1 fort € [t1, 1,,],

j=—1
(iii) (Positivity) B;(t) > 0 for all ¢.

2.3.2 Design Curve

Now, we need a convenient method to compute the curve representation. It is
desired to apply the above developed local basis functions to develop a freeform
weighted v-spline curve as follows:

n+1
P(t)y= D Bj()Pj.t €11, 1], (2.14)
j=—1
where P; € RV, j=0,1,...,n+ 1, define the control points of the representa-

tion. By the local support property,

i+2
P(ty= D Bj(®)Pj, t €t tiy1),i=0,....n— 1.
j=i—1

Substitution of (2.12), ¢t € [#;, ti+1), then gives the piecewise defined Bézier rep-
resentation

P(1) = Pi(t) = Fi(1 — 0)> +30(1 — 0)>V; +30%(1 — O)W; + Fi1160°, (2.15)

where
Fi = 4P+ =4 —u)Pi + pi Py,
Vi = (1 —=0a)P +aiPit1, (2.16)
Wi = BiP+ (1 —Bi)Piy1,

with

aj

wi+hifti/3 = %(hi—l + hi),
A it
Bi = Zitv1+hidi = %(hi + hit1).
This transformation to Bézier form is very convenient for computational purposes
and also leads to the following:

Proposition 2.2. (Variation Diminishing Property) The weighted v-spline curve
P(1),t € [t0,1,], defined by (2.14), crosses any (hyper) plane of dimension N — 1
no more times than it crosses the “control polygon™ joining the control points
P_1,Poy,..., Pyy1.
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Proof. Following the arguments of positivity in the previous proposition, it is
straightforward that 0 < a; < 1,0 < f; < 1,and 0 < a; + f; < 1. Thus, V; and
W; lie on the line segment joining P; and P;11, where V; is before W;. It can also
be simply noted that

Fi=0—=y)Wizi +iVi, (2.17)
where By
— <
hi—1 + hi
Thus, the control polygon of the piecewise defined Bézier representation is
obtained by corner cutting of the weighted v-spline control polygon. Since the
piecewise defined Bézier representation is variation diminishing, it follows that
weighted v-spline representation is variation diminishing.

O<y,'= 1.

2.3.3  Shape Control

The shape parameters, defined in (2.7), can be used to control the local or
global shape of the design curve. To analyze such behaviors, the explicit form
on (2.1, tj+1) of the weighted v-spline design curve (2.14) can be expressed as:

P@)=1;(t) +ei(t), (2.18)

where
Lit)=(0—-0)F +0F;1, (2.19)

and
ei(t) = 00 = 0) [ (Fivi = F) = PO @) | 0 = )

+[Fir = Fy = ni PO 0} (2.20)

Proposition 2.3. Let w; = w > 1, and v; = 0, Vi are all bounded then the
weighted v-spline design curve is straightway the standard cubic spline.

Proof. It follows from the last constraint of relation (2.8).

Proposition 2.4. (Global Tension) Let w; > 1, Vi, be bounded and v; > v then
the weighted v-spline curve (2.14) converges uniformly to the control polygon
Py,..., P,asv — o0.

Proof. Letv; = v, Vi then from (2.1)

lim P () = 0. (2.21)
V—>00
Moreover

lim 2; =0= lim 4;, Vi.

V—>00 V—> 00



2.3. Freeform Weighted Nu Spline 33
This implies the following:

lim F;, = P;, Vi. (2.22)

V—>00
More generally, for v; > v > 0, it can be shown that

max 1] < r(v,
and

max |l < s(v),
where

lim r(v) =0= lim s(v),
V—>00 V—>00

and again (2.21) and (2.22) hold. Hence the result.
Proposition 2.5. [Local Tension] Consider an interval [#y, fx+1] for a fixed k.
Then on [#, t;+1] weighted v-spline curve converges uniformly to a line segment

of the line Py Pr4+1 as wy — 0o where wi—_1 and vy are bounded.

Proof. Careful examination shows

lim = it = ay(say)
®—00 (3hk + hk—1 + hi+1)
lim upy1 =0
w—> 00
lim A =0
w—> 00
. hi+1 5
lim A = = sa
o0 N T Bl it + i) Prlsay)

This implies the following:

lim Fi = (1 — ax) Pe + g Peg1 = Fi(say)

w—> 00
and .
Jim Fiy = PP+ (1 - ﬁ’k) Pry1 = Fiqi(say)
Obviously Fy and I:"H] lie on Py Pyy1 and Fy. is before I:“k+1 asar < (1 — ﬁk).
Also
3hi(Pes1 — Pr)
Bhi + hg—1 + hi+1)
Hence from (2.18), (2.19), (2.20) if P(t) = Pi(t) fort € (t, tx+1), then

lim (Fes1—Fo)= lim h PO ()= lim h PY(t1) =
w— 00 w—> 00 w—> 00

lim Py (1) = (1 —0) Fy + O F.
w—> 00
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Proposition 2.6. (Local Tension) Consider an interval as in Proposition 5. Then
on [tk, tx+1], the weighted v-spline converges uniformly to the linear interpolant
1;(t) as both vg, vi41— o, where wg_1, wk, wi+1 are bounded.

Proof. It can be noted that

lim,uk = lim,ukH =0,
limAy =lim Az =0,

and
lim PD (1) = lim PO (t341) = 0.

This gives the desired result.

2.3.4 Demonstration

The tension behavior of the weighted v-spline is illustrated by the following sim-
ple examples for data set in R?. Unless otherwise stated, in all the figures, the
parameter v; will be assumed as zero Vi and the parameters w; as 1 for all 7.
Figure 2.3 is the default curve, which is a cubic spline for v; = 0, and w; = 1,
for all i. The control polygon, together with the control points, is also shown in
the figure. Figure 2.4 shows the effect of a progressive increase in the interval
tension in the base of the figure. The top, middle, and bottom curves have been
demonstrated for o = 1, 10, and 100, respectively. The effect of the high-tension
parameters is clearly seen in the corresponding interval in the base of the figure.
Figure 2.5 shows the effect of a progressive increase in point tension behavior
locally at two opposite points of the figure. The top, middle, and bottom curves
have been demonstrated for v = 0, 10, and 100, respectively. The effect of the
high-tension parameters is clearly seen at the corresponding points in the figure.

L "

FIGURE 2.3. The default weighted Nu spline.
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FIGURE 2.4. The weighted Nu spline with interval tension at the base with @ values as 1
(left curve), 10 (middle curve), 100 (right curve).

. . . * . *

FIGURE 2.5. The weighted Nu spline with corner tension at two opposite points with v
values as 0 (left curve), 10 (middle curve), 100 (right curve).

- . . .

FIGURE 2.6. The weighted Nu spline with global tension v = 1 (top curve), v = 5 (middle
curve), v = 100 (bottom curve).

Figures 2.6 illustrates the effect of progressively increasing the values of the
point tension parameters v;’s = 0, 5, and 100, for the top, middle, and bottom
curves, respectively, at all the points of the figure. This is the global tension effect
due to progressive increase.

Figure 2.7 demonstrates an important observation about the negative values of
the shape parameters. The global values of the interval shape parameters w’s will
not make any effect to the picture. However, the local values do influence the
picture. The curve bulges inside for negative values w = 0, —3, —4, —5, —25,
and —100. It can be noted (row-wise from left to right) that lower negative values
make the curve bulge more inside, but higher negative values again start making
the curve tensed in the interval.

Behavior of the negative v values can be seen in Figure 2.8. It illustrates the
effect of progressive negative increase in the values of the point tension parameters
vi’s =0, —1, -5, =25, —100, and —1000. It can be seen (row-wise from left to
right) that Lower negative values make the curve bulge inside so much so the
curve starts looping with the negative increase. However, it again starts getting
tensed after attaining certain values. Ultimately, higher negative values make the
curve tensed to converge to the control polygon.
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FIGURE 2.7. The weighted Nu spline curves (row vise from left to right) with negative
global tension w values 0, —3, —4, —5, —25, 100.

S
A
-

FIGURE 2.8. The weighted Nu spline curves (row vise from left to right) with negative
global tension v values 0, —1, —5, —25, 100, and 1000.
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2.3.5 Advantages and Features
The method has various advantages and features as follows:

[t enjoys the good features of cubic splines.

e It enjoys all the standard geometric properties of B-splines.

* The method is geometrically smooth.

e It recovers the cubic B-spline method as a special case.

It recovers the weighted spline method as a special case.

e Itrecovers the Nu-spline method as a special case.

It possesses interested shape design features.

It has two families of shape parameters working in such a way that one family
of parameters is associated with intervals and the other with points. These para-
meters provide a variety of shape controls such as point and interval tension.

* Negative weights can also be utilized for shape design.

* It is computationally economical because it consumes the cubic function only.

* The method of evaluation is suggested by a transformation to Bézier form,
which is computable by any well-known recursive method too.

e In addition to direct manipulation, the interpolation method can be computed
through B-spline-like formulation too. This point will be discussed in detail
somewhere else later.

* The curve method is extendable to surfaces. The direct approach using a tensor
product is the simplest one.

2.4 Surfaces

The extension of the curve scheme, to tensor product surface representations:

m+1 n+1

P@E)= > > PijBi(®)B;(),

i=—1j=—1

where 7 p < f < fpa3,t 2 <t < t,13,is immediately apparent. This surface
presents a bicubic weighted v-spline surface with shape parameters as:

0;>0,i=1,....m,w; >0,i=1,...,m—1,
v;>0,j=1,...,n,0;>0,j=1,...,n— 1.

Here
PjeR,i=—1,...,m+1, j=—1,...,n+1.

are the data points and I§,-,i =-—1,...,m+1land Bj,j = —1,...,n+ 1 are

the local support bases functions for the weighted v-spline in 7 and ¢ directions,
respectively. However, this representation exhibits a problem common to all tensor
product descriptions in that the shape control parameters now affect a complete
row or column of the tensor product array.
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Nielson [12] solves this problem for his cubic v-spline representation by
constructing a Boolean sum, spline-blended, rectangular network of parametric
v-spline curves. Another possibility is to allow the shape parameters to be variable
in the orthogonal direction to, for example, the local support basis functions of the
tensor product form.

We propose a tensor product like the approach in [16, 17], but actually it is not a
tensor product. Instead of step functions, the tension weights are introduced as C?
continuous cubic B-splines in the description of the tensor product. This produces
local control in the construction of surfaces in an independent way. The details
of the proposed method are out of the scope of this paper and will be discussed
elsewhere.

2.5 Summary

A freeform C'! weighted Nu spline curve design has been developed through
the construction of local support B-spline-like basis functions. This cubic spline
method has been developed with a view to its application in computer graphics,
geometric modeling, and CAGD. It is quite reasonable to construct a freeform
cubic spline method, which involves two families of shape parameters in exactly
a similar way as in interpolatory weighted v-spline. These parameters provide a
variety of local and global shape controls such as interval and point shape effects.
The visual smoothness of the proposed method is also C!, which is same as
the smoothness of interpolatory weighted v-spline. The freeform C! weighted
Nu-spline method can be applied to tensor product surfaces, but unfortunately,
in the context of interactive surface design, this tensor product surface is not that
useful because any one of the tension parameters controls an entire corresponding
interval strip of the surface. Thus, as an application of C' spline for the surfaces, a
method similar to Nielson’s [12] spline blended methods may be attempted. This
will produce local shape control, which is quite useful regarding the computer
graphics and geometric modeling applications.

2.6 Exercises

1. Write a program to implement the curve design method in Section 2.2.

2. Write a program to implement the curve design method in Section 2.3.

3. Check the difference of shape effects in your programs of Exercise 2.6.1 and
2.6.2 when the schemes are implemented in scalar form.
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3

Rational Cubic Spline with Shape
Control

Abstract. Interactive curve design is a basic need for CAD/CAM, computer graphics,
vision, imaging and various other disciplines [1-28]. Having a robust, visually pleas-
ant, well controlled, and effective scheme may be a useful solution to many problems in
practice. A rational spline with some shape parameters may be a good choice in this regard.
This chapter has been devoted to a C 2 rational spline scheme having interesting features.
It is also an alternative to various other schemes, in the literature, like weighted spline,
v — spline, weighted Nu spline, and y — spline, and so on. In addition to the interpolatory
version, the spline is also presentable in B-spline-like form to produce freeform curves.

3.1 Introduction

A rational cubic spline with tension was described and analyzed by Gregory and
Sarfraz [23]. It provides a C? computationally simpler alternative to the exponen-
tial spline-under-tension of Schweikert [24], Cline [25] and Preuss [26] as well as
an alternative to C! and GC? spline methods such as the weighted v — spline of
Foley [8] and y — spline of Boehm [3], and so on. Regarding shape characteristics,
it has a shape control parameter associated with each interval which can be used
for flatten or tighten the curve both locally and globally.

This chapter presents a description and analysis of a rational cubic spline that
has two shape parameters associated with each interval. The spline can be used in
computer graphics, CAGD, and CAD/CAM to represent the parametric curves in
interpolatory as well approximation (freeform) form. The rational spline not only
recovers the rational cubic spline with tension of Gregory and Sarfraz [23] but
also provides a C? alternative to most of the existing C!' and GC? spline methods
such as the weighted splines of Foley [7], v — spline of Nielson [11, 12], weighted
v — splines of Foley [8], y — spline of Boehm [3], rational geometric splines of
Boehm [27], and so on.

The shape parameters of the rational spline can be utilized to achieve a variety
of shape controls such as biased, point and interval tensions. Since the spline is
defined on a nonuniform knot partition, the partition itself provides additional

41
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degrees of freedom on the curve. However, the parametrization is normally
expected to be defined on a uniform known partition, or by cumulative chord
length, or by some other appropriate means.

The rational spline is based on a rational cubic Hermite interpolant which is
introduced in Section 3.2. together with some preliminary analysis. Section 3.3
describes the rational spline and analyses of its behavior with respect to one shape
parameter in each interval while the generalization to two shape parameters is
discussed in Section 3.4. Section 3.5 consists of some illustrative examples about
the interpolation spline. The survey of freeform curves is made in Section 3.6
and B-spline-like bases are constructed in Section 3.8. Freeform design curve for-
mulation is made in Section 3.9, whereas Section 3.10 explains the behavior of
shape parameters. Freeform curve scheme has been demonstrated in Section 3.11.
A brief description of surfaces has been made in Sections 3.12 and 3.13.

3.2 C! Piecewise Rational Cubic Hermite Interpolant

A piecewise rational cubic Hermite parametric function p € C Uto, 1,1, with para-
meters v, wi,i =0,...,n—1,is defined fort € [#;, t41],i =0,...,n—1,by

p(t) = pi(ti;v;, w;)
(1=0F +0(1—0) i F +hiD;) +60*(1 — 0) (w; Fry1 — hiDi1) + 03 Fiyy

1 =0 +00 (1 —60)*+ w02 (1 —0) +63

3.1

where the notations F;, D;, t;, h;, 0 are as mentioned in Section 1.3 and v;, w; >0.
The function p (1)—see Figure 3.1—has the Hermite interpolation properties
that

p(ti) = Fand pV @) = D;,i =0, ... ,n. (3.2)
The v; and w;,i =0, ...,n — 1, will be used as shape parameters to control and
fine tune the shape of the curve. The case v; = w; = 3,i =0,...,n — 1 is that

of cubic Hermite interpolation and the restriction v;, w; > 0 ensures a positive
denominator in Equation (3.1).
For v;, w; # 0, Equation (3.1) can be written in the form:

piti;vi, w;) = Ro(@; v;, w)Fi + Ry (05 0;, w;) Vi + Ry (05 v;, wi) Wi
+R3 (0; vi, w;) Fiq1, (3.3)

where
v = F; + hiD; /v;, W; = Fiy1 — hi Diy1/w;, 34

and R;(8; v;, w;), j =0, 1,2, 3, are appropriately defined rational functions with

3
> RO v, w;) =1. (3.5)

j=0
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Dy,

FIGURE 3.1. The rational cubic segment in RZ.

Moreover, these functions are rational Bernstein-Bézier weight functions that are
non-negative for v;, w; > 0. Thus, in RN, N > 1 and for v;, w; > 0, we have:

Proposition 3.1. (Convex hull property) The curve segment p; lies in the convex
hull of the control points {F;, V;, W;, Fi11}.

We now consider the variation diminishing property of the rational cubic and
for this we require some preliminary analysis. Let

3
P @)= aiA; (f)e (1-0)~,
i=0
and
3 3 . .
10 =>a(})ora-o
i=0

be scalar curves with a¢; > 0, V;. Since p () is a Bézier curve and since a; > 0,
we have
V(p) = V(aoAo, ...,a3A3) = V(Ao, ..., A3),

where V(.) denotes the number of sign changes of a function or sequence on [0, 1].
Also, since g (¢) > 0, we have

v (s) —V(p) = V(Ao,..., A3),

Let p (8) now be considered as planar curve, say, p (0) = (p1 (@), p2 (6)) where
A; = (x;,vi) € R* and let L = ax + by + ¢ = 0 be any line. Then the number
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of times the line L crosses the rational cubic curve p(0)/q(0) is the same as it
crosses the cubic Bézier curve p(8), g(6) > 0. This number is

Vv (a Zaixl- (?) 0l (1 —0)>
+ bZaiy,» (?)Hi(l — ) +C)
1% (ain (?)Hi(l =0’ +b> i (?)Hi(1—0)3_i
+cZ(?)9i(1 —9)“)
. . § i _ 3—i
V(Z(ax, + by, +c)(i)9 (1—0) )

= the number of times the line L crosses the polygon Ao, ..., A3.

V(api + bpa +¢)

These arguments can be extended to rational curve of any degree in RV with any
hyper plane of dimension N — 1. Thus, we have:

Proposition 3.2. (Variation diminishing property) The curve segment p; crosses
any (hyper) plane of dimension N — 1 no more times than it crosses the control
polygon joining F;, Vi, W;, Fiy.

Remark 3.3. In the scalar case when v;,w;,= r;, the convex hull
(Proposition 3.1) and variation diminishing (Proposition 3.2) properties apply
to the curve segment (¢, p; (t;ri, r;)) € R, t € (&, t;4+1) with control points:

{Gi, Fi), (ti + hi/ri, Vi), (g1 = hi/ri, W), (i1, Fig1)} (3.6)
This is a consequence of the identity

t = Ro(0; ri)ti + R1(0; ri)(ti +hi/ri) + Ra(0; ri) (i1 — hi/1i) + R3(0; ri)ti41,
3.7)

where
R](G;ri)sz(Q; r,-,r,'),j=0,...,3. (3.8)

In fact, (¢, p(t)) can be considered as an application of the interpolation scheme
in R? to the values (f;, F;) € R? and derivatives (1, D;) € R*,i =0, ...,n.
3.3 One-Parameter Rational Cubic Spline

For simplicity, in this section, let us assume v; = w; = r; say. The rational cubic
in Equation (3.1) can then be expressed in the form:

pitiri,r) =1;(t) +ei(t;17), (3.9
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where

1i(t) = (1 —O)F; +OF 4. (3.10)

oy 8 =0){(Ai — D) — 1) + (A; — Di1)8)
ei(tyri) = 103000 . (3.11)

This immediately leads to:

Proposition 3.4. (Interval tension property) For given fixed (or bounded)
D;, D;4 the rational cubic Hermite interpolant in Equation (3.10) converges
uniformly to the linear interplant in Equation (3.11) on [#;, fi4+1] as ri > oo i.e.

lim |le;|| = lim [[p;i — /]| =0. (3.12)
ri—>00 ri—00

Moreover, the component functions of e¢; tend to zero monotonically, both
uniformly and pointwise on [#;, fi41].

Remark 3.5. The interval tension property can also be observed from the behav-
ior of the control points V;, W; defined by Equation (3.4), and hence of the
Bernstein-Bézier convex hull, as r; — o0.

Now we construct a C? rational spline interpolant. This requires knowledge of
the second derivative which, after some simplifications, is given by:

2{ai(1=0)° + Bi0(1 = 0)* + 7:6°(1 = 0) + 6:6°}

@y ) — 3.13a
pl ( 1> l) hl{1+(rl_3)9(1_0)}3 H ( )
where
ai =ri(Ai = Dj) — Dix1 + Dj,
Bi = 3(A; — Dy), (3.13b)

vi =3(Dit1 — Ay),
0 = ri(Dit+1 — Aj) — Diy1 — Dy).
We now follow the familiar procedure of allowing the derivative parameters

D;,i =0,...,n to be degrees of freedom that are constrained by the imposition
of C? continuity conditions:

PP =p@ @), i=1,...,n—1. (3.14)

These C? conditions give, form (3.13a) and (3.13b), the linear system of consis-
tency equations as follows:

hiDi—1 +{hi(rici — 1)+ hi—1(r; = 1)} D + hi—1Dj41
=hiri—1ANi—1+hi—riNj,i=1,...,n—1, (3.15)

with appropriate end conditions Dg and D,,, Equations (3.15) is a tridiagonal linear
system in the unknowns D;,i = 1,...,n — 1. Assume that

ri>r>2, (3.16)
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then the tridiagonal linear system, in Equations (3.15), is strictly diagonally dom-
inant and hence has a unique solution that can be calculated easily by use of the
tridiagonal LU decompositon algorithm. Thus a rational cubic spline interpolant
can be constructed with tension parameters r;, i = 0, ..., n — 1, where the special
case r; = 3,i =0,...,n — 1 corresponds to cubic spline interpolation. We now
examine the behavior of the rational spline interpolant with respect to the tension
parameters 7; in the following propositions.

Proposition 3.6. (Global tension property) Let [ € C° [z, t,] denote the piece-
wise linear interpolant defined for ¢ € [f;,#i4+1] by [(t) = [;(¢); see Equation
(3.11). Suppose thatr; > r > 2,i =0,...,n — 1, as in Equation (3.16). Then the
rational spline interpolant converges uniformly to [/ as r — o0, i.e., on [fy, t,],

lim ||p—1{]| =0. (3.17)
r—o0
Proof. Supposer; =r,i =0,...,n — 1, then from Equations (3.15), it follows
that
hiNi—1 +hi—1 A
lim Dl:(l =1+ Al ’),i=1,...,n—1. (3.18)
r—00 hi +hi—

More generally, for r; satisfying (3.16), it can be shown that

| max [1Dilloc < max {[|Allscr/(r —2), [|Doll, || Dull}, (3.19)
<i<n—
where
IAll= max [[Aillco- (3.20)
1<i<n—1
Hence the solution D;,i = 1,...,n — 1 of the consistency Equations (3.15)

is bounded with respect to . Now, from Equation (3.12), the tension property
in Equation (3.12) of Proposition3.4 can clearly be extended to the case of
bounded r. Thus applying Equation (3.12) on each interval gives the desired result
in Equation (3.17). O

Proposition 3.7. (Local tension property) Let r; > r > 2,Vi and consider an
interval [tk, tk+1] for a fixed k € {0,...,n — 1}. Then, on [tk, lk+1] the rational
spline interpolant converges uniformly to the line segment /i as ry — oo i.e.

lim ||pr — Il = 0. (3.21)
rp—>00
Proof. The boundedness property in Equation (3.19) holds as in Proposition 3.6

(where we can assume the additional constraints ry > r > 2 to the hypotheses
currently being imposed. Thus, Equation (3.12) applies for the case i = k. (|

Remark 3.8. In Proposition 3.7, there is no assumption that the r;, i # k are con-
stant with respect to the limit process. However, in the case of constant r;, i # k,
an analysis of the linear system in Equation (3.15) shows that

lim [[Dg — Aklloc = lim_[[Dry1 — Aglloo = 0. (3.22)
rg—>00 rg—00
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This property reinforces the rate of convergence to zero of ey = py—Ij in Equation
(3.21), as can be seen from Equation (3.12) with i = k. The following proposition
shows that the influence of ry in this case has an exponential decay away from the
interval [tk — iy 1].

Proposition 3.9. (Exponential decay property) Let D;,i = 1,...,n — 1, denote
the solution of the consistency equations with tension parameters ry > r > 2,i =
0,...,n— 1, and let b,-,i = 1,...,n — 1, denote the solution with parameters
Fi>r>2i=0,...,n—1,where 7; = r; fori # k. Consider a knot #;,i €
{0,...,n—1},wherei =k —/lork+ 141, and ! is a positive integer. Then

ID; — Dilloo <

4pl(1+2
yT”HAHOO, (3.232)

where || A||so is the constant defined in Equation (3.20) and

y=1/(r—=1) <1.

(Thus, for example, if r = 3 then y = 1/2.)

Proof. To prove this result, let the consistency equations (3.15) be divided by the
coefficient of D; to give the matrix form

(l+F)D=B
where DT = Dy, ..., D,_; and the given end conditions Dy and D,, have been

transferred to the right-hand side B. Then F is a tridiagonal matrix such that

1
NFlloo < —— =7
r—1

Also it can be shown that
[1Blloo < 2[|Allo

Similarly, for the perturbed system
(1+ F)D=B

where 7y = r; + o, we have

1
1Flloo = —— =7 and [|Blloo = 2[|Alloo

Now . . . .
D-D=(Q+FH"—0+F)HB+0+ F)'[B-B]

and we consider each of the terms of the right-hand side separately.
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Firstly, F and F are tridiagonal matrices that agree inrows 1 <i < k — 1 and
k+2 <i <n—1(.e., only the kth and k + 1st rows are changed by a perturbation
of ri.) Thus, F! and F! agreeinrowsl <i <k—landk+1+1<i<n-—1.
Hence

o0
c=(+F/"-a+F)HB=> (-D'[F" - F"IB
J=1
is such that the ith component, fori = k —/ ori = k + [ + 1 satisfies

I+1
V+

o0
si < D (IEN = IFI1)IIBI < 41| Allo (3.23b)

I=I+1 I=y

Secondly, we consider . A
E=0+ F)"'[B - B]

and apply an analysis that follows that of [Demko’77] (see his Proposition 3.1).
Since F is tridiagonal, has bandwidth 2¢ 4 1 (i.e., the (i, j) elements are zero for
li — j| > 9). Hence for |i — j| = 1, the (i, j) element of the series expansion
1+ ﬁ)_l => (-1)? F? is not influenced by F? for 9 < [. Thus:

o I
A A y . .
I/l < D0 NN < — forli = j1=1

1
Y=I+1

Finally, and B agreeintows 1 <i <k —landk + 1 <i <n — 1. Hence the ith
component of E satisfies

leil = | fix(bk — bi) + figs1 (b1 — brs1)| (3.23¢)

V[ ~ y/+l A
1= (bk| + 16k D) + = (Ibiy1 | + |brt1)

IA

yH—l ~ })l+l ~
1= (bl + 1b]) + 7= (brt1] + [brt 1)

IA

1
{ g a),
Combination (3.23b) and (3.23c¢) then gives the desired result (3.23a). U

Remark 3.10. We note that

(i) the rational spline exists uniquely forr; >r > 2
(ii) the case r; = 3,i =0, ...,n — 1 is that of the cubic spline and
(iii) increasing r; tightens the curve both locally and globally (c.f. Propostions 3.6
and 3.7. For the range 2 < r; < 3 the rational spline produces a more flexible,
i.e. looser, curve than the cubic spline curve, both locally and globally.
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3.4 Two-Parameter Rational Cubic Spline

In this section we generalize the curve representation of Section 3.3 and consider
the Hermite interpolant in Equation (3.1) of Section 3.2 for rational spline anlaysis
and representation. We assume the shape parameters v;, w; > 0 as

vi =bjwi,i =0,....,n—1, (3.24)

where 0 < b; < o0.

Remark 3.11. For given fixed (or bounded) D; and D; 1, the following observa-
tions can be made immediately from the Bernstein-Bézier representation (Equa-
tion (3.3)) and the control points V;, W; defined by Equation (3.4), that:

(i) if w; — oo, then the rational cubic Hermite interpolant (3.1) converges to the
rational linear interpolant L; (¢, b;) where
(1 =0)biFi +0F;1

Litb) = g (3.25)

(i) ifb; > 1,1i.e., v; exceeds w;, then the curve is pulled towards F; in the interval
[ti, ti+1]-

(iii) if b; = 1,1.e., v; = w; then increase in w; pulls the curve toward F; and Fj
the interval [#;, f;+1 ] (see Proposition 4).

(iv) if 0 < b; < 1, 1.e., w; exceeds v; then the curve is pulled toward F;j in the
interval [ti, ti+1].

Now we proceed to construct a C? rational spline interpolant. For this we are in
of the second derivative values of Equation (3.1) at the knots. After some simpli-
fications, we have

2
P,-( V(15 01, wi) =2 [wi 4;i — Dit1 + (1 — i) Di] hi, ] (3.26)
5 .
p,.( ) (ti415 viy W) =2 [—viVi + (w; — 1)Dj1 + Di hi.
c? continuity condition at the knots #;,i = 1, ...,n — 1, together with the infor-
mation in Equation (3.26), lead to the following linear system of consistency
equations in the unknowns D;,i =0, ..., n:
hiDi—y +{hj(wi—1 — 1) + h;i—1(v; — 1)} D; +hj_1D; 1,
=hivi1 Vi1 +hi_qw;Vi,i=1,...,n—1. (3.27)

With appropriate end conditions Dg and D, and the assumption

vi,w; >2,i=0,...,n—1, (3.28)
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the system of Equations (3.27) is a strictly diagonally dominant tridiagonal linear
system and thus has a unique solution. This system can be solved using tridiagonal
LU decomposition algorithm. The shape parameters, in the system, are such that:

A.thecase b, = 1l,w; = 3,i =0,...,n — 1, corresponds to the cubic spline
interpolation and
B. the case b; = 1 is that of rational spline with tension of Section 3.3.

Now we look at the effects of the shape parameters on the rational spline inter-
polant in the rest of this section.

Proposition 3.12. (Global tension property) Let L € C° [1, #,,] denote the piece-
wise rational linear interpolant defined for ¢ € [f;, fi41] by L(r) = Li(1;b;) in
Equation (3.25). Suppose that v;, w; satisfy Equations (3.24), (3.28) and w; >
w > 2. Then the rational spline interpolant converges uniformly to L as w — oo,
i.e. on [fg, t,],

lim ||p — L|| =0. (3.29)
w— 00
Proof. Assume that b; = b and w; = w,i = 0,...,n — 1. Then from Equation

(3.27), it follows that

- =0,....,n—1 3.30
1= 00 hl‘+bh[_[ 51 ] »n ( )

More generally, for v;, w; satisfying Equations (3.24) and (3.28), the boundedness
property

1 b1
| Jnax [1Dilloo < maX[llAll (bi —ym + 7 —2/w) > 1Doll oo ||Dn||oo]
(3.31)

can be easily shown. Thus application of tension property, in Remark 11(i), in each
interval gives the result of Equation (3.29). O

Proposition 3.13. (Interval tension property) Let v; and w; be as in Equa-
tions (3.24) and (3.28) Vi and consider an interval [f, fx+1], for a fixed k €
{0,...,n — 1}. Then on [#, fx+1], with all fixed,

lim ||px — Lil| = 0. (3.32)

wg—> 00

Proof. Gauss elimination without pivoting can be applied to the diagonally dom-
inant tridiagonal system (Equations (3.27)) in both a forward and backward direc-
tion, as far as the kth and (k + 1) th equations, respectively, to give

{hi(wg—1 — 1) + hg—1(vk — 1) — ax} Dg + hg—1 Di+1
= hvg—1Ak—1 + hg—1w A — by,

hi+1 Dk + {hg+1(wk — 1) + hg (g1 — 1) — ek} Di
= R+ 10k Ag + hpwpt1 Ay — di,
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where the terms ag, by, c, dj are fixed quantities. Taking the limit w; — oo then
gives
lim Dy = Vi /by,
Wi —> 00
lim Dyyy = b Vi, (3.33)

Wi —> 00

This limit property means that the tension result in Equation (3.32) holds for the
rational spline on [z, tx+1]- O

Remark 3.14.

(i) Proposition 3.13 also holds for a more general setting, i.e., when w;,i # k
are not considered as fixed. In this case, the boundedness property (Equation
(3.31)) holds as in Proposition 3.12 (when the additional constraints wy >
w > 2 can be added in the current assumption). This leads to the tension
property in Equation (3.32) in the interval |1, fx41].

(i1) (Point tension) In addition to the assumptions in the previous remark, if we
also assume that wy;_; — 00, then the kth equation of the system of Equations
(3.27) results as:

lim Dy =0. (3.34)

D, W —> 00

Thus the curve at the point P, will appear to have a corner.

3.5 Demonstration

The tension behavior of the rational cubic spline interpolants is illustrated by the
following simple examples for data sets in R”. Figure 3.2 shows the effect of a
progressive increase in global tension with r = 3 (the cubic spline case), 5 and
50. The effect of the high-tension parameter is clearly seen in that the resulting
interpolant approaches piecewise linear form.

Figure 3.3 illustrates the effect of progressively increasing the value of the ten-
sion parameter as 74 = 3,5 and 50 in one interval, while elsewhere the tension
parameters are fixed equivalent to 3.

Figures 3.4 demonstrate the result of Remark 3.10 (iii) regarding the achieve-
ment of a looser curve than a cubic spline curve; the second curve of the figure is
a cubic spline curve, whereas the first and the last curves show the local and global
behavior against the value 2.1 of the corresponding shape parameters.

Figure 3.5 shows the global tension with w = 2.1, 5 and 50 where the value of
v is assumed as 2.1; Figure 3.6 shows the global tension with o = 2.1, 3, and 50
where the value of w is assumed as 2.1.

The effect of the high-tension parameter is clearly seen in that the resulting
interpolant approaches piecewise rational linear form. Figure 3.7 illustrates the
effect of progressively increasing the value of w3 = v4 in the order of 3, 4 and 6,
for the point tension effect at the knot #4 while Figure 3.8 shows the biased effect
due to progressive decrease in v4 as 3, 2.5 and 2.1; elsewhere the shape parameters
are assumed as 3.
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SISte

FIGURE 3.2. Interpolatary rational splines with global tension r; = r.

SISIS

FIGURE 3.3. Interpolatary rational splines with tension r4 varying.
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SISIS

FIGURE 3.4. Interpolatary rational splines can produce looser curves than cubic splines.

Siste

FIGURE 3.5. Interpolatary rational splines with global tension w; = w.
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SISte

FIGURE 3.6. Interpolatary rational splines with global tension v; = v.

FIGURE 3.7. Interpolatary rational splines with point tension at the knot #4.

Figure 3.9 displays a variety of the effects of the shape parameters; the first
curve is a cubic spline curve; the second curve is fine tuned with the choice w3 =
2.1,v11 = 2.1 and v; = w; = 5 fori = 8,9; the third curve is selected with
vi =w; =5fori =8,9and v = w1 = 5.
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SISIS

FIGURE 3.8. Interpolatary rational splines with biased effect using v4.

FIGURE 3.9. Interpolatary rational splines with various shape effects.

3.6 Freeform Curves

B-splines were investigated as early as the nineteenth century by Lobachevsky
(see Farin [6]); they were constructed as convolutions of a certain probability dis-
tribution. In 1946, Schoenberg [28] used B-splines for statistical data smoothing,
and his paper started the modern mathematical theory of spline approximation.
B-splines are a useful and powerful tool for CAGD and they can be found
frequently in the existing CAD/CAM systems. They form a basis for the space
of nth degree splines of continuity class C"~!. Each B-spline is a non-negative
nth degree splines that is nonzero only on n + 1 intervals. The B-splines form
a partition of unity, that is, they sum up to one. Curves generated by summing
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control points multiplied by the B-splines have some very desirable shape proper-
ties, including the local convex hull property and variation diminishing property.

It is desirable to generalize the idea of B-spline-like local basis functions for the
classes of rational splines with shape parameters as considered in the Chapter 2.
The first local basis for GC? splines was developed by Lewis [10]. In 1981,
Barsky [1] generalized B-splines to f-splines. These splines preserve the geo-
metric smoothness of the design curve while allowing the continuity conditions
on the spline function at the knots to be varied by certain parameters, thus giving
greater flexibility. Later, in 1984. Bartels and Beatty [2] developed local bases for
p-spline curves that are equivalent to Boehm’s [3] y -splines. Foley [7], in 1986,
constructed a B-spline like basis for weighted splines; different weights were built
into the basis functions so that the control point curve was a C! piecewise cubic
with local control of interval tension.

In the following section, a B-spline-like local basis is constructed for the ratio-
nal spline of Section 3.2. The design curve maintains the C> parametric continuity
rather than the more general geometric GC? arc length continuity achieved by the
v-splines, S-splines, and y -splines or the C! continuity of weighted splines.

A method for evaluating the rational cubic B-spline representation of a curve
is suggested by a transformation to piecewise defined rational Bernstein-Bézier
form. This form will also expedite a proof of the variation diminishing property
for the rational B-spline representation.

The results of the freeform rational spline are applied to obtain Bernstein-Bézier
net of tensor product surfaces in Section 3.13 and Bernstein-Bézier representation
of the NURBS in Section 3.12.

3.7 Local Support Basis

For the purpose of the analysis, let additional knots be introduced outside the inter-
val [tg, t,] defined by t_3 < f_p <t_| <tgpandt, < t,—1 < ty—p < ty4+3. Let
vi,wi =>r>2,i=-3....,n+2, (3.35)
where
;] = biwi and 0 < bi < 00,

are shape parameters defined on this extended partition. Rational cubic spline

function ¢;, j = 1,...,n + 2, can be constructed (see Figure 3.10) such that
| Ofort <tj_o,
i) = [ 1fors > tjy. (3.36)

On the three intervals [ti, ti+1] ,i =7j—2,j—1,¢, will have the rational cubic
form:

() = Ro(0: v, wi)g; (1) + Ry (0 vi, wi) 05 (1) + hid' (1) /vi)

+R2(0; vi, wi)pj (tiy1) — hi¢§'1) (tiy1) /w;
+R3 (0; v, w;i) P (tiv1), (3.37)
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li-2 -1 i i1

FIGURE 3.10. The rational spline ¢; (t).

where Ry (0;v;, w;),k = 0,1,2,3 are defined as in Section 3.2, from Equa-
tions (3.1) and (3.4). The requirement that ¢; € C 2(—oo, 00) (in particular, at
tj_2,tj1,tj,tj41) uniquely determines ¢;, since it can then be shown that

¢ (tj2) = ¢ (1j2) =0,
Pi(ti—1) = ﬂj71,¢§1)(l‘j71) = Uj-1, (3.38)
$i(t))=1-4j.¢1; = 1;,

where
Aj=hidjlvps g =hjpj/wi-1, (3.39)
Aj=hjdj1/cj,puj=hj1dji1/cji1,
ci=hi_idi_1+hivi_id; l(hj_l +h_/)
p= il i\ T )

and

dj=hj(wj1(j1 =1 =vj1) /wj1+hj1(0;@0; = 1) —w;) /v;.

The local support rational cubic B-spline basis is now defined by the difference
functions:

Bi()=p;()—gjn1 (). j=—1,....n+1. (3.40)
Thus, there immediately follows:

Proposition 3.15. (Rational B-spline) The rational spline functions B; (7), j =
—1,...,n+ 1 are such that

(Local support) B (t) =0, fort € (l‘j_z, tj+2) , (3.41)
n+1
(Partition of unity) > B; (t) = 1 fort € [fo, ,]. (3.42)

j=—1



58 3. Rational Cubic Spline with Shape Control

<*

lj-2 -1

FIGURE 3.11. The rational B-spline B (7).

An explicit representation (Figure 3.11) of the rational cubic B-spline B; on any
interval [#;, #;41 | can be calculated from Equations (3.36)(3.40) as:

Bj(t) = Ro (0 0i, wi) By (1) + Ry 0 vi, w) (B, (@) + hi B (1) /i)

R 0: v w) (B (i) = hi B (ti1) /1)

+R3 (0; v, w;) Bj (ti11), (3.43)
where
Bj (1) = B{" (t) =0, fori # j—1,j,j +1, (3.44)
and
Bj (tj-1) = wjm1, By (tj-1) = ftj-1,
Bj(tj)=1—4j—pj. B (1) = 1= 15— tj, (3.45)

Bj (tj1) = Aji1. BSY (t01) = A1
Careful examination of the Bernstein-Bézier vertices of B; (t) in Equation (3.43)
shows these to be non-negative for v; and w; satisfying Equation (3.35) and we
thus have:

Proposition 3.16. The rational B-spline functions are such that
(Positivity)  Bj (1) > 0, forall 1. (3.46)

3.8 Design Curve

To apply the rational cubic B-spline as a practical method for curve design, a
convenient method for computing the curve representation:
i+2
P(ty= D> PjBj(1).t €lto. ty], (3.47)
j=i—1
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is required, where P; € RY define the control points of the representation. Now,
by the local support property,

i+2
P(ty= > PjBj(t).t €[titiz1],i=0,....n—1. (3.48)
j=i—1

Substitution of Equation (3.43) then gives the piecewise defined rational Bernstein-
Bézier representation:

P(t) = Ry (0; v, w;) Fi + Ry (05 v;, w;) Vi + Ro (03 v, w;) Wi + R3 (0; v, w;) Fiy1,

(3.49)
where
Fi=AiPiy+ (= A — pui) P + pi Piyy,
Vi=(0—a;)P +a; P,+1, (3.50)
Wz ;B P + (1 )Bl)Pl+la
with
al—ﬂt+htﬂl/vl—ﬂl(ht 1/wi— 1+h/l)) ] (3.51)
ﬁl = /11+1 + h; /11+1/U)z = ;Ll+] (h /U)z +hl+l/1)z+1) '
Let ,
Xi=[F Vi W 1+1] .Zi=[Pi-1 Pi Piy1 P ],
and
i 1= Aioy, Hi
1 —a; a;
Y — i i ,
l Bi 1 —pBi

Aivt L= Aigi—py Mg
then the transformation in Equation (3.50) can also be represented in matrix

notation as:
Xi=YiZ. (3.52)
The transformation to rational Bernstein-Bézier form is very convenient for

computational purposes and also leads to:

Proposition 3.17. (Variation diminishing property) The rational B-spline curve

P (t),t € [ty, t,], defined by Equation (3.47), crosses any (hyper) plane of dimen-

sion N — 1 no more times than it crosses the control polygon P joining the control

points { P; }]__1

Proof. Examination of the coefficients a;, ; in Equation (3.50) shows that
a; 20,4 =0,0; + i < 1.

Thus V; and W; lie on the line segment joining P; and P;4, where V; is before
W; Also, we can write

Fi =0 =)W1+ Vi, (3.53)
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FIGURE 3.12. Corner cutting to obtain Bernstein-Bézier vertices.

where
(hi—1/w;i-1)

(hi—1/wi—1 + hi/vi)’
and hence 0 < p; < 1. Thus the control polygon of the piecewise defined
Bernstein-Bézier representation is obtained by corner cutting of the B-spline
control polygon; see Figure 3.12. Since the piecewise defined Bernstein-Bézier
representation is variation diminishing, it follows that the B-spline representation
is also variation diminishing. ]

Vi

3.9 Shape Properties

The shape properties of the rational B-spline representation are examined in the
following propositions:

Proposition 3.18. (Linear B-spline tension property) Let b; = 1, 1i.e.,v; = w; =
ri(say)>r>2,i=j—2,...,j+ 1. Then

lim [|B; — ¢,l0, (3.54)
r—00
where
(t—tj—hj1, tj-1 <t <t <tj,
¢j =1 Gj+1—10)/hj, t; <t <tjy1, (3.55)
0, otherwise

is the linear polynomial B-spline (see Figure 3.13).
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FIGURE 3.13. The linear polynomial B-spline.

Proof. The rational B-spline defined by Equation (3.43) can be expressed for
[S [l‘,"l‘,'_i_]] as:

Bj(t) = (1 =0)B;(t;) + 0B;(ti+1) + ei(t; ri), (3.56)
where
1i0( = 0){(A; = B @)© = 1) + (A B 113.1)0
e,-(t, }",') = T (r,' — 3)0(1 — 9) , (357)
and
Ai = (Bj(ti+1) — Bj(t))/ hi, (3.58)

(cf. (3.10)—(3.12)). Here the B;(t;) and B](.l)(ti) values are defined by Equations
(3.43)—(3.45), where fori = j — 1, j, j + 1 they are dependent on r;,i = j —
2, ..., j + 1. Examination of the coefficients (3.45) reveals that Z ;, 4; and hence
the B;l)(t,') are bounded and that

lim Bj(tj1) = lim_Bj(j11) =0, lm Bi)=1 (59
J

Fj—2—>00 Fj—1,rj—>00
It is then a simple matter to show that lim||e;|| = O and that Equation (3.54)
holds. =

Remark 3.19. From Equation (3.59), there follow the more precise results that

rjﬁrﬂoo |Bjl| =00n [tjs1,1j4],
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poim 1B = 5] =0on [t 1j42],
’.i—z,r_/l_ifr,lrjeoo ” Bj = ¢ ” =0on [tj_z’ tj] ’
,dim [Bi] = 00n [t 1]

(Here, and in the proof of Proposition 3.18 the respective rates at whichr; 5,71,
rj and r; 4 tend to infinity are not relevant.)
An immediate consequence of Proposition 3.18 (and Remark 3.19 is:

Corollary 3.20. (Global tension property) Let b; = 1, ie., vj,w; = r; >
r> 2,i =-=2,...,n+1,and let P denote the rational B-spline control polygon,
defined explicitly on [ti, ti+1], i=-—1,...,n,by

Pt)=(0—0)Pi +0P;1,0() = (t —1;)/hi. (3.60)

Then the rational B-spline representation (3.47) converges uniformly to P on
[t,], tn+1] asr — oQ.

Corollary 3.20 can be proved directly by studying the behavior of the Bernstein-

Bézier control points in Equation (3.49) as r — oo. We follow this approach in
the proof of the following proposition.

Proposition 3.21. (Interval tension property) Consider an interval [tk, tk+1] for

afixedk € {0,...,n — 1} such that vy, w; = r; and let
Ok = — ) Pe + p Py, G.61)
Qk+1 = AP+ (1 = 2) Py, '

denote two distinct points on the line segment of the control polygon joining
Py, Pi+1, where

L= hiq1/vk+1
i1/ wi—1 + hgs1 /okser + b
3.62
p hik—1/wi—1 (3.62)

 hk—t/wk—1 + hig1/vker + he

(Note that Qg is before Q1 since A + u < 1.) Then the rational B-spline repre-
sentation (see Equation (3.47)) converges uniformly to Q on [tk R fk+1] asr — o0.
where

0) = (1 =)0k +0Qx+1,0(t) = (t — tx)/ hi. (3.63)
Proof. It is a simple matter to show, in Equation (3.39), that

lim /1]( = lim HUk+1 =0,
rg—>00 rg—>00

lim pur=pand lim Agy) = 4.
rg—>00 rg—>00
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Thus, in the Bernstein-Bézier representation (Equation (3.49)) on [#, fx41], we
have

lim Fp = Qrand lim Fiy1 = Qp41.-
FE— 00 rg— 00

Moreover, the Bernstein-Bézier representation can be expressed as
p(t) = Pi(t;re, ri) = Le(t) + e (85 rie, 1), t € [tk, l‘k+1]
as in Equation (3.10), where it can be shown that
rkli_r)noo 19k — Il = rkli_r)noo 10— Pl + rklgnm lexll = 0on [#, 1],
which completes the proof. U

Proposition 3.22. (Point tension property) Let v; and w; satisfy Equation (3.35)
and vy, wr—1 — oo for some k, 1 < k < n — 1. Then the following holds:

lim  P(t) = P (3.64)

Tk,Wg—1—> 00

Proof. From Equations (3.42) and (3.47)

n+1

P (tx)— P = Z (Pj — Px) Bj ()= (Pr—1 — Pr) Bi—1 (&) +(Pis1 — P) By (1)
j=—1

(by local support property)
= (Pe—1 — Pk + (Pt — P .

It can be simply shown that

lim /1]( = lim Uk = 0,
T, Wg—1—> 00 T, Wg—1—> 00
and thus, Equation (3.64) follows straightaway. g

Remark 3.23. Proposition 3.22 shows that if v, wx—; — 00, then part of the
design curve is pulled toward the control point Pj. This can be proved directly by
studying the behavior of the Bernstein-Bézier control points in Equation (3.49).
We follow this approach to look at the biased behavior in the following:

Remark 3.24. (Biased tension control) If vy — oo for any k € {0,...,n — 1},
then
lim /Ik = lim Uk = lim O = O,
D —> 00 D —> 00 Vj—> 00

and thus from (3.50)
lim Fy = Py = lim V.
k

Vg —> 00 v —> 00
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FIGURE 3.14. Rational B-spline curves with global tension r; = r.

This shows that a portion of the design curve, within the interval [tk , tr+1) is pulled
towards the control vertex Py. Similar biased behavior can be observed regarding
wg, 1.e., if wy — oo, then

lim Agp; = lim ppyr = lim fr=0
Wy —> 00 Wy —> 00 Wy —> 00

and thus from (3.50)

lim Fy = Py = lim Wy
wy—> 00 Wi —> 00

which shows that the part of the design curve controlled by Wy and Fy is pulled

toward the control vertex Piyi.

3.10 Demonstration

Consider the data sets in R? identical to that of the interpolatory examples in
Section 3.5, where the data now define the control points of the rational B-spline
representation. Figures 3.14-3.21 illustrate the corresponding local and global
shape effects to Figures 3.2-3.9, respectively, which confirms the analysis done in
the previous section regarding interval, point and biased shape effects.

3.11 Nurbs

In this section we give a brief description of another class of rational splines which
are commonly known as NURBS (nonuniform rational B-splines). A nonuniform
rational cubic B-spline curve, with the same control polygon as that of previously
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FIGURE 3.15. Rational B-spline curves with tension r4 varying.

FIGURE 3.16. Freeform rational splines can produce looser curves than cubic B-spline.
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FIGURE 3.17. Rational B-spline curves with global tension w; = w.

FIGURE 3.18. Rational B-spline curves with global tension v; = v.
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FIGURE 3.19. Rational B-spline curves with point tension at the knot z4.

FIGURE 3.20. Interpolatary rational splines with biased effect using v4.
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]

FIGURE 3.21. Rational B-spline curves with various shape effects.

generated rational spline i.e., [P; :i = —1,...,n+ 1] and with corresponding
positive weights u;, is given by:

n+1
> uiPB; (1)
P (1) = 2 =n_+11 , (3.65)
> uiBi (1)
j=—1

where {B; (t)}l'.’ii | is the normalized cubic B-spline basis. Both cubic B-spline

numerator and denominator in (3.65) can be expressed in Bernstein-Bézier form
using transformation of the form Equation (3.50), where v; = w; = 3. This leads
to the representation of the curve (3.65) in piecewise Bernstein-Bézier form:

p(6) = RoO)F + Ri(O)V; + RaO)W; + R3(O) F}',y, 1 € [ti1i41] . (3.66)

where R;(0), j =0, ..., 3 are appropriately defined rational functions dependent

ONn u;_1, U, Ui41, Uj42 with
3
D RO =1
=0

and
Fi=2iPia+ 0= A7 = u)) P+ pf Py = (L =y Wimi + 9V,
Vi=0—-af )P +af Py, (3.67)
Wi = B¥Pi + (1 — p)Piy1,
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o — Ailtit
[ = aui + aiuis ]
! (3.68)
g = (1 = Biui
[ = Boui + Biuina]
)E = _ hi—l_[(l — a;)u; +aiui'+1] _ . (3.69)
hioy [(1 = a@iui + auivr | + hi [1 = Bimui—1 + Bi—iui]
. Ay
b diuia (=2 — )i+ gt (3.70)
ut = Lillit1
b diui—1 (1= A — oui + fittipr
P hi—
P — —7
hi—1+hi +hip
3.71
,B_' . hi—1 + h; ( )
T hici+hi +higr
2
i = (h; +h-)(h-hi Fhioi +h)’
i—1 i 152 i—1 i (372)
_ hi_,
fii

~ (hi—1 +hi)(hi—y + hi + higy)

Similarly to Equation (3.52), the transformation (in Equation (3.67)) can be repre-
sented in matrix notation as:
XF=Y'Z?, (3.73)

provided *’s are put appropriately. Examination of the coefficients in Equations
(3.68)—(3.72) shows that

0<af, Byl ol + 5 <1 (3.74)

Thus, as in the previously generated rational spline, the control polygon of
the piecewise defined Bernstein-Bézier representation (Equation (3.66)) can be
obtained by corner cutting (see Figure 3.12 with the replacement of the Bernstein-
Bézier points by the same points with *) of the NURBS control polygon and the
NURBS representation is variation diminishing.

Remark 3.25. It can be observed from the algebra of NURBS that if u; — oo
then F* — P; (for a fixed i) and the design curves sharply toward P; in the
region of P;_» P;_1 P; P;1+1 P;;+>. Thus it seems reasonable to assign high weights
in regions where the curve is expected to curve sharply. But, as compared to the
rational spline (of previous sections), there is not that much freedom for assigning
the weights if all of them are very high. This will not have a significant effect
on the curve since a common factor in all weights will simply cancel out. For
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example, if u; =u,j =i —1,i,i +1,i + 2 and u — o0, then the curve will be
a piece of a cubic spline in the interval [t,- R ti+1] and it will have no effect at all.

3.12 Surfaces

The results of Section3.8 can be extended for tensor product rational bicubic
B-spline surfaces, i.e., surfaces of the form:

m+1 n+l1
plt.y= D" > PuBi (i) Bit).to <7 <iw.tg <t <ty, (3.75)
k=—11=-1

with B () as constructed in Section 3.8 and analogously the By (f) a set of rational
cubic B-splines corresponding to a set of knots #, k = —3,...,m + 3(m > 0)
with shape parameters vy, wg, k = =2, ..., m + 2.

If the representation of a rational spline patch p (t, f) ti <t < tigq, 1S
required as a rational bicubic Bernstein-Bézier patch

3

3
Pi,j (t~, t) = ZZX;(’,JIRI (9;5]’, lI)j) R; (9; l)j,u)j) s (3.76)
k

=0 /=0

the Bernstein-Bézier points X,l{]l can be computed from the rational B-spline
vertices P; ; as:
' > T
Xij=YiZij(Y;) . (3.77)

where

P Py ... Pi—1j2

Lji—1
Zi’j= I s

L Pit2,j-1 --- coo Pigo o
and the matrix Y; is given as in Equation (3.52) with a corresponding expression
for Y;.

Remark 3.26. There is a drawback with this rational spline surface in that any of
the shape parameters influences entire corresponding row or column of the surface.
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Similarly, the NURBS construction of Section3.12 can be extended to sur-

faces as
m+1 n+1

> > uijPijBi(1)Bj(t)

j=—li=-—1
m+1 n+1

> > ujBi(t)B;(1)

j=—1i=—1

P¥(t,t) =

(3.78)

Similar observations, as were made in Remark 3.7 for NURBS, can be made for
these kinds of surfaces i.e.sufficiently large u; ; (fixed i and j) gives a pull to
the surface toward P; ; in the region {Pkl};(—g_j; lzzj—Z’ but there is a limit to the
assignment of the weights and they cannot be applied blindly, otherwise there may

not be any effect on the surface at all.

3.13 Summary

A C? rational cubic spline method has been presented for the objective of design-
ing curves. The spline method is capable of designing interpolation as well as
approximation curves to control points. This rational cubic spline method has
been developed with a view toward its applications in computer graphics, geo-
metric modeling, and CAGD. It is quite reasonable to construct a spline method,
which involves two families of shape parameters in a better way than those in
the weighted v-spline of Chapter 2. These parameters provide a variety of local
and global shape controls such as biased, interval and point shape effects. The
visual smoothness of the proposed method is also CZ, which is better than that
in weighted v-spline. The rational spline method can be applied to tensor product
surfaces, but unfortunately, in the context of interactive surface design, this ten-
sor product surface is not that useful because any one of the tension parameters
controls an entire corresponding interval strip of the surface. Thus, as an effec-
tive application to surfaces, a method similar to Nielson’s [12] spline blended
method or the methods of Sarfraz [16, 17] may be attempted. This will produce
local shape control, which is quite useful regarding the computer graphics and
geometric modeling applications.

3.14 Exercises

1. Write a program to implement the curve design method in Section 3.2.

2. Write a program to implement the curve design method in Section 3.9.

3. Check the difference of shape effects in your programs of Exercise 3.14.1
and 3.14.2 when the schemes are implemented in scalar form as stated in
Remark 3.3.
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4
Rational Sigma (o) Splines

Abstract. As interactive curve design is a basic need for CAD/CAM, computer graphics,
vision, imaging and various other disciplines. It is desired to have a robust, visually
pleasant, well-controlled, and effective scheme that can provide a useful solution to many
problems of different kinds at one platform. A rational spline, with some additional shape
parameters in its description as well as in the description of its piecewise stitching, may
be a good choice in this regard. This chapter has been devoted to a more general rational
spline, known as the sigma (o) spline. Although, a o — spline is a GC U rational spline
as far as its theoretical smoothness is concerned, in most practical cases, it provides a
c!, GC? or C? solution. It is the most generalized spline in the literature and recovers,
as a special case, most of the existing methods in the literature. These methods include
weighted spline, v — spline, weighted Nu-spline, y — spline, and so on.

4.1 Introduction

This chapter discusses the rational splines of Chapters2 and 3 and presents a
generalized description of rational cubics with o -continuity (c.f. 1.6). The most
general description of rational cubics and ¢ -continuity constraints provides a vari-
ety of shape control parameters which can be sufficient and highly useful for any
kind of shape influence such as interval tension, point tension, local tension, global
tension, or biased tensions. Interpolatory and freeform structures of the rational
o -splines can manage to recover a large number of well-known useful methods
[1-28] including weighted splines, v-splines, weighted v-splines, gamma-splines,
beta-splines, rational f-splines, rational splines of Chapter 2 and 3, and the ratio-
nal geometric splines of Boehm.

The approaches adopted in the construction of rational ¢ -splines are quite anal-
ogous to those in Chapters 2 and 3. Section4.2 discusses the most general form
of a rational cubic. The interpolatory and the freeform descriptions of rational
o-splines are made in Section4.3 and 4.4, respectively. Some special cases and
examples are discussed at the end of both of theses sections.

75
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4.2  Generalized Rational Cubic Interpolant

Let F; € RN be given values atknots #;,i =0, ..., n—1,wherefg <t; < ... <ty

andlet V;, W; € RY,i =0, ...,n— 1. The most general form of a rational cubic,

which interpolates at the knot, is given by:

(1 —0)°q; Fi +60(1 —0)*0; Vi +62(1 — O)w; Wi + 63u; Fi g
(1 =0)3q; +0(1 = 0)%0; +02(1 — O)w; + O3u; ’

where 0 < 6 < 1, and we assume ¢;, v;, w;, u; > 0. Then use of the bilinear

transformation 0

ki(l—0)+0

pi(t) = (4.1)

60—

leads Equation (4.1) to:
(1—6)3F; +6(1 —0)*0; Vi +6%(1 — )w; Wi + 0> F; 1

L T e ) e B
where
K =ui/gi., vi=krijui,  w;i = kisi/u;. (4.2b)
This can be further expressed as:
pi(ti) = Ro(O)Fi + Ri(0)Vi + R2(0)W; + R3(0) Fi11, (4.3)
where the basis functions R{(0), j = 0, ..., 3 are Bernstein-Bézier weight func-

tions that depend on »; and w;. The following can be noted:

(i) The curve segment in Equation (4.2) lies in the convex hull of the control
points {F;, Vi, Wi, Fi;+1} (see Proposition 2.1).
(ii) The curve segment (4.3) satisfies the variation diminishing property (see
Proposition 2.2).
(iii) If the pieces P;(t),i = 0,...,n — 1, are joined together with any kind of
continuity, then the composed rational curve

pt) =pi(t), i=0,...,n—1,

is at least C©.
(iv) The equivalent Hermite representation of (4.2) is obtained when

V; = Fi + hi D" Jv;, W; = Fiy —hiD; | /wi, 4.4)
where D (+ N
p® () = D,
" i (4.5)
p (l+1) Dy

(v) The second derivatives of Equation (4.2) at the knots #; and 711, are
obtained as:

2)(1‘,)_2{(1)12—1), _wz) i (0 _Ul)Vi"l‘wiWi}/h,'za
@ ) 5 (4.6)
pi” (tir) = 2{(w} — wi — v;) Fip1 — (07 — wi) W; +v; Vi } /b
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4.3 Interpolatory Rational o -Splines

Now, we use a generalized form of continuity, i.e., o-continuity (c.f. Equation
(1.6)) to connect the pieces of the generalized rational cubic in Equation (4.2).
The second and third equations of the o-continuity constraints (Equation (1.6))
together with Equations (4.4), (4.5) and (4.6) lead to the system of consistency
equations:

_ hihi—1 _
hioy,i-103,D;_| + [ 02, + hiosi (wi—1 — 1) + hi—io1,; (v; — 1) | D;

+hi—1D; | = hio3ivi-1Ai—1 + hicqwiAj,i =1,...,n— 1. 4.7

in unknowns D, ,i =0, 1, ..., n. Hence for appropriate end conditions D, and

D, and the constraints:
onLi=1, 03; 20,00 20,0, >2,w; >2,Vi, (4.8)

the system of Equations (4.7) defines a diagonally dominant tridiagonal linear
system that can be solved easily using the LU decomposition algorithm. Thus, a
unique rational cubic interpolatory spline is obtained that is at least C'. (Since
o1, = 1, we have D;” = Di+.)

4.3.1 Shape Control

Now we look at the effects of the shape parameters on the rational spline inter-
polant in the rest of this section.

(1) Let us vary v; and w; where the rest of the shape parameters are fixed (for
simplicity, we can assume o2 ; = 0, 03,; = 1); this is discussed in detail in
Chapter 2.

(i1) If we vary the o7 ;’s and keep the others fixed according to constraints (4.8),
then

(a) (Point tension) for fixed i = k if we assume o7; — 00, then the Kt

Equation of the system of Equations (4.7) results as:
lim Dy =0. (4.9)
0'2!](—)00

Thus the curve at the point Py will appear to have a corner

(b) (Interval tension) Similarly as above large values of o7 x and o2 ;41 cause
Dy and Dy to approach zero. This behavior tightens the curve in the
interval [tk, tk+1].

(¢) (Global tension) Following in the same way as above, o2 ; — oo for all i,
then

lim Dp=0, fori=1,...,n—1.

UZ,k—>OO

Thus the curve is globally tightened in [#, 7,1 ]
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(iii) (Biased behavior) If we vary the o3 ;’s and keep the other shape parameters
fixed according to (4.8), then for any I if 03 ; — o0, the following relationship
is obtained from the system of Equations (4.7):

vi—1Aj—1 — Di_
w;—1 — 1 '

D; =

This shows a biased behavior, i.e., the curve is inclined toward a side of the
interval [ti, t,'H]. A similar behavior can be observed when o7 ;, 03,; — 0.

4.3.2 Some Special Cases

A number of spline methods can be obtained as a result of distinct replacements
of the parameters involved in the above construction. For example

A. The case
B.
oi=1=03;, 02; =0,0;, =3 =uw;,

corresponds to the cubic spline interpolation.
C. The case
oLi=1=03;, 02; =0,0;, =w; > 2,

is that of the rational spline method of Chapter 2. This case also recovers the
rational spline with tension [23].
D. The weighted spline [14] can be obtained by the following replacement:

Wj—1
o1,i = 1,0'2,,' = 0, 03,i = 7, and ;] = 3= w;.
i

E. The Nu-spline [11] can be obtained with the following choice:
o1, = 1= 03,02 = Vi = 0, and v; = w; = 3.

F. The replacement

Vi Wi—|
oLi=1,00i=—,03; =——, andv; =3 = w;.
Wi wj
where v; > 0, w; > 0, Vi, gives weighted Nu-spline interpolation method of

Foley [7]. This also covers the cases C and D.

4.3.3 Examples

The shape control of the rational cubic o -spline interpolants is illustrated by the
following examples for the data sets in R? similar to that in Chapter2. Unless
otherwise stated we will assume o1 ; = 1,02,; =0,03; = 1,andv; =3 = w; in
all the examples.

Interval tension, point tension and biased behavior of the shape parameters v;
and w; are shown in Figures 3.2-3.9.
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SISt

FIGURE 4.1. Interpolatary rational o -splines with 3 4 varying for point tension.

SISIS

FIGURE 4.2. Interpolatary rational o-splines with 03 4 and o5 5 varying for interval
tension.

Figure 4.1 illustrates the effect of progressively increasing the value of the point
tension parameter o7 4 at the knot #4, while Figure 4.2 shows the interval tension
effect due to progressive increases in 07 4 and o7 5. Figure 4.3 displays the global
tension effect due to progressive increase in o3 ;. The values of the varying para-
meters, in each curve of the Figures4.1, 4.2, and 4.3, are taken as 0, 5 and 50,
respectively.

Figure 4.4 demonstrates the result of Remark 4.4(iii) regarding local and global
biased behavior; the shape parameter o3 is chosen as 1 and 50 in the first and third
curves, respectively, whereas o3 ; is 50 for i = 4, and 1 else where in the second
curve.
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SISI

FIGURE 4.3. Interpolatary rational &-splines with global tension using the shape para-
meter 07 ;.

SIS

FIGURE 4.4. Interpolatary rational o -splines with local and global biased behavior using
the shape parameter o3 ;.

Figure 4.5 displays a multishape parameter effect; the first curve is a cubic spline
curve; the second curve is fine tuned with the choice o33 = 50,0212 = 3,
vi = w; = 5S5fori = 7,8 and v;; = w;; = 2.1; the third curve is selected
withv; = w; =5fori =7,8and vjp = w1 = 5.
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FIGURE 4.5. Interpolatary rational o -splines fine tuned using multishape parameter effect.

4.4  Freeform Rational o -Splines

In this section, we present a method for the computation of freeform rational cubic
o-splines by a transformation to piecewise Bernstein-Bézier form. We adopt the
same strategy and notations in this construction as was adopted for the rational
splines in Chapter 3 except that the piecewise representation of the rational cubic
in each interval is assumed in Bernstein-Bézier form instead of Hermite form.
We consider the most general rational cubic (4.1) and the most general continuity
constraints for our purposes. At the end of this section the o -spline representation
will also be used to discuss the interpolation problem; this will be in a more gen-
eral setting and with more general shape parameter constraints than the previous
section. Let us assume that

01,i,03,i > 0, 02, = 0, v; > 3611' -2, w; > 3u; — 2. (4.]0)

Now, for the construction of the local support basis functions, let ¢;, j =
—1,...,n + 2 be the rational o-spline functions as defined in Equation (4.2)
(see Figure 4.1) with the piecewise representation

¢;j(1) = RoO)Fj i + RiO)V;i + RaOW, i + R3(O) F s, (4.11)
in each interval [t,-, t,-+1], where Rx(0), k =0, ..., 3 are defined as in Section 4.3

but are now dependent on g, v, w, and u. The requirement that ¢; be a rational
o -spline uniquely determines the following:

Fiio=0, Fij1=ui—1, Fi=1-1;,
. . -
i =0, Vij 1= /;:T’ ii =1, 4.12)
i2=0, W;;

2
Wii—1 = 1__11,1., Wi,i = 1,

i
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where
Vil
Hi = s
",
g = Az A)mi-t (4.13a)
nNi—1

hi—1v;u;

Yi = 5
hi—jvju; + hio1,;qiw;—1

ni = 02 (63,41 — Oniv1)
i = Oxiv1 (010 —02i) (4.13b)
ni = 01i0i11 — 02,0411,
01 =2h? u? {(1 = 7i) (0,2 —0; (3q;i — 2)) + }’iwi}
+2hi_2hior ;i yiqwi—ui—
+2hiqlo3, {Vi (wizfl —wi—1 Bui—1 —2) — Ui—l)} ,
bh,; = Zh%_lwiu?_l,
O3 =2k u? | (1—y) (02 —vi Bgi —2) — w;
3 = ,'71’4,;1( Vi) v; v; (3¢, ) — w;
+ 2hi—lh,‘20'2,i)’iqi2wiflui71
+2h7qlo3,; {Vi (wi2—1 —wi—1 Bui—y — 2)) +0 - Vi)Ui—l} ,

2 2
Os,i =2h;03,iq;vi1.

(4.13¢)

The local support rational ¢-B-spline basis is now defined by the difference
function B; (¢) as in Equation (3.6). Thus if in any interval [t,-, t,-+1],

Bj(t) = Ro(O)Fj;i + R1(O)V;i + R (O)W;; + R3(O)F, ;, (4.14)
then we have:
Fji2=0,i—-1>j>i4+2,Fi1=ui—1,Fi=1—24 —u;, Fi,it1 = Ziy1,
Viia=0,i—22j2i+1, V=l v, =1-5
Yi—1 Vi
. L i Lit1
Wiica=0,i=2>j>2i+1, Wij1=1——— W;; = .
1=y L —7it1
(4.15)
Proposition 4.2. The rational ¢ -spline functions B;(t), j = —1,...,n +1, are
such that
(Local support) Bj(t)=0fort e (tj_z, tj+2) , (4.16)
n+1
(Partition of unity) Z Bj(t)=0fort e (tj_z, tj+2) , 4.17)
j=—1

(Positively) Bj (t) =0 forall z. (4.18)
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Proof. The local support and the partition of unity properties follow immediately
from the definition and the construction of the basis functions. For the positively
property (4.18), it can be noted immediately that for the parameters defined in
(4.10),

7j,0;,; >0, forall jandi = 2,4. 4.19)
Moreover
O =02 =03 — 04, (4.20a)
where
01— 02 = 2 {W_ i { (1= 7)) (03 = 0) (3 = 2)) + 7505
hj_2h§

2
T2 Y-t

+h3q3os,; {7; (w2 = w1 Bujm =2)) —vjm1] | @200)
is also positive. Therefore, the quantities 71, #2,; and hence

nj=m,j+m,j+2(01;—6;)(03+1 —0s11), (4.21)

are positive. The above imply that all nonzero terms in Equation (4.15) are positive
and thus Equation (4.18) follows.

To apply the rational cubic B-spline as a practical method for curve design, a
convenient method for computing the curve representation
i+2
p@)y= D" PiBj(), 1€ lto, ta], (4.22)
j=i—1

is required, where P; € RY define the control points of the representation. Now,
by the local support property,
i+2
pt)= > PiBj(t).t€[ti,tin],i=0,1,....,n—1. (4.23)
j=i—1

Substitution of (3.10) then gives the piecewise defined rational Berstein-Bézier
representation

p(t) = Ro(@)F; + R1(0)V; + R2(6)W; + R3(0)Fiy1, (4.24)
where
Fi=4iPiy+ (=24 —p;i) Pi+ ui Py,
Vi={0—a;) P + o Piy1, (4.25)
Wi = ﬂiPi + (1 — ﬁl) Pi-H’
with

a; = n— B ==L, (4.26)
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The transformation to rational Bernstein-Bézier form is very convenient for com-
putational purposes and also leads to the following:

Proposition 4.3. (Variation diminishing property) The rational o -B-spline curve
p(t), t € [to, t,], defined by Equation (4.22), crosses any (hyper) plane of dimen-
sion N — 1 no more times than it crosses the control polygon P joining the control
points {P,-};:l_l )

Proof. Following the arguments in Equations (4.19)—(4.21), for positivity, in the
previous proposition, it is straightforward that the coefficients a;, f; in Equation
(4.25) satisfy

a; >0, i >0, ai + i < 1.

Thus V; and W; lie on the line segment joining P; and P;y1, where V; is before
W;. Also, we write
Fi=0—=y)Wi+yVi, (4.27)

where we already know that 0 < y; < 1. Thus the control polygon of the piece-
wise defined Bernstein-Bézier representation is obtained by corner cutting of the
o -B-spline control polygon; see Figure 4.3. Since the piecewise defined Bernstein-
Bézier representation is variation diminishing, it follows that the o -B-spline rep-
resentation is also variation diminishing.

Remark 4.4. Using the rational o-B-spline, the interpolation problem of the
rational o -splines can be tackled through

n+l1
> PiBj (1) = Fi, Vi. (4.28)
j=—1

where the matrix of the B; (#;) is tridiagonal matrix. Since 0 < u;, 4; < 1/2,
the tridiagonal system of Equations (4.28) is diagonally dominant. Thus a unique
interpolatory rational o-spline exits with more general shape constraints (4.10)
than (4.8) in Section 4.3.

4.4.1 Shape Control

The parameters defined in Equation (4.10) can be used to control the local or
global shape of the curve:

(1) Since the shape constraints v; > 3¢; — 2 and w; > 3u; — 2 must be satisfied,
then increase or decrease in ¢; and u; corresponds to increase or decrease
in v; and w;, respectively. Keeping ¢; and u; fixed (say, ¢; = u; = 1, for
simplicity) and varying v; and w; is discussed in detail in Chapter 3 where
the interval, point and the biased behaviors were observed by using these
parameters.
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(ii) It is a simple matter to see that, for any i when o7 ; is increased (and other
shape parameters are kept fixed), 4;, u; — O which implies p (t;) —
P;. Thus the curve is pulled toward the control point P;. If we also let
o2,; — 00, then we shall have p (;+1) — P;+1 and it follows that for any
t e [t,-, tiy 1] , p (¢) must converge to a point on the straight line from P; to
P; 1. Thus, the behavior of o2 ; can be used to achieve the point and interval
tensions both locally and globally.

(iii) The shape parameter o ; also produces a similar shape behavior as that of
o2,; in a different way. The increase in ¢y ,; for any i, (while the other shape
parameters are kept fixed) makes the curve approaching the point

P=AP_1+({1—A)P;, where 0<l= lim 4.
01,i—>00
This shows that the curve is not only pulled toward a point on the line from
P;_| to P;, but also shifts backward. Similarly, if o ;4 is also increased
sufficiently large, this will make the curve tighten between two points P and
QO which lie on the lines from P;_; to P; and P; to P;y, respectively.

(iv) Another interesting shape characteristic can be achieved by the variation of
the shape parameters o1 ; and o3 ;. If they are assumed large enough (and
other shape parameters supposed to be fixed; for simplicity, let v; = 3 = w;
and o7; = 0) then A; and u; decrease and increase monotonically towards
0 and 1, respectively. This shows that the curve at #; is pulled and shifted
completely to the control point P;_. In the case when o1 ;41 and o3 ;4 are
also increased, the curve is shifted and pulled to the line segment P;_1 P;.

4.4.2 Some Special Cases

A number of spline methods can be obtained as the result of distinct replacements
of the parameters involved in the above construction. For example

A. The case
ori=03i=1, 02;=0,gi=u;i=1, v;i=w;=3,

corresponds to the cubic spline representation.
B. The case

oi=03;i=1, 02;=0,qi=u;=1, v;i=w;>2,

is that of a rational spline with tension [23].
C. The weighted spline [14] can be obtained by the following replacement:
oL,i=1,00;=0, 03, = E,wi >0,q =u;i =1, v, =w; =3.
;
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D. The Nu-spline [11] can be obtained with the following choice:
o,i=1=03;=0,00;=0;>20,9i =u; =1, v; =w; =3.

E. The replacement
o,;=1, o0, = &, 03,i = E, gi=ui=1, v; =w; =3,
i Wi
where v; > 0, w; > 0, Vi, gives weighted Nu-spline method of Foley [7].
This also covers the cases C and D.
F. The special case

o1 = P, 02,i = P, 03, = ﬁ12,,-, gi=u; =10, =w; =3,

where f1; > 1, f2,; > 0, corresponds to the S-splines method.

FIGURE 4.6. Freeform rational ¢ -splines with ¢, 4 varying for point tension control.

L] L] L] ° L] L]

FIGURE 4.7. Freeform rational o -splines with o5 4 and o3 5 varying for interval tension.
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G. The rational geometric splines of Boehm [27] can also be recovered. The rela-
tionship of our o2 ; and the tension factors (Boehm’s ;) used by Boehm for his
curvature continuous rational cubic splines is derived here from our Bernstein
Bézier representation as:

(B hm' ) 6hi—lhiu,'2_1
oehm’sy;) = —————,
Vi 01 — 0
where o1; = o03; = 1. It can be easily noticed that the behavior of

1/(Boehm’sy;) is the same as that of 02 ;.

4.4.3 Examples

The same data sets in R? are considered for this section as the interpolatory exam-
ples in the last section, where the data now define the control points of the rational
o -B-spline representation.

The shape effects of the parameters, mentioned in (i) of Subsection4.4.1 are
demonstrated in Figures 4.5-4.12.

Figures 4.6—4.10 correspond to the shape parameters of the examples demon-
strated in Figures 4.1-4.5, respectively.

Figures4.11, 4.12 and 4.13 display the results in (iii) of Subsection4.4.1. The
first, second and third curve:

(a) of the Figure 4.11, respectively, correspond to the values 1, 5 and 50 of o1 5,

(b) of the Figure 4.12, respectively, correspond to the values 14 = 015 = 1,5
and 50,

(c) of the Figure 4.13, respectively, correspond to the values 1, 5 and 50 of 1 ;, Vi.

o L] L)

FIGURE 4.8. Freeform rational o-splines with global tension using the shape parame-
terop ;.
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- o L) L]

°

FIGURE 4.9. Freeform rational o -splines with local and global biased behavior using the
shape parameter o3 ;.

FIGURE 4.10. Freeform rational ¢ -splines fine tuned using multishape parameter effect.

Demonstration of the results in (iv) of Subsection4.4.1 is done in Figures 4.14,
4.15 and 4.16. The curves in Figure 4.14 correspond to the values 1, 10 and 1000
of o1; = o3, fori = 4. The curves in Figure4.15 are when i = 4, 5 and the
curves in Figure 4.16 are Vi.
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FIGURE 4.11. Freeform rational o -splines with o1 4 varying for appearing a corner in the
middle of the interval.

° °

FIGURE 4.12. Freeform rational o -splines with o1 4 and o 5 varying to tighten the curve
across the line segments P3 P4 and Py Ps.

- © o [ L] [

FIGURE 4.13. Freeform rational o-splines with global tension using the shape para-
meter o ;.
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° a L] °

FIGURE 4.14. Freeform rational o-splines with o1 4 and 03 4 varying for biased point
tension.

° o o .

FIGURE 4.15. Freeform rational o -splines with o1 ; and o3 ; varying for biased interval
tension.
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L] L]
o °
o o
° L]
L] s L]

o
°

FIGURE 4.16. Freeform rational o-splines with o1 ; and o3 ; varying for biased global
tension.

4.5 Exercises

1. Write programs to implement the curve design methods in Section 4.3.2.

2. Write programs to implement the curve design methods in Section 4.4.2.

3. Check the difference of shape effects in your programs of Exercise 4.5.1
and 4.5.2.

4. Check the difference of shape effects in your programs of Exercise 4.5.1
and 4.5.2 when the schemes are implemented in scalar form as stated in
Remark 3.
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5

Linear, Conic and Rational Cubic
Splines

Abstract. A rational cubic spline has been used with the view to its applications in com-
puter graphics, vision, and image processing. It incorporates linear, conic and parametric
cubic curve sections as special cases. The parameters (weights), in the description of the
spline curve can be used to modify the shape of the curve, locally and globally. The spline
attains parametric smoothness of different degrees depending on different choices of deriv-
ative settings and nature of curve segments. However, the stitching of the rational cubic
segments preserves C 2 smoothness and stitching of the conic segments preserves visually
reasonable C' smoothness at the neighboring knots. The curve scheme is interpolatory and
can plot parabolic, hyperbolic, elliptic, and circular splines independently as well as bits
and pieces of a rational cubic spline. This chapter discusses cases of elliptic arcs in space
and also introduces intermediate point interpolation scheme which can force the curve to
pass through given point between any segment.

5.1 Introduction

A common problem, in computer graphics, vision, and imaging is to design a
curved outline by stitching small pieces of curves together [1-14]. Piecewise ratio-
nal cubic spline functions provide powerful tools for designing of curves, sur-
faces and some analytic primitives such as conic sections that are widely used in
engineering design and various other applications. Such applications may include
representing a font outline [13], the round corner of an object [3], or a smooth
fit to given data [9]. Several segments of curves, to compose a desired curve
outline, can have different mathematical descriptions. For example, a font “S”
when designed, appears to have straight lines, conics, and cubics as essential
parts of its outline. Single mathematical formulation for the precise definition of
various types of geometry shapes is one of the major advantages of the rational
cubic spline functions. We aim in this chapter to represent a piecewise parametric
curve scheme, which has all the design features to produce a desired manipu-
lated curve.

93
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In [2], C! rational cubic splines with exact derivatives for control points were
used. This chapter introduces a similar interpolant but with a very simple distance-
based approximated derivative scheme as well as an exact derivative scheme. Our
goal is to achieve results for problems in various applications. This chapter also
describes the parametric C! and C? rational cubic spline representation containing
a family of shape control parameters. This family of shape parameters has been
used to produce straight-line segments, conics and cubics.

The following features are also a significant addition to the chapter:

* maintaining a reasonable amount of continuity (C') between conic and cubic
arcs,

¢ estimated end derivatives,

 conic (circular, elliptical, parabolic and hyperbolic) splines,

e circular arcs for s given radius or center,

e elliptic arc in space and

* intermediate point interpolation

In [2], the end derivatives are based on the assumption of the user, which is
not convenient. Moreover, the conics are not discussed at all. This chapter has
a description of suitable end derivatives for more pleasing results [14]. In [10],
cubic and conic segments are joined with G' continuity, which is not reasonable
for some practical applications. Intermediate point interpolation scheme and cir-
cular arcs, presented in [5], are not practical because the space curves and exact
circular arcs are not possible. In [11], intermediate point interpolation scheme with
CY continuity at neighborhood points was offered. G! continuity on constrained
guided curve scheme has been introduced in [6] where rational quadratic func-
tions were used. This chapter discusses rational cubic function and offers better
continuity. In [4], the rational quadratic spline is used for the circular spline. This
chapter uses a very simple technique [10] using a rational cubic spline to achieve
the same circular spline.

The curve scheme presented here can generate exact circular, parabolic, hyper-
bolic, and elliptical arcs. Degree elevation techniques have been applied on ratio-
nal quadratic splines as mentioned in [7]. Although NURBS (nonuniform rational
B-spline) representation of ellipse is given in [7], an improved technique [14] is
explained to handle any type of elliptic arcs even in space. In addition, the scheme
has the following properties, which may lead to a more useful approach to curve
and surface design in CAGD:

* The curve has C? continuity between the rational cubic arcs and C! continuity
between cubic and conic arcs.

* Suitable end derivatives are estimated.

e The scheme is local, i.e., shape control parameters will not significantly affect
the adjacent parts of the design curve.

* A distance-based approximated derivative scheme is also used to compute con-
trol points. Tangent vectors vary continuously along the curve preserving C'
continuity.
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* Any part of the rational cubic spline can be made conic (with exact circle and
ellipse) or straight line using the same interpolant.

* Intermediate point interpolation scheme has been introduced for use in a guided
curve.

* The scheme can handle any kind of elliptic arc in space.

e All methods are suitable for space curves and hence can also be generalized to
surfaces.

The parametric rational cubic spline scheme is considered in the next section.
Analysis of the designing curve is given in Section 5.3. In Section 5.4, there is a
scheme to calculate the end derivatives (tangents). The conditions for conics and
straight-line segments are discussed in Section5.5. This section also covers all
types of circular, parabolic, hyperbolic and elliptical arcs and introduces a very
powerful method for intermediate point interpolation. Examples are discussed in
Section 5.6. Finally, the chapter is summarized in Section 5.7.

5.2 The Rational Cubic Spline

The cubic spline is the spline of the lowest degree with C? continuity. C? continu-
ity meets the needs of most problems arising from engineering and mathematical
physics. Rational cubic spline functions of lower degree are numerically simple,
stable and are the most fundamental of all rational space curves. Let F; € R™,
i =1,...,n,bea given set of points at the distinct knots #; € R, with unit inter-
val spacing. Consider a first-degree parametric piecewise rational function for the
straight-line segment between F; and Fj1:

(1 =0)a;F; +0pi Fiyq

L(r) = Li(t) = T—0a 105

5.1)

where
0= (—1t)/hi, hi=tiy—1t.
The degree elevation formula [1] can be applied to get the quadratic rational Bézier
function:
(1—0)?aiF; +0 (1 —0) Ui +02Bi Fi
(1 =00 +0(1—0)y: +02;
where U; may be taken as the point of intersection of tangents at F; and Fj4 (see

Figure 5.1).
Applying degree elevation again, we get the rational cubic Bézier function:

0@) = Qi(t) =

; (5.2

oM
PO =P = 5 (5.3)
where
Ni=(1=0P3aiF;+0 (1 —0) (o + ) Vi +60>(1=0) (Bi +y)) Wi

+63B; Fiy1,
Ny =(1—-0)a; +0(1—0)y: +0%8,



96 5. Linear, Conic and Rational Cubic Splines

Straight line

F W, Vi F

1 1

FIGURE 5.1. Plot of P(t) with V;, W; from straight line, conic and cubic.

which is a straight-line segment between F; and F;1 with control points:
Vv — 20 Fi + fiFiv1 o, aiFi+2BiFin
’ 2+ ai +28

and weight y; = a; + f;. Similarly this function (5.3) is a conic curve between F;
and F;| with following control points:

_wFi 4yl BiFit1 +yiUi
l o Bi+ i

ai + i
It is known that only one interpolant (5.3) is enough for a straight-line segment,
conic arc, and cubic arc. It is a C! Hermite function for:

>

a; ;
Di,W; = Fj| —
o +yi T By

This can be achieved by imposing the Hermite interpolation conditions:

Vi=F + Djt1.

P(t;) = F; and PD(t;) = D;, ¥, (5.4)

The interpolant can further be simplified, as targeted, to the interpolant of
Section 3.3 with just single shape parameter in its description. This can be
achieved by having a; = 1, f; = 1 and y; = r; — 1. Thus, it takes the fol-
lowing form:

P(t) = P (1)

(1=0PF+01—-0)* i+ 1)V, +6%(1 —0) (yi + DW; + 0°F; 4
(1—60)2+6(1—06)y; +62 ’

i=1,.....n—1, (5.5)
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The following choice of control vertices

1
Vi=F +——D,,
1 !+ 1+yl 1

1
Wi = i+1+ 1+ Vi Dl+l-

leads (5.5) to a C! piecewise rational cubic Hermite spline. The choice of parame-
ters y; > —1 ensures a strictly positive denominator in the rational cubic. Thus,
from Bernstein-Bezier theory, the curve lies in the convex hull of the control points
{F;, Vi, Wi, Fi+1} and is variation diminishing.

For the construction of a C? rational cubic spline, we need to manipulate the
second derivative of (5.5), which is as follows:

2{Ai0° + Bi0> (1 — 0) + Ci0 (1 — 0)* + E; (1 — 0)*}

Pi(Z) (t) = 3 )
hi {1+ (yi —2)0 (1 —0)}

where
Ai = (yi + 1) (Dijy1 — A;) — Diy1 + Dy,
Bi =3(Diy1— Ay),
Ci=3(Ai—Di),
Ei=(yi+1)(A; — D)= Diy1+ D;,

and

Ai = (Fiy1 — F) /h;.

5.2.1 Estimation of Tangent Vectors

There are different choices of the tangent vectors D; at F;, which can be chosen
for practical implementation in the computation of a curve with a specific amount
of smoothness. For C! curve methods, some reasonable tangent approximation
method can be used. The distance-based approximations are found to be reason-
ably good as far as pleasing smoothness is concerned. We now, define the tangent
vectors D; at F;. For open curves, the end conditions are defined as:

Dy =2(Fy— F1) — (F3 — F1) /2, ] (5.6)

D, =2(F, — Fy—1) — (F, — F,—2) /2.

This choice will control the direction of the curve properly at the end segments.

The tangents at the interior knots, fori = 2,...,n — 1, are given by:
Di=a; (F; — Fi-1)+ (1 —a;) (Fiy1 — F) 5.7
where
|Fiy1 — Fil
aj

" |Fiy1 — Fi|+|F — Fi_q|
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(a) (b) (c)

FIGURE 5.2. Spline curves with various end conditions: (a) with distance-based derivatives,
(b)—(c) with exact derivatives.

For closed curves, the end conditions are defined as:
F_1 = Fu—1, Fpt1 = Fi,

and the tangents at the interior knots are same as in Equation (5.7)buti =1, ..., n.

The experiments have shown that the use of the distance-based approximated
derivatives, corresponding to any control polygon (open or closed), provides visu-
ally pleasing output. Figure 5.2(a) is the display of this derivative scheme for an
“S” shaped data. For further details, the reader is referred to Sarfraz et al. [10].

For a higher continuity than C'!, more complicated constraints are required to
be fitted. For example, for a C?rational cubic spline, the constraints lead to a tri-
diagonal linear system of equations. This system is diagonally dominant and hence
provides a unique solution. This system can be solved using some tridiagonal lin-
ear system solver like the LU decomposition method. Details are as follows:

C! constraints

POEH =Py i=2,...,n— 1.

give
D; =y 1(F; — Fi_1) — D,

and C? constraints
Dy — p@ =y
POy =PI ), i=2,...,n— 1L
lead to the following system of equations:

hiDi + (hi (yic1 — 1)+ hi—1 (yi = 1)) + hi—1Dj11
=vyi1A; +yiAic,i=2,...,n—1. (5.8)

For the need of graphical results, exact derivatives may be computed from (5.8)
together with the end conditions in (5.6). Figure 5.2 (b) is the demonstration for
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0.2 0.4 0.6 0.8 1

FIGURE 5.3. Curvature plots of spline curves with exact derivatives: (a) with distance-
based end derivatives, (b) with conic-compatible end derivatives.

this derivative scheme. The end conditions used here may not be appropriate for
the objectives of this chapter. Therefore, a reasonable choice has been made in
Section 5.5, which demonstrates the “S” shaped data in Figure 5.2(c). The differ-
ence can be seen in Figure 5.3 demonstrating curvature plots of Figures 5.2(b) and
5.2(c) in Figures 5.3(a) and 5.3(b), respectively.

5.3 Design Curve Analysis

The parameters y; are mainly meant to be used freely to control the shape of the
curve. At the same time, for the convenience of the designer, it is also neces-
sary that the ideal geometric properties of the curve not be lost. The geometric
properties, such as variation diminishing, convex hull, and positivity, need to be
presented in the description of the design curve.

For the constraints, y; > —1,Vi, it is very obvious that the rational cubic is
characterized as of Bernstein-Bézier form. The case for default values of shape
parameters, for y; = 2, is that of cubic Hermite interpolation. Thus, following the
Bernstein-Bézier theory, the piece of curve P;(t) lies in the convex hull of F;, V;,
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Wi, Fi11. The variation diminishing property also follows in the same manner as
was seen in Chapter 3. That is, any straight line crossing the control polygon of
F;, Vi, Wi, F;j41 does not cross the curve more than its control polygon.

The interval shape property is obvious from the following limit behavior. That
is, the increase in the shape parameter y; in any interval i tightens the curve toward
the line segment joined by the control points and the resulting rational spline inter-
polant is C! at #; and ;1. Figure 5.4 demonstrates the distance-based derivative
scheme for tension behavior. Figures 5.4(a)-(c) display the default curve (y; = 2)
and local interval tension (y, = 20). Similarly, Figure 5.5 demonstrates the exact
derivative scheme for tension behavior.

lim V; = F;, lim W; = Fi;yand lim Pi(t) = (1 —6) F;, +0F;4,.
00 yi— 00

yi—>00 yi—

(a) Default curve: y;,= (b) Local interval tension:
=20
6}

FIGURE 5.4. Demonstration of shape parameters using distance-based derivatives (C ! con-

tinuity).

(a) Default curve: y;,= (b) Local interval tension:
=20

FIGURE 5.5. Demonstration of shape parameters using exact derivatives (C2 continuity).
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Applying the interval property above successively, the design curve converges to
the control polygon as the derivatives, either being distance-based or computed
from the system of equations, are bounded.

5.4 Estimation of End Tangent Vectors

Tangent vectors for end segments are usually supposed, but less fortunately these
are not always visually pleasing. To make the end segments more appropriate,
a more compatible choice [14] for the curve scheme is presented here. For the
tangent at the first point, let ; be the angle between F3 — F| and F> — Fy. Let T}
be the rotation of F, around F; by an angle 6 on the plane passing through Fj,
F> and F3. Now, the tangent vector Dy, at first point, can be derived as follows:

(F, — F1)? Fi 42U,
=—> U =F T,Vi=——,D=3(Vi — F),
M=sm oo U |+ T, Vi 3 1 V1 — Fy)
(5.9)
where 1 is determined by the condition:
Uy — Fi| = Uy — F2l. (5.10)

Similarly, for tangent vector D, at the last point, let 6, be the angle between
F,_>» — F, and F,,_| — F,. Let T,, be the rotation of F,,_; around F}, by an angle
6, on the plane passing through F,, F,,_ and F,,_>. Then

(Fao1 — Fn)?
1 = U1 = F 171,
Hn—1 2(Fn71_Fn)'Tn n—1 nt+ tn—11y
F, +2U,—
Wi = %5 D, = 3(Fn - Wn—l)’

where pu,_1 is determined by the condition:
[Un—1 — Ful = Un—1 — Fy—11. (5.11)

Visual difference between different types of end tangent vectors has been demon-
strated in Figure 5.6.

5.5 Conic Splines and Straight Line

Conics and straight-lines are the most important parts in designing. These can
be achieved through a rational cubic interpolant (5.3). It is interesting to see that
one can use the same interpolant for all types of curves. As mentioned before, U;
is the point of intersection of tangents at F; and Fj4+;. In case the tangents are
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S0

(a) Supposed (b) Distance based (c) Reasonable

FIGURE 5.6. Demonstration of end derivatives using exact derivatives (C 2 continuity).

EERS

(a) Circular (b) Elliptical (c) Parabolic (d) Hyperbolic

FIGURE 5.7. C! Conic spline.

parallel, U; can be taken as the point where the arc is desired to be divided into
two pieces; for example, it may be the inflection or the middle point, and so on.

For conic section properties and choice of shape parameters, various conics are
recovered depending upon the nature of weights [8]. Also, readers are referred
to [7] and [1] for details. According to [7], the conic shape factor:

k= — (5.12)
Vl'z
determines the conic if the three weights are changed in such a way that k is
not changed. Thus, any two weights can be chosen arbitrarily; the conic is then
determined by the third weight. The C! conic spline is:

e Elliptic if —1 < y; < 2 (Figure 5.7(b)).

e Parabolic if y; = 2 (Figure 5.7(c)).
e Hyperbolic if y; > 2 (Figure 5.7(d)).
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B

(a) Circular (b) Elliptical (c) Parabolic (d) Hyperbolic

FIGURE 5.8. CZ conic spline.

Similarly C? elliptic, parabolic, and hyperbolic splines are given in Figures 5.8(b),
5.8(c), and 5.8(d), respectively. The corresponding curvature plots of Fig-
ures 5.8(b)—(d) are shown in Figures 5.9(b)—(d).

5.5.1 Conic Arc in Cubic Spline

Rational cubic interpolant (5.5) can easily adjust conic segments in cubic spline.
Cubic segments are already joined by C? continuity but there is also a need for
some smoothness between conic and cubic segments. C! continuity is enough for
visually pleasing results. Let the ith segment between F; and F;;| be a conic
curve. If i > 1, then for C! continuity at F;, impose the constraints P(V(1,7) =
1)+
PUO(t1) to find
CHyici+y)FE-0+yp)Vi

Wi = . 5.13
i—1 1+)’i—1 ( )

If i < n, then for C! continuity at F;11, impose the constraints P (1) =
Pt ) to find
C+yityit) Fipn — A+ ) Wi

Vi — . 5.14
i+1 1+Vi+l ( )

5.5.2 Circular Spline

For the G! circular spline, see Figure 5.10, consider:
yi = 2cos b, (5.15)

where ¢ is the angle between F;;1 — F; and U; — F;. Let T; be the unit vector
along D;, and Uj, the point of intersection of tangent vectors at F; and F; 1. Then,
we have:

Ui=F + uT;, (5.16)
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FIGURE 5.9. Curvature plots of Figure 5.8: (a) circular spline, (b) elliptic spline, (c) par-

abolic spline, (d) hyperbolic spline.

where x; is determined by the condition:
Ui — Fil = Ui — Fiql,
which yields the following:

_ (Fim—F)
2(Fip— F)-T;

i
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U;

FIGURE 5.10. Bézier points of a circular arc.

FIGURE 5.11. A three-point circle given in rational cubic Bézier form.

The circular spline, thus obtained, has been shown in Figure 5.7(a). Figure 5.11
shows a three-point exact circle.

5.5.3 Circular Arc

This section is devoted to the construction of a circular arc. The cases for a given
radius and given center are discussed independently.
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5.5.3.1 Circular Arc for Given Radius

Let r be the given radius of the circular arc such that r > (|F;+| — F;|)/2. Then,
the center M can lie anywhere on the circle centered at N = (F; + F;4+1)/2 and
having radius b as follows:

F: — F 2
b=\/r2—%. (5.19)

It is preferred that M lie on the plane passing through F;, Fi41 and U;, where U;
is the intersection of F; — D; and F;41 — Djy1. Therefore, the circular arc should
lie on the side of U,-. Let e be the rotation of F;; around N by an angle 6 on the
plane passing through F;, F;11 and Ui, where § =« /2 for anticlockwise rotation
and § = —x /2 for clockwise rotation.

Now, e = (e; — N)/|e1 — N| is a unit vector passing through N and perpendic-
ular to Fjy; — F;. Then, M = N + be will be the center of our required circular
arc. Let ¢ = LF; M N. Replace ¢ with —¢ if circular arc rotation is anticlockwise.
Next, one can find y; from (5.15). Let T’ be the rotation of F; | around F; through
angle ¢ on the plane passing through F;, F;yj and U; from which one can have
T; = (T' — F;)/|T’ — F;|, a unit tangent vector at F;. Now use (5.16) to find U;,
(5.5) to find control points V; and W;, (5.13) for C! continuity at F;, (5.14) for C'
continuity at Fj4 and finally use rational cubic interpolant (5.3) for the required
circular arc. In this scheme, the radius r can be used as a shape control parameter
demonstrated in Figure 5.12.

5.5.3.2 Circular Arc for a Given Center

Let M be the given center of the circular arc such that |Fj1 — M| = |F; —
M)|. Let M’ be the rotation of M around F; by an angle § on the plane passing
through F;, F;4; and M, where & = z /2 for clockwise rotation and 8 = —x /2

for anticlockwise rotation. T; = (M’ — F;)/|M’ — F;| is a unit tangent vector at

FIGURE 5.12. Rational cubic spline with a mid-interval as a circular arc piece for radius
r = 15 (dashed), 18 (bold), 24 (normal).
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FIGURE 5.13. Rational cubic spline with mid-interval as a circular arc piece for a given
center.

F;. Let ¢ be the angle between F; | — F; and T;. Now use (5.15) to find y;, (5.16)
to find Uj, (5.5) to find control points V; and W;, (5.13) for C ! continuity at Fj,
(5.14) for C' continuity at F; 1 and finally use rational the cubic interpolant (5.3)
for required circular arc. Figure 5.13 shows the plot of C-type rational cubic spline
with the mid-segment as a circular arc. The center of this circular arc is shown as
small disk where given data is shown as small circles.

5.5.4 Elliptic Arc

This section is devoted to the construction of an elliptic arc in three dimension.
Very complicated cases have also been treated, e.g., when the major axis becomes
much larger than the minor axis and the required elliptic arc consists of the highest
curvature part of the ellipse.

Given a start point F;, end point F;, center M, unit vector along major axis
X, unit vector along minor axis Y, semi-major axis a and semi-minor axis b (see
Figure 5.14), XMY is a local coordinate system in space. Let 0 = /XM F; and
0, = LXMF;i,. If necessary, use the Newton-Raphson method to compute 6
and 6,. If 6; > 6,, replace 6 with 6y —27. S(= M +acos@X +bsinfY}) a point
on an elliptic arc, where 8 = (05 + 6,)/2. Let U; be the point of intersection of
tangents Tp(= —asindsX + bcosOsY) and Ty (= —asinf,X + bcosb,Y) at F;
and F; 41 respectively. Let R be the point of intersection of S — U; and Fj | — Fj.
The quadratic rational Bézier arc (5.2) can be written in the form:

A—u)? Fi+u(l —u)yU +u?Fiq

u) = 5.20
Q) A—u)?+ud —u)y +u? ©:20)
Now the line L(u) = [F;, F;+1] is obtained by taking y; = 0. Therefore,
1 —u)? F; + u’F;
L(u) = ( u)” Fi + u”Fiyy (5.21)

(1 —u)?® 4+ u?
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Fiiy

FIGURE 5.14. Bézier points of an elliptic arc.

which is convex combination of F; and F;j 4 and

R—F| _ o
IR—Fipl  1—u?

[ IR — Fil
c= [————.
IR — Fiy1l

Therefore, Q(u) = S and from (5.20), we can easily find

1
X
u(l—u)|U; — S|

Then u = ¢/(1 + ¢), where

Vi =

(5.22)

(5.23)

{a-w?s-F) +2(s-Fn}wi-s).

(5.24)

Now use (5.5) to find control points V; and W; and rational cubic interpolant
(5.3) for the required elliptic arc. A demonstration of a four-point ellipse is given
(see Figure 5.15) in rational cubic Bézier form. Figure 5.16 shows an elliptic arc

in space that follows the given information:

a=20,b=1,M=(0,0,2),

F; = (18.967819, —2.184863, 3.943775),
Fiy1 = (—7.476452,1.674027, 1.144135),
X = (0.990033, —0.099335, 2.099833),
Y = (0.109252, 0.989038, 1.900665).
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FIGURE 5.15. A four-point ellipse given in rational cubic Bézier form.

FIGURE 5.16. An elliptic arc in space.

5.5.5 Intermediate Point Interpolation

For the intermediate point interpolation, we need to insert point C between F; and
F; 41 while preserving some reasonable continuity (C') at F; and F; . Consider:

Ui:u(l_;u)y[{(l—u)2+u(l—M)Vi+u2}C—(1—M)2Fi—M2Fi+1],

where
Y |Fi — C|
|F; = C|+|Fiq1 —C|

Next, use (5.5) to find control points V; and W;, (5.13) for C I continuity at Fj,
(5.14) for c! continuity at F;1. Finally, use the rational cubic interpolant (5.3)
for the required result. Figure 5.17(a) shows an intermediate point interpolation in
the middle segment where the curve is forced to pass through different small disks.

The parameter u can also be used as a shape control parameter within the range
0 < u < 1. For different values of u, one can construct a family of curves interpo-
lating C (small disk) as shown in Figure 5.17(b).

(5.25)
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(a) u is calculated

(b) u = 0.2 (normal), 0.4 (dashed), calculated (bold)

FIGURE 5.17. Intermediate point interpolation.

5.5.6 Straight-Line Segment

For a straight-line segment using a rational cubic interpolant (5.3), we have the
following four methods:

1. Consider y; = 0.

2. Replace U; with F; or F;41 and then use (5.5) to find control points V; and W;.

3. Use an intermediate point interpolation scheme by inserting point C on the line
joining F; and Fj41.

4. Consider y; = a; + fr; then find control points V; and W; from (5.4).

5.6 Examples

Data taken from a Times New Roman font “S” has been interpolated by a default
rational cubic spline in Figure 5.18(a). It is not as desired. Point and interval ten-
sion parameters are changed to achieve visually pleasing shape for font “S” in
Figure 5.18(b).

Figures 5.19-5.22 illustrate the design of a rational cubic spline used for a surface
of revolution that represents a cup, lamp, bowling pin and vase. Figures 5.19(a)—
5.22(a), are the default shapes with exact derivatives and use default values of
shape parameters, i.e., y; = 2. Figures 5.19(b)-5.21(b), are also exact derivatives,
whereas Figure 5.22(b) is plotted with distance-based approximated derivatives.
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(a) Default (b) with interval and Point
tension control

FIGURE 5.18. Times New Roman font “S” with rational cubic spline interpolation.

(a) (b)

FIGURE 5.19. Rational cubic spline: (a) default curve, (b) curve with shape control, (c)
shaded surface (cup) designed with curve in (b).

To make these figures well-shaped and pleasing, we use shape control parameters
and insert some conic or straight-line segments connected by C! continuity with
the neighborhood cubic segments.

Further details about Figures 5.19-5.22 are as follows. In Figure 5.19(b), y; =
100, y3 = 10 and y4 = 100 from the bottom. The second segment is a circular
arc. All other segments are cubics connected by C? continuity and use default
values of shape parameters. In Figure 5.20(b) (from bottom), y; = 100, y3 =
100, y5 = 100, y6 = 0.1 and y7 = 100. The second segment is a circular arc
with radius 15. All other segments are cubics connected by C? continuity and use
default values of shape parameters. In Figure 5.21(h) (from top), the first segment
is a circular arc with radius 8; the second to last is a conic; and the last one is
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FIGURE 5.20. Rational cubic spline: (a) default curve, (b) curve with shape control,
(c) shaded surface (lamp) designed with curve in (b).

(a) (b) (c)

FIGURE 5.21. Rational cubic spline: (a) default curve, (b) curve with shape control,
(c) shaded surface (bowling pin) designed with curve in (b).

(a) (b) (c)

FIGURE 5.22. Rational cubic spline: (a) default curve, (b) curve with shape control,
(c) shaded surface (vase) designed with curve in (b).
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a straight line. All other segments are cubic connected by C? continuity and use
default values of shape parameters. Figure 5.22(k) (from bottom) is taken with
y1 = 200, y7 = 0.01, y,—1 = 100. The fifth segment is a circular arc. All other
segments are cubics connected by C! continuity and use default values of shape
parameters.

5.7 Summary

This chapter has described an interval-controlled rational cubic interpolation
scheme. The scheme offers a number of possible ways in which the shape of
the corresponding curves may be altered by the users. Such a scheme can be a
useful addition to an interactive design package, with the user having enough
control over the curve segments. The provision of the shape parameters, in the
description of the piecewise rational functions, provides the freedom to modify
the shape in the desired regions in a stable manner. The rational spline scheme is
meant for parametric curves and is capable of designing plane as well as space
curves. It is an interpolatory rational spline scheme enjoying all the ideal geomet-
ric properties. It has features to produce all types of conic curves in such a way
that the whole design curve may be produced as a circular, elliptic, parabolic, or
a hyperbolic spline curve. In addition, the desired conic pieces may also be fitted
within the rational cubic spline. Overall smoothness of the rational cubic spline is
C?, whereas the conics are stitched with C! continuity. Linear segments can also
fitted as part of the whole scheme. The curve scheme is extendable to surfaces.

5.8 Exercises

1. Show that, for the constraints, a; > 0, f; > 0 and y; > —a;, —f;, Vi, the
rational cubic (5.3) is characterized as a Bernstein-Bézier form.

2. Prove that the values of shape parameters as a; = 1 = f; and y; = 2 reduce
the rational cubic (5.3) to the standard cubic Hermite form.

3. Prove that, for the constraints, a; > 0, f7 > 0 and y; > —a;, —p;, Vi, the
rational cubic (5.3) lies in the convex hull of F;, V;, W;, Fjy1.

4. Prove that, for the constraints, a; > 0, f; > 0 and y; > —a;, —p;, Vi, the
rational cubic (5.3) follows the variation diminishing property. That is, any
straight line crossing the control polygon of F;, V;, W;, F;+1 does not cross
the curve more than its control polygon.

5. Write a program to implement the C? rational cubic spline scheme with exact
derivatives.

6. Write a program to implement the C'! rational cubic spline scheme with
distance-based derivatives.

7. Implement the rational cubic spline in Exercises 5.8.5 and 5.8.6 with unit para-
meterization as well as chord length parameterization. How different would
the two rational cubic curves look? Please test it for at least two example data.
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8. Write a program to implement the rational cubic spline scheme with
distance-based derivatives but resulting in an elliptic curve.

9. Write a program to implement the rational cubic spline scheme with
distance-based derivatives but resulting in a hyperbolic curve.

10. Write a program to implement the rational cubic spline scheme with distance-
based derivatives but resulting in a parabolic curve.

11. Write a program to implement the rational cubic spline scheme with distance-
based derivatives but resulting in a curve with circular pieces.

12. Write a program for the C? rational cubic spline which, in addition to passing
through the regular data points, can also pass through another desired data
point(s) in some desired piece(s).

13. Derive the tridiagonal linear system of equations by imposing the constraints
for C? continuity

P(z) (ti_) :P(z) (ti+)’i =2,3,...,n—1

on rational cubic function P(¢) in (5.3) with control points in (5.5).

14. Write a program to solve the tridiagonal linear system of equations in Exercise
5.8.13 by LU-factorization to find the values of exact derivatives D;, i =
2,...,n — 1 by estimation of appropriate end derivatives.

15. Write an algorithm to implement the rational cubic spline scheme for closed
data.

16. Find the equation in (5.15) for the quadratic rational function Q(¢) to be a
circular arc with condition in (5.17).

17. Derive the formula for intermediate point interpolation in Section 5.5 to find
the value of U;.

18. Write a program to implement the elliptic arc in three dimensions by using
given data in Section 5.5.

19. Prove the fact that the presented spline scheme, in this chapter, has C* con-
tinuity between the rational cubic arcs and C! continuity between cubic and
conic arcs.

20. Show, by practical implementation of Exercise 5.8.5, that the scheme is local,
i.e., shape control parameters will not significantly affect the adjacent parts of
the design curve.

21. Implement Exercises 5.8.5-5.8.8 to show that all these methods are suitable
for space curves and hence can also be generalized to surfaces.
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6

Shape-Preserving Rational Interpolation
for Planar Curves

Abstract. Data visualization is an important issue in information visualization. In specific
applications, data may have different shapes when occurring in scientific phenomena or in
some other perspective. A simple application may be when data is globally monotone or
convex. Representing data in a visually meaningful and computationally efficient way is a
significant topic to consider. This chapter deals with such situations using the piecewise
rational cubic interpolant of Section 3.3. For simplicity, the shape parameters introduced
in each interval have been constrained to solve the problem of shape-preserving interpo-
lation for planer curves. Scalar curves are also considered as a special case, but they are
discussed in detail in Chapters 7 and 8.

6.1 Introduction

Many authors work in the area of representing shape-preserving curves for shaped
data. For brevity, the reader is referred to [1-23]. This chapter uses the piece-
wise rational cubic interpolant of Section 3.3, where only one shape parameter
is introduced in each interval, to solve the problem of shape-preserving interpo-
lation for plane curves. The scalar curves are also considered as a special case,
but their detailed versions have been discussed in details in Chapters 7 and 8. The
results derived here are actually the extensions of the results of Delbourgo and
Gregory [4] who developed a C! shape-preserving interpolation scheme for scalar
curves using the same piecewise rational function. They derived the constraints,
on the shape parameters occurring in the rational function under discussion, to
make the interpolant preserve the monotonic and/or convex shape of the data.

This chapter begins with some preliminaries about the rational cubic inter-
polant. The constraints with convex and/or monotonic data are derived in
Sections 6.3, 6.4 and 6.5. These constraints depend on the tangent vectors. The
description of the tangent vectors, which are consistent and dependent on the
given data, is made in Section 6.6. The shape-preserving results are explained
with examples in Section 6.7.

117



118 6. Shape-Preserving Rational Interpolation for Planar Curves
6.2 The Rational Cubic Interpolant

Let F; € R%,i = 0,1,2,....,nbea given set of data points, where fp < #1 <
. < t,. We consider the C'! piecewise rational cubic interpolant as follows:

(1=0)f; +0(1 —0)>(r; F; + h; Dy) + 0%(1 — 0)(r; Fi11 — hi D) + 03 F; 44
14+ @ —3)0(1 —0) ’

p@) =

6.1)
which was discussed in Section 3.3. We use this to generate an interpolatory planar
curve that preserves the shape of the data. Let

p(t) = (p1(1), p2(1)),
Fi = (xi, i),

6.2)
D; = (Dg, D;),
Ai = (Ai ’ Ai)’
where
AT — (Xig1 — xi) A — Vi1 — ¥i)
i ) i )
h; h,'

and D; denotes the tangent vector to the curve at the knot #. It can be noted that
p(t) interpolates the points F; and the tangent vectors D; at the knots 7;.

The parameter r; is to be chosen such that »; > —1, which ensures a strictly
positive denominator in the rational cubic. For our purposes r;, will be chosen to
ensure that the interpolant preserves the shape of the data. This choice requires the
knowledge of pW(¢) and p@ (t) which are as follows.

(1 —6)*D;+a1,0(1 —0)3 + a2,0°(1 — ) + a3.:0°(1 — )+ D, 16*

1 _
p= 0+ —300-0)) ’
(6.3)
20 204:(0=0) +as5:0(1 = 0)* + a6.0%(1 = 0) + a7.60°
P = hi{l + (ri —3)0(1 — 0)}3 ’ 64
where

ay.,i =2(riAi — Diy1),

a,i = (rF +3)A; — ri(D; + Dit1),
a3,; = 2(riAj — Dj),

a4,i = 2ri(A; — D;) — Diy1 + D, (6.5)
asi = 3(A; — Dy),

a6,i = 3(Dit1 — Ap),

a7, =1i(Di+1 — A;j) — Diy1 + D;

and we denote

aji = (@ a5,). (6.6)
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6.3 Interpolation of Convex Data

We assume a strictly locally convex set of data so that
A =aiAi-1+biAiq,i=1,2,...,n—2, (6.7a)
or equivalently the vectors
A x Ajy1,i=1,2,...,n—2, (6.7b)

must be in the same directions. To have a convex interpolant p (¢) and to avoid the
possibility of p (¢) having straight line segments, it is necessary that the tangent
vectors should satisfy the following constraints:

Ai =aiNi—1+biAi,i=1,2,...,n—1,¢;,di >0, (6.8a)
with appropriate end conditions Dy and D,. Or, equivalently the following vectors
D; x Aj, Aj X Diy1, Aj X Ajtr, (6.8b)

must be in the same direction Vi. Thus if

L AXAY AV AX
Pri= A7 Aiy — A Ajyys

Bai = Df A} — Dy A},

y y (6.9)
Psi=AiDiy — A Dy,

¥ y
Pai = DfCDi+1 - D; D?+1°

then we immediately have the following:

Lemma 6.1. The conditions (6.7) and (6.8) imply that
ﬂj,,',j = 1,...,4,i =0,1,...,n— 1,
must be of the same sign.

Now assume without loss of generality that the data is consistent with a convex
curve with positive curvature. Then by, Lemma 6.1, we must have

Bii>0,j=1,...,4,i=0,1,....,n— 1. (6.10)
Moreover, p (t) is convex, with positive curvature if and only if

pgl)(t)pf) () — p$2) (t)pél)(t) >0, (6.11)

for all ¢ € [t9, t,] (The case of the negative curvature can be treated in a similar
way when the inequality is reversed.) After some simplifications using (6.2)—(6.6),
it can be shown that for € [#;, fi41],

8 . .
23 yi(1=0)y71%

1 @y _ @ Ny, J=1
P (I)Pz () P (l)pz () = nill + (1 — 3)01 —0)}5’ (6.12)
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where

2,0 = TiB3i — Pai)

72,0 =20 — D)(riB3,i — Pai) +3P3,i

3.0 =3P +6(ri — D3 + [y — D>+ 210 f3.i — Bai)s

vai = (Tri — O foi + [r%i + 20 — 20> +r; + B3, + Qry — V(i 30 — Bai)s
ys.i = (Tri =63 +[r? + 20y —2)* + 1 + 11pa; + Q@ri — D(riBai — Pai),
V6. = 3P3.i +6(ri — Dpai + [y — D +21(ri fai — Bai),

77,0 = 2(ri = D)(rifa,i — Pa,i) +3P2i,

78,i = (rifai — Pai)-

Thus, from (6.12), necessary conditions for convexity are ©19
71i>0 and yg; >0 (6.14a)
The sufficient conditions for convexity are
vii>0,j=2,...,7. (6.14b)
and a sufficient condition for (6.14b) together with conditions (6.14a), is
ri zmax[l,&,&}. (6.15)
Boi Baii

A number of choices of r; can be adopted for graphical demonstration. It has been
found that if

Pai Pai .| Bai Pai
M; =max{——,—>t and m; = min{ ——, —},
Bai B3 Boi B3
the choice )
M; m;\2
ri=1+ 1+7 +(1+7)3 (6.16)

satisfies (6.15) and produces pleasing graphical results.

Remark 6.2.

(a) It follows immediately that the choice of r; in (6.16) is such that r; > 1.

(b) A strictly convex data set has been assumed so far. Otherwise, if A; = A; 4
for some i, i.e., F;, Fi+1 and Fj;, are collinear, then p (¢) must be linear on
[#i, ti+1]. Thus we musthave D; = Dj 1 = Ajon|[tj,tj41], j =1i,1+1and
the rational cubic then reduces to the straight-line segment.

pt)=0—=0)F; +0Fj1,j=i,I+1.

6.4 Interpolation of Monotonic Data

Let us assume for simplicity that

AF£0,i=0,...,n—1, (6.17)
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and that the data is monotonic increasing and arises from a function. Then we must

have
y

A; )

720,1:0,...,1@—1, (6.18)
1

ie, A} and Af are of the same sign. The case of a monotonic decreasing set of

data can be treated in a similar manner when the inequalities are reversed. The nec-

essary conditions for the interpolant p (¢) to be monotonic are then the following:

y

—Dl >0,i =0 1 (6.19)
U1t =9,...,n—1, .
D;

i.e., DY and D; are of the same sign. We also note that DY and D; must have the
same sign as A7 and Aiy , respectively. Thus we have the following:
AYAY, DID] >0,
Yy Y
DI A;, D; Af >0, (6.20)
y y
AiDiy, AjDiyy =0,
fori =0,...,n—1.
Remark 6.3. Let .
Pri = ATA],
Pri = DfA,-} + AfD,-},

ﬁ:3,,~ = A;CDZ{+1 +AIDY, t, (6.21)
Pai = DiD \ + Dy Dy,

— y
ﬁ5,i = D;CD,' .

Then it follows from (6.20) that
Bii=0,j=1,...,5i=0,...,n— L (6.22)
Now p () is monotonic increasing if and only if

1
p§ (1)

> 0,Vt € [to, t,] . (6.23)

ie., pgl)(t) and pél)(t) are of the same sign. Thus, (6.23) can be equivalently
written as 1 1

P Ops" @), € 10, 1] (6.24)
After some simplifications, using (6.2)—-(6.6), it can be shown that for ¢ €
[ti, ti+1],

29: ]?j,l(l _0)9—j01_1
My Dy — 1=
pi (Opy (1) = {1+ (ri—3)0(1 — 0"

(6.25)
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where
A y
y1.i = D; Dy,
y . .
oy Dp =2rifri — 2P,

~ — XY
V2,i = Dl' a1,

A XY x Y x Y

73, = Djoy; +ay 0y +a5, D5,

R s R x ) x ) X y

vai = Djas; +ay;05; +ay;0y; +o3,;D;,

A XY x .Y x .Y x .Y X y

V50 = Di Dy +ay 05, +ay;0y; +a3;0; +Di D, (6.26)

A X y x .Y x .Y X y
Ve =ay;Diyy +ay,05, +03,05,; + D 0,
A X y x Y x y

P10 =05 Diyy o303, + Diya;

A x Y X Y o n. P, ..
780 =03, Dy + D03, =2riff3i —2p4,

A DX y
9. = Dj 1 Diyy

The conditions
D;D]Y >0,j=i,i+1, (6.27)

are necessary for the interpolant to be monotonic increasing on [ti, li+1] (see
Lemma 6.3) and, assuming these necessary conditions, sufficient conditions are
as follows:

75,i=0,j=2,...,8. (6.28)

It should be noted that if Aiy = 0, then Diy = Dl.yJrl = 0 and hence /)A’g,i = ,633,,- =0.

Moreover p; (t) = i, t; <t < ti1, therefore p (¢) is constant on [f;, ti+1].

If AY 3 0, then a sufficient condition for (6.28) is

DY+ D¥ , D'+ D’
i > max i _ l+1, i - i+1 , (6.29)
A} A;
Moreover, since
A A y )7
max ﬁ,\4,1 ’ ﬁA4,i - max Df + Df+1, D; +D; ’ (6.30)
Pri P A7 A
the choice, o A
= Pai(p2,i +,B3,i)’ ©31)

b2.iB3,i

satisfies (6.29) and provides nice graphical results.

Remark 6.4. As mentioned in Remark 2.3, the scalar case can be considered as
an application of interpolation scheme (¢, p (¢)) in R? to the values (t;, F;) € R?
and derivatives (1, D;) € Rz,i = 0,1,...,n. It can also be noted that A; =
(1, A;). Therefore the convexity and monotonicity constraints, in this case are,
respectively,

Dit+1 — D;i Dj+1 — D

) ) (6.32)
Ai —D; " Diy1—A;

r; > max
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and

(6.33)

D; D;
ri Z max ’2’ L-’_l] s

A;

which are same as in [4].
6.5 Interpolation of Convex and Monotonic Data
In this section we consider the possibility that together with a strict convexity con-

dition, the data also satisfy a monotonicity condition. Let us assume for simplicity
that the data satisfy (6.17) and the monotonicity condition (6.18). The inequalities

D] A} D) A?Y D’ A D;
_—2<—2<—i< < ;_1<—’x<—;<...<—z, (6.34)
D0 AO D1 Ai—l D: Ai D}

then must be satisfied. Any convex interpolant must then also be monotonic. This
result follows since

o _ /’p%”(r)péz’(r)—p?’(r)pé”(r) P
0] (p{" ())? i (t)

fo

t
z/pﬁl)(t)péz)(t) —p§2)(t)p§1)(t)d D}

t+ —.
1
(pi" (1)) Dy

fo

y

Hence g—g and the convexity condition (6.11) imply that

1
p§ (1)
p%”(t)

Moreover, for the data satisfying (6.34), it can be simply shown that

N N Yy y
max[& 54,1} >maX{Df+Df+1 D; +Di+1}_

> 0, Vt € [t, t,,]. (6.35)

A —_ X b )7

Pri P3i A; A;
Therefore, the convex interpolation method of the Section 6.2 is also suitable for
the interpolation of convex and monotonic data, and the convexity condition (6.15)

is sufficient to ensure that the monotonicity condition (6.29) is satisfied.

6.6 Choice of Tangent Vectors

In most applications, the tangent vectors D; are not given and hence must be deter-
mined from the data F; € R%,i = 0,1,...,n. Delbourgo and Gregory [4] have
described arithmetic and geometric mean derivative choices for their convexity
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and convexity-/monotonicity-preserving scalar curves. Similar choices of tangent
vectors can be defined for plane curves, which satisfy the shape-preserving condi-
tions. The arithmetic mean choice of tangent vectors is

Di=NA_1+0=A)A;,i=0,1,...,n—1, (6.36a)
where
A=l (6.36b)
" (hio + ) .
While if p (¢) is not closed, the tangents at the endpoints will be given as follows:
Do = AoAo + (1 —Ag)Az,
’ 6.36
Dn = )\nAn—l + (1 - )\n)An,n—Za ( C)
where
h hy,—
A()Zl—}—h—o,)\n:l‘l-hn 17
1 -2
Fr — Fy n F,— F,_» (6.36d)
Aog=——App2=—"-—.
th —tp In —Ih—2

These arithmetic mean approximations are suitable for convex data since they sat-
isfy the necessary conditions for convexity and produce pleasing graphical results.
The geometric means are defined as:

Di = (AN AD'N (AN @D i =1, n =1, (637a)

with the end conditions

Do = ((AM(AS ()10, (A (A )1,
Dy = (A5 )M (A5, ) ™ (A M (A, )™,

n,n—2 n,n—2

(6.37b)

where the choice of A;’s is as given in (6.36b) and (6.36d). These approximations
are suitable for the interpolation of the monotonic data. These approximations are
also referred in the case when data is both monotonic and convex as they satisfy
the corresponding necessary conditions.

6.7 Examples

Figures 6.1 and 6.2 demonstrate the convexity- and monotonicity-preserving
results corresponding to the arithmetic and geometric derivative values, respec-
tively; the first and second curves in each of these figures represent the scalar and
parametric cubic spline-preserving interpolations. The shape-preserving results
for the data, which are both monotonic and convex, are shown in Figure 6.3. Arith-
metic derivative values are used in the second and fourth curves; the geometric
mean choice of derivative values is considered in the third and sixth curves. The
first three curves are scalar and the rest of them are parametric curves.
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FIGURE 6.1. Convexity-preserving rational cubic interpolation.

FIGURE 6.2. Monotonicity-preserving rational cubic interpolation.
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FIGURE 6.3. Convexity/monotonicity preserving rational cubic interpolation.

6.8 Summary

A rational cubic interpolant, with one family of shape parameters, has been utilized
to obtain C!' monotonicity and convexity-preserving interpolatory spline curves.
The shape constraints are restricted on shape parameters to assure the shape preser-
vation of the data. For the C! interpolant, the choices on the derivative parameters
have been defined. The solution to the shape-preserving spline exists and provides
a unique solution.

The rational spline scheme has been implemented successfully and it demon-
strates nice looking visually pleasant and accurate results. The user should not be
worried about struggling and looking for some appropriate choice of parameters,
as in the case of an ordinary rational spline, having some control on the curves.
The shape-preserving spline is described in the form of planer curves where as it
is also implementable in the scalar case.

6.9 Exercises

1. Extend the curve scheme in Section 6.2 to a parametric curve scheme and write
a program to demonstrate the effect of the shape parameters for CAD/CAM
purposes. (Hint: The reader is referred to Chapter 3 for this purpose)

2. Extend the curve scheme in Section 6.2 to a parametric curve scheme such that
it preserves the positive data.

3. Extend the curve scheme in Section 6.2 to a parametric curve scheme such that
it preserves the positive and monotone data.
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4. Extend the curve scheme in Section 6.2 to a parametric curve scheme such that
it preserves the positive and convex data.
5. Extend the curve scheme in Section 6.2 to a parametric curve scheme such that
it preserves the positive, monotone and convex data.
6. Write programs to visualize the results of the schemes in Exercises 6.9.1-6.9.5.
7. Extend the curve scheme in Section 6.2 to a C? curve scheme.
8. Extend the curve scheme in Section 6.3 to a C? curve scheme.
9. Extend the curve scheme in Section 6.4 to a C2 curve scheme.
10. Extend the curve scheme in Section 6.5 to a C2 curve scheme.
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7

Visualization of Shaped Data
by a Rational Cubic Spline

Abstract. A smooth curve interpolation scheme for positive, monotonic and convex data is
described. This scheme uses piecewise rational cubic functions. The two families of para-
meters, in the description of the rational interpolant have been constrained to preserve the
shape of the data. The rational spline scheme has a unique representation. In addition to
preserving the shape of positive, monotonic and convex data sets, it also possesses extra
features to modify the shape of the design curve when desired. The degree of smoothness
attained is C1.

7.1 Introduction

Smooth curve representation, to visualize the scientific data, is of great sig-
nificance in the area of computer graphics and in particular data visualization.
Particularly, when the data is obtained from some complex function or from some
scientific phenomena, it becomes crucial to incorporate the inherited features of
the data. Moreover, smoothness is also one of the very important requirements
for a pleasing visual display. Ordinary spline schemes, although smoother, are
not helpful for the interpolation of the shaped data. Extremely misguided results,
violating the inherited features of the data, can be seen when undesired oscilla-
tions occur. For example, for the positive data set in Table 7.1, the corresponding
curve in Figure 7.1 is not as may be desired by the user for a positive data. The
user would be interested in visualizing it as it is displayed in Figure7.2. Thus,
unwanted oscillations that completely destroy the data features need to be con-
trolled. Another example is the monotonically increasing data set in Table 7.2. The
corresponding traditional spline curve is shown in Figure 7.3, which has destroyed
the features of monotonicity as may be desired corresponding to Figure 7.4. Simi-
larly, a traditional spline curve in Figure 7.13 is not displaying the convex data in
Table 7.10 such that the curve is also convex.

Interpolation is a fundamental process in scientific visualization. Smooth curve
representation, to visualize the scientific data, is of great significance in various
areas of scientific research including scientific visualization, computer graphics,

129
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TABLE 7.1. Oxygen levels in the gas.

i 1 2 3 4 5 6 7
xi 0 2 4 10 28 30 32
yi 208 88 42 05 39 62 96

25

20

15

10

) 5 10 15 20 25 30 35

FIGURE 7.1. The default rational cubic spline for the positive data in Table 7.1.

geometric modeling, numerical analysis, approximation theory, and so on. Espe-
cially when the data arises from some complex function or from some scientific
phenomena, it becomes crucial to incorporate the inherited features of the data. It
gives an insight and guide to understanding some physical phenomenon pertaining
to the data, which one would otherwise only have partial information about. It is
an effective way of communication because it helps to represent the numeric data
in a quickly understandable pictorial display.

If smoothness is one of the very important requirements for pleasing visual dis-
play of the data on one hand, the computational efficiency and accuracy are not less
significant on the other hand. Ordinary spline schemes, although smoother, are not
helpful for the interpolation of the shaped data. Severely misguided results, violat-
ing the inherited features of the data, are seen when undesired oscillations occur.
Thus, unwanted oscillations, which may completely destroy the data features must
be controlled.
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FIGURE 7.2. The default shape-preserving spline for the positive data in Table 7.1.

TABLE 7.2. Akima’s data set.

i 1 2 3 4 5 6 7 8§ 9 10 11
Xi o 2 3 5 6 8 9 11 12 14 15
y 10 10 10 10 10 10 105 15 30 60 &5

This chapter examines the problem of shape preservation of data (x;, f;),i =
1,2,...,n, where x; represents the data site and f; is the data value at site x;.
Positivity, monotony and convexity are the basic and fundamental shapes, which
normally arise in everyday scientific phenomena. These shapes are the targeted
features here. As a first step, we generate an empirical model of the data to be
visualized. As a second step, we construct a model curve that matches the data
values at the location allowing no deviations. Afterwards, the model curve will be
constrained to reflect a continuous visual display of the data.

Various authors have worked in the area of shape preservation [1-23]. In
this chapter, the shape-preserving interpolation has been studied for positive,
monotonic and convex data, using rational cubic splines. The motivation to
this work is due to the past work of many authors, e.g., quadratic interpolation
methodology has been adopted in [1, 15] for the shape-preserving curves. Fritsch
and Carlson [3] and Fritsch and Butland [5] have discussed the piecewise cubic
interpolation to monotonic data. Also, Passow and Roulier [2] considered the
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FIGURE 7.3. The default rational cubic spline for the monotonic data in Table 7.2.

90
80

. /
; J

50 @D
40
30 /
20

¢ 49_—/d

10Q O0—O O—© O
0
0 2 4 6 8 10 12 14 16

FIGURE 7.4. The default shape-preserving spline for the monotonic data in Table 7.2.
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piecewise polynomial interpolation to monotonic and convex data. In particu-
lar, an algorithm for quadratic spline interpolation is given in McAllister and
Roulier [1]. An alternative to the use of polynomials for the interpolation of
monotonic and convex data is the application of piecewise rational quadratic
and cubic functions by Gregory [4]. Rational functions have been discussed by
Sarfraz [9] in a parametric context. Scalar representations of rational functions,
in a more generalized and effective way, have been made in [18-23]. These rep-
resentations mainly deal with the shape-preserving data visualization and are the
main objective of the chapter.

The theory of methods, in this chapter, has a number of advantageous features.
It produces C! interpolant. No additional points (knots) are needed. In contrast,
the quadratic spline methods of Schumaker [6] and the cubic interpolation method
of Brodlie and Butt [7] require the introduction of additional knots when used
as shape-preserving methods. The interpolant is not concerned with an arbitrary
degree as in [4]. It is a rational cubic with cubic numerator and cubic denominator.
The rational spline curve representation is bounded and unique in its solution.

The chapter begins with a definition of the rational function in Section 7.2 where
the description of rational cubic spline, which does not preserve the shape of
positive and/or monotonic data, is made. Although this rational spline was dis-
cussed in Sarfraz [16], it was in the parametric context that it was useful for
design applications. This section reviews it for the scalar representation so that
it can be utilized to preserve the scalar-valued data. The positivity problem is dis-
cussed in Section 7.3 for the generation of a C! spline which can preserve the
shape of a positive data. The sufficient constraints on the shape parameters have
been derived to preserve and control the positive interpolant. The monotonicity
problem is discussed in Section7.4 for the generation of a C! spline which can
preserve the shape of monotonic data. The sufficient constraints, in this section,
lead to a monotonic spline solution. Section 7.5 discusses the scheme when a data
set has convexity features. Section 7.6 concludes the chapter.

7.2 Rational Cubic Spline with Shape Control

Let (x;, fi),i = 1,2, ..., n, be a given set of data points, where x; < x2 < ... <
x,. Let
hi = Xit1 — Xi, Aiz%,izl,z,...,n—l. (7.1)
i

Consider the following piecewise rational cubic function:

Ui(1 —6)° + 0, Vio(1 — 0)> + w; W;6*(1 — 0) + Z;6°
(1 =0 +0v;0(1 —0)2 +w;02(1 —0) + 60>

s(x)=s(x) = (7.2)

Where .
9 - —l . ;.3
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To make the rational function (7.2) C!, one needs to impose the following inter-
polatory properties:

s(xp)) = fi, s(xiy1) = fin

, 7.4
sWx) =di, sW(xipr) = dig 74
which provide the following manipulations:
Ui=fih,d Zi=fi+};d
i di idiy1 ¢, 7.5
Vi=fi+——, W = fipg — —= (7.5)
Uj wj

where s(1) denotes derivative with respect to x and d; denotes derivative value
given at the knot x;. This leads the piecewise rational cubic (7.2) to the following
piecewise Hermite interpolant s € C Yxy, xnl:

P;(0)

s(x)=s;i(x) = Q‘—(H)’ (7.6)

where

PiO) = fi(1=0)* +0;Vi0(1 — 0)* + w; W;0*(1 — 0) + fi116°,
0:(0) = (1 —0)* + 0;,0(1 — 0)* + w;0*(1 — 0) + 6.

The parameters v;’s, w;’s, and the derivatives d;’s are to be chosen such that the
monotonic shape is preserved by the interpolant (7.6). One can note that when
v; = w; = 3, the rational function obviously becomes the standard cubic Hermite
polynomial. Variation for the values of v;’s and w;’s control (tighten or loosen) the
curve in different pieces of the curve. This behavior can be seen in the following
subsection.

7.2.1 Shape Control Analysis

The parameters v;’s and w;’s can be utilized properly to modify the shape of the
curve according to the desire of the user. Their effectiveness, for the shape control
at knot points, can be seen that if v;, w;_; — 00, then the curve is pulled toward
the point (x;, f;) in the neighborhood of the knot position x;. This shape behavior
can be observed by looking at s; (x) in Equation (7.6). This form is similar to that
of a Bernstein-Bezier formulation. One can observe that when v;, w;,—1 — 00,
then V; and W;_; — f;.

The interval shape control behavior can be observed by rewriting s; (x) in Equa-
tion (7.6) to the following simplified form:

s() = fi(l=0)+ fin10
(1= 0)(di— A) +0(A;i — diy1) +0(1—0)Aj(w; —v)] hiO(1—0)

[
* 0,0)

(7.7)
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When both v; and w; — o0, it is simple to see the convergence to the following
linear interpolant:
s(x) = fi(1 —0)+ fir10. (7.8)

It should be noted that the shape control analysis is valid only if the bounded deriv-
ative values are assumed. A description of appropriate choices for such derivative
values is made in the following subsection.

7.2.2  Determination of Derivatives

In most applications, the derivative parameters {d;} are not given and hence must
be determined either from the given data (x;, f;),i = 1,2,...,n, or by some
other means. In this article, they are computed from the given data in such a way
that the C! smoothness of the interpolant (7.6) is maintained. These methods are
the approximations based on various mathematical theories. The descriptions of
such approximations are as follows:

7.2.2.1 Derivative Method I

The arithmetic mean method is the three-point difference approximation method
based on arithmetic manipulation. It is defined as follows:

d = O,ifA,'_lz()OI‘AiZO,
T (i Ay + hiz Ay) ) (hi + ki), otherwise, i =2,3,...,n—1

(7.9)
The end conditions are given as:
. _ *
dy = . 0,if Ay = 0 orsgn (dl) #sgn(Ay), . (7.10)
dif = A1+ (A — A2) hy/ (hy + ha), otherwise.

d = 0,if A,—1 = 0orsgn (djl‘) #sgn(Ay—1),
" d;: = An—l + (An—l - An—Z) hn—l/ (hn—l +hn—2) 5 otherwise.
(7.11)
7.2.2.2 Derivative Method II

The geometric mean method provides the non-linear approximations which are
defined as follows:

[ 0,if Aj_y =0or A; =0,
d; =
A

ﬁi/l(hi’lJrhi)Aﬁi’l/(h"’ﬁh") otherwise, i = 2,3 n—1

i— i s TS P N .
(7.12)

The end conditions are given as:
_ O,ifAl =0or A3,1 =0 (7 13)
T A {Al/A3,1}h]/h2 , otherwise. )
0,if Ay,_1=00rA,,—2=0

di = i 7.14
' [ An_i {An_l/An,n_z}h”’l/h”’z , otherwise. (7.14)
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where
An,n—2 = (fu — fu-2)/ (xn — Xn-2).

7.2.2.3 Derivative Method 111

Az =(f3—f1)/(x3—x1), } (7.15)

Another nonlinear choice of derivative values is the following:

. 0if fis1 = fi1 =0,
l Ai*lAi/[(ﬁ+] - ﬁ*l)/('xi‘l’l _xifl)] OtherWisea i = 23 39 cees = 1

with end conditions

0if f3— f1 =0,
dl = 2 .
A1/ A3, otherwise,

0if fu — fa—2 =0,
dy = 2 .
A/ Ann—2 otherwise

For given bounded data, the derivative approximations in Subsections7.2.2.1,
7.2.2.2 and 7.2.2.3 are bounded. Hence, for bounded values of the appropriate
shape parameters:

vi,wi, i =1,2,...n—1, (7.16)

the interpolant is bounded and unique. Therefore, we can conclude the above dis-
cussion in the following:

Theorem 7.1. For bounded v;, w;, Vi, and the derivative approximations in Sub-
sections 7.2.2.1, 7.2.2.2 and 7.2.2.3, the spline solution of the interpolant (7.6)
exists and is unique.

7.2.3 Examples and Discussion

For the demonstration of a C! rational cubic curve scheme, the derivatives are
computed from the Subsections 7.2.2.1. We choose the following choice of shape
parameters:

v; =3 = wj, (7.17)

to generate the initial default curves. This initial default curve is actually the same
as a cubic spline curve. Further modification can be made by changing these para-
meters interactively.

Figures 7.1 and 7.3 are the default curves for the positive and monotonically
increasing data in Table 7.1 and Table 7.2, respectively. The data in Table 7.1 has
been taken from an experiment showing oxygen levels in the flue gas (see [7]) and
the data in Table 7.2 is another scientific data (Akima’s data) discussed in [3]. It
can be seen that the ordinary spline curves do not guarantee to preserve the shape
of the data.
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FIGURE 7.5. The rational cubic spline with global shape control having v; = 25 = w;, Vi.

Figures 7.5 and 7.6 are for the demonstration of global shape control v; = w; =
25, 500, Vi, respectively. One can see that the increasing global values of the shape
parameters gradually pull the curve toward the control polygon, and hence the
default curve moves toward the data-preserved curve. But, this way the curve is
getting tightened everywhere which may be undesired.

Another alternate is the allocation of values to the shape parameters according
to the nature of the curve behavior over various intervals. For example, the curves
in Figures 7.7 and 7.8 are for the shape parameter values in Tables 7.3 and 7.4,
respectively. These curves seem to visually satisfy the shapes preserved. That is,
one can note that the curves seem to preserve the inherent features of the data
in Tables7.1 and 7.2. But these shapes were achieved after making a couple of
experiments for different values of parameters, which is very time consuming and
not very accurate and, therefore, is not recommended for practical applications too.

The problems, mentioned in the above paragraphs, are the basic motivation for
the discussion in this chapter. These problems are to be removed and an automated
solution is to be found out. Some constructive approaches have been adopted in
the coming sections. The user has been provided facility to visualize positive and
monotonic data sets in an automated way. Moreover, some extra degree of free-
dom has also been provided in case of further modification in the visualization of
automated shaped design curve.
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FIGURE 7.6. The rational cubic spline with global shape control having v; = 500 = w;, Vi.
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FIGURE 7.7. The rational cubic spline with various choices of shape parameters as men-
tioned in Table 7.3.
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FIGURE 7.8. The rational cubic spline with various choices of shape parametrs as men-
tioned in Table 7.4.

TABLE 7.3. Suitable shape parameters for data set in Table 7.1.

i
Uj
w;

1
3
3

2
3
3

3
5
3

4
10
12

5
3
3

6
3
3

TABLE 7.4. Suitable shape parameters for Akima’s data set.

i
Ui
Wi

1
3
3

2 3 4 5
33 33
33 3 3

6
3
3

7
9
9

8
3
3

9
8
8

10
3
3

7.3 Positive Spline Interpolation

The rational spline method, described in the previous section, has deficiencies
as far as the positivity-preserving issue is concerned. For example, the ratio-
nal cubic in Section7.2 does not preserve the shape of the positive data (see
Figure7.1). Very clearly, this curve does not preserve the shape of the data. It is
necessary to assign appropriate values to the shape parameters so that it generates
a data-preserved shape. Thus, it looks as if ordinary spline schemes do not provide



140 7. Visualization of Shaped Data by a Rational Cubic Spline

the desired shape features, and hence some further treatment is required to achieve
a shape-preserving spline for positive data.

One way, for the above spline method, to achieve the positivity preserving inter-
polant is to play with shape parameters v;’s and w;’s, on trial and error basis, in
those regions of the curve where the shape violations are found. This strategy may
result in a required display as can be seen in the previous section. But this is not a
comfortable and accurate way to manipulate the desired shape preserving curve.

Another way, which is more effective, useful and is the objective of this arti-
cle, is the automated generation of positivity-preserving curve. This requires an
automated computation of suitable shape parameters and derivative values. To
proceed with this strategy, some mathematical treatment is required which will
be explained in the following paragraphs.

For simplicity of presentation, let us assume positive set of data:

(x1, 1), (%2, f2), ooy (s f)

so that
X1 <x2 <...<Xp, (7.18)

and
f1>0,f2>0,..., f, >0, (7.19)

It is required to develop sufficient conditions on piecewise rational cubics under
which C! positive interpolation is preserved. The key idea, to preserve positivity
using s(x), is to assign suitable automated values to v;, w; in each interval.

As v;, w; > 0 guarantee strictly positive denominator Q; (#), so initial condi-
tions on v;, w; are:

v; > 0,w; > 0(w; <0, w; <0, for positive data),i = 1,2,...,n—1. (7.20)

Since Q;(0) > O for all v;, w; > 0, so the positivity of the interpolant (7.6)
depends on the positivity of the cubic polynomial P;(@). Thus, the problem
reduces to the determination of appropriate values of v;, w; for which the polyno-
mial P; () is positive. Now, P;(0) can be expressed as follows:

Pi(t) = a;0° + Bi0* + 7:0 + o1, (7.21)
where
a; = (I —w;) fix1 — (L =) fi + (di1 + di)hi,
Bi = w; fix1 — B =2v;) fi — (di+1 + di)hi,
yi =dihi — (3 —v;) fi,
51 == ﬁ.

For the strict inequality (for positive data) in (7.6), according to Butt and Brodlie
[8], P;(6) > 0if and only if

(7.22)

(P/(0), P/(1)) € RiUR,. (7.23)
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where
_3f 3f
Ri=1{(ab):a> —f’,b i , (7.24)
h; hi
Ry = {(a,b) : 36 fi fir1(a® + b> + ab — 3A;(a + b) + 3AH)+
3(fix1a — fib)(Rhjab — 3 fir1a + 3 f;b)+ (7.25)
4hi(fipra® — fib®) — h?a’b? > 0}.
We have
P/(0) = %(Ui —3)+d;,
1
i+1
P =iy~ L5~ 3),
1
Now (7.23) is true when
(P/(0), P/(1)) € Ry,
POy > =L pry < 2L
hi i
This leads to the following constraints:
v > mj, wW; > M,’. (7.26)
where
—h;d; hidi+l
m; = Max 10, ,M; = Max {0, . (7.27)
i fis1
Further
(P/(0), P/(1)) € Ry
if

36.f; fir1 187 (riv ui) + ¢35 (wi) + 1 (0:)p2 (i) — 3A; (1 (v7) + o (wy)) + 3AT ]+
3[fix161 ;) — yida(wi)1[2h; 1 ()2 (w;) — 3 fir141 (i) + 3 fidha(wi)]+
Al fip107 (07) — yih3 (wi)] — h2 g3 (0;)p3 (w;) > 0 3%

where 100 = P(0)

1 vi = [ )
pa(wi) = P/(1). 729
This leads to the following:

Theorem 7.2. For a strictly positive data, the rational cubic interpolant (7.6)
preserves positivity if and only if either (7.26) or (7.28) is satisfied.

Remark 7.1. The constraints (7.27) can be further modified to incorporate both
shape-preserving and shape control features. Without loss of generality, one can
find parameters r; and g; satisfying

ri,qi = 1. (730)
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such that the constraints (7.26) and (7.27) lead to the following sufficient condi-
tions for the freedom over the choice of r; and ¢;:

vi = +mi)ri,wi =1+ M;)qi. (7.31)
One can make the choice of ; and g; to be the greatest lower bound as follows:
rp = 1, qi = 1. (732)

This choice satisfies (7.26) and it also provides visually very pleasant results.
Some more practical sufficient conditions, which satisfy (7.26) too, are the
following:

v; = w; = 1+ max (m;r;, M;q;) . (7.33)

Although, these conditions appear to be stronger than (7.31) but their use has
shown quite pleasing results. For more practical and better results, however, we
will utilize the constraints in (7.31) as can be seen in the demonstration Subsec-
tion7.3.1.

Remark 7.2. Although v; and w; satisfying (7.28) can be determined, it requires
a lot of computations. The alternate choice, in Remark 7.1, provides efficient and
reasonably attractive results as can be seen in the following subsection.

Remark 7.3. This curve-plotting method can be used in both cases when either
d;’s are particularly specified or estimated by some method.

7.3.1 Examples and Discussion

We will assume the derivative approximations as mentioned in Subsection 7.2.2.1.
These approximations are computationally more economical. However, one can
use the derivative choice in Subsection 7.2.2.1, too. The scheme has been imple-
mented on the data set of Table 7.1. Figure 7.1 is the default rational cubic spline
curve for the choice of parameters in (7.17), whereas the Figure 7.2 is its corre-
sponding shape-preserving spline curve for the automatic choice of parameters in
(7.31) and (7.32). The corresponding automatic outputs of the derivative and shape
parameters, for the shape preserving curves in Figure 7.2 is given in Table 7.5. The
pleasing visualization of the data set (see Figure 7.2) is apparent from its counter-
part rational cubic spline default curve; see Figure 7.1. Another example of the
shape-preserving spline for the positivity is shown in Figure 7.9. This is for the
data set in Table 7.6 (the cubic spline version of this data is shown in Figure 7.13.)
The automated values of the shape parameters and the computed derivative values
are shown in Table 7.7.

Further modification in the default positive curve, in Figure 7.2, is also possible.
This can be achieved by assigning appropriate values to ;’s and ¢;’s in the desired
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TABLE 7.5. Computed derivatives and shape parameters for the data in Table 7.1.
i 1 2 3 4 5 6 7

d; —7.8500 —4.1500 —1.8792 —0.4153 1.0539 1.4250 1.6000
v =w; 1.7548 1.9432 3.6845 159500 1.4597 1.3333 -
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FIGURE 7.9. The positivity-preserving spline for the positive data in Table 7.6.

TABLE 7.6. A positive dataset.
i 1 2 3 4 5

xi 0 2 3 9 11
yi 05 15 7 9 13

TABLE 7.7. Computed derivatives and shape parameters for the data in Table 7.6.
i 1 2 3 4 5

d; 04167 3.8333 4.7619 1.5833 1.5000
v; =w; 6.1111 1.6803 2.0556 1.2308 1.1333
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FIGURE 7.10. The positivity preserving spline for the positive data in Table 7.1: (a) having
ri = 1,q; = 2,Vi.; (b) having r; = 2,¢q; = 2,Vi.; (c) havingr; = 5,¢9; = 5,Vi.; (d)
having violation of shape parameters as r; = —3, ¢; = —3, Vi.

regions. Figures7.10(a)—(d) are for the data set in Table 7.1 for various global
values of r;’s and ¢;’s. For Figure 7.10(a), these values are assumed to be r; =1
and g; = 2. Figure 7.10(b) is the demonstration for the values r; = 2 and ¢; = 2.
Figure 7.10(c) is plotted for r; = 5 and g; = 5. It can be observed that the gradual
uniform increase in the values of r;’s and ¢;’s is tightening the curve gradually.
Infinitely large values will result to the control polygon. The violation of the con-
straints (7.30) on the parameters r;’s and ¢;’s will result in a curve that may not
preserve the shape. This is displayed in Figure 7.10(d) for r; = —3 and ¢; = —3.
Figures 7.10(a)—(d) are for global values of 7;’s and ¢;’s.

Similarly, the user has freedom to play with values individually when desired.
For example, the curve in Figure 7.9 can be redisplayed, after modification in the
third interval of the curve, as shown in Figure 7.11. This is done for the parameter
values in Table 7.8 and displays a much more natural behavior as compared to
Figure 7.9.
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FIGURE 7.11. The positivity-preserving spline for the positive data in Table 7.1, having
shape parameters as in Table 7.8.

TABLE 7.8. Suitable shape parameters for data set in Table 7.6.
i 1 2 3 45

o101 10 1 -
¢ 1 1 5 1 -

7.4 Monotone Spline Interpolation

The rational cubic in Section7.2 does not preserve the shape of the monotonic
data (see Figure 7.3). Thus, it looks as if ordinary spline schemes do not provide
the desired shape features, and hence some further treatment is required to achieve
a shape preserving spline for monotonic data. This requires an automated compu-
tation of suitable shape parameters and derivative values. To proceed with this
strategy, some mathematical treatment is required which will be explained in the
following paragraphs.

For simplicity of presentation, let us assume monotonic increasing set of data
so that

NS L= 2 fa (7.34)
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or equivalently
A >0,i=1,2,...,n—1. (7.35)

(In a similar fashion one can deal with monotonic decreasing data.) For a
monotonic interpolant s(x), it is then necessary that the derivative parameters
should be such that

d; > 0(d; < 0, for monotonic decreasing data),i = 1,2,...,n. (7.36)
Now s(x) is monotonic increasing if and only if
sDx)>0 (7.37)

for all x € [x1, x,,]. For x € [x;, x;41] it can be shown, after some simplification,
that

6 ) 6 i
S A0 -0y
=1

M () = ?
RUp. , (7.38)
[Qi ()1
where
Ay =d;,
Az,l’ = 2w; (Ai - wlidi+l) +d;,
1 1 1
Az =3A; + 2w; (Ai - Edzq-l) + viw; (Ai - U_[di N EdHI) (7.39)

Agi =3A; +2v; (Ai - %di) + viw; (Ai —od; - %diﬂ)

Asi = 2v; (Ai - v%.di) +diy1,
Ag,i = di1.

The denominator in (7.38), being a squared quantity, is positive; therefore, the
sufficient conditions for monotonicity on [x;, x;j4+1] are:

Aji>0,j=12,...,6, (7.40)
where the necessary conditions
d; > Oand d,'+1 >0 (7.41)

are assumed.
If A; > O (strict inequality) then following are sufficient conditions for (7.40):

Ai—3di =0
Aj — wLid,-H >0, and | . (7.42)
Ai = idi — 3-diy1 = 0.

v; 1
which lead to the following constraints:

 lid;

7.4
A (7.43)

Uj
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where /; and k; are positive quantities satisfying

! + ! <1 (7.44)

PRI .
This, together with (7.43) leads to the following sufficient conditions for the free-
dom over the choice of r; and g;:

dit1 d;
14— k>14+—. (7.45)
d; dity
One can make the choice of ; and g; to be the greatest lower bound as follows:
dit1 d;
Li=14+—, k=14 —. 7.46
l d; l dit (7.40)

This choice satisfies (7.44). Further simplification of (7.43) and (7.46) leads to the
following sufficient conditions for monotonicity:
_di+diy _ditdip
A A
This choice satisfies (7.44) and it also provides visually very pleasant results, as

can be seen in Subsection 7.4.1. However, one can find some positive quantities r;
and ¢; such that (7.45) can be rewritten as:

(7.47)

i

dit d;
Li=\1+—7)ri, ki={(14+—)gq. 7.48
i ( + d; )rl i ( +di+l)ql ( )
where
ri,qi = 1. (749)
Substitution of parameters in (7.47) into (7.43) yields the sufficient condition to
the following:
di +di+1 di +dit+1
vi = (A—+) ri, wi = (A—+) gi- (7.50)

The parameters r; and ¢; will help out the user in a further modification of the
automated monotone curve.

It should be noted that if A; = 0, then it is necessary to set d; = d;j+1 = 0, and
thus

s(x) = fi = fit (7.51)

is a constant on [x;, x;4+1]. Hence the interpolant (7.6) is monotonic increasing
together with the conditions (7.41) and (7.47). For the case where the data is
monotonic but not strictly monotonic (i.e., when some A; = 0), it would be nec-
essary to divide the data into strictly monotonic parts. If we setd; = djy1 = 0
whenever A; = 0, then the resulting interpolant will be C at break points. The
above discussion can be summarized as:

Theorem 7.3. Given the conditions (7.36) on the derivative parameters, (7.47)
and (7.50) are sufficient conditions for the interpolant (7.6) to be monotonic
increasing.
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TABLE 7.9. Computed derivatives and shape parameters for the data in Table 7.2.

i 12345 6 7 8 9 10 11
d; 000000 1.0833 24.0833 25.0000 18.3333 12.5000
Vi =W — — — — — 2.1667 11.1852 1.4024 8.6667 0.2333 -

7.4.1 Examples and Discussion

As in Section 7.3, we will assume the derivative approximations as mentioned in
Subsection 7.2.2.1. The scheme has been implemented on the data set of Table 7.2.
Figure 7.3 is the default rational cubic spline curve for the choice of parameters
in (7.17), whereas Figure 7.4 is its corresponding shape-preserving spline curve
for the automatic choice of parameters in (7.47). The corresponding automatic
outputs of the derivative and shape parameters, for the shape-preserving curves
in Figure 7.4 is given in Table 7.9. The pleasing visualization of the data set (see
Figure 7.4) is apparent from its counterpart rational cubic spline default curve; see
Figure 7.3.

Further modification in the default monotonic curve, in Figure 7.4, is also pos-
sible. This can be achieved by assigning appropriate values to r;’s and ¢;’s in
the desired regions. Figures 7.12(a)—(d) are for the data set in Table 7.2 for var-
ious global values of r;’s and ¢;’s. For Figure 7.12(a), these values are assumed
tober; = 1 and ¢; = 2. Figure7.12(b) is the demonstration for the values
ri = 2 and g; = 2. Figure7.12(c) is plotted for r; = 5 and ¢; = 5. It can
be observed that the gradual uniform increase in the values of r;’s and ¢;’s is
tightening the curve gradually. Infinitely large values will result to the control
polygon. The violation of the constraints (7.30) on the parameters r;’s and g;’s
will result in a curve that may not preserve the shape. This is displayed in Fig-
ure 7.12(d) for r; = 0.1 and ¢; = 0.1. Figures 7.12(a)—(d) are for global values
of r;’s and ¢;’s. Similarly, the user has freedom to play with values individually
when desired.

7.5 Convex Spline Interpolation

Figures 7.1 and 7.13 are the default curves to the positive and convex data in
Table 7.1 and Table 7.10, respectively. The data in Table 7.10 is data from a func-
tion f(x) = 10/x2. It can be seen that the ordinary spline curves do not guarantee
to preserve the shape.

As was seen in Section 7.2, Figures 7.5 and 7.6, for the data in Table7.1, are
for the demonstration of global shape control v; = w; = 25,500, Vi, respec-
tively. One can see that the increasing global values of the shape parameters grad-
ually pull the curve toward the control polygon and hence the default curve moves
toward the data-preserved curve. But, this way the curve is getting tightened every-
where, which may not be desired.
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FIGURE 7.12. The monotonicity-preserving spline for the positive data in Table 7.2: (a)
having r; = 1,q; = 2,Vi.; (b) having r; = 2,q9; = 2,Vi.; (c) havingr; = 5,q; = 5,Vi.;
(d) having violation of shape parameters as r; = 0.1, ¢; = 0.1, Vi.

Another alternate is the allocation of values to the shape parameters accord-
ing to the nature of the curve behavior over various intervals. For example, the
curves in Figures 7.7 and 7.14 are for the shape parameter values in Tables 7.3 and
7.11 (corresponding to the data in Tables 7.1 and 7.10), respectively. These curves
seem to visually satisfy the shapes preserved. That is, one can note that the curves
seem to preserve the inherent features of the data in Tables 7.1 and 7.10. But these
shapes were achieved after making various experiments for different values of
parameters, which is really time consuming and not very accurate and, therefore,
is not recommended for practical applications too.

The problems, mentioned in the above paragraphs, are the basic motivation for
this section. These problems will be removed and an automated solution will be
presented. Some constructive approaches are adopted in the coming sections. The
user will visualize convex data sets in an automated way.

The rational cubic, in Section 7.2, does not preserve the shape of the convex
data. Thus, it looks as if ordinary spline schemes do not provide the desired
shape features, and hence some further treatment is required to achieve a
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FIGURE 7.13. The default rational cubic spline for the convex data in Table 7.2.

TABLE 7.10. A convex data set.
I 1 2 3 4 5

x 1 2 4 5 10
fi 10 25 0625 04 0.1

shape-preserving spline for convex data. This requires an automated computa-
tion of suitable shape parameters and derivative values. To proceed with this
strategy, some mathematical treatment is required that will be explained in the
following paragraphs.

For simplicity of presentation, let us assume a strictly convex set of data so that

Al <Ay <...< A1 (7.52)
In a similar fashion, one can deal with a concave data so that
Al > Az > 0> An—l- (7.53)

For a convex interpolant s(x), it is then necessary that the derivative parameters
should be such that

di <Al <...<Ai_1<di <Aj <...< A, <dy, (7.54)
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FIGURE 7.14. The rational cubic spline with various choices of shape parameters as men-
tioned in Table 7.11.

TABLE 7.11. Suitable shape parameters for Akima’s data set.
i 1 2 3 4

v, 3 10 3 12
w; 3 13 3 20

and
di>A1>...>ANi_1>di > AN >...> A,_1 > d,, for concave data.
Now s(x) is convex if and only if
s@ ) >0, (7.55)

for all x € [x1, x,]. For x € [x;, x;41] it can be shown, after some simplification,

that
8

B; ;07711 — )%/
@(x) = ot , 7.56
$7) ; 1i1Q; (1) (7:30)
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where

By, = Az — Ay, Qv — 1),
By =2A3; — Az, (i —2) — Ay (v +4w;),
B3 =3A4,; +3A3; —3w;iAz; —3A1,; (w; +2),

By =4As; +4A4; (v; + 1)+ Az, (v; —2w;) — Az; CQw; +5) — 5Ay,,
Bs,i = 5A¢,i + As,i 20; +5) + Agi Qvj —w;) — Az (wj —4) —4As;,
Bs,i = 3A¢,i (v; +2) +30;As; — 3A4,; — 343,

B, = Ag,i (4v; + w;) + As ;i (w; —2) —2A4,,

By = A, Qu; — 1) — As;,

(7.57)

Since the denominator in (7.56), for the selection of v;, w; > 0, is positive, then
the sufficient conditions for convexity on [x;, x;+1] are:

l),’,wi>0,Bj,,'20,j=1,2,...,8, (7.58)
where the necessary conditions
A; —d; > Oand di+1 —A; >0 (7.59)

are assumed. After some simplifications, one can rewrite the first and the last equa-
tions, from (7.57), as follows:
Bii =2{(w; —v;) Ai +v; (A; —di) — (diy1 — di)}, (7.60)
Bgi =2{(wi —vi) Ai + w; (dit1 — Ai) — (dig1 —di)} . |~ )
If A; —d; > 0and d;+1 — A; > 0 (strict inequalities), then the following are
sufficient conditions for (7.60):

Vi = wj,
V; (A,‘ — d,') — (d,'+1 — d,‘) >0, . (7.61)
w; (di+1 — Ai) — (di+1 — di) = 0.

These are equivalent to the followings constraints:

diy1 —d; diy1 —d,
i = w; =1 +max( UL s s ) , (7.62)
Ai—di diy1— A
where /; are non-negative quantities satisfying
l; > 0. (7.63)

After some manipulations, it is trivial to show that the sufficient conditions (7.58),
for (7.56), are also sufficient for (7.54). Since

diei — A Ai—di (di+1 —di dig1 —di )
A —d; div1— A ~ Aj—di “dig1—A;)

(7.64)
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Therefore, the sufficient conditions (7.62) for convexity take the following form:
diq1—Ai | Ai—d
F=w; =1 i >0. 7.65
U; Wi i+ A —d +di+1_Ai i = ( )
However, the following choice of parameters
div1 —di dig1—d; ) 5 =0
Aj—di “digi—A) T
will be considered for practical implementation of default curve design. This
choice satisfies (7.62) and it also provides acceptable results.

v = w; =1; + max( (7.66)

Remark 7.4. The default value of the parameters /;, being taken as zero, leads to
the default constraints:

diy1 —d; dig1—d; ) (7.67)

Aj —di " dig1 — A
provides visually pleasing results and produces automated curve interpolation.

Further modification is achieved by taking other positive values in various
intervals.

l)izwi:max(

Remark 7.5. It should be noted that if A; —d; = 0ord;;; — A; =0, then it is
necessary to set d; = dij+1 = A;. The interpolant then will be linear in that region,
ie.,

s(x) =1 -=0) fi +0fit1- (7.68)
It should also be noted that if A; = 0, then it is necessary to set d; = dj+1 = 0,
and thus

s(x) = fi = fin (7.69)

is a constant on [x;, x;11]. Hence the interpolant (7.6) is convex together with the
conditions (7.65). For the case, where the data is convex but not strictly convex,
it would be necessary to divide the data into strictly convex parts. If we set d; =
di+1 = 0 whenever A; = 0, then the resulting interpolant will be C° at break
points.

The above discussion can be summarized as follows:

Theorem 7.4. Given the conditions (7.54) on the derivative parameters and the
data, the constraints (7.65) are the sufficient conditions for the interpolant (7.6) to
be convex.

7.5.1 Demonstration

We will assume the derivative approximations as mentioned in Subsection 7.2.2.2.
The scheme has been implemented on the data set of Table 7.10. Figure 7.13 is the
default rational cubic spline curve for the choice of parameters in (7.17), whereas
Figure 7.15 is its corresponding shape-preserving spline curve for the automatic
choice of parameters in (7.67).
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FIGURE 7.15. The default shape-preserving spline for the convex data in Table 7.10.

7.6  Summary

A rational cubic interpolant with two families of shape parameters has been
utilized to obtain C! positivity-, monotonicity- and convexity-preserving interpo-
latory spline curves. The shape constraints are restricted on shape parameters to
assure the shape preservation of the data. For the C! interpolant, the choices on
the derivative parameters have been defined. The solution to the shape-preserving
spline exists and provides a unique solution.

In addition to the default curve choices, extra degree of freedoms have been
provided to the users. This will help for further satisfaction of the default design
curves.

The rational spline scheme has been implemented successfully and it demon-
strates visually pleasant and accurate results. The user is not worried about strug-
gling and looking for some appropriate choice of parameters as in the case of an
ordinary rational spline having some control on the curves.

7.7 Exercises

1. Extend the curve scheme in Section 7.2 to a parametric curve scheme and write
a program to demonstrate the effect of the shape parameters for CAD/CAM
purposes. (Hint: The reader is referred to Chapter 3 for this purpose)
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. Extend the curve scheme in Section 7.3 to a parametric curve scheme such that

it preserves the positive data.

. Extend the curve scheme in Section 7.4 to a parametric curve scheme such that

it preserves the monotonic data.

. Extend the curve scheme in Section 7.5 to a parametric curve scheme such that

it preserves the convex data.

. Write program to visualize the results of the scheme in Exercises 2—4.
. Extend the curve scheme in Section 7.2 to a C? curve scheme.
. Extend the curve scheme in Section 7.3 to a C2 curve scheme.
. Extend the curve scheme in Section 7.4 to a C2 curve scheme.
. Extend the curve scheme in Section 7.5 to a C2 curve scheme.
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8

Visualization of Shaped Data by Cubic
Spline Interpolation

Abstract. This chapter reiterates the subject of the previous chapter. Instead of a rational
cubic model, a polynomial cubic spline has been presented here for the same objective.
A piecewise cubic spline has been introduced to preserve the shape of the data when it is
convex, monotone or positive. The spline representation is interpolatory and applicable to
the scalar valued data. The shape parameters, in the description of the cubic, have been
constrained in such a way that they control the shape of the curve to avoid any noise. As
far as visual smoothness is concerned, the curve scheme under discussion is GC U Thus the
continuity constraints have been relaxed from C L el

8.1 Introduction

This chapter is a continuation of the previous chapter. The difference arises
mainly in two ways: (i) the interpolant used is a piecewise cubic polynomial, and
(i) visual smoothness is of the curve scheme under discussion, which is GC!.
Thus, the continuity constraints have been relaxed from C I to GC! to obtain a
shape-preserving cubic spline.

The early work in this chapter was reported in [17] and further extension of
the preliminary work was achieved in [18]. The shape-preserving techniques pre-
sented here are an economical alternative to their counterparts in the previous
chapter as well as in [1-16]. The methods under consideration in this chapter
have the following important and advantageous features that no additional points
(knots) need to be supplied. In contrast, the cubic interpolation method of Brodlie
and Butt [1, 2] requires the introduction of additional knots when used as shape-
preserving methods. Moreover, existing algorithms such as the de Castlejau algo-
rithm can be used for rapid computations.

The chapter is organized so that Section 8.2 describes the Hermite-like cubic
interpolation. An introduction to shape-preserving is provided in Section 8.3. The
problems of convexity, monotonicity and positivity are discussed in Sections 8.4,
8.5 and 8.6, respectively. Section 8.7 is devoted to the extension of positivity when
a data is above an arbitrary line. Section 8.8 summarizes the chapter.
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158 8. Visualization of Shaped Data by Cubic Spline Interpolation

8.2 Cubic Interpolant

Let (x;, fj),i = 1,2, ..., n, bea given set of data points, where x; < xp < -+ <
x,. Let
hi = Xiy1 — X, Aiz%,izlﬂ,...,n—l. 8.1)
i

Consider the following piecewise cubic function:
S(x)=S8 (x) =U; (1 —0)° +3Vi0 (1 —0)> +3W;0% (1 —0) + Z;6>, (8.2)

where

X — X
hi

To make the function (8.2) GC!, one needs to impose the following interpolatory

properties:

0=

(8.3)

d; dit1
S (i) = fir and S (i) = fir, SO (i) = =, and SO (i) = =,
’ "(8.4)
which provide the following manipulations:
hid; hid;
Ui=fi, Zi=fin. Vi=fit—o—, andW; = fiz1 — ———, (85)
3)’,’ 3}’,‘

where SV (x) denotes derivative with respect to x and d; denotes derivative value
given at the knot x;. This leads the piecewise cubic (8.2) to the following piecewise
Hermite-like interpolant S € C Uxy, xnl:

Sk) =S (x), (8.6)
where
Si(x)=fi (1 =0 +3V0 (1 —0)> +3W;0> (1 —0) + fi10°.  (8.7)

The parameters r; s, and the derivatives d;’s are to be chosen such that the shape
of the data is preserved by the interpolant (8.6). One can note that when r; = 1,
the cubic function obviously becomes the standard cubic Hermite polynomial.
Variation for the values of r;’s control (tighten or loosen) the curve in different
pieces of the curve. When r; — 0, it is simple to see that the curve gets tightened
in the corresponding interval. This interval shape control behavior is desired as
a constraint so that the interpolant automatically becomes convex to the convex
data, monotone to monotone data and positive to positive data.

It should be noted that the shape control analysis is valid only if the bounded
derivative values are assumed. In most applications, the derivative parameters
{d;} are not given and hence must be determined either from the given data
(xi, fi),i = 1,2,...,n, or by some other means. In this chapter, they are com-
puted exactly in the same way as in Section 8.8.2 of the previous chapter. The
smoothness of the interpolant (8.6), hence would be GC 1
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©
FIGURE 8.1. Cubic Hermite spline curve to the data in Table 8.1.

TABLE 8.1. A convex data set.

x —4 =35 =2 0 2 35 4
y 5 0 -35 =35 35 0 5

TABLE 8.2. A convex data set.
x -9 -8 —4 0 4 8
y 7 5 35 325 35 5

9
7

TABLE 8.3. A monotone data set.

x 0 6 10 295 30
y 0 15 15 25 30

TABLE 8.4. A monotone data set.

x 00 1.0 1.7 1.8
y 025 1.00 11.10 25

8.2.1 Demonstration

For the demonstration of this GC! Hermite-like cubic spline scheme, we choose
the following choice of shape parameters as the default value:

= 1. (8.8)

However, other values of shape parameters can also be allocated for the
achievement of a controlled curve. Figures 8.1 and 8.3 are the default curves to
the convex data in Table 8.1 and Table 8.2, respectively. Figures 8.5 and 8.7 are
the default curves to the monotone data in Table 8.3 and Table 8.4, respectively.
Figures 8.9 and 8.11 are the default curves to the positive data in Table 8.5 and
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TABLE 8.5. A positive data set.

x 2 3 7 8 9 13 14
y 10 2 3 7 2 3 10

TABLE 8.6. A positive data set.

x 0 2 4 10 28 30 32
y 208 88 42 05 39 62 96

Table 8.6, respectively. Figure 8.13 is the default curve to the data that lie above a
line f = 5 + 1. It can be seen that the ordinary spline curve does not guarantee to
preserve the shape. Some odd behavior (noise) can be seen in the presentation of
the curve.

8.3  Shape-Preserving Interpolation

The cubic spline method, described in the previous Section 8., has deficiencies
as far as the shape-preserving issue is concerned. For example, the cubic in
Section 8.2 does not preserve the shape of the data (see Figures 8.1, 8.3, 8.5, 8.7,
8.10, 8.12 and 8.14). Very clearly, these curves do not preserve the shape of the
data. It is necessary to assign appropriate values to the shape parameters so that
they generate a data-preserved shape. Thus, it looks as if ordinary spline schemes
do not provide the desired shape features. Some further treatment is required to
achieve a shape-preserving spline for shape-preserving data.

The proposed method, which is effective, useful and is the focus of this chapter,
is the automated generation of shape-preserving curves. This requires automated
computation of suitable shape parameters. To proceed with this strategy, some
mathematical treatment is needed, which is explained in the following Section 8.

8.4 Convex Cubic Spline

For given points:
(1, f1)5 (%25 f2) 5 s (Xns )
with
X1 <X < -0 < Xp,
let us assume convex set of data so that
Ay <Ay < <Ay (8.9)

Similarly, one can assume concave data so that

A >Ny > > A,
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In this chapter we develop necessary and sufficient conditions on piecewise cubics
under which GC! convex interpolation is preserved. We describe the cubic spline
S on the grid x; < xp < --+ < x,. The key idea to preserve convexity using S(x),
is to assign suitable values to r; in each interval. But, first of all, we determine
conditions for r;, which guarantee convexity.

For a convex interpolant S(x), it is then necessary that the derivative parameters
should be

di=Ar=dy=Ay = <Ay =dy. (8.10)

(di=A1>=dy> Ay >--- > A,y =d, ,for concave data).
Now S(x) is convex if and only if
SP () =0, x1<x<x,. (8.11)

For x € [x1, x,,], it can be shown, after some simplification, that

3
SOy =D A (1-077077,

j=1
where
A = f—l’
Ari =3A; — (d— + —“) : (8.12)
Az = d",fl
and
2 . .
S ) =2 B (-0,
j=1
where
2d; di
Bi; = [6A,~ —2 (—’ + —“)] /hi, (8.13)
ri ri
di 2d:
By = [2 (—’ + ’“) - 6Ai] /h; (8.14)
ri ri

The sufficient conditions for convexity on [x1, x,] are:
Bj; >0, j=1,2,

where the necessary conditions (8.10) are assumed.
If A; > O (strict inequality) then following are sufficient conditions for (8.13)
and (8.14):
b 2Uitdivy)
’ 3A,
We will consider this as the default automatic choice. This choice satisfies (8.11)
and produces pleasing results.

, (8.15)
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FIGURE 8.2. Shape-preserving cubic spline curve to the data in Table 8.1.

It should be noted that if A; = 0, then it is necessary to set d; = 0 = d;41, and

thus
S(x) = fi = fi+

is a constant on [xy, x,]. Hence the interpolant (8.7) is convex together with the
conditions (8.10) and (8.15). For the case where the data is convex but not strictly
convex (i.e., when some A; = 0) it would be necessary to divide the data into
strictly convex parts. If we set d; = 0 = d;;+1 whenever A; = 0, then the resulting
interpolant will be C? at break points. This leads to the following:

Theorem 8.1. The cubic polynomial (8.7) preserves convexity if and only if
(8.15) is satisfied.

8.4.1 Demonstration

The first example is that of data given in Table 8.1. Application of the Hermite
cubic spline method (see Section 8.2) produces the curve in Figure 8.1. This curve
shows noise, which is misguiding. We now apply piecewise cubic of Section 8.3
to the same data. Figure 8.2 is produced by the default settings of the parameters
r; satisfying the convex conditions derived in Section 8.4. One can see that the
convexity nature of the data is preserved in a pleasing way.

The second example regards data taken at random. The curve in Figure 8.3 is due
to the Hermite cubic spline method (see Section 8.2). This is not a desired display
as some unnecessary oscillations on the curve are also noticed in a certain time
limit. Figure 8.4 is produced by the default settings of the parameters r; satisfying
the convex conditions derived in Section 8.4. One can observe that the curve is
convex and visually pleasing.

8.5 Monotone Cubic Spline

For given points:

(x1, 1), (2, 2) 5 .-, (xns f)
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FIGURE 8.3. Cubic Hermite spline curve to the data in Table 8.2.

FIGURE 8.4. Shape preserving cubic spline curve to the data in Table 8.2.

with
X1 < X3 < <Xp,

Let us assume monotonic increasing set of data so that

fi<fh<-<fa

or equivalently
Ai>0,i=1,2,...,n—1.

In a similar fashion, one can deal with a monotonic decreasing data.

In this section we develop necessary and sufficient conditions on piecewise
cubics S(x) to assign suitable values to r; in each interval under which GC!
monotone interpolation is preserved. For a monotone interpolant S(x), it is then
necessary that derivative parameters should be such that

di >0, i=1,2,...,n for monotonic increasing data,

di <0, i=1,2,...,n for monotonic decreasing data. Now S(x) is monotonic
increasing if and only if

SO@) >0, x <x<x.
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FIGURE 8.5. Cubic Hermite spline curve to the data in Table 8.3.

The sufficient conditions for monotonic on [x1, x,] are
Aji >0, j=12,3.
where the necessary conditions
di > 0andd;; >0,

are assumed. If A; > 0, then the following are the sufficient conditions for (8.12):

di +dit1
P> —. 8.16
i 37, ( )
Theorem 8.2. The cubic polynomial (8.7) preserves monotonicity if and only if
(8.16) is satisfied.

8.5.1 Demonstration

Let us take the example of monotone data as in Table 8.3. Figure 8.5 is produced
by applying the Hermite cubic spline method on this monotone data, which loses
the monotonicity. Figure 8.6 shows the monotone curve through monotone data in
Table 8.3 using the monotone cubic function of Section 8.5.

Secondly, we consider a monotone set of data from Sakai and Schmidt [10] in
Table 8.4.

Figure 8.7 is produced by applying the Hermite cubic spline method which
loses monotonicity. Figure 8.8 is produced using the monotone cubic function of
Section 8.5 that preserves the shape of data in Table 8.4.

8.6 Positive Cubic Spline

The problem of positive interpolation can be described as follows: For given data
points

(x1, 1), (2, 2) 5 -0, (xns f)
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FIGURE 8.6. Shape-preserving cubic spline curve to the data in Table 8.3.

a_

FIGURE 8.7. Cubic Hermite spline curve to the data in Table 8.4.

with
X1 < X2 < -0 < Xp,

and
f1>0,/2>0,..., fn >0,

construct an interpolant S(x) which is positive on the whole interval [x{, x,],
that is,
Sx) > 0,x1 <x <xy.

The key idea to preserve positivity using S(x) is to assign suitable values to r;’s
in each interval. We would like to determine conditions for r; which guarantee
positivity. Since S(x) > 0 for all V;, W; > 0, so we have the following:
—hid;
3fi

Vi>0ifr; >

B
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FIGURE 8.8. Shape-preserving cubic spline curve to the data in Table 8.4.

and
hidit

3fir1
Thus, the sufficient conditions on piecewise cubic S(x) under which GC' positive
interpolant is preserved are as follows:

W,' > Oifri >

—hid; hidit } 8.17)

3fi 7 3fim

r; > max ’

Theorem 8.3. The cubic polynomial (8.7) preserves positivity if and only if
(8.17) is satisfied.

8.6.1 Demonstration

For this demonstration, consider the positive data in Table 8.4. This data has come
from the known volume of NaOH taken in a beaker and its conductivity was deter-
mined. An HCL solution was added from the burette in steps, drop by drop. After
each addition, the volume of HCL(x) was stirred by gentle shaking, and con-
ductance (y) was determined as shown in Table 8.4. Application of the Hermite
cubic spline method produces the curve in Figure 8.7. This curve shows the neg-
ative value of conductance, which is ridiculous. This flaw is recovered nicely in
Figure 8.9 using the positivity-preserving cubic scheme of Section 8.6.

Other positive data (W shaped) is shown in Table 8.5. Application of the
Hermite cubic spline method produces the curve in Figure 8.10. This curve shows
the negative value of conductance, which is ridiculous. This flaw is recovered
nicely in Figure 8.11 using the positivity-preserving cubic scheme of Section 8.6.

We consider another positive set of data from Butt and Brodlie [2] in Table 8.6.
Figure 8.12 is produced by applying the Hermite cubic spline method, which loses
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a
FIGURE 8.9. Positivity-preserving cubic spline curve to the data in Table 8.4.
10

8t

2 5 10 15

FIGURE 8.10. Cubic Hermite spline curve to the data in Table 8.5.

the shape of data in Table 8.6. Figure 8.13 shows the positive curve through posi-
tive data in Table 8.6 using positive interpolation of Section 8.6.

8.7 Extension of Positive Cubic Spline

Let (x;, fi),i = 1,2,...,n be the given data points that lie above any straight
line f(x) =mx + ¢, thatis f; > mx; +cforalli = 1,2, ..., n. We require

Sx) = S;(x) > mx; +c.
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10¢ ﬁ)

0 5 10 15
FIGURE 8.11. Shape-preserving cubic spline curve to the data in Table 8.5.

25
)
15

10

_5 1 1 1 )
0 10 20 30 40

FIGURE 8.12. Cubic Hermite spline curve to the data in Table 8.6.
We assume that m > 0. The case m < 0 can be handled in a similar way. In each
interval mx + ¢ can be expressed as:
ai(1—0)+b;0

where
ai =mx; +c, bj =mxjy1 +c.

We thus require

Si(x) > ai(1—0)+ b0, i =1,2,...,n.
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25-

00 10 20 30 40

FIGURE 8.13. Shape-preserving cubic spline curve to the data in Table 8.6.

So we require
Ui = fi(1—0)°>+3V;0(1—0)>+3W;0%(1 —0)+ f; 116> — {a; 1 —0) +b;0} > 0.
(8.18)
It can be expressed as
Ui = (fi —a)(1 = 0)> + 3Vi — 2a; — b)O(1 — 0)°

+ BWi —a; +26)0%(1 = 0) + (fir1 — b6 > 0.

Since
fi —a;i > 0and fi11 —b; > 0,

so U; > 0 if and only if

3V,' —261,' —bi > Oand3W,- —daj —2bi > 0.

3V; —2a; — b; > 0if
—hid;
rp > ————
3fi — Zai — b,‘
and 3W; —a; — 2b; > 0if
- hidit .
3fiy1 —ai —2b;

The above discussion leads to the following theorem.

Ti

Theorem 8.4. The polynomial (8.7) lies above the given straight line if and

only if
—hid; hidi41

3fi—2a1—b,-’3f,-+1—a,-—2b,- '

ri > max[
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TABLE 8.7.

x 2 3 7 8 9 13 14
f 12 45 65 12 75 95 18

FIGURE 8.14. Cubic Hermite spline curve to the data in Table 8.7.

FIGURE 8.15. Shape-preserving cubic spline curve to the data in Table 8.7.

8.7.1 Demonstration
We finally consider the data in the Table 8.7 where f-values lie above the line

X
== 41
f=5+
Figure 8.14 is produced using the cubic Hermite spline. This curve does not lie
above the line f = 5 + 1. This flaw is recovered nicely in Figure 8.15 using the

scheme of Section 8.7.
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Remark 8.1. These methods can be used in both cases when either d;’s are par-
ticularly specified or estimated by some method. We propose the arithmetic mean
approximation method [3] for the practical implementation in this chapter.

8.8 Summary

A piecewise cubic interpolant, in a generalized form, has been utilized to obtain
a GC! convexity-, monotonicity- and positivity-preserving curve methods. Data-
dependent shape constraints are derived on shape parameters to assure the shape
preservation of the data. Choice of the derivative parameters is considered to be
the approximation through arithmetic choice.

The proposed curve schemes are visually smooth enough and present reason-
ably acceptable demonstrations of the shape of the data, but a higher degree of
smoothness, while stitching the pieces of curves, may enhance the visual display.

8.9 Exercises

1. Extend the curve scheme in Section 8.2 to a parametric curve scheme and write
a program to demonstrate the effect of the shape parameters for CAD/CAM
purposes.

2. Extend the curve scheme in Section 8.4 to a parametric curve scheme such that
it preserves the convex data.

3. Extend the curve scheme in Section 8.5 to a parametric curve scheme such that
it preserves the monotonic data.

4. Extend the curve scheme in Section 8.6 to a parametric curve scheme such that

it preserves the positive data.

. Write a program to visualize the results of the scheme in Exercises 4-6.

. Extend the curve scheme in Section 8.2 to a C! curve scheme.

. Extend the curve scheme in Section 8.4 to a C! curve scheme.

. Extend the curve scheme in Section 8.5 to a C! curve scheme.

. Extend the curve scheme in Section 8.6 to a C! curve scheme.

O 0 3 O\ W
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Approximation with B-Splines Curves

Abstract. B-spline curves have been used to approximate the functional data. Two curve
approximation techniques are presented here. One scheme is based on a deterministic
approach using quadratic B-splines. The other scheme uses a genetic algorithm in its for-
mulation where the B-spline can have any order. Both schemes automatically compute data
points to minimize errors.

9.1 Introduction

Curve approximation [6,8—14] is all about finding accurate locations of data points
from the given curve. It is an important area of computer graphics and can be
utilized in computer vision and imaging applications too. B-splines curves [4] are
popular models for curve design and can be defined by their degrees and control
points. They have been used here to present curve approximating techniques. Both
of the schemes presented in this chapter automatically compute data points to
minimize errors. These techniques can be useful for efficient storage of geometric
shapes in any applications of graphics, vision and imaging. The first technique
presented is based on a deterministic approach; it uses a quadratic B-spline curve
for approximating functions or functional data. The second scheme is based on
a nondeterministic approach, namely, a genetic algorithm. It has the freedom to
utilize any degree B-spline formulation.

In the first technique [12] presented here, quadratic B-spline data points are
computed by exploiting the properties of its knots. This technique consists of three
steps of approximation. Step 1 involves computation/plotting of opening angles.
In Step 2, knots are inserted at appropriate locations, which bring approxima-
tion error within specified threshold limits. Step 3 is a further optimization of
approximation results by changing knot positions. A general quadratic B-spline
curve through these data points (control points and knots) would be an approx-
imating curve. Demonstrated results will show that very precise approximation
can be achieved with quite lesser data points. This curve approximation technique
is simple, efficient and robust for any parametric curve(s). It does not require an
extensive search for data points. Data points once computed are not discarded.

173
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The second technique is also based on B-spline formulation [13, 14]; it has more
freedom and can use any degree B-spline formulation for curve representation.
A genetic approach has been adopted to locate appropriate B-spline knots so that
the approximation error is minimized.

The rest of the chapter is organized as follows. Section9.2 gives a general
description of quadratic B-splines. Section9.3 highlights properties of knots
together with the approximating technique (in three steps). Section 9.4 describes
the technique based on a genetic algorithm (GA). Both schemes have been illus-
trated with examples. Section 9.5 summarizes the chapter.

9.2 B-Splines

The general expression for calculation of any coordinate position along a B-spline
curve in a blending function formulation [5] can be given as:

n
P (@)=Y piBrad () timin <t <tma,2<d <n+1 (9.1
k=0

In Equation (9.1) above, py is an input set of n + 1 control points. The B-spline
blending function By 4 are polynomials of degree d — 1. Blending functions for

B-spline curves can be defined by the Cox-deBoor recursion formulas [3]:
U — Uy Uktd — U
Bya(u) = —————Bra—1 () + Biy1,a-1 ()
Uk+d—1 — Uk Uk+d — Uk+1
. 9.2)
1, ifuy <u <ups

Br.1 () = 0, otherwise

Each blending function is defined over d subintervals of the total range of u. We
can choose any values for the subinterval endpoints u ; satisfying the relation u ; <

Mj.;,.l.

9.3 Deterministic Approach

In this section, we assign d = 3, umin = 0 & umax = 1 for the quadratic B-spline
(QBS) curves that would be used for approximation of given curves. The range of
parameter u is divided into n 4+ d + 1 knot values labeled as {ug, u1, ..., un+aq}
and the resulting QBS curve is defined in the range from knot value u4_ up to
uy+1. For the uniform QBS, the spacing between knots remains constant as in
{0.0,0.2,0.4, 0.6, 0.8, 1.0}. Figure 9.1 shows QBS with five control points and
uniform knot spacing. For the open uniform QBS, the knot spacing is uniform
except at the ends where knot values are repeated d times as given below:

{0,0,0,0.25,0.5,0.75, 1,1, 1} ford =3 andn =5 (9.3)
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FIGURE 9.1. QBS with five control points (n = 4). The curve is defined between knot u;
to us.

For a nonuniform QBS, we can choose unequal knot spacing and multiple knot
values. Similarly, in open nonuniform QBS (used in this chapter), knot spacing is
nonuniform, and at the ends knot values are repeated d times. We observe follow-
ing properties of QBS knots:

* Kbnots are the interpolating points along the curve.

* Only one knot lies between two successive control points.

e The QBS curve touches its convex hull at each knot position.

* The opening angle along the QBS curve maximizes at its knot positions
(Section 9.3).

9.3.1 Approximation Technique

The presented approximation technique is developed by exploiting the QBS knot
properties. This technique is suitable for approximation of any spline/mathematical
curve(s). The QBS approximation is a three-step process.

9.3.1.1 Initial Data Points (Step 1)

Curvature measure, based on opening angles of each point along the curve, is used
for analysis/detection of initial knot positions. Opening angle, 8 € |0, x|, for any
curve point C; can be computed as:
224 2
6 = arccos M 9.4)
2ab

where a, b and c are the distances |C; — Ci—_y|, |Ci — Citp| and |Ci—y — Citwl,
respectively, for w < i < n — w, where w is the window size and 7 is the number
of points in a given curve. The value of w depends on the smoothness of the
given curve. We use w = 1 as the curve under approximation, which is very
smooth. Figure 9.2(a) shows a plot of opening angle 8 for a QBS of Figure9.1.
Maxima points of this plot, including two endpoints of given curve, are selected
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FIGURE 9.2. Initial data points: (a) Opening angle plot of QBS curve of Figure 9.1. Maxima
points (circles) are the detected knots; (b) Detected knots are placed on the original curve.
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FIGURE 9.3. Control points evaluation: (a) Intersection points, of the tangents of the curve
at its knots, representing expected location of control points, (b) Curve approximation of
QBS curve of Figure 9.1 after Step 1.

as the initial knot positions (Figure 9.2(b)). One can observe that the positions of
detected knots are very close to their actual locations (compare Figure9.1 and
Figure 9.2(b)). Using this method, detected positions of knots, for any QBS curve,
are always precise and accurate.

Location of control points can be calculated very easily from the detected knots.
Intersection points of tangents, for the curve at its knot positions, are the locations
of control points (Figure 9.3(a)). Knots at curve endpoints are also selected as two
control points because the approximation curve is intended to be open nonuni-
form QBS. The B-spline curve through these detected control points and knots is
an approximation curve (Figure 9.3(b)). The computed curve is accurate enough,
requiring no future working. Step 1 provides an accurate curve approximation if
the given curve is quadratic but requires Step 2 and/or Step 3 approximation for
higher polynomial curves. Therefore, if the approximation error (the area between
two curves) exceeds the specified threshold limits, approximation results are trans-
ferred to the next step for further processing.
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9.3.1.2 Kbnot Insertion (Step 2)

This step increases flexibility of approximating QBS by insertion of additional
knots/control points at appropriate locations. We take the cubic B-spline curve
(Figure 9.4(a)) as input for explanation of this step. Its opening angle plot is shown
in Figure 9.4(b) and maxima points of this plot represent the initial knot posi-
tions. As the input curve is a cubic spline, detected knot positions may not be
at their actual knot positions. However, minima points in Figure 9.4(b) represent
the actual knot positions of the cubic B-spline which can lead to approximation
techniques using cubic B-splines. Here we restrict ourselves to approximation with
QBS, which should be applicable to the curves with any degree of polynomial/type
of spline.

Approximating the curve through the detected knots is shown in Figure 9.5(a).
The amount of error between two curves (Figure9.5(a)) is undesirable. The
acceptable error limit depends on the size/resolution of given curve. We use three-
pixel error limits in our method. Therefore the default value of 3 can be assigned
as the error limit when each curve point represents one pixel.

Additional knots are introduced to minimize error between two curves [2].
Approximation error minimizes at knot positions and maximizes in between.

3.15

3.1
3.05

f(rad) 3[

2.95

2.9

0 0?2 0:4 0.6 0:8 1
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FIGURE 9.4. (a) Cubic B-spline with five control points; (b) the opening angle plot.
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FIGURE 9.5. Curve approximation of Figure 9.4(a): (a) after Step 1; (b) after Step 2.
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FIGURE 9.6. (a) Cubic Bezier curve. (b) Curve approximation after Step 2. (c) Curve
approximation after Step 3.

The maximum errors between each pair of knots are called maximum error points
(MEPs). New knots are inserted at the MEPs that exceed the threshold error limit.
Approximating a curve after inserting these knot(s) is shown in Figure 9.5(b).
Note that only one knot was added and approximation error decreased below the
threshold value. Step 2 is expected to bring approximation error below threshold
limits in a single iteration. The results of this step are fed to Step 3 for further
refinement.

9.3.1.3 Error Minimization (Step 3)

This refinement step minimizes approximation error without introducing any more
knots/control points. The shape of the approximating curve can change by chang-
ing knot positions [7]. In this step, detected knots are moved along the curve
to exploit the design flexibility of the B-spline in order to optimize the ultimate
approximation curve.

The following search technique is used to find the new (optimized) location of
knots:

1. MEP between each pair of knots is located.

2. If the error at that point exceeds one-half of the specified threshold limit, then
the closest knot is shifted to a half distance toward that MEP.

3. If the approximation error does not improve by shifting the knot, it is taken
back to its original position.

We use the cubic Bezier spline for demonstration of this step. Figure 9.6(a) is the
original cubic Bezier curve taken for processing. Figure 9.6(b) shows the approx-
imation curve after Step 2 and Figure 9.6(c) is the curve after Step 3. Note only
one knot has shifted in Step 3.

9.3.2 Demonstration

Most of the curve approximation techniques search for suitable interpolation
points, which is an expensive operation and requires a large number of data points
to present a good quality of approximation. The proposed technique, using general
QBS curves, is based on approximation of data points and outperforms previous
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FIGURE 9.7. Curve approximation result: (a) cubic B-spline; (b) after Step 1; (c) after
Step 3.
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FIGURE 9.8. Curve approximation result: (a) input Bezier spline of degree 5; (b) after Step
1; (c) after Step 2.

methods in quality. Quality of any curve approximation technique can be gauged
on various parameters such as computational efficiency, robustness of algorithm,
approximation error, number of data points (control points or knots) and visual
appearance.

The presented algorithm is computationally very efficient because it does not
require any extensive search technique for detection of data points (Figure 9.7).
Data points are located without any search in Steps 1 and 2, and Step 3 is a sim-
ple optimization of approximation results. Data points once detected are not dis-
carded. The presented algorithm is very robust (even if no data points are found in
Step 1); it performs well on any given curve. The detected data points are very well
located and only few data points can demonstrate approximation of quite flexible
and higher polynomial curves. Human judgment with visual appearance of com-
puted curves is the most important factor in any curve approximation results. Vari-
ous results are demonstrated in this section to analyze the quality of approximation
with the proposed technique.

Figure 9.8(a) is a Bezier curve [1] constructed, with polynomial of degree 5, for
approximation. Figure 9.8(b) and 8(c) are the approximation results after Step 1
and Step 2, respectively. The approximation result after Step 2 was accurate
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FIGURE 9.9. Curve approximation result: (a) input cubic cardinal spline; (b) after Step 1;
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FIGURE 9.10. Curve approximation result: (a) input cosine curve; (b) after Step 1; (c) after
Step 2.

enough, avoiding any further processing (Step 3). Seven control points were com-
puted to approximate the given curve (with six control points and polynomial of
degree 5).

Figure 9.9(a) is a Cardinal spline [5] specified with four control points. Its
approximation after Step 1 and Step 3 is demonstrated in Figures 9.9(b) and
9.9(c), respectively. Step 2 approximation was not needed/performed. The curve
is approximated with four control points, which is equal to the control points of
the original curve.

Figure 9.10(a) is a plot of cosine function. Its approximation results after Step 1
and Step 2 are shown in Figures 9.10(b) and 9.10(c), respectively. Step 3 approxi-
mation was not required due to the good quality of result after Step 2.

In all the above results, note that the algorithm performs quite well on a variety
of input curve models. Remember that the computed curve is a QBS, even though
(in most of the cases) the number of computed control points (on which it is con-
structed) equalizes to the number of control points of the original (higher poly-
nomial) curves. Also note that two steps of approximation are normally involved
for computing approximating curves. Thus, the efficiency of this algorithm is in
general much higher than it looks.

9.4 Nondeterministic Approach

Approximating data or curves with spline [3—7] is an important topic in the area of
computer graphics. If we have to make a good model from complex data or a com-
plex function, it is difficult to approximate it by a single polynomial. In this case,
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a spline is one of the most appropriate approximating functions. The key to using
a B-spline formulation is the determination of good knots and obtaining good
approximation. One needs to place the knots as precisely as possible for a good
approximation. In such cases, one need to deal with knots as variables. Then the
problem becomes a continuous nonlinear and multivariate optimization problem
with many local optima. Therefore, it is difficult to obtain a global optimum [3].

In the current literature, genetic algorithms (GAs) have been widely rcognized
as a useful vehicle for obtaining high-quality or even optimal solutions in this
area. However, the knots of a spline do not need to be optimal: usually suboptimal
is sufficient. So, GAs can be conveniently applied for the determination of good
knots [1].

9.4.1 A Brief Overview of GAs

In the last decade, genetic algorithms (GAs) have emerged as practical robust
optimization search methods. Introduced by Holland in the 1970s, GAs are search
techniques based on the concept of evolution [8]. Given a well-defined search
space in which each solution is represented by a bit string, called a chromo-
some, a GA is applied with its three genetic search operators, namely, selection,
crossover and mutation, to transform a population of chromosomes with the
objective of improving the quality of the chromosomes. The individual bits of
a chromosome are called genes. Before the search starts, a set of chromosomes
is randomly chosen from the search space to form the initial population. The
three genetic search operations are then applied one after the other to obtain
a new generation of chromosomes in which the expected quality over all the
chromosomes is better than that of the previous generation. The process is
repeated until the stopping criterion is met (e.g., a predefined number of gen-
erations are processed). In the end the best chromosome of the last generation
is reported as a final solution. The outline for the GA algorithm is shown in
Figure 9.11.

9.4.2 Implementation Summary

In this section, the summary of the work proposed in [1] has been presented. The
details of the scheme can be seen in [1]. It can be summarized in the following
steps:

1. Individuals are constructed by considering the candidates of the locations of
knots as genes, as shown in Figure 9.12.

2. A control parameter called the knot ratio, R, has been used, where R is the ratio
of the numbers of 1’s and 0’s in an individual (see Figure 9.13).

3. If the procedure of knot detection is applied, these knots are kept constant by
applying the OR operation between the chromosome and the chromosome rep-
resenting the detected knots, as shown in Figure9.13. The OR operation is
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FIGURE 9.11. A GA outline.
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FIGURE 9.12. Genetic formulation.

applied after both the crossover and mutation have been applied so that we
don’t lose these knots during these operations. In this way the detected knots
remain unchanged in the subsequent generations.
4. Akaike’s information criterion (AIC) [2] has been used as the fitness function.
It is given by:
AIC = Nlog, Q1 +2(2n +m) 9.5)
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FIGURE 9.13. Preservation of significant knots.

where
N

01=>w; {5, 0 —x; OF + {85, 0 -y, OF]  ©6)

j=1

where N is the number of data, n is the number of interior knots, and m is the
order of the spline to be fitted on the given data. It should be noted that the
smaller value of (9.5) gives better fitness. The Sx(¢) and Sy(r) are the x and
y components, respectively, of the approximated spline S(¢) over the data F,
and w; is the weight of data, taken to be 1 for all data points in our case. The
subscript Q indicates the dimension of the data.

5. The fitness value of the solution is determined through AIC.

6. The control parameters constitute population size K, genelength L, crossover
probability C, mutation probability M and knot ratio R.

9.4.3 Demonstration

In this section some results have been presented that demonstrate the curve scheme
in different scenarios. Figure 9.14 displays an exponential function:

f @)=

The GA scheme was applied to find out the approximate spline curve for this func-
tion data in Figure 9.15. A gene size of 101 knots (see the points indicated as “x”)
was taken; a cubic B-spline curve was selected as the computational model; a knot
ratio was taken as 0.3; population size was 30 (see bullets); and data was con-
sidered without noise. After five iterations, the approximated curve (loose curve)
achieved can be seen in Figure 9.15; it requires more iterations to converge to the
original function. Table 9.1 shows all the selected parameters.

The same parameter choice as in Table 9.1, but with noise generated in the data,
was used to demonstrate the scheme in Figure 9.17. Figure 9.16 has been plotted
by introducing some noise in the actual function, that is,

Fj=f(xl-)+£j,j=1,2,...,N, 9.8)

9.7)



184 9. Approximation with B-Splines Curves

90 T T T T T T T T T

70 | 1

50 - .

40+ -

30 .

20 .

0 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

FIGURE 9.14. Input function.

FIGURE 9.15. The result (loose curve) after five iterations of GA implemented.
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TABLE 9.1. Description of parameter selection.

Function  Gene length Population Knot Number of Order of Noise
ratio generations spline

Exponential 101 30 0.3 05 4 No

100 T T T T T T T T T

80

60

40

20

200—51 02 03 04 05 06 07 08 09 1

FIGURE 9.16. Exponential function data with noise addition.

where f (x) is the underlying function in Equation (9.7), and ¢; is a measurement
error.

Figure 9.17 is the cubic B-spline fitted to a uniformly distributed noisy data.
Analysis of various other facts regarding the output in Figure 9.17 are given in
Figures 9.18-9.20. For example, Figure 9.18 is the demonstration of the sum of
the squares errors versus the number of generations. The details of other related
parameters is also given in Figure 9.18. Figure 9.19 demonstrates the AIC ver-
sus the number of generations. Figure 9.20 is the display of the graph showing
knot/generation versus number of generations.

Another implementation is made in Figure 9.21. This is to fit a cubic spline to
a sine function. Analysis of various facts regarding the output in Figure 9.21 are
given in Figures 9.22-9.24. For example, Figure 9.22 is the demonstration of the
sum of the squares errors versus the number of generations. The details of other
related parameters is also given in Figure 9.22. Figure 9.23 demonstrates the AIC
versus the number of generations. Figure 9.24 is the display of the graph showing
knot/generation versus number of generations.
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FIGURE 9.17. Cubic B-spline fitted to a uniformly distributed noisy data.
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FIGURE 9.18. Sum of the squares errors versus the number of generations.
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AIC versus No. of Generations
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FIGURE 9.19. The AIC versus the number of generations.
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FIGURE 9.20. The graph showing knot/generation versus number of generations.
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FIGURE 9.21. A sine function and fitted spline.
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FIGURE 9.24. The graph showing knot/generation versus number of generations.



190 9. Approximation with B-Splines Curves

FIGURE 9.25. Cardioid data.

FIGURE 9.26. Showing detected points.

FIGURE 9.27. After convergence (with corner detection).

Figure 9.25 displays the input data for a cardioid. Figure 9.26 shows the detected
knots before executing the genetic algorithm. Figure 9.27 is the cubic B-spline
fitted to the input data using corner detection algorithm. The algorithm converged
at the 98th generation. Figure 9.28 shows the number of knots versus number of
generations, Figure 9.29 is the demonstration of the sum of square errors versus

the number of generations and Figure 9.30 shows AIC versus the number of
generations.
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FIGURE 9.29. Sum of squares error versus number of generations.
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FIGURE 9.30. AIC versus number of generations.

FIGURE 9.31. After convergence (without detected knots).

Figure 9.31 shows the result obtained without using the corner detection tech-
nique. This version of the algorithm converged to almost the same solution but
with a greater number of knots and consuming more generations. This version
converged at the 104th generation.

A comparative study has been presented between the results obtained by using
detected knots and results without knot detection. A very interesting observation
that can be made on the basis of these results is that the algorithm showed better
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TABLE 9.2. Performance with and without detected knots.
Shape: Cardioid With detected knots ~ Without detected knots

Generation converged on 98 104
No. of knots obtained 11 16

performance when aided by the detected knots. That is, the former version con-
verged earlier than the other. However, both in the end reached almost the same
solution in terms of sum square error. Sometimes the solution also shows a differ-
ence in the number of knots obtained. Table 9.2 shows a comparison between the
results obtained with and without the detected knot technique.

9.5 Summary

Two curve approximation techniques have been presented. One is deterministic
and the other is nondeterministic. The deterministic technique is the curve approx-
imation algorithm with QBS. The algorithm is a three-step process that is very sim-
ple and does not involve heavy computations. The algorithm is based on detection
of data points that are approximated (not interpolated) to get the ultimate approx-
imation curve. The nondeterministic technique is based on a genetic algorithm. It
is similar to the first technique except that its mechanism is to locate the most opti-
mal knots. Both algorithms are simple, efficient and robust for any given curve(s).
These schemes can lead to various applications in CAD and CAGD.

9.6 Exercises

. Write a program to implement the B-spline curve in Equation (1).

. Write a program to implement the curve approximation technique in Section 9.3.

. Extend the curve approximation technique of Section 9.3 for a cubic B-spline.

. Write a program to implement the curve approximation technique in Section 9.4.

Make a comparative study of the two schemes in Sections 3 and 4 about the

time cost when a quadratic B-spline is used in both cases.

6. Make a comparative study of the two schemes in Sections 3 and 4 about the
time cost when a cubic B-spline is used in both cases.

7. B-spline curve in Equation (1).
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10
Spirals

Abstract. Spirals are desirable for applications such as in highway route designing, robot
path planning, data-fitting problems, shape design, and curve/surface fairing in geometric
modeling. This chapter presents an efficient geometric algorithm for visualization of two-
point geometric Hermite conic and arc/conic spiral segments. A comparative study is made
with those of Tschirnhausen cubic spirals.

10.1 Introduction

Manipulating and designing of curves and surfaces [1-20] is an important area of
computer graphics and geometric modeling. The rational quadratic Bézier curves,
which are usually called the conic section curves, have been widely used for com-
puter graphics applications in various industries due to their well-known properties
and convenience for users [4,5]. Traditionally, conic sections, when represented
by NURBS [1], are in the form of a rational quadratic Bézier curve.

The curvature is one of the most important geometric concepts of curves
and surfaces. Conics have no inflection points; however, they do have curvature
extrema. Therefore, only well-chosen conic segments will have monotone curva-
ture. Spirals are visually pleasing curves of monotone curvature; and they have
the advantage of not containing curvature maxima, curvature minima, inflection
points and singularities. Spirals are desirable for applications such as in highway
route designing [2], robot path planning [6, 17], data-fitting problems [10], shape
design [12], and curve/surface fairing in geometric modeling [11].

A method to create a two-point geometric Hermite planar curve by joining spiral
segments is described in [3,7,8]. The spiral segments are either spirals taken from
the Tschirnhausen cubic curve (referred to as the T-cubic) or spirals created by
joining circular arcs to segments of the T-cubic (referred to as the arc/T-cubic)
in a G3 fashion. However, it has not been possible so far to visualize the arc/T-
cubic spiral on the Web due to its lot of complications in the scheme and some
limitations of Java. We solve this problem by using a conic segment instead of a
T-cubic, and achieve the same level of smoothness but with a more simplified and
flexible algorithm suitable for demonstration as a graphics tool.

195
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In this chapter, the spiral segments have been created in two ways. The first
is by taking a spiral segment from a conic, which gives a curve referred to as a
conic spiral. The second is by joining a circular arc to a conic spiral in a G man-
ner, which gives a curve referred to as an arc/conic spiral. The method is local.
Changing one point of a local interpolant does not affect the whole curve, just
the part of the curve near that point. The rapid growth of information technology
and the World Wide Web motivates us to make the system appear over the Web.
In this paper, we also present a flow chart of an efficient algorithm to implement
two-point Hermite conic and arc/conic spiral segments as a graphics tool for the
designers. It is implemented through a Java applet and a user interface is provided
for demonstration on the Web. Online interactive graphics tool is easy to use and
comfortable for computer-aided designers or manufacturers. Both a Java imple-
mentation and the source code are available online at the address listed at the end
of this paper.

10.2 The Rational Quadratic Bézier Curve

A rational quadratic Bézier curve, i.e., a conic segment in normalized local coor-
dinate system, is shown in Figure 10.1. Its standard form for ¢ € [0, 1] is

(1 =12 by + 2wt (1 —1) by +12by
A—1)242wt(1—1)+12

z(t) = (10.1)

where bg, b1, by € R? are noncollinear control points, w € R is the weight
associated with by, (1 — 1)? = By o(t), 2t(1 — 1) = Ba (1), 2 = By (t) are
Bernstein basis functions. Without loss of generality, assume the points of the
geometric Hermite data are bo(= (—1, 0)), and ba(= (1,0)). Assume the total
rotation of the tangent vector is less than 7, so that the initial and final tangent

bl b1

b0(-1,0) 0 b2(1,0) |bO(-1,0) 0 b2(1,0)

(a) Conic Spiral (no curvature extrema). (b) Conic (one curvature extremum).

FIGURE 10.1. A rational quadratic Bézier curve.
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vectors at by, and by, making angles 6y and 6y, respectively, can be extended to
intersect at a point b1 (= (b, ¢)) with ¢ # 0.

The type of conic is characterized by the value of the middle weight w: z(¢) is an
ellipse when w < 1, a parabola when w = 1 and a hyperbola when w > 1. If the
control polygon bob1b; forms an isosceles triangle (i.e., 8y = 0;), set the weight
w = cos §y, then the rational quadratic Bézier curve is a circular arc. Also, when
w is negative, z(t) is the complementary segment of the original conic segment.

10.3  The Conic Spiral

With reference to [1, 4], the signed curvature x(¢) of rational quadratic Bézier
curve (10.1) is given by:
Z'(t) x (1)
Iz’ @)1
where x stands for the two-dimensional cross product (xq, yo) X (x1, y1) = xoy1 —
x1Yyo and ||e|| means the Euclidean norm. Suppose K is the number of curvature
extrema; then if the control point b1 is on

x(r) (10.2)

(i) the yellow region then K = 0, see Figure 10.1(a).
(ii) the white region then K = 1, see Figure 10.1(b).
(iii) the gray region then K = 2, see Figure 10.2(a).

(The corresponding curvature plots of Figures 10.1(a), 10.1(b), 10.2(a) and 10.2(b)
are shown in Figures 10.3(a), 10.3(b), 10.3(c), and 10.3(d), respectively.) If the
control point b; is on the boundaries, then K is the smaller one of K for the regions
beside the boundaries. The number of curvature extrema within the segment (10.1)
depends on w, b and c. It can be seen in Figure 10.4 as a function on R3 If w, b and
¢ are varied continuously, then the number of curvature extrema changes only if
the curve segment has a curvature extremum at the boundary. This can be checked
easily by evaluating the derivatives of curvature " at# = 0 and t = 1, which gives

bl bl

b0(-1.0) b2(1,0) b0(-1,0) 0 b2(1,0)

(a) Conic (two curvature extrema). (b) Arc/conic spiral (no curvature extrema).

FIGURE 10.2. A rational quadratic Bézier curve.
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curvature curvature curvature
20 20 20 2 curvature
10 10 10 10
6*{‘ t t t
0.5 0| 05 1 0 05 1 0 0 1
-10 10 10 10
20 l-20 l-20 I-20
@ (b) (©) (d)

FIGURE 10.3. Curvature plots of the curves in Figures 10.1(a), 10.1(b), 10.2(a), and
10.2(b), respectively.

FIGURE 10.4. Implicit plot of a( and a4 on R3.

certain simple conditions. These conditions can be seen as surfaces in Figure 10.4,
which define a partition of R? into several cells. The derivative of curvature in
(10.2)atr =1/(1+s) fors > Ois

2 N(s)
D(s)’

k' (1) = —6wce (1 4 5)? (1 + 25w + s2) (10.3)

where

3 4
D(s) = [(1 - s2)2 w2+ [2s +w(1-0>0) +5%w 1+ b)}z] ’ and N(s) = Zaisi,

i=0
(10.4)
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TABLE 10.1. The number K of curvature extrema for rational quadratic Bézier curve (10.1)
determined by Descartes’ rule of signs.

Case 1 Case 2
ay > 0,a9 <0 as >0,a9 >0
w?c? > max[q(b), q(—b)] q(b) < w*c* < q(-b) q(b) < w*c* < q(—b)
w>0 w? > 1/2 w2=1/2 0<w?<1/2
b<0
b>0 b <0 b>0 b>0 b<0 a4>0 ag >0 as =0
ap > 0 ap = 0 ag > 0
as + + + 0 0 + + 0
a3 + ? + + - ? ? -
a + - + + - - - -
a 9 - + + - ? - ?
ag - - + 0 0 + 0 +
K 1 1 0 0 0 2 1 1
Case 3 Case 4
ag <0,a9 >0 ag <0,ap <0
w?c? < min[g(b), q(~b)] q(=b) < w?c® < q(b) q(=b) < w?c® < q(b)
0O<w<l w? > 1/2 w?=1/2 0<w?<1/2
b>0
b>0 b <0 b<0 b>0 b<0 ag <0 ag <0 ay =0
ap <0 ap=0 ag <0
as - - - 0 0 - - 0
a3 ? - - + - ? ? +
ap + - - + - + + +
aj + ? - + - ? + ?
ag + + - 0 0 - 0 -
K 1 1 0 0 0 2 1 1
for
ay = —wp(b),a3 = =2 {p(b) — b}, az = 6wbh,
where

P) (= pe®) =1+t —w? [+ (1 +02).

Depending on the signs of a4 and ag, we consider the four cases highlighted in
Table 10.1, where “+” and “—" include “0.” “?” means either “+” or “—”, and
q(t) = po(t). In fact, the cross-section of two surfaces ag = 0 and a4 = 0 with
planes w = constant are the circles.

Within each cell the number of curvature extrema is constant. Therefore,
it suffices to check one representative for each cell in order to determine the
corresponding number of vertices.
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Remark 10.1. For any point within unit circle b> + ¢* = 1, there exists a weight
w such that the number of curvature extrema equals 0. Therefore, the sufficient
conditions for conic spiral matching geometric Hermite data are 0y, 61 < w /2.

The segment (10.1) for w? > 1 /2 and b? + ¢? < 1 has no curvature extrema
(i.e., conic spiral) if

, 1+b 1—b _
min 5 =w
A+b)2 42"\ (1 —-b)?+c2

1+5b 1-b
. 10.5
Sm[\/(l+b)2+c2’\/<1—b)2+ch e

10.4 Comparison of Conic and T-cubic Spirals

This section gives the region for the curvature at the end points of the conic seg-
ment to compare our scheme with T-cubic spirals in [3,7,8]. To simplify the com-
parison, we treat the case when the curve is a spiral of positive curvature. The
curvature is monotone increasing and positive if (b, ¢) is in the fourth quadrant of
bc-plane. One should note that

s k()= .
w2 {2+ (14 b)*} w2 {2+ (=1 +b)
to obtain the spiral region for (x(0), x (1)) in Figure 10.5(a). Similarly, we consider

the spiral condition of positive curvature on (x (0), x (1)) for T-cubic spline of six
parameters. Let

x(0) = (10.6)

2}3/2’

0.1 0.2 0.3 0.4 0.5 0wl w2 h8  Oued 0icb
s KO
(a) Conic. (b) T-cubic.

FIGURE 10.5. The spiral conditions of positive curvature on (x(0), x(1)): (a) Conic,
(b) T-cubic.
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Ut)y=a@)+pA—1),V(E)=y(@)+6( —1),

and T-cubic spline z(r) = ((x(¢), y(¢))) is satisfying z(0) = by and z(1) = by
where

X)) =U@>+ V) Y () =200V (@). 10.7)
Note the positive curvatures and use a change of variables:
1
V2

the curvature is monotone increasing if x(¢) > 0 and ¥'(¢r) > 0, i.e., a(f — a) >
y (y — 0) which is equivalent to

(y,0) = Y +X,Y - X),

2 2 2 2
X2 +3v%) +36Y2 < 12XV, (10.8)

therefore, we have the following curvatures at end points:

33 s o \/— 11
(K(O),K(l))—T<X +3Y) x X2+3(4+Y2)(a—2,g), (10.9)

0

where
(@0, a1) = X* +9y2 (3 + Y2) + X2 (3 + 6Y2> F18XY (1, —1).

Since the region (10.8) and the above curvatures (10.9) are symmetric with respect
to the origin, we only have to consider the region in the first quadrant of bc-plane
and combine (10.8) and (10.9) to obtain Figure 10.5(b). Figure 10.5 shows the
spiral conditions of positive curvatures on (x (0), x (1)) with gray color. The spiral
region for conic case in Figure 10.5(a) is shown with different shades of gray color
for w? = 1, 0.81, 0.5. The region with all the gray shades is represented by 0.5 <
w? < 1 which is greater than T-cubic case in Figure 10.5(b). Finally, we have a
simple example in Figure 10.6 for x(0) = 0.4 and x(1) = 0.5 which can not be
covered by T-cubic spiral in [3,7, 8].

10.5 The Arc/Conic Spiral

The arc/conic spiral that matches given geometric Hermite data is described below.
If the point of intersection by of the tangent lines is outside the unit disk: by +¢p <
1,ie., w/2 < 6y + 61, then the arc/conic is formed by joining a circular arc to the
point of extreme curvature of a conic spiral in such a way that the unit tangents
match at the join.

The curvature of the circle is chosen to match the curvature of the conic spiral
at the join point, making the circle a circle of curvature and making the composite
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FIGURE 10.6. The conic spiral with k(0) = 0.4, k(1) = 0.5, and w = 0.9.

curve a spiral. This join is G> since the derivative of the curvature of the circular
arc and the derivative of the curvature of the conic spiral at the join point are both

zZero.

With reference to Remark 10.1, the sufficient spiral conditions for the conic part
of arc/conic are 01 +0y—7 /2 < 0 < 01 —0p+2¢ and 0 < ¢ < 6 for some suitable
choice of w. To simplify the analysis for Web application, we assume w? = 0.5
and @ =646y —n /2. For0 < 6y < 8; < & and referring to Figure 10.7 and flow
chart in Figure 10.8, let the conic part of the arc/conic start at the point bg(—1, 0)
with tangent vector at angle 6y with parameter # = 0, and end at the joining point:

0 (: (qx, qy)) = +r(sin(@ —0) —sindy),r (cosd — cos (0 — 0)))
(10.10)
with tangent vector at angle 7 /2 — 6§y with parameter value + = 1. Both tangent
vectors intersect at:

bi = (cos (26p) + r cos Gy (1 — sin (6p + 61)) ,

—sinfy (2cos Gy + r (1 — sin (6p + 61)))), (10.11)
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b,

FIGURE 10.7. Arc/conic spiral.

Let the arc part of the arc/conic with radius

!
"= Sn O+ 0) Gin G + 01) — 1){‘““( % +01)

+ \/4 —3cos20y — 4cos; sinby — cosGy — sin@l} ,  (10.12)

starting from the point Q with tangent vector at angle 7z /2 — 6, sweep through
an angle @ and end at the point b>(1, 0) with tangent vector at angle = + 6. Both
tangent vectors intersect at

mogx —mi — gy, mom (gx — 1) — migy)

bfz(
mqy — m|

(10.13)

where .
mg = tan (E — 90) ,m| = tan(z + 0;).

Then quadratic Bézier curve (10.1) is the desired arc for b = b%, w = Cos (%)
A simple example of an arc/conic spiral segment is shown in Figure 10.2(b) with
corresponding curvature plot in Figure 10.3(d).
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Read control point (b,c) and find 6, 6;

Circular arc)

w=cos 6y

(Arc/conic spiral) No Yes (Conic spiral)

v v
0=0,+0,m/2, w=1/Sqrt[2], Find w from (5)
Find Q from (10),b11fr0m 1n

& r from (12) $
v

Plot z(¢) from (1) for
Plot z (¢) trom ([} for ho=1.0), by (b.c), by (1.0)
by=(=1,0), b1=by, =0

]

w=Cos(6/2),

Find 45 from (13)

Plot z(¢) from (1) for

by=0Q. b= b3, b=(1,0)
I

»

)4

FIGURE 10.8. Flow chart to implement conic and arc/conic spirals.

(@ (®)

FIGURE 10.9. A curve made of conic spirals fitting given points.
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10.6 Examples

Figure 10.9 is a data-fitting example where the data are a set of points taken from
a smooth curve. The given points are shown as dots, each given point that is a
critical point is indicated by a circle around the given point and control points are
shown as disk. Conic and arc/conic spiral splines are shown as solid line matching
the given points well in these simple examples. Figure 10.10(a) is an outline of a
cup made of Hermite conic and arc/conic spiral segments. The shaded rendition of
the smooth curve in Figure 10.10(a) is shown in Figure 10.10(b). Figure 10.11(a)
and Figure 10.11(b) demonstrate the use of conic and arc/conic spirals for highway
design and obstacle avoidance when designing a robot path, respectively.

@ (b)

FIGURE 10.10. Hermite conic spiral interpolation: (a) Conic and arc/conic spiral spline,
(b) Shaded rendition.

@ (b)

FIGURE 10.11. Route planning with conic and arc/conic spiral spline: (a) Highway design
with third and last segments as a straight line. (b) Obstacles avoiding robot path.
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10.7 Limitations

Although both arc/conic and T/cubic spirals have G> continuity internally, the
joining of neighboring pairs of spirals gives a curve that has only tangent conti-
nuity. Meek and Walton [9] presented a method for C-shaped interpolating curve
made of one or two conic spiral segments. This curve is curvature continuous
with monotone curvature, but this fairness is achieved at the cost of nonflexibility
and inconvenience of use in practical applications. For example, in their method
the angle between tangents at end points must be less than 7 /2, where as in our
arc/conic case it is less than 7 . Their method is also restricted for the case when the
sign of curvatures at end points are same and nonzero, so user has to compromise
on tangent continuity to interpolate an S-shaped curve. Further, their C-shaped
curve with one or two spiral segments cannot cover the entire region, and therefore
the examination of reachable regions for a designer may be confusing to develop
the two curves separately.

10.8 Summary

An efficient geometric algorithm, for visualization of two-point geometric Hermite
conic and arc/conic spiral segments, has been presented in this chapter. A compar-
ative study is made with those of Tschirnhausen cubic spirals. Spirals are desirable
for applications such as in highway route designing, robot path planning, data-
fitting problems, shape design, and curve/surface fairing in geometric modeling.

10.9 Exercises

1. What is a spiral?
2. What are the main applications of spiral curves?
3. Implement the spiral algorithms in this chapter.
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Corner Detection for Curve
Segmentation

Abstract. Corners in digital images give important clues for shape representation and
analysis. Corner points represent important features of an object that may be useful at
subsequent levels of processing. Corners are robust features in the sense that they pro-
vide important information regarding objects under translation, rotation and scale change.
If the corner points are identified properly, a shape can be represented in an efficient and
compact way with sufficient accuracy in many shape analysis problems. Shape representa-
tion and image interpretation depends, in most cases, on how correctly and efficiently the
corner points are located. Specifically, in the area of vectorizing planar images, contour
segmentation is very often managed by locating the exact corner points. This leads to the
piecewise solution of the problem.

11.1 Introduction

Corners in digital images give important clues for shape representation and analy-
sis. Since dominant information regarding shape is usually available at the cor-
ners, they provide important features for object recognition, shape representation
and image interpretation. Corners are robust features in the sense that they pro-
vide important information regarding objects under translation, rotation and scale
change. If the corner points are identified properly, a shape can be represented
in an efficient and compact way with sufficient accuracy in many shape analysis
problem.

Corner points represent important features of an object that may be useful at a
subsequent level of computer vision. Guru et al. [12] state that information about
a shape is concentrated at the corners and that corners practically prove to be
descriptive primitives in shape representation and image interpretation. Asada and
Brady [2] insist that these points play a dominant role in shape perception by
humans. Attneave [3] proposed that information along a visual contour is concen-
trated in the regions of high magnitude of curvature. Corner points are used in
various computer vision, computer graphics, and pattern recognition applications.
It can be used as a step in document image analysis, such as chart and diagram

209
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processing [15], and is also important from the view point of understanding human
perception of objects [3]. Corner points play a crucial role in decomposing or
describing a curve [1]. They are also used in scale space theory [8, 18], image
representation [5], stereo vision [9, 33], motion tracking [10, 34], image match-
ing [29, 32], building 2D mosaics [35] and preprocessing phase of outline captur-
ing systems [26,27].

Corner detection schemes can be broadly divided into two categories based on
their applications:

* binary (suitable for binary images) and
e gray level (suitable for gray level images)

Corner detection approaches for binary images usually involve segmenting
the image into regions and extracting boundaries from those regions that contain
them. The techniques for gray-level images can be categorized into two classes:
(a) template based and (b) gradient based. The template-based technique utilizes
correlation between a subimage and a template of a given angle. A corner point
is selected by finding the maximum of the correlation output. Gradient-based
techniques require computing the curvature of an edge that passes through a
neighborhood in a gray-level image.

Many corner detection algorithms have been proposed which can be broadly
divided into two parts. One is to detect corner points from grayscale images [13,
16, 19, 30] and another relates to boundary-based corner detection [4, 6, 11, 13,
17, 20, 24, 28, 38]. This chapter mainly deals with techniques adopted for later
approach.

11.2 Basic Formulation

Visually, corners are the endpoints of straight-line segments of polygonal shapes.
But it is difficult and complicated to determine corners in case of nonparametric
curves as well as outlines of natural objects especially when the noise is carried.
In general, corners represent significant features of an object that human beings
would perceive as the meaningful points. Detection of these points is not an easy
job since accuracy of detected corners is gauged purely by human judgment and no
standard definition/criteria exists. In order to compute the corners, it is important
to give them some mathematical representation. In the literature, different authors
have described them in different ways. Abe and Kandonaga [1] described corners
as local maxima points. They proposed a method for decomposing curves into
straight segments and curved arcs, based on the slope at each point. Guru et al. [12]
smoothed the boundary curve and found a difference at each curve point called
a “cornerity index.” The larger values of the cornerity index were taken to be
corners.

Rosenfeld and Johnston [23] took curvature maxima points using k-cosine as
corners. Rosenfeld and Weszka [24] proposed a modification of [23] in which
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averaged k-cosines were used. Freeman and Davis [11] found corners at a maxi-
mum curvature change in which a straight-line segment moved along the curve.
The angular difference between successive segments was used to measure the
local curvature. Beus and Tiu’s [4] algorithm was similar to [11] except that they
proposed an arm cutoff parameter 7 to limit length of straight line. Davies [7] has
described a method for detecting corners using the Hough transform. Chetverikov
and Szabo [6] located corners at significant change in curve slope. In their
algorithm, corners are the locations where a triangle of specified size and opening
angle can be inscribed in a curve. Pritchard et al. [20] used similar triangles, as in
Chetverikov and Szabo [6], to identify the corners in which they compared area
of triangle with the actual area under the curve.

In general, the accuracy of any corner detection algorithm changes with noise,
size and resolution of input shape and nature of corner (sharpness). It may perform
well for a particular shape and display poor results for others. This does not happen
in cases of human judgment because they are gifted with an adaptive nature and
automatically adapt themselves to the changing environment. Study of this human
behavior may lead to development of adaptive algorithms. Various parameters are
generally introduced to compensate for such variations. But it would be preferable
if one could go for an algorithm that covered a wide range of shape variations
without changing its parameters.

Accuracy of any corner detector can be judged only if the actual corner posi-
tions are already known. A panel of ten human observers was used to judge the
actual location of corners for eight test shapes. Corners marked by a majority were
taken as actual corner positions which were then used in measuring the accuracy
of different corner detectors. Figure 11.2 shows them as marked with actual cor-
ner points on the shapes in Figure 11.1. Figure 11.1 shows the test shapes that
introduced some noise into the original noise-free pictures. In addition, limited
random noise was added to the scanned images to better test the robustness of the
algorithms. These shapes (let us call them as iml, im2, ..., im8 throughout this
chapter) are available in various references [6,37,38]. These shapes as well as few

()G (9
SR

FIGURE 11.1. Shapes used in the tests.
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FIGURE 11.2. Test shapes marked with actual corner points.

more shapes will be used to test corner detector algorithms in this chapter. Seven
corner detection algorithms have been implemented and tested. Four of them are
summarized in Section 11.3, while the rest are reported in Sections 11.4—11.6.

11.3  Summary of Commonly Referred Corner Detectors

This section is devoted to the summary of four corner detection algorithms used
by different authors. The summary is based on the survey in [6]. Each algorithm
inputs a chain-coded curve that is converted into a connected sequence of grid
points P; = (x;, ), i = 1,2,..., N. A measure of corner strength (cornerity)
is assigned to each point; then corner points are selected based on this measure.
For each approach, main steps are summarized together with the list of parameters
used in the algorithm and their default (“best”) values.

When processing a point P;, the algorithms consider a number of subsequent
and previous points in the sequence as candidates for the arms of a potential corner
in P;. For a positive integer k, the forward and the backward k-vectors at point P;
are defined as

aik = (Xi — Xipk Yi — Yirk) = (X5, Yik) (11.1)
bik = (xi — Xi—k, Yi — Yi—k) = (Xi. Vi) » (11.2)

where X l.';, Yij; and X, Y, are the components of a;; and b;, respectively.

11.3.1 Rosenfeld and Johnston (RJ73) Algorithm

To determine the corner strength, the k-cosine of the angle between the k-vectors
is used. It is defined as follows:

_ (aik - bix)

— . (11.3)
lair| 1bik|

ik
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where a;j; and b;; are explained in Equations (11.1) and (11.2), respectively. The
selection procedure for the corner points is as follows. Starting from m = kN,
k is decremented until ¢;; stops to increase. That is:

Cim < Cim—1 < ...<cip £ci,n—1.

Then k = n is selected as the best value for the ith point. A corner is indicated in
iif ¢;p > cjp forall j such that |i — j| < n/2, where p is the best value of k for
the jth point. The single parameter x specifies the maximum considered value of
k as a fraction of the total number of curve points N. This limits the length of an
arm at ¥ N. The default value is taken as x = 0.05.

For more details of the algorithm, the reader is referred to [23]. Demonstration
of the algorithm, for the shapes iml, im2, ..., im8, is made in Figure 11.24.
The choice of the selected parameters, for these figures, can be seen in
Table 11.2. The “D” in Table 11.2 is meant for the default values; the deviations
from the “D” are shown otherwise. The proposed algorithm yields reasonable
results at the shown values for all the eight shapes. Points not well located are
indicated with arrows.

11.3.2 Rosenfeld and Weszka (RW75) Algorithm

To determine the corner strength, the averaged k-cosine of the angle between the
k-vectors is used, which is defined as follows:

k
2 . .
=) > cirs if k is even,
- t=k/2
Cik = k
2 . .
3 z Cit, if k is Odd,
t=(k—1)/2

where c¢;; are given by Equation (11.3). The selection procedure for the corner
points is the same as in RJ73, but it is performed for ¢;;. Similarly, the choice of
parameter is also same as in RJ73, with the same default value ¥ = 0.05.

For more details of the algorithm, the reader is referred to [24]. Demonstration
of the algorithm, for the shapes iml, im2, ..., im8, is made in Figure 11.25. The
choice of the selected parameters, for these figures, can be seen in Table 11.2.
The “D” in Table 11.2 is meant for the default values; the deviations from
the “D” are shown otherwise. The proposed algorithm yields reasonable results
at the shown values for all the eight shapes. Points not well located are indicated
with arrows.

11.3.3 Freeman and Davis (FD77) Algorithm

To determine the corner strength at the ith point, the angle between the x-axis and
the backward k-vector defined in Equation (11.2) is given as:

an~! (/X)) if X5 | = |V
cot™! (Xl._k/Yl.;) , otherwise.

El

Ok = Oix = [
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The incremental curvature is then defined as

Oik = Oi+1k — Oi—1k- (11.4)
Finally, the k-strength in 7 is computed as
i+k
S =Int1.Int, > o, (11.5)
J=i
where
fp=max{t:5_yx € (—A,A),V1 <0<t}
and

n=max {t : Syrrox € (A, A),V1 <0 =<1},

account for the effect of the forward and backward arms as the maximum spacings
(i.e., numbers of steps from 7) that still keep the incremental curvature Jjg, within
the limit =A. The A is set as follows:

1
A = arctan ( ) . (11.6)
k—1

The selection procedure for the corner points is as follows. The i th point is selected
as a corner if Sj; exceeds a given threshold S and individual corners are separated
by a spacing of at least k + 1 steps. Two parameters are involved in the procedure.
These parameters are the spacing k and the corner strength threshold S. The default
values for the parameters are set as k = 5 and S = 1500.

For more details of the algorithm, the reader is referred to [11]. Demonstration
of the algorithm, for the shapes iml, im2, ..., im8, is made in Figure 11.26. The
choice of the selected parameters, for these figures, can be seen in Table 11.2. The
“D” in Table 11.2 is meant for the default values; the deviations from the “D” are
shown otherwise. The proposed algorithm yields reasonable results at the shown
values for all the eight shapes.

11.3.4  Beus and Tiu (BT87) Algorithm

The corner strength for this algorithm is determined in the same manner as in
FD77. However, the following modifications are made. The arm cutoff parameter
7 is introduced to specify the upper limit for #; and #, as a fraction of N. These are
explained as follows:

t1:max{t:é,‘_,),ke(—A,A),Vl§u§t, and tng},
and
rp =max {t : diyrtok € (A, A),V1<0v=<t, and 1=<tN},

where d;; and A are given by Equations (11.4) and (11.6), respectively. The corner
strength is obtained by averaging Equation (11.5) between two values kj and k»
as follows:



11.4. Chetverikov and Szabo (CS99) Algorithm 215

1 b
S k2_k1+1k_Zlelk.
The selection procedure follows exactly in the same manner as in FD77. There
is an involvement of two parameters for the procedure. These parameters are the
averaging limits k1 and kj, the arm cutoff parameter r and the corner strength
threshold S. The default values for the parameters are set as k; = 4,ky = 7,
7 = 0.05, and S = 1500.

For more details about the algorithm, the reader is referred to [4]. Demonstration
of the algorithm, for the shapes im1, im2, ..., im8, is made in Figure 11.27. The
choice of the selected parameters, for these figures, can be seen in Table 11.2.
The “D” in Table 11.2 is meant for the default values; the deviations from the
“D” are shown otherwise. The proposed algorithm yields reasonable results at the
shown values for all the eight shapes. Points not well located are indicated with
arrows.

11.4 Chetverikov and Szabo (CS99) Algorithm

In this algorithm [6] a corner point is defined as a point where a triangle of spec-
ified angle can be inscribed within a specified distance from its neighbor points.
The number of neighbor points to be checked are also predefined. It is a two-pass
algorithm. In the first pass, the algorithm scans the sequence of points and selects
candidate corner points. The second pass is postprocessing to remove superfluous
candidates.

11.4.1 First Pass

In each curve point P, the detector tries to inscribe in the curve a variable triangle
(P’, P, P*) constrained by a set of simple rules. For each point P;, it is checked
if a triangle of specified size and angle is inscribed or not. The following three
conditions are used:

2 < |P = PP <y, (11.7)

2 -2 2
diin < |P =P |” <dia. (11.8)
O = Gmax, (11.9)

where
P is the point under consideration for corner point,
Pk+ is the kth clockwise neighbor of P,

P, is the kth anticlockwise neighbor of P.
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Taking
a = |P — P,:r , the distance between P and P,j s
b= |P — P, |, the distance between P and P,

c= |P,:r - P }, the distance between P,:r and P .

The angle a can be computed by using cosine law as follows:

a? 4+ b* — c* —2abcosa =0,

o f a*+ b2 =P
a=cos | ————
2ab

All the three conditions described in Equations (11.7), (11.8) and (11.9) are nec-
essary for the first pass. Now each point P may have zero, one or more than one
alpha values. Among all alpha values, minimum value is taken as the alpha value
of that point P.

which yields:

11.4.2 Second Pass

The second pass removes some super points. A candidate corner point P from the
first pass is discarded if it has a sharper valid neighbor P, : a (P) > a (P,). A
candidate point P, is a valid neighbor of P if |P — P,|> < d2,,. As an alternative
definitions, one can use |P — P, |2 < d;%nn or the points adjacent to P in the same
manner.

The values dpin, dmax and amax are the parameters of the algorithm. Small val-
ues of dpyj, respond to fine corners. The upper limit dpy,ax is necessary to avoid false
sharp triangles formed by distant points in highly varying curves. The amay is the
angle limit that determines the minimum sharpness accepted as high curvature.

11.4.3 Demonstration

Practical demonstration of the corner detection algorithm CS99 is shown in
Figures 11.3—11.6. The outer boundaries of different images are selected to show
the results with the default values as well as with different values of diin and oimax.
The effects of changing the parameters dmin and omax are compared in Table 11.1.
Although the algorithm works fine and detects corners correctly in most of the
images, in some cases it may not find all of the corners at their most appropriate
positions such as in Figures 11.3 and 11.5. But the method, in general, takes care
of the points which can be considered as corner points for various applications.
However, appropriate parameter selection is a manual factor that a user needs to
select carefully.
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FIGURE 11.3. Corner detection with CS99: (a) corner points at default parameters; (b)
corner points at dpyip = 7 and amax = 160.

FIGURE 11.4. Corner detection with CS99: (a) corner Points at default parameters; (b)
corner points at dpyip = 8 and amax = 160.

(a) (b)

FIGURE 11.5. Corner detection with CS99: (a) corner points at default parameters; (b)
corner points at dpyip = 7 and amax = 140.
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FIGURE 11.6. Corner points at default parameters.

TABLE 11.1. Effects of changing parameter dpj, and amax on number of detected corner
points.

Figure# dmin  omax NoO Of corner points

11.3(a) 7 150 9
11.3(b) 7 160 7
11.4(a) 7 150 4
11.4(b) 8 160 12
11.5(a) 7 150 15
11.5(b) 7 140 1
11.6 7 150 2

11.4.4 Performance Evaluation

Criteria for performance evaluation of corner detectors were given by Chetverikov
and Szabo [6], as follows:

Selectivity: It is the most important factor for any corner detector. The rate of
correct detections should be high and the wrong ones should be low.

Single response: Each corner should be detected only once.

Precision: The positions of detected corners should be precise.

Robustness to noise: The algorithm should perform well for noisy shapes
as well.

Easy setting of parameters: Parameters should be logical and easy to tune for a
variety of shapes.

Robustness for parameters: Minor changes in parameter should not cause dras-
tic changes in performance.

Speed

For more details of the algorithm, the reader is referred to [6]. Demonstration of
the algorithm, for the shapes iml, im2, ..., im8, is made in Figure 11.27. The
choice of selected parameters for these figures can be seen in Table 11.2. The “D”
in Table 11.2 is meant for the default values; the deviations from the “D” are shown
otherwise. The proposed algorithm yields reasonable results at the shown values
for all the eight shapes. Points not well located are indicated with arrows.
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TABLE 11.2. Parameter values for eight tested shapes.

Algorithm iml im2 im3 im4  im5 Im6 im7 im8
SAMO06 D D D D D D D D
CS99 D D D D D D D D
BT87 D D D 500 1000 1300 D 1000
FD77 D 72500 52500 5500 D @ 7,1000 D D
RW75 D 0.15 D D D D D D
RJ73 D 0.15 D D D D D D

It has been observed that, for RJ73 and RW75, somewhat better results can be
obtained when the parameters are slightly modified. However, for stable perfor-
mance, FD77 and BT87 need more frequent modifications of their parameters. In
case of BT87, only S needed to be varied. CS99, of course, outperforms RJ73,
RW75, FD77 and BTS87.

11.5 Sarfraz, Asim and Masood (SAMO06) Algorithm

In this algorithm, detection of corner points is based on calculation of distances
from the straight line joining two contour points on two sides of that corner. The
algorithm is robust, simple to implement, efficient and performs well on noisy
shapes as well. The algorithm is divided into two passes. Candidate corner points
are detected in the first pass and superfluous candidate corner points are discarded
in the second pass. The two passes are explained below in detail.

11.5.1 First Pass

Any contour point P; is a candidate corner point if it satisfies two conditions.
First, P; (located between two contour points P; and Py) is at maximum perpen-
dicular distance from the straight line joining these two contour points. Second,
the maximum perpendicular distance is greater than the given threshold value D.

For the contour point P; where 1 < i < n and n is the number of contour points
in a closed loop, the contour point Py is given as:

P [Pi+L, if (i +L) <n, (1110)

Piyr_,, otherwise,

where L is a length parameter whose default value is 14. The perpendicular dis-
tance of all contour points between P; and Py are calculated from the straight line
joining these contour points. Point P; is the point with maximum perpendicular
distance as shown in Figure 11.7. P; is selected as a candidate corner point if its
perpendicular distance (d;) from the straight line is greater than the parameter
D and the distance d; is assigned to P;. The perpendicular distance d; of point
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(a) (b)

FIGURE 11.7. The contour point at maximum perpendicular distance from the straight line
P; Py is marked as P;. Same P; respond to the two different straight lines in (a) and (b).

P;j(x, y) from the straight line joining the point P;(x, y) and Py (x, y) can be cal-
culated as:

|Pix — Piyx|, ifm,=0,
d: = P —mP;,+mP . —P: . (11.11)
! | JoJ kil L L , otherwise,
m2 +1

where

P, - P
Dy _ Ty = iy (11.12)

my P kx — P i,x ’

The next candidate corner point is detected for a new straight line by increment-
ing both i and k. The process continues for i = 1 to n. For one straight line, there
can be only one candidate corner point or no candidate corner point at all. More
than one straight line may respond to the same point P; as shown in Figure 11.7(a)
and 11.7(b). In this case, the higher value of d; is assigned to P;.

11.5.2 Second Pass

Sometimes the corners to be detected are not the sharp angle points and we may
detect superfluous candidate corner points in first pass, as shown in Figure 11.8.
These superfluous points are discarded in second pass. The candidate corner point
is superfluous if any other candidate with higher value of d; is in the range R. The
default value of parameter R is equal to parameter L. Therefore for any candidate
point to be selected as a corner point, it must have its highest value of d; among
the R number of points on both of its sides. Three different points are detected as
candidate corner points in Figure 11.8(a), 11.8(b) and 11.8(c). P; of Figure 11.8(a)
and 11.8(c) are discarded as P; of Figure 11.8(b) has higher d;, which is in the
range R.
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Py

() (b) (©)

FIGURE 11.8. Superfluous candidate corner points are P; in (a) and (c).

11.5.3 Parameters

The algorithm needs three external parameters—L, D and R, as given above. The
length of the straight line P; Py is fixed as per length parameter L throughout the
corner detection process. Thus, the straight line will always join the two contour
points, L points apart. The default value of L is 14. This parameter takes care of
object scaling and resolution. The default value assigned to L suits the size of all
test shapes demonstrated in Section 11.4.

Corners are the high curvature points which are recognized by their local sharp-
ness and opening angle. We use the distance parameter D as a substitute for
the sharpness and opening angle, to check their validity as a corner point. Any
point whose distance from the straight line P; P, goes beyond parameter D can be
selected as a valid corner point. The default value of D is 2.6. This is an important
parameter to control false selection of corners due to noise and other irregularities
in a curve. Higher values of D may miss some valid corners and lower values may
hit the wrong corners as well. For noisy shapes, accurate corners can be detected
by adjusting this parameter (see Figure 11.17(a)).

Sometimes local sharpness of a corner is not high enough, but a global view of
shape identifies it as a valid corner (Figure 11.8). Such corners are also detected
successfully with this method at the cost of some additional invalid (superfluous)
corners. These invalid corners are removed in the second pass by fixing the dom-
ination range R. Only the most dominant corner (with highest d;) in the range R
is selected as a valid corner and all others are discarded. The default value of R is
equal to L but it must be given lower value to enable detection of closely located
corner.

11.5.4 Demonstration

The criteria for performance evaluation in this algorithm is the same as given by
Chetverikov and Szabo [4], which is explained in Section 11.4.4. Test results of
this algorithm are compared with five corner detectors presented in Chetverikov
and Szabo [6] and explained in Sections 11.3—11.4. These are based on scanned
images presented in [7], with the inclusion of some noise into the original noise-
free pictures. It also uses the same noisy test shapes, which were downloaded from
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FIGURE 11.9. Detected corner points for iml as per parameters given in Table 11.2: (a)
SAMO6, (b) CS99, (c) BT87, (d) FD77, () RW75, (f) RJ73.

FIGURE 11.10. Detected corner points for im2 as per parameters given in Table 11.2: (a)
SAMO6, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RI73.

the website [17]. Very minor variations in demonstrated test shapes from [6] are
possible; however, efforts have been made to keep them close to [6].
Comparative results are demonstrated for eight different shapes (iml to im8;
see Figure 11.1). Results of the six algorithms in Sections 11.3-11.4 are presented
together for each shape to have an effective comparison (see Figures 11.9- 11.16).
Parameters assigned for each test shape in a particular algorithm are also kept
closer to ones demonstrated in [6]. Parameters assigned in each test are summa-
rized in Table 11.1. In that table, parameter value “D” stands for a default value.
For BT87, the corner strength parameter S was modified for im4, im5, im6 and
im8. For FD77, the spacing parameter k and corner strength parameter S were
modified for im2, im3, im4 and im6. For RW75 and RJ73, parameter k was modi-
fied for im2. For details of these parameters, the reader is referred to [4,6,7,28,38].
For the results of im1 in Figure 11.9, SAMO06 and CS99 produced similar results
and detected precise corners without selecting any wrong ones. One may accept
corners of FD77 as well. All other algorithms tend to hit the wrong corners.
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(a) (b) (c)

(d) (e) (

.

FIGURE 11.11. Detected corner points for im3 as per parameters given in Table 11.2: (a)
SAMO6, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

(a) (b) (c) (d) f)
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FIGURE 11.12. Detected corner points for im4 as per parameters given in Table 11.2: (a)
SAMO6, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RI73.

For im2 in Figure 11.10, results of all algorithms were the same except RW75
& RJ73. For im3 in Figure 11.11, SAMO06, CS99 and BT87 precisely detected
corners, and all other algorithms detected few additional wrong corners.

For im4 in Figure 11.12, very different results were obtained by each algo-
rithm due to heavy noise along the object boundary. SAMO06 detected corners
with one or two additional wrong corners, but all of them were well separated.
All other algorithms either detected many wrong corners or missed the actual cor-
ners. Results of RW75 and RJ73 were badly affected by the irregularities along the
curve. Because the image contained heavy noise along its curve boundary, SAMO06
did produce precise results with slight modification of parameter D as shown in
Figure 11.16(a), which has not been possible due to any other algorithm. For im5
in Figure 11.13, SAMO6 again outperformed all other algorithms in corner selec-
tivity. CS99 achieved similar corners by adjusting parameters.
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FIGURE 11.13. Detected corner points for im5 as per parameters given in Table 11.2: (a)

SAMO6, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RI73.

FIGURE 11.14. Detected corner points for im6 as per parameters given in Table 11.2: (a)
SAMO6, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.

Cgal (R
R R

For im6 in Figure 11.14, results of SAMO06 did not find any wrong corner. How-
ever, it missed approximately four corners according to the human vision decision
as shown in Figure 11.2. By slightly reducing the dominant range parameter R,
SAMO6 has added one missed corner to the list (see Figure 11.17(b)). Detected
corners by SAMO6 were precise and without detecting any wrong ones. For im7
in Figure 11.15, detected corners by SAMO6 were precise, well located and with-
out wrong ones. Results of RJ73 were close to the results by SAMO6 but few
detected corners (indicated with arrows) were not at their perfect locations.
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FIGURE 11.15. Detected corner points for im7 as per parameters given in Table 11.2: (a)

SAMO6, (b) CS99, (c) BT87, (d) FD77, (¢) RW75, (f) RJ73.

FIGURE 11.16. Detected corner points for im8 as per parameters given in Table 11.2: (a)
SAMO6, (b) CS99, (c) BT87, (d) FD77, (e) RW75, (f) RJ73.
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For im8 in Figure 11.16, results of SAMO06 were good but not of the quality
demonstrated for other shapes. This was because the corners of this shape were
closely located. Therefore, the dominant range parameter R could be modified for
better results. Results of this shape after adjusting parameter R is demonstrated in
Figure 11.17(c). CS99 produced the same results by adjusting its parameters [4].

It can be observed in all above demonstrated results of SAMO6 that the rate of
selecting wrong corners is almost zero; this is only in im4 and only with default
parameters. Figure 11.17 shows results of im4, im6 and im8 with a slight variation
in the parameters of SAMO06. A change in parameter was required due to variations
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(a)

FIGURE 11.17. Detected corner points with SAMO06: (a) im4 at D = 3; (b) im6 at R = 13;
(c)im8at R =17.

in the nature of shapes as discussed above. It is not possible to develop a corner
detector, with fixed parameter values, that performs equally well on shapes of
varying scale, resolution, noise level and nature of corners (sharpness). Therefore,
variation of parameters for different test shapes is perfectly fine but the algorithm
should then be able to detect proper corners. SAMO6 gets very close to that level,
however, automatic calculation of parameters will be a good contribution, which
can make this algorithm self- sufficient.

It is not easy to compare computational efficiency of different algorithms due
to implementation variations. However, a rough estimate of their efficiency can
be made by looking at the calculations involved. The SAMO6 algorithm traverses
around the closed loop only once in the first pass and detects candidate corners
by calculating simple distances (no angles or curvature evaluation involved). Can-
didate corners are then traversed once in the second pass to discard superfluous
candidates. This definitely indicates the computational efficiency of the algorithm.

11.6 Masood and Sarfraz (MS06) Algorithm

This algorithm is different from traditional approaches as it does not involve cal-
culation of the cosine angle and curvature and incorporates both local and global
views of a given shape. A set of three rectangles represents the three views of a
given shape. These rectangles are moved along the shape boundary and contour
points in each rectangle as each step is counted. This information (i.e., the count
of points in each rectangle) is used to make a final decision about the corner. This
algorithm covers a wide range of shape variations without changing its parameters.

This algorithm works on sequence of n integer coordinate points describing a
closed curve C,

C = {Ci = (xi,yi),i = 1,...,1’!}

where C;41 is a neighbor of C; (modulo n). This technique of corner detection is
based on three sliding rectangles (Figure 11.18) along the given curve. Information
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[ L »
2w wi °C,
| 2L I

FIGURE 11.18. Three sliding rectangles (R, R» and R3) used to detect corners.

about location of the surrounding contour points is gathered in its way. Three
sliding rectangles with common centroid at C; are given as:

Ry =2L x2W,
Ry =L x2W,
Ry=LxW.

Rectangles must lie along the slope S of curve with center at contour point
C;. The slope of contour at C; is a straight line between two points (P; and P»),
obtained by taking the mean of k£ + 1 points (including C;) on both sides of C;. It
is given as follows:

P =

(11.13)
P, =

» »
— _

S
Lya,
l+k

The contour point C; automatically adjusts at the center when length and width of
R; is adjusted at the L and W distance from C;. The length is taken along the slope
S and the width is taken perpendicular to the slope S. The p01nt at unit distance
from C; along the slope S may be calculated as C; + | P P | , where | P| P»| is the
length of straight line between point P and P». Rectangles Ry and R3, sharing a
common center C;, are also drawn with this method. Thus, Rz C Ry C Rj.

The set of rectangles is moved along the given curve/contour and a number of
neighboring points in each rectangle are counted, which can range from C;_p to
Cit1.LetnRy;, nRy; and nR3; represent the number of points in rectangles Ry,
R> and R3, respectively, having the ith contour point at the centroid. For example,
in Figure 11.19, nRy; = 21, nR>; = 15 and nR3; = 13. The value of nR|, nR;
and nR3, for each contour point is ultimately used while making final decision
about the corners.

Corners may be found easily from computer-generated curves and shapes by
simple analysis of their curvature. Finding corners from outlines of natural shapes
and scanned images imposes a challenging task. This is due to noise and low
resolution of images, which introduces irregularities along the object boundary.
Such irregularities of a curve do not impose much of a problem in human judgment
of corners because people have the inherent quality of automatically adjusting
their scale/view (local, global or in-between), which is the most appropriate to
keep in view noise and size of image. In a smaller view, only a small part of a curve
is observed, whereas in a broader view a bigger part is considered. A broader view
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FIGURE 11.19. A snapshot of sliding rectangles at the ith contour point indicated with an
arrow.

gives the general area of a curve that may have a corner and hence the effect of
noise (irregularities) is lesser in that view. Similarly, in a smaller view, the effect
of noise is higher, but the absolute position of corners may be located in that area.
Relying solely on one view (by fixing a region of support) is one major drawback
of most corner detectors.

The MS06 algorithm combines three levels of view, following the natural cor-
ner detection methodology. A set of three rectangles (described above) takes three
different views of contour points. A record of their count (nR1,;, nR>; and nR3 ;),
for each curve point, finds enough information to locate the proper corners. Rec-
tangle R; takes a broader picture of a curve and passes only those contour points
for which no part of curve lies in the area (R;—R»). Such curve points can be
described as set G as follows:

G ={C; :nRy; —nRy; =0}, (11.14)

Or
G = {C,‘ . I’lRl,,' = nRz,i}.

Set G represents a wider view of an image and does not respond to fake corners
(at curve irregularities) as discussed above. For example, in Figure 11.20 some
snapshots along irregular/noisy curves are shown. Centroids in Figure 11.20(a)
and 11.20(b) appear to be corners if a smaller part of a curve is viewed, but these
are not the valid corners that can be observed in their broader view. Such points are
rejected in a MSO06 algorithm as it does not fulfill condition of Equation (11.14). In
other words, some parts of a curve lie in the area (R — R2) which is indicated by
arrows. The curves in Figure 11.20(c) and 11.20(d) would only be taken in set G.

Set G does not consist of simple corners; rather it gives a general area of curve
around the corner. Figure 11.21 shows some images marked with set G. Connected
points in set G form one group and a number of groups may exist in set G. The
maximum of one corner point can exist in each group. In each group, all points
with nR3; value below the threshold “n” are determined, and the point with min-
imum nR3,; among them is selected as a corner. Curve point in Figure 11.20(c)
was part of set G but does not fall below threshold 1; thus it cannot be considered
as a corner. Sometimes, none of the points in a group with nR3; below 1 exist,
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’ ,g, (b

FIGURE 11.20. Some snapshots of a rectangle sliding over noisy/irregular curves. Set G
of the curve does not support (a) and (b). Part (c) is also rejected as its nR3 ; value is above
threshold “n.”

FIGURE 11.21. Some shapes marked (bold) with contour points in set G. Corners are
marked in gray.

which means a corner does not exist in that group. The corners for Figure 11.21,
found with this method, are marked by gray circles.

Pseudo code of MS06 algorithm is given in Figure 11.22. In this algorithm, the
default value of L is set as 16. The values of L/8 and 3L/4 are assigned to W and
1, respectively. All others parameters (lengths and widths of all rectangles) are
relative to L (Figure 11.18). The value of parameter L depends on the noise, reso-
lution and size of the image. Assigned sizes of rectangles are suitable to a certain
range of size and resolution, which covers all demonstrated shapes in this chapter.
These sizes were found after extensive testing on many shapes of similar size and
resolution. The relationship between relative size of rectangles is set (again with
extensive testing) for the convenience of using these parameters. The user needs to
tune only one parameter instead of three. One can improve the accuracy of corner
detection by assigning independent sizes to these rectangles, but that would be at
the cost of complex tuning of parameters.
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For each contour point C;
CountnRy;,nRy;,nR3;
End For

G ={Ci :nRi; =nRy;}
Make groups of connected points in G

For each group G

Corner = min{Gy_; : nRy; <n}
an,j

End For

FIGURE 11.22. Algorithm of proposed corner detector.

11.6.1 Performance Criteria

A variety of corner detectors have been proposed for digital curves. Their com-
parative study has also been presented by some authors. Abe and Kandonaga [1]
compared seven corner detectors. In their testing, they used flow chart symbols
and sample figures (used for dominant point detection). Their evaluation criteria
consisted of (a) degree of coincidence with the corner points detected by human
subjects, (b) processing time, and (c) invariance of results against rotation, size
change and reflection of input image. Guru et al. [12] presented a comparison of
three corner detectors on the basis of similar criteria. In both comparisons, the
role of noise/irregularity along the curve was ignored, which can adversely affect
the results of any corner detection algorithm. Liu and Srinath [17] proposed eval-
uation criteria that included noise sensitivity. Performance evaluation criteria by
Chetverikov and Szabo [6] was (a) selectivity: rate of correct detection; (b) single
response: each corner should be detected only once; (c) precision: precise position
of detected corners; (d) robustness to noise; and (e) easy setting of parameters.

Unfortunately no standard test shapes and evaluation criteria (especially for dig-
ital curves) have been decided for comparison of corner detection results. Corner
detection algorithms are normally very sensitive to size/resolution of tested shapes,
noise/irregularities along the boundary curve, sharpness of expected corner points
and parameter values used.

Corners are sometimes confused with dominant points. Teh and Chin [31]
proposed a dominant point detection algorithm and compared with other algo-
rithms (including corner detectors) on the basis of maximum error, integral square
error and figure of merit. Such criteria are suitable for polygonal approximation
and poor for corner detectors. Rattarangsi and Chin [21] have also made similar
comparisons. Care must be taken while comparing corner detection algorithms.
Masood and Sarfraz [38] proposed a criteria for evaluation/comparison of corner
detection algorithms. It is given as follows:

e Accuracy: This is the most important criterion without which all other mer-
its of any corner detector have no value. Accuracy of detected corners will be
measured by calculating: (a) percentage of correctly determined corners, (b)
percentage of wrongly detected corners, and (c) percentage of missed corners.
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Localization error:

Noise sensitivity: Noise can adversely affect the accuracy of detected corner
points.

Transformation invariance:

Single response: Sometimes one corner point is selected more than once and
sometimes two or three closely located points represent the same corner posi-
tion. A corner should produce a single response.

Parameter setting: In corner detection, parameters are very important to com-
pensate for noise and size variations. One setting of parameters should be robust
to minor shape variations.

e Computation time.

11.6.2 Demonstration

Testing of six corner detectors BT87, FD77, RW75, RJ73, CS99, and SAMO06
has been shown in Sections 11.3— 11.5. Figures 11.24— 11.29 show the results for
these tests against the test shapes iml, im2, ..., im8. Detected corners by MS06
algorithm are shown in Figure 11.30. Best results for each algorithm were obtained
by assigning optimum parameter values, and all results of the MS06 algorithm
were taken on default parameters. A list of parameters assigned for each algorithm
is summarized in Table 11.3. The letter “D” is used for the default setting. For
details of these parameters, readers are referred to respective algorithms in this

TABLE 11.3. Parameter values assigned for results in Figures 11.24-11.29.

Parameter Values

Shapes RJ73 RWT75 FD77 BT87 CS99 SAMO06 MS06
im1 D D D D D D D
im2 Kappa Kappa Spacing D D D D
(k) =0.15 (k) =0.15 (k) =7, corner
strength
(S) = 2500
im3 D D S =6, D D D D
K = 2500
im4 D D Spacing Corner dmin = 8, D D
(k) = 5, corner strength Omax = 140
strength (S) =500
(S) =500
im5 Kappa Kappa D Corner dmin =8, D D
(x) = 0.06 (x) =0.07 Strength Omax = 140
(S) = 1000
im6 D D Spacing Corner D D D
(k) =17, corner strength
strength (S) = 1300
(S) = 1000
im7 D D D D D D D
im8 D D D Corner D D D
strength

(S) = 1000
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chapter. Table 11.4 summarizes the number of correctly and incorrectly detected
corner points for each algorithm (see Figures 11.24—11.30). Some corner points
were not well located, which are indicated with arrows in each of Figures 11.24—
11.30 whereever applicable. Figure 11.23 shows overall accuracy comparison of
all algorithms.

TABLE 11.4. Number of correctly and incorrectly detected corner points (Figures 11.24—
11.29).

Correct Incorrect

RIJ RW FD BT CS SAM MS RJ RW FD BT CS SAM MS

iml 9 9 9 8 9 9 9 3 3 2 2 0 0 0
im2 2 2 2 2 2 2 2 2 2 0 0 0 0 0
im3 4 4 3 4 4 4 4 5 5 5 0 0 0 0
imd 5 5 4 4 6 6 6 11 12 3 1 4 2 0
im5 7 8 9 10 9 9 9 3 3 6 3 0 0 0
imé 13 17 12 16 24 20 24 4 2 2 0 4 0 1
im7 12 12 8 7 12 12 12 5 6 3 3 9 4 5
im8 16 15 14 22 25 26 27 2 2 0 1 1 0 0

100 1+

75

W % Correct
50 A
O % Incorrect
25 A1
0 - T T T T T |
RJ RW FD BT CS MS

FIGURE 11.23. Overall accuracy comparison for eight test shapes of in Figure 11.1.

FIGURE 11.24. Corner detection by the RJ73 algorithm [23]. Points not well located are
indicated with arrows.
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FIGURE 11.25. Corner detection by the RW75 algorithm [24]. Points not well located are
indicated with arrows.

.
T el

FIGURE 11.26. Corner detection by the FD77 algorithm [11].

Gfﬁ

FIGURE 11.27. Corner detection by the BT87 algorithm [4]. Points not well located are
indicated with arrows.
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FIGURE 11.28. Results of corner detection by the CS99 algorithm [6]. Points not well
located are indicated with arrows.
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FIGURE 11.29. Results of corner detection by the SAMO06 algorithm [28].
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FIGURE 11.30. Corner detection by the MS06 algorithm. The rectangular box shows im8
with parameter value L = 11.
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11.7 Overall Analysis

Overall accuracy of correctly detected corners in the FD77 algorithm was the low-
est (60%) for presented test shapes. One can observe (in im3, im4, im6, im7, im8
of Figure 11.26) that the FD77 algorithm misses some important corner points.
For the RJ73 algorithm, although the accuracy of correctly detected corners (67%)
was higher than the FD77 algorithm, it falls behind the FD algorithm in the case of
localization error (indicated by arrows in the respective figures) and the percent-
age of incorrectly detected corners (see Figure 11.23). Overall, correctly detected
corners by the RW75 algorithm (71%) was better than both algorithms, but the
percentage of wrong (incorrect) corners (34%) was equal to the RJ73 algorithm.

The reason for a higher percentage of incorrect detection in the RJ73 and RW75
algorithms was high noise sensitivity (see im4 in Figures 11.24 and 11.25). The
percentage of correct corner detection by the BT87 algorithm is higher (72%) than
the RJ73, RW75, and FD77 algorithms, but it also tends to miss some important
corners (in im4, im6, im7 of Figure 11.27). Performance of the BT87 algorithm
is better than the RJ73, RW75, and FD77 algorithms with respect to localization
error and incorrect detection (10%). Considerable improvement of overall accu-
racy can be seen in the CS99 algorithm with 92% of correct detection, 17% of
incorrect detection and improvement in localization error. Some incorrect detec-
tion was observed (in im4 and im7 of Figure 11.28) due to heavy noise, which
affected the overall performance of their algorithm.

The percentage of correctly detected corners by the SAMOG6 algorithm is around
90%, which is better than the BT87, RJ73, RW75, and FD77 algorithms. By
slightly reducing the dominant range parameter R, SAMOG6 has the ability to add
more missed corners, as was seen in Figure 11.17. Detected corners by SAMO06 are
precise, and no wrong corners are detected. It has the upper hand in the sense that
it does not find wrong corners. Moreover, it has the lowest percentage of incor-
rect detection (6%), which is another big advantage of this algorithm over the five
algorithms BT87, RJ73, RW75, FD77, and CS99. One can hardly find a error at
any detected corner points.

The percentage of correctly detected corners by the MS06 algorithm (93%) is
slightly better than the CS99 algorithm. There was hardly any corner missed by
this algorithm except in im8 of Figure 11.30. This was due to low resolution of
that shape. Modifying the parameter value for im8 (at L = 11) raised accuracy of
correct detection to 98%. Result of im8 with new a parameter value is shown in the
rectangular box in Figure 11.30. The lowest percentage (equal to that of SAMO06)
of incorrect detection (6%) is another big advantage of this algorithm. One can
hardly find localization error at any detected corner points. No other algorithm
can accurately find all the corners of im4 due to heavy noise except the MS06
algorithm and that is without any incorrect corner(s). Results of he MS06 algo-
rithm were taken on default parameter value (i.e., L = 16) and performance is
expected to improve with fine tuning (e.g., im8 in Figure 11.30). A corner point is
represented by a single point with minimum localization error.
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11.8 Piecing Boundaries

Segmentation of object boundaries was one of the main objectives behind the work
on corner detection. The boundary/outline is divided into different pieces or seg-
ments of curves from detected corners, and each segment can be processed for
capturing separately or in a parallel way. Figure 11.31 shows outline segmentation
from detected corners. Figure 11.31(a) is the outline of the original object marked
with detected corner points. These corner points were found using the SAR06
method. Figure 11.31(b) is the object after segmentation. The object was broken
into eight segments in total.

Converting the outline segments into vector form, which is the objective
of the next chapter, is one of the useful applications of the corner detection
algorithms. After segmenting successfully, vectorizing the outline can be managed
in a computationally economical way by using a suitable technique from the next
chapter. The interested reader is referred to [26,27] for some efficient vectorization
techniques.

The image in Figure 11.32(a) has been tested for the vectorized outline cap-
ture using the Bézier cubic approximating technique in [26]. Test results of the
self-generated shape at threshold 3 is shown in Figure 11.32. Figure 11.32(a)
is the original bitmap image; Figure 11.32(b) is the extracted outline; and
Figure 11.32(c) shows the detected corner points through the MS algorithm.
Figure 11.32(d) shows the end points of the curve segments (over the computed
outline) after segment subdivision. Figure 11.32(e) shows the cubic Bézier control

Seg 5

Seg 7

Seg 8
Seg 1

Seg 2
Seg 6
a b
Seg 3
Seg 4

FIGURE 11.31. Outline segmentation from corners: (a) Detected corners; (b) segmented
boundary with allotted segment numbers.
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(a) (b)

(d) ©
FIGURE 11.32. Capturing an outline object: (a) bitmap image; (b) extracted boundary;

(c) detected high curvature points; (d) segment end points after segment sub-division; (e)
detected piecewise cubic Bézier control points; (f) computed boundary.

(©

)

points detected in each segment. Cubic Bézier control points (segment end points
or corner points) are shown by (), and computed control points are shown by (°).
The computed (vectorized) outline is shown in Figure 11.32(f) for easy compari-
son with the original outline in Figure 11.32(b). Note that very few segments are
making a very elegant approximation.

11.9 Summary

Corners are not simply the local maxima, high curvature or dominant points.
Points of abrupt change from where the shape can be segmented, and which human
beings perceive as meaningful points, are the true corners. Seven corner detection
approaches, namely, BT87, RJ73, RW75, FD77, CS99, SAMO06, and MS06, have
been discussed, experimented with, and analyzed. The SAR06 and MS06 algo-
rithms have been found to be the most accurate and efficient as they do not involve
curvature analysis and determination of trigonometric functions such as a cosine
angle. A comparative study, based on proposed parameters, shows that the SAR06
and MSO06 algorithms have various advantages over previous techniques. Some
of the advantages are that (1) they are the most consistent with human judgment
of corners; (2) the ratio of false detection is extremely low; (3) they are com-
putationally efficient; (4) they are invariant to transformation changes; (5) they
are highly insensitive to noise/irregularities along the curve; (6) they are robust
to minor changes in size and resolution; and (7) they are very suitable for nat-
ural shapes/objects. Independent tuning of the parameters can further fine tune the
results if needed in some extreme case.

Object segmentation is used as a preprocessing step in a capturing process.
Objects are segmented from the detected corner points. SAMO06 and MS06 seem
to be most optimal methods presented in this chapter, which meet the needs of
capturing process. Results of both of the algorithms were compared with five com-
monly referred algorithms and the two methods outperformed in all comparisons.
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Specifically, MS06 was found to be slightly superior to Sam6. The algorithms are
equally useful for any other application employing corner detection.

11.10 Exercises

. Write a program to implement the following seven corner detectors—BT87,

FD77, RW75, RJ73, CS99, SAMO06, and MS06— described in Sections 11.3—
11.6.

. Test your programs for the test shapes im1, im2, ..., im8 used in this chapter.
. Collect six different test images other than those used in this chapter and test

your programs for these test shapes.

. Using your program in Exercise 11.10.2, verify the results in Table 11.4 using

the parameter settings in Table 11.3.

. Using your program in Exercise 11.10.2, develop similar results as those in

Table 11.4 using the parameter settings in Table 11.3.

. Using your program in Exercise 11.10.2, develop similar results as those in

Table 11.4 using the parameter settings other than in Table 11.3.

. Develop a comparative study between your results obtained in Exercises

11.10.5 and 11.10.6.
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12

Linear Capture of Digital Curves

Abstract. This chapter is devoted to the detailed study of linear or polygonal approxi-
mation needed in various applications, including shape recognition, point-based motion
estimation, coding methods, and so on., in the areas of computer graphics, imaging and
vision. Some important aspects related to capturing with linear approximation have been
addressed. A detailed survey of many methods, in the current literature has been made.
Some commonly referred algorithms have been explained and their results are demon-
strated and compared.

12.1 Introduction

The most appealing representation of information to humans is in a visual form.
Effective computer representation of these visual shapes is an important task.
Boundary representation of shapes and their approximation economizes memory
storage and processing time for subsequent procedures.

The goal of a linear approximation is to capture the essence of boundary shapes
with the fewest possible segments. The term dominant point (DP) is assigned to the
end points of these segments. Linear approximation for closed curves is referred to
as polygonal approximation because approximating line segments joined together
form a polygon. This is one of the popular approaches, which can provide good
representations of 2D shapes at different resolutions. One obvious advantage of
using this approach is high data reduction and its immediate impact on the effi-
ciency of the subsequent feature extraction and/or shape-matching algorithms.
It has been applied in shape recognition, point-based motion estimation, and cod-
ing methods. This representation gained popularity due to its simplicity, locality,
generality and compactness [22].

The development of this approach has its roots back to the research carried
out in psychology toward the study of shape perception and shape understanding.
In one of his experiments, Attneave [1] created the picture of a cat by identifying
high curvature points in an ordinary snapshot, and linking them by line segments.
A human observer easily recognized the resulting sketch. The conclusion was that
those high curvature points are rich in information content, and they are able and
sufficient to characterize a contour. These points are considered as representative

241
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features for the object contours. This idea has been the starting point for most
of the subsequent efforts in this direction. Following Attneave’s [1] observation,
there are many approaches developed for detection of dominant points.

Algorithms on polygonal/linear approximation can be classified into three main
groups, namely, sequential approach, split-and-merge approach and heuristic-
search approach. For sequential approaches, Sklansky and Gonzales [23] pro-
posed a scan-along procedure that starts from a point and tries to find the longest
line segments sequentially. Ray and Ray [11] proposed a method that determines
the longest possible line segments with the minimum possible error. Teh and
Chin [18] determined the region of support for each point based on its local
properties and computed its relative significance (curvature) and finally detected
dominant points by a process of nonmaxima suppression. Kurozumi and Davis [7]
proposed a minimax method that derives the approximating segments by minimiz-
ing the maximum distance between a given set of points and the corresponding
segments. Most of the sequential approaches are simple and fast, but the quality of
their approximating results depends on the location of the point where they start
the scan-along process.

For split-and-merge approaches, Ramer [10] presented a recursive method start-
ing with initial boundary segmentation. At each iteration, the segment was split at
the point that has the farthest distance from the corresponding segment unless
the approximation error is no more than the prespecified error tolerance. Sarfraz
et al. [14] proposed a recursive algorithm in which the longest line segments within
the specified threshold were determined. Common points were marked as domi-
nant points and curve segment was split into subsegments from each dominant
point and processed recursively. Held et al, [24] proposed a split-and-merge tech-
nique in which difference of slope was used to split segments and these were
merged on the criteria of perceptual significance. The approximation results of
the split-and-merge approaches may be far from the optimal one if a poor initial
segmentation is used.

For the heuristic-search approach, an exhaustive search for the vertices of the
optimal polygon from the given set of data points will result in an exponential
complexity. Dunham [25] and Sato [26] used dynamic programming to find the
optimal approximating polygon. However, when the starting point is not specified,
these methods require a worst-case complexity of O(n*) where n is the number
of data points. Some authors [27-30] have used a genetic algorithm for polygonal
approximation of digital curves. Tabu search [31] have been proposed to solve the
polygonal approximation problem and to obtain better results than most of those
due to the local optimal methods. Yin [32] has proposed polygonal approxima-
tion technique using ant colony search algorithm. Heuristic-search algorithms are
computationally expensive and are not guaranteed to be optimal.

This chapter, in addition to the summary of various algorithms in the liter-
ature, is dedicated for the recursive algorithm devised by Sarfraz et al. [14]
for piecewise polygonal approximation of digital curves. For simplicity, the
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algorithm will be called SAMAPA (Sarfraz-Asim-Masood Algorithm for Polygo-
nal Approximation).

Algorithms developed for polygonal approximation and dominant point detec-
tion can be classified into two categories. The first is to extract dominant points by
curvature evaluation [9,11,15,18-20] and second is by fitting the longest straight-
line segments [5,7, 10, 16, 17,21]. Extraction of dominant points depends on the
accuracy of curvature evaluation and correct determination of the region of sup-
port at each contour point. It is computationally more expensive and the results
are far from optimal. Polygonal approximation of curves by fitting straight lines is
more logical and is an efficient approach. The SAMAPA technique explained in
this chapter belongs to the second category.

The break points, in this chapter, will be extracted as a preprocessing step
toward polygonal approximation. These break points are the candidates to be
selected as the end points of approximating straight lines. While approximating
the curve with straight lines, it is important to select the best end points of lines
such that the number of line segments and approximation error are minimized. The
polygonal approximation will be carried out in clockwise as well as anticlockwise
directions around the given curve to look for an optimal solution between the two.

The organization of the chapter is as follows. Some important aspects related to
capturing with linear approximation have been addressed in the following section.
The preprocessing stage is discussed in Section 12.2. The polygonal approxima-
tion algorithm is discussed in Section 12.3. Experimental results are evaluated in
Section 12.4. Finally, Section 12.5 concludes the chapter.

12.2  Some Important Issues

Research on polygonal approximation is based on the number of issues that have
a direct impact on the quality and performance of these algorithms. These are
selection of input parameters, finding region of support, error calculation, shapes
to be used for testing, min-# and min-¢ problems. A standard algorithm is expected
to address these issues and propose a solution. These issues are described below
in detail.

12.2.1  Input Parameters

Most of the algorithms are based on one or more input parameters. These para-
meters are selected based on the level of detail represented by the digital curve. In
general, it is difficult to find a set of parameters suitable for a curve that consists
of multiple size features. This is a fundamental problem of scale because the fea-
tures describing the shape of a curve vary enormously in size and extent, and there
is seldom a well-defined basis for choosing an appropriate scale (or smoothing)
parameter that correspond to a particular feature size [33]. Some of the researchers
have proposed algorithms that require no input parameters [18, 34-36].
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12.2.2  Region of Support

The determination of the region of support constitutes the major problem in var-
ious dominant point detection algorithms. Although the exact term is attributed
to Teh and Chin [18], a similar concept has been presented by Langridge [38],
who pointed out that each boundary point of a closed curve should have its own
view of the curve. A dominant point should have a view that constitutes a mean-
ingful region of support of the curve and should block the view from neighboring
nondominant points. Rosenberg [39] noted that certain points of a convex blob
perceptually dominate other points of the blob. He further presented methods for
the determination of regions of support with specific reference to convex blobs.

Teh and Chin [18] argued that the detection of dominant points relies primarily
on the precise determination of the region of support. To support their argument,
they applied three different significance measures (k-curvature, 1-curvature and
k-cosine) to different test shapes, and showed that once the region of support is
determined properly, the choice of a particular significance measure does not pro-
duce much difference. Marji and Siy [9] suggested that the choice of the signifi-
cance measure is also an important factor that has to be chosen properly, even in
the presence of an accurate region-of-support measure. They proposed an algo-
rithm for determination of correct region of support, which is sum of the lengths
of the left and right support arms. This issue is addressed in many other places
also [9,20,40,42].

12.2.3  Error Measurement

Error measurement represents the deviation of an approximating polygon from the
original shape. Various types of errors are used for this purpose, depending on the
type of distortion under consideration. Let C = {p; = (x;,yi),i = 1,...,n}}
be the set of points describing a closed curve, where p; is the neighbor of p;
(modulo n). Let p; pr be a straight line of the approximating polygon. The basic
error for that straight line is calculated as a perpendicular distance of all points
between p; and p; from that straight line. Variations of this error measurement in
the polygonal approximation are described as follows:

e [Integral square error (ISE): It is used to assess the overall distortion caused by
the approximating polygon. It is defined as:

n
ISE="e;, (12.1)
i=1

where e; is the squared distance of ith curve point from the approximating
polygon.

* Maximum error (MaxError): Maximum error is the maximum deviation of the
approximating polygon from the original curve. It is described as follows:

MaxError = max{e; }, (12.2)

i=1
where ¢; is error in ith point (squared distance).
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e Normalized error (NE): Lowe [43] suggest that long approximating lines
should be permitted greater deviations by dividing them by the length (L) of
the approximating line. It is defined as:

_ISE
=7

NE (12.3)
e Other errors: Few other error measurements are the area between two curves,
the Hausdorff distance and the Euclidean distance.

12.2.4 Min-# and Min-& Problems

Min-# problem states that for a given boundary, polygonal approximation has a
given number of segments so that the approximation error is minimized. Similarly,
min-¢ states that polygonal approximation has a minimum number of segments
so that the approximation error does not exceed a given maximum tolerance ¢.
This restriction is applied for optimal algorithms. For the case of open curve, the
min-# and min-¢ problems can be solved by dynamic programming [5,44—46] with
the time complexities of O(N?) to O(N?), depending on the number of output
segments. In the case of closed curves, we have to find the optimal location of the
starting point also. A straightforward approach is to try all vertices as a starting
point, and to choose the one with minimal error. However, this would multiply the
complexity by N, leading to time complexities of O(N?3) to O(N#).

12.2.5 Test Shapes

Some shapes are commonly used for demonstration of polygonal approximation
results. These shapes are shown in Figure 12.1. The chromosome-shaped curve in

Start l

o Start —>»
art —»

FIGURE 12.1. Standard shapes used in polygonal approximation: (a) chromosome, (b) leaf,
and (c) semicircle.
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Chain Code for the shape of Chromosome
55454 32011 01111 12112 12006 65655 60010 10765 55455 55555 55431 12122

Chain Code for the shape of Leaf
33332 30700 00003 32307 00003 32322 26776 22212 76661 11116 66566 55000

10056 65655 00110 66565 65555 56667 66666 66664 22222 22222 232243433

Chain Code for the shape of semicircle
00007 00777 77766 76666 66665 76766 56454 43436 66656 55454 44434 33232

22254 54434 23221 21322 22222 21221 11111 00100 00

FIGURE 12.2. Chain codes for the shapes of a chromosome, leaf, and semicircle.

Figure 12.1(a) consists of 60 boundary points. Similarly, the leaf in Figure 12.1(b)
and the semicircle in Figure 12.1(c) consist of 120 and 102 points, respectively.
These shapes will be used for demonstration/comparison of results in this chapter.
Shapes in Figures 12.1(a) and 12.1(b) were initially presented by Rosenfeld and
Johnston [41] and the shape in Figure 12.1(c) was presented by Teh and Chin [18].
The Freeman’s chain code [6] of each curve, which constitutes the input to all the
algorithms, was coded in clockwise direction starting from the point marked with
arrow in Figure 12.1. The chain codes of all the shapes are shown in Figure 12.2.

12.3  Approximation Techniques

The subject of polygonal/linear approximation has been explored thoroughly
by the researchers. Polygonal approximation approaches for handling various
problems can be found in literature such as dynamic programming approach
[47, 48], Newton’s method [49], iterative point elimination approach [50], min-
imax approach [51], split-and-merge approaches [52, 53], dominant points or
angle detection approach [54], k—means based-approach [55], genetic algorithm
(GA)-based approaches [27-30], and segment fitting approaches [56,57]. These
techniques are generally based on curvature measure [11,20,41,42,58], curvature
morphology [59, 60], local neighborhood of curve points in the plane [34, 61],
arc-cord distance [62—-64], local symmetry of shapes [65], adaptive Gaussian
smoothing [66], direct chain code analysis [2, 15], neural networks [68], wavelets
[69,70], fuzzy logic [71], and different search techniques [27-32].

Some of the algorithms [2, 11, 18, 35, 40, 42, 66, 73] have gained more pop-
ularity due to various aspects such as simplicity, efficiency, high compression
ratio and low approximation error. These algorithms are commonly referred to
by the authors and are used for comparison with their results. Results of the pro-
posed algorithm will also be compared with these algorithms in the next chapter.
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A brief summary of more recent and innovative algorithms [18,40] among them
is given below. Readers are referred to the respective algorithms for details.

12.3.1 Teh and Chin Algorithm

Let the sequence of n integer-coordinate points describe a closed curve C as
follows:

C={pi=,y)i=1,...,n} (12.4)
The algorithm consists of three steps. These are given as follows:

Step 1: Determining the region of support:

1. Define the length of the chord joining the points p;_x and p;4 as:
lik = |Pi=kcPi+k! - (12.5)

Let d;j; be the perpendicular distance of the points p; to the chord p;—x pit«
2. Start with k = 1. Compute /;; and dik until

(a)
Lik > i k1 (12.6)
or
(b)
s 2 fordy > 0 (12.7)
Lik L k+1
dx  d;
Sk < S or dy < 0 (12.8)
Lik li kvt

Then the region of support of p; is the set of points that satisfies either
condition (a) or (b); it is given as:

D(pi) = (Pi—ks - -+ s Pi—1, Dis Dit1s - -5 Dith)- (12.9)

Step 2: Selecting measure of significance.
Three different measures of curvature are used, which are given as

follows:
(a) k cosine measure: b
cos; = —ik Ik (12.10)
laik| bik|
where ajx = (Xi—k — Xi, Yi—k — Yi)> bik = (Xitk — Xi» Yitk — Vi)-
(b) k curvature measure:
= =
CURj; = . .Zkfi,j_% Zoﬁ,j, (12.11)
j== j=

where f is assigned Freeman’s chain code.



248 12. Linear Capture of Digital Curves

(c) 1 curvature measure:
CURjx = fi+1— fi- (12.12)

Step 3: Performing nonmaximal suppression.
This step consists of three passes. which are as follow:
Ist Pass: Perform nonmaxima suppression as follows: retain only those
points p; where

IS(pi)l = [S(p))

> (12.13)

for all j such that .
li — jl < 3’ (12.14)

2nd Pass: Further suppress those points having zero 1 curvature
(CURIl = 0).
3rd Pass: For those points that have survived after the 2nd pass
if ([k; of D(p;)] = 1) and (p;—1 or p;4 still survived)
then further suppress p; if (|S(p;i)| < [S(pi—1)]) or (IS(pi)| < [S(pi+1)])
if 1 curvature is selected as a measure of significance
then goto step 4th pass
else those points survived are the dominant points.
4th Pass: For those groups of more than two points that still survived,
suppress all the points except the two end points of each of the groups.
For those groups of exactly two points that still survived,

if (ISl > 1S(pi+1)D)

then  suppress p;yi

elseif  (IS(pi)l < [S(pi+1)])

then  suppress p;

elseif (k,‘ > ki+l)

then  suppress p;yi

else suppress p;

12.3.2  Marji and Siy Algorithm

Let the sequence of n integer-coordinate points be described as a closed curve C
similar to that in Section 12.3.1. The main algorithm is followed by the algorithm
for the region of support. Let p; be the point for which the region of support is to
be determined.

Right region of support:

a. Initially
k=j4+2,Foqqa=0, (12.15)

where F represents the objective function.

b. Calculate L j, the length of the line segment that joins point p; and py.

c. Calculate E ji, the sum of the squared perpendicular distance from all the points
between p; and py to the line segment that joins point p; and py.

d. Calculate Fyew = Ljx — Ej.



12.3. Approximation Techniques 249

e. If Fhew < Foiq then return py_p as the end support point.
f. Else, set Folg = Fpew, increment k and goto step b.

Left region of support:

Follow the same steps described for the right region of support in the opposite
direction.

Main algorithm:

a. The end points of the right and left support arms are called nodes and their
strength is measured by the frequency of their selection.

b. Initially all points are marked as nondominant and uncovered.

c. If the considered node lies in an uncovered territory, that point is set as domi-
nant and all the points within its region of support are marked as covered.

d. If a support end point is crossed while covering a certain node in any direction,
the overlap segment is further investigated for valid split points. The strongest
nodes in the overlap segment are marked as candidate split points. At the end of
each iteration, candidate split points are marked as dominant point if their per-
pendicular distance to the line that joins the immediate (left and right) dominant
points exceeds 0.95.

e. If the point next to the support end point is also marked, the stronger node is
marked as dominant. If both nodes have the same strength, both are marked as
dominant.

f. If the considered node resides in the covered area, its perpendicular distance to
the line that joins its immediate left and right dominant points is checked. If the
distance exceeds 0.95, then this point is marked as dominant and its domain is
covered.

12.3.3  Wu Algorithm

This algorithm is implemented in three steps.

Step 1: Contour is tracked to find the chain codes of the curve and break points
are extracted. Chain coding is given in Appendix A in detail. Point p; is
a break point if its chain code ¢; # ¢j_1.

Step 2: The best length of support for each break point is found and its approxi-
mated curvature is computed. The k-cosine (Equation (12.10)) is used to
determine the length of support region. The length of support region lies
between lower bound (Kpin) and the upper bound (Kn,x). Let k; be the
best length of support region at the ith point. It can be simply defined as
the following:

ki = k,if cos;r = max{cos;; |j = Kmin, - - ., Kmax},fori =1,2,...,n.
(12.16)

The region of support of the ith point is the set of points given by

Di ={pi—k; - - Pi+k} (12.17)
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The approximated curvature at the ith point, ¢,;, can be defined by aver-
aging the k-cosines:

k.
1 1
CpiCO;] = k_ E COS;j. (12.18)
.
Jj=1

Step 3: The redundant dominant points are from the list of candidate dominant
points if one of the following conditions is satisfied:

a.
cv; <&, (12.19)

b.
coi <cvj for jefi—ki...,i+ki, (12.20)

C.
CU; = CV; 1 and kl‘ < k,'_l, (12.21)

d.
cv;j = cvjp1 and ki < kit1, (12.22)

The break points with maximum curvature among their region of support
are marked as the dominant points.

12.3.4 Some Other Algorithms

Some other algorithms, in addition to above three algorithms [18, 36,40], would
also be briefly discussed and compared from an analysis view. These are mostly
the improvements of the Teh and Chin algorithm [18]. One of the improved ver-
sions of the Teh and Chin [18] algorithm was proposed by Ansari and Huang [2].
In this method, for each boundary point, a support region is assigned to the point
based on its local properties. Each point is then smoothed by a Gaussian filter with
a width proportional to its determined support region. A significance measure for
each point is then computed. Dominant points are finally obtained through non-
maximum suppression. The method does not require any input parameter, and the
dominant points obtained by this method remain relatively the same even when
the object curve is scaled or rotated. The algorithm was compared with Teh-Chin
algorithm in [66] in terms of the computational complexity, the approximation
errors and the number of detected dominant points of an object curve.

Another improved version of the Teh and Chin [18] algorithm proposed by Ray
and Ray [11] determines the support region by the k-cosine itself and the signif-
icant points are detected with the help of the smoothed k-cosine. The procedure
is parallel and requires no input parameter. It detects not only the curvature max-
imum points, but also the curvature minimum points. A polygonal approximation
is suggested by joining the successive significant points. Ray and Ray proposed
another algorithm [60] that introduced the concept of an asymmetric region of
support and k-1-cosine which is the angle between the k-vector and the 1-vector



12.4. Piecewise Polygonal Approximation 251

of the point of interest. The dominant points are the local maxima of k — [-cosine.
The procedure needs no input parameter and remains reliable even when features
of multiple sizes are present.

Sarkar [15] proposed a simple but efficient method for detection of significant
points of chain-coded curves. The algorithm is based on manipulation with chain
codes only. The polygonal approximation is achieved by joining successive signif-
icant vertices. Cornin [4] pointed out that, as far the Teh and Chin algorithm [18],
the Ray and Ray [11] algorithm is not robust in presence of noise. In addition,
the procedure for choosing three consecutive increasing angles in the Ray and
Ray algorithm is subjective. In his method, the concavity code was constructed
from the chain code to classify the degree of concavity or convexity of boundary
coordinates. Dominant points are then extracted by throwing away points one at a
time that contribute the least curvature to the boundary shape, using an appealing
technique called error budgeting.

12.4 Piecewise Polygonal Approximation

This section is dedicated to the recursive algorithm, devised by Sarfraz et al. [14],
for piecewise polygonal approximation of digital curves. For simplicity, the algo-
rithm will be called SAMAPA (Sarfraz-Asim-Masood Algorithm for Polygonal
Approximation). The SAMAPA technique belongs to the category of polygonal
approximation of curves by fitting straight lines. It is more logical and is an effi-
cient approach.

The break points, in SAMAPA, are extracted as a preprocessing step toward
polygonal approximation. These break points are the candidates to be selected
as the end points of approximating straight lines. While approximating the curve
with straight lines, it is important to select the best end points of lines such that
the number of line segments and approximation errors are minimized. The polyg-
onal approximation is carried out in clockwise as well as anticlockwise directions
around the given curve to look for an optimal solution between the two.

12.4.1 Preprocessing Stage

Break points (BP) and initial dominant points (IDP) are extracted in this pre-
processing stage. The extracted BPs are the only candidate points to be taken as
the end points of approximating straight lines and IDPs are the start points for this
algorithm. This preprocessing will considerably reduce the subsequent computa-
tion of polygonal approximation.

BP are the nonlinear points along the curve. To find BP, we assign Freeman’s
chain code [6], Cy varying from 1 to 7, to each contour point P;, according to the
direction of the next point P; . From the chain-coded contour points if abs(Cy —
Ci+1) = 0, then it is a linear point; otherwise it is break point.

The point(s) with angle of 135° are marked as IDP. It can be calculated from
chain-coded contour points. If abs(Cy — Ci+1) = (3 or 5) then the angle is 135°.
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FIGURE 12.3. Single line, double line and shaded circles are the linear points, BP and IDP,
respectively.

If no point is found with the 135° angle, then the point(s) with angle of 90° are
selected as IDP. If abs(Cy — Cix41) = (20r6) then the angle is 90°. In the worst
case, if the points with 90° angle are not available then the first BP is selected as
IDP. Figure 12.3 shows the extracted linear points, BP and IDP.

12.4.2 SAMAPA Algorithm

The curve is split into segment(s) at each IDP and an independent polygonal
approximation is performed for each segment. The SAMAPA algorithm is divided
into two steps explained as follows:

Step I: The first step is to perform segment approximation to find the farthest
end points of approximating straight lines such that the maximum perpendicular
squared distance from all the points between two end points to the line joining
end points is less than the given threshold value (¢). Segment approximation is
performed in a clockwise direction (from first point to the last point of segment)
and in an anticlockwise direction (from last point to the first point of segment).
Pseudo-code for segment approximation in the clockwise direction is given as
follows (algorithm for anticlockwise direction will also be on similar lines):

Pseudo-Code for a Function SegAppxC()

COMMENTS START

EP End points, i.e., EP-1 and EP-2

DPrax Maximum perpendicular squared distance among all the points
between end points to respective line joining end points.

DPc List of dominant points in clockwise direction.

e Threshold, default value is 0.7

DPC_pew New list of detected dominant points in clockwise direction.

MaxError()  Function maximum error — Finds the maximum perpendicular
squared distance between two segments
COMMENTS END
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Function DPc = SegAppxC(Segment)
DPc =[]
Do
EP-1 = first point of segment
EP-2 = next BP in sequence
DPC—new = []
Do
Do
Calculate Dpyax
IfDpax < &
P =EP-2
End If
EP2 = next BP
While (Dmax < 2*¢) OR (End of Segment))
EP-1=P
Add P in the list DPc_jaw
While (End of Segment)
If isempty (DPc)
DP¢ = DPc—pew
End If
¢ = MaxError ()
While Length (DPpew) == Length(DPc)

Step I1: The second step is to find an optimum solution between the two seg-
ment approximations. The pseudo-code for the complete SAMAPA algorithm, as
arecursive function “SAMAPA()”, is given as follows:

Pseudo-Code for the Function SAMAPA()

Function DP = SAMAPA(Segment)
DP =[]
DPc = SegAppxC(Segment)
DPa = SegAppxA(Segment)
If DPc UDPy = ¢
DP = segment end points
Return DP
End If
It DPc NDP4 # ¢
Divide segment into subsegments at (DP¢c N DPy)
For (each subsegment)
DP = DP + SAMAPA (subsegment)
End For
Return DP
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Elself
Length (DPc)  # Length (DPy)
If Length (DPc) < Length (DPy)
DP = DPc
Else
DP = DPy
End IF
Else
DP2 = Sort (DPc U DPy)
Make pair(s) of DP2 (two consecutive points make one
pair)
Select one point from each pair(s) so that it minimizes
integral square error.
End IF

In this function, end points of the approximating straight lines are determined
first, from the two-segment approximations (clockwise and anticlockwise). Seg-
ments are divided into sub-segments at the common end points and processed
again recursively. Results of this approximation can be seen in Figures 12.4(h),
12.5(h) and 12.6(h) for three shapes, namely, chromosome, leaf, and semicircle,
respectively.

FIGURE 12.4. Results of under comparison algorithms for the shape of a chromosome:
(a) Marji and Siy [9] algorithm, (b) Teh and Chin [18] algorithm, (c) Ansari and Huang
[2] algorithm, (d) Sarkar [15] algorithm, (e) Cronin [4] algorithm, (f) Ray and Ray [11]
algorithm, (g) Wu [20] algorithm, (h) SAMAPA [14] algorithm.
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FIGURE 12.5. Results of under comparison algorithms for the shape of a leaf: (a) Marji and
Siy [9] algorithm, (b) Teh and Chin [18] algorithm, (c) Ansari and Huang [2] algorithm,
(d) Sarkar [15] algorithm, (e) Cronin [4] algorithm, (f) Ray and Ray [11] algorithm, (g)
Wau [20] algorithm, (h) SAMAPA [14] algorithm.

FIGURE 12.6. Results of under comparison algorithms for the shape of a semicircle: (a)
Marji and Siy [9] algorithm, (b) Teh and Chin [18] algorithm, (c) Ansari and Huang [2]
algorithm, (d) Sarkar [15] algorithm, (e) Cronin [4] algorithm, (f) Ray and Ray [11] algo-
rithm, (g) Wu [20] algorithm, (h) SAMAPA [14] algorithm.
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12.5 Experimental Results

The quality of polygonal approximation can be measured by the amount of data
reduction and approximation error. Sarkar [15] combined the two measures using
figure of merit (FOM). The SAMAPA algorithm is compared with others on the
basis of the following evaluation criteria as done by Marji and Siy [9] and also
used by Wu [20]:

* Number of dominant points (Dom Pts): The extracted end points of the approx-
imating straight lines.

e Compression ratio (CR): One of the objectives of polygon approximation is data
reduction. Larger compression ratio means high data reduction. It is defined as

follows:
B Total Pts

CR= ———.
DomPts
* Maximum error (MaxError): This is described in Section 12.2.3.
e [Integral Square Error (ISE): This is described in Section 12.2.3.

Visual comparison of the results of the SAMAPA algorithm, with some com-
monly referred algorithms, namely, the Ansari-Huang [2] algorithm, Teh-Chin
[18] algorithm, Cronin [4] algorithm Marji-Siy [9] algorithm, Ray-Ray [11] algo-
rithm, Sarkar [15] algorithm, and Wu [20] algorithm, for the shape of chromo-
somes are shown in Figure 12.4. Visual comparisons of the results of two other
popular shapes, leaf and semicircle, are shown in Figures 12.5 and 12.6 respec-
tively.

The quantitative comparisons of SAMAPA algorithm with those in [2,4, 9,
11, 15, 18, 20], for the shapes of chromosome, leaf and semicircle, are shown
in Tables 12.1, 12.2 and 12.3, respectively. These tables show the results of the
SAMAPA algorithm at the default threshold. It can be seen that number of domi-
nant points extracted are almost the lowest with improved ISE and FOM.

As compared to the straighter arcs, circular arcs result in higher ISE even with a
greater number of dominant points. Thus, Sarkar’s FOM [15] is a suitable measure
to compare approximation results only with the same number of dominant points

TABLE 12.1. Comparative results of the chromosome shape.

Shape Method Dom CR Max ISE FOM
Pts Error

Chromosome SAMAPA [14] 12 5 0.79 5.82 0.86
Ansari & Huang [2] 16 375 2 20.3 0.19
Teh &Chin [18] 15 4.00 0.74 7.2 057
Cronin [4] 17 3,53  0.63 3.18 1.11
Marji & Siy [9] 11 545 0.90 9.96 0.55
Ray & Ray [11] 18 333 0.71 5.57 0.60
Sarkar [15] 19 3.16  0.55 3.86 0.82

Wu [20] 17 3.53 0.64 5.01 0.70
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TABLE 12.2. Comparative results of the leaf shape.

Shape Method DomPts CR MaxError ISE FOM
Leaf SAMAPA [14] 21 5.71 0.78 13.6 0.42
Ansari and Huang [2] 30 4.00 2.13 25.6 0.16

Teh and Chin [18] 29 4.14 0.99 1496 0.28

Cronin [4] 28 4.29 0.74 7.30 0.59

Marji and Siy [9] 21 5.71 0.78 14.1 0.40

Ray and Ray [11] 32 3.75 1 14.7 0.26

Sarkar [15] 23 5.22 0.784 13.1 0.40

Wu [20] 23 5.22 1 20.34  0.23

TABLE 12.3. Comparative results of the semicircle shape.

Shape Method DomPts CR MaxError ISE FOM
Semicircle SAMAPA [14] 19 5.37 0.74 129 042
Ansari and Huang [2] 28 3.64 1.26 17.8 0.20

Teh and Chin [18] 22 4.64 1 20.6  0.23

Cronin [4] 30 3.40 0.485 291 1.17

Marji and Siy [9] 18 5.67 1 242 0.23

Ray and Ray [11] 29 3.52 0.833 11.8  0.30

Sarkar [15] 19 5.37 1.474 174 0.31

Wu [20] 27 3.78 0.83 9.01 042

TABLE 12.4. Quantitative results of the SAMAPA method for chromosome shape at dif-

ferent thresholds.

Shape SAMAPA Method Dom Pts CR Max Error ISE FOM
Chromosome ¢ =1 11 5.45 0.89 7.78 0.70
e =09 11 5.45 0.89 7.78 0.70
e=0.28 12 5 0.79 5.82 0.86
& = 0.7 (default) 12 5 0.79 5.82 0.86
e=0.6 13 4.62 0.75 481 0.96
=05 14 4.29 0.69 482 0.89
e =04 15 4 0.63 4.14 0.97
=03 16 3.75 0.51 3.84 0098
e =025 19 3.16 0.45 2.68 1.18

in the same shape. However, if an algorithm produces better ISE with lesser num-
ber of dominant points for the same shape, the algorithm proves itself better. For
a meaningful evaluation of results, approximation results of SAMAPA algorithm
at different thresholds are shown in Tables 12.4, 12.5 and 12.6 for the shapes of
chromosome, leaf, and semicircle, respectively.

For the shape of the chromosome, the results of the SAMAPA algorithm prove
better as compared to Ansari-Huang [2], Teh-Chin [18], Marji-Siy [9] and Sarkar
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TABLE 12.5. Quantitative results of the SAMAPA method, for leaf shape, at different
thresholds.

Shape SAM [14] Method DomPts CR MaxError ISE FOM

Leaf e=1 19 6.32 0.99 16.63  0.38
=09 20 6 0.89 15.73  0.38
e =0.8 21 5.71 0.78 13.57 0.42
& = 0.7 (default) 21 5.71 0.78 13.57 0.42
e=0.6 22 545 0.74 11.47 048
e=0.5 25 4.8 0.69 9.67  0.50
e =043 29 4.14 0.63 6.63 0.62
e=04 30 4 0.59 6.13  0.65
e =0.31 32 3.75 0.55 5.14  0.73

TABLE 12.6. Quantitative results of the SAMAPA method, for a semicircle shape, at dif-
ferent thresholds.

Shape SAM [14] Method DomPts CR MaxError ISE FOM

Semicircle & =1 17 6 0.85 15.01  0.40
e =09 17 6 0.85 15.01 040
e =0.8 17 6 0.85 15.01 040
& = 0.7 (default) 19 5.37 0.74 1293 042
e=0.6 19 5.37 0.74 1293 042
& =0.55 21 4.86 0.72 9.82  0.49
e=0.5 24 4.25 0.66 6.18  0.69
e =0.43 26 3.92 0.63 491 0.80
e=04 29 3.52 0.63 341 1.03

[15] at the threshold of 0.3, 0.4, 0.9 and 0.25, respectively. It can be seen that
the SAMAPA algorithm at threshold of 0.3 gives ISE = 3.84 with 16 dominant
points, which is better that Wu [20] with 18 dominant points and Ray-Ray [11]
with 17 dominant points. Thus, the results are better than Wu and Ray-Ray also.
It is difficult to compare with Cronin [4] but looking at the results at threshold of
0.3 and 0.25 gives some idea of the results of SAMAPA algorithm as compared to
Cronin.

For the shape of a leaf, the results of the SAMAPA algorithm prove better as
compared to the Ansari-Huang [2], Teh-Chin [18], Marji-Siy [9] and Ray-Ray [11]
at the threshold of 0.4, 0.43, 0.7 and 0.55, respectively. At a threshold of 0.6 the
ISE = 11.47 with 22 dominant points; the ISE is better than Sarkar [15] and
Wu [20] even with 23 dominant points. Thus, the results are better than Sarkar [15]
and Wu [2] too. Again the results with 28 dominant points were not available with
the SAMAPA algorithm at any threshold to compare with Cronin [4].

For the shape of a semicircle, the results of the SAMAPA algorithm prove bet-
ter as compared to Ray-Ray [11] and Sarkar [15] at the threshold of 0.4 and 0.6
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respectively. The results also prove better with even lesser number of dominant
points than Ansari-Huang [2], Teh-Chin [18], Marji-Siy [9] and Wu [20] at thresh-
old of 0.3, 0.55, 0.8, and 0.43. The results of the SAMAPA algorithm at threshold
of 0.3 and Cronin [4] are the same. The algorithm by Cronin [4] looks to perform
better in all three shapes but it can be seen that the number of dominant points
detected by Cronin are always larger.

Another additional advantage of the SAMAPA algorithm is its computational
efficiency. Break points are selected in the start and only these points, as candi-
date end points of approximating straight lines, are considered during the further
processing of polygonal approximation algorithm. As the given curve is divided
into pieces and processing of each piece of curve is independent from other pieces;
therefore parallel processing can be applied.

12.6 Optimal Algorithms

Polygonal approximation is a common and efficient representation of digital
curves. A problem with natural interest is the detection of optimal polygonal
approximation. Optimal approaches tend to find the optimal polygonal approxima-
tion based on specified criteria and error-bound constraints. One desired criterion
for optimality is approximation with minimal number of vertices, distant from
the original curve by no more than a prespecified value. The optimal polygonal
approximation is formulated as an optimization problem, which seeks to minimize
the error measure of fitness by locating a given number of vertices. This problem
can be solved by using a dynamic programming [4, 8,73,74], A*, search [75], or
by algorithms developed for the shortest-path problem in digraph [76-78].

12.6.1 Dynamic Programming

The problem of polygonal approximation of digital curves