

The PC graphics handbook

The PC graphics handbook
Julio Sanchez & Maria P.Canton

Minnesota State University

CRC PRESS
Boca Raton London New York Washington, D.C.

This edition published in the Taylor & Francis e-Library, 2006.

“To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of
thousands of eBooks please go to http://www.ebookstore.tandf.co.uk/.”

Library of Congress Cataloging-in-Publication Data Catalog record is available from the
Library of Congress

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are

listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the

consequences of their use.
Neither this book nor any part may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, microfilming, and recording, or by any
information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion,
for creating new works, or for resale. Specific permission must be obtained in writing from CRC

Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2003 by CRC Press LLC

No claim to original U.S. Government works

ISBN 0-203-01053-1 Master e-book ISBN

International Standard Book Number 0-8493-1678-2 (Print Edition)

Table of Contents

 Preface xxx

Part I —Graphics Fundamentals 1

Chapter 1 —PC Graphics Overview 3

Chapter 2 —Polygonal Modeling 27

Chapter 3 —Image Transformations 38

Chapter 4 —Programming Matrix Transformations 60

Chapter 5 —Projections and Rendering 88

Chapter 6 —Lighting and Shading 105

Part II —DOS Graphics 120

Chapter 7 —VGA Fundamentals 122

Chapter 8 —VGA Device Drivers 158

Chapter 9 —VGA Core Primitives 187

Chapter 10 —VGA Geometrical Primitives 209

Chapter 11 —XGA and 8514/A Adapter Interface 244

Chapter 12 —XGA Hardware Programming 314

Chapter 13 —SuperVGA Programming 389

Chapter 14 —DOS Animation 419

Chapter 15 —DOS Bitmapped Graphics 462

Part III —Windows API Graphics 516

Chapter 16 —Graphics Programming in Windows 518

Chapter 17 —Text Graphics 555

Chapter 18 —Keyboard and Mouse Programming 586

Chapter 19 —Child Windows and Controls 611

Chapter 20 —Pixels, Lines, and Curves 673

Chapter 21 —Drawing Figures, Regions, and Paths 714

Chapter 22 —Windows Bitmapped Graphics 771

Part IV —DirectX Graphics 807

Chapter 23 —Introducing DirectX 809

Chapter 24 —DirectX and COM 822

Chapter 25 —Introducing DirectDraw 849

Chapter 26 —Setting Up DirectDraw 867

Chapter 27 —DirectDraw Exclusive Mode 893

Chapter 28 —Access to Video Memory 906

Chapter 29 —Blitting 939

Chapter 30 —DirectDraw Bitmap Rendering 971

Chapter 31 —DirectDraw Animation 995

Chapter 32 —Direct3D Fundamentals 1029

Chapter 33 —Direct3D Programming 1062

Appendix A —Windows Structures 1096

Appendix B —Ternary Raster Operation Codes 1109

 Bibliography 1116

 Index 1120

List of Tables

Table 1–1 Specifications of PC System Buses 24

Table 7–1 VGA Video Modes 125

Table 7–2 VGA Register Groups 130

Table 7–3 VGA CRT Controller Register 133

Table 7–4 The VGA Sequencer Registers 137

Table 7–5 The VGA Graphics Controller Registers 140

Table 7–6 The VGA Attribute Controller Registers 149

Table 7–7 Default Setting of VGA Palette Registers 151

Table 7–8 VGA Video Digital-to-Analog Converter Addresses 155

Table 8–1 Shades of Green in VGA 256-Color Mode (default values) 173

Table 8–2 DAC Register Setting for Double-Bit IRGB Encoding 174

Table 8–3 Pattern for DAC Register Settings in Double-Bit IRGB Encoding 175

Table 8–4 16 Shades of the Color Magenta Using Double-Bit IRGB Code 175

Table 8–5 Pattern for DAC Register Setting for 64 Shades of Gray 176

Table 8–6 BIOS Settings for DAC Registers in Mode Number 18 179

Table 9–1 VGA BIOS Character Sets 195

Table 10–1 Transformation of Normalized Coordinates by Quadrant in VGA 233

Table 11–1 Module and Directory Names for the Adapter Interface Software 248

Table 11–2 XGA and 8514/A Advanced Function Modes 250

Table 11–3 Default Setting of LUT Registers in XGA and 8514/A 251

Table 11–4 IBM Code Pages 253

Table 11–5 Adapter Interface Font File Header 254

Table 11–6 Adapter Interface Character Set Header 255

Table 11–7 8514/A and XGA Adapter Interface Services 258

Table 11–7 8514/A and XGA Adapter Interface Services (continued) 259

Table 11–8 XGA Adapter Interface Services 259

Table 11–9 Structure of the Adapter Interface Parameter Block 263

Table 11–10 Task State Buffer Data after Initialization 265

Table 11–11 XGA and 8514/A Font Files and Text Resolution 310

Table 12–1 Pixel to Memory Mapping in XGA Systems 317

Table 12–2 Data Storage According to the Intel and Motorola Conventions 318

Table 12–3 XGA Modes 325

Table 12–4 XGA Display Controller Register Initialization Settings 326

Table 12–5 Palette Values for XGA Direct Color Mode 339

Table 12–6 XGA Graphic Coprocessor Register Map 343

Table 12–7 Destination Color Compare Conditions 354

Table 12–8 Logical and Arithmetic Mixes 355

Table 12–9 Action of the Direction Octant Bits During PixBlt 359

Table 12–10 Sprite-Related Registers in the Display Controller 370

Table 12–11 Sprite Image Bit Codes 371

Table 13–1 VESA BIOS Modes 394

Table 13–2 VESA BIOS Sub-services to BIOS INT 10H 396

Table 15–1 LZW Compression Example 478

Table 15–2 GIF LZW Compression Example 484

Table 15–3 GIF LZW Compression Data Processing 486

Table 15–4 LZW Decompression Example 489

Table 15–5 TIFF Version 6.0 Field Type Codes 493

Table 15–6 Hexadecimal and ASCII Dump of the HP PCL Font File
TR140RPN.UPS 507

Table 15–7 PCL Bitmap Font Descriptor Field 509

Table 15–8 PCL Bitmap Character Descriptor Header 511

Table 16–1 WinMain() Display Mode Parameters 525

Table 16–2 Summary of Window Class Styles 528

Table 16–3 Common Windows Standard System Colors 529

Table 16–4 Most Commonly Used Windows Extended Styles 533

Table 16–5 Window Styles 534

Table 16–6 Symbolic Constant in DrawText() Function 545

Table 17–1 Windows Fixed-Size Mapping Modes 561

Table 17–2 TEXTMETRIC structure 568

Table 17–3 String Formatting Constants in DrawText() 576

Table 17–4 Character Weight Constants 580

Table 17–5 Predefined Constants for Output Precision 581

Table 17–6 Predefined Constants for Clipping Precision 582

Table 17–7 Predefined Constants for Output Precision 582

Table 17–8 Pitch and Family Predefined Constants 583

Table 18–1 Bit and Bit Fields in the lParam of a Keystroke Message 588

Table 18–2 Virtual-Key Codes 589

Table 18–3 Virtual-Keys Used in GetKeyState() 591

Table 18–4 Frequently Used Client Area Mouse Messages 601

Table 18–5 Virtual Key Constants for Client Area Mouse Messages 602

Table 19–1 Predefined Control Classes 616

Table 19–1 Predefined Control Classes (continued) 625

Table 19–2 Prefix for Predefined Window Classes 627

Table 19–3 Notification Codes for Buttons 628

Table 19–4 Notification Codes for Three-State Controls 629

Table 19–5 User Scroll Request Constants 631

Table 19–6 Often Used Message Box Bit Flags 646

Table 19–7 Original Set of Common Controls 654

Table 19–8 Common Control Notification Codes 656

Table 19–9 Toolbar and Toolbar Button Style Flags 659

Table 19–10 Toolbar States 660

Table 19–11 Toolbar Common Control Styles 664

Table 20–1 Information Returned by GetDeviceCaps() 680

Table 20–2 Values Defined for the ExtCreatePen() iStyle Parameter 688

Table 20–3 Constants in the LOGBRUSH Structure Members 692

Table 20–4 Mix Modes in SetROP2() 693

Table 20–5 Line-Drawing Functions 696

Table 20–6 Nodes and Control Points for the PolyBezier() Function 707

Table 20–7 Nodes and Control Points for the PolyBezierTo() Function 709

Table 20–8 Constants for PolyDraw() Point Specifiers 709

Table 21–1 LOGBRUSH Structure Members 720

Table 21–2 Windows Functions for Drawing Closed Figures 721

Table 21–3 Windows Functions Related to Rectangular Areas 731

Table 21–4 Windows System Colors 732

Table 21–5 Rectangle-Related Functions 735

Table 21–6 Region-Related GDI Functions 742

Table 21–7 Region Combination Modes 746

Table 21–8 Region Type Return Values 746

Table 21–9 Windows Clipping Functions 755

Table 21–10 Clipping Modes 756

Table 21–11 Path-Defining Functions in Windows NT 760

Table 21–12 Path-Defining Functions in Windows 95 and Later 760

Table 21–13 Path-Related Functions 761

Table 21–14 Constants for the GetPath() Vertex Types 768

Table 22–1 Bitmap-Related Structures 776

Table 22–2 Symbolic Names for Raster Operations 781

Table 22–3 Win-32 Commonly Used Memory Allocation Flags 789

Table 22–4 Windows Stretching Modes 804

Table 23–1 DirectX 8.1 CD ROM Directory Layout 817

Table 24–1 HRESULT Frequently Used Error Codes 843

Table 26–1 Cooperative Level Symbolic Constants 876

Table 26–2 Device Capabilities in the GetCaps() Function 881

Table 28–1 Flags the IDirectDrawSurface7::Lock Function 911

Table 29–1 Surface-Related Functions in DirectDraw 940

Table 29–2 Flags in the EnumSurfaces() Function 943

Table 29–3 Constants Used in SetColorKey() Function 948

Table 29–4 Color Key Capabilities in dwCKeyCaps Member of DDCAPS
Structure 950

Table 29–5 Type of Transfer Constants in BltFast() 953

Table 29–6 Flags for the Blt() Function 955

Table 29–7 Scaling Flags for the Blt() Function 960

Table 29–8 Mirroring Flags for the Blt() Function 961

Table 29–9 Predefined Constants in LoadImage() Function 964

Table 31–1 Flipping-Related DirectDraw Functions 1008

Table 31–2 DirectDraw Flip() Function Flags 1010

Table 31–3 Event-Type Constants in TimeSetEvent() Function 1022

Table 32–1 DirectX File Header 1058

Table 32–2 Primitive Data Types for the .x File Format 1059

Table 33–1 Interface-Specific Error Values Returned by Queryinterface() 1065

Table 33–2 Flags in the D3DRMLOADOPTIONS Type 1078

Table 33–3 Enumerator Constants in D3DRMLIGHTTYPE 1083

List of Illustrations

Figure 1–1 Vector-Refresh Display 4

Figure 1–2 A Raster-Scan System 5

Figure 1–3 A Memory-Mapped System 5

Figure 1–4 Memory Mapping and Attributes in the MDA Adapter 7

Figure 1–5 Memory-to-Pixel Mapping in the CGA Color Alpha Modes 9

Figure 1–6 Architecture of a VGA/8514A Video System 12

Figure 1–7 XGA Component Diagram 13

Figure 1–8 Byte-to-Pixel Video Memory Mapping Scheme 15

Figure 1–9 SuperVGA Banked-Switched Memory 15

Figure 1–10 CRT with a 4:3 Aspect Ratio 19

Figure 2–1 Raster and Vector Representation of a Graphics Object 28

Figure 2–2 Translating an Object by Coordinate Arithmetic 28

Figure 2–3 Cartesian Coordinates 29

Figure 2–4 3D Cartesian Coordinates 30

Figure 2–5 Left- and Right-Handed Coordinates 30

Figure 2–6 3D Representation of a Rectangular Solid 31

Figure 2–7 3D Coordinate Planes 32

Figure 2–8 Valid and Invalid Polygons 33

Figure 2–9 Regular Polygons 33

Figure 2–10 Concave and Convex Polygons 34

Figure 2–11 Coplanar and Non-Coplanar Polygons 34

Figure 2–12 Polygonal Approximation of a Circle 35

Figure 2–13 Polygonal Approximation of a Cylinder 35

Figure 2–14 Polygon Edge 36

Figure 2–15 Edge Representation of Polygons 36

Figure 2–16 Polygon Mesh Representation and Rendering of a Teacup 37

Figure 3–1 Point Representation of the Stars In the Constellation Ursa Minor 39

Figure 3–2 Translation of a Straight Line 40

Figure 3–3 A Translation Transformation 43

Figure 3–4 Scaling Transformation 45

Figure 3–5 Symmetrical Scaling (Zooming) 46

Figure 3–6 Rotation of a Point 46

Figure 3–7 Rotation Transformation 47

Figure 3–8 Order of Transformations 50

Figure 3–9 3D Representation of a Cube. 51

Figure 3–10 Translation Transformation of a Cube 52

Figure 3–11 Scaling Transformation of a Cube 54

Figure 3–12 Scaling Transformation of an Object Not at the Origin 55

Figure 3–13 Fixed-Point Scaling Transformation 56

Figure 3–14 Rotation in 3D Space 57

Figure 3–15 Positive, x-axis Rotation of a Cube 58

Figure 3–16 Rotation About an Arbitrary Axis 59

Figure 5–1 Common Projections 89

Figure 5–2 Projection Elements 90

Figure 5–3 Perspective and Parallel Projections 90

Figure 5–4 A Circle Projected as an Ellipse 91

Figure 5–5 Parallel, Orthographic, Multiview Projection 92

Figure 5–6 Isometric, Dimetric, and Trimetric Projections 92

Figure 5–7 Lack of Realism In Isometric Projection 93

Figure 5–8 One-Point Perspective Projection of a Cube 94

Figure 5–9 One-Point Projection of a Mechanical Component 95

Figure 5–10 Tunnel Projection of a Cube 95

Figure 5–11 Two-Point Perspective of a Cube 96

Figure 5–12 Three-Point Perspective of a Cube 96

Figure 5–13 Perspective Projection of Point P 97

Figure 5–14 Calculating x and y Coordinates of Point P 98

Figure 5–15 Waterfall Model of the Rendering Pipeline 99

Figure 5–16 Local Space Coordinates of a Cube with Vertex at the Origin 99

Figure 5–17 World Space Transformation of the Cube In Figure 5–16 101

Figure 5–18 Culling of a Polyhedron 102

Figure 5–19 Line-of-Sight and Surface Vectors in Culling 102

Figure 5–20 Eye Space Transformation of the Cube In Figure 5–17 103

Figure 5–21 Screen Space Transformation of the Cube in Figure 5–20 104

Figure 6–1 Lighting Enhances Realism 105

Figure 6–2 Direct and Indirect Lighting 107

Figure 6–3 Point and Extended Light Sources 107

Figure 6–4 Angle of Incidence in Reflected Light 108

Figure 6–5 Diffuse Reflection 108

Figure 6–6 Specular Reflection 109

Figure 6–7 Values of n in Phong Model of Specular Reflection 110

Figure 6–8 Flat Shading 111

Figure 6–9 Intensity Interpolation in Gouraud Shading 112

Figure 6–10 Highlight Rendering Error in Gouraud Shading 113

Figure 6–11 Rendering a Reflected Image by Ray Tracing 114

Figure 6–12 Scan-Line Algorithm for Hidden Surface Removal 116

Figure 6–13 Scan-Line Algorithm for Shadow Projection 117

Figure 6–14 Shadow Rendering of Multiple Objects 117

Figure 6–15 Z-Buffer Algorithm Processing 118

Figure 7–1 Symmetrical and Asymmetrical Pixel Density 124

Figure 7–2 VGA System Components 126

Figure 7–3 Attribute Byte Bitmap in VGA Systems 127

Figure 7–4 Video Memory Mapping in VGA Mode 18 128

Figure 7–5 Video Memory Mapping in VGA Mode 19 129

Figure 7–6 VGA/EGA Miscellaneous Output Register 131

Figure 7–7 VGA Input Status Register 132

Figure 7–8 Cursor Size Registers of the VGA CRT Controller 134

Figure 7–9 Cursor Location Registers of the VGA CRT Controller 134

Figure 7–10 Cursor Scan Lines in VGA Systems 135

Figure 7–11 Video Start Address Register of the VGA CRT Controller 137

Figure 7–12 Preset Row Scan Register of the VGA CRT Controller 137

Figure 7–13 Map Mask Register of the VGA Sequencer 138

Figure 7–14 Character Map Select Register of the VGA Sequencer 139

Figure 7–15 Memory Mode Register of the VGA Sequencer 140

Figure 7–16 Write Mode 0 Set/Reset Register of the VGA Graphics Controller 141

Figure 7–17 Enable Set/Reset Register of the VGA Graphics Controller 141

Figure 7–18 Color Compare Register of the VGA Graphics Controller 142

Figure 7–19 Color Don’t Care Register of the VGA Graphics Controller 142

Figure 7–20 Data Rotate Register of the VGA Graphics Controller 142

Figure 7–21 Read Map Select Register of the VGA Graphics Controller 143

Figure 7–22 Select Graphics Mode Register of the VGA Graphics Controller 145

Figure 7–23 Miscellaneous Register of the VGA Graphics Controller 147

Figure 7–24 Bit Mask Register of the VGA Graphics Controller 148

Figure 7–25 Attribute Address and Palette Address Registers of the VGA 150

Figure 7–26 Palette Register of the VGA Attribute Controller 152

Figure 7–27 Attribute Mode Control Register of the VGA Attribute Controller 152

Figure 7–28 Overscan Color Register of the VGA Attribute Controller 153

Figure 7–29 Color Plane Enable Register of the VGA Attribute Controller 153

Figure 7–30 Horizontal Pixel Panning Register of the VGA Attribute
Controller 154

Figure 7–31 Color Select Register of the VGA Attribute Controller 155

Figure 7–32 Pixel Address Register of the VGA DAC 156

Figure 7–33 State Register of the VGA DAC 156

Figure 8–1 Color Maps in VGA Mode 18 161

Figure 8–2 Bit-to-Pixel Mapping Example in VGA Mode 18 161

Figure 8–3 Color Mapping in VGA Mode 19 169

Figure 8–4 Byte-to-Pixel Mapping Example in VGA Mode 19 169

Figure 8–5 Default Color Register Setting in VGA Mode 19 172

Figure 8–6 Double-Bit Mapping for 256-Color Mode 173

Figure 8–7 DAC Color Register Bitmap 174

Figure 8–8 DAC Register Selection Modes 178

Figure 9–1 Pixel Image and Bitmap of a Graphics Object 200

Figure 10–1 Pixel Plots for Straight Lines 212

Figure 10–2 Non-Adjacent Pixel Plot of a Straight Line 212

Figure 10–3 Plot and Formula for a Circle 223

Figure 10–4 Plot and Formula for Ellipse 225

Figure 10–5 Plot and Formula for Parabola 227

Figure 10–6 Plot and Formula for Hyperbola 229

Figure 10–7 Normalization of Coordinates in VGA Mode 18 233

Figure 10–8 Rotation Transformation of a Polygon 234

Figure 10–9 Clipping Transforma tion of an Ellipse 235

Figure 10–10 Geometrical Interpretation of a Region Fills 237

Figure 10–11 Region Fill Flowchart 238

Figure 11–1 8514/A Component Diagram 245

Figure 11–2 XGA Component Diagram 247

Figure 11–3 Bit Planes in XGA and 8514/A High-Resolution Modes 250

Figure 11–4 XGA/8514/A Bit-to-Color Mapping 252

Figure 11–5 Bitmap of XGA and 8514/A Color Registers 252

Figure 11–6 Bitmap of the Short Stroke Vector Command 256

Figure 11–7 XGA System Coordinate Range and Viewport 268

Figure 12–1 XGA Data in POS Registers 321

Figure 12–2 Block Structure in XGA 64K Aperture 334

Figure 12–3 Bitmapping in XGA Direct Color Mode 338

Figure 12–4 Physical Address of Video Memory Bitmap 346

Figure 12–5 Pixel Map Origin and Dimensions 350

Figure 12–6 Mask Map Scissoring Operations 352

Figure 12–7 Mask Map x and y Offset 353

Figure 12–8 Determining the Pixel Attribute 353

Figure 12–9 Pixel Operations Register Bitmap 356

Figure 12–10 Octant Numbering in the Cartesian Plane 364

Figure 12–11 XGA Sprite Buffer 369

Figure 12–12 Visible Sprite Image Control 371

Figure 12–13 Bit-to-Pixel Mapping of Sprite Image 372

Figure 13–1 Memory Banks to Video Mapping 392

Figure 13–2 VESA Mode Bitmap 393

Figure 13–3 VESA Window Types 395

Figure 13–4 VESA Mode Attribute Bitmap 403

Figure 13–5 Window Attributes Bitmap 404

Figure 13–6 VESA BIOS Machine State Bitmap 407

Figure 14–1 Mouse Interrupt Call Mask 429

Figure 14–2 Elements in Panning Animation 433

Figure 14–3 Animation by Scaling and Rotation 434

Figure 14–4 XGA Interrupt Enable Register Bitmap 454

Figure 14–5 XGA Interrupt Status Register Bitmap 454

Figure 15–1 Raw Image Data for a Monochrome Bitmap 463

Figure 15–2 Monochrome Overlays to Form a Color Image 466

Figure 15–3 Elements of the GIF Data Stream 470

Figure 15–4 GIF Header 470

Figure 15–5 GIF Logical Screen Descriptor 471

Figure 15–6 GIF Global Color Table Block 472

Figure 15–7 GIF Image Descriptor 473

Figure 15–8 GIF Image Data Blocks 475

Figure 15–9 GIF Trailer 475

Figure 15–10 Sample Image for GIF LZW Compression 480

Figure 15–11 GIF LCW Compression Flowchart 488

Figure 15–12 TIFF File Header 491

Figure 15–13 TIFF Image File Directory (IFD) 492

Figure 15–14 TIFF Directory Entry 493

Figure 15–15 TIFF PackBits Decompression 502

Figure 15–16 PCL Bitmap Character Cell 510

Figure 15–17 PCL Character Dimensions 512

Figure 15–18 Character Dot Drawing and Bitmap 514

Figure 16–1 Using the New Command in Developer Studio File Menu 520

Figure 16–2 Creating a New Source File In Developer Studio 521

Figure 16–3 Inserting an Existing Source File Into a Project 522

Figure 16–4 Developer Studio Project Workspace, Editor, and Output Panes 523

Figure 16–5 The Hello Windows Project and Source File 543

Figure 16–6 Developer Studio Insert Resource Dialog Screen and Toolbar 547

Figure 16–7 Creating An Icon Resource with Developer Studio Icon Editor 548

Figure 16–8 Screen Snapshot of the WinHello Program 550

Figure 17–1 The Device Context, Application, GDI, and Device Driver 557

Figure 17–2 Viewport and Window Coordinates 565

Figure 17–3 Courier, Times Roman, and Helvetica Typefaces. 566

Figure 17–4 Windows Non-TrueType Fonts 567

Figure 17–5 Vertical Character Dimensions in the TEXTMETRIC Structure 569

Figure 17–6 Processing Operations for Multiple Text Lines 572

Figure 17–7 Two Screen Snapshots of the TEX1_DEMO Program 575

Figure 17–8 Screen Snapshot of the TEXTDEM3 Program 585

Figure 18–1 KBR_DEMO Program Screen 593

Figure 18–2 CAR_DEMO Program Screen 597

Figure 18–3 Windows Built-In Cursors 606

Figure 18–4 MOU_DEMO Program Screen 608

Figure 19–1 CHI_DEMO Program Screen 614

Figure 19–2 Buttons, List Box, Combo Box, and Scroll Bar Controls 625

Figure 19–3 CON_DEMO Program Screen 634

Figure 19–4 Common Menu Elements 638

Figure 19–5 Developer Studio Menu Editor 639

Figure 19–6 Developer Studio Insertion of a Shortcut Key Code 641

Figure 19–7 Developer Studio Accelerator Editor 642

Figure 19–8 Simple Message Box 647

Figure 19–9 Developer Studio Dialog Editor 650

Figure 19–10 Color Selection Common Dialog Box 653

Figure 19–11 Toolbar 657

Figure 19–12 ”Toolbar.bmp” Button Identification Codes 661

Figure 19–13 Developer Studio Toolbar Editor 662

Figure 19–14 TB1_DEMO Program Screen 666

Figure 19–15 Developer Studio Resource Table Editor 670

Figure 20–1 Screen Snapshots of the DC Info Program 683

Figure 20–2 COLORREF Bitmap 686

Figure 20–3 Pen Syles, End Caps, and Joins 690

Figure 20–4 Brush Hatch Patterns 692

Figure 20–5 The Arc Drawing Direction 695

Figure 20–6 Coordinates of Two Polylines in the Sample Code 700

Figure 20–7 Coordinates of an Elliptical Arc in Sample Code 702

Figure 20–8 AngleArc() Function Elements 703

Figure 20–9 The Bezier Spline 705

Figure 20–10 Divide-and-Conquer Method of Creating a Bezier Curve 705

Figure 20–11 Elements of the Cubic Bezier 706

Figure 20–12 Approximate Result of the PolyDraw() Code Sample 713

Figure 21–1 Brush Ha tch Pa tterns 716

Figure 21 -2 Effects of the Polygon Fill Modes 719

Figure 21–3 Figure Definition in the Rectangle() Function 723

Figure 21–4 Definition Parameters for the RoundRect() Function 724

Figure 21–5 Figure Definition in the Ellipse() Function 725

Figure 21–6 Figure Definition in the Chord() Function 726

Figure 21–7 Figure Definition in the Arc() Function 727

Figure 21–8 Figure Produced by the Polygon Program 729

Figure 21–9 Rectangle Drawn with DrawFocusRect() 734

Figure 21–10 Effect of the OffsetRect() Function 736

Figure 21–11 Effect of the InflateRect() Function 737

Figure 21–12 Effect of the IntersectRect() Function 738

Figure 21–13 Effect of the UnionRect() Function 739

Figure 21–14 Cases in the SubtractRect() Function 740

Figure 21–15 Regions Resulting from CombineRgn() Modes 748

Figure 21–16 Region Border Drawn with FrameRgn() 750

Figure 21–17 Effect of OffsetRgn() on Region Fill 752

Figure 21–18 Results of Clipping 754

Figure 21–19 Figure Closing Differences 764

Figure 21–20 Miter Length, Line Width, and Miter Limit 766

Figure 21–21 Effect of the SetMiterLimit() Function 767

Figure 22–1 One Bit Per Pixel Image and Bitmap 772

Figure 22–2 Two Bits Per Pixel Image and Bitmap 773

Figure 22–3 Binary and Unary Operations on Bit Blocks 774

Figure 22–4 Hard-Coded, Monochrome Bitmap 784

Figure 22–5 Memory Image of Conventional and DIB Section Bitmaps 796

Figure 22–6 Screen Snapshot Showing a DIB Section Bitmap Manipulation 800

Figure 22–7 Horizontal and Vertical Bitmap Inversion with StretchBlt() 805

Figure 23–1 DirectX 8.1 Installation Main Screen 813

Figure 23–2 DirectX 8.1 Custom Installation Screen 814

Figure 23–3 DirectX 8.1 Retail or Debug Runtime Selector 814

Figure 23–4 Navigating to the DirectX 8.1 Programs and Utilities 815

Figure 23–5 DirectX 8.1 Documentation Utility 816

Figure 23–6 DirectX Properties Dialog Box 818

Figure 23–7 DirectX Diagnostic Utility 819

Figure 23–8 DirectX Diagnostic Utility Display Test 820

Figure 23–9 Testing DirectDraw Functionality 820

Figure 24–1 Abstract Class Structure 832

Figure 24–2 The Virtual Function Table (vtable) 836

Figure 24–3 Monolithic and Component-Based Applications 837

Figure 24–4 HRESULT Bitmap 841

Figure 25–1 DirectDraw Bounding Rectangle 854

Figure 25–2 DirectDraw Object Types 856

Figure 25–3 Relations between Windows Graphics Components 858

Figure 25–4 Visualization of Primary and Overlay Surfaces 861

Figure 25–5 Video Memory Mapping Variations 862

Figure 25–6 Palette-Based Pixel Attribute Mapping 863

Figure 25–7 Clipping a Bitmap at Display Time 865

Figure 25–8 Clipper Consisting of Two Rectangular Areas 866

Figure 26–1 Directories Tab (Include Files) in the Options Dialog Box 868

Figure 26–2 Directories Tab (Library files) in the Options Dialog Box 869

Figure 26–3 Link Tab in Developer Studio Project Settings Dialog Box 869

Figure 28–1 Pixel Mapping in Real-Color Modes 908

Figure 28–2 Pixel Mapping in True-Color Modes 909

Figure 28–3 Pixel Offset Calculation 923

Figure 28–4 Visualizing the XOR Operation 936

Figure 29–1 DirectDraw Surface Types 942

Figure 29–2 The DirectDraw Blit. 952

Figure 29–3 The BltFast() Function 954

Figure 29–4 The Blt() Function 957

Figure 29–5 Bit-Time Mirroring Transformations 961

Figure 30–1 Using a Clipper to Establish the Surface’s Valid Blit Area. 982

Figure 30–2 Multiple Clipping Rectangles 983

Figure 30–3 Comparing the Two Versions of the DD Bitmap In Window
Program 991

Figure 30–4 Locating the Blt() Destination Rectangle 992

Figure 31–1 Stick Figure Animation 997

Figure 31–2 Animation Image Set 1000

Figure 31–3 The Sprite Image Set for the DD Sprite Animation Program 1002

Figure 31–4 Partitioning the Sprite Image Set 1003

Figure 31–5 Sprite Animation by Page Flipping 1006

Figure 31–6 Flipping Chain with Two Back Buffers 1007

Figure 31–7 Surface Update Time and Frame Rate 1012

Figure 31–8 Dirty Rectangles in Animation 1024

Figure 32–1 Windows Graphics Architecture 1031

Figure 32–2 DirectX Graphics Architecture 1032

Figure 32–3 Direct3D Rendering Modules 1035

Figure 32–4 Frame Hierarchy in a Scene 1038

Figure 32–5 Quadrilateral and Triangular Meshes 1039

Figure 32–6 Front Face of a Triangular Polygon 1040

Figure 32–7 Vertex Normals and Face Normals in a Pyramid 1041

Figure 32–8 Error in Gouraud Rendering 1042

Figure 32–9 Rendering Overlapping Triangles 1043

Figure 32–10 Calculating the Vertex Normals 1044

Figure 32–11 Umbra and Penumbra in Spotlight Illumination 1046

Figure 32–12 Mipmap Structure 1048

Figure 32–13 Example of a DirectDraw Mipmap 1048

Figure 32–14 The Viewing Frustum 1051

Figure 32–15 Viewport Parameters 1052

Figure 32–16 Vector/Scalar Interpretation of the Quaternion 1054

Figure 32–17 In-Between Frames in Animation 1055

Figure 32–18 Aircraft Dynamic Angles 1055

Figure 33–1 Changing the Camera Position along the z-axis 1081

Preface

This book is about graphics programming on the Personal Computer. As the title
indicates, the book’s emphasis is on programming, rather than on theory. The main
purpose is to assist program designers, systems and applications programmers, and
implementation specialists in the development of graphics software for the PC.

PC graphics began in 1982 with the introduction of the IBM Color Graphics Adapter.
In 20 or so years the technology has gone from simple, rather primitive devices,
sometimes plagued with interference problems and visually disturbing defects, to
sophisticated multi-processor environments capable of realistic 3D rendering and life-like
animation. A machine that 20 years ago was hardly capable of displaying bar charts and
simple business graphics now competes with the most powerful and sophisticated
graphics workstations. During this evolution many technologies that originally showed
great promise have disappeared, while a few others seem to hang on past the most
optimistic expectations. Programming has gone from rather crude and primitive routines
for rendering simple geometrical objects to modeling, rendering, and animating solid
objects at runtime in a realistic manner.

What Is in the Book
In the complex graphics environment of the PC, covering the fundamentals of some
technologies requires one or more full-sized volumes. This is the case with systems such
as VGA, SuperVGA, XGA, DirectX, Direct 3D, and OpenGL. Thus, in defining the
contents of this book our first task was to identify which systems and platforms are still
relevant to the programmer. Our second task was to compress the coverage of the
selected systems so that the entire PC graphics context would fit in a single volume.

The topic selection process entailed many difficult decisions: how much graphics
theory should be in the book? Is DOS graphics still a viable field? Which portions of
Direct3D are most important to the “average” programmer? Should OpenGL be
included? In some cases the complexity and specialized application of a graphics
technology determined our decision. For example, Direct3D immediate mode
programming was excluded because of its difficulty and specialized application. Other
platforms such as OpenGL are technologically evolved but not part of the PC
mainstream. Our decisions led to the following structure:

• Part I of the book is an overview of PC graphics and a description of the theories that
support the material covered.

• Part II is devoted to DOS graphics. In this part we discuss the VGA, XGA, and
SuperVGA systems. DOS bitmapped graphics are also in this part.

• Part III is about Windows API graphics. Since Windows is a graphics environment the
topics covered include an overview of general Windows programming. In Part III
bitmapped graphics is revisited in the Windows platform.

• Part IV covers some portions of DirectX. In addition to a description of the DirectX
platform itself and its relation to the COM, we cover DirectX and Direct3D retained
mode. Direct3D immediate mode is excluded for the reasons previously mentioned.

Programming Environment
The principal programming environment is C++, but some primitive functions are coded
in 80x86 Assembly Language. The high performance requirements of graphics
applications sometimes mandate Assembly Language. Microsoft’s Visual C++ Version
6.0 and MASM version 6.14 were used in developing the book.

We approach Windows programming at its most basic level, that is, using the
Windows Application Programming Interface (API). We do not use the Microsoft
Foundation Class Library (MFC) or other wrapper functions. It is our opinion that
graphics programs cannot afford the overhead associated with higher-level development
tools. Furthermore, DirectX provides no special support for MFC.

Although we do not use the wrapper functions we do use tools that are part of the
Visual C++ development package. These include resource editors for creating menus,
dialog boxes, icons, bitmaps, and other standard program components.

The Book’s Software
The software for the book is furnished on-line at http://www.crcpress.com/. The software
package includes all the sample programs and projects developed in the text as well as
several graphics libraries.

Part I
Graphics Fundamentals

Chapter 1
PC Graphics Overview

Topics:

• History and evolution of PC graphics
• Technologies
• Applications
• Development platforms
• The state-of-the-art

This first chapter is a brief historical summary of the evolution of PC graphics, a short list
of graphics-related technologies and fields of application, and an overview of the state-
of-the-art. A historical review is necessary in order to understand current PC graphics
technologies. What the PC is today as a graphical machine is the result of a complex
series of changes, often influenced by concerns of backward compatibility and by
commercial issues. A review of graphics hardware technologies is also necessary because
the graphics programmer usually works close to the metal. The hardware intimacy
requires a clear understanding the how a binary value, stored in a memory cell, is
converted into a screen pixel. The chapter also includes a description of some of the most
important applications of computer graphics and concludes with a presentation of the
graphics technologies and development platforms for the PC.

1.1 History and Evolution

The state-of-the-art computer is a graphics machine. It is typically equipped with a high-
resolution display, a graphics card or integral video system with 3D capabilities, and a
processor and operating system that support a sophisticated graphical user interface. This
has not always been the case. In the beginning computers were text-based. Their principal
application was processing text data. The typical source of input was a typewriter-like
machine called a teletype terminal or TTY. Output was provided by a line printer that
operated by means of a mechanical arrangement of small pins that noisily produced an
approximate rendering of the alphabetic characters. It was not until the 1960s that
cathode-ray tube technology (CRT) found its way from television into computers. We
start at this technological point.

1.1.1 The Cathode-Ray Tube

The CRT display consists of a glass tube whose interior is coated with a specially
formulated phosphor. When the phosphor-coated surface is struck by an electron beam it

becomes fluorescent. In computer applications CRT displays are classified into three
groups: storage tube, vector refresh, and raster-scan.

The storage tube CRT can be used both as a display and as a storage device, since the
phosphor image remains visible for up to 1 hour. To erase the image the tube is flooded
with a voltage that turns the phosphor back to its dark state. One limitation is that specific
screen areas cannot be individually erased. This determines that in order to make a small
change in a displayed image, the entire CRT surface must be redrawn. Furthermore, the
storage tube technology display has no color capabilities and contrast is low. This
explains why storage tube displays have seldom been used in computers, and never in
microcomputers.

Computers were not the first machines to use the cathode-ray tubes for graphic
display. The oscilloscope, a common laboratory apparatus, performs operations on an
input signal in order to display the graph of the electric or electronic wave on a
fluorescent screen

The vector-refresh display, on the other hand, uses a short-persistence phosphor whose
coating must be reactivated by the electron beam. This reactivation, called the refresh,
takes place at a rate of 30 to 50 times per second. The vector-refresh system also requires
a display file and a display controller. The display file is a memory area that holds the
data and instructions for drawing the objects to be displayed. The display controller reads
this information from the display file and transforms it into digital commands and data
which are sent to the CRT. Figure 1–1 shows the fundamental elements of a vector
refresh display system.

Figure 1–1 Vector-Refresh Display

The disadvantages of the vector-refresh CRT are its high cost and limited color
capabilities. Vector refresh display technology has not been used in the PC.

During the 1960s Conrac Corporation developed a computer image processing
technology, known as raster-scan graphics. Their approach took advantage of the
methods of image rendering and refreshing used in television receivers. In a raster-scan
display the electron beam follows a horizontal line-by-line path, starting at the top-left

The pc graphics handbook 4

corner of the CRT surface. The scanning cycle takes place 50 to 70 times per second. At
the start of each horizontal line the controller turns on the electron beam. The beam is
turned off during the horizontal and vertical retrace cycles. The scanning path is shown in
Figure 1–2.

Figure 1–2 A Raster-Scan System

The raster-scan display surface is divided into a grid of individual dots, called pixels. The
term pixel was derived from the words picture and elements. In the memory-mapped
implementation of raster-scan technology, an area of RAM is devoted to recording the
state of each individual screen pixel. The simplest color-coding scheme consists of using
a single bit to represent either a white or a black pixel. Conventionally, if the memory bit
is set, the display scanner renders the corresponding pixel as white. If the memory bit is
cleared, the pixel is left dark. The area of memory reserved for the screen display is
usually called the frame buffer or the video buffer. Figure 1–3, on the following page,
shows the elements of a memory-mapped video system.

Figure 1–3 A Memory-Mapped System
Implementing color pixels requires a more elaborate scheme. In color systems the CRT is
equipped with one electron gun for each color that is used to activate the pixels. Usually

PC graphics overview 5

there are three color-sensitive electron guns: one for red, one for green, and one for blue.
Data for each of the three colors must be stored separately. One approach is to have a
separate memory map for each color. A more common solution is to devote bit fields or
storage units to each color. For example, if one memory byte is used to encode the pixel’s
color attributes, three bits can be assigned to encode the red color, two bits to encode the
green color, and three bits for the blue color. One possible mapping of colors to pixels is
shown in Color Figure 1.

In Color Figure 1 one memory byte has been divided into three separate bit fields.
Each bit field encodes the color values that are used to render a single screen pixel. The
individual bits are conventionally labeled with the letters R, G, and B, according to the
color they represent. Since eight combinations can be encoded in a three-bit field, the
blue and red color components can each have eight levels of intensity. In this example we
have used a two-bit field to encode the green color; therefore it can only be rendered in
four levels of intensity. The total number of combinations that can be encoded in 8 bits is
256, which is also the number of different color values that can be represented in one
memory byte. The color code is transmitted by the display controller hardware to a
Digital-to-Analog converter (DAC), which, in turn, transmits the color video signals to
the CRT.

In the PC all video systems are raster-scan and memory mapped. The advantages of a
raster-scan display are low cost, color capability, and easy programmability. One major
disadvantage is the grainy physical structure of the display surface that results from the
individual screen dots. Among other aberrations, the dot pattern causes lines that are not
vertical, horizontal, or at exactly 45 degrees to exhibit a staircase effect. Raster-scan
systems also have limitations in rendering animation. Two factors contribute to this
problem: first, all the screen pixels within a rectangular area must be updated with each
image change. Second, in order to ensure smoothness, the successive images that create
the illusion of motion must be flashed on the screen at a fast rate. These constraints place
a large processing load on the microprocessor and the display system hardware.

1.2 Short History of PC Video

The original IBM Personal Computer was offered in 1981 equipped with either a Mono-
chrome Display Adapter (MDA), or a graphics system named the Color/Graphics
Monitor Adapter (CGA). The rationale for having two different display systems was that
users who intended to use the PC for text operations would prefer a machine equipped
with the MDA video system, while those requiring graphics would like one equipped
with the CGA card. But, in reality, the CGA graphics system provided only the most
simple and unsophisticated graphics. The card was also plagued with interference
problems which created a screen disturbance called “snow.” However, the fact that the
original IBM Personal Computer was furnished with an optional graphics system
signaled that the industry considered video graphics as an essential part of
microcomputing.

During the past 20 years PC video hardware has been furnished in an assortment of
on-board systems, plug-in cards, monitors, and options manufactured and marketed by
many companies. In the following sections we briefly discuss better known PC video

The pc graphics handbook 6

systems. Systems that were short lived or that gained little popularity, such as the PCJr,
the IBM Professional Graphics Controller, the Multicolor Graphics Array, and the IBM
Image Adapter A, are not mentioned.

1.2.1 Monochrome Display Adapter

The original alphanumeric display card designed and distributed by IBM for the Personal
Computer was sold as the Monochrome Display and Printer Adapter since it included a
parallel printer port. The MDA could display the entire range of alphanumeric and
graphic characters in the IBM character set, but did not provide pixel-level graphics
functions. The MDA was compatible with the IBM PC, PC XT, and PC AT, and some of
the earlier models of the PS/2 line. It could not be used in the PCjr, the PC Convertible,
or in the microchannel PS/2 machines. The card required a special monochrome monitor
of long-persistence (P39) phosphor. These monitors, which produced very pleasant text,
were available with either green or amber screens. The video hardware was based on the
Motorola 6845 CRT controller. The system contained 4K of on-board video memory,
mapped to physical address B0000H.

The MDA was designed as a pure alphanumeric display: the programmer could not
access the individual screen pixels. Video memory is mapped as a grid of character and
attribute bytes. The character codes occupy the even-numbered bytes in adapter memory,
and the display attributes the odd-numbered bytes. This special storage and display
scheme was conceived to save memory space and to simplify programming. Figure 1–4
shows the cell structure of the MDA video memory space and the bitmap for the attribute
cells.

Figure 1–4 Memory Mapping and
Attributes in the MDA Adapter

1.2.2 Hercules Graphics Card

An aftermaket version of the MDA, developed and marketed by Hercules Computer
Technologies, was called the Hercules Graphics Card (HGC). HGA emulates the

PC graphics overview 7

monochrome functions of the MDA, but can also operate in a graphics mode. Like the
MDA, the HGC includes a parallel printer port. Because of its graphics capabilities, the
Hercules card was often preferred over the IBM version. In the HGA the display buffer
consists of 64K of video memory. In alphanumeric mode the system sees only the 4K
required for text mode number 7. However, when the HGC is in the graphics mode, the
64K are partitioned as two 32K graphics pages located at physical addresses B0000H to
B7FFFH and B8000H to BFFFFH. Graphic applications can select which page is
displayed.

1.2.3 Color Graphics Adapter

The Color Graphics Adapter (CGA), released early in 1982, was the first color and
graphics card for the PC. The CGA operates in seven modes which include monochrome
and color graphics. Mode number 0 is a 40 columns by 25 rows monochrome
alphanumeric mode. In Mode 0 text characters are displayed in 16 shades of grey.
Characters are double width and 40 can be fitted on a screen line. Graphics mode number
6 provides the highest resolution, 640 horizontal by 200 vertical pixels.

One notable difference between the CGA and the MDA is the lower quality text
characters of the color card. In a raster-scan display the visual quality of the text
characters is related to the size of the respective character cells. In the MDA each
character is displayed in a box of 9-by-14 screen pixels. In the CGA the character box is
of 8-by-8 pixels. The resulting graininess of the CGA text characters was so disturbing
that many users considered the card unsuitable for text operations.

The CGA was designed so that it could be used with a standard television set;
however, it performed best when connected to an RGB color monitor. Timing and control
signals were furnished by a Motorola 6845 CRT controller, identical to the one used in
the MDA. The CGA contains 16K of memory, which is four times the memory in the
MDA. This makes it possible for the CGA to simultaneously hold data for four full
screens of alphanumeric text. The CGA video buffer is located at physical address
B8000H. The 16K memory space in the adapter is logically divided into four 1K areas,
each of which holds up to 2000 characters with their respective attributes. The memory-
to-pixel mapping in the CGA is shown in Figure 1–5.

Video memory in the CGA text modes consists of consecutive character and attribute
bytes, as in the MDA. The mapping of the attribute bits in the black and white
alphanumeric modes is identical to the one used in the MDA, but in color alphanumeric
modes the attribute bits are mapped differently.

The CGA suffers from a form of screen interference, popularly called snow. This
irritating effect results from CGA’s use of RAM chips (called dynamic RAMs) which are
considerably slower than the static RAMs used in the MDA card. In a CGA system, if the
CPU reads or writes to the video buffer while it is being refreshed by the CRT Controller,
a visible screen disturbance takes place. The solution is to synchronize screen updates
with the vertical retrace signal generated by the 6845 controller. This is possible during a
short time interval, called the vertical retrace cycle. Since the duration of the vertical
retrace is barely sufficient to set a few pixels, rendering is considerably slowed down by
this synchronization requirement. Furthermore, during screen scroll operations the

The pc graphics handbook 8

display functions must be turned off while the buffer is updated. This causes a disturbing
screen flicker.

Figure 1–5 Memory-to-Pixel Mapping
in the CGA Color Alpha Modes

1.2.4 Enhanced Graphics Adapter

The Enhanced Graphics Adapter (EGA) was introduced by IBM in 1984 as an alternative
to the much maligned CGA card. The EGA could emulate most of the functions and all
the display modes of both the CGA and the MDA. At the same time, EGA had a greater
character definition in the alphanumeric modes than the CGA, higher resolution in the
graphics modes, and was not plagued with the snow and flicker problems. EGA can drive
an Enhanced Color Display with a maximum graphics resolution of 640-by-350 pixels.

EGA introduced four new graphics modes, sometimes called the enhanced graphics
modes. These modes are numbered 13 through 16. The highest graphics resolution is
obtained in the modes numbers 15 and 16, which displayed 640-by-350 pixels. The EGA
used a custom video controller chip with different port and register assignments than
those of the Motorola 6845 controller used in the MDA and CGA cards. The result is that
programs that access the MDA and CGA 6845 video controller directly do not work on
the EGA. EGA was furnished with optional on-board RAM in blocks of 64K. In the
minimum configuration the card had 64K of video memory, and 256K in the maximum
one.

EGA systems had several serious limitation. In the first place, EGA supported write
operations to most of its internal registers, but not read operations. This made it virtually
impossible for software to detect and preserve the state of the adapter, which in turn,
made EGA unsuitable for memory resident applications or for multitasking or
multiprogramming environments. Another limitation of the EGA is related to its unequal

PC graphics overview 9

definitions in the vertical and horizontal planes; this problem is also present in the HGC
and the CGA cards. In an EGA, equipped with a typical monitor, the vertical resolution in
graphic modes 15 and 16 is approximately 54 pixels per inch and the horizontal
resolution approximately 75 pixels per inch. This gives a ratio of vertical to horizontal
definition of approximately 3:4. Although not as bad as the 2:3 ratio of the HGC, the
disproportion still determines that a pixel pattern geometrically representing a square is
displayed on the screen as a rectangle and the pattern of a circle is displayed as an ellipse.
The geometrical aberration complicates pixel path calculations, which must take this
disproportion into account and make the necessary adjustments.

1.3 PS/2 Video Systems

The PS/2 line of microcomputers was released by IBM in 1987. It introduced several new
features, including a new system bus and board connectors, named the microchannel
architecture, a 3.5-inch diskette drive with 1.44 megabytes of storage, and an optional
multitasking operating system named OS/2, which is now virtually defunct. Machines of
the PS/2 line came equipped with one of two new video graphics systems, while a third
one was available as an option.

The new video standards for the PS/2 line were the Multicolor Graphics Array
(MCGA), the Video Graphics Array (VGA), and the 8514/A Display Adapter. The most
notable improvement of the video hardware in the PS/2 systems was that IBM changed
the display driver technology from digital to analog. The one drawback was that the
monitors of the PC line were incompatible with the PS/2 computers, and vice versa. The
main advantage of analog display technology is a much larger color selection. Another
important improvement is their symmetrical resolution, that is, the screen resolution is the
same in the vertical as in the horizontal planes. Symmetrical resolution simplifies
programming by eliminating geometrical aberrations during pixel plotting operations.
The aspect ratio of the PS/2 monitors is 4:3, and the best resolution is 640-by-480 pixels.

1.3.1 Video Graphics Array

Video Graphics Array (VGA) is the standard video display system for the IBM Personal
System/2 computers models 50, 50z, 60, 70, and 80. IBM first furnished VGA on the
system board. VGA comes with 256K of video memory, which can be divided into four
64K areas, called the video maps or bit planes. The system supports all the display modes
of the MDA, CGA, and the EGA cards of the PC family. In addition, VGA introduced
graphics mode number 18, with 640-by-480 pixel resolution in 16 colors. The effective
resolution of the text modes is 720 by 400. In order to display text in a graphics mode,
three text fonts with different box sizes could be loaded from BIOS into the adapter.
VGA soon became available as an adapter card for non-IBM machines. The video
technology introduced with VGA continues to be the PC video standard to this day.

The pc graphics handbook 10

1.3.2 8514/A Display Adapter

The 8514/A Display Adapter is a high-resolution graphics system designed for the PS/2
line. The tchnology was developed in the United Kingdom, at the IBM Hursley
Laboratories. The 8514/A system comprises not only the display adapter, but also the
8514 Color Display and an optional Memory Expansion Kit. The original 8514/A is
compatible only with PS/2 computers that use the microchannel bus. It is not compatible
with machines of the PC line, with the PS/2 models 25 and 30, or with non-IBM
computers that do not use the microchannel architecture. Other companies developed
versions of 8514/A which can be used in machines based on the ISA or EISA bus
architecture.

The 8514/A Display Adapter consists of two sandwiched boards designed to be
inserted into the special microchannel slot that has the auxiliary video extension. The
standard version comes with 512K of video memory. The memory space is divided into
four maps of 128K each. In the standard configuration 8514/A displays in 16 colors,
however, by installing the optional Memory Expansion Kit, video memory is increased to
1 megabyte. The 1 megabyte space is divided into eight maps, extending to 256 the
number of available colors. The system is capable of four new graphic modes not
available in VGA. IBM named them the advanced function modes. One of the new modes
has 640-by-480 pixel definition, and the remaining three modes have 1024-by-768 pixels.
8514/A does not directly support the conventional alphanumeric or graphics modes of the
other video standards, since it executes only in the advanced function modes. In a typical
system VGA automatically takes over when a standard mode is set. The image is routed
to the 8514/A monitor when an advanced function mode is enabled. An interesting
feature of the 8514/A adapter is that a system containing it can operate with two
monitors. In this case the usual setup is to connect the 8514 color display to the 8514/A
adapter and a standard monitor to the VGA. Figure 1–6 shows the architecture of a
VGA/8514A system.

A feature of 8514/A, which presaged things to come, is that it contains a dedicated
graphics chip that performs as a graphics coprocessor. Unlike previous systems, in
8514/A the system microprocessor cannot access video memory; instead this function is
left to the graphic coprocessor. The greatest advantage of this setup is that it improves
performance by offloading the graphics functions from the CPU. The 8514/A can be
programmed through a high-level graphics function package called the Adapter Interface,
or AI. There are a total of 59 drawing primitives in the AI, accessible through a software
interrupt.

PC graphics overview 11

Figure 1–6 Architecture of a
VGA/8514A Video System

Approximately 2 years after the introduction of 8514/A, IBM unveiled another high-
performance, high-priced graphics board, designated the Image Adapter/A. The Image
Adapter/A is compatible with the 8514/A at the Adapter Interface level but not at the
register level. Image Adapter/A was short-lived due to its high price tag, as well as to the
fact that shortly thereafter IBM released its new XGA technology.

1.3.3 Extended Graphics Array

In September 1990, IBM disclosed preliminary information on a new graphics standard
designated the Extended Graphics Array, or XGA. Like its predecessor the 8514-A, XGA
hardware was developed in the UK. Two XGA configurations were implemented: an
adapter card and a motherboard version. In 1992, IBM released a non-interlaced version
of the XGA designated as XGA-2 or XGA-NI (non-interlaced). The XGA adapter is
compatible with PS/2 microchannel machines equipped with the 80386 or 486 CPU. The
system is integrated in the motherboard of the IBM Models 90 XP 486, in the Model 57
SLC, and furnished as an adapter board in the Model 95 XP 486. In 1992, Radius
Incorporated released the Radius XGA-2 Color Graphics Card for computers using the
ISA or EISA bus. Other companies developed versions of the XGA system for
microchannel and non-microchannel computers. XGA is still found today in some laptop
computers. Figure 1–7 is a component diagram of the XGA system.

The pc graphics handbook 12

Figure 1–7 XGA Component Diagram

1.4 SuperVGA

The general characteristic of SuperVGA boards, as the name implies, is that they exceed
the VGA standard in definition, color range, or both. The term SuperVGA is usually
applied to enhancements to the VGA standard developed by independent manufacturers
and vendors. Atypical SuperVGA card is capable of executing, not only the standard
VGA modes, but at least one additional mode with higher definition or greater color
range than VGA. These modes are usually called the SuperVGA Enhanced Modes.

In the beginning, the uncontrolled proliferation of SuperVGA hardware led to
compatibility problems. Lack of standardization and production controls led to a situation
in which the features of a card by one manufacturer were often incompatible with those
of a card produced by another company. This situation often led to the following
problem: an application designed to take advantage of the enhancements in a particular
SuperVGA system would not execute correctly in another systems. An attempt to solve
this lack of standardization resulted in several manufacturers of SuperVGA boards
forming the Video Electronics Standards Association (VESA). In October 1989, VESA
made public its first SuperVGA standard. This standard defined several enhanced video
modes and implemented a BIOS extension designed to provide a few fundamental video
services in a hardware-compatible fashion.

1.4.1 SuperVGA Architecture

In VGA systems the video memory space extends from A0000H to BFFFFH. The 64K
area starting at segment base A000H is devoted to graphics, while the 64K area starting at
segment base B000H is devoted to alphanumeric modes. This makes a total of 128K
memory space reserved for video operations. But the fact that systems could be set up

PC graphics overview 13

with two monitors, one in an alphanumeric mode and the other one in a color mode,
actually limited the graphics video space to 64K.

Not much video data can be stored in a 64K. For example, if each screen pixel is
encoded in one memory byte, then the maximum screen data that can be stored in 65,536
bytes corresponds to a square screen with 256 pixels on each side. Thus, a VGA system
in 640-by-480 pixels resolution, using one data byte per pixel, requires 307,200 bytes for
storing a single screen. Consider that in the Intel segmented architecture of the original
PCs each segment consisted of a 64K space. In this case addressing 307,200 pixels
requires making five segment changes.

VGA designers were able to compress video data by implementing a latching scheme
that resulted in a semi-planar architecture. For example, in VGA mode number 18, with a
resolution of 640-by-480 pixels, each pixel can be displayed in 16 different colors. To
encode 16 color combinations requires a 4-bit field, and a total memory space of 153,600
bytes. However, the latching mechanism allows mapping each of the four color attributes
to the same base address, all apearing to be located in a common 64K address space.

When the VGA was first released, engineers noticed that some VGA modes contained
surplus memory. For example, in modes with 640-by-480 pixels resolution the video data
stored in each map takes up 38,400 bytes of the available 64K. This leaves 27,136 unused
bytes. The original idea of enhancing the VGA system was based on using this surplus
memory to store video data. It is possible to have an 800-by-600 pixel display divided
into four maps of 60,000 bytes each, and yet not exceed the 64K space allowed for each
color map, nor the total 265K furnished with the VGA system. To graphics systems
designers, a resolution of 800 by 600 pixels, in 16 colors, appeared as a natural extension
to VGA mode number 18. This new mode, later designated as mode 6AH by the VESA
SuperVGA standard, could be programmed in a similar manner as VGA mode number
18. The enhancement, which could be achieved with minor changes in the VGA
hardware, provided a 36 percent increase in the display area.

1.4.2 Bank-Switched Memory

The memory structure for VGA 256-color mode number 19 is based, not on a bitmapped
multiplane scheme, but in a much simpler format that maps a single memory byte to each
screen pixel. This scheme is shown in Figure 1–8.

In byte-to-pixel mapping 256 color combinations can be directly encoded into a data
byte, which correspond to the 256 DAC registers of the VGA hardware. The method is
straightforward and uncomplicated; however, if the entire video space is to be contained
in 64K, the maximum resolution is limited to 65,536 pixels. This means that a rectangular
screen of 320-by-200 pixels nearly fills the allotted 64K.

The pc graphics handbook 14

Figure 1–8 Byte-to-Pixel Video
Memory Mapping Scheme

In a segment architecture machine, if the resolution of a 256-color mode is to exceed
65,536 pixels it is necessary to find other ways of mapping video memory into 64K of
system RAM. The mechanism adopted by the SuperVGA designers is based on a
technique known as bank switching. In bank-switched systems the video display
hardware maps several 64K-blocks of RAM to different locations in video memory. In
the PC addressing of the multi-segment space is by means of a hardware mechanism that
selects which video memory area is currently located at the system’s aperture. In the
SuperVGA implementation the system aperture is usually placed at segment base A000H.
The entire process is reminiscent of memory page switching proposed in the LIM
(Lotus/Intel/Microsoft) Extended Memory scheme. Figure 1–8 shows mapping of several
memory banks to the video space and the map selection mechanism for CPU addressing.

Figure 1–9 SuperVGA Banked-
Switched Memory

In the context of video system architecture, the term aperture is often used to denote the
CPU window into the system’s memory space. For example, if the addressable area of
video memory starts at physical address A0000H and extends to AFFFFH, we say that
the CPU has a 64K aperture into video memory (10000H= 64K). In Figure 1–10 we see

PC graphics overview 15

that the bank selector determines which area of video memory is mapped to the
processor’s aperture. This determines the video display area that can be updated by the
processor. In other words, in the memory banking scheme the processor cannot access the
entire video memory at once. In the case of Figure 1–10, the graphics hardware has to
perform five bank switches in order to update the entire screen.

1.4.3 256-Color Extensions

The SuperVGA alternative for increasing definition beyond the VGA limit is based on
the banking mechanism shown in Figure 1–8. This scheme, in which a memory byte
encodes the 256 color combinations for each screen pixel, does away with the
programming complications that result from mapping pixel colors to bit fields, as in the
high-resolution VGA modes previously mentioned. At the same time, bank switching
introduces some new complexities of its own, one of which is the requirement of a bank
selection device. In summary, the SuperVGA approach to extending video memory on
the PC has no precedent in CGA, EGA, or VGA systems. It is not interleaved nor does it
require memory planes or pixel masking. Although it is similar to VGA mode number 19
regarding color encoding, VGA mode number 19 does not use bank switching.

1.5 Graphics Coprocessors and Accelerators

A group of video systems based on dedicated graphics chips is perhaps the one most
difficult to characterize and delimit. They can be roughly described as those systems in
which graphics performance is enhanced by means of specialized graphics hardware that
operates independently from the CPU. The enormous variations in the functionalities and
design of graphics accelerators and coprocessors makes it impossible to list the specific
features of these systems. Here we mention a few systems of historical interest in the
evolution of PC graphics.

1.5.1 The TMS340 Coprocessor

One of the first full-featured dedicated graphics coprocessors used in the PC was the
TMS 340 graphics coprocessor developed by Texas Instruments. The chip was
introduced in 1986 and an upgrade, labeled TMS 34020, in 1990. The project was not a
commercial success and in 1993 Texas Instruments started discouraging the development
of new products based on the TMS340 chips. However, from 1988 to 1993 these
coprocessors were incorporated into many video products, including several high-end
video adapters, some of which were capable of a resolution of 1280-by-1024 pixels in
more than 16 million colors. These products, now called true color or 24-bit color cards,
furnished photographic-quality images. The image quality of coprocessor-based systems
was often sufficient for image editing, prepress, desktop publishing, CAD, and other
high-end graphics applications.

Not all coprocessor-based graphics systems marketed at the time used the TMS 340.
For example, the Radius Multiview 24 card contained three 8514/A-compatible chips,
while the RasterOps Paintboard PC card was based on the S3. But it is safe to state that

The pc graphics handbook 16

the TMS 340 and its descendants dominated the true-color field at the time; of ten true
color cards reviewed in the January 1993 edition of Windows Magazine, seven were
based on the TMS 340.

The TMS 340 was optimized for graphics processing in a 32-bit environment. The
technology had its predecessors in the TI’s 320 line of digital signal processing chips.
The following are the distinguishing features of the TMS340 architecture:

1. The instruction set includes both graphics and general-purpose instructions. This made
the TMS340 a credible stand-alone processor.

2. The internal data path is 32-bits wide and so are the arithmetic registers. The physical
address range is 128 megabytes.

3. Pixel size is programmable at 1, 2, 4, 8, 16, or 32 bits.
4. Raster operations includes 16 boolean and 6 arithmetic options.
5. The chip contains 30 general purpose 32-bit registers. This is approximately four times

as many registers as in an Intel 80386.
6. The 512-byte instruction cache allows the CPU to place a considerable number of

instructions in the TMS340 queue while continuing to execute in parallel.
7. The coprocessor contains dedicated graphics instructions to draw single pixels and

lines, and to perform twodimensional pixels array operations, such as pixBlts, area
fills, and block transfers, as well as several auxiliary graphics functions.

The limited commercial success of the TMS 340-based systems is probably due to the
slow development of graphics applications that took advantage of the chip’s capabilities.
Systems based on the TM 340 sold from $500 to well over $1000 and they had little
commercial software support. The most important consequence of this technology was
demonstrating that the PC was capable of high-quality, high-performance graphics.

1.5.2 Image Properties

An image is a surrogate of reality. Its main purpose it to convey visual information to the
viewer. In computer technology the graphics image is usually a dot pattern displayed on a
CRT monitor. Some of the characteristics of the computer image can be scientifically
measured or at least evaluated objectively. But the human element in the perception of
the graphic image introduces factors that are not easily measured. For example, aesthetic
considerations can help us decide whether a certain graphic image “looks better” than
another one, yet another image can give us an eyestrain headache that cancels its
technological virtues.

Brightness and Contrast

Luminance is defined as the light intensity per unit area reflected or emitted by a surface.
The human eye perceives objects by detecting differences in levels of luminance and
color. Increasing the brightness of an object also increases the acuity with which it is
perceived. However, it has been found that the visibility or legibility of an image is more
dependent on contrast than on its absolute color or brightness.

The visual acuity of an average observer sustains an arc of approximately 1 minute.
Therefore, the average observer can resolve an object that measures 5 one-thousands of

PC graphics overview 17

an inch across when the image is displayed on a CRT and viewed at a distance of 18
inches. However, visual acuity falls rapidly with decreased luminance levels and with
reduced contrast. This explains why ambient light, reflected off the surface of a CRT,
decreases legibility.

A peculiarity of human vision is the decreasing ability of the eye to perceive
luminance differences or contrasts as the absolute brightness increases. This explains why
the absolute luminance values between object and background are less important to visual
perception than their relative luminance, or contrast.

Color

Approximately three-fourths of the light-perceiving cells in the human eye are color-
blind, which determines that luminance and contrast are more important to visual
perception than color. Nevertheless, color is generally considered a valuable
enhancement to the graphics image. The opinion is probably related to the popular
judgment that color photography, cinematography, and television are to be preferred over
the black-and-white versions.

Resolution

The quality of a raster-scan CRT is determined by the total number of separately
addressable pixels contained per unit area. This ratio, called the resolution, is usually
expressed in pixels-per-inch. For example, a CRT with 8-inch rows containing a total of
640 pixels per row has a horizontal resolution of 80 pixels per inch, while a CRT
measuring 6 inches vertically and containing a total of 480 pixels per column has a
vertical resolution of 80 pixels per inch.

Aspect Ratio

The aspect ratio of a CRT display is the relation between the horizontal and vertical
dimensions of the image area. For example, a viewing surface measuring 8 inches
horizontally and 6 inches vertically, is said to have a 4:3 aspect ratio. An 8t inch by 6
inch viewing surface has a 1:1 aspect ratio. Figure 1–10, on the following page, shows a
CRT with a 4:3 aspect ratio.

The pc graphics handbook 18

Figure 1–10 CRT with a 4:3 Aspect
Ratio

1.6 Graphics Applications

Applications of computer graphics in general, and of 3D graphics in particular, appear to
be limitless. The range of possible applications seems to relate more to economics and to
technology than to intrinsic factors. It is difficult to find a sphere of computing that does
not profit from graphics in one way or another. This is true of both applications and
operating systems. In today’s technology, graphics is the reality of computing. In PC
programming graphics are no longer an option, but a standard feature that cannot be
ignored.

1.6.1 Computer Games

Since the introduction of Pac Man in the mid 1980s, computer games have played an
important role in personal entertainment. More recently we have seen an increase in
popularity of dedicated computer-controlled systems and user-interaction devices, such as
those developed by Nintendo and Sega. In the past 3 or 4 years, computer games have
gone through a remarkable revival. The availability of more powerful graphics systems
and of faster processors, as well as the ingenuity and talent of the developers, have
brought about the increase in the popularity of this field. Computer games are one of the
leading sellers in today’s software marketplace, with sales supported by an extensive
subculture of passionate followers. Electronic games are always at the cutting edge of
computer graphics and animation. A game succeeds or fails according to its performance.
It is in this field where the graphics envelope is pushed to the extreme. 3D graphics
technologies relate very closely to computer games. In fact, it can be said that computer
games have driven graphics technology.

PC graphics overview 19

1.6.2 Graphics in Science, Engineering, and Technology

Engineering encompasses many disciplines, including architecture, and mechanical, civil,
and electrical, and many others. Virtually every field of engineering finds application for
computer graphics and most can use 3D representations. The most generally applicable
technology is computer-aided design (CAD), sometimes called computer-aided drafting.
CAD systems have replaced the drafting board and the T-square in the design of
components for civil, electrical, mechanical, and electronic systems. A few years ago, a
CAD system required a mainframe or minicomputer with high-resolution displays and
other dedicated hardware. Similar capabilities can be had today with off-the-shelf PC
hardware and software. Most CAD packages now include 3D rendering capabilities.

These systems do much more than generate conventional engineering drawings.
Libraries of standard objects and shapes can be stored and reused. For example, a CAD
program used in mechanical engineering can store nut and bolt designs, which can be re-
sized and used as needed. The same applies to other frequently used components and
standard shapes. Color adds a visual dimension to computer-generated engineering
drawings, a feature that is usually considered too costly and difficult to implement
manually. Plotters and printers rapidly and efficiently generate high-quality hardcopy of
drawings. 3D CAD systems store and manipulate solid views of graphics objects, which
facilitates the production of perspective views and projections. Wire-frame and solid
modeling techniques allow the visualization of real-world objects and contours. CAD
systems can also have expertise in a particular field. This knowledge can be used to check
the correctness and integrity of a design.

In architecture and civil engineering, graphics systems find many applications.
Architects use 3D modeling for displaying the interior and exterior of buildings. A
graphics technique known as ray tracing allows the creation of solid models that show
lighting, shading, and mirroring effects.

Computer graphics are used to predict and model system behavior. Simulation
techniques allow creating virtual representations of practically any engineered system, be
it mechanical, electrical, or chemical. Mathematical equations are used to manipulate 3D
representations and to predict behavior over a period of simulated time. Graphics images,
usually color-coded and often in 3D, are used to display movement, and to show stress
points or other dynamic features which, without this technique, would have been left to
the imagination.

Geographic Information Systems (GIS) computer graphics to represent, manipulate,
and store geographic, cartographic, and other social data for the analysis of phenomena
where geographical location is an important factor. Usually, the amount of data
manipulated in a GIS is much larger than can be handled manually. Much of this data is
graphics imagery in the form of maps and charts. GIS systems display their results
graphically. They find application in land use and land management, agriculture, forestry,
wildlife management, archeology, and geology. Programmable satellites and instruments
allow obtaining multiple images that can later be used in producing 3D images.

Remote sensing refers to collecting data at a distance, usually through satellites and
other spacecraft. Most natural resource mapping done today is by this technology. As the

The pc graphics handbook 20

resolution of remotely-sensed imagery increases, and their cost decreases, many more
practical uses will be found for this technology.

Automation and robotics also find extensive use for computer graphics. Computer
Numerical Control (CNC) and Computer Assisted Manufacturing (CAM) systems are
usually implemented in a computer graphics environment. State-of-the-art programs in
this field display images in 3D.

1.6.3 Art and Design

Many artists use computer graphics as a development and experimental platform, and
some as a final medium. It is hotly debated whether computer-generated images can be
considered fine art, but there is no doubt that graphics technology is one of the most
powerful tools for commercial graphics and for product design. As CAD systems have
replaced the drafting board, draw and paint programs have replaced the artist’s sketch
pad. The commercial artist uses a drawing program to produce any desired effect with
great ease and speed, and to experiment and fine tune the design. Computer-generated
images can be stretched, scaled, rotated, filled with colors, skewed, mirrored, re-sized,
extruded, contoured, and manipulated in many other ways. Photo editing applications
allow scanning and transforming bitmapped images, which can later be vectorized and
loaded into the drawing program or incorporated into the design as bitmaps.

Digital composition and typesetting is another specialty field in which computer
graphics has achieved great commercial success. Dedicated typesetting systems and
desktop publishing programs allow the creation of originals for publication, from a
brochure or a newsletter to a complete book. The traditional typesetting method was
based on “mechanicals” on which the compositor glued strips of text and images to form
pages. The pages were later photographed and the printing plates manufactured from the
resulting negatives. Today, composition is done electronically. Text and images are
merged in digital form. The resulting page can be transferred into a digital typesetter or
used to produce the printing plates directly. The entire process is based on computer
graphics.

1.6.4 Business

In recent years a data explosion has taken place. In most fields more data is being
generated than there are people to process it. Imagine a day in the near future in which 15
remote sensing satellites orbit the earth, each one of them transmitting an image every 15
minutes, of an area that covers 150 square miles. The resulting acquisition rate of an
image per minute is likely to create processing and storage problems, but perhaps the
greatest challenge will be to find ways of using this information. How many experts will
be required just to look at these images? Recently there have been just two or three
remote sensing satellites acquiring earth images and it is estimated that no more than 10
percent of these images have ever been analyzed. Along this same line, businesses are
discovering that they accumulate and store more data than can be used. Data mining and
data warehousing are techniques developed to find some useful nugget of information in
these enormous repositories of raw data.

PC graphics overview 21

Digital methods of data and image processing, together with computer graphics,
provide our only hope of ever catching up with this mountain of unprocessed data. A
business graph is used to compress and make available a large amount of information, in
a form that can be used in the decision-making process. Computers are re-quired to sort
and manipulate the data and to generate these graphs. The field of image processing is
providing methods for operating on image data. Technologies are being developed to
allow computers to “look at” imagery and obtain useful information. If we cannot
dedicate a sufficient number of human experts to look at a daily heap of satellite imagery,
perhaps we will be able to train computers for this task.

Computer-based command and control systems are used in the distribution and
management of electricity, water, and gas, in the scheduling of railways and aircraft, and
in military applications. These systems are based on automated data processing and on
graphics representations. At the factory level they are sometimes called process controls.
In both small and large systems, graphics displays are required to help operators and
experts visualize the enormous amount of information that must be considered in the
decision-making process. For example, the pilot of a modern-day commercial aircraft can
obtain, at a glance, considerable information about the airplane and its components as
they are depicted graphically on a video display. This same information was much more
difficult to grasp and mentally process when it originated in a dozen or more analog
instruments.

Computer graphics also serve to enhance the presentation of statistical data for
business. Graphics data rendering and computer animation serve to make the presentation
more interesting; for example, the evolution of a product from raw materials to finished
form, the growth of a real estate development from a few houses to a small city, or the
graphic depiction of a statistical trend. Business graphics serve to make more convincing
presentations of products or services offered to a client, as a training tool for company
personnel, or as an alternative representation of statistical data. In sales computer
graphics techniques can make a company’s product or service more interesting, adding
much to an otherwise dull and boring description of properties and features.

1.6.5 Simulations

Both natural and man-made objects can be represented in computer graphics. The optical
planetarium is used to teach astronomy in an environment that does not require costly
instruments and that is independent of the weather and other conditions. One such type of
computer-assisted device, sometimes called a simulator, finds practical and economic use
in experimentation and instruction. Simulators are discussed later in this book, in the
context of animation programming.

1.6.6 Virtual Reality

Technological developments have made possible a new level of user interaction with a
computing machine, called virtual reality. Virtual reality creates a digital universe in
which the user is immersed. This topic is also discussed in relation to computer
animation.

The pc graphics handbook 22

1.6.7 Artificial Life

Artificial life, or ALife, has evolved around the computer modeling of biosystems. It is
based on biology, robotics, and artificial intelligence. The results are digital entities that
resemble self-reproducing and self-organizing biological life forms.

1.6.8 Fractal Graphics

Natural surfaces are highly irregular. For this reason, many natural objects cannot be
represented by means of polygons or smooth curves. However, it is possible to represent
some types of natural objects by means of a mathematical entity called a fractal. The
word fractal was derived from fractional dimensions.

1.7 State-of-the-Art in PC Graphics

During the first half of the nineties, PC graphics were mostly DOS-based. The versions of
Windows and OS/2 operating systems available lacked performance and gave
programmers few options and little control outside of the few and limited graphics
services offered at the system level. Several major graphics applications were developed
and successfully marketed during this period, including professional quality CAD, draw
and paint, and digital typesetting programs for the PC. But it was not until the
introduction of 32-bit Windows, and especially after the release of Windows 95, that PC
graphics took off as a mainstream force.

The hegemony of Windows 95 and its successors greatly contributed to the current
graphics prosperity. At the end of the decade, DOS has all but disappeared from the PC
scene and graphics applications for the DOS environment have ceased to be
commercially viable. By providing graphics hardware transparency Windows has made
possible the proliferation of graphics coprocessors, adapters, and systems with many
dissimilar functions and fields of application. At the same time, the cost of high-end
graphics systems has diminished considerably.

From the software side three major forces struggle for domination of PC graphics:
DirectX, OpenGL, and several proprietary game development packages, of which Glide
is perhaps the best known.

1.7.1 Graphics Boards

PC graphics boards available at this time can be roughly classified by their functionality
into 2D and 3D accelerators, and by their interface into Peripheral Component
Interconnect (PCI) and Accelerated Graphics Port (AGP) systems. The 16-bit Industry
Standard Architecture (ISA) expansion bus is in the process of being phased out and few
new graphics cards are being made for it. Table 1–1 compares the currently available PC
system buses.

The PCI bus is present in many old-style Pentium motherboards and graphics cards
continue to be made for this interface. It allows full bus mastering and sup-ports data
transfer rates in burst of up to 132MBps. Some PCI buses that use older Pentium 75 to

PC graphics overview 23

150 run at 25 or 30MHz, but the vast majority operate at 33MHz. The 66MHz PCI is
seen in specialized systems.

Table 1–1
Specifications of PC System Buses

BUS WIDTH CLOCK SPEED DATA RATE
ISA 16 bits 8 MHz (varies)
PCI 32 bits 33 MHz 132 MBps
AGP 1X 32 bits 66 MHz 264 MBps
AGP 2X 32 bits 133 MHz 528 MBps
AGP 4X 32 bits 266 MHz 1024 MBps

The AGP port is dedicated for graphics applications and quadruples PCI performance.

AGP technology is based on Intel’s 440LX and 440BX chipsets used in Pentium II and
Pentium III motherboards and on the 440 EX chipset designed for the Intel Celeron
processors. The AGP port interface is defined in Intel’s AGP4x protocol. A draft version
of the AGP8x Interface Specification is currently in the public review stage. This new
standard provides a system-level attach point for graphics controllers and doubles the
bandwidth. At the same time it remains compatible with connectors and interfaces
defined in AGP4x.

The great advantage of AGP over its predecessors is that it provides the graphics
coprocessors with a high bandwidth access system memory. This allows applications to
store graphics data in system RAM. 3D graphics applications use this additional memory
by means of a process called direct memory execute (DIME) or AGP texturing to store
additional image data and to enhance rendering realism. However, since AGP systems do
not require that graphics cards support texturing, this feature cannot be taken for granted
in all AGP boards. In fact, few graphics programs to date actually take advantage of this
feature.

1.7.2 Graphics Coprocessors

While presently it is easy to pick AGP as the best available graphics bus for the PC,
selecting a graphics coprocessor is much more complicated. Several among half a dozen
graphics chips share the foreground at this time. Among them are the Voodoo line from
3Dfx (Voodoo2 and Voodoo Banshee), Nvidia’s RIVA and GeForce processors, MGA-
G200, and S3 Savage 3D chips. All of these chips are used in top-line boards in PCI and
AGP forms. Other well known graphics chips are 3D Labs Permedia, S3’s Virge,
Matrox’s MGA-64, and Intel’s i740. Recently Nvidia announced their new GeForce3
graphics processing unit with a 7.63GB/sec memory bandwith and other state-of-the-art
features. Several graphics cards and on-the-motherboard graphics systems that use the
GeForce3 chip are currently under development. Hercules Computer Technologies
3DProphet III is one of the graphics cards that uses Nvidia’s GeForce3.

The pc graphics handbook 24

1.7.3 CPU On-Board Facilities

Graphics, especially 3D graphics, is a calculation-intensive environment. The
calculations are usually simple and can be performed in integer math, but many
operations are required to perform even a simple transformation. Graphics coprocessors
often rely on the main CPU for performing this basic arithmetic. For this reason,
graphics-rendering performance is, in part, determined by the CPU’s mathematical
throughput. Currently the mathematical calculating engines are the math unit and the
Multimedia Extension (MMX). The register size of the math unit and the MMX were
expanded in the Pentium 4 CPU.

In the older Intel processors the math unit (originally called the 8087 mathematical
coprocessor) was either an optional attachment or an optional feature. For example, you
could purchase a 486 CPU with or without a built-in math unit. The versions with the
math unit were designated with the letters DX and those without it as SX. With the
Pentium the math unit hardware became part of every CPU and the programmer need not
be concerned about its presence. The math unit is a fast and efficient numerical calculator
that finds many uses in graphics programming. Since 486-based machines can be
considered obsolete at this time, our code can safely assume the presence of the Intel
math unit and take advantage of its potential.

In 1997, Intel introduced a version of their Pentium processor that contained 57 new
instructions and eight additional registers designed to support the mathematical
calculations required in 3D graphics and multimedia applications. This additional unit
was named the Multimedia Extension or MMX. The Pentium II and later processors all
include MMX. MMX is based on a the Single Instruction Multiple Data (SIMD)
technology, an implementation of parallel processing; it has a single instruction operating
on multiple data elements. In the MMX the multiple data is stored in integer arrays of 64
bits. The 64 bits can divided into 8 bytes, four packed words, two doublewords, or a
single quadword. The instruction set includes arithmetic operations (add, subtract, and
multiply), comparisons, conversions, logical operations (AND, NOT, OR, and XOR),
shifts, and data transfers. The result is a parallel, simple, and fast calculating engine quite
suitable for graphics processing, especially in 3D.

1.8 3D Application Programming Interfaces

The selection of a PC graphics environment for our application is further complicated by
the presence of specialized application programming interfaces (APIs) furnished by the
various chip manufacturers. For example, 3Dfx furnishes the Glide API for their line of
graphics coprocessors. In recent years Glide-based games and simulations have been
popular within the 3D gaming community. An application designed to take full advantage
of the capabilities of the 3Dfx accelerators is often coded using Glide. However, other
graphics coprocessors cannot run the resulting code, which makes the boards
incompatible with the software developed using Glide. Furthermore, Glide and Direct3D
are mutually exclusive. When a Glide application is running, Direct3D programs cannot
start and vice versa.

PC graphics overview 25

1.8.1 OpenGL and DirectX

One 3D graphics programming interface that has attained considerable support is
OpenGL, developed by Silicon Graphics International (SGI). OpenGL, which stands for
Open Graphics Language, originated in graphics workstations and is now part of many
system platforms, including Windows 95, 98, and NT, DEC’s AXP, OpenVMS, and X
Windows. This led some to believe that OpenGL will be the 3D graphics standard of the
future. In 1999 Microsoft and SGI joined in a venture that was, reportedly, to integrate
OpenGL and DirectX. The project, code named Fahrenheit, was later cancelled.

At this time the mainstream of 3D graphics programming continues to use Microsoft’s
DirectX. The main advantage offered by this package is portability and universal
availability on the PC. DirectX functionality is part of Windows 95, 98, and NT and
Microsoft provides, free of charge, a complete development package that includes a
tutorial, support code, and sample programs. Furthermore, developers are given license to
provide DirectX runtime code with their products with automatic installation that can be
made transparent to the user.

The pc graphics handbook 26

Chapter 2
Polygonal Modeling

Topics:

• Vector and raster images
• Coordinate systems
• Polygonal representations
• Triangles and meshes

This chapter is about how graphics objects are represented and stored in a database. The
starting point of computer graphics is the representation of graphical objects. The
polygon is the primitive geometrical used in graphically representing objects. The face of
a newborn baby, the surface of a glass vase, or a World War II tank can all be modeled
using hard-sided polygons. Here we discuss the principles of polygonal representations
and modeling.

2.1 Vector and Raster Data

Computer images are classified into two general types: those defined as a pixel map and
those defined as one or more vector commands. In the first case we refer to raster
graphics and in the second case to vector graphics. Figure 2–1, on the following page,
shows two images of a cross, first defined as a bitmap, and then as a set of vector
commands.

The left-side image of Figure 2–1 shows the attribute of each pixel encoded in a
bitmap. The simplest scheme consists of using a 0-bit to represent a white pixel and a 1-
bit to represent a black pixel. Vector commands, on the other hand, refer to the
geometrical elements in the image. The vector commands in Figure 2–1 define the image
in terms of two intersecting straight lines. Each command contains the start and end
points of the corresponding line in a Cartesian coordinate plane that represents the
system’s video display.

An image composed exclusively of geometrical elements, such as a line drawing of a
building, or a machine part, can usually be defined by vector commands. On the other
hand, a naturalistic representation of a landscape may best be done with a bitmap. Each
method of image encoding, raster- or vector-based, has its advantages and drawbacks.
One fact often claimed in favor of vector representation is the resulting memory savings.
For example, in a video surface of 600-by-400 screen dots, the bitmap for representing
two intersecting straight lines encodes the individual states of 240,000 pixels. If the
encoding is in a two-color form, as in Figure 2–1, then 1 memory byte is required for
each 8 screen pixels, requiring a 30,000-byte memory area for the entire image. This
same image can be encoded in two vector commands that define the start and end points

of each line. By the same token, to describe in vector commands a screen image of
Leonardo’s Mona Lisa would be more complicated and memory consuming than a
bitmap.

Figure 2–1 Raster and Vector
Representation of a Graphics Object

In the 3D graphics rasterized images are mostly used as textures and backgrounds. 3D
rendering is based on transformations that require graphics objects defined by their
coordinate points. Software operates mathematically on these points to transform the
encoded images. For example, a geometrically defined object can be moved to another
screen location by adding a constant to each of its coordinate points. In Figure 2–2 the
rectangle with its lower left-most vertex at coordinates x= 1, y=2, is translated to the
position x=12, y=8, by adding 11 units to its x coordinate and 6 units to its y coordinate.

Figure 2–2 Translating an Object by
Coordinate Arithmetic

In Chapter 3 we explore geometrical image transformations in greater detail.

The pc graphics handbook 28

2.2 Coordinate Systems

The French mathematician René Descartes (1596–1650) developed a two-dimensional
grid that is often used for representing geometrical objects. In Descartes’s system the
plane is divided by two intersecting lines, known as the abscissa and the ordinate axis.
Conventionally, the abscissa is labeled with the letter x and the ordinate with the letter y.
When the axes are perpendicular, the coordinate system is said to be rectangular;
otherwise, it is said to be oblique. The origin is the point of intersection of the abscissa
and the ordinate axes. A point at the origin has coordinates (0, 0). Coordinates in the
Cartesian system are expressed in parenthesis, the first element corresponds to the x axis
and the second one to the y axis. Therefore a point at (2, 7) is located at coordinates x=2,
y=7. Figure 2–3 shows the rectangular cartesian plane.

Figure 2–3 Cartesian Coordinates

In Figure 2–3 we observe that a point on the x-axis has coordinates (x, 0) and a point on
the y-axis has coordinates (0, y). The origin is defined as the point with coordinates (0, 0).
The axes divide the plane into four quadrants, usually labeled counterclockwise with
Roman numerals I to IV. In the first quadrant x and y have positive values. In the second
quadrant x is negative and y is positive. In the third quadrant both x and y are negative. In
the fourth quadrant x is positive and y is negative.

The Cartesian coordinates plane can be extended to three-dimensional space by adding
another axis, usually labeled z. A point in space is defined by a triplet that expresses its x,
y, and z coordinates. Here again, a point at the origin has coordinates (0, 0, 0), while a
point located on the any of the three axes has zero coordinates on the other two. In a
rectangular coordinate system the axes are perpendicular. Each pair of axes determines a
coordinate plane: the xy-plane, the xz-plane, and the yz-plane. The three planes are
mutually perpendicular. A point in the xy-plane has coordinates (x, y, 0), a point in the xz-
plane has coordinates (x, 0, z), and so on. By the same token, a point not located on any
particular plane has non-zero coordinates for all three axes. Figure 2–4 shows the
Cartesian 3D coordinates.

Polygonal modeling 29

Figure 2–4 3D Cartesian Coordinates

The labeling of the axes in 3D space is conventional, although the most common scheme
is to preserve the conventional labeling of the x and y axis in 2D space, and to add the z
axis in the viewer’s direction, as in Figure 2–4. However, adopting the axis labeling style
in which positive x points to the right, and positive y points upward, still leaves undefined
the positive direction of the z axis. For example, we could represent positive z-axis values
in the direction of the viewer or in the opposite one. The case in which the positive values
of the z-axis are in the direction of the viewer is called a right-handed coordinate system.
The one in which the positive values of the z-axis are away from the viewer is called a
left-handed system. This last system is consistent with the notion of a video system in
which image depth is thought to be inside the CRT. Left- and right-handed systems are
shown in Figure 2–5

Figure 2–5 Left- and Right-Handed
Coordinates

The pc graphics handbook 30

You can remember if a system is left- or right-handed by visualizing which hand
needs to be curled over the z-axis so that the thumb points in the positive direction. In a
left-handed system the left hand with the fingers curled on the z-axis has the thumb
pointing away from the viewer. In a right-handed system the thumb points toward the
viewer. This is shown in Figure 2–5.

3D modeling schemes do not always use the same axes labeling system. In some the z-
axis is represented horizontally, the y-axis in the direction of the viewer, and the x-axis is
represented vertically. In any case, the right- and left-handedness of a system is
determined by observing the axis that lays in the viewer’s direction, independently of its
labeling. Image data can be easily ported between different axes’ labeling styles by
applying a rotation transformation, described later in this chapter. In Figure 2–6 we have
used a 3D Cartesian coordinate system to model a rectangular solid with dimensions x=5,
y=4, z=3.

Figure 2–6 3D Representation of a
Rectangular Solid

The table of coordinates, on the right side of the illustration, shows the location of each
vertex. Because the illustration is a 2D rendering of a 3D object, it is not possible to use a
physical scale to determine coordinate values from the drawing. For example, vertices p1
and p4 have identical x and y coordinates; however, they appear at different locations on
the flat surface of the drawing. In other words, the image data stores the coordinates
points of each vertex; how these points are rendered on a 2D surface depends on the
viewing system adopted, also called the projection transformation. Viewing systems and
projections are discussed in Chapter 3.

An alternative visualization of the 3D Cartesian coordinate system is based on planes.
In this model each axes pair determines a coordinate plane. Thus, we can refer to the xy-
plane, the xz-plane, and the yz-plane. Like axes, the coordinate planes are mutually
perpendicular. This means that the z coordinate of a point p is the value of the
intersection of the z-axis with a plane through p that is parallel to the yx-plane. If the
planes intersect the origin, then a point in the xy-plane has zero value for the z coordinate,
a point in the yz-plane has zero value for the x coordinate, and a point in the xz-plane has

Polygonal modeling 31

zero for the y coordinate. Figure 2–7 shows the three planes of the 3D Cartesian
coordinate system.

Figure 2–7 3D Coordinate Planes

We have transferred to Figure 2–7 points p6 and p7 of Figure 2–6. Point p6 is located on
xy-plane 1, and point p7 in xy-plane 2. The plane labeled xy-plane 2 can be visualized as
the result of sliding xy-plane 1 along the z-axis to the position z=3. This explains why the
x and y coordinates of points p6 and p7 are the same.

2.2.1 Modeling Geometrical Objects

Much of 3D graphics programming relates to representing, storing, manipulating, and
rendering vector-coded geometrical objects. In this sense, the problem of representation
precedes all others. Many representational forms are in use; most are related to a
particular rendering algorithms associated with a graphics platform or development
package. In addition, representational forms determine data structures, processing cost,
final appearance, and editing ease. The following are the most frequently used:

1. Polygonal representations are based on reducing the object to a set of polygonal
surfaces. This approach is the most popular one due to its simplicity and ease of
rendering.

2. Objects can also be represented as bicubic parameteric patch nets. A patch net is a set
of curvilinear polygons that approximate the object being modeled. Although more
difficult to implement than polygonal representations, objects represented by
parameteric patches are more fluid; this explains their popularity for developing CAD
applications.

3. Constructive solid geometry (CSG) modeling is based on representing complex object
by means of simpler, more elementary ones, such as cylinders, boxes, and spheres.
This representation finds use in manufacturing-related applications.

The pc graphics handbook 32

4. Space subdivision techniques consider the whole object space and define each point
accordingly. The best known application of space subdivision technique is ray tracing.
With ray tracing processing is considerably simplified by avoiding brute force
operations on the entire object space.

We concentrate out attention on polygonal modeling, with occasional reference to
parameteric patches.

2.3 Modeling with Polygons

A simple polygon is a 2D figure formed by more than two connected and non-
intersecting line segments. The connection points for the line segments are called the
vertices of the polygon and the line segments are called the sides. The fundamental
requirements that the line segments be connected and non-intersecting eliminates from
the polygon category certain geometrical figures, as shown in Figure 2–8.

Figure 2–8 Valid and Invalid
Polygons

Polygons are named according to their number of sides or vertices. A triangle, which is
the simplest possible polygon, has three vertices. A quadrilateral has four, a pentagon has
five, and so on. A polygon is said to be equilateral if all its sides are equal, and
equiangular if all its angles are equal. A regular polygon is both equilateral and
equiangular. Figure 2–9 shows several regular polygons.

Figure 2–9 Regular Polygons

Polygons can be convex or concave. In a convex polygon the extension of any of its sides
does not cut across the interior of the figure. We can also describe a convex polygon as

Polygonal modeling 33

one in which the extensions of the lines that form the sides never meet another side.
Figure 2–10 shows a convex and a concave polygon.

Figure 2–10 Concave and Convex
Polygons

Specific software packages often impose additional restrictions on polygon validity in
order to simplify the rendering and processing algorithms. For example, OpenGL
requires that polygons be concave and that they be drawn without lifting the pen. In
OpenGL, a polygon that contains a non-contiguous boundary is considered invalid.

2.3.1 The Triangle

Of all the polygons, the one most used in 3D graphics is the triangle. Not only is it the
simplest of the polygons, but all the points in the surface of a triangular polygon must lie
on the same plane. In other polygons this may or may not be the case. In other words, the
figure defined by three vertices must always be a plane, but four or more vertices can
describe a figure with more than one plane. When all the points on the figure are located
on the same surface, the figure is said to be coplanar. Figure 2–11 shows coplanar and
non-coplanar polygons.

Figure 2–11 Coplanar and Non-
Coplanar Polygons

The coplanar property of triangular polygons simplifies rendering. In addition, triangles
are always convex figures. For this reason 3D software such as Microsoft’s Direct3D,
rely heavily on triangular polygons.

The pc graphics handbook 34

2.3.2 Polygonal Approximations

Solid objects with curved surfaces can be approximately represented by combining
several polygonal faces. For example, a circle can be approximated by means of a
polygon. The more vertices in the polygon, the better the approximation. Figure 2–12
shows the polygonal approximation of a circle. The first polygon has 8 vertices, while the
second one has 16.

Figure 2–12 Polygonal Approximation
of a Circle

A solid object, such as a cylinder, can be approximately represented by means of
several polygonal surfaces. Here again, the greater the number of polygons, the more
accurate the approximation. Figure 2–13 shows the polygonal approximation of a
cylinder.

Figure 2–13 Polygonal Approximation
of a Cylinder

2.3.3 Edges

When objects are represented by polygonal approximations, often two polygons share a
common side. This connection between vertex locations that define a boundary is called
an edge. Edge representations of polygons simplify the database by avoiding redundancy.
This is particularly useful if an object shares a large number of edges. Figure 2–14 shows
a figure represented by two adjacent triangular polygons that share a common edge.

Polygonal modeling 35

Figure 2–14 Polygon Edge

In an edge representation the gray triangle in Figure 2–14 is defined in terms of its three
vertices, labeled p1, p2, and p3. The white triangle is defined in terms of its edge and
point p4. Thus, points p2 and p3 appear but once in the database. Edge-based image
databases provide a list of edges rather than of vertex locations. Figure 2–15 shows an
object consisting of rectangular polygons.

Figure 2–15 Edge Representation of
Polygons

In Figure 2–15 each vertical panel consists of 6 triangles, for a total of 30 triangles. If
each triangle were defined by its three vertices, the image database would require 90
vertices. Alternatively, the image could be defined in terms of sides and edges. There are
16 external sides which are not shared, and 32 internal sides, which are edges. Therefore,
the edge-based representation could be done by defining 48 edges. The rendering system
keeps track of which edges have already been drawn, avoiding duplication, processing
overheads, and facilitating transparency.

2.3.4 Meshes

In 3D graphics an object can be represented as a polygon mesh. Each polygon in the
mesh constitutes a facet. Facets are used to approximate curved surfaces; the more facets
the better the approximation. Polygon-based modeling is straightforward and polygon
meshes are quite suitable for using shading algorithms. In the simplest form a polygon

The pc graphics handbook 36

mesh is encoded by means of the x, y, and z coordinates of each vertex. Alternatively,
polygons can be represented by their edges, as previously described. In either case, each
polygon is an independent entity that can be rendered as a unit. Figure 2–16 shows the
polygon mesh representation of a teacup and the rendered image.

Figure 2–16 Polygon Mesh
Representation and Rendering of a
Teacup

Polygonal modeling 37

Chapter 3
Image Transformations

Topics:

• Matrix arithmetic
• 2D transformations and homogeneous coordinates
• 3D transformations

Computer graphics rely heavily on geometrical transformations for generating and
animating 2D and 3D imagery. In this chapter we introduce the essential transformation:
translation, rotation, and scaling. The geometrical transformations are first presented in
the context of 2D imagery, and later extended to 3D.

3.1 Matrix-Based Representations

In Chapter 2 we discussed vector images and how graphics objects are modeled by means
of polygons and polygons meshes. Here we see how the coordinate points that define a
polygon-based image can be manipulated in order to transform the image itself. Suppose
an arrow indicating a northerly direction, which is defined by the coordinates of its start
and end points. By rotating the end point 45 degree clockwise we can make the arrow
point in a north-easterly direction. In general, if an image is defined as a series of points
in the Cartesian plane, then the image can be rotated by a mathematical operation on the
coordinates of each point. If the image is defined as one or more straight lines or simple
polygons, then the transformation applied to the primitive image elements is also a
transformation of the image itself.

Image transformations are simplified by storing the coordinates of each image point in
a rectangular array. The mathematical notion of a matrix as a rectangular array of values
turns out to be quite suitable for storing the coordinates of image points. Once the
coordinates of each point that defines the image are stored in a matrix, we can use
standard operations of linear algebra to perform geometrical transformations on the
image. Figure 3–1 shows the approximate location of seven stars of the constellation Ursa
Minor, also known as the Little Dipper. The individual stars are labeled with the letters a
through g. The star labeled a corresponds to Polaris (the Pole star).

The pc graphics handbook 38

Figure 3–1 Point Representation of
the Stars In the Constellation Ursa
Minor

The coordinates of each star of the Little Dipper, in Figure 3–1, can be represented in
tabular form, as follows:

Star x y
a 0 0
b −1 11
c 1 8
d 0 12
e 2 5
f 3 9
g 1 2

The coordinate matrix is a sets of x, y coordinate pairs. 3D representations require an
additional z coordinate that stores the depth of each point. 3D matrix representations are
discussed later in this chapter.

3.1.1 Image Transformation Mathematics

An image can be changed into another one by performing mathematical operations on its
coordinate points. Figure 3–2 shows the translation of a line from coordinates (2, 2) and
(10, 14) to coordinates (10, 2) and (18, 14).

Image transformations 39

Figure 3–2 Translation of a Straight
Line

Notice that in Figure 3–2 translation is performed by adding 8 to the start and end x
coordinates of the original line. This operation on the x-axis coordinates results in a
horizontal translation of the line. A vertical translation requires manipulating the y
coordinate. To translate the line both horizontally and vertically we operate on both
coordinate axes simultaneously.

3.2 Matrix Arithmetic

Matrices are used in many fields of mathematics. In linear algebra matrices can hold the
coefficients of linear equations. Once an equation is represented in matrix form, it can be
manipulated (and often solved) by performing operations on the matrix rows and
columns. Here we are interested only in matrix operations that perform geometrical
image transformations. The most primitive of these, translation, rotation, and scaling, are
common in graphics and animation programming. Other transformations are reflection
(mirroring) and shearing.

We define a matrix as a rectangular array usually containing a set of numeric values. It
is customary to represent a matrix by means of a capital letter. For example, the
following matrix, designated by the letter A, has three rows and two columns.

The size of a matrix is determined by its number of rows and columns. It is common to
state matrix size as a product, for example, matrix A, above, is a 3-by-2 matrix.

The pc graphics handbook 40

3.2.1 Scalar-by-Matrix Operations

A single numerical quantity is called a scalar. Scalar-by-matrix operations are the
simplest procedures of matrix arithmetic. The following example shows the
multiplication of matrix A by the scalar 3.

If a scalar is represented by the variable s, the product matrix sA is the result of
multiplying each element in the matrix A by the scalar s. In the same manner, scalar
addition and subtraction are performed by adding or subtracting the scalar quantity to
each matrix element.

3.2.2 Matrix Addition and Subtraction

Matrix addition and subtraction are performed by adding or subtracting each element in a
matrix to the corresponding element of another matrix of equal size. In the following
example, matrix C is the algebraic sum of each element in matrices A and B.

The fundamental restriction of matrix addition and subtraction is that both matrices must
be of equal size, that is, they must have the same number of rows and of columns.
Matrices of different sizes cannot be added or subtracted.

3.2.3 Matrix Multiplication

Matrix addition and subtraction intuitively correspond to conventional addition and
subtraction. The elements of the two matrices are added or subtracted, one-to-one, to
obtain the result. The fact that both matrices must be of the same size makes the
operations easy to visualize. Matrix multiplication, on the other hand, is not the
multiplication of the corresponding elements of two matrices, but a unique sum-of-
products operation. In matrix multiplication the elements of a row in the multiplicand
matrix are multiplied by the elements in a column of the multiplier matrix. These
resulting products are then added to obtain the final result. The process is best explained
by describing the individual steps. Consider the following matrices:

Image transformations 41

From the definition of matrix multiplication we deduce that if the columns of the first
matrix are multiplied by the rows of the second matrix, then each row of the multiplier
must have the same number of elements as each column of the multiplicand. Notice that
the matrices A and B, in the preceding example, meet this requirement. However,
observe that product B×A is not possible, since matrix B has three elements per row and
matrix A has only two elements in each column. For this reason the matrix operation
A×B is possible but B×A is undefined. The row by column operation in A×B is
performed as follows.

The products matrix has the same number of columns as the multiplicand matrix and the
same number of rows as the multiplier matrix. In the previous example, the products
matrix C has the same number of rows as A and the same number of columns as B. In
other words, C is a 2×3 matrix. The elements obtained by the above operations appear in
matrix C in the following manner:

Recall that in relation to matrices A and B in the previous examples, the operation A×B is
possible but B×A is undefined. This fact is often described by saying that matrix
multiplication is not commutative. For this reason, the product of two matrices can be
different if the matrices are taken in different order. In fact, in regards to non-square
matrices, if the matrix product A×B is defined, then the product B×A is undefined.

On the other hand, matrix multiplication is associative. This means that the product of
three or more matrices is equal independently of the order in which they are multiplied.
For example, in relation to three matrices, A, B, and C, we can state that (A×B)×C equals
A×(B×C). In the coming sections you will often find use for the associative and non-
commutative properties of matrix multiplication.

The pc graphics handbook 42

3.3 Geometrical Transformations

A geometrical transformation can be viewed as the conversion of one image onto another
one by performing mathematical operations on its coordinate points. Geometrical
transformations are simplified by storing the image coordinates in matrix form. In the
following sections, we discuss the most common transformations: translation, scaling,
and rotation. The transformations are first described in terms of matrix addition and
multiplication, and later standardized so that they can all be expressed in terms only of
matrix multiplication.

3.3.1 Translation Transformation

A translation transformation is the movement of a graphical object to a new location by
adding a constant value to each coordinate point. The operation requires that the same
constant be added to all the coordinates in each plane, but a different constant can be used
for each plane. For example, a translation transformation takes place if the constant 5 is
added to all x coordinates and the constant 2 to all y coordinates of an object represented
in a two-dimensional plane.

In Figure 3–3 we see the graph and the coordinates matrix for seven stars in the
Constellation Ursa Minor. A translation transformation is performed by adding 5 to the x
coordinate of each star and 2 to the y coordinate. The bottom part of Figure 3–3 shows
the translated image and the new coordinates.

Figure 3–3 A Translation
Transformation

Image transformations 43

In terms of matrices, the translation transformation can be viewed as the operation:
A+B=C

where A is the matrix holding the original coordinates, B is the transformation matrix
holding the values to be added to each coordinate plane, and C is the matrix of the
transformed coordinated. Regarding the images in Figure 3–3 the matrix operation is as
follows:

Notice that the transformation matrix holds the constants to be added to the x and y
coordinates. Since, by definition of the translation transformation, the same value must be
added to all the elements of a coordinate plane, it is evident that the columns of the
transformation matrix always hold the same numerical value.

3.3.2 Scaling Transformation

To scale is to apply a multiplying factor to the linear dimension of an object. A scaling
transformation is the conversion of a graphical object into another one by multiplying
each coordinate point that defines the object. The operation requires that all the
coordinates in each plane be multiplied by the scaling factor, although the scaling factors
can be different for each plane. For example, a scaling transformation takes place when
all the x coordinates of an object represented in a two-dimensional plane are multiplied
by 2 and all the y coordinates of this same object are multiplied by 3. In this case the
scaling transformation is said to by asymmetrical.

In comparing the definition of the scaling transformation to that of the translation
transformation we notice that translation is performed by adding a constant value to the
coordinates in each plane, while scaling requires multiplying these coordinates by a
factor. The scaling transformation can be represented in matrix form by taking advantage
of the properties of matrix multiplication. Figure 3–4 shows a scaling transformation that
converts a square into a rectangle.

The pc graphics handbook 44

Figure 3–4 Scaling Transformation

The coordinates of the square in Figure 3–4 can be stored in a 4-by-2 matrix, as follows:

In this case the transformation matrix holds the factors that must be multiplied by the x
and y coordinates of each point in order to perform the scaling transformation. Using the
term Sx to represent the scaling factor for the x coordinates, and the term Sy to represent
the scaling factor for the y coordinates, the scaling transformation matrix is as follows:.

The transformation of Figure 3–4, which converts the square into a rectangle, is
expressed in matrix transformation as follows:

The intermediate steps in the matrix multiplication operation can be obtained following
the rules of matrix multiplication described previously.

Figure 3–5 shows the scaling transformation of the graph of the constellation Ursa
Minor. In this case, in order to produce a symmetrical scaling, the multiplying factor is
the same for both axes. A symmetrical scaling operation is sometimes referred to as a
zoom.

Image transformations 45

Figure 3–5 Symmetrical Scaling
(Zooming)

3.3.3 Rotation Transformation

A rotation transformation is the conversion of a graphical object into another one by
moving all coordinate points that define the original object, by the same angular value,
along circular arcs with a common center. The angular value is called the angle of rota-
tion and the fixed point that is common to all the arcs is the center of rotation. Notice that
some geometrical figures are unchanged by specific rotations. For example, a circle is
unchanged by a rotation about its center, and a square is unchanged if rotated by an angle
that is a multiple of 90 degrees. In the case of a square the intersection point of both
diagonals is the center of rotation.

The mathematical interpretation of the rotation is based on elementary trigonometry.
Figure 3–6 shows the counterclockwise rotation of points located on the coordinate axes,
at unit distances from the center of rotation.

Figure 3–6 Rotation of a Point

The pc graphics handbook 46

The left side drawing of Figure 3–6 shows the counterclockwise rotation of point p1, with
coordinates (1, 0), through an angle r. The coordinates of the rotated point (pr1) can be
determined by solving the triangle with vertices at O, p1 and pr1, as follows:

The coordinates of the rotated point pr2, shown on the right side drawing in Figure 3–6,
can be determined by solving the triangle with vertices at O, p2 and pr2.

The coordinates of the rotated points can now be expressed as follows.
coordinates of pr1=(cos r, sin r)
coordinates of pr2=(−sin r, cos r)

From these equations we can derive a transformation matrix, which, through matrix
multiplication, yields the new coordinates for the counterclockwise rotation through an
angle A

We are now ready to perform a rotation transformation through matrix multiplication.
Figure 3–7 shows the clockwise rotation of the stars in the constellation Ursa Minor,
through an angle of 60 degrees, with center of rotation at the origin of the coordinate
axes.

Figure 3–7 Rotation Transformation

Image transformations 47

Suppose that the coordinates of the four vertices of a polygon are stored in a 4-by-2
matrix as follows:

The transformation matrix for clockwise rotation through an angle r is as follows:

Evaluating this matrix for 60 degrees gives the following trigonometric functions.

Now the rotation can now be expressed as a product of two matrices, one with the
coordinates of the polygon points and the other one with the trigonometric functions, as
follows:

The resulting matrix contains the coordinates of the points rotated through and angle of
60 degrees. The intermediate steps in the matrix multiplication operation are obtained
following the rules of matrix multiplication described earlier in this chapter.

3.3.4 Homogeneous Coordinates

Expressing translation, scaling, and rotation mathematically, in terms of matrix
operations, allows simplifying graphical transformations. However, as previously
described rotation and scaling are expressed in terms of matrix multiplication, while
translation is expressed as matrix addition. It would simplify processing if all three basic
transformations could be expressed in terms of the same mathematical operation.
Fortunately, it is possible to represent the translation transformation as matrix
multiplication. The scheme requires adding a dummy parameter to the coordinates
matrices and expanding the transformation matrices to 3-by-3 elements.

If the dummy parameter, usually labeled w, is not to change the point’s coordinates it
must meet the following condition:

x=x×w
y=y×w

The pc graphics handbook 48

It follows that 1 is the only value that can be assigned to w. Using the terms Tx and Ty to
represent the horizontal and vertical units of a translation, a transformation matrix for the
translation operation can be expressed as follows:

We test these results by performing a translation of 8 units in the horizontal direction
(Tx=8) and 0 units in the vertical direction (Ty=0) of the point located at coordinates (5,
2). In this case matrix operations are as follows:

This shows the point at x=5, y=2 translated 8 units to the right, with destination
coordinates of x=13, y=2. Observe that the w parameter, set to 1 in the original matrix,
remains the same in the final matrix. For this reason, in actual processing the additional
parameter can be ignored.

3.3.5 Concatenation

In order to take full advantage of the system of homogeneous coordinates you must
express all transformations in terms of 3-by-3 matrices. As you have already seen, the
translation transformation in homogeneous coordinates is expressed in the following
matrix:

The scaling transformation matrix is as follows:

where Sx and Sy are the scaling factors for the x and y axes. The transformation matrix
for a counterclockwise rotation through an angle r can be expressed in homogeneous
coordinates as follows:

Image transformations 49

Notice that the rotation transformation assumes that the center of rotation is at the origin
of the coordinate system.

Matrix multiplication is associative. This means that the product of three or more
matrices is equal, no matter which two matrices are multiplied first. By virtue of this
property, we are now able to express a complex transformation by combining several
basic transformations. This process is generally known as matrix concatenation.

For example, in Figure 3–7 the image of the constellation Ursa Minor is rotated
counterclockwise 60 degrees about the origin. But it is possible to perform this
transformation using any arbitrary point in the coordinate system as a pivot point. For
instance, to rotate the polygon about any arbitrary point pa, the following sequence of
transformations is executed:

1. Translate the polygon so that point pa is at the coordinate origin.
2. Rotate the polygon.
3. Translate the polygon so that point pa returns to its original position.

In matrix form the sequence of transformations can be expressed as the following
product:

Performing the indicated multiplication yields the matrix for a counterclockwise rotation,
through angle r, about point pa, with coordinates (Tx,Ty).

While matrix multiplication is associative, it is not commutative. Therefore, the order
in which the operations are performed can affect the results. A fact that confirms the
validity of the matrix representation of graphic transformations is that, graphically, the
results of performing transformations in different sequences can also yield different
results. For example, the image resulting from a certain rotation, followed by a translation
transformation, may not be identical to the one resulting from performing the translation
first and then the rotation.

Figure 3–8 shows a case in which the order of the transformations determines a
difference in the final object.

Figure 3–8 Order of Transformations

The pc graphics handbook 50

3.4 3D Transformations

Two-dimensional objects are defined by their coordinate pairs in 2D space. By extending
this model we can represent a three-dimensional object by means of a set of coordinate
triples in 3D space. Adding a z-axis that encodes the depth component of each image
point produces a three-dimensional coordinate plane. The coordinates that define each
image point in 3D space are a triplet of x, y, and z values. Because the three-dimensional
model is an extension of the two-dimensional one, we can apply geometrical
transformations in a similar manner as we did with two-dimensional objects. Figure 3–9
shows a cube in 3D space.

Figure 3–9 3D Representation of a
Cube.

In Figure 3–9 the cube is defined by means of the coordinate triplets of each of its eight
points, represented in the figure by the labeled black dots. In tabular form the coordinates
of each point are defined as follows:

 X Y Z
P1 0 0 2
P2 4 0 2
P3 4 2 2
P4 0 2 2
P5 0 0 0
P6 4 0 0
P7 4 2 0
P8 0 2 0

Image transformations 51

Point p5, which is at the origin, has values of zero for all three coordinates. Point p1 is
located 2 units along the z-axis, therefore its coordinates are x=0, y=0, z=2. Notice that if
we were to disregard the z-axis coordinates, then the two planes formed by points p1, p2,
p3, and p4 and points p5, p6, p7, and p8 would have identical values for the x and y axis.
This is consistent with the notion of a cube as a solid formed by two rectangles residing
in 3D space.

3.4.1 3D Translation

In 2D representations a translation transformation is performed by adding a constant
value to each coordinate point that defines the object. This continues to be true when the
point’s coordinates are contained in three planes. In this case the transformation constant
is applied to each plane to determine the new position of each image point. Figure 3–10
shows the translation of a cube defined in 3D space by adding 2 units to the x axis
coordinates, 6 units to the y axis, and −2 units to the z axis.

Figure 3–10 Translation
Transformation of a Cube

If the coordinate points of the eight vertices of the cube in Figure 3–10 were represented
in a 3-by-8 matrix (designated as matrix A) and the transformation constants in a second
8-by-3 matrix (designated as matrix B) then we could perform the translation
transformation by means of matrix addition and store the transformed coordinates in a
results matrix (designated as matrix C. The matrix operation C=A+B operation would be
as follows:

The pc graphics handbook 52

Here again, we can express the geometric transformation in terms of homogeneous
coordinates. The translation transformation matrix for 3D space would be as follows:

The parameters Tx, Ty, and Tz represent the translation constants for each axis. As in the
case of a 2D transformation, the new coordinates are determined by adding the
corresponding constant to each coordinate point of the figure to be translated. If x’, y’,
and z’ are the translated coordinates of the point at x, y, and z, the translation
transformation takes place as follows:

x'=x+Tx
y'=y+Ty
z'=z+Tz

As in the case of 2D geometrical transformations, the transformed results are obtained by
matrix multiplication using the matrix with the object’s coordinate points as one product
matrix, and the homogenous translation transformation matrix as the other one.

3.4.2 3D Scaling

A scaling transformation consists of applying a multiplying factor to each coordinate
point that defines the object. A scaling transformation in 3D space is consistent with the
scaling in 2D space. The only difference is that in 3D space the scaling factor is applied
to each of three planes, instead of the two planes of 2D space. Here again the scaling
factors can be different for each plane. If this is the case, the resulting transformation is
described as an asymmetrical scaling. When the scaling factor is the same for all three
axes, the scaling is described as symmetrical or uniform. Figure 3–11 shows the uniform
scaling of a cube by applying a scaling factor of 2 to the coordinates of each figure
vertex.

Image transformations 53

Figure 3–11 Scaling Transformation
of a Cube

The homogeneous matrix for a 3D scaling transformation is as follows:

The parameters Sx, Sy, and Sz represent the scaling factors for each axis. As in the case
of a 2D transformation, the new coordinates are determined by multiplying the
corresponding scaling factor with each coordinate point of the figure to be scaled. If x’,
y’, and z’ are the scaled coordinates of the point at x, y, and z, the scaling transformation
takes place as follows:

x′=x×Sx
y′=y×Sy
z′=z×Sz

In homogeneous terms, the transformed results are obtained by matrix multiplication
using the matrix with the object’s coordinate points as one product matrix, and the
homogeneous scaling transformation matrix as the other one.

When the object to be scaled is not located at the origin of the coordinates axis, a
scaling transformation will also result in a translation of the object to another location.
This effect is shown in Figure 3–12.

The pc graphics handbook 54

Figure 3–12 Scaling Transformation
of an Object Not at the Origin

Assuming that point p1 in Figure 3–12 located at coordinates x=2, y=2, z=−2, and that
a uniform scaling of 3 units is applied, then the coordinates of translated point p1’ are as
follows:

 x y z
p1 2 2 −2
p1′ 6 6 −12

The result is that not only is the cube tripled in size, it is also moved to a new position in
the coordinates plane. In order to scale an image with respect to a fixed position it is
necessary to first translate it to the origin, then apply the scaling factor, and finally to
translate it back to its original location. The necessary manipulations are shown in Figure
3–13.

Image transformations 55

Figure 3–13 Fixed-Point Scaling
Transformation

In terms of matrix operations a fixed-point scaling transformation consists of applying a
translation transformation to move the point to the origin, then the scaling transformation,
followed by another translation to return the point to its original location. If we represent
the fixed position of the point as xf, yf, zf, then the translation to the origin is represented
by the transformation:

T(−xf, −yf, −zf)

The transformation to return the point to its original location is:
T(xf, yf, zf)

Therefore, the fixed-point scaling consists of:
T(−xf, −yf, −zf)×S(Sx, Sy, Sz)×T(xf, yf, zf)

and the homogeneous matrix is:

The pc graphics handbook 56

where S is the scaling matrix and T the transformation matrix.

3.4.3 3D Rotation

Although 3D translation and scaling transformations are described as simple extensions
of the corresponding 2D operations, the 3D rotation transformation is more complex that
its 2D counterpart. The additional complications arise from the fact that in 3D space,
rotation can take place in reference to any one of the three axes. Therefore an object can
be rotated about the x, y, or z axes, as shown in Figure 3–14.

Figure 3–14 Rotation in 3D Space

In defining 2D rotation we adopted the convention that positive rotations produce a
clockwise movement about the coordinate axes, when looking in the direction of the axis,
towards the origin, as shown by the elliptical arrows in Figure 3–14. Figure 3–15 shows
the positive, x-axis rotation of a cube.

Image transformations 57

Figure 3–15 Positive, x-axis Rotation
of a Cube

A rotation transformation leaves unchanged the coordinate values along the axis of
rotation. For example, the x coordinates of the rotated cube in Figure 3–15 are the same
as those of the figure at the top of the illustration. By the same token, rotating an object
along the z-axis changes its y and x coordinates while the z-coordinates remain the same.
Therefore, the 2D rotation transformation equations can be extended to a 3D rotation
along the z-axis, as follows:

Here again, r is the angle of rotation.
By performing a cyclic permutation of the coordinate parameters we can obtain the

transformation matrices for rotations along the x and y axis. In homogeneous coordinates
they are as follows:

The pc graphics handbook 58

3.4.4 Rotation about an Arbitrary Axis

You often need to rotate an object about an axis parallel to the coordinate axis but
different from the one in which the object is placed. In the case of the 2D fixed-point
scaling transformation shown in Figure 3–13, we performed a translation transformation
to reposition the object in the coordinates planes, then performed the scaling
transformation, and concluded by re-translating the object to its initial location. Similarly,
we can rotate a 3D object about an arbitrary axis by first translating it to the required
position on the coordinate plane, then performing the rotation, and finally relocating the
object at its original position. For example, suppose we wanted to rotate a cube, located
somewhere on the coordinate plane, along its own x axis. In this case we may need to
relocate the object so that the desired axis of rotation lies along the x-axis of the plane.
Once in this position, we can perform the rotation applying the rotation transformation
matrix for the x axis. After the rotation, the object is repositioned to its original location.
The sequence of operations is shown in Figure 3–16.

Figure 3–16 Rotation About an
Arbitrary Axis

In this case it is possible to see one of the advantages of homogeneous coordinates.
Instead of performing three different transformations, we can combine, through
concatenation, the three matrices necessary for the entire transformation into a single one
that performs the two translations and the rotation. Matrix concatenation was covered
earlier in this chapter.

Image transformations 59

Chapter 4
Programming Matrix Transformations

Topics:

• Graphics data in matrix form
• Creating and storing matrix data
• Processing array elements
• Vector-by-scalar operations
• Matrix-by-matrix operations

The representation and manipulation of image data in matrix form is one of the most
powerful tools of graphics programming in general, and of 3D graphics in particular. In
this chapter we develop the logic necessary for performing matrix-based operations.
Matrix-level processing operations are often used in 3D graphics programming.

4.1 Numeric Data in Matrix Form

In Chapter 3 you saw that a matrix can be visualized as a rectangular pattern of rows and
columns containing numeric data. In graphics programming the data in the matrix is
image related, most often consisting of the coordinate values, in 2D or 3D space, for the
vertices of a polygon. In general terms, a matrix element is called an entry.

Matrix data is stored in computer memory as a series of ordered numeric items. Each
numeric entry in the matrix takes up memory space according to the storage format. For
example, if matrix data is stored as binary floating-point numbers in the FPU formats,
each entry takes up the following space:

Single precision real 4 bytes,
Double precision real 8 bytes,
Extended precision real .. 10 bytes.

Integer matrices will vary from one high-level language to another one and even in
different implementations of the same language. Microsoft Visual C++ in 32-bit versions
of Windows uses the following data ranges for the integers types:

char, unsigned char 1 byte
short, unsigned short 2 bytes
long, unsigned long 4 bytes

The most common data format for matrix entries is the array. If the storage convention is
based on having elements in the same matrix row stored consecutively in memory, then
the matrix is in row-major order. However, if consecutive entries are items in the same
matrix column then the matrix is in column-major order. C, C++, and Pascal assume
row-major order, while BASIC and FORTRAN use column-major order.

4.1.1 Matrices in C and C++

In C and C++ a matrix can is usually defined as a multi-dimensional array. Like many
other high-level languages, C++ implements multi-dimensional arrays as arrays of arrays.
For example:

double matX[4][4] = {
 {2.1, 3.0, −1.0, 4.3}, // Array 1
 {1.3, 0.0, 2.0, −3.2}, // Array 2
 {1.2, 12.7, −4.0, 7.0}, // Array 3
 {3.0, 1.0, −1.0, 1.22}, // Array 4
 };

The array matX[][] is two dimensional. In fact, it actually consists of four one-
dimensional arrays. In C and C++ when a multi-dimensional array is passed as an
argument to a function, the called code must be made aware of its dimensions so that it
can access its elements with multiple subscripts. In the case of a two-dimensional array
the function must know the number of dimensions and the number of columns in the
array argument. The number of rows is not necessary since the array is already allocated
in memory. The short program shows the definition of a 4-by-4 two-dimensional array
and how this array is passed to a function that fills it.

#include <iostream.h>
#define ROWS 4
#define COLS 4
int main()
{
// Define a 4-by-4 matrix
int matrx[ROWS][COLS];
// Call function to fill matrix
FillMatrix(matrx);
// Display matrix
 for(i = 0; i < ROWS; i++)
 for(k = 0; k < COLS; k++)
 cout << matrx[i][k] << "\n";
return 0;
}
void FillMatrix(int matx[][COLS])
{
// Fill a matrix of type int
// On entry:
// matx[][] is caller’s matrix
// Constants ROWS and COLS define the array
dimensions
int entry;
 for(int i = 0;i < ROWS; i++)
 {
 cout << "Enter row" << i << "\n";
 for(int j = 0; j < COLS; j++)
 {
 cout << "element" << i << " " << j << ": ";

Programming matrix transformations 61

 cin >> entry;
 matx[i][j] = entry;
 }
 }
}

In the preceding program the function FillMatrix() is made aware that the array passed as
an argument is two-dimensional, and that each row consists of four columns. This is the
information that the code requires for accessing the array with double subscript notation.
The major limitation of this approach is that the function FillMatrix() requires the array
size to be defined in constants. C/C++ produce an error if we attempt to define the matrix
dimensions using variables. For this reason the function FillMatrix(), as coded in the
preceding sample, does not work for filling a two-dimensional 5-by-5 array or, in fact, of
any size other than the one for which it was originally coded. Even more complications
arise if we attempt to use a template function in relation to multi-dimensional arrays.

An alternative approach for implementing matrices in C or C++ code is to define the
data as a one-dimensional array and let the software handle the partitioning into columns
and rows. In this manner we can avoid the drawbacks of passing multi-dimensional
arrays as arguments to functions. In addition, with one-dimensional arrays it is easy to
use templates in order to create generic functions that operate on arrays of different data
types. The following demonstration program implements a matrix fill using one-
dimensional arrays and template functions.

#include <iostream.h>
int main()
{
 int rows = 4;
 int cols = 4;
 // Matrix is defined as a 2D array
 matrx[16];
 // FillMatrix()
 FillMatrix(matrx, rows, cols);
 // Display matrix
 for(x = 0; x < rows; x++)
 for(y = 0; y < cols; y++)
 cout << mat2[(x * cols)+y] << "\n";
 cout << "\n\n";
 return 0;
}
template <class A>
void FillMatrix(A *matx, int rows, int cols)
{
// Fill a matrix of type int
// On entry:
// *mat is caller’s matrix
// parameter rows is nomber of rows in matrix
// parameter cols is number of columns in matrix
A entry;
 for(int i = 0;i < rows; i++)
 {

The pc graphics handbook 62

 cout << "Enter row" << i << "\n";
 for(int j = 0; j < cols; j++)
 {
 cout << "element " << i << " " << j << ":
";
 cin >> entry;
 matx[(i * cols)+j] = entry;
 }
 }
}

Notice, in the preceding code, that the matrix is defined as a one-dimensional array and
that the function FillMatrix() receives the number of rows and columns as parameters.
Also that the FillMatrix() function is implemented as a template, which means that it can
be used to fill a two-dimensional matrix of any size and data type.

In manipulating matrices the programmer is usually concerned with the following
elements:

1. The number of rows in the matrix
2. The number of columns in the matrix
3. The memory space (number of bytes) occupied by each matrix entry

The number of rows and columns determines the dimension of the matrix. It is customary
to represent matrix dimensions using the variable M for the number of rows and the
variable N for the number of columns. The storage format of the entries determines the
memory space occupied by each matrix entry, therefore, the number of bytes that must be
skipped in order to index from entry to entry. In this sense the size of each entry is
sometimes referred to as the horizontal skip factor. The number of entries in each matrix
row must be used by the program in order to index to successive entries in the same
column. This value is called the vertical skip factor. Low-level implementations must use
the skip factors to access different matrix entries, as shown later in this chapter. High-
level languages (C++ included) access matrix entries using the indices, and usually
ignore the byte size of each element.

4.1.2 Finding Matrix Entries

You have seen that each matrix entry is identified by its row and column coordinates. In
this context the variable i is often used to designate the entry along a matrix row and the
variable j to designate the entry along a matrix column. Thus, any entry in the matrix can
be identified by its ij coordinates. The individual matrix is usually designated with an
upper case letter. We say that Matrix A is composed of M rows and N columns. The
number of entries in the matrix (E) is:

E=M×N

If each entry takes up s bytes of memory, the matrix memory space (S) can be expressed
as follows:

S=M×N×s

Programming matrix transformations 63

The following diagram shows a 5-by-4 matrix.

 C O L U M N S
 0 1 2 3 4
 | | | | |
R 0 ––– X X X X X
O 1 ––– X X ij X X
W 2 ––– X X X X X
S 3 ––– X X X X X
 M=5 (total rows)
 N=4 (total columns)
 i=1 (row address of entry ij)
 j=2 (column address of entry ij)

Notice that matrix dimensions are stated as the number of rows and columns. This, the
dimension of the previous matrix is 4 by 5. However, the location within the rows and
columns is zero-based. This scheme is consistent with array dimensioning and addressing
in C and C++.

Linear systems software often has to access an individual matrix entry located at the
ith row and the jth column. In high-level programming the language itself figures out the
horizontal and vertical skip factors. Therefore locating a matrix entry is a simple matter
of multiplying the row number by the number of columns in the matrix, then adding the
offset within the row. If i designates the row, j the column, and cols is the number of
columns in each row, then the offset within a matrix implemented in a one-dimensional
array is given by the statement:

value=(M[(i*cols)+j);

were M is the matrix and value is a variable of the same type as the matrix. The following
C++ template function returns the matrix element at row i, column j.

template <class A>
A Locateij(A *matx, int i, int j, int cols)
{
// Locate and return matrix entry at row i, column j
// On entry:
// *mat is caller’s matrix
// i = row number
// j = column number
// cols = number of matrix columns
return (matx[(i * cols) + j]);
}

4.2 Array Processing

In the terminology of matrix mathematics, a vector is a matrix in which one of the
elements is of the first order. In this sense you can refer to a matrix whose N dimension is

The pc graphics handbook 64

1 as a column vector. A row vector is a matrix whose M dimension is 1. In fact, a row
vector is a matrix consisting of a single row, and a column vector a matrix consisting of a
single column. Although, strictly speaking, a vector can be considered a one-dimensional
matrix, the term matrix is more often associated with a rectangular array. Note that this
use of the word vector is not related to the geometrical concept of a directed segment in
two-dimensional or three-dimensional space, or with the physical connotation of a value
specified in terms of magnitude and direction.

In order to represent individual, undirected quantities, matrix mathematics borrows
from analytical geometry the notion of a scalar. We say that an individual constant or
variable is a scalar quantity, while multi-element structures are either vectors or matrices.

Programs that perform mathematical operations on vectors and matrices are
sometimes called array processors. In this case the word array refers to any multi-
element structure, whether it be a matrix or a vector. Many array operations require
simple arithmetic on the individual entries of the array, for example, adding, subtracting,
multiplying or dividing all the entries of an array by a scalar, or finding the square root,
powers, logarithmic, or trigonometric function of the individual entries. A second type of
array operations refer to arithmetic between two multi-element structures, for example,
the addition and multiplication of matrices, the calculation of vector products, and matrix
inversion. Some matrix arithmetic operations obey rules that differ from those used in
scalar operations. Finally, some array operations are oriented towards simplifying and
solving systems of linear equations, for example, interchanging rows, multiplying a row
by a scalar, and adding a multiple of one row to another row. Here we concentrate on
array processing operations that are commonly used in graphics programming.

4.2.1 Vectors and Scalars

The word vector is used to refer to the rows and columns of a two-dimensional matrix. In
this sense vector operations are those that affect the entries in a row or column, and
matrix operations are those that affect all the entries in the rectangular array. Vectors
constitute one-dimensional arrays of values, while matrices are a two-dimensional array.
We occasionally refer to the entries in a matrix row as a row vector and the entries in a
matrix column as a column vector.

Vector-by-Scalar Operations in C and C++

Graphics applications must occasionally perform operations on the individual elements of
matrix rows and columns. According to the terminology presented previ-ously, these can
be designated as row and column vector operations. The functions listed in this section
perform multiplication, addition, division, and subtraction of a row vector by a scalar and
multiplication of a column vector by a scalar. The implementation is based on storing
matrix data in one-dimensional arrays, with rows and columns handled by code. The
functions are coded as templates so that they can be used with any compatible data type.

//***

// functions for vector arithmetic

Programming matrix transformations 65

//***

//
template <class A>
void RowMulScalar(A *matx, int i, int cols, A scalar)
{
// Multiply a matrix row times a scalar
// On entry:
// *mat is caller’s matrix
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to multiply
// On exit:
// elements in matrix row i are multiplied by
scalar
int rowStart = i * cols;
for(int j = 0;j < cols ;j++)
 matx[rowStart + j] *= scalar;
}
template <class A>
void RowPlusScalar(A *matx, int i, int cols, A scalar)
{
// Add a scalar to a matrix row
// On entry:
// *mat is caller’s matrix
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to be added
// On exit:
// Scalar is added to all elements in matrix row
i
int rowStart = i * cols;
for(int j = 0;j < cols ;j++)
 matx[rowStart + j] += scalar;
}
template <class A>
void RowMinusScalar(A *matx, int i, int cols, A scalar)
{
// Subtract a scalar from each element in a matrix row
// On entry:
// *mat is caller’s matrix
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to be added
// On exit:
// Scalar is subtracted from all elements in
matrix row i
int rowStart = i * cols;
for(int j = 0;j < cols ;j++)
 matx[rowStart + j] −= scalar;
}
template <class A>

The pc graphics handbook 66

void RowDivScalar(A *matx, int i, int cols, A scalar)
{
// Divide all elements in a matrix row by a scalar
// On entry:
// *mat is caller’s matrix
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value
// On exit:
// All elements in matrix row i are divided by
the
// scalar
int rowStart = i * cols;
for(int j = 0;j < cols ;j++)
 matx[rowStart + j] /= scalar;
}
template <class A>
void ColMulScalar(A *matx, int j, int rows, int cols, A
scalar)
{
// Multiply a matrix column times a scalar
// On entry:
// *mat is caller’s matrix
// j is column number
// rows is the number of rows in the matrix
// cols is number of columns in the matrix
// scalar is the value to multiply
// On exit:
// elements in matrix column j are multiplied by
scalar
 for(int i = 0;i < rows ;i++)
 {
 matx[(cols * i) + j] *= scalar;
 }
}

Since column-level operations are not as common in array processing as row operations,
we have provided a single example, which is the ColMulScalar() function. The
programmer should be able to use it to develop any other column operations that may be
required.

Low-Level Vector-by-Scalar Operations

Array processing are computationally intensive operations. Coding them in high-level
languages is convenient and easy, but sacrifices control, performance, and possibly
precision. C++ programmers can use a more efficient approach by developing the
fundamental processing functions in low-level code. A C++ stub function can provide
easy access to these low-level primitives.

In the code that follows, the low-level procedure receives the address of the first
matrix entry, as well as the row and column parameters required for the operation. For

Programming matrix transformations 67

example, to perform a row-level operation the low-level routine must know the address of
the matrix, the number of elements in each column and the number of the desired row. In
addition, the low-level routine must have available the horizontal skip factor. Using this
information code can visit each matrix entry and perform the required operation. The
code is as follows:

;**

; low-level procedures for vector arithmetic
;**

;
 .CODE
_ROW_TIMES_SCALAR PROC USES esi edi ebx ebp
; Procedure to multiply a matrix row vector by a scalar
; On entry:
; ST(0) = scalar multiplier
; ESI –> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor
; On exit:
; entries of row vector multiplied by ST(0)
; Formula for offset of start of vector is
; offset = [((i-1) * N * s)]
; AL holds 0-based number of the desired row vector
; CL holds the number of entries per row (N)
; DL holds skip factor
 MOV AH,0 ; Clear high-order byte
 MUL CL ; AX = AL * CL
; Second multiplication assumes that product will be
less than
; 65535. This assumption is reasonable since the matrix
space
; assigned is 400 s
 PUSH DX ; Save before multiply
 MOV DH,0 ; Clear high-order byte
 MUL DX ; AX = AX * DL
 POP DX ; Restore DX
 ADD ESI,EAX ; Add offset to pointer
 MOV DH,0 ; Clear high-order byte
; At this point:
; ESI –> first entry in the matrix row
; ST(0) holds scalar multiplier
; ECX = number of entries in row
; EDX = byte length of each matrix entry
ENTRIES:
 CALL FETCH_ENTRY
 FMUL ST,ST(1) ; Multiply by ST(1)
 CALL STORE_ENTRY
 ADD ESI,EDX ; Index to next entry
 LOOP ENTRIES

The pc graphics handbook 68

 RET
_ROW_TIMES_SCALAR ENDP
;**

_ROW_PLUS_SCALAR PROC USES esi edi ebx ebp
; Procedure to add a scalar to a matrix row
; On entry:
; ST(0) = scalar multiplier
; ESI –> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor
; On exit:

; entries of row vector multiplied by ST(0)
;
; Formula for offset of start of vector is
; offset = [((i−1) * N * s)]
; AL holds 0-based number of the desired row vector
; CL holds the number of entries per row (N)
; DL holds skip factor (8 for double precision)
 MOV AH,0 ; Clear high-order byte
 MUL CL ; AX = AL * CL
; Second multiplication assumes that product will be
less than
; 65535. This assumption is reasonable since the matrix
space
; assigned is 400 s
 PUSH DX ; Save before multiply
 MOV DH,0 ; Clear high-order byte
 MUL DX ; AX = AX * DL
 POP DX ; Restore DX
 ADD ESI,EAX ; Add offset to pointer
 MOV DH,0 ; Clear high-order byte
; At this point:
; ESI –> first entry in the matrix row
; ST(0) holds scalar multiplier
; ECX = number of entries in row
; EDX = byte length of each matrix entry
ENTRIES_A:
 CALL FETCH_ENTRY
 FADD ST,ST(1) ; Add scalar
 CALL STORE_ENTRY
 ADD ESI,EDX ; Index to next entry
 LOOP ENTRIES_A
 RET
_ROW_PLUS_SCALAR ENDP
;**

;
_ROW_DIV_SCALAR PROC
; Procedure to divide a matrix row vector by a scalar

Programming matrix transformations 69

; On entry:
; ST(0) = scalar divisor
; ESI –> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor
; On exit:
; Entries of row vector divided by ST(0)
; ST(0) is preserved
; Algorithm:
; Division is performed by obtaining the
reciprocal of
; the divisor and using the multiplication
routine
; | ST(0) | ST(1) | S
T(2)
 ; divisor | ? |
 ?
 FLD ST(0) ; divisor | divisor |
 ?
 FLD1 ; 1 | divisor | d
ivisor
 FDIV ST,ST(1); 1/divisor | 1 | d
ivisor
 FSTP ST(1) ; 1/divisor | divisor |
 ?
 CALL _ROW_TIMES_SCALAR
 FSTP ST(0) ; divisor | ? |
 ?
 CLD
 RET
_ROW_DIV_SCALAR ENDP
;**

;
_ROW_MINUS_SCALAR PROC
; Procedure to subtract a scalar from the entries in a
matrix
; row
; On entry:
; ST(0) = scalar to subtract
; ESI –> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor
; On exit:
; Scalar subtracted from entries of the row
vector
; Algorithm:
; Subtraction is performed by changing the sign
of the
; subtrahend and using the addition routine

The pc graphics handbook 70

; | ST(0) | ST(1) | S
T(2)
; | # | ?
 FCHS ; -# | ?
 CALL _ROW_PLUS_SCALAR
 FCHS ; # | ?
 CLD
 RET
_ROW_MINUS_SCALAR ENDP

Note that in the preceding routines scalar subtraction is performed by changing the sign
of the scalar addend, while division is accomplished by multiplying by the reciprocal of
the divisor. Also notice that sign inversion of a row vector can be obtained by using −1 as
a scalar multiplier. The row operations procedures listed previously receive the horizontal
skip factor in the EDX register. The core procedures _ROW_TIMES_SCALAR and
_ROW_PLUS_SCALAR then call the auxiliary procedures FETCH_ENTRY and
STORE_ENTRY to access and store the matrix entries. FETCH_ENTRY and
STORE_ENTRY determine the type of data access required according to the value in the
EDX register. If the value in EDX is 4, then the data is encoded in single precision
format. If the value is 8 then the data is in double precision. If the value is 10, then the
data is in extended precision. This mechanism allows creating low-level code that can be
used with any of the three floating-point types in ANSI/IEEE 754. The C++ interface
routines, which are coded as template functions, use the sizeof operator on a matrix entry
to determine the data type passed by the caller.

Visual C++ Version 6, in Win32 operating systems, defines the size of int, long,
unsigned long, and float data types as 4 bytes. Therefore it is not possible to use the size
of a data variable to determine if an argument is of integer or float type. For this reason
the interface routines listed in this section can only be used with float-type arguments.
Attempting to pass integer matrices or scalars will result in undetected computational
errors. The C++ interface functions to the low-level row-operation procedures are as
follows:

//***

// C++ interface functions to vector arithmetic
primitives
//***

template <class A>
void RowTimesScalarLL(A *matx, int i, int cols, A
scalar)
{
// Multiply a matrix row times a scalar using low-level
code
// in the Un32_13 module
// On entry:
// On entry:
// *mat is caller’s matrix (floating point type)
// i is number of the row

Programming matrix transformations 71

// cols is number of columns in the matrix
// scalar is the value to add (floating point
type)
// Routine expects:
// ST(0) holds scalar
// ESI –> matrix
// EAX = row vector number
// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix row i are multiplied by
scalar
int eSize = sizeof(matx[0]);
_asm
{
 MOV ECX,cols // Columns to ECX
 MOV EAX,i // Row number to EAX
 MOV ESI,matx // Address to ESI
 FLD scalar // Scalar to ST(0)
 MOV EDX,eSize // Horizontal skip
 CALL ROW_TIMES_SCALAR
}
return;
}
template <class A>
void RowPlusScalarLL(A *matx, int i, int cols, A
scalar)
{
// Multiply a matrix row times a scalar using low-level
code
// in the Un32_13 module
// On entry:
// *mat is caller’s matrix (floating point type)
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to add (floating point
type)
// Routine expects:
// ST(0) holds scalar
// ESI –> matrix
// EAX = row vector number
// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix row i are multiplied by
scalar
int eSize = sizeof(matx[0]);
 _asm
{
 MOV ECX, cols // Columns to ECX
 MOV EAX, i // Row number to EAX
 MOV ESI,matx // Address to ESI

The pc graphics handbook 72

 FLD scalar // Scalar to ST(0)
 MOV EDX,eSize // Horizontal skip
 CALL ROW_PLUS_SCALAR
return;
}
template <class A>
void RowDivScalarLL(A *matx, int i, int cols, A scalar)
{
// Divide a matrix row by a scalar using low-level code
// in the Un32_13 module
// On entry:
// *mat is caller’s matrix (float type)
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to add (float type)
// Routine expects:
// ST(0) holds scalar
// ESI –> matrix
// EAX = row vector number
// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix row i are multiplied by
scalar
int eSize = sizeof(matx[0]);
_asm
{
 MOV ECX,cols // Columns to ECX
 MOV EAX,i // Row number to EAX
 MOV ESI,matx // Address to ESI
 FLD scalar // Scalar to ST(0)
 MOV EDX,eSize // Horizontal skip
 CALL ROW_DIV_SCALAR
}
return;
}
template <class A>
void RowMinusScalarLL(A *matx, int i, int cols, A
scalar)
{
// Subtract a scalar from a matrix row using low-level
code
// in the Un32_13 module
// On entry:
// *mat is caller’s matrix (float type)
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to add (float type)
// Routine expects:
// ST(0) holds scalar
// ESI –> matrix
// EAX = row vector number

Programming matrix transformations 73

// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix row i are multiplicd by
scalar
int eSize = sizeof(matx[0]);
_asm
{
 MOV ECX,cols // Columns to ECX
 MOV EAX,i // Row number to EAX
 MOV ESI,matx // Address to ESI
 FLD scalar // Scalar to ST(0)
 MOV EDX,eSize // Horizontal skip
 CALL ROW_MINUS_SCALAR
}
return;
}

Matrix-by-Scalar Operations

Often we need to perform scalar operations on all entries in a matrix. In graphics
programming the more useful operations are scalar multiplication, division, addition, and
subtraction, in that order. In this section we present code to perform these matrix-by-
scalar multiplications. Here again, because matrix-by-scalar manipulations are
computationally intensive, we develop the routines in low-level code and provide C++
interface functions to the assembly language procedures. The low-level code is as
follows:

 CODE
_MAT_TIMES_SCALAR PROC USES esi edi ebx ebp
; Procedure to multiply a matrix by a scalar
; On entry:
; ST(0) = scalar multiplier
; ESI –> matrix containing the row vector
; EAX = number of rows
; ECX = number of columns
; EDX = horizontal skip factor
; On exit:
; entries of matrix multiplied by ST(0)
; Total number of entries is M * N
 MOV AH,0 ; Clear high-order byte
 MUL CL ; AX = AL * CL
 MOV ECX,EAX ; Make counter in CX
; At this point:
; ESI –> first entry in the matrix
; ST(0) holds scalar multiplier
; ECX = number of entries in matrix
; EDX = byte length of each matrix entry (4, 8, or
10 bytes)
MAT_MUL:
 CALL FETCH_ENTRY

The pc graphics handbook 74

 FMUL ST,ST(1) ; Multiply by ST(1)
 CALL STORE_ENTRY
 ADD ESI,EDX ; Index to next entry
 LOOP MAT_MUL
 CLD
 RET
_MAT_TIMES_SCALAR ENDP
The C++ interface function is named MatTimesScalarLL().
The code is as
follows:
template <class A>
void MatTimesScalarLL(A *matx, int rows, int cols, A
scalar)
{
// Multiply a matrix times a scalar using low-level
code
// in the Un32_13 module
// On entry:
// *mat is caller’s matrix (type double)
// rows is number of the rows in matrix
// cols is number of columns in the matrix
// scalar is the value to multiply (floating
point type)
// Routine expects:
// ST(0) holds scalar
// ESI –> matrix
// EAX = row vector number
// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix are multiplied by scalar
int eSize = sizeof(matx[0]);
_asm
{
 MOV ECX,cols // Columns to ECX
 MOV EAX,rows // Rows to EAX
 MOV ESI,matx // Address to ESI
 FLD scalar // Scalar to ST(0)
 MOV EDX,eSize // Horizontal skip
 CALL MAT_TIMES_SCALAR
}
return;
}

4.2.2 Matrix-by-Matrix Operations

Two matrix-by-matrix operations are defined in linear algebra: matrix addition and
multiplication. Matrix addition is the process of adding the corresponding entries of two
matrices. As you saw in Chapter 3, matrix addition is defined only if the matrices are of
the same size. The addition process in the case C = A+B consists of locating each
corresponding entry in matrices A and B and storing their sum in matrix C.

Programming matrix transformations 75

Matrix multiplication, on the other hand, is rather counter-intuitive. Instead of
multiplying the corresponding elements of two matrices, matrix multiplication consists of
multiplying each of the entries in a row of matrix A, by each of the corresponding entries
in a column of matrix B, and adding these products to obtain an entry of matrix C. For
example

The entries in the product matrix C are obtained as follows:
First row of matrix C

C11 = (A11*B11) + (A13*B21) + (A13*B31)
C12 = (A11*B12) + (A12*B22) + (A13*B32)
C13 = (A11*B13) + (A12*B23) + (A13*B33)
C14 = (A11*B14) + (A12*B24) + (A13*B34)

Second row of matrix C

C21 = (A21*B11) + (A22*B21) + (A23*B31)
C22 = (A21*B12) + (A22*B22) + (A23*B32)
C23 = (A21*B13) + (A22*B23) + (A23*B33)
C24 = (A21*B14) + (A22*B24) + (A23*B34)

Matrix multiplication requires a series of products, which are obtained using as factors
the entries in the rows of the first matrix and the entries in the columns of the second
matrix. Therefore, matrix multiplication is defined only if the number of colunms of the
first matrix is equal to the number of rows in the second matrix. This relationship can be
visualized as follows:

where R, C represents the rows and columns of the first matrix, and r, c represents the
rows and columns of the second matrix. By the same token, the product matrix (C) will
have as many rows as the first matrix (A) and as many columns as the second matrix (B).
In the previous example, since matrix A is a 2-by-3 matrix, and matrix B is a 3-by-4
matrix, matrix C will be a 2-by-4 matrix.

Since matrix addition and multiplication are computationally intensive operations we
implement them in low-level code and provide C++ interface routines.

Matrix Addition

The following low-level procedure performs matrix addition. The procedure requires that
both matrices be of the same dimension, that is, that they have the same number of
columns and rows.

 .486
 .MODEL flat
 .DATA
;**|
; Data for this matrix addition and multiplication |

The pc graphics handbook 76

;**|
ELEMENT_CNT DW 0 ; Storage for total
number of
 ; entries in matrix C
;
MAT_A_ROWS DB 0 ; Rows in matrix A
MAT_A_COLS DB 0 ; Columns in matrix A
MAT_B_ROWS DB 0 ; Rows in matrix B
MAT_B_COLS DB 0 ; Columns in matrix B
MAT_C_ROWS DB 0 ; Rows in matrix C
MAT_C_COLS DB 0 ; Columns in matrix C
SKIP_FACTOR DD 0 ; Element size
;
; Control variables for matrix multiplication
PROD_COUNT DB 0 ; Number of product in
each
 ; multiplication
iteration
WORK_PRODS DB 0 ; Working count for
number of
 ; products
WORK_ROWS DB 0 ; Number of rows in
matrices A
 ; and C
WORK_COLS DB 0 ; Number of columns in
matrices B
 ; and C
 .CODE
;**********************************
; matrix addition
;**********************************
_ADD_MATRICES PROC USES esi edi ebx ebp
; Procedure to add all the corresponding entries of two
matrices
; of the same size, as follows:
;
; A= B= C=(A+B)
; A11 A12 A13 B11 B12
B13 A11+B11 A12+B12 A13+B13
; A21 A22 A23 B21 B22 B23
; A31 A32 A33 B31 B32 B33
 A33+B33
;
; On entry:
; ESI –> first matrix (A)
; EDI –> second matrix (B)
; EBX –> storage area for addition matrix (C)
; Code assumes that matrix C is correctly
; dimensioned
; EAX = number of rows in matrix
; ECX = number of columns in matrix
; EDX = horizontal skip factor

Programming matrix transformations 77

;
; On exit:
; AX = 0 if matrices are the same size, then
matrix C
; contains sum of A+B
;
; AX = 1 if matrices are of different size and the
matrix
; sum is undefined
;
; Note: matrix addition is defined only regarding two
matrices of
; the same size. Matrices must be of type float
and of the
; same format
;
;***************************|
; test for equal size |
;***************************|
 CMP AX,CX ; Test for matrices of
equal size
 JE GOOD_SIZE ; Go if same size
;***************************|
; DATA ERROR |
;***************************|
; At this point matrices cannot be added
 MOV AX,1 ; Error code
 CLD
 RET
;***************************|
; store matrix parameters |
;***************************|
; Calculate number of entries by multiplying matrix
rows times
; matrix columns
GOOD_SIZE:
 PUSH EDX ; Save register
 MUL CX ; Rows times
columns
 MOV ELEMENT_CNT,AX ; Store number of
entries
 POP EDX
; At this point:
; ESI –> first matrix (A)
; EDI –> second matrix (B)
; EBX –> storage area for addition matrix (A+B)
;***************************|
; perform matrix addition |
;***************************|
A_PLUS_B:
; ESI –> matrix entry in matrix A
; EDX = entry size (4, 8, or 10 bytes)

The pc graphics handbook 78

 CALL FETCH_ENTRY ; ST(0) now holds entry
of A
; Fetch entry in matrix B
 XCHG ESI,EDI ; ESI –> matrix B entry
 CALL FETCH_ENTRY ; ST(0) = matrix B
entry
 ; ST(1) = matrix A
entry
 XCHG ESI,EDI ; Reset pointer
; Add entries
 FADD ; ST(0) | ST(1) |
ST(2)
 ; eA + eB | ------- |
 XCHG EBX,ESI ; ESI –> matrix C entry
; Store sum
 CALL STORE_ENTRY ; Store sum in matrix C
and pop
 ; stack
 XCHG EBX,ESI ; Restore pointers
; Update entries counter
 DEC ELEMENT_CNT ; Counter for matrix s
 JNZ NEXT_MAT_ELE ; Continue if not end
of matrix
;***************************|
; end of matrix addition |
;***************************|
 MOV AX, 0 ; No error flag
 CLD
 RET
;***************************|
; index matrix pointers |
;***************************|
; Add entry size to each matrix pointer
NEXT_MAT_ELE:
 ADD ESI,EDX ; Add size to pointer
 ADD EDI,EDX
 ADD EBX,EDX
 JMP A_PLUS_B
;
_ADD_MATRICES ENDP

The C++ interface function to the _ADD_MATRICES procedure is as follows:

template <class A>
void AddMatrices(A *matA, A *matB, A *matC, int rows,
int cols)
{
// Perform matrix addition: C = A + B using low-level
code in the
// Un32_13 module
// On entry:
// *matA and *matB are matrices to be added

Programming matrix transformations 79

// *matC is matrix for sums
// rows is number of the rows in matrices
// cols is number of columns in the matrices
// Requires:
// All three matrices must be of the same
dimensions
// All three matrices must be of the same
floating
// point data type
// Routine expects:
// ESI –> first matrix (A)
// EDI –> second matrix (B)
// EBX –> storage area for addition matrix (C)
// EAX = number of rows in matrices
// ECX = number of columns in matrices
// EDX = horizontal skip factor
// On exit:
// returns matC[] = matA[]+matB[]
int eSize = sizeof(matA[0]);
_asm
{
 MOV ECX,cols // Columns to ECX
 MOV EAX,rows // Rows to EAX
 MOV ESI,matA // Address to ESI
 MOV EDI,matB
 MOV EBX,matC
 MOV EDX,eSize // Horizontal skip
 CALL ADD_MATRICES
}
return;
}

Matrix Multiplication

The following low-level procedure performs matrix multiplication. The procedure
requires that the number of columns in the first matrix be the same as the number of rows
in the second matrix. The matrix for results must be capable of storing a number of
elements equal to the product of the number of rows of the first matrix by the number of
columns of the second matrix. The data variables for the _MUL_MATRICES procedure
were defined in the _ADD_MATRICES procedure, listed previously.

 .CODE
;**

; matrix multiplication
;**

_MUL_MATRICES PROC USES esi edi ebx ebp
; Procedure to multiply two matrices (A and B) for
which a matrix

The pc graphics handbook 80

; product (A * B) is defined. Matrix multiplication
requires that
; the number of columns in matrix A be equal to the
number of
; rows in matrix B, as follows:
; A B
; R C r c
; |______=______|
;
; Example:
; A= (2 by 3) B= (3 by 4)
; A11 A12 A13 B11 B12 B13 B14
; A21 A22 A23 B21 B22 B23 B24
; B31 B32 B33 B34
;
; The product matrix (C) will have 2 rows and 4 columns
; C=(2 by 4)
; C11 C12 C13 C14
; C21 C22 C23 C24
;
; In this case the product matrix is obtained as
follows
; C11 = (A11*B11) + (A12*B21) + (A13*B31)
; C12 = (A11*B12) + (A12*B22) + (A13*B32)
; C13 = (A11*B13) + (A12*B23) + (A13*B33)
; C14 = (A11*B14) + (A12*B24) + (A13*B34)
;
; C21 = (A21*B11) + (A22*B21) + (A23*B31)
; C22 = (A21*B12) + (A22*B22) + (A23*B32)
; C23 = (A21*B13) + (A22*B23) + (A23*B33)
; C24 = (A21*B14) + (A22*B24) + (A23*B34)
; On entry:
; ESI –> first matrix (A)
; EDI –> second matrix (B)
; EBX –> storage area for products matrix (C)
; AH = rows in matrix A
; AL = columns in matrix A
; CH = rows in matrix B
; CL = columns in matrix B
; EDX = number of bytes per entry
; Assumes:
; Matrix C is dimensioned as follows:
; Columns of C = columns of B
; Rows of C = rows of A
; On exit:
; Matrix C is the products matrix
; Note: the entries of matrices A, B, and C must be of
type float
; and of the same data format
;
; Store number of product in each multiplication
iteration

Programming matrix transformations 81

 MOV PROD_COUNT,AL
; At this point:
; AH = rows in matrix A
; AL = columns in matrix A
; CH = rows in matrix B
; CL = columns in matrix B
; Store matrix dimensions
 MOV MAT_A_ROWS,AH
 MOV MAT_A_COLS,AL
 MOV MAT_B_ROWS,CH
 MOV MAT_B_COLS,CL
; Store skip factor
 MOV SKIP_FACTOR,EDX
; Calculate total entries in matrix C
; Columns in C = columns in B
; Rows in C = rows in A
 MOV MAT_C_COLS,CL
 MOV MAT_C_ROWS,AH
; Calculate number of products
 MOV AH,0 ; Clear high byte of
product
 MUL CL ; Rows times columns
 MOV ELEMENT_CNT,AX ; Store count
; At this point:
; ESI –> first matrix (A)
; EDI –> second matrix (B)
; EBX –> storage area for products matrix (A*B)
 MOV START_BMAT,EDI ; Storage for
pointer
;***************************|
; initialize row and column |
; counters |
;***************************|
; Set up work counter for number of rows in matrix C
; This counter will be used in determining the end of
the
; matrix multiplication operation
 MOV AL,MAT_C_ROWS ; Rows in
matrix C
 MOV WORK_ROWS,AL ; To working
counter
; Reset counter for number of columns in matrix C
; This counter will be used in resetting the matrix
pointers at
; the end of each row in the products matrix
 MOV AL,MAT_C_COLS ; Columns in
matrix C
 MOV WORK_COLS,AL ; To working
counter
;***************************|
; perform multiplication |
;***************************|

The pc graphics handbook 82

NEW_PRODUCT:
; Save pointers to matrices A and B
 PUSH ESI ; Pointer to A
 PUSH EDI ; Pointer to B
; Load 0 as first entry in sum of products
 FLDZ
 ;
ST(0) | ST(1) | ST(2)
; | 0 | ? |
 ? |
; Store number of products in work counter
 MOV AL,PROD_COUNT ; Get count
 MOV WORK_PRODS,AL ; Store in work
counter
A_TIMES_B:
; Fetch entry in current row of matrix A
 MOV EDX,SKIP_FACTOR ; size to DL
; ESI –> matrix entry in current row of matrix A
 CALL FETCH_ENTRY ; ST(0) now holds entry
of A
 XCHG ESI,EDI ; ESI –> matrix B
 CALL FETCH_ENTRY ; ST(0) = matrix B
 ; ST(1) = matrix A
 XCHG ESI,EDI ; Reset pointer
; Multiply s
 ;
ST(0) | ST(1) | ST(2)
 FMULP ST(1),ST ; eA * eB |previous | -
----- |
 ; | sum | -
----- |
 FADD ; p sum | ------ |
; Test for last entry in product column
 DEC WORK_PRODS ; Is this last product
 JZ NEXT_PRODUCT ; Go if at end of
products column
;***************************|
; next product |
;***************************|
; Index to next column of matrix A
 ADD ESI,SKIP_FACTOR ; Add size to pointer
; Index to next row in the same column in matrix B
 MOV EAX,EDX ; Horizontal skip
factor to AL
 MUL MAT_B_COLS ; Times number of
columns
 ADD EDI,EAX ; Add to pointer
 JMP A_TIMES_B ; Continue in same
product column
;***************************|
; store product |
;***************************|

Programming matrix transformations 83

NEXT_PRODUCT:
; Restore pointers to start of current A row and B
column
 POP EDI ; B matrix pointer
 POP ESI ; A matrix pointer
; At this point ST(0) has sum of products
; Store this sum as entry in products matrix (by DS:BX)
 XCHG EBX,ESI ; ESI –> matrix C
; Store sum
 MOV EDX,SKIP_FACTOR ; size to DL
 CALL STORE_ENTRY ; Store sum in matrix
C and pop
 ; stack
 XCHG EBX,ESI ; Restore pointers
; Index to next entry in matrix C
 ADD EBX,SKIP_FACTOR ; Add size to
pointer
;***************************|
; test for last column in |
; matrix C |
;***************************|
; WORK_COLS keeps count of current column in matrix C
 DEC WORK_COLS ; Is this the last
column in C
 JE NEW_C_ROW ; Go if last row
; Index to next column in matrix B
 ADD EDI,SKIP_FACTOR ; Add size to
pointer
 JMP NEW_PRODUCT
;***************************|
; index to new row |
;***************************|
; First test for end of processing
NEW_C_ROW:
 DEC WORK_ROWS ; Row counter in matrix
C
 JNE NEXT_C_ROW ; Go if not last row of
C
;***************************|
; end of matrix |
; multiplication |
;***************************|
 JMP MULT_M_EXIT
;***************************|
; next row of matrix C |
;***************************|
; At the start of every new row in the products matrix,
the
; matrix B pointer must be reset to the start of matrix
B
; and the matrix A pointer to the start entry of the
next

The pc graphics handbook 84

; row of matrix A
NEXT_C_ROW:
 MOV EDI,START_BMAT ; EDI –> start of B
 MOV AH,0 ; Clear high byte of
adder
; Pointer for matrix A
 MOV EAX,SKIP_FACTOR ; Entry size of A
 MUL MAT_A_COLS ; Size times columns
 ADD ESI,EAX ; ESI –> next row of
A
; Reset counter for number of columns in matrix C
 MOV AL,MAT_C_COLS ; Columns in matrix
C
 MOV WORK_COLS,AL ; To working counter
 JMP NEW_PRODUCT ; Continue
processing
;***********************|
; EXIT |
;***********************|
MULT_M_EXIT:
 CLD
 RET
_MUL_MATRICES ENDP
The C++ interface function to the _MUL_MATRICES
procedure is as follows:
template <class A>
bool MulMatrices(A *matA, A *matB, A *matC,
 int rowsA, int colsA,
 int rowsB, int colsB)
{
// Perform matrix addition: C = A + B using low-level
code in the
// Un32_13 module
// On entry:
// *matA and *matB are matrices to be added
// *matC is matrix for sums
// rowsA is number of the rows in matrix A
// colsA is number of columns in the matrix A
// rowsB is number of the rows in matrix B
// colsB is number of columns in the matrix B
// Requires:
// All three matrices must be of the same
dimensions
// All three matrices must be of the same float
// data type
// Asumes:
// Matrix C dimensions are the product of the
// columns of matrix B times the rows or matrix A
// Routine expects:
// ESI –> first matrix (A)
// EDI –> second matrix (B)
// EBX –> storage area for addition matrix (C)

Programming matrix transformations 85

// AH = number of rows in matrix A
// AL = number of columns in matrix A
// CH = number of rows in matrix B
// CL = number of columns in matrix B
// EDX = horizontal skip factor
// On exit:
// returns true if matC[] = matA[] * matB[]
// returns false if columns of matA[] not = rows
// of matB[]. If so, matC[] is undefined
int eSize = sizeof(matA[0]);
// Test for valid matrix sizes:
// columns of matA[] = rows of matB[]
if(colsA != rowsB)
 return false;
_asm
{
 MOV AH,BYTE PTR rowsA
 MOV AL,BYTE PTR colsA
 MOV CH,BYTE PTR rowsB
 MOV CL,BYTE PTR colsB
 MOV ESI,matA // Address to
registers
 MOV EDI,matB
 MOV EBX,matC
 MOV EDX,eSize // Horizontal skip
 CALL MUL_MATRICES
}
return true;
}

The pc graphics handbook 86

Chapter 5
Projections and Rendering

Topics:

• Perspective
• Projections
• The rendering pipeline

In order to view manipulate and view a graphics object we must find ways of storing it a
computer-compatible way. In order to store an image, we must find a ways of defining
and digitizing it. Considering that the state-of-the-art in computer displays is two-
dimensional, the solid image must also be transformed so that it is rendered on a flat
surface. The task can be broken down into three separate chores: representing, encoding,
and rendering. Representing and encoding graphics images were discussed in previous
chapters. Here we are concerned with rendering.

5.1 Perspective

The computer screen is a flat surface. When image data is stored in the computer it is in
the form of a data structure consisting of coordinate points. You have seen in Chapters 3
and 4 how a matrix containing these image coordinate points can be translated, scaled,
and rotated by means of geometrical transformations. But a data structure of image points
cannot be displayed directly onto a flat computer screen. In the same way that an
engineer must use a rendering scheme in order to represent a solid object onto the surface
of the drawing paper, the programmer must find a way of converting a data structure of
coordinates into an image on the computer monitor. You can say that both, the engineer
and the programmer, have a rendering problem. Various approaches to rendering give
rise to several types of projections. Figure 5–1, on the following page, shows the more
common type of projections.

5.1.1 Projective Geometry

Projective geometry is the field of mathematics that studies the transformations of objects
during projections. The following imaginary elements participate in every projection:

Figure 5–1 Common Projections
1. The observer’s eye, also called the view point or center of projection.
2. The object being viewed.
3. The plane or planes of projection.
4. The visual rays that determine the line of sight, called the projectors.

Figure 5–2 shows these elements.

Projections and rendering 89

Figure 5–2 Projection Elements

Geometrically, the projection of a point on a plane is the point of intersection, on the
plane of projection, of a line that extends from the object’s point to the center of
projection. This line is called the projector. Alternatively you can say that the projection
of a point is the intersection between the point’s projector and the plane of projection.
The definition can be further refined by requiring that the center of projection not be
located in the object nor in the plane of projection. This constraint makes this type of
projection a central projection.

Figure 5–3 Perspective and Parallel
Projections

The location of the center of projection in relation to the object and the plane of
projection determines the two main types of projections. When the center of projection is
at a measurable distance from the plane of projection it is called a perspective projection.

The pc graphics handbook 90

When the center of projection is located at infinity, the projection is called a parallel
projection. Figure 5–3 shows perspective and parallel projections.

In central projections the geometrical elements in the object plane are transformed into
similar ones in the plane of projection. A line is projected as a line, a triangle as a
triangle, and a polygon as a polygon. However, other object properties may not be
preserved. For example, the length of line segments, the angular values, and the
congruence of polygons can be different in the object and the projected image.
Furthermore, geometrical elements that are conic sections (circle, ellipse, parabola, and
hyperbola) retain the conic section property, but not necessarily their type. A circle can
be projected as an ellipse, an ellipse as a parabola, and so on. Figure 5–4 shows the
perspective projection of a circle as a ellipse.

Figure 5–4 A Circle Projected as an
Ellipse

5.1.2 Parallel Projections

Parallel projections find extensive use in drafting, engineering drawings, and architecture.
They are divided into two types: oblique and orthographic. The orthographic or right-
angle projection, which is the simplest of all, assumes that the planes or projection
coincide with the coordinates axis. In this case the projectors are normal (perpendicular)
to the plane of projection. In the oblique projection the projectors are not normal to the
plane of projection.

A type of parallel projection, called a multiview projection, is often used in technical
drawings. The images that result from a multiview projection are planar and true-to-scale.
Therefore, the engineer or draft person can take measurements directly from a multiview
projection. Figure 5–5 shows a multiview projection of an engineered object.

In Figure 5–5 the front, side, and top views are called the regular views. There are
three additional views not shown in the illustration, called the bottom, right-side, and rear
views. These are drawn whenever it is necessary to show details not visible in the regular
views. The Cartesian interpretation of the front view is the orthographic projection of the
object onto the xy-plane, the side view is the projection onto the yz-plane, and the top
view is the projection onto the xz-plane. Sometimes these views are called the front-
elevation, side-elevation, and top- or plan-elevation. While each multiview projection
shows a single side of the object, it is often convenient to show the object pictorially. The

Projections and rendering 91

drawing on the left-side of Figure 5–5 shows several sides of the object in a single view,
thus rendering a pictorial view of the object.

Figure 5–5 Parallel, Orthographic,
Multiview Projection

Orthographic-axonometric projections are pictorial projections often used in technical
applications. The term axonometric originates in the greek word “axon” (axis) and
“metrik” (measurement). It relates to the measurements of the axes used in the projection.
Notice in Figure 5–1 that the axonometric projections are further classified into isometric,
dimetric, and trimetric. Isometric means “equal measure,” which means that the object
axes make equal angles with the plane of projection. In the dimetric projection two of the
three object axes make equal angles with the plane of projection. In the trimetric, all three
axes angles are different. Figure 5–6 shows the isometric, dimetric, and trimetric
projections of a cube.

Figure 5–6 Isometric, Dimetric, and
Trimetric Projections

The pc graphics handbook 92

5.1.3 Perspective Projections

Orthographic projections have features that make them useful in technical applications.
For example, multiview projections provide dimensional information to the technician,
engineer, and the architect. Axonometric projections, shown in Figure 5–6, can be
mechanically generated from multiview drawings. In general, the main feature of the
parallel projections is their information value.

One objection to the parallel projections is their lack of realism. Figure 5–7 shows two
isometric cubes, labeled A and B, at different distances from the observer. However, both
objects have projected images of the same size. This is not a realistic representation since
cube B, farther away from the observer, should appear smaller than cube A.

Figure 5–7 Lack of Realism In
Isometric Projection

Perspective projection attempts to improve the realism of the image by providing depth
cues that enhance relative positions, distances, and diminishing size. One of the most
important depth cues is the relative size of the object at different distances from the
viewing point. This effect can be achieved by means of perspective projections. The
perspective projection depends on a vanishing point that is used to determine the object’s
relative size. Three types of perspective projections are in use, according to the number of
vanishing points. They are named one-point, two-point, and three-point perspectives.

The number of vanishing points is determined by the positioning of the object in
relation to the plane of projection. If a cube is placed so its front face is parallel to the
plane of projection, then one set of edges converges to a single vanishing point. If the
same cube is positioned so that one set of parallel edges is vertical, and the other two are
not, then each of the two non-vertical edges has a vanishing point. Finally, if the cube is
placed so that none of its principal edges are parallel to the plane of projection, then there
are three vanishing points.

Perspective projections have some unique characteristics. In a parallel projection we
take a three-dimensional object and produce a two-dimensional image. In a perspective

Projections and rendering 93

projection we start with a three-dimensional object and produce another three-
dimensional object which is modified in order to enhance its depth cues. This makes this
type of projection a transformation, much like the rotation, translation, and scaling
transformations discussed in Chapter 3. However, unlike rotation, translation, and
scaling, a perspective transformation distorts the shape of the object transformed. After a
perspective transformation, forms that were originally circles may turn into ellipses,
parallelograms into trapezoids, and so forth. It is these distortions that reinforce our depth
perception.

One-Point Perspective

The simplest perspective projection is based on a single vanishing point. In this
projection, also called single-point perspective, the object is placed so that one of its
surfaces is parallel to the plane of projection. Figure 5–8 shows a one-point perspective
of a cube.

Figure 5–8 One-Point Perspective
Projection of a Cube

One point perspective projections are simple to produce and find many practical uses in
engineering, architecture, and in computer graphics. One of the features of the one-point
perspective is that if an object has cylindrical or circular forms, and these are placed
parallel to the plane of projection, then the forms are represented as circles or circular
arcs in the perspective. This can be an advantage, considering that circles and circular
arcs are easier to draw than ellipses or other conics. Figure 5–9, on the following page, is
a one-point projection of a mechanical part that contains cylindrical and circular forms.

The pc graphics handbook 94

Figure 5–9 One-Point Projection of a
Mechanical Component

A special form of the one-point perspective projection takes place when the vanishing
point is placed centrally within the figure. This type of projection is called a tunnel
perspective or tunnel projection. Because of the particular positioning of the object in the
coordinate axes, the depth cues in a tunnel projection are not very obvious. Figure 5–10
shows the tunnel projection of a cube.

Figure 5–10 Tunnel Projection of a
Cube

Two-Point Perspective

The depth cues in a linear perspective of a multi-faced object can be improved by rotating
the object so that two of its surfaces have vanishing points. In the case of a cube this is
achieved if the object is rotated along its y-axis, so that lines along that axis remain
parallel to the viewing plane, but those along the two other axes have vanishing points.
Figure 5–11 shows a two-point perspective of a cube.

Projections and rendering 95

Figure 5–11 Two-Point Perspective of
a Cube

Two-point perspective projections are realistic and easy to render. For these reasons
they are frequently used in 3D graphics.

Three-Point Perspective

A three-point perspective is achieved by positioning the object so that none of its axes are
parallel to the plane of projection. Although the visual depth cues in a three-point
perspective are stronger than in the two-point perspective, the resulting geometrical
deformations are sometimes disturbing to the viewer. Figure 5–12 is a three-point
perspective projection of a cube.

Figure 5–12 Three-Point Perspective
of a Cube

The pc graphics handbook 96

The Perspective Projection as a Transformation

The data structure that defines the vertices of a three-dimensional object can be changed
into another one that contains enhanced depth cues by performing a mathematical
transformation. In other words, a perspective projection can be accomplished by means of
a transformation. In calculating the projection transformation it is convenient to define a
4-by-4 matrix so the transformation is compatible with the ones used for rotation,
translation, and scaling, as described in Chapter 3. In this manner we can use matrix
concatenation to create matrices that simultaneously perform one or more geometrical
transformations, as well as a perspective projection.

The simplest approach for deriving the matrix for a perspective projection is to assume
that the projection plane is normal to the z-axis and located at z=d. Figure 5–13 shows the
variables for this case.

Figure 5–13 Perspective Projection of
Point P

In Figure 5–13 point Pp represents the perspective projection of point P. According to the
predefined constraints for this projection, we already know that the z coordinate of point
Pp is d. To determine the formulas for calculating the x and y coordinates we can take
views along either axes, and solve the resulting triangles, as shown in Figure 5–14.

Projections and rendering 97

Figure 5–14 Calculating x and y
Coordinates of Point P

Since the gray triangles in Figure 5–14 are similar, we can establish the ratios:

and

Solving for xp and yp produces the equations:

Since the distance d is a scaling factor in both equations, the division by z has the effect
of reducing the size of more distant objects. In this case the value of z can be positive or
negative, but not zero, since z=0 defines a parallel projection. These equations can be
expressed in matrix form, as follows:

The pc graphics handbook 98

5.2 The Rendering Pipeline

A common interpretation of the rendering process is to consider it as a series of
transformations that take the object from the coordinate system in which it is encoded,
into the coordinate system of the display surface. This process, sometimes referred to as
the rendering pipeline, is described as a series of spaces through which the object
migrates in its route from database to screen. A waterfall model of the rendering pipeline
is shown in Figure 5–15.

Figure 5–15 Waterfall Model of the
Rendering Pipeline

5.2.1 Local Space

Objects are usually easier to model if they are conveniently positioned in the coordinate
plane. For example, when we place the bottom-left vertex of a cube at the origin of the
coordinate system, the coordinates are all positive values, as in Figure 5–16.

Figure 5–16 Local Space Coordinates
of a Cube with Vertex at the Origin

The so-called local space coordinates system facilitates numerical representation and
transformations. When objects are modeled by means of polygons, the database usually
includes not only the object coordinates points, but the normals to the polygon vertices

Projections and rendering 99

and the normal to the polygon itself. This information is necessary in order to perform
many of the rendering transformations.

5.2.2 World Space

The coordinate system of the scene is called the world space, or world coordinate system.
Objects modeled in local space usually have to be transformed into world space at the
time they are placed in a scene. For example, a particular scene may require a cube
placed so that its left-bottom vertex is at coordinates x=2, y=3, z=0. The process requires
applying a translation transformation to the cube as it was originally defined in local
space. Furthermore, lighting conditions are usually defined in world space. Once the light
sources are specified and located, then shading and other rendering transformations can
be applied to the polygons so as to determine how the object appears under the current
illumination. Surface attributes of the object, such as texture and color, may affect the
shading process. Figure 5–17 shows the world space transformation of a cube under
unspecified illumination conditions and with undefined texture and color attributes.

5.2.3 Eye Space

Note in Figure 5–17 that the image is now in world space, and that some shading of the
polygonal surfaces has taken place; however, the rendering is still far from complete. The
first defect that is immediately evident is the lack of perspective. The second one is that
all of the cube’s surfaces are still visible. The eye space, or camera coordinate system,
introduces the necessary transformations to improve rendering to any desired degree.
Perspective transformations requires knowledge of the camera position and the projection
plane. The second of these is not known until we reach the screen space phase in the
rendering pipeline, therefore, it must be postponed until we reach this stage.

The notions of eye and camera positions can be taken as equivalent, although the word
“camera” is more often used in 3D graphics. The camera can be positioned anywhere in
the world space and pointed in any direction. Once the camera position is determined, it
is possible to eliminate those elements of the scene that are not visible. In the context of
polygonal modeling this process is generically called backface elimination.

The pc graphics handbook 100

Figure 5–17 World Space
Transformation of the Cube In Figure
5–16

Backface Elimination or Culling

One of the most important rendering problems that must be solved at this stage of the
pipeline is the elimination of the polygonal faces that are not visible from the eye
position. In the simplest case, entire polygons that are not visible are removed at this
time. This operation is known as culling. When dealing with a single convex object, as is
a cube, culling alone solves the backface elimination problem. However, if there are
multiple objects in a scene, where one object may partially obscure another one, or in the
case of concave objects, then a more general backface elimination algorithm is required.

A solid object composed of polygonal surfaces that completely enclose its volume is
called a polyhedron. In 3D graphics a polyhedron is usually defined so that the normals to
its polygonal surfaces point away from its center. In this case, the polygons whose
normals point away from the eye or camera can be assumed to be blocked by other,
closer polygons, and are thus invisible. Figure 5–18 shows a cube with rods normal to
each of its six polygonal surfaces. Solid arrows indicate surfaces whose normals point in
the direction of the viewer. Dotted arrows indicate surfaces whose normals point away
from the viewer and can, therefore, be eliminated.

Projections and rendering 101

Figure 5–18 Culling of a Polyhedron

A single mathematical test can be used to determine if a polygonal face is visible. The
geometric normal to the polygonal face is compared with a vector from the polygon to
the camera or eye position. This is called the line-of-sight vector. If the resulting angle is
greater than 90 degrees, then the polygonal surface faces away from the camera and can
be culled. Figure 5–19 shows the use of polygonal surface and line-of-sight vectors in
culling.

Figure 5–19 Line-of-Sight and Surface
Vectors in Culling

Once the position of the camera is determined in the scene, it is possible to perform
the backface elimination. Figure 5–20 shows the cube of Figure 5–17 after this operation.

The pc graphics handbook 102

Figure 5–20 Eye Space
Transformation of the Cube In Figure
5–17

5.2.4 Screen Space

The image, as it exists at this point of the rendering pipeline, is a numerical
representation of the object. Previous illustrations, such as Figure 5–20, should not be
taken literally, since the image has not yet been displayed. The last step of the rendering
pipeline is the transformation onto screen space.

Changing the positioning of the camera is equivalent to rotating the object in the
coordinate space. Either operation determines the type of perspective transformation:
one-point, two-point, or three-point. In relation to Figure 5–17, if we position the camera
so that it is normal to the face of the cube defined by points p1, p2, p6, and p5, then the
result is a one-point perspective. If we position the camera so that the vertical edges of
the cube remain parallel to the viewer, then the result is a two-point perspective.
Similarly, we can reposition the object for a three-point perspective. In addition, the
perspective transformation requires determining the distance to the plane of projection,
which is known at the screen space stage of the rendering pipeline.

Screen space is defined in terms of the viewport. The final transformation in the
rendering pipeline consists of eliminating those elements of the eye space that fall outside
the boundaries of the screen space. This transformation is known as clipping. The
perspective and clipping transformations are applied as the image reaches the last stage of
the rendering pipeline. Figure 5–21, on the following page, shows the results of this
stage.

5.2.5 Other Pipeline Models

The rendering pipeline model described thus far is not the only one in use. In fact,
practically every 3D graphics package or development environment describes its own
version of the rendering pipeline. For example, the model used in Microsoft’s Direct 3D
is based on a transformation sequence that starts with polygon vertices being fed into a
transformations pipeline. The pipeline performs world, view, projection, and clipping

Projections and rendering 103

transformations before data is sent to the rasterizer for display. These other versions of
the rendering pipeline are discussed in the context of the particular systems to which they
refer.

Figure 5–21 Screen Space
Transformation of the Cube in Figure
5–20

The pc graphics handbook 104

Chapter 6
Lighting and Shading

Topics:

• Illumination models
• Reflection and shading
• Ray tracing
• Light rendering techniques

Objects are made visible by light. Our visual perception of an object is determined by the
form and quality of the illumination. Lighting defines or influences color, texture,
brightness, contrast, and even the mood of a scene. This chapter is an introduction to
lights and shadows in 3D graphics and how lighting effects are rendered on the screen.

6.1 Lighting

To a great degree the realism of a three-dimensional object is determined by its lighting.
Some solid objects are virtually impossible to represent without lighting effects. For
example, a billiard ball could not be convincingly rendered as a flat disk. Figure 6–1
shows the enhanced realism that results from lighting effects on a solid object.

Figure 6–1 Lighting Enhances
Realism

Lighting and rendering lighted objects is one of the most computationally expensive
operations of 3D graphics. At this state of the technology you often have to consider not
the ideal lighting effects on a scene but the minimum acceptable levels of lighting that
will produce a satisfactory rendering. What is the “acceptable level” depends on the
application. An interactive program that executes in real-time, such as a flight simulator
or a computer game, usually places stringent limitations on lighting. For the PC
animation programmer it often comes down to a tradeoff between the smoothness of the

animation and the quality of the scene lighting. On the other hand, when developing
applications that are not as sensitive to execution speed, or that need not execute in real-
time, such as a paint program, we are able grant a greater time slice to lighting
operations.

Two models are usually mentioned in the context of lighting: the reflection model and
the illumination model. The reflection model describes the interaction of light within a
surface. The illumination model refers to the nature of light and its intensity distribution.
Both are important in developing light-rendering algorithms.

6.1.1 Illumination Models

At this point we are concerned with the light source and its characteristics; textures are
considered later in this chapter. The intensity and distribution of light on the surface of an
object is determined by the characteristics of the light itself, as well as by the texture of
the object. A polished glass ball shows different lighting under the same illumination than
a velvet-covered one.

The simplest illumination model is one in which each polygon that forms the object is
displayed in a single shade of its own color. The result is a flat, monochromatic rendering
in which self-luminous objects are visible by their silhouette only. One exception is if the
individual polygons that form the object are assigned different colors or shades. The
circular disk on the left-side of Figure 6–1 is an example of rendering without lighting
effects.

There are two types of illumination—direct and indirect—which in turn, relate to two
basic types of light sources—light-emitting and light reflecting. The illumination that an
object receives from a light-emitting source is direct. The illumination received from a
light-reflecting source is indirect. Consider a polished sphere in a room illuminated by a
single light bulb. If no other opaque object is placed between the light bulb and the
sphere, most of the light that falls on the sphere is direct. Indirect light, proceeding from
reflection of other objects, may also take part in illuminating the sphere. If an opaque
object is placed between the light bulb and the sphere, the sphere will be illuminated
indirectly, which means, by reflected light only. Figure 6–2 shows a polished sphere
illuminated by direct and indirect lighting, and by a combination of both.

Light sources also differ by their size. A small light source, such as the sun, is
considered a point source. A rather extensive light source, such as a battery of fluorescent
light, is considered an extended source. Reflected light is usually an extended source.
Here again, the lighting effect of a point or extended source is modified by the object’s
texture. Figure 6–3 shows a polished sphere illuminated by a point and an extended
source.

The pc graphics handbook 106

Figure 6–2 Direct and Indirect
Lighting

6.1.2 Reflection

Except in the case of fluorescent objects, most of the lighting effects result from
reflection. Ambient illumination is light that has been scattered to such a degree that it is
no longer possible to determine its direction. Back lighting produces ambient
illumination, as is the case in the right-hand sphere in Figure 6–3. Ambient light and
matte surfaces produce diffuse reflection. Point sources and polished surfaces produce
specular reflection. Variations in the light source and surface textures give rise to
virtually unlimited variations between pure diffuse and pure specular reflection.

Figure 6–3 Point and Extended Light
Sources

Lighting and shading 107

Diffuse Reflection

Ambient light produces a uniform illumination on the object’s surface. If a surface is
exposed to ambient light alone, then the intensity of reflection at any point on the surface
is expressed by the formula

I=Ik

where I is the intensity of illumination and k is the ambient reflection coefficient, or
reflectivity, of the surface. Notice that this coefficient is a property of the surface
material. In calculations, k is assigned a constant value in the range 0 to 1. Highly
reflective surfaces have values near 1. With high reflectivities light has nearly the same
effects as incident light. Surfaces that absorb most of the light have a reflectivity near 0.

The second element in determining diffuse reflection is the angle of illumination, or
angle of incidence. A surface perpendicular to the direction of incident light reflects more
light than a surface at an angle to the incident light. The calculation of diffuse reflection
can be made according to Lambert’s cosine law, which states that, for a point source, the
intensity of reflected light is proportional to the cosine of the angle of incidence. Figure
6–4 shows this effect.

Figure 6–4 Angle of Incidence in
Reflected Light

Diffuse reflection obeys Lambert’s cosine law. Lambertian reflection is associated with
matte, dull surfaces such as rubber, chalk, and cloth. The degree of diffusion depends on
the material and the illumination. Given the same texture and lighting conditions, diffuse
reflection is determined solely by the angle of incidence. In addition, the type of the light
source and atmospheric attenuation can influence the degree of diffusion. The spheres in
Figure 6–5 show various degrees of diffuse illumination.

Figure 6–5 Diffuse Reflection

The pc graphics handbook 108

Figure 6–6 Specular Reflection

Specular Reflection

Specular reflection is observed in shiny or polished surfaces. Illuminating a polished
sphere, such as a glass ball, with a bright white light, produces a highlight of the same
color as the incident light. Specular reflection is also influenced by the angle of
incidence. In a perfect reflector the angle of incidence, which is the inclination of the
light source to the surface normal, is the same as the angle of reflection. Figure 6–6
shows the angles in specular reflection.

In Figure 6–6 you can notice that in specular reflection the angle of incidence (f) is the
same as the angle of reflection. In a perfect reflector specular reflection is visible only
when the observer is located at the angle of reflection, in other words, when µ=0. Objects
that are not perfect reflectors exhibit some degree of specular reflection over a range of
viewing positions located about the angle of reflection. Polished surfaces have a narrow
reflection angle while dull surfaces have a wider one.

Phong’s Model

In 1975 Phong Bui-Toung described a model for non-perfect reflectors. The Phong
model, which is widely used in 3D graphics, assumes that specular reflectance is great in
the direction of the reflection angle, and decreases as the viewing angle increases. The
Phong model sets the intensity of reflection according to the function

I=cosn ∞

where n is called the material’s specular reflection exponent. For a perfect reflector, n is
infinite and the falloff is instant. In the Phong model normal values of n range from one
to several hundreds, depending on the surface material. The shaded areas in Figure 6–7
show Phong reflection for a shiny and a dull surface. The larger the value of n, the faster
the falloff and the smaller the angle at which specular reflection is visible. A polished
surface is associated with a large value for n, while a dull surface has a small n.

Lighting and shading 109

Figure 6–7 Values of n in Phong
Model of Specular Reflection

The Phong model enjoys considerable popularity because of its simplicity, and because it
provides sufficient realism for many applications. It also has some important drawbacks:

1. All light sources are assumed to be points.
2. Light sources and viewers are assumed to be at infinity.
3. Diffuse and specular reflections are modeled as local components.
4. The decrease of reflection is empirically determined around the reflection vector.
5. Regardless of the color of the surface all highlights are rendered white.

Resulting from these limitations, the following observations have been made regarding
the Phong model:

1. The Phong model does not render plastics and other colored solids very well. This
results from the white color or all highlights.

2. The Phong model does not generate shadows. This makes objects in a scene to appear
to float in midair.

3. Object concavities are often rendered incorrectly. This is results in specular highlights
in concave areas that should not have them.

The pc graphics handbook 110

6.2 Shading

Shading refers to the application of a reflection model over the surface of an object. Since
graphics objects are often represented by polygons, a brute force shading method can be
based on calculating the normal to each polygon surface, and then applying an
illumination model, such as Phong, to that point.

6.2.1 Flat Shading

The simplest shading algorithm, called flat shading, consists of using an illumination
model to determine the corresponding intensity value for the incident light, then shade the
entire polygon according to this value. Flat shading is also known as constant shading or
constant intensity shading. Its main advantage is that it is easy it implement. Flat shading
produces satisfactory results under the following conditions:

1. The subject is illuminated by ambient light and there are no surface textures or
shadows.

2. In the case of curved objects, when the surface changes gradually and the light source
and viewer are far from the surface.

3. In general, when there are large numbers of plane surfaces.

Figure 6–8 shows three cases of flat shading of a conical surface. The more polygons, the
better the rendering.

Figure 6–8 Flat Shading

6.2.2 Interpolative Shading

The major limitation of flat shading is that each polygon is rendered in a single color.
Very often the only way of improving the rendering is by increasing the number of
polygons, as shown in Figure 6–8. An alternative scheme is based on using more than
one shade in each polygon, which is accomplished by interpolating the values calculated
for the vertices to the polygon’s interior points. This type of manipulation, called
interpolative or incremental shading, under some circumstances is capable of producing a
more satisfactory shade rendering with a smaller number of polygons. Two incremental

Lighting and shading 111

shading methods, called Gouraud and Phong shading, are almost ubiquitous in 3D
rendering software.

Figure 6–9 Intensity Interpolation in
Gouraud Shading

Gouraud Shading

This shading algorithm was first described by H.Gouraud in 1971. It is also called
bilinear intensity interpolation. Gouraud shading is easier to understand in the context of
the scan-line algorithm used in hidden surface removal, discussed later in this chapter.
For now, assume that each pixel is examined according to its horizontal (scan-line)
placement, usually left to right. Figure 6–9 shows a triangular polygon with vertices at A,
B, and C.

The intensity value at each of these vertices is based on the reflection model. As scan-
line processing proceeds, the intensity of pixel p1 is determined by interpolating the
intensities at vertices A and B, according to the formula

In the example of Figure 6–9, the intensity of p1 is closer to the intensity of vertex A
than that of vertex B. The intensity of p2 is determined similarly, by interpolating

the intensities of vertices A and C. Once the boundary intensities for the scan line are
determined, any pixel along the scan line is calculated by interpolating, according to the
following formula

The pc graphics handbook 112

Figure 6–10 Highlight Rendering
Error in Gouraud Shading

The process is continued for each pixel in the polygon, and for each polygon in the scene.
Gouraud shading calculations are usually combined with a scan-line hidden surface
removal algorithm and performed at the same time.

Gouraud shading also has limitations. One of the most important ones is the loss of
highlights on surfaces and highlights that are displayed with unusual shapes. Figure 6–10
shows a polygon with an interior highlight. Since Gouraud shading is based on the
intensity of the pixels located at the polygon edges, this highlight is missed. In this case
pixel p3 is rendered by interpolating the values of p1 and p2, which produces a darker
color than the one required.

Another error associated with Gouraud shading is the appearance of bright or dark
streaks, called Mach bands.

Phong Shading

Phong shading is the most popular shading algorithm in use today. This method was
developed by Phong Bui-Toung, the author of the illumination model described
previously. Pong shading, also called normal-vector interpolation, is based on calculating
pixel intensities by means of the approximated normal vector at the point in the polygon.
Although more calculation expensive, Phong shading improves the rendering of bright
points and highlights that are misrendered in Gouraud shading.

6.2.3 Ray Tracing

Other shading models find occasional use in 3D graphics. The ones discussed so far
(Phong and Gouraud shading) as well as others of intermediate complexity are not based
on the physics of light, but on the way that light interacts with objects. Although the
notion of light intensity is used in these models, it is not formally defined. Physically-
based methods, although much more expensive computationally, can produce more

Lighting and shading 113

accurate rendering. One such method, called ray tracing, is based on backtracking the
light rays from the center of projection (viewing position) to the light source.

Ray tracing originated, not in computer graphics, but in geometric optics. In 1637,
René Descartes used ray tracing on a glass ball filled with water to explain rainbow
formation. Around 1980, computer graphics researchers began applying ray tracing
techniques in the production of very high-quality images, at a very high processing cost.
Ray tracing is a versatile and powerful rendering tool. It incorporates the processing done
in reflection, hidden surface removal, and shading operations. When execution time is not
a factor, ray tracing produces better results, better than any other rendering scheme. This
fact has led to the general judgment that ray tracing is currently the best implementation
of an illumination model.

In a simple reflection model only the interaction of a surface with the light source is
considered. For this reason, when a light ray reaches a surface through interaction with
another surface, when it is transmitted through a partially transparent object, or by a
combination of these factors, the rendering fails. Figure 6–11 shows how ray tracing
captures the reflected image of a cube on the surface of a polished sphere.

Figure 6–11 Rendering a Reflected
Image by Ray Tracing

The pc graphics handbook 114

6.3 Other Rendering Algorithms

So far we have discussed rendering algorithms that relate to perspective, culling and
hidden surface removal, illumination, and shading. In this section we look at other
rendering methods that complement or support the ones already mentioned. Note that we
have selected a few of the better known schemes; many others are discussed the
literature.

6.3.1 Scan-Line Operations

In computer graphics the term scan-line processing or scan-line algorithms refers to a
general processing method whereby each successive pixel is examined row by row, that
is, in scan-line order. You already encountered scan-line processing in Gouraud shading.
Scan-line methods are also used in filling the interior of polygons. In fact, most rendering
engines use some form of scan-line processing. Usually several algorithms are
incorporated into a scan-line routine. For example, as each pixel is examined in the scan-
line order, hidden-surface removal, shading, and shadow generation logic are applied to it
in order to determine how it is to be rendered. The result is a considerable saving
compared to the time it would take to apply each rendering operations independently.

Hidden Surface Removal

A scan-line algorithm called the image space method is often used for removing hidden
surfaces in a scene. This method is actually a variation of polygon filling algorithm. The
processing requires that the image database contain the coordinate points for each
polygon vertex. This is usually called the edge table. Figure 6–12 shows two overlapping
triangles whose vertices (A, B, C, D, E, and F) are stored in the edge table.

Lighting and shading 115

Figure 6–12 Scan-Line Algorithm for
Hidden Surface Removal

The scan-line algorithm for hidden surface removal uses a binary flag to indicate whether
a pixel is inside or outside the surface. Each surface on the scene is given one such flag.
As the left-most boundary of a surface is reached, the flag is turned on. At the surface’s
right-most boundary the flag is turned off. When a single surface flag is on, the surface is
rendered at that pixel. Scan line 1 in Figure 6–12 has some pixels in which the flag is on
for triangle ABC. Scan line 2 in Figure 6–12 also poses no problem, since a single
surface has its flag on at one time. In scan line 3 the flag for triangle ABC is turned on at
its left-most boundary. Before the surface’s right-most boundary is reached, the flag for
triangle DEF is turned on. When two flags are on for a given pixel, the processing
algorithm examines the database to determine the depth of each surface. The surface with
less depth is rendered, and all the other ones are removed. As the scan line processing
crosses the boundary defined by edge BC, the flag for triangle ABC is turned off. From
that point on, the flag for triangle DEF is the only one turned on; therefore, its surface is
rendered.

Shadow Projections

Ray tracing can be used to generate shadows; however, other rendering methods can also
be designed to handle of shadows. For example, it is possible to add shadow processing
to a scan-line routine. To illustrate this point assume an image database with a list of
polygons that may mutually shadow each other. This list, called the shadow pairs, is
constructed by projecting all polygons onto a sphere located at the light source. Polygon
pairs that can interact are the only ones included in the shadow pairs list. The shadow

The pc graphics handbook 116

pairs list saves considerable processing effort by eliminating those polygons that cannot
possibly cast a shadow on each other.

The actual processing is similar to the scan-line algorithm for hidden surface removal.
Figure 6–13 shows two polygons, labeled A and B. In this example we assume a single
light source placed so that polygon A casts a shadow on polygon B. The shadow pairs in
the database tell us that polygon B cannot shadow polygon A, but polygon A can shadow
polygon B. For this reason, in scan line 1 polygon A is rendered without further query. In
scan line 2 polygon B is shadowed by polygon A. Therefore, the pixels are modified
appropriately. In scan line 3 polygon B is rendered.

Figure 6–13 Scan-Line Algorithm for
Shadow Projection

Figure 6–14 shows two renderings of the same scene. The one on the left-side is done
without shadow projection. The one on the right is rendered using a shadow projection
algorithm.

6.3.2 Z-Buffer Algorithm

Developed by Catmull in 1975, the z-buffer or depth buffer algorithm for eliminating
hidden surfaces has become a staple in 3D computer graphics. The reason for its
popularity is its simplicity of implementation.

Figure 6–14 Shadow Rendering of
Multiple Objects

Lighting and shading 117

The algorithm’s name relates to the fact that the processing routine stores in a buffer the
z-coordinates for the (x, y) points of all objects in the scene. This is the z-buffer. A
second buffer, sometimes called the refresh buffer, is used to hold the intensities for each
pixel. During processing, all positions in the z-buffer are first initialized to the maximum
depth value, and all positions in the refresh buffer to the background attribute. At each
pixel position, each polygon surface in the scene is examined for its z-coordinate value. If
the z coordinate for the surface is less than the value stored in the z-buffer, then the value
in the z-buffer is replaced with the one corresponding to the surface being examined. At
this point the refresh buffer is also updated with the intensity value for that pixel. If the z
value for the surface is greater than the value in the z-buffer, then the point is not visible
and can be ignored.

Figure 6–15 shows the z-buffer algorithm in action. Three surfaces (a square, a circle,
and a triangle) are located at various depths. When the z-buffer is initialized the pixel
shown in the illustration is assigned the depth of the background surface, S0. The surface
for the circle is examined next. Because S2 is at less depth than S0, the value S2 replaces
the value S0 in the z-buffer. Now S2 is the current value in the z-buffer. Next, the value
for the triangular surface S1 is examined. Since S1 has greater depth than S2 it is ignored.
However, when S3 is examined it replaces S2 in the buffer, since it is at less depth.

Figure 6–15 Z-Buffer Algorithm
Processing

6.3.3 Textures

The surface composition of an object influences how it reflects light. For this reason, the
reflectivity of a surface must be taken into account when calculating illumination effects.
Textures were completely ignored in early 3D packages. At that time all surfaces were
assumed to have identical reflection properties. The result were scenes that appeared
unnatural because of their uniformity. Since then, textures have been steadily gaining
popularity.

The simplest and most common implementation of textures is with bitmaps. In this
case the texture refers only to the color pattern of the surface, and not to its degree of
smoothness. Texture bitmaps are easy to apply to objects and are rendered as a surface

The pc graphics handbook 118

attribute. In addition, texture blending and light mapping with textures provide additional
enhancements to the rendering. The specifics of texture rendering are discussed in the
context of 3D graphics programming.

Lighting and shading 119

Part II
DOS Graphics

Chapter 7
VGA Fundamentals

Topics:

• The VGA standard
• VGA components
• Alphanumeric modes
• Graphics modes
• VGA programmable components

This chapter describes the VGA video standard and its programmable elements: the CRT
Controller, the Graphics Controller, the Sequencer, the Attribute Controller, and the
Digital-to-Analog converter (DAC). It also describes the VGA memory structure.

7.1 The VGA Standard

In 1987 IBM introduced two video systems to be furnished as standard components for
their PS/2 line. These video systems were named the MCGA (Multi-color Graphics
Array) and VGA (Video Graphics Array). MCGA, an under-featured version of VGA,
was furnished with the lower-end PS/2 machines Models 25 and 30. VGA was the
standard video system for all other PS/2 microcomputers. Subsequently IBM extended
VGA to its low-end models of the PS/2 line. Later on (August 1990) IBM announced a
line of inexpensive home computers (designated as the PS/1 line) equipped with VGA
graphics. Since the MCGA standard was short lived and not very popular it will not be
specifically considered in this book. However, because MCGA is a sub-version of VGA,
its programming is identical to VGA in those video modes that are common to both
systems.

The VGA standard introduced a change from digital to analog video display driver
technology. The reason for this change is that analog monitors can produce a much larger
color selection than digital ones. This switch in display technology explains why the
monitors of the PC line are incompatible with the VGA standard and vice versa. VGA
graphics also include a digital-to-analog converter, usually called the DAC, and 256K of
video memory. The DAC outputs the red, green, and blue signals to the analog display.
Video memory is divided into four 64K video maps, called the bit planes. VGA supports
all the display modes in MDA, CGA, and EGA (see Table 1–1). In addition, VGA
implements several new alphanumeric and graphics modes, the most notable of which are
graphics mode number 18, with 640-by-480 pixel resolution in 16 colors, and graphics
mode number 19, with 320-by-200 pixel resolution in 256 colors. The effective resolution
of the VGA text modes is of 720-by-400 pixels. These text modes can execute in 16

colors or in monochrome. Three different fonts can be selected in the alphanumeric
modes.

Access to the VGA registers and to video memory is through the system
microprocessor. The microprocessor read and write operations to the video buffer are
automatically synchronized by the VGA with the cathode-ray tube (CRT) controller so as
to eliminate interference. This explains why VGA programs, unlike those written for the
CGA, can access video memory at any time without fear of introducing screen snow or
other unsightly effects.

7.1.1 Advantages and Limitations

The resolution of a graphics system is usually defined as the total number of separately
addressable elements per unit area. In video display systems the individually addressable
elements are the screen pixels; the resolution is measured in pixels per inch. For example,
the maximum resolution of a VGA system is approximately 80 pixels per inch, both
vertically and horizontally. In VGA this density is determined by a screen structure of
640 pixels per each 8-inch screen row and 480 vertical pixels per each 6-inch screen
column. But not all video systems output a symmetrical pixel density. For example, the
maximum resolution of the EGA standard is the same as that of the VGA on the
horizontal axis (80 pixels per inch) but only of 58 pixels per inch on the vertical axis.

The asymmetrical pixel grid of the EGA and of other less refined video standards
introduces programming complications. For example, in a symmetrical VGA screen a
square figure can be drawn using lines of the same pixel length, but these lines would
produce a rectangle in an asymmetrical system. By the same token, the pixel pattern of a
circle in a symmetrical system will appear as an ellipse in an asymmetrical one, as shown
in Figure 7–1.

The major limitations of the VGA system are resolution, color range, and
performance. VGA density of 80 pixels per inch is a substantial improvement in relation
to its predecessors, the CGA and the EGA, but still not very high when compared to the
600 dots per inch of a typical laser printer, or the 1200 and 2400 dots per inch of a high-
end printer or imagesetter. The low resolution is one reason why VGA screen images are
often not lifelike; bitmaps appear grainy and we can often detect that geometrical figures
consist of straight-line segments. In regards to color range VGA can display up to 256
simultaneous colors; however, this color range is not available in the mode with the best
resolution. In other words, the VGA programmer must chose between an 80 pixels per
inch resolution in 16 colors (mode number 18) or 40 pixels per inch resolution in 256
colors (mode number 19).

Vga fundamentals 123

Figure 7–1 Symmetrical and
Asymmetrical Pixel Density

But perhaps the greatest limitation of the VGA standard is its performance. The video
display update operations in VGA detract from general system efficiency, since it is the
microprocessor that must execute all video read and write operations. In the second place,
the video functions execute slowly when compared to dedicated graphics work stations.
This slowness is particularly noticeable in the graphics modes, in which a full screen
redraw can take several seconds. Most animated programs, which must update portions of
the screen at a rapid rate, execute in VGA with a jolting effect that is unnatural and
visually disturbing.

7.1.2 VGA Modes

The original video systems used in IBM microcomputers, such as CGA, MDA, and EGA,
had monitor-specific modes. For example, the CGA turns the color burst off in modes 0,
2, and 4 and on in modes 1, 3, and 5. Mode number 7 is available in the Monochrome
Display Adapter (MDA) and in an Enhanced Graphics Adapter (EGA) equipped with a
monochrome display, but not in the CGA or EGA systems equipped with color monitors.
In the VGA standard, on the other hand, the video modes are independent of the monitor.
For example, a VGA equipped with any one of the standard direct drive color monitors
can execute in monochrome mode number 7. Table 7–1, on the following page, lists the
properties of the VGA video modes.

In Table 7–1 we have used decimal numbers for the video modes. Our rationale is that
video modes are a conventional ordering scheme used in organizing common hardware
and software characteristics of a video system, therefore we can see no reason for using
hexadecimal notation in numbering these modes. Consequently, throughout the book, we
have used decimal numbers for video modes, offset values, and other forms of sequential
orders that do not require binary or hexadecimal notation.

The pc graphics handbook 124

Table 7–1
VGA Video Modes

MODE COLORS TYPE TEXT
COLS/ROWS

TEXT
PIXEL
BOX

SCREEN
PAGES

BUFFER
ADDRESS

SCREEN
PIXELS

0, 1 16 Alpha 40 by 25 8×8 8 B8000H 320 by 200
 8×14* 320 by 350
 9×16+ 360 by 400

2, 3 16 Alpha 80 by 25 8×8 8 B8000H 320 by 200
 8×14* 320 by 350
 9×16 360 by 400

4, 5 4 GRA 40 by 25 8×8 1 A0000H 320 by 200
6 2 GRA 80 by 25 8×8 1 A0000H 640 by 200
7 Alpha 80 by 28 9×14 8 B0000H 720 by 350
 9×16 720 by 400

13 16 GRA 40 by 25 8×8 8 A0000H 320 by 200
14 16 GRA 80 by 25 8×8 4 A0000H 640 by 200
15 GRA 80 by 25 8×14 2 A0000H 640 by 350
16 16 GRA 80 by 25 8×14 2 A0000H 640 by 350
17 2 GRA 80 by 30 8×16 1 A0000H 640 by 480
18 16 GRA 80 by 30 8×16 1 A0000H 640 by 480
19 256 GRA 40 by 25 8×8 1 A0000H 320 by 200

Legend:
Alpha=alphanumeric modes (text)
GRA=graphics modes
*=EGA enhanced modes
+=VGA enhanced modes

Notice in Table 7–1 that the VGA buffer can start in any one of three possible addresses:
B0000H, B8000H, and A0000H. Address B000H is used only when mode 7 is enabled,
in this case VGA is emulating the Monochrome Display Adapter. In enhanced mode
number 7 the VGA displays its highest horizontal resolution (720 pixels) and uses a 9×16
dots text font. However, in this mode the VGA is capable of text display only. Buffer
address A000H is active while VGA is in a graphics mode. Also note that the video
modes number 17 and 18, with 480 pixel rows, were introduced with the VGA and
MCGA standards. Therefore they are not available in CGA and EGA systems. Modes 17
and 18 offer a symmetrical pixel density of 640 by 480 screen dots (see Figure 7–1).
Mode number 19 has 256 simultaneous colors; the most extensive one in the VGA
standard, however, its linear resolution, is half of the one in mode number 18.

Vga fundamentals 125

7.2 VGA Components

The VGA system is divided into three identifiable components: the VGA chip, video
memory, and a Digital-to-Analog Converter (DAC). Figure 7–2 shows the
interconnections between the elements of the VGA system.

Figure 7–2 VGA System Components

7.2.1 Video Memory

All VGA systems contain the 256K of video memory that is part of the hardware. This
memory is logically arranged in four 64K blocks that form the video maps (labeled blue,
green, red, and intensity in Figure 7–2). The four maps are sometimes referred to as bit
planes 0 to 3.

In EGA systems the display buffer consists of a 64K RAM chip installed in the card
itself. Up to three more 64K blocks of video memory can be optionally added on the
piggyback memory expansion card. The maximum memory supported by EGA is 256K
divided into four 64K blocks.

The pc graphics handbook 126

Alphanumeric Modes

In the alphanumeric modes 0, 1, 2, 3, and 7 (see Table 7–1) the VGA video buffer is
structured to hold character codes and attribute bytes. The organization of the video
buffer in the alphanumeric modes was discussed in Part I of this book. The default
functions of the bits in the attribute byte can be seen in Figures 1.11 and 1.12. However,
the VGA standard allows redefining two of the attribute bits in the color alphanumeric
modes: bit 7 can be redefined to control the background intensity and bit 3 can be
redefined to perform a character-set select operation. Figure 7–3 shows the VGA attribute
byte, including the two redefinable bits.

Figure 7–3 Attribute Byte Bitmap in
VGA Systems

The programmer can toggle the functions assigned to bits 3 and 7 of the attribute byte by
means of BIOS service calls or by programming the VGA registers. These operations are
performed by the VGA graphics library on that is part of the book’s software.

Graphics Modes

One of the problems confronted by the designers of the VGA system was the limited
memory space of an IBM microcomputers under MS DOS. Recall that in VGA mode
number 18 (see Table 7–1) the video screen is composed of 480 rows of 640 pixels per
row, for a total of 307,200 screen pixels. If 8 pixels are encoded per memory byte, each
color map would take up approximately 38K, and the four maps required to encode 16
colors available in this mode would need approximately 154K. The VGA designers were
able to reduce this memory space by using a latching mechanism that maps all four color
maps to the same memory area. Figure 7–4 is a diagram of the video memory structure in
VGA mode number 18.

Figure 7–4 shows how the color of a single screen pixel is stored in four memory
maps, located at the same physical address. Note that the color codes for the first eight

Vga fundamentals 127

screen pixels are stored in the four maps labeled Intensity, Red, Green, and Blue. In VGA
mode number 18 all four maps are located at address A0000H. The first screen pixel has
the intensity bit and the green bit set, therefore it appears light green. For the same
reason, the second pixel, mapped to the subsequent bits in the video buffer, will be
displayed as light red, since it has the red and the intensity bits set (see Figure 7–4).

VGA memory mapping changes in the different alphanumeric and graphics modes. In
Figure 7–4 we see that in mode number 18 the color of each screen pixel is determined
by the bit settings in four memory maps. However, in mode number 19, in which VGA
can display 256 colors, each screen pixel is determined by one video buffer byte. Figure
7–5 shows the memory mapping in VGA mode number 19. In reality VGA uses all four
bit planes to store video data in mode number 19, but, to the programmer, the buffer
appears as a linear space starting at address A000H. The color value assigned to each
pixel in the 256-color modes is explained in Chapter 8.

Figure 7–4 Video Memory Mapping in
VGA Mode 18

Many VGA graphics modes were created to insure compatibility with previous video
systems. Specifically, VGA graphics modes numbers 4, 5, and 6 are compatible with
modes in the CGA, EGA, and PCjr; modes numbers 13, 14, 15, and 16 are compatible
with EGA; and graphics mode number 17 (a two-color version of mode number 18) was
created for compatibility with the MCGA standard. This leaves two proprietary VGA
modes: mode number 18 with 640-by-480 pixels in 16 colors, and mode number 19, with

The pc graphics handbook 128

320-by-200 pixels in 256 colors. It is in these two most powerful VGA modes that we
will concentrate our attention.

Figure 7–5 Video Memory Mapping in
VGA Mode 19

7.3 VGA Registers

We have seen that the VGA system includes a chip containing several registers, a
memory space dedicated to video functions, and a digital-to-analog converter (see Figure
7–2). The VGA registers are mapped to the system’s address space and accessed by
means of the central processor. The VGA programmable registers (excluding the DAC)
belong to five groups (also shown in Table 7–2):

1. The General registers. This group is sometimes called the external registers due to the
fact that, on the EGA, they were located outside the VLSI chip. The general registers
provide miscellaneous and control functions.

2. The CRT Controller registers. This group of registers controls the timing and
synchronization of the video signal. Also the cursor size and position.

3. The Sequencer registers. This group of registers controls data flow into the Attribute
Controller, generates the timing pulses for the dynamic RAMs, and arbitrates memory
accesses between the CPU and the video system. The Map Mask registers in the
Sequencer allow the protection of entire memory maps.

4. The Graphics Controller registers. This group of registers provides an interface
between the system microprocessor, the Attribute Controller, and video memory,
while VGA is in a graphics mode.

Vga fundamentals 129

Table 7–2
VGA Register Groups

REGISTER READ/WRITE MDA EMULATING CGA EITHER
GENERAL REGISTERS
1. Miscellaneous output Write 03C2H
 Read 03CCH
2. Input status 0 Read 03C2H
3. Input status 1 Read 03BAH 03DAH
4. Feature control Write 03BAH 03DAH
 Read 03CAH
5. Video Subsystem enable R/W 03C3H
6. DAC state Read 03C7H
CRT CONTROLLER REGISTERS
1. Index R/W 03B4H 03D4H
2. Other CRT Controller R/W 03B5H 03D5H
SEQUENCER REGISTERS
1. Address R/W 03C4H
2. Other R/W 03C5H
GRAPHICS CONTROLLER REGISTERS
1. Address R/W 03CEH
2. Other R/W 03CFH
ATTRIBUTE CONTROLLER REGISTERS
1. Address R/W 03C0H
2. Other Write 03C0H
 Read 03C1H

5. The Attribute Controller registers. This group of registers determines the
characteristics of the character display in the alphanumeric modes and the pixel color
in the graphics modes.

7.3.1 The General Registers

The General registers, called the External registers in EGA, are used primarily in
initialization of the video system and in mode setting. Most applications let the system
software handle the initialization of the video functions controlled by the General
registers. For example, the easiest and most reliable way for setting a video mode is
BIOS service number 0, of interrupt 10H. Figure 7–6 and Figure 7–7 show some
programmable elements in the VGA General Register group.

The pc graphics handbook 130

Figure 7–6 VGA/EGA Miscellaneous
Output Register

Note that bit number 7 of Input Status Register 0, at port 3C2H (see Figure 7–7 on the
following page) is used in determining the start of the vertical retrace cycle of the CRT
controller. This operation is sometimes necessary to avoid interference when updating the
video buffer. The procedure named TIME_VRC, in the VGA module of the GRAPHSOL
library, described in Chapter 3, performs this timing operation.

Vga fundamentals 131

Figure 7–7 VGA Input Status Register

7.3.2 The CRT Controller

The VGA CRT Controller register group is the equivalent of the Motorola 6845 CRT
Controller chip of the PC line. When VGA is emulating the MDA, the port address of the
CRT Controller is 3B4H; when it is emulating the CGA then the port address is 3D4H.
These ports are the same as those used by the MDA and the CGA cards. Table 7–3 lists
the registers in the CRT Controller group.

Most registers in the CRT Controller are modified only during mode changes. Since
this operation is frequently performed by means of a BIOS service, most programs will
not access the CRT Controller registers directly. The exception are the CRT Controller
registers related to cursor size and position, which are occasionally programmed directly.
The Cursor Size register is shown in Figure 7–8. and the Cursor Location register in
Figure 7–9.

The pc graphics handbook 132

Table 7–3
VGA CRT Controller Register

PORT OFFSET DESCRIPTION
03×4H Address register
03×5H 0 Total horizontal characters minus 2 (EGA)

Total horizontal characters minus 5 (VGA)
 1 Horizontal display end characters minus 1
 2 Start horizontal blanking
 3 End horizontal blanking
 4 Start horizontal retrace pulse
 5 End horizontal retrace pulse
 6 Total vertical scan lines
 7 CRTC overflow
 8* Preset row scan
 9 Maximum scan line
 10* Scan line for cursor start
 11* Scan line for cursor end
 12* Video buffer start address, high byte
 13* Video buffer start address, low byte
 14* Cursor location, high byte
 15* Cursor location, low byte
 16 Vertical retrace start
 17 Vertical retrace end
 18 Last scan line of vertical display
 19 Additional word offset to next logical line
 20 Scan line for underline character
 21 Scan line to start vertical blanking
 22 Scan line to end vertical blanking
 23 CRTC mode control
 24 Line compare register

Notes: Registers signaled with (*) are described separately
3×4H/3×5H=3B4H/3B5H when emulating the MDA
3×4H/3×5H=3D4H/3D5H when emulating the CGA

Vga fundamentals 133

Figure 7–8 Cursor Size Registers of
the VGA CRT Controller

Figure 7–9 Cursor Location Registers
of the VGA CRT Controller

Figure 7–10 graphically shows the cursor scan lines and the default setting in a 8×14
pixel text mode (see Table 7–1).

The pc graphics handbook 134

Figure 7–10 Cursor Scan Lines in
VGA Systems

A program can change the cursor size in alphanumeric modes using service number 1 of
BIOS interrupt 10H or by programming the CRT Controller cursor register directly. The
use of BIOS service number 10, interrupt 10H, is discussed later in this chapter. The
following code fragment shows a sequence of instructions for programming the CRT
Controller cursor size registers. The action performed by the code is to change the VGA
default cursor in a 8-by-14 text mode from scan lines 12 and 13 to scan lines 1 to 7.

 MOV DX,3B4H ; VGA CRTC address
register
 ; in the MDA emulation
modes
 MOV AL,10 ; Cursor start register
number
 OUT DX,AL ; Select this register
 MOV DX,3B5H ; CRTC registers
 MOV AL,1 ; Start scan line for
new cursor
 OUT DX,AL ; Set in 6845 register
 MOV DX,3B4H ; Address register
again
 MOV AL,11 ; Cursor end register
number
 OUT DX,AL ; Select this register
 MOV DX,3B5H ; CRTC registers

Vga fundamentals 135

 MOV AL,7 ; End scan line for new
cursor
 OUT DX,AL ; Set in 6845 register

The cursor location on an alphanumeric mode can also be set using a BIOS service or
programming the CRT Controller registers directly. BIOS service number 0, interrupt
10H, allows setting the cursor to any desired column and row address. Alternatively the
cursor can be repositioned by setting the contents of the cursor address registers on the
VGA CRT Controller. The cursor address registers are located at offset 14 and 15,
respectively. The following code fragment will position the cursor at the start of the third
screen row. The code assumes an 80×25 alphanumeric mode in the Monochrome Display
Adapter. The offset of the second row is calculated as 80×2=160 bytes from the start of
the adapter RAM. Consequently, the Cursor Address High register must be zeroed and
the Cursor Address Low register set to 160.

 MOV DX,3B4H ; VGA CRTC address
register
 ; in the MDA emulation
mode
 MOV AL,14 ; Cursor Address High
register
 OUT DX,AL ; Select this register
 MOV DX,3B5H ; CRTC registers
 MOV AL,0 ; Zero high bit of
address
 OUT DX,AL ; Set in CRTC register
 MOV DX,3B4H ; Address register
again
 MOV AL,15 ; Cursor Address Low
register
 OUT DX,AL ; Select this register
 MOV DX,3B5H ; CRTC programmable
registers
 MOV AL,160 ; 160 bytes from
adapter start
 OUT DX,AL ; Set in 6845 register
; Cursor now set at the start of the third screen row

Another group of registers within the CRT Controller that are occasionally programmed
directly are those that determine the start address of the screen window in the video
buffer. This manipulation is sometimes used in scrolling and panning text and graphics
screens. In VGA systems the CRT Controller Start Address High and Start Address Low
registers (offset 0CH and 0DH) locate the screen window within a byte offset, while the
Preset Row Scan register (offset 08H) locates the window at the closest pixel row.
Therefore the Preset Row Scan register is used to determine the vertical pixel offset of
the screen window. The horizontal pixel offset of the screen window is programmed by
changing the value stored in the Horizontal Pixel Pan register of the Attribute Controller,
described later in this chapter. Figure 7–11, on the following page, shows the Start

The pc graphics handbook 136

Address registers of the CRT Controller. Figure 7–12, on the following page, is a bitmap
of the Preset Row Scan register.

Figure 7–11 Video Start Address
Register of the VGA CRT Controller

Figure 7–12 Preset Row Scan Register
of the VGA CRT Controller

7.3.3 The Sequencer

The VGA Sequencer register group controls memory fetch operations and provides
timing signals for the dynamic RAMs. This allows the microprocessor to access video
memory in cycles inserted between the display memory cycles. Table 7–4 shows the
registers in the VGA Sequencer.

Table 7–4
The VGA Sequencer Registers

PORT OFFSET DESCRIPTION
03C4H Address register
03C5H 0 Synchronous or Asynchronous reset

 1 Clocking Mode
 2* Map Mask
 3* Character Map Select
 4* Memory Mode

Note: Registers signaled with an (*) are described separately

Vga fundamentals 137

The Map Mask register in the Sequencer group allows the protection of any specific
memory map by masking it from the microprocessor and from the Character Map select
register. Figure 7–13 is a bitmap of the Map Mask register.

Figure 7–13 Map Mask Register of the
VGA Sequencer

If VGA is in a color graphic mode, the Map Mask register can be used to select the color
at which one or more pixels are displayed. The color is encoded in the IRGB format, as
shown in Figure 7–13. To program the Map Mask register we must first load the value 2
into the address register of the Sequencer, at port 3C4H. This value corresponds with the
offset of the Map Mask register (see Table 7–4). After the pixel or pixels have been set,
the Map Mask register should be restored to its default value (0FH). The following code
fragment shows the usual program operations.

; Setting 8 bright-red pixels in VGA mode number 18
; The code assumes that video mode number 18 is
selected,
; that ES is set to the video segment base, and that BX
points
; to the offset of the first pixel to be set
;***********************|
; select register |
;***********************|
 MOV DX,3C4H ; Address register of
Sequencer
 MOV AL,2 ; Offset of the Map
Mask
 OUT DX,AL ; Map Mask selected
 MOV DX,3C5H ; Data to Map Mask
 MOV AL,00001100B ; Intensity and red
bits set
 ; in IRGB encoding
 OUT DX,AL ; Map Mask = 0000 IR00
;***********************|
; set pixels |
;***********************|
; Setting the pixels consists of writing a 1 bit in the
; corresponding buffer address.
 MOV AL,ES:[BX] ; Dummy read operation

The pc graphics handbook 138

 MOV AL,11111111B ; Set all bits
 MOV ES:[BX],AL ; Write to video buffer
;***********************|
; restore Map Mask |
;***********************|
; Restore the Map Mask to the default state
 MOV DX,3C4H ; Address register of
Sequencer
 MOV AL,02H ; Offset of the Map
Mask
 OUT DX,AL ; Map Mask selected
 MOV DX,3C5H ; Data to Map Mask
 MOV AL,00001111B ; Default IRGB code for
Map Mask
 OUT DX,AL ; Map mask = 0000 IRGB

Figure 7–14 Character Map Select
Register of the VGA Sequencer

The use of the Character Map Select register of the Sequencer is related to re-
programming of bit 3 of the attribute byte (see Figure 7–3) so that it will serve to select
one of two character sets. Normally the character maps, named A and B, have the same
value and bit 3 of the attribute byte is used to control the bright or normal display of the
character foreground. In this case only one set of 256 characters is available. However,
when the Character Map Select register is programmed so that character maps A and B
have different values, then bit 3 of the attribute byte is used to toggle between two sets of
256 characters each. The programming operations necessary for using multiple VGA
character sets is described in Chapter 3. Figure 7–14, above, is a bitmap of the Character
Map Select register.

Vga fundamentals 139

Figure 7–15 Memory Mode Register
of the VGA Sequencer

The Memory Mode register of the sequencer is related to the display modes. Most
programs will leave the setting of this register to the BIOS mode select services. Figure
7–15, on the preceeding page, shows a bitmap of the Memory Mode register.

7.3.4 The Graphics Controller

The registers in the Graphics Controller group serve to interface video memory with the
Attribute Controller and with the system microprocessor. The Graphic Controller is
bypassed in the alphanumeric modes. Table 7–5 lists the registers in the VGA Graphics
Controller group. All the registers in the Graphics Controller are of interest to the
graphics applications programmer.

Table 7–5
The VGA Graphics Controller Registers

PORT OFFSET DESCRIPTION
03CEH Address register
03CFH 0 Set/Reset

 1 Enable Set/Reset
 2 Color compare for read mode 1 operation
 3 Data rotate
 4 Read operation map select
 5 Select graphics mode
 6 Miscellaneous operations
 7 Read mode 1 color don’t care
 8 Bit mask

The pc graphics handbook 140

The Set/Reset register of the Graphics Controller may be used to permanently set or clear
a specific bit plane. This operation can be useful if the programmer desires to write a
specific color to the entire screen or to disable a color map. The Set/Reset register, shown
in Figure 7–16, affects only write mode 0 operations. The use of the Set/Reset register
requires the use of the Enable Set/Reset register. Enable Set/Reset determines which of
the maps is accessed by the Set/Reset register. This mechanism provides a double-level
control over the four maps. The Enable Set/Reset register is shown in Figure 7–17, on the
following page.

Figure 7–16 Write Mode 0 Set/Reset
Register of the VGA Graphics
Controller

Figure 7–17 Enable Set/Reset Register
of the VGA Graphics Controller

The Color Compare register of the Graphics Controller group, shown in Figure 7–18, is
used during read mode 1 operations to test for the presence of memory bits that match
one or more color maps. For example, if a program sets bit 0 (blue) and bit 3 (intensity)
of the Color Compare register, a subsequent memory read operation will show a 1-value
for those pixels whose intensity and blue maps are set, while all other combinations will
be reported with a zero value. One or more bit planes can be excluded from the compare
by clearing (value equal zero) the corresponding bit in the Color Don’t Care register. For
example, if the intensity bit is zero in the Color Don’t Care register, a color compare

Vga fundamentals 141

operation for the blue bitmap will be positive for all pixels in blue or bright blue color.
The Color Don’t Care register is shown in Figure 7–19.

Figure 7–18 Color Compare Register
of the VGA Graphics Controller

Figure 7–19 Color Don’t Care
Register of the VGA Graphics
Controller

Figure 7–20 Data Rotate Register of
the VGA Graphics Controller

The Data Rotate register of the Graphics Controller determines how data is combined
with data latched in the system microprocessor registers. The possible logical operations

The pc graphics handbook 142

are AND, OR, and XOR. If bits 3 and 4 are reset, data is unmodified. A second function
of this register is to right-rotate data from 0 to 7 places. This function is controlled by bits
0 to 2. The Data Rotate register is shown in Figure 7–20, above.

We have seen that VGA video memory in the graphics modes is based on encoding
the color of a single pixel into several memory maps. The Read Map Select register, in
Figure 7–21, is used to determine which map is read by the system microprocessor.

Figure 7–21 Read Map Select Register
of the VGA Graphics Controller

The following code fragment shows the use of the Read Operation Map Select register.

; Code to read the contents of the 4 color maps in VGA
mode 18
; Code assumes that read mode 0 has been previously set
; On entry:
; ES = A000H
; BX = byte offset into video map
; On exit:
; CL = byte stored in intensity map
; CH = byte stored in red map
; DL = byte stored in green map
; DH = byte stored in blue map
;
; Set counter and map selector
 MOV CX,4 ; Counter for 4 maps to
read
 MOV DI,0 ; Map selector code
READ_IRGB:
; Select map from which to read
 MOV DX, 3CEH ; Graphic Controller
Address
 ; register
 MOV AL,4 ; Read Operation Map Select
 OUT DX,AL ; register
;
 INC DX ; Graphic controller at
3CFH

Vga fundamentals 143

 MOV AX,DI ; AL = map selector code
(in DI)
 OUT DX,AL ; IRGB color map selected
; Read 8 bits from selected map
 MOV AL,ES:[BX] ; Get byte from bit plane
 PUSH AX ; Store it in the stack
 INC DI ; Bump selector to next map
 LOOP READ_IRGB ; Execute loop 4 times
; 4 maps are stored in stack
; Retrieve maps into exit registers
 POP AX ; B map byte in AL
 MOV DH,AL ; Move B map byte to DH
 POP AX ; G map byte in AL
 MOV DL,AL ; Move G map byte to DL
 POP AX R ; map byte in AL
 MOV CH,AL ; Move R map byte to CH
 POP AX ; I map byte in AL
 MOV CL,AL ; Move I map byte to CL
 .
 .
 .

VGA systems allow several ways for performing memory read and write operations,
usually known as the read and write modes. The Select Graphics Mode register of the
Graphics Controller group allows the programmer to select which of two read and four
write modes is presently active. The Select Graphics Mode register is shown in Figure 7–
22, on the following page.

The four VGA write modes can be described as follows:

• Write mode 0 is the default write mode. In this write mode, the Map Mask register of
the Sequencer group, the Bit Mask register of the Graphics Controller group, and the
CPU are used to set the screen pixel to a desired color.

• In write mode 1 the contents of the latch registers are first loaded by performing a read
operation, then copied directly onto the color maps by performing a write operation.
This mode is often used in moving areas of memory.

• Write mode 2, a simplified version of write mode 0, also allows setting an individual
pixel to any desired color. However, in write mode 2 the color code is contained in the
CPU byte.

The pc graphics handbook 144

Figure 7–22 Select Graphics Mode
Register of the VGA Graphics
Controller

• In write mode 3 the byte in the CPU is ANDed with the contents of the Bit Mask
register of the Graphic Controller.

The write mode is selected by setting bits 0 and 1 of the Graphic Controller’s Graphic
Mode register. It is a good programming practice to preserve the remaining bits in this
register when modifying bits 0 and 1. This is performed by reading the Graphic Mode
register, altering the write mode bits, and then re-setting the register without changing the
remaining bits. The following code fragment sets a write mode in a VGA system. The
remaining bits in the Select Graphics Mode register are preserved.

; Set the Graphics Controller’s Select Graphic Mode
register
; to the write mode in the AH register
 MOV DX,3CEH ; Graphic Controller
Address
 ; register
 MOV AL,5 ; Offset of the Mode
register
 OUT DX,AL ; Select this
register
 INC DX ; Point to Data
register
 IN AL,DX ; Read register
contents
 AND AL,11111100B ; Clear bits 0 and 1

Vga fundamentals 145

 OR AL,AH ; Set mode in AL low
bits
 MOV DX,3CEH ; Address register
 MOV AL,5 ; Offset of the Mode
Register
 OUT DX,AL ; Select again
 INC DX ; Point to Data
register
 OUT DX,AL ; Output to Mode
Register
; Note: the Select Mode register is read-only in EGA
systems
; therefore this code will not work correctly

Note that bit 6 of the Graphics Mode Register must be set for 256-color modes and
cleared for the remaining ones. The SET_WRITE_256 procedure in the VGA module of
the VGA graphics library (see Chapter 3) sets write mode 0 and the 256-color bit so that
VGA mode number 19, in 256 colors, operates correctly.

Once a write mode is selected the program can access video memory to set the desired
screen pixels, as in the following code fragment:

; Write mode 2 pixel setting routine
; On entry:
; ES = A000H
; BX = byte offset into the video buffer
; AL = pixel color in IRGB format
; AH = bit pattern to set (mask)
;
; Note: this procedure does not reset the default read
or write
; modes or the contents of the Bit Mask register.
; The code assumes that write mode 2 has been set
previously
 PUSH AX ; Color byte
 PUSH AX ; Twice
;**********************|
; set bit mask |
;**********************|
; Set Bit Mask register according to value in AH
 MOV DX,3CEH ; Graphic controller
address
 MOV AL,8 ; Offset=8
 OUT DX,AL ; Select Bit Mask register
 INC DX ; To 3CFH
 POP AX ; Color code once from
stack
 MOV AL,AH ; Bit pattern
 OUT DX,AL ; Load bit mask
;**********************|
; write color |
;**********************|

The pc graphics handbook 146

 MOV AL,ES:[BX] ; Dummy read to load latch
 ; registers
 POP AX ; Restore color code
 MOV ES:[BX],AL ; Write the pixel with the
 ; color code in AL
 .
 .
 .

The VGA also provides two read modes. In read mode 0, which is the default read mode,
the CPU is loaded with the contents of one of the color maps. In read mode 1, the
contents of the maps are compared with a predetermined value before being loaded into
the CPU. The active read mode depends on the setting of bit 3 of the Graphic Mode
Select register in the Graphics Controller (see Figure 7–22).

The Miscellaneous register of the Graphics Controller, in Figure 7–23, is used in
conjunction with the Select Graphics Modes register to enable specific graphics function.
Bits 2 and 3 of the Miscellaneous register control the mapping of the video buffer in the
system’s memory space. The normal mapping of each mode can be seen in the buffer
address column of Table 7–1. The manipulation of the Miscellaneous register is usually
left to the BIOS mode change service.

Figure 7–23 Miscellaneous Register of
the VGA Graphics Controller

All read and write operations performed by the VGA take place at a byte level. However,
in certain graphics modes, such as mode number 18, video data is stored at a bit level in
four color maps. In this case, the code must mask out the undesired color maps in order to
determine the state of an individual screen pixel or to set a pixel to a certain color. In
80x86 Assembly Language the TEST instruction provides a convenient way for
determining an individual screen pixel following a read operation. The Bit Mask register
of the Graphics Controller, in Figure 7–24, permits setting individual pixels while in
write modes 0 and 2.

Vga fundamentals 147

Figure 7–24 Bit Mask Register of the
VGA Graphics Controller

In the execution of write operations while in VGA mode number 18, the bit mask for
setting and individual screen pixel can be found from a look-up table or by right-shifting
a unitary bit pattern (10000000B). The following code fragment calculates the offset into
the video buffer and the bit mask required for writing an individual pixel using VGA
write modes 0 or 2.

; Mask and offset computation from x and y pixel
coordinates
; Code is for VGA mode number 18 (640 by 480 pixels)
; On entry:
; CX = x coordinate of pixel (range 0 to
639)
; DX = y coordinate of pixel (range 0 to
479)
; On exit:
; BX = byte offset into video buffer
; AH = bit mask for the write operation
using
; write modes 0 or 2
;
;**********************|
; calculate address |
;**********************|
 PUSH AX ; Save accumulator
 PUSH CX ; Save x coordinate
 MOV AX,DX ; y coordinate to AX
 MOV CX,80 ; Multiplier (80 bytes per
row)
 MUL CX ; AX = y times 80
 MOV BX,AX ; Free AX and hold in BX
 POP AX ; x coordinate from stack
; Prepare for division
 MOV CL,8 ; Load divisor
 DIV CL ; AX / CL = quotient in AL
and
 ; remainder in AH
; Add in quotient
 MOV CL,AH ; Save remainder in CL
 MOV AH,0 ; Clear high byte
 ADD BX,AX ; Offset into buffer to BX

The pc graphics handbook 148

 POP AX ; Restore AX
; Compute bit mask from remainder
 MOV AH,10000000B ; Unitary mask for 0
remainder
 SHR AH,CL ; Shift right CL times
; The byte offset (in BX) and the pixel mask in AH) can
now
; be used to set the individual screen pixel
 .
 .
 .

7.3.5 The Attribute Controller

The Attribute Controller receives color data from the Graphics Controller and formats it
for the video display hardware. Input to the Attribute Controller, which is in the form of
attribute data in the alphanumeric modes and in the form of serialized bit plane data in the
graphics modes, is converted into 8-bit digital color output to the DAC. Blinking,
underlining, and cursor display logic are also controlled by this register. In VGA systems
the output of the Attribute Controller goes directly to the video DAC and the CRT. Table
7–6 shows the registers in the Attribute Controller group.

Table 7–6
The VGA Attribute Controller Registers

PORT OFFSET DESCRIPTION
03C0H Attribute Address and Palette Address register
03C1H Read operations
03C0H 0 to 15 Palette registers

 16 Attribute mode control
 17 Screen border color control (overscan)
 18 Color plane enable
 19 Horizontal pixel panning
 20 Color select

Register addressing in the Attribute Controller group is performed differently than
with the other VGA registers. This is due to the fact that the Attribute Controller does not
have a dedicated bit to control the selection of its internal address and data registers, but
uses an internal flip-flop to toggle the address and data functions. This explains why the
Index and the Data registers of the Attribute Controller are both mapped to port 3C0H
(see Table 7–6). Figure 7–25 shows the Attribute and Palette Address registers in the
VGA Attribute Controller.

Vga fundamentals 149

Figure 7–25 Attribute Address and
Palette Address Registers of the VGA
Attribute Controller

Programming the Attribute Controller requires accessing Input Status Register 1 of the
General Register (see Figure 7–7) in order to clear the flip-flop. The address of the Status
Register 1 is 3BAH in monochrome modes and 3DAH in color modes. The complete
sequence of operations for writing data to the Attribute Controller is as follows:

1. Issue an IN instruction to address 3BAH (in color modes) or to address 3DAH (in
monochrome modes) to clear the flip-flop and select the address function of the
Attribute Controller.

2. Disable interrupts.
3. Issue an OUT instruction to the address register, at port 3C0H, with the number of the

desired data register.
4. Issue another OUT instruction to this same port to load a value into the Data register.
5. Enable interrupts.

The 16 Palette registers of the Attribute Controller, at offsets 0 to 15, determine how the
16 color values in the IRGB bit planes are displayed. The default values for the Palette
registers is shown in Table 7–7. The colors of the default palette can be seen by running
the program named PALETTE which is part of the book’s software package.

The pc graphics handbook 150

Table 7–7
Default Setting of VGA Palette Registers

BITS 0–5 REGISTER OFFSET VALUE
R G B R G B

COLOR

0 0 0 0 0 0 0 0 Black
1 1 0 0 0 0 0 1 Blue
2 2 0 0 0 0 1 0 Green
3 3 0 0 0 0 1 1 Cyan
4 4 0 0 0 1 0 0 Red
5 5 0 0 0 1 0 1 Magenta
6 20 0 1 0 1 0 0 Brown
7 7 0 0 0 1 1 1 White
8 56 0 0 0 1 1 1 Dark grey
9 57 1 1 1 0 0 1 Light blue

10 58 1 1 1 0 1 0 Light green
11 59 1 1 1 0 1 1 Light cyan
12 60 1 1 1 1 0 0 Light red
13 61 1 1 1 1 0 1 Light magenta
14 62 1 1 1 1 1 0 Yellow
15 63 1 1 1 1 1 1 Intensified white

In VGA systems each Palette register consists of 6 bits that allow 64 color combinations
in each register. The bits labeled “RGBRGB” in Table 7–7 correspond to the primary and
secondary values for red, green, and blue colors. Since each color is represented by 2 bits,
each one can have four possible levels of saturation; for example, the levels of saturation
for the color red are:

Saturation rgbRGB Interpretation
 0 000000 no red
 1 100000 low red
 2 000100 red
 3 100100 high red

The Palette registers can be changed by means of BIOS service number 16, interrupt
10H, or by programming the Attribute Controller registers directly. Note that the setting
of the Palette registers does not affect the color output in 256-color mode number 19, in
which case the 8-bit color values in video memory are transmitted directly to the DAC.
Figure 7–26, on the following page, is a bitmap of the Palette register of the Attribute
Controller.

The Attribute Mode Control register of the Attribute Controller serves to select the
characteristics associated with the video mode. Bit 0 selects whether the display is in an
alphanumeric or in a graphics mode. Bit 1 determines if VGA operates in a monochrome
or color emulation. Bit 2 is related to the handling of the ninth screen dot while
displaying the graphics characters in the range C0H to DFH. If this bit is set, the graphics

Vga fundamentals 151

characters in this range generate unbroken horizontal lines. This feature refers to the
MDA emulation mode only, since other character fonts do not have the ninth dot. BIOS
sets this bit automatically in the modes that require it. The function of the bit fields of the
Attribute Mode Control register can be seen in Figure 7–27.

Figure 7–26 Palette Register of the
VGA Attribute Controller

Figure 7–27 Attribute Mode Control
Register of the VGA Attribute
Controller

The pc graphics handbook 152

Bit 5 of the Attribute Mode Control register in the Attribute Controller group relates to
independently panning the screen sections during split-screen operation. Split-screen
programming is discussed in Chapter 3. Bit 6 of the Attribute Mode Control register is set
to 1 during operation in mode number 19 (256-colors) and cleared for all other modes.
Finally, bit 7 of the Attribute Mode Control register determines the source for the bits
labeled r and g (numbers 4 and 5) in the Palette register. If bit 7 is set the r and g bits in
the Palette register are replaced by bits 0 and 1 of the Color Select register. If bit 7 is reset
then all Palette register bits are sent to the DAC.

In some alphanumeric and graphics modes the VGA display area is surrounded by a
colored band. The width of this band is the same as the width of a single character (8
pixels) in the 80-column modes. The color of this border area is determined by the
Overscan Color register of the Attribute Controller. Normally the screen border is not
noticeable, due to the fact that the default border color is black. The border color is not
available in the 40-columns alphanumeric modes or in the graphics modes with 320 pixel
rows, except for VGA graphics mode number 19. The bitmap of the Overscan register is
shown in Figure 7–28.

Figure 7–28 Overscan Color Register
of the VGA Attribute Controller

Figure 7–29 Color Plane Enable
Register of the VGA Attribute
Controller

Vga fundamentals 153

The Color Plane Enable register allows excluding one or more bit planes from the color
generation process. The main purpose of this function is to provide compatibility with
EGA systems equipped with less than 256K of memory. Bits 4 and 5 of this register are
used in system diagnostics. The bitmap of the Color Plane Enable register of the Attribute
Controller group is shown in Figure 7–29.

The Horizontal Pixel Panning register of the Attribute Controller is used to shift video
data horizontally to the left, pixel by pixel. This register is shown in Figure 7–30. This
feature is available in the alphanumeric and graphics modes. The number of pixels that
can be shifted is determined by the display mode. In the VGA 256-color graphics mode
the maximum number of allowed pixels is three. In alphanumeric modes 0, 1, 2, 3, and 7,
the maximum is eight pixels. In all other modes the maximum is seven pixels. The
Horizontal Pixel Panning register can be programmed in conjunction with the Video
Buffer Start Address registers of the CRT Controller (see Figure 7–11) to implement
smooth horizontal screen scrolling in alphanumeric and in graphics modes. These
manipulations are described in Chapter 8.

Figure 7–30 Horizontal Pixel Panning
Register of the VGA Attribute
Controller

The Color Select register of the Attribute Controller provides additional color selection
flexibility to the VGA system, as well as a way for rapidly switching between sets of
displayed colors. When bit 7 of the Attribute Mode Control register is clear (see Figure
7–27) the 8-bit color value sent to the DAC is formed by the 6 bits from the Palette
registers and bits 2 and 3 of the Color Select register (see Figure 7–27). If bit 7 of the
Attribute Mode Control register is set, then the 8-bit color value is formed with the lower
four bits of the Palette register and the 4 bits of the Color Select register. Since these bits
affect all Palette registers simultaneously, the program can rapidly change all colors
displayed by changing the value in the Color Select register. The Color Select register is
not used in the 256-color graphics mode number 19. The Color Select Register bitmap is
shown in Figure 7–31.

The pc graphics handbook 154

Figure 7–31 Color Select Register of
the VGA Attribute Controller

7.4 The Digital-to-Analog Converter (DAC)

The Digital-to-Analog Converter, or DAC, provides a set of 256 color registers,
sometimes called the color look-up table, as well as three color drivers for an analog
display. The DAC register set permits displaying 256 color combinations from a total of
262,144 possible colors. Table 7–8 shows the DAC registers.

Table 7–8
VGA Video Digital-to-Analog Converter Addresses

REGISTER OPERATIONS ADDRESS
Pixel address (read mode) WRITE ONLY 03C7H
Pixel address (write mode) READ/WRITE 03C8H
DAC State READ ONLY 03C7H
Pixel Data READ/WRITE 03C9H
Pixel Mask READ/WRITE 03C6H
Note: applications must not write to the Pixel Mask register to avoid destroying the color lookup
table

Each of the DAC’s 256 registers uses 6 data bits to encode the value of the primary
colors red, green, and blue. The use of 6 bits per color makes each DAC register 18 bits
wide. It is the possible combinations of 18 bits that allow 262,144 DAC colors. Note that
the VGA color registers in the DAC duplicate the color control offered by the Palette
registers of the Attribute Controller. In fact, the VGA Palette registers are provided for
compatibility with the EGA card, which does not contain DAC registers. When
compatibility with the EGA is not an issue, VGA programming can be simplified by
ignoring the Palette registers and making all color manipulations in the DAC.
Furthermore, the Palette registers are disabled when VGA is in the 256-color mode
number 19, since mode number 19 has no EGA equivalent.

Vga fundamentals 155

7.4.1 The DAC Pixel Address Register

The DAC Pixel Address register holds the number (often called the address) of one of the
256 DAC registers. Read operations to the Pixel Address register are performed to port
3C7H and write operations to port 3C8H (see Table 7–8). A write operation changes the
18-bit color stored in the register (in Red/Green/Blue format). A read operation is used to
obtain the RGB value currently stored in the DAC register. Figure 7–32 is a bitmap of the
DAC Pixel Address register.

Figure 7–32 Pixel Address Register of
the VGA DAC

7.4.2 The DAC State Register

The DAC State register encodes whether the DAC is in read or write mode. A mode
change takes place when the Pixel Address register is accessed: if the Pixel Address
register is set at port 3C7H (see Figure 7–32) then the DAC goes into a read mode; if it is
set at port 3C8H then the DAC goes into a write mode. The DAC State register is shown
in Figure 7–33. Notice that although the Pixel Address register for read operations and
the DAC State register are both mapped to port 3C7H there is no occasion for conflict,
since the DAC State register is read only and the Pixel Address register for read
operations is write only (see Table 7–8).

Figure 7–33 State Register of the VGA
DAC

7.4.3 The DAC Pixel Data Register

The Pixel Data register in the DAC is used to hold three 6-bit data items representing a
color value in RGB format. The Pixel Data register can be read after the program has
selected the corresponding DAC register at the Pixel Address read operation port 3C7H.
The Pixel Data register can be written after the program has selected the corresponding
DAC register at the Pixel Address write operation port 3C8H (see Table 7–8). The

The pc graphics handbook 156

current read or write state of the DAC can be determined by examining the DAC State
register.

Once the DAC is in a particular mode (read or write), an application can continue
accessing the color registers by performing a sequence of three operations, one for each
RGB value. The read sequence consists of selecting the desired DAC register in the Pixel
Address register at the read operations port (3C7H) then performing three consecutive IN
instructions. The first one will load the 6-bit red value stored in the DAC register, the
second one will load the green value, and the third one the blue value. The write sequence
takes place in a similar fashion. This mode of operation allows rapid access to the three
data items stored in each DAC register as well as to consecutive DAC registers. Because
each entry in the DAC registers is 6 bits wide, the write operation is performed using the
least significant 6 bits of each byte. The order of operations for the WRITE function are
as follows:

1. Select the starting DAC color register number by means of a write operation to the
Pixel Address write mode register at port 3C8H.

2. Disable interrupts.
3. Write the 18-bit color code in RGB encoding. The write sequence consists of 3 bytes

consecutively output to the pixel data register. Only the six low-order bits in each byte
are meaningful.

4. The DAC transfers the contents of the Pixel Data register to the DAC register number
stored at the Pixel Address register.

5. The Pixel Address register increments automatically to point to the subsequent DAC
register. Therefore, if more than one color is to be changed, the sequence of operations
can be repeated from step number 3.

6. Re-enable interrupts.

Read or write operations to the video DAC must be spaced 240 nanoseconds apart.
Assembly language code can meet this timing requirement by inserting a short JMP
instruction between successive IN or OUT opcodes. The instruction can be conveniently
coded in this manner:

JMP SHORT $+2 ; I/O delay

Vga fundamentals 157

Chapter 8
VGA Device Drivers

Topics:

• VGA programming levels
• Developing VGA device driver routines
• Video memory address calculations
• Setting pixels and tiles
• Reading pixel values
• Color manipulations

This chapter describes the various levels at which the VGA system can be programmed
and establishes the difference between device driver and graphics primitive routines.
Section 8.2 and following refer to the design and coding of device drivers for calculating
pixel address at the fine- and course-grain levels and for reading and writing pixels and
pixel tiles. Section 8.3 and following discuss color operations in 16- and 256-color
modes.

8.1 Levels of VGA Programming

Because the VGA system provides all the video functions in an IBM microcomputer, any
display programming operations on these machines must inevitably access the VGA
hardware or its memory space. However, at the higher levels of VGA programming many
of the programming details are hidden by the interface software. For example, a
programmer working in Microsoft QuickBASIC has available a collection of program
functions that allows drawing lines, boxes, circles, and ellipses, changing palette colors,
performing fill operations, and even executing some primitive animation. Therefore the
QuickBASIC programmer can perform all of the above-mentioned graphics functions
while ignoring the complications of VGA registers, video memory mapping, and DAC
output.

The programming levels in an IBM microcomputer equipped with VGA video are as
follows:

1. VGA services provided by the operating system. This includes the video services in
BIOS, MS DOS, OS/2, WINDOWS, or other operating system programs or graphical
environments.

2. VGA services provided by high-level languages and by programming libraries that
extend the functions of high-level languages.

3. General purpose VGA libraries that can be used directly or interfaced with one or more
high-level languages. The VGA graphics library furnished with this book belongs to
this category.

4. Low-level routines, usually coded in 80x86 Assembly Language, that access the VGA
or DAC registers or the memory space reserved for video functions.

Observe that this list refers exclusively to the VGA system. Other graphics standards,
such as 8514A, XGA, and SuperVGA, include high-level functions that are furnished as a
programming interface with the hardware. However, the VGA standard does not furnish
higher level programming facilities. In this chapter we discuss the lowest level of VGA
programming, principally at the adapter hardware level (number 4 in the previous list).
These lowest level services are often called device driver routines. The VGA services in
the BIOS are also mentioned occasionally. The reader wishing a greater detail in the
programming descriptions should refer to the code listings (files with the extension
.ASM) that are contained in the book’s libraries, which describe the VGA services in the
BIOS. In Chapter 9 we extend the discussion of VGA programming to higher level
routines, usually called graphics primitives. The VGA services in high-level languages, in
operating systems, or in graphical environments, such as WINDOWS and OS/2, are not
discussed in the book.

8.1.1 Device Drivers and Primitive Routines

The term device driver is often used to denote the most elementary software elements that
serve to isolate the operating system, or the high- and low-level programs, from the
peculiarities of hardware devices and peripherals. It was the UNIX operating system that
introduced the concept of an installable device driver. In UNIX a device driver is
described as a software element that can be attached to the UNIX kernel at any time. The
concept of a device driver was perpetuated by MS DOS (starting with version 2.0) and by
OS/2.

A second level of graphics routines, usually more elaborate than the device drivers, is
called the graphics primitives. For example, to draw a circular arc on the graphics screen
of a VGA system we need to perform programming operations at two different levels.
The higher level operation consists of calculating the x and y coordinates of the points
that lay along the arc to be drawn. The second, and more elementary operation, is to set to
a desired color the screen pixels that lay along this arc. In this case we can say that the
coordinate calculations for the arc are performed in a routine called a graphics primitive,
while the setting of the individual screen pixels is left to a VGA device driver.

Strictly speaking it is possible to reduce the device driver for a VGA graphic system to
two routines: one to set to a predetermined color the screen pixel located at certain
coordinates, and another one to read the color of a screen pixel. With the support of this
simple, two-function driver, it is possible to develop VGA primitives to perform all the
graphic functions of which the device is capable. Nevertheless, a system based on
minimal drivers performs very poorly. For instance, a routine to fill a screen area with a
certain color would have to make as many calls to the driver as there are pixels in the area
to be filled. In practice, it is better to develop device drivers that perform more than
minimum functions. Therefore, in addition to the pixel read and write services, it is
convenient to include in the device driver category other elementary routines such as
those that perform address calculations, read and write data in multi-pixel units, and
manipulate the color settings at the system level.

Vga device drivers 159

In IBM microcomputers, under MS DOS, the VGA graphics hardware is accessed by
device drivers that are not installed as part of the operating system. Several interface
mechanisms are possible for these drivers. One option is to link the graphics device
driver to a software interrupt. Once this driver is loaded and its vector initialized,
applications can access its services by means of the INT instruction. But this type of
operation, while very convenient and efficient, requires that the driver be installed as a
terminate-and-stay-resident program (TSR), therefore reducing the memory available to
applications. An alternative way of making the services of graphics device drivers
accessible to applications is to include the drivers in one or more graphics libraries. The
library routines requested in the code, which are accessed by high- and low-level
programs at link time, are incorporated into the program’s run file. Because of its
simplicity this is the approach selected for the graphics routines provided with this book.
Chapter 9 is devoted to developing the primitive routines necessary in VGA
programming.

8.2 Developing the VGA Device Drivers

The VGA system can be considered as a different device in each operational mode. In
fact, many VGA modes exist for no other reason than to provide compatibility with other
devices. Therefore, the device drivers for VGA mode number 18, with 640-by-480 pixels
in 16 colors, are unrelated and incompatible with VGA mode number 19, with 320-by-
200 pixels in 256 colors. Since these two modes (numbers 18 and 19) provide the most
powerful graphics functions in the VGA standard, and considering that compatibility with
previous adapters is no longer a major consideration, the drivers developed for this book
apply to VGA modes number 18 and 19 only.

8.2.1 VGA Mode 18 Write Pixel Routine

In VGA mode number 18 each screen pixel is mapped to four memory maps, each map
encoding the colors red, green, and blue, as well as the intensity component, as shown in
Figure 8–1, on the following page.

To set a screen pixel in VGA mode number 18 the program must access individual bits
located in four color maps. In Figure 8–1 the screen pixel displayed corresponds to the
first bit in each of the four maps. But, due to the fact that the 80×86 instruction set does
not contain operations for accessing individual bits, read and write operations in 80×86
Assembly Language must take place at the byte level. Consequently, to access the
individual screen pixels while in VGA mode number 18 the program has to resort to bit
masking. Figure 8–2 illustrates bit-to-pixel mapping in VGA mode number 18.

The pc graphics handbook 160

Figure 8–1 Color Maps in VGA Mode
18

Notice in Figure 8–2 that the eleventh screen pixel (pointed at by the arrow) corresponds
to the eleventh bit in the memory map. This eleventh bit is located in the second byte.

Figure 8–2 Bit-to-Pixel Mapping
Example in VGA Mode 18

Vga device drivers 161

VGA write operations can take place in four different write modes, labeled 0 to 3.
Also that the write mode is selected by means of bits 0 and 1 of the Select Graphics Mode
register of the Graphics Controller group (see Figure 2–22). The VGA behaves as a
different device in each write mode. Therefore the device driver for a pixel write
operation in mode number 18 must be write-mode specific.

Each VGA write mode has its strong points but, perhaps, write mode 2 is the most
direct and useful one. In write mode 2 the individual pixel within a video buffer byte is
selected by entering an appropriate mask in the Bit Mask register of the Graphics
Controller group. This bit mask must contain a 1 bit for the pixel or pixels to be accessed
and a 0 bit for those to be ignored. For example, the bit mask 00100000B can be used to
select the pixel shown in Figure 8–2.

Fine Grain Address Calculations

In the case of Figure 8–2 the code must take into account that the 11 pixel is located in
the second buffer byte. In VGA mode number 18 programming this is usually
accomplished by using a word-size variable, or an 80x86 machine register, as an offset
pointer. Since the VGA video buffer in a graphics mode always starts at physical address
A0000H, the ES register can be set to the corresponding segment base. The Assembly
Language code to set the ES:BX register pair as a pointer to the second screen byte would
be as follows:

; Code fragment to set the 11th screen pixel while in
VGA mode
; number 18, write mode 2
 MOV AX,0A000H; Segment base for video buffer
 MOV ES,AX ; To ES register
; ES ––> base of VGA video buffer
 MOV BX,1 ; Offset of byte 2 to BX
; At this point ES:BX can be used to access the second
byte in the
; video buffer
 .
 .
 .

In practice a VGA mode number 18 device driver should include a routine to calculate
the pixel’s byte offset and bit mask from its screen coordinates. The actual calculations
are based on the geometry of the video buffer in this mode, which corresponds to 80
bytes per screen row (640 pixels) and a total of 480 rows. The following code fragment
shows the necessary calculations.

; Address computation from x and y pixel coordinates
; On entry:
; CX = x coordinate of pixel (range 0 to 639)
; DX = y coordinate of pixel (range 0 to 479)
; On exit:
; BX = byte offset into video buffer

The pc graphics handbook 162

; AH = bit mask for the write VGA write modes
0 or 2
; AL is preserved
; Save all entry registers
 PUSH CX
 PUSH DX
;***********************|
; calculate address |
;***********************|
 PUSH AX ; Save accumulator
 PUSH CX ; Save x coordinate
 MOV AX,DX ; y coordinate to AX
 MOV CX,80 ; Multiplier (80 bytes per
row)
 MUL CX ; AX = y times 80
 MOV BX,AX ; Free AX and hold in BX
 POP AX ; x coordinate from stack
; Prepare for division
 MOV CL,8 ; Divisor
 DIV CL ; AX / CL = quotient in AL
and
 ; remainder in AH
; Add in quotient
 MOV CL,AH ; Save remainder in CL
 MOV AH, 0 ; Clear high byte
 ADD BX,AX ; Offset into buffer to BX
 POP AX ; Restore AX
;***********************|
; calculate bit mask |
;***********************|
; The remainder (in CL) is used to shift a unitary mask
 MOV AH,10000000B ; Unit mask for 0
remainder
 SHR AH,CL ; Shift right CL times
; Restore registers
 POP DX
 POP CX
 .
 .
 .

This address calculation routine is similar to the PIXEL_ADD_18 device driver in the
VGA1 module of the graphics library furnished with this book. This library service is
discussed in Section 3.3.

Setting the Pixel

Once the bit mask and byte offset into the buffer have been determined, the individual
screen pixel can be set in VGA mode number 18, write mode 2. This is accomplished in
two steps: first the program sets the mask in the Bit Mask register of the Graphics

Vga device drivers 163

Controller group, then it performs a memory write operation to the address in ES:BX.
The following code fragment shows both operations.

; VGA mode number 18 device driver for writing an
individual
; pixel to the graphics screen
; On entry:
; ES:BX = byte offset into the video
buffer
; AL = pixel color in IRGB format
; AH = bit pattern to set (mask)
; This routine assumes VGA mode 18 and write mode 2
;
 PUSH DX ; Save outer loop counter
 PUSH AX ; Color byte
 PUSH AX ; Twice
;***********************|
; first step |
; set bit mask |
;***********************|
; Set Bit Mask Register according to mask in AH
 MOV DX,3CEH ; Graphic controller latch
 MOV AL,8
 OUT DX,AL ; Select data register 8
 INC DX ; To 3CFH
 POP AX ; AX once from stack
 MOV AL,AH ; Bit pattern
 OUT DX,AL ; Load bit mask
;***********************|
; second step: |
; write IRGB color |
;***********************|
; Write color code to memory maps
 MOV AL,ES:[BX] ; Dummy read to load latch
 ; registers
 POP AX ; Restore color code
 MOV ES:[BX],AL ; Write the pixel with the
 ; color code in AL
 POP DX ; Restore outer loop
counter
 .
 .
 .

The above code is similar to the one in the WRITE_PIX_18 device driver listed in the
VGA1 module of the graphics library furnished with this book. The WRITE_PIX_18
routine is discussed in Section 3.3.

The pc graphics handbook 164

Coarse Grain Address Calculations

The finest possible degree of control over a video display device is obtained at the screen
pixel level. However, it is often convenient to access video display device in units of
several pixels. For example, when VGA mode number 18 text display operations are
performed by means of the BIOS character display services, these take place on a screen
divided into 80 character columns and 30 character rows (see Table 2–2). This means that
each character column is 8 pixels wide (640/80=8) and each row is 16 pixels high
(480/30=16). In addition, graphics software can often benefit from operations that take
place at coarser-than-pixel levels. For instance, to draw a horizontal line from screen
border to screen border, in mode number 18, requires 640 bit-level operations, but only
80 byte-level operations. Consequently, routines that read or write pixels in groups
achieve substantially better performance than those that read or write the pixels
individually.

When referring to VGA mode 18 routines that write to the video display at a byte level
we use the term coarse grain, while those that output at the pixel we labeled fine grain. In
order to give the coarse-grain routine a symmetrical pixel pattern, we have used 8-bit
pixel groups both on the horizontal and on the vertical scale. For lack of a better word we
refer to these 8-by-8 pixel units as screen tiles, or simply tiles. Coarse-grain operations, in
mode number 18, see the video display as 80 columns and 60 rows of screen tiles, for a
total of 4800 tiles. In this manner the programmer can envision the VGA screen in mode
number 18 as consisting of 640-by-480 pixels (fine-grain visualization) or as consisting
of 80-by-60 screen tiles of 8-by-8 pixels (coarse-grain visualization). Furthermore, the
coarse-grain visualization can easily be adapted to text display operations on an 80-by-30
screen by grouping the 60 tile rows into pairs. The following code fragment calculates the
coarse-grain offset into the video buffer from the vertical and horizontal tile count.

; On entry:
; CH = horizontal tile number (range 0 to 79) =
x coordinate
; CL = vertical tile number (range 0 to 59) = y
coordinate
;
; Compute coarse-grain address (in BX) as follows:
; BX = (CL * 640) + CH
;
; On exit:
; BX = tile offset into video buffer
; CX is destroyed
;
 PUSH AX ; Save accumulator
 PUSH DX ; For word multiply
 PUSH CX ; To save CH for addition
 MOV AX,CX ; Copy CX in AX
; AL = CL
 MOV AH,0 ; Clear high byte
 MOV CX,640 ; Multiplier
 MUL CX ; AX * CX results in AX

Vga device drivers 165

; The multiplier (640) is the product of 80 tiles
columns
; times 8 vertical pixels in each tile row
 POP CX ; Restore CH
 POP DX ; and DX
 MOV CL,CH ; Prepare to add in CH
 MOV CH,0
 ADD AX,CX ; Add
 MOV BX,AX ; Move sum to BX
 POP AX ; Restore accumulator
 .
 .
 .

The above code is similar to the one in the TILE_ADD_18 device driver listed in the
VGA1 module of the graphics library furnished with this book.

Setting the Tile

Once the tile address has been determined, the individual tile (8-by-8 pixel groups) can
be set by placing an all-ones mask in the Bit Mask register of the Graphics Controller
group, and then performing write operations to 8 successive pixel rows. The following
code fragment shows the setting of a screen tile.

; Set Bit Mask Register to all one bits
 MOV DX,3CEH ; Graphic controller latc
 MOV AL,8
 OUT DX,AL ; Select data register 8
 INC DX ; To 3CFH
 MOV AL,0FFH ; Bit pattern of all ones
 +OUT DX,AL ; Load bit mask
; Set counter for 8 pixel rows
 MOV CX,8 ; Counter initialized
 POP AX ; Restore color code
;**********************|
; set 8 pixels |
;**********************|
SET_EIGHT:
 MOV AH,ES:[BX] ; Dummy read to load latch
 ; registers
 MOV ES:[BX],AL ; Write the pixel with the
 ; color code in AL
 ADD BX,80 ; Index to next row
 LOOP SET_EIGHT
; Tile is set

The above code is similar to the one in the WRITE_TILE_18 device driver listed in the
VGA1 module of the graphics library furnished with this book. The WRITE_TILE_18
routine is discussed in Section 3.3.

The pc graphics handbook 166

8.2.2 VGA Mode 18 Read Pixel Routine

A program attempting to determine the state of the 11 pixel in Figure 8–2 would read the
second memory byte and mask out all other bits. The mask, in this case, would have the
value 00100000B. We have seen that video memory in VGA mode number 18 is divided
into four memory maps, labeled I, R, G, and B for the intensity, red, green, and blue
components, respectively, and that all four maps are located at the same address. For this
reason, in order to read the color code for an individual pixel, the program must
successively select each of the four memory maps. This is done through the Read
Operation Map Select register of the Graphics Controller (see Figure 2–21). In other
words, to determine the color of a single pixel in VGA mode number 18 it is necessary to
perform four separate read operations, one for each of the IRGB maps.

As in the write operation, the code to read a screen pixel must calculate the address of
the video buffer byte in which the bit is located and the bit mask for isolating it. This can
be done by means of the code listed in Section 3.1.1 or by using the PIXEL_ADD_18
device driver in the VGA1 module of the graphics library furnished with the book (see
Section 3.3). The following code fragment reads a screen pixel and returns the IRGB
color value in the CL register.

; On entry:
; ES:BX = byte offset into the video
buffer
; AH = bit pattern for mask
;
; On exit:
; CL = 4 low bits hold pixel color in
IRGB format
; CH = 0
;
; The code assumes that read mode 0 is set
;
; Move bit mask to CH
 MOV CH,AH ; CH = bit mask for pixel
;***********************|
; set-up read loop |
;***********************|
 MOV AH,3 ; Counter for 4 color maps
 MOV CL,0 ; Clear register for pixel
color
 ; return
;***********************|
; execute 4 read cycles |
;***********************|
; AH has number for current IRGB map (range 0 to 3)
READ_MAPS:
; Select map from which to read
 MOV DX,3CEH ; Graphic Controller
Address
 ; register
 MOV AL,4 ; Read Map Select register

Vga device drivers 167

 OUT DX,AL ; Activate
 INC DX ; Graphic Controller =
3CFH
 MOV AL,AH ; AL = color map number
 OUT DX,AL ; IRGB color map selected
;***********************|
; read one byte |
;***********************|
; Read 8 bits from selected map
 MOV AL,ES:[BX] ; Get byte from bit plane
;***********************|
; shift return register |
;***********************|
; Previous color code is in bit 0. The shift operation
will free
; the low order bit and move previous bit codes to
higher positions
 SHL CL,1
;**********************|
; mask out pixels |
;**********************|
 AND AL,CH ; Pixel mask in CH
 JZ NO_PIX_SET ; Jump if no pixel in map
; Pixel was set in bitmap
 OR CL,00000001B ; Set bit 0 in pixel
color
 ; return register
NO_PIX_SET:
 DEC AH ; Bump counter to next map
 JNZ READ_MAPS ; Continue if not last map
; 4 low bits in CL hold pixel color in IRGB format
 MOV CH,0 ; Clear CH
 .
 .
 .

The above code is similar to the one in the READ_PIX_18 device driver listed in the
VGA1 module of the graphics library furnished with this book.

8.2.3 VGA Mode 19 Write Pixel Routine

VGA programmers use mode number 19 when screen color range is more important than
definition. In mode number 19 the VGA video display consists of 200 pixel rows of 320
pixels each. Each pixel, which can be in one of 256 colors, is determined by 1 byte in the
video buffer. This scheme can be seen in Figure 8–3.

The fact that each screen pixel in mode number 19 is mapped to a video buffer byte
simplifies programming by eliminating the need for a bit mask. The VGA video buffer in
mode number 19 consists of 64,000 bytes. This number is the total pixel count obtained
by multiplying the number of pixels per row by the number of screen rows
(320*200=64,000). Although the 64,000 buffer bytes are distributed in the 4 bit planes,

The pc graphics handbook 168

the VGA hardware makes it appear to the programmer as if they resided in a continuous
memory area. In this manner, the top-left screen pixel is mapped to the byte at physical
address A0000H, the next pixel on the top screen row is mapped to buffer address
A0001H, and so forth. This byte-to-pixel mapping scheme can be seen in Figure 8–4.

Figure 8–3 Color Mapping in VGA
Mode 19

Figure 8–4 Byte-to-Pixel Mapping
Example in VGA Mode 19

Vga device drivers 169

Address Calculations

Address calculations in mode number 19 are simpler than those in mode number 18. All
that is necessary to obtain the offset of a pixel into the video buffer is to multiply its row
address by the number of buffer bytes per pixel row (320) and then add the pixel column.
The processing is shown in the following code fragment

; Address computation for VGA mode number 19
; On entry:
; CX = x coordinate of pixel (range 0 to
319)
; DX = y coordinate of pixel (range 0 to
199)
; On exit:
; BX = offset into video buffer
;
 PUSH CX ; Save x coordinate
 MOV AX,DX ; y coordinate to AX
 MOV CX,320 ; Multiplier is 320 bytes
per row
 MUL CX ; AX = y times 320
 MOV BX,AX ; Free AX and hold in BX
 POP AX ; x coordinate from stack
 ADD BX,AX ; Add in column value

he above code is similar to the one in the WRITE_PIX_19 device driver listed in the
VGA1 module of the graphics library furnished with this book.

Setting the Pixel

Once the segment and the offset registers are loaded, the program can set an individual
screen pixel by means of a simple MOV instruction, as in the following code fragment:

; Write one pixel in VGA mode number 19 (256 colors)
; Code assumes that write mode 0 for 256 colors is
selected
; Register setup:
; ES = A000H (video buffer segment base)
; BX = offset into the video buffer (range 0 to
64000)
; AL = 8-bit color code
;
 MOV ES:[BX],AL ; Write pixel

8.2.4 VGA Mode 19 Read Pixel Routine

We have seen that in VGA mode number 19 each screen pixel is mapped to a single
video buffer byte. There are 64,000 bytes in the video buffer, which is the same as the

The pc graphics handbook 170

total number of screen pixels obtained by multiplying the number of pixels per row by
the number of screen rows (320*200=64,000). The mapping scheme in VGA mode
number 19 can be seen in Figure 8–4. The address calculations for mode number 19 were
shown in Section 3.1.3. The actual read operation is performed by means of a MOV
instruction, as in the following code fragment

; Read one pixel in VGA mode number 19 (256 colors)
; Code assumes that read mode 0 is selected
; Register setup:
; ES = A000H (video buffer segment base)
; BX = offset into the video buffer (range 0 to
64000)
;
 MOV AL,BYTE PTR ES:[BX] ; Read pixel
; AL now holds the 8-bit color code

8.3 Color Manipulations

The theory of additive color reproduction is based on the fact that light in the primary
colors (red, green, and blue) can be used to generate all the colors of the spectrum. Red,
green, and blue are called the primary colors. Technically, it is possible to create white
light by blending just two colors. The color that must be blended with a primary color to
form white is called the complement of the primary color, or the complementary color.
Color Figure 2 shows the primary and the complementary colors. The com-plementary
colors can also be described as white light minus a primary color. For example, white
light without red, not-red, gives a shade of blue-green known as cyan; not-green gives a
mixture of red and blue called magenta; and not-blue gives yellow, which is a mixture of
red and green light. Video display technology is usually designed on additive color
blending. Subtractive methods are based on dyes that absorb the undesirable,
complementary colors. A cyan-colored filter, for example, absorbs the green and blue
components of white light. Subtractive mixing is used in color photography and color
printing.

In describing a color we use three characteristics that can be precisely determined: its
hue, its intensity, and its saturation. A method of color measurement based on hue,
intensity, and saturations (sometimes called the HIS) was developed for color television.
The hue can be defined as the color of a color. Physically the hue can be measured by the
color’s dominant wavelength. The intensity of a color is its brightness. This brightness is
measured in units of luminance or nits. The saturation of a color is its purity. If the color
contains no white diluent it is said to be fully saturated.

8.3.1 256-Color Mode

While address mapping in VGA mode number 19 is simpler than in mode number 18, the
pixel color encoding is considerably more complicated. This is so not only because there
is a more extensive color range in mode number 19 than in mode number 18 (16 versus
256 colors) but also because the default encoding scheme is not very straightforward.

Vga device drivers 171

This default scheme is determined by the setting of the 256 color registers in the DAC.
The start-up value stored in these registers by the BIOS initialization code is designed to
provide compatibility with the CGA and EGA systems. Figure 8–5 shows the default
setting of the DAC Color registers in VGA mode number 19. The demonstration program
named MODE19, furnished in the book’s software, is an on screen display of the default
setting of the DAC registers in the VGA mode number 19.

Figure 8–5 Default Color Register
Setting in VGA Mode 19

In Figure 8–5 the first group of default colors (range 00H to 0FH) corresponds to those
in the 16-color modes. In other words, if only the 4 low-order bits of the 8-bit color code
are programmed, the resulting colors in the 256-color mode are the same as those in the
16-color modes. The second group of default colors (range 10H to 1FH) corresponds to
16 shades of gray. The following group of colors (range 20H to 67H) consists of 72
colors divided into 3 sub-groups, each one representing a different level of color
saturation. Each of the saturation sub-groups consists of 24 colors in a circular pattern of
blue-red-green hues. Another 72-color group is used for medium intensity colors and a
third one for low intensity colors.

But the programmer of VGA in 256-color mode is by no means restricted to the
default values installed by the BIOS in the DAC Color registers. In fact, we can readily
see that this default grouping is not convenient for many applications. Because the default
tones of red, green, or blue are not mapped to adjacent bits or to manageable fields. For
example, using the default setting of the DAC Color registers, the various shades of the
color green are obtained with the values shown in Table 8–1.

The pc graphics handbook 172

Table 8–1
Shades of Green in VGA 256-Color Mode (default
values)

VALUE/RANGE INTENSITY SATURATION
02H 00000010B medium high
0AH 00001010B high high
2EH to
34H

00101110B to
00110100B

high high

46H to
4CH

01000110B to
01001100B

high moderate

5EH to
64H

01011110B to
01100100B

high low

76H to
7CH

01110110B to
01111100B

medium high

8EH to
94H

10001110B to
10010100B

medium moderate

A6H to
ACH

10100110B to
10101100B

medium low

BEH to
C4H

10111110B to
11000100B

low high

D6H to
DCH

11010110B to
11011100B

low moderate

EEH to
F4H

11101110B to
11110100B

low low

A more rational 256-color scheme can be based on assigning 2 bits to each of the
components of the familiar IRGB encoding. Figure 8–6 shows the bitmapping for this
IRGB double-bit encoding.

Figure 8–6 Double-Bit Mapping for
256-Color Mode

To enable the double-bit encoding in Figure 8–6 it is necessary to change the default
setting of the DAC Color registers. The DAC Color registers consist of 18 bits, 6 bits for
each color (red, green, and blue). The bitmap of the DAC Color registers is shown in
Figure 8–7.

Vga device drivers 173

Figure 8–7 DAC Color Register
Bitmap

To design an 8-bit encoding in a four-element (IRGB) format we have assigned 2 bits to
each color and to the intensity component (see Figure 8–6). In this manner, the 2-bit
values for red, green, and blue, allow four tones. Since each tone can be in four
brightness levels, one for each intensity bit setting, each pure hue would have 16
saturations. In order to achieve a double-bit IRGB encoding by reprogramming the DAC
Color registers (see Figure 8–7), we assign eight values to each DAC Color register, as
shown in Table 8–2.

Table 8–2
DAC Register Setting for Double-Bit IRGB
Encoding

NUMBER 6BIT VALUE INTENSITY COLOR
0 9 OFF dark
1 18 OFF .
2 27 OFF .
3 36 OFF .
4 45 ON .
5 54 ON .
6 63 ON bright

The first 4 bit settings in Table 8–2 correspond to the color tones controlled by the red,
green, and blue bits when the intensity bits have a value of 00B. The last three 6-bit
values correspond to the three additional levels of intensity. This means that, excluding
the intensity bit, the three DAC Color registers will have 64 possible combinations. Table
8–3 shows the pattern of register settings for the double-bit IRGB format.

Notice in Table 8–3 that a value of 9 in the red, green, and blue color registers
corresponds with the color black. It has been found that the colors generated by the low
range of the DAC scale are less noticeable than those on the high range. By equating the
value 9 to the color black we enhance the visible color range on a standard VGA,
although in some CRTs this setting could appear as a very dark gray. The procedure
named TWO_BIT_IRGB in the VGA1 module of the graphics library changes the default
setting of the DAC Color registers to the values in Table 8–3. The procedure is described
in Section 3.3. The program named IRGB256, furnished as part of the book’s software
package, shows the double-bit IRGB colors. This color pattern is displayed by the
IRGB256 program.

The pc graphics handbook 174

Table 8–3
Pattern for DAC Register Settings in Double-Bit
IRGB Encoding

I=00 I=01 I=10 I=11
No. R G B No. R G B No. R G B No. R G B
0 9 9 9 64 9 9 18 128 9 9 27 192 9 9 36
1 9 9 18 65 9 9 27 129 9 9 36 193 9 9 45
2 9 9 27 66 9 9 36 130 9 9 45 194 9 9 54
3 9 9 36 67 9 9 45 131 9 9 54 195 9 9 63
4 9 9 9 68 9 18 18 132 9 27 18 196 9 36 18
5 9 18 9 69 9 27 18 133 9 36 27 197 9 45 36
. . . .
. . . .
63 36 36 36 127 45 45 45 191 54 54 54 255 63 63 63

We have seen that a double-bit IRGB setting for the DAC registers simplifies
programming in the VGA 256-color mode when compared to the default setting shown in
Figure 8–5. Once the DAC registers are set for the double-bit IRGB encoding the
programmer can choose any one color by setting the corresponding bits in the video
buffer byte mapped to the pixel. For example, the bit combinations in Table 8–4 can be
used to display 16 pure tones of the complementary color named magenta (not-green).
Notice that the purity of the hue is insured by the zero value in the green DAC register.

Table 8–4
16 Shades of the Color Magenta Using Double-Bit
IRGB Code

NUMBER I R G B TONE
0 00 01 00 01 darkest magenta
1 00 10 00 10 .
2 00 01 00 01 .
3 00 11 00 11 .
4 01 01 00 01 .
. . .
. . .

15 11 11 00 11 brightest magenta

But no single color encoding is ideal for all purposes. Often the programmer prefers to
enhance certain portions of the color range at the expense of other portions. For example,
in displaying a mountain landscape it might be preferable to extend shades of blue and
green at the expense of the red. On the other hand, a volcanic explosion may require more
shades of red than of green and blue. The programmer can manipulate the displayed
range by choosing which set of 256 colors, from a possible total of 262, 143, are installed
in the DAC Color registers.

Vga device drivers 175

Shades of Gray

The color gray is defined as equal intensities of the primary colors, red, green, and blue.
In the DAC Color registers any setting in which the three values are equal generates a
shade of gray. For example, the value 20, 20, 20 for red, green, and blue, respectively,
produce a 31 percent gray shade, while a value of 32, 32, 32 produce a 50 percent gray
shade. Since the gray shades require that all three colors have the same value, and
considering that each color register can hold 64 values, there are 64 possible shades of
gray in the VGA 256-color modes. The actual setting of the VGA registers will go from
0, 0, 0, to 63, 63, 63, for red, green, and blue.

A graphics program operating in VGA 256-color mode can simultaneously use the full
range of 64 gray shades, as well as 192 additional colors. This requires reprogramming
the DAC Color registers. If a program were to execute in shades of gray only, then the
low order 6-bits of the color encoding can be used to select the gray shades. The range
would extend from a value of 0, for black, to a value of 63 for the brightest white. The
setting of the DAC Color registers for a 64-step gray scale is shown in Table 8–5.

Table 8–5
Pattern for DAC Register Setting for 64 Shades of
Gray
NO. R G B NO. R G B NO. R G B NO. R G B
0 0 0 0 64 0 0 0 128 0 0 0 192 0 0 0
1 1 1 1 65 1 1 1 129 1 1 1 193 1 1 1
2 2 2 2 66 2 2 2 130 2 2 2 194 2 2 2
3 3 3 3 67 3 3 3 131 3 3 3 195 3 3 3
. . . .
. . . .
63 63 63 63 127 63 63 63 191 54 54 54 255 63 63 63

Notice in Table 8–5 that the gray settings are repeated four times. The effect of this
repeated pattern is that the high-order bits of the color code are ignored. In other words,
all possible color values will generate a gray shade, and the excess of 63 (00111111B)
has no visible effect. The device driver named GRAY_256 in the VGA1 module of the
graphics library changes the default setting of the DAC Color registers to the values in
Table 8–5. The GRAY_256 procedure is described in detail in the discussion of the
VGA1 module later in the chapter. The program named GRAY256, furnished as part of
the book’s software, shows the setting of the DAC registers for 64 gray shades, repeated
four times.

Summing to Gray Shades

A program can read the red, green, and blue values installed in a DAC Color register and
find an equivalent gray shade with which to replace it. If this action is performed
simultaneously on all 256 DAC Color registers the result will be to convert a displayed
color image to monochrome. Considering that the human eye is more sensitive to certain

The pc graphics handbook 176

regions of the spectrum, this conversion is usually based on assigning different weights to
the red, green, and blue components. In any case, this relative color weight is used to
determine the gray shade, on a scale of 0 to 63. However, as mentioned in the previous
paragraph, the resulting gray scale setting must have equal proportions of the red, green,
and blue elements.

BIOS Service number 16, of interrupt 10H, contains sub-service number 27, which
sums all color values in the DAC registers to gray shades. The BIOS code uses a
weighted sum based on the following values:

 red = 30%
green = 59%
blue = 11%
–––––––––––
total = 100%

The BIOS service does not preserve the original values found in the DAC registers. The
primitive routine named SUM_TO_GRAY in the VGA1 module of the graphics library
can be used to perform a gray scale sum based on the action of the above mentioned
BIOS service (see Section 3.3).

The IBM BIOS performs several automatic operations on the VGA DAC Color
registers. For example, during a mode change call (BIOS service number 0, interrupt
10H) the BIOS loads all 256 DAC Color registers with the default values. If the mode
change is to a monochrome mode then a sum-to-gray operation is performed. The
programmer can prevent this automatic loading of the DAC registers. BIOS service
number 18, sub-service number 49, of interrupt 10H, enables and disables the default
pallet loading during mode changes. Sub-service number 51 of service number 18
enables and disables the sum-to-gray function. The FREEZE_DAC and THAW_DAC
device drivers in the VGA1 module of the graphics library provide a means for
preventing and enabling default palette loading during BIOS mode changes. These
procedures are described in Section 3.3.

8.3.2 16-Color Modes

In Table 2–2 we saw that VGA color modes can be in 2, 4, 16, and 256 colors. Since the
two- and four-color modes are provided for compatibility with now mostly obsolete
standards, they are of little interest to today’s VGA programmer. The same can be said of
the lower resolution graphics modes. This elimination leaves us with the 16-color text
modes number 0 to 4 and graphics mode number 18. In the following discussion we will
refer exclusively to the 16-color range in VGA graphics mode number 18.

Video memory mapping in mode number 18 can be seen in Figure 8–2; however, this
illustration does not show how the color is obtained. Refer to Figure 2–4 to visualize how
the pixel color in mode number 18 is determined by the values stored in four maps,
usually named intensity, red, green, and blue. But this four-bit IRGB encoding is, in
reality, the number of 1 of 16 palette registers located in the Attribute Controller group
(see Section 2.2.5). Furthermore, the value stored in the Palette register is also an address
into the corresponding DAC Color register. This dual-level color indirect addressing
scheme was developed in order to provide VGA compatibility with the CGA and the

Vga device drivers 177

EGA cards. The matter is further complicated by the fact that the DAC Color register
number (an 8-bit value in the range 0 to 255) can be stored differently. If the Palette
Select bit of the Attribute Mode Control register is clear, then the DAC Color register
number is stored in the6 bits of the Palette register and in bits 2 and 3 of the Color Select
register. While if the Palette Select bit is set, then the DAC Color register number is
stored in the four low-order bits of the Palette register and in the four low-order bits of
the Color Select register. The two addressing modes are shown in Figure 8–8.

Figure 8–8 DAC Register Selection
Modes

Notice in Figure 8–8 that when the Palette Select bit is set, bits 4 and 5 of the DAC
register address are determined by bits 0 and 1 of the Color Select register, and not by
bits 4 and 5 of the Palette register. This means that a program operating in this addressing
mode will have to manipulate bits 4 and 5 of the desired DAC register number so that
they are determined by bits 0 and 1 of the Color Select register, while bits 6 and 7 of the
address are determined by bits 3 and 2 of the Color Select register.

Perhaps the simplest and most straightforward color option for VGA mode number 18
would be to set the Palette Select bit and to clear bits 0 to 3 of the Color Select register.
In this manner the Palette and Color Select registers become transparent to the software,
since the DAC register number is now determined by the four low bits of the Palette
register, which, in turn, match the IRGB value in the bit planes. Nevertheless, this color
setup would be incompatible with the one in the CGA and EGA standards, which are
based on the value stored in the 16 Palette registers. The method followed by the BIOS,
which is designed to achieved compatibility with the Palette registers of the CGA and
EGA cards, is based on a customized set of values for the DAC Color registers which are
loaded during mode 18 initialization. This set, which includes values for the first 64 DAC
Color registers only, can be seen in Table 8–6.

The pc graphics handbook 178

Table 8–6
BIOS Settings for DAC Registers in Mode Number
18
NO. R G B NO. R G B NO. R G B NO. R G B

0 0 0 0 16 0 21 0 32 21 0 0 48 21 21 0
1 0 0 42 17 0 21 42 33 21 0 42 49 21 21 42
2 0 42 0 18 0 63 0 34 21 42 0 50 21 63 0
3 0 42 42 19 0 63 42 35 21 42 42 51 21 63 42
4 42 0 0 20 42 21 0 36 63 0 0 52 63 21 0
5 42 0 42 21 42 21 42 37 63 0 42 53 63 21 42
6 42 42 0 22 42 63 0 38 63 42 0 54 63 63 0
7 42 42 42 23 42 63 42 39 63 42 42 55 63 63 42
8 0 0 21 24 0 21 21 40 21 0 21 56 21 21 21
9 0 0 63 25 0 21 63 41 21 0 63 57 21 21 63

10 0 42 21 26 0 63 21 42 21 42 21 58 21 63 21
11 0 42 63 27 0 63 63 43 21 42 63 59 21 63 63
12 42 0 21 28 42 21 21 44 63 0 21 60 63 21 21
13 42 0 63 29 42 21 63 45 63 0 63 61 63 21 63
14 42 42 21 30 42 63 21 46 63 42 21 62 63 63 21
15 42 42 63 31 42 63 63 47 63 42 63 63 63 63 63

We can corroborate the mapping of Palette and DAC registers in VGA mode number 18
by referring to Table 8–6. For example, the encoding for light red in Palette Register
number 16 is 00111100B, which is 60 decimal. Recalling that the value in the VGA
Palette register is interpreted as an index into the DAC Color register table, we can refer
to Table 8–6 and observe that the setting of DAC register number 60 is 63, 21, 21 for the
red, green, and blue elements, respectively. This setting corresponds to the color light red.
In summary, the Palette register (in this case number 12) holds an encoding in rgbRGB
format, that is also an index to the DAC Color table (in this case the rgbRGB value is
equal to 60). It is the DAC Color register that holds the 18-bit RGB encoding that drives
the analog color display.

Color Animation

An interesting programming technique for VGA systems is to use the bits in the Color
Select register to change some or all of the displayed colors. For example, if the Pal-ette
Select bit of the Attribute Mode Control register is clear, then bits 2 and 3 of the Color
Select register provide 2 high-order bits of the DAC register number (see Figure 8–8).
Since two bits can encode four combinations (00, 01,10, and 11), a program can change
the value of bits 2 and 3 of the Color Select register to index into four separate areas of
the DAC, each one containing 64 different color registers. By the same token, if the
Palette Select bit is set, then the 4 low-order bits in the Color Select register can be used
to choose one of 16 DAC areas, each one containing 16 color registers. The areas of the
DAC determined through the Color Select register are sometimes referred to as color

Vga device drivers 179

pages. Some interesting animation effects can be achieved by rapidly shifting these color
pages. For example, a program can simulate an explosion by shifting the pixel colors to
tints of red, orange, and yellow.

BIOS service number 16, sub-service number 19, provides a means for setting the
paging mode to 4 color pages of 64 registers or to 16 color pages of 16 registers each, and
also for selecting an individual color page within the DAC. In this kind of programming
it is important to remember that the BIOS initialization routines for mode number 18 set
color values for the first 64 DAC registers only. It is up to the software to initialize the
color values in the DAC registers as necessary.

8.3.3 VGA1 Library Functions

The following are generic descriptions of the device driver routines contained in the
VGA1 module of the GRAPHSOL library that is part of the book’s software. The values
passed and returned by the individual functions are listed in the order in which they are
referenced in the code. The following listing is in the order in which the routines appear
in the library source files.

ES_TO_VIDEO (Assembly Language only)

Set the ES segment register to the base address of the video buffer while in an
alphanumeric mode.

Receives:
 Nothing
Returns:
 ES set to video buffer segment for alpha mode
Action:
 Video buffer can now be addressed in the form:
 ES:xx

ES_TO_APA (Assembly Language only)

Set the ES segment register to the base address of the video buffer while in a graphics
mode. VGA graphics buffer is at A000H

Receives:
 Nothing
Returns:
 ES set to video buffer segment for graphics
mode
Action:
 Video buffer can now be addressed in the form:
 ES:xx

The pc graphics handbook 180

PIXEL_ADD_18 (Assembly Language only)

Calculate buffer offset from pixel coordinates while in VGA mode number 18.

Receives:
 1. Word integer of x-axis pixel coordinate
 Range is 0 to 639
 2. Word integer of y-axis pixel coordinate
 Range is 0 to 479
Returns:
 1. Word integer of offset into video buffer
 2. Byte integer of pixel mask for write mode 0
 or 2
Action:
 Prepare for pixel read and write operations in
VGA
 mode number 18.

WRITE_PIX_18 (Assembly Language only)

Set (write) an individual screen pixel while in VGA mode number 18, write mode 2.

Receives:
 1. Logical address of pixel in video buffer.
 2. Byte integer of pixel color in IRGB form
 3. Pixel mask for write mode 2
Returns:
 Nothing
Action:
 Pixel is set to one of 16 colors.

TILE_ADD_18 (Assembly Language only)

Calculate the coarse-grain address of an 8-by-8 pixel block (tile) while in VGA mode
number 18.

Receives:
 1. Byte integer of x-axis tile coordinate
 Range is 0 to 79
 2. Byte integer of y-axis tile coordinate
 Range is 0 to 59
Returns:
 1. Word integer of offset into video buffer
Action:
 Prepare for tile write operation.

Vga device drivers 181

WRITE_TILE_18 (Assembly Language only)

Set (write) a screen tile (8-by-8 pixel block) while in VGA mode number 18, write mode
2.

Receives:
 1. Logical address of tile in video buffer
 2. Byte integer of tile color in IRGB form
Returns:
 Nothing
Action:
 Tile is set to one of 16 colors.

READ_PIX_ 18 (Assembly Language only)

Read the color code of a screen pixel in VGA mode number 18, read mode 0.

Receives:
 1. Logical address of pixel in video buffer
 2. Pixel mask for write mode 2
Returns:
 1. Byte integer of pixel’s IRGB color code
Action:
 Pixel is read in read mode 0.

TWO_BIT_IRGB

Initialize DAC registers for VGA mode number 19 (256-colors) for the double bit IRGB
format shown in Figure 3–6.

Receives:
 Nothing
Returns:
 Nothing
Action:
 DAC registers in the pattern shown in Table 3–
3.

GRAY_256

Initialize DAC registers for VGA mode number 19 in 64 shades of gray, repeated four
times.

Receives:
 Nothing
Returns:
 Nothing

The pc graphics handbook 182

Action:
 DAC registers in the pattern shown in Table 8–
5.

SUM_TO_GRAY

Perform sum-to-gray function by means of BIOS service number 16, sub-service number
27, of interrupt 10H. Previous contents of DAC registers are not preserved.

Receives:
 Nothing
Returns:
 Nothing
Action:
 All DAC registers are converted to equivalent
gray
 shades.

SAVE_DAC

Save current color codes in all DAC registers. Values are stored in RAM.

Receives:
 Nothing
Returns:
 Nothing
Action:
 The color codes in all DAC registers are
stored in
 RAM.

RESTORE_DAC

The DAC registers are restored to the color values saved by the SAVE_DAC procedure.

Receives:
 Nothing
Returns:
 Nothing
Action:
 The color codes in all DAC registers are
restored
 from the values saved in RAM by SAVE_DAC.

PIXEL_ADD_19 (Assembly Language only)

Calculate buffer offset from pixel coordinates while in VGA mode number 19.

Receives:

Vga device drivers 183

 1. Word integer of x-axis pixel coordinate
 Range is 0 to 319
 2. Word integer of y-axis pixel coordinate
 Range is 0 to 199
Returns:
 1. Word integer of offset into video buffer
Action:
 Prepare for pixel read and write operations in
 mode number 19.

TILE_ADD_19 (Assembly Language only)

Calculate the coarse-grain address of an 8-by-8 pixel block (tile) while in VGA mode
number 19.

Receives:
 1. Byte integer of x axis tile coordinate
 Range is 0 to 39
 2. Byte integer of y axis tile coordinate
 Range is 0 to 25
Returns:
 1. Word integer of offset into video buffer
Action:
 Prepare for tile write operation.

FREEZE_DAC

Disable changes to the Palette and DAC registers during BIOS mode changes.

Receives:
 Nothing
Returns:
 Nothing
Action:
 The color codes in the Palette and DAC
registers
 are preserved during BIOS mode changes.

THAW_DAC

Enable changes to the Palette and DAC registers during BIOS mode changes.

Receives:
 Nothing
Returns:
 Nothing
Action:
 The color codes in the Palette and DAC
registers

The pc graphics handbook 184

 are replaced by the default values during BIOS
 mode changes.

Vga device drivers 185

Chapter 9
VGA Core Primitives

Topics:

• VGA primitives for video system setup
• VGA text display primitives
• VGA image display primitives
• VGA bit-map primitives
• VGA area fill primitives

9.1 Classification of VGA Primitives

Chapter 8 discussed the development of the most elementary and fundamental routines
used in graphics programming, called the device drivers. A second level of graphics
routines, usually providing higher-level functions than device drivers, are the graphics
primitives. VGA primitive routines can be arbitrarily classified into the following fields:

1. Set-up, inquiry, and control primitives. This group of functions includes video mode-
setting, read and write mode selection, initialization of palette and border color,
inquiry of active video parameters, and other preparatory and initialization functions.

2. Text primitive routines. This group includes the selection of fonts and character
attributes and the display of text characters in graphics modes.

3. Bit-block and area fill primitive routines. This group includes routines to manipulate
bitmapped images in video or RAM memory.

4. Raster graphics primitive routines. This group includes object-oriented routines to
draw the most common geometrical figures, to fill screen areas with colors or
attributes, and to transform figures stored in the video buffer or in data files.

The primitive routines in the GRAPHSOL VGA library furnished with this book are
organized in the listed fields. In the present chapter we will discuss the primitive routines
in the first three groups. Because of their complexity, Chapter 10 is devoted to VGA
raster graphics.

9.2 VGA Primitives for Set-Up, Control, and Query

The VGA graphics programmer must perform operations that are preparatory,
controlling, or inquisitory. For example, an application using VGA graphics could start
its execution by setting the desired video mode and the read and write modes, initializing
a segment register to the base address of the video buffer, and installing a set of color

values in the pallet and border color registers. These preparations could also require
investigating the present state of the video system in order to restore it at the conclusion
of the application.

Many VGA preparatory and initialization operations can be performed by means of
services in the BIOS interrupt 10H. For example, a graphics program that uses a standard
video mode will usually let the BIOS handle the complications of initializing the VGA
registers that control display characteristics. Since mode setting usually takes place once
or twice during the execution of an application, the slowness usually associated with
BIOS services can be disregarded for this purpose. The same applies to many other
initialization and set-up operations, which can be conveniently executed through the
BIOS, and which seldom appear in the code. Such is the case with operations to set and
read the Palette, Overscan, and DAC Color registers, to select the color paging mode, to
sum DAC output to gray shades, and to obtain VGA system data.

On the other hand, some initialization operations are conspicuously missing from the
services offered by BIOS interrupt 10H. For example, there are no BIOS services to set
the VGA read and write modes. This is particularly noticeable when operating in mode
number 19 (256 colors) which requires setting bit 6 of the Graphics Controller Graphics
Mode Register (see Figure 2–22). Furthermore, other BIOS graphics services, such as
those to set and read an individual screen pixel, perform so poorly that they are
practically useless.

In summary, while most applications can benefit from BIOS VGA initialization and
setup services, very few graphics programs could execute satisfactorily if they were
limited to these BIOS services.

9.2.1 Selecting the VGA Write Mode

To make the VGA more useful and flexible its designers implemented several ways in
which to write data to the video display. These are known as the write modes. VGA
allows four different write modes, which are selected by means of bits 0 and 1 of the
Graphics Mode register of the Graphics Controller (see Figure 2–22). The fundamental
functions of the various write modes are as follows:

Write mode 0 is the default mode. In write mode 0 the CPU, Map Mask register of the
Sequencer (Figure 2–13), and the Bit Mask register of the Graphics Controller (Figure 2–
24) are used to set a screen pixel to any desired color. Other VGA registers are also used
for specific effects. For example, the Data Rotate register of the Graphics Controller
(Figure 2–20) has two fields which are significant during write mode 0 operations. The
data rotate field (bits 0 to 3) determines how many positions to rotate the CPU data to the
right before performing the write operation. The logical operation select field (bits 3 and
4) determines how the data stored in video memory is logically combined with the CPU
data. The options are to write the CPU data unmodified or to AND, OR, or XOR it with
the latched data.

In write mode 1 the contents of the latch registers, previously loaded by a read
operation, are copied directly onto the color maps. Write mode 1, which is perhaps the
simplest one, is often used in moving one area of video memory into another one. This
write mode is particularly useful when the software takes advantage of the unused
portions of video RAM. The location and amount of this unused memory varies in the

The pc graphics handbook 188

different video modes. For example, in VGA graphics mode 18 the total pixel count is
38,400 pixels (640 pixels per row times 480 rows). Since the video buffer maps are 64K
bytes, in each map there are 27,135 unused buffer bytes available to the programmer.
This space can be used for storing images or data. On the other hand, video mode number
19 consists of one byte per pixel and there are 320 by 200 screen pixels, totaling 64,000
bytes. Since the readily addressable area of the video buffer is limited to 65,536 bytes, the
programmer has available only 1,536 bytes for image manipulations.

Write mode 2 is a simplified version of write mode 0. Like mode 0, it allows setting an
individual pixel to any desired color. However, in write mode 2 the data rotate function
(Data Rotate register) and the set-reset function (Set/Reset register) are not available. One
advantage of write mode 2 over write mode 0 is its higher execution speed. Another
difference between these write modes is that in write mode 2 the pixel color is
determined by the contents of the CPU, and not by the setting of the Map Mask register
or the Enable Set-Reset and Set-Reset registers. This characteristic simplifies coding and
is one of the factors that determines the better performance of write mode 2. The
WRITE_PIX_18 device driver routine developed in Chapter 7 uses write mode 2.

In write mode 3 the Data Rotate register of the Graphics Controller (Figure 2–20)
operates in the same manner as in write mode 0. The CPU data is ANDed with the Bit
Mask register. The resulting bit pattern performs the same function as the Bit Mask
register in write modes 0 and 2. The Set/Reset register also performs the same function as
in write mode 0. However, the Enable Set/Reset register is not used. Therefore, the pixel
color can be determined by programming either the Set/Reset register or the Map Mask
register. The Map Mask register can also be programmed to selectively enable or disable
the individual maps.

An application can use several read and write modes without fear of interference or
conflict, since a change in the read or write mode does not affect the displayed image. On
the other hand, a change in the video mode will normally clear the screen and reset all
VGA registers. The code for changing the write mode, which is quite simple and
straightforward, is shown in the following fragment:

; Set the Graphics Controller’s Graphic Mode Register
to the
; write mode in the AL register
 PUSH AX ; Save mode
 MOV DX,3CEH ; Graphic Controller
Address
 ; register
 MOV AL,5 ; Offset of the Mode
register
 OUT DX,AL ; Select this register
 INC DX ; Point to Data register
POP AX ; Recover mode in AL
OUT DX,AL ; Selected

The VGA graphics programmer must be aware that certain BIOS services reset the write
mode. For example, BIOS service number 9, of interrupt 10H, often used to display text
messages in an APA mode, sets write mode number 0 every time it executes. For this
reason graphics software must often reset the write mode after executing a BIOS service.

Vga core primitives 189

The procedure named SET_WRITE_MODE in the VGA1 module of the GRAPHSOL
library sets the video mode in a similar manner as the previous fragment. In addition,
SET_WRITE_MODE resets the Bit Mask register to its default value.

Writing Data in the 256-Color Modes

Writing a pixel in VGA mode number 19 (256 colors) requires that bit 6 of the Graphics
Controller Graphics Mode register be set. Therefore a set write mode routine for VGA
256-color mode operation takes this into account. The following code fragment shows the
required processing.

; Set the Graphics Controller’s Graphic Mode Register
to the
; write mode in the AL register, for 256 colors
 PUSH AX ; Save mode
 MOV DX,3CEH ; Graphic Controller
Address
 ; register
 MOV AL,5 ; Offset of the Mode
register
 OUT DX,AL ; Select this register
 INC DX ; Point to Data register
 POP AX ; Recover mode in AL
; Set bit 6 to enable 256 colors
 OR AL,01000000B ; Mask for bit 6
 OUT DX,AL ; Selected

The procedure named SET_WRITE_256 in the VGA1 module of the GRAPHSOL
library sets the video mode in a similar manner as the previous fragment. In addition,
SET_WRITE_256 resets the Bit Mask register to its default value.

9.2.2 Selecting the Read Mode

The VGA standard provides two different read modes. Read Mode 0, which is the
default, loads the CPU with the contents of one of the bitmaps. In mode number 18 we
conventionally designate the color maps with the letters I, R, G, and B, to represent the
intensity, red, green, and blue elements. In this mode, which map is read into the CPU
depends on the current setting of bits 0 and 1 of the Read Operation Map Select register
of the Graphics Controller (see Figure 2–21). Sometimes we say that the selected read
map is latched onto the CPU. In order to read the contents of all four maps, the program
must execute four read operations to the same video buffer address; this latching is
usually preceded by code to set the Read Operations Map Select register.

Read Mode 0 is useful in obtaining the contents of one or more video maps, while
Read Mode 1 is more convenient when the programmer wishes to test for the presence of
pixels that are set to a specific color or color pattern. In Read Mode 1 the contents of all
four maps are compared with a predetermined mask. This mask must have been stored
beforehand in the Color Compare register of the Graphics Controller (see Figure 7–18).
For example, to test for the presence of bright blue pixels, the IRGB bit pattern 1001B is

The pc graphics handbook 190

stored in the Color Compare register. Thereafter, a read operation appears to execute four
successive logical ANDs with this mask. If a bit in any of the four maps matches the bit
mask in the Color Compare register, it will be set in the CPU; otherwise it will be clear.

The read mode is determined by bit 3 of the Select Graphics Mode register of the
Graphics Controller (see Figure 7–22). The code to set the read mode is shown in the
following fragment:

; Set the Graphics Controller Graphic Mode Select
register to read
; mode 0 or 1, according to the value in AL
 CMP AL,1 ; If entry value is not
1
 JNE OK_BIT3 ; read mode 0 is forced
 MOV AL,08H ; 00001000B to set bit
3
OK_BIT3:
 PUSH AX ; Save mode
 MOV DX,3CEH ; Graphic controller
address
 ; register
 MOV AL,5 ; Offset of the mode
register
 OUT DX,AL ; Select this register
 INC DX ; Point to data
register
 POP AX ; Recover mode in AL
 OUT DX,AL ; Selected

The procedure named SET_READ_MODE in the VGA1 module of the GRAPHSOL
library sets the read mode in a similar manner as the previous fragment. The procedure
named READ_MAPS_18, also in the VGA1 module, reads the contents of all four maps
while in mode number 18 and returns the result in machine registers. This operation is
performed by successively selecting the I, R, G, and B maps by means of the Read Map
Select register of the Graphics Controller.

9.2.3 Selecting Logical Operation

In Chapter 7 you saw that the Data Rotate register of the Graphics Controller determines
how data is combined with data latched in the system microprocessor registers. The
programmer can select the AND, OR, and XOR logical operations by changing the value
of bits 3 and 4 .

Although all three logical operation modes find occasional use in VGA graphics
programming, the XOR mode is particularly useful. In animation routines the XOR mode
provides a convenient way of drawing and erasing a screen object. The advantages of the
XOR method are simpler and faster execution, and an easier way for restoring the
original screen image. This is a convenient programming technique when more than one
moving object can coincide on the same screen position.

Vga core primitives 191

One disadvantage of the XOR method is that the object’s color depends on the color of
the background over which it is displayed. If a graphics object is moved over different
backgrounds, its color will change. The reader can observe that the cross-hair symbol of
the MATCH program appears in different colors when overlaid over the running boar
than when over the gray background. In this case the effect is not objectionable, but in
other applications it could make the XOR technique unsuitable.

The programmer should note that some BIOS services set the Data Rotate register of
the Graphics Controller to the normal mode. For example, if BIOS service number 9 of
interrupt 10H is used to display text messages in a graphics application, when execution
returns the logical mode is set to normal operation. Therefore, a program that uses the
XOR, AND, or OR logical modes must reset the Data Rotate register after using this
BIOS service.

XOR Operations in Animation Routines

The illusion of movement of a screen object is often produced by means of geometrical
transformations. The simple transformations are named translation, rotation, and scaling.
Complex transformations consist of combining two or more of simple transformations;
for instance, a screen object moves across the screen while becoming progressively
larger. The combined transformations generate the feeling that a three-dimensional object
is diagonally approximating the viewer.

Geometrical transformations are usually performed by replacing the previous image of
the object with a new image. In lateral translation an object appears to move across the
screen by progressively redrawing it at slightly different horizontal coordinates. The boar
symbol in the MATCH program is translated in this manner. Note that the graphics
software must not only draw a series of consecutive images, but also erase the previous
images from the screen. Otherwise, the animated object leaves a visible track of
illuminated screen pixels. Although this effect could be occasionally desirable, frequently
this is not the case. Also note that erasing the screen object is at least as time consuming
as drawing it, since each pixel in the object must be changed to its previous state.

Erasing and redrawing of the screen object can be performed in several ways. One
method is to save that portion of the screen image that is to be replaced by the object. The
object can then be erased by redisplaying the original image. This method adds an
additional burden to the graphics routine, which must also read and store every screen
pixel that will be occupied by the object, but in many situations it is the only satisfactory
solution. We have mentioned that another method of erasing the screen image is based on
performing a logical XOR operation. The effect of the XOR is that a bit in the result is set
if both operands contain opposite values. Consequently, XORing the same value twice
restores the original contents, as in the following example:

 10000001B
XOR 10110011B
 ––––––––––
 00110010B
XOR 10110011B
 ––––––––––
 10000001B

The pc graphics handbook 192

An application that has set the Data Rotate register to the XOR mode can successively
display and erase a screen object by XORing its bitmap. The effect can be used to
animate the screen object by progressively changing its screen coordinates. The MATCH
program, which is furnished on the book’s software package as an illustration of VGA
programming techniques, uses the XOR mode to display and erase two animated objects:
one represents the outline of a running boar target and the other one the cross-hair of a
rifle scope. The procedure named XOR_XHAIR in the MATCHD.ASM source file and
the procedures XOR_RBOAR and XOR_LBOAR in the MATCHC.ASM source file,
perform the draw/erase operations. Both procedures assume that the logical mode for
XOR operation has been previously set.

9.2.4 System Status Operations

In contrast with its predecessors (EGA and CGA) all VGA registers that hold relevant
system data can be read by the processor. This allows a program to investigate the video
status by performing a read operation to the relevant register. In addition, BIOS service
number 27 and number 28 provide means for obtaining VGA data and for saving and
restoring the video state.

A function that is conspicuously missing in the BIOS is one to save the setting in the
256 VGA DAC color registers. For this reason, a program that uses BIOS sum-to-gray-
shades function (service number 16, sub-service 27, of interrupt 10H) has no way of
restoring the original DAC colors. The procedure named SAVE_DAC, in the VGA1
module of the GRAPHSOL library, provides a way for saving the state of the DAC
registers. The procedure RESTORE_DAC can be used to restore the DAC register setting
saved with SAVE_DAC.

9.2.5 Vertical Retrace Timing

Raster scan displays operate by projecting an electron beam on each horizontal row of
screen pixels. Pixel scanning proceeds, row by row, from the top left screen corner to the
bottom right. To avoid visible interference, the electron beam is turned off during the
period in which the gun is re-aimed back to the start of the next pixel row (horizontal
retrace). The beam is also turned off while it is re-aimed from the last pixel on the bottom
right corner of the screen to the first pixel at the top left corner (vertical retrace). Because
of the distance and directions involved, the vertical retrace period takes much longer than
the horizontal retrace one.

In the CGA card it was the programmer’s responsibility to time each access to the
video buffer with the vertical retrace cycle of the CRT controller. Otherwise the result
would be a visible interference, usually called snow. The VGA was designed to avoid this
form of interference when using conventional display programming methods. However,
animation techniques, which must flash consecutive screen images at a rapid rate, are not
free from interference. Therefore, in this case the program must time the buffer accesses
with the vertical retrace cycle of the CRT controller.

This timing requirement introduces an additional burden on animated graphics
software. For example, the screen refresh periods in VGA graphics modes take place at
an approximate rate of 70 times per second. An animated program that flashes images on

Vga core primitives 193

the screen at a minimum rate of 20 per second must take into account that each display
operation has to be timed with a vertical retrace cycle that takes place 70 times per
second. This synchronization delay must be added to the processing time in order to
maintain an interference-free image-flashing rate.

The start of the vertical retrace cycle can be determined by reading bit 7 of the VGA
Input Status register 0 in the General register group. This bit is set if a vertical retrace is
in progress. But in order to maximize the interference-free time available during a
vertical retrace, the code must wait for the start of a vertical retrace cycle. This requires
first waiting for a vertical retrace cycle to end, if one is in progress, and then detecting the
start of a new cycle. The programming is shown in the following code fragment:

; Test for start of the vertical retrace cycle
; Bit 7 of the Input Status register 0 is set if a
vertical cycle
; is in progress
 MOV DX,3C2H ; Input status register
0
 ; In VGA color modes
VRC_CLEAR:
 IN AL,DX ; Read byte at port
 JMP SHORT $+2 ; I/O delay
 TEST AL,10000000B ; Is bit 7 set?
 JNZ VRC_CLEAR ; Wait until bit clear
; At this point the vertical retrace ended. Wait for it
to
; restart
VRC_START:
 IN AL,DX ; Read byte at port
 JMP SHORT $+2 ; I/O delay
 TEST AL,10000000B ; Is bit 7 set?
 JZ VRC_START ; Wait until bit set
; Vertical retrace has now started

The procedure named TIME_VRC, in the VGA1 module of the GRAPHLIB library,
detects the start of the CRT vertical retrace cycle so that video access operations can be
synchronized.

9.3 VGA Text Display Primitives

Very few graphics applications execute without some form of text display. If the text
display functions in an application take place in separate screens from the graphics
operations, the programmer has the convenient option of selecting a text mode and either
using text output keywords in a high-level language or one of the text display functions
available in the BIOS. However, if a graphics program must combine text and graphics
on the same screen, the text display functions available to the programmer are more
limited.

The pc graphics handbook 194

9.3.1 BIOS Text Display Functions

In any mode, alphanumeric or graphics, BIOS service number 9, INT 10H, can be used to
display a character at the current cursor position. Note that this is the only BIOS character
display service that can be used in a graphics mode, but that several other services can be
used in alphanumeric modes. Service number 2, INT 10H, to set the cursor position, can
also be used in conjunction with service number 9. Note that there is no physical cursor
in VGA graphics modes, and that the action of service number 2, interrupt 10H, is simply
to fix a position for the text display operation that will follow. This invisible cursor is
sometimes called a virtual cursor. The procedure named SET_CURSOR, in the ALFA
modules of the GRAPHSOL library, uses service number 2, interrupt 10H, to set the
cursor. Once the virtual cursor is positioned at the desired screen location, the program
can display characters on the graphics screen by means of service number 9, interrupt
10H.

Text Block Display

But VGA programs that have frequent need to display text while in a graphics mode
often need a more convenient method than setting a virtual cursor and calling BIOS
service number 9. One option is a routine capable of displaying any number of text lines,
starting at any screen position, and using any desired color available in the active mode.
A convenient way of storing the display parameters for the text message is in a header
block preceding the message itself. The GRAPHIC_TEXT procedure in the VGA2
module of the GRAPHSOL library displays a text message with embedded parameters. In
this case the first byte in the header encodes the screen row at which the message is to be
displayed, the second byte encodes the screen column, and the third one the color code.
Since the procedure operates in any text of graphics mode, the range and encodings for
these parameters depend on the active mode.

BIOS Character Sets

The BIOS stores several sets of text characters encoded in bitmap form (see Figure 1–
10). VGA systems contain three complete character fonts and two supplemental fonts.
The characteristics of these fonts are shown in Table 9–1.

Table 9–1
VGA BIOS Character Sets

CHARACTER BOX SIZE MODE
8 by 8 0, 1, 2, 3, 4, 5, 13, 14, and 19
8 by 14 0, 1, 2, 3, 15, and 16
8 by 16 17, and 18
9 by 14* 7
9 by 16* 0, 1, and 7
Legend:
*=supplemental sets

Vga core primitives 195

The supplemental character sets (Table 9–1) do not contain all of the 256 character maps
of the full sets, but only those character maps that are different in the 9-bit wide fonts. In
the process of loading a 9-bit character set the BIOS first loads the corresponding set of
8-bit character maps and then overwrites the ones that need correction and that appear in
the supplemental set. This mechanism is usually transparent to the programmer, who sees
a full set of 9 by 14 or 9 by 16 characters.

9.3.2 A Character Generator

VGA graphics programs can perform simple character display operations by means of the
BIOS functions, but for many purposes these functions are too limiting. Perhaps the most
obvious limitation of character display by means of BIOS services is that the text
characters must conform to a grid of columns and rows determined by the active
character font and video mode. For example, a graphics program executing in mode
number 18 uses BIOS service number 9, interrupt 10H, to display screen text using the 8
by 16 character font. This program will be constrained to a text screen composed of 80
character columns by 30 rows and will not be able to locate text outside this imaginary
grid.

Moving a BIOS Font to RAM

A program can obtain considerable control in text display functions by operating its own
character generator, in other words, by manipulating the text character maps as if they
were a regular bitmap. The process can often be simplified by using existing character
maps. In VGA systems the most easily available character maps are the BIOS character
sets (see Table 9–1). The software can gain the necessary information regarding the
location of any one of the BIOS character maps by means of service number 17, sub-
service number 48, of interrupt 10H. Once the address of the character table is known, the
code can move all or part of this table to its own address space, where it becomes readily
accessible. The procedure named FONT_TO_RAM in the VGA2 module of the
GRAPHSOL library can be used to load any one of the three full VGA character sets into
a buffer furnished by the caller.

In loading a BIOS character font to RAM memory so that the font can be used with
the display procedures in the GRAPHSOL library the caller must precede the font storage
area with two data bytes that encode the font’s dimensions. For example, the storage area
for the BIOS 8 by 8 font can be formatted as follows:

;**********************|
; storage for BIOS |
; symmetrical font |
;**********************|
; RAM storage for symmetrical font table from BIOS
character maps
; Each font table is preceded by two bytes that
determine its
; dimensions, as follows:
; Byte at font table minus 1 = number of pixel rows

The pc graphics handbook 196

; Byte at font table minus 2 = number of horizontal
bytes
; 1 × 8 built in ROM font
 DB 1 ; bitmap x dimension,
in bytes
 DB 8 ; bitmap y dimension,
in bytes
FONT_1X8 DB 2048 DUP (00H)

Note that 2,048 bytes are reserved for the 8 by 8 BIOS font, which contains 256 character
maps of 8 bytes each (256*8=2048). By the same token, the 1-by-16 character font would
require 4,096 bytes of storage.

Once the BIOS font table is resident in the caller’s memory space it can be treated as a
collection of bitmaps, one for each character in the set. In this manner the programmer is
able to control, at the pixel level, the screen position of each character. Consequently, the
spacing between characters, which is necessary in line justification, also comes under
software control. Also the spacing between text lines and even the display of text
messages at screen angles becomes possible.

The VGA2 module of the GRAPHSOL library contains three display procedures for
displaying text messages using a BIOS character set resident in the program’s memory
space. The procedure named COARSE_TEXT provides a control similar to the one that
can be obtained using BIOS service number 9, interrupt 10H, that is, text is displayed at
column and row locations. Its operation is also similar to the GRAPHIC_TEXT
procedure previously described. The procedure named FINE_TEXT allows the display of
a single text line starting at any desired pixel location and using any desired spacing
between characters on the horizontal and the vertical axes. This means that if the vertical
spacing byte is set to zero in the text header block all the characters will be displayed on a
straight line in the horizontal plane. However, by assigning a positive or negative value to
this parameter, the programmer using this procedure can display a text message skewed
at any screen angle. Finally, the procedure named MULTI_TEXT in the VGA2 module
of the GRAPHSOL library makes possible the display of a text message consisting of
multiple lines, starting at any desired pixel location. When using the MULTI_TEXT
procedure the programmer has two header parameters to control character and row
spacing, but the skewing option is not available.

The program named TEXTDEMO, furnished in the book’s software package, contains
a demonstration of the use of the text display procedures contained in the VGA2 library.

Display Type

The use of character generator software and BIOS character tables, as described in the
previous paragraphs, considerably expands the programmer’s control over text display on
the VGA graphics modes. However, the BIOS character sets consist of relatively small
symbols. Many graphics applications require larger characters (sometimes called display
type) for use in logos, titles, headings, or other special effects. Since the largest character
sets available in BIOS are the 8 by 16 and 9 by 16 fonts, the programmer is left to his or
her own resources in this matter.

Vga core primitives 197

The programmer has many ways of creating or obtaining display type screen fonts.
These include the use of scalable character sets, the design of customized screen font
tables, the adaptation of printer fonts to screen display, the enlargement of existing screen
fonts, and even the artistic design of special letters and logos. Which method is suitable
depends on programming needs and availability of resources. Ideally, the display
programmer would have available scalable text fonts in many different typefaces and
styles. In fact, some sophisticated graphics programs and programming environments
furnish screen versions of the Postscript language, which comes close to achieving this
optimum level of text display control.

In the development of text-intensive applications, such as desktop publishing and
graphics design software, the programmer should aim at the most sophisticated levels of
text display technology. On the other hand, this absolute control over text display
operations is often not necessary. In the MATCH program, which is provided in the
book’s software package as a demonstration of VGA programming techniques, we can
see the use of two methods for creating display type. The first method was used for the
program logo; in this case a large rendering of the word “Match” was created in the
AutoCAD program, then output to a pen plotter, scanned, edited, and saved as a disk file
image in TIFF format. The second method was to use a Hewlett-Packard style printer
font (also called a PCL format) as a screen display type. The text in the first MATCH
screen: “GRAPHICS SOLUTIONS—VGA Demo Press any Key to Start Match” is
displayed using a PCL printer font. We have used a PCL font in the programming
demonstrations because they provide acceptable display quality and are often available to
the programmer.

Using a PCL Font

One noticeable difference between the BIOS screen fonts and the printer fonts in PCL
format is that the former have a symmetrical pattern for all the text characters, that is, all
character maps occupy the same memory space. For example, in a BIOS 8 by 16 font
each character map takes up 16 bytes of storage. In this case the software can reach any
character map by adding a multiple of 16 to the address that marks the start of the font
table. In other words, the offset of any desired character map is the product of its ASCII
code by the number of bytes in each character map.

However, the optimization methods followed in the creation of PCL printer fonts
determine that all character maps are not of identical size. Therefore, in a typical PCL
font the character map for the letter “M” is larger than the character map for the letter “i”.
This characteristic complicates the problem of finding the start of a desired character map
in the font table and in obtaining its specific horizontal and vertical dimensions. The
procedure named INDEX_HP in the VGA2 module of the GRAPHSOL library is an
auxiliary routine to find the offset and the character dimensions of any character in a PCL
font. The details of the PCL encoding can be found in the source code of the INDEX_HP
procedure which is located in the VGA2.ASM module in the book’s software package.

The use of a PCL font in screen display operation requires loading the font’s character
maps into the program’s address space. This operation is similar to loading a BIOS font
as performed by the FONT_TO_RAM procedure. One difference is that the BIOS font
resides in system memory while the PCL font is stored in a disk file. The procedure

The pc graphics handbook 198

READ_HPFONT in the VGA2 module loads a printer font in PCL format into a RAM
buffer provided by the caller. In this case the caller must provide a pointer to a buffer that
holds an ASCIIZ string with the filename of the PCL disk file as well as a pointer to
another buffer that will hold the loaded character set. Note that an ASCIIZ string is an
MS DOS structure that holds a pathname followed by a zero byte. An example of the
necessary structures and operations for loading a PCL font can be found in the
TEXTDEMO program contained in the book’s software.

Once the PCL font is resident in the program’s memory space, its characters can be
conveniently displayed on the screen by means of a character generator routine. The
FINE_TEXTHP procedure in the VGA2 module of the GRAPHSOL library is a character
generator routine for use with PCL format character maps. This routine provides, for PCL
fonts, the text control features provided by the FINE_TEXT procedure for BIOS
character maps.

Note that PCL font sizes are scaled to the standard density of a Hewlett-Packard laser
printer, which is of 300 dots per inch. Since the pixel density in mode number 18 is 75
pixels per inch, the displayed characters appear four times larger than printed ones. In
other words, an 8-point PCL font will be displayed as 32-point characters.

9.4 Bit-Block and Fill Primitives

Computer graphics images are roughly classified into two types: bitmapped and object-
oriented. A bitmap is a data structure that serves to encode image elements into memory
units. The character maps discussed in the previous section are bitmaps. In VGA systems
the structure of a bitmap depends on the video mode. For example, in mode number 18,
in which each screen pixel can be in one of sixteen colors (IRGB format) a full bitmap
requires four bits per pixel. Figure 3–1 shows how the screen pixels (in mode number 18)
are mapped to the VGA memory planes. However, a RAM bitmap for a mode 18
graphics image does not necessarily have to encode data in all four color planes. For
example, a monochrome image can be encoded in a single map, while its color code is
stored in a separate variable.

9.4.1 Mode 18 Bitmap Primitives

The most convenient bitmap format depends on the characteristic of the image, the video
hardware, and the computer system. In the present section we discuss the VGA primitive
routines to display the images encoded in bitmaps that have been customized for a
specific VGA mode.

Figure 9–1 is a bitmap of the running boar target using in the MATCH demonstration
program furnished in the book’s software package. Also in Figure 9–1 is the bitmap that
encodes in one-bits the screen pixels that are set in the running boar image. Because the
bitmap is on a bit-to-pixel ratio it is quite suited to VGA mode number 18.

Vga core primitives 199

Figure 9–1 Pixel Image and Bitmap of
a Graphics Object

A VGA mode number 18 graphics routine to display a bitmapped image as the one
shown in Figure 9–1 will need to know the screen coordinates at which the image is to be
displayed, the dimensions of the bitmap, and the color code for the total im-age, or for
each pixel or group of pixels. Two procedures in the VGA2 library can be used to display
a bit map in mode number 18. The procedure MONO_MAP_18 displays an image in
single color while the procedure COLOR_MAP_18 can be used to display an image in
which each pixel is encoded in a different color. In the MONO_MAP_18 procedure the
color is stored in a single IRGB byte that is used to display all pixels in the map.

In the COLOR_MAP_18 procedure the color is passed as a pointer to an array of color
codes stored in a byte-per-pixel table. This scheme, although simple and fast, is not the
most memory-efficient one, since in mode number 18 the 4-bit color code can be
represented in one nibble (4 bits). However, the masking and indexing operations
required in a nibble-per-pixel encoding would considerably slow down execution. An
alternative and quite feasible bitmap scheme for VGA mode number 18 can be based on
the video system’s color map structure (see 1). In this design the image is stored in four
RAM bitmaps, each map representing an element in the IRGB format. While this
encoding requires less than half the storage than the one used by the COLOR_MAP_18
procedure, it requires almost four times more space than a single monochrome code, as
the one in the MONO_MAP_18 procedure. Another advantage of the design adopted in
the bitmap display procedures in the VGA2 module is that either routine
(MONO_MAP_18 and COLOR_MAP_18) can be used with the same image map by
changing the color table pointer.

9.4.2 Mode 19 Bitmap Primitive

We have seen that in mode number 19 each screen pixel is mapped to a memory byte
which encodes its color. The procedure named COLOR_MAP_19, in the VGA2 module
of the GRAPHSOL library, displays a bitmap in VGA mode number 19. The code

The pc graphics handbook 200

assumes that the bitmap is preceded by a header that holds the screen coordinates for the
graphics image and the dimensions of the pixel map. Following this header is the byte-to-
pixel map of the graphics image.

Fill Primitives

Primitives to perform fill operations are used to clear or initialize the screen, to set a
geometrical area to a color or pattern, or to fill a closed boundary figure. The VGA2
module of the GRAPHSOL library contains fill routines to clear the video screen and to
initialize a rectangular pixel area. Geometrical fill routines are developed in Chapter 10.

9.5 Primitive Routines in the VGA1 and VGA2 Modules

The library module named VGA1 of the GRAPHSOL library that is part of the book’s
software contains the VGA device drivers routines as well as the setup, inquiry, and
control primitives mentioned in the present chapter. The VGA2 module contains the text
display primitives and the bitmap display and rectangular fill primitives.

9.5.1 Primitive Routines in the VGA1 Module

The following are generic descriptions of the setup, inquiry, and control primitive
routines contained in the VGA1 libraries. The values passed and returned by the
individual functions are listed in the order in which they are referenced in the code.

SET_MODE

Sets the BIOS video display mode using service number 0 of interrupt 10H.

Receives:
 1. Byte integer of desired video mode
Returns:
 Nothing
Action:
 New video mode is enabled.
 Screen is cleared.

GET_MODE

Obtains the current BIOS video mode using service number 15 of interrupt 10H.

Receives:
 Nothing
Returns:
 1. Byte integer of number of character columns
 Valid values are 40 and 80
 2. Byte integer of active video mode

Vga core primitives 201

 3. Byte integer of active display page

TIME_VRC

Test for start of the vertical retrace cycle of the VGA CRT controller.

Receives:
 Nothing
Returns:
 Nothing
Action:
 Execution returns to caller at start of
vertical
 retrace cycle

SET_WRITE_MODE

Set the Graphics Controller Write Mode register in VGA less-than-256-color modes.

Receives:
 1. Byte integer of desired write mode
Returns:
 Nothing

SET_WRITE_256

Set the Graphics Controller Write Mode register in VGA 256-color mode.

Receives:
 1. Byte integer of desired write mode
Returns:
 Nothing

SET_READ_MODE

Set the Graphics Controller Mode Select register to read mode 0 or 1.

Receives:
 1. Byte integer of desired read mode
Returns:
 Nothing

LOGICAL_MODE

Set the Graphics Controller Data Rotate register to XOR, OR, AND, or NORMAL mode.

Receives:
 1. Byte integer encoding desired logical mode

The pc graphics handbook 202

Returns:
 Nothing

READ_MAPS_18

Read contents of four color maps in VGA mode number 18.

Receives:
 1. Logical address of video buffer byte to
read
Returns:
 1. Byte integer of intensity map
 2. Byte integer of red map
 3. Byte integer of green map
 4. Byte integer of blue map
Action:
 Routine assumes that read mode 0 is active
Assumes:
 ES ––> video buffer base address

9.5.2 Primitive Routines in the VGA2 Module

The following are generic descriptions of the text display, bitmap display, and rectangular
fill primitives contained in the VGA2 libraries. The values passed and returned by the
individual functions are listed in the order in which they are referenced in the code. The
following listing is in the order in which the routines appear in the library source files.

GRAPHIC_TEXT

Display a formatted text message using BIOS service number 9, interrupt 10H. This
procedure can be used in VGA modes number 18 and 19.

Receives:
 1. Offset pointer to message text (DS assumed)
Returns:
 Nothing
Message format:
OFFSET STORAGE UNIT CONTENTS
 0 Byte integer Screen row for start of display
 1 Byte integer Screen column for start of
display
 2 Byte integer Color code
Control codes:
CODE ACTION
00H End of message
FFH End of text line

Vga core primitives 203

FINE_TEXT

Display a single-line text message using a RAM font table in which all bitmaps have the
same dimensions (symmetrical font). Display position is defined at a pixel boundary.
Mode number 18 only.

Receives:
 1. Offset pointer to message text (DS assumed)
 2. Offset pointer to RAM font table (DS
assumed)
Returns:
 Nothing
Message format:
OFFSET STORAGE UNIT CONTENTS
 0 Word integer Pixel row for start of display
 2 Word integer Pixel column for start of
display
 4 Word integer Character spacing on x axis
 6 Word integer Character spacing on y axis
 8 Byte integer Color code in IRGB format
Control codes:
CODE ACTION
00H End of message
Assumes:
 ES ––> video buffer base address

MULTI_TEXT

Display a multiple-line text message using a RAM font table in which all bitmaps have
the same dimensions (symmetrical font). Display position is defined at a pixel boundary.
Mode number 18 only.

Receives:
 1. Offset pointer to message text (DS assumed)
 2. Offset pointer to RAM font table (DS
assumed)
Returns:
 Nothing
Message format:
OFFSET STORAGE UNIT CONTENTS
 0 Word integer Pixel row for start of display
 2 Word integer Pixel column for start of
display
 4 Word integer Character spacing (x axis)
 6 Word integer Line spacing (y axis)
 8 Byte integer Color code in IRGB format
Control codes:
CODE ACTION
00H End of message

The pc graphics handbook 204

FFH End of text line
Assumes:
 ES ––> video buffer base address

FINE_TEXTHP

Display a single-line text message using a RAM font table in PCL format (asymmetrical
font). Display position is defined at a pixel boundary. Mode number 18 only.

Receives:
 1. Offset pointer to message text (DS assumed)
 2. Offset pointer to RAM font table (DS
assumed)
Returns:
 Nothing
Message format:
OFFSET STORAGE UNIT CONTENTS
 0 Word integer Pixel row for start of display
 2 Word integer Pixel column for start of
display
 4 Word integer Character spacing on x axis
 6 Word integer Character spacing on y axis
 8 Byte integer Color code in IRGB format
Control codes:
CODE ACTION
00H End of message
Assumes:
 ES ––> video buffer base address

READ_HPFONT

Read into RAM a PCL format printer font stored in a disk file

Receives:
 1. Offset pointer to ASCIIZ filename for PCL
soft
 font located in current path (DS assumed)
 2. Offset pointer to RAM storage area (DS
assumed)
Returns:
 Carry clear if no error
 Carry set if file not found or disk error

FONT_TO_RAM

Read a BIOS character map into RAM

Receives:
 1. Byte integer encoding BIOS font desired

Vga core primitives 205

 8 = 8 by 8 font
 14 = 8 by 14 font
 16 = 8 by 16 font
 2. Offset pointer to RAM storage area (DS
assumed)
Returns:
 Nothing

MONO_MAP_18

Display a single-color, bitmapped image stored in the caller’s memory space, while in
VGA mode 18.

Receives:
 1. Offset pointer to bitmap (DS assumed)
 2. Offset pointer to color code (DS assumed)
Returns:
 Nothing
Bitmap format:
OFFSET STORAGE UNIT CONTENTS
 0 Word integer Pixel row for start of display
 2 Word integer Pixel column for start of
display
 4 Byte integer Number of rows in bitmap
 5 Byte integer Bytes per row in bitmap
 6 Start of bitmapped image
Assumes:
 ES ––> video buffer base address

COLOR_MAP_18

Display a multi-color, bitmapped image stored in the caller’s memory space, while in
VGA mode 18.

Receives:
 1. Offset pointer to bitmap (DS assumed)
 2. Offset pointer to color table (DS assumed)
Returns:
 Nothing
Bitmap format:
OFFSET STORAGE UNIT CONTENTS
 0 Word integer Pixel row for start of display
 2 Word integer Pixel column for start of
display
 4 Byte integer Number of rows in bitmap
 5 Byte integer Bytes per row in bitmap
 6 Start of bitmapped image
Color table format:
One color byte per image pixel
Assumes:

The pc graphics handbook 206

 ES ––> video buffer base address

COLOR_MAP_19

Display a multi-color, byte-mapped image stored in the caller’s memory space, while in
VGA mode 19. One byte encodes each image pixel for display in 256 color mode.

Receives:
 1. Offset pointer to header data of color byte
map
 (DS assumed)
Returns:
 Nothing
Bitmap format:
OFFSET STORAGE UNIT CONTENTS
 0 Word integer Pixel row for start of display
 2 Word integer Pixel column for start of
display
 4 Byte integer Number of rows in bitmap
 5 Byte integer Bytes per row in bitmap
 6 Start of color byte-mapped image
Color table format:
One color byte per image pixel
Assumes:
 ES ––> video buffer base address

CLS_18

Clear screen using IRGB color code while in VGA mode number 18.

Receives:
 1. Byte integer of IRGB color code
Returns:
 Nothing
Action:
 Entire 640 by 480 pixel screen area is
initialized
 to the color passed by the caller.

CLS_19

Clear screen using IRGB color code while in VGA mode number 19. Encoding depends
on setting of DAC registers.

Receives:
 1. Byte integer of IRGB color code
Returns:
 Nothing
Action:

Vga core primitives 207

 Entire 320 by 200 pixel screen area is
initialized
 to the color passed by the caller.

TILE_FILL_18

Initialize a rectangular screen area, at the tile level, to a passed color code while in mode
18.

Receives:
 1. Byte integer of x axis start tile
 2. Byte integer of y axis start tile
 3. Byte integer of horizontal tiles in
rectangle
 4. Byte integer of vertical tiles in rectangle
 5. Byte integer of color code in IRGB format
Returns
 Nothing
Assumes
 ES ––> video buffer base address

TILE_FILL_19

Initialize a rectangular screen area, at the tile level, to a passed color code while in mode
19.

Receives:
 1. Byte integer of x axis start tile
 2. Byte integer of y axis start tile
 3. Byte integer of horizontal tiles in
rectangle
 4. Byte integer of vertical tiles in rectangle
 5. Byte integer of color code (format depends
 on DAC color register settings)
Returns
 Nothing
Assumes
 ES ––> video buffer base address

The pc graphics handbook 208

Chapter 10
VGA Geometrical Primitives

Topics:

• Geometrical graphics objects
• Plotting straight lines
• Plotting the conic curves
• Normalization and transformations
• Region fills

This chapter describes vector graphics in relation to the calculation and display of
geometrical figures that can be expressed in a mathematical formula. Geometrical
primitives are developed for calculating and displaying straight lines, circles, ellipses,
parabolas, and hyperbolas, and also for performing rotation and clipping transformations
and for filling the inside of a geometrical figure.

10.1 Geometrical Graphics Objects

Bitmapped graphics are used to encode and display pictorial objects, such as the running
boar target in Figure 9–1. However, graphics applications often also deal with
geometrical objects, that is, graphical objects that can be represented by means of
algebraic equations; such is the case with straight lines, parallelograms, circles, ellipses,
and other geometrical figures. The terms vector graphics, raster graphics, and object-
oriented graphics are often used, somewhat imprecisely, when referring to computer
graphics operations on geometrical objects.

In VGA graphics any image, including geometrical objects, can be encoded in a
bitmap and displayed using the bitmap routines developed in Chapter 3. However, objects
that can be represented mathematically can be treated by the graphics software in
mathematical form. For example, it is often more compact and convenient to encode a
screen circle by means of the coordinates of its origin and the magnitude of its radius than
by representing all its adjacent points in a bitmap. The same applies to other geometrical
figures, even to complex figures if they can be broken down into individual geometric
elements.

10.1.1 Pixel-Path Calculations

In previous chapters we saw that the VGA graphics screen appears to the programmer as
a two-dimensional pixel grid. Geometrical images on VGA can be visualized as points in
this two-axes coordinate system, equated to x and y axes of the Cartesian plane. In
dealing with geometrical figures the graphics programmer can use the equation of the

particular curve to determine the pixel path that will represent it on the video screen or
other device. In the VGA video display this process involves the calculation of the pixel
addresses that lie along the path of the desired curve.

In high-level language graphics the software can use the language’s mathematical
functions. However, mathematical operations in high-level languages are generally
considered too slow for screen graphics processing. Since performance is so important in
video graphics programming, the preferred method of geometrical pixel plotting is
usually the fastest one. In IBM microcomputers this often means low-level mathematics.

10.1.2 Graphical Coprocessors

One approach to performing the required pixel path calculations in the manipulation of
geometrical images is the use of graphical coprocessor hardware. Several such chips have
been implemented in silicon. For example, the XGA video graphics system, discussed in
Chapter 6, contains a graphical coprocessor chip that assists in performing block fills,
line drawings, logical mixing, masking, scissoring, and other graphics functions.
Unfortunately, the VGA system does not contain a graphical coprocessor chip.

The 80×87 as a Graphical Coprocessor

Since no graphical coprocessor is included in VGA systems the programmer is often
forced to use the central processor to perform geometrical and other calculations
necessary in graphics software. But 80×86 mathematics are slow, cumbersome, and
limited. However, most IBM microcomputers can be equipped with an optional
mathematical coprocessor chip of the Intel 80×87 family. The power of the math
coprocessor can be a valuable asset in performing the pixel path calculation required in
the drawing of geometrical figures. For example, suppose that a graphics program that
must plot a circular arc with a radius of z pixels, start coordinates at x1, y1 and end
coordinates at x2, y2. One approach to this pixel-plotting problem is to calculate the set
of x and y coordinates, starting at point x1, y1, and ending at x2, y2. The computations
can be based on the Pythagorean expression

y=r−x

where x and y are the Cartesian coordinates of the point and r is the radius of the circle.
The software can assign consecutive values to the x variable, starting at x1, and calculate
the corresponding values of the y variable that lie along the arc’s path. The pixels can be
immediately plotted on the video display or the coordinates can be stored in a memory
table and displayed later.

It is in performing such calculations that the mathematical coprocessor can be of
considerable assistance. One advantage is that many mathematical operations are directly
available, for example, the FSQRT instruction can be used to calculate the square root of
a number. On the other hand, the main processor is capable only of integer arithmetic.
Therefore the calculation of powers, roots, exponential, and trigonometric functions on
the 80×86 must be implemented in software. A second and perhaps more important factor
is the speed at which the calculations are performed with the coprocessor, estimated at 30

The pc graphics handbook 210

to 50 times faster than with the CPU. Convenience and speed make the 80×87 a powerful
programming tool for VGA geometrical graphics.

By limiting the calculations to integer values, the VGA programmer can simplify pixel
plotting using the 80×87. We have seen that in VGA mode number 18 the y coordinate of
a screen point can be represented by an integer in the range 0 to 479, and the x
coordinate, an integer in the range 0 to 639. Since the 80×87 word integer format is a 16-
bit value, with an identical numerical range as a main processor register, a graphical
program can transfer integer data from processor to coprocessor, and vice versa. These
manipulations are illustrated in the examples contained in the VGA3 module of the
GRAPHSOL library. The details of programming the 80x87 coprocessor, which is
beyond the scope of this book, can be found in several titles listed in the Bibliography.

Emulating the 80×87

One practical consideration is that the 80×87 mathematical coprocessor is an optional
device in IBM microcomputers; the exceptions are the machines equipped with the 486
chip, in which coprocessor functions are built-in. This optional nature of the coprocessor
determines that applications that assume the presence of this chip will not execute in
machines not equipped with an 80×87. This could create a serious problem for graphics
code that relies on the coprocessor for performing pixel plotting calculations. Fortunately
there is a solution to this problem: a software emulation of the coprocessor.

An 80×87 emulator is a program that simulates, in software, the operations performed
by the 80×87 chip. Once the emulator software is installed, machines not equipped with
an 80×87 are able to execute 80×87 instructions, although at a substantial performance
penalty. Ideally, a program that uses 80×87 code could test for the presence of an 80×87
hardware component; if one is found, the chip is used in the calculations, if not, its
operation is simulated by an emulator program. In reality this ideal solution is possible
only in machines that are equipped with the 80286 or 80386 CPU. The reason is that in
8086 and 8088 machines not equipped with an 8087 chip the presence of a coprocessor
instruction hangs up the system in a wait forever loop.

This problem was solved in the design of the 80286 CPU by means of 2 bits in the
Machine Status Word register. These bits, named Math Present (MP) and Emulate (EM),
allow encoding the presence, absence, or availability of the 80287 component. If the EM
bit is set, then the execution of a coprocessor opcode will automatically generate an
interrupt 7 exception. In this case a handler vectored at this interrupt can select an
emulated version of the opcode, and the machine will not hang up. A similar mechanism
is used in the 80386 CPU, but not in the 8086 or the 8088 processors.

Therefore, 8086/8088 software that alternatively uses the real 8087 if one is present or
the emulator if no chip is installed in the system must contain both real and emulated
code. In this case a routine can be devised to test for the presence of the hardware
component; if one is found, execution is directed to routines that use real 8087 code, if no
8087 is detected, the emulator software is initialized and execution is directed to routines
that contain calls to the emulator package. Since this method works in any IBM
microcomputer, it is the one adopted in the GRAPHSOL graphics library furnished with
this book. The test for the presence of the 80×87 chip, the installation of the emulator
software, and the setting of the code selection switch is performed in the INIT_X87

Vga geometrical primitives 211

procedure in the VGA3 module of the GRAPHSOL library, which also contains the
routines that use 80x87 hardware instructions. The emulated code for the geometrical
calculation routines is found in the VGA3_EM module of the aforementioned library.

Over the years emulator programs have been made available by Intel, Ingenierburo
Franke, and other sources.

10.2 Plotting a Straight Line

Geometrical figures can be drawn on the video display by mathematical pixel plotting
when the pattern of screen pixels lies along a path that can be expressed in a
mathematical equation. In this case the graphical software calculates successive
coordinate pairs and sets the pixels that lie along the curve’s path. We have mentioned
that the 80×87 mathematical coprocessor is a valuable tool for performing these
calculations rapidly and precisely. Figure 10–1 shows a pixel representation of three
straight lines.

Figure 10–1 Pixel Plots for Straight
Lines

Figure 10–2 Non-Adjacent Pixel Plot
of a Straight Line

In Figure 10–1 we see that horizontal and vertical lines are displayed on the screen by
setting adjacent pixels. A line at a 45 degree angle can also be rendered accurately by
diagonally adjacent pixels, although pixel to pixel distance will be greater in a diagonal
line than in a horizontal or vertical one. But the pixel plot of a straight line that is not in

The pc graphics handbook 212

one of these three cases cannot be exactly represented on a symmetrical grid, whether it
be a pixel grid, or a quadrille drawing paper. Figure 10–2 shows the staircase effect that
results from displaying an angled straight line on a symmetrical grid.

Notice that the black-colored pixels in Figure 10–2 represent the coordinates that
result from calculating successive unit increments along the vertical axis. If only the
black colored dots were used to represent the straight line in Figure 10–2, the graph
would be discontinuous and the representation not very accurate. An extreme case of this
discontinuity would be a straight line at such a small angle that it would be defined by
two isolated pixels, one at each screen border. In conclusion, if no corrective measures
are used, the screen drawing of a line or curve by simple computation of pixel
coordinates can produce unsatisfactory results. The non-adjacency problem can be
corrected by filling in the intermediate pixels. This correction is shown in gray-colored
pixels in Figure 10–2.

10.2.1 Insuring Pixel Adjacency

Notice that the pixel plotting routines in the VGA3 module of the GRAPHSOL library
store in memory the coordinate pairs found during the calculations phase, rather than
immediately setting the screen pixels. Due to this mode of operation, the program must
establish the necessary structures for holding the data. The following code fragment
shows several storage assignations used in the routines contained in the VGA3 module.

; Scratch-pad for temporary data
THIS_X DW 0 ; Normalized coordinate of x
THIS_Y DW 0 ; Normalized coordinate of y
LAST_Y DW 0 ; Internal control for
 ; noncontinuous y-axis points
; Buffers for storing 1K of x and y coordinates of the
first
; quadrant and a counter for the number of points
computed
Y_BUFFER DB 2048 DUP (00H)
X_BUFFER DB 2048 DUP (00H)
POINTS_CNT DW 0 ; Number of entries in
buffers

Programmers have devised many computational strategies for generating the coordinate
pairs to plot geometrical curves. Consider, at this point, that the straight line is
geometrically defined as a curve. One of the processing operations performed by pixel-
plotting routines is to fill in the spaces left empty by the mathematical computations (see
Figure 10–1), thus insuring that the screen pixels representing the curve are adjacent to
each other. The following code fragment corrects nonadjacent plots generated by any
pixel-plotting primitive that calculates y as a function of x. The routine also assumes that
x is assigned consecutive values by decrementing or incrementing the previous x value
by one.

Vga geometrical primitives 213

;***********************|
; Test for adjacent |
; y coordinates |
;***********************|
; On entry:
; CS:SI ––> buffer holding x coordinates of
curve
; CS:DI ––> buffer holding y coordinates of
curve
; Adjacency correction is required if the previous y
coordinate
; is not adjacent (one less) to the present y
coordinate. Code
; assumes that the data variables are located in the
code segment
 MOV DX,CS:THIS_Y
 MOV CX,CS:THIS_X
TEST_ADJACENT:
; Is this y < last y minus 1
 MOV BX,CS:LAST_Y
 DEC BX ; Last y minus
1
 CMP DX,BX ; Compare to
this y
 JL FILL_IN_PIXEL
; Is this y > last y plus 1
 MOV BX,CS:LAST_Y
 INC BX ; Last y plus 1
 CMP DX,BX ; Compare to
this y
 JG FILL_IN_PIXEL
 JMP STORE PIX XYS
;***********************|
; correct non-adjacency |
;***********************|
; BX = last y coordinate minus 1
FILL_IN_PIXEL:
 MOV CS:[SI],BX ; Store y
coordinate adjacent
 ; to previous
point
 MOV CS:[DI],CX ; Store this x
coordinate
 ADD SI,2 ; Bump pointers
 ADD DI,2
 INC CS:POINTS_CNT ; Bump points
counter
 MOV CS:LAST_Y,BX ; Update to
this point
 JMP TEST_ADJACENT

The pc graphics handbook 214

;***********************|
; store coordinates |
;***********************|
STORE_PIX_XYS:
 MOV CS:[SI],DX ; Store
normalized
 ; y coordinate
 MOV CS:[DI],CX ; Store
normalized x
 ; coordinate
; Bump both buffer pointers
 ADD SI,2
 ADD DI,2
 INC CS:POINTS_CNT ; Bump points
counter
 MOV CS:LAST_Y,DX ; Update LAST_Y
variable
 .
 .
 .

The auxiliary procedure named ADJACENT in the VGA3 module of the GRAPHSOL
library uses similar logic as the above fragment.

10.2.2 Calculating Straight Lines Coordinates

A straight line in the Cartesian plane can be defined in several ways. One common
mathematical expression consists of defining the line by means of the coordinates of its
two end points. In this manner we can refer to a line with start coordinates at x1, y 1 and
end coordinates at x2, y2. An alternative way of defining a straight line is by means of
the coordinates of its start point, its angle, and one of its end point coordinates. In this
manner we can refer to a straight line from x1, y1, with a slope of 60 degrees, to a point
at x2. Both expressions are useful to the graphics programmer.

Bresenham’s Algorithm

One of the original algorithms for plotting a straight line between two points was
developed by J.E.Bresenham and first published in the IBM Systems Journal in 1965.
Bresenham’s method consists of obtaining two pixel coordinates for the next y value and
then selecting the one that lies closer to the path of an ideal straight line. The following
code fragment shows the plotting of a straight line in VGA mode number 18 using
Bresenham’s method.

; Routine to draw a straight line with starting
coordinates
; stored at CS:ORIGIN_X and CS:ORIGIN_Y and end
coordinates at
; CS:END_X and CS:END_Y
;

Vga geometrical primitives 215

; Set unit increments for pixel-to-pixel operation
 MOV CX,1
 MOV DX, 1
; Determine negative or positive slope from difference
between
; the y and x coordinates of the start and end points
of the line
; This difference is also the length of the line
 MOV DI,CS:END_Y
 SUB DI,CS:ORIGIN_Y ; Length
 JGE POS_VERTICAL ; Vertical length is
positive
 NEG DX ; DX = −1 in 2’s
complement form
 NEG DI ; Make distance
positive
POS_VERTICAL:
 MOV CS:INCR_FOR_Y,DX ; Increments on the y-
axis will
 ; be positive or
negative
; Calculate horizontal distance
 MOV SI,CS:END_X
 SUB SI,CS:ORIGIN_X
 JGE POS_HORZ ; Horizontal length is
positive
 NEG CX ; CX = −1 in 2’s
complement form
 NEG SI ; Distance has to be
positive
POS_HORZ:
 MOV CS:INCR_FOR_X,CX ; Increments on the x
axis can
 ; also be positive or
negative
; Compare the horizontal and vertical lengths of the
line to
; determine if the straight segments will be horizontal
(if
; this length is greater) or vertical (otherwise)
 CMP SI,DI ; SI = horizontal
length
 ; DI = vertical length
 JGE HORZ_SEGMENTS
; Vertical length is greater, straight segments are
vertical
 MOV CX,0 ; No horizontal
segments
 XCHG SI,DI ; Invert lengths
 JMP SET_CONTROLS
HORZ_SEGMENTS:
 MOV DX,0 ; No vertical segments

The pc graphics handbook 216

SET_CONTROLS:
 MOV CS:STRT_HSEGS,CX ; Will be 1 or 0
 MOV CS:STRT_VSEGS,DX ; Also 1 or 0
; Calculate adjustment factor
 MOV AX,DI ; Smaller direction
component
 ADD AX,AX ; Double the shorter
distance
 MOV CS:STRT_TOTAL,AX ; Straight component
total
 ; pixels
 SUB AX,SI ; Subtract larger
direction
 ; component
 MOV BX,AX ; General component
counter
 SUB AX,SI ; Calculate
 MOV CS:DIAG_TOTAL,AX ; Diagonal component
total
 ; pixels
; Prepare to draw line
 MOV CX,CS:ORIGIN_X
 MOV DX,CS:ORIGIN_Y
; SI=the length of the line along the longer axis
 INC SI
 MOV AL,CS:LINE_COLOR ; Color code for line
;*********************|
; draw line points |
;*********************|
LINE_POINTS:
 DEC SI ; Counter for total
pixels
 JNZ PIX_DRAW
 JMP END_OF_LINE ; Line is finished
;*********************|
; display pixel |
;*********************|
PIX_DRAW:
 CALL PIXEL_WRITE_18 ; Routine to set pixel
in mode 18
 CMP X,0 ; If BX < 0 then
straight segment
 ; diagonal segment
otherwise
 JGE DIAGONAL
; Draw straight line segments
 ADD CX,CS:STRT_HSEGS ; Increment CX if
horizontal
 ADD DX,CS:STRT_VSEGS ; Increment DX if
vertical
 ADD BX,CS:STRT_TOTAL ; Counter plus
adjustment

Vga geometrical primitives 217

 JMP LINE_POINTS
; Draw diagonal segment
DIAGONAL:
 ADD CX,CS:INCR_FOR_X ; X direction
 ADD DX,CS:INCR_FOR_Y ; Y direction
 ADD BX,CS:DIAG_TOTAL ; Adjust counter
 JMP LINE_POINTS
END OF LINE:
 .
 .
 .

The procedure named BRESENHAM in the VGA3 module of the GRAPHSOL library is
based on this algorithm.

An Alternative to Bresenham

A program can use the 80x87 code to calculate the coordinates of a line defined by means
of its end points. In a machine equipped with the coprocessor hardware this method
performs better than the Bresenham routine listed above. On the other hand, if the 80x87
code is to be emulated in software, then Bresenham’s algorithm executes faster. The
80x87 calculations can be based on the differential equation for the slope of a straight
line:

 if
 Dy/Dx = constant
 then
 Dy/Dx = (y2 − y1) / (x2 − x1)
 therefore, the slope of the line is
expressed:
 m = Dy/Dx

The actual calculations are as follows:

; Memory variables stored in the code segment:
; CS:X1 = x coordinate of leftmost point
; CS:Y1 = y coordinate of leftmost point
; CS:X2 = x coordinate of second point
; CS:Y2 = y coordinate of second point
; During computations:
; x coordinate CS:THIS_X
Word
; y coordinate CS:THIS_Y
Word
; On exit:
; CS:BUFFER_X holds the set of x coordinates for
the line
; CS:BUFFER_Y holds the set of y coordinates
; CS:POINTS_CNT is a counter for the number of
x,y pairs

The pc graphics handbook 218

; stored in BUFFER_X and BUFFER_Y
;*********************|
; preparations |
;*********************|
; Set registers and variables to coordinates
 LEA SI,CS:Y_BUFFER ; y buffer
pointer
 LEA DI,CS:X_BUFFER ; x buffer
pointer
 MOV CS:LAST_Y,0 ; First iteration
 MOV CS:POINTS_CNT,0 ; Reset points
counter
; Calculate Dy/Dx (slope m)
 | ST(0) | ST(1) |
ST(2) |
 FILD CS:X1 ; x1 |
 FILD CS:X2 ; x2 | x1 |
 FSUB ST,ST(1) ; x2 − x1 | x1 |
 FSTP ST(1) ; x2 − x1 | empty |
; Store in variable for the normalized x coordinate of
; start point
 FIST CS:THIS_X
 FILD CS:Y1 ; y1 | x2 − x1 |
 FILD CS:Y2 ; y2 | y1 | x2
− x1 |
 FSUB ST,ST(1) ; y2 − y1 | y1 | x2
− x1 |
 FSTP ST(1) ; y2 − y1 | x2 − x1 |
empty |
 FDIV ST,ST(1) ; Dy/Dx | x2 − x1 |
 FSTP ST(1) ; Dy/Dx | empty |
;*********************|
; y coordinate |
; calculations |
;*********************|
Y_POINT:
 FILD CS:THIS_X ; x | Dy/Dx |
 |
; Solve y = x * Dy/Dx
 FMUL ST,ST(1) ; x*Dy/Dx | Dy/Dx |
; Store in variable for normalized y coordinate of this
point
 FISTP CS:THIS_Y ; Dy/Dx | empty |
;*********************|
; test for adjacent |
; y values |
;*********************|
 CALL ADJACENT ; Adjacency procedure
;*********************|
; test for last pixel |
;*********************|
 CMP CS:THIS_X,0 ; x=0 must be calculated

Vga geometrical primitives 219

 JE EXIT_POINTS
 DEC CS:THIS_X
 JMP Y_POINT
; Adjust 80×87 stack pointer
EXIT_POINTS:
 FSTP ST(0)
 .
 .
 .

A Line by its Slope

We saw, in the previous example, that a straight line can be defined by its slope. The
mathematical expression for this line, called the point-slope form, in which the y
coordinate is a function of the x coordinate can be expressed in the following equation:

y=mx

where x and y are the coordinate pairs and m is the slope. The slope is the difference
between the y coordinates divided by the difference between the x coordinates of any two
points in the line, expressed as follows:

m=(y2−y1)/(x2−x1).

Notice that y2−y1 can have a positive or negative value, therefore m can be positive or
negative. The following code fragment calculates the y coordinates for successive x
coordinates using the point-slope equation for a straight line. The calculations, which use
80x87 code, assume that a real or emulated 80x87 coprocessor is available.

; Routine to plot and store the pixel coordinates of a
straight
; line of slope s, located in the fourth quadrant
; The slope is in degrees and must be in the range 0 <
s > 90
;
; On entry:
; CS:X1 = x coordinate of origin
; CS:Y1 = y coordinate of origin
; CS:X2 = x coordinate of end point
; CS:SLOPE = slope in degrees
; During computations:
; X coordinate CS:THIS_X
word
; Y coordinate CS:THIS_Y
word
;
; Formula:
; y = x Tan s
;*********************|
; preparations |
;*********************|

The pc graphics handbook 220

; Set registers and variables to coordinates
 LEA SI,CS:Y_BUFFER ; y buffer pointer
 LEA DI,CS:X_BUFFER ; x buffer pointer
 MOV CS:LAST_Y,0 ; First iteration
 MOV CS:POINTS_CNT,0 ; Reset points counter
; Calculate the normalized x coordinate for the
rightmost point
; | ST(0) | ST(1) |
 ST(2) |
 FILD CS:X1 ; x1 |
 FILD CS:X2 ; x2 | x1 |
 FSUB ST,ST(1) ; x2 − x1 | x1 |
 FSTP ST(1) ; x2 − x1 | empty |
; Store in variable for the normalized x coordinate of
; rightmost point
 FIST THIS_X
 FSTP ST(0) ; empty
; Obtain and store tangent of slope
; | ST(0) | ST(1) |
 ST(2) |
 FILD CS:SLOPE ; s(deg) |
 CALL DEG_2_RADS ; s(rads) |
 CALL TANGENT ; tan s |
Y_BY_SLOPE :
; | tan s |
 FILD CS:THIS_X ; x | tan s |
 FMUL ST,ST(1) ; y | tan s |
; Store in variable for normalized y coordinate of this
point
 FISTP CS:THIS_Y ; tan s |
;*********************|
; test for adjacent |
; y values |
;*********************|
 CALL ADJACENT ; Adjacency test
procedure
;*********************|
; test for last pixel |
;*********************|
 CMP CS:THIS_X,0 ; x=0 must be
calculated
 JE EXIT_SLOPE
 DEC CS:THIS_X
 JMP Y_BY_SLOPE
; Adjust 8087 stack registers
EXIT_SLOPE:
 FSTP ST(0)
 .
 .
 .

Vga geometrical primitives 221

Notice that the graphic primitives named BRESENHAM and LINE_BY_SLOPE, in the
VGA3 module of the GRAPHSOL library, share several code segment variables. Also
that the procedure named ADJACENT is called by the LINE_BY_SLOPE primitive to
correct nonadjacent pixel conditions that can arise during the plotting calculations. The
VGA3 module includes a local procedure, named TANGENT, that performs the
calculations for the tangent function required in the line-by-slope formula. Since the
calculations performed by the TANGENT procedure use the radian measure of the angle,
the auxiliary procedure named DEG_2_RADS in the VGA3 module is used to convert
from degrees to radian.

Displaying the Straight Line

The LINE_BY_SLOPE procedure in the VGA3 module of the GRAPHSOL library is
limited to calculating and storing the pixel coordinates of the straight line defined by the
caller. This mode of operation makes the routine more device independent and also
makes possible certain manipulations of the stored data. However, most applications will,
sooner or later, need to draw the line on the screen. The following code fragment shows
the necessary operations.

; Display coordinates stored in CS:X_BUFFER and
CS:Y_BUFFER
; Total number of coordinates is stored in
CS:POINTS_CNT
; Setup pointers and counter
 LEA SI,CS:Y_BUFFER ; y coordinates
 LEA DI,CS:X_BUFFER ; x coordinates
 MOV CX,CS:POINTS_CNT
 MOV CS:OPS_CNT,CX ; Operational
counter
DISP_1:
 MOV CX,CS:X1 ; x coordinate of
origin
 MOV DX,CS:Y1 ; y coordinate of
origin
; Add stored values to origin
 ADD CX,WORD PTR CS:[DI]
 SUB DX,WORD PTR CS:[SI]
; CS:CX = x coordinate, CS:DX = y coordinate of point
 PUSH AX ; Save color code
 CALL PIXEL_ADD_18 ; Procedures in VGA1
module
 CALL WRITE_PIX_18
 POP AX ; Restore color code
 ADD CS:SI,2 ; Bump coordinates
pointers
 ADD CS:DI,2
 DEC CS:OPS_CNT ; Operation points
counter
 JNZ DISP_1
 .

The pc graphics handbook 222

 .
 .

The procedure named DISPLAY_LINE in the VGA3 module of the GRAPHSOL library
can be used to display a straight line plotted by means of the LINE_BY_POINTS
procedure. Notice that the procedure named BRESENHAM displays the pixels as the
coordinates are calculated.

10.3 Plotting Conic Curves

By intersecting a right circular cone at different planes it is possible to generate several
geometrical curves. These curves, or conic sections, are the circle, the ellipse, the
parabola, and the hyperbola. A VGA graphics program can plot the coordinates of the
conic curves employing similar methods as the ones developed for plotting straight lines
(see Section 10.2).

10.3.1 The Circle

A circle in the Cartesian plane can be described by the coordinates of its origin, and by its
radius. As far as the calculation of the coordinate points only the radius parameter is
necessary, although the origin coordinates is required to position the circle in the
viewport. To calculate the pixel coordinates of a circle described by its radius we can use
the Pythagorean formula, which allows us to obtain the corresponding values of y for
each x. The curve and formula can be seen in Figure 10–3.

Figure 10–3 Plot and Formula for a
Circle

The following code fragment shows the calculations necessary for plotting the
coordinates of a circular arc in the fourth quadrant. The calculations are performed by
means of the 80x87 mathematical coprocessor.

Vga geometrical primitives 223

; Routine to plot and store the pixel coordinates of a
circular
; arc in the fourth quadrant
;
; On entry:
; Radius: CS:R word
; During computations:
; x coordinate ... CS:THIS_X word
; y coordinate ... CS:THIS_Y word
;*********************|
; preparations |
;*********************|
; Reset counters and controls
 MOV CS:THIS_X,0 ; Start values f
or x
 MOV CS:LAST_Y,0 ; and LAST_Y
; Buffer pointers:
; SI ––> Y values buffer
; DI ––> X values buffer
 LEA SI,CS:Y_BUFFER
 LEA DI,CS:X_BUFFER
 MOV CS:POINTS_CNT,0 ; Reset counter
;*********************|
; calculate y values |
;*********************|
CIRCLE_Y:
; | ST(0) | ST(1)
|
 FILD CS:THIS_X ; x |
 FMUL ST,ST(0) ; x^2 |
 FILD CS:R ; r | x^2
 FMUL ST,ST(0) ; r^2 | x^2
 FSUB ST,ST(1) ; r^2 − x^2 | x^2
 FSQRT ; Rt(r^2−x^2)| x^2
 FISTP CS:THIS_Y ; x^2 |
 FSTP ST(0) ; EMPTY |
; Test adjacency condition
 CALL ADJACENT ; Library procedure
 INC CS:THIS_X ; x increments in a
circle’s
 ; fourth quadrant
 CMP CS:THIS_Y,0 ; Test for end of
execution
 JNE CIRCLE_Y
; At this point all coordinates have been plotted
 .
 .
 .

The procedure named CIRCLE in the VGA3 module of the GRAPHSOL library can be
used to plot the coordinates of a circular arc in the fourth quadrant. The code used by this
procedure is similar to the one in the preceding listing.

The pc graphics handbook 224

10.3.2 The Ellipse

An ellipse in the Cartesian plane can be described by the coordinates of its origin, and by
its major and minor semi-axes. As far as the calculation of the coordinate points only the
axes parameters are necessary, although the origin coordinates will be required to
position the ellipse in the viewport. The curve and formula can be seen in Figure 10–4.

Figure 10–4 Plot and Formula for
Ellipse

In Figure 10–4, the variable M represents the major semi-axis of the ellipse and the
variable m, the minor semi-axis. The following code fragment shows the calculations
necessary for plotting the coordinates of an elliptical curve in the fourth quadrant.

; Routine to plot and store the pixel coordinates of an
; elliptical curve in the fourth quadrant
; On entry:
; x semi-axis (M) CS:X_AXIS word
; y semi-axis (m) CS:Y_AXIS word
; During computations:
; x coordinate ... CS:THIS_X word
; y coordinate ... CS:THIS_Y word
; Variables:
; CS:m = minor axis (X_AXIS or Y_AXIS variables)
; CS:M = major axis (X_AXIS or Y_AXIS variables)
;*********************|
; preparations |
;*********************|
; Reset counters and controls
 MOV CS:THIS_X,0 ; Start value for x
 MOV CS:LAST_Y,0 ; and for LAST_Y
; Buffer pointers:
; SI ––> Y values buffer
; DI ––> X values buffer
 LEA SI,CS:Y_BUFFER
 LEA DI,CS:X_BUFFER
 MOV CS:POINTS_CNT,0 ; Reset counter
;
ELLIPSE_Y:

Vga geometrical primitives 225

; Calculate primitive coordinate of y
; First solve x^2 / M^2
; | ST(0) | ST(1)
 |
 FILD CS:X_AXIS ; M |
 FMUL ST,ST(0) ; M^2 |
 FILD CS:THIS_X ; x | M^2
 |
 FMUL ST,ST(0) ; x^2 | M^2

 FDIV ST,ST(1) ;
x^2/M^2 | M^2 |
; Solve 1 − (x^2 / M^2)
 FLD1 ; 1 |
x^2/M^2 | ? |
 FSUB ST,ST(1) ;1−(x^2/M^2) |
x^2/M^2 | ? |
; Solve m^2 * [1−(x^2/M^2)]
 FILD CS:Y_AXIS ; m |1−(x^2/M^2
)| ? | ? |
 FMUL ST,ST(0) ; m^2 |1−(x^2/M^2
)| ? | ? |
 FMUL ST,ST(1) ;m^2 * [1−(x^2/M^2)]| ?
| ? | ? |
; Find square root
 FSQRT ; y | ? | ? | ?
|
 FISTP CS:THIS_Y ; Store y in memory
; Adjust stack
 FSTP ST(0) ; ? | ? |
 FSTP ST(0) ; ? |
 FSTP ST(0) ; Stack is empty
; Insure pixel adjacency condition
 CALL ADJACENT ; Library procedure
 INC CS:THIS_X ; x increments in a
clockwise p1
 ; of the first quadrant
 CMP CS:THIS_Y,0 ; Test for end of
processing
 JNE ELLIPSE_Y
; At this point all coordinates have been plotted
 .
 .
 .

The procedure named ELLIPSE in the VGA3 module of the GRAPHSOL library can be
used to plot the coordinates of an elliptical curve in the fourth quadrant. The code used by
this procedure is similar to the one in the preceding listings.

The pc graphics handbook 226

10.3.3 The Parabola

A parabola in the Cartesian plane can be described by the coordinates of its origin and by
its focus. The curve and formula can be seen in Figure 10–5.

Figure 10–5 Plot and Formula for
Parabola

In order to plot and store the coordinates of a parabolic curve two input parameters are
required: the focus of the parabola and the start value for the x coordinate. Notice that no
initial x value is required in the circle and the ellipse plotting routines, while the routines
for plotting a parabola and a hyperbola both require an initial value for the x coordinate.
The reason for this difference is that the circle and the ellipse are closed curves, therefore
their fourth quadrant plot extends from axis to axis. On the other hand, the parabola and
the hyperbola are open curves, therefore a start value for the x coordinate is required to
define the curve. The following code fragment shows the calculations necessary for
plotting the coordinates of a parabolic curve in the fourth quadrant.

; Routine to plot and store the pixel coordinates of a
parabolic curve
; in the fourth quadrant
; On entry:
; focus of parabola CS:FOCUS
word
; start x coordinate CS:X_START
word
; During computations:
; x coordinate CS:THIS_X
word
; y coordinate CS:THIS_Y
word
; Formula:
; y = SQR. ROOT (4ax)
; Y_ABS = SQR. ROOT (4 * FOCUS * X_ABS)
;
;*********************|
; preparations |

Vga geometrical primitives 227

;*********************|
; Reset counters and controls
 MOV AX,CS:X_START ; Start value for
X
 MOV CS:THIS_X,AX
 MOV CS:LAST_Y,0 ; Reset LAST_Y
; Buffer pointers:
; SI ––> Y values buffer
; DI ––> X values buffer
 LEA SI,CS:Y_BUFFER
 LEA DI,CS:X_BUFFER
 MOV CS:POINTS_CNT,0 ; Reset counter
PARA_Y:
; Calculate primitive coordinate of y
; y = SQR. ROOT (4ax)
; THIS_Y = SQR. ROOT (4 * FOCUS * THIS_X)
; | ST(0) | ST(1)
 | | |
 FILD CS:THIS_X ; x |
 FILD CS:FOCUS ; a | x
 |
 FMUL ST,ST(1) ; ax | ? |
 FLD1 ; 1 | ax
 | ? |
 FADD ST,ST(0) ; 2 | ax
 | ? |
 FADD ST,ST(0) ; 4 | ax
 | ? |
 FMUL ST,ST(1) ; 4ax | ? | ? |
 FSQRT ; y | ? | ? |
 FISTP CS:THIS_Y ; Store y in memory
; Adjust stack
 FSTP ST(0) ; ? |
 FSTP ST(0) ; Stack is empty
; Insure pixel adjacency conditions
 CALL ADJACENT ; Library procedure
 DEC CS:THIS_X
 CMP CS:THIS_Y,0 ; Test for end of
processing
 JNE PARA_Y
; At this point all coordinates have been plotted
 .
 .
 .

The procedure named PARABOLA in the VGA3 module of the GRAPHSOL library can
be used to plot the coordinates of a parabolic curve in the fourth quadrant. The code used
by this procedure is similar to the one in the preceding listings.

The pc graphics handbook 228

10.3.4 The Hyperbola

A hyperbola in the Cartesian plane can be described by its focus, vertex, and by the
coordinates of its start point. The curve and formula can be seen in Figure 10–6.

Figure 10–6 Plot and Formula for
Hyperbola

In order to plot and store the coordinates of a hyperbolic curve the routine requires the
focus and vertex parameters, as well as the start value for the x coordinate. The following
code fragment shows the calculations necessary for plotting the coordinates of a
hyperbolic curve in the fourth quadrant.

; Routine to plot and store the pixel coordinates of a
hyperbolic
; curve in the fourth quadrant
; On entry:
; focus of hyperbola CS: FOCUS
word
; vertex of hyperbola CS:VERTEX
word
; start x coordinate CS:X_START
word
;
; During computations:
; X coordinate CS:THIS_X
word
; Y coordinate CS:THIS_Y
word
;
; Scratch-pad variables:
; Numerator radix CS:B_PARAM
word
; Vertex squared CS:VERTEX2
word
;
;*********************|

Vga geometrical primitives 229

; preparations |
;*********************|
; Reset counters and controls
 MOV AX,CS:X_START ; Start value for X
 MOV CS:THIS_X,AX
 MOV CS:LAST_Y,0 ; Reset LAST_Y
; Buffer pointers:
; SI ––> Y values buffer
; DI ––> X values buffer
 LEA SI,CS:Y_BUFFER
 LEA DI,CS:X_BUFFER
 MOV CS:POINTS_CNT,0 ; R eset counter
; Compute numerator radical from VERTEX and FOCUS
; Solve: B_PARAM = SQR. ROOT (FOCUS^2 − VERTEX^2)
; | ST(0) |
ST(1) | | |
 FILD CS:VERTEX ; a |
 FMUL ST,ST(0) ; a^2 |
 FILD CS:FOCUS ; c | a^2 |
 FMUL ST,ST(0) ; c^2 | a^2 |
 FSUB ST,ST(1) ; c^2 − a^2 | a^2 |
 FSQRT ; b | a^2 |
; Store b
 FISTP CS:B_PARAM ; a^2
; Store VERTEX^2 for calculations
 FISTP CS:VERTEX2 ; Stack is empty
HYPER_Y:
; Calculate primitive coordinate of y
; y = b / a * SQR ROOT (x^2 − a^2)
; or:
; Y_ABS = B_PARAM / VERTEX * SQR ROOT (X_ABS^2 −
VERTEX2)
 | ST(0) | ST(1)
| | |
 FILD CS:VERTEX2 ; a^2 |
 FILD CS:THIS_X ; x | a^2
|
 FMUL ST,ST(0) ; x^2 | a^2
|
 FSUB ST,ST(1) ; x^2−a^2 | ? |
 FSQRT ; SR(x^2−a^2) | ? |
 FILD CS:B_PARAM ; b | # | ? |
 FILD CS:VERTEX ; a | b
| # | ? |
 FDIV ST(1),ST ; b | b/a
| # | ? |
 FSTP ST(0) ; b/a | # | ? |
 FMUL ST,ST(1) ; y | ? | ? |
 FISTP CS:THIS_Y ; Store y in memory
; Adjust stack
 FSTP ST(0) ; ? |
 FSTP ST(0) ; Stack is empty

The pc graphics handbook 230

; Insure pixel adjacency condition
 CALL ADJACENT ; Library procedure
 DEC CS:THIS_X
 CMP CS:LAST_Y,0 ; Test for end of
processing
 JNE HYPER_Y
; At this point all coordinates have been plotted
 .
 .
 .

The procedure named HYPERBOLA in the VGA3 module of the GRAPHSOL library
can be used to plot the coordinates of a hyperbolic curve in the fourth quadrant. The code
used by this procedure is similar to the one in the preceding listings.

10.3.5 Displaying the Conic Curve

The procedure DISPLAY_LINE, developed previously, outputs to the CRT display, in
VGA mode number 18, the pixel patterns stored by the line plotting routine. The
DISPLAY_LINE procedure assigns a positive value to all the coordinates stored in
X_BUFFER and Y_BUFFER. This determines that the displayed curve is always located
in the fourth quadrant.

Notice that the routines for plotting and storing the coordinates of the four conic
curves (circle, ellipse, parabola, and hyperbola), described in the previous sections,
assume that the curve is located in the fourth Cartesian quadrant. In other words, the
plotted curves are normalized to the signs of x and y in this quadrant. However, at display
time, it is possible to change the sign of the coordinates so that the curve can be located
in any one of the four quadrants.

The VGA3 module of the GRAPHSOL library, furnished with the book, includes four
procedures to display the conic curves in any one of the four quadrants. These primitives
are named QUAD_I, QUAD_II, QUAD_III, and QUAD_IV. The procedure named
DO_4_QUADS can be used to display the curve in all four Cartesian quadrants.

10.4 Geometrical Operations

The design of program structures to be used in storing graphics image data is one of the
most challenging tasks of designing a graphic system or application. The details of the
storage format depend on several factors:

1. The programming language or languages that manipulate the stored data.
2. The available storage resources.
3. The transformations applied to the stored images.

In the manipulation of graphical data it is usually preferable to design independent
procedures to interface with the data structures. An advantage of this approach is that the
routines that perform the graphics transformations are isolated from the complexities of
the storage scheme. Principles of memory economy usually advise that each data item be

Vga geometrical primitives 231

encoded in the most compact format that allows representing the full range of allowed
values. Also that a data structure should not be of a predetermined size, but that its size
be dynamically determined according to the number of parameters to be stored.

In implementing these rules the more elaborate graphics systems or applications create
a hierarchy of image files, display files, and image segments of varying degrees of
complexity. The entire structure is designed to facilitate image transformation by
manipulating the stored data. For example:

1. An image can be mirrored to the other Cartesian quadrants by changing the sign of its
coordinates.

2. An image can be translated (moved) by performing signed addition on its coordinates.
3. An image can be rotated by moving its coordinates along a circular arc. The rotation

formulas are obtained from elementary trigonometry.
4. An image can be scaled by multiplying its coordinates by a scaling factor.
5. An image can be clipped by eliminating all the points that fall outside a certain

boundary.

At the lowest level, the ideal storage structure for image coordinates is in a matrix form.
A matrix is a mathematical concept in which a set of values is arranged in a rectangular
array. Each value in the array is called an element of the matrix. In the context of
graphics programming, matrices are used to hold the coordinate points of graphical
figures. This form of storing graphical data allows the use of the laws of linear algebra to
perform geometrical transformations by performing mathematical operations on the
matrix.

In the VGA3 module we have used a very simple storage scheme in which the image
coordinate points are placed in two rectangular matrices: X_BUFFER holds the x
coordinates and Y_BUFFER the y coordinates. Although each matrix is stored linearly,
the programmer can visualize it as a two-dimensional array by screen columns and rows.
The geometrical routines operate on normalized coordinates. In other words, the code
calculates the pixel pattern for a line or a conic curve independently of the screen position
at which the curve is displayed. In this manner, once the basic coordinates for a given
curve have been calculated and stored, the software can display as many curves as
necessary in any screen position. Furthermore, since the conic curves are symmetrical in
all four quadrants, only the coordinates of one quadrant need to be calculated. The images
in the other quadrants are obtained by operating on the stored data.

10.4.1 Screen Normalization of Coordinates

To further simplify calculations for VGA mode number 18, the origin of the coordinate
system is relocated on the Cartesian plane so that the screen map of 640 by 480 pixels
lies entirely in one quadrant. Also, the values of the y coordinate are made to grow
downward, as in the conventional representation of the video screen. This concept is
shown in Figure 10–7.

The use of only positive values for representing the x and y coordinate points
simplifies image calculations and manipulations.

The pc graphics handbook 232

Figure 10–7 Normalization of
Coordinates in VGA Mode 18

10.4.2 Performing the Transformations

The routines named QUAD_I, QUAD_II, QUAD_III, and QUAD_IV, in the VGA3
module of the GRAPHSOL library, display at any desired screen position the pixel
coordinate pairs stored in X_BUFFER and Y_BUFFER. Since the coordinates are stored
in screen-normalized form (see Section 10.4.1), the display routines must make the
corresponding sign correction at the time of translating the image map to the specific
screen position. For example, to display an image in the first quadrant the QUAD_I
routine adds the pixel column at which the image is to be displayed to each of the
coordinates in the matrix named X_BUFFER, and subtracts the pixel row from each
coordinate in Y_BUFFER. Table 10–1 shows the operations performed on the screen-
normalized coordinate pairs according to the quadrant.

Table 10–1
Transformation of Normalized Coordinates by
Quadrant in VGA

QUAADRANT I QUADRANT II QUADRANT III QUADRANT IV
x y x y x y x y
+ − + − + − + −

Translation

Translation is the movement of a graphical object to a new location by adding a constant
value to each coordinate point. The operation requires that a constant be added to all the
coordinates, but the constants can be different for each plane. In other words, a two-
dimensional graphical object can be translated to any desired screen position by adding or
subtracting values from the set of x and y coordinates that define the object. Notice that
display routines QUAD_I, QUAD_II, QUAD_III, and QUAD_IV in fact perform an
image translation from the screen top left corner to the screen position requested by the

Vga geometrical primitives 233

caller. The VGA3 module also contains a routine named DO_4_QUADS that displays an
image in all four Cartesian quadrants.

Scaling

In graphical terms, to scale an image is to apply a multiplying factor to its linear
dimensions. Thus, a scaling transformation is the conversion of a graphical object into
an-other one by multiplying each coordinate point that defines the object. The operation
requires that all the coordinates in each plane be multiplied by the same scaling factor,
although the scaling factors can be different for each plane. For example, a three-to-four
scaling transformation takes place when the x coordinates of a two-dimensional object
are multiplied by a factor of two and the y coordinates are multiplied by a factor of four.

The fundamental problem of scaling a pixel map is that the resulting image can be
discontinuous. This determines that it is often easier for the software to calculate the
parameters that define the image, rather than to scale those of an existing one. For this
reason we have not provided a scaling routine in the VGA3 library.

Rotation

Rotation is the conversion of a graphical object into another one by moving, by the same
angular value, all coordinate points that define the original object along circular arcs with
a common center. The angular value is called the angle of rotation, and the fixed point
common to all the arcs is called the center of rotation. Some geometrical figures are
unchanged by some rotations. For example, a circle is unchanged by a rotation about its
center, and a square is unchanged if it is rotated by an angle that is a multiple of 90
degrees and using the intersection point of both diagonals as a center of rotation.

To perform a rotation transformation each coordinate that defines the object is moved
along a circular arc. The effect of a 30 degree counterclockwise rotation of a polygon can
be seen in Figure 10–8.

Figure 10–8 Rotation Transformation
of a Polygon

The pc graphics handbook 234

The rotation formulas, which can be derived using elementary trigonometry, are:
x'= x cos @ − y sin @
y'= y cos @+x sin @

where x',y' are the rotated coordinates of the point x,y and @ is the angle of rotation in
clockwise direction. Since the rotation calculations require the sine and cosine functions,
the VGA3 module includes the procedures SINE and COSINE that calculate these
trigonometric functions. Notice that the calculations performed by the SINE and COSINE
procedures use the radian measure of the angle. The auxiliary procedure named
DEG_2_RADS, in the VGA3 module, perform the conversion from degrees to radians.
Rotation is performed by the procedures named ROTATE_ON and ROTATE_OFF. The
actual rotation calculations are performed by the local procedure named ROTATE.

Clipping

The graphical concept of clipping is related to that of a clipping window. In general, a
graphics window can be defined as a rectangular area that delimits the computer screen,
also called the viewport. Clipping a graphical object is excluding the parts of this object
that lie outside a defined clipping window. Figure 10–9 shows the clipping
transformation of an ellipse.

Figure 10–9 Clipping Transformation
of an Ellipse

In Figure 10–9 the dotted portion of the ellipse, which lies outside of the clipping
window, is eliminated from the final image, while the part shown in a continuous line is
preserved. In the VGA3 library clipping is performed by the procedures named
CLIP_ON and CLIP_OFF. The actual clipping calculations are done by the local
procedure named CLIP.

Notice that in the VGA3 module the actual translation, rotation, and clipping
transformations are done at display time, with no change to the stored image. In this
manner, a program to display the clipped ellipse in Figure 10–9 would first call the
ELLIPSE procedure, which calculates and stores the coordinates of the curve to screen-

Vga geometrical primitives 235

normalized parameters. Then the program calls the CLIP_ON procedure and defines the
clipping window. Finally the DO_4_QUADS routine can be used to translate the ellipse
to the actual screen position and display those portions of the curve that lie inside the
clipping rectangle. If a rotation transformation is to be used, it must be executed before
the clipping takes place.

Clipping transformations can also be used to make sure that the coordinate points of a
geometrical image are within the physical limits of the graphics device. For example, an
application working in VGA mode number 18, with a screen defini-tion of 640 pixel
columns by 480 pixel rows, can set the clipping rectangle to the dimensions of this
viewport to make sure that the display routines do not exceed the physical screen area. In
this manner the clipping routine serves as an error trap for the display function.

10.5 Region Fills

The graphics routines described in the previous sections of this chapter were designed to
display the outline of a geometrical figure in the form of a continuous pixel line. But
often a graphics application needs to display geometrical images filled with a uniform
color or with a monochrome pattern. If the geometrical figure delimits a closed screen
area, it is possible to use a fill operation to set all the pixels within the enclosed area to a
specific color or pattern. This enclosed area is sometimes called a region.

10.5.1 Screen Painting

The name screen painting is usually given to routines that perform a general region fill in
which all closed screen areas are colored with the value of its border pixels. The border
pixels serve as a boundary for the fill operation. The logic of many screen painting
routines is based on alternating between a searching and a coloring mode. One variation
is to define a background color and then to scan the entire screen, pixel by pixel,
searching for pixels that do not match the background. These non-matching pixels are
said to define a boundary. When a boundary pixel is encountered, the searching mode is
changed to the coloring mode, and each successive pixel is changed to the color of the
boundary pixel. When another boundary pixel is encountered, the mode is toggled back
to searching.

In screen painting algorithms the scanning usually starts at the top-left screen corner.
The mode is changed to searching at the start of each new pixel row. The algorithms must
take into account conditions that require special handling, for example, how to proceed if
there is a single boundary pixel on a scan line, several adjoining boundary pixels, an odd
number of boundaries, or if a vertex is encountered.

10.5.2 Geometrical Fills

The geometrical fill is a special case of the fill algorithms that is suited to filling closed
geometrical figures with a given color or pattern. The geometrical fill is different from a
general painting case in that in the geometrical fill the caller must define a pixel location
inside the figure. The simplest case is based on the following assumptions:

The pc graphics handbook 236

1. That the starting location, sometimes called the seed point, is inside a closed-boundary
figure within the viewport.

2. That there are no other figures or lines within the boundary of the figure to be filled.
3. That all consecutive points within the same horizontal line are adjacent.

Figure 10–10 shows two classes of geometrical shapes in regards to a region fill
operation.

Figure 10–10 Geometrical
Interpretation of a Region Fills

The geometrical shapes in Figure 10–10a meet the constraints defined above, while the
polygon in Figure 10–10b does not. In Figure 10–10-b, consecutive points p1 and p2,
located on the same horizontal line, are not adjacent. The simplest fill algorithm, based
on a line-by-line scan for a single boundary pixel, works only with geometric figures
similar to those in Figure 10–10-a. The logic requires a preliminary search for the
figure’s low and high points. This precursory operation simplifies the actual fill by
insuring that the scan does not exceed the figure’s boundaries at any time, therefore
avoiding the tests for vertices and for external boundaries. Figure 10–11 is a flowchart of
a region fill algorithm for a figure that meets the three constraints mentioned above.

Vga geometrical primitives 237

Figure 10–11 Region Fill Flowchart

The procedure named REGION_FILL in the VGA3 module of the GRAPHSOL
library furnished with this book performs a region fill operation on geometrical shapes of
the type shown in Figure 10–10a. The logic of this routine is based on the flowchart in
Figure 10–11.

An algorithm like the one illustrated in the flowchart of Figure 10–11 is sometimes
classified as a line-adjacency iteration. In VGA mode number 18 the performance of the
line-adjacency method can be considerably improved by pre-scanning a group of 8
horizontal pixels for a boundary. If no boundary is found, all 8 pixels are set at once.
Pixel-by-pixel scanning takes place only if the pre-scan detects a boundary pixel.

An alternative algorithm for a region fill operation consists of scanning the pixels that
form the outside border of the figure and storing their x, y coordinates in a data structure.
After the border of the figure is defined, the code scans the interior of the figure for holes.
Once the exterior boundary and the holes are known, the fill operation can be reduced to
displaying line segments that go from one exterior boundary to another, or from an
exterior boundary to a hole boundary. This algorithm, sometimes called a border fill
method, is relatively efficient and can be used to fill more complex shapes than those in
Figure 10–10a.

10.6 Primitive Routines in the VGA3 Module

The library module named VGA3 of the GRAPHSOL library, furnished with the book’s
software package, contains several VGA mode 18 geometric primitives. The following
are generic descriptions of the geometrical primitive routines contained in the VGA3
libraries. The values passed and returned by the individual functions are listed in the

The pc graphics handbook 238

order in which they are referenced in the code. The following listing is in the order in
which the routines appear in the library source files.

BRESENHAM

Draw a straight line using Bresenham’s algorithm

Receives:
 1. Byte integer of color of line
 2. Word integer of start point of x coordinate
 3. Word integer of start point of y coordinate
 4. Word integer of end point of x coordinate
 5. Word integer of end point of y coordinate
Returns:
 Nothing
Action:
 Straight line is displayed

LINE BY SLOPE

Plot and store the pixel coordinates of a straight line of slope s, located in the fourth
quadrant. The slope must be in the range 0 < s > 90 degrees.

Receives:
 1. Word integer of start point of x coordinate
 2. Word integer of start point of y coordinate
 3. Word integer of end point of x coordinate
 4. Word integer of slope
Returns:
 Nothing
Action:
 Straight line is calculated and stored

CIRCLE

Plot and store the pixel coordinates of a circular arc in the fourth quadrant.

Receives:
 1. Word integer of radius of circle
Returns:
 Nothing
Action:
 Circular arc is calculated and stored

ELLIPSE

Plot and store the pixel coordinates of an ellipse in the fourth quadrant.

Vga geometrical primitives 239

Receives:
 1. Word integer of x semi-axis of ellipse
 2. Word integer of y semi-axis of ellipse
Returns:
 Nothing
Action:
 Elliptical arc is calculated and stored

PARABOLA

Plot and store the pixel coordinates of a parabola in the fourth quadrant.

Receives:
 1. Word integer of x focus of parabola
 2. Word integer of start x coordinate
Returns:
 Nothing
Action:
 Parabolic arc is calculated and stored

HYPERBOLA

Plot and store the pixel coordinates of a hyperbola in the fourth quadrant.

Receives:
 1. Word integer of x focus of hyperbola
 2. Word integer of vertex of hyperbola
 3. Word integer of start x coordinate
Returns:
 Nothing
Action:
 Hyperbolic arc is calculated and stored

QUAD_I

Display a geometrical curve in the first quadrant, while in VGA mode number 18, using
its stored coordinates.

Receives:
 1. Byte integer of IRGB color code
 2. Word integer of x coordinate of origin
 3. Word integer of y coordinate of origin
Returns:
 Nothing
Action:
 Curve is displayed

The pc graphics handbook 240

QUAD_II

Display a geometrical curve in the second quadrant, while in VGA mode number 18,
using its stored coordinates.

Receives:
 1. Byte integer of IRGB color code
 2. Word integer of x coordinate of origin
 3. Word integer of y coordinate of origin
Returns:
 Nothing
Action:
 Curve is displayed

QUAD_III

Display a geometrical curve in the third quadrant, while in VGA mode number 18, using
its stored coordinates.

Receives:
 1. Byte integer of IRGB color code
 2. Word integer of x coordinate of origin
 3. Word integer of y coordinate of origin
Returns:
 Nothing
Action:
 Curve is displayed

QUAD_IV

Display a geometrical curve in the fourth quadrant, while in VGA mode number 18,
using its stored coordinates.

Receives:
 1. Byte integer of IRGB color code
 2. Word integer of x coordinate of origin
 3. Word integer of y coordinate of origin
Returns:
 Nothing
Action:
 Curve is displayed

DO_4_QUADS

Display all four quadrants by calling the procedures QUAD_I, QUAD_II, QUAD_III,
and QUAD_IV.

Vga geometrical primitives 241

Receives:
 Nothing
Returns:
 Nothing
Action:
 Curve is displayed in all four quadrants

ROTATE_ON

Activate the rotate operation during display.

Receives:
 1. Word integer of clockwise angle of rotation
 in the range 0 to 90 degrees
Returns:
 Nothing
Action:
 Rotation angle is stored and rotation is
enabled during display operations

ROTATE_OFF

De-activate the rotate operation during display.

Receives:
 Nothing
Returns:
 Nothing
Action:
 Rotation is disabled during display operations

CLIP_ON

Activate clipping operation during display.

Receives:
 1. Word integer of left corner of clipping
window
 2. Word integer of top corner of clipping
window
 3. Word integer of right corner of clipping
window
 4. Word integer of bottom corner of clipping
window
Returns:
 Nothing
Action:
 Clipping values are stored and clipping is
enabled during display operations

The pc graphics handbook 242

CLIP_OFF

De-activate clipping during display.

Receives:
 Nothing
Returns:
 Nothing
Action:
 Clipping is disabled during display operations

INIT_X87

Initialize 80x87 hardware or emulator and set rounding control to even.

Receives:
 Nothing
Returns:
 Nothing
Action:
 If 80x87 hardware is detected an internal
switch is set so that the coprocessor will be
used during geometrical calculations.
Otherwise the switch will direct execution
to emulated code. In both cases the control
word is set to round to even numbers.

REGION_FILL

Fill a closed geometrical surface, with no internal holes, composed of unbroken
horizontal lines. Uses VGA mode number 18.

Receives:
 1. Byte integer of IRGB color code
 2. Word integer of x coordinate of seed point
 3. Word integer of y coordinate of seed point
Returns:
 Nothing
Action:
 Figure is filled

Vga geometrical primitives 243

Chapter 11
XGA and 8514/A Adapter Interface

Topics:

• XGA and 8514/A Adapter Interface
• The Adapter Interface software
• AI Communications and concepts
• AI programming fundamentals

Describes the XGA and 8514/A video systems and their architecture. Also of
programming XGA and 8514/A by means of the IBM Adapter Interface (AI) software
package. The chapter includes programming examples in assembly language.

11.1 8514/A and XGA

In 1987 IBM introduced a high-end video graphics system intended for applications that
demand high-quality graphics, such as CAD, desktop publishing, graphical user
interfaces to operating systems, image editing, and graphics art software. The best
graphics mode available in a fully equipped 8514/A system is of 1,024 by 768 pixels in
256 colors. Compared to VGA mode number 18 (640 by 480 pixels in 16 colors) this
8514/A graphics mode offers 2.5 times the number of screen pixels and 16 times as many
colors. The major features of the 8514/A standard are the following:

1. 8514/A is furnished as an add-on card for PS/2 Micro Channel microcomputers with
VGA systems on the motherboard. The 8514/A board is installed in a slot with a
special connector that allows a VGA signal to pass through.

2. Memory architecture follows a planar scheme similar to the one used by the CGA,
EGA, and VGA systems. The card is furnished in two versions, one with 512K of on-
board VRAM and another one with 1,024K. The maximum resolution of 1,024 by 768
pixels in 256 colors is available only in the board equipped with 1,024K of video
RAM.

3. 8514/A is furnished with three character fonts. The character sizes are of 12 by 20,8 by
14, and 7 by 15 pixels for the 1,024 by 768 resolution mode. The 8-by-14 pixel
character size is the only one available in the 640-by-480 pixel mode (see Table 11–11
later in this chapter). The character fonts are stored as disk files in the diskette
supplied with the adapter.

4. The adapter contains ROM code that is used by the BIOS Power-on Self Test (POST)
to initialize the hardware, but no BIOS programmer services are included.

5. Programming the 8514/A adapter is by means of an Adapter Interface (AI) software.
The software is in the form of a TSR program. The TSR installation routine is an
executable program named HDILOAD.EXE.

6. The 8514/A AI contains services to control the adapter hardware, to draw lines,
rectangles, and small bitmaps (markers), to fill enclosed figures, to manipulate the
color palette, to perform bit block transfers (bitBLTs), to change the current drawing
position, line type, width, and display color, to select among 16 logical and 14
arithmetic mix modes, and to display text strings and individual characters.

7. The color palette consists of 262,144 possible colors of which 256 can be displayed
simultaneously. The gray scale is of 64 shades.

The internal architecture of the 8514/A consists of three central components: a drawing
engine, a display processor, and the on-board video RAM. In addition, the board contains
a color look-up table (LUT), a digital-to-analog converter (DAC), and associated
registers, as well as a small amount of initialization code in ROM. Figure 11–1 is a
diagram of the components in the 8514/A system.

Figure 11–1 8514/A Component
Diagram

The 8514/A adapter, in spite of the substantial improvements that it brought to PC
video graphics, enjoyed only limited success. The following limitations of the 8514/A
adapter have been noted:

1. 8514/A requires a Micro Channel bus. This makes the card unusable in many IBM-
compatible computers.

2. The AI interface offers limited graphics services, for example, no curve drawing
functions are available, nor are there direct services for reading or setting an individual
screen pixel.

Xga and 8514/A adapter interface 245

3. Video memory operations must take place through a single transfer register. The
absence of DMA slows down image transfer procedures.

4. 8514/A requires the presence of a VGA system on the motherboard. This duplication
of video systems often constitutes an unnecessary expense.

5. Register information regarding the 8514/A was published by IBM only after
considerable pressure from software developers. For several years there was no other
way for programming the system than using the AI services.

6. 8514/A supports only interlaced displays. This determines that applications that
generate single-pixel horizontal lines (such as CAD programs) are afflicted with
flicker. Notice that some clone 8514/A cards offer non-interlaced display.

7. IBM documentation for programming 8514/A refers almost exclusively to C language.
Programmers working in assembler or in high-level languages other than C were left
to their own resources.

In September 1990 IBM disclosed preliminary information on a new graphics standard
designated as the Extended Graphics Array, or XGA. Two configurations of the XGA
standard have since been implemented: as an adapter card and as part of the motherboard.
The XGA adapter is compatible with PS/2 Micro Channel machines equipped with the
80386 or 486 CPU. The XGA system is integrated in the motherboard of the IBM Model
95 XP 486. Figure 11–2, on the following page, is a diagram of the XGA system.

Several features of the XGA system are similar to those of the 8514/A:

1. The maximum resolution is of 1,024 by 768 pixels in 256 colors.
2. The XGA system is compatible with the 8514/A Adapter Interface software.
3. The display driver is interlaced at 1,024 by 768 pixel resolution.
4. The XGA digital-to-analog converter (DAC) and color look-up table (LUT) operate

identically to those in the 8414/A. This means that palette operations are compatible in
both systems.

5. The adapter version of XGA is furnished with either 512K or 1,204K of on-board
video RAM.

However, there are several differences between the two systems, such as:

1. The XGA is compatible with the VGA standard at the register level. This makes
possible the use of XGA in the motherboard while still maintaining VGA
compatibility. This is the way in which it is implemented in the IBM Model 95 XP
486 microcomputer.

2. XGA includes two display modes that do not exist in 8514/A: a 132-column text mode,
and a direct color graphics mode with 640-by-480 pixel resolution in 64K colors.
Notice that this graphics mode is available only in cards with 1,024K video RAM
installed.

3. XGA requires a machine equipped with a 80386 or 486 CPU while 8514/A can run in
machines with the 80286 chip.

4. XGA implements a three-dimensional, user-definable drawing space, called a bitmap.
XGA bitmaps can reside anywhere in the system’s memory space. The application can
define a bitmap in the program’s data space and the XGA uses this area directly for
drawing, reading, and writing operations.

The pc graphics handbook 246

Figure 11–2 XGA Component
Diagram

5. XGA is equipped with a hardware controlled cursor, called the sprite. It maximum size
is 64 by 64 pixels and it can be positioned anywhere on the screen without affecting
the image stored in video memory.

6. The XGA Adapter Interface is implemented as a .SYS device driver while the driver
for the 8514/A is in the form of a TST program. The module name for the XGA driver
is XGAAIDOS.SYS. The XGA AI adds 17 new services to those available in 8514/A.

7. The XGA was designed taking into consideration the problems of managing the video
image in a multitasking environment. Therefore it contains facilities for saving and
restoring the state of the video hardware at any time.

8. The XGA hardware can act as a bus master and access system memory directly. This
bus-mastering capability frees the CPU for other tasks while the XGA processor is
manipulating memory.

9. IBM has provided register-level documentation for the XGA system. This will
facilitate cloning and development of high-performance software.

Some of the objections raised for the 8514/A still apply to the XGA, for instance, the
Micro Channel requirement, the limitations of the AI services, and the interlaced display
technology. On the other hand, the XGA offers several major improvements in relation to
the 8514/A.

Xga and 8514/A adapter interface 247

11.2 Adapter Interface Software

The Adapter Interface (AI) is a software package furnished with 8514/A and XGA
systems that provides a series of low-level services to the graphics programmer. In the
8514/A the AI software is in the form of a Terminate and Stay Resident (TSR) program
while in the XGA the AI is a .SYS driver. The respective module and directory names are
shown in Table 11–1.

Table 11–1
Module and Directory Names for the Adapter
Interface Software

8514/A XGA
FORM PATHNAME FORM PATHNAME
TSR HDIPCDOS\HDILOAD.EXE .SYS XGAPCDOS\XGAAIDOS.SYS

The AI was originally documented by IBM in the IBM Personal System/2 Display
Adapter 8514/A Technical Reference (document number S68X-2248–0) published in
April 1987. IBM has also published a document named the IBM Personal System/2
Display Adapter 8514/A Adapter Interface Programmer’s Guide (document number
00F8952). This product includes a diskette containing a demo program, a collection of
font files, and several programmer utilities. The corresponding IBM document for XGA
AI is called the IBM Personal System/2 XGA Adapter Interface Technical Reference
(document number S-15F-2154–0). All of the above documents are available from IBM
Technical Directory (1–800–426–7282). Other IBM documents regarding XGA hardware
are mentioned in Chapter 7.

11.2.1 Software Installation

The AI driver software must be installed in the machine before its services become
available to the system. In the case of the 8514/A the AI driver is in the form of a TSR
program, while in the XGA it is furnished as a .SYS file. Installation instructions for the
AI software are part of the adapter package. In the case of the XGA AI several versions
of the AI are furnished by IBM: one for MS-DOS, another one for Windows, and a third
one for the OS/2 operating system.

In the MS-DOS environment the installation routine, for either the 8514/A or XGA,
creates a dedicated directory (see Table 11–1), selects the appropriate driver software,
and optionally includes an automatic setup line. In the 8514/A the automatic setup line is
added to the user’s AUTOEXEC.BAT file and in the XGA to the CONFIG.SYS file.
This insures that the driver software is made resident every time the system is booted.

The 8514/A installation process makes the AI functions available, but does not
automatically switch video functions to the 8514/A display system. Notice that, since
8514/A does not include VGA, a typical 8514/A configuration is a machine with two
display adapters, one attached to the motherboard VGA and the other one to the 8514/A

The pc graphics handbook 248

card. With the XGA, which includes VGA functions, it is possible to configure a machine
with a single display attached either to a motherboard XGA or to an adapter version of
the XGA. Alternatively, the adapter version of the XGA can be configured with two or
more displays. For example, a machine with VGA on the motherboard can be furnished
with an XGA card and monitor. In this case, the XGA resembles the typical 8514/A
arrangement described above.

11.2.2 XGA Multi-Display Systems

If and when XGA becomes the video standard for IBM microcomputers a typical
machine will probably be equipped with a single display attached to XGA hardware on
the motherboard. This is already the case in the IBM Model 95 XP 486 microcomputer.
However, most present day implementations of XGA consist of PS/2 machines,
originally equipped with VGA on the motherboard, and which have been supplemented
with an XGA adapter card. Since XGA includes VGA, this upgrade version can be
configured with a single monitor attached to the XGA video output connector. An
alternative setup uses two monitors: one attached to the VGA connector on the
motherboard and one to the XGA card.

A multi-display XGA system setup offers some interesting possibilities, for example,
in graphics applications it s possible for the XGA to display the graphics image while the
VGA on the motherboard is used in interactive debugging operations. XGA systems can
have up to six adapters operating simultaneously, although in most machines the number
of possible XGA adapters is limited by the number of available slots. This is not the case
with 8514/A, which cannot have more than two displays per system.

The possibility of multi-display XGA systems creates new potentials in applications
and systems programming. For example, by manipulating the XGA address decoding
mechanism an application can display different data on multiple XGA screens. In this
manner it is possible to conceive an XGA multitasking program with several display
systems. One feasible setup is to use the first monitor to show output of a word
processing program, the second monitor a database, and the third one a spreadsheet. The
user could switch rapidly between applications while the data displayed remains on each
screen. Another sample use of a multi-display system is an airport software package that
would show arrival schedules on one screen, and departures on another one, while a third
monitor is attached to the reservations desk. Finally, in a graphics applications
environment, we can envision a desktop publishing system in which the central monitor
would display the typesetting software, the monitor on one side would be attached to a
graphics illustration program, and the one on the other side to a text editor.

11.2.3 Operating Modes

Both 8514/A and XGA systems can operate in one of two modes: the VGA mode or the
advanced functions mode. The operating mode is selected by the software. In the VGA
mode the graphics system is a full-featured VGA (see Table 2–2). The advanced function
mode refers to the Adapter Interface software. Table 11–2 shows the characteristics of the
display modes available in the AI.

Xga and 8514/A adapter interface 249

Table 11–2
XGA and 8514/A Advanced Function Modes

 LOW RESOLUTION MODE HIGH RESOLUTION MODE
RAM installed 512K 1,024K
Interlaced NO YES
pixel columns 640 1,024
pixel rows 480 768
number of colors 16 256
Palette 256K 256K

11.2.4 The XGA and 8514/A Palette

8514/A and XGA video memory is organized in bit planes. Each bit plane encodes the
color for a rectangular array of 1,024 by 1,024 pixels. In practice, since the highest
available resolution is of 1,024 by 768 pixels, there are 256 unused bits in each plane.
This unassigned area is used by AI software as a scratchpad during area fills and in
marker manipulations, as well as for storing bitmaps for the character sets. When the
graphics system is in the low resolution mode video memory consists of eight 1,024 by
512 bit planes. However, the 8 bit planes are divided into two separate groups of 4 bit
planes each. These 2 bit planes can be simultaneously addressed. In low resolution mode
the color range is limited to 16 simultaneous colors. In the high resolution mode (see
Table 11–2) video memory consists of 8 bit planes of 1,024 by 1,024 pixels. In this mode
the number of simultaneous colors is 256. Figure 11–3 shows the bit-plane mapping in
XGA and 8514/A high resolution modes.

Figure 11–3 Bit Planes in XGA and
8514/A High-Resolution Modes

Color selection is performed by means of a color look-up table (LUT) associated with
the DAC. The selection mechanism is similar to the one used in VGA mode number 19,

The pc graphics handbook 250

described previously. This means that the 8-bit color code stored in XGA and 8514/A
video memory serves as an index into the color look-up table (see Figure 11–3). For
example, the color value 12 in video memory selects LUT register number 12, which in
the default setting stores the encoding for bright red. The default setting of the LUT
registers can be seen in Table 11–3.

Table 11–3
Default Setting of LUT Registers in XGA and
8514/A

6-BIT COLOR (HEX VALUE)REGISTER NUMBER
R G B

COLOR

0 00 00 00 Black
1 00 00 2A Dark blue
2 00 2A 00 Dark green
3 00 2A 2A Dark cyan
4 2A 00 00 Dark red
5 2A 00 2A Dark magenta
6 2A 15 00 Brown
7 2A 2A 2A Gray
8 15 15 15 Dark gray
9 15 15 3F Light blue
10 15 3F 15 Light green
11 15 3F 3F Light cyan
12 3F 15 15 Light red
13 3F 15 3F Light magenta
14 3F 3F 15 Yellow
15 3F 3F 3F Bright white
16 to 31 00 00 2A Dark blue
32 to 47 00 2A 00 Dark green
48 to 63 00 2A 2A Dark cyan
64 to 79 2A 00 00 Dark red
80 to 95 2A 00 2A Dark magenta
96 to 111 2A 15 00 Brown
112 to 127 2A 2A 2A Gray
128 to 143 15 15 15 Dark gray
144 to 159 15 15 3F Light blue
160 to 175 15 3F 15 Light green
176 to 191 15 3F 3F Light cyan
192 to 207 3F 15 15 Light red
208 to 223 3F 15 3F Light magenta
224 to 239 3F 3F 15 Yellow
240 to 255 3F 3F 3F Bright white

Xga and 8514/A adapter interface 251

XGALUT program, provided in the book’s software package, displays the color in the
XGA palette. The colors displayed by the program match those in Table 11–3. Notice
that the default setting for the XGA and 8514/A LUT registers represent only 16 color
values, which correspond to registers 0 to 15 in Table 11–3. The default colors encoded
in LUT registers 16 to 255 are but a repetition, in groups of 15 registers, of the encodings
in the first 16 LUT registers. Consequently, software products that intend to use the full
color range of XGA and 8514/A systems must reset the LUT registers.

In the documentation for Display Adapter 8514/A IBM recommends an 8-bit color
coding scheme in which 4 bits are assigned to the green color and 2 bits to the red and
blue colors respectively. This scheme is related to the physiology of the human eye,
which is more sensitive to the green area of the spectrum than to the red or blue areas.
One possible mapping, which conforms with the XGA direct color mode, is to devote bits
0 and 1 to the blue range, bits 2 to 5 to the green range, and bits 6 and 7 to the red range.
This bitmapping is shown in Figure 11–4.

Figure 11–4 XGA/8514/A Bit-to-Color
Mapping

An alternative mapping scheme can be based on assigning 2 bits to the intensity, red,
green, and blue elements, respectively. A similar double-bit IRGB encoding was
developed in Section 8.3.1 and in Table 8–3 for VGA 256-color mode number 19. The
XGA and 8514/A color registers (color look-up table) consist of 18 bits, 6 bits for each
color (red, green, and blue). The bitmap of the LUT registers is shown in Figure 11–5.

Figure 11–5 Bitmap of XGA and
8514/A Color Registers

Notice that the XGA bitmap for the LUT register uses the six high-order bits while the
VGA bitmap uses the 6 low-order bits (see Figure 3.7). As a result of this difference the
values for a VGA palette must be shifted left 2 bits (multiplied by 4) in order to convert
them to the XGA bit range.

The pc graphics handbook 252

11.2.5 Alphanumeric Support

The XGA and 8514/A Adapter Interface provides services for the display of text strings
and of individual characters. The string-oriented services are designated as text functions
in the AI documentation while the character-oriented services are called alphanumeric
functions. The AI text and character display services are necessary since BIOS and DOS
functions for displaying text do not operate on the XGA and the 8514/A video systems.

Both text and alphanumeric functions in the AI require the use of character fonts,
several of which are part of the XGA and 8514/A software package. These character
fonts are stored in disk files located in the adapter’s support diskette. During installation
the font files are moved to a special directory in the user’s hard disk drive. The 8514/A
adapter is furnished with three standard fonts while there are four stan-dard fonts in the
XGA diskette. In addition, the XGA diskette contains four supplementary fonts that have
been optimized for XGA hardware. Finally, the diskette furnished with the IBM Personal
System/2 Display Adapter 8514/A Adapter Interface Programmer’s Guide (see Section
6.1) contains 22 additional fonts, which are also compatible with the XGA system.

Fonts for the AI software can be in three different formats: short stroke vector, single-
plane bitmaps, and multiplane bitmaps. The fonts furnished with 8514/A are of short
stroke vector type. The supplementary fonts furnished with the XGA diskette are in
single-plane bitmap format. The fonts furnished with the 8514/A Programmer’s Guide
diskette are also in the single-plane bitmap format. Multiplane bitmapped fonts, although
documented in the Display Adapter 8514/A Technical Reference, have not been
furnished by IBM for either 8514/A or XGA systems. In the XGA diskette it is possible
to identify the fonts in short stroke vector format by the extension .SSV, while the single-
plane bitmap fonts have the extension .IMG. However, the 8514/A short stroke vector
fonts have the extension .FNT. An additional complication is that the XGA installation
routine changes the extension .SSV for .FNT. For these reasons it is not always possible
to identify the font format by means of the extension to the filename.

Font File Structure

All font files compatible with the AI software must conform to a specific format and
structure. Each of the standard fonts supplied in the Adapter Interface diskette contains
five different character sets, named code pages in the IBM documentation. The code page
codes and corresponding alphabets can be seen in Table 11–4.

Table 11–4
IBM Code Pages

CODE DESIGNATION
437 US/English alphabet
850 Multilingual alphabet
860 Portuguese alphabet
863 Canadian/French alphabet
865 Nordic alphabet

Xga and 8514/A adapter interface 253

At the start of each font file is a font file header that contains general information about
the number of code pages, the default code pages, and the offset of each character set
within the disk file. The font file header can be seen in Table 11–5.

Each code page (character set) in a font file is preceded by a header block that
contains the necessary data for displaying the encoded characters. The character set
header is called the character set definition block in IBM documentation. The offset of
the character set headers can be obtained from the corresponding entry in the font file
header (see Table 11–5). In this manner, a program can locate the header block for the
first code page (US/English alphabet) by adding the word value at offset 10 of the font
file header (see Table 11–5) to the offset of the start of the disk file.

Table 11–5
Adapter Interface Font File Header

OFFSET UNIT CONTENTS
0 word Number of code pages in the font file
2 word Number of the default code page (range 0 to 4)
4 word Number of alternate default code page (range 0 to 4)
6 doubleword 4-character id string for the first code page (‘437'0)
10 word Offset within the disk file of the first code page
12 doubleword 4-character id string for the second code page (‘850'0)
16 word Offset within the disk file of the second code page
18 doubleword 4-character id string for the third code page (‘860'0)
22 word Offset within the disk file of the third code page
24 doubleword 4-character id string for the fourth code page (‘863'0)
28 word Offset within the disk file of the fourth code page
30 doubleword 4-character id string for the fifth code page (‘865'0)
34 word Offset within the disk file of the fifth code page

Table 11–6, on the following page, shows the data encoded in the character set header.
Notice that the byte at offset 1 of the character set header encodes the image format as
bitmapped (value 0) or as short stroke vector type (value 1). If the image is in bitmapped
format, then bit 14 of the word at offset 12 determines if the image is single or
multiplane. The byte at offset 7 of the character set header measures the number of
horizontal pixels in the character cell while the byte at offset 8 measures its vertical
dimension. The cell size, which is stored at the word at offset 10, represents the number
of bytes used in storing each character encoded in bitmap format. This value is obtained
by multiplying the pixel width (offset 7) by the pixel height (offset 8) and dividing the
product by 8.

The index table, which can be located by means of the address stored at offset 14 of
the character set header, contains the offset of the character definitions for each
individual character. For single-plane fonts the start location of the character definition
table can be found from the address stored at offset 24. Therefore, a program can locate
the bitmap for a particular character by adding its offset in the table, obtained from the
index table, to the offset of the start of the character definition table. The code for first
and last characters, at offsets 22 and 23 of the character set header, serves to delimit the

The pc graphics handbook 254

character range of the font. For example, if a font does not start with character code 1, the
value at offset 22 in the character set header must be used to scale the character codes
into the index table.

Multiplane fonts consist of three monochrome images, whose bitmaps can be located
by means of the addresses stored at offsets 24, 30, and 36 of the character set header (see
Table 11–6). To the present date, multiplane image fonts have not been furnished by
IBM. Single-plane image fonts are encoded in a single bitmap, which is located at the
address stored at offset 24 of the character set header (see Table 11–6). The character’s
image is encoded in a bit-to-pixel scheme. The character’s foreground and background
colors are determined by means of foreground color and background color settings
described later in this chapter.

Table 11–6
Adapter Interface Character Set Header

OFFSET UNIT CONTENTS
0 byte Reserved
1 byte Image formated as follows:

0=single or multiplane image
3=short stroke vector image

26 Reserved
7 byte Pixel width of character cell
8 byte Pixel height of character cell
9 byte Reserved
10–11 word Cell size (in bytes per character)
12–13 word Character image format:

Bit 14:
0=single plane image
1=multiplane image
Bit 13:
0=not proportionally spaced
1=proportionally spaced
All other bits are reserved (0)

14–17 doubleword Offset:segment of index table
18–21 doubleword Offset:segment of porportional spacing table
22 byte Code for first character
23 byte Code for last character
24–27 doubleword Offset:segment of first characterdefinition table (all font types)
28–29 Reserved
30–33 doubleword Offset:segment of second character definition table (multiplane fonts)
34–35 Reserved
36–39 doubleword Offset:segment of third character definition table (multiplane fonts)

The location of the character definition table for short stroke vector fonts is the same as
for single stroke, bitmapped fonts. However, short stroke vector characters are encoded in
the form of drawing orders, each of which is represented in a 1-byte command. The
character drawings are made up of a series of straight lines (vectors) that can be no longer

Xga and 8514/A adapter interface 255

than 15 pixels. Each vector must be drawn at an angle that is a multiple of 45 degrees.
Therefore the lines must be either vertical, horizontal, or diagonal. Figure 11–6 shows the
bitmap of the short stroke vector commands.

The vector direction field, marked with the letters d in Figure 11–6, determines the
direction and angle of each vector. The reference point is at the origin of the Cartesian
plane and the angle is measured in a counterclockwise direction. In this manner the value
010 corresponds with a vector drawn in the vertical direction, downward from the start
point. The field marked with the letter m in Figure 11–6 determines if the vector is a draw
or move operation. We have used the plotter terminology of pen up and pen down to
illustrate this function. If a vector is defined as a pen up vector the current position is
changed but no drawing takes place. If the m bit is set (pen down), then the vector
command draws a line on the video screen. The length of the vector is determined by the
4 bits in the field marked with the letters l in Figure 11–6. A 0000 value in this field is
interpreted as no operation. The maximum length of a vector corresponds with the field
value of 1111, which is equivalent to 15 pixels. The current drawing position is moved
one pixel further than the value encoded in the l field.

Figure 11–6 Bitmap of the Short
Stroke Vector Command

11.3 Communicating with the AI

The Adapter Interface software was conceived as a layer of software services for
initializing, configuring, and programming the 8514/A graphics system. XGA is
furnished with a compatible set of services, which are a superset of those furnished for
8514/A. In both cases, 8514/A and XGA, the programming interface documentation
assumes that programming is in C language. Access methods from other languages have
not been described to this date. One difference between the AI software, as furnished for

The pc graphics handbook 256

8514/A and XGA, is that the former is a Terminate and Stay Resident (TSR) program
while the latter is an MS-DOS device driver of the .SYS file type.

The AI installation selects one of two versions of the software according to the amount
of memory in the graphics system. Once installed, the address of the AI handler is stored
at interrupt vector 7FH. The AI services are accessed by means of an INT 7FH
instruction or by a far call to the address of the service routine.

11.3.1 Interfacing with the AI

Before an application can start using the AI services it must first certify that the software
is correctly installed and obtain the address of the service routine. Since interrupt 7FH
has been documented as a reserved vector in IBM literature, the application can assume,
with relative certainty, that the value stored at this vector is zero if no AI has been
installed. However, this assumption risks that a non-conforming program has improperly
used the vector for its own purposes. In which case the vector could store a non-zero
value, while no AI is present.

The documented access mechanism for the AI services is by means of a far call. It
appears that the AI is preceded by a jump table to each of its service routines and that
each address in the jump table is a 4-byte far pointer. Therefore the calling program must
multiply the AI service request by four to obtain the offset in the jump table. This jump
table offset is placed in the SI register, the offset element of the address of the AI service
routine is in BX, and its segment in ES. Once these registers are set up, the far call to a
particular AI service can be performed by means of the instruction

CALL DWORD PTR ES:[BX+SI]

Notice that the offset element of the address is determined by the sum of the pointer
register (BX) and the offset of the service routine in the jump table (SI).

C Language Support

Two support files and a demonstration program for the AI are included in both the
8514/A and the XGA diskettes furnished with the adapters. The C language header files
are named AFIDATA.H and IBMAFI.H. In addition, the assembly language source file
named CALLAFI. ASM contains three public procedures for initializing and calling the
AI. The object file CALLAFI.OBJ must be linked with the application’s C language
modules in order to access the AI. The header files and the object module CALLAFI.OBJ
provide a convenient interface with the AI for C language applications.

AI Entry Points

We saw that an application accesses the AI services by means of a jump table of service
numbers. The C language support software provided with XGA and 8514/A contains an
ordered list of the code names of the services and their associated entry points. In this
manner an application coded in C language need only reference the service name and the
support software will calculate the routine’s entry point from the furnished table. Table

Xga and 8514/A adapter interface 257

11–7 lists the service routine code names and entry point numbers for the AI services
available in both 8514/A and XGA systems.

Table 11–7
8514/A and XGA Adapter Interface Services

NAME ENTRY POINT NUMBER DESCRIPTION
HLINE 0 Draw line
HCLINE 1 Draw line at current point
HRLINE 2 Draw line from start point
HCRLINE 3 Draw line from start point
HSCP 4 Set current point
HBAR 5 Begin area for fill operation
HEAR 6 End area for fill operation
HSCOL 7 Set current color
HSOPEN 8 Open adapter for AI operations
HSMX 9 Set mix
HSBCOL 10 Set background color

NAME ENTRY POINT NUMBER DESCRIPTION
HSLT 11 Set line type
HSLW 12 Set line width
HEGS 13 Erase graphics screen
HSGQ 14 Set graphics quality
HSCMP 15 Set color compare register
HINT 16 Synchronize with vertical retrace
HSPATTO 17 Set pattern reference
HSPATT 18 Set pattern shape
HLDPAL 19 Load palette
HSHS 20 Set scissor
HBBW 21 Write bit block image data
HCBBW 22 Write bit block at current point
HBBR 23 Read bit block
HBBCHN 24 Chain bit block data
HBBC 25 Copy bit block
HSCOORD 26 Set coordinate type
HQCOORD 27 Query coordinate type
HSMODE 28 Set adapter mode
HQMODE 29 Query adapter mode
HQMODES 30 Query adapter modes
HQDPS 31 Query drawing process state
HRECT 32 Fill rectangle
HSBP 33 Set bit plane controls
HCLOSE 34 Close adapter
HESC 35 Escape (terminate processing)
HXLATE 36 Assign multiplane color tables

The pc graphics handbook 258

HSCS 37 Select character set
HCHST 38 Display character string
HCCHSET 39 Display string at current point
ABLOCKMFI 40 Display character block (MFI mode)
ABLOCKCGA 41 Display character block (CGA mode)
AERASE 42 Erase character rectangle
ASCROLL 43 Scroll character rectangle
ACURSOR 44 Set current cursor position
ASCUR 45 Set cursor shape
ASFONT 46 Select character set
AXLATE 47 Assign color index
HINIT 48 Initialize adapter state
HSYNC 49 Synchronize adapter with task
HMRK 50 Display marker
HCMRK 51 Display marker at current point
HSMARK 52 Set marker shape
HSLPC 53 Save linepattern count
HRLPC 54 Restore saved linepattern count
HQCP 55 Query current point
HQDFPAL 56 Query default palette
HSPAL 57 Save palette
HRPAL 58 Restore pallete
HSAFP 59 Set area fill plane
ASCELL 60 Set cell size

The XGA adapter contains 18 additional AI services that are not available in 8514/A.
These XGA proprietary services are listed in Table 11–8.

Table 11-8
XGA Adapter Interface Services

NAME ENTRY POINT NUMBER DESCRIPTION
ASGO 61 Set alpha grid origin
HDLINE 62 Disjoint line at point
---- 63
HPEL 64 Write pixel string
HRPEL 65 Read pixel string
HPSTEP 66 Plot and step
HCPSTEP 67 Plot and step at current position
HRSTEP 68 Read and step
HSBMAP 69 Set bitmap attributes
HQBMAP 70 Query bitmap attributes
HBMC 71 Bitmap copy
HSDW 72 Set display window
HSPRITE 73 Sprite at given position

Xga and 8514/A adapter interface 259

HSSPRITE 74 Set sprite shape
HRWVEC 75 Read/write vector
----- 76
----- 77
HSFPAL 78 Save full palette
HRFPAL 79 Restore full palette
HQDEVICE 80 Query device specific (no action)

Obtaining the AI Address

The following procedure can be used to test the AI initialization and, if the service
software is installed, to acquire the address of the AI service routines.

AI_VECTOR PROC FAR
; Procedure to obtain the address of the XGA and 8514/A
Adapter
; Interface. This procedure must be called before calls
are made
; to the Adapter Interface services
; On entry:
; nothing
; On exit:
; carry set if no AI installed
; carry clear if AI present
; CX => segment of AI link table
; DX => offset of AI link table
;**********************|
; get vector 7FH |
;**********************|
; Use MS DOS service number 53, interrupt 21H, to
obtain the
; vector for the XGA and 8514-A AI interrupt (7FH)
 MOV AH,53 ; MS DOS service number
 MOV AL,7FH ; AI interrupt
 INT 21H ; MS DOS interrupt
; ES => segment of interrupt handler
; BX => offset of handler
;**********************|
; test for no AI |
;**********************|
; The code assumes that the vector at INT 7FH will be
0000:0000
; if the AI is not initialized
 MOV AX,ES ; Segment to AX
 OR AX,BX ; OR segment and offset
 JNZ OK_AI ; Go if address not
0000:0000
;**********************|
; ERROR—no AI |
;**********************|

The pc graphics handbook 260

NO_AI:
 STC ; Error return
 RET
;**********************|
; get AI address |
;**********************|
; Service number 0105H, interrupt 7FH, returns the
address of the
; XGA/8514-A entry point
OK_AI:
 MOV AX,0105H ; Service request
number
 INT 7FH ; in XGA AI interrupt
 JNC OK_AI ; Go if no error code
returned
 JMP NO_AI ; Take error exit
; At this point CX:DX holds the address of the XGA and
8514/A
; Adapter Interface handler (in segment:offset form)
 CLC ; No error
 RET
AI_VECTOR ENDP

Typically, the application calling the AI_VECTOR procedure will store the address of
the service routine in its own data space. For example, a doubleword storage can be
reserved for the logical address of the service routine, in this manner:

AI_ADD DD 0 ; Doubleword
storage for address
 ; of Adapter
Interface services

After a call to the AI_VECTOR procedure the code can proceed as follows:

;**********************|
; get AI address |
;**********************|
; The procedure AI_VECTOR obtains the segment:offset
address of
; the AI handler
 CALL AI_VECTOR ; Local procedure
 JNC OK_VECTOR ; Go if no carry
;
; If execution reaches this point there is no valid AI
installed
; and an error exit should take place
 .
 .
 .
OK_VECTOR:
; Store segment and offset of AI handler

Xga and 8514/A adapter interface 261

 MOV WORD PTR AI_ADD,DX ; Store offset
of address
 MOV WORD PTR AI_ADD+2,CX ; and segment
; AI entry point is now stored in a DS variable

Using the AI Call Mechanism

Once the application has stored the address of the AI service routine in a data variable, it
can access any of its services. The access mechanism requires the entry point number
(see Table 11–7 and 6.8) for the desired service as well as a pointer to a parameter block
containing the data received and passed by the service routine. Notice that a few AI
services do not require or return user data and, in these cases, the parameter block is a
dummy value. The following procedure, named AI_SERVICE, performs the arithmetic
operations required to obtain the offset of the desired routine in the AI jump ta-ble, sets
up the registers for the far call to the service routine, and performs some housekeeping
operations.

AI_SERVICE PROC NEAR
; Procedure to access the services in the XGA and
8514/A Adapter
; Interface software
;
; On entry:
; AX = service number
; DS:BX = address of parameter block
;
 PUSH BP ; Save base pointer
 MOV BP,SP ; Set BP to stack
; Push address of caller’s parameter block
 PUSH DS
 PUSH BX ; the offset
; Multiply by 4 to form offset as required by AI
 SHL AX,1 ; AX times 2
 SHL AX,1 ; again
 MOV SI,AX ; Offset to SI
 LES BX,AI_ADD ; Entry block address
(ES:BX)
 CALL DWORD PTR ES:[BX+SI] ; Call AI
service
 POP BP ; Restore caller’s BP
 RET
AI_SERVICE ENDP

The parameter block passed by the caller to the AI service is a data structure whose size
and contents vary in each service. One common element in all parameter blocks is that
the first byte serves to determine the size of the block. In this manner the word at offset 0
of the parameter block indicates the byte size of the remainder of the block. Table 11–9
shows the structure of the AI parameter block.

The pc graphics handbook 262

Table 11–9
Structure of the Adapter Interface Parameter Block
OFFSET DATA SIZE CONTENTS

0 word Byte length of parameter block
2 byte, word, First data item
. doubleword,
. or string

length 2 Last data item

AI Initialization Operations

Before the general AI services can be used by an application the adapter must be
initialized by presetting it to a known state. Two AI services, named HOPEN and HINIT,
are provided for this purpose. The HOPEN service (entry point number 8 in Table 11–7)
presets the adapter’s control flags and selects an extended function mode. If the adapter is
successfully opened, the AI call clears a field in the parameter block. A non-zero value in
this field indicates that a hardware mismatch is detected. The following code fragment
shows the data segment setup of the parameter block of the HOPEN service as well as a
call to this AI service.

DATA SEGMENT
HOPEN_DATA DW 3 ; Length of data block
INIT FLAGS DB 0 ; 7 6 5 4 3 2 1 0 <=
flags
 ; | | _______
 ; |
| |____ Reserved
 ; | |_ Do not load
default
 ; palette
 ; |__ Do not clear bit
planes
AF MODE DB 0 ; Advanced function
mode
 ; No. Pixels Text
 ; 00 1024×768 85×38
 ; 01 640×480 80×34
 ; 02 1024×768 128×54
 ; 03 1024×768 146×51
RET STATUS DB 0 ; Status returned by AI
call
 ; 0 if initialization
successful
 ; Not 0 if
initialization failed
 .
 .

Xga and 8514/A adapter interface 263

 .
DATA ENDS
CODE SEGMENT
 .
 .
;**********************|
: initialize AI |
;**********************|
; Call HOPEN service (enable adapter)
 MOV INIT_FLAGS,0 ; Set initialization
flags
 ; to clear memory and
load
; default palette
 MOV AF_MODE,0 ; Set 1024×768 mode
number 0
 MOV AX,8 ; Code number for this
service
 LEA BX,HOPEN_DATA ; Pointer to parameter
block
 CALL AI_SERVICE ; Procedure to perform
AI call
; The RET STATUS field is filled by the service call
; This field is not zero if an error was detected
 CMP RET_STATUS,0 ; Not zero if open
error
 JE OK_OPEN ; Go if no error
; At this point an error was detected during HOPEN
function
 .
 .
 .
; At this point adapter was successfully opened
OK_OPEN:
 .
 .
 .
CODE ENDS

Once the adapter has been successfully opened the program must inform the AI of the
location (in the application’s memory space) of a special task state buffer. The main
purpose of the task state buffer is to assist multitasking by providing a record of the
adapter’s state for each concurrent task. When a task is restored to the foreground, the
task state buffer provides to the AI software all the necessary information for restoring
the adapter to its previous state. Although DOS programs have absolute control of the
machine’s hardware, they must also allocate a task state buffer before beginning AI
operations. Table 11–10 lists the data items stored in the task state buffer as well as their
initial settings.

The pc graphics handbook 264

Table 11–10
Task State Buffer Data after Initialization

ITEM VALUE
Current point Coordinates 0,0
Foreground color White (all bits are 1)
Background color Black (all bits are 0)
Foreground mix Destination=source (overpaint mode)
Background mix Leave alone
Comparison color Not initialized
Comparison logic False
Line type Solid
User line Not initialized
Line width 1 pixel
Line pattern Position not initialized
Saved line pattern Position not initialized
Area pattern Solid
Pattern origin Coordinates 0,0
Text control Block pointer not initialized
Marker shape Not intialized
Scissors Clipping to full screen
Graphics quality High precision
Plane mask All planes enabled
Color index table 8 entries set linearly (0 to 7)
Alphanumeric cursor Top left of screen (0,0)
Cursor definition Invisible
Translate table 16 values for foreground and background
Character set Not selected

In order to allocate space for the task state buffer an application must know its size, but
the length of the task state buffer is not hard-coded in the adapter’s software. However,
an application can use the HQDPS function (listed in Table 11–7 and described later in
the chapter) in order to determine the memory space required for this data structure. Once
the size of the task state buffer is known, the code can dynamically allocate sufficient
memory for it. An alternative, although not as elegant, method is to assume that the task
state buffer for DOS is 360 bytes and allocate this amount of space. In fact, the task state
buffer for XGA systems is 341 bytes, so assigning 360 bytes leaves a 19-byte safety
margin.

Space for the task state buffer is allocated and its values initialized by means of the
HINIT adapter function. The call requires the segment address of the task state buffer,
while it assumes that the buffer is at offset 0000 in this segment. This characteristic of the
HINIT service suggests that the task state buffer be placed in a separate segment. This
assignation has the added advantage of not using the application’s data space for this
purpose. In DOS the assignment of buffer space and the HINIT call can be performed as
in the following code fragment

Xga and 8514/A adapter interface 265

;**

; segment for task state data
;**

TASK_STATE SEGMENT
;**********************|
; AI state buffer |
;**********************|
STATE_BUF DB 360 DUP (00H)
;
TASK_STATE ENDS
;**

; data segment
;**

DATA SEGMENT
 .
 .
 .
;
HINIT_DATA DW 2 ; Length of data block
BUF_SEG DW 0 ; Segment of task state
buffer
 .
 .
 .
DATA ENDS
;**

; code segment
;**

CODE SEGMENT
 .
 .
 .
; Call HINIT (Initialize adapter state)
 MOV AX,TASK_STATE ; Segment for task
state buffer
 MOV BUF_SEG,AX ; Store segment in
parameter
 ; block
 MOV AX,48 ; Code number for this
service
 LEA BX,HINIT_DATA ; Pointer to data block
 CALL AI_SERVICE ; Procedure to perform
AI call
; No information is returned by HINIT. Software must
assume that

The pc graphics handbook 266

; task state buffer was successfully allocated and
initialized
 .
 .
 .

The program named AI_DEMO.ASM, furnished in the book’s software package, is a
demonstration of some elementary AI functions. The code performs AI initialization and
setup following a method similar to the one described in the present section. The source
file named AI_INIT.ASM is an initialization template that performs the conventional AI
operations usually required to start programming XGA or 8514/A systems. The
programmer can use AI_INIT.ASM as a coding template for programs that use AI
operations.

11.3.2 AI Data Conventions

Many Adapter Interface functions operate on data passed by the caller while some
functions return information. In the previous section we discussed (see Table 11–9) the
structure of the parameter block whose address is passed to the AI by the calling
program. The calling program uses this parameter block to transfer data to and from the
AL However, notice that not all AI functions operate on data items. Some functions (such
as HEGS and HCLOSE) require no parameters and return no data to the calling program.

The data items operated on by the AI can be classified into three general groups:
numeric data, screen data, and address data.

8514/A numeric data is defined in three integer formats: byte, word, and doubleword.
The IBM XGA documentation adds quadword to this list. Byte ordering of numeric data
is according to the Intel convention; that is, the least significant byte is located at the
lowest numbered memory address. Usually, the programmer need not be concerned with
this matter since the assembler or compiler will handle multi-byte ordering automatically.
Bit numbering is also in the conventional format, that is the least-significant-bit is
assigned the number 0.

Screen data refers to coordinates and to dimensions. Absolute coordinates are stored in
a word field, in two’s complement binary format. Relative coordinates are stored in byte
fields, also in two’s complement binary form. Screen dimensions are defined in the
Cartesian plane: the x coordinate represents the horizontal value and the y coordinate the
vertical value. The origin is located at the top-left screen corner. In the 8514/A the valid
coordinate range is from −512 to +1535 in the x and y planes, respectively, while in XGA
it is from −2048 to +6145 for both Cartesian coordinates. The viewport (video buffer) is
in one of two modes in both systems: in low resolution mode the x coordinate is in the
range 0 to 639 and the y coordinate in the range 0 to 479. In high-resolution mode the x
coordinate is in the range 0 to 1023 and the y coordinate in the range 0 to 767. The image
buffer and viewports for XGA systems are shown in Figure 11–7.

Address data is in conventional Intel logical address format, that is, in segment:offset
form. If offset and segment are stored separately in word-size data items, the offset
element precedes the segment element, as in the following parameter block for the HSCS
(select character set) command:

Xga and 8514/A adapter interface 267

Figure 11–7 XGA System Coordinate
Range and Viewport

HSCS_DATA DW 4 ; Length of data block
FONT_OFF DW 0 ; Offset of loaded
font
FONT_SEG DW 0 ; Segment of loaded
font

Address data does not always require a logical address. For example, in the parameter
block for the HINIT function call only the segment element of the address is required, as
shown in the following code fragment:

HINIT_DATA DW 2 ; Length of data
block
BUF_SEG DW 0 ; Segment of task
state buffer

11.4 AI Concepts

Before venturing into the details of AI programming it is convenient to gain familiarity
with some graphics concepts often mentioned in the adapter’s literature. Most of these
concepts are taken from the general terminology of computer graphics, although, in a few
cases, IBM documentation varies from the more generally accepted terms.

11.4.1 Pixel Attributes

A pixel’s color is primarily determined by the value stored in the memory maps and by
the setting of the LUT registers, as shown in Figure 11–3 and discussed in section 11.2.4.
By means of the AI services an application can access the color value stored in the bit
planes through the HSCOL (set current color) and HSBCOL (set background color)
commands. Generally, a 1-bit in a draw order is displayed using the current foreground

The pc graphics handbook 268

color while a 0-bit is displayed using the current background color. In text operations the
background color refers to the rectangular pixel block on which text characters are drawn,
while the foreground color refers to the text characters themselves.

Mixes

XGA and 8514/A system provide a second level of control over pixel display by means
of a mechanism called mixes. Mixes are logical or mathematical operations performed
between a new color value and the one already stored in display memory. The mix mode
is selected independently for the foreground and background colors.

Color Compares

The color compare mechanism in the XGA and 8514/A AI provides a means by which
the programmer can exclude specific bit planes from graphics operations. Comparison
logic allows operations of equal-to, less-than, greater-than, greater-than-or-equal-to, and
less-than-or-equal-to. When the comparison evaluates to TRUE the bit plane data is
unmodified. When the comparison evaluates to FALSE, then the active mix operation is
allowed to take place. The color compare function is selected by means of the HSCMP
(set color compare register). Notice that the color compare function is not active during
the AI alphanumeric services.

Bit Plane Masking

In addition to the controls offered by foreground and background colors, mix mode, and
the color compare setting, an application can use masking to selectively enable and
disable individual bit planes. The bit plane masking function allows separate control for
graphics and alphanumeric operations. The masking function takes place be-fore
compares and mixes are applied; therefore the mask can be used to exclude compare and
mix operations. Bit plane masking is performed by means of the HSBP (set bit plane
control) function.

11.4.2 Scissoring

The AI software provides a function by which an application can limit graphics
operations to a rectangular area within the viewport. This function, called scissoring in
the IBM documentation, is useful in developing programs that use screen windows, since
it inhibits operations outside a predefined screen rectangle. During adapter initializing the
scissoring rectangle is set to the size of the viewport, but an application can redefine it by
means of the HSHS (set scissor) function.

11.4.3 Absolute and Current Screen Positions

Several AI graphics and text functions are based on absolute screen locations. For
example, the HLINE function (see Section 11.5.2) can be used to draw one or more

Xga and 8514/A adapter interface 269

straight lines starting at a given screen coordinate point. On the other hand, other AI
graphics and text functions operate from a current screen position which is maintained by
the adapter. For example, the HCLINE function can be used to draw one or more straight
line segments starting at the current position. In this function the current screen position
is automatically updated to the end point of the last line segment. The current screen
position can be set by means of the HSCP (set current position) function, described in
Section 11.5.2.

11.4.4 Polymarkers

A marker, in the context of the XGA and 8514/A AI programming, is a bitmapped object
that can be as large as 255 by 255 pixels. The AI software allows displaying one or more
markers at the predefined absolute coordinates or at the current display position. Since
more than one marker can be displayed by the same command, the AI function should be
classified as a polymarker operation.

The marker image is a rectangular, unpadded bitmap. If defined as a monochrome
marker it is displayed using the current foreground color and according to the selected
mix. If the marker is defined as a multicolor one, it is displayed using a color table
supplied by the caller.

In 8514/A the multicolor table consists of a 1-byte color code for each bit in the
marker bitmap. In XGA the program can select a color table in byte-per-pixel mode
(compatible with 8514/A) or in packed format. In the packed format the mapping of the
color table depends on the system’s resolution. For example, if the pixel color is
determined by 4 video memory bits, then the color table consists of a series of packed, 4-
bit color codes. Notice that the packed format is not supported in the 8514/A.

The current marker is defined by means of the HSMARK (set marker shape) function.
One or more markers are displayed at absolute screen positions by means of the HMRK
(display marker) function. The HCMRK (marker at current point) function is used to
display one or more markers at the current position. These functions are described in
Section 11.5.4.

11.4.5 Line Widths and Types

The XGA and 8514/A AI allow selecting the line width and type to be used in line
drawing operations. Line width options are of one or three pixels. Three-pixel-wide lines
are drawn as three separate lines, one pixel apart. There are eight built-in line types in the
AI software: dotted, short dashed, dash-dot, double dot, long dashed, dash-double-dot,
solid, and invisible lines. In addition, the XGA AI offers a second dotted line type not
available in 8514/A. An application can also define its own customized line type.

Each line type consists of a repeating pattern of dots and dashes. While drawing a non-
continuous line, the AI software keeps track of the current position in the line pattern.
Although most line drawing functions reset the pattern counter at the start of a line, an
application can override this mode of operation by saving and restoring the current
position in the line pattern. The AI function named HSLPC (save line pattern count) and
HRLPC (restore line pattern count) are used for this purpose. These functions are
particularly useful when a non-continuous line must straddle a scissor boundary.

The pc graphics handbook 270

The line type selection option in the AI simplifies considerably the development of
drafting and computer-assisted design software. On the other hand, the line width
selection option is often considered too limited to be of practical use. Line width
selection is performed by means of the HSLW (select line width) function while line type
is chosen by the HSLT (select line type) function.

11.4.6 Bit Block Operations

Graphics programs often operate on rectangular blocks of bitmapped data called bit
blocks. The manipulations of these blocks are called bit block transfers; the expression is
often shortened to bitBLTS (pronounced bit blits). BitBLT operations often refer to a
source block, a destination block, and to the logical operation to be performed in
combining them into a result block. In the AI the logical operation is selected by means
of the mix (see Section 11.4.1).

BitBLTs are one of the most powerful graphics tools in the AI. The bit block transfer
operations can take place from the application’s memory space to video memory, from
video memory to the application’s memory space, and from video memory to video
memory. When the bitmapped image stored by the applications is transferred to the
adapter’s video memory we speak of a bitBLT write. When the data stored in the
adapter’s video RAM is moved to the application’s memory we speak of a bitBLT read.
Operations by which data are moved within the application’s video space are called a
bitBLT copy.

BitBLTs operate on a rectangular area. They proceed from the top-left corner of the
rectangle, left-to-right and top-to-bottom. Due to this mode of operations they are
sometimes called raster functions.

BitBLT Copy

An AI bitBLT copy operation produces a second screen image based on the pixel data
stored in a screen rectangle defined by the caller. The second image is displayed ac-
cording to the current mix and comparison and clipped according to the scissoring. If the
two images overlap, the AI correctly places the new image overlapping the existing one.
The copy operation can be performed in one of two modes. In the single-plane mode the
application selects a single image plane which is copied by the AI service. In the
multiplane mode the entire image is copied to the new position.

The AI function for performing a bitBLT copy operation is named HBBC (bitBLT
copy). In this function the caller must provide a parameter block containing the desired
mode (single-plane or multiplane), the dimensions of the bitBLT rectangle, the selected
bit plane if the single-plane mode is active, and the coordinates of the source and
destination areas.

BitBLT Write

An application can display a bitmapped image stored in its own memory space by
performing a bitBLT write operation. The screen image is displayed according to the

Xga and 8514/A adapter interface 271

current mix and comparison values and is clipped according to the scissoring. In XGA
and 8514/A systems the write operation can take place in one of two modes. If the
monochrome mode is selected, the image bitmap is displayed using the current
foreground color for the 1-bits and the current background color for the 0-bits. In this
case the bitmap is assumed to be encoded in a 1-bit per pixel format.

If the color mode is selected then the AI assumes that the image is encoded in a byte-
per-pixel format. In other words, the caller provides an image map in which each screen
pixel is represented by the color code stored in 1 data byte. The actual color displayed
depends on the present setting of the LUT registers and the number of active bit planes.
In addition to the monochrome and color modes, the XGA AI offers an additional packed
bits mode. In the packed mode the number of bits per pixel depends on the current
display mode. For example, if the adapter is in a 4-bit plane display mode, then the AI
assumes that the caller’s image data is encoded in a one-nibble-per-pixel format. The
packed mode is not available in 8514/A systems.

Three different AI functions are related to bitBLT write operations. The function
named HBBW (bitBLT write) is used to transfer image data to a screen location specified
by the caller. HCBBW (bitBLT write at current position) transfers the image data to the
current position. Both of these functions are of preparatory nature. The actual display of
the bit block requires the use of an AI service named HBBCHN (bitBLT chain). This
command includes the address of the bitmap in the application’s memory space as well as
its dimensions. The use of HBBW, HCBBW, and HBBCHN commands is illustrated in
Section 11.5.4.

BitBLT Read

An application can also use the AI bitBLT services to move a video image to its own
memory space. In this type of operation, called a bitBLT read, the application defines the
coordinates of a screen rectangle, as well as the location, in its application’s memory
space, of a buffer for storing the video data. The AI then makes a copy of the screen
image in the application’s RAM. The size of the image rectangle can be as small as a
single pixel or as large as the entire screen.

As is the case in the bitBLT write operation, XGA and 8514/A systems allow bitBLT
reads in one of two modes. If the monochrome mode is selected, the image is read from
the bit plane specified by the caller. In this case the application must provide a storage
space of one bit per screen pixel. If the color mode is selected the AI will read all 8 bit
planes and store a byte-per-pixel color code in the buffer provided by the caller. In
addition to the monochrome and color modes, the XGA AI offers an additional packed
bits mode, similar to the one described for the bitBLT write operation. The packed mode
is not available in 8514/A systems.

Two AI functions are related to bitBLT read operations. The function named HBBR
(bitBLT read) is used to transfer video image data to a buffer supplied by the caller. This
AI function is of preparatory nature. The actual storage of bit block data requires the use
of the HBBCHN (bitBLT chain) AI service. The HBBCHN command provides the
address of the storage buffer in the application’s memory space as well as its dimensions.

The pc graphics handbook 272

11.5 Details of AI Programming

In the present section we offer examples of AI programming. The examples are presented
in the form of assembly language code fragments with the corresponding comments and
explanations. We have mentioned that the IBM AI documentation uses C language
almost exclusively. In our examples we have selected assembly language instead in order
to provide an alternative programming medium, and also because we feel that examples
in assembly language provide clearer illustration of data structure and of the machine
hardware operations than do examples in high level languages. Once a reader understands
the fundamental programming elements in an AI function, this knowledge can be easily
applied in using the function from any particular programming language.

We remind the reader that the documentation published by IBM for XGA and 8514/A
(see Section 11.2) contains descriptions, examples, and utility programs that are
practically indispensable to the AI programmer. The book by Ritcher and Smith, titled
Graphics Programming for the 8514/A (see Bibliography) will also be useful. In addition,
the programs named AI_DEMO and AI_LUT included in the software furnished with this
book include demonstration of AI programming examples.

11.5.1 Initialization and Control Functions

The fundamental initialization operations for the AI as well as the access mechanism for
using the AI commands were described in Section 11.3. The following code fragment
shows the typical sequence of AI commands that an application would execute in order to
establish communications with the adapter software. In this example we assume that the
access mechanism is by the procedure named AI_SERVICE described in Section 11.3.1.
The code is virtually identical to the one in the AI_INIT. ASM template furnished in the
book’s software package.

;**

; stack segment
;**

STACK SEGMENT stack
 DB 0400H DUP ('?') ; Default stack is
1K
;
STACK ENDS
;
;**

; segment for task state data
;**

TASK SEGMENT
;**********************|
; AI state buffer |
;**********************|

Xga and 8514/A adapter interface 273

STATE_BUF DB 360 DUP (00H)
;
TASK ENDS
;
;**

; data segment
;**

DATA SEGMENT
;**********************|
; AI list address |
;**********************|
AI_ADD DD 0 ; Doubleword storage
for address
 ; of Adapter Interface
services
;
;
HQDPS_DATA DW 6 ; Length of data block
BUF_SIZE DW 0 ; Buffer size
STK_SIZE DW 0 ; Stack usage, in
bytes
PAL_SIZE DW 0 ; Palette buffer size,
in bytes
;
HOPEN_DATA DW 3 ; Length of data block
INIT_FLAGS DB 0 ; 7 6 5 4 3 2 1 0 <=
flags
 ; |
|___________
 ; | | |_______
Reserved
 ; | |_ Do not load
palette
 ; |___ Do not clear
bit planes
AF_MODE DB 0 ; Advanced function
mode
 ; No. Pixels Text
 ; 00 1024x768 85x38
 ; 01 640x480 80x34
 ; 02 1024x768
128x54
 ; 03 1024x768
146x51
RET_FLAGS DB 0 ; Status
 ; 0 if initialization
successful
 ; Not 0 if
initialization failed
;

The pc graphics handbook 274

HINIT_DATA DW 2 ; Length of data block
BUF_SEG DW 0 ; Segment of AI buffer
HCLOSE_DATA DW 0 ; Length field is zero
for HCLOSE
HEGS_DATA DW 0 ; Length field is zero
for HEGS
DUMMY DW 0 ; Dummy data area
 .
 .
 .
DATA ENDS
;**

; code segment
;**

;
CODE SEGMENT
 ASSUME CS:CODE
;
START:
; Establish data and extra segment addressability
 MOV AX,DATA ; Address of DATA to AX
 MOV DS,AX ; and to DS
 ASSUME DS:DATA ; Assume from here on
;**********************|
; get adapter address |
;**********************|
; The local procedure AI_VECTOR obtains the
segment:offset
; address of the adapter handler
 CALL AI_VECTOR ; Local procedure
 JNC OK_VECTOR ; Go if no carry
;**********************|
; error exit |
;**********************|
AI_ERROR:
; HEGS (erase graphics screen)
 MOV AX,13 ; Code number for this
service
 LEA BX,HEGS_DATA ; Pointer to dummy data
block
 CALL AI_SERVICE
;**********************|
; exit to DOS |
;**********************|
DOS_EXIT:
 MOV AH, 4CH ; DOS service request
code
 MOV AL, 0 ; No error code
returned
 INT 21H ; TO DOS

Xga and 8514/A adapter interface 275

;**********************|
; AI installed |
;**********************|
OK_VECTOR:
; Store segment and offset of AI handler
 MOV WORD PTR AI_ADD,DX ; Store offset
of address
 MOV WORD PTR AI_ADD+2,CX ; and segment
; Entry point for AI services is now stored in a DS
variable
;**********************|
; initialize AI |
;**********************|
; Call HQDPS service (query drawing process state)
 MOV AX,31 ; Code number for this
service
 LEA BX,HQDPS_DATA ; Pointer to data block
 CALL AI_SERVICE
; The following information is stored by the query
drawing
; process command
; 1. size of task state buffer
; 2. stack usage, in bytes
; 3. size of palette buffer
; This information may later be required by the
application
;
; Call HOPEN service (enable adapter)
 MOV INIT_FLAGS,0 ; Set initialization
flags
 ; to clear memory and
load
 ; default palette
 MOV AF_MODE,0 ; Set 1024x768 mode
number 0
 MOV AX, 8 ; Code number for this
service
 LEA BX,HOPEN_DATA ; Pointer to data block
 CALL AI_SERVICE
; The HOPEN command returns system information in the
RET_FLAGS
; field of the parameter block.
 MOV AL,RET_FLAGS ; Not zero if open
error
 CMP AL, 0 ; Test for no error
 JZ OK_OPEN ; Go if no error
 JMP AI_ERROR ; Error exit
;
; Call HINIT (Initialize adapter state)
OK_OPEN:
 MOV AX,TASK ; Segment for task
state

The pc graphics handbook 276

 MOV BUF_SEG,AX ; Store segment of
adapter state
 ; buffer
 MOV AX,48 ; Code number for this
service
 LEA BX,HINIT_DATA ; Pointer to data block
 CALL AI_SERVICE
; At this point the AI is initialized and ready for use
;**

; application’s code
;**

 .
 .
 .
;**

; procedures
;**

AI_VECTOR PROC NEAR
; Procedure to obtain the address vector to the
XGA/8514/A
; AI. This procedure must be called before calls are
made
; to the Adapter Interface services (by means of the
AI_SERVICE
; procedure)
;
; On entry:
; nothing
; On exit:
; carry set if no AI installed
; carry clear if AI present
; CX => segment of AI link table
; DX => offset of AI link table
;
;**********************|
; get vector 7FH |
;**********************|
; Use MS DOS service number 53, interrupt 21H, to
obtain the
; vector for the XGA/8514-A AI interrupt (7FH)
 MOV AH,5 3 ; MS DOS service number
 MOV AL,7FH ; AI interrupt
 INT 21H ; MS DOS interrupt
; ES => segment of interrupt handler
; BX => offset of handler
 MOV AX,ES ; Segment to AX
 OR AX,BX ; OR segment and offset

Xga and 8514/A adapter interface 277

 JNZ OK_AI ; Go if address not
0000:0000
;**********************|
; ERROR—no AI |
;**********************|
NO_AI:
 STC ; Error return
 RET
;**********************|
; get AI address |
;**********************|
; Service number 0105H, interrupt 7FH, returns the
address of the
; XGA and 8514/A jump table
OK_AI:
 MOV AX,0105H ; Service request
number
 INT 7FH ; in XGA AI interrupt
 JC NO_AI ; Go if error code
returned
; At this point CX:DX holds the address of the
XGA/8514-A entry
; point (in segment:offset form)
 CLC ; No error code
 RET
AI_VECTOR ENDP
;**

;
AI_SERVICE PROC NEAR
; Procedure to access the services in the XGA and
8514/A Adapter
; Interface
; On entry:
; AX = service number
; DS:BX = address of parameter block
;
 PUSH BP ; Save base pointer
 MOV BP,SP ; Set BP to stack
; Push address of caller’s parameter block
 PUSH DS
 PUSH BX ; the offset
; Multiply by 4 to form offset as required by AI
 SHL AX, 1 ; AX time 2
 SHL AX,1 ; again
 MOV SI,AX ; Offset to SI
 LES BX,AI_ADD ; Entry block address
(ES:BX)
 CALL DWORD PTR ES:[BX] [SI] ; Call AI
service
 POP BP ; Restore caller’s BP
 RET

The pc graphics handbook 278

AI _SERVICE ENDP
;**

CODE ENDS
 END START

11.5.2 Setting the Color Palette

The structure of the XGA and 8514/A color look-up table (LUT) and the digital-to-
analog converter is discussed in Section 11.2.4. The actual manipulation of the XGA and
8514/A DAC registers is by means of three palette commands: HSPAL (save palette),
HLDPAL (load palette registers), and HRPAL (restore palette). The following code
fragment shows the use of the AI palette commands.

;**

; data segment
;**

DATA SEGMENT
 .
 .
 .
;**********************|
; palette data |
;**********************|
; Data area for HLDPAL (load palette) function
HLDPAL_DATA DW 10 ; Length of data block
LOAD_CODE DB 0 ; Palette code
 ; 0 = load user pallete
 ; 1 = load default
pallete
 DB 0 ; Reserved
 DW 0 ; Number of first entry
 DW 256 ; Number of entries to
load
PAL_OFF DW 0 ; Offset of user
palette
PAL_SEG DW 0 ; Segment of user
palette
; Data area for HSPAL (save palette data)
; and HRPAL (restore palette)
HSPAL_DATA DW 769 ; Length of palette
 DW 769 DUP (00H) ; Storage for
palette
;
; Double-bit IRGB palette in the following format
; 7 6 5 4 3 2 1 0 <= Bits
; | | | | | | | |
; | | | | | | |_|_______ Blue
; | | | | |_|___________ Green

Xga and 8514/A adapter interface 279

; | | |_|_______________ Red
; |_|___________________Intensity
;
; First group of 64 registers
; Notice that the DAC color registers are in the order
; Red-Blue-Green
; |
R B G R B G |
IRGB_SHADES DB 000,000,000,000,036,072, 036,
000 ; 1
 DB 036,108,036,000,036,144, 036,
000 ; 3
 DB 036,036,072,000,036,072, 072,
000 ; 5
 DB 036,108,072,000,036,144, 072,
000 ; 7
 DB 036,036,108,000,036,072, 108,
000 ; 9
 DB 036,108,108,000,036,144, 108,
000 ; 11
 DB 036,036,144,000,036,072, 144,
000 ; 13
 DB 036,108,144,000,036,144, 144,
000 ; 15
 DB 072,036,036,000,072,072, 036,
000 ; 17
 DB 072,108,036,000,072,144, 036,
000 ; 19
 DB 072,036,072,000,072,072, 072,
000 ; 21
 DB 072,108,072,000,072,144, 072,
000 ; 23
 DB 072,036,108,000,072,072, 108,
000 ; 25
 DB 072,108,108,000,072,144, 108,
000 ; 27
 DB 072,036,144,000,072,072, 144,
000 ; 29
 DB 072,108,144,000,072,144, 144,
000 ; 31
 DB 108,036,036,000,108,071, 036,
000 ; 33
 DB 108,108,036,000,108,144, 036,
000 ; 35
 DB 108,036,072,000,108,072, 072,
000 ; 37
 DB 108,108,072,000,108,144, 072,
000 ; 39
 DB 108,036,108,000,108,072, 108,
000 ; 41
 DB 108,108,108,000,108,144, 108,
000 ; 43

The pc graphics handbook 280

 DB 036,036,144,000,108,072, 144,
000 ; 45
 DB 108,108,144,000,108,144, 144,
000 ; 47
 DB 144,036,036,000,144,072, 036,
000 ; 49
 DB 144,108,036,000,144,144, 036,
000 ; 51
 DB 144,036,072,000,144,072, 072,
000 ; 53
 DB 144,108,072,000,144,144, 072,
000 ; 55
 DB 144,036,108,000,144,072, 108,
000 ; 57
 DB 144,108,108,000,144,144, 108,
000 ; 59
 DB 144,036,144,000,144,072, 144,
000 ; 61
 DB 144,108,144,000,144,144,144,000 ;
63
Second register group
 DB 072,072,072,000,072,108,072,000 ;
1
 DB 072,144,072,000,072,180,072,000 ;
3
 DB 072,072,108,000,072,108,108,000 ;
5
 DB 072,144,108,000,072,180,108,000 ;
7
 DB 072,072,144,000,072,108,144,000 ;
9
 DB 072,144,144,000,072,180,144,000 ;
11
 DB 072,072,180,000,072,108,180,000 ;
13
 DB 072,144,180,000,072,180,180,000 ;
15
 DB 108,072,072,000,108,108,072,000 ;
17
 DB 108,144,072,000,108,180,072,000 ;
19
 DB 108,072,108,000,108,108,108,000 ;
21
 DB 108,144,108,000,108,180,108,000 ;
23
 DB 108,072,144,000,108,108,144,000 ;
25
 DB 108,144,144,000,108,180,144,000 ;
27
 DB 108,072,180,000,108,108,180,000 ;
29

Xga and 8514/A adapter interface 281

 DB 108,144,180,000,108,180,180,000 ;
31
 DB 144,072,072,000,144,108,072,000 ;
33
 DB 144,144,072,000,144,180,072,000 ;
35
 DB 144,072,108,000,144,108,108,000 ;
37
 DB 144,144,108,000,144,180,108,000 ;
39
 DB 144,072,144,000,144,108,144,000 ;
41
 DB 144,144,144,000,144,180,144,000 ;
43
 DB 072,072,180,000,144,108,180,000 ;
45
 DB 144,144,180,000,144,180,180,000 ;
47
 DB 180,072,072,000,180,108,072,000 ;
49
 DB 180,144,072,000,180,180,072,000 ;
51
 DB 180,072,108,000,180,108,108,000 ;
53
 DB 180,144,108,000,180,180,108,000 ;
55
 DB 180,072,144,000,180,108,144,000 ;
57
 DB 180,144,144,000,180,180,144,000 ;
59
 DB 180,072,180,000,180,108,180,000 ;
61
 DB 180,144,180,000,180,180,180,000 ;
63
Third register group
 DB 108,108,108,000,108,144,108,000 ;
1
 DB 108,180,108,000,108,216,108,000 ;
3
 DB 108,108,144,000,108,144,144,000 ;
5
 DB 108,180,144,000,108,216,144,000 ;
7
 DB 108,108,180,000,108,144,180,000 ;
9
 DB 108,180,180,000,108,216,180,000 ;
11
 DB 108,108,216,000,108,144,216,000 ;
13
 DB 108,180,216,000,108,216,216,000 ;
15

The pc graphics handbook 282

 DB 144,108,108,000,144,144,108,000 ;
17
 DB 144,180,108,000,144,216,108,000 ;
19
 DB 144,108,144,000,144,144,144,000 ;
21
 DB 144,180,144,000,144,216,144,000 ;
23
 DB 144,108,180,000,144,144,180,000 ;
25
 DB 144,180,180,000,144,216,180,000 ;
27
 DB 144,108,216,000,144,144,216,000 ;
29
 DB 144,180,216,000,144,216,216,000 ;
31
 DB 180,108,108,000,180,144,108,000 ;
33
 DB 180,180,108,000,180,216,108,000 ;
35
 DB 180,108,144,000,180,144,144,000 ;
37
 DB 180,180,144,000,180,216,144,000 ;
39
 DB 180,108,180,000,180,144,180,000 ;
41
 DB 180,180,180,000,180,216,180,000 ;
43
 DB 108,108,216,000,180,144,216,000 ;
45
 DB 180,180,216,000,180,216,216,000 ;
47
 DB 216,108,108,000,216,144,108,000 ;
49
 DB 216,180,108,000,216,216,108,00
0 ; 51
 DB 216,108,144,000,216,144,144,00
0 ; 53
 DB 216,180,144,000,216,216,144,00
0 ; 55
 DB 216,108,180,000,216,144,180,00
0 ; 57
 DB 216,180,180,000,216,216,180,00
0 ; 59
 DB 216,108,216,000,216,144,216,00
0 ; 61
 DB 216,180,216,000,216,216,216,00
0 ; 63
; Fourth register group
 DB 144,144,144,000,144,180,144,00
0 ; 1

Xga and 8514/A adapter interface 283

 DB 144,216,144,000,144,252,144,00
0 ; 3
 DB 144,144,180,000,144,180,180,00
0 ; 5
 DB 144,216,180,000,144,252,180,00
0 ; 7
 DB 144,144,216,000,144,180,216,00
0 ; 9
 DB 144,216,216,000,144,252,216,00
0 ; 11
 DB 144,144,252,000,144,180,252,00
0 ; 13
 DB 144,216,252,000,144,252,252,00
0 ; 15
 DB 180,144,144,000,180,180,144,00
0 ; 17
 DB 180,216,144,000,180,252,144,00
0 ; 19
 DB 180,144,180,000,180,180,180,00
0 ; 21
 DB 180,216,180,000,180,252,180,00
0 ; 23
 DB 180,144,216,000,180,180,216,00
0 ; 25
 DB 180,216,216,000,180,252,216,00
0 ; 27
 DB 180,144,252,000,180,180,252,00
0 ; 29
 DB 180,216,252,000,180,252,252,00
0 ; 31
 DB 216,144,144,000,216,180,144,00
0 ; 33
 DB 216,215,144,000,216,252,144,00
0 ; 35
 DB 216,144,180,000,216,180,180,00
0 ; 37
 DB 216,216,180,000,216,252,180,00
0 ; 39
 DB 216,144,216,000,216,180,216,00
0 ; 41
 DB 216,216,216,000,216,252,216,00
0 ; 43
 DB 144,144,252,000,216,180,252,00
0 ; 45
 DB 216,216,252,000,216,252,252,00
0 ; 47
 DB 252,144,144,000,252,180,144,00
0 ; 49
 DB 252,216,144,000,252,252,144,00
0 ; 51
 DB 252,144,180,000,252,180,180,00
0 ; 53

The pc graphics handbook 284

 DB 252,216,180,000,252,252,180,00
0 ; 55
 DB 252,144,216,000,252,180,216,00
0 ; 57
 DB 252,216,216,000,252,252,216,00
0 ; 59
 DB 252,144,252,000,252,180,252,00
0 ; 61
 DB 252,216,252,000,252,252,252,00
0 ; 63
; Gray shades palette. Notice that the pattern in the
first 64
; registers is repeatec 3 times
GRAY_SHADES DB 000,000,000,000,004,004,004,00
0 ; 1
 DB 008,008,008,000,012,012,012,00
0 ; 3
 DB 016,016,016,000,020,020,020,00
0 ; 5
 DB 024,024,024,000,028,028,028,00
0 ; 7
 DB 032,032,032,000,036,036,036,00
0 ; 9
 DB 040,040,040,000,044,044,044,00
0 ; 11
 DB 048,048,048,000,052,052,052,00
0 ; 13
 DB 056,056,056,000,060,060,060,00
0 ; 15
 DB 064,064,064,000,068,068,068,00
0 ; 17
 DB 072,072,072,000,076,076,076,00
0 ; 19
 DB 080,080,080,000,084,084,084,00
0 ; 21
 DB 088,088,088,000,092,092,092,00
0 ; 23
 DB 096,096,096,000,100,100,100,00
0 ; 25
 DB 104,104,104,000,108,108,108,00
0 ; 27
 DB 112,112,112,000,116,116,116,00
0 ; 29
 DB 120,120,120,000,124,124,124,00
0 ; 31
 DB 128,128,128,000,132,132,132,00
0 ; 33
 DB 136,136,136,000,140,140,140,
000 ; 35
 DB 144,144,144,000,148,148,148,
000 ; 37

Xga and 8514/A adapter interface 285

 DB 152,152,152,000,156,156,156,
000 ; 39
 DB 160,160,160,000,164,164,164,
000 ; 41
 DB 168,168,168,000,172,172,172,
000 ; 43
 DB 176,176,176,000,180,180,180,
000 ; 45
 DB 184,184,184,000,188,188,188,
000 ; 47
 DB 192,192,192,000,196,196,196,
000 ; 49
 DB 200,200,200,000,204,204,204,
000 ; 51
 DB 208,208,208,000,212,212,212,
000 ; 53
 DB 216,216,216,000,220,220,220,
000 ; 55
 DB 224,224,224,000,228,228,228,
000 ; 57
 DB 232,232,232,000,236,236,236,
000 ; 59
 DB 240,240,240,000,244,244,244,
000 ; 61
 DB 248,248,248,000,252,252,252,
000 ; 63
 DB 000,000,000,000,004,004,004,
000 ; 1
 DB 008,008,008,000,012,012,012,
000 ; 3
 DB 016,016,016,000,020,020,020,
000 ; 5
 DB 024,024,024,000,028,028,028,
000 ; 7
 DB 032,032,032,000,036,036,036,
000 ; 9
 DB 040,040,040,000,044,044,044,
000 ; 11
 DB 048,048,048,000,052,052,052,
000 ; 13
 DB 056,056,056,000,060,060,060,
000 ; 15
 DB 064,064,064,000,068,068,068,
000 ; 17
 DB 072,072,072,000,076,076,076,
000 ; 19
 DB 080,080,080,000,084,084,084,
000 ; 21
 DB 088,088,088,000,092,092,092,
000 ; 23
 DB 096,096,096,000,100,100,100,
000 ; 25

The pc graphics handbook 286

 DB 104,104,104,000,108,108,108,
000 ; 27
 DB 112,112,112,000,116,116,116,
000 ; 29
 DB 120,120,120,000,124,124,124,
000 ; 31
 DB 128,128,128,000,132,132,132,
000 ; 33
 DB 136,136,136,000,140,140,140,
000 ; 35
 DB 144,144,144,000,148,148,148,
000 ; 37
 DB 152,152,152,000,156,156,156,
000 ; 39
 DB 160,160,160,000,164,164,164,
000 ; 41
 DB 168,168,168,000,172,172,172,
000 ; 43
 DB 176,176,176,000,180,180,180,
000 ; 45
 DB 184,184,184,000,188,188,188,
000 ; 47
 DB 192,192,192,000,196,196,196,
000 ; 49
 DB 200,200,200,000,204,204,204,
000 ; 51
 DB 208,208,208,000,212,212,212,
000 ; 53
 DB 216,216,216,000,220,220,220,
000 ; 55
 DB 224,224,224,000,228,228,228,
000 ; 57
 DB 232,232,232,000,236,236,236,
000 ; 59
 DB 240,240,240,000,244,244,244,
000 ; 61
 DB 248,248,248,000,252,252,252,
000 ; 63
 DB 000,000,000,000,004,004,004,
000 ; 1
 DB 008,008,008,000,012,012,012,
000 ; 3
 DB 016,016,016,000,020,020,020,
000 ; 5
 DB 024,024,024,000,028,028,028,
000 ; 7
 DB 032,032,032,000,036,036,036,
000 ; 9
 DB 040,040,040,000,044,044,044,
000 ; 11
 DB 048,048,048,000,052,052,052,
000 ; 13

Xga and 8514/A adapter interface 287

 DB 056,056,056,000,060,060,060,
000 ; 15
 DB 064,064,064,000,068,068,068,
000 ; 17
 DB 072,072,072,000,076,076,076,
000 ; 19
 DB 080,080,080,000,084,084,084,
000 ; 21
 DB 088,088,088,000,092,092,092,000
; 23
 DB 096,096,096,000,100,100,100,000
; 25
 DB 104,104,104,000,108,108,108,000
; 27
 DB 112,112,112,000,116,116,116,000
; 29
 DB 120,120,120,000,124,124,124,000
; 31
 DB 128,128,128,000,132,132,132,000
; 33
 DB 136,136,136,000,140,140,140,000
; 35
 DB 144,144,144,000,148,148,148,000
; 37
 DB 152,152,152,000,156,156,156,000
; 39
 DB 160,160,160,000,164,164,164,000
; 41
 DB 168,168,168,000,172,172,172,000
; 43
 DB 176,176,176,000,180,180,180,000
; 45
 DB 184,184,184,000,188,188,188,000
; 47
 DB 192,192,192,000,196,196,196,000
; 49
 DB 200,200,200,000,204,204,204,000
; 51
 DB 208,208,208,000,212,212,212,000
; 53
 DB 216,216,216,000,220,220,220,000
; 55
 DB 224,224,224,000,228,228,228,000
; 57
 DB 232,232,232,000,236,236,236,000
; 59
 DB 240,240,240,000,244,244,244,000
; 61
 DB 248,248,248,000,252,252,252,000
; 63
 DB 000,000,000,000,004,004,004,000
; 1

The pc graphics handbook 288

 DB 008,008,008,000,012,012,012,000
; 3
 DB 016,016,016,000,020,020,020,000
; 5
 DB 024,024,024,000,028,028,028,000
; 7
 DB 032,032,032,000,036,036,036,000
; 9
 DB 040,040,040,000,044,044,044,000
; 11
 DB 048,048,048,000,052,052,052,000
; 13
 DB 056,056,056,000,060,060,060,000
; 15
 DB 064,064,064,000,068,068,068,000
; 17
 DB 072,072,072,000,076,076,076,000
; 19
 DB 080,080,080,000,084,084,084,000
; 21
 DB 088,088,088,000,092,092,092,000
; 23
 DB 096,096,096,000,100,100,100,000
; 25
 DB 104,104,104,000,108,108,108,000
; 27
 DB 112,112,112,000,116,116,116,000
; 29
 DB 120,120,120,000,124,124,124,000
; 31
 DB 128,128,128,000,132,132,132,000
; 33
 DB 136,136,136,000,140,140,140,000
; 35
 DB 144,144,144,000,148,148,148,000
; 37
 DB 152,152,152,000,156,156,156,000
; 39
 DB 160,160,160,000,164,164,164,000
; 41
 DB 168,168,168,000,172,172,172,000
; 43
 DB 176,176,176,000,180,180,180,000
; 45
 DB 184,184,184,000,188,188,188,000
; 47
 DB 192,192,192,000,196,196,196,000
; 49
 DB 200,200,200,000,204,204,204,000
; 51
 DB 208,208,208,000,212,212,212,000
; 53

Xga and 8514/A adapter interface 289

 DB 216,216,216,000,220,220,220,000
; 55
 DB 224,224,224,000,228,228,228,000
; 57
 DB 232,232,232,000,236,236,236,000
; 59
 DB 240,240,240,000,244,244,244,000
; 61
 DB 248,248,248,000,252,252,252,000
; 63
;
DATA ENDS
;**

; code segment
;**

;
CODE SEGMENT
 ASSUME CS:CODE
 .
 .
 .
; Call HSPAL to save current palette
 MOV AX,57 ; Code number for this
service
 LEA BX,HSPAL_DATA ; Pointer to data block
 CALL AI_SERVICE
 .
 .
 .
; Initialize DAC registers for 256-color mode in the
following
; format:
; 7 6 5 4 3 2 1 0 <= bits
; |_| |_| |_| |_|
; I R G B
;**********************|
; set LUT registers |
;**********************|
; Set address of color table in HLDPAL data area
 PUSH DS ; DS to stack
 POP PAL_SEG ; Store segment in
variable
 LEA SI,IRGB_SHADES ; Pointer to offset of
address
 MOV PAL_OFF,SI ; Store offset
; Call HLDPAL to set palette registers
 MOV AX,19 ; Code number for this
service
 LEA BX,HLDPAL_DATA ; Pointer to data block
 CALL AI_SERVICE

The pc graphics handbook 290

 .
 .
 .
; Initialize DAC registers for 64 gray shades, repeated
4 times
;**********************|
; set LUT registers |
;**********************|
; Set address of color table in HLDPAL data area
 PUSH DS ; DS to stack
 POP PAL_SEG ; Store segment in
variable
 LEA SI,GRAY_SHADES ; Pointer to offset of
address
 MOV PAL_OFF,SI ; Store offset
; Call HLDPAL to set palette registers
 MOV AX,19 ; Code number for this
service
 LEA BX,HLDPAL_DATA ; Pointer to data block
 CALL AI_SERVICE
 .
 .
 .
; Call HRPAL to restore original palette
 MOV AX,58 ; Code number for this
service
 LEA BX,HSPAL_DATA ; Pointer to saved
palette data
 CALL AI_SERVICE
; Notice that the same data area in which the palette
was saved
; is used during the restore operation
 .
 .
 .
CODE ENDS

In addition to the three palette commands mentioned above, the AI contains a function
named HQDFPAL (query default palette) that reports the default setting of the first 16
palette registers. HQDFPAL appears to be of little practical use, since the setting of all
palette registers can be obtained by means of the HSPAL (save palette) function, and the
default settings of the first 16 registers is usually known beforehand (see Table 11–3).

11.5.3 Geometrical Functions

Drawing operations on the XGA and 8514/A Adapter Interface are limited to straight line
segments. The other geometrical functions are rectangular fill area fill operations.

Xga and 8514/A adapter interface 291

Drawing Straight Lines

The AI documentation classifies the line drawing commands into three types: vertex,
offset, and disjoint lines. All three line types are of the polyline category, since several
line segments can be drawn with the same command. In all AI line drawing commands
the characteristics of the line depend on the selected line type and width, as well as on the
active color mix and comparison. The color of the line and its background is determined
by the setting of the foreground and background colors.

HLINE (polyline at given position) and HCLINE (polyline at current position) are
vertex-type commands. Both commands require a parameter block that encodes a set of
coordinate points. The draw operation connects these coordinate points by means of
straight line segments.

HRLINE (relative polyline at given position) and HCRLINE (relative polyline at
current position) are offset-type commands. In HRLINE the start point of the polyline is
the coordinate of a screen point. In the HCRLINE command the polyline starts at the
current point. The remaining points in the polyline are described as offsets from the start
point or the from the previous end point. The offsets are encoded as a 1-byte signed
integer for the x coordinate and another one for the y coordinate. Since each offset is
encoded in 1 byte, its range is limited to -128 to +127 pixels.

The disjoint line command is named HDLINE. This function is part of the XGA
extended set, therefore, it is not available in 8514/A systems. In HDLINE the polyline is
described by two coordinate points for each line segment; one marks the start of the line
and the next one its end point. Since each line is described independently, the line
segments that form the polyline can be disconnected from each other.

The following code fragment shows drawing a four-segment polyline using the
HLINE command.

;**

; data segment
;**

DATA SEGMENT
 .
 .
 .
; HLINE (polyline at given position)
HLINE_DATA DW 18 ; Length of data block
 DW 500 ; x coordinate of first
point
 DW 300 ; y coordinate of first
point
 DW 600 ; next x coordinate
 DW 300 ; next y coordinate
 DW 600 ; x
 DW 350 ; y
 DW 700 ; x

The pc graphics handbook 292

 DW 350 ; y
 DW 700 ; x
 DW 200 ; y
 .
 .
 .
DATA ENDS
;**

; code segment
;**

;
CODE SEGMENT
 ASSUME CS:CODE
 .
 .
;**********************|
; draw polyline |
;**********************|
POLYGON:
; Call HSCOL (set color)
 MOV FORE_COL,00001001B ; Bright blue
 MOV AX,7 ; Code number for this
service
 LEA BX,HSCOL_DATA ; Pointer to data block
 CALL AI_SERVICE
; Use the HLINE (polyline at given position) to draw a
polyline
 MOV AX,0 ; Code number for this
service
 LEA BX,HLINE_DATA ; Pointer to data block
 CALL AI_SERVICE
 .
 .
 .
CODE ENDS

Rectangular Fill

The AI provides a service named HRECT (fill rectangle) which can be used to fill a
rectangular area using the current foreground color and mix as well as an optional fill
pattern defined by the caller. The optional pattern, which can be monochrome or color, is
enabled by means of the HSPATT (set pattern shape) command. The rectangular fill
operation can be conveniently used to clear a window within the viewport, or even the
entire display. Notice that the HEGS (erase graphics screen) command can also be used
to clear the entire display area. HEGS is independent of colors and mixes but is limited
by the scissors and enabled planes.

The following code fragment shows the use of a rectangular fill operation in an XGA
or 8514/A system.

Xga and 8514/A adapter interface 293

;**

; data segment
;**

DATA SEGMENT
 .
 .
; Data block for rectangle draw
HRECT_DATA DW 8 ; Length of data block
RECT_X DW 0 ; x coordinate of top-left
corner
RECT_Y DW 0 ; y coordinate of top-left
corner
RECT_WIDTH DW 0 ; Width (1 to 1024)
RECT_HIGH DW 0 ; Height (1 to 768)
 .
 .
 .
DATA ENDS
;**

; code segment
;**

CODE SEGMENT
 ASSUME CS:CODE
 .
 .
 .
; Fill a rectangular area using HRECT
 MOV RECT_X,100 ; x origin
 MOV RECT_Y,5 0 ; y origin
 MOV RECT_WIDTH,500 ; Width, in pixels
 MOV RECT_HIGH,200 ; Height, in pixels
 MOV AX,3 2 ; Code number for this
service
 LEA BX,HRECT_DATA ; Pointer to data block
 CALL AI_SERVICE
 .
 .
 .
CODE ENDS

Area Fill

An application using the AI services can define a closed area before it is drawn and then
fill its enclosed boundary with a solid color or a pattern. The HBAR (begin area
definition) command is used to mark the start of the draw or move commands that will
delimit the area to be filled. If the figure defined after the HBAR command is not
properly closed, that is, if its start and end points do not coincide, it is closed

The pc graphics handbook 294

automatically by the AI software. The actual fill operation is performed by means of the
HEAR (end area definition) command. A control byte in the HEAR parameter area
allows selecting one of three operations modes: fill area, suspend area definition, or abort.
The control setting to suspend the area definition has the effect of leaving the presently
defined area in an internal AI buffer until another HBAR or HEAR command is
executed. Area fill operations take place using the current foreground color, as well as the
pattern and mix.

The following code fragment shows the definition, drawing, and filling of a polygon.

;**

; data segment
;**

DATA SEGMENT
 .
 .
; Data for connected straight line segments to form a
7-segment
; polygon
HCLINE_DATA DW 26 ; Length of data block
 ; for 14 coordinate
points
X1 DW 562 ; x coordinate of first
end point
Y1 DW 384 ; y coordinate of first
end point
X2 DW 700 ; Second pair of x,y
coordinates
Y2 DW 500
X3 DW 520 ; Third pair of x,y
coordinates
Y3 DW 550
X4 DW 400 ; Fourth pair of x,y
coordinates
Y4 DW 500
X5 DW 450 ; Fifth pair of x,y
coordinates
Y4 DW 384
X6 DW 530 ; Sixth pair of x,y
coordinates
Y6 DW 450
X7 DW 512 ; Last pair of x,y
coordinates
Y7 DW 384 ; are on screen center
 .
 .
DATA ENDS
;**

; code segment

Xga and 8514/A adapter interface 295

;**

CODE SEGMENT
 ASSUME CS:CODE
 .
 .
 .
; Call HSCP (set current coordinate position)
; Coordinates are set at the center of the screen on
1024 by 768
; pixels modes
 MOV NEW_X,512 ; Middle of screen
column
 MOV NEW_Y,384 ; Middle of screen row
 MOV AX,4 ; Code number for this
service
 LEA BX,HSCP_DATA ; Pointer to data block
 CALL AI_SERVICE
; Call HBAR to begin fill area
 MOV AX,5 ; Code number for this
service
 LEA BX,DUMMY ; Pointer to data block
 CALL AI_SERVICE
; Call HCLINE (draw line at current coordinate
position)
; Coordinates of the line’s start point were set by the
HSCP
; service. Coordinates of polygon points already in
data block
 MOV AX,1 ; Code number for this
service
 LEA BX,HCLINE_DATA ; Pointer to data block
 CALL AI_SERVICE
; Call HEAR to fill area
 MOV AX,6 ; Code number for this
service
 LEA BX,HEAR_DATA ; Pointer to data block
 CALL AI_SERVICE
CODE ENDS

11.5.4 Raster Operations

The XGA and 8514/A AI supports two types of raster operations: polymarker display and
bitBLTs. These functions were described in Sections 11.4.4 and 11.4.6 respectively. In
addition, the extended XGA AI services provide a means for manipulating on and off
screen bitmaps. The bitmap functions are not available in 8514/A systems.

The pc graphics handbook 296

Polymarkers

Polymarkers are useful in displaying one or more copies of a bitmapped object. A typical
use is in the animated display of one or more mouse-controlled screen objects. The
following code fragment shows the display of two copies of a marker symbol.

;**

; data segment
;**

DATA SEGMENT
 .
 .
 .
; Data area for HSMARK (define marker symbol)
HSMARK_DATA DW 14 ; Length of data block
MARK_WIDE DB 8 ; Pixel width of marker
symbol
MARK_HIGH DB 16 ; Pixel height of
marker
MARK TYPE DB 0 ; 7 6 5 4 3 2 1 0 <=
BITS
 ; | |_|_|_|_|_|_|_
reserved (0)
 ; |____________ 0 =
monochrome
 ; 1 =
multicolor
 DB 0 ; Reserved
MARK_SIZE DW 16 ; Number of bytes in
marker image
 ; size = ((width *
height)+7)/8
MARK_OFF DW 0 ; Offset of marker
image map
MARK_SEG DW 0 ; Segment of marker
image map
M_COLOR_OFF DW 0 ; Offset of color image
map
M_COLOR_SEG DW 0 ; Segment of color
image map
;
; Bitmap for marker image
; Marker image is a vertical arrow symbol
MARK_MAP DB 00100100B ; 1
 DB 00111100B ; 2
 DB 00111100B ; 3
 DB 00111100B ; 4
 DB 00011000B ; 5

Xga and 8514/A adapter interface 297

 DB 00011000B ; 6
 DB 00011000B ; 7
 DB 00011000B ; 8
 DB 00011000B ; 9
 DB 00011000B ; 10
 DB 00011000B ; 11
 DB 11111111B ; 12
 DB 01111110B ; 13
 DB 00111100B ; 14
 DB 00011000B ; 15
 DB 00011000B ; 16
;
; Marker display command
HMRK_DATA DW 8 ; Length of data block
MARKER_X0 DW 40 ; x coordinate of first
marker
MARKER_Y0 DW 500 ; y coordinate of first
marker
MARKER_X1 DW 55 ; x coordinate of
second marker
MARKER_Y1 DW 500 ; y coordinate of
second marker
 .
 .
 .
DATA ENDS
;**

; code segment
;**

CODE SEGMENT
 ASSUME CS:CODE
 .
 .
 .
;**********************|
; marker display |
;**********************|
; Display monochrome marker (down arrow) stored at
MARK_MAP
; First use HSMARK to define the marker bitmap
; Set address marker bitmap in control block variables
 PUSH DS ; Data segment
 POP MARK_SEG ; Store in variable
 LEA SI,MARK_MAP ; Offset of marker
bitmap
 MOV MARK_OFF, SI ; Store offset of
bitmap
; Call HSMARK
 MOV AX,52 ; Code number for this
service

The pc graphics handbook 298

 LEA BX,HSMARK_DATA ; Pointer to data block
 CALL AI_SERVICE
; Call HMRK (display markers)
 MOV AX,50 ; Code number for this
service
 LEA BX,HMRK_DATA ; Pointer to data block
 CALL AI_SERVICE
 .
 .
 .
CODE ENDS

BitBLT

BitBLT operations in the AI allow read, write, and copy functions, as described in
Section 11.4.6. Except for the polymarker function, bitBLT provides the only way in
which an 8514/A application can read, write, or copy a bi map. The following code
fragment shows two bitBLT operations, first, a bitmapped image of a running boar target,
resident in RAM, is displayed using a bitBLT write operation. Second, the displayed
image is copied to another screen position.

;**

; data segment
;**

DATA SEGMENT
 .
 .
 .
; Data for bitBLT write operation
HBBW_DATA DW 10 ; Length of data block
WR FORMAT DW 0 ; Format
 ; 0000H = across the
planes
 ; 0008H = through the
planes
WR_WIDTH DW 48 ; Block’s pixel width
WR_HEIGHT DW 19 ; Pixel rows in block
DEST_X DW 100 ; x coordinate for
display
DEST_Y DW 500 ; y coordinate for
display
;
; Data for bitBLT chain image operation
HBBCHN_DATA DW 6 ; Length of data block
BBLOK_OFF DW 0 ; Offset of image map
BBLOK_SEG DW 0 ; Segment of image map
BBLOK_SIZE DW 114 ; Byte size of image
buffer
;

Xga and 8514/A adapter interface 299

; Data block for bit block copy
HBBC_DATA DW 16 ; Length of data block
BLT_FORMAT DW 8 ; Format
 ; 0000H = across the
planes
 ; 0008H = through the
planes
BLT_WIDTH DW 60 ; Block’s pixel width
BLT_HEGHT DW 20 ; Pixel rows in block
PLANE_NUM DB 0 ; Bit plane for across
plane
 ; mode
 DB 0 ; Reserved value
SOURCE_X DW 20 ; x coordinate of
source image
SOURCE_Y DW 490 ; y coordinate of
source
DESTIN_X DW 200 ; x coordinate of
destination
DESTIN_Y DW 500 ; y coordinate of
destination
;
;****************************|
; bitmapped image in RAM |
;****************************|
; Bitmap for a running boar target
; Bitmap dimensions are 6 bytes (48 pixels) by 19 rows
BOAR_MAP DB 01FH,080H,00FH,0FFH,0F0H,000H ;
1
 DB 000H,043H,0F0H,081H,00EH,000H ;
2
 DB 000H,03CH,001H,03CH,081H,000H ;
3
 DB 000H,040H,002H,042H,040H,0C0H ;
4
 DB 000H,040H,004H,099H,020H,030H ;
5
 DB 000H,080H,005H,024H,0A0H,00CH ;
6
 DB 000H,080H,005H,05AH,0A0H,003H ;
7
 DB 000H,080H,005H,05AH,0A0H,001H ;
8
 DB 007H,000H,005H,024H,0A0H,01EH ;
9
 DB 008H,000H,004H,099H,020H,060H ;
10
 DB 008H,000H,002H,042H,047H,080H ;
11
 DB 010H,000H,001H,03CH,088H,000H ;
12

The pc graphics handbook 300

 DB 028H,000H,000H,081H,007H,080H ;
13
 DB 05FH,0C1H,0F0H,03FH,000H,040H ;
14
 DB 0FCH,03EH,00FH,0FCH,000H,0B0H ;
15
 DB 014H,000H,000H,002H,061H,060H ;
16
 DB 024H,000H,000H,001H,099H,000H ;
17
 DB 078H,000H,000H,000H,006H,080H ;
18
 DB 000H,000H,000H,000H,001H,0C0H ;
19
 .
 .
 .
DATA ENDS
;**

; code segment
;**

CODE SEGMENT
 ASSUME CS:CODE
 .
 .
 .
;**********************|
; bitBLT operations |
;**********************|
; BitBLT bitmap of boar from memory to video
; Call HBBW (bit block write)
 MOV AX,21 ; Code number for this
service
 LEA BX,HBBW_DATA ; Pointer to data block
 CALL AI_SERVICE
; Call HBBCHN to chain bit block
; Set address marker bitmap in control block variables
 PUSH DS ; Data segment
 POP BBLOK_SEG ; Store in variable
 LEA SI,BOAR_MAP ; Offset of marker
bitmap
 MOV BBLOK_OFF,SI ; Store offset of
bitmap
;Call HBBCHN service
 MOV AX,24 ; Code number for this
service
 LEA BX,HBBCHN_DATA ; Pointer to data block
 CALL AI_SERVICE
; Re-display boar image using a bit block copy
; Call HBBC (bit block copy)

Xga and 8514/A adapter interface 301

 MOV AX,25 ; Code number for this
service
 LEA BX,HBBC_DATA ; Pointer to data block
 CALL AI_SERVICE
 .
 .
 .
CODE ENDS

11.5.5 Character Fonts

XGA and 8514/A systems are furnished with disk-based character fonts that can be used
in text display operations. Since the BIOS text functions do not operate on the XGA and
8514/A, the use of disk-based fonts is the simplest option for text display in the advanced
function modes. In the loading of a disk-based font file the application is left to its own
resources, since the AI provides no command to perform this operation. In addition to
loading the font file into RAM, the application must also inform the AI of the font’s
address and select the desired character set. The following code fragment shows the
necessary operations for loading a disk-resident font file into RAM, for initializing the
necessary AI parameter blocks, and for selecting a character set for text and alphanumeric
operations.

;**

; data segment
;**

DATA SEGMENT
 .
 .
 .
;**********************|
; text operations data |
;**********************|
; Parameter block for HSCS (text select character set)
HSCS_DATA DW 4 ; Length of data block
FONT_OFF DW 0 ; Offset of loaded font
FONT_SEG DW 0 ; Segment of loaded
font
;
; Parameter block for ASFONT (alpha select character
set
ASFONT_DATA DW 6 ; Length of data block
 DB 0 ; Font number
 DB 0 ; Reserved
AFONT_OFF DW 0 ; Offset of loaded font
AFONT_SEG DW 0 ; Segment of loaded
font
;

The pc graphics handbook 302

;**********************|
; fonts |
;**********************|
; ASCIIZ filename for XGA 85-by-38 font
F1220_NAME DB ‘STAN1220.FNT',00H
FONT_HANDLE DW 0 ; Handle for font file
;
;**********************|
; storage for font |
;**********************|
; Font header area
FONT_BUF DW 0 ; Number of code pages
 DW 0 ; Default code page (0
to 4)
 DW 0 ; Alternate default (0
to 4)
 DD 0 ; 4-byte ID string
('437',0)
PAGE_1_OFFSET DW 0 ; Offset of CSD within
file
 DD 0 ; 4-byte ID string
('850',0)
 DW 0 ; Offset of CSD within
file
 DD 0 ; 4-byte ID string
('860',0)
 DW 0 ; Offset of CSD within
file
 DD 0 ; 4-byte ID string
('863',0)
 DW 0 ; Offset of CSD within
file
 DD 0 ; 4-byte ID string
('865',0)
 DW 0 ; Offset of CSD within
file
;
; Character set definition block for first code page
 DB 0 ; Reserved
 DB 0 ; Font type:
 ; 0 = multiplane image
 ; 3 = short vector font
 DB 0 ; Reserved
 DD 0 ; Reserved
CELL_WIDTH DB 0 ; Pixel width of
character cell
CELL_HEIGHT DB 0 ; Pixel height of cell
 DB 0 ; Reserved
 DW 0 ; Cell size
CSD_FLAGS DW 0 ; Flag bits:
 ; Bit 14 ... 0 =
single-plane

Xga and 8514/A adapter interface 303

 ; 1 =
multiplane
 ; 13 ... 0 = not
prop. space
 ; 1 = prop.
space
IDX_TABLE_O DW 0 ; Offset of index table
IDX_TABLE_S DW 0 ; Segment of index
table
 DW 0 ; Offset of envelope
table
 DW 0 ; Segment of envelope
table
 DB 0 ; Initial code point
 DB 0 ; Final code point
CSD_TABLE_O DW 0 ; Offset of character
definition
CSD_TABLE_S DW 0 ; Segment of character
definition
 DB 14250 DUP (00H)
 .
 .
 .
DATA ENDS
;
;**

; code segment
;**

;
CODE SEGMENT
 ASSUME CS:CODE
 .
 .
 .
;**********************|
; load font file |
;**********************|
; Before using text display operations one of the four
font files
; provided with the adapter must be loaded into RAM
 LEA DX,F1220_NAME ; Filename for XGA
12x20 font
 LEA DI,FONT_BUF ; Buffer for storing
font
 CALL XGA_FONT ; Local procedure to
load font
; Carry set if error during font load
 JNC OK_XGA_FONT ; Go if no error
;**********************|
; font load error |

The pc graphics handbook 304

;**********************|
; At this point the application must provide a handler
to take
; care of the error that occurred during the font load
operation
 .
 .
 .
;**********************|
; init parameter block |
;**********************|
; The AI is informed of the address of the loaded font
by means
; of the HSCS (set character set) function
OK_XGA_FONT:
 PUSH DS ; DS to stack
 PUSH DS ; twice
 POP FONT_SEG ; Store in parameter
block
; Alphanumeric display operations require a separate
parameter
; block initialization
 POP AFONT_SEG ; For alphanumeric
operations
; The offset of the font’s character set definition
block is
; located at byte 10 of the font header
 LEA SI,FONT_BUF ; Offset of font buffer
 MOV BX,[SI+10] ; Get offset of first
code page
 ADD BX,SI ; Add offset to pointer
 MOV FONT_OFF,BX ; Store pointer in
block
 MOV AFONT_OFF,BX ; For alphanumeric
operations
;**********************|
; update font pointers |
;**********************|
; Update pointers in character set definition area by
adding
; the load address of the font (in SI)
 ADD IDX_TABLE_O,SI ; Add to index table
offset
 ADD CSD_TABLE_O,SI ; and to CSD table
offset
; AX still holds the segment address. Store segment
portion of
; address
 MOV IDX_TABLE_S,AX ; In index table
 MOV CSD_TABLE_S,AX ; In character set
table

Xga and 8514/A adapter interface 305

;**********************|
; select character set |
;**********************|
; Call HSCS (set character set) function
 MOV AX,37 ; Code number for this
service
 LEA BX,HSCS_DATA ; Pointer to data block
 CALL AI_SERVICE
 .
 .
 .
;**

; procedures
;**

XGA_FONT PROC NEAR
; Read an XGA or 8514-a font file into RAM
; On entry:
 DS:DX --> ASCIIZ filename for font file
; (must be in the current path)
; DS:DI --> RAM buffer for font storage
;
; On exit:
; Carry clear if font read and stored in buffer
; Carry set if file not found or disk error
;
; Open font file using MS-DOS service
 PUSH DI ; Save entry pointer
 MOV AH,61 ; DOS service request
number
 ; to open file (handle
mode)
 MOV AL,2 ; Read/write access
 INT 21H
 POP DI ; Restore pointer
; File opened?
 JNC OK_XOPEN ; Go if no error code
;**********************|
; disk open error |
;**********************|
; Open operation failed. Set carry flag and return to
caller
 STC ; Signal error
 RET
;**********************|
; read font into RAM |
;**********************|
OK_XOPEN:
 MOV FONT_HANDLE,AX ; Store file
handle
NEW_128:

The pc graphics handbook 306

 MOV BX,FONT_HANDLE
 LEA DX,DATA_BUF ; Buffer for
data storage
 PUSH DI ; Save buffer pointer
; Use MS-DOS service to read 128 bytes
 PUSH CX ; Save entry CX
 MOV AH,6 3 ; MS-DOS service
request
 MOV CX,128 ; Bytes to read
 INT 21H
 POP CX ; Restore
; 128 bytes read into buffer
 POP DI ; Restore buffer
pointer
 CMP AX,0 ; Test for end of file
 JNE MOVE_128 ; Go if not at end of
file
;**********************|
; end of file |
;**********************|
 MOV BX,FONT_HANDLE ; Handle for font file
; Close file using MS-DOS service
 MOV AH,62 ; DOS service request
 INT 21H
 JMP END_OF_READ
;**********************|
; move sector to |
; font buffer |
;**********************|
; At this point DATA_BUF holds 128 bytes from disk file
; DI --> storage position in the font’s buffer
MOVE 128:
 MOV CX,128 ; Byte counter
 LEA SI,DATA_BUF ; Pointer to data just
read
PLACE_128:
 MOV AL,[SI] ; Byte from DATA_BUF
 MOV [DI],AL ; Into font’s buffer
 INC SI ; Bump pointers
 INC DI
 LOOP PLACE_128 ; Continue until all
sector read
; At this point the 128 bytes read from the disk file
are stored
; in the font’s buffer
 JMP NEW_128
END_OF_READ:
 CLC
 RET
XGA_FONT ENDP
 .
 .

Xga and 8514/A adapter interface 307

 .
CODE ENDS

11.5.6 Displaying Text

Once the preparatory operations described in Section 11.5.5 have been successfully
executed, the application is able to use AI commands to display text characters and
strings. Two types of text display services are available in the AI: string and
alphanumeric commands.

Character String Operations

The character string commands are HCHST (character string at given position) and
HCCHST (character string at current position). AI string display operations allow
positioning the text characters at a screen pixel boundary. This offers a level of control
that exceeds the one in BIOS text display services. The following code fragment shows
the display of a character string using HCHST.

;**

; data segment
;**

DATA SEGMENT
 .
 .
 .
HCHST_DATA_1 DW 59 ; Length of data block
PIXEL_COL DW 150 ; Column address for
start
PIXEL ROW DW 20 ; Row address for start
 DB 'XGA and 8514/A Adapter
Interface'
 DB 'bitBLT Operations Demo'
;
;**********************|
; color data |
;**********************|
; Parameter blocks for foreground and background colors
; Foreground color
HSCOL_DATA DW 4 ; Length of data block
FORE_COL DB 0F0H ; 8-bit color code
 DB 0 ; Padding for double
word
 DW 0
; Background color
HSBCOL_DATA DW 4 ; Length of data block
BACK_COL DB 11110000B ; Bright red in
2-bit
 ; IRGB format

The pc graphics handbook 308

 DB 0 ; Padding for double
word
 DW 0
 .
 .
 .
DATA ENDS
;
;**

; code segment
;**

CODE SEGMENT
 ASSUME CS:CODE
 .
 .
 .
;**********************|
; select colors |
;**********************|
; AI string commands perform text display operations at
the pixel
; level. First set foreground color to bright red
 MOV FORE_COL,00001100B ; Bright red
 MOV AX,7 ; Code number for this
service
 LEA BX,HSCOL_DATA ; Pointer to data block
 CALL AI_SERVICE
; Now set the background color to dark blue
 MOV BACK_COL,00000001B ; Dark blue
 MOV AX,10 ; Code number for this
service
 LEA BX,HSBCOL_DATA ; Pointer to data block
 CALL AI_SERVICE
;**********************|
; display text string |
;**********************|
; Call HCHST (display character string at given
position)
 MOV AX,38 ; Code number for this
service
 LEA BX,HCHST_DATA_1 ; Pointer to
data block
 CALL AI_SERVICE
 .
 .
 .
CODE ENDS

Alphanumeric Operations

Xga and 8514/A adapter interface 309

Alphanumeric commands in the AI can be easily identified since their names start with
the letter "A". In Section 11.5.5 we saw the use of the ASFONT (alpha select character
set) to inform the adapter of the address of the character map resident in RAM and to
select a character set. The other preparatory operations described in Section 11.5.5 must
also be performed in order for an application to use the alphanumeric commands.

One difference between the string display commands and the alphanumeric commands
is that the string commands allow positioning of the text characters at the screen pixel
level while the alphanumeric commands use a screen grid of the size of the character
cells. Table 11–11 shows the cell size of the different font files furnished with XGA and
8514/A systems.

Table 11–11
XGA and 8514/A Font Files and Text Resolution

CHARACTER SIZE ALPHA MODE GRIDFILE NAME SCREEN SIZE
WIDTH HEIGHT COLUMNS ROWS

STAN1220.FNT 1024 by 768 12 20 85 38
STAN1223.FNT 1024 by 768 12 23 85 33
STAN0814.FNT 640 by 480 8 14 80 34

 1024 by 768 8 14 128 54
STAN0715.FNT 1024 by 768 7 15 146 52

On the other hand, the AI alphanumeric commands allow the attributes of each character
to be individually controlled. In addition, alphanumeric commands provide the control
and display of a cursor character. Since the blinking attribute is not available in XGA and
8514/A systems, this alphanumeric cursor is nothing more than a static graphics symbol,
which must be handled by the application. The grid for cursor operations is also
determined by the character size.

There are two alphanumeric display commands in the AI. The command named
ABLOCKMFI (write character block in mainframe interactive mode) is designed to
simulate character display in a mainframe environment. The command ABLOCKCGF
(write character block in CGA mode) is designed to simulate the display controls in the
IBM Color Graphics Adapter. The following code fragment shows the use of
alphanumeric commands in cursor and text display operations.

;**

; data segment
;**

DATA SEGMENT
 .
 .
 .
; ASCUR (set cursor shape)
ASCUR_DATA DW 3 ; Length of data block
 DB 16 ; Cursor start line

The pc graphics handbook 310

 DB 19 ; Cursor stop line
CUR_SHAPE DB 00 ; Cursor attribute:
 ; 00 = normal
 ; 01 = hidden
 ; 02 = left arrow
 ; 03 = right arrow
; ACURSOR (set cursor position)
ACURSOR_DATA DW 2 ; Length of data block
CUR_COLUMN DB 0 ; Cursor column
CUR_ROW DB 0 ; Cursor row
; ASFONT (select character set)
ASFONT_DATA DW 6 ; Length of data block
 DB 0 ; Font number
 DB 0 ; Reserved
AFONT_OFF DW 0 ; Offset of loaded font
AFONT_SEG DW 0 ; Segment of loaded
font
;
; ABLOCKCGA (writes a block of characters in CGA
emulation mode)
ABLOCKCGA_DATA DW 10 ; Length of data block
COL_START DB 0 ; Start column for
display
ROW_START DB 0 ; Start row for display
CHAR_WIDE DB 0 ; Width of block
(characters)
CHAR_HIGH DB 0 ; Height of block
(characters)
STRING_OFF DW 0 ; Offset of string
address
STRING_SEG DW 0 ; Segment of string
address
BUF_WIDE DB 85 ; Characters per row
displayed
ATTRIBUTE DB 0 ; 7 6 5 4 3 2 1 0 <=
BITS
 ; | | | | | | | |
 ; | | | | | | |_|__
font (0 to 3)
 ; | | | | |_|______
reserved
 ; | | | |________ 1 =
transparent 1
 ; | | | 0 =
opaque 0
 ; | | |__________
overstrike O
 ; | |____________
reverse video
 ;
|_______________underscore
;

Xga and 8514/A adapter interface 311

; __________background
color
; |
; _____foreground
color
; | |
; String for ABLOCKCGA C |--||--|
STRING_1 DB 'T',00001001B
 DB 'h',00001001B
 DB 'i',00001001B
 DB 's',000010016
 DB ' ',00001001B
 DB 'i',000011006
 DB 's',00001100B
 DB ' ',00001100B
 DB 'a',000010106
 DB ' ',00001010B
 DB 't',00011100B
 DB 'e',00011100B
 DB 's',00011100B
 DB 't',00011100B
 .
 .
 .
DATA ENDS
;
;**

; code segment
;**

;
CODE SEGMENT
 ASSUME CS:CODE
 .
 .
 .
;**********************|
; alphanumeric text |
;**********************|
; AI commands that start with the prefix letter A are
used to
; perform alphanumeric operations at the character cell
level.
; The alphanumeric commands allow controlling the
attribute of
; each individual character displayed.
;**********************|
; cursor operations |
;**********************|
; Display cursor
 MOV CUR_COLUMN,30 ; Column number

The pc graphics handbook 312

 MOV CUR_ROW,4 ; Row number
;
; Call ASCUR (set cursor shape)
 MOV AX,45 ; Code number for this
service
 LEA BX,ASCUR_DATA ; Pointer to data block
 CALL AI_SERVICE
; CAll ACURSOR (set cursor position)
 MOV AX,44 ; Code number for this
service
 LEA BX,ACURSOR_DATA ; Pointer to data block
 CALL AI_SERVICE
; Call ASFONT (select font)
; Code assumes that the address of the RAM-resident
font has
; been previously set in the parameter block
 MOV AX,46 ; Code number for this
service
 LEA BX,ASFONT_DATA ; Pointer to data block
 CALL AI_SERVICE
; Display text message using ABLOCKCGA function
; Set display parameters in control block variables
 MOV COL_START,20 ; Start at column 20
 MOV ROW_START,30 ; and at row number 30
 MOV CHAR_WIDE,14 ; Characters wide
 MOV CHAR_HIGH,1 ; Characters high
 PUSH DS ; Data segment
 POP STRING_SEG ; Store in variable
 LEA SI,STRING_ 1 ; Offset of text string
 MOV STRING_OFF ,SI ; Store offset of
string
; Call ABLOCKCGA
 MOV AX,41 ; Code number for this
service
 LEA BX,ABLOCKCGA_DATA ; Pointer to
data block
 CALL AI_SERVICE
 .
 .
 .
CODE ENDS

Xga and 8514/A adapter interface 313

Chapter 12
XGA Hardware Programming

Topics:

• The XGA hardware
• XGA features and architecture
• Initializing the XGA system
• Processor access to XGA video memory
• Programming the XGA graphics coprocessor
• The XGA sprite
• Using the book’s XGA library

This chapter describes the XGA architecture and its programmable hardware
components.and iIllustrates XGA programming by manipulating the video hardware
directly and by accessing video memory. It describes the XGA graphics coprocessor, its
capabilities, initialization, and programming, and also the XGA sprite, its hardware
elements, and the programming of sprite operations. The chapter concludes with a listing
of the procedures in the GRAPHSOL library furnished with the book.

12.1 XGA Hardware Programming

Chapter 11 discusses the XGA Adapter Interface software and how it can be used in
programming 8514/A and XGA systems. However, the AI has some limitations. At the
system level the use of AI services would almost certainly be discarded for reasons of
code autonomy. The applications programmer can also find objections to using the AI,
particularly its limited services and its performance penalty. In summary, one or more of
the following reasons will often determine that the programmer uses direct access to the
XGA hardware:

1. The process of loading and initializing the Adapter Interface cannot be conveniently
performed at the program’s level.

2. The services provided by the Adapter Interface are insufficient for the program’s
purpose.

3. The performance of the adapter interface services do not meet the requirements of the
code.

In the case of system programs, device drivers, and other low-level graphics software, the
decision will often be to not use the AI at all, especially if objection number one, listed
above, is applicable. Then the programmer would take control of the XGA hardware and
proceed with the XGA device as described in Chapters 2 to 5 regarding the VGA system.

Although, even when assuming control over the hardware, it is possible that the software
developers could benefit from using the character fonts furnished with the AI.

On the other hand, most graphics applications could be developed either by using AI
services exclusively or in a mixed environment in which the code complements the AI
services with direct hardware programming. For example, an application could be
designed to use the AI services when their control and performance is at an acceptable
level. In this manner, the AI commands described in Chapter 6 can be useful and
convenient in initializing the XGA, setting the color palette, loading font files into RAM,
display-ing text messages, clearing the screen, and closing the adapter. All of the above
are functions in which performance is often not an important issue. At the same time, the
application may assume direct control of the XGA hardware in setting individual pixels,
drawing lines and geometrical figures, performing bitBlt operations to and from video
memory, manipulating graphics markers, and other functions in which control or
performance factors are important.

12.1.1 XGA Programming Levels

Regarding the XGA and system hardware the graphics programmer can operate at four
different levels. The first and highest level is the graphics functions offered by operating
systems and graphics environments. Such is the case in applications that execute under
the Windows and OS/2 operating systems and use the graphics services provided by the
system software. The second level of XGA programming is by means of the AI services
discussed in Chapter 6. The third level is by programming the XGA registers and the
graphics coprocessor. The fourth and lowest level of XGA graphics programming is by
accessing video memory directly. Graphics programming in high-level environments
such as the Windows and OS/2 operating systems are outside of the subject matter of this
book. XGA programming by means of AI services was discussed in Chapter 6. The
present chapter is devoted to programming the XGA graphics coprocessor and accessing
XGA video memory directly.

These same four levels of programming are possible in 8514/A systems. Since the
8514/A is no longer state-of-the-art we have not included its low-level programming.
Readers interested in programming the 8514/A at the register level should consult
Graphics Programming for the 8514/A by Jake Richter and Bud Smith (see
Bibliography), as well as the 8514/A documentation available from IBM.

12.2 XGA Features and Architecture

Figure 11.2 shows the elements of the XGA system. The XGA is furnished as an optional
adapter card for microchannel computers equipped with the 80386, 80386SX, or 486
processor. The XGA system is integrated in the motherboard of the Model 90 XP 486.
Sections 6.0 and 6.1 (Chapter 6) describe the evolution of the XGA from the 8514/A
adapter, its comparative features as well as its presentation. To the programmer the XGA
system presents the following interesting features:

The pc graphics handbook 315

1. It includes all VGA modes and is compatible with VGA at the register level. That is,
software developed for VGA can be expected to run satisfactorily in XGA. One
exception is programs that make use of the VGA video space for other purposes. For
example, a popular VGA enhancement for the Ventura Publisher typesetting program,
called Soft Kicker, will not operate in the VGA modes of an XGA system.

2. XGA includes a 132-column text mode that represents a substantial enhancement to
the 80-column text modes of the VGA. This mode requires an XGA system equipped
with the appropriate video display. At this time no BIOS support is provided for the
132-column mode or for XGA graphics operations.

3. The XGA Extended Graphics modes, or enhanced modes, provide a maximum
resolution of 1,024 by 768 pixels in 256 colors, which can be selected from a palette
of 256K colors. The enhanced modes also provide a 64-by-64 pixels hardware-
controlled graphics object, whose shape is defined by the application. This graphics
object, called the sprite, is usually animated by mouse movements and used to non-
destructively overlay a displayed image. The XGA graphics modes support systems
with multiple video displays.

4. The XGA direct color mode, also called the palette bypass mode, is capable of
displaying 65,536 colors on a 640-by-480 pixel grid. In this mode the pixel color is
encoded in a 16-bit value that is used to set the red, blue, and green electron guns
without intervention of the LUT registers.

12.2.1 The XGA Graphics Coprocessor

One characteristic of XGA hardware that differentiates it from VGA and SuperVGA
systems is the presence of a graphics coprocessor chip. Much of the enhanced
performance of the XGA system is due to this device. The following are the most
important features of the graphics coprocessor:

1. The coprocessor can obtain control of the system bus in order to access video and
system memory independently of the central processor. This bus-mastering feature
allows the coprocessor to perform graphics operations while the main processor is
executing other functions.

2. The graphics coprocessor can directly perform drawing operations. These include
straight lines, filled rectangles, and bit block transfers.

3. The coprocessor provides support for saving its own register contents. This feature is
useful in a multitasking environment.

4. The coprocessor supports several logical and arithmetic mixes including OR, AND,
XOR, NOT, source, destination, add, subtract, average, maximum, and minimum
operands.

5. The coprocessor can manipulate images encoded in 1,2,4, or 8 bits per pixel formats.
Pixel maps can be defined as coded in Intel or Motorola data storage formats.

6. The coprocessor can be programmed to generate system inter-rupts. These interrupts
can occur when the coprocessor operation has completed, an access to the coprocessor
was rejected, a sprite operation completed, or at the end or start of the screen blanking
cycle.

Xga hardware programming 316

The coprocessor registers are memory-mapped. To an application, programming the
coprocessor consists of reading and storing data into these reserved memory addresses. In
contrast, the XGA main registers are port-mapped and programming consists of reading
and writing to these dedicated ports.

The execution of a coprocessor operation consists of the following steps:

1. The system microprocessor reads and writes data to coprocessor registers that must be
initialized for the operations.

2. The coprocessor operation starts when a command is written to its Pixel Operations
register.

3. The coprocessor executes the programmed operation. During this time the system
microprocessor can be performing other tasks. The only possible interference between
processor and coprocessor is when both are accessing the bus simultaneously. In this
case the access takes place according to the established priorities.

4. At the conclusion of the programmed operation the graphics coprocessor informs the
system and becomes idle.

12.2.2 VRAM Memory

Since the XGA is a memory-mapped system the color code for each screen pixel is
encoded in video RAM. How many units of memory are used to encoded the pixel’s
color depends on the adopted format. Possible values are of 1, 2, 4, 8, and 16 bits per
pixel. The number of colors are respective powers of 2, as shown in Table 12–1.

Table 12–1
Pixel to Memory Mapping in XGA Systems

BITS-PER-PIXEL POWER OF 2 NUMBER OF COLORS
1 21 2
2 22 4
4 24 16
8 28 256

16 216 65536

Notice that the 256 and 65,536 color modes are available only in XGA systems with
maximum on-board RAM (1Mb). The total amount of VRAM required depends on the
number of screen pixels and the number of encoded colors. For example, to store the
contents of the entire XGA screen at 1,024-by-768 pixels resolution requires a total of
786,432 memory units. In the 8-bits per pixel format the number of memory units is of
786,432 bytes (8 bits per byte). However, this same screen can be stored in 98,304 bytes
if each screen pixel is represented in a single memory bit (786,432/8=98,304).

Therefore the video memory space of an XGA system in 1,024-by-768 pixel mode,
with each pixel encoded in 256 colors, exceeds by far the limit of an 80x86 segment
register (65,536). Therefore an application accessing video memory directly while
executing in 80x86 real mode requires some sort of memory banking mechanism by
which to access a total of 768,432 bytes of VRAM memory. In fact, a minimum of 12

The pc graphics handbook 317

memory banks of 65,536 bytes are required to encode the 768,432 XGA pixels in 1,024-
by-768 pixel mode in 256 colors. This banking mechanism is discussed in detail later in
Section 12.3

Video Memory Apertures

In general, an XGA system can access video memory by means of three different
apertures, described as follows:

1. The largest memory aperture is of a 22-bit space. This range of 4Mb allows addressing
four times the maximum VRAM that can be present in an XGA system. The 4Mb
address space must be represented in an 80386 or 486 extended register. This is the
aperture used by the XGA graphics coprocessor.

2. The second possible aperture into video memory is of 1Mb. Since this is also the
maximum VRAM that can be present in an XGA system, the 1Mb aperture allows
addressing all video memory consecutively by means of an 80386 or 486 extended
register.

3. The third possible aperture is of 16 banks of 64K each. This aperture, which is the only
one possible in the MS-DOS environment, requires bank switching to access the
maximum VRAM.

Notice that in a particular display mode not all 16 banks are required to access the
mapped video memory space.

Data Ordering Schemes

XGA memory mapping can be according to the Intel or the Motorola storage
conventions. The XGA hardware allows selecting the Intel or Motorola formats for every
operation that accesses a pixel map or image stored in system or video memory. In the
Intel conven-tion, also known as the little-endian addressing scheme, the smallest
element (little end) of a number is stored at the lowest numbered memory location. In the
Motorola convention, known as big-endian addressing, the largest element (big end) is
stored at the lowest numbered memory location. Table 12–2 shows the results of storing
bytes, words, and doublewords according to the Intel and the Motorola conventions.

Table 12–2
Data Storage According to the Intel and Motorola
Conventions

DATA STORAGE UNIT INTEL MOTOROLA
00 11 AA FF byte 00|11|AA|FF 00|11|AA|FF
00 11 AA FF word 11 00|FF AA 00 11 |AA FF
00 11 AA FF doubleword FF AA 11 00 00 11 AA FF

 low => high low => high

Xga hardware programming 318

Notice that since the unit of memory storage in IBM microcomputers is 1 byte, the
Intel and Motorola storage schemes are identical in byte-ordered data. Also that the value
of bits within the stored byte is in the conventional format, that is, the low order bit (bit
number 0) is located at the rightmost position.

12.2.3 The XGA Display Controller

Another programmable device of the XGA system is the Display Controller chip. This IC
contains the color look-up table, the CRT Controller, and the hardware registers for the
operation of a special cursor, called the sprite (see Section 12.5). The XGA display
controller registers are a superset of the VGA registers. As in the VGA, these registers
are mapped into the systems I/O space. Therefore they appear to the programmer as input
and output ports.

The base address of the XGA display controller is port 21x0H. The variable x in the
port number depends on the instance of the XGA adapter. Recall that more than one
XGA system can co-exist in a microcomputer. The instance is the number that
corresponds to a particular XGA adapter or motherboard implementation. The user can
change the instance number of an installed XGA adapter by means of the setup
procedures provided by the reference diskette. The default instance value for a single
XGA adapter card is 6, which determines a base address for the Display Controller of
2160H. Notice that the instance number replaces the variable x in the general formula.

The programmable registers in the XGA Display Controller are in the range 21x0H to
21xFH. Here again the variable x represents the instance number. Table 12–3 shows
some of the Display Controller registers and the values to which they must be initialized
during mode setting.

The Display Controller registers are divided into two groups: direct access and
indexed access registers. The direct access registers are the ten registers in the range
21x0H to 21x9H. The indexed access registers are related to the Index register (port
21xAH) and the data registers (ports 21xBH to 21xFH). The index values are in the range
04H to 70H but not all values in this range are actually used in XGA. The direct access
registers in the Display Controller are programmed by means of IN or OUT instructions
to the corresponding port; for example, the Memory Access Mode register, at 21x9H, can
be programmed for 8 bits per pixel and Intel data format as follows:

; Programming a direct access register of the XGA
Display
; Controller group
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,9 ; Add offset of Memory
Access
 ; Mode register
 MOV AL,00000011B ; Bitmap for Intel
format
 ; and 8 bits per pixel
 OUT DX,AL

The pc graphics handbook 319

The above code fragment assumes that the base address of the Display Controller register
groups has been previously determined and is stored in the variable XGA_REG_BASE.
The operations necessary for determining this base address are shown in Section 12.2.

Programming the indexed access registers takes place in two steps: first, the desired
register is selected by writing a value to the Index register at port 21xAH; second, data is
read or written to the register by means of the data registers in the range 21xBH to
21xFH. The following fragment shows writing all one bits (FFH) to the Palette Mask
register at offset 64H of the Index register.

; Programming an indexed access register of the XGA
Display
; Controller group
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; Add offset of Index
register
 MOV AL,64H ; Select Palette Mask
register
 ; at offset 64H
 MOV AH,0FFH ; Data byte to write
 OUT DX,AX ; Select and write data

Notice that the 80x86 instruction OUT DX,AX writes the value in AL to the port number
in DX and the value in AH to the port number in DX+1. The result is that by using this
form of the OUT instructions we can select and access the register with a single
operation.

The following Display Controller registers are particularly interesting to the
programmer:

1. The Interrupt Enable register (located at base address plus 4) is used to unmask the
interrupt or interrupt sources that will be used by the software.

2. The Operating Mode register (located at the base address) is usually set to extended
graphics mode.

3. The Aperture Control register (located at base address plus 1) allows enabling the 64K
memory aperture mentioned in Section 12.1.2. as well as selecting the start address of
video memory either at A0000H or at B0000H. Most applications executing under
MS-DOS use A0000H, the VGA start address for dot addressable graphics.

4. The Memory Access Mode register (located at base address plus 9) allows selecting
the number of bits per pixel and the Intel or Motorola data format.

12.3 Initializing the XGA System

The first XGA programming operation usually consists of initializing and enabling the
video system. The simplest initialization method is by means of the AI services described
in Chapter 6. An application that is to access the XGA exclusively by means of AI
services need do nothing more than use the HOPEN and HINIT functions to initialize the

Xga hardware programming 320

system. However, programs that access the XGA directly must often perform additional
initialization operations. Two possibilities can be considered:

1. Programs can use the AI HINIT and HOPEN services and, in addition, perform other
initialization operations so as to enable the use of AI services and direct access to
XGA hardware simultaneously.

2. A program can rely entirely on its own hardware initialization routines, and not use the
AI HINIT and HOPEN functions.

Which method is adopted depends on the program’s characteristics. If the software is to
use both, AI services and direct access methods, then the HINIT and HOPEN functions
are necessary. On the other hand, programs that do not use AI services can perform the
necessary hardware initialization operations. Notice that the AI is a software black box
which manipulates registers and video memory in ways that are not visible to the
application. This creates additional problems for programs that mix AI services and direct
access methods.

The following discussion relates to direct initialization of the XGA system. The use of
the AI HINIT and HOPEN was explained in Chapter 6.

12.3.1 Locating the XGA Hardware

The first initialization task consists of locating the XGA components in the system’s
space. The necessary information is found in the PS/2 Programmable Option Select
(POS) registers. Figure 12–1 shows important POS data related to the XGA hardware.

Figure 12–1 XGA Data in POS
Registers

The pc graphics handbook 321

The first step in reading the POS registers is determining where these registers are
located. BIOS service number 196, sub-service number 0, of INT 15H, returns the POS
registers base address in the DX register. The following code fragment shows the
required processing.

;**********************|
; get POS address |
;**********************|
; Use service number 196, INT 15H, with AL = 0 to
determine base
; address of Programmable Option Select (POS) registers
 MOV AX,0C400H ; AH = C4H (service
request)
 ; AL = 0 (sub-service)
 INT 15H ; BIOS interrupt
 ; for microchannel
machines only
 JNC VALID_POS ; Go if POS address
returned
 JMP NO XGA ; Error - not
microchannel
VALID_POS:
 MOV XGA_POS,DX ; Save base address of POS
; An XGA system can be located on the motherboard or in
one
; of 9 possible slots. Initialize CX = 0 for
motherboard XGA
; CX = 1 to 9 for XGA in adapter card
 XOR CX,CX ; Start with
motherboard
 CLI ; Interrupts off
 .
 .
 .

Not all POS values encode XGA data. The valid range for XGA systems is 8FD8H to
8FDBH. Service number 196, sub-service number 1, of INT 15H can be used to enable
each one of 9 possible slots for setup. Then the value stored at the POS register base is
read and compared to the valid range. If the value is within the range an XGA adapter or
motherboard implementation has been detected. In this case the POS registers contain
data required for the initialization of the XGA system. The following code fragment
illustrates the required processing.

; Use BIOS service 196, sub-service number 1, to enable
slot
; for setup
GET_POS_0 :
 MOV AH, 0C4H ; BIOS service
 MOV AL, 01H ; Sub-service number
 MOV BX,CX ; Slot number to BX

Xga hardware programming 322

 INT 15H
; Slot enabled for setup
 MOV DX,XGA_POS ; POS register 0 and 1
 IN AX,DX ; Read ID low and high
bytes
; Valid range for XGA systems is 8FD8H to 8FDBH
 CMP AX,08FD8H ; Test low limit
 JAE TEST_HIGH_LIM ; Go if equal or
greater
; At this point the POS reports that system is not an
XGA
; adapter
NOT_X GA_POS:
 INC CX ; CX is options counter
 CMP CX, 9 ; Done all slots?
 JB GET_POS_0 ; Go if not at last
slot
 JMP NO XGA ; No XGA exit
TEST HIGH_LIM:
 CMP AX,08FDBH ; Test high limit of
range
 JA NOT_XGA_POS ; Go if out of range
;**********************|
; XGA found |
;**********************|
 CLI ; Disable interrupts
; Test if XGA is in motherboard
 CMP CX, 0 ; 0 is motherboard
value
 JNE XGA_CARD ; Go if not on the
motherboard
;**********************|
; motherboard XGA |
;**********************|
; Port 94H is used to enable and disable motherboard
video
 MOV AL,0DFH ; Bit 5 = 0 for video
setup
 MOV DX,94H ; 94H is system board
enable
 OUT DX,AL
 JMP SHORT GET_POS ; Skip slot setup
;**********************|
; XGA card |
;**********************|
XGA_CARD:
 MOV AX,0C401H ;Place adapter in setup mode
 MOV BX,CX ;Slot number to BL
 INT 15H
;**********************|
; save POS registers |
;**********************|

The pc graphics handbook 323

GET_POS:
 MOV DX,XGA_POS ; Get POS record for
the slot id
 ADD DX,2 ; POS register at
offset 2
 IN AL,DX ; Read data byte
 MOV POS_2,AL ; and store it
 INC DX ; Next POS register
 INC DX ; is number 4
 IN AL,DX ; Get contents
 MOV POS_4,AL ; Store it
; At this point POS registers 2 and 4 have been saved
in
; variables
;**********************|
; re-enable video |
;**********************|
; Test for XGA in motherboard
 CMP CX,0 ; Treat the motherboard
 ; differently
 JNE XGA_ADAPTER ; Go if not in
motherboard
; XGA in motherboard. Set bit 5 in port 94H to re-
enable video
 MOV AL,0FFH ; All bits set
 OUT 094H,AL
 JMP SHORT REG_BASE
XGA_ADAPTER :
 MOV AX,0C402H ; Enable the slot for
normal
 MOV BX,CX ; operation
 INT 15H
 .
 .
 .

The next step in the XGA initialization is calculating the XGA Display Controller
register base by adding the instance value to the template 21x0H mentioned in Section
12.1.3. The following code fragment shows the necessary manipulation of the instance
bits.

;**********************|
; calculate and store |
; XGA register base |
;**********************|
REG .BASE:
 STI ; Interrupts on again
 MOV AL POS_2 ; Get value at POS
register 2
 AND AX 0EH ; Mask out all bits
except

Xga hardware programming 324

 ; instance
 SHL AX 1 ; Multiply instance by
8
 SHL AX 1 ; to move to second
digit
 SHL AX 1 ; position
 ADD AX 2100H ; Add instance to base
address
 MOV XGA_REG_BASE,AX ; Store result in
variable

12.3.2 Setting the XGA Mode

Once the XGA Display Controller register base has been established the initialization
usually proceeds to set the XGA hard-ware in a pre-established display mode. Although
the XGA display modes are unofficial, Table 12–3 shows the ones mentioned in IBM’s
documentation.

Table 12–3
XGA Modes

MODE
NUMBER

TYPE HORIZONTAL
PIXELS

VERTICAL
PIXELS

COLORS

1 132-column
text

2 graphics 1024 768 256
3 graphics 1024 768 16
4 graphics 640 480 256
5 direct color 640 480 65536

The fundamental mode setting operation consists of loading most of the Display
Controller registers with pre-established values. These values are listed in the XGA
Video Subsystem section of the IBM Technical Reference Manual for Options and
Adapters, document number 504G-3287–000. This document can be obtained from IBM
Literature Department. Table 12–4 lists the Display Controller registers that must be
initialized during mode setting.

The pc graphics handbook 325

Table 12–4
XGA Display Controller Register Initialization
Settings

 2 3 4 5 <= MODE
 1024 1024 640 640 <= rows

768 768 480 480 <= columns ADDRESS/ INDEX REGISTER NAME
256 16 256 65536 <= colors

21×4 Interrupt Enable 00H 00H 00 H 00H All interrupts OFF
21×5 Interrupt Status 8FH 8FH 8FH 8FH Reset interrupts
21×0 Operating Mode 04H 04H 04H 04H Graphics modes
21×A Index Register

64 Palette mask 00H 00H 00H 00H Blank display
21×1 Aperture Control 01H 01H 01H 01H 64K at A0000H
21×8 Aperture Index 00H 00H 00H 00H |
21×6 Video Mem. Ctrl. 00H 00H 00H 00H |----- Initial values
21×9 Memory Access Mode03H 02H 03H 04H |
21×A Index Register

50 Display mode 1 01H 01H 01H 01H Prepare for reset
50 Display mode 1 00H 00H 00H 00H Reset CRT
10 ×total low 9DH 9DH 63H 63H |------ initial values
11 ×total high 00H 00H 00H 00H |
12 ×display end low 7FH 7FH 4FH 4FH |
13 ×display end high 00H 00H 00H 00H |
14 ×blank start low 7FH 7FH 4FH 4FH |
15 ×blank start high 00H 00H 00H 00H |
16 ×blank start low 9DH 9DH 63H 63H |
17 ×blank end high 00H 00H 00H 00H |

 2 3 4 5 <= MODE
 1024 1024 640 640 <= rows

768 768 480 480 <= columns ADDRESS/ INDEX REGISTER
NAME 256 16 256 65536 <= colors

21×A Index Register |------ initial values initial
values

18 x sync start low 87H 87H 55H 55H |
19 x sync start high 00H 00H 00H 00H |
1A x sync end low 9CH 9CH 61H 61H |
1B x sync end high 00H 00H 00H 00H |
1C x sync position 40H 40H 00H 00H |
1E x sync position 04H 04H 00H 00H |
20 y total low 30H 30H 0CH 0CH |
21 y total high 03H 03H 02 H 02H |
22 y display end low FFH FFH DFH DFH |
23 y display end high 02H 02H 01H 1H |

Xga hardware programming 326

24 y blank start low FFH FFH DFH DFH |
25 y blank start high 02H 02H 01 H 01H |
26 y blank start low 30H 30H 0CH 0CH |
27 y blank end high 03H 03H 02H 02H |
28 y sync start low 00H 00H EAH EAH |
29 y sync start high 03H 03H 01H 01H |
2A y sync end 08H 08H ECH ECH |
2C y line comp low FFH FFH FFH FFH |
2D y line comp high FFH FFH FFH FFH |
36 Sprite control 00H 00H 00H 00H |
40 Start address low 00H 00H 00H 00H |
41 Start address med 00H 00H 00H 00H |
42 Start address high 00H 00H 00H 00H |
43 Buffer pitch low 80H 40H 50H A0H |
44 Buffer pitch high 00H 00H 00H 00H |
54 Clock select 1 0DH 0DH 00H 00H |
51 Display mode 2 03H 02H 03H 04H |
70 Clock select 2 00H 00H 00H 00H |
50 Display mode 1 0FH 0FH C7H C7H |

At this point XGA palette registers must be loaded and memory must be cleared
55 Border color 00H 00H 00H 00H |
60 Sprite/Pal low 00H 00H 00H 00H |
61 Sprite/Pal high 00H 00H 00H 00H |
62 Sprite pre low 00H 00H 00H 00H |
63 Sprite pre high 00H 00H 00H 00H |
64 Palette mask FFH FFH FFH FFH Make visible

The registers in Table 12–4 are listed in the order in which they must be set. Notice that
before the last group of registers are set, the initialization routine must load the XGA
palette and clear all video memory. Failure to do this last operation could result in the
display of random data at the conclusion of the mode setting operation. The actual coding
can be based on data stored in two arrays: one holds the values for the first group of
Display Controller registers and the second one for the group of registers to be initialized
after the palette is loaded and the screen cleared. The following fragment demonstrates
the necessary manipulations.

DATA SEGMENT
; Mode number ----|
; 640×480×65536 5 --------------------|
; 640×480×256 4 ---------------| |
; 1024×768×16 3 ----------| | |
; 1024×768×256 2 -----| | | |
; Index ------------| | | | |
; Register ----| | | | | |
; _|__ _|__ _|__ _|__ _|__ _|__
XGA_V1 DB 004H,000H,000H,000H,000H,000H ; Interrupt
enable

The pc graphics handbook 327

 DB 005H,000H,08FH,08FH,08FH,08FH ; Interrupt
status
 DB 000H,000H,004H,004H,004H,004H ; Operating
mode
 .
 . (missing values as in Table 12–4)
 .
 DB 00AH,050H,00FH,00FH,0C7H,0C7H ; Display
mode 1
 DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH ; End of
the list
;
XGA_V2 DB 00AH,055H,000H,000H,000H,000H ; Border
color
 .
 . (missing values as in Table 12–4)
 .
 DB 00AH,064H,0FFH,0FFH,0FFH,0FFH ; Palette
mask
 DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH ; End of
the list
;
Variables used by the XGA_MODE procedure
MODE DW 0 ; Mode number
; Previously initialized base address of the XGA
Display
; Controller (see Section 12.2.1)
XGA_REG_BASE DW 0 ; Address variable
;
DATA ENDS
CODE SEGMENT
 .
 .
 .
XGA__MODE PROC NEAR
; Procedure to initialize an XGA graphics mode by
setting the
; video system registers directly
; On entry:
 AL = mode number (valid range is 2 to 5)
; On exit:
; carry clear if no error
;
 MOV AH,0 ; Clear high byte
 MOV MODE,AX ; Mode to variable
 CMP MODE,6 ; Mode number out of
range?
 JB TEST_MODE1 ; Go if less than 9
 JMP BAD_MODE ; illegal entry value
for mode
; Mode 0 = VGA BIOS mode number 3
; Mode 1 = 132 column VGA text mode

Xga hardware programming 328

; These modes are not valid
TEST_MODE1:
 CMP MODE,1 ; 80-column VGA text
mode?
 JA VALID_MODE ; Go if range is > 1
 JMP BAD_MODE ; Error exit for
invalid mode
;**********************|
; initialize first |
; register group |
;**********************|
VALID_MODE:
; The table at XGA_V1 contains the values to be sent to
the
; XGA register in order to initialize the corresponding
mode
 LEA SI,XGA_V1 ; Point to start of
values table
 MOV BX,MODE ; Use mode as an offset
 CALL INIT_REG_BLK ; Local init procedure
;**********************|
; init palette |
;**********************|
; Palette initialization at this point
; Notice that this routine must be mode-specific
 .
 .
 .
;**********************|
; clear video memory |
;**********************|
; Video memory cleared at this point
; Notice that this routine must be mode-specific
 .
 .
 .
;**********************|
; initialize second |
; register group |
;**********************|
; The table at XGA_V2 contains the values to be sent to
the
; XGA register in order to initialize the second group
of XGA
; registers
 LEA SI,XGA_V2 ; Point to start of
values table
 MOV BX,MODE ; Use mode as an offset
 CALL INIT_REG_BLK ; Local init procedure
;
 MOV XGA_CURBK,-1 ; Reset the bank
counter

The pc graphics handbook 329

 MOV AX,MODE ; Remember the mode
we’re in
 MOV XGA_CUR_MODE,AX
 MOV AX,1 ; Return ok
 RET
BAD_MODE:
 MOV AX,0 ; Return failure
 RET
XGA_MODE ENDP
;
INIT_REG_BLK PROC NEAR
; Auxiliary procedure for XGA_SET_MODE
; Initialize block of XGA register until FFH is found
; On entry:
 SI --> formatted register data
 BX = display mode
; The value at offset 0 of XGA_V1 is the register
number
; The value at offset 1 is the index register number if
the
; register is 0AH. The remaining entries is register
data for
; each mode
REG_DATA:
 MOV DX,XGA_REG_BASE ; XGA register base
 MOV AH,0 ; High byte of offset
is 0
 MOV AL,[SI] ; Low byte of offset
; Register value 0FFH marks the end of the table

 CMP AL,0FFH ; End of the table?
 JE END_OF_BLOCK ; End of register setup
 ADD DX,AX ; Add register offset
to base
 CMP AL,0AH ; Test for an index
register
 JE INDEXED ; Go if index register
; At this point register is not at offset 0AH,
therefore data
; is output directly
 MOV AL,[SI+BX] ; Get data value from
table
 OUT DX,AL ; and send to port
 JMP SHORT NEXT REG ; Continue
INDEXED:
 MOV AL,[SI+1] ; Get index register
number
 MOV AH,[SI+BX] ; Get data byte from
table
 OUT DX,AX ; Output data to index
register
NEXT REG:

Xga hardware programming 330

 ADD SI,6 ; Index to next
register in table
 JMP REG_DATA
END_OF_BLOCK:
 RET
INIT_REGT_BLK ENDP

An XGA initialization routine can be found in the procedure named INIT_XGA
contained in the XGA2 module of the GRAPHSOL library included in the book’s
software. Because of the complexities in the design of mode-specific palette initialization
and screen clearing routines for all XGA modes, the INIT_XGA procedure does not
perform these operations.

12.3.3 Loading the XGA Palette

Color display in XGA systems is by means of a Color Look-up Table (LUT), a Digital-
to-Analog converter (DAC) and associated hardware. The actual structure is reminiscent,
although not identical, of the one used in VGA systems. The XGA palette was described
in Section 6.1.4. Bit plane mapping for a 256-color mode can be seen in Figure 6.3. The
XGA color palette registers can be set by means of the HLDPAL AI service described in
Section 6.4.2. In addition, a program can assume control of the XGA palette hardware
and set its values directly.

We saw that XGA palette data consists of red, blue, and green values that are stored in
corresponding registers. The mechanism resembles the one used by the VGA palette in
the 256 color modes. However, the XGA palette is a simpler device than the one in VGA
since no Palette or Color Select registers are used (see Figure 3.8). In other words, the
XGA palette consists of 256 registers in which the red, blue, and green DAC values are
stored. A pixel color is nothing more than a palette register number; the actual color in
which the pixel is displayed depends on the value stored in the corresponding Palette
register.

The XGA palette consists of 256 locations, each location divided into three fields. The
first field corresponds to the red DAC value, the second one to the blue, and the third
field to the green. The XGA allows two update modes: in the 3-value update mode data is
written to the palette registers in groups of three items representing the red, blue, and
green colors. In the 4-value update mode data is written in groups of four items, the first
three represent the red, blue, and green values, and the fourth item is a padding byte
which is ignored by the hardware. The 3-value sequence is similar to the one used in
VGA systems. The 4-value sequence is the one used by the AI HLDPAL function. The
update mode is selected by means of bit 2 of the Palette Sequence register. Notice that in
the XGA palette the 6 high-order bits are significant while in VGA the significant bits are
the 6 low ones (see Figure 6.5).

The following code fragment shows the necessary processing for setting the 256 XGA
palette registers from an array in RAM.

DATA SEGMENT
;
; Double-bit IRGB palette in the following format

The pc graphics handbook 331

; 7 6 5 4 3 2 1 0 <= Bits
; I I R R G G B B <= Color codes
;
; |
R B G R B G | REG
IRGB_SHADES DB 000,000,000,000,036,072,036,000
; 1
 DB 036,108,036,000,036,144,036,000
; 3
 . (missing data as in the code
fragment
 . in Section 6.4.2)
 .
 DB 252,144,252,000,252,180,252,000
; 254
 DB 252,216,252,000,252,252,252,000
; 255
;
; Previously initialized base address of the XGA
Display
; Controller (see Section 12.2.1)
XGA_REG_BASE DW 0 ; Address variable
DATA ENDS
;
;
CODE SEGMENT
 .
 .
 .
; Code to set 256 XGA Palette registers
; On entry:
; SI --> 1024-byte color table in RGBx format
; Assumes that XGA system is set in a graphics mode
;
 LEA SI,IRGB_SHADES ; Pointer to data array
 MOV DX,XGA_REG_BASE ; Base address of XGA
Display
 ; Controller register
; Select Index register at offset 0AH
 ADD DX,0AH ; To Index register
; Write 00H (in AH) to Palette Mask register (64H)
; This value is ANDed with display memory. Clearing all
bits
; makes the palette invisible during setup
 MOV AX,0064H ; make invisible
 OUT DX,AX
; Write 00H (in AH) to Border Color register (55H)
 MOV AX,0055H ; border color
 OUT DX,AX
; Write 00000100B (in AH) to Palette Sequence register
(66H) to

Xga hardware programming 332

; select four-color write mode (RGBx) and to start with
the
; Red color code
 MOV AX,0466H ; Palette Sequence
register
 OUT DX,AX
; Write 00H (in AH) to Palette Index register low (60H)
; and high (61H) to select first DAC register
 MOV AX,0060H ; Start at palette 0
 OUT DX,AX
 MOV AX,0061H ; Sprite index high
 OUT DX,AX
; SI --> table of palette colors
 MOV CX,1024 ; Counter for 256 * 4
 MOV AX,065H ; Select Data register
 OUT DX,AL
 INC DX ; Point to first
register
; Loop to send 4 blocks of 256 bytes each to port 065H
NEW_PALETTE:
 MOV AL,[SI] ; Get byte from table
 OUT DX,AL ; Send to port
 INC SI ; Bump table pointer
LOOP NEW_PALETTE
;
 DEC DX ; Back to Select
register
; Write FFH (in AH) to Palette Mask register (64H)
; This value is ANDed with display memory. Setting all
bits
; makes the palette visible again
 MOV AX,0FF64H ; All bits set
 OUT DX,AX ; To make visible
; At this point all Palette registers have been loaded
from
; the data array supplied on entry
 .
 .
 .

The procedure named XGA_PALETTE in the XGA2 module of the GRAPHS-OL
library, furnished with the book, can be used to perform palette loading. The code in this
procedure is similar to the one listed above.

12.4 Processor Access to XGA Video Memory

An application can access XGA video memory through the CPU or by means of the XGA
graphics coprocessor. Coprocessor programming is discussed in Section 12.5. The

The pc graphics handbook 333

present discussion relates to accessing the XGA video memory space by means of the
80386 or 486 Central Processing Unit.

The system processor can access XGA memory to perform write and read operations.
The write operation sets one or more screen pixels to the value stored in a processor
register. The read operation transfers a pixel’s value into a processor register. In Section
12.1.2 we saw that the XGA system can configure video memory by means of three
possible apertures. The 4Mb aperture is the one used by the graphics coprocessor. Using
this memory aperture will be discussed later in this chapter. The 1Mb memory aperture is
typically used in multitasking environments.

MS-DOS applications usually access XGA video memory by means of multiple
memory banks of 64K each. This is called the 64K aperture. Before this aperture is used
the program must make sure that the Aperture Control register (at base address plus 1)
has been initialized to the value 01H (see Table 12–4). The banks’ structure at this
aperture depends on the display mode. At the 1,024 by 768 modes the 64K aperture can
be visualized as 12 memory blocks of 64K each. This visualization is shown in Figure
12–2, on the following page

Figure 12–2 Block Structure in XGA
64K Aperture

Notice that, when using the 64K aperture, the start address for the video memory in each
bank is selected by means of the Aperture Control register. The valid values are A0000H
and B0000H. The first one coincides with the base address used in VGA graphics modes.
If the start address of A0000H is selected, then each bank extends from A0000H to
B0000H. Which bank is currently selected depends on the setting of the Aperture Index
register, located at base address plus 8 of the XGA Display Controller group. If the base

Xga hardware programming 334

address of the Display Controller group is stored in the variable XGA_REG_BASE and
the bank number in the AL register, then enabling the bank can be coded as follows:

MOV DX,XGA_REG_BASE ; XGA base register address
ADD DX,08H ; Aperture Index register
OUT DX,AL ; Bank number is in AL

The total number of banks available depends on the display mode selected. We saw that
12 banks of 65,536 memory units are needed to encode all the pixels in the 1,024 by 768
modes. However, in the 640 by 480 pixel mode each full screen consists of 307,200
pixels, which require only 5 memory banks of 65,536 units each.

12.4.1 Setting Screen Pixels

In order to set a screen pixel the display logic must take into account whether the base
address of the video buffer for the 64K aperture is located at A000H or at B000H. In
addition, the code must perform the necessary bank switching operation. Processing
performance in this case can be improved by storing the value of the currently selected
bank in a memory variable so that bank switching can be bypassed if the pixel is located
in the currently selected bank. The following code fragment writes a data byte to a video
memory address. This fragment does not take into account the currently selected bank.

; Write a screen pixel accessing XGA memory directly
; On entry:
; CX = x coordinate of pixel
; DX = y coordinate of pixel
; BL = pixel color in 8-bit format
; Note: code assumes that XGA is in a 1024 by 768 pixel
mode
; in 256 colors and that A0000H is the start
address for
; the video buffer using the 64K aperture
;
; Set ES to video buffer base address
 MOV AX,0A000H ; Base for all graphics
modes
 MOV ES,AX ; To ES segment
 MOV AL,BL ; Color to AL
; Get address in XGA system
 CLC ; Clear carry flag
 PUSH AX ; Save color value
 MOV AX,1024 ; 1024 dots per line
 MUL DX ; DX holds line count
of address
 ADD AX,CX ; Plus this many dots
on the line
 ADC DX, 0 ; Answer in DX:AX
 ; DL = bank, AX =
offset

The pc graphics handbook 335

 MOV BX,AX ; Save offset in BX
 MOV AX,DX ; Move bank number to
AL
;**********************|
; change banks |
;**********************|
 MOV DX,XGA_REG_BASE ; XGA base register
address
 ADD DX,08H ; Aperture index
register
 OUT DX,AL ; Bank number is in AL
 POP AX ; Restore color value
;**********************|
; set the pixel |
;**********************|
 MOV ES:[BX],AL ; Write the dot

The procedure named XGA_PIXEL in the XGA2 module of the GRAPHSOL library sets
a screen pixel using processing similar to that shown in the above code sample. A routine
to set the entire screen to a specific color value can be simplified by using 80×86 string
move instructions. The following code fragment shows the processing necessary to clear
the entire vide display in an XGA 1,024-by-768 pixel mode.

; Clear video memory using block move
 MOV AX,0A000H ; Video memory base
address
 MOV ES,AX ; To the ES register
 MOV BL,0 ; BL is bank counter
; Select bank
NEXT_BANK :
 MOV DX,XGA_REG_BASE ; Select Page
 ADD DX,08H ; To Aperture Index
register
 MOV AL,BL ; Bank number
 OUT DX,AL ; Select bank in AL
; Write 65536 bytes of 00H in current bank
 MOV CX,0FFFFH ; CX is byte counter
 MOV AX, 0 ; Attribute to
place in VRAM
 CLD ; Forward direction
 MOV DI, 0 ; Start of block
 REP STOSB ; Store 65536 bytes
; Bump bank
 INC BL
 CMP BL,12 ; 12 is past last
bank
 JNE NEXT_BANK
 .
 .
 .

Xga hardware programming 336

The procedure named XGA_CLS in the XGA2 module of the GRAPHSOL library clears
the screen using processing similar to the one listed above.

12.4.2 Reading Screen Pixels

A write routine that accesses the video memory space through the Central Processing
Unit can be easily converted to read the value of screen pixels. The conversion consists
mainly of changing the write operation for a read operation and in making other minor
register adjustments. The following code fragment can be used to read the value of a
screen pixel into a CPU register.

; Read a screen pixel accessing XGA memory directly
; On entry:
; CX = x coordinate of pixel
; DX = y coordinate of pixel
; On exit:
; BL = pixel color
; Note: code assumes that XGA is in a 1024 by 768 pixel
mode
; in 256 colors and that A0000H is the start
address for
; the video buffer using the 64K aperture
; Set ES to video buffer base address
 MOV AX,0A000H ; Base for all graphics
modes
 MOV ES,AX ; To ES segment
; Get address in XGA system
 CLC ; Clear carry flag
 PUSH AX ; Save color value
 MOV AX, ; 1024 1024 dots per
line
 MUL DX ; DX holds line count
of address
 ADD AX,CX ; Plus this many dots
on the line
 ADC DX,0 ; Answer in DX:AX
 ; DL = bank, AX =
offset
 MOV BX,AX ; Save offset in BX
 MOV AX,DX ; Move bank number to
AL
;**********************|
; change banks |
;**********************|
 MOV DX,XGA_REG_BASE ; XGA base register
address
 ADD DX,08H ; Aperture Index
register
 OUT DX,AL ; Bank number is in AL
 POP AX ; Restore color value

The pc graphics handbook 337

;**********************|
; read the pixel |
;**********************|
 MOV BL,ES:[BX] ; Read pixel in BL

12.4.3 Programming the XGA Direct Color Mode

Mode number 4 in Table 12–3 is called the direct color mode. It consists of 640 by 480
pixels in 65,536 colors. Notice that this mode is available in XGA systems equipped with
the full maximum VRAM of 1,024K. The XGA direct color mode presents some unique
characteristics, among them the most extensive color range. In this mode the pixel color
is determined by a 16-bit value, which encodes 65,536 colors that can be represented.
The actual pixel color is generated independently of the setting of the DAC registers, for
which reason the direct color mode has also been referred to as the palette bypass mode.
The color encoding of the 16-bit value for the direct color mode is shown in Figure 12–3.

Figure 12–3 Bitmapping in XGA
Direct Color Mode

Notice that the color bitmap in Figure 12–3 contains 5 bits for the blue and red elements
and 6 bits for the green element. This 5–6–5 configuration allows 64 shades of green and
32 shades of both blue and red colors. The argument in favor of having more shades of
green than of red and blue is that the human eye is more sensitive to the green portion of
the spectrum.

The Direct Color Palette

Although the DAC registers are bypassed during direct color mode operation, the IBM
documentation states that the DAC registers must be loaded with specific data for
operating in the Direct Color mode. Table 12–5 shows the values recommended by IBM.

Notice that bit 7 of the Border Color register (at offset 55H) is used to select between
the first and second group of values to be entered in the direct color palette. Also that the
red and blue components are always zero, while the green component is incremented by 8
for each successive register. The following code fragment allows setting the Palette
registers for the direct color mode.

; Code to set 256 XGA Palette registers for the 65535
color mode
; Note: the values are those recommended by IBM
; Code assumes that XGA system is set in a graphics
mode

Xga hardware programming 338

;
 MOV DX,XGA_REG_BASE ; Wait for a retrace
 ADD DX,0AH ; To index register
; Write 00H (in AH) to Palette Mask register (64H)
; This value is ANDed with display memory. Clearing all
bits
; makes the palette invisible during setup
 MOV AX,0064H ; Make invisible
 OUT DX,AX
; Write 00H (in AH) to Palette Sequence register (66H)
to enable
; three-color write mode (RGB) and to start with the
; R color code
 MOV AX,0066H ; Palette sequence
register
 OUT DX,AX

Table 12–5
Palette Values for XGA Direct Color Mode

LOCATION BORDER COLOR BIT 7 RED BLUE GREEN
0 1 0 0 0
1 1 0 0 8
2 1 0 0 16
3 1 0 0 24
.
.

31 1 0 0 256
32 1 0 0 0
33 1 0 0 8

.

.
126 1 0 0 240
127 1 0 0 248
128 0 0 0 0
129 0 0 0 8
130 0 0 0 16
131 0 0 0 24

.

.
159 0 0 0 256
160 0 0 0 0
161 0 0 0 8

.

.
254 0 0 0 240
255 0 0 0 248

The pc graphics handbook 339

; Write 00H (in AH) to Palette Index register low (60H)
; and high (61H) to select first DAC register
 MOV AX,0060H ; Start at palette 0
 OUT DX,AX
 MOV AX,0061H ; Also set the Sprite
Index
 OUT DX,AX ; High register
;**********************|
; first 128 registers |
;**********************|
; Write 80H (in AH) to Border Color register (55H) to
select
; first group of 128 registers
 MOV AX,8055H ; Border Color bit 7
set
 OUT DX,AX
 CALL LOAD_128 ; Local procedure
;**********************|
; second 128 registers |
;**********************|
; Write 00H (in AH) to Border Color register (55H) to
select the
; second group of 128 registers
 MOV AX,0055H ; Border Color bit 7
clear
 OUT DX,AX
 CALL LOAD_128 ; Local procedure
; Write FFH (in AH) to Palette Mask register (64H)
; This value is ANDed with display memory. Setting all
bits
; makes the palette visible again
 MOV AX,0FF64H ; All bits set
 OUT DX,AX ; To make visible
 .
 .
;**

LOAD_128 PROC NEAR
; Auxiliary procedure for XGA_DC_PALETTE to load a
group of 128
; DAC registers with the recommended values
 MOV DX,XGA_REG_BASE ; Base address
 ADD DX,0AH ; Index register
 MOV AX,0065H ; Select data register
 OUT DX,AL
 INC DX ; To data register
 MOV BX,0 ; BX is value for blue
register
 MOV CX,128 ; Counter for 128
registers
; Loop to send 3 bytes to 128 registers
DC 128:

Xga hardware programming 340

 MOV AL,0 ; Send red
 OUT DX,AL ; Send to port
 JMP SHORT $+2 ; I/O delay
 OUT DX,AL ; Send blue
 MOV AL,BL ; Load green value
 OUT DX,AL ; Send green
 ADD BL,8 ; Bump green value in
BL
 ; Wraps around
automatically
 LOOP DC 128
 DEC DX ; Back to Index
register
 RET
LOAD_128 ENDP

The procedure named DC_PALETTE in the XGA2 module of the GRAPHSOL library
can be used to set the XGA Palette registers to the direct color mode.

Pixel Operations in Direct Color Mode

The programmer working in the direct color mode has fewer options than in other XGA
modes. In the first place there is no AI support for direct color mode operations. Another
limitation is that the XGA graphics coprocessor (discussed in Section 12.4) is not
operational in the direct color mode. In the direct color mode the actual setting of screen
pixels is performed with a word write operation, as shown in the following code
fragment.

; Word write operation for 16-bit per pixel mode
; AX = 16-bit color code in 5–6–5 format
; BX = offset into video buffer
; ES = video memory segment (A000H or B000H)
;
 MOV ES:[BX],AX ; Writes the
pixel

In the direct color mode the programmer must take into account that each screen pixel is
mapped to two video buffer bytes. For example, the tenth pixel from the start of the first
screen row is located 20 bytes from the start of the buffer. By the same token, each pixel
is at a word boundary in the video buffer. The display routine must make the necessary
adjustment, as in the following code fragment.

; Display 10 pixels in the brightest red color at the
center
; of the first screen row while in XGA direct color
mode
; Assumes:
; 1. ES = video buffer base address (A000H or
B000H)

The pc graphics handbook 341

; 2. Direct color palette has been loaded
; 3. Mode number 6 (640 by 480 in 65,536 colors)
has been set
; 4. XGA_REG_BASE variable holds base address of
XGA Display
; Controller
; First select video bank number 0
 MOV DX,XGA_REG_BASE ; Select Page
 ADD DX,08H ; To Aperture Index
register
 MOV AL,0 ; Bank number
 OUT DX,AL ; Select bank in AL
; Setup operational variables
 MOV CX,10 ; Counter for 10 pixels
 MOV AX,0F800H ; All red bits set
 MOV DI,640 ; Offset pointer to
word number
 ; 320 on first screen
row
; Write 10 bytes of AX into video memory
SET_10_PIXS:
 MOV ES:[DI],AX ; Write to memory
 ADD DI,2 ; Bump pointer to next
word
 LOOP SET_10_PIXS
 .
 .
 .

Notice in the above code fragment that the value initially loaded into the buffer pointer
register (DI) is the word offset of the first pixel to be set. Also that the pointer is bumped
to the next word (ADD DI,2) in each iteration of the loop.

12.5 Programming the XGA Graphics Coprocessor

To a programmer the most important XGA hardware component is the graphics
coprocessor chip. The general features of the XGA graphics coprocessor were discussed
in Section 12.1.1. The present discussion relates to performing graphics operations by
programming the XGA coprocessor. The reader should notice that the XGA Graphics
Coprocessor is a complex and sophisticated IC. In the following sections we will cover
only its programming at the elementary level. A detailed technical description of this
device, as well as of the XGA system in general, can be found in the XGA Video
Subsystem section of the IBM Technical Reference Manual for Options and Adapters,
document number 504G-3287–000. This document can be obtained from the IBM
Literature Department.

To the programmer the XGA graphics coprocessor appears as a set of memory-
mapped registers. The area of memory devoted to these registers is called the
coprocessor’s address space. Table 12–6 is a map of the coprocessor registers.

Xga hardware programming 342

The coprocessor registers can be accessed using either the Intel or the Motorola data
formats. Table 12–6 represents the register structure in the Intel format. Most coprocessor
registers are write only. The second column in Table 12–6 shows which registers can be
read by the CPU. Notice that the Current Virtual Address, State A Length, and State B
Length registers are read-only. Software should not write to these registers. The Page
Directory Base Address and the Current Virtual Address registers (offset plus 0 and plus
4 respectively) are used only in a virtual memory environment. Real mode programs,
such as those executing in MS-DOS, need not access these registers.

Table 12–6
XGA Graphic Coprocessor Register Map

HEX
OFFSET

READ
/WRITE

+0 +1 +2

0 W Page Directory Base Address
4 R Current Virtual

Address

8
C R State A Length State B Length

10 R/W Coprocessor Pixel Map
 W Control Index

14 W Pixel Map n Base
Pointer

18 W Pixel Map n Width Pixel Map n Height
1C W Pixel Map format
20 R/W Bresenham Error Term
24 W Bresenham K1 Term
28 W Bresenham K2 Term
2C W Direction Steps

.

.
44
48 W Foreground Mix Background

Mix
Destination Color
Compare Condition

4C W Destination Color Compare Value
50 W Pixel Bit Mask
54 W Carry Chain Mask
58 W Foreground Color
5C W Background Color
60 W Operations Dimemsion 1 Operations Dimension 2
64
68
6C W Map Mask Origin x Offset Map Mask Origin y Offset
70 R/W Source Map x

Coordinate
 Source Map y Coordinate

74 R/W Pattern Map x Pattern Map y Coordinate

The pc graphics handbook 343

Coordinate
78 R/W Destination Map x Coordinate Destination Map y

Coordinate
7C W Pixel Operations

The XGA coprocessor can access all memory in the system and treats video memory and
system memory in the same fashion. Once the coprocessor is informed of the VRAM
address it uses it to determine if the memory access is local or remote. In remote accesses
the coprocessor obtains direct control of the bus. This capability of the coprocessor
improves XGA performance by allowing the CPU to continue executing code while the
coprocessor manipulates memory data.

The XGA Graphics Coprocessor is designed to take advantage of the 80386
instruction set. Since XGA requires an 80386 CPU, XGA programs can safely use 80386
instructions without fear of hardware incompatibility. Therefore, in the code samples that
follow we have used 80386/486 instructions when programming coprocessor operations.

12.5.1 Initializing the Coprocessor

The initial action taken by a program that accesses the XGA coprocessor is its
initialization. The first two steps in coprocessor initialization consist of calculating and
stor-ing two data items required in programming this device: the base address of the
coprocessor register space and the physical address of the start of video memory. Notice
that the video memory address used by the coprocessor corresponds with the 4Mb
aperture mentioned in Section 12.1.2. The data for calculating these addresses is found in
the XGA POS registers (Section 12.2.1 and Figure 12–1). In addition, the initialization
routine should make certain that the appropriate value is stored at the Memory Access
Mode Register of the XGA Display Controller group.

Obtain the Coprocessor Base Address

The coprocessor base address is calculated from the ROM address field in POS register 2
(see Figure 12–1) and from the instance field in this same POS register. The coprocessor
address formula is

coprocessor address = (((i * 128) +1C00H) + (R + 2000H)
+ C000H)

where i is the instance and R is the value in the ROM field of POS register 2. The code
for calculating the coprocessor address is as follows:

DATA SEGMENT
; The following variables are loaded from the XGA POS
registers
; as shown in the code sample in Section 12.2.1
POS_2 DW ???? ; POS register 2
POS_2 DW ???? ; POS register 4

Xga hardware programming 344

DATA ENDS
CODE SEGMENT
 .
 .
 .
; Calculate coprocessor base address
; Code assumes that the POS_2 and POS_4 variables have
been
; initialized to the contents of the corresponding POS
registers
; Coprocessor base address is calculated as follows:
; ROM address = (ROM field + 2000H) + C0000H
; COP address = (((Instance * 128) + 1C00H) + ROM
address)
;
; First calculate ROM address from data in POS register
2
 MOV EAX,0 ; Clear EAX
 MOV AL,POS_2 ; Get POS register 2
 AND EAX,0F0H ; Preserve ROM bits
 SHR EAX,4 ; Shift ROM to low
nibble
 MOV ECX,2000H ; Multiplier
 MUL ECX ; ECX * ECX in EAX
 ADD EAX,0C0000H ; Add constant
 MOV EBX,EAX ; Store ROM address in
EBX
; EBX now holds ROM address
; Instance is stored in bits 1–3 of POS register 2
 MOV EAX,0 ; Clear EAX
 MOV AL,POS_2 ; Get POS register 2
 AND EAX,0EH ; Preserve Instance
bits
 SHR EAX,1 ; Shift right Instance
bits
 MOV ECX,128 ; Multiplier to ECX
 MUL ECX
 ADD EAX,1C00H ; Add constant from
formula
; Add ROM address
 ADD EAX,EBX
 SHR EAX,4 ; Shift right one
nibble to
 ; to obtain segment
value
; Store segment value in GS
 MOV GS,AX ; Move segment into
GS
;

The pc graphics handbook 345

Notice that the segment value of the coprocessor base address is stored in segment
register GS. This is consistent with the notion of making full use of the 80386
architecture and instruction set.

Obtain the Video Memory Address

The physical address of video memory is a 32-bit value determined from the video
memory base address field in POS register 4 and from the instance field in POS register 2
(see Figure 12–1). The address is formed by re-locating the POS data items as shown in
Figure 12–4.

Figure 12–4 Physical Address of
Video Memory Bitmap

The required processing for calculating the VRAM physical address is shown in the
following code fragment.

;**********************|
; get VRAM base |
;**********************|
; First get the video memory field in POS register 4
 MOV AL,POS_4 ; VRAM field
 AND AL,11111110B ; Clear low bit
 SHL AX,8 ; Shift to high
position
; Now get instance bits in POS register 2
 MOV BL,POS_2 ; Instance field
 AND BL,00001110B ; Mask out other bits
 MOV BH,0 ; Clear high part of BX
 SHL BX,5 ; Move instance bits to
position

Xga hardware programming 346

 OR AX,BX ; OR with B bits (in
AX)
 MOV FS,AX ; Store in FS segment

Notice that the high-order part (16 bits) of the VRAM physical address is now stored in
the FS segment register. The 80386 FS segment is a convenient storage for this value,
which must later be used in coprocessor programming.

Select Access Mode

Coprocessor operation requires that the Memory Access Mode register of the Display
Controller be set to 1, 2, 4, or 8 bits per pixel and to the Intel or Motorola data storage
format. In the PC environment with a fully equipped XGA (1Mb of VRAM) the
coprocessor is typically set to 8 bits per pixel and to match the Intel format of the CPU.
The following code fragment shows selecting the access mode for coprocessor operation.

; Select Intel order and 8 bits per pixel in the Memory
Access
; Mode register (offset+9)
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,9 ; To Mode register
 MOV AL,03H ; 7 6 5 4 3 2 1 0 <=
bitmap
 ; | | | | | | |
| Bits/pixel
 ; | | | | | |_|_|__ 000
= 1 bit
 ; | | | | | 001
= 2 bits
 ; | | | | | 010
= 4 bits
 ; | | | | | *011
= 8 bits
 ; | | | | | 100
= 16 bits
 ; | | | |
| FORMATS:
 ; | | | |___ *0 =
Intel
 ; | | | | 1 =
Motorola
 ; |_|_|_|____ RESERVED
 ; 03H = 00000011B
 OUT DX,AL

At this point the coprocessor is ready for use. The procedure INIT_COP in the XGA2
module of the GRAPHSOL library uses similar processing to initialize the coprocessor.
The programmer must consider that if this initialization code is used, the software must

The pc graphics handbook 347

make sure that the 80386 segment registers FS and GS are preserved, since their contents
are repeatedly required in setting up the coprocessor operations.

12.5.2 Coprocessor Operations

The XGA graphics coprocessor can autonomously perf orm drawing operations in
parallel with the CPU. The coprocessor can execute in 1, 2, 4, and 8 bits per pixel
formats, but not in the direct color mode described in Section 12.3.3. The execution of a
coprocessor operation requires the following steps:

1. The CPU initializes the coprocessor registers to be used in the operation.
2. Coprocessor operation starts when the CPU writes a command to the Pixel Operations

register.
3. The coprocessor executes the programmed operation. During this time the system

microprocessor can be performing other tasks.

The graphics functions that can be performed by the coprocessor are pixel block transfer
(abbreviated pixBlt), line draw, and draw and step.

The programmer can set up the coprocessor so that it generates an interrupt at the
conclusion of its operations. This mechanism can be used in optimizing parallel
processing, in task switching in a multitasking environment, in error recovery, and in
synchronizing coprocessor access. The coprocessor Operation Complete interrupt is
enabled by setting bit 7 of the Interrupt Enable register of the Display Controller group.
The interrupt source is identified by testing the corresponding bit in the Interrupt Status
register of the Display Controller group (see Figure 9.4 and Figure 9.5 in Chapter 9).
Notice that this is set if an interrupt occurred, regardless of the setting of the Interrupt
Enable register.

Synchronizing Coprocessor Access

Since the coprocessor operates asynchronously regarding the CPU, the central processor
must wait until the coprocessor has con-cluded its previous operation before issuing a
new command. This can be performed in two ways: by enabling the Coprocessor
Operation Complete interrupt described in the previous paragraph or by polling the busy
bit in the coprocessor Control register. Both methods are quite feasible, each having its
advantages and disadvantages.

An XGA interrupt handler for testing the conclusion of coprocessor operation (or any
other XGA interrupt for that matter) is designed to intercept vector 0AH, which
corresponds with the IRQ2 line of the system’s Interrupt Controller. Since this interrupt
can be shared, the handler must first make sure that the interrupt was caused by the
coprocessor. This requires testing bit 7 of the Interrupt Status register (at offset 05H). If
the Coprocessor Operation Complete bit is set, then the code can proceed with the next
coprocessor operation. At this time the code must write 1 to bit number 7 in order to clear
the interrupt condition so that the next interrupt can take place.

Since polling the busy bit is easier to implement in software this is the method
illustrated in the present section. The main objection to polling for hardware not busy is
that it slows down operations since the coprocessor must pause execution to read its own

Xga hardware programming 348

Control register. This can be partially overcome by designing routines that includes a
delay loop so that so that the coprocessor is not polled constantly. The following
procedure from the XGA2 module of the GRAPHSOL library polls bit 7 of the
coprocessor Control register to test for a not-busy condition. The COP_RDY procedure is
called by the drawing routines in the XGA2 module before emitting a new coprocessor
command. The delay period in the wait loop is an arbitrary value.

COP_RDY PROC NEAR
; Poll bit 7 of coprocessor Control register (offset
11H) to
; determine if coprocessor is busy, if so, wait until
ready
; Code assumes that GS segment holds coprocessor base
address
 PUSH AX ; Save context
 PUSH CX
TEST_COP:
 MOV AL,GS:[+11H] ; Read control register
 TEST AL,10000000B ; Test bit 7
 JZ COP_READY ; Go if bit is clear
 MOV CX,100 ; Counter for wait loop
; A 100 iteration wait loop is introduced so that the
coprocessor
; is not polled constantly, since constant polling
would slow
; down execution
WAIT_100:
 NOP ; Delay
 NOP
 LOOP WAIT_100 ; Wait
 JMP TEST_COP ; Test again after
wait
COP_READY:
 POP CX ; Restore context
 POP AX
 RET
COP_RDY ENDP

General Purpose Maps

The XGA graphics coprocessor can operate on three general purpose pixel maps,
designated as Map A, Map B, and Map C in the IBM literature. The identification letters
A, B, and C are sometimes generically represented by the variable n, as is the case in the
Pixel Map n Base Pointer designation used in Table 12–6. Notice that, in actual coding,
Map n is either Map A, Map B, or Map C. Pixel maps can be located in system or in
video memory. The maximum size of a map is of 4,096 by 4,096 pixels.

The following coprocessor registers are related to pixel maps:

1. The Pixel Map n Base Pointer register (at offset 14H) contains the map’ s start address.

The pc graphics handbook 349

2. The Pixel Map n Width register (at offset 18H) determines the horizontal dimension of
the pixel map and the Pixel Map n Height register (at offset 1AH) determines its
vertical dimension. The values loaded into these registers must be one less than the
required size.

3. The Pixel Map Format register (at offset 1CH) determines if the map is in 1,2,4, or 8
bits per pixel and whether it is encoded in Intel or Motorola data format

4. The Pixel Map Index register (at offset 12H) is used to determine if the mask map is of
type A, B, C, or M. The different mask map types are explained in the following
paragraphs.

The x and y coordinates of a pixel map are based on the same convention used for the
video display, that is, the top-left corner of the pixel map has coordinates x=0, y = 0. The
value of x increases to the right and the value of y increases downward. The pixel map
coordinate system conventions and dimensions are shown in Figure 12–5.

Figure 12–5 Pixel Map Origin and
Dimensions

In relation to the coprocessor operation a pixel map can represent a source, a
destination, or a pattern. The following cases represent common bitBlt operations:

1. In displaying a bitmap stored in the applications address space the source map is the
application’s data, and the destina-tion map is a location in video memory.

2. In an operation that consists of reading video data into system memory the source is a
VRAM map and the destination a location in the application’s memory space.

3. An operation that copies a video image into another screen area has both source and
destination in video memory.

4. The coprocessor can also copy an area of user memory into another one. In this case
both source and destination maps are located in the application’s memory space.

The pattern map is used in determining if a pixel is considered a foreground or a
background. A value of 1 indicates a foreground and a value of 0 a background. This
action is shown later in this section.

Xga hardware programming 350

The Mask Map

The mask map is an additional type of pixel map closely related to the destination map.
The mask map, also called Map M, is used to protect the destination map on a pixel-by-
pixel basis. In contrast with the other general purpose maps, the mask map is always
fixed to a 1 bit per pixel ratio. A 0 bit in the Mask Map (inactive mask) protects the
corresponding destination pixel from update, while a 1 bit allows the pixel’s normal
update.

The x and y dimensions of the mask map can be equal or less than the corresponding
coordinates in the destination map. If the mask map and destination map have the same
dimensions, then masking is a simple bit to pixel relation. If the mask map is smaller than
the destination map then a scissoring operation is performed. In this respect the mask
map action can be in one of three modes, as follows:

1. Mask Map Disabled. In this mode the Mask Map is ignored.
2. Mask Map Boundary Enabled. In this mode the Mask Map performs an outline

scissoring action similar to a rectangular window. The contents of the Mask Map are
ignored.

3. Mask Map Enabled. In this mode the mask map’s border acts as a scissoring rectangle,
at the same time its contents provide a pixel by pixel masking operation.

The making mode is selected by a 2-bit field in the Pixel Operations register. The
difference between the Mask Map Enabled and the Boundary Enabled modes can be seen
in Figure 12–6, on the following page.

Notice that the action of a mask map in the Boundary Enabled mode is identical to that
of a mask map of all one bits. The difference is that the Boundary Enabled mask map
consumes no memory while a normal mask map can take up as much as 94Kb in 1,024-
by-768 pixels resolution.

In addition to the map address the program can define the pixel map’s x and y
coordinates. These value can be interpreted as offsets within the map. For example, if the
destination pixel map is the video screen, the physical address of VRAM is entered in the
Pixel Map n Base Pointer register and the actual position within the video display is
determined by the x and y coordinates entered in the Destination Map x Coordinate and
Destination Map y Coordinate registers. On the other hand, if the pixel map is within the
application’s address space, the offset is usually zero. This value signals the start of the
pixel map as the reference position, however; the coordinates can be changed to indicate
another position within the defined rectangle.

The pc graphics handbook 351

Figure 12–6 Mask Map Scissoring
Operations

Coordinate registers for source and pattern pixel maps are available at offset 70H and
74H (see Table 12–6). However, there are no x and y coordinate registers for the mask
map, because its origin is assumed to coincide with that of the destination map.
Nevertheless, if the mask map is smaller than the destination map it becomes necessary to
locate the mask map within the destination map. This is done by means of the Mask Map
Origin x Offset and the Mask Map Origin y Offset registers at offset 6CH and 6EH
respectively. The use of these mask map offset values is shown in Figure 12–12.

Xga hardware programming 352

Figure 12–7 Mask Map x and y Offset

Pixel Attributes

The coprocessor generates a pixel with specific attributes by combining the source,
pattern, and destination, according to a certain mix mode. The pattern pixel map, if used,
serves as a filter to determine if a bit corresponds to a foreground or a background pixel.
A value of 1 in the pattern pixel map determines that the bit is mapped to a foreground
pixel, a value of 0 determines that the bit is mapped to a background pixel. If no pattern
map is used then the foreground and background sources can be a specific color or
determined by the color encoding stored in a source map. If the foreground source is a
specific color, it is stored at the Foreground Color register at offset 58H. The background
color is stored at the register at offset 5CH. The elements that take part in determining a
pixel’s attributes are shown in Figure 12–8.

Figure 12–8 Determining the Pixel
Attribute

The pc graphics handbook 353

Pixel Masking and Color Compare Operations

In addition, it is possible to protect individual pixels by masking. The Pixel Bit Mask
register (offset 50H) is used for this purpose. A value of 1 in the Pixel Bit Mask register
enables the corresponding pixel for update, while a value of 0 determines that the pixel is
excluded from the update operation. Notice that the Pixel Bit Mask is related to the
adopted format. In an 8-bits per pixel mode, the Pixel Bit Mask has active the 8 low order
bits of the register, while in a 2 bits per pixel mode only the lowest 2 bits are used.

The coprocessor also allows a color compare operation that further inhibits certain
pixel patterns from upgrade. The Destination Color Compare Value register (offset 4CH)
is used for storing the bitmap to be used in the comparison. As with the Pixel bitmap
register, the number of bits effectively used in the color compare operation depends on
the number of bits per pixel in the adopted format. Several color compare conditions are
allowed. The code for the selected condition is stored in the Destination Color Compare
Condition register (offset 4AH). Table 12–7 lists the condition codes and the respective
action.

Table 12–7
Destination Color Compare Conditions
CODE BINARY CONDITION

0 000 Always true (disable update)
1 001 Destination > color compare value
2 010 Destination=color compare value
3 011 Destination < color compare value
4 100 Always false (enable update)
5 101 Destination >=color compare value
6 110 Destination < > color compare value
7 111 Destination <=color compare value

Mixes

In Figure 12–8 we see that the attribute of the destination pixels depends upon a mix. The
mix is a logical or arithmetic operation used in combining the source and the destination
bitmaps. The mix is selected independently for the foreground and the background pixels
(see Figure 12–8). The foreground mix is entered into the Foreground Mix register (offset
48H) and the background mix into the Background Mix register (offset 49H). The actual
mix operation is determined by a mix code. The mix codes and action are shown in Table
12–8.

The word saturate in Table 12–8 means that if the result of an addition or subtraction
operation is greater than 1, the final result is left at 1, while if it is smaller than 0 it is left
at 0.

Xga hardware programming 354

Table 12–8
Logical and Arithmetic Mixes
CODE HEX ACTION

0 00H Zeros
1 01H Source AND destination
2 02H Source AND NOT destination
3 03H Source
4 04H NOT source AND destination
5 05H Destination
6 06H Source XOR destination
7 07H Source OR destination
8 08H NOT source AND NOT destination
9 09H Source XOR NOT destination

10 0AH NOT destination
11 0BH Source OR NOT destination
12 0CH Source NOT destination
13 0DH NOT source OR destination
14 0EH NOT source OR NOT destination
15 0FH Ones
16 10H Maximum
17 11H Minimum
18 12H Add with saturate
19 13H Destination minus source (with saturate)
20 14H Source minus destination (with saturate)
21 15H Average
22 16H |

. . > Reserved
255 FFH |

Pixel Operations

The coprocessor starts executing the programmed operation when data is written to the
Pixel Operations register (offset 7CH). The one exception to this statement is the draw
and step command which is initiated by writing to the Direction Steps register (at offset
2CH). The Pixel Operations register also defines the flow of data during coprocessor
operations. Figure 12–9, on the following page, is a bitmap of the Pixel Operations
register.

The action performed by each field of the Pixel Operations register is explained in the
discussion of the various coprocessor commands contained in the sections that follow.

The pc graphics handbook 355

12.5.3 PixBlt Operations

A pixel block transfer operation (pixBlt) consists of moving rectangular memory block
from a source area to a destination area. Both the source and the destination can be
system or video memory. The dimensions of the pixel rectangles are entered into the
Operations Dimension registers; the width into Operations Dimension 1 and the height
into Operation Dimension 2. The pixBlt can be programmed to start at any one of the
four corners of the rectangle. The operation always proceeds in the direction of the
diagonally opposite corner. The direction is entered into the Pixel Operations register (at
offset 7CH).

Figure 12–9 Pixel Operations Register
Bitmap

Xga hardware programming 356

Rectangular Fill PixBlt

Perhaps the simplest pixBlt operations is filling a rectangular screen area using the
Foreground Color register as source data. The following code fragment shows the
coprocessor commands necessary to perform this form of pixBlt.

; Use graphics coprocessor to perform a pixBlt on a
rectangular
; screen area
; Code assumes XGA 1024 by 768 mode in 256 colors (8
bits per
; pixel)
; At this point:
; CX = x coordinate of top-left corner
; DX = y coordinate of top-left corner
; SI = width of rectangle, in pixels
; DI = height of rectangle, in pixels
; BL = 8-bit color code
; segment register setting:
; GS = Coprocessor base address (Section
12.4.1)
; FS = VRAM base address (Section 12.4.2)
;
;**********************|
; test for not busy |
;**********************|
 CALL COP_RDY ; Routine developed in
 ; Section 12.4.2
; At this point the coprocessor is not busy
;**********************|
; prepare to pixBlt |
;**********************|
; Memo: GS holds the coprocessor base address (see
Section 12.4.1
 MOV AL,01H ; Data value for Map A
 MOV GS:[+12H],AL ; Write to Pixel Map
Index
 MOV AX,0H ; Data value for VRAM
low
 MOV GS:[+14H],AX ; Write to pix map base
address
; Memo: FS register holds the high order word of VRAM
address.
; (see Section 12.4.2)
 MOV AX,FS ; Data for VRAM high
 MOV GS:[+16H],AX ; Write to pix map
segment
 ; address
; Code assumes 1024 by 768 pixel mode and Intel format
 MOV AX,1023 ; Value for pix map
width

The pc graphics handbook 357

 MOV GS:[+18H],AX ; Write to Width
register
 MOV AX,767 ; Value for pix map
height
 MOV GS:[+20H],AX ; Write to Height
register
 MOV AL,3 ; Select Intel order
and 8 bits
 ; per pixel
 MOV GS:[+1CH],AL ; Write to Format
register
;**********************|
; enter pixBlt data |
;**********************|
 MOV AL,03H ; Select source mix
mode
 MOV GS:[+48H],AL ; Write to Mix register
; Write color (in BL) to foreground register
 MOV GS:[+58H],BL ; Write to Foreground
Color
 ; register
; Write coordinates of rectangle’s start point to
coprocessor
; registers
 MOV GS:[+78H],CX ; Write to Destination
x Address
 ; register
 MOV GS:[+7AH],DX ; Write to Destination
y Address
 ; register
; Store width in Operations Dimension 1 register
 MOV GS:[+60H],SI ; Write to Operation
Dimension 1
; Store height in Operations Dimension 2 register
 MOV GS:[+62H],DI ; Write to Operation
Dimension 2
;**********************|
; setup pix operation |
; registers |
;**********************|
; Bitmap of Pixel Operations register for pixBlt
operation:
; byte 3 = bbss pppp
; bb = background source
; 00 = fixed register pixBlt
; ss = foreground source
; 00 = fixed register pixBlt
; PPPP = step/operation control
; 1000 = pixBlt
; BYTE 3 = 00001000B = 08H
; byte 2 = SSSS|DDDD
; SSSS = source

Xga hardware programming 358

; 0001 = pixel map A
; DDDD = destination
; 0001 = pixel map A
; BYTE 2 = 00010001B = 11H
; byte 1 = PPPP|0000
; PPPP = pattern map control
; 1000 = foreground fixed
; BYTE 1 = 10000000B = 80H
; byte 0 = mm00|0oox
; mm = mask pixel map
; 00 = mask map disabled
; oox = octant bits (x = don’t
care)
; 00 = start at top left and
move
; right and down
; BYTE 0 = 00000000B = 00H
;**********************|
; execute pixBlt |
;**********************|
; Coprocessor operation commences when data is written
to the
; Pixel Operations register
 MOV EAX,08118000H ; Value from bitmap
 MOV GS:[+7CH],EAX ; Write to Pixel
Operations
 ; register

If XGA is initialized to 1,024 by 768 pixels in 256 colors, and if on entry to the above
code fragment the CX register holds 512, the DX register holds 384, the SI register holds
100, the DI register holds 80, and BL=00001100B, then an 100-by-80 pixel rectangle is
drawn with its left-top corner at the center of the screen. If the default palette is active,
the color of the rectangle is bright red.

Table 12–9
Action of the Direction Octant Bits During PixBlt

VALUE ACTION
00x From top-left to bottom-right
10× From top-right to bottom-left
01x From bottom-left to top-right
11× From bottom-right to top- left

Legend: x=don’t care

Notice, in the above example, that the direction octant bits in byte 0 of the Pixel
Operations register (see Figure 12–9) determine the direction in which the pixBlt takes
place. For performing a non-overlapping pixBlt the direction octant bits are normally set
to zero. However, if the source and destination rectangles overlap, the direction octant
bits must be used in order to avoid pixel corruption. Table 12–9 shows the action of the

The pc graphics handbook 359

direction octant bits in pixBlt operations. Notice that these bits are interpreted differently
during the coprocessor line draw functions.

The procedure named COP_RECT in the XGA2 module of the GRAPHSOL library
can be used to perform a rectangular fill pixBlt operation. Processing and entry
parameters are the same as in the above code fragment.

System Memory to VRAM PixBlt

Another frequent use of the pixBlt operation is to display an image stored in the
application’s memory space. The processing of a system-to-video-memory pixBlt is
similar to the one used in the rectangular fill pixBlt discussed in the preceding
paragraphs. The following code fragment is a memory-to-video pixBlt of an image
encoded in 1-bit per pixel format.

; Use graphics coprocessor to perform a pixBlt
operation
; from a source in system memory to a destination in
video memory
; Image map is encoded in 1 bit per pixel format
; Code assumes XGA 1024 by 768 mode in 256 colors (8
bits per
; pixel)
; At this point:
; DS:SI = offset of source bitmap in RAM
; CX = source map pixel width
; DX = source map pixel height
; SI = x coordinate of video image
; DI = y coordinate of video image
; BL = 8-bit color code to use in displaying
image
;
; Segment register setting:
; GS = Coprocessor base address (Section
12.4.1)
; FS = VRAM base address (Section 12.4.2)
;
;**********************|
; test for not busy |
;**********************|
 CALL COP RDY ; Routine developed in
 ; Section 12.4.2
; At this point the coprocessor is not busy
;**********************|
; map A is destination |
; (video memory) |
;**********************|
 PUSH AX ; Bitmap offset to
stack
 MOV AL,01H ; Data value for Map A

Xga hardware programming 360

 MOV GS:[+12H],AL ; Write to Pixel Map
index
 MOV AX,0H ; Data value for VRAM
low
 MOV GS:[+14H] ,AX ; Write to pix map base
address
; FS register holds the high order word of VRAM address
 MOV AX,FS ; Data for VRAM high
 MOV GS:[+16H],AX ; Write to pix map
segment
 ; address
; Destination map is 1024 by 768 pixel mode and Intel
format
 MOV AX,1023 ; Value for pix map
width
 MOV GS:[+18H],AX ; Write to Width
register
 MOV AX,767 ; Value for pix map
height
 MOV GS:[+20H],AX ; Write to Height
register
; Bitmap of Pixel Format register:
; 7 6 5 4 3 2 1 0 <= bits
; | | | | | |_|_|______ pixel image size (* = selected
value)
; | | | | | 000 = 1 bit per pixel
; | | | | | 001 = 2 bits per pixel
; | | | | | 010 = 4 bits per pixel
; | | | | *011 = 8 bits per pixel
; | | | | |_______ format control
; | | | | 1 = Motorola order
; | | | | *0 = Intel order
; |_|_|_|________________________________ RESERVED
;
 MOV AL,3 ; Select Intel order
and 8 bit
 ; per pixel
 MOV GS:[+1CH],AL ; Write to Format
register
;**********************|
; map B is source |
; (system memory) |
;**********************|
 MOV AL,02 ; Data value for Map B
 MOV GS:[+12H],AL ; Write to Pixel Map
index
; AX = offset of source bitmap (in stack)
; DS = segment of source bitmap
; To convert logical address to physical address the
segment
; value is shifted left 4 bits and the offset added
 MOV EAX,0 ; Clear 32 bits

The pc graphics handbook 361

 MOV AX,DS ; Segment to AX
 SHL EAX,4 ; Shift segment 4 bits
 POP BP ; Offset to BP
 ADD AX,BP ; Add offset to segment
 MOV GS:[+14H],EAX ; Write to pix map base
address
; Dimensions of source map are in CX and DX registers
 DEC CX
 DEC DX
 MOV GS:[+18H],CX ; Write to Width
register
 MOV GS:[+20H],DX ; Write to Height
register
; Bitmap of pixel format register:
; 7 6 5 4 3 2 1 0 <= bits
; | | | | | |_ |_ |______ pixel image size (* =
selected value)
; | | | | | *000 = 1 bit per pixel
; | | | | | 001 = 2 bits per pixel
; | | | | | 010 = 4 bits per pixel
; | | | | | 011 = 8 bits per pixel
; | | | | |_______ format control
; | | | | *1 = Motorola order
; | | | | 0 = Intel order
; |_|_|_|________________________________ RESERVED
 MOV AL,08H ; Select Motorola order
and 1
 ; bit per pixel
 MOV GS:[+1CH],AL ; Write to Format
register
;**********************|
; select mix mode |
;**********************|
 MOV AL,03H ; Select source mix
mode
 MOV GS:[+48H],AL ; Write to Mix register
; Write color (in BL) to foreground register
 MOV GS:[+58H],BL ; Write to Foreground
Color
 ; register
; Write coordinates of source and destination
; Source coordinates are 0,0, destination coordinates
are in SI
; and DI
 MOV AX,0 ; Source coordinates
 MOV GS:[+70H],AX ; Write to Source x
Address
 MOV GS:[+72H],AX ; Write to Source y
Address
 MOV GS:[+78H],SI ; Write to Destination
x Address

Xga hardware programming 362

 MOV GS:[+7AH],DI ; Write to Destination
y Address
; Store width in Operations Dimension 1 register
; MOV GS:[+60H],CX ; Write to Operation
Dimension 1
; Store height in Operations Dimension 2 register
 MOV GS:[+62H],DX ; Write to Operation
Dimension 2
;**********************|
; set up Pix Operation |
; registers |
;**********************|
; Bitmap of Pixel Operations register for pixBlt
operation:
; byte 3 = bbss|pppp
; bb = background source
; 00 = background color
; ss = foreground source
; 00 = foreground color
; pppp = function
; 1000 = pixBlt
; BYTE 3 = 00001000B = 08H
; byte 2 = SSSS|DDDD
; SSSS = source pixel map
; 0010 = pixel map B
; DDDD = destination pixel map
; 0001 = pixel map A
; BYTE 2 = 00100001B = 21H
; byte 1 = PPPP|0000
; PPPP = pattern pixel map
; 0010 = pixel map B
; BYTE 1 = 00100000B = 20H
; byte 0 = mm00|0oox (* = values for this operation)
; mm = mask pixel map
; 00 = mask map disabled
; oox = octant bits (x = don’t
care)
; 00 = start at top left and
move
; right and down
; BYTE 0 = 00000000B = 00H
;**********************|
; execute pixBlt |
;**********************|
; Coprocessor operation commences when data is written
to the
; Pixel Operations register
 MOV EAX,008212000H ; Value from bitmap
 MOV GS:[+7CH],EAX ; Write to Pixel
Operations
 ; register

The pc graphics handbook 363

The procedure named COP_SYSVID_1 in the XGA2 module of the GRAPHSOL library
can be used to perform a system memory to VRAM pixBlt operation. Processing and
entry parameters are the same as in the above code fragment. The procedure named
COP_SYSVID_8, also in the GRAPHSOL library, assumes an 8-bit per pixel encoding in
the source bitmap. This last procedure can be used to display a memory stored image in
1,024 by 768 pixels in 256 colors.

12.5.4 Line Drawing Operations

The XGA draws a straight line following a method originally described by J.E.
Bresenham (IBM Systems Journal, 1965) and since known as Bresenahm’s algorithm.
Bresenham’s method is based on the differential equation for the slope of a straight line,
which states that the difference between the y coordinates divided by the difference
between the x coordinates is a constant. This constant, usually called the slope, is
designated by the letter m. The formula is:

where Dy is the difference between the y values and Dx the difference between the x
values. Therefore y can be expressed as a function of x, as follows:

y=mx

Bresenham’s algorithm, as implemented on XGA, requires that all parameters be
normalized to the first octant (octant number 0). Figure 12–10 shows the octant
numbering in the Cartesian plane.

Figure 12–10 Octant Numbering in
the Cartesian Plane

Reduction to the First Octant

The octant is selected by the octant field bits in the Pixel Operations register (see Figure
12–9). The1-bit values designated DX, DY, and DZ have the following meaning:

1. DX encodes the direction of the x values in reference to the line’s start point. DX=0 if
x is in the positive direction and DX=1 if it is in the negative direction.

Xga hardware programming 364

2. DY encodes the direction of the y values in reference to the line’s start point. DY=0 if
y is in the positive direction and DY=1 if it is in the negative direction.

3. DZ encodes the relation between the absolute value of the x and y coordinates. DZ=0 if
|x| > |y|, and DZ=1 otherwise.

The following rules allows normalizing any line defined by its start and end points to the
first octant:

1. If the end x coordinate is smaller than the start x coordinate set the DX bit in the Pixel
Operations register.

2. If the end y coordinate is smaller than the start y coordinate set the DY bit in the Pixel
Operations register.

3. If the difference between the y coordinates is greater than or equal to the difference
between the x coordinates set the DZ bit in the Pixel Operations register.

4. After the octant bits DX, DY, and DZ are set according to the above rules, the code can
use the unsigned difference between y coordinates (delta y or Dy) and the unsigned
difference between x coordinates (delta x or Dx) in the remaining calculations.

Calculating the Bresenham Terms

Three coprocessor registers are use to encode values that result from applying
Bresenham’s algorithm, these are the Bresenham Error Term register (offset 20H), the
Bresenham K1 Term register (offset 24H), and the Bresenham K2 Term register (offset
28H).

The Bresenham K1 constant is calculated by the formula:
Term K1=2×Dy

Recall that Dy is the absolute difference between y coordinates, and Dx the absolute
difference between x coordinates. The Bresenham K2 constant is calculated by the
formula:

Term K2=2×(Dy−Dx)

Finally, the Bresenham error term is calculated by the formula:
Term E=(2×Dy)−Dx

The Bresenham terms are entered into the corresponding coprocessor registers (see Table
12–6). The Operation Dimension 1 register (at offset 60H) is loaded with the value of Dx.
The following code fragment shows the necessary processing for drawing a straight line
using the XGA coprocessor.

; Use graphics coprocessor to draw a straight line
; Code assumes XGA 1024 by 768 mode in 256 colors (8
bits per
; pixel)
; At this point:
; CX = x pixel coordinate of line start
; DX = y pixel coordinate of line start

The pc graphics handbook 365

; SI = x pixel coordinate of line end
; DI = y pixel coordinate of line end
; BL = 8-bit color code
; segment register setting:
; GS = Coprocessor base address (Section
12.4.1)
; FS = VRAM base address (Section 12.4.2)
;**********************|
; test for not busy |
;**********************|
 CALL COP_RDY ; Routine developed in
 ; Section 12.4.2
; At this point the coprocessor is not busy
;**********************|
; prepare to draw |
;**********************|
; Prime coprocessor registers
 MOV AL,01H ; Data value for Map A
 MOV GS:[+12H],AL ; Write to pixel map
index
 MOV AX,0H ; Data value for VRAM
low
 MOV GS:[+14H],AX ; Write to pix map base
address
; FS register holds the high order word of VRAM
address. This
; value is calculated by the INIT_COP routine in this
module
 MOV AX,FS ; Data for VRAM high
 MOV GS:[+16H],AX ; Write to pix map
segment
 ; address
; Code assumes 1024 by 768 pixel mode and Intel format
 MOV AX,1023 ; Value for pix map
width
 MOV GS:[+18H],AX ; Write to Width
register
 MOV AX,767 ; Value for pix map
height
 MOV GS:[+20H],AX ; Write to Height
register
 MOV AL,3 ; Select Intel order
and 8 bits
 ; per pixel
 MOV GS:[+1CH],AL ; Write to Format
register
;**********************|
; mix, color and |
; coordinates |
;**********************|
 MOV AL,03H ; Select source mix
mode

Xga hardware programming 366

 MOV GS:[+48H],AL ; Write to Mix register
; Write color (in BL) to Foreground register
 MOV GS:[+58H],BL ; Write to Foreground
Color
 ; register
; Write coordinates of line start point to coprocessor
registers
 MOV GS:[+78H],CX ; Write to Destination
x Address
 ; register
 MOV GS:[+7AH],DX ; Write to Destination
y Address
 ; register
;**********************|
; reduce to octant 0 |
;**********************|
; CX = x pixel coordinate of line start
; DX = y pixel coordinate of line start
; SI = x pixel coordinate of line end
; DI = y pixel coordinate of line end
; Octant bits in Pixel Operations register as follows:
; xxxx x210
; |||_______ DZ bit = 0 if |x| > |y|
; ||________ DY bit = 0 if y is positive (DI >=
DX)
; |_________ DX bit = 0 if x is positive (SI >=
CX)
; BL will hold octant bits
 MOV BL,0 ; Clear Octant register
 CMP SI,CX ; Test for DX bit
 JGE DX_ISOK ; Go if horizontal line
; At this point SI < CX, therefore DX bit must be set
 OR BL,00000100B ; DX bit is now set in
BL
 XCHG SI,CX ; Exchange so that CX >
SI
DX_ISOK:
; Now test DX bit condition
 CMP DI,DX ; Test for DY bit
 JGE DY_ISOK ; Go if horizontal line
; At this point DI < DX, therefore DY bit must be set
 OR BL,00000010B ; DY bit is now set in
B
 XCHG DI,DX ; Exchange so that DX >
DI
; Now test DX bit condition
DY_ISOK:
 SUB DI,DX ; Find |y|
 XCHG DX,DI ; |y| to DX
 SUB SI,CX ; and | x |
 XCHG CX,SI ; |x| to CX
 CMP CX,DX ; Is |x > |y|

The pc graphics handbook 367

 JG BRZ_TERMS ; Go to leave DZ = 0
; At this point |x| <= |y| , therefore DZ bit must be
set
; and |y| must be exchanged with |x|
 OR BL,00000001B ; Set DZ bit
 XCHG CX,DX ; Exchange
;**********************|
; Bresenham terms |
; calculations |
;**********************|
BRZ_TERMS:
; Bresenham terms:
; Term E (error) = (2 * |y|) − |x|
; Term K1 = 2 * |y|
; Term K2 = 2*(|y| − |x|)
; AT this point CX = |x| and DX = |y|
; First store |x| in Operations Dimensions register
 MOV GS:[+60H],CX ; Write to Operation
Dimension 1
 ; register
; Then calculate Term E
 PUSH DX ; Save |y|
 ADD DX,DX ; 2 * |y|
 SUB DX,CX ; − |x|
 MOV SI,DX ; Store Term E in SI
 POP DX ; Restore |y|
 PUSH CX ; and save |x|
 MOV CX,DX ; |y| to CX
 ADD CX,CX ; Calculate 2 * |y|
 MOV DI,CX ; Store Term K1 in DI
 POP CX ; Restore |x| from
stack
 SUB DX,CX ; |y| − |x|
 ADD DX,DX ; times 2
; DX=Term K2
 MOV GS:[+20H],SI ; Write to Error Term
register
 MOV GS:[+24H],DI ; Write to K1 register
 MOV GS:[+28H],DX ; Write to K2 register
; Bitmap of Pixel Operations register:
; byte 3 = 0000|0101 = line draw write operation
; byte 2 = 0001 = source pixel map is map A
; 0001 = destination pixel map is map A
; byte 1 = 1000|rrrr = special code for foreground and
all 1s
; byte 0 = 00 0 = Mask map disabled
; 00 = Drawing mode for all pixels drawn
; OCTANT DATA:
; 0 = DX= 0 for x in positive direction
; 0 = DY= 0 for y in positive direction
; 0 = DZ = 0 for |x| > |y|
;**********************|

Xga hardware programming 368

; execute operation |
;**********************|
 MOV EAX, 05118000H ; All bits except
octant
; BL holds octant bits
 OR AL,BL ; OR-in octant bits
 MOV GS:[+7CH],EAX ; Write to Pixel
Operations
 ; register

12.6 The XGA Sprite

Many graphics programs, at both the system and the application level, must manipulate
some sort of animated screen marker image. A typical example of screen marker is a
mouse-controlled pointer or icon often used to facilitate selecting from option boxes or
menus. Since the marker image overlays the screen, the software has to find some way of
saving and restoring the screen contents as this image is translated over the pixel grid. In
our discussion of animation techniques (see Chapter 31) we describe how the XOR
operation is used in VGA graphics to display and erase an icon without affecting the
screen contents. In XGA, the operation of a small screen pointer icon is considerably
simplified thanks to a device called the sprite.

Figure 12–11 XGA Sprite Buffer
The XGA sprite mechanism consists of hardware elements designed to store and display
a small graphics object. The sprite operation is independent of the video display function.
The maximum size of the sprite image is 64 by 64 pixels. This image is stored in a 32K
static RAM chip (which is not part of video memory) called the sprite buffer. This buffer
is used for storing alphanumeric characters when XGA is in a VGA mode or in its
proprietary 132-column text mode. The main advantage of the XGA sprite is that it does
not affect the image currently displayed, therefore the XGA programmer need not worry

The pc graphics handbook 369

about preserving the video image as the sprite is moved on the screen. This action can be
best visualized as a transparent overlay that is moved over the picture without changing
it. Figure 12–11 shows the structure of the sprite buffer.

The XGA registers related to sprite image display and control are located in the
indexed access registers of the Display Controller group (see Section 12.1.3). Table 12–
10 lists the location and purpose of the sprite-related registers.

The displayed sprite can be smaller than 64 by 64 pixels. In this case the software
controls which part of the sprite image is displayed by means of the Sprite Horizontal
Preset (offset 32H) and Sprite Vertical Preset registers (offset 35H) in the Display
Controller (see Table 12–10). However, the sprite image always extends to the full 64-bit
length and width of the sprite buffer. Nevertheless, transparent sprite codes can be used to
locate the sprite image within the pixel rectangle defined by the 64-byte sprite buffer. The
elements used in controlling the size of the sprite image are shown in Figure 12–12.

Table 12–10
Sprite-Related Registers in the Display Controller

INDEX REGISTER OFFSET REGISTER NAME
30H Sprite horizontal start, low part
31H Sprite horizontal start, high part
32H Sprite horizontal preset
33H Sprite vertical start, low part
34H Sprite vertical start, high part
35H Sprite vertical preset
36H Sprite control register
38H Sprite color 0, red component
39H Sprite color 0, green component
3AH Sprite color 0, blue component
3BH Sprite color 1, red component
3CH Sprite color 1, green component
3DH Sprite color 1, blue component
60H Sprite/palette index, low part
61H Sprite/palette index, high part
62H Sprite/palette prefetch, low part
63H Sprite/palette prefetch, high part
6AH Sprite data
6BH Sprite prefetch save (RESERVED)

Xga hardware programming 370

Figure 12–12 Visible Sprite Image
Control

12.6.1 The Sprite Image

The sprite image consists of 64 by 64 pixels. Each sprite image pixel can have one of four
attributes. The storage structure is in Intel data format and encoded in 2 bits per pixel.
The bit codes for the sprite image is shown in Table 12–11.

Table 12–11
Sprite Image Bit Codes

BIT CODE ACTION
00 Pixel displayed in sprite color 0
01 Pixel displayed in sprite color 1
10 Transparent (image pixel is visible)
11 Complement (one’s complement of image pixel is visible)

The location of the sprite image within the viewport is determined by the Sprite
Horizontal Start and Sprite Vertical Start registers (see Table 12–11). Both of these
registers are word-size; however, the valid range of values is limited to 0 to 20,412. The
low-order bit in the Sprite Control register (offset 36H) determines the sprite’s visibility.
The sprite is displayed when this bit is set and is invisible if the bit is cleared.

The pc graphics handbook 371

Encoding of Sprite Colors and Attributes

In Section 12.1 5 we mentioned that the sprite’s attributes are coded into a 2-bit field. The
first two codes refer to sprite color attributes, the third code defines a transparent
attribute, and the last one a one’s complement operation (see Table 12–10). The sprite
colors 0 and 1 are determined by the setting in two sets of registers in the Display
Controller group; registers 38H to 3AH select the red, green, and blue values of sprite
color 0, while registers 3BH to 3DH select the same values in sprite color 1. In this
manner, if the first byte in the sprite buffer is encoded with the value 01010101B, then
the first 4 bits in the sprite are displayed using the color value for sprite color 1. Figure
12–13 shows how the sprite pixels are mapped to the binary values stored in the sprite
buffer.

Figure 12–13 Bit-to-Pixel Mapping of
Sprite Image

In summary, the attribute of each sprite pixel corresponds to the 2-bit code stored in the
sprite buffer. Therefore, designing a sprite image is a matter of installing the red, green,
and blue values for each sprite color and then composing a pixel map using the 2-bit
values in Table 12–10. The Sprite Horizontal and Vertical Preset registers can be used to
adjust a sprite image that does not coincide with the top-left corner of the map stored in
the sprite buffer.

Loading the Sprite Image

Once the sprite map has been composed and stored in an application’s memory variable,
the software must proceed to set the sprite color registers and load the image into the
sprite buffer. The following code fragment assumes that the sprite colors and bitmap have
been placed in a formatted parameter block. From this data the sprite color values and
image are loaded into the corresponding Display Controller registers.

DATA SEGMENT
 .
 .

Xga hardware programming 372

 .
;**********************|
; sprite data |
;**********************|
; The 64 by 64 pixel sprite is defined at 64 lines of 4
; doublewords per line
;
; First 6 bits of the sprite color are significant
; In this example color number 0 is bright red and
color number 1
; is bright white
SPRITE_MAP_0 DB 11111100B ; Red for color
0
 DB 0 ; Green for
color 0
 DB 0 ; Blue for
color 0
 DB 11111100B ; Red for color
1
 DB 11111100B ; Green for
color 1
 DB 11111100B ; Blue for
color 1
; The 64 by 64 pixel sprite is defined as 64 lines of 4
; doublewords per line, encoded as follows:
; 00H = 00 00 00 00 B = 4 pixels in sprite color 0
; 55H = 01 01 01 01 B = 4 pixels in sprite color 1
; AAH = 10 10 10 10 B = 4 transparent pixels
; FFH = 11 11 11 11 B = 4 pixels in one’s complement of
image
;
; DD 256 DUP (0055AAFFH)
DATA ENDS
;
CODE SEGMENT
 .
 .
 .
; Load sprite image and select color registers
; On entry:
; DS:SI --> caller’s sprite image formatted as
follows:
;
; OFFSET UNIT CONTENTS
; 0 byte 6 low bits are RED for sprite
color 0
; 1 byte 6 low bits are GREEN for sprite
color 0
; 2 byte 6 low bits are BLUE for sprite
color 0
; 3 byte 6 low bits are RED for sprite
color 1

The pc graphics handbook 373

; 4 byte 6 low bits are GREEN for sprite
color 1
; 5 byte 6 low bits are BLUE for sprite
color 1
; 6 16 bytes per 64 rows (1024 bytes)
encoding the 16 b
; sprite image at 2 bits per pixel
; 1030 end of sprite image
;
; Code assumes that the variable XGA_REG_BASE holds the
XGA
; register base address (see Section 12.2.1)
;**********************|
; set sprite color 0 |
;**********************|
; Load sprite color 0 registers using values in
parameter block
; supplied by caller (DS:SI)
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH To ; Index register
; Index register 38H is Sprite Color 0, red value
 MOV AL,38H ; Sprite register
 MOV AH,[SI] ; Data from caller’s
buffer
 INC SI ; Bump pointer to next
byte
 OUT DX,AX ; Write data
;
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 39H is Sprite Color 0, green value
 MOV AL,39H ; Sprite register
 MOV AH,[SI] ; Data from caller’s
buffer
 INC SI ; Bump pointer to next
byte
 OUT DX,AX ; Write data
;
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 3AH is Sprite Color 0, blue value
 MOV AL,3AH ; Sprite register
 MOV AH,[SI] ; Data from caller’s
buffer
 INC SI ; Bump pointer to next
byte
 OUT DX,AX ; Write data
;**********************|
; set sprite color 1 |
;**********************|
; Load sprite color 1 registers to GREEN
 MOV DX,XGA_REG_BASE ; Register base

Xga hardware programming 374

 ADD DX,0AH ; To Index register
; Index register 3BH is Sprite Color 1, red value
 MOV AL,3BH ; Sprite register
 MOV AH,[SI] ; Data from caller’s
buffer
 INC SI ; Bump pointer to next
byte
 OUT DX,AX ; Write data
;
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To index register
; Index register 3CH is Sprite Color 1, green value
 MOV AL,3CH ; Sprite register
 MOV AH,[SI] ; Data from caller’s
buffer
 INC SI ; Bump pointer to next
byte
 OUT DX,AX ; Write data
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 3DH is Sprite Color 1, blue value
 MOV AL,3DH ; Sprite register
 MOV AH,[SI] ; Data from caller’s
buffer
 INC SI ; Bump pointer to next
byte
 OUT DX,AX ; Write data
;**********************|
; prepare to load |
; sprite image |
;**********************|
; First set the Sprite Index registers to zero
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 60H is Sprite/Palette index Low
 MOV AX,0060H ; 00 to register at
offset 60H
 OUT DX,AX ; Write data
; Reset to base
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To index register
; Index register 61H is Sprite/Palette index High
 MOV AX,0061H ; 00 to register at
offset 60H
 OUT DX,AX ; Write data
; Select the Sprite Data register at offset 6AH
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
 MOV AL,06AH ; Offset of Data
register
 OUT DX,AL ; Select the Sprite
Data register

The pc graphics handbook 375

;**********************|
; load sprite image |
;**********************|
; DS:SI --> buffer area containing the sprite bitmapped
image in
; 2 bits per pixel format, as follows:
; 00 = sprite color 0
; 01 = sprite color 1
; 10 = transparent pixel
; 11 = complement pixel
 MOV CX,512 ; Word item counter
SPRITE_DATA:
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0CH ; To second Data
register
 MOV AX,[SI] ; Get data from buffer
 OUT DX,AX ; Send to data port
 INC SI ; Bump data pointer
 INC SI ; to next word
 LOOP SPRITE_DATA ; Repeat 512 times
; At this point sprite color and image have been loaded

The procedure named SPRITE_IMAGE in the XGA2 module of the GRAPHSOL library
loads the sprite image and colors using the same processing as in the above code
fragment.

12.6.2 Displaying the Sprite

As mentioned in Section 12.5.1, if the low-order bit of the Sprite Control register is set,
the sprite image is displayed on the video screen. The position at which it is displayed is
determined by the setting of the Sprite Horizontal Start and Vertical Start registers (see
Table 12–11). The following code fragment displays the sprite image at the screen
coordinates supplied by the caller.

; Display sprite image at coordinates furnished by the
caller
; as follows:
; BX = x coordinate of sprite location (0 to
1023)
; CX = y coordinate of sprite location (0 to
767)
; Code assumes that the variable XGA_REG_BASE holds the
XGA
; register base address (see Section 12.2.1)
;
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 30H is Sprite × Start LOW register
 MOV AH,BL ; Value to Start
register

Xga hardware programming 376

 MOV AL,30H ; Address of Start x
Low
 OUT DX,AX ; Write data
;
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 31H is Sprite x Start HIGH register
 MOV AH,BH ; Value to start
register
 MOV AL,31H ; Address of Start
register
 OUT DX,AX ; Write data
; Set Sprite x Preset register to 0
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 32H is Sprite x Preset register
 MOV AH,00 ; Value to preset
register
 MOV AL,32H ; Address of Start
register
 OUT DX,AX ; Write data
; Select y coordinate registers
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 33H is Sprite y Start LOW register
 MOV AH,CL ; Value to start
register
 MOV AL,33H ; Address of Start x
Low
 OUT DX,AX ; Write data
;
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 34H is Sprite y Start HIGH register
 MOV AH,CH ; Value to Start
register
 MOV AL,34H ; Address of Start
register
 OUT DX,AX ; Write data
; Set Sprite y Preset register to 0
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Index register 35H is Sprite x Preset register
 MOV AH,00 ; Value to preset
register
 MOV AL,35H ; Address of Start
register
 OUT DX,AX ; Write data
;**********************|
; display sprite |
;**********************|

The pc graphics handbook 377

; Sprite is displayed by setting bit 0 of the Sprite
Control
; register at offset 36H
 MOV DX,XGA_REG_BASE ; Register base
 ADD DX,0AH ; To Index register
; Sprite control register offset is 36H
 MOV AH,01 ; Value to start
register
 MOV AL,36H ; Address of Start
register
 OUT DX,AX ; Write data
; At this point the sprite has been displayed

The procedure named SPRITE_AT in the XGA2 module of the GRAPHSOL library
displays the sprite using the same processing as in the above code fragment. To turn off
the sprite the program need only clear the low-order bit in the Sprite Control Register.
This operation is performed by the SPRITE_OFF procedure in the XGA2 module of the
GRAPHSOL library.

12.7 Using the XGA Library

The GRAPHSOL library furnished in the book’s software package includes two modules
that contain XGA specific routines: XGA1.ASM and XGA2.ASM. XGA1.ASM contains
procedures that use the AI services described in Chapter 6. The purpose of this module is
to simplify initializing the XGA system and the AI software as well as to facilitate the use
of AI text services. The module XGA2.ASM of the XGA library contains routines that
access the XGA registers directly. These procedures serve to initialize the XGA system,
to select the display mode, to set an individual screen pixel using the 1,024 by 768 pixel
definition in 256 colors, to perform the display of geometrical figures, and to load and
manipulate the sprite.

In addition to the routines in the GRAPHSOL library, XGA programs can also use
several procedures in the VGA modules of GRAPHSOL.L-IB. The use of the VGA
procedures by an XGA system requires a previous call to the SET_DEVICE routine in
the VGA3 module. For XGA systems this call is made with the AL register holding the
character "X." The call sets a device-specific display switch to the XGA display routine.
This enables the use of several geometrical display routines in the VGA3 module,
including the named BRESENHAM, LINE_BY_SLOPE, DISPLAY_LINE, CIRCLE,
ELLIPSE, PARABO-LA, and HYPERBOLA. Also the following procedures in the
VGA2 module: FINE_TEXT, FINE_TEXTHP, and MULTITEXT, as well as the
corresponding text display support routines, such as FONT_TO_RAM and
READ_HPFONT. Information regarding the VGA text display and geometrical routines
can be found in Chapters 4 and 5 as well as in the source files VGA2.ASM and
VGA3.ASM contained in the book’s software.

Xga hardware programming 378

12.7.1 Procedures in the XGA1.ASM Module

OPEN_AI

Initialize Adapter Interface software.

Receives:
 Nothing
Returns:
 Carry clear if AI initialized
 Carry set if error

CLOSE_AI

Erase video and close Adapter Interface.

Receives:
 Nothing
Returns:
 Nothing

AI_FONT

Read an XGA or 8514/A font file into RAM to enable text display using AI functions.

Receives:
 Far pointer to ASCIIZ filename for font file
 (must be in the current path)
Returns:
 Carry clear if font read and stored in buffer
 Carry set if file not found or disk error

AI_COLOR

Set foreground and background colors for AI services.

Receives:
 1. Byte integer of foreground color
 2. Byte integer of background color
Returns:
 Nothing
Action:
 Foreground and background colors selected

The pc graphics handbook 379

AI_CLS

Clear screen using AI service.

Receives:
 Nothing
Returns:
 Nothing
Action:
 Video display is cleared

AI_TEXT

Display a text message on XGA screen using an AI service.

Receives:
 1. word integer of x pixel coordinate for
message
 2. word integer of y pixel coordinate for
message
 3. byte integer of foreground color
 4. byte integer of background color
 5. far pointer to text message
Returns:
 Nothing
Action:
 Text message is displayed

AI_PALETTE

Initialize 256 DAC color registers from a 4-byte per color table using an AI service.

Receives:
 1. far pointer to 1024 byte table of palette
colors
 (4 bytes per color encoding)
Returns:
 Nothing
Action:
 LUT registers are set according to value table
furnished by the
caller.

AI_COMMAND

Access the services in the XGA/8514-A Adapter Interface.

Xga hardware programming 380

Receives:
 1. word integer of AI service number
 2. far pointer to parameter block
Returns:
 Nothing
Action:
 AI command is executed.

12.7.2 Procedures in the XGA2.ASM Module

XGA_MODE

Initialize an XGA graphics mode by setting the video system registers directly.

Receives:
 1. byte integer of XGA mode number
Assumes:
 INIT_XGA has been previously called
Returns:
 1. carry clear if no error
 2. carry set if invalid mode
Action:
 XGA system is set to mode requested by the
caller. Valid range is 2
to 5, as follows:
 Mode number: Resolution: Colors:
 2 1024 by 756 256
 3 1024 by 768 16
 4 640 by 480 256
5 640 by 480 65,536

INIT_XGA

Initialize XGA registers and report machine setup.

Receives:
 Nothing
Returns:
 1. byte integer of machine setup, as follows:
 7 6 5 4 3 2 1 0
 | | | | | | | |___ 1 = XGA in system
 | | | | | | | 0 = no XGA found
 | | | | | | |______1 = XGA color monitor
 | | | | | | 0 = XGA monochrome
monitor
 | | | | | |_______ 1 = high resolution
(1024 × 768)
 | | | | | 0 = no high resolution
 | | | | |_________ 1 = RAM = 1Mb

The pc graphics handbook 381

 | | | | 0 = RAM = 512Kb
 | | | |___________ 1 = dual monitor system
 | | | 0 = single monitor
system
 |_|_|_____________ UNUSED
Action:
 XGA system is initialized and setup is tested.
This initialization
is required by many other procedures in this module.

XGA_PIXEL_2

Write a screen pixel accessing XGA memory directly while in XGA mode number 2.

Receives:
 1. word integer of x coordinate of pixel
 2. word integer of y coordinate of pixel
 3. byte integer of pixel color in 8-bit format
Assumes:
 INIT_XGA has been previously called
Returns:
 Nothing
Action:
 Pixel is set

XGA_CLS_2

Clear video memory while in XGA mode number 2 using block move.

Receives:
 Nothing
Assumes:
 INIT_XGA has been previously called
Returns:
 Nothing
Action:
 Direct access version of the AI_CLS procedure
in the XGA1.ASM
module.

XGA_OFF

Turn off XGA video by clearing the Palette Mask register.

Receives:
 Nothing
Assumes:
 INIT_XGA has been previously called
Returns:

Xga hardware programming 382

 Nothing
Action:
 XGA display is disabled

XGA_ON

Turn on XGA video by setting the Palette Mask register.

Receives:
 Nothing
Assumes:
 INIT_XGA has been previously called
Returns:
 Nothing
Action:
 XGA display is enabled

XGA_PALETTE

Load 256 XGA LUT color registers with data supplied by the caller.

Receives:
 1. Far pointer of 1024-byte color table in
RGBx format
Assumes:
 INIT_XGA has been previously called
Returns:
 Nothing
Action:
 LUT registers are initialed to supplied
values. Caller’s data to be
formatted in red, blue, green, ignored, pattern.

DC_PALETTE

Set 256 XGA palette registers for the direct color mode using values recommended by
IBM.

Receives:
 Nothing
Assumes:
 INIT_XGA has been previously called
Returns:
 Nothing
Action:
 XGA palette registers are initialized for mode
number 5, in 65,536
colors.

The pc graphics handbook 383

INIT_COP

Initialize XGA coprocessor. This procedure assumes that the procedure INIT_XGA (in
this module) has been previously called and that the POS_x variables have been loaded.

Receives:
 Nothing
Returns:
 1. GS = coprocessor base address
 2. FS = base address of video memory (VRAM)
Action:
 Coprocessor is initialized. GS and FS segment
registers are set for
calling the coprocessor commands in this module.

COP_RECT_2

Graphics coprocessor pixBlt operation on a rectangular screen area.

Receives:
 1. word integer of x coordinate of top-left
corner
 2. word integer of y coordinate of top-left
corner
 3. word integer of rectangle’s pixel width
 4. word integer of rectangle’s pixel height
 5. byte integer of 8-bit color code
Assumes:
 1. Mode number 2 (1024 by 768 pixels in 256
colors)
 2. GS and FS segment set by INIT_COP
procedure
Returns:
 Nothing
Action:
 Rectangular pixBlt is performed

COP_SYSVID_1

Graphics coprocessor pixBlt operation from a source in system memory to a destination
in video memory, using an image map encoded in 1-bit per pixel format.

Receives:
 1. far pointer to source bitmap in RAM
 2. word integer of pixel map width
 3. word integer of pixel map height
 4. word integer of x coordinate for display
 5. word integer of y coordinate for display
 6. byte integer of 8-bit color value
Assumes:

Xga hardware programming 384

 1. Mode number 2 (1024 by 768 pixels in 256
colors)
 2. GS and FS segment set by INIT_COP
procedure
Returns:
 Nothing
Action:
 PixBlt is performed.

COP_SYSVID_8

Graphics coprocessor pixBlt operation from a source in system memory to a destination
in video memory, using an image map encoded in 8-bit per pixel format.

Receives:
 1. far pointer to source bitmap in RAM
 2. word integer of pixel map width
 3. word integer of pixel map height
 4. word integer of x coordinate for display
 5. word integer of y coordinate for display
Assumes:
 1. Mode number 2 (1024 by 768 pixels in 256
colors)
 2. GS and FS segment set by INIT COP
procedure
Returns:
 Nothing
Action:
 PixBlt is performed.

COP_LINE_2

Draw a line using XGA graphics coprocessor, while in mode number 2 (1,024 by 768
pixels in 256 colors).

Receives:
 1. word integer of x coordinate of line start
 2. word integer of y coordinate of line start
 3. word integer of x coordinate of line end
 4. word integer of y coordinate of line end
 5. byte integer of 8-bit color value
Assumes :
 1. Mode number 2 (1024 by 768 pixels in 256
colors)
 2. GS and FS segment set by INIT_COP
procedure
Returns:
 Nothing
Action:
 Line is drawn.

The pc graphics handbook 385

SPRITE_IMAGE

Load sprite image and install values in Sprite Color registers.

Receives:
 1. far pointer to color code and image buffer,
formatted
 as follows:
 OFFSET UNIT CONTENTS
 0 byte 6 low bits are RED for sprite
color 0
 1 byte 6 low bits are GREEN for
sprite color 0
 2 byte 6 low bits are BLUE for sprite
color 0
 3 byte 6 low bits are RED for sprite
color 1
 4 byte 6 low bits are GREEN for
sprite color 1
 5 byte 6 low bits are BLUE for sprite
color 1
 6 16 bytes per 64 rows (1024 bytes)
encoding the 16 b
 sprite image at 2 bits per pixel
 1030 end of sprite image
Assumes:
 INIT_XGA has been previously called.
Returns:
 Nothing
Action:
 Sprite image and colors codes are stored in
Display Controller
registers

SPRITE_AT

Display sprite image at coordinates furnished by the caller.

Receives:
 1. word integer of x coordinate of sprite
location
 (range is 0 to 1023)
 2. word integer of y coordinate of sprite
location
 (range is 0 to 768)
Assumes:
 INIT_XGA has been previously called.
Returns:
 Nothing
Action:
 Sprite is displayed at entry coordinates.

Xga hardware programming 386

SPRITE_OFF

Sprite is turned off by clearing bit 0 of the Sprite Control register.

Receives:
 Nothing
Assumes:
 INIT_XGA has been previously called.
Returns:
 Nothing
Action:
 Sprite image is no longer displayed

The pc graphics handbook 387

Chapter 13
SuperVGA Programming

Topics:

• SuperVGA programming
• Introducing SuperVGA
• The VESA SuperVGA standard
• The VESA BIOS services
• Programming the SuperVGA system
• The book’s SuperVGA Library

This chapter describes the SuperVGA video hardware and its architecture, the VESA
SuperVGA standards and the use of the various VESA BIOS Services, also programming
the SuperVGA system by accessing the video hardware directly and by the use of the
VESA BIOS services. The chapter concludes with a listing of the procedures in the
SVGA library furnished with the book.

13.1 Introducing the SuperVGA Chipsets

The term SuperVGA refers to enhancements to the standard VGA modes as furnished in
some non-IBM adapters developed for PC compatible computers. The common
characteristic of all SuperVGA boards is the presence of graphics features that exceed the
VGA standard in definition or color range. In other words, a SuperVGA graphics board is
capable of executing, not only the standard VGA modes, but also other modes that
provide higher definition or greater color range than VGA. These are usually called the
SuperVGA Enhanced Modes.

In the late seventies the proliferation of SuperVGA hardware gave rise to many
compatibility problems, due to the fact that the enhanced features of the SuperVGA cards
were not standardized; therefore the SuperVGA enhancements in the card produced by
one manufacturer were incompatible with the enhancements in a card made by another
company. This situation often presented unsurmountable prob-lems to the graphcs
application programmer, who would find that an application designed to take advantage
of the graphics enhancements in a SuperVGA card would not execute correctly in another
one.

At the operating system level these incompatibility problems are easier to correct than
at the application level. For example, the manufacturers of SuperVGA boards often
furnish software drivers for Windows and Operating System/2. Once the driver is
installed, the graphics environment in the operating system will be able to use the
enhancements provided by a particular SuperVGA board. By the same token,

applications that perform graphics functions by means of operating system services will
also take advantage of the SuperVGA enhancements.

On the other hand, graphics applications that control the hardware directly would not
be able to take advantage of a system-level driver. Fortunately, some graphics programs
are designed with a flexible video interface. In this case, the application software can be
more easily adapted to the features of a particular SuperVGA. This is the case with
AutoCad, Ventura Publisher, Wordperfect, Lotus 1–2–3, and other high-end graphics
applications for the PC. But, for those applications in which the video functions are
embedded in the code, the adaptation to a non-standard video mode often implies a major
program redesign.

In 1989, in an attempt to solve this lack of standardization, several manufacturers of
SuperVGA boards formed the Video Electronics Standards Association (VESA). Most of
the companies listed at the beginning of this section are now members of VESA. In
October of 1989 VESA released its first SuperVGA standard. The VESA standard
defined several enhanced video modes and implemented a BIOS extension designed to
provide a few fundamental video services in a compatible fashion. Because of this
advantage in compatibility and portability, our treatment of SuperVGA programming
focuses on the use of the VESA BIOS functions.

13.1.1 SuperVGA Memory Architecture

In previous chapters we saw that the IBM microcomputer video systems are memory
mapped. In VGA the video memory space extends from A0000H to BFFFFH. The 64K
space starting at segment base A000H is devoted to graphics and the 64K space starting
at segment base B000H is for alphanumeric modes. This means that the total space
reserved for video operations is of 128K. But since some systems are set up with two
monitors, one operating in alphanumeric modes (base address B000H for monochrome
systems and B800H for color systems), the actual video space for graphics operations is
practically limited to 64K.

Not much video data can be stored in a 64K memory space. For example, if each
screen pixel is encoded in 1 memory byte, then the maximum screen data that can be
stored in 65,536 bytes is 256 square pixels. In Chapter 2 we saw that the VGA screen in
640 by 480 pixels resolution requires 307,200 bytes, we also show how the VGA
designers were able to compress video data by implementing a latching scheme and a
planar architecture. Consequently, in VGA mode number 18 a pixel is encoded into a
single memory bit, although it can be displayed in 16 different colors. The latching
mechanism (see Figure 2.4) is based on four memory maps of 38,400 bytes each. All four
color maps (red, green, blue, and intensity) start at segment base A000H. The pixel
displayed is determined by the value stored in the Bit Mask register of the VGA Graphics
Controller group (see Section 2.2.4).

16 Color Extensions

Simple arithmetic shows a memory surplus in many VGA modes. For example, if the
resolution is of 640-by-480 pixels, the video data stored in each map takes up 38,400
bytes of the available 65,536. Therefore there are 27,136 unused bytes in each map. The

The pc graphics handbook 390

original idea of enhancing the VGA system was based on using this surplus memory to
store video data. It is clearly possible to have an 800-by-600 pixel display divided into
four maps of 60,000 bytes each, and yet not exceed the 64K space allowed for each color
map nor the total 265K furnished with the VGA system.

The 800-by-600 pixel resolution in 16 colors appears as a natural extension to VGA
mode number 113. This mode, which was later designated as mode 6AH by the VESA
standards, could be programmed in a similar manner as mode number 113. This
extension, which could be achieved with minor changes in the VGA hardware, provided
a 36 percent increase in the display area.

Another extension to the VGA system is a wider pixel mask register to make possible
more than the 16 colors that can be encoded in a 4-bit field. However, this has never been
implemented in a SuperVGA system due to performance factors and other hardware
considerations.

Memory Banks

In Chapter 7 we saw that the memory structure for VGA 256-color mode number 19 is
based not on a the multiplane scheme, but in a much simpler format that maps a memory
byte to each screen pixel (see Figure 2.5). In this manner, 256 color combinations can be
directly encoded into a data byte, which correspond to the 256 DAC registers of the VGA
hardware. The method is straightforward and uncomplicated; however, if the entire video
space is to be contained in 64K of memory the maximum resolution would be limited to
the 256 square pixels previously mentioned. In other words, a rectangular screen of 320
by 200 pixels nearly fills the allotted 64K.

Therefore, if the resolution for a 256-color mode were to exceed 256 square pixels it
would be necessary to find other ways of mapping video memory into 64K of system
RAM. The mechanism adopted by the SuperVGA designers was based on the well-
known technique known as bank switching. In a bank switching scheme the video display
hardware maps several 64K blocks of RAM to different locations in video memory.
Addressing of the multi-segment space is by means of a hardware mechanism that selects
which video memory area is currently located at the system’s aperture. In the SuperVGA
implementation the system aperture is usually located at segment base A000H. The entire
process is reminiscent of memory page switching in the LIM (Lotus/Intel/Microsoft)
Extended Memory environment. Figure 13–1, on the following page, schematically
shows mapping of several memory banks to the video space and the map selection
mechanism for CPU addressing.

In Chapter 12 we adopted the term aperture from the XGA terminology, which is used
to denote the processor’s window into video memory. For example, if the addressable
area of video memory starts at physical address A0000H and extends to B0000H, we say
that the CPU has a 64K aperture into video memory (10000H=64K). In SuperVGA
documentation the word “granularity” is often used in this context. In Figure 13–1 we can
see that the bank selector determines which area of video memory is mapped to the
processor’s aperture. Therefore, the area of the video display can be updated by the
processor. In other words, in the memory banking scheme the processor cannot access the
entire video memory at once. In Figure 13–1 we can see that we would have to perform 5
bank switches in order to update the entire screen.

Super vga programming 391

Figure 13–1 Memory Banks to Video
Mapping

256 Color Extensions

The SuperVGA alternative for increasing definition beyond the VGA limit is a banking
mechanism similar to the one shown in Figure 13–1. This scheme, in which a memory
byte encodes the 256 color combinations for each screen pixel, does away with the pixel
masking complications of VGA mode number 113. On the other hand, it introduces the
complications of a bank selection device which we already encountered in XGA
programming (see Section 7.1.2). The SuperVGA method has no precedent in CGA,
EGA, or VGA systems since it is not interleaved nor does it require memory planes or
pixel masking. Although it is similar to VGA mode number 19 regarding color encoding,
mode number 19 does not require bank switching.

It should be noted that the neat, rectangular window design shown in Figure 13–1 does
not always conform with reality. Several implementations of SuperVGA multi-color
modes use non-rectangular windows that start and end inside a scan line. This
complicates the use of optimizing routines since the software cannot restrict its checking
for a window boundary to the start and end of scan lines.

Pixel Addressing

The calculations required for setting an individual pixel in the 256 color modes depend
upon the size of the memory banks, the number of pixels per row and of screen rows, and
the start address of video memory. Although it is quite feasible to design a routine that
performs in different SuperVGA chipsets, the efficiency of such coding would be
necessarily low. The VESA standardization offers a solution to the programming
complications brought on by different architectures of the various SuperVGA chipsets. In
reality, since most SuperVGA systems use a 64K bank size and a processor’s window

The pc graphics handbook 392

into video memory located at segment base A000H, the variations are reduced to the
bank switching operations.

13.2 The VESA SuperVGA Standard

The Video Electronics Standards Association was founded in 1989 with the intention of
providing a common programming interface for SuperVGA extended modes. In order to
achieve this, each manufacturer furnishes a VESA SuperVGA BIOS extension. The
BIOS can be in the adapter ROM or in a TSR routine. Today, most SuperVGA
manufacturers are members of VESA and provide a VESA BIOS with their products.

The first release of the VESA SuperVGA standard was published on October 1, 1989
(version 1.0). A second release was published on June 2, 1990 (version 1.1). The present
release is dated Sepetember 16, 1998 (version 3.0). The latest version of the standard
supports non-VGA systems, flat memory models, and 32-bit operating systems and
applications.

13.2.1 VESA SuperVGA Modes

The first element of VESA standardization is the definition of standard modes for the
SuperVGA extensions. The VESA mode numbering scheme takes into account that the
VGA modes are in the range 0 to 7FH. This range limitation is due to the fact that the
VGA BIOS mode setting function (service number 0) uses the high-order bit to determine
if video memory is to be cleared. To get around this restriction, the VESA mode number
is a word-size value, which is passed to the VESA BIOS in the BX register. Figure 13–2
shows the bitmap of the VESA MODE numbers.

Figure 13–2 VESA Mode Bitmap

Notice that bit number 8 identifies a VESA mode. That is, all VESA modes start at
number 100H. Notice also that bit number 15 is used during mode set operations to
indicate if video memory is to be cleared. Table 13–1 lists the VESA extended modes.

Super vga programming 393

Table 13–1
VESA BIOS Modes

MODE NUMBER RESOLUTION
15 BITS 7 BITS

TEXT/ GRAPHICS
PIXELS COLUMNS/ROWS COLORS

100H GRAPHICS 640 by 400 256
101H GRAPHICS 640 by 480 256
102H 6AH GRAPHICS 800 by 600 16
103H GRAPHICS 800 by 600 256
104H GRAPHICS 1024 by 768 16
105H GRAPHICS 1024 by 768 256
106H GRAPHICS 1280 by 1024 16
107H GRAPHICS 1280 by 1024 256
108H TEXT 80 by 60
109H TEXT 132 by 25
10AH TEXT 132 by 43
10BH TEXT 132 by 50
10CH TEXT 132 by 60
10DH* GRAPHICS 300 by 200 32K
10EH GRAPHICS 320 by 200 64K
10FH GRAPHICS 320 by 200 16.8Mb
110H GRAPHICS 640 by 480 32K
111H GRAPHICS 640 by 480 64K
112H GRAPHICS 640 by 480 16.8Mb
113H GRAPHICS 800 by 600 32K
114H GRAPHICS 800 by 600 64K
115H GRAPHICS 800 by 600 16.8Mb
116H GRAPHICS 1024 by 768 32K
117H GRAPHICS 1024 by 768 64K
118H GRAPHICS 1024 by 768 16.8Mb
119H GRAPHICS 1280 by 1024 32K
11AH GRAPHICS 1280 by 1024 64K
11 BH GRAPHICS 1280 by 1024 16.8Mb
Legend:
*modes after 10DH were introduced in VESA BIOS version 1.2

13.2.2 Memory Windows

The VESA standard accommodates variations in the SuperVGA implementations by
recognizing two different types of hardware windows into video memory. The first and
simpler type consists of a single window which can be read and written by the CPU. The
disadvantage of a read-write window becomes evident when a pixBlt operation crosses
the limit of this window, because, in this case, the software is forced to switch banks and
the CPU to reset the segment register base during the transfer. This double burden can
considerably degrade performance.

The pc graphics handbook 394

A partial solution is to provide separate windows for read and write operations. One
possible option is to have two windows located at the same address: one for read and the
other one for write operations. This scheme, sometimes called dual overlapping windows,
allows selecting both windows simultaneously. Once the source and destination windows
are selected, the data block can be rapidly moved by means of a REP MOVSB
instruction.

A second alternative to the two windows option is to locate the read and write
windows at separate addresses. For example, a SuperVGA chipset can locate the write
window at base address A000H and the read window at base address B000H. This would
extend addressable memory to 128K and considerably simplify pixBlt operations. The
objection to this approach is that a two-monitor system requires the B000H window for
text operations; therefore this configuration would not be possible. Another solution is to
cut the 64K window in half and provide separate 32K windows, one for read and the
other one for write operations. The objection in this case is that normal display operation
would require twice as many bank switches. Figure 13–3 is a schematic representation of
the three possible windowing options.

Figure 13–3 VESA Window Types

13.3 The VESA BIOS

The VESA BIOS has been designed to perform only those operations that are strictly
necessary to achieve portability and hardware transparency of the SuperVGA system.
The fundamental functions of the VESA BIOS, as used in SuperVGA programming, are
the following:

1. Obtaining SuperVGA and mode information
2. Setting a standard VESA extended mode
3. Performing bank switching operations

Super vga programming 395

The VESA BIOS does not provide graphics primitives. Furthermore, not even pixel
setting and reading operations are included in the standard. Due to this design the
software overhead is kept at a minimum. The actual function implementation of the
functions are left to the chipset manufacturer, who also has the option of furnishing the
BIOS in ROM, or as a TSR.

Of the functions provided by the VESA BIOS the bank switching operation is the
most crucial in regards to display system performance. This is because bank switching is
usually included in read and write loops and, therefore, in the program’s critical path of
execution. To provide the best possible performance the VESA BIOS allows access to the
bank switching function directly, by means of a far call to the chipset manufacturer’s own
entry point to the service routine. This approach simplifies and accelerates access to the
actual bank switching code. The result is that display routines that use VESA BIOS
functions can perform bank switching operations almost as efficiently as routines that
access the SuperVGA hardware directly.

13.3.1 VESA BIOS Services

The VESA BIOS is an extension of VGA BIOS video services located at interrupt 10H.
Access to the VESA BIOS is by means of service number 79 (4FH). The sub-function
refers to the specific VESA BIOS service. Eight VESA BIOS services have been
implemented to date. These are shown in Table 13–2.

Table 13–2
VESA BIOS Sub-services to BIOS INT 10H
SUB-SERVICE DESCRIPTION

00H Return SuperVGA information
01H Return SuperVGA mode information
02H Set SuperVGA mode
03H Return current video mode
04H Save/restore SuperVGA video state
05H Switch banks
06H Set/get logical scan line length
07H Set/get display start

The following code fragment is a general template for accessing the VESA BIOS sub-
services

MOV AH,79 ; VESA BIOS service number
MOV AL,? ; AL holds sub-service
number
. ; Other registers are loaded
with
. ; the values required by the
. ; sub-service
INT 10H

The pc graphics handbook 396

All VESA BIOS functions return the same error codes: AL=79 (4FH) if the function is
supported, AH=0 if the call was successful.

Sub-service 0—System Information

VESA BIOS sub-service number 0 provides general VESA information. The caller
furnishes a pointer to a 256-byte data buffer which is filled by the VESA service. The
following code fragment shows the set of variables and the register setup for this service.

DATA SEGMENT
;***********************|
; parameter block |
;**********************|
VESA_BUFFER DB ' ' ; ‘VESA' signature
VESA_VERSION DW ? ; Version number
OEM_PTR_OFF DW ? ; OEM string offset
pointer
OEM_PTR_SEG DW ? ; OEM string segment
pointer
CAPABILITIES DD ? ; Adapter capabilities
 ; (first implemented in
VESA
 ; BIOS version 1.2)
MODES_PTR_OFF DW ? ; Pointer to modes
list, offset
MODES_PTR_SEG DW ? ; Segment for idem
MEM_BLOCKS DW ? ; Count of 64K memory
blocks
 ; (first implemented in
VESA
 ; BIOS version 1.1)
 DB 242 DUP (?) ; Remainder of
block
;
DATA ENDS
;
;
CODE SEGMENT
 .
 .
 .
; Call VESA BIOS sub-service number 0 to obtain
SuperVGA
; information
; Passed by caller:
; DS:DI = pointer to 256-byte data buffer
; Returned by service:
; AX = 004FH if no error
; Data stored in the caller’s buffer
;**********************|
; setup registers |

Super vga programming 397

;**********************|
; Initialize entry registers
 LEA DI,VESA_BUFFER ; Start of data buffer
; VESA BIOS sub-service number 0 uses ES as a segment
base
 PUSH ES ; Caller’s ES
 PUSH DS ; CAller’s DS
 POP ES ; to ES
;**********************|
; get VESA information |
;**********************|
 MOV AH,79 ; VESA BIOS service
number
 MOV AL,0 ; This sub-service
 INT 10H ; BIOS video service
; At this point AX must hold 004FH if the call executed
 CMP AX,004FH ; Returned code
 JE OK_VESA_0 ; Go if valid value
;**********************|
; ERROR exit |
;**********************|
; The programmer should code an error routine at this
point
; to handle an invalid call to the VESA BIOS function
BAD_VESA:
 .
 .
 .
OK_VESA_0:
; Test buffer for a valid 'VESA' signature
 CMP WORD PTR [DI],'EV' ; First two
letters
 JE OK_VE ; Go if matched
 JMP BAD_VESA ; Exit if not matched
OK_VE:
 CMP WORD PTR [DI+2],'AS' ; Last two
letters
 JNE BAD_VESA ; Go if not matched
; At this point the VESA BIOS call to sub-service
number 0
; was successful
 .
 .
 .
CODE ENDS

The call to sub-service number 0 is usually made to determine if there is a VESA BIOS
available, although the sub-service provides other information that could also be useful.
Testing for a valid VESA BIOS is a two step process: first the code tests for the value
004FH in the AX register. This value corresponds to the standard VESA error codes
mentioned at the beginning of this section. Once this first test is passed, the code makes

The pc graphics handbook 398

certain that the four-character 'VESA' signature is stored at the start of the buffer. If these
tests are satisfactory, execution can continue on the assumption that a valid VESA BIOS
is present and that its functions are available to the software.

The data segment of the above code fragment shows the most important items returned
by sub-service number 0. The field contents are as follows:

• VESA_BUFFER is the label that marks the start of the buffer. At this label the BIOS
will store the word 'VESA' which serves as a string signature that identifies the BIOS.

• VESA_VERSION is a 2-byte field that encodes the current version of the VESA BIOS.
The encoding is in fractional form, for example, the value 3131H corresponds to the
ASCII digits 1,1 and represents version 1.1 of the VESA BIOS. An application can
assume upward compatibility in the VESA BIOS.

• OEM_PTR_OFF and OEM_PTR_SEG are two word variables that encode the offset
and segment values of a far pointer to an identification string supplied by the board
manufacturer. Board-specific routines would use this string to check for compatible
hardware.

• The CAPABILITIES label is a 4-byte field designed to hold a code that represents the
general features of the SuperVGA environment. This field was not used until VESA
BIOS version 1.2, released on October 22, 1991. At this time bit number 0 of this field
was enabled to encode adapters with the possibility of storing extended primary color
codes. In VESA BIOS version 1.2, and later, a value of 1 in bit 0 of the
CAPABILITIES field indicates that the DAC registers can be programmed to hold
more than 6-bit color codes. A value of 0 indicates that the DAC register is standard
VGA, with 6-bits per primary color. Changing the bit width of the DAC registers is
performed by calling sub-service number 8, discussed later in this section.

• MODES_PTR_OFF and MODES_PTR_SEG are two word variables that hold the
offset and segment values of a far pointer to a list of implemented SuperVGA modes.
Each mode occupies one word in the list. The code 0FFFFH serves as a list terminator.
An application can examine the list of modes to make certain that a specific one is
available or to select the best one among possible candidates.

• MEM_BLOCKS field encodes, in a word variable, the number of 64K blocks of
memory installed in the adapter. Notice that this field was first implemented in VESA
BIOS version 1.1.

Sub-service 1—Mode Information

VESA BIOS sub-service number 1 provides information about a specific SuperVGA
VESA mode. The caller furnishes a pointer to a 256-byte data buffer, which is filled by
the VESA service, as well as the number of the desired mode. The following code
fragment shows a possible set of data variables and register setup for this service.

DATA SEGMENT
;
;**********************|
; first field group |
;**********************|

Super vga programming 399

VESA_INFO DW ? ; Mode attributes,
mapped as
 ; follows:
 ; ..4 3 2 1 0 < = bits
 ; | | | | |__ 0 = m mode not
supported
 ; | | | | 1 = m mode
supported
 ; | | | |____ 0 = n extended
mode info
 ; | | | 1 = extended
mode info
 ; | | |_______0 = no output
functions
 ; | | 1 = O output
functions
 ; | |________ 0 = m
monochrome mode
 ; | 1 = color mode
 ; |__________ 0 = t text mode
 ; 1 = g graphics
mode
 ; 15..5 = RESERVED
WIN_A_ATTS DB ? ; Window A attributes
WIN_B_ATTS DB ? ; Window B attributes
WIN_GRAIN DW ? ; Window granularity
WIN_SIZE DW ? ; Window size
WIN_A_SEG DW ? ; Segment address for
window A
WIN_B_SEG DW ? ; Segment address for
window B
BANK_FUN DD ? ; Far pointer to bank
switch
 ; function
BYTES_PER_ROW DW ? ; Bytes per screen row
;**********************|
; second field group |
;**********************|
; Extended mode data. Optional until VESA BIOS version
1.2
X_RES DW ? ; Horizontal resolution
Y_RES DW ? ; Vertical resolution
X_CHAR_SIZE DB ? ; Pixel width of
character cell
Y_CHAR_SIZE DB ? ; Pixel height of
character cell
BIT_PLANES DB ? ; Number of bit planes
BITS_PER_PIX DB ? ; Bits per pixel in
this mode
NUM_OF_BANKS DB ? ; Number of video
memory banks

The pc graphics handbook 400

MEM_MODEL DB ? ; Memory model, as
follows:
 ; 00H = text mode
 ; 01H = CGA graphics
 ; 02H = Hercules
graphics
 ; 03H = 4-plane
architecture
 ; 04H = Packed pixel
architecture
 ; 05H = 256 color
(unchained)
 ; The following were
defined
 ; in VESA BIOS version
1.2:
 ; 06H = Direct color
 ; 07H = YUV color
 ; 08H—OFF = not yet
defined
BANK_SIZE DB ? ; Kilobytes per bank
PLANES DB ? ; Number of planes:
 ; 4 in 16 color modes,
1 in 256 color modes
 DB 1 ; Reserved for BIOS
;**********************|
; third field group |
;**********************|
; Direct color fields. Defined in VESA BIOS version 1.2
De
RED_MASK DB ? ; Bit size of red mask
RED_POSITION DB ? ; Red mask LSB position
GREEN_MASK DB ? ; Bit size of green
mask
GREEN_POSITION DB ? ; Green mask LSB
position
BLUE_MASK DB ? ; Bit size of blue mask
BLUE_POSITION DB ? ; Blue mask LSB
position
RSVD_MASK DB ? ; Bit size of reserved
mask
RSVD_POSITION DB ? ; Reserved mask LSB
position
DC_INFO DB ? ; Attributes of direct
color
 ; modes, as follows:
 ; bit 0 = color ramp
 ; 0 = fixed
 ; 1 = programmable
 ; bit 1 = Reserved
field bits
 ; 0 = not usable

Super vga programming 401

 ; 1 = usable
 DB 216 DUP (?) ; Remainder of
block
DATA ENDS
;
CODE SEGMENT
 .
 .
;**********************|
; get VESA mode info |
;**********************|
; Passed by caller:
; CX = mode number, as follows:
; GRAPHICS number resolution colors
; 100H 640 by 400 256
; 101H 640 by 480 256
; 102H 800 by 600 16
; 103H 800 by 600 256
; 104H 1024 by 768 16
; 105H 1024 by 768 256
; 106H 1280 by 1224 16
; 107H 1280 by 1224 256
; TEXT 108H 80 by 60
; 109H 132 by 25
; 10AH 132 by 43
; 10BH 132 by 50
; 10CH 132 by 60
; DS:DI = pointer to 256-byte data buffer
; Returned by service:
; AX = 004FH if no error
; Data stored in the caller’s buffer
;**********************|
; register setup |
;**********************|
; CX to hold requested mode number
; DS:SI -> information block supplied by service
; Initialize entry registers
 LEA DI,VESA_INFO ; Start of data buffer
 MOV CX,105H ; Mode requested
; VESA BIOS sub-service number 1 uses ES as a segment
base
 PUSH ES ; Caller’s ES
 PUSH DS ; Caller’s DS
 POP ES ; to ES
;**********************|
; get VESA information |
;**********************|
 MOV AH,79 ; VESA BIOS service
number
 MOV AL,1 ; This sub-service
 INT 10H BIOS ; video service
; At this point AX must hold 004FH if the call executed

The pc graphics handbook 402

 CMP AX,004FH ; Returned code
 JE OK_MODE ; Go if valid value
;**********************|
; ERROR exit |
;**********************|
; The programmer should code an error routine at this
point
; to handle the case of an invalid VESA BIOS call
 .
 .
OK_MODE:
; At this point the VESA BIOS call to sub-service
number 1
; was successful. However, the code cannot assume that
the
; mode requested is implemented in the system
 .
 .
CODE ENDS

The call to sub-service number 1 is usually made to determine if the desired mode is
available in the hardware and, if so, to obtain certain fundamental parameters required by
the program. If the call is successful, the code can examine the data at offset 0 in the data
buffer in order to determine the mode’s fundamental attributes. These mode attributes are
shown in Figure 13–4.

Figure 13–4 VESA Mode Attribute
Bitmap

The data segment of the above code fragment shows the items returned by sub-service
number 1. The data items are divided into three field groups. The contents of the
variables in the first field group are as follows:

Super vga programming 403

WIN_A_ATTS and WIN_B_ATTS are 2 bytes that encode the attributes of the two
possible memory banks, or windows. Figure 13–5 is a bitmap of the window attribute
bytes.

Figure 13–5 Window Attributes
Bitmap

The code can inspect the window attribute bits to determine the window types used in the
system (see Figure 13–3).

The WIN_GRAIN word specifies the granularity of each window. The granularity unit
is 1 kilobyte. The value can be used to determine the minimum video memory boundary
for the window.

The WIN_SIZE word specifies the size of the windows in kilobytes. This value can be
used in tailoring bank switching operations to specific hardware configurations (see
Section 13.3.1).

The word labeled WIN_A_SEG holds the segment base address for window A and the
word labeled WIN_B_SEG the base address for window B. The base address in graphics
modes is usually A000H, however, the code should not take this for granted.

The doubleword labeled BANK_FUN holds a far pointer to the bank shifting function
in the BIOS. An application can shift memory banks using VESA BIOS sub-service
number 5, described later in this section, or by means of a direct call to the service
routine located at the address stored in this variable. The call can be coded with the
instruction:

CALL DWORD PTR BANK_FUN

BYTES_PER_ROW is a word variable that encodes the number of bytes in each screen
logical pixel row. Notice that this value can be larger than the number of pixels in a
physical scan line.

The variables in the second field group are of optional nature. Bit number 1 of the
mode attribute bitmap (see Figure 13–4) can be read to determine if this part of the data
block is available. The contents of the various fields in the second group are described in
the data segment of the preceding code fragment.

The direct color fields from the third field group. These fields were first implemented
in VESA BIOS version 1.2 to support SuperVGA systems with color capabilities that
extended beyond the 256 color modes. The contents of the various fields in the third
group are described in the data segment of the preceding code fragment. Because, to date,

The pc graphics handbook 404

very few SuperVGA adapters support the direct color modes, their programming is not
considered in this book.

Sub-service 2—Set Video Mode

VESA BIOS sub-service number 2 is used to initialize a video mode supported by the
adapter. The VESA mode number is passed to the sub-service in the BX register. The
high-order bit, which is sometimes called the clear memory flag, is set to request that
video memory not be cleared. The following code fragment shows a call to this VESA
BIOS service.

;**********************|
; set video mode |
;**********************|
; Select mode 105H using VESA BIOS sub-service number 2
 MOV BX,105H ; Mode number and high
bit = 0
 ; to request clear
video
 MOV AH,79 ; VESA BIOS service
number
 MOV AL,2 ; This sub-service
 INT 10H ; BIOS video service
; Test for valid returned value
 CMP AX,004FH ; Status for no error
 JE MODE_IS_SET ; No error during mode
set
;**********************|
; ERROR exit |
;**********************|
; The programmer should code an error routine at this
point
; to handle the possibility of a mode setting error
 .
 .
; At this label the mode was set satisfactorily
MODE_IS_SET:
 .
 .

Sub-service 3—Get Video Mode

VESA BIOS sub-service number 3 is used to obtain the current video mode. The VESA
mode number is returned by the sub-service in the BX register. The following code
fragment shows a call to this VESA BIOS service.

Super vga programming 405

;**********************|
; get video mode |
;**********************|
; VESA BIOS sub-service number 3 to obtain current
video mode
 MOV AH,79 ; VESA BIOS service
number
 MOV AL,3 ; This sub-service
 INT 10H ; BIOS video service
; Test for valid returned value
 CMP AX,004FH ; Status for no error
 JE MODE_AVAILABLE ; No error during mode
set
;**********************|
; ERROR exit |
;**********************|
; The programmer should code an error routine at this
point
; to handle the possibility of a mode reading error
 .
 .
 .
; At this label the mode was read satisfactorily. The
BX
; register holds the mode number
MODE_AVAILABLE:
 .
 .
 .

Sub-service 4—Save/Restore Video State

VESA BIOS sub-service number 4 is used to save and restore the state of the video
system. This service, which is an extension of BIOS service number 28, is often used in a
multitasking operating system to preserve the task states and by applications that manage
two or more video environments. The sub-service can be requested in three different
modes, passed to the VESA BIOS routine in the DL register.

Mode number 0 (DL=0) of sub-service number 4 returns the size of the save/restore
buffer. The 4 low bits of the CX register encode the machine state buffer to be reported.
The bitmap for the various machine states is shown in Figure 13–6.

The pc graphics handbook 406

Figure 13–6 VESA BIOS Machine
State Bitmap

The units of buffer size returned by mode number 0, of sub-service number 4, are 64-byte
blocks. The block count is found in the BX register.

Mode number 1 (DL=1), of sub-service number 4, saves the machine video state
requested in the CX register (see Figure 13–6). The caller should provide a pointer to a
buffer sufficiently large to hold the requested state data. The size of the buffer can be
dynamically determined by means of a call using mode number 0, described above. The
pointer to the buffer is passed in ES:BX.

Mode number 2 (DL=2), of sub-service number 4, restores the machine video state
requested in the CX register (see Figure 13–6). The caller should provide a pointer to the
buffer that holds data obtained by means of a call using mode number 1 (see above).

Sub-service 5—Switch Bank

VESA BIOS sub-service number 5 is used to switch memory banks in those modes that
require it. Software should call sub-service number 1 to determine the size and address of
the banks before calling this function. Two modes of this sub-service are implemented:
one to switch to a desired bank and another one to request the number of the currently
selected bank.

Mode number 0 (BH=0) is the switch bank command. The BL register is used by the
caller to encode window A (value=0) or window B (value=1). The bank number is passed
in the DX register. The following code fragment shows the necessary processing:

; VESA BIOS sub-service number 5 register setup
 MOV BX,0 ; Select bank in window
A
 ; and bank switch
function
; BH = 0 to select bank
; BL = 0 to select window A
; DX = bank number

Super vga programming 407

 MOV AX,4F05H ; Service and sub-
service
 INT 10H
 .
 .
 .

Mode number 1 of sub-service (BH=0) is used to obtain the number of the memory bank
currently selected. The BL register is used by the caller to encode window A (value=0) or
window B (value=1). The bank number is reported in the DX register.

Earlier in this section we mentioned that an application can also access the bank
switching function in the BIOS by means of a far call to the service routine. The address
of the service routine is placed in a far pointer variable by the successful execution of
sub-service number 1. For the far call operation the register setup for BH, BL, and DX is
the same as for using sub-service 5. However, in the far call version AH and AL need not
be loaded, no meaningful information is returned, and AX and DX are destroyed.

Sub-service 6—Set/Get Logical Scan Line

VESA BIOS sub-service number 6 is used to set or read the length of the logical scan
line. Observe that the logical scan line can be wider than the physical scan line supported
by the video hardware. This sub-service was first implemented in VESA BIOS version
1.1. For this reason it is not available in the BIOS functions of earlier adapters.

Sub-service 7—Set/Get Display Start

VESA BIOS sub-service number 7 is used to set or read from the logical page data the
pixel to be displayed in the top left screen corner. The sub-service is useful to applica-
tions that use a logical screen that is larger than the physical display in order to facilitate
panning and screen scrolling effects. As is the case with sub-service number 6, this sub-
service was first implemented in VESA BIOS version 1.1. For this reason it is not
available in the BIOS functions of many adapters.

Sub-service 8—Set/Get DAC Palette Control

VESA BIOS sub-service number 8 was designed to facilitate programming of SuperVGA
systems with more than 6-bit fields in the primary color registers of the DAC. The sub-
service contains two modes. Mode number 0 (BL=0) is used to set a DAC color register
width. The desired width value, in bits, is passed by the caller in the BH register. Mode
number 1 (BL=1) is used to obtain the current bit width f or each primary color. The bit
width is returned in the BH registers. The standard bit width for VGA systems is 6.

This sub-service was first implemented in version 1.2 of the VESA BIOS, released in
October 22, 1991. Therefore it is not available in adapters with earlier versions of the
VESA BIOS. Another feature introduced in VESA BIOS version 1.2 is the use of bit 0 of
the CAPABILITIES field (see sub-service 0 earlier in this section) to encode the presence
of DAC registers capable of storing color encodings of more than 6 bits. Applications

The pc graphics handbook 408

that propose to use sub-service 8 should first test the low-order bit of the CAPABILITIES
field to determine if the feature is implemented in the hardware.

13.4 Programming the SuperVGA System

Programming a particular SuperVGA chipset requires obtaining specific technical data
from the manufacturer. The resulting code has little, if any, portability to other systems.
This approach is used in coding hardware-specific drivers that take full advantage of the
capabilities of the system. An alternative method that insures greater portability of the
code at a small price in performance is the use of the VESA BIOS services described
starting it Section 13.2.

It is theoretically possible to design a general-purpose graphics routine that operates in
every SuperVGA chipset and display mode. However, this universality can only be
achieved at a substantial price in performance, an element that is usually critical to
graphics software. For this reason the design and coding of mode-specific graphics
routines is generally considered a more efficient approach. By using VESA BIOS
functions it is possible to design mode-specific routines that are compatible with most
SuperVGA systems that support the particular mode.

In the examples that follow we have used VESA BIOS mode number 105H with a
resolution of 1,024 by 768 pixels in 256 colors. We have selected this mode because it is
compatible with modes used in 8514/A and XGA systems, and also because it is widely
available in fully equipped SuperVGA adapters. The reader should be able to readily
convert these routines to other SuperVGA graphics modes.

13.4.1 Address Calculations

Address calculations in a SuperVGA mode depend on the screen dimensions and the
location of the video buffer in the system’s memory space. In a mode-specific routine the
number of pixels per row can be entered as a numeric value. In modes that require more
than one memory bank the bank size must also enter into the address calculations. Most
SuperVGA adapters use a bank size of 64K, which can be hard-coded in the address
calculation routine. On the other hand, it is possible to use a memory variable that stores
the number of pixels per row and the bank size parameters in order to design address
calculation routines that will work in more than one mode. In the following code
fragment we have assumed that the SuperVGA is in VESA mode 105H, with 1,024 pixels
per scan line and that the bank size is 64K. The display routines assume that the base
address of the video buffer is A000H.

; Calculate pixel address from the following
coordinates:
; CX = x coordinate of pixel
; DX = y coordinate of pixel
; Code assumes:
; 1. SVGA is in a 1,024 by 768 pixel mode in 256
colors

Super vga programming 409

; (mode number 105H)
; 2. Bank size is 64K
; Get address in SVGA memory space
 CLC ; Clear carry flag
 PUSH AX ; Save color value
 MOV AX,1024 ; Pixels per scan line
 MUL DX DX ; holds line count of
address
 ADD AX,CX ; Add pixels in current
line
 ADC DX,0 ; Answer in DX:AX
 ; DL = bank, AX =
offset
 MOV BX,AX ; Offset to BX
 .
 .
 .

At this point BX holds the pixel offset and DX the bank number. Note that the pixel
offset is the offset within the selected bank, and not the offset from the start of the screen
as is often the case in VGA routines.

13.3.2 Bank Switching Operations

In a SuperVGA adapter set to VESA mode number 105H (resolution of 1,024 by 768
pixels in 256 colors) the number of video memory banks depends on the bank size. With
a typical bank size of 64K the entire video memory space requires 12 memory banks,
since:

In order to update the entire video screen the software has to perform 12 bank switches.
This would be the case in performing a clear screen operation. Furthermore, many
relatively small screen objects cross one or more bank boundaries. In fact, in VESA
SuperVGA mode 105H any graphics object or window that exceeds 64 pixels in height
will necessarily overflow one bank.

For these reasons bank switching operations should be optimized to perform their
function as quickly as possible. The ideal solution would be to embed the hardware bank
switching code within the address calculation routine. This is the method adopted for the
XGA pixels display routine listed in Section 7.3.1. However, XGA software does not
have to contend with variations in hardware. We have seen that in the SuperVGA
environment to hard-code the bank switching operation would almost certainly make the
routine not portable to other devices. An alternative solution is to perform bank switching
by means of VESA BIOS service number 5, described in Section 13.2.1. The following
code fragment shows the code for bank switching using the VESA BIOS service.

The pc graphics handbook 410

;**********************|
; change banks |
**********************|
; Select video bank using VESA BIOS sub-service number
5
; VESA BIOS sub-service number 5 register setup
; BH = 0 to select bank
; BL = 0 to select window A
; DX = bank number
 MOV BX,0 ; Select bank in window
A
 MOV AX,4F05H ; Service and sub-
service
 INT 10H
 .
 .
 .

An alternative option that would improve performance of the bank switching operation is
by means of a far call to the service routine, as mentioned in Section 13.2.1. The
following code fragment shows bank switching using the far call method. The code
assumes that the address of the service routine is stored in a doubleword variable named
BANK_FUN. This address can be obtained by means of VESA BIOS sub-service
number 1 (get mode information) discussed in Section 13.2.1.

;**********************|
; change banks |
; by far call method |
;**********************|
; Select video bank by means of a far call to the bank
switching
; routine provided by the chipset manufacturer
; Code assumes that the far address of the service
routine is
; stored in a doubleword variable named BANK_FUN
; Register setup for far call method
; BH = 0 to select bank
; BL = 0 to select window A
; DX = bank number
 MOV BX,0 ; Select bank in window
A
 PUSH AX ; Preserve caller’s
context
 PUSH DX
 CALL DWORD PTR BANK_FUN
 POP DX ; Restore context
 POP AX
 .
 .
 .

Super vga programming 411

Observe that to use the far call method the doubleword variable that holds the address of
the service routine must be reachable at the time of the call. Therefore, if the variable is
in another segment, a segment override byte is required.

13.4.3 Setting and Reading a Pixel

Once the pixel address has been determined and the hardware has been switched to the
corresponding video memory bank, setting the pixel is a simple write operation. For
example, in VESA mode number 105H, once the address calculation routine in Section
13.3.1 and the bank switching routine in Section 13.3.2 have executed, the pixel can be
set by means of the instruction

MOV BYTE PTR ES:[BX],AL

The code assumes that ES holds the base address of the video buffer, BX the offset
within the bank, and AL the 8-bit color code. Note that since VESA mode number 105H
is not a planar mode, no previous read operation is necessary to enable the latching
mechanism (see Section 3.1.1).

Reading a pixel in a SuperVGA mode is usually based on the same address and bank
switching operations as those required for setting a pixel. The actual read instruction is in
the form

MOV AL,BYTE PTR ES:[BX]

The SVGA_PIX_105 procedure in the SVGA module of the GRAPHSOL library
performs a pixel write operation while in SuperVGA mode number 105H. The procedure
named SVGA_READ_105 can be used to read a screen pixel in this same mode.

13.4.4 VGA Code Compatibility

The SuperVGA enhanced graphics mode presents three basic differences in relation to
VGA modes: multiple banks, non-planar architecture, and greater resolution. Once these
factors are taken into account by the SuperVGA specific graphics read and write routines,
many VGA calculations can be used directly in SuperVGA graphics. In the following
section we describe the use, from SuperVGA modes, of several VGA routines in the
VGA modules of the GRAPHSOL library. These include the VGA routines developed in
Chapter 3 to access the LUT registers in the DAC, since most SuperVGA systems use the
same color look-up table and DAC as VGA.

13.5 Using the SuperVGA Library

The GRAPHSOL library furnished with this book includes the module named SVGA
which contains SuperVGA graphics routines. Many of these procedures were designed as
mode-specific in order to optimize performance. The procedures in the SVGA module

The pc graphics handbook 412

serve to initialize the SuperVGA system, to establish the presence of a VESA SuperVGA
BIOS, to select a VESA mode number 105H, and to set and read individual screen pixels
while in mode 105H.

In addition to the routines in the SVGA library, SuperVGA programs use several
procedures in the VGA modules of GRAPHSOL.LIB. The use of the VGA procedures by
a SuperVGA system requires a previous call to the SET_DEVICE routine in the VGA3
module. For SuperVGA systems this call is made with the AL register holding the ASCII
character "S." The call sets a device-specific display switch to the VESA SuperVGA
pixel display routine in the SVGA module. By enabling the SuperVGA display routine
(named SVGA_PIX_105) the code makes possible the use of the geomet-rical procedures
in the VGA3 module named BRESENHAM, LINE_BY_SLOPE, DISPLAY_LINE,
CIRCLE, ELLIPSE, PARABOLA, and HYPERBOLA, and also the use of the text
display procedures in the VGA2 module named FINE_TEXT, FINE_TEXTHP, and
MULTITEXT, as well as the corresponding text display support routines
FONT_TO_RAM and READ_HPFONT. Information regarding the VGA text display
and geometrical routines can be found in Chapters 4 and 5 as well as in the source files
VGA2.ASM and VGA3.ASM contained in the book’s software.

Since most SuperVGA systems use the VGA LUT and DAC registers in the same
architecture as VGA mode number 19, a SuperVGA program can use the color register
procedures for VGA mode number 19 that appear in the VGA1 module of the
GRAPHSOL library. These procedures are named TWO_BIT_IRGB, GRAY_256,
SUM_TO_GRAY, SAVE_DAC, and RESTORE_DAC. The source file and program
named SVGADEMO furnished in the diskette demonstrates the use of the SuperVGA
library services in the SVGA module and the use of the compatible VGA services in the
VGA modules of GRAPHSOL.LIB.

13.5.1 Procedures in the SVGA.ASM Module

SVGA_MODE

Call VESA BIOS sub-service number 0 to obtain SuperVGA and VESA information and
sub-service number 1 to obtain mode-specific information.

Receives:
 1. word integer of VESA SuperVGA graphics mode
number
 as follows:
 number resolution colors
 GRAPHICS 100H 640 by 400 256
 MODES 101H 640 by 480 256
 102H 800 by 600 16
 103H 800 by 600 256
 104H 1024 by 768 16
 105H 1024 by 768 256
 106H 1280 by 1224 16
 107H 1280 by 1224 256
 TEXT 108H 80 by 60

Super vga programming 413

 MODES 109H 132 by 25
 10AH 132 by 43
 10BH 132 by 50
 10CH 132 by 60
 DIRECT COLOR 10DH 300 by 200 32K
 MODES 10EH 320 by 200 64K
 10FH 320 by 200 16.8Mb
 110H 640 by 480 32K
 111H 640 by 480 64K
 112H 640 by 480 16.8Mb
 113H 800 by 600 32K
 114H 800 by 600 64K
 115H 800 by 600 16.8Mb
 116H 1024 by 768 32K
 117H 1024 by 768 64K
 118H 1024 by 768 16.8Mb
 119H 1280 by 1024 32K
 11AH 1280 by 1024 64K
 11BH 1280 by 1024 16.8Mb
Returns:
 1. carry clear if no error, then
 ES:SI --> VESA_BUFFER, formatted as
follows:
VESA_BUFFER DB ' ' ; VESA signature
VESA_VERSION DW ? ; Version number
OEM_PTR_OFF DW ? ; OEM string offset
pointer
OEM_PTR_SEG DW ? ; OEM string segment
pointer
CAPABILITIES DD ? ; System capabilities
MODES_PTR_OFF DW ? ; Pointer to modes
list, offset
MODES_PTR_SEG DW ? ; Segment for idem
MEM_BLOCKS DW ? ; Count of 64K memory
blocks
 ;(Only in June 2, 1990
revision)
 DB 242 DUP (0H)
 ES: DI --> VESA_INFO, formatted as follows:
VESA_INFO DW ? ; Mode attribute bits
 ; ..4 3 2 1 0 <= bits
 ; | | | | |__ 0 = mode not
supported
 ; | | | | 1 = mode
supported
 ; | | | |___ 0 = no extended
mode info
 ; | | | 1 = extended
mode info
 ; | | |_______0 = no output
functions

The pc graphics handbook 414

 ; | | 1 = output
functions
 ; | |________ 0 = monochrome
mode
 ; | 1 = color mode
 ; |__________ 0 = text mode
 ; 1 = graphics
mode
 ; 15..5 = RESERVED
WIN_A_ATTS DB ? ; Window A attributes
WIN_B_ATTS DB ? ; Window B attributes
WIN_GRAIN DW ? ; Window granularity
WIN_SIZE DW ? ; Window size
WIN_A_SEG DW ? ; Segment address for
window A
WIN_B_SEG DW ? ; Segment address for
window B
WIN_PTR DD ? ; Far pointer to window
function
BYTES_PER_ROW DW ? ; Bytes per screen row
; Extended mode data. Optional until version 1.2
X_RES DW ? ; Horizontal resolution
Y_RES DW ? ; Vertical resolution
X_CHAR_SIZE DB ? ; Pixel width of
character cell
Y_CHAR_SIZE DB ? ; Pixel height of
character cell
BIT_PLANES DB ? ; Number of bit planes
BITS_PER_PIX DB ? ; Bits per pixel in
this mode
NUM_OF_BANKS DB ? ; Number of video
memory banks
MEM_MODEL DB ? ; Memory model
BANK_SIZE DB ? ; Kb per bank
 DW 0 ; Padding
; Direct color fields. Defined in VESA BIOS version 1.2
RED_MASK DB ? ; Bit size of red mask
RED_POSITION DB ? ; Red mask LSB position
GREEN_MASK DB ? ; Bit size of green
mask
GREEN_POSITION DB ? ; Green mask LSB
position
BLUE_MASK DB ? ; Bit size of blue mask
BLUE_POSITION DB ? ; Blue mask LSB
position
RSVD_MASK DB ? ; Bit size of reserved
mask
RSVD_POSITION DB ? ; Reserved mask LSB
position
DC_INFO DB ? ; Attributes of direct
color
 ; modes, as follows:

Super vga programming 415

 ; bit 0 = color ramp
 ; 0 = fixed
 ; 1 =
programmable
 ; bit 1 = Reserved
field bits
 ; 0 = not usable
 ; 1 = usable
 DB 216 DUP (?) ; Remainder of
block
 2. Carry set if error

VESA_105

Set SuperVGA to VESA mode number 105H with a resolution of 1024 by 768 pixels in
256 colors.

Receives:
 Nothing
Assumes:
 That the data variables in the buffers
VESA_BUFFER and VESA_INFO
have been filled by a previous call to the VESA_MODE
procedure.
Returns:
 Carry clear if mode was set
 Carry set if error

SVGA_PIX_105

Write a screen pixel accessing SVGA memory directly and using a far call to the bank
switching routine.

Receives:
 1. word variable of x pixel coordinate
 2. word variable of y pixel coordinate
 3. byte variable of 8-bit color code
Assumes:
 1. SVGA in VESA mode 105H (1,024 by 768
pixels in 256
 colors)
 2. Size of video bank is 64K
 3. ES holds base address of video buffer
(A000H)
Returns:
 Nothing
Action:
 Pixel is set

The pc graphics handbook 416

SVGA_CLS_105

Clear video memory while in VESA mode number 105H.

Receives:
 1. byte integer of 8-bit color code
Assumes:
 1. SVGA in VESA mode 105H (1,024 by 768
pixels in 256
 colors)
 2. Size of video bank is 64K
 3. ES holds base address of video buffer
(A000H)
Returns:
 Nothing
Action:
 Screen is initialized to requested color code.

SVGA_READ_105

Read a screen pixel accessing SVGA memory directly and using a far call to the bank
switching routine.

Receives:
 1. word variable of x pixel coordinate
 2. word variable of y pixel coordinate
Assumes:
 1. SVGA in VESA mode 105H (1,024 by 768
pixels in 256
 colors)
 2. Size of video bank is 64K
 3. ES holds base address of video buffer
(A000H)
Returns:
 1. byte integer of pixel color
Action:
 Pixel is read

Super vga programming 417

Chapter 14
DOS Animation

Topics:

• Animation fundamantals
• User interaction in animation
• Image movement
• DOS imaging techniques

This chapter describes the principles and programming techniques of image animation in
DOS. The chapter also covers mouse programming by means of the Microsoft mouse
interface. The discussion includes image mapping, panning and geometrical
transformations, as well as imaging techniques by looping, and by system timer and
vertical retrace interrupts.

14.1 Graphics and Animation

Computer graphics animation is usually defined as the simulation of life-like qualities by
digital manipulations of a computer-generated image. The concept is somewhat limiting
since it excludes analog operations and assumes that the only objects that can be
computer animated are images on the CRT. However, in the microcomputer environment
animation is mostly about manipulating screen images so as to mimic life. This is often
performed by moving images on the screen, but color and shapes can also be changed to
create a life-like illusion.

Computer graphics animation can take place in a real- or a delayed-time frame. For
example, a computer program can generate and store a series of consecutive images that
simulate the movement of an object. The stored images can be recorded on storage
devices, such as a video tape, and later played back at a faster rate than they were
generated. In this case we can say that the computer animation took place in a delayed-
time frame; the animated action was not visible until the images were played back on a
television set. On the other hand, a computer program can simulate a ping-pong game on
the screen. In this case the animation takes place in a real-time frame. Graphics animation
in the microcomputer environment is, for the most part, image animation in real-time. For
this reason in the present chapter we emphasize real-time operations. Delayed-frame is
also known as frame-by-frame animation.

Animated screen images can be classified according to the user’s interaction with the
graphics object. When the object is directly controlled by the user of the software we
speak of interactive animation. Screen objects that are animated independently of the
user’s action often move by means of a machine-generated time-pulse. In this sense we
speak of time-pulse animation. The mouse is an input device closely related to interactive

animation. For this reason we have incorporated mouse programming into the present
chapter. Although not all mouse programming operations are related to animated screen
objects, we have, for practical reasons, included all phases of mouse programming in the
present treatment. Time-pulse animation is also discussed in some detail.

14.1.1 Physiology of Animation

The image of an object created by the human eye can persist in the brain for a brief
period of time after the object no longer exists in the real world. This physiological
phenomena is called visual retention. Although the biological mechanisms of retention
are not fully understood, we do know that it involves the chemistry of the retina and the
structure of cells and neurons in the eye. First cinematography, and more recently
television, have taken advantage of visual retention to create the illusion of continuous
movement. This is done by consecutively flashing still images at a faster rate than the
period of visual retention. This technique, by which a new image replaces the old one
before the period of retention has expired, creates in our minds the illusion of a smoothly
moving object.

It has been determined experimentally that the critical image update rate for smooth
animation is from 22 to 30 images per second. Modern day moving picture films are
recorded and displayed at a rate of 24 images per second. Although the threshold for
smooth animation varies with individuals, it is generally estimated at a rate of
approximately 18 images per second. This means that if the consecutive images are
projected at a rate slower than this threshold, the average individual is able to perceive a
certain jerkiness. However, if the flashing rate exceeds the threshold, our brains merge
the images together with no perception of the individual flashes. This threshold rate can
be called the critical jerkiness frequency.

14.1.2 PC Animation

Animated graphics systems, such as the ones used in many electronic video games, are
based on vector refresh technology. In these systems the movement of the electron beam
is limited to the objects that must be redrawn during a refresh cycle. Therefore, vector
refresh displays are more efficient in animating small objects than raster scan systems in
which the entire screen area must be scanned by the electron gun or guns during each
cycle.

PC graphics use raster scan technology. Animation on a raster scan computer is based
on creating an illusion of movement by displaying successive images. The graphics
object is typically stored in a dedicated buffer which is imaged on the CRT by the video
hardware. The name frame buffer animation has often been used in this context. In VGA
systems the frame buffer is the video memory itself. In XGA systems, in addition to
video memory, there is a second, smaller, frame buffer dedicated to storing the sprite
image. Image changes can be made by altering the contents of video memory or by
changing the screen position at which the frame buffer is displayed.

Image size and critical jerkiness frequency are usually the limiting factors in frame
buffer animation. For example, assume a VGA video system in mode number 18 (640 by
480 pixels in 16 colors). If to produce smooth animation the system must redraw the

The pc graphics handbook 420

screen at a rate of 20 images per second, then the changes in the frame buffer must be
performed in less than 1/20s. Furthermore consider that to animate a screen object its
image must be erased from the current position before it is redrawn at a new position,
otherwise the animation would leave a track of objects on the video display. Therefore
the buffer update sequence is, in reality, a sequence of redraw, erase, redraw operations,
which means that the critical jerkiness frequency is the time elapsed from redraw to
redraw cycle. Consequently, the allotted time for the redraw-erase cycle becomes 1/48s.

Although the above example is a worse-case scenario it does show the constraints in
which animation must be performed in a raster scan system. In the PC, in particular,
graphics animation is a battle against time: the time in which the frame buffer must be
updated before the entire screen is redrawn by the video hardware. Therefore the
animation programmer must resort to every known trick and stratagem in order to
squeeze the maximum performance while updating the frame buffer. But, in many cases,
even the most efficient and imaginative programming is not able to overcome the
system’s limitations and the animated image is bumpy and coarse.

14.1.3 Software Support for Animation Routines

In previous chapters we provided software support mainly in the form of library routines
that can be called by a graphics program. But most animation routines have extremely
critical performance constraints. This determines that animation software be customized
and optimized for a particular program design. Furthermore, animated programs are often
designed with these hardware limitations in mind. To provide animation routines in the
form of library procedures would introduce, in the first place, an unnecessary call-and-
return overhead over on-line code. In addition, the procedures would have to be adaptable
to the many varying circumstances of animated programs and, at the same time,
optimized for maximum performance. Code that is simultaneously flexible and efficient
is a programming contradiction.

For these reasons we have opted to provided code support for the animation
techniques discussed in this chapter in the form of coding templates, rather than as library
routines. The template files can also be found in the book’s software package. The reader
can use these templates to avoid having to re-code the routine manipulations in the
various animation techniques. However, we have left blank lines in the templates
(marked by ellipses) to indicate where the programmer must supply the customized code.

The software package furnished with this book contains a VGA animated program
named MATCH. The reader should consult the README.NOW file in the MATCH
directory before executing the program. The source files for the MATCH program
demonstrate interactive and time-pulse animation in a VGA system.

14.2 Interactive Animation

Interactive animation refers to screen objects that are moved at will by the user. Typically
the animated screen object is controlled by means of an input device, such as a mouse,
puck, or graphics tablet (see Section 1.1.2). In the present section we discuss
programming the mouse device as a means for animating an interactive screen object.

Dos animation 421

Other interactive input devices are specialty tools used mostly in CAD software,
therefore they are outside the scope of this book.

14.2.1 Programming the Mouse

The IBM BIOS, as documented in the IBM Personal System/2 and Personal Computer
BIOS Interface Technical Reference (see bibliography), describes a pointing device
interface associated with service number 194 of INT 15H. However, there are several
difficulties associated with this service. In the first place, the IBM documentation dealing
with this mouse service is not sufficient for programming the device. Another
consideration is that the services are not compatible with different mouse hardware. Then
there is the problem that various non-IBM versions of the BIOS do not include this
service. Finally, the service is not recognized in the DOS mode of OS/2.

If the BIOS mouse services of INT 15H were operational and compatible with
standard mouse hardware, a program could use these functions much the same way as it
uses the video, printer or the communications services in the BIOS. However, due to the
difficulties mentioned in the preceding paragraph, most applications must find alternative
ways of controlling mouse operation. But all alternative solutions have the disadvantage
of requiring an installed mouse driver. To an application this leaves three alternatives: (1)
the software must assume that the user has previously installed and loaded a compatible
mouse driver, (2) the software must provide an installation routine that loads the driver,
or (3) the code must include a low-level driver for the mouse device.

14.2.2 The Microsoft Mouse Interface

The mouse driver software that has achieved more general acceptance is the one by
Microsoft Corporation. The Microsoft mouse control software is installed as a system
driver or as a TSR program. The system version is usually stored in a disk file with the
extension .SYS and the TSR version in a file with the extension .COM. The Microsoft
mouse interface services are documented in the book Microsoft Mouse Programmer’s
Reference, published by Microsoft Press (see Bibliography).

Most manufacturers of mouse devices provide drivers that are compatible with the one
by Microsoft. Therefore, the use of the Microsoft mouse interface is not limited to mouse
devices manufactured by this company, but extends to all Microsoft-compatible hardware
and software. The installation command for the mouse driver is usually included in the
CONFIG.SYS or AUTOEXEC.BAT files. The Microsoft mouse interface attaches itself
to software interrupt 33H and provides a set of 36 sub-services. These mouse sub-
services are accessible by means of an INT 33H instruction.

14.2.3 Checking Mouse Software Installation

We have mentioned that applications that use the mouse device must adopt one of three
alternatives regarding the support software: assume that the driver was installed by the
user, load a driver program, or provide the low-level services within its code. By far,
most applications adopt the first option, that is, assume that the user has previously

The pc graphics handbook 422

loaded the mouse driver software. Although the more refined programs that use a mouse
device include an installation utility that selects the appropriate driver and creates or
modifies a batch file in order to insure that the mouse driver is resident at the time of
program execution.

In any case, the first operation usually performed by an application that plans to use
the mouse control services in interrupt 33H is to test the successful installation of the
driver program. Since the driver is vectored to interrupt 33H, this test consists simply of
checking that the corresponding slot in the vector table is not a null value (0000:0000H)
or an IRET operation code. Either one of these alternatives indicates that no mouse driver
is presently available. The following coding template shows the required processing.

; Template file name: MOUSE1.TPL
; Code to check if mouse driver software is installed
in the
; interrupt 33H vector. The check is performed by
reading the
; interrupt 33H vector using MS-DOS service number 53,
; of INT 21H
 MOV AH,53 ; MS_DOS service request
 MOV AL,33H ; Desired interrupt
number
 INT 21H ; MS-DOS service
; ES:BX holds address of interrupt handler, if
installed
 MOV AX,ES ; Segment to AX
 OR AX,BX ; OR with offset
 JNZ OK_INT33 ; Go if not zero
; Test for an IRET opcode in the vector
 CMP BYTE PTR ES:[BX],0CFH ; CFH is IRET
opcode
 JNE OK_INT33 ; Go if not IRET
; At this point the program should provide an error
handler
; to exit execution or to load a mouse driver
 .
 .
 .
; Execution continues at this label if a valid address
was found
; in the interrupt 33H vector
OK_INT33:
 .
 .
 .

14.2.4 Sub-services of Interrupt 33H

The Microsoft mouse interface was designed to provide control of the mouse device from
high- and low-level languages. VGA alphanumeric programs can use the Microsoft
mouse software by selecting one of two available text cursors. In the alpha modes the

Dos animation 423

mouse driver manages the text cursor on a coarse grid of screen columns and rows,
according to the active display mode. VGA programs that execute in graphics modes
must provide their own cursor bitmap, which is installed by means of an interrupt 33H
sub-service. However, since the graphics cursor operated by the driver is limited to a size
of 16 by 16 pixels, many graphics programs create and manage their own cursor. In this
case the driver services are used to detect mouse movements, but the actual cursor
operation and display are handled directly by the application. This is also the case of
XGA programs that use the sprite functions to manage a mouse cursor image

In addition to mouse cursor management and display, the sub-services of interrupt
33H include functions to set the mouse sensitivity and rate, to read button press
information, to select video pages, and to initialize and install interrupt handlers that take
control when the mouse is moved or when the mouse buttons are operated. However,
some of the services in the interrupt 33H drivers reprogram the video hardware in ways
that can conflict with an application. For this reason, we have limited our discussion to
those mouse services that are not directly related to the video environment. These
services can be used from any VGA, XGA, or SuperVGA graphics modes without
interference. However, in this case, it is the application’s responsibility to perform all
video updates.

Sub-service 0—Initialize Mouse

Sub-service number 0 of interrupt 33H is used to reset the mouse device and to obtain its
status. An application usually calls this service to certify that the mouse driver is resident
and to initialize the device parameters. The following coding template shows a call to this
sub-service.

; Template file name: MOUSE2.TPL
; Initialize mouse by calling sub-service 0 of
interrupt 33H
 MOV AX,0 ; Reset mouse hardware
and
 ; software
 INT 33H ; Mouse interrupt
 CMP AX,0 ; Test for error during
reset
 JNZ OK_RESET ; No problem
; At this point the program should provide an error
routine to
; handle an invalid initialization call
 .
 .
 .
; Execution continues at this label if the mouse was
initialized
OK_RESET:
 .
 .
 .

The pc graphics handbook 424

Sub-service 5—Check Button Press Status

Programs that do not use interrupts can check mouse button press status by calling sub-
service number 5 of the Microsoft mouse interface. The call is typically located in a
polling loop. The calling program passes the button code in the BX register; the value of
0 corresponds to the left mouse button and a value of 1 to the right button. The call
returns the button status in the AX register; bit 0 is mapped to the left mouse button and
bit 1 to the right mouse button. A value of 1 indicates that the corresponding but-ton is
down. The BX register returns the number of button presses that have occurred since this
call was last made or since a driver software reset (see sub-service 0 earlier in this
section). The CX and DX registers hold the x and y cursor coordinates of the screen
position where the last press occurred. The following coding template shows a call to this
sub-service.

; Template file name: MOUSE3.TPL
;**

; button action handler
;**

; The following routine calls service 5 of interrupt
33H to
; detect mouse press action on the mouse device
; If the right button was pressed execution is directed
to the
; label RIGHT_BUT, if the left button was pressed
execution is
; directed to the label LEFT_BUT
;**********************|
; check left button |
;**********************|
 MOV AX, 5 ; Service request to
read
 ; mouse button status
 MOV BX,0 ; First test left
button
 INT 33H ; Mouse interrupt
; Number of button presses is returned in the BX
register
 CMP BX,0 ; Test for no presses
 JE TEST_RIGHT_BUT ; Not pressed. Test
right button
; Code at this point should take the program action
corresponding
; to one or more presses of the left mouse button
 .
 .
 .
; Execution should be allowed to fall through to the
right button
; test routine

Dos animation 425

;**********************|
; check right button |
;**********************|
TEST_RIGHT_BUT:
 MOV AX,5 ; Service request to
read
 ; mouse button status
 MOV BX,1 ; Test right button
 INT 33H ; Mouse interrupt
; Number of button presses is returned in the BX
register
 CMP BX,0 ; Test for no presses
 JE END_BUTTON_RTN ; Not pressed. End of
routine
; Code at this point should take the program action
corresponding
; to one or more presses of the right mouse button
 .
 .
 .
; Button press status processing ends at this label
END_BUTTON_RTN:

Sub-service 11—Read Motion Counters

The actual movement of the mouse-controlled icon is dependent on the state of two
counters maintained by the mouse interface software. The Microsoft mouse interface at
interrupt 33H stores the motion parameters in 1/200-in units called mickeys. The changes
in the motion counters represent values from the last time the function was called. Sub-
service 11, of interrupt 33H, returns the values stored in the horizontal and vertical
motion counters. The horizontal motion count is returned in the CX register and the
vertical count in the DX register. The values are signed integers in two’s complement
form. A negative value in the horizontal motion counter indicates mouse movement to the
left, while a negative value in the vertical motion counter indicates a movement in the
upward direction. Both the vertical and the horizontal counters are automatically reset by
the service routine.

We mentioned that the detection of mouse action can be by a polling loop or by
interrupts. Polling loops are often used in reading the motion counters so as to keep
interrupt processing times to a minimum, especially considering that the Microsoft mouse
interface does not allow the installation of more than one service routine. The processing
inside a polling loop or a service routine takes place in similar fashion. The following
coding template shows the structure of a basic mouse movement handler.

; Template file name: MOUSE4.TPL
;**

; mouse movement handler
;**

The pc graphics handbook 426

; The following routine calls service 11 of interrupt
33H to
; detect horizontal or vertical movement of the mouse
device
; If the movement is along the x axis (horizontal)
execution is
; directed to the label H_MOVE, if the movement is
along the y
; axis, execution is directed to the label Y_MOVE. If
no change
; is detected in the motion counters, then execution is
directed
; to the label NO_MOVE
;**********************|
; service No. 11 of |
; INT 33H |
;**********************|
 MOV AX,11 ; Service request to
read
 ; motion counters
 INT 33H ; Mouse interrupt
; CX=Horizontal mouse movement from last call to this
service
; DX=vertical mouse movement from last call
 MOV AL,CL ; Horizontal counter to
AL
 MOV AH,DL ; Vertical counter to
AH
 CMP AX,0 ; If AX is 0 then no
mouse
 JNE XORY_MOVE ; Some movement
detected
 JMP NO_MOVE ; Go if no movement
; At this point there is vertical or horizontal mouse
movement
XORY_MOVE:
 CMP CX,0 ; Test for no
horizontal
 JE Y_MOVE ; Go to vertical
movement test
;**********************|
; horizontal move |
;**********************|
; Code at this point moves the mouse icon according to
the
; direction and magnitude of the value in the CX
register
X_MOVE:
 PUSH DX ; Save vertical move
counter
 .
 .

Dos animation 427

 .
 POP DX ; Restore vertical
counter
; Once the horizontal movement is executed the code
should fall
; through to the vertical movement routine. This takes
care of
; the possibility of simultaneous movement along both
axes
;**********************|
; vertical move |
;**********************|
; Code at this point moves the mouse icon according to
the
; direction and magnitude of the value in the DX
register
Y_MOVE:
 .
 .
 .
;**********************|
; no movement |
;**********************|
; This label is the routine’s exit point
NO_MOVE:
 .
 .
 .

Sub-service 12—Set Interrupt Routine

The user action on the mouse hardware can be monitored by polling or by interrupt
generation, as is the case with most other input devices. Polling methods are based on
querying the device status on a time lapse basis, therefore polling routines are usually
coded as part of execution loops. In the case of the mouse hardware the polling routine
can check the motion counter registers and the button press and release status registers
that are maintained by the mouse interface software. The services to read these registers
are described later in this section.

The second and often preferred method of monitoring user interaction with the mouse
device, particularly mouse button action, is by means of hardware interrupts. In this
technique the program enables the mouse hardware actions that generate interrupts and
installs the corresponding interrupt handlers. Thereafter, user action on the enabled
hardware sources in the mouse automatically transfers control to the handler code. This
frees the software from polling frequency constraints and simplifies program design and
coding.

A typical application enables mouse interrupts for one or more sources of user
interaction. For example, a program that uses the mouse to perform menu selection would
enable an interrupt for movement of the trackball (or other motion detector mechanism)
and another interrupt for the action of pressing the left mouse button. If the mouse is

The pc graphics handbook 428

moved, the interrupt handler linked to trackball movement changes the screen position of
the marker or icon according to the direction and magnitude of the movement. If the left
mouse button is pressed, the corresponding interrupt handler executes the selected menu
option.

Another frequently used programming method is to poll the mouse motion counters
that store trackball movement and to detect button action by means of interrupts. This
design reduces execution time inside the interrupt handler, which can be an important
consideration in time-critical applications. The MATCH demonstration program
furnished in the book’s software package uses a polling routine to move the mouse icon
and an interrupt handler to detect button action.

In the mouse interface software, the hardware conditions that can be programmed to
generate an interrupt are related to an integer value called the call mask. Figure 14.1
shows the call mask bitmap in the Microsoft mouse interface software. To enable a
mouse interrupt condition the software sets the corresponding bit in the call mask. To
disable a condition the call mask bit is cleared.

Figure 14–1 Mouse Interrupt Call
Mask

Sub-service number 12 of the mouse interface at interrupt 33H provides a means for
installing an interrupt handler and for selecting the action or actions that generate the
interrupt. The following coding template shows the necessary processing for enabling
mouse interrupts on right and left button pressed.

; Template file name: MOUSE5.TPL
; Select left mouse button pressed and right mouse
button pressed
; as interrupt conditions and set address of service
routine
; by means of mouse sub-service number 12, interrupt
33H
; The code assumes that the interrupt handler is
located in the

Dos animation 429

; program’s code segment, at the offset of the label
named
MOUSE_ACTION
 CLI ; Interrupts off
 PUSH ES ; Save video buffer
segment
 PUSH CS ; Program’s segment
 POP ES ; to ES
 MOV AX,12 ; Mouse service number
12
; Interrupt mask bitmap:
; 15 ----------------------5 4 3 2 1 0
; |-- these bits unused ---| | | | | |___ Tracking
movement
; | | | |_____ Left button
pressed
; | | |_______ Left button
released
; | |_________ Right button
pressed
; |___________ Right button
released
 MOV CH,0 ; Unused bits
 MOV CL,00001010B ; Interrupt on left
button and
 ; right button pressed
 MOV DX,OFFSET CS:MOUSE_ACTION ; Address of
the
 ; service routine
 INT 33H ; Mouse interrupt
 POP ES ; Restore segment
 STI ; Interrupts on
 .
 .
 .

When the user’s interrupt service routine receives control the mouse interface software
passes a condition code in the AL register that matches the call mask bitmap (see Figure
14.1). In this manner the user’s handler can determine which of the unmasked conditions
actually generated the interrupt. An interrupt condition bit is set when the corresponding
condition originated the interrupt. For example, if the conditions that originate the
interrupt are the left or right mouse buttons pressed (as enabled by the previous coding
template), then the program can test the state of bit number 1 (see Figure 14.1) to
determine if the interrupt was caused by the left mouse button. If not, the code can
assume that it was caused by the user pressing the right mouse button, since only these
two conditions are active.

A characteristic of service number 12 or the Microsoft mouse interface is that only one
interrupt handler can be installed. If two consecutive calls are made to this service, even
if the call mask settings enable different bits, the address in the latest call replaces the
previous one. Therefore it is not possible to install more than one service routine by

The pc graphics handbook 430

means of this service. On the other hand, service number 24 allows the installation of
more than one service routine, each one linked to a different interrupt cause. However,
this service operates only when the Shift, Ctrl, or Alt keys are held down while the mouse
action is performed. In addition, in several non-Microsoft versions of the mouse interface
software the service does not perform as documented. For these reasons it is not
considered in this book.

14.3 Image Animation

In the PC video animation usually consists of successively displaying images that vary in
composition or in screen location according to a specific pattern of change. Notice that
the concept of a pattern of change does not imply that this pattern be known beforehand
to the software. For example, the image changes can be determined by user interaction or
by the occurrence of random events. In this respect we can speak of the animation of
object with predictable or unpredictable movements. The direction of movement of a
mouse icon, for example, cannot be normally predicted by the software, therefore it falls
in the second category. On the other hand, a graphics program could animate a screen
object that moves in a predictable path across the screen. It is also possible for the
movement of a screen object to contain both a predictable and an unpredictable element.
For example, a mouse-controlled icon can be allowed to move inside a certain screen
window, or the image of a planet that moves diagonally across the screen can exhibit
random rotation on its own axis.

The combinations and variations of the predictable and unpredictable elements in the
movement of screen objects can be quite complex. For example, the following screen
image in an animated game could depend on screen objects with programmed movement,
with random movement, and controlled by user interaction. The one common element to
all three animated movements is the concept of a pattern of change, which means that the
subsequent images of animated objects are somehow related to previous ones. The
elements of this relationship are usually location, gradation (color hue), and object shape.
In other words, to produce a realistically animated movement of a screen object the
software must control the pattern of change. This usually implies restricting the
transformations of location, gradation, and shape from one screen image of the object to
the next one.

Many of the complexities of the theory and practice of computer image animation are
beyond the scope of this book. In the bibliography we have listed some useful theoretical
references in the field of computer graphics. However, computer animation in the PC is
much more limited than in dedicated systems. The processing power of CPU and video
hardware impose very restrictive limits on the number and size of objects that can be
smoothly animated in this environment. The following discussion is also limited by these
hardware limits.

14.3.1 Image Mapping and Panning

Image animation in raster scan systems is often based on manipulating a stored image
map. This map can be located in a mechanical or optical device, in video memory, in

Dos animation 431

ROM, or in the application’s memory space. In previous chapters we have manipulated
image maps contained in disk files, in ROM, in RAM, and in video memory. The storage
location of the image map is often less important than its format. Bitmap formats and
conventions are the subject of Chapter 10. Processing speed is usually an important
consideration in image animation. Therefore the storage location for image maps is
usually limited to the video memory and the applications’s RAM space. The terms video
buffer and image buffer are often used in this context.

Video and Image Buffers

While the video buffer is a physical device the concept of an image buffer is a logical
one. Graphics systems use the concept of a virtual graphics device, which assumes an
imaginary display of fictitious characteristics. Frequently, the attributes of the virtual
machine exceed those of the physical one. Therefore, the capacity of the image buffer can
exceed that of the video buffer. For example, a VGA system is equipped with a video
buffer suitable for holding an image of 640-by-480 pixels in 16 colors. Yet a program
running in the VGA environment may support an image buffer capable of storing 2000
by 1200 pixels in 512 colors.

We have made use of this concept in developing the calculation routines in the VGA
libraries furnished with this book. In this manner the storage areas for screen coordinate
points (named X_BUFFER and Y_BUFFER) in the VGA2 module are capable of storing
2048 values for each coordinate axis. This considerably exceeds the best available
resolution in VGA systems, which is of 640 by 480 pixels. However, this additional
storage space makes possible the use of the geometrical calculation routines in XGA and
SuperVGA modes that have greater screen resolution (1,024 by 768 pixels) than the
VGA. As far as the VGA calculation routines are concerned the limits of the video
system are not those of the physical device (VGA, XGA, or SuperVGA) but those of an
image buffer with a storage space for 2,048-by-2,048 pixels.

Viewport and Windows

The viewport is defined as the display area used for graphic operations. In IBM
microcomputer graphics the entire display must be set for a chosen graphics or
alphanumeric mode. Therefore the viewport is the entire display surface. In other words,
the dimensions of the graphic viewport coincide with the those of the physical video
display. A window is an area of the display surface, usually rectangular in shape.
However, there is no reason for excluding windows of other shapes. In fact, circular and
elliptical windows are visually pleasant and would serve to break the geometrical
monotony of squares and rectangles.

A rectangular display window is usually defined by the coordinates of its start and end
points. For example, on a 640-by-480 pixel display, a window filling the upper left
quarter would have start coordinates (0, 0) and end coordinates (320, 240). Windows can
also be defined descriptively; for example, we sometimes speak of the graphic window,
the text window, and the menu window.

The pc graphics handbook 432

Panning

Image buffers, viewport, and windows are often used in producing a form of image
animation called panning. In panning an image appears to move by changing the
rectangular region of the image buffer that is mapped to the viewport or window. The
elements of panning animation are shown in Figure 14.2.

Figure 14–2 Elements in Panning
Animation

In Figure 14.2 we can see that the viewport or window is smaller than the background
image buffer. Therefore the display routine can show only a portion of the background
image buffer at one time. A smooth panning effect can be produced on the video display
by progressively changing the portion of the image buffer that is mapped to the viewport.
An additional enhancement can be added in the form of a separate foreground screen
object (in Figure 14.2 this object is a space shuttle). The foreground object is stored in its
own image buffer (labeled the foreground image buffer in Figure 14.2). The panning
effect can be further enhanced by changing the portion of the background image buffer
mapped to the viewport, while the foreground object (in this example the shuttle image),
remains in a fixed position. The resulting panning animation simulates the shuttle moving
in space.

14.3.2 Geometrical Transformations

Graphical systems employ elaborate schemes for encoding image data. The purpose of
these data structures is to facilitate image manipulation by hardware and software. The
organization of graphical data is based, first, on identifying the fundamental image

Dos animation 433

elements, such as lines, curves, arcs, polygons, and bitmaps. These primitive elements are
stored in a logical structure called the display file. In turn, this display is composed of one
or more modeling elements placed in structural levels sometimes called image files,
image segments, and image descriptors. The design of graphical data storage devices and
the manipulation of this data is a specialized field outside the scope of this book. The
interested reader should consult a book on theoretical computer graphics (see
Bibliography).

The subject of graphical data structures is related to animation by the fact that it is
possible to transform a graphical image by performing logical and mathematical
operations on the data structure that encodes it. In Chapter 5, starting in Section 5.3, we
discussed geometrical transformations that are performed by manipulating image data.
The most usual transformations are mirrowing, translation, rotation, scaling, and clipping.
An animated effect can be achieved by performing and displaying progressive
transformations of a graphical image. For example, a screen object can appear to be
approaching the viewer by displaying a sequence of scaled images in which the object
becomes progressively larger. Figure 14.3 shows how rotation and scaling
transformations are used to simulate this effect.

Figure 14–3 Animation by Scaling and
Rotation

Notice, in Figure 14.3, that the simulation is enhanced by introducing a second, non-
transformed object in the viewport (the reticle symbol). In any case of real-time
animation by image transformation the quality of the simulation depends on the rate at
which the successive images are displayed as well as on the rate of change be-tween
successive images. The faster the display rate and the slower the rate of image change,
the more realistic the animation.

14.4 Imaging Techniques

We saw that computer animation often depends on the display of a series of images,
called the image set. In some forms of animation the images themselves are progressively
changed to form the image set. For example, panning animation is based on changing the
portion of the image that is visible on the viewport. Other geometrical transformations
can be used to generate the image set. In Figure 14.3 we see how scaling and rotation
transformations are applied to a graphical object in order to simulate its approaching the
viewer. In all cases, animation in real-time requires two separate programming steps: the
creation of an image set and the sequential display of these images.

The pc graphics handbook 434

Many graphics and non-graphics techniques are used in the creation of an image set
that follows a pre-defined pattern of change. We have mentioned how the image set can
be generated by performing geometrical transformations on the display file. Hand-drawn
or optically scanned bitmaps are also used to create the image set. Notice that the creation
of the image set need not take place in real-time; it is its display that is time-critical. But
whether the image set is in the form of geometrical display commands or encoded in
consecutive bitmaps, the actual animation requires displaying these images
consecutively, in real-time, and ideally, at a rate that is not less than the critical flicker
frequency. In this section we discuss some programming methods used for displaying the
animation image set in real-time.

14.4.1 Retention

We mentioned that the human visual organs retain, for a short time, the images of objects
that no longer exist in the real world. This physiological phenomenon makes possible the
creation of an illusion of animation by the frame-by-frame projection of a set of
progressively changing images of a graphics object. We have referred to this collection of
smoothly changing images as the animation image set. If the rate at which the individual
images are shown on the video display is close to the critical rate of 22 images per
second, then the animation appears smooth and pleasant. On the other hand, if the
software cannot approximate this critical rate the user perceives a disturbing flicker and
the animation appears coarse and bumpy to various degrees.

It is image retention which imposes performance requirements on real-time animated
systems. If a computer animation program is to create a smooth and pleasant effect, all
the manipulations and changes from image to image must be performed in less than 1/20
of a second. We mentioned that raster scan video systems, with bitmapped image buffers
such as those in the PC, are not well suited for computer animation.

14.4.2 Interference

A raster scan display system is based on scanning each horizontal row of screen pixels
with an electron beam. The pixel rows are usually scanned starting at the top-left screen
corner and ending at the bottom-right corner. At the end of each pixel row, called a scan
line, the electron beam is turned off while the gun is re-aimed to the start of the next scan
line. When this row-by-row process reaches the bottom scan line, the beam is turned off
while the gun is re-aimed to the top-left screen corner. The period of time required to re-
aim the electron gun from the right-bottom of the screen to the top left corner is known as
the vertical retrace or screen blanking cycle.

Some of the original graphics systems in the PC were prone to a form of display
interference called snow. The direct cause for the interference was performing a buffer
update during a screen refresh. Programmers soon discovered that on the CGA card this
could be avoided or reduced by synchronizing the buffer updates with the period of time
that the electron gun was turned off during vertical retrace. EGA and VGA systems were
designed to avoid this form of interference when conventional methods of buffer update
are used. However, the interference problem reapears when an EGA or VGA screen
image has to be updated at short time intervals, as in animation.

Dos animation 435

The result is that, in order to avoid interference, the frequent screen updates required
by most animation routines must be timed with the period during which the electron gun
is off. This usually means synchronizing the buffer updated with the vertical retrace cycle
of the CRT controller. This requirement, which applies to EGA, VGA, XGA, and
SuperVGA systems, imposes a substantial burden on programs that perform animated
graphics. For example, the screen refresh period in VGA graphics modes takes place at
an approximate rate of 70 times per second. Since the individual images must be updated
in the buffer while the electron gun is off, this gives the software 1/70th of a second to
replace the old image with the new one. How much buffer update can be performed in
1/70 is the most limiting factor in programming smooth, real-time animation on IBM
microcomputer video systems.

Notice that a screen refresh rate of approximately 1/70 considerably exceeds the
critical jerkiness frequency of 1/24 used as the image refresh rate in motion picture
technology (see Section 14.1.1). This difference is related to the time period required for
the human eye to adjust to a light intensity change and detect flicker. We can speak of a
critical flicker frequency, as different from the critical jerkiness frequency mentioned
above. The motion picture projector contains a rotating diaphragm that blackens the
screen only during the very short interval required to move the film to the next frame.
This allows projection speeds to take place at the critical jerkiness rate rather than at the
flicker rate. By the same token, a computer monitor must adjust the screen refresh cycle
to this critical flicker frequency.

14.4.3 XOR Operations

In Section 14.1.2 we mentioned that in order to animate a screen object its image must be
erased from current screen position before being redrawn at the new position. Otherwise
the object’s movement would leave an image track on the video display. The buffer
update sequence takes the form: redraw, erase, redraw, erase, redraw. For example, in
lateral translation, an object is made to appear to move across the screen, from left to
right, by progressively redrawing and erasing its screen image at consecutively larger x
coordinates. Notice that erasing the screen object is at least as time consuming as drawing
it, since each pixel in the object must be changed to its previous state.

The are several ways of performing the redraw-erase cycle required in figure
animation. The most obvious method is to save that portion of the screen image that is to
be occupied by the object. The object can then be erased by re-displaying the saved
image. The problem with this double pixBlt is that it requires a preliminary, and time-
consuming, read operation to store the screen area that is to be occupied by the animated
object. Therefore the redraw-erase cycle is performed by a video-to-RAM pixBlt (save
screen), RAM-to-video pixBlt (display object), and another RAM-to-video pixBlt
(restore screen).

A faster method of erasing and redrawing the screen is based on the properties of the
logical exclusive or (XOR) operation. The action of the logical XOR is that a bit in the
result is set if both operands contain opposite values. Consequently, XORing the same
value twice restores the original contents, as in the following example:

The pc graphics handbook 436

 10000001B
 XOR mask 10110011B

 00110010B
 XOR mask 10110011B

 10000001B

Notice that the resulting bitmap (10000001B) is the same as the original one. The XOR
method can be used in EGA, VGA, and SuperVGA systems because the Data Rotate
register of the Graphics Controller can be programmed to write data normally, or to
AND, OR, or XOR, the CPU data with the one in the latches. In XGA systems, mix mode
number 06H produces a logical XOR of source and destination pixels (see Table 7–8).

The logical XOR operation provides a convenient and fast way for consecutively
drawing and erasing a screen object. Its main advantage is that it does not require a
previous read operation to store the original screen contents. This results in a faster and
simpler read-erase cycle. The XOR method is particularly useful when more than one
animated object can coincide on the same screen position since it insures that the original
screen image is always restored.

The disadvantage of the XOR method is that the resulting image depends on the
current screen contents. In other words, each individual pixel in the object displayed by
means of a logical XOR operation is determined both by the XORed value and by the
present pixel contents. For example, the following XOR operation produces a red object
(in IRGB format) on a bright white screen background

 I R G B
 background = 1 1 1 1 (bright white)
 XOR mask = 1 0 1 1

 image = 0 1 0 0 (red)

However, if the same XOR mask is used over a bright green background the resulting
pixel is blue, as in the following example:

 I R G B
 background = 1 0 1 0 (bright
green)
 XOR mask = 1 0 1 1

 image = 0 0 0 1 (blue)

This characteristic of XOR operations, whereby an object’s color changes as it moves
over different backgrounds, can be an advantage or a disadvantage in graphics
applications. For example, a marker symbol conventionally displayed will disappear as it
moves over a background of its same color, while a marker displayed by means of a
logical XOR can be designed to be visible over all possible backgrounds. On the other

Dos animation 437

hand, the color of a graphics object might be such an important characteristic that any
changes during display operations would be objectionable.

In conclusion, the peculiar effect of XOR operations on the object’s color may not be
objectionable, and even advantageous under some conditions, but in other applications it
could make this technique unsuitable. More advanced video graphics systems include
hardware support for animated imagery. In XGA, for example, the sprite mechanism
allows for the display and movement of marker symbols or icons independently of the
background. In this manner the XGA programmer can move the sprite symbol by
defining its new coordinates. The XGA hardware takes care of erasing the old marker and
restoring the underlaying image.

Programming the Function Select Bits

To make possible the XOR operation the software must manipulate the function select
bits of the Graphics Controller Data Rotate register (see Section 2.2.4 and Table 2–6).
The following code fragment shows the required processing.

; Set the Graphics Controller function select field of
the Data
; Rotate register to the XOR mode
 MOV DX,03CEH ; Graphic controller port
address
 MOV AL,3 ; Select Data Rotate
register
 OUT DX,AL
 INC DX ; 03CFH register
 MOV AL,00011000B ; Set bits 3 and 4 for
XOR
 OUT DX,AL

Many conventional graphics operations, such as pixBlt and text display functions, require
that the function select bits of the data rotate register be set for normal operation. The
following code fragment shows the necessary processing.

; Set the Graphics Controller function select field of
the Data
; Rotate register to the normal mode
 MOV DX,03CEH ; Graphic controller port
address
 MOV AL,3 ; Select Data Rotate
register
 OUT DX,AL
 INC DX ; 03CFH register
 MOV AL,00000000B ; Reset bits 3 and 4
for normal
 OUT DX,AL

The pc graphics handbook 438

The procedure named LOGICAL_MODE in the VGA1 module of the GRAPHSOL
library can be used to set the function select field of the Graphics Controller Data Rotate
register to any one of four possible logical modes.

14.4.4 Time-Pulse Animation

Time-pulse animation is a real-time technique by which a screen object is successively
displayed and erased at a certain rate. Ideally, the redraw rate in time-pulse animation
should be higher than the critical jerkiness frequency of 20 images per second, although,
in practice, the time pulse is often determined by the screen refresh rate.

Looping Techniques

The programmer has several methods of producing the timed pulse at which the animated
image is updated. Which method is selected depends on the requirements of the
application as well as on the characteristics of the video display hardware. The simplest
method for updating the screen image of an animated object is by creating an execution
loop to provide some form of timing device. But the loop must include not only the
processing operations for updating the screen image, but also one or more polling
routines. In addition, the loop’s execution can be interrupted by hardware devices
requiring processor attention. Another factor that can affect the precision of the loop
timing is processor speed and and memory access facilities of the particular machine. The
result is that an animation pulse created by loop methods is difficult to estimate, leading
to non-uniform or unpredictable movement of the animated object.

The System Timer

Another time-pulse source available in the PC is the system’s timer pulse. This pulse,
which can be intercepted by an application, beats at the default rate of approximately 18.2
times per second. However, an application can reprogram the system timer to generate a
faster rate. An interrupt intercept routine can be linked to the system timer so that the
program receives control at every timer beat. If it were not for interference problems, the
system timer intercept would be an ideal beat generator for use in animation routines.

The following coding template installs a system timer intercept routine. The
installation routine accelerates the system timer from 18.2 to 54.6 beats per second, or
three times the original rate.

; Template file name: ANIMATE1.TPL
;**

;**

; timer-driven pulse generator
;**

Dos animation 439

;**

; Changes performed during installation:
; 1. The BIOS system timer vector is stored in a code
segment
; variable
; 1. The timer hardware is made to run 3 times faster
to ensure
; a beat that is close to the critical flicker
frequency
; 3. New service routine for INT 08H is installed in
the
; program’s address space
;
; Operation:
; 3. The new interrupt handler at INT 08H gains control
with
; every bear of the system timer. The program
maintains a
; beat counter in the range 0 to 2. Every third beat
; (counter = 2) execution is passed to the original
INT 08H
; handler in the BIOS in order to preserve the
timer-dependent
; services
;
CODE SEGMENT
START:
 .
 .
 .
;**

; installation routine for INT 08H handler
;**

;Operations:
; 1. Obtain vector for INT 08H and store in a CS
variable
; named OLD_VECTOR_08
; 2. Speed up system timer by a factor of 3
; 3. Set INT 08H vector to routine in this module
;**

;**********************|
; save old INT 08H |
;**********************|
; Uses DOS service 53 of INT 21H
 MOV AH,53 ; Service request
number
 MOV AL,08H ; Code of vector
desired

The pc graphics handbook 440

 INT 21H
; ES --> Segment address of installed interrupt handler
; BX --> Offset address of installed interrupt handler
 MOV SI,OFFSET CS:OLD_VECTOR_08
 MOV CS:[SI],BX ; Save offset of
original handler
 MOV CS:[SI+2],ES ; and segment
;**********************|
; speed up system |
; timer by 3 |
;**********************|
; Original divisor is 65,536
; New divisor (65,536/3) = 21,845
 CLI ; Interrupts off while
write
 ; LSB then MSM
 ; xxxx 011x binary
system
 OUT 43H,AL
 MOV BX,2184 45 ; New divisor
 MOV AL,BL
 OUT 40H,AL ; Send LSB
 MOV AL,BH
 OUT 40H,AL ; Send MSB
;**********************|
; set new INT 08H in |
; vector table |
;**********************|
; Mask off all interrupts while changing INT 08H vector
 CLI
; Save mask in stack
 IN AL,21H ; Read 8259 mask
register
 PUSH AX ; Save in stack
 MOV AL,0FFH ; Mask off IRQ0 to IRQ7
 OUT 21H,AL ; Write to 8259 mask
register
; Install new interrupt vector
 MOV AH,25H
 MOV AL,08H ; Interrupt code
 MOV DX,OFFSET HEX08_INT
 INT 21H
; Restore original interrupt mask
 POP AX ; Recover mask from
stack
 OUT 21H,AL ; Write to 8259 mask
register
 STI ; Set 80×86 interrupt
flag
; At this point the graphics program continues
execution
 .

Dos animation 441

 .
 .
;**

; exit routine
;**

; Before the program returns control to the operating
system
; it must restore the hardware to its original state.
This
; requires resetting the time speed to 18.2 beats per
second
; and re-installing the BIOS interrupt handler in the
vector
; table
;**********************|
; reset system timer |
;**********************|
; Original divisor is 65,536
 CLI ; Interrupts off while
write
 ; LSB then MSM
 ; xxxx 011x binary
system
 OUT 43H,AL
 MOV BX,65535 ; Default divisor
 MOV AL,BL
 OUT 40H,AL ; Send LSB
 MOV AL,BH
 OUT 40H,AL ; Send MSB
;**********************|
; restore INT 0AH |
;**********************|
 PUSH DS ; Save program’s DS
 MOV SI,OFFSET CS:OLD_VECTOR_08
; Set DS:DX to original segment and offset of keyboard
interrupt
 MOV DX,CS:[SI] ; DX --> offset
 MOV AX,CS:[SI+2] ; AX --> segment
 MOV DS,AX ; Segment to DS
 MOV AH,25H ; DOS service request
 MOV AL,08H ; Interrupt number
 INT 21H
 POP DS
 STI ; Interrupts on again
; At this point the exiting program usually resets the
video
; hardware to text mode and returns control to the
operating
; system
 .

The pc graphics handbook 442

 .
 .
;**

; new INT 08H handler
;**

; The handler is designed so that a new timer tick
cannot take
; place during execution. This is ensured by not
sending the 8259
; end-of-interrupt code until the routine’s processing
is
; complete
;**

HEX08_INT:
 STI ; Interrupts on
 PUSH AX ; Save registers used
by routine
 PUSH BX
 PUSH CX ; Other registers can
be pushed
 PUSH DX ; if necessary
 PUSH DS
; User video image update routine is coded at this
point
 .
 .
 .
; The intercept routine maintains a code segment
variable named
; TIMER_COUNT which stores a system timer pulse count.
This
; variable is used to return control to the system
timer
; interrupt every third timer beat, thus maintaining
the
; original rate of 18.2 beats per second
 DEC CS:TIMER_COUNT
 JZ TIME_OF_DAY ; Exit through
time_of_day
;**********************|
; direct exit |
;**********************|
 MOV AL,20H ; Send end-of-interrupt
code
 OUT 20H,AL ; to 8259 interrupt
controller
 POP DS ; Restore registers
 POP DX
 POP BX

Dos animation 443

 POP AX
 IRET ; Return from interrupt
;**********************|
; pass to original |
; INT 08H handler |
;**********************|
TIME_OF_DAY:
 MOV CS:TIMER_COUNT,2 ; Reset counter
variable
 POP DS
 POP DX
 POP BX
 POP AX
 STC ; Continue processing
 JMP DWORD PTR CS:OLD_VECTOR_08
 IRET
;**********************|
; code segment data |
;**********************|
TIMER_COUNT DB 2 ; Timer counter
OLD_VECTOR_08 DD 0 ; Far pointer to
original INT 08H
 .
 .
 .
;
CODE ENDS

Interference Problems

PC software that uses the system timer to produce a pulse for animation routines
encounter interference problems. At least two methods are available to avoid or minimize
display interference: to turn-off the CRT while the buffer is being changed or to time the
buffer updates with the vertical retrace cycle of the CRT controller. Neither method is a
panacea; as we have already mentioned it is not always possible to produce smooth real-
time animation in an IBM microcomputer. Applications can try either or both methods
and select the better option. The following coding template fragment shows the
processing necessary to turn off the VGA video display system.

; Template file name: ANIMATE2.TPL
; Screen is turned off by setting the Clocking Mode
register bit
; number 5 of the VGA Sequencer Group
 MOV DX,03C4H ; Sequencer group
 MOV AL,01H ; Clocking Mode
register
 OUT DX,AL ; Select this register
 JMP SHORT $+2 ; I/O delay
 INC DX ; To data port 3C5H

The pc graphics handbook 444

 IN AL,DX ; Read Clocking Mode
register
 OR AL,00100000B ; Set bit 5, preserve
others
 OUT DX,AL ; Write back to port
; At this point the VGA video display function is OFF
 .
 .
 .

The reverse process is necessary to turn on the VGA video display system.

; Template file name: ANIMATE3.TPL
; Screen is turned on by clearing the Clocking Mode
register bit
; number 5 of the VGA Sequencer Group
 MOV DX,03C4H ; Sequencer group
 MOV AL,01H ; Clocking Mode
register
 OUT DX,AL ; Select this register
 JMP SHORT $+2 ; I/O delay
 INC DX ; To data port 3C5H
 IN AL,DX ; Read Clocking Mode
register
 AND AL,11011111B ; Clear bit 5, preserve
others
 OUT DX,AL ; Write back to port
; At this point the VGA video display function is ON
 .
 .
 .

The second method for reducing interference is to synchronize the video buffer update
with the vertical retrace cycle of the CRT controller. In the following section we will see
how, in some systems, we can enable an interrupt that occurs on the vertical retrace cycle.
But whether the vertical retrace interrupt is available or not, it is possible to detect the
start of the vertical retrace cycle in order to perform the buffer update operations while
the CRT controller is turned off. The following coding template shows the processing
necessary to detect the start of the vertical retrace in VGA systems.

; Template file name: ANIMATE4.TPL
; Test for start of the vertical retrace cycle of the
CRT
; controller. Bit 3 of the Input Status Register 1 is
set if a
; vertical cycle is in progress
 MOV DX,3DAH ; VGA Input Status
register 1
VRC_CLEAR:
 IN AL,DX ; Read byte at port

Dos animation 445

 TEST AL,00001000B ; Is bit 3 set?
 JNZ VRC_CLEAR ; Wait until bit clear
; At this point the vertical retrace ended. Wait for it
to
; restart
VRC_START:
 IN AL,DX ; Read byte at port
 TEST AL,00001000B ; Is bit 3 set?
 JZ VRC_START ; Wait until bit set
; At this point a vertical retrace cycle has just
started
; The code can now proceed to update the video image
 .
 .
 .

Figure 7.7 is a bitmap of the Input Status register 0 and 1 of the VGA General Register
Group. Notice that bit 7 of the Input Status register 0 can be used to detect the vertical
retrace cycle only if the vertical retrace interrupt is enabled. If not, we must use bit 3 of
Input Status register 1, as in the above code fragment.

14.4.5 The Vertical Retrace Interrupt

For many PC graphics applications the most satisfactory method f or obtaining a timed
pulse is by programming the CRT controller to generate an interrupt at the start of the
vertical retrace cycle. The EGA, VGA, and XGA screen refresh rate, which is 70 cycles
per second, is more than sufficient to produce smooth animation. In fact, the most
important objection to this method is that it leaves very little time in which to perform
image or data processing operations between timed pulses. Another consideration is that
not all IBM and IBM-compatible video systems support a vertical retrace interrupt. For
example, the IBM VGA Adapter is not documented to support the vertical retrace
interrupt. The same applies to many VGA cards by third party vendors. Therefore VGA
programs that use the vertical retrace interrupt may not be portable to these systems.

One advantage of using the vertical retrace interrupt as a time-pulse generator is that,
since screen updates take place while the video system is turned off, interference is
automatically avoided. The typical method of operation is to synchronize the screen
update with the beginning of the vertical retrace cycle of the CRT controller. How much
processing can be done while the CRT is off depends on the system hardware. In VGA
systems this depends mainly on the type and speed of the CPU and the memory access
facilities. XGA systems have their own graphics coprocessor and, for this reason, can
execute considerably more processing during the vertical retrace cycle. Notice that in
IBM XGA documentation the vertical retrace cycle is called the screen blanking period.

VGA Vertical Retrace Interrupt

In VGA systems the smooth animation of relatively small screen objects can be executed
satisfactorily by vertical retrace synchronization. As the screen objects get larger it is

The pc graphics handbook 446

more difficult to update the video buffer in the short time lapse of the vertical retrace
cycle. Since so many performance factors enter into the equation it is practically
impossible to give exact limits or guidelines for satisfactory animation. For example, the
demonstration program, MATCH, furnished with the book’s software package uses the
vertical retrace interrupt to animate a running boar target. At the same time, the user
interactively animates by mouse controls the image of a crosshair symbol. Both
simultaneous animation operations used in the MATCH program tax VGA and system
performance to the maximum. For this reason the program requires an IBM
microcomputer euipped with a 80386 or 486 processor to perform statisfactoan IBM
microcomputer equipped with a 80386 or 486 processor to perform satisfactorily. A
certain bumpiness is noticeable in the MATCH animation when the program executes in
a 80286 or slower machine.

It is often possible to program around the limitations of vertical retrace timing. In the
first place, the image update operation can be split into two or more vertical retrace
cycles. This is possible because the jerkiness frequency of 20 cycles per second is
considerably less than the typical vertical retrace pulse of 70 cycles per second. However,
splitting the update operations introduces programming complications, as well as an
additional overhead in keeping track of which portion of the image is to be updated in
each cycle. This method should be considered only if no simpler solution is available.

We mentioned that in VGA the vertical retrace cycle of the CRT controller takes place
at a rate of approximately 70 times per second. In VGA systems that support the vertical
retrace interrupt, software can enable it as a pulse generator and install a routine that
receives control on every vertical retrace cycle. The following coding template contains
the program elements necessary for the installation and operation of a vertical retrace
intercept in a VGA system.

; Template file name: ANIMATE5.TPL
;**

;**

; vertical retrace interrupt pulse generator
; for VGA systems
;**

;**

; Operations performed during installation:
; 1. The VGA port base address is stored in a code
segment
; variable named CRT_PORT and the default contents
of the
; Vertical Retrace End register are stored in a
variable
; named OLD_VRE
; 2. The address of the interrupt 0AH handler is saved
in a
; far pointer variable named OLD_VECTOR_0A

Dos animation 447

; 3. A new handler for interrupt 0AH is installed at
the label
; HEX0A_INT.
; 4. The IRQ2 bit is enabled in the 8259 (or
equivalent)
; interrupt controller mask register
; 5. The vertical retrace interrupt is activated
;
; Operation:
; The new interrupt handler at INT 0AH gains control
with
; every vertical retrace cycle of the CRT
controller.
; The software can perform limited buffer update
operations
; at this time without causing video interference
;**

; Installation routine for
; the vertical retrace interrupt
;**

; The following code enables the vertical retrace
interrupt on
; a VGA system and intercepts INT 0AH (IRQ2 vector)
;**********************|
; save parameters |
;**********************|
; System port address is saved in CS variables
 CLI ; Interrupts off
 MOV AX,0H ;Clear AX
 MOV ES,AX ; and ES
 MOV DX,ES:[0463H] ; Get CRT controller
base address
 ; from BIOS data area
 MOV CS:CRT_PORT,DX ; Save address in
memory variable
 MOV AL,11H ; Offset of Vertical
Retrace End
 ; register in the CRTC
 OUT DX,AL ; Select this register
; Value stored in port’s data register is saved in a
code segment
; variable for later use by the software
 INC DX ; Point to Data
register
 IN AL,DX ; Read default value in
register
 JMP SHORT $+2 ; I/O delay
 MOV CS:OLD_VRE,AL ; Save value in
variable

The pc graphics handbook 448

;**********************|
; save old INT 0AH |
;**********************|
; Uses DOS service 53 of INT 21H to store the address
of the
; original INT 0AH handler in a code segment variable
 MOV AH,53 ; Service request
number
 MOV AL,0AH ; Code of vector
desired
 INT 21H
; ES --> Segment address of installed interrupt handler
; BX --> Offset address of installed interrupt handler
 MOV SI,OFFSET CS:OLD_VECTOR_0A
 MOV CS:[SI],BX ; Save offset of
original handler
 MOV CS:[SI+2],ES ; and segment
;**********************|
; install this INT 0AH |
; handler |
;**********************|
; Uses DOS service 37 of INT 21H to install the present
handler
; in the vector table
 MOV AH,37 ; Service request
number
 MOV AL,0AH ; Interrupt code
 PUSH DS ; Save data segment
 PUSH CS
 POP DS ; Set DS to CS for DOS
service
 MOV DX,OFFSET CS:HEX0A_INT
 INT 21H
 POP DS ; Restore local data
;**********************|
; enable IRQ2 |
;**********************|
; Clear bit 2 of the 8259 Mask register to enable the
IRQ2 line
 CLI ; Make sure interrupts
are off
 MOV DX,21H ; Port address of 8259
Mask
 ; register
 IN AL,DX ; Read byte at port
 AND AL,11111011B ; Mask for bit 2
 OUT DX,AL ; Back to 8259 port
;**********************|
; activate vertical |
; retrace interrupt |
;**********************|

Dos animation 449

 MOV DX,CS:CRT_PORT ; Recover CRT base
address
 MOV AL,11H ; Offset of Vertical
Retrace End
 ; register in the CRTC
 MOV AH,CS:OLD_VRE ; Default value in
Vertical
 ; Retrace End register
 AND AH,11001111B ; Clear bits 4 and 5 in
VRE
 ; Bit 4 = clear
vertical
 ; interrupt
 ; Bit 5 = enable
vertical retrace
 OUT DX,AX ; To port
 OR AH,00010000B ; Mask to set bit 4 to
re-enable
 OUT DX,AX
 STI ; Enable interrupts
; At this point the vertical retrace interrupt is
active
; Program code to follow
 .
 .
;**

; exit routine
;**

; Before the program returns control to the operating
system
; it must restore the hardware to its original state.
This
; requires disabling the vertical retrace interrupt and
restoring
; the original INT 0AH handler in the vector table
;**********************|
; disable vertical |
; interrupts |
;**********************|
; Code assumes that on program entry the vertical
retrace
; was disabled
 MOV DX,CS:CRT_PORT ; Recover CRT base
address
 MOV AL,11H ; Offset of Vertical
Retrace End
 ; register in the CRTC
 MOV AH,CS:OLD_VRE ; Default value in
Vertical
 ; Retrace End register

The pc graphics handbook 450

 OUT DX,AX ; To port
;**********************|
; restore original |
; INT 0AH handler |
;**********************|
 MOV SI,OFFSET CS:OLD_VECTOR_0A
; Set DS:DX to original segment and offset of keyboard
interrupt
 MOV DX,CS:[SI] ; DX --> offset
 MOV AX,CS: [SI+2] ; AX --> segment
 MOV DS,AX ; segment to DS
 MOV AH,25H ; DOS service request
 MOV AL,0AH ; IRQ2
 INT 21H
; At this point the exiting program usually resets the
video
; hardware to a text mode and returns control to the
operating
; system
 .
 .
;**

; VGA vertical retrace interrupt handler
;**

; The following routine gains control with every
vertical retrace
; interrupt (approximately 70 times per second)
; The code can now perform limited video buffer update
operations
; without interference
; The vertical retrace interrupt is not re-enabled
until the
; routine has concluded to avoid re-entrancy
;**

HEX0A_INT:
 CLI ; Interrupts off
; Save registers
 PUSH AX ; Save context at
interrupt time
 PUSH BX
 PUSH CX
 PUSH DX
 PUSH ES
;**********************|
; test for vertical |
; retrace interrupt |
;**********************|
; Since several hardware interrupts can be located at
IRQ2 the

Dos animation 451

; software must make sure that it was the vertical
retrace that
; originated this action. This is done by testing bit 7
of the
; Input Status Register 0, which will be set if a
vertical
; retrace interrupt has occurred
 MOV DX,3C2H ; Input Status Register
0
 IN AL,DX ; Read byte at port
 TEST AL,10000000B ; Is bit 7 set
 JNE VRI_CAUSE ; Go if vertical
retrace
;**********************|
; chain to next handler|
;**********************|
; At this point the interrupt was not due to a vertical
retrace
; Execution is returned to the IRQ2 handler
 POP ES ; Restore context
 POP DX
 POP CX
 POP BX
 POP AX
 STC ; Continue processing
 JMP DWORD PTR CS:OLD_VECTOR_0A
;**********************|
; animation operations |
;**********************|
VRI_CAUSE:
; At this point the handler contains the graphics
operations
; necessary to perform the animation function
 .
 .
;**********************|
; service routine exit |
;**********************|
; Enable 8259 interrupt controller to receive other
interrupts
 MOV AL,20H ; Port address
 OUT 20H,AL ; Send EOI code
; Re-enable vertical retrace interrupt by clearing bits
4 and 5
; of the Vertical Retrace End register and then setting
bit 5
; so that the interrupt is not held active
 MOV DX,CS:CRT_PORT ; Recover CRT base
address
 MOV AL,11H ; Offset of Vertical
Retrace End
 ; register in the CRTC

The pc graphics handbook 452

 MOV AH,CS:OLD_VRE ; Default value in VRE
register
 AND AH,11001111B ; Clear bits 4 and 5
 ; 4 = clear vertical
interrupt
 ; 5 = enable vertical
retrace
 OUT DX,AX ; To port
 OR AH,00010000B ; Set bit 4 to reset
flip-flop
 OUT DX,AX ; To port
;**********************|
; restore context |
;**********************|
; Registers used by the service routine are restored
from the
; stack
 POP ES
 POP DX
 POP CX
 POP BX
 POP AX
 STI ; Re-enable interrupts
 IRET
;**

; code segment data
;**

OLD_VECTOR_0A DD 0 ; Pointer to original
INT 0AH
 ; interrupt
CRT_PORT DW 0 ; Address of CRT
controller
OLD VRE DB 0 ; Original contents of
VRE
 ; register
 .
 .
 .

Applications can extend the screen update time by locating the animated image as close
as possible to the bottom of the video screen. In this manner the interference-free period
includes not only the time lapse during which the beam is being diagonally re-aimed, but
also the period during which the screen lines above the image are being scanned. This
technique is used in the MATCH program included in the book’s software package.

Dos animation 453

XGA Screen Blanking Interrupt

The XGA documentation refers to the vertical retrace cycle as the screen blanking period.
Two interrupts sources are related to the blanking period: the start of picture interrupt and
the start of blanking interrupt. The start of picture coincides with the end of the blanking
period. Both interrupts are enabled in the XGA Interrupt Enable register (offset 21×4H).
Figure 14.4 shows a bitmap of the XGA Interrupt Enable register.

Figure 14–4 XGA Interrupt Enable
Register Bitmap

Figure 14–5 XGA Interrupt Status
Register Bitmap

Like the VGA interrupts, the XGA video interrupts are vectored to the IRQ2 line of the
8259/A (or compatible) interrupt controller chip, which is mapped to the 0AH vector. By
testing the bits in the Interrupt Status register (at offset 21×5H) an XGA program can

The pc graphics handbook 454

determine the cause of an interrupt on this line. Figure 14.5 shows a bitmap of the XGA
Interrupt Status register.

The XGA Interrupt Status register is also used to clear an interrupt condition. This
operation is performed by the handler in order to reset the interrupt origin. The following
template contains the program elements necessary for the installation and operation of a
vertical retrace intercept in an XGA system.

; Template file name: ANIMATE6.TPL
;**

;**

; screen blanking interrupt pulse generator
; for XGA systems
;**

;**

; Operations performed during installation:
; 1. The XGA port base address is stored in a code
segment
; variable named XGA_BASE
; 2. The address of the interrupt 0AH handler is saved
in a
; far pointer variable named OLD_VECTOR_0A
; 3. A new handler for interrupt 0AH is installed at
the label
; XGA_0A_INT.
; 4. The IRQ2 bit is enabled in the 8259 (or
equivalent)
; Interrupt Controller Mask register
; 5. The XGA screen blanking interrupt is enabled
; Operation:
; 3. The new interrupt handler at INT 0AH gains control
with
; every vertical retrace cycle of the CRT
controller.
; The software can perform limited buffer update
operations
; at this time without causing video interference
;
;**

; Installation routine for
; the XGA screen blanking interrupt
;**

; The following code enables the screen blanking
interrupt on
; a XGA system and intercepts INT 0AH (IRQ2 vector)
;**********************|

Dos animation 455

; init XGA |
;**********************|
; XGA initialization is performed by means of the
services in the
; XGA1 and XGA2 modules of the GRAPHSOL library
 CALL OPEN_AI ; Open Adapter Interface
for use
 CALL INIT_XGA ; Initialize XGA hardware
; The INIT_XGA procedure returns the address of the XGA
register
; base in the BX register. The code stores this value
in a code
; segment variable named XGA_BASE
 MOV CS:XGA_BASE,BX ; Store in code segment
variable
 MOV AL,2 ; Select mode XGA mode
number 2
 ; 1024 by 768 pixels in
256 colors
 CALL XGA_MODE ; Mode setting procedure
;**********************|
; save old INT 0AH |
;**********************|
; Uses DOS service 53 of INT 21H to store the address
of the
; original INT 0AH handler in a code segment variable
 MOV AH,53 ; Service request
number
 MOV AL,0AH ; Code of vector
desired
 INT 21H
; ES --> Segment address of installed interrupt handler
; BX --> Offset address of installed interrupt handler
 MOV SI,OFFSET CS:OLD_VECTOR_0A
 MOV CS:[SI],BX ; Save offset of
original handler
 MOV CS:[SI+2],ES ; and segment
;**********************|
; install this INT 0AH |
; handler |
;**********************|
; Uses DOS service 37 of INT 21H to install the present
handler
; in the vector table
 MOV AH,37 ; Service request
number
 MOV AL,0AH ; Interrupt code
 PUSH DS ; Save data segment
 PUSH CS
 POP DS ; Set DS to CS for DOS
service
 MOV DX,OFFSET CS:XGA_0A_INT

The pc graphics handbook 456

 INT 21H
 POP DS ; Restore local data
;**********************|
; enable IRQ2 |
;**********************|
; Clear bit 2 of the 8259 Mask register to enable the
IRQ2 line
 CLI ; Make sure interrupts
are off
 MOV DX,21H ; Port address of 8259
Mask
 ; register
 IN AL,DX ; Read byte at port
 AND AL,11111011B ; Mask for bit 2
 OUT DX,AL ; Back to 8259 port
;**********************|
; activate XGA screen |
; blanking interrupt |
;**********************|
; Reset all interrupts in the Status register
 MOV DX,CS:XGA_BASE ; Base address of XGA
video
 ADD DX,05H ; Interrupt Status
register
 MOV AL,0C7H ; All ones
 OUT DX,AL ; Reset all bits
; Enable the start of blanking cycle interrupt source
(bit 0)
 MOV DX,CS:XGA_BASE ; XGA base address
 ADD DX,04H ; Interrupt Enable
register
 IN AL,DX ; Read register
contents
 OR AL,00000001B ; Make sure bit 0 is
set
 OUT DX,AL ; Back to Interrupt
Enable
 ; register
 STI ; Interrupts ON
; At this point the XGA start of blanking interrupt is
active
; Program code to follow
 .
 .
 .
;**

; exit routine
;**

; Before the program returns control to the operating
system

Dos animation 457

; it must restore the hardware to it’s original state.
This
; requires disabling the XGA screen blanking interrupt
and
; restoring the original INT 0AH handler in the vector
table
;**********************|
; disable XGA screen |
; blanking interrupt |
;**********************|
 MOV DX,CS:XGA_BASE ; XGA base address
 ADD DX,04H ; Interrupt Enable
register
 IN AL,DX ; Read register
contents
 AND AL,111111106 ; Make sure bit 0 is
clear
 OUT DX,AL ; Back to Interrupt
Enable
 ; register
;**********************|
; restore original |
; INT 0AH handler |
;**********************|
 MOV SI,OFFSET CS:OLD_VECTOR_0A
; Set DS:DX to original segment and offset of keyboard
interrupt
 MOV DX,CS:[SI] ; DX --> offset
 MOV AX,CS:[SI+2] ; AX --> segment
 MOV DS, AX ; segment to DS
 MOV AH,25H ; DOS service request
 MOV AL,0AH ; IRQ2
 INT 21H
; At this point the exiting program usually resets the
video
; hardware to a text mode and returns control to the
operating
; system
 .
 .
 .
;**

; XGA screen blanking interrupt handler
;**

; The following routine gains control with every
vertical retrace
; interrupt (approximately 70 times per second)
; The code can now perform limited video buffer update
operations
; without interference

The pc graphics handbook 458

; In order to avoid interrupt re-entrancy, the screen
blanking
; interrupt is not re-enabled until the routine has
concluded
;**

XGA_0A_INT:
 CLI ; Interrupts off
; Save registers
 PUSH AX ; Save context at
interrupt time
 PUSH BX
 PUSH CX
 PUSH DX
 PUSH ES
;**********************|
; test for screen |
; blanking interrupt |
;**********************|
; Since several hardware interrupts can be located at
IRQ2 the
; software must make sure that it was screen blanking
that
; originated this action. This can be done by testing
bit 0 of
; the XGA Interrupt Status register
 MOV DX,CS:XGA_BASE ; XGA base address
 ADD DX,05H ; Interrupt Status
register
 IN AL,DX ; Read register
contents
 TEST AL,00000001B ; Test start of
blanking bit
 JNZ BLK_CAUSE ; Go if bit set
;**********************|
; chain to next handler|
; if not blanking |
;**********************|
; At this point the interrupt was not due to an XGA
screen
; blanking interrupt. Execution is returned to the IRQ2
handler
 POP ES ; Restore context
 POP DX
 POP CX
 POP BX
 POP AX
 STC ; Continue processing
 JMP DWORD PTR CS:OLD_VECTOR_0A
;**********************|
; animation operations |
;**********************|

Dos animation 459

BLK_CAUSE:
; At this point the handler contains the graphics
operations
; necessary to perform the animation function
 .
 .
 .
;**********************|
; service routine exit |
;**********************|
; Enable 8259 interrupt controller to receive other
interrupts
 MOV AL,20H ; Port address
 OUT 20H,AL ; Send EOI code
; The handler must reset bit 0 of the XGA Interrupt
Status
; register to clear the interrupt condition
 MOV DX,CS:XGA_BASE ; Display controller
base address
 ADD DX,05H ; Interrupt Status
register
 IN AL,DX ; Read status
 OR AL,00000001B ; Set bit 0, preserve
other
 OUT DX,AL ; Reset start of
blanking
;**********************|
; restore context |
;**********************|
; Registers used by the service routine are restored
from the
; stack
 POP ES
 POP DX
 POP CX
 POP BX
 POP AX
 STI ; Re-enable interrupts
 IRET
;**

; code segment data
;**

OLD_VECTOR_0A DD 0 ; Pointer to original
INT 0AH
 ; interrupt
XGA BASE DW 0 ; Address of CRT
controller
 .
 .
 .

The pc graphics handbook 460

The comparatively high performance of the XGA system makes possible the smooth
animation of images much larger and elaborate than those that can be animated in VGA.
Whenever possible the animation routine should use direct coprocessor programming
(see Chapter 12) in order to minimize execution time. The system memory to video RAM
pixBlt operation discussed in Section 12.5.3 can often be used in XGA animation.

Dos animation 461

Chapter 15
DOS Bitmapped Graphics

Topics:

• Image file encoding
• GIF file format
• LZW compression
• TIFF file format
• TIFF packBits compression
• PCL format for bitmapped fonts

This chapter describes the various techniques and standards used in encoding computer
graphics images into units of memory storage. It includes a discussion of three popular
image data storage formats: GIF, TIFF format, and PCL bitmapped fonts, also of the
various data compression methods used in reducing the size of image data files, such as
PackBits and LZW.

15.1 Image File Encoding

Bitmapping is the graphics technique whereby a memory bit represents the attribute of a
screen pixel. In previous chapters we created and manipulated bitmapped image in an
intuitive and almost primitive manner. The encodings were tailored to the specific video
hardware; for example, in 16-color modes we used a 4-bit image code in IRGB format,
and in 256-color modes, a double-bit format based on an IIRRGGBB encoding. In all
cases the encodings we so far used have contained little more than the image’s pixel-by-
pixel color for a particular display system setup.

However, a graphics image can be encoded in more a complete and efficient structure
than is offered by a pixel-by-pixel attribute list. A limitation of a raw pixel color list is
that in most IBM graphics systems the pixel attribute is not a color code in itself, but an
index into a color look-up table. For example, in XGA 256-color modes the pixel value
00001100B is displayed as bright red if the LUT registers are in the default setting, but
the same code corresponds to a light shade of green if the LUT is changed to the
IIRRGGBB encoding (see the XGALUT program in the book’s software package). This
means that the actual pixel code is meaningless if the image encoding does not offer
information about the LUT register setting. LUT register data can be furnished implicitly,

by designating a conventional format, such as IRGB, or explicitly, as a list of values to be
loaded into the DAC registers.

The movement towards the standardization of image file encodings in IBM
microcomputers originated with commercial software developers in need of methods for
storing and displaying graphics images. At the present time there are over 20 different
image file encodings in frequent use. It is common for a graphics application import or
export service to present the user with over a dozen image file formats. Although some of
these commercial encodings have gained more popularity than others, very little has been
achieved in standardizing image file encodings for IBM microcomputers. In this chapter
we have selected the image file formats that we believe are more useful and that have
gained more widespread acceptance in the IBM microcomputer field. This selection does
not imply that we endorse these particular encodings or approve of their design or
operation.

15.1.1 Raw Image Data

We mentioned that the simplest possible image data encoding is a bare list of pixel
attributes. This simple encoding, called the raw image data, is often all that is required by
a graphics application. For example, the monochrome bitmap of a running boar target is
encoded in the MATCH program (see book’s software package) as raw image data.
Figure 15–1 shows the bitmap and pixel list.

Figure 15–1 Raw Image Data for a
Monochrome Bitmap

Since the image in Figure 15–1 is displayed in monochrome, the encoding is based on a
bit per pixel scheme; a 1-bit in the attribute list indicates that the screen pixel is set, a 0-
bit indicates that it remains in the background attribute. The reader can match the first
line of the encoding (1FH 80H 0FH FFH F0H 00H) with the pixels on the top image row.

Dos bitmapped graphics 463

The first value on the list (1FH=00011 111B) corresponds to the first eight image pixels,
the second value on the list (80H=10000000B) corresponds to the next eight image
pixels, and so forth to the last value on the list. tribute list. For example, the procedure
named MONO_MAP_18 in the VGA2 module

But a display routine usually requires more data that can be encoded in a pixel atof the
GRAPHSOL library requires the x and y screen coordinates, the color attribute, and the
number of pixel rows and columns in the bitmap. This data is furnished to the
MONO_MAP_18 procedure in a preamble data block that precedes the pixel attribute
list. The following code fragment corresponds to the image block for the left-hand
running boar target used in the MATCH program (see the MATCHC.ASM module in the
book’s software package).

;***********************|
; left-to-right boar |
;***********************|
; Block control area: Displacement
-->
LPIG_X DW 4 ; Present x
coordinate 0
LPIG_Y DW 440 ; y
coordinate 2
 DB 19 ; Horizontal rows in
block 4
 DB 6 ; Number of bytes per
row 5
; Pixel attribute list for the left-hand running boar
target
 DB 01FH,080H,00FH,0FFH,0F0H,000H ; 1
 DB 000H,043H,0F0H,081H,00EH,000H ; 2
 DB 000H,03CH,001H,03CH,081H,000H; 3
 DB 000H,040H,002H,042H,040H,0C0H ; 4
 DB 000H,040H,004H,099H,020H,030H ; 5
 DB 000H,080H,005H,024H,0A0H,00CH ; 6
 DB 000H,080H,005H,05AH,0A0H,003H ; 7
 DB 000H,080H,005H,05AH,0A0H,001H ; 8
 DB 007H,000H,005H,024H,0A0H,01EH ; 9
 DB 008H,000H,004H,099H,020H,060H ; 10
 DB 008H,000H,002H,042H,047H,080H ; 11
 DB 010H,000H,001H,03CH,088H,000H ; 12
 DB 028H,000H,000H,081H,007H,080H ; 13
 DB 05FH,0C1H,0F0H,03FH,000H,040H ; 14
 DB 0FCH,03EH,00FH,0FCH,000H,0B0H ; 15
 DB 014H,000H,000H,002H,061H,060H ; 16
 DB 024H,000H,000H,001H,099H,000H ; 17
 DB 078H,000H,000H,000H,006H,080H ; 18
 DB 000H,000H,000H,000H,001H,0C0H ; 19
 DW 0000H ; padding
;
BOAR_COLOR DB 00000100B ; Red bit set

The pc graphics handbook 464

Notice that the pixel attribute list in the above code fragment corresponds to the raw data
in Figure 15–1, and also that the display color is encoded in a separate variable (named
BOAR_COLOR) whose address is passed to the MONO_MAP_18 display routine in the
BX register. The block format in the above image is customized to store the data
necessary to the MONO_MAP_18 display routine. The advantage of this method is that
only the necessary data for the display manipulations is encoded with the raw pixel
attribute list. This provides a compact data structure which can be used in optimizing the
code. On the other hand, this customized encoding would almost certainly not be portable
to any other graphics application.

The program designer must often decide whether to use a customized format that
usually includes only the data that is strictly necessary for the display routine, or to
represent the image in one of the general purpose formats that are recognized by other
graphics applications. The basis for this decision is usually one of image portability. A
stand-alone program (such as MATCH) which has no need to communicate graphics data
to other applications, can use a raw data format whenever it is convenient. On the other
hand, an application that must exchange image data with other graphics programs could
benefit from adopting one of the existing image data formats described later in this
chapter.

15.1.2 Bitmaps in Monochrome and Color

Etymologically, the term monochrome means “of one color;” however, in computer
jargon, it is often interpreted as black-and-white. This equivalency is certainly untrue in
bitmapped graphics, because a monochrome bitmap can be displayed in any available
color or attribute. Furthermore, it is possible to combine several monochrome bitmaps to
form a multicolor image on the screen. For example, several of the color images used in
the MATCH program (furnished in the book’s software package) are composites formed
by overlaying separate monochrome bitmaps. The image of the rifle in the initial
MATCH screen is formed by overlaying the monochrome bitmaps shown in Figure 15–2.

The original image of the rifle used in the first screen of the MATCH program was
scanned from a black-and-white catalog illustration into a bitmap editing program. The
three color overlays in Figure 15–2 were created by editing the original scan. The
overlays were then saved into disk based image files in the TIFF format (discussed later
in this chapter). The MATCH program successively reads and displays the three
monochrome bitmaps and superimposes them to form a multicolor image. Notice that the
order in which the bitmaps are displayed is important, because if two overlays contain a
common pixel, this pixel is shown in the attribute of the last bitmap displayed.

Dos bitmapped graphics 465

Figure 15–2 Monochrome Overlays to
Form a Color Image

A color image can also be stored in a single bitmap in which each pixel is represented
in any of the available colors. The result is a more compact image file and a faster display
operation. In fact, the only reasons for using several monochrome bitmaps in the creation
of a color image are convenience and limited resources. The raw pixel data format for a
color image often matches the characteristics of the video system for which it is intended.
In VGA, SuperVGA, and XGA systems color images are typically stored in 16 or 256
colors. We already mentioned that, in IBM microcomputers, the pixel color data is an
index into a look-up table (LUT) and the actual pixel color is determined by the setting of
the DAC registers.

15.1.3 Image Data Compression

Bitmapped image data takes up considerable memory space. For example, the raw image
data for a full screen, in an XGA or SuperVGA mode of 1,024 by 768 pixels resolution in
256 colors, requires approximately 768K. This is three-fourths of the total memory space
available in an IBM microcomputer under MS-DOS. Consequently, several data
compression schemes have been devised to reduce the memory space required for storing
pixel-coded images. However, image data compression is achieved at a price: the
additional processing time required for packing and unpacking the image data. In
microcomputer graphics, performance is usually such a critical factor that this overhead
is an important consideration in adopting a compressed data format.

Many of the compression methods used for alphanumeric data are not adaptable for
image data. In the first place, all of the irreversible techniques used in character data
compaction cannot be used for graphics images, since image data must be restored
integrally. The same applies to many semantic-dependent techniques of various degrees
of effectiveness. On the other hand, some general principles of data compression are
applicable to graphics and packed bits encoding schemes can be used to compress pixel

The pc graphics handbook 466

color data. For example, the IRGB encoding used in VGA 16-color graphics modes can
be packed into two codes per byte, saving one half the storage space required for
unpacked data.

Run-length Encoding

The principles of run-length encoding are particularly useful in compacting graphics data.
The method is based on the suppression of repeated character codes, according to the
principle that if a character is repeated three times or more, then the data can be more
compactly represented in coded form. Run-length encoding is a simple and efficient
graphics data compression scheme based on the assumption that image data often
contains entire areas of repeated pixel values. Notice that approximately two-thirds of the
bitmaps shown in Figure 15–2 consist of NULL pixels (white background color).
Furthermore, even the images themselves contain substantial areas of black and of
uniform shades of gray. In this case a simple compression Scheme could be used to pack
the data in the white, black, and gray areas so as to save considerable image storage
space.

The Kermit protocol, well known in computer data transmission, uses a run-length
encoding based on three data elements. The first code element indicates that a
compression follows, the second character is the repetition code, and the third one
represents the repetition count. The PackBits compression algorithm, which originated in
the Macintosh computers, is an even more efficient run-length encoding scheme for
graphics image data. The TIFF image file format discussed later in this chapter uses
PackBits compression encoding.

Facsimile Compression Methods

Facsimile machines and methods (FAX) are often used in transmitting alphanumeric
characters and graphics image data over telephone lines. Several compression protocols
have been devised for facsimile transmission. The International Telegraph and Telephone
Consultative Committee (CCITT), based in Geneva, Switzerland, has standardized
several data compression protocols for use in facsimile equipment. The TIFF convention
has adapted the CCITT standards to the storage of image data in computer systems.
Notice that the actual compression algorithm used in CCITT is a variation of a method
known developed by David A. Huffman in the 1950s. The CCITT method, which is quite
efficient for monochrome scanned and dithered images, is elaborate and difficult to
implement.

LZW Compression

LZW is a compression technique suited to color image data. The method is named after
Abraham Lempel, Jabob Ziv, and Terry Welch. The algorithm, also known as Ziv-
Lempel compression, was first published in 1977 in an article by Ziv and Lempel in the
IEEE Transactions on Information Theory. The compression technique was refined by
Welch in an article titled “A Technique for High-Performance Data Compression” that

Dos bitmapped graphics 467

appeared in Computer, in 1984 (see bibliography). LZW compression is based on
converting raw data into a reversible encoding in which the data repetitions are tokenized
and stored in compressed form. LZW compression is used in many popular data and
image compression programs, including the Compuserve GIF image data encoding
format and in some versions of the TIFF standard. Notice that LZW compression has
been patented by Unisys Corporation. Therefore its commercial use requires a license
from the patent holders. The following statement is inserted at the request of Unisys
Corporation:

The LZW data compression algorithm is said to be covered by U.S. Patent
4,558,302 (the “Welch Patent”). The Welch Patent is owned by Unisys
Corportation. Unisys has a significant number of licensees of the patent
and is comitted to licensing the Welch Patent on reasonable non-
discriminatory terms and conditions. For further information, contact
Unisys Welch Licensing Department, P.O. Box 500, Blue Bell, PA 19424,
M/S C1SW19.

LZW algorithm is explained later in this chapter.

15.1.4 Encoders and Decoders

An encoder is a program or routine used to convert raw image data into a standard
format. We speak of a GIF encoder as a program or routine used to store a graphics
image in a file structured in the GIF format. A decoder program or routine performs the
re-verse operation, that is, it reproduces the graphics image or the raw data from the
information stored in an encoded image file. In the more conventional sense, a GIF
decoder displays on the screen an image file stored in the Compuserve GIF format.
Therefore the fundamental tool-kit for operating with a given image data format consists
of encoder and decoder code. Notice that with some compressed image formats the
processing required in encoders and decoders can be quite elaborate.

15.2 The Graphics Interchange Format (GIF)

The Graphics Interchange Format (GIF) originated in the Compuserve computer
information service. The first description of the GIF protocol, which appeared on the
Compuserve Picture Support Forum on May 28, 1987, was identified with the code
letters GIF87a, while the current version is labeled GIF89a. GIF is the only graphics
image storage format in use today that is not associated with any software company.
Although the GIF standard is copyrighted, Compuserve grants royalty-free adoption
rights to anyone wishing to use it. This means that, according to Compuserve, software
developers are free to use the GIF encodings by accepting the terms of the Compuserve
licensing agreement, which basically states that all changes to the standard must be made
by the copyright holders and that the software utilizing GIF must acknowledge

The pc graphics handbook 468

Compuserve’s ownership. The agreement can be obtained form the Compuserve
Graphics Technology Department or from the graphics forum files.

GIF was conceived as a compact and efficient storage and transmission format for
computer imagery. The GIF87a specification supports multiple images with a maximum
of 16,000 by 16,000 pixels resolutions in 256 colors. This format is quite suited to the
maximum resolution available today in SuperVGA and XGA systems, although it seems
that the 256-color modes will soon require expansion.

The advantages of the GIF standard are related to its being compact, powerful,
portable, and, presumably, public, and also the fact that there is an extensive collection of
public domain images in GIF format which can be found in the Compuserve graphics
forums and in many bulletin board services. The programmer should keep in mind that
images of recognizable individuals often require the person’s release before the image
can be legally used commercially. This is true even if the image file is publicly available.

The major disadvantage of the GIF standard is that many commercial programs do not
support it. Consequently, users of popular graphics programs often discover that GIF is
not included in the relatively extensive catalog of file formats which the application can
import and export. This limitation can often be solved by means of a conversion utility
that translates a format recognized by the particular application into a GIF encoding.
Several of these format conversion utilities are available on the Compuserve graphics
forums.

15.2.1 GIF Sources

The main sources of information about the GIF standard are the graphics forums on the
Compuserve Information Service. The specifications of GIF89a are available in the file
GIF89A.DOC found in library number 14 of the Compuserve Graphics Support forum.
Image files in the GIF format are plentiful on the Compuserve Graphics Support libraries
as well as in many BBS’s. In this book’s software package we have included several
public domain image files in the GIF format. Also in the book’s software package is a
Shareware GIF file display program named Compushow.

15.2.2 The GIF File Structure

The two versions of the GIF standard at the time of this writing are labeled GIF87a and
GIF89a. Version 89a is an extension of version 87a which adds several features to the
original GIF protocol, namely: the display of text messages, comments, and application
and graphics control data. The detailed description of the GIF protocol is found in the file
GIF89A.DOC mentioned in the previous paragraph. The following description is limited
to the features common to both the GIF87a and GIF89a specifications.

The GIF87a format is defined as a series of blocks and sub-blocks containing the data
necessary for the storage and reproduction of a computer graphics image. A GIF data
stream contains the data stored in these blocks and sub-blocks in the order defined by the
GIF protocol. The first block in the data stream is the header and the last one is the trailer.
Image data and other information is encoded between the header and trailer blocks. These
can include a logical screen descriptor block and a global color table, as well as one or
more local image descriptors, local color tables, and compressed image data. The GIF89a

Dos bitmapped graphics 469

protocol allows graphics control and rendering blocks, plain text blocks, and an
application data block. Figure 15–3 shows the elements of the GIF87a data stream.

Figure 15–3 Elements of the GIF Data
Stream

Header

The first item in the GIF data stream is the header. It consists of six ASCII characters.
The first three characters, called the signature, are the letters "GIF." The following three
characters encode the GIF version number. The value "87a" in this field refers to the
version of the GIF protocol approved in May 1987, while the value "89a" refers to the
GIF version dated July 1989. Figure 15–4 shows the elements of the GIF header.

Figure 15–4 GIF Header

One header must be present in each GIF data stream. A GIF encoder must initialize all
six characters in the GIF header. The version number field should correspond with the
earliest GIF version that defines all the blocks in the actual data stream. In other words, a
GIF file that uses only the elements of the GIF87a protocol should contain the characters

The pc graphics handbook 470

87a in the version field of the GIF header, even if the file was created after the
implementation of the GIF89a protocol. The GIF decoder uses the information in the
header block to certify that the file is encoded in the GIF format and to determine version
compatibility.

Logical Screen Descriptor

The block immediately following the header is named the logical screen descriptor. This
block contains the information about the display device or mode compatible with the
image. One logical screen descriptor block must be present in each GIF data stream.
Figure 15–5 shows the elements of the logical screen descriptor block.

Figure 15–5 GIF Logical Screen
Descriptor

The fields of the GIF logical screen descriptor are formatted as follows:

1. The words at offset 0 and 2, labeled logical screen width and logical screen height,
encode the pixel dimensions of the logical screen to be used by the display device. In
IBM microcomputers this value usually coincides with the selected display mode.

2. The byte at offset 4 is divided into 4 bit fields. Bit 7, labeled the global color table flag,
serves to indicate if a global color table is present in the data stream that follows. The
global color table is discussed later in this section. Bits 6, 5, and 4 are the color
resolution field. This value represents the number of palette bits for the selected mode,
plus one. For example, a 16-color VGA palette (4 bits encoding) would be represented
by the bit value 011 (decimal 3). Bit 3, labeled the sort flag, is used to signal that the
global color table (if present) is sorted starting with the most important colors. This
information can be used by the software if the display device has fewer colors
available than those used in the image. Finally, the field formed by bits 2,1, and 0
determines the size of the global color table (if one is present). The value is encoded as
a power of 2, diminished by 1. Therefore, to restore the original exponent it is
necessary to add 1 to the value encoded in the bit field. For example, a bit value of 011
(3 decimal) corresponds to a global color table representing 24, or 16 colors. Notice
that this value corresponds with the number of color in the global color table, not with
its byte length (discussed later in this section). The maximum representable value in a
3-bit field is 7, which limits the number of colors in the global color table to 28, or 256
colors.

Dos bitmapped graphics 471

3. The field at offset 5, labeled background color in Figure 15–4, is used to represent the
color of those pixels located outside of the defined image or images. The value is an
offset into the global color table.

4. The field at offset 6, labeled the pixel aspect ratio in Figure 15–4, is used to
compensate for non-proportional x and y dimensions of the display device (see
Section 11.4.1). This field should be set to zero for systems with a symmetrical pixel
density, such as the most used modes in VGA and XGA systems.

Global Color Table

The global color table is an optional GIF block used to encode a general color palette for
displaying images in data streams without a local color table. The global color table
serves as a default palette for the entire stream. Recall that the GIF data stream can
contain multiple images. The presence of a global color table and its size is determined
from the data furnished in the logical screen descriptor block (see Figure 15–4). Only one
global color table can be present in the data stream. Figure 15–6 shows the structure of a
global color table.

Figure 15–6 GIF Global Color Table
Block

The entries in the global color table consist of values for the red, green, and blue
palette registers. Each component color takes up 1 byte in the table, therefore each palette
color consists of 3 bytes in the global color table. The number of entries in the global
color table can be determined by reading bits 0, 1, and 2 of the global color size field in
the logical screen descriptor block (see Figure 15–4). The byte length of the table is three
times the number of entries. The maximum number of palette colors is 256. In this case
the global color table takes up 768 bytes (see Figure 15–6).

The pc graphics handbook 472

Image Descriptor

Each image in the GIF data stream is defined by an image descriptor, an optional local
color table, and one or more blocks of compressed image data. The image descriptor
block contains the information for decoding and displaying the image. Figure 15–7 shows
the elements of the image descriptor block.

Figure 15–7 GIF Image Descriptor

The fields of the GIF image descriptor are formatted as follows:

1. The byte at offset 0, labeled image separator in Figure 15–7, must be the code 2CH.
2. The words at offset 1 and 3, labeled image left position and image right position,

respectively (see Figure 15–7), encode the screen column and row coordinates of the
image’s top left corner. This location is an offset within the logical screen defined in
the logical screen descriptor block (see Figure 15–4).

3. The words at offset 5 and 7, labeled image pixel width and image pixel height,
respectively (see Figure 15–7), encode the size of the image, measured in screen
pixels.

4. The byte at offset 8 in Figure 15–7 is divided into 5 bit fields. Bit 7, labeled the local
color table flag, serves to indicate if a local color table follows the image descriptor
block. If a local color table is present in the data stream it is used for displaying the
image represented in the corresponding descriptor block. Bit 6, labeled interlace flag,
encodes if the image is interlaced, that is, if its rows are not arranged in consecutive
order. In IBM microcomputers interlaced images are used in some CGA and EGA
display modes, but not in the proprietary VGA and XGA modes. Bit 5, labeled the sort
flag, is used to signal that the local color table (if present) is sorted starting with the
most important colors. This information can be used by the software if the display
device has fewer available colors than those in the table. The field formed by bits 2,1,
and 0 determines the size of the local color table (if one is present). The value is
encoded as a power of 2, diminished by 1. Therefore, to restore the original exponent
it is necessary to add 1 to the value encoded in the bit field. For example, a bit value of

Dos bitmapped graphics 473

011 (3 decimal) corresponds to a global color table representing 24, or 16 colors.
Notice that this value corresponds to the number of colors in the local color table, not
with its byte length (refer to the previous discussion about the global color table).

Local Color Table

The local color table is an optional GIF block that encodes the color palette used in
displaying the image corresponding to the preceding image descriptor block. If no local
color table is furnished, the image is displayed using the values in the global color table.
If neither table is present, it shall be displayed using the current setting of the DAC
registers. The GIF data stream can contain multiple images, with each one having its own
local color table. The structure of the local color table is identical to the one described for
the global color table (see Figure 15–6).

Compressed Image Data

The image itself follows the local color table, if one is furnished, or the image descriptor
block if the data stream does not include a local color table. The GIF standard sets no
limit to the number of images contained in the data stream. Image data is divided into
sub-blocks; each sub-block can have at the most 255 bytes. The data values in the image
are offsets into the current color palette. For example, if the palette is set to standard
IRGB code, a pixel value of 1100B (decimal 12) corresponds to the 12th palette entry,
which, in this case, encodes the LUT register settings for bright red.

Preceding the image data blocks is a byte value that holds the code size used for the
LZW compression of the image data in the stream. This data item normally matches the
number of bits used to encode the pixel color. For example, an image intended for VGA
mode number 18, in 16 colors, has an LZW code size of 4, while an image for VGA
mode number 19, in 256 colors, has an LZW code size of 8. Figure 15–8 shows the
format of the GIF data blocks.

The image data sub-blocks contain the image data in compressed form. The LZW
compression algorithm used in the GIF protocol is discussed in Section 15–3.2. Each data
sub-block starts with a block-size byte, which encodes the byte length of the data stored
in the rest of the sub-block. The count, which does not include the count byte itself, can
be in the range 0 to 255. The compressed data stream ends with a sub-block with a zero
byte count (see Figure 15–8).

Trailer

The simplest GIF block is named the trailer. This block consists of a single byte
containing the GIF special code 3BH. Every GIF data stream must end with the trailer
block. The GIF trailer is shown in Figure 15–9.

The pc graphics handbook 474

Figure 15–8 GIF Image Data Blocks

GIF89a Extensions

We mentioned that GIF version 89a contains several features that are not present in
version 87a. These features include the following new blocks:

1. A graphics control extension refers to a graphics rendering block, also a new feature
introduced in version 89a. The graphics control extension contains information on
displaying the rendering block. This information includes instructions about the
disposing of the currently displayed image, handling the background color, action on
user input, time delay during the display operation, and image transparency.

2. The graphics rendering blocks can be an image descriptor block, as described for GIF
version 87a, or a new plain text extension. The plain text extension contains ASCII
data to be displayed in a coarse grid of character cells determined in the block. Also in
the plain text block are the foreground and background colors, the coordinates of the
start position, and the text message itself.

3. The applications extension is an extension block in GIF version 89a that contains
application-specific information. The block includes an 8-byte application identifier
field intended for an ASCII string that identifies the particular piece of software. A 3-
byte authentication code follows the identifier. Application data follows the
authentication code field.

Figure 15–9 GIF Trailer

15.2.3 GIF Implementation of LZW Compression

One operation in creating a GIF image data file is the formatting of the various blocks
according to the specifications described in the standard (see 15.2.1). This operation is

Dos bitmapped graphics 475

quite simple and presents no programming complications. However, the image data in a
GIF file must be stored in compressed form; the GIF standard offers no alterna-tive. The
compression algorithm adopted by GIF is the method originally devised by Lempel and
Ziv and later improved by Welch (see Section 15.3.3). The implementation of this
compression algorithm, often designated LZW (Lempel-Ziv-Welch) compression, is the
most difficult programming operation in developing a GIF encoder or decoder program
or routine.

LZW Concepts

The original concept of LZW compression is based on the assumption that the data to be
compressed presents patterns of repetition. These repetitions can be in the form of the
vowel-consonant patterns of all modern languages, in the words of a text file, or in the
pixel repetition pattern of a graphics image. For this reason LZW compression has been
successfully used in compressing both text and image data. Many well-known
compression programs found in Web sites, such as PAK, PKARK, PKZIP, and
PKUNZIP, use LZW compression. In the graphics field LZW compression is used in
GIF, TIFF, and other image file storage formats.

The programmer must consider that LZW is an algorithm, not a standard. This means
that each particular implementor of a data compression scheme based on LZW feels free
to adapt the algorithm to meet specific needs. In this manner LZW compression as used
in the GIF standard is different from LZW compression as used in TIFF or in other data
storage conventions, in spite of the fact that the actual compression methods are quite
similar in all LZW implementations. Once understood, LZW compression can be easily
applied to match the requirements of any specific application.

The central idea of LZW compression is to replace repeated characters with individual
symbols. In text compression this translates to encoding strings with single codes. In
graphics compression the method consists of detecting repeated pixel patterns and
representing them with a single value. LZW does not search the data for repetitions, but
stores them as they are encountered in the data stream. The adverse consequences of this
form of operation is that some significant patterns of repetition can be missed during the
encoding, and that repeated patterns are often encoded more than once. The advantage of
this “compress as you find them” technique is that the decoder can reconstruct the
repetitions from the information in the data stream, making it unnecessary to transmit
tables of patterns or other general decoding information.

The General LZW Algorithm

The LZW compression algorithm requires a basic-table of codes representing each item
in the data stream. For example, an alphanumeric implementation of LZW can be based
on the IBM extended character set, which consists of 256 character codes (see Table 1–
2). In this case the basic-table contains 256 entries, one for each possible data code in the
stream. On the other hand, an LZW implementation for pixel data in the IRGB format
would require only a basic-table with 16 entries, one for each possible IRGB combination
in the data stream.

The pc graphics handbook 476

The LZW compression codes start after the basic table. In the GIF implementation two
special codes (discussed later in this section) are added at the end of the basic-table.
However, in the present discussion we assume that the compression codes start
immediately after the basic-table. For example, if the LZW implementation is based on
256 alphanumeric character codes, in the range 0 to 255, the first available compression
code would be the value 256. The highest compression code in LZW is preset to the
value 4095. Therefore, in this example, the compression codes would be values in the
range 256 to 4095. In LZW compression, the part of the table that stores the repeated
patterns is often called the string-table.

The compression algorithm assumes that information is received in a continuous data
stream and that the software has some means of detecting the end of this data stream. In
our first example of LZW compression we assume, for the sake of simplicity, that the
data stream consists of character bytes in the range 0 to 255. Therefore the basic-table can
contain codes in this range, and the string-table starts at the value 256. Let us assume that
the data stream consists of a series of monetary values separated by the slash symbol, as
follows:

/$15.00/$22.00/$12.10/$222.00<EOI>

In the above data sample the expression <EOI> indicates the presence of an “end of
information” code in the data stream. The compression algorithm requires a scratchpad
data structure which is sometimes called the current string. In the following description
we arbitrarily designate the current string with the @ symbol. Compression takes place in
the following steps:

STEP 1: Initialize the basic-table with all the code combinations that can be
present in the data stream. The string-table codes start after the
last code in the basic-table.

STEP 2: Initialize the current string (scratchpad element) to a NULL string.
Designate the current string as @.

STEP 3: Read character from the data stream. Designate the current character as C.
If C = <EOI> then end execution.

STEP 4: Concatenate the current string (@) and the
character (C) to form @+C.

STEP 5: If @+C is in the basic-table or in the string-table perform
the following operations:

 a. @=@+C
 b. Go to STEP 3
STEP 6: If @+C is not in the basic-table or in the string-table perform

the following operations:
 a @+C in the string-table
 b. send @ to the output stream
 c. @=C
 d. go to STEP 3

The above description assumes that the data stream does not overflow the total number of
allowed entries in the string-table. Later in this section we will present a working sample

Dos bitmapped graphics 477

of GIF LZW compression that takes this possibility into account. Table 15–1 shows the
LZW compression of the string listed above.

Table 15–1
LZW Compression Example

CURRENT STRING
(@)

ITERATION
NUMBER

INPUT
STREAM

STRING
TABLE ENTRY

OUTPUT
STREAM

INITIAL @C FINAL
1 '/' NONE -- NULL '/' '/'
2 '$' 256='/$' '/' '/' '/$' '$'
3 '1' 257='$1' '$' '$' '$1' '1'
4 '0' 258='10' '1' '1' '10' '0'
5 '.' 259='0.' '0' '0' '0.' '.'
6 '0' 260='.0' '.' '.' '.0' '0'
7 '0' 261='00' '0' '0' '00' '0'
8 '/' 262='0/' '0' '0' '0/' '/'
9 '$' NONE -- '/' '/$' '/$'

10 '2' 263='/$2' <256> '/$' '/$2' '2'
11 '2' 264='22' '2' '2' '22' '2'
12 '.' 265='2.' '2' '2' '2.' '.'
13 '0' NONE -- '.' '.0' '.0'
14 '0' 266='.00' <260> '.0' '.00' '0'
15 '/' NONE -- '0' '0/' '0/'
16 '$' 267='0/$' <262> '0/' '0/$' '$'
17 '1' NONE -- '$' '$1' '$1'
18 '2' 268='$12' <257> '$1' '$12' '2'
19 '.' NONE -- '2' '2.' '2.'
20 '1' 269='2.1' <265> '2.' '2.1' '1'
21 '0' NONE -- '1' '10' '10'
22 '/' 270='10/' <258> '10' '10/' '/'
23 '$' NONE -- '/' '/$' '/$
24 '2' NONE -- '/$' '/$2' '/$2'
25 ‘2' 271='/$22' <263> '/$2' '/$22' ‘2'
26 '2' NONE -- '2' '22' '22'
27 '.' 272='22.' <264> '22' '22.' '.'
28 '0' NONE -- '.' '.0' '.0'
29 '0' NONE -- '.0' '.00' '.00'
30 <EOI> NONE <266>

String: /$10.00/$22.00/$12.10/$222.00<EOI>

In the compression of the string in Table 15–1 notice the following interesting points:

1. On iteration number 1 the current string is initialized to a NULL string. Since the input
character '/' is in the basic-table, algorithm STEP 5 executes. Therefore @='/' at the
conclusion of this iteration.

The pc graphics handbook 478

2. On iteration number 2 the current string (@) contains the initial value of '/' (previous
character input). @+C becomes '/$', which is not in the basic-table or the string-table
(the string-table is empty at this time). Therefore algorithm STEP 6 executes and '/$' is
the first entry in the string-table, which is numbered 256.

3. On iteration number 3 the current string (@+C) contains '$1' which is not in the string-
table. Therefore STEP 6 executes again. In this case the '$1' is entry number 257 in the
string-table.

4. The iterations during which there is no entry in the string-table (labeled NONE in
Table 15–1) are those in which algorithm STEP 5 executes. Notice that no output
takes place in this case.

5. Every iteration that produces an entry in the string-table also generates output to the
character stream (algorithm STEP 6). The output is the contents of the current string
(@), which can be a single character or a string. The string corresponds to an entry in
the string-table and is represented by its number.

6. Compression concludes when the "end of information" code is detected in the input
stream. This situation takes place in iteration number 30 of Table 15–1.

Notice several important features of the LZW compression algorithm:

1. The compression codes are of variable length.
2. The decoder program is able to reproduce the string-table from the input data. This

table is identical to the one used by the encoder.
3. The use of variable-length codes results in greater compression efficiency than if the

information were conveyed on fixed-size data packets.
4. The self-reproducing string-table saves having to transmit conversion or character

tables to the decoder.

The GIF Implementation

The implementation of LZW compression in the GIF protocol closely matches the
original algorithm as described by Lempel, Ziv, and Welch. Two variations are
introduced in the GIF implementation: a special code that serves to signal to the decoder
that the string-table must be cleared, and another one to signal the end of the compressed
data. The code to clear the string-table is often represented with the letters <CC> and the
code to end the compressed data stream is identified as <EOI> (end of information).

These two special codes, <CC> and <EOI>, are added to the basic-table. Since the
GIF implementation is applied to graphics data, the basic-table for GIF LZW
compression consists of all the pixel codes used in the image, plus the "clear string-table"
code <CC> and the "end of information" code <EOI>. For example, in encoding a video
image for VGA mode number 18, with 16 possible colors, the basic-table would have the
codes 0 to 15. In this case the clear code <CC> would be assigned code number 16, and
the <EOI> code would be assigned number 17. Therefore the first entry in the string-table
would correspond to code number 18. Since the LZW string-table can extend to code
number 4,095, the range in this case would be from 18 to 4,095.

LZW Code Size

Dos bitmapped graphics 479

We saw (Figure 15–8) that in the GIF encoding the compressed data in the first image
data sub-block must be preceded with a byte that encodes the LZW code size. This value
coincides with the bit-size of the elements in the basic-table. In the example mentioned
above, in which the image is encoded for VGA mode number 18, in 16 colors, the LZW
code size is 4. By the same token, the LZW code size would be 8 for an image encoded in
256 colors.

The GIF Image File

Perhaps the easiest way to understand the GIF encoding and its implementation of LZW
compression is by an example. Figure 15–10 shows the pixel map of a simple graphics
image in three colors.

Figure 15–10 Sample Image for GIF
LZW Compression

The following code fragment shows the data structures necessary for encoding the image
in Figure 15–10 in GIF format. In order to create a disk image of the GIF file we must
first assemble the source and then strip off the object-file header appended by the
assembler program. This can be easily done by means of the "write" command of a
debugger program (such as Microsoft Debug or Symdeb) or of a disk file editing utility.

DATA SEGMENT
;
;**********************|
; GIF file header |
;**********************|
; The 6-byte header block includes the GIF signature
and version
; fields (see Figure 15–4)
 DB ‘GIF87a’
;**********************|

The pc graphics handbook 480

; logical screen |
; descriptor |
;**********************|
; The logical screen descriptor block contains the
information
; listed in Figure 15–4. In this example we have
adopted a VGA
; resolution of 640 by 480 pixels in 8 colors
 DW 640 ; Logical screen width
 DW 480 ; Logical screen height
 DB 10100010B ; Global flag
 ; Global flag bitmap:
 ; 0 0 1 1 0 0 0 0
 ; 7 6 5 4 3 2 1 0 <= bits
 ; | | | | | |_|_|_ size of
global color
 ; | | | | | table
(2^(field+1))
 ; | | | | |___ sort flag
 ; | | | | 1 = most
important color
 ; | | | | first
 ; | |_|_|__ color resolution
original
 ; | palette is
(field+1)
 ; |________ global color table
 ; 1 = table present
 ; 0 = no global table
 DB 0 ; Background color
index
 ; (meaningless in this
case)
 DB 0 ; Pixel aspect ration
 ; (symmetrical in VGA
systems)
;**********************|
; global color table |
;**********************|
; The code furnishes an 8-entry global color table.
Each entry
; consists of 3 bytes encoding the red, green, and blue
values.
; Notice that only colors number 2, 3, and 4 are
required by the
; image (see Figure 15–6)
; R G B Color color
number
 DB 000H,000H,000H ; Black 0
 DB 0BBH,0BBH,0BBH ; White 1
 DB 000H,000H,0AAH ; Blue 2
 DB 000H,0AAH,000H ; Green 3

Dos bitmapped graphics 481

 DB 0AAH,000H,000H ; Red 4
 DB 080H,080H,0AAH ; Light blue 5
 DB 080H,0AAH 080H ; Light green 6
 DB 0AAH,080H,080H ; Light red 7
;**********************|
; image descriptor |
;**********************|
; This block contains the information listed in Figure
15–7
 DB 2CH ; GIF image separator
code
 DW 10 ; x coordinate for
image
 DW 10 ; y coordinate
 DW 9 ; Image width (in
pixels)
 DW 7 ; Image height (in
pixels)
 DB 00000000B ; Local flag
 ; Local flag bitmap:
 ; 1 0 0 0 0 0 1 0
 ; 7 6 5 4 3 2 1 0 <= bits
 ; | | | | | |_|_|_ size of
local color
 ; | | | | | table
 ; | | | | | value is
2^(field + 1)
 ; | | | |_|_______ RESERVED
 ; | | |_______ sort flag
 ; | | 1 = most
important color
 ; | | first
 ; | |_______ inter ace flag
 ; | 1 = : age is
interlaced
 ; | 0 = i = image is
not interlaced
 ; |________ local cal color
table flag
 ; 1 = table present
 ; 0 = no local table
;**********************|
; image data |
; (LZW compression) |
;**********************|
; Follows image data compressed according to the GIF
; implementation of the LZW algorithm (see Figure 15–8)
 DB 3 ; LZW code size
 DB 20 ; Image size (in bytes)
 DB 028H,02AH,0B4H,03BH,083H,040H,037H,098H
,0A8H,08CH

The pc graphics handbook 482

 DB 0E8H,0ADH,055H,06DH,098H,017H,04DH,08EH
,0B5H,024H
; Block terminator
 DB 0
;**********************|
; trailer |
;**********************|
; The trailer is a single-byte block that marks the end
of a GIF
; data stream. The required terminator code is 3BH
(Figure 15–9)
 DB 3BH ; GIF terminator
;
DATA ENDS
 END

Although only three colors are necessary for the image in Figure 15–10, we have added
white and black to the palette. The monochrome colors are often added so as to allow
displaying a color image in a black-and-white system. In Section 15.2.1 we mentioned
that the number of colors in the GIF global and local color tables must coincide with
powers of 2, therefore, 2, 4, 8, 16, 32, 64, 128, and 256 entries can be chosen for the
palette. This example requires 5 colors, hence an 8-color palette is selected. Palette entry
number 0 corresponds to the color black and entry number 1 to the color white. The
colors corresponding to palette entries 2, 3, and 4 are shown in Figure 15–15. In actual
programming we can either zero the remaining palette entries (5, 6, and 7) or set them to
any given color value. However, the memory space must be reserved for the total number
of palette entries. In the previous code sample palette entries number 5, 6, and 7 have
been initialized to light blue, light green, and light red respectively.

The image descriptor block in the previous code sample contains the x and y
coordinates for image display. Notice that we have placed the image at 10 pixels from the
screen’s top left corner, and also that the image dimensions are 9 horizontal pixels by 7
pixel rows, as in Figure 15–10.

GIF LZW Encoding

In the previous code fragment we saw that the image data consists of the LZW code size
byte, a block count byte, 20 image code bytes, and the block terminator code 00H. The
process of obtaining the compressed codes is shown in Table 15–2.

Notice, in Table 15–2, that the raw data from the image in Figure 15–10 is used as an
input stream for GIF LZW compression, and that the first code output to the stream is the
clear string-table command <CC> which is assigned the value 8. Notice also that the
output stream ends in the end-of-information code <EOI>, which is number 9 in this
case. The rest of the output stream is generated following the LZW algorithm as
described in the general example in Table 15–1.

The asterisks in Table 15–2 mark the first characters of each image row (see Figure
15–10). Also notice that the string-table entries in the output stream are enclosed with
angle brackets to differentiate them from the basic-table entries. Table 15–3 shows the

Dos bitmapped graphics 483

processing operations required to obtain the compressed data encoding from the output
stream in Table 15–2.

Table 15–2
GIF LZW Compression Example

CURRENT STRING
(@)

ITERATION
NUMBER

INPUT
STREAM

STRING
TABLE ENTRY

OUTPUT
STREAM

INITIAL @C FINAL
1 -- NONE 8
2 2* NONE -- NULL 2 2
3 2 10=22 2 2 22 2
4 2 NONE -- 2 22 22
5 2 11=222 <10> 22 222 2
6 4 12=24 2 2 24 4
7 2 13=42 4 4 42 2
8 2 NONE -- 2 22 22
9 2 NONE -- 22 222 222
10 2 14=2222 <11> 222 2222 2
11 2* NONE -- 2 22 22
12 2 NONE -- 22 222 222
13 3 15=2223 <11> 222 2223 3
14 3 16=33 3 3 33 3
15 4 17=34 3 3 34 4
16 3 18=43 4 4 43 3
17 3 NONE -- 3 33 33
18 2 19=332 <16> 33 332 2
19 2 NONE -- 2 22 22
20 2* NONE -- 22 222 222
21 2 NONE -- 222 2222 2222
22 3 20=22223 <14> 2222 22223 3
23 2 21 =32 3 3 32 2
24 4 NONE -- 2 24 24
25 2 22=242 <12> 24 242 2
26 3 23=23 2 2 23 3
27 2 NONE -- 3 32 32
28 2 24=322 <21> 32 322 2
29 4* NONE -- 2 24 24
30 4 25=244 <12> 24 244 4
31 4 26=44 4 4 44 4
32 4 NONE -- 4 44 44
33 4 27=444 <26> 44 444 4
34 4 NONE -- 4 44 44
35 4 NONE -- 44 444 444
36 4 28=4444 <27> 444 4444 4

The pc graphics handbook 484

37 4 NONE -- 4 44 44
38 2* 29=442 <26> 44 442 2
39 2 NONE -- 2 22 22
40 3 30=223 <10> 22 223 3
41 2 NONE -- 3 32 32
42 4 31=324 <21> 32 324 4
43 2 NONE -- 4 42 42
44 3 32=423 <13> 42 423 3
44 2 NONE -- 3 32 32
45 2 NONE -- 32 322 322
46 2* 33=3222 <24> 322 3222 2
47 2 NONE -- 2 22 22
48 3 NONE -- 22 223 223
49 3 34=2233 <30> 223 2233 3

CURRENT STRING
(@)

ITERATION
NUMBER

INPUT
STREAM

STRING
TABLE ENTRY

OUTPUT
STREAM

INITIAL @C FINAL
50 4 NONE 3 34 34
51 3 35=343 <17> 34 343 3
52 3 NONE 3 33 33
53 2 NONE 33 332 332
54 2 36=3322 <19> 332 3322 2
55 2* NONE 2 22 22
56 2 NONE -- 22 222 222
57 2 NONE -- 222 2222 2222
58 2 37=22222 <14> 222 22222 2
59 4 NONE -- 2 24 24
60 2 NONE -- 24 242 242
61 2 38=2422 <22> 242 2422 2
62 2 NONE -- 2 22 22
63 2 NONE -- 22 222 222
64 <EOI> NONE -- <11>
65 9
Basic table:0 7=colors 8=<CC> 9=<EOI> String table: 10 4095

Dos bitmapped graphics 485

Table 15–3
GIF LZW Compression Data Processing

TABLE
ENTRY

OUTPUT
DECIMAL

(FROM TABLE
15–2) BINARY

BLOCKED
BINARY OUTPUT

HEXADECIMAL
VALUE

 8 1000 00101000 28
10 2 0010
11 10 1010 00101010 2A
12 2 0010
13 4 0100 10110100 B4
14 11 1011
15 11 1011 00111011 3B
16<== 3 0011
17 3 00011 10000011 83
18 4 00100 01000000 40
19 16 10000
20 14 01110 00110111 37
21 3 00011 10011000 98
22 12 01100
23 2 00010 10101000 A8
24 21 10101
25 12 01100 10001100 8C
26 4 00100 11101000 E8
27 26 11010
28 27 11011 10101101 AD
29 26 11010 01010101 55
30 10 01010
31 21 10101 01101101 6D
32<== 13 01101

TABLE
ENTRY

OUTPUT
DECIMAL

(FROM TABLE
15–2) BINARY

BLOCKED
BINARY OUTPUT

HEXADECIMAL
VALUE

33 24 011000 10011000 98
34 30 011110 00010111 17
35 17 010001 01001101 4D
36 19 010011
37 14 001110 10001110 8E
38 22 010110 10110101 B5
 11 001011 00100100 24
 9 001001

We mentioned that an important characteristic of the LZW compression algorithm is the
variable-length of the encoded data. In Table 15–3 we can see that the binary column of
compression codes starts at 4 bits width, then changes to 5 bits, and later to 6 bits wide.
Notice that the variable width of the output codes results from the increasing values of

The pc graphics handbook 486

the string-table entry numbers, since the entries from the basic-table are always limited to
the initial range. In the example in Table 15–2 the first string-table entry is number 10,
which is representable in 4 bits, but the last entry is number 38, which requires 6 bits.

The arrows in Table 15–3 signal the string-table entry numbers 16 and 32. The value
16 is the first one requiring a 5-bit encoding and the value 32 is the first requiring a 6-bit
encoding. Therefore, as soon as table entry number 16 is generated, the representation of
the output codes is increased by 1-bit. Another 1-bit increase takes place immediately
after table entry number 32. The width increases take place automatically after the table
entry is created (not as wider codes are required in the output stream) because the
decoding software must be able to predict the code-length changes. Figure 15–11, on the
following page, is a flowchart of LZW compression as implemented in the GIF standard.

GIF encoder software must block the variable-length binary output codes that result
from the compression process into groups of 8 bits so that they can be stored in byte-size
memory cells or transmitted through the communications lines. The blocking operation
consists of packing these bits right-to-left as shown in Table 15–3. Observe that the last
column of this table, labeled “hexadecimal value”, coincides with the image data listed in
the GIF image code fragment.

GIF LZW Decoding

GIF decoding software obtains system and image information from the standard data
blocks in the file. The first operation performed by the decoder is to make certain the GIF
signature is present at the start of the file and the processing software is compatible with
the version field of this block. The GIF standard recommends that if the decoder
encounters a version with which it is not familiar, the software should post a warning
message and process the file as best it can.

Dos bitmapped graphics 487

Figure 15–11 GIF LCW Compression
Flowchart

As is the case with the encoder, the most elaborate operation to be performed by the
decoder software is regarding the LZW compressed data. GIF LZW decompression
follows the reverse process as the compression previously described. To the decoder the
compression codes form the input stream. The initial bit width is calculated by adding 1
to the value in the LZW code-size field of the image block. Table 15–4 is a LZW
decompression example that uses as input the compressed string generated in Table 15–1.

The decompression algorithm, as described below uses a variable to temporarily store
the previous input value. This variable is placed in the column labeled OLD CODE in
Table 15–4 and designated with the % symbol. The decompression process can be
described as follows:
STEP
1:

Initialize the basic-table with all the code combinations that can be present in the data
stream. The string-table codes start after the last code in the basic-table.

STEP
2:

Create a variable named OLD CODE (%) to hold the previous input. Initialize % to NULL.
Designate the first character of the current input value as C.

STEP
3:

Read first character from the data stream. If C=<EOI> then end execution. If C = <CC>
then re-initialize string-table. If not, then output the first character.

STEP
4:

If C is a character in the basic-table perform the following operations:

The pc graphics handbook 488

 a. output C
 b. %=C
 c. create a new string-table entry with the value %+C
 d. go to STEP 4
STEP 5: If C is a compression code perform the following operations:
 a. look up compression code in string-table and output value
 b. %=C
 c. C=first character in compression string
 d. create a new string-table entry with the value %+C
 e. go to STEP 4

Table 15–4
LZW Decompression Example

ITERATION INPUT
STREAM

OLD
CODE (%)

CHARACTER
(C)

OUTPUT
STREAM

STRING
TABLE (% C)

1 '/' '/' '/'
2 '$' '/' '$' '$' 256='/$'
3 '1' '$' '1' '1' 257='$1'
4 '0' '1' '0' '0' 258='10'
5 '.' ‘0' '.' '.' 259='0.'
6 '0' '.' '0' '0' 260='.0'
7 '0' '0' '0' '0' 261='00'
8 <256> '0' '/' '/$' 262='0/'
9 '2' <256> '2' '2' 263='/$2'
10 '2' '2' '2' '2' 264='22'
11 <260> ‘2' '.' '.0' 265='2.'
12 <262> <260> '0' '0/' 266='.00'
13 <257> <262> '$' '$1' 267='0/$'
14 <265> <257> '2' '2.' 268='$12'
15 <258> <265> '1' '10' 269='2.1'
16 <263> <258> '/' '/$2' 270='10/'
17 <264> <263> '2' '22' 271='/$22'
18 <266> <264> '.' '.00' 272='22.'
Basic table: ASCCI codes in range 0 to 255

Notice that in performing the read-operation the software must keep track of bit
boundaries in the input data. Also that the algorithm assumes that the first element in the
input stream is a character and handles this case independently (STEP 3).

There are less iterations in LZW decompression than in compression. For example,
there are 30 iterations in the compression process shown in Table 15–1 while there are
only 18 in the example in Table 15–4. Notice that in the decompression process a string-
table entry results in each iteration after the first one. This is a consequence of the
mechanics of the compression process, in which an output is generated only when an
entry is made in the string-table (see Table 15–1). Also notice that the string-table that

Dos bitmapped graphics 489

results from the decompression (Table 15–4) is identical to the one generated during
compression (Table 15–1).

15.3 The Tag Image File Format (TIFF)

The tag image file format (TIFF) was developed by ALDUS Corporation with the
support of several other companies, including Hewlett-Packard and Microsoft. The
standard is an effort at providing a flexible file-storage format for raster images. Its origin
is related to scanner hardware and software for microcomputers. The first version of TIFF
was published in the fall of 1986. The present update, designated as TIFF Revision 6.0,
was released in June 1992. TIFF is a non-proprietary standard which can be used without
license or previous royalty agreement. Technical information about TIFF can be obtained
from the Aldus Developer’s Desk at Aldus Corporation, Seattle, Washington, or from the
Aldus forum on Compuserve (GO ALDSVC).

The purpose of the TIFF standard is to provide an image storage convention with
maximum flexibility and portability. TIFF is not intended for any particular computer,
operating system, or application program. Consistent with this idea, the files in TIFF
format have no version number or other update identification code. A typical TIFF reader
searches for the data necessary to its own purposes and ignores all other information
contained in the file. The format supports both the Intel and the Motorola data ordering
schemes but hardware-specific features are not documented in the TIFF file. Which
mode, resolution, or color range used in displaying a TIFF file is left entirely to the
software.

The TIFF standard supports monochrome, grayscale, and color images of various
specifications. The original TIFF documents classified the various image types into four
classes. Class B was used for binary (black-and-white) images, class G for grayscale
images, class P for palette color images (8-bits per pixel color), and class R for full-color
images (24-bits per pixel color). A TIFF application need not provide support for all
TIFF image types. For example, a VGA TIFF reader could exclude class R images since
the system’s maximum color range is 8 bits per pixel (256 colors). By the same token, a
routine or application that reads monochrome scanned images could limit its support to
the class B category. The image class designations by letter codes was dropped in TIFF
revision 6.0; however, the image classification into bilevel, grayscale, RGB, and palette
types was preserved.

TIFF originally supported uncompressed images as well as compressed data according
to several compression schemes, namely, PackBits, CCITT, and LZW (see Section 15–
3.3). LZW compression support was dropped in TIFF version 6.0; because the
compression algorithm is patented by Unysis Corporation (see Section 15.3.3). Notice
that, in the TIFF standard, compression methods are usually associated with the particular
file classes mentioned in the preceding paragraph.

The pc graphics handbook 490

15.3.1 The TIFF File Structure

The TIFF standard is an image file protocol. A file in the TIFF format is divided into
three areas: the header, the image file directory, and the actual image data. These
elements are described separately in the following paragraphs.

The notion of tags is the feature that identifies files in the TIFF format. A TIFF tag is a
word integer that serves to identify the file structure that follows. For example, the tag
value 103H indicates that the structure that follows contains data compres-sion
information. TIFF file processing software can search for this tag in order to determine
which, if any, compression scheme was used in encoding the image data. TIFF tags are
discussed in greater detail later in this section.

The TIFF Header

An image file in TIFF format must start with an 8-byte block called the header. Figure
15–12 shows the structure of the TIFF image file header.

Figure 15–12 TIFF File Header

The word at offset 0 of the TIFF file header consists of the ASCII characters 'II' or 'MM'.
The 'II' code identifies a file in the Intel byte ordering scheme, that is, word and
doubleword entries appear with the least significant byte in the lowest numbered memory
address. This data ordering format is sometimes known as the "little-endian" scheme. The
'MM' code identifies a file in the Motorola byte ordering order, that is, with the least
significant byte of word and doubleword entries in the highest numbered memory
address. This format is known as the "big-endian" scheme. The ASCII number '42' found
at the word at offset 2 of the header serves to further identify a file in TIFF format. The
numbers themselves have no documented significance. The ASCII code '42' has
sometimes been called the TIFF version number, although it is not described as such in
the standard. The doubleword at offset 4 of the header block contains the offset, in the
TIFF file, of the first image file directory (IFD).

The file header block is the only TIFF file structure that must be located at a
predetermined offset from the start of the file. The remaining structures can be located

Dos bitmapped graphics 491

anywhere in the TIFF file. TIFF file processing code reads the data in the header block to
certify that the file is in TIFF format and to make decisions regarding the data ordering
scheme. A sophisticated application could be capable of making adjustments in order to
read data both in the Intel and in Motorola orders, while another one could require data in
a specific format.

The TIFF Image File Directory (IFD)

Once the code determines that the file is in TIFF format and that it is encoded in a valid
ordering scheme, it uses the doubleword at offset 4 of the header (see Figure 15–12) in
order to determine the location of the first image file directory (IFD). Notice that a TIFF
file can contain more than one image. If so, each image in the file is associated with its
own IFD. However, by far the more common situation is that a TIFF file contains a single
image. This assumption is made in the code and examples for manipulating TIFF files.
The structure of the IFD is shown in Figure 15–13.

Figure 15–13 TIFF Image File
Directory (IFD)

Observe that the offset values in the leftmost column of Figure 15–13 (labeled “local
offset”) refer to offsets within the IFD block. This must be so because the IFD itself can
be located anywhere within the TIFF file. The word at local offset 0 of the IFD is a count

The pc graphics handbook 492

of the number of directory entries. Recall that the number of directory entries is unlimited
in the TIFF standard. The last directory entry is followed by a doubleword field which
contains the offset of the next IFD, if one exists. If not, this doubleword contains the
value 0000H (see Figure 15–13). Each entry in the IFD takes up 12 bytes. The structure
of each IFD entry is shown in Figure 15–14.

Figure 15–14 TIFF Directory Entry

Table 15–5
TIFF Version 6.0 Field Type Codes

TYPE
CODE

STORAGE
UNIT

FIELD CONTENTS

1 byte 8-bit unsigned integer
2 ASCII character Offset of ASCII string terminated in NULL byte
3 word 16-bit unsigned integer
4 doubleword 32-bit unsigned integer
5 quadword Rational number; the first doubleword is the numerator of a fraction

and the last doubleword the denominator
6 byte 8-bit signed integer
7 byte Undefined; can be used at will by the software
8 word 16-bit signed integer in 2’s complement form
9 doubleword 32-bit signed integer in 2’s complement form
10 quadword Rational number; the first doubleword is the signed numerator of a

fraction and the last doubleword the signed denominator
11 doubleword Single precision floating point number in IEEE format
12 quadword Double precision floating point number in IEEE format

Dos bitmapped graphics 493

The tag code is located at local offset 0 in the directory entry field. TIFF requires that
the entry fields be sorted by increasing order of the tag codes, therefore, a lower
numbered tag code always precedes a higher numbered one. This simplifies searching for
a particular tag code since the search terminates when one with a higher numbered tag is
encountered. The type code is located at local offset 2 within the directory entry field.
Table 15–5 shows the type code values according to TIFF version 6.0. Be aware that
code numbers 6 and higher were introduced in Version 6.0 and are not documented in
previous versions of the standard.

The count field is a doubleword at offset 4 of the directory entry. This field, which
was named the length field in previous versions of TIFF, encodes the number of data
repetitions in the current directory entry. Notice that this value does not encode the
number of bytes, but the number of data units. For example, if the field type code is 3
(word unit) then the count field would represent the number of data words of information
that are associated with the entry.

The value/offset field is designated in this manner because it contains either a direct
value or an offset into the TIFF file. The general rule is that if the encoded data fits into a
doubleword storage (4 bytes) then the data is entered directly in the doubleword at local
offset 8 of the directory entry (see Figure 15–14). This design saves coding space and
simplifies processing. However, some TIFF tags, such as the StripOffset tag mentioned
later in this section, always contain offset data in this field. The software determines if
the data in the value/offset field is either a value or an offset by means of the tag, the field
type code, and the data item count.

If the tag contains either a value or an offset, the program must first examine the field
type codes (see Table 15–4). In this case data corresponding to field type codes 1, 3, 4, 5,
6, 7, 8, 9, and 11 (see Table 15–4), are contained in a doubleword storage unit and are
therefore entered as values. By the same token, field types 2, 5, 10, and 12 encode an
offset in the value/offset field of the directory entry. Once determined that an individual
data item fits in the 4 bytes allocated to the value/offset field then the software must
examine the number of values associated with the directory entry. If the total number of
values exceeds the allocated space (4 bytes) then the value/offset field contains an offset.
In this case the type code and the count fields are multiplied in order to determined the
number of items supplied.

15.3.2 TIFF Tags for Bilevel Images

Over 50 tags have been defined in the TIFF standard; however, only a handful are used in
most TIFF images. A complete description of all the TIFF tags can be found in the TIFF
Revision 6.0 specification available, at no charge, from Aldus Corporation (see Section
15.3). The TIFF tags mentioned in the following discussion are those that would be
commonly found in monochrome (bilevel in TIFF terminology) scanned images. These
are also the tags decoded by the TIFFSHO W program found in the /TIFF directory of
books’ software package.

The pc graphics handbook 494

OldSubFileType (tag code 00FFH)

This tag, originally called the SubFileType, has been replaced by the NewSubFileType
tag mentioned below; however, many older TIFF programs still use this tag. The tag
provides information about the bitmap associated with the IFD. The tag can take the
following values:

Value=1 indicates that the image is in full-resolution format.
Value=2 indicates the image data is in reduced-resolution format.
Value=3 indicates that the image data is a single page of a multi-page image.

NewSubFileType (00FEH)

This tag, which replaces OldSubFileType, describes the kind of data in the IFD. The tag
is made up of a doubleword integer with the following significant bits:

Bit 0 is set if the image is a reduced-resolution version of another image.
Bit 1 is set of the image is a single-page of a multi-page image.
Bit 2 is set if the image is a transparency mask (see the PhotometricInterpretation tag

later in this section.)

ImageWidth (tag code 0100H)

This tag encodes the number of pixel columns in the image.

ImageLength (tag code 0101H)

This tag encodes the number of pixel rows in the image.

BitsPerSample (tag code 0102H)

This tag encodes the number of bits required to represent each pixel sample. The value of
this tag is 1 for bilevel images, 4 for 16-color palette images, and 8 for 256-color palette
images. In IBM video graphics systems the number of bits per sample is usually the same
as the number of bits per pixel color. Regarding images encoded in RGB format (as used
in some Macintosh systems and in the XGA Direct Color mode) the number of bits per
sample refers to each individual color. In this case the SamplesPerPixel tag (described
below) encodes the number of pixel colors (three colors in RGB encoding), and the
BitsPerSample tag the number of bits assigned to each color. For example, if 6 bits are
assigned to the red sample, 8 bits to the green, and 6 bits to the blue, the total number of
bits per pixel would be 20.

Dos bitmapped graphics 495

Compression (tag code 0103H)

This tag encodes the compression scheme used in the image data. The tag can take the
following values:

Value=1 indicates that the image data is not compressed. Pixel information is packed
at the byte level, as tightly as possible. Uncompressed data has the disadvantage over
compressed data that it takes up more memory space. On the other hand, it has the
advantage that it can be manipulated faster by the display routines.

Value=2 indicates that image data is compressed according to CCITT Group 3
(Modified Huffman) run-length encoding.

Value=32,773 (8005H) indicates the data is compressed according to the PackBits
scheme described in detail later in this section.

PhotometricInterpretation (tag code 0106H)

This tag describes how to interpret the color encoding in the bitmap. The tag can take the
following values:

Value=0 is used in bilevel and grayscale images to indicate that a bit value of 0
represents the white color.

Value=1 is used in bilevel and grayscale images to indicate that a bit value of 0
represents the black color.

Value=2 is used to indicate an encoding in RGB format.
Value=3 is used to indicate palette color format. In this case a ColorMap tag must be

included to hold the LUT values.
Value=4 indicates that the image is a transparency mask used to define an irregularly

shaped region of another image.

Threshholding (tag code 0107H)

This tag describes the technique used for representing the gray scale in a black-and-white
image. The tag can have the following values:

Value=1 indicates that the image contains no dithering or halftoning. Bilevel images
use this value.

Value=2 indicates that the image has been dithered or halftoned.
Value=3 indicates that a randomized process, such as the error diffusion algorithm,

has been applied to the image data.

StripsOffset (tag code 0111H)

This tag provides the information necessary for the software to locate the image data
within the TIFF file. By definition, the value in this tag is always an offset from the
beginning of the TIFF file. The structure of the TIFF image data as well as the use of this
tag is discussed in Section 15.3.3.

The pc graphics handbook 496

SamplesPerPixel (tag code 0115H)

This tag encodes the number of color components for each screen pixel. The value of this
tag is 1 for bilevel, grayscale, and palette color images, and 3 for images in RGB format.

RowsPerStrip (tag code 0116H)

This tag determines the number of rows in each strip. Image encoding in the TIFF
standard is discussed in Section 15.3.3.

StripByteCounts (tag code 0117H)

This tag determines the number of bytes in each strip, after compression. Image encoding
in the TIFF standard is discussed in Section 15.3.3.

XResolution (tag code 011AH)

This tag provides information about the x-axis resolution at which the original image was
created or scanned. The data is important to software that must reproduce the im-age
exactly as it was originally produced. This is a critical factor in the reproduction of
dithered images, which do not allow scaling.

YResolution (tag code 011BH)

This tag provides information about the y-axis resolution at which the original image was
created or scanned. See the text in the XResolution tab.

PlanarConfiguration (tag code 011CH)

This tag provides information regarding the organization of color pixel data. It is relevant
only for color images in RGB format (more than 1 samples per pixel). The tag can have
the following values:

Value=1 indicates that RGB data is stored in the order of the color components, that
is, in a repeating sequence of RED, GREEN, and BLUE values. This organization is
called the chunky format in TIFF documentation.

Value=2 indicates that RGB data is stored by bit planes, that is, the red color
components are stored first, followed by the green, and then by the blue. This
organization is called the planar format in TIFF documentation.

ResolutionUnit (tag code 128H)

This tag determines the unit of measurement used in the parameters contained in
XResolution and YResolution tags. Many TIFF programs do not use this tag, but it is
recommended by the standard. The tag can have the following values:

Value=1 indicate no unit of resolution.

Dos bitmapped graphics 497

Value=2 indicates inches.
Value=3 indicates centimeters.

15.3.3 Locating TIFF Image Data

Although TIFF file processing software often ignores many tags and makes assumptions
regarding others, one necessary manipulation in an image display operation is the
locating and decoding of the image bitmap.

TIFF Image data can be located almost anywhere in the file. This is true of both
uncompressed and compressed data. Furthermore, the TIFF standard allows dividing an
image into several areas, called strips. The idea is to facilitate data input and output in
machines limited to a 64K segment size. This is the case of Intel processors operating in
MS DOS or Windows systems. The data for each individual strip is represented by a
separate tag.

When the image is divided into strips, three tags participate in locating the image data:
RowsPerStrip, StripOffsets, and StripByteCounts. The first operation is for the software
to calculate the number of strips into which the image data is divided. This value, which
is not encoded in any particular tag, can be obtained from the number of values field of
the StripOffsets tag (see Figure 15–14). The following code frag-ment shows the
processing necessary to determine if a TIFF image is encoded in a single strip or in
multiple strips.

; The number of strips in the image is obtained from
the length
; field of the StripOffsets tag
; Code assumes that the SI register points to the start
of the
; first IFD in the TIFF file
 MOV AX,0111H ; Tag for strip offsets
 CALL FIND_TAG
 JNC OK_OFFSETS ; Go if tag found
;**********************|
; ERROR handler |
;**********************|
; At this point the code should contain an error
routine to
; handle the case of a TIFF file with no StripOffsets
tag.
 .
 .
; At this label the processing has located the
StripOffsets tag.
; Image can be encoded in one or more strips. The
number of
; strips is stored in the length field of the
StripOffsets tag
; Unpacking and display of multi-strip images requires
the number

The pc graphics handbook 498

; of rows per strip and the number of bytes in each
strip row. ; These
parameters are not necessary if the image is encoded in
a
; single strip
OK_OFFSETS:
 MOV AX,WORD PTR [SI+4] ; Get number
of strips
 CMP AX,1 ; Test for single strip
 JNE MULTI_STRIP ; Go if not a single
strip
 JMP ONE_STRIP
;**********************|
; multi-strip image |
;**********************|
MULTI_STRIP:
; Multi-strip image processing routine
 .
 .
 .
;**********************|
; single strip image |
;**********************|
ONE_STRIP:
; Single strip processing routine
 .
 .
 .
FIND_TAG PROC NEAR
; Find a specific tag code in the Image File Directory
; On entry:
; AX = desired tag code
; SI ==> start of Image File Directory (IFD)
; On exit:
; Carry clear if tag code found
; SI ==> first tag field (code)
;
; Carry set code not present in IFD
TEST_TAG_CODE:
 MOV BX,WORD PTR [SI] ; Get tag code
 CMP BX,0 ; Test for last IFD
 JE END_OF_IFD ; Go if last
 CMP AX,BX ; Compare with one
desired
 JNE NEXT_TAG_CODE ; Index if not
; At this point desired tag code has been found
 CLC ; Tag found return code
 RET
NEXT_TAG_CODE:
 ADD SI,12 ; Index to next tag
; Test for last tag
 JMP TEST_TAG_CODE ; Continue

Dos bitmapped graphics 499

END_OF_IFD:
 STC ; Tag not found
 RET
FIND_TAG ENDP
 .
 .
 .

Notice that the FIND_TAG procedure in the previous code fragment provides a
convenient tool for indexing into the IFD in search of any particular tag code. Such a
procedure would be called repeatedly by a TIFF image processing routine. The procedure
named FIND_TIFF_TAG in the BITIO module of the GRAPHSOL library performs this
operation.

Locating the image data in a single strip image consists of adding the value in the
StripOffsets tag to the start of the TIFF file. In this case the image size (in bytes) is
obtained by reading the value in the ImageWidth tag (which is the number of pixels per
row), dividing it by 8 to determine the number of data bytes per pixel row, and
multiplying this value by the number of pixel rows stored in the ImageLength tag. The
processing operations can be seen in the TIFFSHOW.ASM file in the book’s software
package.

If the image data consists of multiple strips, then each strip is handled separately by
the software. In this case the number of bytes in each strip, after compression, is obtained
from the corresponding entry in the StripByteCounts tag. The display routine obtains the
number of pixel rows encoded in each strip from the value stored in the RowsPerStrip
tag. However, if the total number of rows, as stored in the ImageLength tag, is not an
exact multiple of the RowsPerStrip value, then the last strip could contain less rows than
the value in the RowsPerStrip tag. TIFF software is expected to detect and handle this
special case.

15.3.4 Processing TIFF Image Data

Once the start of the TIFF image data is located within the TIFF file, the code must
determine if the data is stored in compressed or uncompressed format and proceed
accordingly. This information is found in the Compression tag previously mentioned. In
TIFF Version 5.0 the Compression tag could hold one of six values. Value number 1
correspondes to no compression, values 2, 3, and 4 corresponded to three modes of
CCITT compression, and value 5 to LZW compression, finally value 32,773 in the
Compression tag indicates PackBits compression.

We mentioned that several of these compression schemes were dropped in Version 6.0
of the TIFF standard (see Section 15–3). In the present TIFF implementa-tion, values 3,
4, and 5 for the Compression tag are no longer supported. Since there are substantial
reasons to favor the LZW algorithm for the compression of color images (which was
dropped in TIFF Version 6.0 because of patent rights considerations) we have limited the
discussion on TIFF image decoding to the case of PackBits compression. Hopefully, a
future TIFF version will again support LZW compression methods.

The pc graphics handbook 500

TIFF PackBits Compression

The PackBits compression algorithm was originally developed on the Macintosh
computer. The MacPaint program uses a version of PackBits compression for its image
files. Macintosh users have available compression and decompression utilities for files in
this format. The compression scheme is simple to implement and often offers satisfactory
results with monochrome and scanned images.

PackBits, as implemented in TIFF, is a byte-level, simplified run-length compression
scheme. The encoding is based on the value of the first byte of each compressed data
unit, often designated as the "n" byte. The decompression logic can be described in the
following steps.

STEP 1: If end-of-information code then end decompression.
STEP 2: Read next source byte. Designate as n (n is an unsigned integer).
STEP 3: if n is in the range 0 to 127 (inclusive) perform the following operations:
 a. read the next n+1 bytes literally from the source file into the output stream.
 b. go to STEP 1.
STEP 4: if n is in the range 129 to 255 (inclusive) perform the following operations:
 a. negate n (n=-n).
 b. copy the next byte n+1 times to the output stream.
 c. go to STEP 1.
STEP 5: Goto STEP 1.

Notice that in the above description we assume that n is an unsigned integer. This
convention, which facilitates coding in 80×86 assembly language, differs from other
descriptions of the algorithm in which n is a signed value. Figure 15–15 is a flowchart of
this decompression logic.

Observe that in the TIFF implementation of PackBits no action is taken if n=128. If
n=0 then 1 byte is copied literally from source to output. The maximum number of bytes
in a compression run is 128. In addition, the TIFF implementation of PackBits
compression adopted the following special rules:

1. Each pixel row is compressed separately. Compressed data cannot cross pixel row
boundaries.

2. The number of uncompressed bytes per row is defined as the value in the ImageWidth
tag, plus 7, divided by 8. If the resulting image map has an even number of bytes per
row, the decompression buffer should be word-aligned.

Dos bitmapped graphics 501

Figure 15–15 TIFF PackBits
Decompression

The following code fragment shows the processing required for unpacking a TIFF file
compressed as a single strip, using the PackBits method.

; Unpacking logic for TIFF PackBits scheme
; PackBits packages consist of 2 bytes. The first byte
(n)
; encodes the following options:
; 1. if n is in the range 0 to 127 then the next
n+1 bytes
; are to be interpreted as literal values
; 2. if n is in the range −127 to −1 then the
following
; byte is repeated −n+1 times
; 3. if n=128 then no operation is executed
; Code assumes:
; 1. SI --> start of the compressed image (1
strip)
; 2. DI --> storage buffer for decompressed image
; 3. the variable IMAGE_SIZE holds the byte size
of the
; uncompressed image. In a single strip image
this

The pc graphics handbook 502

; value is obtained by dividing ImageWidth
(number
; of pixels per row) by 8 and multiplying by
ImageLength
;
; Note: the routine keeps track of the number of bytes
in the
; decompressed bitmap in the variable EXP_COUNT.
This
; value is compared to the IMAGE_SIZE variable to
determine
; the end-of-information point
;**********************|
; test value of n |
;**********************|
TEST_N_BYTE:
 MOV AL,[SI] ; Get n byte
 CMP AL,128 ; Code for NOP
 JB LITERAL_CODE ; Go if in the literal
range
 JA REPEAT_CODE ; Go if in repeat range
; At this point n = 128. No operation is performed
 INC SI ; Skip NOP code
 JMP NEXT_PACK_CODE ; Continue
;**********************|
; 0 <= n < 128 |
; (literal expansion) |
;**********************|
LITERAL_CODE:
 MOV CL,AL ; Counter to CL
 MOV CH,0 ; Clear high byte of
counter
 INC CX ; Add 1
 INC SI ; Skip n byte
 ADD EXP_COUNT,CX ; Add bytes to counter
LIT_MOVE:
 MOV AL,[SI] ; Get literal byte
 MOV [DI],AL ; Place in bitmap
 INC DI ; Bump pointers
 INC SI
 LOOP LIT_MOVE
 JMP NEXT_PACK_CODE
;**********************|
; 128 < n < 256 |
; (repeated expansion) |
;**********************|
REPEAT_CODE:
 NEG AL ; Negate to convert to
2’s
 ; complement
representation
 MOV CL,AL ; Counter to CL

Dos bitmapped graphics 503

 MOV CH,0 ; Clear high byte of
counter
 INC CX ; Add 1
 INC SI ; Skip n byte
 ADD EXP_COUNT,CX ; Add bytes to counter
 ; to keep track of
decompressed
 ; bytes
 MOV AL,[SI] ; Get byte to repeat
 INC SI ; Skip to next n byte
EXP_MOVE:
 MOV [DI],AL ; Place byte in buffer
 INC DI ; Bump bitmap pointer
 LOOP EXP_MOVE
;**********************|
; test for <EOI> |
;**********************|
; EXP_COUNT holds the byte count in bitmap at this
point
; IMAGE_SIZE holds the total bytes in the expanded
bitmap
NEXT_PACK_CODE:
 MOV AX,EXP_COUNT ; Bytes now in bitmap
 CMP AX,IMAGE_SIZE ; Compare with map size
 JAE EOI_FOUND ; Go if at end of image
 JMP TEST_N_BYTE
; Decompression has concluded at this label
EOI_FOUND:

15.3.5 TIFF Software Samples

The book’s software package includes several software items related to TIFF file
operations. In the first place we have furnished source and executable files for a
rudimentary TIFF reader program named TIFFSHO W. Notice that the code is limited to
the analysis, decompression, and display of small, bilevel TIFF files. The data in the
source TIFF encoding can be either uncompressed or compressed by means of the
PackBits option. The code also requires that the data be located in a single strip.
TIFFSHOW can be used to examine the TIFF format files (extension .TIF) that are part
of the MATCH program. For this reason TIFFSHOW is included in the \MATCH
directory of the book’s software package.

In addition to the TIFFSHOW program, we have also furnished several TIFF
procedures as part of the GRAPHSOL library. These procedures are located in the
BITIO.ASM module. The procedure named SHOW_TIFF can be used to display a
bitmap encoded in TIFF bilevel format. This procedure requires that the user pass a
formatted data block, as shown in the header. The SHOW_TIFF procedures calls the
procedure named LOAD_TIFF, also in the BITIO module, which decompresses and
loads the encoded image. One advantage of using these library procedures is that they
place the TIFF file and the image bitmap in a separate data segment, therefore freeing the
caller’s code from having to devote storage space to TIFF data.

The pc graphics handbook 504

15.4 The Hewlett-Packard Bitmapped Fonts

The LaserJet line of printers, manufactured by Hewlett-Packard Corporation, has gained
considerable popularity in the microcomputer world. For use in these printers Hewlett-
Packard developed a standard for encoding text characters, sometimes known as the
Hewlett-Packard Printer Control Language (PCL) bitmap convention. Fonts in PCL
format are widely available as disk files (soft fonts) from Hewlett-Packard and other
companies. Although these fonts are primarily designed for use in laser printers that
recognized the PCL printer language (discussed in Chapter 11), they can also be put to
less conventional uses. For example, in the MATCH program (furnished in the book’s
software) we have used PCL soft fonts to display text message in larger letters than those
available in the VGA system.

In the present section we discuss the structure and design of the PCL soft fonts.
However, the PCL bitmap format is a refined and elaborate one. We believe that the
information presented here is sufficient to make the PCL bitmap technology accessible to
the graphics programmer. On the other hand, the design of new soft fonts in PCL bitmap
format requires knowledge of typography and character graphics as well as a high degree
of familiarity with the PCL encoding. Hewlett-Packard has published several technical
reference manuals for their LaserJet printers that include detailed description of the PCL
bitmap fonts. These titles (listed in the Bibliography) can be obtained directly from
Hewlett-Packard or through one of their dealers.

Notice that PCL commercial fonts are usually copyright by the font developers or
vendors. The programmer should investigate the legality of the intended use before
distributing or modifying the font files.

15.4.1 PCL Character Encoding

Two technologies are commonly used for encoding text characters: bitmaps and vector
graphics. We encountered vector fonts in the short stroke vector characters used in
8514/A and XGA systems (see Section 11.3.5). Some printers of the Hewlett-Packard
LaserJet family are equipped with vector fonts supplied in the form of scalable character
sets; Hewlett-Packard has adopted the scalable font technology developed by Agfa
Corporation, designated as the Font Access and Interchange Format (FAIS).

Bitmapped fonts in the PCL format are compatible with all HP PCL laser printers. In
addition, several commercial programs are available to generate and edit font files in PCL
format. One advantage of fixed-size bitmapped fonts if that their display quality is often
judged to be better than the one obtained from scalable fonts.

A PCL-format soft font disk file contains the following elements:

1. One font descriptor field that encodes the general characteristics of the font.
2. One or more character descriptors fields that encodes the data pertaining to each

individual character as well as the character bitmap. The bitmap is the binary raster
data that defines the character’s shape.

3. Several command strings in PCL language.

The PCL command strings are unrelated to the font definition, although they are
sometimes used to locate specific data areas within the file. These command strings are

Dos bitmapped graphics 505

provided to facilitate programming of LaserJet printers and compatible devices, a subject
discussed in detail in Chapter 11.

Font Descriptor

The first element we encounter in a font file in PCL format is a PCL language command
string. The initial command in the font file is the one used to download the font
descriptor field into a PCL printer. The command can be generically represented as
follows:

1BH's???W'

The value 1BH is the escape code that precedes all PCL commands (see Chapter 11). The
character string 's???W' represent a generic command in which the question mark ('?')
takes the place of one to three ASCII characters that encode the byte length of the
descriptor field. Table 15–6 is a partial screen snapshot of the Hewlett-Packard font file
TR140RPN.UPS

The data elements in the PCL bitmap font descriptor field are those that apply to the
entire font. There are 33 data entries in the font descriptor field of PCL level 5, although
software and devices often ignore many of these entries. The font descriptor field starts
after the end of the download command string. In Table 15–6 the command string takes
the form

1BH)s257W

The pc graphics handbook 506

Table 15–6
Hexadecimal and ASCII Dump of the HP PCL Font
File TR140RPN.UPS

HEXADECIMAL DUMP OFFSET
0 1 2 3 4 5 6 7 8 9 A B C D E F

ASCII DUMP

0000 1B 29 73 32 35 37 57 00 40 00 00 00 00 00 2B 00
0010 3C 00 3E 00 01 00 15 00 3C 00 E9 00 6C 00 00 00
0020 05 00 06 00 00 F1 04 01 18 00 6D 00 20 00 7F 00
0030 55 00 00 00 00 00 00 54 6D 73 52 6D 6E 20 20 20
0040 20 20 20 20 20 20 20 00 BF 01 28 43 29 20 43 6F
0050 . . .
0060
0070
0080
0090
00A0
00B0
00C0
00D0
00E0
00F0 . . .
0100 74 20 6C 61 77 73 2E 20 1B 2A 63 33 33 45 1B 28
0110 73 35 37 57 04 00 0E 01 00 00 00 06 00

27
00 07

0120 00 29 00 4C 38 7C FE FE FE FE FE FE FE 7C FE 7C
0130 7C 7C 7C 7C 7C 7C 38 7C 38 38 38 38 38 38 38 10
0140 38 10 00 00 00 00 08 7C FE FE FE 7C 38 1B 2A 63
0150 33 34 45 1B 28 73 34 36 57 04 00 0E 01 00 00 00

.) s257W.........

................TmsRmn (C)
Co pyright Hewlett Packard
Company, 1986. All right s
reserved. Rep roduction, adapt
ation or distrib ution of copies
of this font is prohibited, exce
pt as allowed un der the
copyrigh t laws. .*c33E.(
s57W............
................*c 34E.
(e46W

The ASCII characters ‘257’ in the sample of Table 15–6 encodes the number of bytes in
the font descriptor field, not including the command string. Notice, in Table 15–6, that
the end of the font descriptor field coincides with the command string 1BH *c33E (see
dump offset 0108H) discussed later in this section.

Font descriptor data starts at offset 0007H of the dump shown in Table 15–6. The size
of the binary data section of the font descriptor is 64 bytes (40H). The remainder of the
font descriptor, from the byte at offset 0048H to the end of the field, contains an optional
ASCII-coded copyright message preceded by a character count (BFH). Table 15–7, on
the following page, shows the elements in the bitmap font descriptor field according to
PCL level 5.

Data in the font descriptor field is stored according to the big-endian scheme, that is,
the low-order element of word and doubleword entries are located at the highest memory
location. For example, at offset 0007H of the dump of Table 15–6 is the font descriptor
size word, which, in this case, has the value 00 40. If we were to load this word value into
a register of a processors that follows the little-endian storage scheme (such as the ones

Dos bitmapped graphics 507

used in IBM microcomputers) the high- and low-order elements would be inverted. In
this case the code can exchange the lowand high-bytes in order to correct this situation.
The processing operations can be followed in the source code for the CSETHP program
furnished in the book’s software package.

The pc graphics handbook 508

Table 15–7
PCL Bitmap Font Descriptor Field

OFFSET STORAGE UNIT VALUE RANGE CONTENTS
0 word 64 Font descriptor size
2 byte 0 Descriptor format (0=bitmap)
3 byte 0/1/2 Font type:

0=7 bit (96 characters)
1=8 bits (192 characters)
2=8 bits (256 characters)

4 byte Style, MSB (see offset 23)
5 byte RESERVED
6 word Baseline distance (in PCL dots)
8 word Cell width (in PCL dots)

10 word Cell height (in PCL dots)
12 byte 0/1/2/3 Orientation:

0=portrait
1=landscape
2=reverse portrait
3=reverse landscape

13 byte 0/1 Spacing (fixed or proportional)
0=fixed spacing
1=proportional spacing

14 word Symbol set
16 word Pitch (in PCL quarterdots)
18 word Height (in PCL quarterdots)
20 word xheight (in PCL quarterdots)
22 byte Width type (code)
23 byte Style, LSB (see offset 4)
24 byte Stroke weight (code)
25 byte Typeface family, LSB
26 byte Typeface family, MSB
27 byte Serif style (code)
28 byte 0/1/2 Quality (code):

0=data processing
1=near letter quality
2=letter quality

29 byte Placement (code)
30 byte Underline distance (in PCL dots)
31 byte Underline height (in PCL dots
32 word Text height (in PCL quarterdots)
34 word Text width (in PCL quarterdots)
36 word First printable character
38 word Last printable character
40 byte Pitch field extension
41 byte Height field extension

Dos bitmapped graphics 509

42 word Cap height (percent of em)
44 doubleword Font number (code)
48 15 bytes ASCII font name
64 --- Start of optional copyright notice

note: data is in Motorola storage format (big-endian scheme)

Many of the data entries in the font descriptor field would be of interest only to the font
designer or graphics text specialist. Other entries contain information that would be
required only in developing sophisticated text management functions, such as those
expected of a typesetting or desktop publishing program. Figure 15–16 shows the
fundamental information furnished by the font descriptor field.

Figure 15–16 PCL Bitmap Character
Cell

In Figure 15–16 notice that the dimensions labeled “cell width” and “cell height”
correspond to the entries at offset 6 and 8 of the font descriptor (see Table 15–7), while
the “baseline distance” is found at offset 6, the “underline distance” at offset 30, and “x-
height” dimension at offset 20.

Character Descriptor

The PCL format is optimized so that each bitmap takes up the minimum storage space. In
this respect the cell height and cell width parameters of Figure 15–16 refer merely to
a“general cell box” that is required to enclose all the characters in the font. The character
descriptor field contains the data elements that define the individual character.

Like the font descriptor field, the disk image of the character descriptor field starts
with a PCL command string. In fact, in the case of individual characters two command
strings are necessary: the first one, known as the character code command, is used to
inform the device of the decimal code for the character that follows. At offset 0108H, in
Table 15–6, we can see the first PCL command string, which is

The pc graphics handbook 510

1BH ‘c33E’

In this case the decimal value ‘33’ identifies the ‘!’ symbol, which is located at this
position in the character table (see Table 1–2). The second command string, known as the
character descriptor and data command is used to download to the PCL device the
information associated with the particular character as well as its bitmap. At offset
010EH of the dump at Table 15–6 we can see this command string:

1BH 's57W'

In this case the sub-string '57' encodes, in ASCII, the byte length of the data descriptor
plus its corresponding bitmap. Immediately following this PCL command string we find
a 16-byte block which is called the character header area of the character descriptor field.
Table 15–8 shows the data elements in the character descriptor header.

Table 15–8
PCL Bitmap Character Descriptor Header

OFFSET STORAGE UNIT VALUE RANGE CONTENTS
0 byte 4/10 Data format:

4=LaserJet family
10=Intelifont scalable

1 byte 0/1 Continuation:
0=bitmap is a character block
1=bitmap is a continuation of another block

2 byte 14/2 Size of character descriptor header:
14 byte for LaserJet family
2 for Intelifont scalable

3 byte 1/2/3/4 Bitmap class:
1=uncompressed bitmap
2=compressed bitmap
3=Intelifont scalable
4=Compound contour (Intelifont)

4 byte 0/1/2/3 Orientation:
0=portrait
1=landscape
2=reverse portrait
3=reverse landscape

5 byte RESERVED
6 word Left offset (in PCL dots)
8 word Top offset (in PCL dots)

10 word Character width (in PCL dots)
12 word Character height (in PCL dots)
14 word Delta x (in PCL quarter dots)
16 --- Start of character bitmap

Dos bitmapped graphics 511

Notice that the character header field has a total length of 16 bytes, which is consistent
with the value 14 decimal stored at offset 2 of the character descriptor header, since this
last value refers to the "remaining" portion of the header field.

The continuation entry, at offset 1 of the header block, is related to the limit of 32,767
bytes imposed by the PCL language on the character bitmap. If a character bitmap
exceeds this limit it has to be divided into two or more sections. In this case the
continuation entry is set to indicate that the associated bitmap (which follows this byte) is
a continuation of the previous one.

The entry at offset 3 indicates the bitmap class. Most PCL character bitmaps in
commercial use are in the uncompressed format (class 1). Compressed bitmaps use a run-
length compression scheme. This variation, introduced in PCL level 5, is not compatible
with level 4 devices, such as the LaserJet series II and compatible printers. For this
reason we will not discuss the compressed encodings any further.

The entry at offset 4 indicates the orientation of the character. The word "portrait" is
used in this context in reference to a character that takes up a vertical rectangle, such as
the one in Figure 15–16. By the same token, characters located in a horizontal rectangle
are referred to as being of "landscape" orientation. Notice that this use of the words
"portrait" and "landscape" is related to photographic terminology.

The remaining entries in the character descriptor header refer to the character's
dimensions. Figure 15–17 shows the locations of these dimensions in a sample character.

Figure 15–17 PCL Character
Dimensions

Notice the two reference points along the baseline of the character in Figure 15–17. The
start reference point can be thought of as the cursor position at the start of character

The pc graphics handbook 512

display. The end reference point marks the cursor position once the character is
displayed. The character reference points are used by software in implementing
typesetting operations such as kerning and proportional spacing (see Glossary).

The word entry at offset 6 in Table 15–8 indicates the character's left offset (see
Figure 15–17). This dimension is the distance, expressed in PCL dots, from the character
pattern to the start reference point. The word at offset 7 refers to the character's top offset,
which is the distance from the reference points to the top of the character pattern.

The character width entry, located at offset 10 in Table 15–8, determines the
character’s dot width. The dimension extends from the leftmost dot to the rightmost one.
Notice that the actual bitmap often requires padding so that it can be encoded in byte-size
storage units. Therefore the character width may not coincide with the width of the
bitmap, as is the case in the character shown in Figure 15–17. The character height,
located at offset 12 in Table 15–8, is the measurement of the number of vertical dots in
the character map (see Figure 15–17). The delta x dimension, located at offset 14 in
Table 15–8, is the distance, measured in PCL quarter dots, from the start reference point
to the end reference point (see Figure 15–17).

The PCL Bitmap

The bitmap for each particular character starts at offset 16 of the character descriptor
header. Software can obtain the bitmap dimensions from the character width and
character height entries in the header. For example, in Table 15–6 we find the character
width for the first character in the set at offset 011EH. The value in this case is 0007 (7
decimal) which indicates that the character map is 7 dots wide. Since storage must be in
byte units, the bitmap takes up 1 horizontal byte, in which the low-order bit is padded
with zero. The bitmap height is obtained from the character height dimensions at offset
120H, which stores the value 0029 (41 decimal). Therefore we calculate that the
character bitmap is 1 byte wide and 41 bytes high, which means that it occupies 41 bytes
of memory space.

Notice that the first character represented in Table 15–6 corresponds with the decimal
value 33. The font uses the conventional US symbol set, therefore we can refer to Table
1–2 and find that the value 33 (21H) corresponds to the exclamation point symbol. This
means that the 1-by-41 bitmap mentioned in the preceding paragraph represents the
exclamation point symbols in the Hewlett-Packard TmsRmn, 14 point, normal density,
portrait font encoded in the file named TR140RPN.USP. Figure 15–18 shows the bitmap
for the lowercase letter "q" used in the previous illustrations.

Dos bitmapped graphics 513

Figure 15–18 Character Dot Drawing
and Bitmap

15.4.2 PCL Bitmap Support Software

The book’s software package includes several software items related to PCL bitmap
operations. The VGA2 module of the GRAPHSOL library includes two procedures
which allow the screen display of a Hewlett-Packard printer font in PCL format. One
procedure, named READ_HPFONT, allows loading a PCL soft font into RAM. The
second procedure, named FINE_TEXTHP, allows displaying a text message using a
previously loaded PCL font. The MATCH program (in the book's software package) uses
PCL fonts to display large screen text. It is also possible to display screen text message
using PCL fonts while in XGA and SuperVGA modes. In this case it is first necessary to
call the SET_DEVICE procedure in the VGA3 module in order to enable XGA or
SuperVGA display operations.

In addition to the library routines, the book’s software package contains a program
named CSETHP which displays all the characters in a PCL disk file. The program uses a
VGA graphics mode.

The pc graphics handbook 514

Part III
Windows API Graphics

Chapter 16
Graphics Programming in Windows

Topics:

• Using Developer Studio wizards
• Elements of a Windows program
• WinMain()
• The Windows procedure
• Using program resources
• The HelloWindows program

This chapter is a brief review of the basic techniques used in Windows API
programming. The book assumes a basic level of Windows programming skills, therefore
it is not a intended to teach Windows programming, but to serve as a review and a
refresher. Furthermore, we need to agree upon a code base for the chapters that follow.
Here we establish the code structures and the coding style for the rest of the book.

16.1 Windows at the API Level

Our approach to Windows programming is to avoid class libraries or other wrappers,
such as The Microsoft Foundation Classes (MFC). At an initial level of Windows
programming the use of pre-canned interfaces may have some attraction; however, in
high-performance graphics these packages are, at best, a nuisance and more often a major
hindrance. On the other hand, we do take advantage of the editing and code generating
facilities provided by Developer Studio and use the program-generating wizards, since
there is no control or performance price to be paid in this case.

Before we can create a major graphics application we must be able to construct the
Windows code framework that supports it. Fabricating a program requires not only
knowledge of the programming language, but also skills in using the development
environment. For example, to create an icon for your program’s title bar you need to
know about the API services that are used in defining and loading the icon, but you also
need to have skills in using the icon editor that is part of Developer Stu-dio. Even after
the icon has been created and stored in a file, you need to follow a series of steps that
make this resource available to the program.

16.1.1 The Program Project

We assume that you have already installed one of the supported software development
products. The text is compatible with Microsoft Visual C++ Version 5.0 and later. We
used Visual C++ Version 6.0 in creating the sample programs for this book. The

following section describes the steps in creating a new project in Microsoft Developer
Studio, inserting a source code template into the project, modifying and saving the
template with a new name, and compiling the resulting file into a Windows executable.

Creating a Project

You start Developer Studio by double-clicking on the program icon on the desktop, or
selecting it from the Microsoft Visual C++ program group. The initial screen varies with
the program version, the Windows configuration, the options selected when Developer
Studio was last executed, and the project under development. Version 5.0 introduced the
notion of a project workspace, also called a workspace, as a container for several related
projects. In version 5 the extension .mdp, used previously for project files, was changed
to .dsw, which now refers to a workspace. The dialog boxes for creating workspaces,
projects, and files were also changed. The workspace/project structure and the basic
interface are also used in Visual C++ Version 6.0.

We start by creating a project from a template file. The walkthrough is intended to
familiarize the reader with the Developer Studio environment. Later in this chapter you
will learn about the different parts of a Windows program and develop a sample
application. We call this first project Program Zero Demo, for the lack of a better name.
The project files are found in the Program Zero project folder in the book’s software
package.

A project is located in a workspace, which can include several projects. Project and
workspace can be located in the same folder or subfolder or in different ones, and can
have the same or different names. In the examples and demonstration programs used in
this book we use the same folder for the project and the workspace. The result of this
approach is that the workspace disappears as a separate entity, simplifying the creation
process.

A new project is started by selecting the New command from the Developer Studio
File menu. Once the New dialog box is displayed, click on the Project tab option and
select a project type from the displayed list. In this case our project is Win32 Application.
Make sure that the project location entry corresponds to the desired drive and folder. If
not, click the button to the right of the location text box and select another one. Next,
enter a project name in the corresponding text box at the upper right of the form. The
name of the project is the same one used by Development Studio to create a project
folder. In this example we create a project named Program Zero Demo which is located
in a folder named 3DB_PROJECTS. You can use these same names or create ones of
your liking. Note that as you type the project name it is added to the path shown in the
location text box. At this point the New dialog box appears as in Figure 16–1.

Graphics programming in windows 519

Figure 16–1 Using the New Command
in Developer Studio File Menu

Make sure that the radio button labeled Create new workspace is selected so that clicking
the OK button on the dialog box creates both the project and the workspace. At this point,
you have created a project, as well as a workspace of the same name, but there are no
program files in it yet. How you proceed from here depends on whether you are using
another source file as a base or template or starting from scratch.

If you wish to start a source file from scratch, click on Developer Studio Project menu
and select Add To Project and New commands. This action displays the same dialog box
as when creating a project, but now the Files tab is open. In the case of a source file,
select the C++ Source File option from the displayed list and type a file name in the
corresponding text box. The dialog appears as shown in Figure 16–2, on the following
page.

The development method we use in this book is based on using source code templates.
To use a template as a base, or another source file, you have to follow a different series of
steps. Assuming the you have created a project, the next step is to select and load the
program template or source file. We use the template named Templ01.cpp. If you have
installed the book’s software in your system, the template file is in the path
3DB/Templates.

To load the source file into your current project, open Developer Studio Project menu
and select Add To Project item and then the Files commands. This action displays an
Insert Files into Project dialog box. Use the buttons to the right of the Look in text box to
navigate into the desired drive and folder until the desired file is se-lected. Figure 16–3
shows the file Templ01.cpp highlighted and ready for inserting into the project.

The pc graphics handbook 520

Figure 16–2 Creating a New Source
File In Developer Studio

When using a template file to start a new project you must be careful not to destroy or
change the original source. The template file is usually renamed once it is inserted into
the project. It is possible to insert a template file in a project, rename it, delete it from the
project, and then reinsert the renamed file. However, it is easier to rename a copy of the
template file before it is inserted into the project. The following sequence of operations
are used:

1. Click the File menu and select the Open command. Navigate through the directory
structure to locate the file to be used as a template. In this case the file Templ01.cpp is
located in 3DB/Templates folder.

2. With the cursor still in Developer Studio editor pane, open the File menu and click on
the Save As command. Navigate through the directory structure again until you reach
the 3DB_PROJECTS\Program Zero Demo folder. Save the file using the name
Prog_zero.cpp.

3. Click on the Project menu and select the commands Add to Project and Files. Locate
the file named Prog_Zero.cpp in the Insert Files into Project dialog box, select it, and
click the OK button.

Graphics programming in windows 521

Figure 16–3 Inserting an Existing
Source File Into a Project

The file Prog_zero.cpp now appears in the Program Zero Demo file list in Developer
Studio workspace pane. It is also displayed in the Editor window.

The Developer Studio main screen is configurable by the user. Furthermore, the size
of its display areas is determined by the system resolution. For this reason, it is
impossible to depict a Developer Studio screen display that matches the one that every
user will see. In the illustrations and screen snapshots throughout this book we have used
a resolution of 1152-by-854 pixels in 16-bit color with large fonts. However, our screen
format may not exactly match yours. Figure 16–4, on the following page, shows a full
screen display of Developer Studio with the file Prog_zero.cpp loaded in the Editor area.

The Project Workspace pane of Developer Studio was introduced in Version 4.0. It
has four possible views: Class View, File View, Info View, and Resource View. The
Resource View is not visible in Figure 6–4. In order to display the source file in the editor
pane, you must first select File View tab and double-click on the Prog_zero.cpp filename.

At this point, you can proceed to develop the new project using the renamed template
file as the main source. The first step is to make sure that the development software is
working correctly. To do this open the Developer Studio Build menu and click the
Rebuild All command. Developer Studio compiles and builds your program, which is at
this stage nothing more than the renamed template file. The results are shown in the
Output area. If compilation and linking took place without error, reopen the Build menu
and select the Execute Prog_zero.exe command button. If everything is in order, a do-
nothing program executes in your system.

The pc graphics handbook 522

Figure 16–4 Developer Studio Project
Workspace, Editor, and Output Panes

Now click the Save command on the File menu to make sure that all project files are
saved on your hard drive.

16.2 Elements of a Windows Program

The template file Templ01.cpp, which we used and renamed in the previous example, is a
bare bones windows program with no functionality except to display a window on the
screen. Before proceeding to edit this template into a useful program, you should become
acquainted with its fundamental elements. In this section, we take apart the template file
Templ01.cpp for a detailed look into each of its components. The program contains two
fundamental components: WinMain() and the Windows procedure.

16.2.1 WinMain()

All Windows GUI applications must have a WinMain() function. WinMain() is to a
Windows GUI program what main() is to a DOS application. It is usually said that
WinMain() is the program’s entry point, but this is not exactly true. C/C++ compilers

Graphics programming in windows 523

generate a startup code that calls WinMain(), so it is the startup code and not WinMain()
that is actually called by Windows. The WinMain() header line is as follows:

|------------------- Return type
| |-------------- One of the standard calling
conventions
| | defined in windows.h
| | |------- Function name
| | |
| | | [parameter list
--- ------ ------- ------------------------------------

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE
hPrevInstance,
 PSTR szCmdLine, int iCmdShow) {

WINAPI is a macro defined in the windows.h header file which translates the function
call to the appropriate calling convention. Recall that calling conventions refer to how the
function arguments are placed in the stack at call time, and if the caller or the called
routine is responsible for restoring stack integrity after the call. Microsoft Basic,
FORTRAN, and Pascal push the parameters onto the stack in the same order in which
they are declared. In these languages the stack must be restored by the caller. In C and
C++, the parameters are pushed in reverse order, and the stack is restored automatically
after the call returns. For historical reasons (and to take advantage of hardware features of
the Intel processors) Windows requires the Pascal calling convention. In previous
versions of Windows the calling convention for WinMain() was PASCAL or FAR
PASCAL. You can still replace WINAPI for FAR PASCAL and the program will
compile and link correctly, but the use of the WINAPI macro makes your program more
portable.

Parameters

Most often parameters are passed to WinMain() by Windows, but some can be passed by
whatever program executes your application. Your code can inspect these parameters to
obtain information about the conditions in which the program executes. Four parameters
are passed to WinMain():

• HINSTANCE is a handle-type identifier. The variable hInstance is an integer that
identifies the instance of the program. Consider that in a multitasking environment
there can be several copies (instances) of the same program running simultaneously.
Windows sets this value and passes it to your code. Your program needs to access this
parameter to enter it in the WNDCLASSEX structure; also when calling the
CreateWindow() function. Because the handle to the instance is required outside of
WinMain() by many functions of the Windows API, the template file stores it in a
public variable, named pInstance. In general, the use of public variables is undesirable
in Windows programming, but this case is one of the valid exceptions to the rule.

• The variable hPrevInstance is also of type HINSTANCE. This parameter is included in
the call for compatibility with previous versions of Windows, which used a single

The pc graphics handbook 524

copy of the code to run more than one program instance. In 16-bit Windows the first
instance had a special role in the management of resources. Therefore, an application
needed to know if it was the first instance. hPrevInstance held the handle of the
previous instance. In Windows 95/98/NT this parameter is unused and its value is set
to NULL.

• PSTR szCmdLine. This is a pointer to a string that contains the command tail entered
by the user when the program is executed. It works only when the program name is
entered from the DOS command line or from the Run dialog box. For this reason, it is
rarely used by code.

• int iCmdShow. This parameter determines how the window is to be initially displayed.
The program that executes your application (normally Windows) assigns a value to
this parameter, as shown in Table 16–1.

Table 16–1
WinMain() Display Mode Parameters

VALUE MEANING
SW_HIDE Hides the window and activates another window
SW_MINIMIZE Minimizes the specified window and activates the top-

level window in the system’s list
SW_RESTORE Activates and displays a window. If the window is

minimized or maximized, Windows restores it to its
original size and position (same as SW_SHOWNORMAL)

SW_SHOW Activates a window and displays it in its current size and
position

SW_SHOWMAXIMIZED Activates a window and displays it as a maximized
window

SW_SHOWMINIMIZED Activates a window and displays it as an icon
SW_SHOWMINNOACTIVE Displays a window as an icon. The active window remains

active
SW_SHOWNA Displays a window in its current state. The active window

remains active
SW_SHOWNOACTIVATE Displays a window in its most recent size and position.

The active window remains active
SW_SHOWNORMAL Activates and displays a window. If the window is

minimized or maximized, Windows restores it to its
original size and position (same as SW_RESTORE)

16.2.2 Data Variables

The program file Templ01.cpp defines several variables. One of them, the handle to the
program’s main window, is defined globally. The other ones are local to WinMain() or
the windows procedure. The variable defined globally is:

Graphics programming in windows 525

HWND hwnd;

HWND is a 16-bit unsigned integer which serves as a handle to a window. The variable
hwnd refers to the actual program window. The variable is initialized when we make the
call to CreateWindow() service, described later in this section.

The variables defined in WinMain() are as follows:

static char szClassName[]="MainClass" ; // Class name
MSG msg ;

The first one is and array of char that shows the application’s class name. In the template
it is given the name MainClass, which you can replace for a more meaning-ful one. The
application class name must be the same one used in the WNDCLASSEX structure.

MSG is a message-type structure of which msg is a variable. The MSG structure is
defined in the Windows header files as follows:

typedef struct tagMSG { // msg
 HWND hwnd; // Handle to window receiving
message
 UINT message; // message number
 WPARAM wParam; // Context-dependent additional
information
 LPARAM lParam; // about the message
 DWORD time; // Time at which message was
posted
 POINT pt; // Cursor position when message
was posted
} MSG;

The comments to the structure members show that the variable holds information that is
important to the executing code. The values of the message variable are reloaded every
time a new message is received.

16.2.3 WNDCLASSEX Structure

This structure is defined in the windows header files, as follows:

typedef struct tagWNDCLASSEX{
UINT cbSize;
UINT style;
WNDPROC lpfnWndProc ;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground

The pc graphics handbook 526

LPCSTR lpszMenuName ;
LPCSTR lpszClassName
HICON hIconSm;
} WNDCLASSEX;

The WNDCLASSEX structure contains window class information. It is used with the
RegisterClassEx() and GetClassInfoEx() functions. The structure is similar to the
WNDCLASS structure used in 16-bit Windows. The differences between the two
structures is that WNDCLASSEX has a cbSize member, which specifies the size of the
structure, and the hIconSm member, which contains a handle to a small icon associated
with the window class. In the template file Templ01.cpp the structure is declared and the
variable initialized as follows:

// Creating a WNDCLASSEX structure
WNDCLASSEX wndclass ;
wndclass.cbSize = sizeof (WNDCLASSEX) ;
wndclass.Style = CS_HREDRAW | CS_VREDRAW ;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadIcon (NULL,
IDI_APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject
 (WHITE_BRUSH) ;
wndclass.lpszMenuName = NULL ;
wndclass.lpszClassName = szClassName ;
wndclass.hIconSm = LoadIcon (NULL, IDI
APPLICATION) ;

The window class is a template that defines the characteristics of a particular window,
such as the type of cursor and the background color. The class also specifies the address
of the windows procedure that carries out the work for the window. The structures
variables define the window class, as follows:

cbSize specifies the size, in bytes, of the structure. The member is set using the sizeof
operator in the statement:

sizeof(WNDCLASSEX);

style specifies the class style or styles. Two or more styles can be combined by means of
the C bitwise OR (|) operator. This member can be any combination of the values in
Table 16–2.

Graphics programming in windows 527

Table 16–2
Summary of Window Class Styles

SYMBOLIC
CONSTANT

ACTION

CS_BYTEALIGNCLIENT Aligns the window’s client area on the byte boundary (in the x
direction) to enhance performance during drawing operations.
This style affects the width of the window and its horizontal
position on the display.

CS_BYTEALIGNWINDOW Aligns a window on a byte boundary (in the direction) to enhance
performance during operations that involve moving or sizing the
window. This style affects the width of the window and its
horizontal position on the display.

CS_CLASSDC Allocates one device context to be shared by all windows in the
class. Window classes are process specific; therefore, different
threads can create windows of the same class.

CS_DBLCLKS Sends double-click messages to the window procedure when the
user double-clicks the mouse while the cursor is within a window
belonging to the class.

CS_GLOBALCLASS Allows an application to create a window of the class regardless
of the value of the hInstance parameter passed to the
CreateWindowEx() function. If you do not specify this style, the
hInstance parameter passed to CreateWindowEx() function must
be the same as the one passed to the RegisterClass() function.

CS_HREDRAW Redraws the entire window if a movement or size adjustment
changes the width of the client area.

CS_NOCLOSE Disables the Close command on the System menu.

SYMBOLIC
CONSTANT

ACTION

CS_OWNDC Allocates a unique device context for each window in the class.
CS_PARENTDC Specifies that child windows inherit their parent window’s device context.

Specifying CS_PARENTDC enhances an application’s performance.
CS_SAVEBITS Saves, as a bitmap, the portion of the screen image obscured by a

window. Windows uses the saved bitmap to recreate the screen image
when the window is removed. This style is useful for small windows
(such as menus or dialog boxes) that are displayed briefly and then
removed before other screen activity takes place.

CS_VREDRAW Redraws the entire window if a movement or size adjustment changes the
height of the client area.

Of these, the styles CS_HREDRAW and CS_VREDRAW are the ones most commonly
used. They can be ORed to produce a window that is automatically redrawn if it is
resized vertically or horizontally, as implemented in the Templ01.cpp code.

lpfnWndProc is a pointer to the window procedure, described later in this chapter. In
the template Templ01.cpp it is initialized to the name of the Windows procedure, as
follows:

The pc graphics handbook 528

wndclass.lpfnWndProc = WndProc;

cbClsExtra is a count of the number of extra bytes to be allocated following the window-
class structure. The operating system initializes the bytes to zero. In the template this
member is set to zero.

cbWndExtra is a count of the number of extra bytes to allocate following the window
instance. The operating system initializes the bytes to zero. In the template this member is
set to zero.

hInstance is a handle to the instance of the window procedure.
hIcon is a handle to the class icon. If this member is NULL, an application must draw

an icon whenever the user minimizes the application’s window. In the template this
member is initialized by calling the LoadIcon() function.

hCursor is a handle to the class cursor. If this member is NULL, an application must
explicitly set the cursor shape whenever the mouse moves into the application’s window.
In the template this member is initialized by calling the LoadCursor() function.

hbrBackground is a background brush. This member can be a handle to the physical
brush to be used for painting the background, or it can be a color value. If it is a color
value, then it must be one of the standard system colors listed in Table 16–3.

Table 16–3
Common Windows Standard System Colors

SYMBOLIC CONSTANT MEANING
COLOR_ACTIVEBORDER Border color of the active window
COLOR_ACTIVECAPTION Caption color of the active window
COLOR_APPWORKSPACE Window background of MDI clients
COLOR_BACKGROUND Desktop color
COLOR_BTNFACE Face color for buttons
COLOR_BTNSHADOW Shadow color for buttons
COLOR_BTNTEXT Text color on buttons
COLOR_CAPTIONTEXT Text color for captions, size boxes, and scroll bar boxes
COLOR_GRAYTEXT Color for dissabled text
COLOR_HIGHLIGHT Color of a selected item
COLOR_HIGHLIGHTTEXT Text color of a selected item
COLOR_INACTIVEBORDER Border color of inactive window
COLOR_INACTIVECAPTION Caption color of an inactive window
COLOR_MENU Background color of a menu
COLOR_MENUTEXT Text color of a menu
COLOR_Scroll bar Color of a scroll bar’s gray area
COLOR_WINDOW Background color of a window
COLOR_WINDOWFRAME Frame color of a window
COLOR_WINDOWTEXT Text color of a window

Graphics programming in windows 529

When this member is NULL, an application must paint its own background whenever it
is required to paint its client area. In the template this member is initialized by calling the
GetStockObject() function.

lpszMenuName is a pointer to a null-terminated character string that specifies the
resource name of the class menu, as it appears in the resource file. If you use an integer to
identify the menu, then you must use the MAKEINTRESOURCE macro. If this member
is NULL, the windows belonging to this class have no default menu, as is the case in the
template file.

lpszClassName is a pointer to a null-terminated string or it is an atom. If this
parameter is an atom, it must be a global atom created by a previous call to the
GlobalAddAtom() function. The atom, a 16-bit value, must be in the low-order word of
lpszClassName; the high-order word must be zero. If lpszClassName is a string, it
specifies the window class name. In Templ01.cpp this member is set to the
szClassName[] array.

In Windows 95/98 hIconSm is a handle to a small icon that is associated with the
window class. This is the icon shown in dialog boxes that list filenames and by Windows
Explorer. A Windows 95/98 application can use a predefined icon in this case, using the
LoadIcon function with the same parameters as for the hIcon member. In Windows NT
this member is not used and should be set to NULL. Windows 95/98 applications that set
the small icon to NULL still have the default small icon displayed on the task bar.

In most cases it is better to create both the large and the small icon than to let
Windows create the small one from the large bitmap. Later in this chapter we describe
how to create both icons as a program resource and how to make these resources
available to the application.

Contrary to what has sometimes been stated, the LoadIcon() function cannot be used
to load both large and small icons from the same resource. For example, if the icon
resource is named IDI_ICON1, and we proceed as follows:

wndclass.hicon = LoadIcon (hInstance,
 MAKEINTRESOURCE(IDI_ICON1);
.
.
.
wndclass.hiconSm = LoadIcon (hInstance,
 MAKEINTRESOURCE(IDI_ICON1);

the result is that the large icon is loaded from the resource file, but not the small one. This
happens even if the resource file contains both images. Instead, you must use the
LoadImage() function, as follows:

wndclass.hIcon = (HICON)LoadImage(hInstance,
 MAKEINTRESOURCE(IDI_ICON1),
 IMAGE_ICON, // Type
 32, 32, // Pixel size
 LR_DEFAULTCOLOR) ;
.
.
.

The pc graphics handbook 530

wndclass.hIconSm = (HICON)LoadImage(hInstance,
 MAKEINTRESOURCE(IDI_ICON1),
 IMAGE_ICON, // Type
 16, 16, // Pixel size
 LR_DEFAULTCOLOR) ;

Now both the large and the small icon resources are loaded correctly and are used as
required. Also notice that the value returned by LoadImage() is typecast into HICON.
This manipulation became necessary starting with version 6 of Microsoft Visual C++ due
to changes made to the compiler in order to improve compatibility with the ANSI C++
standard.

16.2.4 Registering the Windows Class

Once your code has declared the WNDCLASSEX structure and initialized its member
variables, it has defined a window class that encompasses all the structure attributes. The
most important ones are the window style (wndclass.style), the pointer to the Windows
procedure (wndclass.lpfnWndProc), and the window class name (wndclass.
lpszClassName). The RegisterClassEx() function is used to notify Windows of the
existence of a particular window class, as defined in the WNDCLASSEX structure
variable. The address-of operator is used to reference the location of the specific structure
variable, as in the following statement:

RegisterClassEx (&wndclass) ;

The RegisterClassEx() function returns an atom (16-bit integer). This value is non-zero if
the class is successfully registered. Code should check for a successful registration since
you cannot create a window otherwise. The following construct ensures that execution
does not proceed if the function fails.

if(!RegisterClassEx (&wndclass))
 return(0);

This coding style is the one used in the template Templ01.cpp.

16.2.5 Creating the Window

A window class is a general classification. Other data must be provided at the time the
actual windows is created. The CreateWindowEx() function receives the additional
information as parameters. CreateWindowEx() is a Windows 95 version of the
CreateWindow() function. The only difference between them is that the new version
supports an extended window style passed as its first parameter.

The CreateWindowEx() function is very rich in arguments, many of which apply only
to special windows styles. For example, buttons, combo boxes, list boxes, edit boxes, and
static controls can all be created with a CreateWindowEx() call. At this time, we refer

Graphics programming in windows 531

only to the most important function parameters that relate to the a program’s main
window.

In the file Templ01.cpp the call to CreateWindowEx is
coded as follows:
 hwnd=CreateWindowEx (
 WS_EX_LEFT, // left aligned
(default)
 szClassName, // pointer to class
name
 "Window Caption", // window caption
(title bar)
 WS_OVERLAPPEDWINDOW, // window style
 CW_USEDEFAULT, // initial x
position
 CW_USEDEFAULT, // initial y
position
 CW_USEDEFAULT, // initial x size
 CW_USEDEFAULT, // initial y size
 NULL, // parent window
handle
 NULL, // window menu
handle
 hInstance, // program instance
handle
 NULL) ; // creation
parameters

The first parameter passed to the CreateWindowEx() function is the extended window
style introduced in the Win32 API. The one used in the file Templ01.cpp,
WS_EX_LEFT, acts as a placeholder for others that you may want to select, since it is
actually the default value. Table 16–4 lists some of the most common extended styles.

The second parameter passed to the CreateWindowEx() function call is either a
pointer to a string with the name of the window type, a string enclosed in double
quotation marks, or a predefined name for a control class.

In the template file, szClassName is a pointer to the string defined at the start of
WinMain(), with the text “MainClass.” You can edit this string in your own applications
so that the class name is more meaningful. For example, if you were coding an editor
program you may rename the application class as “TextEdClass.” However, this is
merely a name used by Windows to associate a window with its class; it is not displayed
as a caption or used otherwise.

Control classes can also be used as a window class name. These classes are the
symbolic constants BUTTON, Combo box, EDIT, List box, MDICLIENT, Scroll bar,
and STATIC.

The third parameter can be a pointer to a string or a string enclosed in double
quotation marks entered directly as a parameter. In either case, this string is used as the
caption to the program window and is displayed in the program’s title bar. Often this
caption coincides with the name of the program. You should edit this string to suit your
own program.

The pc graphics handbook 532

Table 16–4
Most Commonly Used Windows Extended Styles

SYMBOLIC CONSTANT MEANING
WS_EX_ACCEPTFILES The window created with this style accepts drag-

drop files.
WS_EX_APPWINDOW A top-level window is forced onto the application

taskbar when the window is minimized.
WS_EX_CLIENTEDGE Window has a border with a sunken edge.
WS_EX_CONTEXTHELP The title bar includes a question mark. When the

user clicks the question mark, the cursor changes to
a question mark with a pointer. If the user then
clicks a child window, it receives a WM_HELP
message.

WS_EX_CONTROLPARENT Allows the user to navigate among the child
windows of the window by using the TAB key.

WS_EX_DLGMODALFRAME Window that has a double border. Optionally the
window can be created with a title bar by specifying
the WS_CAPTION style in the dwStyle parameter.

WS_EX_LEFT Window has generic “left-aligned” properties. This
is the default.

WS_EX_MDICHILD Creates an MDI child window.
WS_EX_NOPARENTNOTIFY Specifies that a child window created with this style

does not send the WM_PARENTNOTIFY message
to its parent window when it is created or destroyed.

WS_EX_OVERLAPPEDWINDOW Combines the WS_EX_CLIENTEDGE and
WS_EX_WINDOWEDGE styles.

WS_EX_PALETTEWINDOW Combines the WS_EX_WINDOWEDGE,
WS_EX_TOOLWINDOW, and
WS_EX_TOPMOST styles.

WS_EX_RIGHTSCROLLBAR Scroll bar Vertical scroll bar (if present) is to the
right of the client area. This is the default.

WS_EX_STATICEDGE Creates a window with a three-dimensional border
style intended to be used for items that do not
accept user input.

WS_EX_TOOLWINDOW Creates a tool window. This type of window is
intended to be used as a floating toolbar.

WS_EX_TOPMOST A window created with this style should be placed
above all non-topmost windows and should stay
above them, even when the window is deactivated.

WS_EX_TRANSPARENT A window created with this style is transparent.
That is, any windows that are beneath it are not
obscured by it.

WS_EX_WINDOWEDGE Window has a border with a raised edge.

Graphics programming in windows 533

Table 16–5
Window Styles

SYMBOLIC CONSTANT MEANING
WS_BORDER Window that has a thin-line border.
WS_CAPTION Window that has a title bar (includes the WS_BORDER style).
WS_CHILD Child window. This style cannot be used with the WS_POPUP

style.
WS_CLIPCHILDREN Excludes the area occupied by child windows when drawing

occurs within the parent window.
WS_CLIPSIBLINGS Clips child windows relative to each other. When a particular child

window receives a WM_PAINT message, this style clips all other
overlapping child windows out of the region of the child window
to be updated. If WS_CLIPSIBLINGS is not specified and child
windows overlap, it is possible to draw within the client area of a
neighboring child window.

WS_DISABLED Window is initially disabled. A disabled window cannot receive
input from the user.

WS_DLGFRAME Window has a border of a style typically used with dialog boxes.
The window does not have a title bar.

WS_HSCROLL Window that has a horizontal scroll bar.
WS_ICONIC Window is initially minimized. Same as the WS_MINIMIZE style.
WS_MAXIMIZE Window is initially maximized.
WS_MAXIMIZEBOX Window that has a Maximize button. Cannot be combined with the

WS_EX_CONTEXTHELP style.
WS_MINIMIZE Window is initially minimized. Same as the WS_ICONIC style.
WS_MINIMIZEBOX Window has a Minimize button. Cannot be combined with the

WS_EX_CONTEXTHELP style.
WS_OVERLAPPED Overlapped window. Has a title bar and a border.
WS_OVERLAPPEDWINDOW Overlapped window with the WS_OVERLAPPED,

WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles. Same as
the WS_TILEDWINDOW style.

WS_POPUP Pop-up window. Cannot be used with the WS_CHILD style.

SYMBOLIC
CONSTANT

MEANING

WS_POPUPWINDOW Pop-up window with WS_BORDER, WS_POPUP, and WS_SYSMENU
styles. The WS_CAPTION and WS_POPUPWINDOW styles must be
combined to make the System menu visible.

WS_SIZEBOX Window that has a sizing border. Same as the WS_THICKFRAME style.
WS_SYSMENU Window that has a System-menu box in its title bar. The WS_CAPTION

style must also be specified.
WS_TILED Overlapped window. Has a title bar and a border. Same as the

WS_OVERLAPPED style.
WS_TILEDWINDOW Overlapped window with the WS_OVERLAPPED, WS_CAPTION,

WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and
WS MAXIMIZEBOX styles. Same as the

The pc graphics handbook 534

WS_OVERLAPPEDWINDOW style
WS_VISIBLE Window is initially visible.
WS_VSCROLL Window that has a vertical scroll bar.

The fourth parameter is the window style. Over 25 styles are defined as symbolic
constants. The most used ones are listed in Table 16–5.

The style defined in the template file Templ01.ccp is WS_OVERLAPPEDWINDOW.
This style creates a window that has the styles WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX. It is the most common style of windows.

The fifth parameter to the CreateWindowEx() service defines the initial horizontal
position of the window. The value CS_USERDEFAULT (0x80000000) determines the
use of the default position. The template file uses the same CS_USERDEFAULT
symbolic constant for the y position, and the windows x and y size.

Parameters nine and ten are set to NULL since this window has no parent and no
default menu.

The eleventh parameter, hInstance, is a the handle to the instance that was passed to
WinMain() by Windows.

The last entry, called the creation parameters, can be used to pass data to a program. A
CREATESTRUCT-type structure is used to store the initialization parameters passed to
the windows procedure of an application. The data can include an instance handle, a new
menu, the window’s size and location, the style, the window’s name and class name, and
the extended style. Since no creation parameters are passed, the field is set to NULL.

The CreateWindowEx() function returns a handle to the window of type HWND. The
template file Templ01.cpp stores this handle in a global variable named hwnd. The
reason for this is that many functions in the Windows API require this handle. By storing
it in a global variable we make it visible throughout the code.

If CreateWindowsEx() fails, it returns NULL. Code in WinMain() can test for this
error condition with the statement:

if(!hwnd)
 return(0);

We do not use this test in the template file Templ01.cpp because it is usually not
necessary. If WinMain() fails, you may use the debugger to inspect the value of hwnd
after CreateWindowEx() in order to make sure that a valid handle was returned.

16.2.6 Displaying the Window

CreateWindowEx() creates the window internally but does not display it. To display the
window your code must call two other functions: ShowWindow() and UpdateWindow().
ShowWindow() sets the window’s show state and UpdateWindow() updates the
window’s client area. In the case of the program’s main window, ShowWindow() must
be called once, using as a parameter the iCmdShow value passed by Windows to
WinMain(). In the template file the call is coded as follows:

Graphics programming in windows 535

ShowWindow (hwnd, iCmdShow) ;

The first parameter to ShowWindow() is the handle to the window returned by
CreateWindowEx(). The second parameter is the window’s display mode parameter,
which determines how the window must be initially displayed. The display mode
parameters are listed in Table 16–1, but in this first call to ShowWindow() you must use
the value received by WinMain().

UpdateWindow() actually instructs the window to paint itself by sending a
WM_PAINT message to the windows procedure. The processing of the WM_PAINT
message is described later in this chapter. The actual code in the template file is as
follows:

UpdateWindow (hwnd) ;

If all has gone well, at this point your program is displayed on the screen. It is now time
to implement the message passing mechanisms that are at the heart of event-driven
programming.

16.2.7 The Message Loop

In an event-driven environment there can be no guarantee that messages are processed
faster than they originate. For this reason Windows maintains two message queues. The
first type of queue, called the system queue, is used to store messages that originate in
hardware devices, such as the keyboard and the mouse. In addition, every thread of
execution has its own message queue. The message handling mechanism can be
described with a simplified example: when a keyboard event occurs, the device driver
software places a message in the system queue. Windows uses information about the
input focus to decide which thread should handle the message. It then moves the message
from the system queue into the corresponding thread queue.

A simple block of code, called the message loop, removes a messages from the thread
queue and dispatches it to the function or routine which must handle it. When a special
message is received, the message loop terminates, and so does the thread. The message
loop in Templ01.cpp is coded as follows:

while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
return msg.wParam ;

The while statement calls the function GetMessage(). The first parameter to
GetMessage() is a variable of the structure type MSG, described in Section 16.2.2. The
structure variable is filled with information about the message in the queue, if there is
one. If no message is waiting in the queue, Windows suspends the application and assigns

The pc graphics handbook 536

its time slice to other threads of execution. In an event-driven environment, programs act
only in response to events. No event, no message, no action.

The second parameter to GetMessage() is the handle to a window for which to retrieve
a message. Most applications set this parameter to NULL, which signals that all messages
for windows that belong to the application making the call should be retrieved. The third
and the fourth parameter to GetMessage() are the lowest and the highest message
numbers to be retrieved. Threads that only retrieve messages within a particular range can
use these parameters as a filter. When the special value 0 is assigned to both of these
parameters (as is the case in our message loop) then no filtering is performed and all
messages are passed to the application.

There are two functions inside the message loop. TranslateMessage() is a keyboard
processing function that converts keystrokes into characters. The characters are then
posted to the message queue. If the message is not a keystroke that needs translation, then
no special action is taken. The DispatchMessage() function sends the message to the
windows procedure, where it is further processed and either acted upon, or ignored. The
windows procedure is discussed in the following section. GetMessage() returns 0 when a
message labeled WM_QUIT is received. This signals the end of the message loop; at this
point execution returns from WinMain(), and the application terminates.

16.3 The Window Procedure

At this moment in a program’s execution the window class has been registered, the
window has been created and displayed, and all messages are being routed to your code.
The windows procedure, sometimes called the window function, is where you write code
to handle the messages received from the message loop. It is in the windows procedure
where you respond to the events that pertain to your program.

Every window must have a window procedure. Although the name WinProc() is
commonly used, you can use any other name for the windows procedure provided that it
appears in the procedure header, the prototype, in the corresponding entry of the
WNDCLASSEX structure, and that it does not conflict with another name in your
application. Also, a Windows program can have more than one windows procedure. The
program’s main window is usually registered in WinMain() but others can be registered
elsewhere in an application. Here again, each windows procedure corresponds to a
window class, has its own WNDCLASSEX structure, as well as a unique name.

In the template, the windows procedure is coded as follows:

 |------------------------ Return type, equivalent to
a long type
 | |---------------- Same as FAR PASCAL calling
convention.
 | | Used in windows and dialog
procedures.
 | | |------- Procedure name
 | | | [parameter list
...]

Graphics programming in windows 537

------- -------- ------- ------------------------------

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM
wParam,
 LPARAM 1Param) {

The windows procedure is of callback type. The CALLBACK symbol was first
introduced in Windows 3.1 and is equivalent to FAR PASCAL, and also to WINAPI,
since all of them currently correspond to the __stdcall calling convention. Although it is
possible to substitute __stdcall for CALLBACK in the function header, it is not
advisable, since this could compromise the application’s portatibility to other platforms
or to future versions of the operating system.

The return value of a windows procedure is of type LRESULT, which is a 32-bit
integer. The actual value depends on the message, but it is rarely used by application
code. However, there are a few messages for which the windows procedure is expected to
return a specific value. It is a good idea to check the Windows documentation when in
doubt.

16.3.1 Windows Procedure Parameters

The four parameters to the windows procedure are the first four fields in the MSG
structure. The MSG structure is discussed earlier in this chapter. Since the windows
procedure is called by Windows, the parameters are provided by the operating system at
call time, as follows:

• hwnd is the handle to the window receiving the message. This is the same handle
returned by CreateWindow().

• iMsg is a 32-bit unsigned integer (UINT) that identifies each particular message. The
constants for the various messages are defined in the windows header files. They all
start with the letters WM_, which stand for window message.

• wParam and lParam are called the message parameters. They provide additional
information about the message. Both values are specific to each message.

The last two members of the message structure, which correspond to the message’s time
of posting and cursor position, are not passed to the windows procedure. However,
application code can use the functions GetMessageTime() and GetMessagePos() to
retrieve these values.

16.3.2 Windows Procedure Variables

The implementation of the windows procedure in Templ01.cpp starts by declaring a
scalar of type HDC and two structure variables of type HWND and MSG respectively.
The variables are as follows:

• hdc is a handle to the device context. A device context is a data structure maintained by
Windows which is used in defining the graphics objects and their attributes, as well as
their associated graphics modes. Devices such as the video display, printers, and

The pc graphics handbook 538

plotters, must be accessed through a handle to their device contexts, which is obtained
from Windows.

• ps is a PAINTSTRUCT variable. The structure is defined by Windows as follows:

typedef struct tagPAINTSTRUCT {
 HDC hdc; // identifies display device
 BOOL fErase; // not-zero if background must
be erased
 RECT rcPaint; // Rectangle structure in which
painting is
 // requested
 BOOL fRestore; // RESERVED
 BOOL fIncUpdate; // RESERVED
 BYTE rgbReserved[32]; // RESERVED
} PAINTSTRUCT;

The structure contains information that is used by the application to paint its own
client area.

• rect is a RECT structure variable. The RECT structure is also defined by Windows:

typdef struct _RECT {
 LONG left; // x coordinate of upper-left corner
 LONG top; // y of upper-left corner
 LONG right; // x coordinate of bottom-right
corner
 LONG bottom; // y of bottom-right
} RECT;

The RECT structure is used to define the corners of a rectangle, in this case of the
application’s display area, which is also called the client area.

16.3.3 Message Processing

The windows procedure receives and processes messages. The message can originate as
follows:

• Some messages are dispatched by WinMain(). In this group are the messages placed in
the thread’s message queue by the DispatchMessage() function in the message loop.
Messages handled in this manner are referred to as queued messages. Queued
messages originate in keystrokes, mouse movements, mouse button clicks, the system
timer, and in orders to redraw the window.

• All other messages come directly from Windows. These are called nonqueued
messages.

The windows procedure examines each message, queue or nonqueued, and either takes
action or passes the message back for default processing. In the template file
Templ01.cpp the message processing skeleton is coded as follows:

Graphics programming in windows 539

switch (iMsg)
 {
// Windows message processing
 // Preliminary operations
 case WM_CREATE:
 return (0);
 // Redraw window
 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;
 GetClientRect (hwnd, &rect) ;
 // Initial display operations here
 EndPaint (hwnd, &ps) ;
 return 0 ;
 // End of program execution
 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

Messages are identified by uppercase symbolic constants that start with the characters
WM_ (window message). Over two hundred message constants are defined in Windows.
Three messages are processed in the template file: WM_CREATE, WM_PAINT and
WM_DESTROY.

When the Windows procedure processes a message it must return 0. If it does not
process a particular message, then the function DefWindowsProc() is called to provide a
default action.

WM_CREATE Message Processing

The WM_CREATE message is sent to an application as a result of the
CreateWindowEx() function in WinMain(). This message gives the application a chance
to perform preliminary initialization, such as displaying a greeting screen, or playing a
sound file. In the template, the WM_CREATE processing routine does nothing. It serves
as a placeholder where the programmer can inserts the appropriate code.

WM_PAINT Message Processing

The WM_PAINT message informs the program that all or part of the client window must
be repainted. This happens when the user minimizes, overlaps, or resizes the client
window area. Recall that the style of the program’s main window is defined in the
template with the statement:

wndclass.style = CS_HREDRAW | CS_VREDRAW ;

This style determines that the screen is redrawn if it is resized vertically or horizontally.

The pc graphics handbook 540

In WM_PAINT, processing begins with the BeginPaint() function. BeginPaint() serves
to prepare the window for a paint operation by filling a variable of type PAINTSTRUCT,
previously discussed. The call to BeginPaint() requires the hwnd variable, which is the
handle to the window that is to be painted. Also a variable ps, of a structure of type
PAINTSTRUCT, which is filled by the call. During BeginPaint() Windows erases the
background using the currently defined brush.

The call to GetClientRect() requires two parameters. The first one is the handle to the
window (hwnd), which is passed to the windows procedure as a parameter. In the
template file this value is also stored in a public variable. The second parameter is the
address of a structure variable of type RECT, where Windows places the coordinates of
the rectangle that defines the client area. The left and top values are always set to zero.

Processing ends with EndPaint(). EndPaint() notifies Windows that the paint operation
has concluded. The parameters passed to EndPaint() are the same ones passed to
BeginPaint(): the handle to the window and the address of the structure variable of type
PAINTSTRUCT.

WM_DESTROY Message Processing

The WM_DESTROY message is received by the windows procedure when the user takes
an action to destroy the window, usually clicking the Close button or selecting the Close
or Exit commands from the File or the System menus. The standard processing
performed in WM_DESTROY is:

PostQuitMessage (0) ;

The PostQuitMessage() function inserts a WM_QUIT message in the message queue,
thus terminating the GetMessage loop and ending the program.

16.3.4 The Default Windows Procedure

The code in the template file contains a return statement for each of the messages that it
handles. For example:

case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;
 GetClientRect (hwnd, &rect) ;
// Initial display operations here
 EndPaint (hwnd, &ps) ;
 return 0 ;

The last statement in this routine returns a value of zero to Windows. The Windows
documentation states that zero must be returned when an application processes the
WM_PAINT message. Some Windows messages, not many, require a return value other
than zero.

Many of the messages received from Windows, or retrieved from the message queue,
are of no interest to your application. In this case, code must provide a default action for

Graphics programming in windows 541

those messages that it does not handle. Windows contains a function, named
DefWindowsProc(), that ensures this default action. DefWindowsProc() provides specific
processing for those messages that require it, thus implementing a default behavior. For
those messages that can be ignored, DefWindowsProc() returns zero. Your application
uses the return value of DefWindowsProc() as its own return value from the Windows
procedure. This action is coded as follows in the template file:

return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

The parameters passed to DefWindowsProc() are the same message parameters received
by your windows procedure from the operating system.

16.4 The WinHello Program

In the first walkthrough, at the beginning of this chapter, we used the template file
Templ01.cpp to create a new project, which we named Program Zero Demo. Program
Zero Demo resulted in a do-nothing program since no modifications were made to the
template file at that time. In the present walkthrough we proceed to make modifications
to the template file in order to create a Windows program different from the tem-plate.
This project, which we named Hello Windows, is a Windows version of the classic
"Hello World" program.

We first create a new project and use the template file Templ01.cpp as the source code
base for it. In order to do this we must follow all the steps in the first walkthrough, except
that the project name is now Hello Windows and the name template file Templ01.cpp is
copied and renamed WinHello.cpp. After you have finished all the steps in the
walkthrough you will have a project named Hello Windows and the source file named
WinHello.cpp listed in the Project Workspace and displayed in the Editor Window. After
the source file is renamed, you should edit the header block to reflect the file’s new name
and the program's purpose. Figure 16–5 shows the Developer Studio screen at this point.

The pc graphics handbook 542

Figure 16–5 The Hello Windows
Project and Source File

The project Hello Windows, which we are about to code, has the following features:

• The caption displayed on the program title bar is changed to "Hello Windows."
• When the program executes it displays a greeting message on the center of its client

area.
• The program now contains a customized icon. A small version of the icon is displayed

in the title bar and a larger one is used when the program’s executable is represented
by a shortcut on the Windows desktop.

Once you have created the project named Hello Windows and included in it the source
file WinHello.cpp, you are ready to start making modifications to the source and inserting
new elements into the project.

16.4.1 Modifying the Program Caption

The first modification that we make to the source is to change the caption that is
displayed on the title bar when the program executes. This requires editing the third
parameter passed to the CreateWindowsEx() function in WinMain(). The parameter now
reads "Hello Windows." Throughout this book we use the project’s name, or a variation
of it, as the title bar caption. Our reason for this is to make it easy to find the project files
from a screen snapshot of the executable.

Graphics programming in windows 543

16.4.2 Displaying Text in the Client Area

The second modification requires entering a call to the DrawText() API function in the
case WM_PAINT processing routine. The routine now is:

case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;
 GetClientRect (hwnd, &rect) ;
 // Display message in the client area
 DrawText (hdc,
 "Hello World from Windows",
 −1,
 &rect,
 DT_SINGLELINE | DT_CENTER |
DT_VCENTER);
 EndPaint (hwnd, &ps) ;
 return 0 ;

The call to DrawText() requires five parameters. When calls require several parameters,
we can improve the readability of the source by devoting a separate text line to each
parameter, or to several associated parameters, as in the previous listing.

• The first parameter to DrawText() is the handle to the device context. This value was
returned by the call to BeginPaint(), described previously in this chapter.

• The second parameter to DrawText() points to the string to be displayed. The string can
also be enclosed in double quotation marks, as in the previous listing.

• The third parameter is −1 if the string defined in the second parameter terminates in
NULL. If not, then the third parameter is the count of the number of characters in the
string.

• The fourth parameter is the address of a structure of type RECT which contains the
logical coordinates of the area in which the string is to be displayed. The call to
GetClientRect(), made in the WM_PAINT message intercept, filled the members of
the rect structure variable.

• The fifth parameter are the text formatting options. Table 16–6 lists the most used of
these controls.

The pc graphics handbook 544

Table 16–6
Symbolic Constant in DrawText() Function

SYMBOLIC
CONSTANT

MEANING

DT_BOTTOM Bottom-justifies text. Must be combined with DT
SINGLELINE.

DT_CALCRECT This constant is used to determine the width and height of the
rectangle. If there are multiple lines of text, DrawText uses
the width of the rectangle in the RECT structure variable
supplied in the call and extends the base of the rectangle to
bound the last line of text. If there is only one line of text,
DrawText modifies the right side of the rectangle so that Text
is not drawn.

DT_CENTER Centers text horizontally.
DT_EXPANDTABS Expands tab characters. The default number of characters per

tab is eight.
DT_EXTERNALLEADING Includes the font external leading in line height. Normally, it

is not included.
DT_LEFT Aligns text to the left.
DT_NOCLIP Draws without clipping. The function executes somewhat

faster when DT_NOCLIP is used.
DT_NOPREFIX DrawText interprets the control character & as a command to

underscore the character that follows. The control characters
&& prints a single &. By specifying DT_NOPREFIX, this
processing is turned off.

DT_RIGHT Aligns text to the right.
DT_SINGLELINE Displays text on a single line only. Carriage returns and

linefeeds are ignored.
DT_TOP Top-justifies text (single line only).
DT_VCENTER Centers text vertically (single line only).
DT_WORDBREAK Breaks words. Lines are automatically broken between words

if a word extends past the edge of the rectangle specified by
the lpRect parameter. A carriage return-linefeed sequence
also breaks the line.

16.4.3 Creating a Program Resource

The last customization that you have to perform on the template file is to create two
customized icons, which are associated with the program window. The icons correspond
to the hIcon and hIconSm members of the WNDCLASSEX structure described
previously and listed in Appendix A. hIcon is the window's standard icon. Its default size
is 32-by-32 pixels, although Windows automatically resizes this icon as required. The
standard icon is used on the Windows desktop when a shortcut is created and in some file
listing modes of utilities like Windows Explorer. The small icon is 16-by-16 pixels,
which makes it one-fourth the size of the large one. This is the icon shown in dialog

Graphics programming in windows 545

boxes that list filenames, by Windows Explorer, and in the program’s title bar. Windo ws
NT uses a scaled version of the standard icon when a smaller one is required.

An icon is a resource. Resources are stored in read-only, binary data files, that the
application can access by means of a handle. We introduce icons at this time because
other program resources such as cursors, menus, dialog boxes, bitmaps, and fonts are
handled similarly. The icons that we create in this walkthrough are considered an
application-defined resource.

The most convenient way of creating and using resources is to take advantage of the
facilities in the development environment. Visual C++ provides several resource editors,
and Developer Studio facilitates the creation and manipulation of the support files
required for using resources. Graphics programmers often want to retain the highest
possible control over their code; however, the use of these facilities in creating and
managing resources does not compromise this principle. The files created by the
development environment are both visible and editable. As you gain confidence and
knowledge about them you can progressively take over some or all of the operations
performed by the development software. In this book we sometimes let the development
environment generate one or more of the program files and then proceed to edit them so
that it better suits our purpose.

The convenience of using the automated functions of the development environment is
made evident by the fact that a simple resource often requires several software elements.
For example, a program icon requires the following components:

• A bitmap that graphically encodes the icon. If the operating system and the application
supports the small icon, then two bitmaps are required.

• A script file (also called a resource definition file) that lists all the resources in the
application and may describe some of them in detail. The resource script can also
reference other files and may include comments and preprocessor directives. The
resource compiler (RC.EXE) compiles the script file into a binary file with the
extension .RES. This binary file is referenced at link time. The resource file has the
extension .RC.

• The script file uses a resource header file, with the default filename "resource.h", which
contains preprocessor directives related to the resources used by the application. The
application must reference this file with an #include statement.

16.4.4 Creating the Icon Bitmap

Developer Studio provides support for the following resources: dialog boxes, menus,
cursors, icons, bitmaps, toolbars, accelerators, string tables, and version controls. Each
resource has either a graphics editor or a wizard that helps create the resource. In this
discussion we refer to either one of them as a resource editor.

Resource editors can be activated by clicking on the Resource command in the Insert
menu. At this time Developer Studio displays a dialog box with an entry for each type of
resource. Alternatively, you can access the resource editors faster by displaying the
Resource toolbar. In Visual C++ 4 and later this is accomplished by clicking on the
Toolbars command in the View menu, and then selecting the checkbox for the Resource
option. In Versions 5 and 6 select the Customize command in the Tools menu, open the
Toolbars tab in the Customize dialog box and select the checkbox for the Resource

The pc graphics handbook 546

option. The Graphics and Colors boxes should also be checked to display the normal
controls in the resource editors. The resulting toolbar is identical in both cases. Once the
Resource toolbar is displayed, you can drag it into the toolbar area or to any other
convenient screen location. The Insert Resource dialog screen and the resource toolbar
are shown in Figure 16–6.

Figure 16–6 Developer Studio Insert
Resource Dialog Screen and Toolbar

You can activate the icon editor either by selecting the icon option in the Resource
dialog box or by clicking the appropriate button on the toolbar. The icon editor is simple
to use and serves well in most cases. It allows creating the bitmap for several sizes of
icons. Although the interface to the icon editor is simple, it is also powerful and flexible.
You should experiment with the icon editor, as well as with the other resource editors,

Graphics programming in windows 547

until you have mastered all their options and modes. Figure 16–7 shows the icon editor in
Developer Studio.

Figure 16–7 Creating An Icon
Resource with Developer Studio Icon
Editor

The toolbar on the right of the icon editor is similar to the one used in the Windows Paint
utility and in other popular graphics programs. There are several tools that allow drawing
lines, curves, and geometrical figures in outline or filled form. Also, there is a palette box
from which colors for foreground and background can be selected.

Developer Studio makes possible the creation of a large and a small icon in the same
resource. To request the small icon, click on the New Device Image button and then
select the 16-by-16 icon. The two icons, 32 by 32 pixels and 16 by 16 pixels, can be
developed alternatively by selecting one of them in the Open Device Image scroll box in
the icon editor. Windows automatically uses the large and the small icon as required.

In the WinHello program the WNDCLASSEX structure is edited to support user-
created large and small icons, as follows:

// The program icon is loaded in the hIcon and
hIconSm
// structure members
WNDCLASSEX wndclass ;
wndclass.hIcon = (HICON) LoadImage(hInstance,

The pc graphics handbook 548

 MAKEINTRESOURCE(IDI_ICON1),
 IMAGE_ICON, // Type
 32, 32, // Pixel
size
 LR_DEFAULTCOLOR) ;
.
.
.
wndclass.hIconSm = (HICON) LoadImage(hInstance,
 MAKEINTRESOURCE(IDI_ICON1) ,
 IMAGE_ICON, // Type
 16, 16, // Pixel
size
 LR_DEFAULTCOLOR) ;

The MAKEINTRESOURCE macro is used to convert an integer value into a resource.
Although resources can also be referenced by their string names, Microsoft recommends
the use of the integer value. The name of the icon resource, IDI_ICON1, can be obtained
from the resource script file. However, an easier way of finding the resource name is to
click the Resource Symbols button on the Resource toolbar (labeled ID=) or select the
Resource Symbols command in the View menu. Either the symbolic name or the
numerical value for the icon resource that is shown on the Resource Symbols screen can
also be used in the MAKEINTRESOURCE macro.

In the process of creating an icon bitmap, Developer Studio also creates a new script
file, or adds the information to an existing one. However, when working outside of the
MFC, you must manually insert the script file into the project. This is done by selecting
the Add to Project command in the Project menu and then clicking on the Files option. In
the Insert Files into Project dialog box, select the script file, which in this case is the one
named Script1.rc, and then press the OK button. The script file now appears on the
Source Files list in the Files View window of the Project Workspace.

In addition to the script file, Developer Studio also creates a header file for resources.
The default name of this file is resource.h. In order for resources to be available to the
code you must enter an #include statement in the main source file, as follows:

#include "resource.h"

Notice that the double quotation marks surrounding the filename indicate that it is in the
current folder.

At this point, all that is left to do is to compile the resources, the source files, and link
the program into an executable. This is done by selecting the Rebuild All command in the
Build menu. Figure 16–8 shows the screen display of the WinHello program.

Graphics programming in windows 549

Figure 16–8 Screen Snapshot of the
WinHello Program

16.5 WinHello Program Listing

The following is a listing of the WinHello cpp source file that is part of the Hello
Windows project.

//***

// PROJECT: Hello Windows
// Source: WinHello.cpp
// Chapter reference: 16
//***

// Description:
// A Hello Windows demonstration program
// Topics:
// 1. Create a program icon
// 2. Display a text message in the client area
//***

#include <windows.h> // Standard Windows header
#include "resource.h" // Load resource file for
icon
// Predeclaration of the window procedure
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

The pc graphics handbook 550

//***

// WinMain
//***

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE
hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static char szAppName[] = "Demo" ; // Class name
 HWND hwnd ;
 MSG msg;
 // Defining a structure of type WNDCLASSEX
 // The program icon is loaded in the hIcon and
hIconSm
 // structure members
 WNDCLASSEX wndclass ;
 wndclass.cbSize = sizeof (wndclass) ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfn = WndProc WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon =
(HICON)LoadImage(hInstance,
 MAKEINTRESOURCE(ID
I_ICON1)
 IMAGE_ICON,
 32, 32,
 LR_DEFAULTCOLOR) ;
 wndclass.hCursor = LoadCursor (NULL,
IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject
 (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;
 wndclass.hIconSm =
(HICON)LoadImage(hInstance,
 MAKEINTRESOURCE(ID
I_ICON1)
 IMAGE_ICON,
 16, 16,
 LR_DEFAULTCOLOR) ;
 // Registering the structure wmdclass
 RegisterClassEx (&wndclass) ;
 // CreateWindow()
 hwnd = CreateWindowEx (
 WS_EX_LEFT, // Left aligned
(default)
 szAppName, // pointer to
class name
 "Hello Windows", // window caption

Graphics programming in windows 551

 WS_OVERLAPPEDWINDOW, // window style
 CW_USEDEFAULT, // initial x
position
 CW_USEDEFAULT, // initial y
position
 CW_USEDEFAULT, // initial x size
 CW_USEDEFAULT, // initial y size
 NULL, // parent window
handle
 NULL, // window menu
handle
 hInstance, // program
instance handle
 NULL) ; // creation
parameters
 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;
 // Message loop
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ,
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}
//****************************
// Windows Procedure
//****************************
LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM
wParam,
LPARAM lParam)
{
 PAINTSTRUCT ps ;
 RECT rect ;
 HDC hdc;
 switch (iMsg)
 {
 // Windows message processing
 case WM_CREATE:
 return 0;
 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;
 GetClientRect (hwnd, &rect) ;
 // Display message in the client area
 DrawText (hdc,
 "Hello World from Windows",
 -1,
 &rect,
 DT_SINGLELINE | DT_CENTER |
DT_VCENTER)
 EndPaint (hwnd, &ps) ;
 return 0 ;

The pc graphics handbook 552

 // End of program execution
 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, iMsg, wParam, lParam)
;

Graphics programming in windows 553

Chapter 17
Text Graphics

Topics:

• Text in Windows applications
• The client area and the display context
• Mapping modes
• Text as a graphics object
• Drawing with text

In this chapter we discuss a field of Windows programming that is not conventionally
considered as part of computer graphics, mainly text display. Windows is a graphics
environment; all Windows programming is, in a sense, graphics programming. A natural
line of demarcation between graphics and non-graphics services does not exist in the
GDI. Text can be considered a graphics resource, since displaying and manipulating text
characters is not different than any other graphics object.

Furthermore, discussing text programming at this point serves as an introduction into
Windows application development. Understanding text programming requires knowledge
of the fundamental concepts of Windows programming. These are the client area, the
Windows coordinate system, the display context, and the mapping mode, which are also
central elements of Windows graphics.

17.1 Text in Windows

Computer systems, including the PC, have historically differentiated between text and
graphics. The original notion was that programs could either execute in textual form, by
displaying messages composed of alphabetical and numeric characters, or they could use
pictures and images to convey information. When the VGA (Video Graphics Array)
video standard was released in 1987, it defined both text and graphics modes, with
entirely different features and programming. Even in Windows, which is a graphics
environment by design, there is a distinction between console-based applications and
graphics-based applications. In console-based applications, Windows refers to a Console
User Interface, or CUI, and in graphics-based applications, to a Graphics User Interface,
or GUI. When you select the New command in the Developer Studio File menu, the
Projects tab contains an option for creating a Win32 Console Application.

In fact, in the Windows environment, the distinction between text and graphics
programs is not clear. The text-related functions in the API, which are more than 20, are
actually part of the GDI (Graphics Device Interface). In Windows text is a another
graphics resource.

Here we consider Windows text operations as related to GUI programming. Console-
based applications are not discussed in this book. In addition, text manipulations and
programming provide an introduction to topics related to client area access and control,
which are at the core of Windows programming.

17.1.1 The Client Area

The part of the window in which a program can draw is called the client area. The client
area does not include the title bar, the sizing border, nor any of the optional elements such
as the menu, toolbar, status bar, and scroll bars. The client area is the part of the program
window that you access to convey information to the user and on which your application
displays child windows and program controls.

DOS programmers own the device, whether working on graphics or on text modes.
Once a DOS text program has set a video mode, it knows how many characters can be
displayed in each text line, and how many text lines fit on the screen. By the same token,
a DOS graphics program knows how many pixel rows and columns are in its domain.
Some Windows programs use a fixed-size window, but in most cases, a Windows
application cannot make assumptions regarding the size of its client area. Normally, the
user is free to resize the screen vertically, horizontally, or in both directions
simultaneously. There is practically no limit to how small it can be made, and it can be as
large as the entire Windows application area. Writing code that can reasonably
accommodate the material displayed to any size of the client area is one of the challenges
of Windows programming.

17.2 Device and Display Contexts

The notion of a device context is that of a Windows data structure that stores information
about a particular display device, such as the video display or a printer. All Windows
functions that access the GDI require a handle to the device context as a parameter. The
device context is the link between your application, the GDI, and the device-dependent
driver that executes the graphics command on the installed hardware. Figure 17–1 is a
schematic diagram of this relationship.

In Figure 17–1 we see that the Windows application uses one of several available
operations to obtain a device context. The call to BeginPaint(), used in TEMPL01.CPP
and in the WinHello program listed in Chapter 16, returns the handle to the device
context. BeginPaint() is the conventional way of obtaining the handle to the device
context in a WM_PAINT handler. The GetDC() function is often used to obtain the
handle to the device context outside of WM_PAINT. In either case, from now on, a
particular device context data structure is associated with the application.

The pc graphics handbook 556

Figure 17–1 The Device Context,
Application, GDI, and Device Driver

Once a device context has been obtained, GDI calls examine the device context attributes
to determine how to perform a drawing operation. In Figure 4–1 we see some of the DC
attributes: the background color, the brush, and the current position of the drawing pen.
There are many attributes associated with a common display context. For example, the
default stock pen is defined as BLACK_PEN in the device context. If this stock pen is
not changed, the GDI uses it in all drawing operations. The application can, however,
change the stock pen in the device context to NULL_PEN or WHITE_PEN by calling
SelectPen().

17.2.1 The Display Context

The video display is a device that requires most careful handling in a multitasking
environment. Several applications, as well as the system itself, usually share the display
device. The notions of child and parent windows, client and non-client areas, desktop
windows, and of applications area, all relate to this topic. The display context is a special
device context for a display device.

Text graphics 557

The principal difference between a device context and the display context is that a
device context allows access to the entire device, while the display context limits access
to the output area of its associated window. A display context usually refers to one of the
following areas:

• The window’s client area
• The window’s entire surface, including the non-client area
• The entire desktop surface

Application output is usually limited to the client area, therefore, this is the default
display context.

Since the display context is a specialization of the term device context, it is correct to
refer to the display context as a device context. The reverse, however, is not always true.
For example, the printer device context is not a display context. In Chapter 3 we referred
to the display context as a device context, which is acceptable. Windows documentation
does not always use these terms rigorously. This has been the cause of some
misunderstanding. The fact that Windows documentation sometimes uses the term
display device context as equivalent to display context has added to the confusion.

17.2.2 Display Context Types

According to the application’s needs, there are four possible classes of display contexts:
common DC, single DC, private DC, and parent DC. The type of display context for a
window is defined in the WNDCLASSEX structure. During the call to RegisterClassEx()
we establish the type of display context for the windows class. This is determined by the
value entered in the wndclass.style member of WNDCLASSEX.

In Table 16–2 there are three constants that refer to the display context types:
CS_OWNDC, CS_CLASSDC, and CS_PARENTDC. When no display type constant is
entered in the wndclass.style, then the display context type is common, which is the
default. In the case of a common display context, Windows resets all attributes to the
default values each time the handle is retrieved. This requires the application to reset each
attribute that is different from the default settings.

The class display context is enabled with the CS_CLASSDC constant at the time of
registering the window class. In this case, Windows initializes the display context
attributes once, for all windows of the class. When the display context is retrieved,
Windows resets the device origin and the clipping region, but not the other attributes. All
windows of this class obtain the same attributes with the handle to the display context.
One disadvantage of a class display context is that if one window makes changes to the
display context, these changes remain in effect for all subsequent windows that use it.

The parent display context is enabled by entering the CS_PARENTDC constant in the
WNDCLASSEX structure. In this case, Windows creates a common display context and
sets its clipping region to the same as that of the parent. The result is that a child window
can draw to its parent’s client area. The most common use of a parent display context is
in drawing controls inside dialog boxes. Round-off errors that result from calculating the
bounding box for dialog boxes sometimes cause controls that are clipped at display time.
Using a parent display context solves this problem.

The pc graphics handbook 558

The private display context is associated with a window when the CS_OWNDC
constant is used in the wndclass.style member of WNDCLASSEX. At registration time,
each window created from the class is given a private display context. Because each
window has its own display context permanently associated, it need be retrieved only
once. All attributes assigned to a private display context are retained until they are
explicitly changed. In some types of applications the use of a private display context
minimizes coding and improves performance.

Applications that often make changes to the client area, as is the case with many
graphics programs, can often profit from a private display context. In order to accomplish
this, several changes have to be made to the TEMPL01.CPP program file. In the first
place, an OR operation must be performed between the CS_OWNDC constant and the
other values in the wndclass.style member of WNDCLASSEX, as follows:

// Defining a structure of type WNDCLASSEX
 WNDCLASSEX wndclass ;
 wndclass.cbSize = sizeof (wndclass) ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW |
CS_OWNDC;
 .
 .
 .

The remaining changes take place in the Windows procedure. In the first place, you must
declare a variable of type HDC. This variable must have static scope so that its value is
preserved between reentries of the windows procedure. The display context can be
obtained during WM_CREATE processing, which executes at the time the window is
created. This is possible because the display context is private. In this case, you can use
the GetDC() function to obtain the handle to the display context, as in the following code
fragment:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM
wParam,
 LPARAM lParam) {
 // Local variables
 PAINTSTRUCT ps ;
 RECT rect ;
 static HDC hdc; // Handle to private
DC
 switch (iMsg)
 {
 // Windows message processing
 case WM_CREATE:
 hdc = GetDC(hwnd); // Obtain handle to
 // private DC
 return 0;
 .
 .
 .

Text graphics 559

The private display context is available during WM_PAINT message intercept, and need
not be retrieved during each iteration. Therefore, the return value from BeginPaint() can
be discarded and the EndPaint() function becomes unnecessary, as in the following code
fragment:

case WM_PAINT :
 BeginPaint (hwnd, &ps) ;
 GetClientRect (hwnd, &rect) ;
 // Display message in the client area
 DrawText (hdc,
 "Demo program using a private DC",
 −1,
 &rect,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER);
 return 0 ;
 .
 .
 .

The project named Private DC Demo, in the book’s software package, contains the full
source for a private DC demonstration. You can use the source file TEMPL02.CPP as a
template for creating applications that use a private display context.

17.2.3 Window Display Context

Applications sometimes wish to draw not only on the client area, but elsewhere in the
window. Normally, areas such as the title bar, menus, status bar, and scroll bars are
inaccessible to code that uses one of the display context types previously mentioned. You
can, however, retrieve a window-level display context. In this case, the display context’s
origin is not at the top-left corner of the client area, but at the top-left corner of the
window. The GetWindowDC() function is used to obtain the handle to the window-level
display context and the ReleaseDC() function to release it. In general, drawing outside of
the client area should be avoided, since it can create problems to the application and to
Windows.

17.3 Mapping Modes

One of the most important attributes of the display context is the mapping mode, since it
affects practically all drawing operations. The mapping mode is actually the algorithm
that defines how logical units of measurement are translated into physical units. To
understand mapping modes we must start with logical and device coordinates.

The programmer specifies GDI operations in terms of logical coordinates, or logical
units. The GDI sends commands to the device driver in physical units, also called device
coordinates. The mapping mode defines the logical units and establishes the methods for
translating them into device coordinates. This translation can be described as a mapping
operation. In regards to the display device, as well as in most printers, device coordinates

The pc graphics handbook 560

are expressed in pixels. Logical coordinates depend on the selected mapping mode.
Windows defines six fixed-size mapping modes, as shown in Table 17–1.

Two other mapping modes, not listed in Table 17–1, are MM_ANISOTROPIC and
MM_ISOTROPIC. These modes can be used for shrinking and expanding graphics by
manipulating the coordinate system. These two scalable mapping modes, useful for very
powerful graphics manipulation, are discussed in Chapter 19.

Table 17–1
Windows Fixed-Size Mapping Modes

MAPPING MODE LOGICAL UNITS X-AXIS Y-AXIS
MM_TEXT pixel right down
MM_LOWMETRIC 0.1 mm right up
MM_HIGHMETRIC 0.01 mm right up
MM_LOENGLISH 0.01 inch right up
MM_HIENGLISH 0.001 inch right up
MM_TWIPS 1/1440 inch right up

The default mapping mode, MM_TEXT, is also the most used one. In MM_TEXT, the
logical coordinates coincide with the device coordinates. Programmers who learned
graphics in the DOS environment usually feel very comfortable with this mapping mode.
Note that the name MM_TEXT refers to how we normally read text in the Western
languages: from left-to-right and top-to-bottom. The name is unrelated to text display.

The selection of a mapping mode depends on the needs and purpose of the application.
Two of the mapping modes, MM_LOMETRIC and MM_HIMETRIC, are based on the
metric system (millimeters). MM_LOENGLISH and MM_HIENGLISH are based on the
English system of measurement (inches). MM_TWIPS is based on a unit of measurement
used in typography called the twip, which is equivalent to 1/20th of a point, or 1/1440
inch. An application that deals with architectural or technical drawings, in which
dimensions are usually in inches or millimeters, can use one of the mapping modes based
on metric or English units of measurement. A graphics design program, or a desktop
publishing application, would probably use the MM_TWIPS mapping mode.

The SetMapMode() function is used to change the mapping mode in the device
context. One of the parameters in the call is the handle to the device context; the other
parameter is one of the predefined mapping mode constants. For example, to change the
mapping mode to LO_METRIC, you would code:

static int oldMapMode;
 .
 .
 .
oldMapMode = SetMapMode (hdc, LO_METRIC);

The function returns the previous mapping mode, which can be stored in an integer
variable. Later on, the original mapping mode can be restored as follows:

Text graphics 561

SetMapMode (hdc, oldMapMode);

SetMapMode() returns zero if the function call fails.

17.3.1 Screen and Client Area

Windows uses several coordinate systems. The basic unit of measurement is the pixel,
also called a device unit. Horizontal values increase from left to right and vertical values
from top to bottom. The origin of the coordinate system is the top-left corner of the
drawing surface. Three different extents are used in relation to the device area: screen,
client area, and window coordinate systems.

The screen coordinate system refers to the entire display area. This coordinate system
is used when location and size information refer to the entire video display. The call to
CreateWindowEx(), in the program WINHELLO.CPP and most of the template files,
uses the symbolic constant CW_USEDEFAULT. This constant lets Windows select a
position and size for the program’s window. Alternatively, we could have specified the
window’s location and size in device units. For example, the following call to
CreateWindowEx() locates the window at 20 by 20 pixels from the screen’s upper-left
corner and forces a dimension of 400 by 500 pixels:

// CreateWindow()
hwnd = CreateWindowEx (
 WS_EX_LEFT, // Left aligned
(default)
 szClassName, // pointer to class
name
 "WinHello Program", // window caption
 WS_OVERLAPPEDWINDOW, // window style
 20, // initial x position
 20, // initial y position
 400, // initial x size
 500, // initial y size
 NULL, // parent window
handle
 NULL, // window menu handle
 hInstance, // program instance
handle
 NULL) ; // creation
parameters

Other Windows functions, such as those that return the mouse cursor position, the
location of a message box, or the location and size of the windows rectangle, also use
screen coordinates.

Client area coordinates are relative to the upper-left corner of the client area, not to the
video display. The default unit of measurement is the pixel. The function
ClientToScreen() can be used to obtain the screen coordinates of a point in the client area.
ScreenToClient() obtains the client area coordinates of a point defined by its screen

The pc graphics handbook 562

coordinates. In either function, the x and y coordinates are passed and returned in a
structure of type POINT.

Window coordinates refer to the top-left corner of the window itself, not to the client
area. Applications that use the window display context, mentioned earlier in this chapter,
use windows coordinates.

17.3.2 Viewport and Window

The terms viewport and window, when used in relation to logical and device coordinates,
can be the source of some confusion. In the first place, Windows documentation uses the
term viewport in a way that does not coincide with its most accepted meaning. In
graphics terminology, a viewport is a specific screen area set aside for a particu-lar
graphics function. In this sense, the notion of a viewport implies a region within the
application’s window.

In Windows, the viewport is often equated with the client area, the screen area, or the
application area, according to the bounds of the device context. The one charac-teristic
element of the viewport is that it is expressed in device units, which are pixels. The
window, on the other hand, is expressed in terms of logical coordinates. Therefore, the
unit of measurement of a window can be inches, millimeters, twips, or pixels in the six
fixed-sized mapping modes, or one defined by the application in the two scalable
mapping modes.

In regards to viewports and windows, there are two specific boundaries that must be
considered: the origin and the extent. The origin refers to the location of the window or
viewport, and the extent to its width and height. The origin of a window and a viewport
can be set to different values in any of the mapping modes. Function calls to set the
window and the viewport extent are ignored when any one of the six fixed-sized mapping
modes is selected in the device context. However, in the two scalable mapping modes,
MM_ISOTROPIC and MM_ANISOTROPIC, both the origin and the extent of the
viewport and the window can be set separately.

A source of confusion is that both the viewport and the window coincide in the default
mapping mode (MM_TEXT). In the fixed-size mapping modes, the extent of the
viewport and the window cannot be changed, as mentioned in the preceding paragraph.
This should not be interpreted to mean that they have the same value. Actually, the
measurement in units of length of the viewport and the window extent is meaningless. It
is the ratio between the extent that is useful. For example, if the viewport extent is 20
units and the window extent is 10 units, then the ratio of viewport to window extent is of
20/10, or 2. This value is used as a multiplier when converting between window and
device coordinates. Other factors that must be taken into account in these conversions are
the location of the point, the origin of the viewport, and the origin of the window. Figure
17–2, on the following page, is a simplified, schematic representation of the concepts of
viewport and window.

In Figure 17–2, the dimension of the logical units is twice that of the device units, in
both axes. Therefore, the ratio between the window extension and the device extension
(xVPExt / xWExt and yVPExt / yWExt) equals 2. The point located at xW, yW is at
window coordinates xW=8, yW=9, as shown in the illustration. To convert to device

Text graphics 563

coordinates, we apply the corresponding formulas. In calculating the x-axis viewport
coordinate of the point xW, yW, we proceed as follows:

xVP = (xW – xWOrg) × (xVPExt / xWExt) + xVPOrg
xVP = (8 −(− 16)) × 2 + 0
xVP = 48

This means that in the example in Figure 17–2, the point at window coordinates x =8,
y=9, located in a window whose origin has been displaced 16 logical units on the x-axis,
and 5.5 logical units in the y-axis, is mapped to viewport coordinates xVP =48, yVP=25.
Note that the sample calculations do not include the y-coordinate.

17.4 Programming Text Operations

Text operations in console-based applications are usually a simple task. The text
characters are displayed using whatever font is selected at the system level, and at the
screen line and column where the cursor is currently positioned. In analogy with the old
Teletype machines, this form of text output programming is said to be based on the model
of a “glass TTY.” But even when the program takes control of the display area, the matter
of text output is no more complicated than selecting a screen line and a column position.

In graphics programming, and particularly in Windows graphics, the coding of text
operations often becomes a major task, to the point that Windows text programming is
considered a specialty field. In this sense, it is possible to speak of bitmapped graphics, of
vector graphics, and of text graphics. Developing a GDI-based text-processing
application, such as a Windows word processing or desktop publishing program, involves
a great amount of technical complexity. In addition to programming skills, it requires
extensive knowledge of typography, digital composition, and graphics arts. At present,
we are concerned with text graphics in a non-specialized context. That is, text display is
one of the functionality that is normally necessary in implementing a Windows
application. But even in this more general sense, text programming in Windows is not
without some complications.

The pc graphics handbook 564

Figure 17–2 Viewport and Window
Coordinates

17.4.1 Typefaces and Fonts

A collection of characters of the same design is called a typeface. Courier, Times Roman,
and Helvetica are typefaces. Courier is a monospaced typeface that originated in
typewriter technology. The characters in the Courier typeface all have the same width.
Times Roman is a typeface developed in the nineteenth century by an English newspaper
with the purpose of making small type readable when printed on newspaper stock. Times
Roman uses short, horizontal lines of a different thickness. To some, these elements
resemble hooks; for which the typeface is called serif (hook, in French). On the other
hand, the characters in the Helvetica typeface have the same thickness; therefore, it is
called a sans-serif typeface (without hooks).

Times Roman and Helvetica are proportionally spaced fonts; that is, each character is
designed to an ideal width. In a proportionally spaced font, the letter "w" is wider than

Text graphics 565

the letter "i." In Windows, proportionally spaced fonts are sometimes called variable
pitch fonts. They are more pleasant and easier to read than monospaced fonts, but digits
displayed in proportionally spaced fonts do not align in columns. Figure 17–3 shows text
in Courier, Times Roman, and Helvetica typefaces.

Figure 17–3 Courier, Times Roman,
and Helvetica Typefaces.

A group of related typefaces is called a typeface family; for example, Helvetica Bold and
Helvetica Oblique are typeface families. A font is a collection of characters of the same
typeface and size. In this sense you can speak of the Times Roman 12-point font. Type
style is a term used somewhat loosely in reference to specific attributes applied to
characters in a font. Boldface (dark), roman (straight up), and italics (slanted towards the
right) are common type styles.

Historically, Windows fonts have been of three different types: raster, vector, and
TrueType. Raster fonts are stored as bitmaps. Vector fonts, sometimes called stroke fonts,
consist of a set of drawing orders required to produce each letter. TrueType fonts,
introduced in Windows 95, are similar to PostScript fonts. They are defined as lines and
curves, can be scaled to any size, and rotated at will. TrueType fonts are more versatile
and have the same appearance on the screen as when printed. TrueType fonts also assure
portability between applications. Programmers working in Windows 95 and NT deal
mostly with TrueType fonts.

For reasons related to copyright and trademark laws, some Windows fonts have names
that differ from the traditional typefaces. For example, Times New Roman is the
Windows equivalent of Times Roman, and the Helvetica typeface is closely
approximated by the Windows versions called Arial, Swiss, and Switzerland.

The default Windows font is named the system font. In current versions of Windows,
the system font is a proportionally spaced font. It is also a raster font, therefore, the
characters are defined as individual bitmaps. Figure 17–4 is a screen snapshot of a

The pc graphics handbook 566

Windows program that demonstrates the screen appearance of the various non-TrueType
fonts.

Figure 17–4 Windows Non-TrueType
Fonts

17.4.2 Text Formatting

In order to display text in a graphics, multitasking environment (one in which the screen
can be resized at any time), code must be able to obtain character sizes at run time. For
example, in order to display several lines of text you must know the height of the
characters so that the lines are shown at a reasonable vertical distance from each other.
By the same token, you also need to know the width of each character, as well as the
width of the client area, in order to handle the end of each text line.

The GetTextMetrics() function provides information about the font currently selected
in the display context. GetTextMetrics() requires two parameters: the handle to the device
context and the address of a structure variable of type TEXTMETRICS. Table 17–2 lists
the members of the TEXTMETRIC structure:

Text graphics 567

Table 17–2
TEXTMETRIC structure

TYPE MEMBER CONTENTS
LONG tmHeight Character height (ascent+descent)
LONG tmAscent Height above the baseline
LONG tmDescent Height below the baseline
LONG tmInternalLeading Internal leading
LONG tmExternalLeading External leading
LONG tmAveCharWidth Width of the lowercase letter "x"
LONG tmMaxCharWidth Width of widest letter in font
LONG tmWeight Font weight
LONG tmOverhang Extra width per string added to some synthesized fonts
LONG tmDigitizedAspectX Device horizontal aspect
LONG tmDigitizedAspectY Device vertical aspect. The ratio of tmDigitizedAspectX

/ tmDigitizedAspectY members is the aspect ratio of the
device for which the font was designed.

BCHAR tmFirstChar First character in the font
BCHAR tmLastChar Last character in the font
BCHAR tmDefaultChar Character used as a substitute for Those not

implemented in the font
BCHAR tmBreakChar Character used as a word break in Text justification
BYTE tmItalic Nonzero if font is italic
BYTE tmUnderlined Nonzero if font is underlined
BYTE tmStruckOut Nonzero if font is strikeout

Contains information about the font family in the four
low-order bits of the following constants:
CONSTANT BIT MEANING
TMPF_FIXED PITCH 0 fixed pitch

font
TMPF_VECTOR 1 vector font
TMPF_TRUETYPE 2 True Type

font

BYTE tmPitchAndFamily

TMPF_DEVICE 3 device font
BYTE tmCharSet Specifies the font’s character set

Notice that in printing and display technology, the baseline is an imaginary horizontal
line that aligns the base of the characters, excluding descenders. The term leading
(pronounced "led-ing") refers to the space between lines of type, usually measured from
the baseline of one line to the baseline of the next one. Figure 17–5 shows the vertical
character dimensions represented by the corresponding members of the TEXTMETRIC
structure.

The pc graphics handbook 568

Figure 17–5 Vertical Character
Dimensions in the TEXTMETRIC
Structure

Text metric values are determined by the font installed in the device context. For this
reason, where and how an application obtains data about text dimensions depend on the
font and on how the device context is handled. An application that uses the system font,
and no other, need only obtain text metric values once in each session. Since the system
font does not change during a Windows session, these values are valid throughout the
program’s lifetime. However, if an application changes device contexts or fonts during
execution, then the text metric values may also change.

In the simplest case, a text processing application can obtain text metric data while
processing the WM_CREATE message. Usually, the minimal data required for basic text
manipulations is the character height and width. The height is calculated by adding the
values in the tmHeight and tmExternalLeading members of the TEXTMETRIC structure
for the current display context (see Figure 17–5). The width of the lowercase characters
can be obtained from the tmAveCharWidth member.

The calculation of the average width of uppercase characters is somewhat more
complicated. If the font currently selected in the display context is monospaced (fixed
pitch, in Windows terminology), then the width of the uppercase characters is the same as
the lowercase ones. However, if the current font is proportionally spaced (sometimes
called a variable pitch font in Windows), then you can obtain an approximation of the
width of the uppercase characters by calculating 150 percent of the width of the
lowercase ones. We have seen that the tmPitchAndFamily member of TEXTMETRIC
has the low-order bit set if the font is monospaced. We can logically AND this value with
a binary 1 in order to test if the font is monospaced. Assuming that a TEXTMETRIC
structure variable is named tm, and that the width of the lowercase characters is stored in
an integer variable named cxChar, the code would be as follows:

int cxCaps; // Storage for width of uppercase
characters
if(tm.tmPitchAndFamily & 0x1)
 cxCaps = (3 * cxChar) / 2; // 150 percent
else

Text graphics 569

 cxCaps = cxChar; // 100 percent

More compact coding results from using the ? operator, as follows:

cxCaps = (tm.tmPitchAndFamily & 1 ? 3:2) * cxChar / 2;

The values can be stored in static variables for future use. The following code fragment
shows the usual processing in this case:

static int cxChar; // Storage for lowercase
character width
static int cxCaps; // Storage for uppercase
character width
static int cyChar; // Storage for character height
plus
 // leading
 .
 .
 .
 case WM_CREATE :
 hdc = GetDC (hwnd) ;
 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
cxCaps = (tm.tmPitchAndFamily & 1 ? 3:2) * cxChar / 2;
cyChar = tm.tmHeight + tm.tmExternalLeading ;
ReleaseDC (hwnd, hdc) ;
return 0 ;

In addition to information about text dimensions, text processing applications also need
to know the size of the client area. The problem in this case is that in most applications,
the size of the client area can change at any time. If the window was created with the
style WM_HREDRAW and WM_VREDRAW, a WM_SIZE message is sent to the
Windows procedure whenever the client area size changes vertically or horizontally. A
WM_PAINT message automatically follows. The application can intercept the
WM_SIZE message and store, in a static variable, the vertical and horizontal dimensions
of the client area. The size of the client area can be retrieved from these variables
whenever you need to redraw to the window. Traditionally, the variables named cxClient
and cyClient are used to store these values. The low word of the lParam value, passed to
the Windows procedure during WM_SIZE, contains the width of the client area, and the
high word contains the height. The code can be as follows:

static int cxClient; // client area width
 static int cyClient; // client area height
 .
 .
 .
 case WM_SIZE:
 cxClient = LOWORD (lParam);
 cyClient = HIWORD (lParam);

The pc graphics handbook 570

 return 0;

17.4.3 Paragraph Formatting

The logic needed for text formatting at the paragraph level is as follows: First, we
determine the character dimensions by calling the GetTextMetric() and then reading the
corresponding members of a TEXTMETRIC structure. Next, we obtain the size of the
client area during WM_SIZE processing by means of the high- and low-word of the
lParam argument. This inf ormation is sufficient for perf orming exact calculation on a
monospaced font. In the case of a proportionally spaced font, we are forced to deal in
approximations, since what we have obtained is the average width of lower-case
characters and an estimate of the width of the upper-case ones.

GetTextExtentPoint32(), a function that has suffered several transformations in the
various versions of Windows, computes the exact width and height of a character string.
The function takes as a parameter the handle to the device context, since the string size
calculated is based on the currently installed font. Other parameters are the address of the
string, its length in characters, and the address of a structure of type SIZE where
information is returned to the caller. The SIZE structure contains only two members: one
for the x dimension and another one for the y dimension. The value returned by
GetTextExtentPoint32() is in logical units.

Putting it all together: suppose you have a rather long string, one that requires more
than one screen line, stored in a static or public array, and you want to display this string
breaking the screen lines only at the end of words. Since in Windows the length of each
line in the client area can be changed at any time by the user, the code would have to
dynamically adjust for this fact. Placing the processing in a WM_PAINT message
handler ensures that the display is updated when the client area changes in size. This also
requires that we intercept the WM_SIZE message to recalculate the size of the client
area, as discussed previously. The processing logic in WM_PAINT could be as follows:

1. Step through the string, pausing at each space, and calculate the string length using
GetTextExtentPoint32(). Keep count of the number of characters to the previous
space, or the beginning of the text string in the case of the first word.

2. If the length of the string is larger than could fit in the client area, then backtrack to the
previous space and display the string to that point. Reset the string pointer so that the
new string starts at the last character displayed. Continue at step 1.

3. If the end of the string has been reached, display the string starting at the last space and
exit the routine.

The actual implementation requires a few other processing details. For example, you may
want to leave a margin of a couple of characters on the left and right sides of the display
area. In addition, the code would need to manipulate pointers and counters to keep track
of the string positions and the number of characters to the previous space. One possible
algorithm is reminiscent of the classic case of a circular buffer with two pointers: one to
the buffer head and another one to the tail. Figure 17–6 graphically shows the code
elements in one of many possible implementations.

Text graphics 571

Figure 17–6 Processing Operations
for Multiple Text Lines

In Figure 17–6, the pointer that signals the start of the string is designated with the letter s
and the one for the end of the string with the letter e. s1 and e1 is the start position for
both pointers. The variable i is a counter that holds the number of characters since the
preceding space, and j holds the number of characters in the current substring. The code
steps along the string looking for spaces. At each space, it measures the length of the
string and compares it to the horizontal dimension of the client area. When the s pointer
reaches location s2, the substring is longer than the display space available in the client
area. The variable i is then used to reset the pointer to the preceding space and to
decrement the j counter. The substring is dis-played starting at e1, for a character count of
j. Pointers and counters are then reset to the new sub-string and processing continues
until the end of the string is found.

A demonstration program named TEX1_DEMO is furnished in the book’s software
package. The message to be displayed is stored in a public string, as follows:

// Public string for text display demonstration
char TextMsg[] = {"Visual Studio 97 provides the
development "
"environment in which your programming and Web site "
"development packages run. This integrated set of tools
runs "
.
.
.
"spreadsheet programs." };
The processing operations, located in the Windows
procedure, are coded as
follows:
LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM
wParam,
 LPARAM 1Param) {
static int cxChar, cxCaps, cyChar ; // Character
dimensions
static int cxClient, cyClient; // Client area
parameters

The pc graphics handbook 572

 HDC hdc ; // handle to device
context
 int j; // Offset into string
 int i; // characters since
last
 // space
 char *startptr, *endptr; // String pointers
 int cyScreen; // Screen row holder
// Structures
 PAINTSTRUCT ps;
 TEXTMETRIC tm;
 SIZE textsize; // Test string size
switch (iMsg)
 {
 case WM_CREATE :
 hdc = GetDC (hwnd) ;
 GetTextMetrics (hdc, &tm) ;
 // Calculate and store character dimensions
 cxChar = tm.tmAveCharWidth ;
 cxCaps = ((tm.tmPitchAndFamily & 1) ? 3:2)
*\
 cxChar / 2 ;
 cyChar = tm.tmHeight + tm.tmExternalLeading
;
 ReleaseDC (hwnd, hdc) ;
 return 0 ;
 case WM_SIZE:
 // Determine and store size of client area
 cxClient = LOWORD(1Param) ;
 cyClient = HIWORD(1Param) ;
 return 0;
 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;
 // Initialize variables
 cyScreen = cyChar; // screen row
counter
 startptr = TextMsg; // start position
pointer
 endptr = TextMsg; // end position pointer
 j = 0; // length of string
 i = 0; // characters since last
 // space
 // Text line display loop
 // INVARIANT:
 // i = characters since last space
 // j = length of current string
 // startptr = pointer to substring start
 // endptr = pointer to substring end
 while(*startptr) {
 if(*startptr == 0x20){ // if character is
 // space
 GetTextExtentPoint32 (hdc, endptr, j,\

Text graphics 573

 &textsize);
// ASSERT:
// textsize.cx is the current length of the
// string
// cxClient is the abscissa of the client area
// (both in logical units)
// Test for line overflow condition. If so, adjust
// substring to preceding space and display
 if(cxClient – (2 * cxChar) < textsize.cx) {
 j = j − i;
 startptr = startptr − i;
 TextOut (hdc, cxChar, cyScreen, endptr, j);
 cyScreen = cyScreen+cyChar;
 endptr = startptr;
 j = 0;
 }
// End of space character processing.
// Reset chars-to-previous-space counter, whether
// or not string was displayed
 i = 0;
 }
// End of processing for any text character
// Update substring pointer and counters
 startptr++;
 j++;
 i++;
 }
// End of while loop
// Display last text substring
 j = j − i;
 TextOut (hdc, cxChar, cyScreen, endptr, j) ;
 EndPaint (hwnd, &ps);
 return 0 ;
case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
}

return DefWindowProc (hwnd, iMsg, wParam, lParam) ;
In Figure 17–7 there are two screen snapshots of the TEX1_DEMO program in the

Text Demo No 1 project folder. The first one shows the text line as originally displayed
in our system. The second one shows them after the client area has been resized.

Notice that the TEX1_DEMO program uses a variable (j) to store the total size of the
substring (see Figure 17–6). In C++ it is valid to subtract two pointers in order to
determine the number of elements between them. The code in the TEX1_DEMO program
could have calculated the number of elements in the substring by performing pointer
subtraction.

The pc graphics handbook 574

Figure 17–7 Two Screen Snapshots of
the TEX1_DEMO Program

17.4.4 The DrawText() Function

Another useful text display function in the Windows API is DrawText(). This function is
of a higher level than TextOut() and, in many cases, text display operations are easier to
implement with DrawText(). DrawText() uses a rectangular screen area that defines
where the text is to be displayed. In addition, it recognizes some control characters
embedded in the text string as well as a rather extensive collection of format controls,
which are represented by predefined constants. The following are the general forms for
TextOut() and DrawText()

TextOut (hdc, nXStart, nYStart, lpString, cbString);
DrawText (hdc, lpString, nCount, &rect, uFormat);

In both cases, hdc is the handle to the device context and lpString is a pointer to the string
to be displayed. In TextOut() the second and third parameters (xXstart and nYStart) are
the logical coordinates of the start point in the client area, and the last parameter is the
string length. In DrawText() the third parameter (nCount) is the string length in
characters. If this parameter is set to −1 then Windows assumes that the string is zero
terminated. The positioning of the string in DrawText() is by means of a rectangle
structure (type RECT) described in Chapter 3 and listed in Appendix A. This structure
contains four members, two for the rectangle’s top-left coordinates, and two for its

Text graphics 575

bottom-right coordinates. The values are in logical units. The last parameter (uFormat) is
any combination of 19 format strings defined by the constants listed in Table 17–3.

Table 17–3
String Formatting Constants in DrawText()

SYMBOLIC
CONSTANT

MEANING

DT_BOTTOM Specifies bottom-justified text. Must be combined with
DT_SINGLELINE.

DT_CALCRECT Returns width and height of the rectangle. In the case of multiple
text lines, DrawText() uses the width of the rectangle pointed to
by lpRect and extends its base to enclose the last line of text. In
the case of a single text line, then DrawText() modifies the right
side of the rectangle so that it encloses the last character. In either
case, DrawText() returns the height of the formatted text, but does
not draw the text.

DT_CENTER Text is centered horizontally.
DT_EXPANDTABS Expands tab characters. The default number of characters per tab

is eight.
DT_EXTERNALLEADING ncludes the font’s external leading in the line height. Normally,

external leading is not included in the height of a line of text.
DT_LEFT Specifies text that is aligned flush-left.
DT_NOCLIP Draws without clipping. This improves performance.
DT_NOPREFIX Turns off processing of prefix characters. Normally, DrawText()

interprets the ampersand (&) mnemonic-prefix character as an
order to underscore the character that follows. The double
ampersands (&&) is an order to print a single ampersand symbol.
This function is turned off by DT_NOPREFIX.

DT_RIGHT Specifies text that is aligned flush-right.
DT_SINGLELINE Specifies single line only. Carriage returns and linefeed are

ignored.
DT_TABSTOP Sets tab stops. The high-order byte of nFormat is the number of

characters for each tab. The default number of characters per tab is
eight.

DT_TOP Specifies top-justified text (single line only).
DT_VCENTER Specifies vertically centered text (single line only).
DT_WORDBREAK Enables word-breaking. Lines are automatically broken between

words if a word woul extend past the edge of the rectangle
specified by lpRect. A carriage return (\n) or linefeed code (\r)
also breaks the line.

The program TEX2_DEMO, located in the Text Demo No 2 project folder on the
book's software package, is a demonstration of text display using the DrawText()
function. Following are the excerpts from the program code:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM
wParam,

The pc graphics handbook 576

 LPARAM lParam) {
static int cxChar, cyChar ; // Character
dimensions
static int cxClient, cyClient; // Client area
parameters
HDC hdc ; // handle to device
context
// Structures
PAINTSTRUCT ps;
TEXTMETRIC tm;
RECT textRect;
switch (iMsg) {
 case WM_CREATE :
 hdc = GetDC (hwnd) ;
 GetTextMetrics (hdc, &tm) ;
 // Calculate and store character dimensions
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight+tm.tmExternalLeading ;
 ReleaseDC (hwnd, hdc) ;
 return 0 ;
 case WM_SIZE:
 // Determine and store size of client area
 cxClient = LOWORD(lParam);
 cyClient = HIWORD(lParam);
 return 0;
 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;
 // Initialize variables
 SetRect (&textRect, // address of
structure
 2 * cxChar, // x for
start
 cyChar, // y for
start
 cxClient -(2 * cxChar), // x for
end
 cyClient); // y for
end
 // Call display function using left-aligned
and
 //wordbreak controls
 DrawText(hdc, TextStr, -1, &textRect,
 DT_LEFT | DT_WORDBREAK);
 EndPaint (hwnd, &ps);
 return 0 ;
 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
return DefWindowProc (hwnd, iMsg, wParam, lParam) ;
}

Text graphics 577

17.5 Text Graphics

Comparing the listed processing operations with those used in the TEX1_DEMO
program (previously in this chapter) you can see that the processing required to achieve
the same functionality is simpler using DrawText() than TextOut(). This observation,
however, should not mislead you into thinking that DrawText() should always be
preferred. The interpretation of the reference point at which the text string is displayed
when using TextOut() depends on the text-alignment mode set in the device context. The
GetTextAlign() and SetTextAlign() functions can be used to retrieve and change the
eleven text alignment flags. This feature of TextOut() (and its newer version
TextOutExt()) allow the programmer to change the alignment of the text-bounding
rectangle and even to change the reading order to conform to that of the Hebrew and
Arabic languages.

Windows NT and Windows 95 GDI supports the notion of paths. Paths are discussed
in detail in Chapter 20. For the moment, we define a path, rather imprecisely, as the
outline produced by drawing a set of graphical objects. One powerful feature of
TextOut(), which is not available with DrawText(), is that when it is used with a
TrueType font, the system generates a path for each character and its bounding box. This
can be used to display text transparently inside other graphics objects, to display
character outlines (called stroked text), and to fill the text characters with other graphics
objects. The resulting effects are often powerful.

17.5.1 Selecting a Font

The one limitation of text display on paths is that the font must be TrueType. Therefore,
before getting into fancy text graphics, you must be able to select a TrueType font into
the device context. Font manipulations in Windows are based on the notion of a logical
font. A logical font is a description of a font by means of its characteristics. Windows
uses this description to select the best matching font among those available.

Two API functions allow the creation of a logical font. CreateFont() requires a long
series of parameters that describe the font characteristics. CreateFontIndirect() uses a
structure in which the font characteristics are stored. Applications that use a single font
are probably better off using CreateFont(), while programs that change fonts during
execution usually prefer CreateFontIndirect(). Note that the item list used in the
description of a logical font is the same in both functions. Therefore, storing font data in
structure variables is an advantage only if the structure can be reused. The description
that follows refers to the parameters used in the call to CreateFont(), which are identical
to the ones used in the structure passed by CreateFontIndirect().

The CreateFont() function has one of the longest parameter lists in the Windows API:
fourteen in all. Its general form is as follows:

HFONT CreateFont(nHeight, nWidth, nEscapement, int
nOrientation,
 fnWeight, fdwItalic, fdwUnderline,
fdwStrikeOut,

The pc graphics handbook 578

 fdwCharSet, fdwOutputPrecision,
fdwClipPrecision,
 fdwQuality, fdwPitchAndFamily,
 LPCTSTR lpszFace);

Following are brief descriptions of the function parameters.

• nHeight (int) specifies the character height in logical units. The value does not include
the internal leading, so it is not equal to the tmHeight value in the TEXTMETRIC
structure. Also note that the character height does not correspond to the point size of a
font. If the MM_TEXT mapping mode is selected in the device context, it is possible
to convert the font's point size into device units by means of the following formula:

• hHeight=(point_size*pixels_per_inch) / 72
• The pixels per inch can be obtained by reading the LOGPIXELSY index in the device

context, which can be obtained by the call to GetDeviceCaps(). For example, to obtain
the height in logical units of a 50-point font we can use the following expression:

• 50*GetDeviceCaps (hdc, LOGPIXELSY) / 72
• nWidth (int) specifies the logical width of the font characters. If set to zero, the

Windows font mapper uses the width that best matches the font height.
• nEscapement (int) specifies the angle between an escapement vector, defined to be

parallel to the baseline of the text line, and the drawn characters. A value of 900 (90
degrees) specifies characters that go upward from the baseline. Usually this parameter
is set to zero.

• nOrientation (int) defines the angle, in tenths of a degree, between the character's base
line and the x-axis of the device. In Windows NT the value of the character's
escapement and orientation angles can be different. In Windows 95 they must be the
same.

• fnWeight (int) specifies the font weight. The constants listed in Table 4–4 are defined
for convenience:

Text graphics 579

Table 17–4
Character Weight Constants

WEIGHT CONSTANT
FW_DONTCARE = 0
FW_THIN = 100
FW_EXTRALIGHT = 200
FW_ULTRALIGHT = 200
FW_LIGHT = 300
FW_NORMAL = 400
FW_REGULAR = 400
FW_MEDIUM = 500
FW_SEMIBOLD = 600
FW_DEMIBOLD = 600
FW_BOLD = 700
FW_EXTRABOLD = 800
FW_ULTRABOLD = 800
FW_HEAVY = 900
FW_BLACK = 900

• fdwItalic (DWORD) is set to 1 if font is italic.
• fdwUnderline (DWORD) is set to 1 if font is underlined.
• fdwStrikeOut (DWORD) is set to 1 if font is strikeout.
• fdwCharSet (DWORD) defines the font's character set. The following are predefined

character set constants:

ANSI_CHARSET
DEFAULT_CHARSET
SYMBOL_CHARSET
SHIFTJIS_CHARSET
GB2312_CHARSET
HANGEUL_CHARSET
CHINESEBIG5_CHARSET
OEM_CHARSET

Windows 95 only:

JOHAB_CHARSET
HEBREW_CHARSET
ARABIC_CHARSET
GREEK_CHARSET
TURKISH_CHARSET
THAI_CHARSET
EASTEUROPE_CHARSET
RUSSIAN_CHARSET
MAC_CHARSET
BALTIC_CHARSET

The pc graphics handbook 580

The DEFAULT_CHARSET constant allows the name and size of a font to fully describe
it. If the font does not exist, another character set can be substituted. For this reason, this
field should be used carefully. A specific character set should always be defined to ensure
consistent results.

fdwOutputPrecision (DWORD) determines how closely the font must match the
values entered in the fields that define its height, width, escapement, orientation, pitch,
and font type. Table 17–5 lists the constants associated with this parameter.

Table 17–5
Predefined Constants for Output Precision

PREDEFINED
CONSTANT

MEANING

OUT_CHARACTER_PRECIS Not used.
OUT_DEFAULT_PRECIS Specifies the default font mapper behavior.
OUT_DEVICE_PRECIS Instructs the font mapper to choose a Device font when the system

contains multiple fonts with the same name.
OUT_OUTLINE_PRECIS Windows NT: This value instructs the font mapper to choose from

TrueType and other outline-based fonts. Not used in Windows 95.
OUT_RASTER_PRECIS Instructs the font mapper to choose a raster font when the system

contains multiple fonts with the same name.

PREDEFINED
CONSTANT

MEANING

OUT_STRING_PRECIS This value is not used by the font mapper, but it is returned when
raster fonts are enumerated.

OUT_STROKE_PRECIS Windows NT: This value is not used by the font mapper, but it is
returned when TrueType, other outline-based fonts, and vector fonts
are enumerated.
Windows 95: This value is used to map vector fonts, and is returned
when TrueType or vector fonts are enumerated.

OUT_TT_ONLY_PRECIS Instructs the font mapper to choose from only TrueType fonts. If
there are no TrueType fonts installed in the system, the font mapper
returns to default behavior.

OUT_TT_PRECIS Instructs the font mapper to choose a TrueType font when the system
contains multiple fonts with the same name.

If there is more than one font with a specified name, you can use the
OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and OUT_TT_PRECIS constants to
control which one is chosen by the font mapper. For example, if there is a font named
Symbol in raster and TrueType form, specifying OUT_TT_PRECIS forces the font
mapper to choose the TrueType version. OUT_TT_ONLY_PRECIS forces the font
mapper to choose a TrueType font, even if it must substitute one of another name.

fdwClipPrecision (DWORD) specifies the clipping precision. This refers to how to
clip characters that are partially outside the clipping region. The constants in Table 17–6
are recognized by the call.

Text graphics 581

Table 17–6
Predefined Constants for Clipping Precision

PREDEFINED
CONSTANT

MEANING

CLIP_DEFAULT_PRECIS Default clipping behavior.
CLIP_CHARACTER_PRECIS Not used.
CLIP_STROKE_PRECIS Not used by the font mapper, but is returned when raster,

vector, or TrueType fonts are enumerated.
Windows NT: For compatibility, this value is always
returned when enumerating fonts.

CLIP_MASK Not used.
CLIP_EMBEDDED Specify this flag to use an embedded read-only font.
CLIP_LH_ANGLES The rotation for all fonts depends on whether the

orientation of the coordinate system is left- or right-
handed.
If not used, device fonts always rotate counterclockwise.

CLIP_ALWAYS Not used.

fdwQuality (DWORD) specifies the output quality. This value defines how carefully
GDI must attempt to match the logical font attributes to those of an actual physical font.
The constants in Table 17–7 are recognized by CreateFont().

Table 17–7
Predefined Constants for Output Precision

PREDEFINED
CONSTANT

MEANING

DEFAULT_QUALITY Appearance of the font does not matter.
DRAFT_QUALITY Appearance of the font is less important than when the

PROOF_QUALITY value is used.
PROOF_QUALITY Character quality of the font is more important than exact

matching of the logical-font attributes.
When PROOF_QUALITY is used, the quality of the font is
high and there is no distortion of appearance.

fdwPitchAndFamily (DWORD) defines the pitch and the family of the font. The 2 low-
order bits specify the pitch, and the 2 high-order bits specify the family. Usually, the 2 bit
fields use a logical OR for this parameter. Table 17–8 lists the symbolic constants
recognized by CreateFont() for the font pitch and the family values.

The pc graphics handbook 582

Table 17–8
Pitch and Family Predefined Constants

TYPE VALUE MEANING
PITCH: DEFAULT_PITCH
 FIXED_PITCH
 VARIABLE_PITCH
FAMILY:
 FF_DECORATIVE Novelty fonts (such as Old English)
 FF_DONTCARE Don’t care or don’t know.
 FF_MODERN Fonts with constant stroke width, with or without serifs,

such as Pica, Elite, and Courier New.
 FF_ROMAN Fonts with variable stroke width and with serifs, such as

MS Serif.
 FF_SCRIPT Fonts designed to look like handwriting, such as Script and

Cursive.
 FF_SWISS Fonts with variable stroke width and without serifs, such

as MS Sans Serif.

lpszFace (LPCTSTR) points to a null-terminated string that contains the name of the
font’s typeface. Alternatively, the typeface name can be entered directly inside double
quotation marks. If the requested typeface is not available in the system, the font mapper
substitutes with an approximate one. If NULL is entered in this field, a default typeface is
used. Example typefaces are Palatino, Times New Roman, and Arial. The following code
fragment shows a call to the CreateFont() API for a 50-point, normal weight, high
quality, italic font using the Times New Roman typeface.

HFONT hFont; // handle to a font
// Create a logical font
hFont = CreateFont (
 50 * GetDeviceCaps (hdc, LOGPIXELSY) / 72, //height
 0, // width
 0, // escapement angle
 0, // orientation angle
 FW_NORMAL, // weight
 1, // italics
 0, // not underlined
 0, // not strikeout
 DEFAULT_CHARSET, // character set
 OUT_DEFAULT_PRECIS, // precision
 CLIP_DEFAULT_PRECIS, // clipping precision
 PROOF_QUALITY, // quality
 DEFAULT_PITCH | FF_DONTCARE, // pitch and family
 "Times New Roman"); // typeface name
// Select font into the display context
SelectObject (hdc, hFont);

Text graphics 583

17.5.2 Drawing with Text

Once a TrueType font is selected in the display context, you can execute several
manipulations that treat text characters as graphics objects. One of them is related to the
notion of a path, introduced in Windows NT and also supported by Windows 95 and
later. A path is the outline generated by one or more graphics objects drawn between the
BeginPath() and EndPath() functions. Paths are related to regions and to clipping, topics
covered in detail in Chapter 20.

The TextOut() function has a unique property among the text display functions: it
generates a path. For this to work, a TrueType font must first be selected into the display
context. Path drawing operations are not immediately displayed on the screen but are
stored internally. Windows provides no handles to paths, and there is only one path for
each display context. Three functions are available to display graphics in a path:
StrokePath() shows the path outline, FillPath() fills and displays the path’s interior, and
StrokeAndFillPath() performs both functions. You may question the need for a
FillAndStrokePath() function since it seems that you could use StrokePath() and
FillPath() consecutively to obtain the same effect. This is not the case. All three path-
drawing APIs automatically destroy the path. Therefore, if two of these functions are
called consecutively, the second one has no effect.

The path itself has a background mix mode, which is delimited by the rectangle that
contains the graphics functions in the path. The background mix mode is a display
context attribute that affects the display of text, as well as the output of hatched brushes
and nonsolid pens. Code can set the background mix mode to transparent by means of the
SetBkMode() function. This isolates the text from the background. The program
TEX3_DEMO, located in the Text Demo No 3 folder in the book’s software package, is a
demonstration of text display inside paths. One of the text lines is stroked and the other
one is stroked and filled. The program first creates a logical font and then selects it into
the display context. Processing is as follows:

case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;
 .
 .
 .
 // Start a path for stroked text
// Set background mix to TRANSPARENT mode
BeginPath (hdc);
SetBkMode(hdc, TRANSPARENT); // background mix
TextOut(hdc, 20, 20, "This Text is STROKED", 20);
EndPath(hdc);
// Create a custom black pen, 2 pixels wide
aPen = CreatePen(PS_SOLID, 2, 0);
SelectObject(hdc, aPen); // select it into DC
StrokePath (hdc); // Stroke the path
// Second path for stroked and filled text
BeginPath (hdc);
SetBkMode(hdc, TRANSPARENT);
TextOut(hdc, 20, 110, "Stroked and Filled", 18);
EndPath(hdc);

The pc graphics handbook 584

// Get and select a stock pen and brush
aPen=GetStockObject(BLACK_PEN);
aBrush=GetStockObject(LTGRAY_BRUSH);
SelectObject(hdc, aPen);
SelectObject(hdc, aBrush);
StrokeAndFillPath (hdc); // Stroke and fill
path
// Clean-up and end WM_PAINT processing
DeleteObject(hFont);
EndPaint (hwnd, &ps);

Figure 17–8 is a screen snapshot of the TEXTDEM3 program.

Figure 17–8 Screen Snapshot of the
TEXTDEM3 Program

Text graphics 585

Chapter 18
Keyboard and Mouse Programming

Topics:

• Keyboard input and input focus
• Keystroke processing
• The caret
• Mouse programming
• Mouse messages
• The cursor

Most applications require user input and control operations. The most common input
devices are the keyboard and the mouse. In this chapter we discuss keyboard and mouse
programming in Windows.

18.1 Keyboard Input

Since the first days of computing, typing on a typewriter-like keyboard has been an
effective way of interacting with the system. Although typical Windows programs rely
heavily on the mouse device, the keyboard is the most common way to enter text
characters into an application.

The mechanisms by which Windows monitors and handles keyboard input are based
on its message-driven architecture. When the user presses or releases a key, the low-level
driver generates an interrupt to inform Windows of this action. Windows then retrieves
the keystroke from a hardware register, stores it in the system message queue, and
proceeds to examine it. The action taken by the operating system depends on the type of
keystroke, and on which application currently holds the keyboard foreground, called the
input focus. The keystroke is dispatched to the corresponding application by means of a
message to its Windows procedure.

The particular way by which Windows handles keystrokes is determined by its
multitasking nature. At any given time, several programs can be executing
simultaneously, and any one of these programs can have more than one thread of
execution. One of the possible results of a keystroke (or a keystroke sequence) is to
change the thread that holds the input focus, perhaps to a different application. This is the
reason why Windows cannot directly send keyboard input to any specific thread.

It is the message loop in the WinMain() function of an application that retrieves
keyboard messages from the system queue. In fact, all system messages are posted to the
application’s message queue. The process makes the following assumptions: first, that the
thread’s queue is empty; second, that the thread holds the input focus; and third, that a

keystroke is available at the system level. In other words, it is the application that asks
Windows for keystrokes; Windows does not send unsolicited keystroke data.

The abundance of keyboard functions and keyboard messages makes it appear that
Windows keyboard programming is difficult or complicated. The fact is that applications
do not need to process all keyboard messages, and hardly ever do so. Two messages,
WM_CHAR and WM_KEYDOWN, usually provide code with all the necessary data
regarding user keyboard input. Many keystrokes can be ignored, since Windows
generates other messages that are more easily handled. For example, applications can
usually disregard the fact that the user selected a menu item by means of a keystroke,
since Windows sends a message to the application as if the menu item had been selected
by a mouse click. If the application code contains processing for menu selection by
mouse clicks, then the equivalent keyboard action is handled automatically.

18.1.1 Input Focus

The application that holds the input focus is the one that gets notified of the user’s
keystrokes. A user can visually tell which window has the input focus since it is the one
whose title bar is highlighted. This applies to the parent window as well as to child
windows, such as an input or dialog box. The application can tell if a window has the
input focus by calling the GetFocus() function, which returns the handle to the window
with the input focus.

The Windows message WM_SETFOCUS is sent to the window at the time that it
receives the input focus, and WM_KILLFOCUS at the time it loses it. Applications can
intercept these messages to take notice of any change in the input focus. However, these
messages are mere notifications; application code cannot intercept these messages to
prevent losing the input focus.

Keyboard data is available to code holding the input focus at two levels. The lower
level, usually called keystroke data, contains raw information about the key being
pressed. Keystroke data allows code to determine whether the keystroke message was
generated by the user pressing a key or by releasing it, and whether the keystroke resulted
from a normal press-and-release action or from the key being held down (called
typematic action). Higher-level keyboard data relates to the character code associated
with the key. An application can intercept low-level or character-level keystroke
messages generated by Windows.

18.1.2 Keystroke Processing

Four Windows messages inform application code of keystroke data: WM_KEYDOWN,
WM_SYSKEYDOWN, WM_KEYUP, and WM_SYSKEYUP. The keydown-type
messages are generated when a key is pressed, sometimes called the make action. The
keyup-type messages are generated when a key is released, called the break action.
Applications usually ignore the keyup-type message. The "sys-type" messages,
WM_SYSKEYDOWN and WM_SYSKEYUP, relate to system keys. A system
keystroke is one generated while the Alt key is held down.

Keyboard and mouse programming 587

When any one of these four messages takes place, Windows puts the keystroke data in
the lParam and wParam passed to the window procedure. The lParam contains bit-coded
information about the keystroke, as shown in Table 18–1.

Table 18–1
Bit and Bit Fields in the lParam of a Keystroke
Message

BITS MEANING
0–15 Repeat count field. The value is the number of times the keystroke is repeated as a

result of the user holding down the key (typematic action).
16–
23

OEM scan code. The value depends on the original equipment manufacturer.

24 Extended key. Bit is set when the key pressed is one duplicated in the IBM Enhanced
101- and 102-key keyboards, such as the right-hand ALT and CTRL keys, the/and
Enter keys on the numeric keypad, or the Insert, Delete, Home, PageUp, PageDown,
and End keys.

25–
28

Reserved.

29 Context code. Bit is set if the Alt key is down while the key is pressed. Bit is clear if
the WM_SYSKEYDOWN message is posted to the active window because no
window has the keyboard focus.

30 Previous key state. Key is set if the key is down before the message is sent. Bit is
clear if the key is up. This key allows code to determine if the keystroke resulted from
a make or break action.

31 Transition state. Always 0 for a WM_SYSKEYDOWN Message.

The wParam contains the virtual-key code, which is a hardware-independent value that
identifies each key. Windows uses the virtual-key codes instead of the device-dependent
scan code. Typically, the virtual-key codes are processed when the application needs to
recognize keys that have no associated ASCII value, such as the control keys. Table 18–
2, on the following page, lists some of the most used virtual-key codes.

Notice that originally, the "w" in wParam stood for "word," since in 16-bit Windows
the wParam was a word-size value. The Win32 API expanded the wParam from 16 to 32
bits. However, in the case of the virtual-key character codes, the wParam is defined as an
int type. Code can typecast the wParam as follows:

The pc graphics handbook 588

Table 18–2
Virtual-Key Codes

SYMBOLIC NAME HEX VALUE KEY
VK_CANCEL 0×01 Ctrl+Break
VK_BACK 0×08 Backspace
VK_TAB 0×09 Tab
VK_RETURN 0×0D Enter
VK_SHIFT 0×10 Shift
VK_CONTROL 0×11 Ctrl
VK_MENU 0×12 Alt
VK_PAUSE 0×13 Pause
VK_CAPITAL 0×14 Caps Lock
VK_ESCAPE 0×1B Esc
VK_SPACE 0×20 Spacebar
VK_PRIOR 0×21 Page Up
VK_NEXT 0×22 Page Down
VK_END 0×23 End
VK_HOME 0×24 Home
VK_LEFT 0×25 Left arrow
VK_UP 0×26 Up arrow
VK_RIGHT 0×27 Right arrow
VK_DOWN 0×28 Down arrow
VK_SNAPSHOT 0×2C Print Screen
VK_INSERT 0×2D Insert
VK_DELETE 0×2E Delete
VK_MULTIPLY 0×6A Numeric keypad *
VK_ADD 0×6B Numeric keypad +
VK_SUBTRACT 0×6D Numeric keypad
VK_DIVIDE 0×6F Numeric keypad /
VK_F1..VK_F12 0×70..0×7B F1..F12

int aKeystroke;
char aCharacter;
.
.
.
aKeystroke = (int) wParam;
aCharacter = (char) wParam;

Simple keystroke processing can be implemented by intercepting WM_KEYDOWN.
Occasionally, an application needs to know when a system-level message is generated. In
this case, code can intercept WM_SYSKEYDOWN. The first operation performed in a
typical WM_KEYDOWN or WM_SYSKEYDOWN handler is to store in local variables

Keyboard and mouse programming 589

the lParam, the wParam, or both. In the case of the wParam code can cast the 32-bit value
into an int or a char type as necessary (see the preceding Tech Note).

Processing the keystroke usually consists of performing bitwise operations in order to
isolate the required bits or bit fields. For example, to determine if the extended key flag is
set, code can logically AND with a mask in which bit 24 is set and then test for a non-
zero result, as in the following code fragment:

unsigned long keycode;
.
.
WM_KEYDOWN:
 keycode = lParam; // store lParam
 if(keycode & 0×01000000) { // test bit 24
 // ASSERT:
 // key pressed is extended key

Processing the virtual-key code, which is passed to your intercept routine in the lParam,
consists of comparing its value with the key or keys that you wish to detect. For example,
to know if the key pressed was the Backspace, you can proceed as in the following code
fragment:

int virtkey;
.
.
WM_KEYDOWN:
 virtkey = (int) lParam; // cast and store
lParam
 if(virtkey == VK_BACK) { // test for Backspace
 // ASSERT:
 // Backspace key pressed

18.1.3 Determining the Key State

An application can determine the state of any virtual-key by means of the GetKeyState()
service. The function’s general form is as follows:

SHORT GetKeyState(nVirtKey);

GetKeyState() returns a SHORT integer with the high-order bit set if the key is down and
the low-order bit set if it is toggled. Toggle keys are those which have a keyboard LED to
indicate their state: Num Lock, Caps Lock, and Scroll Lock. The LED for the
corresponding key is lit when it is toggled and unlit otherwise. Some virtual-key
constants can be used as the nVirtKey parameter of GetKeyState(). Table 18–3, on the
following page, lists the virtual-keys.

Take note that in testing for the high-bit set condition returned by GetKeyState() you
may be tempted to bitwise AND with a binary mask, as follows:

The pc graphics handbook 590

if(0×8000 & (GetKeyState(VK SHIFT))) {

Table 18–3
Virtual-Keys Used in GetKeyState()

PREDEFINED SYMBOL KEY RETURNS
VK_SHIFT Shift State of left or right Shift keys
VK_CONTROL Ctrl State of left or right Ctrl keys
VK_MENU Alt State of left or right Alt keys
VK_LSHIFT Shift State of left Shift key
VK_RSHIFT Shift State of right Shift key
VK_LCONTROL Ctrl State of left Ctrl key
VK_RCONTROL Ctrl State of right Ctrl key
VK_LMENU Alt State of left Alt key
VK_RMENU Alt State of right Alt key

The following statement is a test for the left Shift key pressed.

if(GetKeyState(VK_LSHIFT) < 0) {
// ASSERT:
// Left shift key is pressed

Although, in many cases, such operations produce the expected results, its success
depends on the size of a data type, which compromises portability. In other words, if
GetKeyState() returns a 16-bit integer, then the mask 0×8000 effectively tests the high-
order bit. If the value returned is stored in 32 bits, however, then the mask must be the
value 0×80000000. Since any signed integer with the high-bit set represents a negative
number, it is possible to test the bit condition as follows:

if(GetKeyState(VK_SHIFT) < 0) {

This test does not depend on the operand’s bit size.

18.1.4 Character Code Processing

Applications often deal with keyboard input as character codes. It is possible to obtain the
character code from the virtual-key code since it is encoded in the wParam of the
WM_KEYDOWN, WM_SYSKEYDOWN, WM_KEYUP, and WM_SYSKEYUP
messages. The codes for the alphanumeric keys are not listed in Table 18–1; however,
there is also a virtual-key code for each one. The virtual-key codes for the numeric keys 0
to 9 are VK_0 to VK_9, and the ones for the alphabetic characters A through Z are
VK_A through VK_Z.

This type of processing is not without complications. For example, the virtual-key
code for the alphabetic characters does not specify if the character is in upper- or lower-
case. Therefore, the application would have to call GetKeyState() in order to determine if

Keyboard and mouse programming 591

the <Shift> key was down or the Caps Lock key toggled when the character key was
pressed. Furthermore, the virtual-key codes for some of the character keys, such as ;, =,
+, <, are not defined in the windows header files. Applications must use the numeric
values assigned to these keys or define their own symbolic constants.

Fortunately, character code processing in Windows is much easier. The
TranslateMessage() function converts the virtual-key code for each character into its
ANSI (or Unicode) equivalent and posts it in the thread’s message queue.
TranslateMessage() is usually included in the program’s message loop. After
TranslateMessage(), the message is retrieved from the queue, typically by GetMessage()
or PeekMessage(). The final result is that an application can intercept WM_CHAR,
WM_DEADCHAR, WM_SYSCHAR, and WM_SYSDEADCHAR in order to obtain the
ANSI character codes that correspond to the virtual-key of a WM_KEYDOWN message.

Dead-type character messages refer to the diacritical characters used in some foreign
language keyboards. These are marks added to characters to distinguish them from other
ones, such as the acute accent (á) or the circumflex (â). In English language processing,
WM_DEADCHAR and WM_SYSDEADCHAR are usually ignored.

The WM_SYSCHAR message corresponds to the virtual-key that results from
WM_SYSKEYDOWN. WM_SYSCHAR is posted when a character key is pressed while
the Alt key is held down. Since Windows also sends the message that corresponds to a
mouse click on the system item, applications often ignore WM_SYSCHAR.

This leaves us with WM_CHAR for general purpose character processing. When the
WM_CHAR message is sent to your Windows procedure, the lParam is the same as for
WM_KEYDOWN. However, the wParam contains the ANSI code for the character,
instead of the virtual-key code. This ANSI code, which is approximately equivalent to the
ASCII code, can be directly handled and displayed without additional manipulations.
Processing is as follows:

char aChar; // storage for character
.
.
case WM_CHAR:
 aChar = (char) wParam;
// ASSERT:
// aChar holds ANSI character code

18.1.4 Keyboard Demonstration Program

The program KBR_DEMO.CCP, located in the Keyboard Demo folder on the book’s
software package, is a demonstration of the keyboard processing routines described
previously. The program uses a private device context; therefore, the font is selected
once, during WM_CREATE processing. KBR_DEMO uses a typewriter-like, TrueType
font, named Courier. Courier is a monospaced font (all characters are the same width).
This makes possible the use of standard character symbols to produce a graph of the
bitmaps. Figure 18–1, on the following page, is a screen snapshot of the KBD_DEMO
program.

The pc graphics handbook 592

Figure 18–1 KBR_DEMO Program
Screen

Figure 18–1 shows the case in which the user has typed the Alt key. Note that the
wParam value 00010010 is equivalent to 0×12, which is the virtual-key code for the Alt
key (see Table 18–1). The critical processing in the KBD_DEMO program is as follows:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM
wParam,
 LPARAM lParam) {
 static int cxChar, cyChar ; // Character
dimensions
 static int cxClient, cyClient; // Client area
parameters
 static HDC hdc ; // handle to
private DC
 unsigned long keycode; // storage for
keystroke
 unsigned long keymask; // bit mask
 unsigned int virtkey; // virtual-key
 int i, j; // counters
 char aChar; // character code
 // Structures
 PAINTSTRUCT ps;
 TEXTMETRIC tm;
 RECT textRect; // RECT-type
 HFONT hFont;
 .
 .
 .
 case WM_PAINT :

Keyboard and mouse programming 593

 // Processing consists of displaying the text
messages
 BeginPaint (hwnd, &ps) ;
 // Initialize rectangle structure
 SetRect (&textRect, // address of
structure
 2 * cxChar, // x for start
 cyChar, // y for start
 cxClient −(2 * cxChar) // x for end
 cyClient); // y for end
 // Display multi-line text string
 DrawText(hdc, TextStr0, -1, &textRect,
 DT_LEFT | DT_WORDBREAK);
 // Display second text string
 SetRect (&textRect, // address of
structure
 2 * cxChar, // x for start
 13 * cyChar, // y for start
 cxClient − (2 * cxChar), // x for end
 cyClient); // y for end
 // Display text string
 DrawText(hdc, TextStr1, −1, &textRect,
 DT_LEFT | DT_WORDBREAK);
 .
 .
 .
 EndPaint (hwnd, &ps);
 return 0 ;
// Character code processing
case WM_CHAR:
 aChar = (char) wParam;
 // Test for control codes and replace with space
 if (aChar < 0×30)
 aChar = 0×20;
 // Test for shift key pressed
 if(GetKeyState (VK_SHIFT) < 0) {
 i = 0; // counter
 j = 13; // string offset
 for(i = 0; i < 3; i++){
 TextStr4[j] = StrON[i];
 j++;
 }
 }
 else {
 i = 0; // counter
 j = 13; // string offset
 for(i = 0; i < 3 i++) (
 TextStr4[j] = StrOFF[i];
 j++;
 }
 }
 TextStr2[17] = aChar;

The pc graphics handbook 594

 return 0;
// Scan code and keystroke data processing
// Display space if a system key
case WM_SYSKEYDOWN:
 TextStr2[17] = 0×20;
case WM_KEYDOWN:
// Store bits for lParam in TextStr0[]
 keycode = lParam; // get 32-bit keycode value
 i = 0; // counter for keystroke bits
 j = 0; // offset into string
 keymask = 0×80000000;// bitmask
 for (i = 0; i < 32; i++) {
 // Test for separators and skip
 if(i == 8 || i == 16 || i == 24) {
 TextStr0[j] = 0×20;
 j++;
 }
 // Test for 1 and 0 bits and display digits
 if(keycode & keymask)
 TextStr0[j] = '1';
 else
 TextStr0[j] = '0';
 keymask = keymask >> 1;
 j++;
 }
// Store bits for wParam in TextStr1[]
 keycode = wParam; // get 32-bit keycode value
 i = 0; // counter for keystroke bits
 j = 18; // initial offset into string
 keymask=0x8000; // bitmask
 // 16-bit loop
 for (i = 0; i < 16; i++) {
 // Test for separators and skip
 if(i == 8) {
 TextStr1[j] = 0×20;
 j++;
 }
 // Test for 1 and 0 bits and display digits
 if(keycode & keymask)
 TextStr1[j] = '1';
 else
 TextStr1[j] = '0';
 keymask = keymask >> 1;
 j++;
 }
// Test for Backspace key pressed
virtkey = (unsigned int) wParam;
 if (virtkey == VK_BACK)
 TextStr3[15]='Y';
 else
 TextStr3[15]='N';
// Force WM_PAINT message

Keyboard and mouse programming 595

InvalidateRect(NULL, NULL, TRUE);
return 0;
.
.
.

18.2 The Caret

In the MS DOS environment, the graphic character used to mark the screen position at
which typed characters are displayed is called the cursor. The standard DOS cursor is a
small, horizontal bar that flashes on the screen to call the user’s attention to the point of
text insertion. In Windows, the word cursor is used for an icon that marks the screen
position associated with mouse-like pointing. Windows applications signal the location
where keyboard input is to take place by means of a flashing, vertical bar called the caret.

In order to avoid confusion and ambiguity, Windows displays a single caret. The
system caret, which is a shared resource, is a bitmap that can be customized by the
application. The window with the input focus can request the caret to be displayed in its
client area, or in a child window.

18.2.1 Caret Processing

Code can intercept the WM_SETFOCUS message to display the caret.
WM_KILLFOCUS notifies the application that it has lost focus and that it should
therefore destroy the caret. Caret display and processing in WM_SETFOCUS usually
starts by calling CreateCaret(). The function's general form is as follows:

BOOL CreateCaret(hwnd, hBitmap, nWidth, nHeight);

The first parameter is the handle to the window that owns the caret. The second one is an
optional handle to a bitmap. If this parameter is NULL then a solid caret is displayed. If it
is (HBITMAP) 1, then the caret is gray. If it is a handle to a bitmap, the other parameters
are ignored and the caret takes the form of the bitmap. The last two parameters define the
caret's width and height, in logical units. Applications often determine the width and
height of the caret in terms of character dimensions.

CreateCaret() defines the caret shape and size but does not set its screen position, nor
does it display it. To set the caret's screen position you use the SetCaretPos() function,
which takes two parameters, the first one for the caret's x-coordinate and the second one
for the y-coordinate. The caret is displayed on the screen using ShowCaret(), whose only
argument is the handle to the window.

Applications that use the caret usually intercept WM_KILLFOCUS. This ensures that
they are notified when the window looses the keyboard focus, at which time the caret
must be hidden and destroyed. The HideCaret() function takes care of the first action. Its
only parameter is the handle to the window that owns the caret. DestroyCaret(), which
takes no parameters, destroys the caret, erases it from the screen, and breaks the
association between the caret and the window.

The pc graphics handbook 596

Applications that use the caret to signal the point of input often display the characters
typed by the user. But since the caret is a graphics object, it must be erased from the
screen before the character is displayed. Otherwise, the caret symbol itself, or parts of it,
may pollute the screen. A program that processes the WM_CHAR message to handle
user input usually starts by hiding the caret, then the code processes the input character,
and finally, resets the caret position and redisplays it.

18.2.2 Caret Demonstration Program

The CAR_DEMO program, located in the Caret Demo folder on the book’s software
package, is a demonstration of caret processing during text input. The program displays
an entry form and uses the caret to signal the current input position. When the code
detects the Enter key, it moves to the next line in the entry form. The Backspace key can
be used to edit the input. When Backspace is pressed, the previous character is erased and
the caret position is updated. Program logic keeps track of the start location of each input
line so that the user cannot backspace past this point. The Esc key erases the caret and
ends input. Note that since user input is not stored by the program, the text is lost if the
screen is resized or if the application looses the input focus. Figure 18–2 is a screen
snapshot of the CAR_DEMO program.

Figure 18–2 CAR_DEMO Program
Screen

Figure 18–2 shows execution of the CAR_DEMO program. The following are excerpts
of the program’s processing:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM
wParam,
 LPARAM lParam) {
static int cxChar, cyChar ; // character dimensions
static int cxClient, cyClient; // client area
parameters
static int xCaret, yCaret; // caret position
static int xLimit ; // left limit of line
static int formEnd = 0; // 1 if Esc key pressed
static int lineNum = 1; // input line

Keyboard and mouse programming 597

static HDC hdc ; // handle to private DC
char aChar ; // storage for
character code
// Structures
PAINTSTRUCT ps;
TEXTMETRIC tm;
RECT textRect;
HFONT hFont;
switch (iMsg) {
 case WM_CREATE :
 .
 .
 .
 // Calculate and store character dimensions
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;
 // Store size of client area
 cxClient = LOWORD(lParam);
 cyClient = HIWORD(lParam);
 // Store initial caret position
 xCaret = xLimit = 10;
 yCaret = 3;
 return 0 ;
 .
 .
 .
 case WM_PAINT :
BeginPaint (hwnd, &ps) ;
// Initialize rectangle structure
SetRect (&textRect, // address of structure
 2 * cxChar, // x for start
 cyChar, // y for start
 cxClient −(2 * cxChar), // x for end
 cyClient); // y for end
// Display multi-line text string
DrawText(hdc, TextStr1, −1, &textRect,
 DT_LEFT | DT_WORDBREAK);
EndPaint (hwnd, &ps);
return 0 ;
// Character input processing
case WM_CHAR:
HideCaret(hwnd);
aChar = (char) wParam;
switch (wParam) { // wParam holds virtual-key code
case '\r': // Enter key pressed
 yCaret++;
 aChar = 0×20;
// cascaded tests set × caret location in new line
 if(yCaret == 4) // in address: line
 xCaret = xLimit = 13;
 if(yCaret == 5) // in city: line
 xCaret = xLimit = 10;

The pc graphics handbook 598

 if(yCaret == 6) // in state: line
 xCaret = xLimit = 11;
 if(yCaret == 7) // in zip code: line
 xCaret = xLimit = 14;
 if(yCaret > 7) { // Enter key ignored on
 // last line
 yCaret−−;
}
break;
case '\b': // Backspace key pressed
 if (xCaret > xLimit) {
 aChar = 0×20; // Replace with space
 xCaret--;
 // Display the blank character
 TextOut (hdc, xCaret * cxChar, yCaret * cyChar,
 &aChar, 1);
 }
 break;
case 0×1b: // Esc key processing
 formEnd = 1;
 // Destroy the caret
 HideCaret(hwnd);
 DestroyCaret();
 break;
default:
 // Display the character if Esc not pressed
 if(formEnd == 0) {
 TextOut (hdc, xCaret * cxChar, yCaret * cyChar.
 &aChar, 1);
 xCaret++;
 }
 break;
}
 if(formEnd == 0) {
 SetCaretPos(xCaret * cxChar, yCaret * cyChar);
 ShowCaret(hwnd);
}
 return 0;
case WM_SETFOCUS:
 if(formEnd == 0) {
 CreateCaret (hwnd, NULL, cxChar / 4, cyChar);
 SetCaretPos(xCaret * cxChar, yCaret * cyChar);
 ShowCaret(hwnd);
 }
 return 0;
case WM_KILLFOCUS:
 // Destroy the caret
 HideCaret(hwnd);
 DestroyCaret() ;
 return 0;
. . .

Keyboard and mouse programming 599

18.3 Mouse Programming

The use of a mouse as an input device dates back to the work at Xerox PARC, which
pioneered the ideas of a graphical user interface. Since mouse and GUI have been
interrelated since their original conception, one would assume that a graphical operating
system, such as Windows, would require the presence of a mouse device. This is not the
case. Windows documentation still considers the mouse an option and recommends that
applications provide alternate keyboard controls for all mouse-driven operations.

During program development, you can make sure that a mouse is available and
operational by means of the GetSystemMetrics() function, as follows:

assert (GetSystemMetrics(SM_MOUSEPRESENT)) ;

In this case, the assert macro displays a message box if a mouse is not present or not
operational. The developer can then choose to ignore the message, debug the code, or
abort execution. In the release version of a program that requires a mouse you can use the
abort macro to break execution. For example:

if (!GetSystemMetrics(SM_MOUSEPRESENT))
 abort();

Alternatively, an application can call PostQuitMessage(). This indicates to Windows that
a thread has made a termination request and it posts a WM_QUIT message.
PostQuitMessage() has an exit code parameter that is returned to Windows, but current
versions of the operating system make no use of this value. The objec-tion to using
PostQuitMessage() for abnormal terminations is that execution ends abruptly, without
notification of cause or reason. In this case the program should display a message box
informing the user of the cause of program termination.

Windows supports other devices such as pens, touch screens, joysticks, and drawing
tablets, which are all considered mouse input. The mouse itself can have up to three
buttons, labeled left, middle, and right buttons. A one-button mouse is an anachronism
and the three-button version is usually associated with specialized systems. The most
common one is the two-button mouse, where the left button is used for clicking, double-
clicking, and dragging operations and the right button activates context-sensitive program
options.

An application can tell how many buttons are installed in the mouse by testing the
SM_CMOUSEBUTTONS with the GetSystemMetrics() function. If the application
requires a certain number of buttons, then the assert or abort macros can be used, as
previously shown. For example, a program that requires a three-button mouse could test
for this condition as follows:

assert (GetSystemMetrics(SM_CMOUSEBOUTTONS) == 3);

If the three-button mouse is required in the release version of the program, then the code
could be as follows:

The pc graphics handbook 600

if(GetSystemMetrics(SM_CMOUSEBUTTONS) != 3))
 abort();

Notice that the assert macro is intended to be used in debugging. If the condition is false,
the macro shows information about the error and displays a message box with three
options: abort, debug, and ignore. Assert has no effect on the release version of the
program; it is as if the statement containing assert had been commented out of the code.
For this reason conditions that must be evaluated during execution of the release version
of a program should not be part of an assert statement.

The abort macro can be used to stop execution in either version. Abort provides no
information about the cause of program termination.

Programs that use the assert macro must include the file assert.h. VERIFY and other
debugging macros are available when coding with the Foundation Class Library, but they
are not implemented in ANSI C.

18.3.1 Mouse Messages

There are 22 mouse messages currently implemented in the Windows API. Ten of these
messages refer to mouse action on the client area, and ten to mouse action in the
nonclient area. Of the remaining two messages WM_NCHITTEST takes place when the
mouse is moved either over the client or the nonclient area. It is this message that
generates all the other ones. WM_MOUSEACTIVATE takes place when a mouse button
is pressed over an inactive window, an event that is usually ignored by applications.

The abundance of Windows messages should not lead you to think that mouse
processing is difficult. Most applications do all their mouse processing by intercept-ing
two or three of these messages. Table 18–4 lists the mouse messages most frequency
handled by applications.

Table 18–4
Frequently Used Client Area Mouse Messages

MOUSE MESSAGE DESCRIPTION
WM_LBUTTONDOWN Left button pressed
WM_LBUTTONUP Left button released
WM_RBUTTONDOWN Right button pressed
WM_RBUTTONUP Right button released
WM_RBUTTONDBLCLK Right button double-clicked
WM_LBUTTONDBLCLK Left button double-clicked
WM_MOUSEMOVE Mouse moved into client area

In Table 18–4 lists only client area mouse messages; nonclient area messages are usually
handled by the default windows procedure.

Mouse processing is similar to keyboard processing, although mouse messages do not
require that the window have the input focus. Once your application gains control in a
mouse message handler, it can proceed to implement whatever action is required.
However, there are some differences between keyboard messages and mouse messages.

Keyboard and mouse programming 601

To Windows, keyboard input is always given maximum attention. The operating system
tries to assure that keyboard input is always preserved. Mouse messages, on the other
hand, are expendable. For example, the WM_MOUSEMOVE message, which signals
that the mouse cursor is over the application’s client area, is not sent while the mouse is
over every single pixel of the client area. The actual rate depends on the mouse hardware
and on the processing speed. Therefore, it is possible, given a small enough client area
and a slow enough message rate, that code may not be notified of a mouse movement
action over its domain. Mouse programming must take this possibility into account.

In client area mouse messages, the wParam indicates which, if any, keyboard or
mouse key was held down while the mouse action took place. Windows defines five
symbolic constants to represent the three mouse keys and the keyboard Ctrl and Shift
keys. These constants are listed in Table 18–5.

Table 18–5
Virtual Key Constants for Client Area Mouse
Messages

CONSTANT ORIGINATING CONDITION
MK_CONTROL Ctrl key is down.
MK_LBUTTON Left mouse button is down.
MK_MBUTTON Middle mouse button is down.
MK_RBUTTON Right mouse button is down.
MK_SHIFT Shift key is down.

Code can determine if one of the keys was held down by ANDing with the
corresponding constant. For example, the following fragment can be used to determine if
the Ctrl key was held down at the time that the left mouse button was clicked in the client
area:

case WM_LBUTTONDOWN:
 if(wParam & MK_CONTROL) {
 // ASSERT:
 // Left mouse button clicked and <Ctrl> key down

The predefined constants represent individual bits in the operand; therefore, you must be
careful not attempt to equate the wParam with any one of the constants. For example, the
MK_LBUTTON constant is always true in the WM_LBUTTONDOWN intercept, for
this reason the following test always fails:

case WM_LBUTTONDOWN:
 if(wParam == MK_CONTROL) {

On the other hand, you can determine if two or more keys were held down by performing
a bitwise OR of the predefined constants before ANDing with the wParam. For example,
the following expression can be used to tell if either the Ctrl keys or the Shift keys were
held down while the left mouse button was clicked:

The pc graphics handbook 602

if(wParam & (MK_CONTROL | MK_SHIFT)) {
 // ASSERT:
 // Either the <Ctrl> or the <Shift> key was held
down
 // when the mouse action occurred

To test if both the <Ctrl> and the <Shift> keys were down when the mouse action
occurred, you can code as follows:

if((wParam & MK_CONTROL) && (wParam & MKSHIFT)) {
 // ASSERT:
 // The <Ctrl> and <Shift> key were both down when
the
 // mouse action occurred

18.3.2 Cursor Location

Applications often need to know the screen position of the mouse. In the case of the
client area messages, the lParam encodes the horizontal and vertical position of the
mouse cursor when the action takes place. The high-order word of the lParam contains
the vertical mouse position and the low-order word the horizontal position. Code can use
the LOWORD and HIWORD macros to obtain the value in logical units. For example:

int cursorX, cursorY; // Storage for
coordinates
.
.
.
case WM_MOUSEMOVE:
 cursorX = LOWORD(lParam)
 cursorY = HIWORD(lParam);
 // ASSERT:
 // Variables now hold x and y cursor coordinates

18.3.3 Double-Click Processing

Handling mouse double-clicks requires additional processing as well as some
forethought. In the first place, mouse double-click messages are sent only to windows
that were created with the CS_DBLCLKS style. The CS_DBLCLKS style is described in
Table 16–2. The structure of type WNDCLASSES for a windows that it to receive mouse
double-clicks can be defined as follows:

// Defining a structure of type WNDCLASSEX
 WNDCLASSEX wndclass ;
 wndclass.cbSize = sizeof (WNDCLASSEX) ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW |
 CS_DBLCLKS;
 .

Keyboard and mouse programming 603

 .
 .

Three client area mouse messages are related to the double-click action, one for each
mouse button. If the window class includes the CS-DBLCLKS type, then client area
double-click messages take place. WM_LBUTTONDBLCLK intercepts double-clicks for
the left mouse button, WM_RBUTTONDBLCLK for the right mouse button, and
WM_MBUTTONDBLCLK for the center button.

The double-click notification occurs when a mouse button is clicked twice within a
predefined time interval. The double-click speed is set by selecting the Mouse Properties
option in the Windows Control Panel. The SetDoubleClickTime() function can also be
used to change the double-click interval from within an application, although it is not a
good idea to do this without user participation. The default double-click time is 500 msec
(one-half second). In addition, the two actions of a double-click must occur within a
rectangular area defined by Windows, according to the display resolution. If the mouse
has moved outside of this rectangle between the first and the second clicks, then the
action is not reported as a double-click. The parameters for the double-click rectangle can
be retrieved with the GetSystemMetrics() function, using the predefined constant
SM_CXDOUBLECLK for the x-coordinate, and SM_CYDOUBLECLK for the y
coordinate.

A double-click intercept receives control on the second click, because at the time of
the first click it is impossible to know if a second one is to follow. Therefore, if the code
intercepts normal mouse clicks, it also receives notification on the first click of a double-
click action. For this reason, programs are usually designed so that the action taken as a
result of a double-click is a continuation of the one taken on a single click. For example,
selecting an application file in Windows Explorer by means of a single mouse click has
the effect of highlighting the filename. If the user double-clicks, the file is executed. In
this case the double-click action complements the single-click one. Although it is
possible to implement double-click processing without this constraint, the programming
is more complicated and the user interface becomes sluggish.

18.3.4 Capturing the Mouse

The mouse programming logic so far discussed covers most of the conventional
programming required for handling mouse action inside the active window. By inter-
cepting the client area messages, not the nonclient area ones, we avoid being notified of
actions that usually do not concern our code. However, there are common mouse
operations that cannot be implemented by processing client area messages only. For
example, a Windows user installs a program icon on the desktop by right-clicking on the
icon and then dragging it outside of the program group window. When the right mouse
button is released, Windows displays a menu box that includes options to move or copy
the program item, to create a shortcut, or to cancel the operation. In this case, the action
requires crossing the boundary of the active window. Therefore, client area messages
cease as soon as this boundary is reached.

Another case is a drawing program that uses a mouse dragging operation to display a
rectangular outline. The rectangle starts at the point where the button is clicked, and ends

The pc graphics handbook 604

at the point where the button is released. But what happens if the user crosses over the
client area boundary before releasing the mouse button? In this case the application is not
notified of the button release action since it occurs outside the client area. Furthermore, if
the drawing action is performed during the WM_MOUSEMOVE intercept, the messages
also stop being sent to the applications windows procedure as soon as the client area
boundary is crossed. It would be a dangerous assumption to implement this function
assuming that the user never crosses the boundary of the program’s client area.

Problems such as these are solved by capturing the mouse, which is done by the
SetCapture() function. The only parameter to SetCapture() is the handle of the capturing
window. Once the mouse is captured, all mouse actions are assumed to take place in the
client area, and the corresponding message intercepts in the application code are notified.
The most obvious result of a mouse capture is that the client area message handlers are
active for mouse actions that take place outside the client area. Only one window can
capture the mouse, and it must be the active one, also called the foreground window.
While the mouse is captured all system keyboard functions are disabled. The mouse
capture ends with the call to ReleaseCapture(). GetCapture() returns the handle to the
window that has captured the mouse, or NULL if the mouse capture fails.

Applications should capture the mouse whenever there is a possibility, even a remote
one, of the user crossing the boundary of the client area during mouse processing.
Implementing a simple drag-and-drop operation usually requires capturing the mouse.
Mouse operations that take place between windows, whether they be child windows or
not, also require capturing the mouse. Multitasking operations are limited during mouse
capture. Therefore, it is important that the capture is released as soon as it is no longer
necessary.

18.3.5 The Cursor

The screen image that corresponds to the mouse device is called the cursor. Windows
provides 13 built-in cursors from which an application can select. In addition, you can
create your own customized cursor and use it instead of a standard one. There are over 20
Windows functions that relate to cursor operations; however, even programs that
manipulate cursor images hardly ever use more than a couple of them. Figure 18–3 shows
the Windows built-in cursors and their corresponding symbolic names.

Keyboard and mouse programming 605

Figure 18–3 Windows Built-In
Cursors

Code that manipulates cursor images must be aware of Windows cursor-handling
operations. A mouse-related message not yet discussed is WM_SETCURSOR. This
message is sent to your window procedure, and to the default window procedure,
whenever a noncaptured mouse moves over the client area, or when its buttons are
pressed or released. In the WM_SETCURSOR message, the wParam holds the handle to
the window receiving the message. The low-order word of lParam is a code that allows
determining where the action takes place, usually called the hit code. The high-order
word of the lParam holds the identifier of the mouse message that triggered
WM_SETCURSOR.

One of the reasons for WM_SETCURSOR is to give applications a chance to change
the cursor; also for a parent window to manipulate the cursor of a child window. The
problem is that Windows has a mind of its own regarding the cursor. If your application
ignores the WM_SETCURSOR message, the default window procedure receives the
message anyway. If Windows determines (from the hit code) that the cursor has moved
over the client area of a window, then the default window procedure sets the cursor to the
class cursor defined in the hCursor member of the WNDCLASSEX structure in
WinMain(). If the cursor is in a nonclient area, then Windows sets it to the standard arrow
shape.

What all of this means to your application code is that if you ignore the
WM_SETCURSOR message, and don’t take other special provisions, Windows
continuously changes the cursor according to its own purposes, probably interfering with
your own manipulations. The simplest solution is to intercept WM_SETCURSOR and
return a nonzero value. In this case the window procedure halts all further cursor
processing. You could also use the WM_SETCURSOR intercept to install your own
cursor or cursors; however, the disadvantage of this ap-proach is that WM_SETCURSOR
does not provide information about the cursor's screen location.

The pc graphics handbook 606

An alternate method is to perform cursor manipulations at one of the mouse message
intercepts, or any other message handler for that matter. For example, code can
implement cursor changes at WM_MOUSEMOVE. In this case the lParam contains the
cursor's horizontal and vertical position. Child windows can use this intercept to display
their own cursors. In this case the hCursor field of the WNDCLASSEX structure is
usually set to NULL, and the application takes on full responsibility for handling the
cursor.

Applications that manipulate the cursor often start by setting a new program cursor
during WM_CREATE processing. In cursor processing there are several ways of
achieving the same purpose. The methods described are those that the authors have found
more reliable. To create and display one of the built-in cursors you need a variable to
store the handle to the cursor. The LoadCursor() and SetCursor() functions can then be
used to load and display the cursor. To load and display the IDC_APPSTARTING cursor
code can be as follows:

HCURSOR aCursor;
.
.
.
aCursor=LoadCursor(NULL, IDC_APPSTARTING);
SetCursor (aCursor);

The first parameter of the LoadCursor() function is the handle to the program instance.
This parameter is set to NULL to load one of the built-in cursors. Any of the symbolic
names in Figure 18–3 can be used. The cursor is not displayed until the SetCursor()
function is called, using the cursor handle as a parameter.

Graphics applications sometimes need one or more special cursors to suit their own
needs. In the Visual C++ development environment, creating a custom cursor is made
easy by the image editor. The process described for creating a program icon in Chapter 3,
in the section, "Creating a Program Resource," is almost identical to the one for creating a
custom cursor. Briefly reviewing:

1. In the Insert menu select the Resource command and then the Cursor resource type.
2. Use the editor to create a cursor. Note that all cursors are defined in terms of a 32 by

32 bit monochrome bitmap.
3. A button on the top bar of the editor allows positioning the cursor's hot spot. The

default position for the hot spot is the upper left corner.
4. In the process of creating a cursor, Developer Studio also creates a new script file, or

adds the information to an existing one. You must manually insert the script file into
the project by selecting the Add to Project command from the Project menu and then
selecting the Files option. In the "Insert Files into Project" dialog box select the script
file and then click the OK button. The script file now appears on the Source Files list
in the Files View window of the Project Workspace.

5. In addition to the script file, Developer Studio also creates a header file for resources.
The default name of this file is resource.h. In order for resources to be available to the
code you must enter an #include statement for the resource.h file in your source.

Keyboard and mouse programming 607

In order to use the custom cursor in your code you must know the symbolic name
assigned to this resource, or its numeric value. The information can be obtained by
selecting the Resource Symbols command from the View menu, or clicking the
corresponding button on the toolbar.

The LoadCursor() function parameters are different for a custom cursor than for a
built-in one. In the case of a custom cursor, you must enter the handle to the instance as
the first parameter, and use the MAKEINTRESOURCE macro to convert the numeric or
symbolic value into a compatible resource type. For example, if the symbolic name of the
custom cursor is IDC_CURSOR1, and the handle to the instance is stored in the variable
pInstance (as is the case in the template files furnished in this book) you can proceed as
follows:

HCURSOR aCursor; // handle to a cursor
.
.
.
aCursor = LoadCursor(pInstance,
 MAKEINTRESOURCE(IDC_CURSOR1));
SetCursor(aCursor);

18.4 Mouse and Cursor Demonstration Program

The program named MOU_DEMO, located in the Mouse Demo project folder of the
book’s software package, is a demonstration of some of the mouse handling operations
previously described. At this point in the book we have not yet covered the graphics
services, or the implementation of user interface functions. For these reasons, it is
difficult to find a meaningful demonstration for mouse operations.

MOU_DEMO monitors the left and the right mouse buttons. Clicking the left button
changes to one of the built-in cursors. The cursors are displayed are the same ones as in
Figure 18–3. Clicking the right mouse button displays a customized cursor in the form of
the letter "A." The hot spot of the custom cursor is the vertex of the "A." When the mouse
is moved in the client area, its position is displayed on the screen. Figure 18–4 is a screen
snapshot of the MOU_DEMO program.

Figure 18–4 MOU_DEMO Program
Screen

The pc graphics handbook 608

The program’s first interesting feature is that no class cursor is defined in the
WNDCLASSEX structure. Instead, the hCursor variable is initialized as follows:

wndclass.hCursor = NULL;

Since the program has no class cursor, one is defined during WM_CREATE processing,
with the following statements:

// Select and display a cursor
aCursor = LoadCursor(NULL, IDC_UPARROW);
SetCursor(aCursor);

In this code, the variable aCursor, of type HCURSOR, is declared in the windows
procedure. Toggling the built-in cursors is performed in the WM_LBUTTONDOWN
message intercept. The coding is as follows:

case WM_LBUTTONDOWN:
curNum++; // bump to next cursor
switch (curNum){
case 1:
 aCursor = LoadCursor(NULL, IDC_WAIT);
 SetCursor(aCursor);
 break;
case 2:
 aCursor = LoadCursor(NULL, IDC_APPSTARTING);
 SetCursor(aCursor);
 break;
case 3:
 aCursor = LoadCursor(NULL, IDC_CROSS);
 SetCursor(aCursor);
 break;
.
.
.
case 12:
 aCursor = LoadCursor(NULL, IDC_UPARROW);
 SetCursor(aCursor);
 curNum = 0;
 break;
}

Note that the static variable curNum, defined in the window procedure, is used to keep
track of the cursor being displayed and to index through all 13 cursor images. The custom
cursor is created using the cursor editor that is part of Visual Studio. The display of the
custom cursor is implemented during WM_RBUTTONDOWN processing:

case WM_RBUTTONDOWN:
 aCursor = LoadCursor(pInstance,
 MAKEINTRESOURCE(IDC_CURSOR1));

Keyboard and mouse programming 609

 SetCursor(aCursor);
 return 0;

The movement of the mouse in the client area is detected by intercepting the
WM_MOUSEMOVE message. The processing consists of obtaining the cursor
coordinates from the low-order and high-order words of lParam, and converting the
numeric values into ASCII strings for display. The code uses _itoa() for this purpose. The
ASCII values are placed on the corresponding string arrays. The processing is as follows:

case WM_MOUSEMOVE:
 cursorX = LOWORD(lParam);
 cursorY = HIWORD(lParam);
 // Convert integer to ASCII string
 _itoa(cursorX, CurXStr + 4, 10);
 _itoa(cursorY, CurYStr + 4, 10);
 // Display x coordinate of mouse cursor
 // First initialize rectangle structure
 SetRect (&textRect, // address of structure
 2 * cxChar, // x for start
 3 * cyChar, // y for start
 cxClient −(2 * cxChar), // x for end
 cyClient); // y for end
 // Erase the old string
 DrawText(hdc, CurXBlk, −1, &textRect,
 DT_LEFT | DT_WORDBREAK);
 // Display new string
 DrawText(hdc, CurXStr, −1, &textRect,
 DT_LEFT | DT_WORDBREAK);
// Display y coordinate of mouse cursor
.
.
.
return 0;

In order to avoid having Windows change the cursor as it moves into the client area, the
code intercepts the WM_SETCURSOR message, as follows:

case WM_SETCURSOR:
 return 1;

When running the MOU_DEMO program notice that if the cursor is moved at a rather
fast rate out of the client area, toward the left side or the top of the screen, the last value
displayed for the diminishing coordinate may not be zero. This is due to the fact,
mentioned earlier in this section, that WM_MOUSEMOVE messages are not sent to the
window for every pixel of screen travel. Mouse programming must also take this into
account and use greater-than and smaller-than comparisons to determine screen areas of
cursor travel.

The pc graphics handbook 610

Chapter 19
Child Windows and Controls

Topics:

• Windows styles
• Child windows
• Menus
• Creating a menu
• Dialog boxes
• Common controls

This chapter is about programming the Windows graphical user interface (GUI). The
Windows GUI consists of child windows and built-in controls, such as status bars,
toolbars, ToolTips, trackbars, up-down controls, and many others. The discussion also
includes general purpose controls such as message boxes, text boxes, combo boxes, as
well as the most used of the common controls. All of these components are required to
build a modern Windows program; it is difficult to imagine a graphics application that
does not contain most of these elements.

19.1 Window Styles

One of the members of the WNDCLASSEX structure is the windows style. In Chapter 16
we briefly discussed windows styles, and Table 16–2 is a summary of the constants that
can be used to define this member. Since the eleven style constants can be ORed with
each other, many more windows styles can result. Furthermore, when you create a
window using the CreateWindow() function, there are 27 window style identifiers (see
Table 16–5). In addition, the CreateWindowEx() function provides 21 style extensions
(see Table 16–4). Although the number of possible combinations of all these elements is
very large, in practice, about 20 window styles, with unique properties, are clearly
identified, all of which are occasionally used. This lists can be further simplify into three
general classes (overlapped, pop-up, and child windows) and three variations (owned,
unowned, and child), which gives rise to five major styles.

In the sections that follow we discuss four specific window styles:

• Unclassed child windows. These are windows that are related to a parent window but
that do not belong to one of the predefined classes.

• Basic controls. These are child windows that belong to one of the standard control
classes: BUTTON, Combo box, EDIT, LISTBOX, MDICLIENT, SCROLLBAR, and
STATIC.

• Dialog boxes. A special type of pop-up window, that usually includes several child
window controls, typically used to obtain and process user input.

• Common controls. A type of controls introduced in Windows 3.1, which include status
bars, toolbars, progress bars, animation controls, list and tree view controls, tabs,
property sheets, wizards, rich edit controls, and a new set of dialog boxes.

Several important topics related to child windows and window types are not discussed;
among them are OLE control extensions, ActiveX controls, and multiple document
interface (MDI). OCX controls relate to OLE automation and ActiveX controls are used
mostly in the context of Web programming.

19.1.1 Child Windows

The simplest of all child windows is one that has a parent but does not belong to any of
the predefined classes. Sometimes these are called "unclassed" child windows. However,
if we refer to the "classed" child windows as controls, then the "unclassed" windows can
be simply called "child windows." These are the designations used in the rest of the book:
we refer to unclassed child windows simply as child windows and the classed variety as
controls.

A child window must have a parent, but it cannot be an owned or an unowned
window. The child window can have the appearance of a main window, that is, it can
have a sizing border, a title bar, a caption, one or more control buttons, an icon, a system
menu, a status bar, and scroll bars. The one element it cannot have is a menu, since an
application can have a single menu and it must be on the main window. On the other
hand, a child window can be defined just as an area of the parent window. Moreover, a
child window can be transparent; therefore, invisible on the screen. The conclusion is that
it is often impossible to identify a child window by its appearance.

A child window with a caption bar can be moved inside its parent client area;
however, it will be automatically clipped if moved outside of the parent. The child
window overlays a portion of its parent client area. When the cursor is over the child,
Windows sends messages to the child, not to the parent. By the same token, mouse action
on the child window’s controls, or its system menu, is sent to the child. A child window
can have its own window procedure and perform input processing operations
independently of the parent. When the child window is created or destroyed, or when
there is a mouse-button-down action on the child, a WM_PARENTNOTIFY message is
sent to the parent window. One exception to parent notification is if the child is created
with the WS_EX_NOPARENTNOTIFY style.

A child window is created in a manner similar to the parent window, although there
are some important variations. Creating a child window involves the same steps as
creating the main window. You must first initialize the members of the WNDCLASSEX
structure. Then the window class must be registered. Finally, the window is actually
created and displayed when a call is made to CreateWindow() or CreateWindowEx()
function.

There are not many rules regarding when and where an application creates a child
window. The child window can be defined and registered in WinMain() and displayed at
the same time as the main window. Or the child window can be created as the result of
user input or program action. We have already mentioned the great number of
windows[check] styles and style combinations that can be used to define a child window.
Some of these styles are incompatible, and others are ineffective when combined. The

The pc graphics handbook 612

styles used in creating the child window determine how it must be handled by the code.
For example, if a child window is created with the WS_VISIBLE style, then it is
displayed as it is created. If the WS_VISIBLE style is not used, then to display the child
window you have to call ShowWindow() with the handle to the child window as the first
parameter, and SW_SHOW, SW_SHOWNORMAL, or one of the other predefined
constants, as the second parameter.

In operation, the child window provides many features that facilitate program design.
For instance, a child window has its own window procedure, that can do its own message
processing. This procedure receives the same parameters as the main window procedure
and is notified of all the windows[check] messages that refer to the child. The child
window can have its own attributes, such as icons, cursors, and background brush. If the
main window is defined with an arrow cursor and the child window with a cross cursor,
the cursor changes automatically to a cross as it travels over the child, and back to an
arrow as it leaves the child’s client area. The fact that each windows does is own message
processing considerably simplifies the coding. Screen environments with multiple areas,
such as the ones in Visual Studio, Windows Explorer, and many other applications, are
implemented by means of child windows.

Parent and child windows can share the same display context or have different ones. In
fact, each window can have any of the display contexts described in Chapter 4. If the
child window is declared with the class style CS_PARENTDC, then it uses the parent’s
display context. This means that output performed by the child takes place in the parent’s
client area, and the child has no addressable client area of its own. On the other hand,
parent and child can have separate device contexts. If both windows are declared with the
class style CS_OWNDC, discussed in Chapter 4, then each has its own display context
with a unique set of attributes. If there is more than one child window, they can be
declared with the class style CS_CLASSDC, and the children share a single device
context, which can be different from the one of the parent window.

Each child window is given its own integer identifier at the time it is created. Since
child windows can have no menus, the HMENU parameter passed to CreateWindows()
or CreateWindowsEx() is used for this purpose. The child window uses this identifier in
messages sent to its parent, which enables the parent to tell to which child window the
message belongs, if more than one is enabled. If multiple child windows are given the
same numeric identification then it may be impossible for the parent to tell them apart.

19.1.2 Child Windows Demonstration Program

The program named CHI_DEMO, located in the Child Window Demo project folder on
the book’s software package, is a demonstration of a program with a child window. The
program displays an overlapped child window inside the parent window. When the left
mouse button is clicked inside the child window, a text message is displayed in its client
area. The same happens when the left mouse button is clicked in the parent’s client area.
At the same time, the old messages in the parent or the child windows are erased. Figure
19–1 is a screen snapshot of the CHI_DEMO program.

Child windows and controls 613

Figure 19–1 CHI_DEMO Program
Screen

The program uses a child window, which is defined using the
WS_OVERLAPPEDWINDOW style. This style, which is the same one used in the
parent window, gives both the parent and the child a title bar with caption, a system
menu, a border, and a set of control buttons to close, minimize and restore. The child
window is created during WM_CREATE message processing of the parent window, as
follows:

LRESULT CALLBACK WndProc(HWND hwnd, UINT iMsg, WPARAM
wParam,
 LPARAM lParam) {
 PAINTSTRUCT ps ;
 WNDCLASSEX chiclass ;
 switch (iMsg) {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;
 // The system monospaced font is selected
 SelectObject (hdc, GetStockObject
(SYSTEM_FIXED_FONT)) ;
 // Create a child window
 chiclass.cbSize = sizeof (chiclass) ;
 chiclass.style = CS_HREDRAW | CS_VREDRAW
 | CS_OWNDC;
 chiclass.lpfnWndProc = ChildWndProc ;
 chiclass.cbClsExtra = 0 ;
 chiclass.cbWndExtra = 0 ;
 chiclass.hInstance = pInstance ;
 chiclass.hIcon = NULL;
 chiclass.hCursor = LoadCursor (NULL,
IDC_CROSS) ;
 chiclass.hbrBackground = (HBRUSH) GetStockObject
 (WHITE_BRUSH);
chiclass.lpszMenuName = NULL;
chiclass.lpszClassName = "ChildWindow" ;
chiclass.hIconSm = NULL;
RegisterClassEx (&chiclass) ;

The pc graphics handbook 614

 hChild=CreateWindow ("ChildWindow",
 "A Child Window", // caption
 WS_CHILD | WS_VISIBLE |
 WS_OVERLAPPEDWINDOW ,
 40, 40, // x and y of window location
 400, 100, // x and y of window size
 hwnd, // handle to the parent window
 (HMENU) 1001, // child window designation
 pInstance, // program instance
 NULL) ;
// Make sure child window is valid
assert(hChild != NULL);
return 0 ;
.
.
.

Note that the child is defined with the styles WS_CHILD, WS_VISIBLE, and
WS_OVERLAPPEDWINDOW. The WS_VISIBLE class style ensures that the child
becomes visible as soon as CreateWindows() is executed. The child window is assigned
the arbitrary value 1001 in the HMENU parameter to CreateWindow(). The child has a
private DC, the same as the parent, but the DCs are different. The assert statement
ensures, during program development, that the child window is a valid one.

During the parent's WM_PAINT message processing a call is made to
UpdateWindow() with the handle of the child window as a parameter. The result of this
call is that the child’s window procedure receives a WM_PAINT message.

The window procedure for the child, named ChildWndProc() in the demo program, is
prototyped in the conventional manner and its name defined in the lpfnWndProc member
of the child’s WNDCLASSEX structure. The child’s window procedure is coded as
follows:

LRESULT CALLBACK ChildWndProc (HWND hChild, UINT iMsg,
WPARAM wParam,
 LPARAM lParam) {
switch (iMsg) {
 case WM_CREATE:
 childDc = GetDC(hChild);
 SelectObject (childDc, GetStockObject
 (SYSTEM_FIXED_FONT)) ;
 return 0;
 case WM_LBUTTONDOWN:
 // Display message in child and erase text in
parent
 TextOut(childDc, 10, 10, "Mouse action in child ",
22);
 TextOut(hdc, 10, 10, " ", 22);
return 0;
 case WM_DESTROY:
 return 0;
}

Child windows and controls 615

return DefWindowProc (hChild, iMsg, wParam, lParam) ;
}

During the WM_CREATE processing of the child's windows[check] procedure, the code
obtains a handle to the child's DC. Also, the system fixed font is selected into the DC at
this time.

In the CHI_DEMO program we have declared several public variables: the handles to
the windows of the parent and the child and the handles to their display context. This
stretches one of the fundamental rules of Windows programming: to keep public data at a
minimum. In this case, however, we achieve a substantial simplification in the coding,
since now the parent can have access to the child's device context, and vice versa.
Therefore, when the user clicks the left mouse button in the child's client area, a text
message is displayed in the child window and the one in the parent window is
simultaneously erased. Similar processing takes place when the left mouse button is
clicked in the parent’s client area.

19.1.3 Basic Controls

These are the traditional controls that have been around since the Win16 APIs. They are
predefined child windows that belong to one of the standard window classes. Table 19–1
lists the predefined classes used for controls.

Table 19–1
Predefined Control Classes

CLASS
NAME

MEANING

BUTTON A small rectangular child window representing a button. The user clicks a button to
turn it on or off. Button controls can be used alone or in groups, and they can be
labeled or not. Button controls typically change appearance when clicked.

COMBOBOX Consists of a list box and a selection field similar to an edit control (see
description). Depending on its style, you can or cannot edit the contents of the
selection field. If the list box is visible, typing characters into the selection field
highlights the first list box entry that matches the characters typed. By the same
token, selecting an item in the list box displays the selected text in the selection
field.

EDIT A rectangular child window into which you type text. You select the edit box and
give it the keyboard focus by clicking it or moving to it by pressing the Tab key.
You can enter text into an Edit control if it displays a flashing caret. You use the
mouse to move the cursor inside the box, to select characters to be replaced, or to
position the cursor for inserting new characters. The Backspace key deletes
characters.
Edit controls use a variable-pitch system font and display characters from the ANSI
character set. The WM_SETFONT message can be used to change the Default font.
During input, tab characters are expanded into As many spaces as are required to
move the caret to the Next tab stop. Tab stops are preset eight spaces apart.

The pc graphics handbook 616

COLOR FIGURE 1. A color-to-pixel
bitmap.

COLOR FIGURE 2. Primary and
complementary colors.

Child windows and controls 617

COLOR FIGURE 3. Screen snapshot
of the DD access demo program.

COLOR FIGURE 4. Simple
projection of a rectangular bitmap.

The pc graphics handbook 618

COLOR FIGURE 5. Transparency by
color key.

COLOR FIGURE 6. Transparency by
source and destination color keys.

Child windows and controls 619

COLOR FIGURE 7. Clipped
execution of a DirectDraw application.

COLOR FIGURE 8. Bitmap
stretched to fill the primary surface.

The pc graphics handbook 620

COLOR FIGURE 10. Defining the
source rectangle within a bitmap.

COLOR FIGURE 9. Screen snapshot
of the DD animation demo program.

Child windows and controls 621

COLOR FIGURE 11. Defining the
source rectangle for zoom animation.

COLOR FIGURE 12. Screen
snapshot of the DD Multi Sprite
animation program.

The pc graphics handbook 622

COLOR FIGURE 13. Location of the
color key in a bitmap.

COLOR FIGURE 14. Applying a
texture to an object.

Child windows and controls 623

COLOR FIGURE 15. Increasing the
ambient light for all three primary
colors.

COLOR FIGURE 16. Assigning
color to a mesh.

The pc graphics handbook 624

CLASS
NAME

MEANING

LISTBOX A list of character strings. It is used to present a list of names, such as filenames,
from which you can select. Selection is made by clicking an item in the list box.
The selected string is highlighted, and a notification message is sent to the parent
window.
When the item list is too long for the window, you can use a vertical or horizontal
scroll bar. If the scroll bar is not needed, it is automatically hidden.

SCROLLBAR A rectangular control with a scroll box and direction arrows at both ends. The scroll
bar sends a notification message to its parent window whenever the user clicks it.
The parent window is responsible for updating the position of the scroll box when
necessary. Scroll bar controls have the same appearance and function as scroll bars
used in ordinary windows. Unlike scroll bars, however, scroll bar controls can be
positioned anywhere in a window and for any purpose.
The scroll bar class also includes size box controls, which is a small rectangle that
you can expand to change the size of the window.

STATIC A simple text field, box, or rectangle, used to label, group, or separate other
controls. Static controls take no input and provide no output.

Figure 19–2 shows buttons of several types, a list box, a combo box, and a scroll bar
control.

Figure 19–2 Buttons, List Box, Combo
Box, and Scroll Bar Controls

In conventional Windows programming basic controls are not frequently used in the
client area of the main window. Most often you see them in message boxes or input
boxes, described later in this chapter. For this reason, Developer Studio does not provide
a resource editor for inserting controls in the client area, although it does contain a

Child windows and controls 625

powerful editor for dialog boxes. In spite of this, the use of basic controls in child
windows adds considerable power to a programmer’s toolkit. The result is a completely
customizable message, dialog box, toolbar, or other child window, in which you are free
from all the restrictions of the built-in versions of these components. The price for this
power and control is that you must implement all the functionality in your own code.

The CreateWindow() or CreateWindowEx() functions are used to build any one of the
controls in Table 19–1. If the control is created using the WS_VISIBLE window style,
then it is displayed immediately on the window whose handle is passed as a parameter to
the call. If not, then the ShowWindow() function has to be called in order to display it.
The call returns a handle to the created control, or NULL if the operation fails. The
following code fragment shows creating a button control.

static HWND hwndRadio1; // Handle to control
. . .
 hwndRadio1 = CreateWindow (
 "BUTTON" , // Control class name
 "Radio 1", // Button name text
 WS_CHILD | WS_VISIBLE | BS_RADIOBUTTON
/(WS_SIZEBOX,
 20, // x coordinate of location
 60, // y coordinate
 100, 30, // button size
 hChild, // Handle to parent window
 (HMENU) 201 // control id number
 pInstance, // Instance handle
 NULL) ; // Pointer to additional data

Because controls belong to predefined classes, they need not be registered as a window
class. Therefore, the WNDCLASSEX structure and the call to RegisterClass() or
RegisterClassEx() are not required in this case. In the case of a main window, the eighth
parameter of CreateWindow() is the handle to its menu. Since controls cannot have a
menu, this parameter is for the control’s numeric designation, the same as with a child
window. Thereafter, this numeric value, which can be also a predefined constant,
identifies the control. If the control is to be addressable, this identification number should
be unique.

In addition to the general window style, each of the predefined control classes has its
own set of attributes. The prefixes are shown in Table 19–2.

The class-specific styles are ORed with the window style constants passed in the third
parameter to CreateWindow(). Note that in the previous code fragment the
BS_RADIOBUTTON constant is included in the field. There are several variations of the
button class. The buttons in the first group of Figure 19–2, labeled Pushbuttons, are plain
pushbuttons. They appear raised when not pushed and sunken after being pushed by the
user. Pushbuttons operate independently. These buttons are usually created with the
BS_PUSHBUTTON and BS_DEFPUSHBUTTON styles.

The pc graphics handbook 626

Table 19–2
Prefix for Predefined Window Classes

PREFIX CONTROL TYPE
BS button
CBS combo box
ES edit box
LBS list box
SBS scroll bar
SS static

Radio buttons are reminiscent of the buttons in the radios of old-style automobiles:
pushing one button automatically pops out all the others. The styles
BS_RADIOBUTTON and BS_AUTORADIOBUTTONS are used for creating this type
of button. Radio buttons contain a circular area with a central dot that indicates the
button’s state.

Another variation is the checkbox. A checkbox can have two or three states. A two-
state checkbox can be checked or unchecked, while the three-state style can also be
grayed. Checkboxes, like regular buttons, operate independently of each other. Two-state
checkboxes are created with the BS_CHECKBOX style. The three-state version requires
ORing the BS_3STATE constant with BS_CHECKBOX.

A unique style of button is the groupbox, which is enabled with the button style
BS_GROUPBOX. A groupbox is used to enclose several buttons or controls in a labeled
frame. It is unique in the sense that it is defined as a button, but a groupbox does not
respond to user input, nor does it send messages to the parent window. Figure 19–2
shows three group boxes, one for each type of button.

Three types of controls are designed for manipulating text: the edit box, the combo
box, and the list box. You select an edit box control for input by clicking it or tabbing
until it has the input focus. When a caret is displayed, you can enter text until the
rectangle is filled. If the edit box control is created with the ES_AUTOSCROLL style,
then you can enter more characters than fit in the box since the text automatically scrolls
to the left, although this practice is not recommended since part of the input disappears
from the screen. If the edit box is defined with the ES_MULTILINE style then you can
enter more than one text line. However, this style can create conflicts if the active
window contains a default pushbutton that also responds to the Enter key. The built-in
solution to this problem is that the default style of edit box requires the Ctrl+Enter key
combination to end an input line. However, if the edit box is created with the style
ES_WANTRETURN, then the Enter key alone serves as a line terminator.

The list box control displays a list of text items from which the user can select one or
more. Code can add or remove strings from the list box. Scroll bars can be requested for a
list box. If the list box is created with the LBS_NOTIFY style then the parent window
receives a message whenever the user clicks or double-clicks an item. The LBS_SORT
style makes the list box sort items alphabetically.

The combo box is a combination of a textbox and a list box. The user can enter text on
the top portion of the combo box, or drop down the list box and select an item from it.

Child windows and controls 627

Alternatively, the edit function of the combo box can be disabled. Figure 19–2 shows a
combo box.

Scroll bar controls can be vertical or horizontal and be aligned at the bottom, top, left,
or right of a rectangle defined at call time. It is important to distinguish between window
and control scroll bars. Any window can have scroll bars if it is defined with the
WS_VSCROLL or WS_HSCROLL styles. Scroll bar controls are individual scroll bars
which can be positioned anywhere on the parent’s client area. Both windows and control
scroll bars send messages to the parent window whenever a user action takes place. Scroll
bar controls are of little use by themselves but provide a powerful and convenient way of
obtaining user input, for example, a scroll bar control that allows the user to move up or
down a numeric range without typing values. In this case the scroll bar is usually
combined with another control that displays the selected value. The CON_DEMO
program, in this chapter, has an example of this use of a scroll bar control.

Static controls do not interact with the user since they cannot receive mouse or
keyboard input. The principal use of static controls is to display rectangular frames of
several colors and borders, and to provide feedback from another control. The
CON_DEMO program, described later in this chapter, which is found in the Controls
Demo project folder in the book’s software pckage, has a child window with a static
control that displays the position of a scroll bar.

19.1.4 Communicating with Controls

Controls are child windows and child windows can communicate with their parents. As is
the case in all Windows functions, controls communicate with their parent window by
means of a message passing mechanism. The messages passed to the parent window
depend on the type of control. This communication works both ways: a control sends a
message to its parent window informing it that a certain user action has taken place, or
the parent window sends a message to a control requesting that it take a certain action or
report some item of information stored internally. For example, when the user clicks on a
pushbutton control, a WM_COMMAND message is sent to the parent window. When a
parent window needs to know if a radio button is checked or unchecked it sends a
BM_GETCHECK message to the radio button control.

WM_COMMAND is used to inform the parent window of action on a menu, on a
control, or of an accelerator keystroke. The high-order word of the wParam is zero if the
message originates in a menu, and one if it originates in an accelerator keystroke. If the
message originated in a control, then the high-word of the wParam is a control-specific
notification code. Table 19–3 lists the notification codes for the button controls.

Table 19–3
Notification Codes for Buttons

NOTIFICATION CODE ACTION
BN_CLICKED Button was clicked
BN_DBLCLK Button was double-clicked
BN_SETFOCUS Button has gained keyboard focus
BN_KILLFOCUS Button has lost keyboard focus

The pc graphics handbook 628

In the case of a control, the low-order word of the wParam contains the control identifier.
This identifier is the number assigned to the control in the hMenu parameter of
CreateWindows() or CreateWindowsEx(). Usually, an application defines a symbolic
constant for each control, since this is a mnemonic aid and helps to make sure that no two
controls are assigned the same value. One or more #define statements can be used as
follows:

#define WARMBUTTON 101
#define HOTBUTTON 102
#define COLDBUTTON 103

A switch statement on the low word of wParam can later be used to tell which button
been pressed by the user, for example:

int buttonID, buttonNotify;
.
.
case WM_COMMAND:
 buttonID = LOWORD(wParam);
 buttonNotify = HIWORD(wParam);
 //eliminate non-control actions
 if(buttonNotify <= 1)
 return 0;
 switch (buttonID):
 case WARMBUTTON:
 if(buttonNotify == BN_CLICKED)
 // ASSERT:
 // Tested button was clicked
 .
 .
 .

Some controls store information about their state or other data. For example, a three-state
checkbox can be in a checked, unchecked, or indeterminate state. Table 19–4 lists the
checkbox constants that define the three settings. These are used with three-state
checkboxes and radio buttons.

Table 19–4
Notification Codes for Three-State Controls

NOTIFICATION CODE ACTION
BST_CHECKED Control is checked
BST_INDETERMINATE Control is checked and grayed
BST_UNCHECKED Control is unchecked

If you send a BM_GETCHECK message to a three-state checkbox or radio button it
responds with one of these values. Suppose a three-state checkbox, with identification

Child windows and controls 629

code CHKBOX1, and handle hwndChkBox1, which you wished to change from the
checked to indeterminate state; it can be coded as follows:

LRESULT butMsg;
int buttonID, buttonNotify;
.
.
.
case WM_COMMAND:
 buttonID = LOWORD(wParam);
 buttonNotify = HIWORD(wParam);
 //eliminate non-control actions
 if(buttonNotify <= 1)
 return 0;
 switch (buttonID):
 case CHKBOX1:
 butMsg=SendMessage(hwndChkBox1, // handle
 BM_GETCHECK, // message
 0, 0L); // must be zero
 if(butMsg == BST_CHECKED)
 // ASSERT:
 // checkbox is in checked state
 SendMessage(hwndChkBox1,
 BM_SETCHECK, // order to set new state
 BST_INDETERMINATE, // change to this
state
 0, 01);
 .
 .
 .

Note, in the previous code fragment, that we used the SendMessage() function to
communicate with the control. SendMessage() is used to send a message to a window or
windows bypassing the message queue. In contrast, the PostMessage() function places
the message in the thread’s message queue. In communicating with a control, the first
parameter to SendMessage() is the control’s handle and the second one is the message to
be sent. The third parameter is zero when we wish to obtain information from a control,
and it contains a value or state when we wish to change the data stored. The
BM_GETCHECK message returns a value, of type LRESULT, which is one of the
notification codes in Table 19–4. The BM_SETCHECK message is used to change the
button’s state.

Scroll bar controls have a unique way of communicating with the parent window. Like
main windows scroll bars, scroll bar controls send the WM_VSCROLL and
WM_HSCROLL messages, the first one in the case of a vertical scroll bar action and the
second one in the case of a horizontal scroll bar. The lParam is set to zero in windows
scroll bars and to the scroll bar handle in the case of a scroll bar control. The high-order
word of the wParam contains the position of the scroll box and the low-order word the
scroll box value, which is one of the SB prefix constants listed in Table 19–5.

The pc graphics handbook 630

Table 19–5
User Scroll Request Constants

VALUE MEANING
SB_BOTTOM Scroll to the lower right
SB_ENDSCROLL End scrolling
SB_LINELEFT Scroll left by one unit
SB_LINERIGHT Scroll right by one unit
SB_PAGELEFT Scroll left by the width of the window
SB_PAGERIGHT Scroll right by the width of the window
SB_THUMBPOSITION Scrolls to the absolute position.

The current position is specified by the nPos parameter
SB_THUMBTRACK Drags scroll box to the specified position.

The current position is specified by the NPos parameter
SB_TOP Scroll to the upper left

In processing scroll bar controls the first step is to make sure that the message originates
in the control being monitored. When the scroll action does not originate in windows
scroll bars, or on those of another control, the processing usually consists in determining
the new position for the scroll box. Two functions in the Windows API, SetScrollInfo()
and GetScrollInfo(), provide all necessary functionality for scroll bar operation.
SetScrollInfo() is used to set the minimum and maximum positions for the scroll box, to
define the page size, and to set the scroll box to a specific location. GetScrollInfo()
retrieves the information regarding these parameters. Four other functions,
SetScrollPos(), SetScrollRange(), GetScrollPos(), and GetScrollRange() are furnished. In
theory, these last four functions are furnished for backward compatibility, although they
are often easier to implement in code that the new versions.

A program that implements a horizontal scroll bar usually starts by creating a scroll
bar control. You can use the SBS_HORZ scroll bar style and determine its vertical and
horizontal size in the sixth and seventh parameters to CreateWindows(), as follows:

#define SCROLLBAR 401 // scroll bar id code
static HWND hwndSB; // handle for the
scroll bar
 .
 .
// create a scroll bar class child window
 hwndSB = CreateWindow ("SCROLLBAR", // Control
class name
 "", // Button name
text
 WS_CHILD | WS_VISIBLE | SBS_HORZ ,
 20, // x coordinate of
location
 140, // y coordinate
 150, 25, // dimensions

Child windows and controls 631

 hChild, // handle to parent
window
 (HMENU) SCROLLBAR, // child window id.
 pInstance, // instance handle
 NULL) ;

Once the scroll bar is created, you must determine its range, set the initial position of the
scroll box, and define its page size, if page operations are implemented. clicked. All of
this can be done with a single call to SetScrollInfo(), in which case This last value
determines how much the scroll box moves when the bar itself is the parameters are
stored in a SCROLLINFO-type structure, as follows:

// Store parameters in SCROLLINFO structure members
 scinfo.cbSize = sizeof(SCROLLINFO); // structure
size
 scinfo.fMask = SIF_POS | SIF_RANGE | SIF_PAGE; mask
 scinfo.nMin = 0; // minimum value
 scinfo.nMax = 99; // maximum value
 scinfo.nPage = 0; // page size
 scinfo.nPos = 50; // initial position
// Store scroll bar information
 SetScrollInfo(hwndSB, SB_CTL, &scinfo, TRUE);
 // | | | |___ redraw
 // | | |____ address of
SCROLLINFO
 // | |_____ refers to a scroll
bar
 // control
 // |_____________ handle to the scroll
bar control

Manipulating the scroll bar requires intercepting the corresponding scroll bar messages.
The current position of the scroll box is usually stored in a local variable, in this case the
variable is named sbPos. Since this is a horizontal scroll bar, you can intercept the
WM_HSCROLL message and then make sure that it refers to the scroll bar you are
monitoring.

static int sbPos; // position of scroll
box
 .
 .
 .
case WM_HSCROLL:
 // Make sure action refers to local scroll bar
 // not the Windows scroll bars
 if(hwndSB == (HWND) lParam) {
 switch (LOWORD (wParam)) // Scroll code
 {
 case SB_LINELEFT: // Scroll left one unit
 if(sbPos > 0)

The pc graphics handbook 632

 sbPos−−;
 break;
 case SB_LINERIGHT: // Scroll right one unit
 if(sbPos < 99)
 SbPOS++;
 break;
 // Processing for user dragging the scroll box
 case SB_THUMBTRACK:
 case SB_THUMBPOSITION:
 sbPos = HIWORD (wParam);
 break;
 }
 // Display scroll box at new position
 SetScrollPos(hwndSB,
 SB_CTL,
 sbPos,
 TRUE);
 }
 return 0;

Finally, there is the static class of controls that are often used for text fields, for labeling
boxes, and for drawing frames and rectangles. Although static controls are frequently
limited to labeling and simple drawing operations, they can be made to receive mouse
input by means of the SS_NOTIFY style. Furthermore, the text in a static control can be
changed at run time. The CON_DEMO program, described in the following section,
located in the Controls Demo project folder on the book's software package, has two
static controls. One is used to display the position of the scroll bar, and the other one is a
black frame that surrounds the scroll bar buttons.

19.1.5 Controls Demonstration Program

The program named CON_DEMO, in the book’s software package, is a demonstration of
some of the basic controls described in previous sections and of the programming
required to operate them. The controls are contained in a child window, much like the
one created in the CHI_DEMO program already described. Figure 19–3 is a labeled
screen snapshot of the CON_DEMO program.

Child windows and controls 633

Figure 19–3 CON_DEMO Program
Screen

The program's main screen contains a pushbutton that displays the child window. In
the remainder of this section we have selected some excerpts from the program code to
demonstrate the processing.

At the start of the code, the child windows and controls are defined as symbolic
names. This is a useful simplification in applications that manipulate several resources or
program elements that are identified by numeric values. The advantage is that the
information is centralized for easy access and that it ensures that there are no repeated
values.

// Constants for child windows and controls
#define CHILD1 1001
#define CREATEWIN 102
#define DESTROYWIN 103
#define RADGROUP 104
#define RADIO1 201
#define RADIO2 202

The pc graphics handbook 634

#define RADIO3 203
#define CHKBOX1 301
#define CHKBOX2 302
#define SCROLLBAR 401
#define SCRBARWIN 501
#define FRAME 502

The numeric values assigned to individual controls are arbitrary; it is a good idea,
however, to follow a pattern for numbering resources and controls, since this avoid chaos
in large programs. For example, child windows can be assigned a four-digit number,
controls a three-digit number, and so forth. It is also recommended practice to use a dense
set of integers for representing related controls, since there are Windows functions that
operate on this assumption. Following this rule, the radio buttons in the CON_DEMO
program are numbered 201, 202, and 203, and the checkboxes have numbers 301 and
302.

The creation of the child window in the CON_DEMO program is almost identical to
the one in CHI_DEMO, previously described. The individual controls are created in the
child window using the CreateWindow() function with the parameter set required in each
case. The handles for the individual controls are defined as static variables in the child
windows[check] procedure, as follows:

LRESULT CALLBACK ChildWndProc (HWND hChild, UINT iMsg,
WPARAM
 wParam, LPARAM lParam) {
 static HWND hwndChildBut1; // Handle to child’s
button
 static HWND hwndRadio1, hwndRadio2, hwndRadio3;
 static HWND hwndChkBx1, hwndChkBx2;
 static HWND hwndSB, hwndVal;
 static HWND hwndGrpBox1;
 static HWND hwndFrame;
 .
 .
 .

The code in the child window intercepts the WM_CREATE message. During message
processing it installs the system’s fixed font in the display context and then proceeds to
create the individual controls. A bool-type variable, named childStatus, is used to store
the state of the child window. This variable is TRUE if the child win-dow is displayed.
This avoids creating more than one copy of the child. The first control created in the child
window is the pushbutton that destroys it and returns execution to the parent. Before that,
the system's fixed font is selected into the display context. Coding is as follows:

switch (iMsg) {
 case WM_CREATE:
 // Test that child window is not already displayed
 if(childStatus)
 return 0;
 // ASSERT:

Child windows and controls 635

 // child window is not displayed
 childStatus = TRUE; // child window is displayed
 childDc = GetDC(hChild); // handle to private DC
 SelectObject (childDc,
 GetStockObject
(SYSTEM_FIXED_FONT));
 // Place destroy button on child window
 hwndChildBut1 = CreateWindow (
 "BUTTON", // Control class name
 "Destroy Child", // Button name text
 WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
 20, 20, // x and y location
 150, // Window width
 30, // Window height
 hChild, // Handle to parent
window
 (HMENU) DESTROYWIN, // Child window id.
 pInstance, // Instance handle
 NULL) ;
 .
 .
 .

The user interaction with the controls is monitored and processed in the
WM_COMMAND message intercept of the child window. First, the notification code
and the button identifier are stored in local variables. A switch statement on the button
identification code allows directing the processing to the routines for each of the buttons.
The code examines the notification code to make sure that the intercept is due to action
on a button control, and not on an accelerator key or a menu item.

case WM_COMMAND:
 buttonID = LOWORD (wParam);
 buttonNotCode = HIWORD (wParam);
 switch (buttonID) {
 if(buttonNotCode <= 1)
 return 0;
 case DESTROYWIN:
 if(buttonNotCode == BN_CLICKED) {
 childStatus = FALSE;
 DestroyWindow(hChild);
 UpdateWindow(hwnd);
 }
 break;
 // Radio button # 1 action
 case RADIO1:
 // Set radio button ON
 SendMessage(hwndRadio1, BM_SETCHECK, 1, 0L);
 SendMessage(hwndRadio2, BM_SETCHECK, 0,
0L);
 SendMessage(hwndRadio3, BM_SETCHECK, 0,
0L);

The pc graphics handbook 636

 break;
 .
 .
 .

19.2 Menus

The menu is one of the most important elements of the Windows user interface. It
occupies the line below the title bar. Often, only the program's main window has a top-
level menu. There has been considerable uncertainty regarding the names of the various
elements in a menu. The following designations are based on Microsoft's The Windows
Interface Guidelines for Software Design, listed in the Bibliography.

• The menu bar is a screen line directly below the title bar, which contains entries called
the menu titles, or just the menus.

• Each menu title (menu) activates a drop-down box, which contains one or more menu
items. Menu items are usually arranged in a single column, although Windows
supports multiple column menus.

• Menu items can be of three types: menu commands, child menus, and separators. A
menu command is a menu item that executes a program function directly. A child
menu, also called a cascading or hierarchical menu, is a submenu, which can in turn
contain menu commands, child menus, and separators. Items that activate a child
menu are usually marked by a triangular arrow to the right of its name. A separator is
a screen line that is used to group related menu items.

• Pop-up menus are activated by clicking the second mouse button. They are usually
unrelated to the program’s menu bar.

• Access keys are keystrokes that can be used instead of mouse button action to access
menu items. Access keys are underscored in the menu title and in menu items. To
activate a menu title by means of the access key you must hold down the Alt key.
Once a drop down menu is displayed, access to the contained items is by pressing the
corresponding access key. The Alt key is not required in this case.

• Shortcut keys are keystroke combinations that allow accessing a menu item directly
Shortcut keys are usually a Ctrl+key combination or a function key Windows
documentation sometimes calls these shortcut keys accelerators, but The Windows
Interface Guidelines for Software Design prefers the former name.

There are also some style considerations regarding the design and implementation of
menus. Although the design of the user interface is a topic outside the scope of this book,
there are several general principles worth mentioning.

• A menu title should be a single word that represents the items that it contains. Each
menu title should have an access key, which activates the menu when used in
conjunction with the Alt key. Access keys are underlined in the menu bar. No two
menu titles should have the same access key.

• Cascading menus should be used sparingly since they add complexity to the interface.
Their purpose is to reduce the number of entries in the main menu and to logically

Child windows and controls 637

orga-nize hierarchical entries. The user should never have to navigate through more
than two levels of cascading menus to reach a command.

• Menu items that are not active or are currently unavailable should be disabled and
displayed in gray characters. Alternatively, a permanently inactive item can be
removed from a menu.

• If a menu command requires additional data to execute, it should be followed by an
ellipsis (…). The ellipsis serves as a visual key that information for executing a
command is incomplete. Typically, commands with ellipses display a dialog box
where the additional data is supplied. However, commands that obviously generate
other informational actions should not be followed by ellipses; for example, a
Properties command is expected to display information, therefore it should not have
ellipsis.

• Check boxes are used in menus to indicate the status of a menu item. A checked item
signals that it is functional. Code should check and uncheck items during processing to
update their status.

• All menu items should have access keys, but items on the same drop down menu cannot
have the same access key. The first choice for an access keys is the first character in
the menu title or entry. If the first character is already used as an access key, then the
next one in the item name that is not used as an access key should be selected.

• Shortcut keys that activate menu commands are best implemented with the Crtl key
followed by a mnemonic letter associated with the entry. Function keys can also be
used. For example, Ctrl+S can be used for a Save command and Ctrl+P for a Print
command. The most used commands should be assigned a shortcut.

Figure 19–4 shows some of the most common elements in a menu.

Figure 19–4 Common Menu Elements

The pc graphics handbook 638

19.2.1 Creating a Menu

There are several ways to create a menu. Before the Visual Studio and other development
environments came into existence, menus were created using API functions.
CreateMenu() creates an empty menu and returns its handle. InsertMenuItem() can be
used to populate the menu with components. AppendMenu() adds a component to an
existing menu. Other functions, such as DeleteMenu(), DestroyMenu(), DrawMenuBar(),
ModifyMenu() and RemoveMenu() are also available. Finally, the LoadMenuIndirect()
function can be used to load a menu from a memory resident menu template.

1. From the Developer Studio Insert menu, select the Resource command. Select the
Menu resource type in the dialog box, and click New.

2. Create the main menu entries in you program (the menu titles) as well as the menu
items in each of the drop-down menus. At this time you can assign an identification
code to each menu item, define child menus (called pop-up in the input form),
determine if the item is initially grayed, checked, or inactive, assign shortcut keys, and
other menu attributes. Details on how to use the menu editor are available in
Developer Studio online Help. Figure 19–5 shows the Developer Studio menu editor
screen.

Figure 19–5 Developer Studio Menu
Editor

3. Once you have finished creating the menu, click on the close button of the menu editor
window. If the application already has a script file, the new menu is added to it. If not,
Developer Studio prompts you to save the new script file.

4. Skip this step if a script file has already been inserted into the project. If not, open the
Project menu, select Add to Project, and then Files. In the Insert Files into Project

Child windows and controls 639

dialog box, select the script file and then click OK. The script file now appears in the
project workspace window.

5. Select the Resource View button in the project workspace pane and click+on Script
Resources. Click+on Menu. Note the identifier name for the menu resource, which is
IDR_MENU1 if this is the first menu created.

6. Enter the menu identifier in the wndclass structure defined in WinMain(), as follows:

wndclass.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);

7. Developer Studio creates a header file named resource.h which assigns numeric values
to the program resources. The file is saved under the name "resource.h" and stored in
the project’s main directory. The main source file must reference this header file in an
include statement, such as:

#include "resource.h"

8. To recompile the program with the new menu, select Rebuild All from the Build menu.
9. To edit the menu, double-click on the corresponding IDR_MENU1 icon.

If you receive a redefinition of symbol error at build time there are two possible
solutions: one is to comment-out the redefined symbol in the file named afxres.h located
in Msdev\Mfc\Include directory. The other one is to edit the resource, in this case the
menu, and change the name in the ID: field. Changing the afxres.h file is a permanent
way of avoiding this error, but the development system cannot be used for MFC
applications if afxres.h has been altered.

19.2.2 Menu Item Processing

There are several intercept messages related to application menu processing.
WM_MENUSELECT is sent when the mouse cursor moves among the menu items, and
WM_INITITEM when the user selects an item from a menu. However, most applications
do all their menu processing in the WM_COMMAND message intercept. In the case of a
menu, the lParam is 0 and the wParam contains the menu ID code, which is the
identification number and its corresponding string constant found in the resource.h file.
System menus notify the application through the WM_SYSCOMMAND message. The
following code fragment shows the intercept routine for the item named Open in the File
menu:

case WM_COMMAND:
 switch (LOWORD (wParam)) {
 case ID_MYFILE_OPEN:
 // ASSERT:
 // Menu item resource named ID_MY-FILE_OPEN
 // was activated by user
 .
 .
 .

The pc graphics handbook 640

An important fringe benefit from using the menu editor in Developer Studio is that access
keys are automatically detected and vectored to the corresponding handler. Suppose that
in the preceding code fragment the Open command was defined so that the letter O is
preceded by the & symbol in the editor screen. In this case, when the user presses the "O"
key while the File menu is open, a WM_COMMAND message with the key code
ID_MYFILE_OPEN is sent to the handler.

19.2.3 Shortcut Keys

Shortcut keys require a special treatment so that the keystrokes are vectored to the desired
handler. It is recommended that shortcut keys be listed in the same line as the menu item.
In order to do this you must insert the text for the control keystroke, preceded by \t in the
caption window of the Menu Item Properties editor screen. In this case \t indicates a Tab
code which displays the following text on the next tab field. Figure 19–6 shows the
insertion of a shortcut key designation in Developer Studio menu editor.

Figure 19–6 Developer Studio
Insertion of a Shortcut Key Code

But the shortcut key label is only a caption and has no effect on the processing. In order
to associate a shortcut key with a menu item you must create an accelerator table. The
following steps can be followed:

1. Select Resource from the Developer Studio Insert menu. Select the Accelerator
resource type in the dialog box and click New.

2. Create an accelerator table. The table includes an identification field that contains the
resource ID, a key field for the keystroke that activates the shortcut, and a type field
that specifies the properties of the key. Figure 19–7 shows the Accel Properties dialog
box in the accelerator editor.

3. Once created, the accelerator table becomes a program resource whose name can be
found in the Resource tab of Developer Studio project workspace pane, or by clicking
the Resource Symbols command in the View menu or its corresponding toolbar
button. Developer Studio assigns the name IDR_ACCELERATOR1 to the first
accelerator table; normally, there is one per application.

Child windows and controls 641

4. The accelerator table must now be loaded into the application and processed so that the
corresponding messages are sent to the windows[check] procedure. This requires
using the LoadAccelerator() function. Its parameters are the handle to the program's
instance and an identifier of the accelerator table. LoadAccelerator() returns a handle
to the accelerator, of type HACCEL. Processing of accelerator keys is by means of the
TranslateAccelerator() function, which takes as parameters the handle to the window
whose messages are to be translated, the handle to the accelerator table returned by
LoadAccelerator(), and a pointer to a message structure. Both functions are usually
included in WinMain(), as in the following code fragment:

Figure 19–7 Developer Studio
Accelerator Editor

LRESULT CALLBACK WinMain (HINSTANCE hInstance,
HINSTANCE
 hPrevInstance, PSTR
szCmdLine,
 int iCmdShow) {
 static char szAppName[] = "Demo" ;
 HWND hwnd ;
 MSG msg ;
 HACCEL hAccel; // Handle to
accelerator
 .
 .
 .
 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;
 // Load accelerators
 hAccel = LoadAccelerators (hInstance,
 MAKEINTRESOURCE (IDR_ACCELERATOR1));

The pc graphics handbook 642

 // Message loop
 while (GetMessage (&msg, NULL, 0, 0)) {
 if (!TranslateAccelerator (hwnd, hAccel,
&msg)) {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

19.2.4 Pop-Up Menus

A pop-up menu is a context-sensitive submenu that is activated by clicking the right
mouse button. The pop-up menu is unrelated to the application's main menu and
implemented differently. The items in a pop-up menu should be related to the context in
which the right mouse button is pressed. Therefore, in a full-featured application, the
processing usually requires calculating the screen coordinates where the mouse action
takes place, or the object currently selected, in order to determine which, among several
pop-up menus, is to be activated.

As with the program's main menu, there are several methods for creating a pop-up
menu. You can use the menu editor to create a pop-up menu; however, a little trickery is
required since pop-up menus have no title and the menu editor does not allow creating
menu items without first entering the title. The following steps can be used to create and
install a simple pop-up menu:

1. Use the menu editor to create the pop-up menu. In order to create a drop down menu
you have to enter a temporary menu title. Since this title is used by Developer Studio
name mangler to create the item id, it may be a good idea to used the menu title
"popup1."

2. Under the temporary menu title (popup1 is the suggested one), enter the menu items as
you would for a program menu. You can use all the attributes available and there can
be child menus in the pop-up. Once you have finished creating the menu, double-click
on the temporary menu title (popup1) and erase all the characters in the caption field.
This creates a drop down menu with no menu title. To see the drop down menu you
have to click on the left corner of the menu editor's title bar. This can be a little
deceptive, since at times it may seem that the drop down menu has disappeared.

3. When you close the menu editor, a new menu resource appears in the Resource tab of
the Program window. If this is your second menu it is named IDR_MENU2. The new
menu is now included in your script resource file.

4. You need to load the pop-up menu and obtain its handle. This can be done in the
WM_CREATE message intercept of the window that contains it. It requires the use of
the LoadMenu() function, which returns a handle to the menu resource. The
GetSubMenu() function converts this handle into a submenu handle, which can then
be used by the code. Processing is usually as follows:

static HMENU pMenu; // Handle to pop-up menu
 .

Child windows and controls 643

 .
 .
case WM_CREATE:
 hdc = GetDC(hwnd);
 // Get handle to pop-up menu
 pMenu = LoadMenu(pInstance,
 (MAKEINTRESOURCE(IDR_MENU2)));
 pMenu = GetSubMenu(pMenu, 0);
 return 0;

5. Once you have its handle, the pop-up menu can be displayed. The TrackPopupMenu()
function is used to define the screen location where the pop-up menu is shown, its
position relative to the mouse cursor, and to define which mouse button actions, if any,
are tracked when an item is selected. If the pop-up menu is activated by the right
mouse button, as is usually the case, then the menu display code can be placed at the
corresponding message intercept, as in the following code fragment.

case WM_RBUTTONDOWN:
 // Get mouse coordinates
 aPoint.x = LOWORD(lParam);
 aPoint.y = HIWORD(lParam);
 ClientToScreen(hwnd, &aPoint);
 TrackPopupMenu(pMenu,
 TPM_LEFTALIGN | TPM_TOPALIGN |\
 TPM_LEFTBUTTON,
 aPoint.x, aPoint.y,
 0,
 hwnd,
 NULL);
return 0;

In the preceding code sample we start by obtaining the mouse coordinates from
the lParam. One problem is that TrackPopupMenu() requires the horizontal and
vertical coordinates in screen units, and the WM_RBUTTONDOWN message
intercept reports the mouse position in client area units. For this reason, the
ClientToScreen() function is necessary to convert client area into screen
coordinates.
The TrackPopupMenu() function displays the pop-up menu. Its first parameter is
the handle to the menu obtained during WM_CREATE processing. The second
parameter is one or more bitwise constants. In this case we have established that
the display position is relative to the upper left corner of the menu box, and that
the left mouse button is the one tracked for menu selections. The display points
are entered as the third and fourth parameters to the call. The fifth one is reserved
(must be zero), the sixth one is the handle to the window that owns the pop-up
menu, and the last one defines a RECT-type structure in which the user can click
without erasing the pop-up menu. If this value is NULL then the shortcut menu
disappears if the user clicks outside of its area.

The pc graphics handbook 644

6. Intercepting action on the pop-up menu is at WM_COMMAND message processing.
For example, if the id of the first item in the pop-up menu is ID_POPUP1_UNDO,
then the case statement at the intercept point has this label, as follows:

case WM_COMMAND:
 switch (LOWORD (wParam)) {
 .
 .
 .
 case ID_POPUP1_UNDO:
 // Assert:
 // User clicked "undo" item on pop-up menu

19.2.5 The Menu Demonstration Program

The program named MEN_DEMO, contained in the Menu Demo project folder on the
book’s software package, is a trivial demonstration of an application with a main menu, a
shortcut key (accelerator) to access one of the menu items, and a pop-up menu that is
displayed when the user right-clicks on the client area. Processing consists of a message
box that lists the menu item selected by the user.

19.3 Dialog Boxes

Dialog boxes are a programming aid; they provide no new functionality. Everything that
can be done in a dialog box can also be done in a child window, as described earlier in
this chapter.

What dialog boxes do for the programmer is to prepackage a series of functions that
are frequently needed. Also, dialog boxes perform much of the processing and
housekeeping operations for you. They handle the keyboard focus, passing keyboard
input from one control to another one, they monitor mouse movements, and they provide
a special procedure for tracking action on the controls contained in the dialog box. When
used in conjunction with the dialog box editor in Developer Studio, dialog boxes are easy
to create and implement in code.

Windows 3.1 introduced an extension to the concept of dialog boxes, usually called
the common dialog boxes. The common dialog boxes are a set of prepackaged services
for operations that are usually required in many applications. These include opening and
saving files, selecting a font, selecting or changing color attributes, searching and
replacing text strings, and controlling the printer. The common dialog boxes are
discussed later in this section.

19.3.1 Modal and Modeless

There are two general types of dialog boxes: those that suspend the application until the
user interacts with the dialog box, and those that do not. The first type, which are the
most common ones, are called modal dialog boxes. The second type, which are often

Child windows and controls 645

seen in floating toolbars, are called modeless dialog boxes. Modal dialog boxes do not
prevent the user from switching to another application, although, upon return to the
original thread, it is the modal dialog box that retains the foreground. The Windows
Interface Guidelines for Software Design (see Bibliography) recommends that modal
dialog boxes should have an OK button, to accept and process input, and a Cancel button
to abort execution and discard the users action with the dialog box.

19.3.2 The Message Box

The simplest of all dialog boxes is used to display a message on the screen, which the
user acknowledges having read by pressing a button. A special function in the Windows
API allows creating message boxes directly, without having to use the dialog box editor
or manipulate a program resource. The message box contains a title, a message, any one
of several predefined icons, and one or more pushbuttons. The general form of the
function call is as follows:

int MessageBox(hwnd, lpText, lpCaption, uType);

where hwnd is the handle to the window that owns the message box, lpText is a pointer to
the text message to be displayed (or the message string itself), lpCaption is a pointer to
the caption (or the caption string itself), and uType is one of several bit flags that control
the behavior of the message box. Table 19–6 lists the most useful bit flags used in the
MessageBox() function.

Table 19–6
Often Used Message Box Bit Flags

SYMBOLIC CONSTANT MEANING
MB_ABORTRETRYIGNORE Contains three push buttons: Abort, Retry, and Ignore.
MB_OK Contains one push button: OK. This is the default.
MB_OKCANCEL Contains two push buttons: OK and Cancel.
MB_RETRYCANCEL The message box has two push buttons: Retry and Cancel.
MB_YESNO Contains two push buttons: Yes and No.
MB_YESNOCANCEL Contains three push buttons: Yes, No, and Cancel.

SYMBOLIC
CONSTANT

MEANING

Icon Flags:
MB_ICONEXCLAMATION Exclamation-point icon.
MB_ICONWARNING Exclamation-point icon.
MB_ICONINFORMATION Question mark icon.
MB_ICONASTERISK Lowercase letter i icon in a circle.
MB_ICONQUESTION Question-mark icon.
MB_ICONSTOP Stop-sign icon.
MB_ICONERROR Hand icon.
MB_ICONHAND Hand icon.

The pc graphics handbook 646

Default Button Flags:
MB_DEFBUTTON1 The first button is the default button.
MB_DEFBUTTON2 The second button is the default button.
MB_DEFBUTTON3 The third button is the default button.
MB_DEFBUTTON4 The fourth button is the default button.
Modality Flags:
MB_APPLMODAL User must respond to the message box before continuing work

in the window. However, the user can move to the window of
another application and work in those windows.

MB_SYSTEMMODAL Same as MB_APPLMODAL except that the message box has
the WS_EX_TOPMOST style. Use system-modal message
boxes to notify the user of serious errors that require immediate
attention.

MB_TASKMODAL Same as MB_APPLMODAL except that all the top-level
windows belonging to the current task are disabled if the hwnd
parameter is NULL.

Other Flags:
MB_HELP Adds a Help button to the message box. Choosing the Help

button or pressing F1 generates a Help event.
MB_RIGHT The text is right-justified.
MB_SETFOREGROUND The message box becomes the foreground window. Internally,

Windows calls the SetForegroundWindow function for the
message box.

MB_TOPMOST Message box is created with the WS_EX_TOPMOST window
style.

For example, the following statement creates a message box labeled "Menu Action," with
the text string "File Close Requested," which contains an exclamation sign icon, and a
button labeled OK:

MessageBox (hwnd,
 "File Close Requested",
 "Menu Action",
 MB_ICONEXCLAMATION | MB_OK);

Figure 19–8 shows the resulting message box.

Figure 19–8 Simple Message Box

Child windows and controls 647

19.3.3 Creating a Modal Dialog Box

Developer Studio provides a dialog box editor, which is a tool for creating dialog boxes.
Once the dialog box has been created, it becomes another program resource that can be
referenced in the code. The dialog box editor can be used to create simple message boxes;
however, in this case it is easier to use the MessageBox() function described in the
previous section. Dialog boxes are useful when they are used to obtain user input.

A unique feature of dialog boxes is that they contain their own processing. In a sense,
the dialog box procedure is like your window procedure.

You create a modal dialog box by means of the DialogBox() function, with the
following standard form:

int DialogBox (hInstance, lpTemplate, hwndParent,
lpDiaProc);

where hInstance is the handle to the program instance that contains the dialog box,
lpTemplate identifies the dialog box template or resource, hwndParent is the handle to the
owner window, and lpDiaProc is the name of the dialog box procedure. It is this
procedure that receives control when the dialog box is created. The following code
fragment shows the creation of a dialog box at the time that a menu command with the id
ID_DIALOG_ABOUT is intercepted:

ID_DIALOG_ABOUT:
 DialogBox (pInstance,
 MAKEINTRESOURCE (IDD_DIALOG1),
 hwnd,
 (DLGPROC) AboutDlgProc);

In this case the dialog box resource is named IDD_DIALOG1, and the dialog box
procedure that receives control is AboutDlgProc(). The dialog box procedure's general
form is as follow:

BOOL DialogProc (hwndDlg, uMsg, wParam, lParam);

where DialogProc is the name of the procedure defined in the lpDiaProc field of the
DialogBox() function. The first parameter passed to the dialog procedure (hwndDlg) is
the handle to the dialog box. The second one is the Windows message. The wParam and
lParam values contain message-specific information, as is the case in the window
procedure.

As soon as the dialog box is created, and before it is displayed, Windows sends the
WM_INITDIALOG message to the dialog box procedure. Typically, the dialog box
procedure intercepts the message to initialize controls and perform other housekeeping
functions. In WM_INITDIALOG the wParam contains the handle to the control that has
focus, which is the first visible and not disabled control in the box. The application
returns TRUE to accept this default focus. Alternatively, the application can set the focus
to another control, in which case it returns FALSE.

The pc graphics handbook 648

The dialog box procedure receives messages for the controls in the dialog box. These
messages can be intercepted in the same manner as those sent to the window procedure.
The following code fragment is a dialog box procedure for a dialog box that contains a
single button:

BOOL CALLBACK AboutDlgProc (HWND hDlg, UINT iMsg,
WPARAM wParam,
 LPARAM lParam) {
switch (iMsg) {
 case WM_INITDIALOG :
 return TRUE ;
 // Dialog box controls message intercepts
 case WM_COMMAND :
 switch (LOWORD (wParam)) { // Get control id
 case IDOK :
 EndDialog (hDlg, 0) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

Notice that, unlike a window function, AboutDlgProc() does not return control via the
default window procedure. In general, a dialog box procedure returns FALSE to indicate
that default processing is to be provided by Windows and TRUE when no further
processing is required. The exception is the WM_INITDIALOG message in which the
return value refers to the acceptance or rejection of the default focus, as discussed
previously.

Notice that dialog procedures, like all window procedures, have to be of type
CALLBACK. Failing to declare a window procedure, or a callback procedure, with this
type, can be the source of unpredictable errors, such as the General Protection Fault.

You can create a dialog box by means of the following steps:

1. Select Resource from the Developer Studio Insert menu. Select the Dialog resource
type in the dialog box and click New.

2. The dialog box editor executes by displaying a blank form and a floating toolbox
containing controls that can be inserted in the dialog box. If the toolbar is not visible,
you can show it on the editor screen by opening the Tools menu, then selecting
Customize, and checking the Controls box in the Toolbars tab. The controls include all
those already mentioned and some others. To add a control to the dialog box you drag
it onto the form and then use the handles to size it. Double-clicking on the form, or on
one of the controls, displays a Dialog Properties window which allows defining the
attributes of that particular element. Figure 19–9, on the following page, shows the
dialog box editor with the Dialog Properties windows for the form and the Controls
toolbox.

Child windows and controls 649

3. Once you have finished creating the dialog box, click the Close button of the menu
editor window. If the application already has a script file, the dialog box is added to it.
If not, Developer Studio prompts you to save the new script file.

4. Skip this step if a script file has already been inserted into the project. If not, open the
Project menu, select Add to Project, and then select Files. In the Insert Files into
Project dialog box, select the script file and then click OK. The script file now appears
in Developer Studio project workspace pane.

Figure 19–9 Developer Studio Dialog
Editor

5. Select Resource View button in project workspace pane and click+on Script
Resources. Click+on Dialog. Note the identifier name for the dialog box resource,
(usually IDD_DIALOG1) if this is the first dialog box created.

6. Your code must now create the dialog box, usually by intercepting the corresponding
menu command and calling DialogBox(). Also, the dialog box procedure has to
intercept the WM_INITDIALOG message and provide handlers for the controls
contained in the box, as previously described.

19.3.4 Common Dialog Boxes

Windows 3.1 introduced the common dialog boxes as a set of prepackaged services for
performing routine operations required in many applications. The idea behind them is to
standardize frequent input functions so that they appear the same in different program
functions and even in different applications. For example, the common dialog box used to
select a filename and to browse through the disk storage system is the same if you are
opening or saving a file. Furthermore, two applications that manipulate files can use the

The pc graphics handbook 650

same common dialog box, giving the user a familiar interface. The following operations
can be performed by means of common dialog boxes: opening and saving files, selecting
fonts, selecting or changing color attributes, searching and replacing text strings, and
controlling the printer. Common dialog boxes have a modal behavior, that is, the program
is suspended until the user closes the dialog box.

Common dialog boxes are processed internally by Windows; therefore, they do not
have a dialog box procedure.

The identification for the menu item or other resource that activates the common
dialog box usually serves as the message intercept. The processing is done directly in the
intercept routine. Each common dialog box is associated with a structure that is used to
pass information to it and to receive the results of the user's action. Programs that use
common dialog boxes should include the commdlg.h header file.

For example, the menu item ID_DIALOG_COLORSELECTOR can intercept user
action in WM_COMMAND message processing and then proceed to fill a variable of the
structure type CHOOSECOLOR (see Appendix A) as in the following code fragment:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM
wParam,
 LPARAM lParam) {
 HDC hdc ;
 TEXTMETRIC tm ;
 HBRUSH hBrush; // Handle to brush
 // Variables for color and font common dialog
 static CHOOSECOLOR cc ; // Structure
 static COLORREF custColors[16] ; // Array for custom
 // colors
 int i; // counter for custom color display
 switch (iMsg) {
 ...
 case WM_COMMAND:
 switch (LOWORD (wParam)) {
 // Color Selector common dialog
 case ID_DIALOG_COLORSELECTOR:
 cc.lStructSize = sizeof (CHOOSECOLOR) ;
 cc.hwndOwner = hwnd ;
 cc.hInstance = NULL ;
 cc.rgbResult = RGB (0×80, 0×80, 0×80) ;
 cc.lpCustColors = custColors ;
 cc.Flags = CC_RGBINIT | CC_FULLOPEN ;
 cc.lCustData = 0L ;
 cc.lpfnHook = NULL ;
 cc.lpTemplateName = NULL ;
 ...

Once the structure variable is filled with the necessary data, the application can call the
ChooseColor() function to display the common dialog box. ChooseColor() requires a
single parameter: the address of the previously mentioned structure. Most of the structure
members are obvious. The lpCustColors member is an array of 16 COLORREF-type
values that holds the RGB values for the custom colors in the dialog box. The Flags

Child windows and controls 651

members are bit flags that determine the operation of the dialog box. In the previous
example we set CC_RGBINIT bit so that the rgbResult member holds the initial color
selection. The values 0x80 for each of the red, green, and blue components produce a
middle gray color. The last three members of the structure are used for customizing the
dialog box. The constant CC_FULLOPEN causes the dialog box to open in the full
display mode, that is, with the controls necessary for the user to create custom colors.

ChooseColor() returns TRUE if the user clicks the OK button on the dialog box.
Therefore, the coding continues as follows:

if (ChooseColor (&cc) == TRUE) {
// ASSERT:
// structure members have color data selected by user
// Clear the client window
hdc = GetDC(hwnd);
InvalidateRect (hwnd, NULL, TRUE) ;
UpdateWindow (hwnd) ;

The colors selected by the user are stored in two members of the CHOOSECOLOR
structure: rbgResult holds the solid color box, and the array variable custColor holds the
16 custom colors. The code now creates a solid brush, using the color stored in the
rgbResult member, and displays a rectangle filled with this color. Then a loop displays
the first eight of the 16 custom colors:

hBrush = CreateSolidBrush(cc.rgbResult);
// Select the brush in the DC
SelectObject (hdc, hBrush) ;
// Draw a rectangle using the brush
Rectangle (hdc, 20, 20, 100, 100) ;
// Display first eight custom colors using the
// color triplets stored in the custColors array
 for (i = 0; i < 8; i++) {
 hBrush = CreateSolidBrush(custColors[i]);
 SelectObject (hdc, hBrush) ;
 Rectangle (hdc, 20+(20 * i), 120,
 40+ (20 * i) , 140) ;
 }
 // Clear and exit
 DeleteObject (SelectObject (hdc, hBrush)) ;
 ReleaseDC (hwnd, hdc);
}
return 0 ;
 ...

Figure 19–10 shows the color dialog box as displayed by this code.

The pc graphics handbook 652

Figure 19–10 Color Selection
Common Dialog Box

19.3.5 The Dialog Box Demonstration Program

The program named DIA_DEMO, contained in the Dialog Box Demo project folder on
the book's software package, is a trivial demonstration of several dialog boxes. The
Dialog menu contains commands for creating a modeless dialog box, three different
modal dialog boxes (one of them with a bitmap), and for the color and font common
dialog boxes. The code demonstrates how information obtained by modal and common
dialog boxes is passed to the application.

19.4 Common Controls

Windows 95 introduced a new set of controls that supplements the ones that existed
previously. They are also available in Windows NT version 3.51 and later. These
controls, sometimes referred to as the new common controls, allow the implementation of
status bars, toolbars, trackbars, progress bars, animation controls, image lists, list view
controls, tree view controls, property sheets, tabs, wizards, and rich edit controls. It is
evident from this list that one could devote an entire volume to their discussion. Table
19–7 is a list of the Windows common controls first implemented in Windows 95.

Child windows and controls 653

Table 19–7
Original Set of Common Controls

CONTROL DESCRIPTION
Frame Window
Controls:

toolbar Displays a window with command-generating buttons.
ToolTip Small pop-up window that describes purpose of a toolbar button or other tool.
status bar Displays status information at the bottom screen line.
Explorer-type
Controls:

list view Displays a list of text with icons.
tree view Displays a hierarchical list of items.
Miscellaneous
Controls:

animation Displays successive frames of an AVI video clip.
header Appears above a column of text. Controls width of text displayed.
hotkey Enables user to perform an action quickly.
image list A collection of images used to manage large sets of icons or bitmaps. It isn’t

really a control, but supports lists used by other controls.
progress bar Indicates progress of a long operation.
rich edit Allows the user to edit with character and paragraph formatting.
slider Displays a slider control with optional tick marks.
spin button Displays a pair of arrow buttons user can click to increment or decrement a

value.
tab Displays divider-like elements used in tabbed dialog boxes or property sheets.

Before we can implement the new common controls, some preliminary steps are required.
The reason is that the common controls library is not automatically referenced at link
time, nor is it initialized for operation. The following operations are necessary:

1. The common controls library, named Comctl32.1ib, must be included in the list of
libraries referenced by the linker program. This is accomplished by opening the
Project menu and selecting the Settings command. In the Project Settings dialog box,
open the Link tab. The "Object/library modules" edit box contains a list of all the
referenced libraries, separated from one another by a space. Position the caret between
two library entries and type "Comctl32.1ib." Click the OK button.

2. The program code must include the common controls header file. This is accomplished
with the statement:

#include <commctrl.h>

3. The InitCommonControls() function must be called before the common controls are
used. This function takes no parameters and returns nothing. The initialization can be
placed in WinMain(), as follows:

The pc graphics handbook 654

InitCommonControls();

4. Rich edit controls reside in their own library, named Riched32.dll, and have their own
header file, named richedit.h. To use library controls your program must include the
statement:

LoadLibrary (“RICHED32.DLL”);

At this point the application can implement common controls. In this section we sample
some of the common controls that are more frequently found in graphics applications,
namely toolbars and ToolTip controls. These, together with the status bar controls, are
sometimes called the frame window controls. Some of the common controls are available
in the toolbar of Developer Studio dialog box editor. The resource editor contains a
specific toolbar editor for creating this type of common control. Most common controls
can also be created by means of the CreateWindow() or CreateWindowEx() functions.
Others have a dedicated function, such as CreateToolbarEx().

19.4.1 Common Controls Message Processing

Most common controls send WM_NOTIFY messages. One notable exception is the
toolbar controls, which send WM_COMMAND. In processing common controls
messages we follow similar methods as in processing menu selections.

The WM_NOTIFY message contains the ID of the control in wParam and a pointer to
a structure in lParam. The structure is either an NMHDR structure or, more frequently, a
larger structure that has an NMHDR structure as its first member. The common
notifications (whose names start with NM_) and the ToolTip control's TTN_SHOW and
TTN_POP notifications are the only cases in which the NMHDR structure is actually
used by itself. The format of the NMHDR structure is as follows:

typedef struct tagNMHDR {
 HWND hwndFrom;
 UINT idFrom;
 UINT code;
} NMHDR;

where hwndFrom is the handle to the controls sending the message, idFrom is the control
identifier, and code is one of values in Table 19–8.

Child windows and controls 655

Table 19–8
Common Control Notification Codes

CODE ACTION IN CONTROL OR RESULTS
NM_CLICK User clicked left mouse button.
NM_DBLCLK User double-clicked left mouse button.
NM_RCLICK User clicked right mouse button.
NM_RDBLCLK User double-clicked right mouse button.
NM_RETURN User pressed the Enter key.
NM_SETFOCUS Control has been given input focus.
NM_KILLFOCUS Control has lost input focus.
NM_OUTOFMEMORY Control could not complete an operation because there was not enough

memory available.

Most often notifications pass a pointer to a larger structure that contains an NMHDR
structure as its first member. For example, the list view control uses the
LVN_KEYDOWN notification message, which is sent when a key is pressed. In this case
the pointer is to an LV_KEYDOWN structure, defined as follows:

typedef struct tagLV_KEYDOWN {
 NMHDR hdr;
 WORD wVKey;
 UINT flags;
} LV_KEYDOWN;

Since the NMHDR member is the first one in this structure, the pointer in the notification
message can be cast to either a pointer to an NMHDR or a pointer to an
LV_KEYDOWN.

19.4.2 Toolbars and ToolTips

A toolbar is a window containing graphics buttons or other controls. It is usually located
between the client area and the menu bar. Although Windows applications have been
using toolbars for a long time, there was no system support for toolbars until the release
of the WIN-32 API. The most common use of toolbars is to provide fast access to menu
commands. Toolbars often include separators, which are spaces in the toolbar that allow
grouping associated buttons. A ToolTip is a small pop-up window that is displayed when
the mouse is left on a toolbar button for more than one-half second. ToolTips usually
consist of a short text message that explains the function of the toolbar button or control.
Figure 19–11 shows a program containing a toolbar with nine buttons.

The pc graphics handbook 656

Figure 19–11 Toolbar

Note in Figure 19–11 that separators are used to group the toolbar buttons. In this case,
the first group of buttons correspond with functions in the File menu, the second group
with functions in the Edit menu, and so forth. Normally, not all menu commands have a
toolbar button, but only the ones most often used.

19.4.3 Creating a Toolbar

There are several ways to create a toolbar. You can define the toolbar in code, using
standard buttons furnished in Visual C++. You can use a pre-made bitmap of toolbar
buttons, which can be converted into a toolbar resource and then edited. You can create
custom buttons using the toolbar editor. Or you can use a combination of these methods.
In this section we follow the simplest method, but even then, you must be careful to
perform the steps in the same order in which we list them. The toolbar creation tools in
Developer Studio were designed to be used in MFC programming; therefore, the system
makes assumptions regarding the order in which the steps are performed. If you are
careless in this respect, you may end up having to do some manual editing of the resource
files.

We must accept that there are complications in creating a toolbar outside of the MFC,
however, much suffering can be avoided if the toolbar is not created until the program
menu has been defined. The idea is to use the same identification codes for the toolbar as
for the corresponding menu items, such that message processing takes place at the same
intercept routine. For example, if the first toolbar button in Figure 19–11 corresponds to
the New command in the File menu, then both the button and the menu item could be
named ID_FILE_NEW. The same applies to the other buttons in the toolbar. In the
following description about the creation of a toolbar we assume that the identification
strings have been defined for the corresponding menu entries:

File menu:
 ID_FILE_NEW
 ID_FILE_OPEN'
 ID_FILE_SAVE
Edit menu:
 ID_EDIT_CUT
 ID_EDIT_COPY

Child windows and controls 657

 ID_EDIT_PASTE
Print menu:
 ID_PRT_PRINT
 Help menu:
 ID_HLP_ABOUT
 ID_HLP_HELP

All of the toolbar buttons in Figure 19–11 correspond to standard buttons contained in
Developer Studio. These buttons can be loaded into the toolbar by referencing their
system names, or by loading a bitmap that contains them. In the current example we use
the bitmap approach.

Toolbars require that each of the buttons be defined in a structure of type TBBUTTON
(see Appendix A). Your program, usually in the window procedure, creates an array of
structures, with one entry for each button in the toolbar. The button separators must be
included. In the case of the screen in Figure 19–11, the array of TBBUTTON structure is
as follows:

// Array for attributes for toolbar buttons
TBBUTTON tbb[] ={
0, ID_FILE_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0, 0, 0,
1, ID_FILE_OPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0, 0, 0,
2, ID_FILE_SAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0, 0, 0,
0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0,
0, 0, 0,
3, ID_EDIT_CUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0, 0, 0,
4, ID_EDIT_COPY, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0, 0, 0,
5, ID_EDIT_PASTE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0, 0, 0,
0, 0 TBSTATE_ENABLED, TBSTYLE_SEP, 0,
0, 0, 0,
6, ID_PRT_PRINT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0, 0, 0,
0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0,
0, 0, 0,
7, ID_HLP_ABOUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0, 0, 0,
8, ID_HLP_HELP, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0,
0, 0, 0, }; /*
|------------| |-------------| |------------|| see
note |
| | | | below
| | | |--- One or
more
| | | button
styles

The pc graphics handbook 658

| | |----------- One or more state
flags
| |--------------------------- Command ID mapped
to
| button
|------------------- Zero-based index to button image
in
| bitmap (excluding separators)
Note:
 0, 0, 0, 0
 | | | |------------ index of button string
 | |--|--------------- application defined value
 |--------------------- Reserved
*/

Table 19–9 lists the style flags used with toolbars.

Table 19–9
Toolbar and Toolbar Button Style Flags

STYLE DESCRIPTION
Toolbar Styles:
BSTYLE_ALTDRAG Allows the user to change the position of a toolbar button by

dragging it while holding down the Alt key. If this style is
not specified, the user must hold down the Shift key while
dragging a Button.
Note that the CCS_ADJUSTABLE style must be specified to
enable toolbar buttons to be dragged.

TBSTYLE_TOOLTIPS Creates a ToolTip control that an application can use to
display descriptive text for the buttons in the toolbar.

TBSTYLE_WRAPABLE Creates a toolbar that can have multiple lines of buttons.
Toolbar buttons can “wrap” to the next line when the toolbar
becomes too narrow to include all buttons on the same line.
Wrapping occurs on separation and non-group boundaries.

Toolbutton Styles:
TBSTYLE_BUTTON Creates a standard push button.
TBSTYLE_CHECK Button toggles between the pressed and not pressed states

each time the user clicks it. The button has a different
background color when it is in the pressed state.

TBSTYLE_CHECKGROUP Creates a check button that stays pressed until another button
in the group is pressed.

STYLE DESCRIPTION
Toolbutton Styles:
TBSTYLE_GROUP Creates a button that stays pressed until another button in the group is

pressed.
TBSTYLE_SEP Creates a separator. A button that has this style does not receive user

input and is not assigned a button number.

Child windows and controls 659

Table 19–10 lists the toolbar states

Table 19–10
Toolbar States

TOOLBAR STATE DESCRIPTION
TBSTATE_CHECKED The button has the TBSTYLE_CHECKED style and is being

pressed.
TBSTATE_ENABLED The button accepts user input. A button not having this state does

not accept user input and is grayed.
TBSTATE_HIDDEN The button is not visible and cannot receive user input.
TBSTATE_INDETERMINATE The button is grayed.
TBSTATE_PRESSED The button is being pressed.
TBSTATE_WRAP A line break follows the button. The button must also have the

TBSTATE_ENABLED state.

The bitmap for the toolbar in Figure 19–11 is furnished with Developer Studio. We have
made a copy of this bitmap and you can find it in the Resource directory on the book's
software package. The name of the bitmap is toolbar.bmp. The process of creating a
toolbar from a toolbar bitmap requires that you follow a certain sequence. The price to
pay for changing the order of operations is that you may end up with incorrect resource
files that must be manually edited. The following operations result in the toolbar
resource:

1. Select Resource from the Insert menu. Select the Bitmap resource type and click the
Import button.

2. In the Import Resource dialog editor, edit the filename field for that of a bitmap file.
This is accomplished by entering "*.bmp". Now you can search though the file system
until you find the toolbar bitmap. In this case the desired bitmap has the name
"toolbar.bmp." Select the bitmap and click on the button labeled Import.

3. The toolbar bitmap is now loaded into the bitmap editor. The toolbar bitmap is shown
in Figure 19–12. The buttons are labeled according to the identifications assigned in
the TBBUTTON structure members listed previously.

4. Now you must convert the bitmap into a toolbar resource. This is accomplished by
opening the Image menu and clicking on the Toolbar editor command. The New
Toolbar Resource dialog box with the pixel size of normal toolbar buttons is
displayed, which is 16 pixels wide and 15 pixels high. Click OK and the toolbar editor
appears with the bitmap converted into a toolbar.

The pc graphics handbook 660

Figure 19–12 “Toolbar.bmp” Button
Identification Codes

5. You can now proceed to edit the toolbar and assign identification codes to each of the
buttons. Note that there is a blank button at the end of the toolbar, which is used for
creating custom buttons. You can click on the blank button and use the editor to create
a new button image. To delete a button, click on it and drag it off the toolbar. To
reposition a button, click on it and drag it to it new location. To create a space in the
toolbar drag the button so that it overlaps half the width of its neighbor button. To
assign an identification code to a toolbar button, double-click on the button and enter
the new identification in the ID: edit box of the Toolbar Button Properties dialog box.
At this time you may enter the corresponding identification codes for all the buttons in
the toolbar. Figure 19–13 shows the toolbar editor once the separators have been
inserted.

Child windows and controls 661

Figure 19–13 Developer Studio
Toolbar Editor

Figure 19–13 also shows the Toolbar Button Properties dialog box open and the
new identification code in the ID: edit box.

6. Once the identification codes have been assigned to all the buttons, click the button
labeled X to close the editor. Also close the next screen and save the resource file
under the default name, or assign it a new one. Some programmers like to give the
resource file the same base name as the application’s main module. The extension for
the resource file must be .RC.

7. The next step is one that you have already done for other resources: open the Project
menu, click the Add To Project command, select Files, and add the resource file to the
project. The toolbar is now in the project. You can use the Resource Symbols
command in the View menu, or the corresponding toolbar button, to make sure that
the identification codes are correct and coincide with those in the BBUTTON
structure, and the menu items.

8. Displaying the toolbar requires a call to the CreateToolbarEx() function. The call
returns a handle to the toolbar, which is of type HWND since the toolbar is a window.
In this example, the call is as follows:

#define ID TOOLBAR 400 // Toolbar id number
 .
 .
 .
HWND tbHandle; // Handle to the toolbar
 .
 .
 .
case WM_CREATE:
 // Create toolbar
 tbHandle=CreateToolbarEx (hwnd, // Handle to window

The pc graphics handbook 662

 WS_CHILD | WS_VISIBLE |
 WS_CLIPSIBLINGS |
 CCS_TOP | TBSTYLE_ToolTipS, // Window
styles
 ID_TOOLBAR, // Toolbar
identifier
 9, // Number of button
images
 // in toolbar
bitmap
 hInst, // Module instance
 IDB_BITMAP1, // Bitmap ID
 tbb, // TBBUTON
structure
 12, // Number of
buttons
 // plus separators
 0, 0, 0, 0,
 sizeof (TBBUTTON));

The second parameter in the call refers to controls bits that define the style, position, and
type of toolbar. The window style WS_CHILD is always required and most toolbars use
WS_VISIBLE and WS_CHILDREN. The bits with the CCS_ prefix are common control
styles. Table 19–11 lists the common control styles that refer to toolbars.

In the current call to CreateToolbarEx() we used CCS_TOP and the
TBSTYLE_TOOLTIPS in order to create a toolbar displayed above the application’s
client area, and to provide ToolTip support.

Child windows and controls 663

Table 19–11
Toolbar Common Control Styles

STYLE DESCRIPTION
CCS_ADJUSTABLE Allows toolbars to be customized by the user. If this style is

used, the toolbar’s owner window must handle the customization
notification messages sent by the toolbar.

CCS_BOTTOM Causes the toolbar to position itself at the bottom of the parent
window’s client area and sets the width to be the same as the
parent window’s width.

CCS_NODIVIDER Prevents a two-pixel highlight from being drawn at the top of the
control.

CCS_NOHILITE Prevents a one-pixel highlight from being drawn at the top of the
control.

CCS_NOMOVEY Causes the toolbar to resize and move itself horizontally, but not
vertically, in response to a WM_SIZE message. If the
CCS_NORESIZE style is used, this style does not apply.

CCS_NOPARENTALIGN Prevents the toolbar from automatically moving to the top or
bottom of the parent window. Instead, the it keeps its position
within the parent window despite changes to the size of the
parent window.

CCS_NORESIZE Prevents the toolbar from using the default width and height
when setting its initial size or a new size. Instead, the control
uses the width and height specified in the request for creation or
sizing.

CCS_TOP Causes the control to position itself at the top of the parent
window’s client. The width is set to the size of the parent
window. This is the default style.

19.4.4 Standard Toolbar Buttons

The common controls library contains bitmaps for standard toolbar buttons that can be
referenced by name and used by application code. In this case no toolbar bitmap is
required; therefore, the button images cannot be edited in Developer Studio. There are a
total of 15 button images in two sizes: 24 by 24 pixels and 16 by 16 pixels. When using
the standard toolbar buttons, the TBBUTTON structure must be filled differently than
when using a toolbar bitmap resource. The parameters of CreateToolbarEx() are also
different. The following code fragment shows the TBBUTTON structure for loading all
15 standard toolbar buttons:

TBBUTTON tbb[]={
// File group
STD_FILENEW, ID_FILE_NEW, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_FILEOPEN, ID_FILE_OPEN, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,

The pc graphics handbook 664

STD_FILESAVE, ID_FILE_SAVE, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,
0, 0, TBSTATE_ENABLED,
TBSTYLE_SEP,
 0, 0, 0, 0,
// Edit group
STD_COPY, ID_EDIT_COPY, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_CUT, ID_EDIT_CUT, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_PASTE, ID_EDIT_PASTE, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_FIND, ID_EDIT_FIND, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_REPLACE, ID_EDIT_REPLACE, TBSTATE_ENABLED,
 TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_UNDO, ID_EDIT_UNDO, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_REDOW, ID_EDIT_REDO, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_DELETE, ID_EDIT_DELETE, TBSTATE_ENABLED,
 TBSTYLE_BUTTON,
 0, 0, 0, 0,
0, 0, TBSTATE_ENABLED,
TBSTYLE_SEP,
 0, 0, 0, 0,
// Print group
STD_PRINTPRE, ID_PRINT_PREVIEW, TBSTATE_ENABLED,
 TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_PRINT, ID_PRINT_PRINT, TBSTATE_ENABLED,
 TBSTYLE_BUTTON,
 0, 0, 0, 0,
0, 0, TBSTATE_ENABLED,
TBSTYLE_SEP,
 0, 0, 0, 0,
// Help and properties group
STD_PROPERTIES,ID_PROPS, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,
STD_HELP, ID_HELP, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
 0, 0, 0, 0,} ;

Child windows and controls 665

The call to CreateToolbarEx() is also different. The fourth parameter, which indicates the
number of button images in the toolbar bitmap is set to zero in the case of standard
buttons. The fifth parameter, which in the case of a toolbar bitmap is set to the application
instance, is now the constant HINST_COMMCTRL defined in the common controls
library. The sixth parameter is the constant IDB_STD_SMALL_COLOR. The resulting
call to CreateToolbarEx() is as follows:

tbHandle=CreateToolbarEx (hwnd,
 WS_CHILD | WS_VISIBLE | CCS_TOP |
 TBSTYLE_WRAPABLE,
 ID_TOOLBAR, // Toolbar ID number
 0, // Number of bitmaps
(none)
 (HINSTANCE)HINST_COMMCTRL, // Special
resource
 // instance for
 // standard
buttons
 IDB_STD_SMALL_COLOR, // Bitmap resource ID
 tbb, // TBBUTTON variable
 18, // Count of buttons
plus
 // separators
 0, 0, 0, 0, // Not required for
standard
 // buttons
 sizeof (TBBUTTON));

The program named TB1_DEMO, located in the Toolbar Demo No 1 project folder in the
book's software package, is a demonstration of using the standard toolbar buttons. When
you click on any of the toolbar buttons, a message box is displayed that contains the
button's name. Figure 19–14 is a screen snapshot of the TN1_DEMO program.

Figure 19–14 TB1_DEMO Program
Screen

The pc graphics handbook 666

19.4.5 Combo Box in a Toolbar

Windows programs, including Developer Studio, often contain a combo box as part of
the toolbar. This application of the combo box is a powerful one. For example, the combo
box that is part of Developer Studio standard menu bar is used to remember search
strings that have been entered by the user. At any time, you can inspect the combo box
and select one of the stored strings for a new search operation. Not only does it save you
the effort of retyping the string, it is also a record of past searches.

The position of the combo box in the toolbar is an important consideration. If the
combo box is to the right of the last button in the toolbar, then it is a matter of calculating
the length of the toolbar in order to position the combo box. However, if, as is often the
case, the combo box is located between buttons in the toolbar, or at its start, then code
must make space in the toolbar. The method suggested by Nancy Cluts in her book
Programming the Windows 95 User Interface (see Bibliography) is based on adding
separators to make space for the combo box. Since each separator is 8 pixels wide, we
can calculate that for a 130-pixels-wide combo box we would need at least 17 separators.
In many cases a little experimentation may be necessary to find the number of separators.

The creation of the combo box requires calling CreateWindow() with "COMBOBOX"
as the fist parameter. If the combo box is to have a series of string items, as is usually the
case, then it is created with the style CBS_HASSTRINGS. If the combo box is to have an
edit box feature, then the CBS_DROPDOWN style is used. If it is to have a list of
selectable items but no editing possibilities, then the CBS_DROPDOWNLIST style is
used. The following code fragment shows the creation of a combo box in a toolbar:

static HWND cbHandle; // Handle to combo box
static HWND tbHandle; // Handle to toolbar
.
.
.
cbHandle=CreateWindow ("COMBOBOX",
 NULL, // No class name
 WS_CHILD | WS_VISIBLE | WS_BORDER |
 CBS_HASSTRINGS |CBS_DROPDOWNLIST,
 0, // x origin
 0, // y origin
 130, // width
 144, // height
 tbHandle, // Parent window
handle
 (HMENU) IDR_MENU1, // Menu resource ID
 pInstance, // Application
instance
 NULL);

Once the combo box is created, we need to add the text strings with which it is originally
furnished. This is accomplished by a series of calls to SendMessage() with the message
code CB_INSERTSTRING. Typical coding is as follows:

Child windows and controls 667

char *szStrings[] = { "Visual C++",
 "Borland C",
 "Pascal",
 "Fortran 80",
 "Visual Basic"};
.
.
.
//Add strings to combo box
for (i=0; i < 5; i++)
 SendMessage(cbHandle,
 CB_INSERTSTRING,
 (WPARAM)-1,
 (LPARAM)szStrings[i]);

The program TB2_DEMO, located in the Toolbar Demo No 2 project folder on the
book's software package, demonstrates the creation of a toolbar that includes a combo
box.

19.4.6 ToolTip Support

A ToolTip is a small window that contains a brief descriptive message. Although
ToolTips can be activated in relation to any screen object, we are presently concerned
with ToolTips associated with a toolbar. For a toolbar to support ToolTips, it must have
been created with the TBSTYLE_TOOLTIPS, listed in Table 19–9.

Providing ToolTip support for toolbar buttons is straightforward and simple. However,
when you need to furnish ToolTips for other elements in the toolbar, such as the combo
box previously mentioned, then ToolTip processing may get more complicated. The first
step in creating ToolTips is retrieving a handle for the ToolTip window. This is usually
performed in the WM_CREATE message intercept. It consists of calling SendMessage()
with the first parameter set to the toolbar handle and the second parameter set to the
TB_GETTOOLTIPS message identifier. The following code fragment shows the creation
of a three-button toolbar and its corresponding ToolTip window:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM
wParam,
 LPARAM lParam) {
 static HWND tbHandle; // Handle to toolbar
 static HWND hWndTT; // Handle to ToolTip
 .
 .
 .
 switch (iMsg)
 {
 case WM_CREATE:
 // Create a toolbar
tbHandle = CreateToolbarEx (hwnd, // Handle to window
 WS_CHILD | WS_VISIBLE |
 WS_CLIPSIBLINGS |

The pc graphics handbook 668

 CCS_TOP | TBSTYLE_TOOLTIPSS, // Window
styles
 0, // Toolbar identifier
 3, // Number of button
images
 // in toolbar bitmap
 pInstance, // Module instance
 IDB_BITMAP1, // Bitmap ID
 tbb, // TBBUTON structure
 3, // Number of buttons
 // plus separators
 0, 0, 0, 0, // Not required
 sizeof (TBBUTTON));
// Get the handle to the ToolTip window.
 hWndTT = (HWND)SendMessage(tbHandle,
 TB_GETToolTipS, 0, 0);
 .
 .
 .

Once you create the ToolTip window and obtain its handle, the next step is to create and
initialize a structure of type TOOLINFO. The coding proceeds as follows:

if (hWndTT) {
 // Fill in the TOOLINFO structure.
 lpToolInfo.cbSize = sizeof(lpToolInfo);
 lpToolInfo.uFlags = TTF_IDISHWND | TTF_CENTERTIP;
 lpToolInfo.hwnd = hwnd;
 lpToolInfo.uId = (UINT)tbHandle;
 lpToolInfo.hinst = pInstance;
 lpToolInfo.lpszText = LPSTR_TEXTCALLBACK;
}

The first flag, TTF_IDISHWND, indicates that the fourth structure member (uId) is a
handle to a window, in this case, the toolbar. The flag TTF_CENTERTIP determines that
the ToolTip is displayed below the window specified in the uId member, here again, the
toolbar. Finally, the lpszText member is set to the constant LPSTR_TEXTCALLBACK,
which makes the control send the TTN_NEEDTEXT notification message to the owner
window. The values entered in the other structure members are self-explanatory.

Processing of ToolTip messages, as is the case with most controls, takes place at the
WM_NOTIFY message intercept. At the time the message handler receives control, the
lParam is a pointer to a structure of type HMHDR (see Appendix A), or to a larger
structure that has NMHDR as its first member. The third member of the HMHDR
structure contains the control-specific notification code. This parameter is
TTN_NEEDTEXT when text is required for a ToolTip. Therefore, code can switch on
this structure member and provide processing in a case statement, as shown in the
following code fragment:

Child windows and controls 669

LPNMHDR pnmh; // Pointer to HMHDR structure
TOOLTIPINFO lpToolTipInfo;
LPTOOLTIPTEXT lpToolTipText;
static char szBuf[128]; // Buffer for ToolTip text
.
case WM_NOTIFY:
 pnmh = (LPNMHDR) lParam;
 switch (pnmh->code) {
 case TTN_NEEDTEXT :
 // Display ToolTip text.
 lpToolTipText = (LPTOOLTIPTEXT)lParam;
 LoadString (pInstance,
 lpToolTipText->hdr.idFrom,
 szBuf,
 sizeof(szBuf));
 lpToolTipText->lpszText = szBuf;
 break;
 default:
 return TRUE;
 break;
 }
 return 0;
break;

Note that the TTN_NEEDTEXT message intercept contains a pointer to a structure of
type TOOLTIPTEXT in the lParam (see Appendix A). The first member of
TOOLlTIPTEXT (hdr) is a structure of type NMHDR, and the idFrom member of
HMHDR is the identifier of the control sending the message. Code uses this information
and the LoadString() function to move the text into the buffer named szBuf. The text
moved into szBuf comes from the lpszText member of a structure variable of type
TOOLTIPTEXT. This second member is a pointer to a text string defined as a string
resource in the application's executable.

Figure 19–15 Developer Studio
Resource Table Editor

The string resource that contains the messages that are displayed with each ToolTip is the
last missing element of ToolTip implementation. You create the string resource by

The pc graphics handbook 670

opening the Insert menu and selecting the Resource command. In the Insert Resource
dialog box select String Table and then click on the New button. An example of a
resource table is seen in Figure 19–15.

The resource table consists of three entries: the id, the value, and the caption fields.
You fill the id field so that it contains the same identification code as the button for which
you are providing a ToolTip. In the caption field, you enter the text that is to be displayed
at the ToolTip. Developer Studio automatically fills the value field for the one assigned
to the corresponding toolbar button. Double-clicking on the entry displays a dialog box
where these values can be input.

The program named TT_DEMO, located in the ToolTip Demo project folder on the
book's software package, is a demonstration of the processing required for the
implementation of ToolTip controls.

Child windows and controls 671

Chapter 20
Pixels, Lines, and Curves

Topics:

• Basic architecture of a Windows graphics application
• Graphics device interface attributes
• The device context
• Graphic objects: pens, brushes, mixes, pen position, and arc direction
• Drawing pixels, lines, and curves using GDI functions

This chapter is on graphics programming using the services in the Windows Graphics
Device Interface. It discusses the simpler of these services, which are used for reading
and setting individual pixels and for drawing lines and curves in a two-dimensional
space. The described graphics functions are among the most often used in conventional
Windows graphics.

The chapter starts with the architecture of a Windows graphics application, the GDI
itself, and a more extensive look at the Windows Device Context. It is in the Device
Context where system-level graphics information is stored. Applications must often read
these attributes. It also covers Windows graphics objects and their attributes, that is, pens,
brushes, bitmaps, palettes, fonts, paths, and regions, as well as some of the attributes of
the Device Context: color, mix mode, background mode, pen position, and arc direction.
These attributes determine how graphics output takes place.

20.1 Drawing in a Window

Windows programs are event driven; applications share resources with all other running
programs and with the operating system. This determines that a graphics program cannot
make exclusive use of the display, or of other system resources, since these are part of a
pool that is accessible to all code in a multitasking environment. The following
implications result from this architecture:

• A typical Windows application must obtain information about the system and the
display device before performing output operations. The application must know the
struc ture and dimensions of the output surface, as well as its capabilities, in order to
manage the display function.

• In Windows, output to devices is performed by means of a logical link between the
application, the device driver, and the hardware components. This link is called a
device context. A display context is a special device context for the display device.
Applications that draw to a window using conventional Windows functions must first

obtain the display context. The handle to this display context is passed as a parameter
to all API drawing functions.

• Unlike a DOS program, a Windows applications cannot draw to the screen and assume
that the resulting image remains undisturbed for unlimited time. On the contrary, a
Windows program must take into account that the video display is a shared resource.
Windows notifies the application that its client area needs to be painted or repainted
by posting a WM_PAINT message to the program's message queue. A well-designed
Windows programs must be able to redraw its client area upon receiving this message.

The first two of these topics, that is, obtaining the device context handle and the display
device attributes, are discussed in a separate section later in this chapter. Here we are
concerned with the mechanisms used by Windows applications for accessing the display
device in a way that is consistent with the multitasking nature of the environment.

20.1.1 The Redraw Responsibility

Windows applications are burdened with the responsibility of redrawing their client area
at any time. This is an obligation to be taken seriously since it implies that code must
have ways for reconstructing the display on demand. What data structures and other
controls are necessary to redraw the screen and how code handles this responsibility
depends on the application itself. In some programs the screen redraw burden is met
simply by keeping tabs of which on several possible displays is active. In other
applications the screen redraw obligation can entail such elaborate processing that it
becomes a major consideration in program design.

The operating system, or your own code, sends the WM_PAINT message whenever
the client area, or a portion thereof, needs to be redrawn. Application code responds to its
screen redraw responsibility during the WM_PAINT message intercept. The following
events cause the operating system to send WM_PAINT:

• The user has brought into view a previously hidden area of the application window.
This happens when the window has been moved or uncovered.

• The user has resized the window.
• The user has scrolled the window contents.

The WM_PAINT message is not produced when a window is merely moved to another
position on the desktop, since in this case, the client area has not been changed by the
translation. Therefore, the operating system is able to maintain the screen contents
because no new graphics elements were introduced or removed, and the screen size
remains the same. However, the operating system cannot anticipate how an application
handles a screen resizing operation. There are several possible processing options: are the
screen contents scaled to the new dimension of the client area, or is their original size
maintained? Are the positions of the graphics elements changed as a consequence of the
resize operation, or do they remain in the same place? Not knowing how these
alternatives are to be handled, the operating system responds by sending WM_PAINT to
the application and letting it take whatever redraw action considers appropriate. The same
logic applies when the client area is scrolled or when portions of the window are
uncovered.

The pc graphics handbook 674

There are other times during which Windows attempts to restore the application’s
screen, but may occasionally post the WM_PAINT message if it fails in this effort. These
occasions are when a message or dialog box is displayed, when a menu is pulled down, or
when a tooltip is enabled. Finally, there are cases in which Windows always saves and
restores the screen automatically, for example, when the mouse cursor or a program icon
is dragged or moved across the client area.

20.1.2 The Invalid Rectangle

In an effort to minimize the processing, Windows keeps tabs on which portion of the
application’s client area needs to be redrawn. This notion is based on the following logic:
it is wasteful for application code to repaint the entire screen when only a small portion of
the program's client area needs to be redrawn. In practice, for simpler programs, it is
often easier to assume that the entire client area needs redrawing than to get into the
complications of repainting parts of the screen. However, in more complex applications,
particularly those that use multiple child windows, it may save considerable time and
effort if code can determine which of these elements need redrawing and which can be
left unchanged.

The screen area that needs to be redrawn is called the update region. The smallest
rectangle that binds the update region is called the invalid rectangle. When the
WM_PAINT message is placed in the message queue, Windows attaches to it a structure
of type RECT that contains the dimensions and location of the invalid rectangle. If
another screen area becomes invalid before WM_PAINT is posted, Windows then makes
the necessary correction in the invalid rectangle. This scheme saves posting more than
one WM_PAINT message on the queue. Applications can call GetUpdateRect() to obtain
the coordinates of the top-left and bottom-right corner of the update region.

An application can force Windows to send a WM_PAINT message to its own window
procedure. This is accomplished by means of the InvalidateRect() or InvalidateRgn()
functions. InvalidateRect() has the effect of adding a rectangle to a window's update
region. The function has the following general form:

BOOL InvalidateRect(
HWND hWnd, // 1
CONST RECT* lpRect, // 2
BOOL bErase // 3
);

The first parameter identifies the window whose update region has changed. The second
parameter is a pointer to a structure variable of type RECT that contains the coordinates
of the rectangle to be added to the update region. If this parameter is NULL, then the
entire client area is added to the update region. The third parameter is a flag that indicates
if Windows should erase or not erase the background. If this parameter is TRUE, then the
background is erased when the BeginPaint() function is called by the application. If it is
FALSE, the background remains unchanged.

Pixels, lines, and curves 675

20.1.3 Screen Updates On-Demand

The standard reply of an application that has received a WM_PAINT message is to
redraw its own client area. This implies that the application has been designed so that a
screen update takes place every time a WM_PAINT message is received. In this case the
application design has to take into account the message-driven characteristic of a
Windows program.

Consider a program that contains three menu commands: one to display a circle,
another one to display a rectangle, and a third one to display a triangle. When the user
clicks on any one of the three menu items, a WM_COMMAND message is posted to the
application’s message queue. The low word of the WPARAM encodes the menu item
selected. Application code usually switches on this value in order to field all possible
commands. However, the screen should not be updated during WM_COMMAND
processing. What code can do at this point is set a switch that indicates the selected
command. In this example a static variable of type int, named drawMode, could be set to
1 to indicate a circle drawing request, to 2 to indicate a rectangle, and to 3 to indicate a
triangle. After this switch is set according to the menu command entered by the user,
code calls InvalidateRect() so that Windows posts WM_PAINT to the application’s own
message queue. The application then processes WM_PAINT inspecting the value of the
drawMode variable. If the value is 1 it draws a circle, if its is 2 it draws a rectangle, and if
it is 3 it draws a triangle.

To a non-Windows programmer this may appear to be quite a round-about way of
doing things. Why not draw the geometrical figures at the time that the menu commands
are received? The problem with drawing as the commands are received is that if the
window is resized or covered there is no mechanism in place to restore its screen image.
The result would be either a partially or a totally blank client area. However, if the screen
updates take place during WM_PAINT message processing, then when Windows sends
WM_PAINT to the application because of a screen contents change, the application
redraws itself and the client area is correctly restored.

On the other hand, not all screen drawing operations can take place during
WM_PAINT message processing. Applications sometimes have to perform display
functions that are directly linked to a user action, for example, a rubber-band image that
is drawn in direct and immediate response to a mouse movement. In this case code cannot
postpone the drawing until WM_PAINT is received.

20.1.4 Intercepting the WM_PAINT Message

The WM_PAINT message is generated only for windows that were created with the
styles CS_HREDRAW or CS_VREDRAW. Receiving WM_PAINT indicates to
application code that all or part of the client area must be repainted. The message can
originate in Windows, typically because the user has minimized, overlapped, or resized
the client area. Or also because the application itself has produced the message by calling
InvalidateRect() or InvalidateRgn(), as previously discussed.

The pc graphics handbook 676

Typically, WM_PAINT processing begins with the BeginPaint() function.
BeginPaint() prepares the window for a paint operation. In the first place it fills a variable
of type PAINTSTRUCT, which is defined as follows:

typedef struct tagPAINTSTRUCT {
 HDC hdc; // Identifies display
device
 BOOL fErase; // TRUE if background must
be
 // erased
 RECT rcPaint; // Rectangle structure
specifying
 // the update region
 BOOL fRestore; // RESERVED
 BOOL fIncUpdate; // RESERVED
 BYTE rgbReserved[32]; // RESERVED
} PAINTSTRUCT;

If the screen erasing flag is set, BeginPaint() uses the window's background brush to
erase the background. In this case, when execution returns from BeginPaint() code can
assume that the update region has been erased. At this point the application can call
GetClientRect() to obtain the coordinates of the update region, or proceed on the
assumption that the entire client area must be redrawn.

Processing ends with EndPaint(). EndPaint() notifies Windows that the paint operation
has concluded. The parameters passed to EndPaint() are the same ones passed to
BeginPaint(): the handle to the window and the address of the structure variable of type
PAINTSTRUCT. One important consequence of the EndPaint() function is that the
invalid region is validated. Drawing operations by themselves have no validating effect.
Placing the drawing operations between BeginPaint() and EndPaint() functions
automatically validates the invalid region so that other WM_PAINT messages are not
produced. In fact, placing the BeginPaint() EndPaint() functions in the WM_PAINT
intercept, with no other processing operation, has the effect of validating the update
region. The DefWindowProc() function operates in this manner.

The project Pixel and Line Demo in the book's software package demonstrates image
display and update in response to WM_PAINT messages. The processing uses a static
variable to store the state of the display. A switch construct in the WM_PAINT routine
performs the screen updates, as in the following code fragment:

// Drawing command selector
static int drawMode = 0;
// 0 = no menu command active
// Active menu command :
// 1 = Set Pixel
// 2 = LineTo
// 3 = Polyline
// 4 = PolylineTo
// 5 = PolyPolyline
// 6 = Arc
// 7 = AngleArc

Pixels, lines, and curves 677

// 8 = PolyBezier
// 9 = PolyDraw
 . . .
//********************************
// menu command processing
//********************************
case WM_COMMAND:
switch (LOWORD (wParam)) {
 //****************************
// SetPixel command
 //****************************
case ID_DRAWOP_PIXELDRAW:
drawMode = 1; // Command to draw line
InvalidateRect(hwnd, NULL, TRUE);
break;
//****************************
// LineTo command
//****************************
case ID_DRAWOP_LINE_LINETO:
drawMode = 2; // Command to draw line
InvalidateRect(hwnd, NULL, TRUE);
break;
 . . .
//********************************
// WM_PAINT processing
//********************************
case WM_PAINT :
BeginPaint (hwnd, &ps) ;
switch(drawMode)
 {
// 1 = SetPixel command
case 1:
pixColor = RGB(0×ff, 0×0, 0×0); // Red
for (i = 0; i < 1000; i++){
x = i * cxClient / 1000;
y = (int) (cyClient / 2 *
(1- sin (pix2 * i / 1000)));
SetPixelV (hdc, x, y, pixColor);
 }
break;
// 2 = LineTo command
case 2:
// Create a solid blue pen, 4 pixels wide
SelectObject(hdc, bluePen4);
MoveToEx (hdc, 140, 140, NULL);
LineTo (hdc, 300, 140);
LineTo (hdc, 300, 300);
LineTo (hdc, 140, 300);
LineTo (hdc, 140, 140);
break;
 . . .

The pc graphics handbook 678

20.2 Graphics Device Interface

The Graphics Device Interface (GDI) consists of a series of functions and related data
structures that applications can use to generate graphics output. The GDI can output to
any compatible device, but most frequently the device is either the video display, a
graphics hard copy device (such as a printer or plotter), or a metafile in memory. By
means of GDI functions you draw lines, curves, closed figures, paths, bitmapped images,
and text. The objects are drawn according to the style selected for drawing objects, such
as pens, brushes, and fonts. The pen object determines how lines and curves are drawn;
the brush object determines how the interior of closed figures is filled. Fonts determine
the attributes of text.

Output can be directed to physical devices, such as the video display or a printer, or to
a logical device, such as a metafile. A metafile is a memory object that stores output
instructions so that they can later be used to produce graphics on a physical device. It
works much like a tape recording that can be played back at any time, any number of
times.

The GDI is a layer between the application and the graphics hardware. It ensures
device-independence and frees the programmer from having to deal with hardware details
of individual devices. The device context, mentioned in Chapter 4, is one of the
fundamental mechanisms used by the GDI to implement device-independent graphics.
The GDI is a two-dimensional interface, which contains no 3D graphics primitives or
transformations. It is also a static system, with very little support for animation.
Therefore, the GDI is not capable of doing everything that a graphics programmer may
desire, but within these limitations, it provides an easy and convenient toolkit of
fundamental functions.

GDI functions can be classified into three very general categories:

• Functions that relate to the device context. These are used to create and release the DC,
to get information about it, and to get and set its attributes.

• Drawing primitives. These are used to draw lines and curves, fill areas, and display
bitmaps and text.

• Functions that operate on GDI objects. These perform manipulation of graphics objects
such as pens, brushes, and bitmaps, which are not part of the device context.

20.2.1 Device Context Attributes

The GDI can output to any compatible device, including hard copy graphics devices and
memory. For this reason, when referring to the GDI functions, we always use the term
device context, instead of the more restrictive display context. In Chapter 4 we discussed
the fundamentals of the device context and developed a template file TEMPL02.CPP,
found in the Templates directory on the book’s software package; it creates a program
that uses a private device context. A private device context has the advantage that it need
be retrieved only once and that attributes assigned to it are retained until they are
explicitly changed. In the following examples and demonstration programs, we continue
to use a private device context to take advantage of these simplifications.

Pixels, lines, and curves 679

The mapping modes are among the most important attributes of the device context.
Two scalable mapping modes, named MM_ANISOTROPIC and MM_ISOTROPIC, are
use in shrinking and expanding graphics by manipulating the coordinate system. They
provide a powerful image manipulation mechanism and are discussed in Chapter 21. For
now, we continue to use the default mapping mode, MM_TEXT, in the demonstrations
and examples.

Device context operations belong to two types: those that obtain information and those
that set attributes. For example, the GDI function GetTextColor() retrieves the current
text color from the device context, while the function SetTextColor() is used to change
the text color attribute. Although these functions are sometimes re-ferred to as get- and
set-types, the function names do not always start with these words. For example, the
SelectObject() function is used to both get and set the attributes of pens, brushes, fonts,
and bitmaps.

Graphics applications often need to obtain information regarding the device context.
For example, a program may need to know the screen resolution or the number of display
colors. One of the most useful functions for obtaining information regarding the
capabilities of a device context is GetDeviceCaps(). The call to GetDeviceCaps() requires
two parameters: the first one is the handle to the device context, and the second one is an
index value that identifies the capability being queried. Table 20.1 lists some of the most
useful information returned by this function.

Table 20–1
Information Returned by GetDeviceCaps()

INDEX MEANING
DRIVERVERSION Version number of device driver.
TECHNOLOGY Any one of the following:
 Value Meaning
 DT_PLOTTER Vector plotter
 DT_RASDISPLAY Raster display
 DT_RASPRINTER Raster printer
 DT_RASCAMERA Raster camera
 DT_CHARSTREAM Character stream
 DT_METAFILE Metafile
 DT_DISPFILE Display file
HORZSIZE Width of the physical screen (millimeters).
VERTSIZE Height of the physical screen (millimeters).
HORZRES Width of the screen (pixels).
VERTRES Height of the screen (raster lines).
LOGPIXELSX Number of pixels per logical inch along the screen width.
LOGPIXELSY Number of pixels per logical inch along the screen height.
BITSPIXEL Number of color bits per pixel.
PLANES Number of color planes.
NUMBRUSHES Number of device-specific brushes.
NUMPENS Number of device-specific pens.
NUMFONTS Number of device-specific fonts.

The pc graphics handbook 680

NUMCOLORS Number of entries in the color table, if the device has a color depth
of no more than 8 bits per pixel. Otherwise, −1 is returned.

ASPECTX Relative width of a device pixel used for line drawing.
ASPECTY Relative height of a device pixel used for line drawing.
ASPECTXY Diagonal width of the device pixel.

CLIPCAPS Flag indicating clipping capabilities of the device. Value is 1 if the
device can clip to a rectangle. Otherwise, it is 0.

SIZEPALETTE Number of entries in the system palette.
NUMRESERVED Number of reserved entries in the system palette.
COLORRES Actual color resolution of the device, in bits per pixel.
PHYSICALWIDTH For printing devices: the width of the physical page, in device units.
PHYSICALHEIGHT For printing devices: the height of the physical page, in device units.
PHYSICALOFFSETX For printing devices: the distance from the left edge of the physical

page to the left edge of the printable area, in device units.
PHYSICALOFFSETY For printing devices: the distance from the top edge of the physical

page to the top edge of the printable area, in device units.
RASTERCAPS Value that indicates the raster capabilities of the device, as follows:
 Capability Meaning
 RC_BANDING Requires banding support.
 RC_BITBLT Capable of transferring bitmaps.
 RC_BITMAP64 Supports bitmaps larger than 64K.
 RC_DI_BITMAP Supports SetDIBits() and GetDIBits

functions.
 RC_DIBTODEV Capable of supporting the

SetDIBitsToDevice function.
 RC_FLOODFILL Capable of performing flood fills.
 RC_PALETTE Palette-based device.
 RC_SCALING Capable of scaling.
 RC_STRETCHBLT Capable of performing the StretchBlt

function.
 RC_STRETCHDIB Capable of performing the StretchDIBits

function.
CURVECAPS Indicates the curve capabilities of the device, as follows:
 Value Meaning
 CC_NONE Does not support curves.
 CC_CIRCLES Device can draw circles.
 CC_PIE Device can draw pie wedges.
 CC_CHORD Device can draw chord arcs.
 CC_ELLIPSES Device can draw ellipses.
 CC_WIDE Device can draw wide borders.
 CC_STYLED Device can draw styled borders.
 CC_WIDESTYLED Device can draw wide and styled borders.
 CC_INTERIORS Device can draw interiors.
 CC_ROUNDRECT Device can draw rounded Rectangles.
LINECAPS Indicates the line capabilities of the device, as follows:
 Value Meaning

Pixels, lines, and curves 681

 LC_NONE Does not support lines.
 LC_POLYLINE Device can draw a polyline.
 LC_MARKER Device can draw a marker.
 LC POLYMARKER Device can draw multiple markers.
 LC_WIDE Device can draw wide lines.
 LC_STYLED Device can draw styled lines.
 LC_WIDESTYLED Device can draw lines that are wide and

styled.
 LC_INTERIORS Device can draw interiors.
POLYGONALCAPS Indicates the polygon capabilities of the device, as follows:
 Value Meaning
 PC_NONE Does not support polygons.
 PC_POLYGON Device can draw alternate-fill polygons.
 PC_RECTANGLE Device can draw rectangles.
 PC_WINDPOLYGON Device can draw winding-fill polygons.
 PC_SCANLINE Device can draw a single scanline.
 PC_WIDE Device can draw wide borders.
 PC_STYLED Device can draw styled borders.
 PC_WIDESTYLED Device can draw borders that Are wide and

styled.
 PC_INTERIORS Device can draw interiors.
TEXTCAPS Indicates the text capabilities of the device, as follows:
 Value Meaning
 TC_OP_CHARACTER Device is capable of character output

precision.
 TC_OP_STROKE Device is capable of stroke output precision.
 TC_CP_STROKE Device is capable of stroke clip precision.
 TC_CR_90 Device is capable of 90-degree character

rotation.
 TC_CR_ANY Device is capable of any character rotation.
 TC_SF_X_YINDEP Device can scale independently in the x- and

y-directions.
 TC_SA_DOUBLE Device is capable of doubled character for

scaling.
 TC_SA_INTEGER Device uses integer multiples only for

character scaling.
 TC SA CONTIN Device uses any multiples for exact character

scaling.

VALUE MEANING
TC_EA_DOUBLE Device can draw double-weight characters.
TC_IA_ABLE Device can italicize.
TC_UA_ABLE Device can underline.
TC_SO_ABLE Device can draw strikeouts.
TC_RA_ABLE Device can draw raster fonts.
TC_VA_ABLE Device can draw vector fonts.
TC_SCROLLBLT Device cannot scroll using a bit-block transfer.

The pc graphics handbook 682

20.2.2 DC Info Demonstration Program

The program named DCI_DEMO, located in the DC Info Demo project folder on the
book’s software package, shows how to obtain device context information. The menu
labeled “DC Info” contains commands for displaying the most used general device
context capabilities, the device driver version, as well as the specific line and curve
drawing capabilities. Figure 20–1 shows the various menu commands in the DCI_DEMO
program.

Figure 20–1 Screen Snapshots of the
DC Info Program

The Capabilities command in the DC Info menu displays the device context values for
some of the most used elements returned by the GetDeviceCaps() function. To simplify
the programming, the data required during processing is stored in a header file named
DC_Caps.h, which can be found in the project directory. The header file is formatted as
follows:

// Header file for DC Info Demo project
// Contains array of structures
#define LINES ((int) (sizeof DCcaps / sizeof DCcaps
[0]))
struct

Pixels, lines, and curves 683

 {
int iIndex ;
char *szLabel ;
char *szDesc ;
 }
DCcaps [] =
 {
 HORZSIZE, "HORZSIZE", "Width (in
mm):",
 VERTSIZE, "VERTSIZE", "Height (in
mm):",
 HORZRES, "HORZRES", "Width (in
pixels):",
 .
 .
 .
 NUMRESERVED, "NUMRESERVED", "Reserved
palette entries:",
 COLORRES, "COLORRES", "Actual color
resolution:"
 } ;

Each entry in the array of structures contains three elements. The first one (int iIndex) is
the index name required in the GetDeviceCaps() call. The two other elements are strings
used at display time. Processing takes place in a loop in which the number of iterations is
determined by the constant LINES, which is calculated by dividing the number of entries
in the structure by the number of elements in each entry. This coding allows us to change
the number of entries in the array without having to change the loop.

// Obtain and display DC capabilities
for (i = 0 ; i < LINES ; i++) {
TextOut (hdc, cxChar, cyChar * (1+i),
DCcaps[i].szLabel,
strlen (DCcaps[i].szLabel)) ;
TextOut (hdc, cxChar+16 * cxCaps, cyChar * (1+i),
DCcaps[i].szDesc,
strlen (DCcaps[i].szDesc)) ;
SetTextAlign (hdc, TA_RIGHT TA_TOP) ;
TextOut (hdc, cxChar+16 * cxCaps+40 * cxChar,
cyChar * (1+i), szBuffer,
wsprintf (szBuffer, "%5d”,
GetDeviceCaps (hdc, DCcaps[i].iIndex))) ;
SetTextAlign (hdc, TA_LEFT | TA_TOP) ;
 }
break;

In the previous code fragment, the first TextOut() call displays the szLabel variable in the
DCcaps structure. The second call to TextOut() displays the szDesc string. The value in
the device context is obtained with the GetDeviceCaps() function that is part of the third
call to TextOut(). In this case the iIndex element in the array is used as the second

The pc graphics handbook 684

parameter to the call. The wsprintf() function takes care of converting and formatting the
integer value returned by GetDeviceCaps() into a displayable string.

Obtaining and displaying the driver version is much simpler. The coding is as follows:

// Get driver version
_itoa(GetDeviceCaps(hdc, DRIVERVERSION),
szVersion + 16, 10);
// Initialize rectangle structure
 SetRect (&textRect, // address of
structure
 2 * cxChar, // x for start
 cyChar, // y for start
 cxClient, // x for end
 cyClient); // y for end
DrawText(hdc, szVersion, -1, &textRect,
DT_LEFT | DT_WORDBREAK);
break;

In this case we use the _itoa() function to convert the value returned by GetDeviceCaps()
into a string. SetRect() and DrawText() are then used to format and display the string.

Obtaining and displaying the curve drawing and line drawing capabilities of the device
context requires different processing. These values (see Table 20–1) are returned as bit
flags associated with an index variable. For example, we make the call to
GetDeviceCaps() using the index constant CURVECAPS as the second parameter. The
integer returned by the call contains all the bit flags that start with the prefix CC
(CurveCaps) in Figure 20–1. Code can then use a bitwise AND to test for one or more of
curve drawing capabilities. The following code fragment shows one possible approach
for obtaining curve-drawing capabilities:

// Get curve drawing capabilities
curvecaps = GetDeviceCaps (hdc, CURVECAPS);
// Test individual bit flags and change default
// string if necessary
if (curvecaps & CC_NONE)
strncpy(szCurvCaps+21, strNo, 3);
if (curvecaps & CC_CIRCLES)
strncpy(szCurvCaps+(26+21), strYes, 3);
 .
 .
 .
if (curvecaps & CC_ROUNDRECT)
strncpy(szCurvCaps+(9 * 26+21), strYes, 3);
// Initialize rectangle structure
 SetRect (&textRect, // address
of
 // structure
 2 * cxChar, // x for
start
 cyChar, // y for
start

Pixels, lines, and curves 685

 cxClient, // x for end
 cyClient); // y for end
DrawText(hdc, szCurvCaps, -1, &textRect,
DT_LEFT | DT_WORDBREAK);
break;

Each of the if statements in the processing routine tests one of the bit flags returned by
GetDeviceCaps(). If the bit is set, then a text string containing the words YES or NO is
moved into the display string. When all the bits have been examined, the message string
named szCurvCaps is displayed in the conventional manner.

20.2.3 Color in the Device Context

Monochrome displays are a thing of the past. Virtually all Windows machines have a
color display and most of them can go up to 16.7 million displayable colors. In graphics
programming you will often have to investigate the color capabilities of a device as well
as select and manipulate colors.

In Chapter 1 we discussed the primary and the complementary color components of
white light. In Windows programming, colors are defined by the relative intensity of the
red, green, and blue primary components. Each color value is encoded in 8 bits, therefore,
all three primary components require 24 bits. Since no C++ data type is exactly 24 bits,
however, the color value in Windows is stored in a type called COLORREF, which
contains 32 bits. The resulting encoding is said to be in RGB format, where the letters
stand for the red, green, and blue components, respectively. Figure 20–2 shows the bit
structure of the COLORREF type.

Figure 20–2 COLORREF Bitmap

Windows provides a macro named RGB, defined in the windows.h header file; it
simplifies entering the color values into a data variable of type COLORREF. The macro
takes care of inserting the zeros in bits 24 to 31, and in positioning each color in its
corresponding field. As the name RGB indicates, the first value corresponds to the red
primary, the second one to the green, and the third one to the blue. For example, to enter
a middle-gray value, in which each of the primary colors is set to 128, proceed as
follows:

The pc graphics handbook 686

COLORREF midGray; // Variable of type COLORREF
midGray = RGB(128, 128, 128);

The COLORREF data type is also used to encode palette colors. Windows uses the high-
order 8 bits to determine if a color value is in explicit RGB, palette-index, or palette-
relative format. If the high-order byte is zero, then the color is an explicit RGB value; if it
is 1 then it is a palette-index value; if it is 2 then the color is a palette-relative value.
Using the RGB macro when creating explicit-RGB values ensures that the high-order
byte is set correctly.

Obtaining color information from the device context requires careful consideration.
Note in Table 20–1 that the index constant NUMCOLORS is valid only if the color depth
is no more than 8 bits per pixel. The device queried in Figure 20–1 has 16 bits per pixel;
therefore, the NUMCOLORS value is set to −1. By the same token, the COLORRES
index constant is valid only if the device sets the RC_PALETTE bit. In Figure 20–1 the
value of this field is 0. The two most useful constants for obtaining general color depth
information are PLANES and BITPIXEL. PLANES returns the number of color planes
and BITPIXEL returns the number of bits used in encoding each plane.

20.3 Graphic Objects and GDI Attributes

We should first mention that Windows graphics objects are not objects in the object-
oriented sense. Windows graphics objects are pens, brushes, bitmaps, palettes, fonts,
paths, and regions. Of these, pens and brushes are the objects most directly related to
pixel and line drawing operations.

20.3.1 Pens

The pen graphics object determines a line’s color, width, and style. Windows uses the
pen currently selected in the device context with any of the pen-based drawing functions.
Three stock pens are defined: BLACK_PEN, WHITE_PEN, and NULL_PEN. The
default pen is BLACK_PEN, which draws solid black lines. Applications refer to a pen
by means of its handle, which is stored in a variable of type HPEN. The
GetStockObject() function is used to obtain a handle to one of the stock pens. The pen
must be selected into the device context before it is used, as follows:

HPEN aPen; // handle to pen
 .
 .
 .
aPen = GetStockObject (WHITE_PEN);
SelectObject (hdc, aPen);

The two functions can be combined in a single statement, as follows:

Pixels, lines, and curves 687

SelectObject (hdc, GetStockObject (WHITE_PEN));

In this case, no pen handle variable is required. SelectObject() returns the handle to the
pen previously installed in the device context. This can be used to save the original pen
so that it can be restored later.

Drawing applications sometimes require one or more custom pens, which have a
particular style, width, and color. Custom pens can be created with the functions
CreatePen(), CreatePenIndirect(), and ExtCreatePen(). In the CreatePen() function the
pen’s style, width, and color are passed as parameters. CreatePenIndirect() uses a
structure of type LOGPEN to hold the pen’s style, width, and color. ExtCreatePen(),
introduced in Windows 95, is the more powerful of the three. The iStyle parameter is a
combination of pen type, styles, end cap style, and line join attributes. The constants used
in defining this parameter are listed in Table 20–2, on the following page.

Table 20–2
Values Defined for the ExtCreatePen() iStyle
Parameter

PEN TYPE DESCRIPTION
PS_GEOMETRIC Pen is geometric.
PS_COSMETIC Pen is cosmetic. Same as those created with CreatePen() and

CreatePenIndirect(). Width must be 1 pixel.
Pen Style
PS_ALTERNATE Windows NT: Pen sets every other pixel.

(Cosmetic pens only.) Windows 95: Not supported.
PS_SOLID Pen is solid.
PS_DASH Pen is dashed.
PS_DOT Pen is dotted.
PS_DASHDOT Pen has alternating dashes and dots.
PS_DASHDOTDOT Pen has alternating dashes and double dots.
PS_NULL Pen is invisible.
PS_USERSTYLE Windows NT: Pen uses a styling array supplied by the user.

Windows 95: Not supported.
PS_INSIDEFRAME Pen is solid. Any drawing function that takes a bounding rectangle, the

dimensions of the figure are shrunk so that it fits entirely in the bounding
rectangle. Geometric pens only.

End Cap Style (only in stroked paths)
PS_ENDCAP_ROUND End caps are round.
PS_ENDCAP_SQUARE End caps are square.
PS_ENDCAP_FLAT End caps are flat.
Join Style (only in stroked paths)
PS_JOIN_BEVEL Joins are beveled.
PS_JOIN_MITER Joins are mitered when they are within the current limit set by the

SetMiterLimit() function. If it exceeds this limit, the join is beveled.
SetMiterLimit() is discussed in Chapter 21.

PS_JOIN_ROUND Joins are round.

The pc graphics handbook 688

The standard form of the ExtCreatePen() function is as follows:

HPEN ExtCreatePen (iStyle, // pen style
 iWidth, // pen width
 &aBrush, // pointer to a LOGBRUSH
 // structure (next
section)
dwStyleCount,// length of next parameter
lpStyle); // dot-dash pattern array

The second parameter to ExtCreatePen() defines the pen's width. If the pen is a geometric
pen, then its width is specified in logical units. If it is a cosmetic pen then the width must
be set to 1.

A geometric pen created with ExtCreatePen() has brush-like attributes. The third
parameter is a pointer to LOGBRUSH. The LOGBRUSH structure, described in the
following section, is defined as follows:

struct tagLOGBRUSH{
UINT lbStyle;
COLORREF lbColor;
LONG lbHatch;
} LOGBRUSH

If the pen is a cosmetic pen, then the lbStyle member must be BS_SOLID and the
lbColor member defines the pen's color. In this case the lbHatch member, which sets a
brush's hatch pattern, is ignored. If the pen is geometric, then all three structure members
are meaningful and must be used to specify the corresponding attributes.

The fourth parameter, dwStyleCount, determines the length of the fifth parameter. The
fifth parameter, lpStyle, is a pointer to an array of doubleword values. The first value in
the array is the length of the first dash of a user-defined pen style, the second one is the
length of the first space, and so on. If the pen style does not contain the PS_USERSTYLE
constant, then the fourth parameter must be zero, and the fifth parameter must be NULL.
Note that PS_USERSTYLE is supported in Windows NT but not in Windows 95 or 98.

The end cap styles determine the appearance of the line ends. Three constants are
defined for round, square, and flat line ends. The end join style determines the
appearance of the connecting point of two lines. Both styles are available only for
geometric pens. Figure 20–3 shows the pen styles and the effects of the different end caps
and joins.

Pixels, lines, and curves 689

Figure 20–3 Pen Syles, End Caps, and
Joins

Note in Figure 20–3 that the difference between square and flat caps is that the square
style extends the line by one-half its width. The white lines in the end cap style insert are
drawn with the white stock pen, to better show the style's effect. The NULL_PEN style
creates a pen that draws with transparent ink, therefore it leaves no mark as it moves on
the drawing surface. This style is occassionaly used in creating figures that are filled with
a particular brush style but have no border.

20.3.2 Brushes

The brush object determines the attributes used in filling a solid figure. The outline of
these figures is determined by the brush selected in the device context. A brush has a
style, color, and hatch pattern. There are several stock brushes: WHITE_BRUSH,
LTGRAY_BRUSH, GRAY_BRUSH, DKGRAY_BRUSH, BLACK_BRUSH, and
NULL_BRUSH. All stock brushes are solid, that is, they fill the entire enclosed area of
the figure. The NULL_BRUSH is used to draw figures without filling the interior. If a
solid figure is drawn with the NULL_PEN, then it is filled but has no outline.

Applications refer to a brush by its handle, which is stored in a variable of type
HBRUSH. The GetStockObject() function is used to obtain a handle to one of the stock
brushes. The brush must be selected into the device context before use, as follows:

The pc graphics handbook 690

HBRUSH aBrush; // handle to brush
 .
 .
 .
aBrush = GetStockObject (WHITE_BRUSH);
SelectObject (hdc, aBrush);

As in the case of a pen, the two functions can be combined in a single statement, as
follows:

SelectObject (hdc, GetStockObject (WHITE_BRUSH));

In this case, no brush handle variable is required. SelectObject() returns the handle to the
brush previously installed in the device context. This can be used to save the original
brush so that it can later be restored.

A custom brush is created by means of the CreateBrushIndirect() function. The call
returns a handle to the brush, of type HBRUSH. The only parameter is a pointer to a
structure of type LOGBRUSH which holds the brush style, color, and hatch pattern. The
LOGBRUSH structure is also used by the ExtCreatePen() previously described. Table
20–3 lists the predefined constants used for members of the LOGBRUSH structure.

The foreground mix mode attribute of the device context, also called the drawing
mode, determines how Windows combines the pen or brush color with the display
surface when performing drawing operations. The mixing is a raster operation based on a
boolean function of two variables: the pen and the background. For this reason it is
described as a binary raster operation, or ROP2. All four boolean primitives are used in
setting the mix mode: AND, OR, NOT, and XOR. The function for setting the foreground
mix mode is SetROP2(). GetROP2() returns the current mix mode in the device context.
The general form of the SetROP2() function is as follows:

Pixels, lines, and curves 691

Table 20–3
Constants in the LOGBRUSH Structure Members

BRUSH STYLE DESCRIPTION
BS_DIBPATTERN A pattern brush defined by a device-independent bitmap. If

lbStyle is BS_DIBPATTERN, the lbHatch member contains a
handle to a packed DIB. Note: DIB stands for Device
Independent Bitmap. DIBs are discussed in Chapter 8.

BS_DIBPATTERNPT Same as BS_DIBPATTERN but the lbHatch member contains
a pointer to a packed DIB.

BS_HATCHED Hatched brush.
BS_HOLLOW Hollow brush.
BS_NULL Same as BS_HOLLOW.
BS_PATTERN Pattern brush defined by a memory bitmap.
BS_SOLID Solid brush.
Brush Color Description
DIB_PAL_COLORS The color table consists of an array of 16-bit indices into the

currently realized logical palette.
DIB_RGB_COLORS The color table contains literal RGB values.
Hatch Style
HS_BDIAGONAL A 45-degree upward, left-to-right hatch.
HS_CROSS Horizontal and vertical cross-hatch.
HS_DIAGCROSS 45-degree crosshatch.
HS_FDIAGONAL A 45-degree downward, left-to-right hatch.
HS_HORIZONTAL Horizontal hatch.
HS_VERTICAL Vertical hatch.

int SetROP2(
 HDC hdc, // 1
 int fnDrawMode // 2
);

Figure 20–4 shows the brush hatch patterns.

Figure 20–4 Brush Hatch Patterns

The pc graphics handbook 692

20.3.3 Foreground Mix Mode

The first parameter is the handle to the device context and the second parameter is one of
16 mix modes defined by Windows. The function returns the previous mix mode, which
can be used to restore the original condition. Table 20–4 lists the ROP2 mix modes. The
center column shows how the pen (P) and the screen (S) pixels are logically combined at
draw time. The boolean operators correspond to the symbols used in C.

Table 20–4
Mix Modes in SetROP2()

CONSTANT BOOLEAN
OPERATION

DESCRIPTION

R2_BLACK 0 Pixel is always 0.
R2_COPYPEN P Pixel is the pen color. This is the default mix mode.
R2_MASKNOTPEN ~P&S Pixel is a combination of the colors common to both

the screen and the inverse of the pen.
R2_MASKPEN P&S Pixel is a combination of the colors common to both

the pen and the screen.
R2_MASKPENNOT P&~S Pixel is a combination of the colors common to both

the pen and the inverse of the screen.
R2_MERGENOTPEN ~P|S Pixel is a combination of the screen color and the

inverse of the pen color.
R2_MERGEPEN P|S Pixel is a combination of the pen color and the screen

color.
R2_MERGEPENNOT P|~S Pixel is a combination of the pen color and the

inverse of the screen color.
R2_NOP S Pixel remains unchanged.
R2_NOT ~S Pixel is the inverse of the screen color.
R2_NOTCOPYPEN ~P Pixel is the inverse of the pen color.
R2_NOTMASKPEN ~(P&S) Pixel is the inverse of the R2_MASKPEN color.
R2_NOTMERGEPEN ~(P|S) Pixel is the inverse of the R2_MERGEPEN color.
R2_NOTXORPEN ~(P^S) Pixel is the inverse of the R2_XORPEN color.
R2_WHITE 1 Pixel is always 1.
R2 XORPEN P^S Pixel is a combination of the colors in the pen and in

the screen, but not in both.
Legend:
~=boolean NOT
|=boolean OR
&=boolean AND
^= boolean XOR

20.3.4 Background Modes

Windows recognizes two background modes that determine how the gaps between dots
and dashes are filled when drawing discontinuous lines, as well as with text and hatched
brushes. The background modes, named OPAQUE and TRANSPARENT, are set in the

Pixels, lines, and curves 693

device context by means of the SetBkMode() function. The function’s general form is as
follows:

int SetBkMode(
 HDC hdc, // 1
 int iBkMode // 2
);

The first parameter is the handle to the device context, and the second one the constants
OPAQUE or TRANSPARENT. If the opaque mode is selected, the background is filled
with the current screen background color. If the mode is TRANSPARENT, then the
background is left unchanged.

The background mode affects lines that result from a pen created with CreatePen() or
CreatePenIndirect(), but not by those created with ExtCreatePen().

20.3.5 Current Pen Position

Many GDI drawing functions start at a screen location known as the current pen position,
or the current position. The pen position is an attribute of the device context. The initial
position of the pen is at logical coordinates (0, 0). Two functions relate directly to the
current pen position: MoveToEx() and GetCurrent Position(). Some drawing functions
change the pen position as they execute. The MoveToEx() function is used to set the
current pen position. Its general form is as follows:

BOOL MoveToEx(
 HDC hdc, // 1
 int X, // 2
 int Y, // 3
 LPPOINT lpPoint // 4
);

The first parameter is the handle to the device context. The second and third parameters
are the x- and y-coordinates of the new pen position, in logical units. The fourth
parameter is a pointer to a structure of type POINT that holds the x- and y-coordinates of
the previous current pen position. If this parameter is set to NULL the old pen position is
not returned. The function returns a boolean that is TRUE if the function succeeds and
FALSE if it fails.

The GetCurrentPositionEx() function can be used to obtain the current pen position.
Its general form is as follows:

BOOL MoveToEx(
 HDC hdc, // 1
 int X, // 2
 int Y, // 3
 LPPOINT lpPoint // 4
);

The pc graphics handbook 694

The second parameter is a pointer to a structure variable of type POINT that receives the
coordinates of the current pen position. The function returns TRUE if it succeeds and
FALSE if it fails.

Drawing functions whose names contain the word "To" use and change the current
pen position; these are LineTo(), PolylineTo(), and PolyBezierTo(). Windows is not
always consistent in this use of the word "To", since the functions AngleArc() and
PolyDraw() also use and update the current pen position.

20.3.6 Arc Direction

One start-point and one end-point on the circumference of a circle define two different
arcs: one drawn clockwise and one drawn counterclockwise. The exception is when the
start and end points coincide. Figure 20–5 shows this possible ambiguity.

Figure 20–5 The Arc Drawing
Direction

In Figure 20–5 the solid line arc is drawn counterclockwise from point A to point B,
while the dotted line arc is drawn clockwise between these same points. The
SetArcDirection() function is used to resolve this problem. The function’s general form is
as follows:

int SetArcDirection(
 HDC hdc, // 1
 int ArcDirection // 2
);

The second parameter is either the constant AD_CLOCKWISE, or the constant
AD_COUNTERCLOCKWISE. The function returns the previous arc drawing direction.

Pixels, lines, and curves 695

20.4 Pixels, Lines, and Curves

The lowest-level graphics primitives are to set a screen pixel to a particular attribute and
to read the attributes of a screen pixel. In theory, with functions to set and read a pixel, all
the other graphics operations can be developed in software. For example, a line can be
drawn by setting a series of adjacent pixels, a closed figure can be filled by setting all the
pixels within its boundaries, and so on. However, in actual programming practice these
simple primitives are not sufficient. In the first place, high-level language code requires
considerable overhead in performing the pixel set and read operations. To draw lines and
figures by successively calling these functions would be prohibitively time consuming.
On the other hand, there are cases in which the programmer must resort to pixel-by-pixel
drawing since other higher-level functions are not available.

There are 11 functions in the Windows API that can be used to draw lines. For one of
them, StrokePath(), we postpone the discussion until Chapter 7, since we must first
discuss paths in greater detail. Table 20–5 lists the remaining ten line-drawing functions.

Table 20–5
Line-Drawing Functions

FUNCTION DRAWING OPERATION
LineTo() A straight line from current position up to a point. Pen position is

updated to line’s end point.
PolylineTo() One or more straight lines between the current position and points in an

array. Pen position is used for the first line and updated to end point of
last line.

Polyline() A series of straight line segments between points defined in an array.
PolyPolyLine() Multiple polylines.
ArcTo() An elliptical arc updating current pen position.
Arc() An elliptical arc without updating current pen position.
AngleArc() A segment of arc starting at current pen position.
PolyBezier() One or more Bezier curves without updating the current pen position.
PolyBezierTo() One or more Bezier curves updating the current pen position.
PolyDraw() A set of lines and Bezier curves.
StrokePath() See Chapter 21.

20.4.1 Pixel Operations

Two Windows functions operate on single pixels: SetPixel() and GetPixel(). SetPixel() is
used to set a pixel at any screen location to a particular color attribute. GetPixel() reads
the color attribute of a pixel at a given screen location. The general form of SetPixel() is
as follows:

COLORREF SetPixel(
 HDC hdc, // 1

The pc graphics handbook 696

 int X, // 2
 int Y, // 3
 COLORREF crColor // 4
);

The first parameter is the handle to the device context. The second and third parameters
are the x- and y-coordinates of the pixel to set, in logical units. The fourth parameter
contains the pixel color in a COLORREF type structure. The function returns the RGB
color to which the pixel was set, which may not coincide with the one requested in the
call because of limitations of the video hardware. A faster version of this function is
SetPixelV(). It takes the same parameters but returns a boolean value that is TRUE if the
operation succeeded and FALSE if it failed. In most cases SetPixelV() is preferred over
SetPixel() because of its better performance. The following code fragment shows how to
draw a box of 100-by-100 pixels using the SetPixelV() function:

 int x, y, i, j; // control variables
 COLORREF pixColor;
 .
 .
 .
 x = 120; // start x
 y = 120; // start y
pixColor=RGB(0xff, 0x0, 0x0); // Red
// Draw a 100-by-100 pixel box
for (i = 0; i < 100; i++){
for (j = 0; j < 100; j++) {
SetPixelV (hdc, x, y, pixColor);
x++;
 }
x = 120;
y++;
 }

20.4.2 Drawing with LineTo()

The simplest of all line-drawing functions is LineTo(). The function requires three
parameters: the handle to the device context, and the coordinates of the end points of the
line. The line is drawn with the currently selected pen. The start point is the current pen
position; for this reason LineTo() is often preceded by MoveToEx() or another drawing
function that sets the current pen position. LineTo() returns TRUE if the function
succeeds and FALSE if it fails, but most often the return value is not used by code. If the
LineTo() function succeeds, the current pen position is reset to the line’s end point;
therefore, the function can be used to draw a series of connected line segments.

The following code fragment draws a rectangle using four lines:

 HPEN bluePen4; // handle for a pen
 int x, y, i, j; // local variables
 .

Pixels, lines, and curves 697

 .
 .
// Create and select pen
bluePen4=CreatePen (PS_SOLID, 4, RGB (0x00, 0x00,
0xff);
SelectObject (hdc, bluePen4);
// Set current pen position for start point
MoveToEx (hdc, 140, 140, NULL);
 LineTo (hdc, 300, 140); // draw first segment
 LineTo (hdc, 300, 200); // second segment
 LineTo (hdc, 140, 300); // third segment
 LineTo (hdc, 140, 140); // last segment

20.4.3 Drawing with PolylineTo()

The PolylineTo() function draws one or more straight lines between points contained in
an array of type POINT. The current pen position is used as a start point and is reset to
the location of the last point in the array. PolylineTo() provides an easier way of drawing
several connected line segments, or an unfilled closed figure. The function uses the
current pen. Its general form is as follows:

BOOL PolylineTo(
 HDC hdc, // 1
 CONST POINT *lppt, // 2
 DWORD cCount // 3
);

The second parameter is the address of an array of points that contains the x- and y-
coordinate pairs. The third parameter is the count of the number of points in the array.
The function returns TRUE if it succeeds and FALSE otherwise. The following code
fragment shows the drawing of a rectangle using the PolylineTo() function:

 HPEN redPen2;
 POINT pointsArray[4]; // array of four points
 .
 .
 .
// Create a solid red pen, 2 pixels wide
redPen2 = CreatePen (PS_SOLID, 2, RGB(0×ff, 0×00,
0×00));
SelectObject (hdc, redPen2);
// Fill array of points
pointsArray[0].x = 300; pointsArray[0].y = 160;
pointsArray[1].x = 300; pointsArray[1].y = 300;
pointsArray[2].x = 160; pointsArray[2].y = 300;
pointsArray[3].x = 160; pointsArray[3].y = 160;
// Set start point for first segment
MoveToEx (hdc, 160, 160, NULL);
// Draw polyline
PolylineTo (hdc, pointsArray, 4);

The pc graphics handbook 698

20.4.4 Drawing with Polyline()

The Polyline() function is similar to PolylineTo() except that it does not use or change the
current pen position. Therefore, you need one more entry in the array of points to draw a
figure with Polyline() since the initial position of the drawing pen cannot be used as the
starting point for the first line segment. The following code fragment shows drawing a
rectangle using the Polyline() function.

 HPEN blackPen;
 POINT pointsArray[4]; // array of four points
 .
 .
 .
// Create a solid red pen, 2 pixels wide
blackPen = CreatePen (PS_DASH, 1, 0);
SelectObject (hdc, blackPen);
// Fill array of points
pointsArray[0].x = 160; pointsArray[0].y = 160;
pointsArray[1].x = 300; pointsArray[1].y = 160;
pointsArray[2].x = 300; pointsArray[2].y = 300;
pointsArray[3].x = 160; pointsArray[3].y = 300;
pointsArray[4].x = 160; pointsArray[4].y = 160;
// Draw polyline
Polyline (hdc, pointsArray, 5);

20.4.5 Drawing with PolyPolyline()

As the function name implies, PolyPolyline() is used to draw several groups of lines or
“polylines.” Since the points array contains sets of points for more than one polyline, the
function requires an array of values that holds the number of points for each polyline.
PolyPolyline(), like Polyline(), does not use or change the current pen position. The
function’s general form is as follows:

BOOL PolyPolyline(
 HDC hdc, // 1
 CONST POINT *lppt, // 2
 CONST DWORD *lpdwPolyPoints, // 3
 DWORD cCount // 4
);

The second parameter is an array containing vertices of the various polylines. The third
parameter is an array that contains the number of vertices in each of the polylines. The
fourth parameter is the count of the number of elements in the third parameter, which is
the number of polylines to be drawn. The function returns TRUE if it succeeds and
FALSE otherwise. The following code fragment shows the drawing of two polylines,
each with five vertices, using the PolyPolyline() function.

Pixels, lines, and curves 699

POINT pointsArray[10]; // array of points
DWORD vertexArray[2]; // vertices per
polyline
// Fill array of points for first polyline
pointsArray[0].x = 160; pointsArray[0].y = 160;
pointsArray[1].x = 300; pointsArray[1].y = 160;
pointsArray[2].x = 300; pointsArray[2].y = 300;
pointsArray[3].x = 160; pointsArray[3].y = 300;
pointsArray[4].x = 160; pointsArray[4].y = 160;
// Fill array of points for second polyline
pointsArray[5].x = 160; pointsArray[5].y = 230;
pointsArray[6].x = 230; pointsArray[6].y = 160;
pointsArray[7].x = 300; pointsArray[7].y = 230;
pointsArray[8].x = 230; pointsArray[8].y = 300;
pointsArray[9].x = 160; pointsArray[9].y = 230;
// Fill number of vertices in array
vertexArray[0] = 5;
vertexArray[1] = 5;
// Draw two polylines
PolyPolyline (hdc, pointsArray, vertexArray, 2);

Figure 20–6 shows the figures that result from executing the previous code sample. The
second polyline is shown in dashed lines to visually distinguish it from the first one.
However, in an actual drawing there is no way of changing pens inside a call to
PolyPolyline().

20.4.6 Drawing with Arc()

The Arc() function draws an elliptical arc. It is also used to draw circles, since the circle
is a special case of the ellipse. The function's general form is as follows:

Figure 20–6 Coordinates of Two
Polylines in the Sample Code

The pc graphics handbook 700

BOOL Arc(
 HDC hdc, // 1
 int nLeftRect, // 2
 int nTopRect, // 3
 int nRightRect, // 4
 int nBottomRect, // 5
 int nXStartArc, // 6
 int nYStartArc, // 7
 int nXEndArc, // 8
 int nYEndArc // 9
);

The second and third parameters are the x- and y-coordinates of the upper-left corner of a
rectangle that contains the ellipse, while the fourth and fifth parameters are the
coordinates of its lower-right corner. By using a bounding rectangle to define the ellipse,
the Windows API avoids dealing with elliptical semi-axes. However, whenever
necessary, the bounding rectangle can be calculated from the semi-axes. The sixth and
seventh parameters define the coordinates of a point that sets the start point of the
elliptical arc. The last two parameters set the end points of the elliptical arc. The elliptical
arc is always drawn in the counterclockwise direction. The SetArcDirection() function
has no effect in this case.

The coordinates of the start and end points of the elliptical arc need not coincide with
the arc itself. Windows draws an imaginary line from the center of the ellipse to the start
and end points. The point at which this line (or its prolongation) intersects the elliptical
arc is used as the start or end point. If the start and end points are the same, then a
complete ellipse is drawn. The following code fragment draws an elliptical arc:

Arc (hdc,
 150, 150, // upper-left of rectangle
 350, 250, // lower-right
 250, 260, // start point
 200, 140; // end point

Figure 20–7 shows the location of each of the points in the preceding call to the Arc()
function and the resulting ellipse.

Pixels, lines, and curves 701

Figure 20–7 Coordinates of an
Elliptical Arc in Sample Code

20.4.7 Drawing with ArcTo()

ArcTo() is a version of the Arc() function that updates the current pen position to the end
point of the elliptical arc. This function requires Windows NT Version 3.1 or later. It is
not available in Windows 95 or 98. The function parameters are identical to those of the
Arc() function.

20.4.8 Drawing with AngleArc()

The AngleArc() function draws a straight line segment and an arc of a circle. The straight
line segment is from the current pen position to the arc’s starting point. The arc is defined
by the circle’s radius and two angles: the starting position, in degrees, relative to the x-
axis, and the angle sweep, also in degrees, relative to the starting position. The arc is
drawn in a counterclockwise direction. The function’s general form is as follows:

BOOL AngleArc(
 HDC hdc, // 1
 int X, // 2
 int Y, // 3
 DWORD dwRadius, // 4
 FLOAT eStartAngle, // 5
 FLOAT eSweepAngle // 6
);

The second and third parameters are the coordinates of the center of the circle that
defines the arc, in logical units. The fourth parameter is the radius of the circle, also in

The pc graphics handbook 702

logical units. The fifth parameter is the start angle in degrees, relative to the x-axis. The
last parameter is the sweep angle, also in degrees, relative to the angle’s starting position.
Figure 20–8 shows the various elements in the AngleArc() function.

Figure 20–8 AngleArc() Function
Elements

The AngleArc() function is not available in Windows 95 or 98; however, it can be
emulated in code. Microsoft Developers Network contains the following listing which
allows implementing the AngleArc() function in software:

BOOL AngleArc2(HDC hdc, int X, int Y, DWORD dwRadius,
float fStartDegrees, float fSweepDegrees){
int iXStart, iYStart; // End point of starting radial
line
 int iXEnd, iYEnd; // End point of ending radial
line
 float fStartRadians // Start angle in radians
 float fEndRadians; // End angle in radians
 BOOL bResult; // Function result
float fTwoPi = 2.0f * .141592f;
/* Get the starting and ending angle in radians */
if (fSweepDegrees > 0.0f) {
fStartRadians = ((fStartDegrees / 360.0f) * fTwoPi);
fEndRadians = (((fStartDegrees+fSweepDegrees) / 360.0f)
*
fTwoPi);
} else {
fStartRadians = (((fStartDegrees+fSweepDegrees) /
360.0f) *
fTwoPi);
fEndRadians = ((fStartDegrees / 360.0f) * fTwoPi
}
/* Calculate a point on the starting radial line via */
/* polar -> cartesian conversion */

Pixels, lines, and curves 703

iXStart = X+(int)((float)dwRadius *
(float)cos(fStartRadians))
iYStart = Y − (int)((float)dwRadius *
(float)sin(fStartRadians))
/* Calculate a point on the ending radial line via */
/* polar -> cartesian conversion */
iXEnd = X+(int)((float)dwRadius *
(float)cos(fEndRadians));
iYEnd = Y − (int)((float)dwRadius *
(float)sin(fEndRadians));
/* Draw a line to the starting point */
LineTo(hdc, iXStart, iYStart);
/* Draw the arc */
bResult = Arc(hdc, X − dwRadius, Y − dwRadius,
X+dwRadius, Y+dwRadius,
iXStart, iYStart,
iXEnd, iYEnd);
// Move to the ending point—Arc() wont do this and
ArcTo()
// wont work on Win32s or Win16 */
MoveToEx(hdc, iXEnd, iYEnd, NULL);
return bResult;
}

Notice that the one documented difference between the preceding listing of AngleArc2()
and the GDI AngleArc() function is that if the value entered in the sixth parameter
exceeds 360 degrees, the software version will not sweep the angle multiple times. In
most cases this is not a problem.

The program named PXL_DEMO, in the Pixel and Line Demo project folder on the
book’s software package, uses the AngleArc2() function to display a curve similar to the
one in Figure 20–8.

20.4.9 Drawing with PolyBezier()

In mechanical drafting, a spline is a flexible edge that is used to connect several points on
an irregular curve. Two French engineers, Pierre Bezier and Paul de Casteljau, almost
simultaneously discovered a mathematical expression for a spline curve that can be easily
adapted to computer representations. This curve is known as the Bezier spline or curve,
since it was Bezier who first published his findings. The Bezier curve is defined by its
end points, called the nodes, and by one or more control points. The control points serve
as magnets or attractors that “pull” the curve in their direction, but never enough for the
curve to intersect the control point. Figure 20–9 shows the elements of a simple Bezier
curve.

The Bezier curve in Figure 20–9 can be generated by a geometrical method that
consists of creating a series of progressively smaller line segments. The process,
sometimes called the divide and conquer method, starts by joining the half-way points
between the nodes and the attractor, thus creating a new set of nodes and a new attractor.

The pc graphics handbook 704

The process continues until a sufficiently accurate approximation of the spline is reached.
Figure 20–10 shows the progressive steps in creating a Bezier spline by this method.

Figure 20–9 The Bezier Spline

Figure 20–10 Divide-and-Conquer
Method of Creating a Bezier Curve

Pixels, lines, and curves 705

In Step 1 of Figure 20–10, we see the start node S1, the end node E1, and the attractor
A1. We first find a point midway between S1 and A1 and label it P1. Another point
midway between A1 and E1 is labeled P2. Points P1 and P2 are joined by a line segmen,
whose midpoint is labeled P3. In Step 2 we can see two new figures. The first one has
nodes at S2 and E2, and the attractor at A2. The second figure has nodes at S3 and E3,
and the attractor at A3. In Step 3 we have joined the midpoints between the nodes and the
attractors with a line segment, thus continuing the process. The two new figures have
their new respective nodes and attractors, so the process can be again repeated. In Step 3
we can see how the resulting line segments begin to approximate the Bezier curve in
Figure 20–9.

The divide and conquer process makes evident the fundamental assumption of the
Bezier spline: the curve is in the same direction and tangent to straight lines from the
nodes to the attractors. A second assumption is that the curve never intersects the
attractors. The Bezier formulas are based on these assumptions.

The Bezier curve generated by the divide and conquer method is known as a quadratic
Bezier. In computer graphics the most useful Bezier is the cubic form. In the cubic form
the Bezier curve is defined by two nodes and two attractors. The development of the
cubic Bezier is almost identical to that of the quadratic. Figure 20–11 shows the elements
of a cubic Bezier curve.

Figure 20–11 Elements of the Cubic
Bezier

The PolyBezier() function, introduced in Windows 95, draws one or more cubic Bezier
curves, each one defined by its nodes and two attractors. The function can be called to
draw multiple Bezier curves. In this case the first curve requires four parameters, and all
the other curves require three parameters. This is because the end node of the preceding
Bezier curve serves as the start node for the next one. PolyBezier() does not change the
current pen position. The Bezier curve is drawn using the pen selected in the device
context. The function’s general form is as follows:

BOOL PolyBezier(
 HDC hdc, // 1

The pc graphics handbook 706

 CONST POINT *lppt, // 2
 DWORD cPoints // 3
);

The first parameter is the handle to the device context. The second parameter is the
address of an array of points that contains the x- and y-coordinate pairs for the nodes and
control points. The third parameter is the count of the number of points in the array. This
value must be one more than three times the number of curves to be drawn. For example,
if the PolyBezier() function is called to draw four curves, there must be 13 coordinate
pairs in the array (1+(3*4)). The function returns TRUE if it succeeds and FALSE
otherwise.

The Bezier data is stored in the array of points in a specific order. In the first Bezier
curve, the first and fourth entries are the nodes and the second and third are attractors.
Note that in the array the first and fourth entries are at offset 0 and 3; respectively, and
the second and third entries are at offset 1 and 2. If there are other Bezier curves in the
array, the first node is not explicit in the data, since it coincides with the end node of the
preceding curve. Therefore, after the first curve, the following two entries are attractors,
and the third entry is the end node. Table 20–6 shows the sequence of nodes and control
points for an array with multiple Bezier curves.

Table 20–6
Nodes and Control Points for the PolyBezier()
Function

NUMBER OFFSET TYPE
1 0 Start node of curve 1
2 1 First attractor of curve 1
3 2 Second attractor of curve 1
4 3 End node of curve 1
5 4 First attractor of curve 2
6 5 Second attractor of curve 2
7 6 End node of curve 2
8 7 First attractor of curve 3
9 8 Second attractor of curve 3
10 9 End node of curve 3

The following code fragment shows the drawing of a Bezier curve using the PolyBezier()
function:

POINTS pointsArray[4]; // Array of x/y
coordinates
 .
 .
 .
// Fill array of points for Bezier spline
// Entries 0 and 3 are nodes
// Entries 1 and 2 are attractors

Pixels, lines, and curves 707

pointsArray[0].x = 150; pointsArray[0].y = 150;
pointsArray[1].x = 200; pointsArray[1].y = 75;
pointsArray[2].x = 280; pointsArray[2].y = 190;
pointsArray[3].x = 350; pointsArray[3].y = 150;
// Draw a Bezier spline
PolyBezier (hdc, pointsArray, 4);

The resulting Bezier curve is similar to the one in Figure 20–9.

20.4.10 Drawing with PolyBezierTo()

The PolyBezierTo() function is very similar to PolyBezier() except that the start node for
the first curve is the current pen position, and the current pen position is updated to the
end node of the last curve. The return value and parameters are the same for both
functions. In the case of PolyBezierTo() each curve is defined by three points: two
control points and the end node. Table 20–7, on the following page, shows the sequence
of points stored in the points array for the PolyBezierTo() function.

20.4.11 Drawing with PolyDraw()

PolyDraw() is the most complex of the Windows line-drawing functions. It creates the
possibility of drawing a series of line segments and Bezier curves, which can be joint or
disjoint. PolyDraw() can be used in place of several calls to MoveTo(), LineTo(), and
PolyBezierTo() functions. All the figures are drawn with the pen currently selected in the
device context. The function’s general form is as follows:

BOOL PolyDraw(
 HDC hdc, // 1
 CONST POINT *lppt, // 2
 CONST BYTE *lpbTypes, // 3
 int cCount // 4
);

The pc graphics handbook 708

Table 20–7
Nodes and Control Points for the PolyBezierTo()
Function

NUMBER OFFSET TYPE
1 0 First attractor of curve 1
2 1 Second attractor of curve 1
3 2 End node of curve 1
4 3 First attractor of curve 2
5 4 Second attractor of curve 2
6 5 End node of curve 2
7 6 First attractor of curve 3
8 7 Second attractor of curve 3
9 7 End node of curve 3

The second parameter is the address of an array of points that contains x- and y-
coordinate pairs. The third parameter is an array of type BYTE that contains identifiers
that define the purpose of each of the points in the array. The fourth parameter is the
count of the number of points in the array of points. The function returns TRUE if it
succeeds and FALSE otherwise. Table 20–8 lists the constants used to represent the
identifiers entered in the function’s third parameter.

Table 20–8
Constants for PolyDraw() Point Specifiers

TYPE MEANING
PT_MOVETO This point starts a disjoint figure. The point becomes the new

current pen position.
PT_LINETO A line is to be drawn from the current position to this point, which

then becomes the new current pen position.
PT_BEZIERTO This is a control point or end node for a Bezier curve. This

constant always occurs in sets of three. The current position
defines the start node for the Bezier curve. The other two
coordinates are control points. The third entry is the end node.

PT_CLOSEFIGURE The figure is automatically closed after the PT_LINETO or
PT_BEZIERTO type for this point is executed. A line is drawn
from the end point to the most recent PT_MOVETO or MoveTo()
point. The PT_CLOSEFIGURE constant is combined by means
of a bitwise OR operator with a PT_LINETO or PT_BEZIERTO
constant. This indicates that the corresponding point is the last one
in a figure and that the figure is to be closed.

The PolyDraw() function is not available in Windows 95 or 98. Microsoft has published
the following code for implementing the function in software:

Pixels, lines, and curves 709

//*****************************
// Win95 version of PolyDraw()
// as published by Microsoft)
//*****************************
BOOL PolyDraw95(HDC hdc, // handle of
a device context
 CONST LPPOINT lppt, // array of
points
 CONST LPBYTE lpbTypes, // line and
curve identifiers
 int cCount) // count of
points
{
int i;
for (i = 0; i<cCount; i++)
switch (lpbTypes[i]){
case PT_MOVETO :
MoveToEx(hdc, lppt[i].x, lppt[i].y, NULL);
break;
case PT_LINETO | PT_CLOSEFIGURE:
case PT_LINETO :
LineTo(hdc, lppt[i].x, lppt[i].y);
break;
case PT_BEZIERTO | PT_CLOSEFIGURE:
case PT_BEZIERTO :
PolyBezierTo(hdc, &lppt[i], 3);
i+= 2;
break;
 }
return TRUE;
}

Notice that in the function PolyDraw95() the processing for closed and open figures takes
place in the same intercepts. Therefore, there is no closing action implemented. When
using this software implementation, including the PT_CLOSEFIGURE constant has no
effect on the drawing. We have coded the following modification, named
PolyDraw95A(), which closes open figures:

//*****************************
// Win95 version of PolyDraw()
// improved!
//*****************************
BOOL PolyDraw95A (HDC hdc, // handle to device
context
CONST LPPOINT lppt, // array of points
CONST LPBYTE lpbTypes, // array of identifiers
int cCount) // count of points
{
int i;

The pc graphics handbook 710

 static long lastPenx, lastPeny; // Storage for last
pen position
 POINT currentPoints[1];
// Store initial position of drawing pen
GetCurrentPositionEx (hdc, currentPoints);
lastPenx = currentPoints[0].x;
lastPeny = currentPoints[0].y;
for (i = 0; i<cCount; i++)
switch (lpbTypes[i]) {
case PT_MOVETO :
MoveToEx(hdc, lppt[i].x, lppt[i].y, NULL);
// Store position for closed figures
lastPenx = lppt[i].x;
lastPeny = lppt[i].y;
break;
case PT_LINETO | PT_CLOSEFIGURE:
LineTo(hdc, lppt[i].x, lppt[i].y);
LineTo(hdc, lastPenx, lastPeny);
break;
case PT_LINETO :
LineTo(hdc, lppt[i].x, lppt[i].y);
break;
case PT_BEZIERTO | PT_CLOSEFIGURE:
// Store start points of Bezier for closing
GetCurrentPositionEx (hdc, currentPoints);
lastPenx = currentPoints[0].x;
lastPeny = currentPoints[0].y;
// Draw curve
PolyBezierTo(hdc, &lppt[i], 3);
i+= 2;
// Close with line
LineTo(hdc, lastPenx, lastPeny);
break;
case PT_BEZIERTO :
// Draw Bezier
PolyBezierTo(hdc, &lppt[i], 3);
i+= 2;
break;
 }
return TRUE;
}

The following code fragment displays several open and close figures using the
PolyDraw() function or its software version Polydraw95A():

POINT pointsArray[16]; // array of points
BYTE controlArray[16];
.
.
.

Pixels, lines, and curves 711

// In this example, pen is moved to start position
externally
MoveToEx (hdc, 150, 50, NULL);
// Filling array of points for three lines
 // offset: purpose:
 // 0 end point of line 1
 // 1 start of line 2
 // 2 end of line 2
 // 3 start of line 3
 // 4 end of line 3
pointsArray[0].x = 250; pointsArray[0].y = 50;
pointsArray[1].x = 150; pointsArray[1].y = 70;
pointsArray[2].x = 250; pointsArray[2].y = 70;
pointsArray[3].x = 150; pointsArray[3].y = 90;
pointsArray[4].x = 250; pointsArray[4].y = 90;
// Move to start node of Bezier curve
pointsArray[5].x = 150; pointsArray[5].y = 150;
// Filling array of points for first Bezier spline
pointsArray[6].x = 200; pointsArray[6].y = 75;
pointsArray[7].x = 280; pointsArray[7].y = 190;
pointsArray[8].x = 350; pointsArray[8].y = 150;
// Filling array for closed figure
pointsArray[9].x = 200; pointsArray[9].y=200;
pointsArray[10].x = 300; pointsArray[10].y = 200;
pointsArray[11].x = 300; pointsArray[11].y = 300;
pointsArray[12].x = 200; pointsArray[12].y = 300;
// Filling array for second Bezier spline
pointsArray[13].x = 300; pointsArray[13].y = 90;
pointsArray[14].x = 350; pointsArray[14].y = 40;
pointsArray[15].x = 350; pointsArray[15].y = 40;
pointsArray[16].x = 400; pointsArray[16].y = 90;
// Filling control array
controlArray[0] = PT_LINETO;
controlArray[1] = PT_MOVETO;
controlArray[2] = PT_LINETO;
controlArray[3] = PT_MOVETO;
controlArray[4] = PT_LINETO;
controlArray[5] = PT_MOVETO;
controlArray[6] = PT_BEZIERTO;
controlArray[7] = PT_BEZIERTO;
controlArray[8] = PT_BEZIERTO;
controlArray[9] = PT_MOVETO;
controlArray[10] = PT LINETO;
controlArray[11] = PT_LINETO;
controlArray[12] = PT_LINETO | PT_CLOSEFIGURE;
controlArray[13] = PT_MOVETO;
controlArray[14] = PT_BEZIERTO | PT_CLOSEFIGURE;
controlArray[15] = PT_BEZIERTO;
controlArray[16] = PT_BEZIERTO;
// Drawing lines and Bezier curves
PolyDraw95A (hdc, pointsArray, controlArray, 17);

The pc graphics handbook 712

Figure 20–12 is an approximation of the figures that result from the previous code
sample.

Figure 20–12 Approximate Result of
the PolyDraw() Code Sample

20.4.12 Pixel and Line Demonstration Program

The program named PXL_DEMO, located in the Pixel and Line Demo project folder of
the book’s software package, is a demonstration of the drawing functions discussed in
this chapter. Pixel-level functions are used to display the point plot of a sine curve. Also,
the program contains a function named DrawDot(), which uses the SetPixelV() function
to draw a black screen dot by setting five adjacent pixels. The demo program displays a
pop-up menu, named Line Functions, which has menu commands for exercising
LineTo(), PolyLineTo(), PolyLine(), PolyPolyLine(), Arc(), AngleArc(), PolyBezier(),
and PolyDraw(). Code for implementing PolyDraw() and AngleArc() in software is also
included in the demo program.

Pixels, lines, and curves 713

Chapter 21
Drawing Figures, Regions, and Paths

Topics:

• Setting the drawing attributes
• Drawing closed figures such as rectangles, ellipses, chords, pie sections, and polygons
• Drawing operations on rectangles
• Creating, combining, filling, and painting regions
• Clipping operations
• Creating , deleting, and converting paths
• Path information and rendering
• Filled Figures Demo program

In this chapter we continue exploring the graphics functions in the Windows GDI,
concentrating on geometrical figures that contain an interior region, in addition to a
perimeter or outline. These are called solid or closed figures. The interior area allows
them to be filled with a given color, hatch pattern, or bitmap image. At the same time, the
perimeter of a closed figure can be rendered differently than the filled area. For example,
the circumference of a circle can be outlined with a 2-pixel-wide black pen, and the
circle’s interior filled with 1-pixel-wide red lines, slanted at 45 degrees, and separated
from each other by 10 pixels.

21.1 Closed Figures

Closed figures allow several graphics manipulations. For instance, a solid figure can be
used to define the output area to which Windows can perform drawing operations. This
area, called the clipping region, allows you to produce unique and interesting graphics
effects, such as filling geometrical figures with text or pictures.

Some closed figures are geometrically simple: a rectangle, an ellipse, or a symmetrical
polygon. More complex figures are created by combining simpler ones. A region is an
area composed of one or more rectangles, polygons, or ellipses. Regions are used to
define irregular areas that can be filled, to clip output, or to establish an area for mouse
input.

Paths are relatively new graphics objects, since they were introduced with Windows
NT, and are also supported in Windows 95/98. A path is the route the drawing instrument
follows in creating a figure or set of figures. It is used to define the outline of a graphics
object. After a path is created, you can draw its outline (called stroking the path), fill its
interior, or both. A path can also be used in clipping, or converted into a region. Paths
and regions add a powerful dimension to Windows graphics.

21.1.1 Area of a Closed Figure

A closed figure has both a perimeter and an interior. The perimeter of a closed figure is
drawn using the current pen and the GDI line-related attributes discussed in Chapter 20.
The interior is filled using the current brush, also partly discussed in Chapter 20. There
are several closed figures that can be drawn with the Windows GDI; among them are
ellipses, polygons, chords, pies, and rectangles. Later in this chapter we see that the
Windows names for some of these figures are not geometrically correct. Areas bound by
complex lines, such as irregular polygons, Bezier curves, and text characters, can also be
filled.

Like lines and curves, closed figures have attributes that determine their
characteristics. Most of the attributes that relate to closed figures are described in Chapter
20. These include the mix mode, the background mode, the arc direction, the brush
pattern, the pen styles, as well as the brush, pen, and background colors. Two attributes
that are specific to closed figures are the brush origin and the polygon filling mode.

21.1.2 Brush Origin

Figure 20–4, in the preceding chapter, shows the various hatch patterns that can be used
with a brush. Windows locates the hatch pattern in reference to coordinates (0,0). It is
important to know that this origin is in device units, not in logical units. The hatch pattern
is a bitmap. In Windows 95/98, the bitmap is 8-by-8 pixels. In Windows NT, it can have
any size. The painting process consists of repeating the bitmap horizontally and vertically
until the area is filled.

In some cases the default origin of the bitmap produces undesirable results. This
usually happens when the alignment of a filled figure does not coincide with that of the
brush hatch pattern. Figure 21–1 shows two rectangles, one filled with an unaligned hatch
pattern and the other one filled with an aligned hatch pattern.

The SetBrushOrgEx() function can be used to reposition the hatch bitmap in relation
to the origin of the client area. The function’s general form is as follows:

BOOL SetBrushOrgEx(
 HDC hdc, // 1
 int nXOrg, // 2
 int nYOrg, // 3
 LPPOINT lppt // 4
);

Drawing figures, regions, and paths 715

Figure 21–1 Brush Hatch Patterns

The second parameter specifies the x-coordinate of the new brush origin. In Windows
95/98, the range is 0 to 7. In Windows NT, the range cannot be greater than the width of
the bitmap. In either case, if the entered value exceeds the width of the bitmap, it is
adjusted by performing the modulus operation:

xOrg = xOrg % bitmap width

The third parameter is the y-coordinate of the new brush origin. Its range and adjustments
are the same as for the second parameter. The fourth parameter is a pointer to a POINT
structure that stores the origin of the brush previously selected in the device context. If
this information is not required, NULL can be entered in this parameter. The function
returns TRUE if the operation succeeds and FALSE otherwise.

A call to SetBrushOrgEx() sets the origin of the next brush that an application selects
into the device context. Note that the first parameter of the SetBrushOrgEx() function is
the handle to the device context, and that the brush variable is nowhere to be found in the
parameter list. Therefore, the brush origin is associated with the device context, not with
a particular brush. The origin in the device context is assigned to the next brush created.

The following code fragment shows the display of two rectangles. The brush origin is
changed for the second one. The Rectangle() function is described later in this chapter.

static HBRUSH vertBrush1, vertBrush2
LOGBRUSH brush1;
.
.
.
// Create a brush
brush1.lbStyle = BS_HATCHED;
brush1.lbColor = RGB(0×0, 0×ff, 0×0);
brush1.lbHatch = HS_VERTICAL;
vertBrush1 = CreateBrushIndirect (&brush1);
SelectObject (hdc, (HGDIOBJ)(HBRUSH) vertBrush1);
// Draw a rectangle with this brush
Rectangle (hdc, 150, 150, 302, 300);
// Create a new hatched brush with offset origin

The pc graphics handbook 716

brush1.lbStyle = BS_HATCHED;
brush1.lbColor = RGB(0x0, 0x0, 0x0);
brush1.lbHatch = HS_VERTICAL;
// Offset the new brush 6 pixels
SetBrushOrgEx (hdc, 5, 0, NULL);
vertBrush2 = CreateBrushIndirect (&brush1);
SelectObject (hdc, (HGDIOBJ)(HBRUSH) vertBrush2);
// Draw a rectangle with the new brush
Rectangle (hdc, 350, 150, 502, 300);

The results of executing this code are similar to the rectangles in Figure 21–1. The
GetBrushOrg() function can be used to retrieve the origin of the current brush.

Notice that Windows documentation recommends that to avoid brush misalignment an
application should call SetStretchBltMode() with the stretching mode set to HALFTONE
before calling SetBrushOrgEx().

21.1.3 Object Selection Macros

The Windows header file windowsx.h contains four macros that can be used in selecting
a pen, brush, font, or bitmap. The advantage of using these macros is that the objects are
automatically typecast correctly. The macros are named SelectPen(), SelectBrush(),
SelectFont(), and SelectBitmap(). They are all defined similarly. The SelectBrush()
macro is as follows:

#define SelectBrush (hdc, hbr) \
 ((HBRUSH) SelectObject ((hdc,
(HGDIOBJ)(HBRUSH)(hbr)))

You can use these macros to easily produce correct code that is correct and more
portable. Programs that use the object selection macros must contain the statement:

#include <windowsx.h>

21.1.4 Polygon Fill Mode

The polygon fill mode attribute determines how overlapping areas of complex polygons
and regions are filled. The polygon fill mode is set with the SetPolyFillMode() function.
The function’s general form is as follows:

int SetPolyFillMode(
 HDC hdc, // 1
 int iPolyFillMode // 2
);

The second parameter is one of two constants: ALTERNATE and WINDING.
ALTERNATE defines a mode that fills between odd-numbered and even-numbered
polygon sides, or in other words, those areas that can be reached from the outside of the

Drawing figures, regions, and paths 717

polygon by crossing an odd number of lines, excluding the vertices. This fill algorithm is
based on what is called the parity rule.

The WINDING mode is based on the nonzero winding rule. In the WINDING mode,
the direction in which the figure is drawn determines whether an area is to be filled. A
polygon line segment is drawn either in a clockwise or a counterclockwise direction. The
term winding relates to the clockwise and counterclockwise drawing of the polygon
segments. An imaginary line, called a ray, is extended from an enclosed area in the
figure, to a point distant from the figure and outside of it. The ray must be on a positive
x-direction. Every time the ray crosses a clockwise winding, a counter is incremented.
The same counter is decremented whenever the line crosses a counterclockwise winding.
The winding counter is examined when the ray reaches the outside of the figure. If the
winding counter is nonzero, the area is filled.

In figures that have a single interior region the fill mode is not important. This is not
the case in figures that have enclosed areas. A typical case is a polygon in the shape of a
five-pointed star with an enclosed pentagon. In this case, the ALTERNATE mode does
not fill the interior pentagon, while the WINDING fill mode does. In more complex
figures the same rules apply, although they may not be immediately evident. Figure 21–2
shows the results of the polygon fill modes in two different figures. Recall that in the
WINDING fill mode, the direction in which the line segments are drawn is significant.

In Figure 21–2 you can see the application of the nonzero winding rule to the interior
areas of a complex polygon. For example, the ray from point P1 to the exterior of the
figure crosses two clockwise segments (windings). Therefore, it has a winding value of 2.
Since the winding is nonzero, the area is filled. The same rule can be applied to other
points in the figure’s interior, as shown in Figure 21–2.

Notice that some Windows documentation states that in the WINDING mode all
interior areas of a figure are filled. This oversimplification is not correct. If the interior
segments of the polygon in Figure 21–2 were drawn in the opposite direction, some areas
would have zero winding and would not be filled. The program named FIL_DEMO,
located in the Filled Figure Demo project folder, in the book’s software package, contains
the menu command Polygon (2), on the Draw Figures pop-up menu, which displays a
complex polygon that has an unfilled interior in the WINDING mode.

You can retrieve the current polygon fill mode with the GetPolyFillMode() function.
The only parameter to the call is the handle to the device context. The value returned is
either ALTERNATE or WINDING.

The pc graphics handbook 718

Figure 21–2 Effects of the Polygon
Fill Modes

21.1.5 Creating Custom Brushes

In Chapter 20 we mentioned that a logical brush can be created with the
CreateBrushIndirect() function. CreateBrushIndirect() has the following general form:

HBRUSH CreateBrushIndirect(
CONST LOGBRUSH* lplb // 1
);

The only parameter of the function is the address of a structure of type LOGBRUSH. The
structure members are divided into three groups: brush style, brush color, and hatch style.
The function returns the handle to the created brush. Table 21–1 lists the members of the
LOGBRUSH structure.

Drawing figures, regions, and paths 719

Once the brush is created, it can be selected into the device context by either calling
the SelectObject() function or the SelectBrush() macro discussed previously in this
chapter. In addition, you can create specific types of brushes more easily by using the
functions CreateSolidBrush(), CreateHatchBrush(), or CreatePatternBrush().
CreateSolidBrush() is used to create a brush of a specific color and no hatch pattern. The
function’s general form is as follows:

HBRUSH CreateSolidBrush (COLORREF colorref);

The only parameter is a color value in the form of a COLORREF type structure. The
color value can be entered directly using the RGB macro. For example, the following
code fragment creates a solid blue brush:

static HBRUSH solidBlueBrush;
.
.
.
solidBlueBrush=CreateSolidBrush (RGB (0×0, 0×0, 0×ff));

Table 21–1
LOGBRUSH Structure Members

BRUSH STYLE DESCRIPTION
BS_DIBPATTERN A pattern brush defined by a device-independent bitmap. If lbStyle is

BS_DIBPATTERN, the lbHatch member contains a handle to a packed
DIB.

BS_DIBPATTERNPT Same a BS_DIBPATTERN but the lbHatch member contains a pointer
to a packed DIB.

BS_HATCHED Hatched brush.
BS_HOLLOW Hollow brush.
BS_NULL Same as BS_HOLLOW.
BS_PATTERN Pattern brush defined by a memory bitmap.
BS_SOLID Solid brush.
BRUSH COLOR DESCRIPTION
DIB_PAL_COLORS The color table consists of an array of 16-bit indices into the currently

realized logical palette.
DIB_RGB_COLORS The color table contains literal RGB values.
HATCH STYLE DESCRIPTION
HS_BDIAGONAL A 45-degree upward, left-to-right hatch.
HS_CROSS Horizontal and vertical cross-hatch.
HS_DIAGCROSS 45-degree crosshatch.
HS_FDIAGONAL A 45-degree downward, left-to-right hatch.
HS_HORIZONTAL Horizontal hatch.
HS_VERTICAL Vertical hatch.

The pc graphics handbook 720

CreatehatchBrush() creates a logical brush with a hatch pattern and color. The function’s
general form is as follows:

HBRUSH CreateHatchBrush(
 int fnStyle, // 1
 COLORREF clrref // 2
);

The first parameter is one of the hatch style identifiers listed in Figure 21–2. The second
parameter is a color value of COLORREF type. The function returns the handle to the
logical brush.

If an application requires a brush with a hatch pattern different from the ones
predefined in Windows, it can create a custom brush with its own bitmap. In Windows
95/98, the size of the bitmap cannot exceed 8-by-8 pixels, but there is no size restriction
in Windows NT. The function's general form is as follows:

HBRUSH CreatePatternBrush(
HBITMAP hbmp // 1
);

The function's only parameter is a handle to the bitmap that defines the brush. The bitmap
can be created with CreateBitmap(), CreateBitmapIndirect() or
CreateCompatibleBitmap() functions. These functions are described in Chapter 8.

21.2 Drawing Closed Figures

There are seven Windows functions that draw closed figures, shown in Table 21–2.

Table 21–2
Windows Functions for Drawing Closed Figures

FUNCTION FIGURE
Rectangle() Rectangle with sharp corners
RoundRect() Rectangle with rounded corners
Ellipse() Ellipse or circle
Chord() Solid figure created by an arc on the circumference of an ellipse

connected by a chord
Pie() Pie-shaped wedge created by joining the end points of an arc on the

perimeter of an ellipse with the center of the arc
Polygon() Closed polygon
PoiyPolygon() Series of closed polygons, possibly overlapping

All functions that draw closed figures use the pen currently selected in the device context
for the figure outline, and the current brush for filling the interior. All of the line
attributes discussed in Chapter 20 apply to the perimeter of solid figures. The

Drawing figures, regions, and paths 721

programmer has control of the width of the perimeter, its line style, and its color. By
selecting NULL_PEN you can draw a figure with no perimeter. The fill is determined by
the current brush. Windows approximates the color of the brush according to the device
capabilities.

This often requires manipulating dot sizes by a process called dithering. Dithering is a
technique that creates the illusion of colors or shades of gray by treating the targeted
areas as a dot pattern. The process takes advantage of the fact that the human eye tends to
blur small spots of different color by averaging them into a single color or shade. For
example, a pink color effect can be produced by mixing red and white dots.

The brush can be any one of the stock brushes: WHITE_BRUSH, LTGRAY_BRUSH,
GRAY_BRUSH, DKGRAY_BRUSH, BLACK_BRUSH, and NULL_BRUSH. All stock
brushes are solid. NULL_BRUSH is used to draw figures without filling the interior. The
GetStockObject() function is used to obtain a handle to one of the stock brushes. Since
stock brushes need not be stored locally, the most common case is that the stock brush is
retrieved and installed in the device context at the time it is needed. SelectBrush() and
GetStockObject() can be combined as follows:

SelectBrush (hdc, GetStockObject (WHITE_BRUSH));

The creation and installation of custom brushes was discussed previously in this chapter.

21.2.1 Drawing with Rectangle()

The simplest solid-figure drawing function is Rectangle(). This function draws a
rectangle using the current pen for the outline and fills it with the current brush. The
function’s general form is as follows:

BOOL Rectangle(
 HDC hdc, // 1
 int nLeftRect, // 2
 int nTopRect, // 3
 int nRightRect, // 4
 int nBottomRect // 5
);

The second and third parameters are the coordinates of the upper-left corner of the
rectangle. The fourth and fifth parameters are the coordinates of the lower-right corner.
The function returns TRUE if it succeeds and FALSE if it fails. Figure 21–3 shows a
rectangle drawn using this function.

The pc graphics handbook 722

Figure 21–3 Figure Definition in the
Rectangle() Function

21.2.2 Drawing with RoundRect()

The RoundRect() function draws a rectangle with rounded corners. Like all the solid
figure drawing functions, it uses the current pen for the outline and fills the figure with
the current brush. The function’s general form is as follows:

BOOL RoundRect(
 HDC hdc, // 1
 int nLeftRect, // 2
 int nTopRect, // 3
 int nRightRect, // 4
 int nBottomRect, // 5
 int nWidth, // 6
 int nHeight // 7
);

The second and third parameters are the coordinates of the upper-left corner of the
bounding rectangle. The fourth and fifth parameters are the coordinates of the lower-right
corner. The sixth parameter is the width of the ellipse that is used for drawing the
rounded corner arc. The seventh parameter is the height of this ellipse. The function
returns TRUE if it succeeds and FALSE if it fails. Figure 21–4 shows the values that
define a rounded-corner rectangle drawn using this function.

Drawing figures, regions, and paths 723

Figure 21–4 Definition Parameters for
the RoundRect() Function

21.2.3 Drawing with Ellipse()

The Ellipse() function draws a solid ellipse. Ellipse() uses the current pen for the outline
and fills the figure with the current brush. The function’s general form is as follows:

BOOL Ellipse(
 HDC hdc, // 1
 int nLeftRect, // 2
 int nTopRect, // 3
 int nRightRect, // 4
 int nBottomRect // 5
);

The second and third parameters are the coordinates of the upper-left corner of a
rectangle that binds the ellipse. The fourth and fifth parameters are the coordinates of the
lower-right corner of this rectangle. The function returns TRUE if it succeeds and FALSE
if it fails. Figure 21–5 shows an ellipse drawn using this function.

The pc graphics handbook 724

Figure 21–5 Figure Definition in the
Ellipse() Function

21.2.4 Drawing with Chord()

Chord() draws a solid figure composed of an arc of an ellipse whose ends are connected
to each other by a straight line, called a secant. The Chord() function is related to the
Arc() function described in Chapter 20. The parameters that define the elliptical arc are
the same for the Arc() as for the Chord() function. The function’s general form is as
follows:

BOOL Chord(
 HDC hdc, // 1
 int nLeftRect, // 2
 int nTopRect, // 3
 int nRightRect, // 4
 int nBottomRect, // 5
 int nXRadial1, // 6
 int nYRadial1, // 7
 int nXRadial2, // 8
 int nYRadial2 // 9
);

The second and third parameters are the x- and y-coordinates of the upper-left corner of a
rectangle that contains the ellipse, while the fourth and fifth parameters are the
coordinates of its lower-right corner. The sixth and seventh parameters define the
coordinates of a point that sets the start point of the secant. The last two parameters set
the end points of the secant. The elliptical arc is always drawn in the counterclockwise
direction. The SetArcDirection() function has no effect in this case.

The coordinates of the start and end points of the secant need not coincide with the
elliptical arc, since Windows prolongs the secant until it intersects the elliptical arc.
Figure 21–6, on the following page, shows the elements that define the figure.

Drawing figures, regions, and paths 725

Figure 21–6 Figure Definition in the
Chord() Function

Notice that the name of the Chord() function does not coincide with its mathematical
connotation. Geometrically, a chord is the portion of a secant line that joins two points on
a curve, not a solid figure.

21.2.5 Drawing with Pie()

Pie() draws a solid figure composed of the arc of an ellipse whose ends are connected to
the center by straight lines. In Windows terminology the two straight lines are called
radials. The Pie() function is related to the Arc() function described in Chapter 20. The
parameters that define the elliptical arc are the same for the Arc() as for the Pie()
functions. It is also similar to the Chord() function previously described. The difference
between Chord() and Pie() is that in Chord() the line points are connected to each other
and in Pie() they are connected to the center of the ellipse. The function’s general form is
as follows:

BOOL Pie(
 HDC hdc, // 1
 int nLeftRect, // 2
 int nTopRect, // 3
 int nRightRect, // 4
 int nBottomRect, // 5
 int nXRadial1, // 6
 int nYRadial1, // 7
 int nXRadial2, // 8
 int nYRadial2 // 9
);

The pc graphics handbook 726

The second and third parameters are the x- and y-coordinates of the upper-left corner of a
rectangle that contains the ellipse, while the fourth and fifth parameters are the
coordinates of its lower-right corner. The sixth and seventh parameters define the
coordinates of the end point of the start radial line. The last two parameters set the
coordinates of the end points of the end radial line. The elliptical arc is al-ways drawn in
the counterclockwise direction. The SetArcDirection() function has no effect in this case.

The coordinates of the start and end points of the radials need not coincide with the
elliptical arc, since Windows prolongs these lines until they intersect the elliptical arc.
Figure 21–7 shows the elements that define the figure.

Figure 21–7 Figure Definition in the
Arc() Function

21.2.6 Drawing with Polygon()

The Polygon() function is similar to the Polyline() function described in Chapter 20. The
main difference between a polygon and a polyline is that the polygon is closed
automatically by drawing a straight line from the last vertex to the first one. The polygon
is drawn with the current pen and filled with the current brush. The inside of the polygon
is filled according to the current polygon fill mode, which can be ALTERNATE or
WINDING. Polygon fill modes were discussed in detail earlier in this chapter. The
function’s general form is as follows:

BOOL Polygon(
 HDC hdc, // 1
 CONST POINT *lpPoints, // 2
 int nCount // 3
);

Drawing figures, regions, and paths 727

The second parameter is the address of an array of points that contains the x- and y-
coordinate pairs of the polygon vertices. The third parameter is the count of the number
of vertices in the array. The function returns TRUE if it succeeds and FALSE otherwise.

When drawing the lines that define a polygon you can repeat the same segment. It is
not necessary to avoid going over an existing line. When the WINDING fill mode is
selected, however, the direction of each edge determines the fill action. The follow-ing
code fragment shows the drawing of a complex polygon that is defined in an array of
structures of type POINT.

// Arrays of POINT structures for polygon vertices
POINT polyPoints1 [] = {
 {100, 100}, // 1
 {150, 100}, // 2
 {150, 150}, // 3
 {300, 150}, // 4
 {300, 300}, // 5
 {150, 300}, // 6
 {150, 150}, // 7
 {200, 150}, // 8
 {200, 200}, // 9
 {250, 200}, // 10
 {250, 250}, // 11
 {200, 250}, // 12
 {200, 200}, // 13
 {150, 200}, // 14
 {150, 150}, // 15
 {100, 150} // 16
};
.
.
.
// Draw the polygon using array data
SetPolyFillMode (hdc, ALTERNATE);
Polygon (hdc, polyPoints1, 17);

Figure 21–8 shows the figure that results from this code when the ALTERNATE fill
mode is active. The polygon vertices are numbered and labeled.

The pc graphics handbook 728

Figure 21–8 Figure Produced by the
Polygon Program

21.2.7 Drawing with PolyPolygon()

As the function name implies, PolyPolygon() is used to draw several closed polygons.
The outlines of all the polygons are drawn with the current pen and the interiors are filled
with the current brush and according to the selected fill mode. The polygons can overlap.
Unlike the Polygon() function, the figures drawn with PolyPolygon() are not
automatically closed. The PolyPolygon() function is similar to the PolyPolyline()
function described in Chapter 20. Like the PolyPolyline() function, PolyPolygon()
requires an array of values that holds the number of points for each polygon. The
function’s general form is as follows:

BOOL PolyPolygon(
 HDC hdc, // 1
 CONST POINT *lpPoints, // 2
 CONST INT *lpPolyCounts, // 3
 int nCount // 4
);

The second parameter is an array containing the vertices of the various polygons. The
third parameter is an array that contains the number of vertices in each of the polygons.
The fourth parameter is the count of the number of elements in the third parameter, which
is also the number of polygons to be drawn. The function returns TRUE if it succeeds and

Drawing figures, regions, and paths 729

FALSE otherwise. The following code fragment shows the drawing of four polygons,
each one with four vertices, using the PolyPolygon() function.

// Arrays of POINT structures for holding the vertices
// of all four polygons
POINT polyPoly1[]={
 {150, 150}, // 1 |
 {300, 150}, // 2 |
 {300, 300}, // 3 |-- first polygon
 {150, 300}, // 4 |
 {150, 150}, // 5 |
 {200, 200}, // 6 |
 {250, 200}, // 7 |
 {250, 250}, // 8 |-- second polygon
 {200, 250}, // 9 |
 {200, 200}, // 10 |
 {150, 150}, // 11 |
 {200, 150}, // 12 |
 {200, 200}, // 13 |-- third polygon
 {150, 200}, // 14 |
 {150, 150}, // 15 |
 {100, 100}, // 11 |
 {150, 100}, // 12 |
 {150, 150}, // 13 |-- fourth polygon
 {100, 150}, // 14 |
 {100, 100}, // 15 |
} ;
// Array holding the number of segments in each
// polygon
int vertexArray[]={
 {5},
 {5},
 {5},
 {5}
};
.
.
.
// Draw the polygon using array data
SetPolyFillMode (hdc, ALTERNATE);
PolyPolygon (hdc, polyPoly1, vertexArray, 4);

The resulting polygon is identical to the one in Figure 21–8.

21.3 Operations on Rectangles

Rectangular areas are often used in Windows programming. Child windows are usually
in the form of a rectangle, as are message and input boxes as well as many other graphics

The pc graphics handbook 730

components. For this reason, the Windows API includes several functions that operate on
rectangles. These are listed in Table 21–3.

Table 21–3
Windows Functions Related to Rectangular Areas

FUNCTION FIGURE
FillRect() Fills the interior of a rectangle using a brush defined by its handle
FrameRect() Draws a frame around a rectangle
InvertRect() Inverts the pixels in a rectangular area
DrawFocusRect() Draws rectangle with special dotted pen to indicate that the object has

focus

One common characteristic of all the rectangular functions is that the rectangle
coordinates are stored in a structure of type RECT. The use of a RECT structure is a more
convenient way of defining a rectangular area than by passing coordinates as function
parameters. It allows the application to easily change the location of a rectangle, and to
define a rectangular area without hard-coding the values, thus making the code more
flexible. The RECT structure is as follows:

typdef struct _RECT {
 LONG left; // x coordinate of upper-left corner
 LONG top; // y of upper-left corner
 LONG right; // x coordinate of bottom-right
corner
 LONG bottom; // y of bottom-right
} RECT;

21.3.1 Drawing with FillRect()

The FillRect() function fills the interior of a rectangular area, whose coordinates are
defined in a RECT structure. The function uses a brush specified by its handle. The filled
area includes the upper-left corner of the rectangle but excludes the bottom-right corner.
The function’s general form is as follows:

int FillRect(
 HDC hDC, // 1
 CONST RECT *lprc, // 2
HBRUSH hbr // 3
) ;

The second parameter is a pointer to a structure of type RECT that contains the
rectangle’s coordinates. The third parameter is the handle to a brush or a system color. If
a handle to a brush, it must have been obtained with CreateSolidBrush(),
CreatePatternBrush(), or CreateHatchBrush() functions described previously.
Additionally, you may use a stock brush and obtain its handle by means of

Drawing figures, regions, and paths 731

GetStockObject(). The function returns TRUE if it succeeds and FALSE if it fails. Table
21–4 lists the constants that are used to identify the system colors in Windows.

Table 21–4
Windows System Colors

VALUE MEANING
COLOR_3DDKSHADOW Dark shadow display elements
COLOR_3DFACE,
COLOR_BTNFACE Face color for display elements
COLOR_3DHILIGHT,
COLOR_3DHIGHLIGHT,
COLOR_BTNHILIGHT,
COLOR_BTNHIGHLIGHT Highlight color for edges facing the light source
COLOR_3DLIGHT Light color for edges facing the light source
COLOR_3DSHADOW,
COLOR_BTNSHADOW Shadow color for edges facing away from the light

source
COLOR_ACTIVEBORDER Active window border
COLOR_ACTIVECAPTION Active window caption
COLOR_APPWORKSPACE Background color of multiple document Interface.

(MDI) applications
COLOR_BACKGROUND,
COLOR_DESKTOP Desktop color
COLOR_BTNTEXT Text on push buttons
COLOR_CAPTIONTEXT Text in caption, size box, and scroll bar Arrow box
COLOR_GRAYTEXT Grayed (disabled) text Set to 0 if the Current display

driver does not support a solid gray color
COLOR_HIGHLIGHT Item(s) selected in a control
COLOR_HIGHLIGHTTEXT Text of item(s) selected in a control
COLOR_INACTIVEBORDER Inactive window border
COLOR_INACTIVECAPTION Inactive window caption
COLOR_INACTIVECAPTIONTEXT Color of text in an inactive caption
COLOR_INFOBK Background color for ToolTip controls
COLOR_INFOTEXT Text color for ToolTip controls
COLOR_MENU Menu background
COLOR_MENUTEXT Text in menus
COLOR_SCROLLBAR Scroll bar gray area
COLOR_WINDOW Window background
COLOR_WINDOWFRAME Window frame
COLOR WINDOWTEXT Text in windows

The pc graphics handbook 732

21.3.2 Drawing with FrameRect()

The FrameRect() function draws border around a rectangular area, whose coordinates are
defined in a RECT structure. The width and height of this border are one logical unit. The
border is drawn with a brush, not with a pen. The brush is specified by its handle. The
function’s general form is as follows:

int FrameRect(
 HDC hDC, // 1
 CONST RECT *lprc, // 2
 HBRUSH hbr // 3
);

The second parameter is a pointer to a structure of type RECT that contains the
coordinates. The third parameter is the handle to a brush, which must have been obtained
with CreateSolidBrush(), CreatePatternBrush(), or CreateHatchBrush() functions
described previously. Additionally, you may use a stock brush and obtain its handle by
means of GetStockObject(). The function returns TRUE if it succeeds and FALSE if it
fails.

Because the borders of the rectangle are drawn with a brush, rather than with a pen,
the function is used to produce figures that can not be obtained by other means. For
example, if you select a brush with the vertical hatch pattern HS_VERTICAL, the
resulting rectangle has dotted lines for the upper and lower segments since this is the
brush pattern. The vertical segments of the rectangle are displayed as solid lines only
when the rectangle’s side coincides with the brush’s bitmap pattern. Another
characteristic of the FrameRect() function is that dithered colors can be used to draw the
rectangle’s border.

21.3.3 Drawing with DrawFocusRect()

The DrawFocusRect() function draws a rectangle of dotted lines. The rectangle’s interior
is not filled. The function’s name relates to its intention, not to its operation, since the
drawn rectangle is not given the keyboard focus automatically The DrawFocusRect()
function uses neither a pen nor a brush to draw the perimeter. The dotted lines used for
the rectangle are one pixel wide, one pixel high, and are separated by one pixel. The
function’s general form is as follows:

BOOL DrawFocusRect(
 HDC hDC, // 1
 CONST RECT *lprc // 2
);

The second parameter is a pointer to a structure of type RECT that contains the
coordinates. The function returns TRUE if it succeeds and FALSE if it fails. Figure 21–9
shows a rectangle drawn with the DrawFocusRect() function.

Drawing figures, regions, and paths 733

There are several unique features of the DrawFocusRect() function. The most
important feature is that the rectangle is displayed by means of an XOR operation on the
background pixels. This ensures that it is visible on most backgrounds. Also, that the
rectangle can be erased by calling the function a second time with the same parameters.
This is a powerful feature of this function since an application can call DrawFocusRect()
to draw a rectangle around an object or background, and then erase the rectangle and
restore the display without having to preserve the overdrawn area.

Figure 21–9 Rectangle Drawn with
DrawFocusRect()

The area that contains a rectangle drawn with DrawFocusRect() cannot be scrolled. In
order to scroll this area you can call DrawFocusRect() a second time to erase the
rectangle, scroll the display, then call the function again to redraw the focus rectangle.

21.3.4 Auxiliary Operations on Rectangles

Windows provides several auxiliary functions designed to facilitate manipulating
structures of type RECT. Although these functions have no unique functionality, they do
simplify the coding. Table 21–5 lists these auxiliary functions.

The pc graphics handbook 734

Table 21–5
Rectangle-Related Functions

FUNCTION FIGURE
SetRect() Fills a RECT structure variable with coordinates
CopyRect() Copies the data in a RECT structure variable to another one
SetEmptyRect() Fills a RECT structure variable with zeros thus creating an empty rectangle
OffsetRect() Translates a rectangle along the x- and y-axes
InflateRect() Increases or decreases the width and height of a rectangle
IntersectRect() Creates a rectangle that is the intersection of two other rectangles
UnionRect() Creates a rectangle that is the union of two other rectangles
SubratctRect() Creates a rectangle that is the difference between two other rectangles
IsRectEmpty() Determines if a rectangle is empty
PtInRect() Determines if a point is located within the perimeter of a rectangle
EqualRect() Determines if two rectangles are equal

The function SetRect() is used to set the coordinates in a RECT structure. It is equivalent
to entering these values into the structure member variables. The function’s general form
is as follows:

BOOL SetRect(
 LPRECT lprc, // 1
 int xLeft, // 2
 int yTop, // 3
 int xRight, // 4
 int yBottom // 5
);

The first parameter is a pointer to the structure variable that references the rectangle to be
set. The second and third parameters are the x and y-coordinates of the upper-left corner.
The fourth and fifth parameters are the coordinates of the lower-right corner.

The CopyRect() function is used to copy the parameters from one rectangle structure
variable to another one. The function’s parameters are the addresses of the destination
and source structures. Its general form is as follows:

BOOL CopyRect(
 LPRECT lprcDst, // 1
 CONST RECT *lprcSrc // 2
);

The first parameter is a pointer to a structure of type RECT that receives the copied
coordinates. The second parameter is a pointer to the structure that holds the source
coordinates.

The function SetRectEmpty() takes as a parameter the address of a structure variable
of type RECT and sets all its values to zero. The result is an empty rectangle that does not
show on the screen. Its general form is as follows:

Drawing figures, regions, and paths 735

BOOL SetEmptyRect (LPRECT rect);

The function’s only parameter is the address of the RECT structure that is to be cleared.
Notice that there is a difference between an empty rectangle and a NULL rectangle.

An empty rectangle is one with no area, that is, one in which the coordinate of the right
side is less than or equal to that of the left side, or the coordinate of the bottom side is less
than or equal to that of the top side. A NULL rectangle is one in which all the coordinates
are zero. The Foundation Class Library contains different member functions for detecting
an empty and a NULL rectangle. The Windows API, however, has no function for
detecting a NULL rectangle.

OffsetRect() translates a rectangle along both axes. The function’s general form is as
follows:

BOOL OffsetRect(
 LPRECT lprc, // 1
 int dx, // 2
 int dy // 3
);

The first parameter is a pointer to a structure variable of type RECT that contains the
parameters of the rectangle to be moved. The second parameter is the amount to move the
rectangle along the x-axis. The third parameter is the amount to move the rectangle along
the y-axis. Positive values indicate movement to the right or down. Negative values
indicate movement to the left or up.

In reality, the OffsetRect() function does not move the rectangle, but simply changes
the values in the RECT structure variable referenced in the call. Another call to a
rectangle display function is necessary in order to show the translated rectangle on the
screen. Figure 21–10 shows the effect of OffsetRect().

Figure 21–10 Effect of the OffsetRect()
Function

The pc graphics handbook 736

In Figure 21–10, the light-gray rectangle shows the original figure. The OffsetRect()
function was applied to the data in the figure’s RECT structure variable, adding 50 pixels
along the x-axis and subtracting 50 pixels along the y-axis. The resulting rectangle is
shown with a dark-gray fill.

InflateRect() serves to increase or decrease the size of a rectangle. The function’s
general form is as follows:

BOOL InflateRect(
 LPRECT lprc, // 1
 int dx, // 2
 int dy // 3
);

The first parameter is a pointer to a structure variable of type RECT that contains the
rectangle to be resized. The second parameter is the amount to add or subtract from the
rectangle’s width. The third parameter is the amount to add or subtract from the
rectangle’s height. In both cases, positive values indicate an increase of the dimension
and negative values a decrease. The InflateRect() function does not change the displayed
rectangle, but modifies the values in the RECT structure variable referenced in the call.
Another call to a rectangle display function is necessary in order to show the modified
rectangle on the screen. Figure 21–11, on the following page, shows the effect of the
InflateRect() function.

Figure 21 -11 Effect of the
InflateRect() Function

In Figure 21–11, the light-gray rectangle shows the original 150-by-150 pixels figure.
The InflateRect() function was applied to increase the width by 100 pixels and decrease
the height by 75 pixels. The results are shown in the dark-gray rectangle.

The IntersectRect() function applies a logical AND operation on two rectangles to
create a new rectangle that represents the intersection of the two figures. If there are no
common points in the source rectangles, then an empty rectangle is produced. The
function’s general form is as follows:

BOOL IntersectRect (LPRECT, CONST LPRECT, CONST
LPRECT);

Drawing figures, regions, and paths 737

 ------ ------------ -----------
 | | |
 1 2 3

The first parameter is the address of a RECT structure variable where the intersection
coordinates are placed. The second parameter is a pointer to a RECT structure variable
that holds the coordinates of the first rectangle. The third parameter is a pointer to a
RECT structure variable with the coordinates of the second rectangle. Figure 21–12
shows the effect of the IntersectRect() function.

Figure 21–12 Effect of the
IntersectRect() Function

The UnionRect() function applies a logical OR operation on two rectangles to create a
new rectangle that represents the union of the two figures. If there are no common points
in the source rectangles, then an empty rectangle is produced. The resulting image is the
smallest rectangle that contains both sources. The function’s general form is as follows:

BOOL UnionRect(
 LPRECT lprcDst, // 1
 CONST RECT *lprcSrc1, // 2
 CONST RECT *lprcSrc2 // 3
);

The first parameter is the address of a RECT structure variable where the union rectangle
coordinates are placed. The second parameter is a pointer to a RECT structure variable
that holds the coordinates of the first rectangle, and the third parameter is a pointer to a
RECT structure variable with the coordinates of the second rectangle. Figure 21–13
shows the effect of the UnionRect() function.

The pc graphics handbook 738

Figure 21–13 Effect of the
UnionRect() Function

The SubtractRect() function creates a new rectangle by subtracting the coordinates of two
source rectangles. The function’s general form is as follows:

BOOL SubtractRect(
 LPRECT lprcDst, // 1
 CONST RECT *lprcSrc1, // 2
 CONST RECT *lprcSrc2 // 3
);

The first parameter is the address of a RECT structure variable where the resulting
coordinates are placed. The second parameter is a pointer to a RECT structure variable
that holds the coordinates of the first source rectangle. It is from this rectangle that the
coordinates of the second source rectangle are subtracted. The third parameter is a pointer
to a RECT structure variable with the coordinates of the second source rectangle. The
coordinates of this rectangle are subtracted from the ones of the first source rectangle.

The result of the operation must be a rectangle, not a polygon or any other non-
rectangular surface. This imposes the restriction that the rectangles must completely
overlap in either the vertical or the horizontal direction. If not, the coordinates of the
resulting rectangle are the same as those of the first source rectangle. Figure 21–14 shows
three possible cases of rectangle subtraction.

Drawing figures, regions, and paths 739

Figure 21–14 Cases in the
SubtractRect() Function

The IsRectEmpty() function determines whether a rectangle is empty. An empty
rectangle is one with no area, that is, one in which the width and/or the height are zero or
negative. The function’s general form is as follows:

BOOL IsRectEmpty(
 CONST RECT *lprc // 1
);

The only parameter is the address of the RECT structure variable that contains the
rectangle’s parameters. The function returns TRUE if the rectangle is empty and FALSE
otherwise.

The PtInRect() function determines whether a point lies within a rectangle. A point
that lies on the rectangle’s top or left side is considered to be within the rectangle, but a
point within the right or bottom side is not. The function’s general form is as follows:

The pc graphics handbook 740

BOOL PtInRect(
 CONST RECT *lprc, // 1
 POINT pt // 2
);

The first parameter is the address of a RECT structure variable that contains the
rectangle’s dimensions. The second parameter is a structure of type POINT which holds
the coordinates of the point being tested. The function returns TRUE if the point is within
the rectangle and FALSE otherwise.

The EqualRect() function determines whether two rectangles are equal. For two
rectangles to be equal all their coordinates must be identical. The function’s general form
is as follows:

BOOL EqualRect(
 CONST RECT *lprc1, // 1
 CONST RECT *lprc2 // 2
);

The first parameter points to a RECT structure variable that contains the parameters of
one rectangle. The second parameter points to a RECT structure variable with the
parameters of the second rectangle. The function returns TRUE if both rectangles are
equal and FALSE otherwise.

21.3.5 Updating the Rectangle() Function

All of the rectangle operations described in the preceding section receive the coordinates
in a structure of type RECT. The basic rectangle-drawing function, Rectangle(), receives
the figure coordinates as parameters to the call. This difference in data formats, which is
due to the evolution of Windows, makes it difficult to transfer the results of a rectangle
operation into the Rectangle() function. To solve this problem we have coded a rectangle-
drawing function, called DrawRect(), which takes the figure coordinates from a RECT
structure. The function is as follows:

BOOL DrawRect (HDC hdc, LPRECT aRect) {
 return (Rectangle (hdc, aRect->left,
 aRect->top,
 aRect->right,
 aRect->bottom));
}

Since DrawRect() uses Rectangle() to draw the figure, the return values are the same for
both functions.

Drawing figures, regions, and paths 741

21.4 Regions

A region is an area composed of one or more polygons or ellipses. Since a rectangle is a
polygon, a region can also be (or contain) a rectangle, or even a rounded rectangle. In
Windows programming, regions are used for three main purposes:

• To fill or frame an irregular area
• To clip output to an irregular area
• To test for mouse input in an irregular area

From these uses we can conclude that the main role of a region is to serve as a boundary.
Regions can be combined logically, copied, subtracted, and translated to another location.
In Windows 95/98 and NT, a new region can be produced by performing a rotation,
scaling, reflection, or shearing transformation on another region. Transformations are
discussed in Chapter 9. Here, we deal with the simpler operations on regions. There is a
rich set of functions that relate to regions and region operations. These are listed in Table
21–6.

Table 21–6
Region-Related GDI Functions

FUNCTION ACTION
CREATING REGIONS:
CreateRectRgn() Creates a rectangular-shaped region, given the four coordinates

of the rectangle
CreateRectRgnIndirect() Creates a rectangular-shaped region, given a RECT structure

with the coordinates of the rectangle
CreateRoundRectRgn() Creates a region shaped like a rounded-corner rectangle, given

the coordinates of the rectangle and the dimensions of the corner
ellipse

CreateEllipticRgn() Creates an elliptically shaped region from a bounding rectangle
CreateEllipticRegionIndirect() Creates an elliptically shaped region from the parameters of a

bounding rectangle in a RECT structure
CreatePolygonRgn() Creates a polygon-shaped region from an array of points that

define the polygon
CreatePolyPolygonRgn() Creates one or more polygon-shaped regions from an array of

points that define the polygons
PathToRegion() Converts the current path into a region
ExtCreateRgn() Creates a region based on a transformation performed on another

regions.
COMBINING REGIONS:
CombineRgn() Combines two regions into one by performing a logical,

subtraction, or copy Operation
FILLING AND PAINTING REGIONS:
FillRgn() Fills a region using a brush

The pc graphics handbook 742

(continues)
FUNCTION ACTION
GetPolyFillMode() Gets fill mode used by FillRgn()
SetPolyFillMode() Sets the fill mode for FillRgn()
FrameRgn() Frames a region using a brush
PaintRgn() Paints the interior of a region with the brush currently selected in the device

context
InvertRgn() Inverts the colors in a region
REGION STATUS AND CONTROL:
SetWindowRgn() Sets the window regions. The window region is the area where the operating

system allows drawing operations to take place
GetWindowRgn() Retrieves the window region established by SetWindowRgn()
OffsetRgn() Moves a region along the x- or y-axis
SelectClipRgn() Makes a region the current clipping region
ExtSelectClipRgn() Combines a region with the current clipping region
GetClipRgn() Gets handle of the current clipping region
ValidateRgn() Validates the client area removing the area in the region from the current

update region
InvalidateRgn() Forces a WM_PAINT message by invalidating a screen area defined by a

region
OBTAIN REGION DATA:
PtInRegion() Tests if a point is located within a region
RectInRegion() Tests if a given rectangle overlaps any part of a region
EqualRgn() Tests if two regions are equal
GetRgnBox() Retrieves a region’s bounding box
GetRegionData() Retrieves internal structure information about a region

In the sections that follow we discuss some of the region-related functions. Other region
operations are discussed, in context, later in the book.

21.4.1 Creating Regions

A region is a GDI object, hence, it must be explicitly created. The functions that create a
region return a handle of type HRGN (handle to a region). With this handle you can
perform many region-based operations, such as filling the region, drawing its outline, and
combining it with another region. You often create two or more simple regions by calling
their primitive functions, and then combine them into a more complex region, usually by
means of the CombineRgn() function.

CreateRectRgn() is used to create a rectangular region. The function’s general form is
as follows:

HRGN CreateRectRgn(
 int nLeftRect, // 1
 int nTopRect, // 2
 int nRightRect, // 3
 int nBottomRect // 4

Drawing figures, regions, and paths 743

);

The first and second parameters are the coordinates of the upper-left corner of the
rectangle. The third and fourth parameters are the coordinates of the lower-right corner.

CreateRectRgnIndirect() creates a rectangular-shaped region, identical to the one
produced by CreateRectRgn(); the only difference is that CreateRectRgnIndirect()
receives the coordinates in a RECT structure variable. The function’s general form is as
follows:

HRGN CreateRectRgnIndirect(
 CONST RECT *lprc // 1
);

CreateRoundRectRgn() creates a region shaped like a rounded rectangle. Its general form
is as follows:

HRGN CreateRoundRectRgn(
 int nLeftRect, // 1
 int nTopRect, // 2
 int nRightRect, // 3
 int nBottomRect, // 4
 int nWidthEllipse, // 5
 int nHeightEllipse // 6
);

The first and second parameters are the coordinates of the upper-left corner of the
bounding rectangle. The third and fourth parameters are the coordinates of the lower-
right corner. The fifth parameter is the width of the ellipse that is used for drawing the
rounded corner arc. The sixth parameter is the height of this ellipse. The shape of the
resulting region is the same as that of the rectangle in Figure 21–4.

CreateEllipticRgn() creates an elliptically shaped region. The function’s general form
is as follows:

HRGN CreateEllipticRgn(
 int nLeftRect, // 1
 int nTopRect, // 2
 int nRightRect, // 3
 int nBottomRect // 4
);

The first and second parameters are the coordinates of the upper-left corner of a rectangle
that bounds the ellipse. The third and fourth parameters are the coordinates of the lower-
right corner of this bounding rectangle. The shape of the resulting region is similar to the
one in Figure 21–5.

CreateEllipticRegionIndirect() creates an elliptically shaped region identical to the one
produced by CreateEllipticRgn() except that in this case the parameters are read from a
RECT structure variable. The function’s general form is as follows:

The pc graphics handbook 744

HRGN CreateEllipticRgnIndirect(
 CONST RECT *lprc // 1
);

CreatePolygonRgn() creates a polygon-shaped region. The call assumes that the polygon
is closed; no automatic closing is provided. The function’s general form is as follows:

HRGN CreatePolygonRgn(
 CONST POINT *lppt, // 1
 int cPoints, // 2
 int fnPolyFillMode // 3
);

The first parameter is the address of an array of points that contains the x- and y-
coordinate pairs of the polygon vertices. The second parameter is the count of the number
of vertices in the array. The third parameter specifies the polygon fill mode, which can be
ALTERNATE or WINDING. ALTERNATE defines a mode that fills between odd-
numbered and even-numbered polygon sides, that is, those areas that can be reached from
the outside of the polygon by crossing an odd number of lines. WINDING mode fills all
internal regions of the polygon. These are the same constants as used in the
SetPolyFillMode() function described earlier in this chapter. In the CreatePolygonRgn()
function call the fill mode determines which points are included in the region.

CreatePolyPolygonRgn() creates one or more polygon-shaped regions. The call
assumes that the polygons are closed figures. No automatic closing is provided.
CreatePolyPolygonRgn() is similar to PolyPolygon(). The function’s general form is as
follows:

HRGN CreatePolyPolygonRgn(
 CONST POINT *lppt, // 1
 CONST INT *lpPolyCounts, // 2
 int nCount, // 3
 int fnPolyFillMode // 4
);

The first parameter is a pointer to an array containing vertices of the various polygons.
The second parameter is a pointer to an array that contains the number of vertices in each
of the polygons. The third parameter is the count of the number of elements in the second
parameter, which is the same as the number of polygons to be drawn. The fourth
parameter specifies the polygon fill mode, which can be ALTERNATE or WINDING.
These two constants have the same effect as described in the CreatePolygonRgn()
function.

All the region-creation functions discussed so far return the handle to the region if the
call succeeds, and NULL if it fails.

A region can be created from a path by means of the PathToRegion() function. Paths
are discussed later in this chapter. The ExtCreateRgn() function allows creating a new
region by performing a transformation on another region. Transformations are discussed
in Chapter 23.

Drawing figures, regions, and paths 745

21.4.2 Combining Regions

Sometimes a region consists of a simple, primitive area such as a rectangle, and ellipse,
or a polygon. On other occasions a region is a complex figure, composed of two or more
simple figures of the same or different types, which can overlap, be adjacent, or disjoint.
The CombineRgn() function is used to create a complex region from two simpler ones.
The function's general form is as follows:

int CombineRgn(
 HRGN hrgnDest, // 1
 HRGN hrgnSrc1, // 2
 HRGN hrgnSrc2, // 3
 int fnCombineMode // 4
);

The first parameter is the handle to the resulting combined region. The second parameter
is the handle to the first source region to be combined. The third parameter is the handle
to the second source region to be combined. The fourth parameter is one of five possible
combination modes, listed in Table 21–7.

Table 21–7
Region Combination Modes

MODE EFFECT
RGN_AND The intersection of the two combined regions
RGN_COPY A copy of the first source region
RGN_DIFF Combines the parts of the first source region that are not in the second source

region
RGN_OR The union of two combined regions
RGN_XOR The union of two combined regions except for any overlapping area

CombineRgn() returns one of four integer values, as shown in Table 21–8.

Table 21–8
Region Type Return Values

VALUE MEANING
NULLREGION The region is empty
SIMPLEREGION The region is a single rectangle
COMPLEXREGION The region is more complex than a single rectangle
ERROR No region was created

One property of CombineRgn() is that the destination region, expressed in the first
parameter, must exist as a region prior to the call. Creating a memory variable to hold the
handle to this region is not sufficient. The region must have been first created by means
of one of the region-creation functions, otherwise CombineRgn() returns ERROR. The

The pc graphics handbook 746

following code fragment shows the required processing for creating two simple regions
and then combining them into a complex region using the RGN_AND combination
mode:

HRGN rectRgn, ellipRgn, resultRgn;
.
// Create a rectangular region
rectRgn = CreateRectRgn (100, 100, 300, 200);
// Create an elliptical region
ellipRgn = CreateEllipticRgn (200, 100, 400, 200);
// Create a dummy region for results. Skipping this
// step results in an ERROR from the CombineRgn() call
resultRgn = CreateRectRgn (0, 0, 0, 0);
// Combine regions and fill
CombineRgn (resultRgn, rectRgn, ellipRgn, RGN_AND);
FillRgn (hdc, resultRgn, redSolBrush);

Figure 21–15 shows the results of applying the various region combination modes on two
simple, overlapping regions.

Drawing figures, regions, and paths 747

Figure 21–15 Regions Resulting from
CombineRgn() Modes

In addition to the CombineRgn() function, the windowsx.h header files define several
macros that facilitate region combinations. These macros implement the five combination
modes that are entered as the last parameter of the CombineRgn() call. They are as
follows:

CopyRgn (hrgnDest, hrgnScr1);
IntersectRgn (hrgnDest, hrgnSrc1, hrgnSrc2);
SubtractRgn (hrgnDest, hrgnScr1, hrgnScr2);
UnionRgn (hrgnDest, hrgnSrc1, hrgnSrc2);
XorRgn (hrgnDest, hrgnSrc1, hrgnScr2);

The pc graphics handbook 748

In all of the macros, hrgnDest is the handle to the destination region, while hrgnScr1 and
hrgnSrc2 are the handles to the source regions.

21.4.3 Filling and Painting Regions

Several functions relate to filling, painting, and framing regions. The difference between
filling and painting is that fill operations require a handle to a brush, while paint
operations use the brush currently selected in the device context.

The FillRgn() function fills a region using a brush defined by its handle. The
function’s general form is as follows:

BOOL FillRgn(
 HDC hdc, // 1
 HRGN hrgn, // 2
 HBRUSH hbr // 3
);

The first parameter is the handle to the device context. The second one is the handle to
the region to be filled. The third parameter is the handle to the brush used in filling the
region. The function returns TRUE if it succeeds and FALSE if it fails.

PaintRgn() paints the interior of a region with the brush currently selected in the
device context. The function’s general form is as follows:

BOOL PaintRgn(
 HDC hdc, // 1
 HRGN hrgn // 2
) ;

The second parameter is the handle to the region to be filled. The function returns TRUE
if it succeeds and FALSE if it fails.

FrameRgn() draws the perimeter of a region using a brush defined by its handle. The
function’s general form is as follows:

BOOL FrameRgn(
 HDC hdc, // 1
 HRGN hrgn, // 2
 HBRUSH hbr, // 3
 int nWidth, // 4
 int nHeight // 5
);

The second parameter is the handle to the region to be filled. The third one is the handle
to the brush used in filling the region. The fourth parameter specifies the width of the
brush, in logical units. The fifth parameter specifies the height of the brush, also in
logical units. The function returns TRUE if it succeeds and FALSE if it fails. If the width
and height of the brush are different, then oblique portions of the image are assigned an

Drawing figures, regions, and paths 749

intermediate thickness. The result is similar to using a calligraphy pen. Figure 21–16
shows a region drawn with the FrameRgn() function.

Figure 21–16 Region Border Drawn
with FrameRgn()

The InvertRgn() function inverts the colors in a region. In a monochrome screen,
inversion consists of turning white pixels to black and black pixels to white. In a color
screen, inversion depends on the display technology. In general terms, inverting a color
produces its complement. Therefore, inverting blue produces yellow, inverting red
produces cyan, and inverting green produces magenta. The function’s general form is as
follows:

BOOL InvertRgn(
 HDC hdc, // 1
 HRGN hrgn // 2
);

The second parameter is the handle to the region to be inverted. The function returns
TRUE if it succeeds and FALSE if it fails.

21.4.4 Region Manipulations

Several functions allow the manipulation of regions. These manipulations include
moving a region, using a region to define the program’s output area, setting the clipping
region, obtaining the clipping region handle, and validating or invalidating a screen area
defined by a region. The region manipulations related to clipping are discussed in the
following section.

A powerful, but rarely used function in the Windows API is SetWindowRgn(). It
allows you to redefine the window area of a window, thus redefining the area where
drawing operations take place. In a sense, SetWindowRgn() is a form of clipping that
includes not only the client area, but the entire window. The SetWindowRgn() function
allows you to create a window that includes only part of the title bar, or to eliminate one
or more of the window borders, as well as many other effects. The function’s general
form is as follows:

int SetWindowRgn(
 HWND hWnd, // 1
 HRGN hRgn, // 2
 BOOL bRedraw // 3

The pc graphics handbook 750

);

The first parameter is the handle to the window whose region is to be changed. The
second parameter is the handle to the region that is to be used in redefining the window
area. If this parameter is NULL then the window has no window area, therefore
becoming invisible. The third parameter is a redraw flag. If set to TRUE, the operating
system automatically redraws the window to the new output area. If the window is visible
the redraw flag is usually TRUE. The function returns nonzero if it succeeds and zero if it
fails.

The function GetWindowRgn() is used to obtain the window area of a window, which
usually has been set by SetWindowRgn(). The function’s general form is as follows:

int GetWindowRgn(
 HWND hWnd, // 1
 HRGN hRgn // 2
);

The first parameter is the handle to the window whose region is to be obtained. The
second parameter is the handle to a region that receives a copy of the window region. The
return value is one of the constants listed in Table 21–8.

The OffsetRgn() function is used to move a region to another location. The function’s
general form is as follows:

int OffsetRgn(
 HRGN hrgn, // 1
 int nXOffset, // 2
 int nYOffset // 3
);

The first parameter is the handle to the region that is to be moved. The second parameter
is the number of logical units that the region is to be moved along the x-axis. The third
parameter is the number of logical units along the y-axis. The function returns one of the
constants listed in Table 21–8.

Sometimes the OffsetRgn() function does not perform as expected. It appears that
when a region is moved by means of this function, some of the region attributes are not
preserved. For example, assume a region that has been filled red is moved to a new
location that does not overlap the old position. If we now call InvertRgn() on the
translated window, the result is not a cyan-colored window, but one that is the reverse of
the background color. In this case the red fill attribute of the original window was lost as
it was translated into a new position, and the translated window has no fill. If the
translated window partially overlaps the original one, however, then the overlap area’s
original color is negated when the InvertRgn() function is called on the translated region.
Figure 21–17 shows the result of inverting a region translated by means of OffsetRgn().

Drawing figures, regions, and paths 751

Figure 21–17 Effect of OffsetRgn() on
Region Fill

Two functions, SelectClipRgn() and ExtSelectClipRgn(), refer to the use of regions in
clipping. These functions, along with clipping operations, are discussed later in this
chapter.

The InvalidateRgn() function adds the specified region to the current update region of
the window. The invalidated region is marked for update when the next WM_PAINT
message occurs. The function’s general form is as follows:

BOOL InvalidateRgn(
 HWND hWnd, // 1
 HRGN hRgn, // 2
 BOOL bErase // 3
);

The first parameter is the handle to the window that is to be updated. The second
parameter is the handle to the region to be added to the update area. If this parameter is
NULL then the entire client area is added to the update area. The third parameter is an
update flag for the background area. If this parameter is TRUE then the background is
erased. The function always returns a nonzero value.

The ValidateRgn() function removes the region from the update area. It has the
reverse effect as InvalidateRgn(). The function’s general form is as follows:

BOOL ValidateRgn(
 HWND hWnd, // 1
 HRGN hRgn // 2
);

The first parameter is the handle to the window. The second parameter is the handle to
the region to be removed from the update area. If this parameter is NULL then the entire

The pc graphics handbook 752

client area is removed from the update area. The function returns TRUE if it succeeds and
FALSE if it fails.

21.4.5 Obtaining Region Data

A few region-related functions are designed to provide region data to application code.
The GetRegionData() function is used mainly in relation to the ExtCreateRegion()
function. Both of these functions relate to geometric transformations and are discussed in
Chapter 23.

PtInRegion() tests if a point defined by its coordinates is located within a region. The
function’s general form is as follows:

BOOL PtInRegion(
 HRGN hrgn, // 1
 int X, // 2
 int Y // 3
);

The first parameter is the handle to the region to be examined. The second and third
parameters are the x- and y-coordinates of the point. If the point is located within the
region, the function returns TRUE. If not, the function returns FALSE.

The RectInRegion() function determines if any portion of a given rectangle is within a
specified region. The function’s general form is as follows:

BOOL RectInRegion (
 HRGN, // 1
 CONST RECT * // 2
);

The first parameter is the handle to the region to be examined. The second parameter is a
pointer to a RECT structure that holds the coordinates of the rectangle. If any part of the
specified rectangle lies within the region, the function returns TRUE. If not, the function
returns FALSE.

EqualRgn() tests if two regions are identical in size and shape. The function’s general
form is as follows:

BOOL EqualRgn(
 HRGN hSrcRgn1, // 1
 HRGN hSrcRgn2 // 2
);

The first parameter identifies one of the regions and the second parameter the other one.
If the two regions are identical, the function returns TRUE. If not, the function returns
FALSE.

The GetRgnBox() function retrieves the bounding rectangle that encloses the specified
region. The function’s general form is as follows:

Drawing figures, regions, and paths 753

int GetRgnBox(
 HRGN hrgn, // 1
 LPRECT lprc // 2
);

The first parameter is the handle to the region. The second parameter is a pointer to a
RECT structure variable that receives the coordinates of the bounding rectan-gle. The
function returns one of the first three constants listed in Table 21–8. If the first parameter
does not identify a region then the function returns zero.

21.5 Clipping Operations

One of the fundamental graphics manipulations is clipping. In Windows programming,
clipping is associated with regions, since the clip action is defined by a region. In
practice, a clipping region is often of rectangular shape, which explains why some
clipping operations refer specifically to rectangles. Figure 21–18 shows the results of a
clipping operation.

Figure 21 -18 Results of Clipping

A clipping region is an object of the device context. The default clipping region is the
client area. Not all device contexts support a predefined clipping region. If the device
context is supplied by a call to BeginPaint(), then Windows creates a default clipping
region and assigns to it the area of the window that needs to be repainted. If the device
context was created with a call to CreateDC() or GetDC(), as is the case with a private
device context, then no default clipping region exists. In this case an application can
explicitly create a clipping region. Table 21–9, on the following page, lists the functions
that relate to clipping.

The pc graphics handbook 754

Note that Metaregions were introduced in Windows NT and are supported in
Windows 95/98. However, very little has been printed about their meaning or possible
uses. Microsoft documentation for Visual C++, up to the May prerelease of version 6.0,
has nothing on metaregions beyond a brief mentioning of the two related functions listed
in Table 21–9. For this reason, it is impossible to determine at this time if a metaregion is
a trivial alias for a conventional region, or some other concept not yet documented.
Metaregions are not discussed in the text.

Table 21–9
Windows Clipping Functions

FUNCTION ACTION
CREATING OR MODIFYING A CLIPPING REGION:
SelectClipRgn() Makes a region the clipping region for a specified device context
ExtSelectClipRgn() Combines a specified region with the clipping region according to a

predefined mode
IntersectClipRect() Creates a new clipping region from the interception of a rectangle

and the current clipping region in a device context
ExcludeClipRect() Subtracts a rectangle from the clipping region
OffsetClipRgn() Moves the clipping region horizontally or vertically
SelectClipPath() Appends the current path to the clipping region of a device context,

according to a predefined mode
OBTAIN CLIPPING REGION INFORMATION:
GetClipBox() Retrieves the bounding rectangle for the clipping region
GetClipRgn() Retrieves the handle of the clipping region for a specified device

context
PtVisible() Determines if a specified point is within the clipping region of a

device context
RectVisible() Determines whether any part of a rectangle lies within the clipping

region
METAREGION OPERATIONS:
GetMetaRgn() Retrieves the metaregion for the specified device context
SetMetaRgn() Creates a metaregion, which is the intersection of the current

metaregion and the clipping region

21.5.1 Creating or Modifying a Clipping Region

In order for a region to be used to clip output, it must be selected as such in a device
context. The SelectClipRgn() function is the primary method of achieving clipping. The
region must first be defined and a handle for it obtained. Then the handle to the device
context and the handle to the region are used to enforce the clipping. The function’s
general form is as follows:

int SelectClipRgn(
 HDC hdc, // 1
 HRGN hrgn // 2

Drawing figures, regions, and paths 755

);

The first parameter is the handle to the device context that is to be clipped. The second
parameter is the handle to the region used in clipping. This handle is obtained by any of
the region-creating calls listed in Table 21–6. The function returns one of the values in
Table 21–8.

Once the call is made, all future output is clipped; however, the existing screen display
is not automatically changed to reflect the clipping area. Some unexpected or undesirable
effects are possible during clipping. Once a clipping region is defined for a device
context, then all output is limited to the clipping region. This requires that clipping be
handled carefully, usually by installing and restoring clipping regions as necessary.

When a call is made to SelectClipRgn(), Windows preserves a copy of the previous
clipping region. The newly installed clipping region can be removed from the device
context by means of a call to SelectClipRgn() specifying a NULL region handle.

The ExtSelectClipRgn() function allows combining the current clipping region with a
new one, according to one of five predefined modes. The function's general form is as
follows:

int ExtSelectClipRgn(
 HDC hdc, // 1
 HRGN hrgn, // 2
 int fnMode // 3
);

The first parameter is the handle to the device context that is to be clipped. The second
parameter is the handle to the region used in clipping. The third parameter is one of the
constants listed in Table 21–10.

Table 21–10
Clipping Modes

VALUE ACTION
RGN_AND The resulting clipping region combines the overlapping areas of the current

clipping region and the one identified in the call, by performing a logical AND
between the two regions

RGN_COPY The resulting clipping region is a copy of the region identified in the call. The
result is identical to calling SelectClipRgn(). If the region identified in the call
is NULL, the new clipping region is the default clipping region

RGN_DIFF The resulting clipping region is the difference between the current clipping
region and the one identified in the call

RGN_OR The resulting clipping region is the result of performing a logical OR operation
on the current clipping region and the region identified in the call

RGN_XOR The resulting clipping region is the result of performing a logical XOR
operation on the current clipping region and the region identified in the Call

The pc graphics handbook 756

The clipping regions that result from these selection modes are the same as those used in
the CombineRgn() function, as shown in Figure 21–15. The ExtSelectClipRgn() function
returns one of the values in Table 21–8.

The IntersectClipRect() function creates a new clipping region by performing a logical
AND between the current clipping region and a rectangular area defined in the call. The
function’s general form is as follows:

int IntersectClipRect(
 HDC hdc, // 1
 int nLeftRect, // 2
 int nTopRect, // 3
 int nRightRect, // 4
 int nBottomRect // 5
);

The second and third parameters are the coordinates of the upper-left corner of the
rectangle. The fourth and fifth parameters are the coordinates of the lower-right corner.
The function returns one of the values in Table 21–8.

The function ExcludeClipRect() subtracts a rectangle specified in the call from the
clipping region. The function’s general form is as follows:

int ExcludeClipRect(
 HDC hdc, // 1
 int nLeftRect, // 2
 int nTopRect, // 3
 int nRightRect, // 4
 int nBottomRect // 5
);

The second and third parameters are the coordinates of the upper-left corner of the
rectangle. The fourth and fifth parameters are the coordinates of the lower-right corner.
The function returns one of the values in Table 21–8.

The function OffsetClipRgn() translates the clipping region along the horizontal or
vertical axes. The function’s general form is as follows:

int OffsetClipRgn(
 HDC hdc, // 1
 int nXOffset, // 2
 int nYOffset // 3
);

The second parameter is the amount to move the clipping region along the x-axis. The
third parameter is the amount to move along the y-axis. Positive values indicate
movement to the right or down. Negative values indicate movement to the left or up. The
function returns one of the values in Table 21–8.

Drawing figures, regions, and paths 757

The SelectClipPath() function appends the current path to the clipping region of a
device context, according to a predefined mode. The function’s general form is as
follows:

BOOL SelectClipPath(
 HDC hdc, // 1
 int iMode // 2
);

The second parameter is one of the constants listed in Table 21–10. The function returns
TRUE if it succeeds and FALSE if it fails. Paths are discussed later in this chapter.

21.5.2 Clipping Region Information

Code that uses clipping often needs to obtain information about the clipping region.
Several functions are available for this purpose. The GetClipBox() function retrieves the
bounding rectangle for the clipping region. This rectangle is the smallest one that can be
drawn around the visible area of the device context. The function’s general form is as
follows:

int GetClipBox(
 HDC hdc, // 1
 LPRECT lprc // 2
);

The second parameter is a pointer to a RECT structure that receives the coordinates of the
bounding rectangle. The function returns one of the values in Table 21–8.

The GetClipRgn() function retrieves the handle of the clipping region for a specified
device context. The function’s general form is as follows:

int GetClipRgn(
 HDC hdc, // 1
 HRGN hrgn // 2
);

The first parameter is the handle to the device context whose clipping region is desired.
The second parameter is the handle to an existing clipping region that holds the results of
the call. The function returns zero if there is no clipping region in the device context. The
return value 1 indicates that there is a clipping region and that the function’s second
parameter holds its handle. A return value of -1 indicates an error. The function refers to
clipping regions that result from SelectClipRgn() of ExtSelectClipRgn() functions.
Clipping regions assigned by the system on calls to the BeginPaint() function are not
returned by GetClipRgn().

The PtVisible() function is used to determine if a specified point is within the clipping
region of a device context. The function’s general form is as follows:

The pc graphics handbook 758

BOOL PtVisible(
 HDC hdc, // 1
 int X, // 2
 int Y // 3
);

The first parameter is the handle to the device context under consideration. The second
and third parameters are the x- and y-coordinates of the point in question. The function
returns TRUE if the point is within the clipping region, and FALSE otherwise.

The function RectVisible() is used to determine whether any part of a rectangle lies
within the clipping region of a device context. The function’s general form is as follows:

BOOL RectVisible(
 HDC hdc, // 1
 CONST RECT *lprc // 2
);

The first parameter is the handle to the device context under consideration. The second
parameter is a pointer to a structure variable of type RECT that holds the coordinates of
the rectangle in question. The function returns TRUE if any portion of the rectangle is
within the clipping region, and FALSE otherwise.

21.6 Paths

In previous chapters we have discussed paths rather informally. The project folder Text
Demo No 3, in the book’s software package, contains a program that uses paths to
achieve graphics effects in text display. We now consider revisit paths in a more rigorous
manner, and apply paths to other graphics operations.

Paths were introduced with Windows NT and are also supported by Windows 95/98.
As its name implies, a path is the route the drawing instrument follows in creating a
particular figure or set of figures. A path, which is stored internally by the GDI, can serve
to define the outline of a graphics object. For example, if we start at coordinates 100, 100,
and move to the point at (150, 100), then to (150, 200), from there to (100, 200), and
finally to the start point, we have defined the path for a rectangular figure. We can now
stroke the path to draw the rectangle’s outline, fill the path to produce a solid figure, or
both stroke and fill the path to produce a figure with both outline and fill. In general,
there are path-related functions to perform the following operations:

• To draw the outline of the path using the current pen.
• To paint the interior of the path using the current brush.
• To draw the outline and paint the interior of a path.
• To modify a path converting curves to line segments.
• To convert the path into a clip path.
• To convert the path into a region.
• To flatten the path by converting each curve in the path into a series of line segments.
• To retrieve the coordinates of the lines and curves that compose a path.

Drawing figures, regions, and paths 759

The path is an object of the device context, such as a region, a pen, a brush, or a bitmap.
One characteristic of a path is that there is no default path in the device context. Another
one is that there is only one path in each device context; this determines that there is no
need for a path handle. Every path is initiated by means of the BeginPath() function. This
clears any old path from the device context and prepares to record the drawing primitives
that create the new path, sometimes called the path bracket. Any of the functions listed in
Table 21–11 can be used for defining a path in Windows NT. The subset of functions that
can be used in paths in Windows 95/98 is listed in Table 21–12.

Since paths are mostly utilized in clipping operations, the CloseFigure() function is
generally used to close an open figure in a path. After all the figures that form the path
have been drawn into the path bracket, the application calls EndPath() to select the path
into the specified device context. The path can then be made into a clipping region by
means of a call to SelectClipPath().

Table 21-11
Path-Defining Functions in Windows NT

AngleArc() LineTo() Polyline()
Arc() MoveToEx() PolylineTo()
ArcTo() Pie() PolyPolygon()
Chord() PolyBezier() PolyPolyline()
CloseFigure() PolyBezierTo() Rectangle()
Ellipse() PolyDraw() RoundRect()
ExtTextOut() Polygon() TextOut()

Table 21-12
Path-Defining Functions in Windows 95 and Later

ExtTextOut() PolyBezierTo() PolyPolygon()
LineTo() Polygon() PolyPolyline()
MoveToEx() Polyline() TextOut()
PolyBezier() PolylineTo()

Notice that the term clip path, or clipping path, sometimes found in the Windows
documentation, can be somewhat confusing. It is better to say that the SelectClipPath()
function converts a path to a clipping region, thus eliminating the notion of a clip path as
a separate entity.

Table 21-13 lists the paths-related functions.

The pc graphics handbook 760

Table 21-13
Path-Related Functions

FUNCTION ACTION
PATH CREATION, DELETION, AND CONVERSION:
BeginPath() Opens a path bracket
EndPath() Closes the path bracket and selects the path into the device

context
AbortPath() Closes and discards any open path bracket on the Device

context
SelectClipPath() Makes the current path into a clipping region for a specified

device context. Combines the new clipping region with any
existing one according to a predefined mode

PathToRegion() Closes an open path and converts is to a region
PATH RENDERING OPERATIONS:
StrokePath() Renders the outline of the current path using the current pen
FillPath() Closes and opens figure in the current path and fills the path

interior with the current brush, using the current polygon fill
mode

StrokeAndFillPath() Renders the outline of the current path using the current pen
and fills the interior with the current brush

CloseFigure() Draws a line from the current pen position to the figure's start
point. The closing line is connected to the figure's first line
using the current line join style

Path-Related Functions (continued)
FUNCTION ACTION
PolyDraw() Draws lines and curves that result from GetPath() (Windows NT only)
PATH MANIPULATIONS:
FlattenPath() Converts curves in the current path into line segments
WidenPath() Redefines the current path in a given device context as the area that

would be painted if the path were stroked with the current pen
SetMiterLimit() Sets the length of the miter joins for the specified device context
OBTAIN PATH INFORMATION:
GetPath() Retrieves the coordinates of the endpoints of lines and control points of

curves in a path
GetMiterLimit() Returns the limit for the length of the miter joins in the specified device

context
GetPolyFillMode() Returns the current polygon fill mode

21.6.1 Creating, Deleting, and Converting Paths

A path is initiated by calling the BeginPath() function. The call discards any existing path
in the device context and opens a path bracket. The function’s general form is as follows:

BOOL BeginPath (HDC hdc);

Drawing figures, regions, and paths 761

The only parameter is the handle to the device context. The function returns TRUE if it
succeeds and FALSE if it fails. After the call to BeginPath() is made an application can
call any of the functions in Table 21–11 or 21–12, according to the operating system
platform.

The EndPath() function closes a path bracket and selects the path into the specified
device context. The function’s general form is as follows:

BOOL EndPath (HDC hdc);

The only parameter is the handle to the device context. The function returns TRUE if it
succeeds and FALSE if it fails.

The AbortPath() functions closes and discards any open path bracket on the specified
device context. The function’s general form is as follows:

BOOL AbortPath (HDC hdc);

The only parameter is the handle to the device context.
A path bracket is created by calling BeginPath(), followed by one or more of the

drawing functions listed in Table 21–11 and 21–12, and closed by a call to EndPath(). At
this point applications usually proceed to stroke, fill, or stroke-and-fill the path or to
install it as a clipping region. Two possible methods can be followed for converting a
path into a clipping region. One method is to use PathToRegion() to create a region and
then call ExtSelectClipRgn() to make the region a clipping region. Alternatively, code
can call SelectClipPath() and perform both functions in a single call.

SelectClipPath() makes the current path into a clipping region for a specified device
context, according to a predefined combination mode. The function’s general form is as
follows:

BOOL SelectClipPath(
 HDC hdc, // 1
 int iMode // 2
);

The second parameter is one of the values listed in Table 21–7. The function returns
TRUE if it succeeds and FALSE if it fails.

The PathToRegion() function closes an open path and converts is to a region. The
function’s general form is as follows:

HRGN PathToRegion (HDC hdc);

The function’s only parameter is the handle to the device context. The call assumes that
the path in the device context is closed. PathToRegion() returns the handle to the created
region. Since there are no path handles, this function provides a way of identifying a
particular path, although it must be first converted into a region. Unfortunately, there is
no method for converting a region into a path.

The pc graphics handbook 762

21.6.2 Path-Rendering Operations

After a path is created it is possible to render it as an image by stroking it, filling it, or
both. In Windows NT it is also possible to directly draw line segments and Bezier curves
that form a path, whose end and control points are stored in an array of type POINT.

The StrokePath() function renders the outline of the current path using the current pen.
The function’s general form is as follows:

BOOL StrokePath (HDC hdc);

The only parameter is the handle to the device context that contains a closed path. Since a
device context can only have a single path, there is no need for further specification. The
path is automatically discarded from the device context after it is stroked. The function
returns TRUE if it succeeds and FALSE if it fails.

Notice that Microsoft Visual C++ documentation does not mention that StrokePath()
discards the path automatically. What is worse, the remarks on the StrokeAndFillPath()
function suggest that it is possible to first stroke and then fill the same path by making
separate calls to the StrokePath() and FillPath() function. In reality, the StrokePath()
function destroys the path before exiting execution. A subsequent call to FillPath() has no
effect, since there is no longer a path in the device context. This is the reason why the
StrokeAndFillPath() function exists. Without this function it would be impossible to both
stroke and fill a path.

The FillPath() function closes an open figure in the current path and fills the path
interior with the current brush, using the current polygon fill mode. The function’s
general form is as follows:

BOOL FillPath (HDC hdc);

The only parameter is the handle to the device context that contains a valid path. Since a
device context can only have a single path, there is no need for further specification. The
path is automatically discarded from the device context after it is filled. The function
returns TRUE if it succeeds and FALSE if it fails.

The StrokeAndFillPath() function closes an open figure in the current path, strokes the
path outline using the current pen, and fills the path’s interior with the current brush,
using the current polygon fill mode. The function’s general form is as follows:

BOOL StrokeAndFillPath (HDC hdc);

The only parameter is the handle to the device context that contains a valid path. The path
is automatically discarded from the device context after it is stroked and filled.
StrokeAndFillPath() provides the only way for both stroking and filling a path in
Windows, since StrokePath() and FillPath() destroy the path after they execute. The
function returns TRUE if it succeeds and FALSE if it fails.

The CloseFigure() function draws a line from the current pen position to the figure’s
start point. The closing line is connected to the figure’s first line using the current line
join style. The function’s general form is as follows:

Drawing figures, regions, and paths 763

BOOL CloseFigure (HDC hdc);

The only parameter is the handle to the device context that contains a valid path. A figure
in a path is open unless the CloseFigure() call has been made, even if the figure’s starting
point and the current point coincide. Usually, the starting point of the figure is the one in
the most recent call to MoveToEx().

The effect of closing a figure using the CloseFigure() function is not the same as using
a call to a drawing primitive. For example, when the figure is closed with a call to the
LineTo() function, end caps are used at the last corner, instead of a join. If the figure is
drawn with a thick, geometric pen, the results can be quite different. Figure 21–19 shows
the difference between closing a figure by calling LineTo() or by calling CloseFigure().

The triangles in Figure 21–19 are both drawn with a pen style that has a miter join and
a round end cap. One of the figures is closed using the LineTo() drawing function and the
other one with CloseFigure(). The apex of the triangle closed using the LineTo() function
is rounded while the one closed using the CloseFigure() function is mitered. This is due
to the fact that two segments drawn with LineTo() do not have a join at a common end
point. In this case, the appearance of the apex is determined by the figure’s round end
cap. On the other hand, when the figure is closed with the CloseFigure() function, the
selected join is used in all three vertices.

Figure 21–19 Figure Closing
Differences

The PolyDraw() function, available only in Windows NT, draws lines segments and
Bezier curves. Because of its limited portability we do not discuss it here.

The pc graphics handbook 764

21.6.3 Path Manipulations

Several functions allow modifying existing paths or determining the path characteristics.
FlattenPath() converts curves in the current path into line segments. The function’s
general form is as follows:

BOOL FlattenPath (HDC hdc);

The only parameter is the handle to the device context that contains a valid path. The
function returns TRUE if it succeeds and FALSE if it fails. There are few documented
uses for the FlattenPath() function. The screen appearance of a flattened path is virtually
undetectable. The documented application of this function is to fit text on a curve. Once a
curved path has been flattened, a call to GetPath() retrieves the series of line segments
that replaced the curves of the original path. Code can now use this information to fit the
individual characters along the line segments.

The WidenPath() function redefines the current path in a given device context as the
area that would be painted if the path were stroked with the current pen. The function’s
general form is as follows:

BOOL WidenPath (HDC hdc);

The only parameter is the handle to the device context that contains a valid path. Any
Bezier curves in the path are converted to straight lines. The function makes a difference
when the current pen is a geometric pen or when it has a width or more than one device
unit. WidenPath() returns TRUE if it succeeds and FALSE if it fails. This is another
function with few documented uses. The fact that curves are con-verted into line
segments suggests that it can be used in text fitting operations, such as the one described
for the FlattenPath() function.

The SetMiterLimit() function sets the length of the miter joins for the specified device
context. The function’s general form is as follows:

BOOL SetMiterLimit(
 HDC hdc, // 1
 FLOAT eNewLimit, // 2
 PFLOAT peOldLimit // 3
);

The first parameter is the handle to the device context. The second parameter specifies
the new miter limit. The third parameter is a pointer to a floating-point variable that holds
the previous miter limit. If this parameter is NULL the value of the previous miter limit is
not returned. The function returns TRUE if it succeeds and FALSE if it fails.

The miter length is the distance from the intersection of the line walls on the inside of
the join to the intersection of the line walls on the outside of the join. The miter limit is
the ratio between the miter length, to the line width. Figure 21–20 shows the miter length,
the line width, and the miter limit.

Drawing figures, regions, and paths 765

Figure 21–20 Miter Length, Line
Width, and Miter Limit

The miter limit determines if the vertex of a join that was defined with the
PS_JOIN_MITER style (see Figure 20–3 in the previous chapter) is drawn using a miter
or a bevel join. If the miter limit is not exceeded, then the join is mitered. Otherwise, it is
beveled. Mitered and beveled joins apply only to pens created with the ExtCreatePen()
function and to stroked paths. The following code fragment shows the creation of two
joins.

static HPEN fatPen; // Handle for pen
static FLOAT oldMiter; // Storage for miter limit
.
.
.
// Create a special pen
fatPen=ExtCreatePen (PS_GEOMETRIC | PS_SOLID |
 PS_ENDCAP_ROUND | PS_JOIN_MITER,
 15,
 &fatBrush, 0, NULL);
SelectBrush (hdc, GetStockObject (LTGRAY_BRUSH));
SelectPen (hdc, fatPen);
// Draw first angle
BeginPath (hdc);
MoveToEx (hdc, 100, 100, NULL);
LineTo (hdc, 250, 100);
LineTo (hdc, 150, 180);
EndPath (hdc);
StrokePath (hdc);
// Draw second angle
GetMiterLimit (hdc, &oldMiter);
SetMiterLimit (hdc, 2, &oldMiter);
BeginPath (hdc);
MoveToEx (hdc, 300, 100, NULL);
LineTo (hdc, 450, 100);
LineTo (hdc, 350, 180);
EndPath (hdc);

The pc graphics handbook 766

StrokePath (hdc);
SetMiterLimit (hdc, oldMiter, NULL);

Figure 21–21 is a screen snapshot of the execution of the preceding code fragment.
Notice in Figure 21–21 that the image on the left, in which the default miter limit of 10 is
used, is drawn with a miter join. In the right-hand figure the miter limit was changed to 1,
therefore, the figure is drawn using a bevel join.

Figure 21–21 Effect of the
SetMiterLimit() Function

21.6.4 Obtaining Path Information

Several functions provide information about the path, or about GDI parameters that affect
the path. The GetPath() function retrieves the coordinates of the endpoints of lines and
control points of curves in a path. The function’s structure is quite similar to the
PolyDraw() function discussed in Chapter 20. GetPath() is related to the PolyDraw()
function mentioned earlier. The function’s general form is as follows:

int GetPath(
 HDC hdc, // 1
 LPPOINT lpPoints, // 2
 LPBYTE lpTypes, // 3
 int nSize // 4
);

The first parameter identifies the device context. The second parameter is a pointer to an
array of POINT structures that contains the endpoints of the lines and the control points
of the curves that form the path. The third parameter is an array of type BYTE which
contains identifiers that define the purpose of each of the points in the array. The fourth
parameter is the count of the number of points in the array of points. The function returns

Drawing figures, regions, and paths 767

TRUE if it succeeds and FALSE otherwise. Table 21–14 lists the constants used to
represent the identifiers entered in the function's third parameter.

Table 21–14
Constants for the GetPath() Vertex Types

TYPE MEANING
PT_MOVETO This point starts a disjoint figure. The point becomes the new current pen

position.
PT_LINETO A line is to be drawn from the current position to this point, which then

becomes the new current pen position.
PT_BEZIERTO This is a control point or end node for a Bezier curve. This constant

always occurs in sets of three. The current position defines the start node
for The Bezier curve. The other two coordinates are control points. The
third entry (if coded) is the end node.

PT_CLOSEFIGURE The figure is automatically closed after the PT_LINETO or
PT_BEZIERTO type for this point is executed. A line is drawn from the
end point to the most recent PT_MOVETO or MoveTo() point.
The PT_CLOSEFIGURE constant is combined by means of a bitwise
OR operator with a PT_LINETO or PT_BEZIERTO constant. This
indicates that the corresponding point is the last one in a figure and that
the figure is to be closed.

The GetMiterLimit() function, which was mentioned in regards to SetMiterLimit(),
returns the limit for the length of the miter join in the specified device context. The
function's general form is as follows:

BOOL GetMiterLimit(
 HDC hdc, // 1
 PFLOAT peLimit // 2
);

The first parameter is the handle to the device context. The second parameter stores the
current miter limit. The function returns TRUE if it succeeds and FALSE if it fails.

The GetPolyFillMode() returns the current polygon fill mode. The only parameter is
the handle to the device context. The value returned is either ALTERNATE or
WINDING. The fill more affects the operation of the FillPath() and StrokeAndFillPath()
functions.

21.7 Filled Figures Demo Program

The program named FIL_DEMO, located in the Filled Figure Demo project folder of the
book’s software package, is a demonstration of the graphics functions and operations
discussed in this chapter. The first entry in the Operations menu shows the offset of the
hatch origin to visually improve a filled rectangle. The main menu contains several pop-
up menus that demonstrate most of the graphics primitives discussed in the text. These

The pc graphics handbook 768

include drawing solid figures, operations on rectangles, regions, clipping, and paths.
Another menu entry demonstrates the use of the SetMiterLimit() function. Many of the
illustrations used in this chapter were taken from the images displayed by the
demonstration program.

Drawing figures, regions, and paths 769

Chapter 22
Windows Bitmapped Graphics

Topics:

• Raster and vector graphics on the PC
• Windows bitmap formats and structures
• Bitmap programming and the bitblt operation
• Manipulating and transforming bitmaps

This chapter is about bitmaps. A bitmap is a digitized image in which each dot is
represented by a numeric value. Bitmap images are used in graphics programming at least
as frequently as vector representation. The high resolution and extensive color range of
current video display systems allow encoding bitmapped images with photo-realistic
accuracy. The powerful storage and processing capabilities of the modern day PC make
possible for software to rapidly and effectively manipulate and transform bitmaps.
Computer simulations, virtual reality, artificial life, and electronic games are fields of
application that rely heavily on bitmap operations.

22.1 Raster and Vector Graphics

The two possible ways of representing images in a computer screen, or a digital graphics
device, are based on vector and raster graphics technologies. All of the graphics
primitives discussed in Chapters 6 and 7 are based on vector techniques. Commercially
speaking, vector graphics are associated with drawing programs, while raster graphics are
associated with painting programs. The vector representation of a line consists of its start
and end points and its attributes, which usually include width, color, and type. The raster
representation of the same line is a mapping of adjacent screen dots. Most current
computer systems are raster based, that is, the screen is a two-dimensional pixel grid and
all graphics objects are composed of individual screen dots, as described in Chapter 1.
Vector graphics are a way of logically defining images, but the images must be rasterized
at display time.

Vector and raster representations have their advantages and drawbacks. Vector images
can be transformed mathematically (as you will see in Chapter 9); they can also be scaled
without loss of quality. Furthermore, vector images are usually more compact. Many
images can be conveniently represented in vector form, such as an engineering drawing
composed of geometrical elements that can be mathematically defined. The same applies
to illustrations, and even to artwork created by combining geometrical elements.

22.1.1 The Bitmap

An image of Leonardo’s Mona Lisa, or a photograph of the Crab nebulae, can hardly be
vectorized. When geometrical elements are not present, or when the image is rich in
minute details, vector representations cease to be practical. In these cases it is better to
encode the image as a data structure containing all the individual picture elements. This
pixel-by-bit encoding is called a bitmap.

A bitmap is a form of raster image. A raster image can be defined as pixel-by-pixel
enumeration, usually in scan-line order. A bitmap is a formatted raster image encoded
according to some predefined standard or convention. A raster image, on the other hand,
can be in raw format. For example, a scanning instrument onboard a satellite or space
craft acquires and transmits image data in raster form. Once received, the raster data can
be processed and stored as bitmaps that can be easily displayed on a computer screen.
Television images are in raster form.

A bitmap is a memory object, not a screen image. It is the memory encoding of an
image at the pixel level. Although bitmaps are often represented in image form, it is
important to remember that a bitmap is a data construct Bitmaps cannot be easily
transformed mathematically, as is the case with vector images, nor can they be scaled
without some loss of information. However, bitmaps offer a more faithful reproduction of
small details than is practical in vector representations.

In bit-mapping, one or more memory bits are used to represent the attribute of a screen
pixel. The simplest and most compact scheme is that in which a memory bit represents a
single screen pixel: if the bit is set, so is the pixel. This one-bit-to-one-pixel
representation leaves no choice about pixel attributes, that is, a pixel is either set or not.
In a monochrome video system a set bit can correspond to a bright pixel and a reset bit to
a black one. Figure 22–1 shows a bit-to-pixel image and bitmap.

Figure 22–1 One Bit Per Pixel Image
and Bitmap

Most current video systems support multiple attributes per screen pixel. PC color
video systems are usually capable of representing 16, 256, 65,535, and 16.7 million

The pc graphics handbook 772

colors. Shades of gray can also be encoded in a bitmap. The number of bits devoted to
each pixel determines the attribute range. Sixteen colors or shades of gray can be
represented in four bits. Eight bits can represent 256 colors. Sixteen bits encode 65,535
colors. So-called true color systems, which can display approximately 16.7 million
colors, require 24 data bits per screen dot. Some color data formats use 32-bits per pixel,
but this representation is actually 24 bits of pixel data plus 8 bits of padding. Figure 22–2
shows an image and bitmap in which each pixel is represented by two memory bits.

Figure 22–2 Two Bits Per Pixel Image
and Bitmap

In Figure 22–2, each screen pixel can be in one of four attributes: background, light gray,
dark gray, or black. In order to represent these four states it is necessary to assign a 2-bit
field for each screen pixel. The four bit combinations that correspond with the attribute
options are shown on the left side of Figure 22–2. At the bottom of the illustration is a
map of one of the pixel rows, with the corresponding binary codes for each pixel, as well
as the hexadecimal digits of the bitmap.

22.1.2 Image Processing

The fact that raster images cannot be transformed mathematically does not mean that they
cannot be manipulated and processed. Image Processing is a major field of computer
graphics. It deals exclusively with the manipulation and analysis of two-dimensional
pictorial data in digital form. In practice, this means processing raster data. Although
digital image processing originated in the science programs of the National Aeronautics
and Space Administration (NASA) it has since been applied to many other technological
fields, including biological research, document processing, factory automation, forensics,
medical diagnostics, photography, prepress publishing operations, space exploration, and
special effects on film and video.

Windows bitmapped graphics 773

22.1.3 Bitblt Operations

The fundamental bitmap operation is the bit block transfer, or bitblt (pronounced bit-blit).
In the bitblt a rectangular block of memory bits, representing pixel attributes, is
transferred as a block. If the destination of the transfer is screen memory, then the
bitmapped image is displayed. At the time of the transfer, the source and destination bit
blocks can be combined logically or arithmetically, or a unary operation can be
performed on the source or the destination bit blocks. Figure 22–3 shows several binary
and unary operations on bit blocks.

Figure 22–3 Binary and Unary
Operations on Bit Blocks

The pc graphics handbook 774

22.2 Bitmap Constructs

Several Windows data structures and concepts relate to bitmaps:

• Bitmap formats
• Structures for bitmap operations
• Creating bitmap resources

You must understand these concepts in order to be able to manipulate and display
bitmaps.

22.2.1 Windows Bitmap Formats

The computer establishment has created hundreds of bitmap image formats over the past
two or three decades; among the best known are GIF, PCX, Targa, TIFF, and Jpeg.
Windows does not provide support for manipulating image files in any commercial
format. The only bitmap formats that can be handled are those specifically created for
Windows. These are the original device-specific bitmaps (extension BMP) and the newer
device-independent bitmaps (extension DIB).

The device-specific bitmap format was created in Windows 3.0. It can store images
with up to 24-bit color. Files in BMP format are uncompressed, which makes them quick
to read and display. The disadvantage of uncompressed files is that they take up
considerable memory and storage space. Another objection to using the device-specific
bitmap is that the BMP header cannot directly encode the original colors in the bitmap.
For this reason, the format works well for copying parts of the screen to memory and
pasting them back to other locations. But problems often occur when the device-specific
bitmap must be saved in a disk file and then output to a different device, since the
destination device may not support the same colors as the original one. For this reason it
is usually preferable to use the device-independent format, although its data structures are
slightly larger.

Note that many Windows bitmap functions operate both on device-specific and
device-independent bitmaps. The Bitmap Demo project on the book’s software package
displays bitmaps in BMP and DIB format using the same Windows functions. In the
remainder of this chapter we deal exclusively with device-independent bitmaps encoded
in DIB format, although device independent bitmaps can also be stored in .BMP files.

22.2.2 Windows Bitmap Structures

There are eleven structures directly or indirectly related to Windows bitmaps, listed in
Table 22–1, on the following page.

22.2.3 The Bitmap as a Resource

In Visual C++ a bitmap can be a program resource. Developer Studio includes a bitmap
editor that can be used for creating and editing bitmaps that do not exceed a certain size
and color range. Bitmaps in BMP or DIB format created with other applications can also

Windows bitmapped graphics 775

be imported into a program. In this case you can select the Resource command in the
Insert menu, and then select the bitmap resource type and click the Import button. The
dialog that appears allows you to browse through the file system in order to locate the
bitmap file. It is usually better to copy the bitmap file into the project’s folder, thus
ensuring that it is not deleted or modified inadvertently.

Table 22–1
Bitmap-Related Structures

STRUCTURE CONTENTS
BITMAP Defines the width, height, type, format, and bit values of a bitmap.
BITMAPCOREHEADER Contains information about the dimensions and color format of a DIB.
BITMAPCOREINFO Contains a BITMAPCOREHEADER structure and a RGBTRIPLE

structure array with the bitmap's color intensities.
BITMAPFILEHEADER Contains information about a file that holds a DIB.
BITMAPINFO Defines the dimensions and color data of a DIB. Includes a

BITMAPINFOHEADER structure and a RGBQUAD structure.
BITMAPINFOHEADER Contains information about the dimensions and color format of a DIB.
COLORADJUSTMENT Defines the color adjustment values used by the StrtchBlt() and

StretchDIBits() functions.
DIBSECTION Contains information about a bitmap created by means of the

CreateDIBSection() function.
RGBQUAD Describes the relative intensities of the red, green, and blue color

components. The fourth byte of the structure is reserved.
RGBTRIPLE Describes the relative intensities of the red, green, and blue color

components. The BITMAPCOREINFO structure contains an array of
RGBTRIPLE structures.

SIZE Defines the width and height of a rectangle, which can be used to
represent the dimensions of a bitmap.

Some of the structures in Table 22–1 are listed and described in this chapter.
Once a bitmap has been imported in the project, it is listed in the Resource tab of the

Project Workspace pane. At this point it is possible to use the MAKEINTRESOURCE
macro to convert it into a resource type that can be managed by the application. Since the
final objective is to obtain the handle to a bitmap, code usually proceeds as follows:

HBITMAP aBitmap;
.
.
.
aBitmap=LoadBitmap (pInstance,
 MAKEINTRESOURCE (IDB_BITMAP1));

In this case, IDB_BITMAP1 is the resource name assigned by Developer Studio when
the bitmap was imported. It is listed in the Bitmap section of the Resource tab in the
Project Workspace pane and also by the Resource Symbols command in the View menu.

The pc graphics handbook 776

22.3 Bitmap Programming Fundamentals

The bitmap is an object of the device context, such as a brush, a pen, a font, or a region.
Bitmap manipulations and display functions in Windows are powerful, but not without
some limitations and complications. This overview presents a preliminary discussion of
simple bitmap programming. Later in this chapter we get into more complicated
operations.

22.3.1 Creating the Memory DC

The unique characteristic of a bitmap is that it can be selected only into a memory device
context. The memory DC is defined as a device context with a display surface. It exists
only in memory and is related to a particular device context. In order to use a memory
device context you must first create it. The CreateCompatibleDC() function is used for
this purpose. Its general form is as follows:

HDC CreateCompatibleDC (HDC hdc);

Its only parameter is the handle to the device context with which the memory device
context is to be compatible. This parameter can be NULL if the memory device context is
to be compatible with the video screen. If the function succeeds, it returns the handle to
the memory device context. The call returns NULL if it fails. CreateCompatibleDC()
assumes that the device context supports raster operations, which is true in all PC video
systems, but not necessarily so for other graphics devices, such as a plotter. The
GetDeviceCaps() function with the RASTERCAPS constant can be used to determine if a
particular device supports raster operations (see Table 20–4).

Like the device context, a memory device context has a mapping mode attribute.
Applications often use the same mapping mode for the memory device context and for
the device context. In this case the SetMapMode() and GetMapMode() functions can be
combined as follows:

HDC hdc; // Handle to device context
HDC memDC; // Handle to memory device
context
.
.
.
SetMapMode (memDC, GetMapMode (hdc));

22.3.2 Selecting the Bitmap

When the memory device context is created, it is assigned a display surface of a single
monochrome pixel. The single pixel acts as a placeholder until a real one is selected into
the memory DC. The SelectObject() function, discussed in Chapter 6, can be used to
select a bitmap into a memory device context, but the SelectBitmap() macro, discussed in

Windows bitmapped graphics 777

Chapter 7, serves the same purpose. Both, SelectObject() and SelectBitmap() have the
same interface. For SelectBitmap() it is as follows:

HBITMAP SelectBitmap (HDC, HBITMAP);
 | ------
 | |
 1 2

The first parameter must be the handle of a memory device context. The second
parameter is the handle to the bitmap being installed. If the call succeeds, the macro
returns the handle to the device context object being replaced. If the call fails, it returns
NULL. Using the SelectBitmap() macro instead of the SelectObject() function produces
code that is correct and the coding is made easier. Recall that programs that use the object
selection macros must include the windowsx.h file.

The handle to the bitmap used in the SelectBitmap() macro is usually obtained with
the LoadBitmap() function previously discussed.

22.3.3 Obtaining Bitmap Dimensions

Bitmap functions often require information about the dimensions and other characteristics
of the bitmap. For example, the function most often used to display a bitmap is BitBlt(); it
requires the width and height of the bitmap. If the bitmap is loaded as a resource from a
file, the application must obtain the bitmap dimensions before blitting it to the screen.
The GetObject() function is used to obtain information about a bitmap. The function’s
general form is as follows:

int GetObject(
 HGDIOBJ hgdiobj, // 1
 int cbBuffer, // 2
 LPVOID lpvObject // 3
);

The first parameter is the handle to a graphics object; in this case, the handle to a bitmap.
The second parameter is the size of the buffer that holds the information returned by the
call. In the case of a bitmap, this parameter can be coded as sizeof (BITMAP). The third
parameter is a pointer to the buffer that holds the information returned by the call. In the
case of a bitmap, the buffer is a structure variable of type BITMAP. The BITMAP
structure is defined as follows:

typedef struct tagBITMAP {
 LONG bmType; // Must be zero
 LONG bmWidth; // bitmap width (in pixels)
 LONG bmHeight; // bitmap height (in pixels)
 LONG bmWidthBytes; // bytes per scan line
 WORD bmPlanes; // number of color planes
 WORD bmBitsPixel; // bits per pixel color

The pc graphics handbook 778

 LPVOID bmBits; // points to bitmap values
array
} BITMAP;

The structure member bmType specifies the bitmap type. It must be zero. The member
bmWidth specifies the width, in pixels, of the bitmap. Its value must be greater than zero.
The member bmHeight specifies the height, in pixels, of the bitmap. The height must be
greater than zero. The bmWidthBytes member specifies the number of bytes in each scan
line. Since Windows assumes that the bitmap is word-aligned, its value must be divisible
by 2. The member bmPlanes specifies the number of color planes. The member
bmBitsPixel specifies the number of bits required to indicate the color of a pixel. The
member bmBits points to the location of the bit values for the bitmap. It is a long pointer
to an array of character-size values.

When the target of the GetObject() call is a bitmap, the information returned is the
structure members related to the bitmap width, height, and color format. The GetObject()
function cannot be used to read the value of the pointer to the bitmap data in the bmBits
structure member. GetDIBits() retrieves the bit data of a bitmap.

The mapping mode can also be a factor in regard to bitmap data. The GetObject()
function returns the bitmap width and height in the BITMAP structure. The values
returned are in pixels, which are device units. This works well if the mapping mode of the
memory device context is MM_TEXT, but is not acceptable in any of the mapping modes
that use logical units. The DPtoLP() function allows the conversion of device coordinates
(pixels) into logical coordinates for a particular device context. The function’s general
form is as follows:

BOOL DPtoLP(
 HDC hdc, // 1
 LPPOINT lpPoints, // 2
 int nCount // 3
);

The first parameter identifies the device context. In the case of a bitmap, it is a memory
device context. The second parameter points to an array of POINT structures that holds
the transformed values for the x- and y-coordinates. The third parameter holds the
number of points in the array specified in the second parameter. The function returns
TRUE if it succeeds and FALSE if it fails.

A bitmap size is defined by two values: the x-coordinate is the width and the y-
coordinate the height. When a call to DPtoLP() is made to obtain the bitmap size, the
third parameter is set to 1. This indicates that the coordinates to be transformed refer to a
single point. By the same token, the second parameter is a pointer to a single POINT
structure that holds the bitmap width in the x member and the bitmap height in the y
member.

Windows bitmapped graphics 779

22.3.4 Blitting the Bitmap

Once a bitmap has been selected onto a memory device context, and the code has
obtained the necessary information about its width and height, it is possible to display it
at any screen position by blitting the memory stored bitmap onto the screen. The BitBlt()
function is the simplest and most direct method of performing the bitmap display
operation. The function’s general form is as follows:

BOOL BitBlt(
 HDC hdcDest, // 1
 int nXDest, // 2
 int nYDest, // 3
 int nWidth, // 4
 int nHeight, // 5
 HDC hdcSrc, // 6
 int nXSrc, // 7
 int nYSrc, // 8
 DWORD dwRop // 9
);

The first parameter identifies the destination device context. If the call to BitBlt() is made
to display a bitmap, this will be the display context. The second and third parameters are
the x- and y-coordinates of the upper-left corner of the destination rectangle. Which is
also the screen location where the upper-left corner of the bitmap is displayed. The fourth
and fifth parameters are the width and height of the bitmap, in logical units. The sixth
parameter is the source device context. In the case of a bitmap display operation, this
parameter holds the memory device context where the bitmap is stored. The seventh and
eighth parameters are the x- and y-coordinates of the source bitmap. Since the blitted
rectangles must be of the same dimensions, as defined by the fourth and fifth parameters,
the seventh and eighth parameters are usually set to zero.

The ninth parameter defines the raster operation code. These codes are called ternary
raster operations. They differ from the binary raster operation codes (ROP2) discussed in
Chapter 6 in that the ternary codes take into account the source, the destination, and a
pattern determined by the brush currently selected in the device context. There are 256
possible raster operations, fifteen of which have symbolic names defined in the
windows.h header file. The raster operation code determines how the color data of the
source and destination rectangles, together with the current brush, are to be combined.
Table 22–2 lists the fifteen raster operations with symbolic names.

The pc graphics handbook 780

Table 22–2
Symbolic Names for Raster Operations

NAME DESCRIPTION
BLACKNESS Fills the destination rectangle using the color associated with index 0 in the

physical palette. The default value is black.
DSTINVERT Inverts the destination rectangle.
MERGECOPY Merges the colors of the source rectangle with the specified pattern using an

AND operation.
MERGEPAINT Merges the colors of the inverted source rectangle with the colors of the

destination rectangle using an OR operation.
NOTSRCCOPY Inverts the bits in the source rectangle and copies it to The destination.
NOTSRCERASE Combines the colors of the source and destination rectangles using an OR

operation, and then inverts the result.
PATCOPY Copies the specified pattern to the destination bitmap.
PATINVERT Combines the colors of the specified pattern with the colors of the destination

rectangle using an XOR operation.
PATPAINT Combines the colors of the pattern with the colors of the inverted source

rectangle using an OR operation. The result of this operation is combined with
the colors of the destination rectangle using an OR operation.

SRCAND Combines the colors of the source and destination rectangles using an AND
operation SRCCOPY Copies the source rectangle directly to the destination
rectangle. This is, by far, the most-used mode in bitblt operations.

NAME DESCRIPTION
SRCERASE Combines the inverted colors of the destination rectangle with the colors of the

source rectangle using an AND operation.
SRCINVERT Combines the colors of the source and destination rectangles using an XOR

operation.
SRCPAINT Combines the colors of the source and destination rectangles using an OR operation.
WHITENESS Fills the destination rectangle using the color associated with index 1 in the physical

palette. The default value is White.

22.3.5 A Bitmap Display Function

Displaying a bitmap is a multistage process that includes the following operations:

1. Creating a memory device context.
2. Selecting the bitmap into the memory device context.
3. Obtaining the bitmap dimensions and converting device units to logical units.
4. Blitting the bitmap onto the screen according to a ternary raster operation code

Many graphics applications can make use of a function that performs all of the previous
operations. The function named ShowBitmap() is used in the Bitmap Demo project on the
book’s software package. The function’s prototype is as follows:

void ShowBitmap (HDC, HBITMAP, int, int, DWORD);
 | ------- | | ----

Windows bitmapped graphics 781

 | | | | |
 1 2 3 4 5

The first parameter is the handle to the device context. The ShowBitmap() function
creates its own memory device context. The second parameter is the handle to the bitmap
that is to be displayed. The third and fourth parameters are the screen coordinates for
displaying the upper-left corner of the bitmap. The fifth parameter is the ternary ROP
code used in blitting the bitmap. If this parameter is NULL then the bitmap is displayed
using the SRCCOPY raster operation. The following is a listing of the ShowBitmap()
function:

void ShowBitmap (HDC hdc, HBITMAP hBitmap, int xStart,
int yStart,\
 DWORD rop3){
BITMAP bm; // BITMAP structure
HDC memoryDc; // Handle to memory DC
POINT ptSize; // POINT for DC
POINT ptOrigin; // POINT for memory DC
int mapMode; // Mapping mode
 // Test for NULL ROP3 code
 if (rop3 == NULL)
 rop3 = SRCCOPY;
 memoryDc = CreateCompatibleDC (hdc); // Memory
device
 // handle
 mapMode = GetMapMode (hdc); // Obtain
mapping
 // mode
 SetMapMode (memoryDc, mapMode); // Set
memory DC
 // mapping
mode
 // Select bitmap into memory DC
 // Note: assert statement facilitates detecting
invalid
 // bitmaps during program development
 assert (SelectBitmap (memoryDc, hBitmap));
 // Obtain bitmap dimensions
 GetObject (hBitmap, sizeof(BITMAP), (LPVOID) &bm);
 // Convert device units to logical units
 ptSize.x = bm.bmWidth;
 ptSize.y = bm.bmHeight;
 DPtoLP (hdc, &ptSize, 1);
 ptOrigin.x = 0;
 ptOrigin.y = 0;
 DPtoLP (memoryDc, &ptOrigin, 1);
 // Bitblt bitmap onto display memory
 BitBlt(hdc, xStart, yStart, ptSize.x, ptSize.y,
memoryDc
 ptOrigin.x, ptOrigin.y, rop3);
 // Delete memory DC with bitmap

The pc graphics handbook 782

 DeleteDC (memoryDc);
}

22.4 Bitmap Manipulations

In addition to displaying a bitmap stored in a disk file, graphics applications often need to
perform other bitmap-related operations. The following are among the most common
operations:

• Creating and displaying a hard-coded bitmap
• Creating a bitmap in heap memory
• Creating a blank bitmap and filling it by means of GDI functions
• Creating a system-memory bitmap which applications can access directly
• Using a bitmap to create a pattern brush

22.4.1 Hard-Coding a Monochrome Bitmap

With the facilities available in Developer Studio for creating bitmaps, the programmer is
seldom forced to hard-code a bitmap. Our rationale for discussing this option is that hard-
coding bitmaps is a basic skill for a graphics programmer, and that it helps you to
understand bitmaps in general.

A monochrome bitmap has one color plane and is encoded in a 1-bit per pixel format.
In Windows, a monochrome bitmap is displayed by showing the 0-bits in the foreground
color and the 1-bits in the background color. If the screen has a white foreground and a
black background, 0-bits in the bitmap are displayed as white pix-els, and vice versa. If
the bitmap is to be blitted on the screen using the BitBlt() function, the action of the bits
can be reversed by changing the raster operation code. This gives the programmer the
flexibility of using either zero or one bits for background or foreground attributes. Figure
22–4 shows a hard-coded monochrome bitmap.

Windows bitmapped graphics 783

Figure 22–4 Hard-Coded,
Monochrome Bitmap

In Figure 22–4 the dark pixels in the image are represented by 0-bits in the bitmap. The
resulting data structure has five bytes per scan line and a total of 10 scan lines. The
illustration shows how eight pixels in the bottom row of the image are represented by 8
bits (1 byte) of the bitmap. The dark pixels are encoded as 0 bits and the light pixels as 1-
bits. In order to display this bitmap so that the letters are black on a white screen
background, the black and white pixels have to be reversed by changing the raster
operation mode from the default value, SCRCOPY, to NOTSCRCOPY, as previously
explained.

Once the bit image of a monochrome bitmap has been calculated, we can proceed to
store this bit-to-pixel information in an array of type BYTE. Windows requires that
bitmaps be word-aligned; therefore, each scan line in the array must have a number of
bytes divisible by 2. In regards to the bitmap in Figure 22–4, you would have to add a
padding byte to each scan line in order to satisfy this requirement. The resulting array
could be coded as follows:

// 0 1 2 3 4
 5

The pc graphics handbook 784

static BYTE hexBits[] = {0×c6, 0×7c, 0×c1, 0×81, 0×f0,
0×0,
 0×c6, 0×7c, 0×c1, 0×83, 0×f8,
0×0,
 0×c6, 0×60, 0×c1, 0×83, 0×18,
0×0,
 0×c6, 0×60, 0×c1, 0×83, 0×18,
0×0,
 0×fe, 0×78, 0×c1, 0×83, 0×18,
0×0,
 0×fe, 0×78, 0×c1, 0×83, 0×18,
0×0,
 0×c6, 0×60, 0×c1, 0×83, 0×18,
0×0,
 0×c6, 0×60, 0×c1, 0×83, 0×18,
0×0,
 0×c6, 0×7c, 0×f9, 0×f3, 0×f8,
0×0,
 0×c6, 0×7c, 0×f9, 0×f1, 0×f0,
0×0};
//
 |
// padding byte ----------
-|

The CreateBitmap() function can be used to create a bitmap given the bit-to-pixel data
array. The function’s general form is as follows:

HBITMAP CreateBitmap(
 int nWidth, // 1
 int nHeight, // 2
 UINT cPlanes, // 3
 UINT cBitsPerPel, // 4
 CONST VOID *lpvBits // 5
);

The first parameter is the actual width of the bitmap, in pixels. In relation to the bitmap in
Figure 22–4, this value is 37 pixels, as shown in the illustration. The second parameter is
the number of scan lines in the bitmap. The third parameter is the number of color planes.
In the case of a monochrome bitmap this value is 1. The fourth parameter is the number
of bits per pixel. In a monochrome bitmap this value is also 1. The fifth parameter is a
pointer to the location where the bitmap data is stored. If the function succeeds, the
returned value is the handle to a bitmap. If the function fails, the return value is NULL.
The following code fragment initializes a monochrome bitmap using the bitmap data in
the hexBits[] array previously listed:

static HBITMAP bmImage1;
.
.
.

Windows bitmapped graphics 785

// Initialize monochrome bitmap
bmImage1 = CreateBitmap (37, 10, 1, 1, hexBits);

Alternatively, a bitmap can be defined using a structure of type BITMAP, listed
previously in this chapter and in Appendix A. Before the bitmap is created, the structure
members must be initialized, as in the following code fragment:

static BITMAP monoBM;
.
.
.
// Initialize data structure for a monochrome bitmap
monoBM.bmType = 0; // must be zero
monoBM.bmWidth = 37; // actual pixels used
monoBM.bmHeight = 10; // scan lines
monoBM.bmWidthBytes = 6; // width (must be word
aligned)
monoBM.bmPlanes=1; // 1 for monochrome bitmaps
monoBM.bmBitsPixel = 1; // 1 for monochrome bitmaps
monoBM.bmBits = (LPVOID) &hexBits; // address of bit
field

When the bitmap data is stored in a structure of type BITMAP, the bitmap can be created
by means of the CreateBitmapIndirect() function. The function’s general form is as
follows:

HBITMAP CreateBitmapIndirect(
 CONST BITMAP *lpbm // 1
);

The function’s only parameter is a pointer to a structure of type BITMAP. If the function
succeeds, the returned value is the handle to a bitmap. If the function fails, the return
value is NULL. The following code fragment uses CreateBitmapIndirect() to initialize a
monochrome bitmap using the bitmap data in the hexBits[] array previously listed:

static HBITMAP bmImage1;
.
.
.
// Initialize monochrome bitmap
bmImage1 = CreateBitmapIndirect (&monoBM);

Whether the bitmap was created using CreateBitmap() or CreateBitmapIndirect(), it can
now be displayed by means of the ShowBitmap() function developed and listed
previously in this chapter.

The pc graphics handbook 786

22.4.2 Bitmaps in Heap Memory

A bitmap can take up a considerable amount of memory or storage resources. For
example, a 1200-by-1200 pixel bitmap encoded in 32-bit color takes up approximately
5.7 Mb. Applications that store large bitmaps in their own memory space can run into
memory management problems. One possible solution is to store large bitmaps in
dynamically allocated memory, which can be freed as soon as the bitmap is no longer
needed. Note that freeing memory where the bitmap is stored does not affect the screen
image.

Several programming techniques can be used to allocate and release heap memory for
a bitmap. The one most suitable depends on the particular needs of each particular
programming problem. In one case you may allocate heap memory for a bitmap during
WM_CREATE message processing, and then use this allocated space to create or copy
different bitmaps during program execution. The allocated memory can then be freed
during WM_DESTROY processing. Another option is to allocate memory at the time it is
required, create or copy the bitmap to this allocated space, and deallocate the memory
when the bitmap is no longer needed.

Many fables and fantastic theories have originated in
the complications and
misunderstandings of Windows memory management.
Although most of these
problems were corrected in Windows 3.1, an entire
programming subculture
still thrives on discussions related to these topics. A
programmer
encountering memory management in Windows finds that
there are three
separate sets of memory allocation and deallocation
operators that serve
apparently identical purposes: the C++ operators new
and delete, the
traditional C operators malloc and free, and the
Windows kernel functions
LocalAlloc(), GlobalAlloc(), LocalFree(), and
GlobalFree().

In Win32 programming, the first simplification is a result of the fact that there is no
difference between the global and the local heaps. Therefore, GlobalAlloc() and
LocalAlloc(), as well as GlobalFree() and LocalFree(), actually perform virtually
identical functions. Because of their greater flexibility we will use GlobalAlloc() and
GlobalFree() instead of new and delete or malloc and free operators from the C++ and C
libraries. Another reason for this preference is that most Windows compilers implement
malloc and new in terms of GlobalAlloc(); therefore, the traditional operators offer no
advantage.

Traditionally, three types of memory are documented as being available to
applications: fixed memory, moveable memory, and discardable memory. The

Windows bitmapped graphics 787

justification for preferring moveable memory disappeared with Windows 95, in which a
memory block can be moved in virtual memory while retaining the same address. For the
same reason, the use of fixed memory no longer needs to be avoided. Discardable
memory is only indicated when the data can be easily recreated, which is not usually the
case with image data structures. In conclusion, fixed memory is usually quite suitable for
dynamically storing bitmaps and other image data.

Note that the terms moveable and movable are both accepted, although movable is
preferred. However, the Windows API contains the constants GMEM_MOVEABLE and
LMEM_MOVEABLE. For this reason we have used the former.

In this section we discuss the bare essentials of memory allocation and deallocation in
Windows. The topic of Windows memory management can easily fill a good-size
volume. Graphics applications are often memory-intensive and may require sophisticated
memory management techniques. A graphics programmer should have a thorough
knowledge of Win32 memory architecture, virtual memory, and heap management. The
book Advanced Windows, by Richter (see Bibliography) has chapters devoted to each of
these topics.

The GlobalAlloc() function is used to allocate memory from the default heap. The
default heap is initially 1Mb, but under Windows, this heap grows as it becomes
necessary. The function’s general form is as follows:

HGLOBAL GlobalAlloc(
 UINT uFlags, // 1
 DWORD dwBytes // 2
);

The first parameter is a flag that determines how memory is allocated to the caller. Table
22–3 lists the most commonly used allocation flags. The second parameter is the number
of bytes of memory to be allocated. If it succeeds, the function returns the handle to the
allocated memory object. If the allocation flag is GMEM_FIXED, the handle can be
directly cast into a pointer and the memory used. If the allocated memory is not fixed,
then it must be locked using GlobalLock() before it can be used by code. The function
returns NULL if the allocation request fails.

The pc graphics handbook 788

Table 22–3
Win-32 Commonly Used Memory Allocation Flags

FLAG MEANING
GMEM_FIXED Allocates fixed memory. This flag cannot be Combined with the

GMEM_MOVEABLE or GMEM_DISCARDABLE flag. The
return value is a pointer to the memory block.

GMEM_MOVEABLE Allocates moveable memory. This flag cannot be combined with
the GMEM_FIXED flag. The return Value is the handle of the
memory object, which is A 32-bit quantity private to the calling
process.

GMEM_DISCARDABLE Allocates discardable memory. This flag cannot be combined
with the flag. Win32-based operating systems ignore this flag.

GMEM_ZEROINIT Initializes memory to 0.
GPTR Combines the GMEM_FIXED and GMEM_ZEROINIT flags.
GHND Combines the GMEM_MOVEABLE and GMEM_ZEROINIT

flags.

The process of creating a bitmap in heap memory and displaying it on the video screen
can be accomplished by the following steps:

1. Dynamically allocate the memory required for the bitmap and the corresponding data
structures.

2. Store the bitmap data and the bitmap dimensions and color information, thus creating a
DIB.

3. Convert the device independent bitmap (DIB) into a device dependent bitmap using
CreateDIBitmap().

4. Display the bitmap using SetDIBitsToDevice().

Suppose you wanted to create a 200-pixel wide bitmap, with 255 scan lines, in 32-bit
color. Since each pixel requires four bytes, each scan line consists of 800 bytes, and the
entire bitmap occupies 204,000 bytes. A BITMAPINFO structure variable is used to hold
the bitmap information. Notice that because this is a true-color bitmap, the RGBQUAD
structure is not necessary. In this case the memory allocation operations can be coded as
follows:

static PBITMAPINFO pDibInfo; // pointer to
BITMAPINFO structure
static BYTE *pDib; // pointer to bitmap
data
.
.
.
pDibInfo = (PBITMAPINFO) LocalAlloc(LMEM_FIXED, \
 sizeof(BITMAPINFOHEADER));
pDib = (BYTE*) LocalAlloc(LMEM_FIXED, 204000);

Windows bitmapped graphics 789

At this point the code has allocated memory for both the bitmap and the
BITMAPINFOHEADER structure variable that is to hold the bitmap format information.
The pointers to each of these memory areas can be used to fill them in. First the bitmap
information:

pDibInfo->bmiHeader.biSize = (LONG)
sizeof(BITMAPINFOHEADER);
pDibInfo->bmiHeader.biWidth = (LONG) 200; // pixel
width
pDibInfo->bmiHeader.biHeight = (LONG) 255; // pixel
height
pDibInfo->bmiHeader.biPlanes = 1; // number
of planes
pDibInfo->bmiHeader.biBitCount = 32; // bits
per pixel

Assume that the bitmap is to represent a blue rectangle with 255 decreasing intensities of
blue, along the scan lines. The code to fill this bitmap can be coded as follows:

int i, j, k; // counters
BYTE shade; // shade of blue
.
.
.
// Fill the bitmap using 32-bit color data
// <--------- 200 pixels (4 bytes each) -------- >
// |
// | ... 255 scan lines
shade = 0;
 for (k = 0; k < 255; k++){ // Counts 255 scan
lines
 for (i = 0; i < 200; i++){ // Counts 200 pixels
 for(j = 0; j < 4; j++) { // Counts 4 bytes
 pDib[((k*800)+(i*4)+0] = shade; // blue
 pDib[((k*800)+(i*4)+1] = 0; // green
 pDib[((k*800)+(i*4)+2] = 0; // red
 pDib[((k*800)+(i*4)+3] = 0; // must be
zero
 };
 };
 shade++;
};

Now that the bitmap data structures have been initialized and the bitmap data entered into
the allocated heap memory, it is time to create the device-dependent bitmap that can be
displayed on the display context. The function used for this purpose is named
CreateDIBitmap(); this name is somewhat confusing since it actually creates a dependent
device from a device-independent bitmap. The function’s general form is as follows:

The pc graphics handbook 790

HBITMAP CreateDIBitmap(
 HDC hdc, // 1
CONST BITMAPINFOHEADER *lpbmih, // 2
 DWORD fdwInit, // 3
 CONST VOID *lpbInit, // 4
 CONST BITMAPINFO *lpbmi, // 5
 UINT fuUsage // 6
) ;

The first parameter is the handle to the device context for which the device dependent
bitmap is to be configured. The second parameter is a pointer to a
BITMAPINFOHEADER structure variable that contains the bitmap data. The third
parameter is a flag that determines how the operating system initializes the bitmap bits. If
this parameter is zero the bitmap data is not initialized and parameters 4 and 5 are not
used. If it is set to CBM_INIT, then parameters 4 and 5 are used as pointers to the data
used in initializing the bitmap bits. The fourth parameter is a pointer to the array of type
BYTE that contains the bitmap data. The fifth parameter is a pointer to a BITMAPINFO
structure that contains the bitmap size and color data. The sixth parameter is a flag that
determines whether the bmiColors member of the BITMAPINFO structure contains
explicit color values in RGB format or palette indices. In the first case the constant
DIB_RGB_COLORS is used for this parameter, and in the second case the constant is
DIB_PAL_COLORS. The function returns the handle to the bitmap if it succeeds, or
NULL if it fails.

In the example that we have been following, the device-dependent bitmap is created as
follows:

static HBITMAP hBitmap; // handle to a bitmap
.
.
.
hBitmap=CreateDIBitmap (hdc,
 (LPBITMAPINFOHEADER) &pDibInfo->bmiHeader,
 CBM_INIT,
 (LPSTR) pDib,
 (LPBITMAPINFO) pDibInfo,
 DIB_RGB_COLORS);

Having obtained its handle, the bitmap can be displayed using the ShowBitmap()
function developed earlier in this chapter. Alternatively, you can use
SetDIBitsToDevice() to set the screen pixels. The function’s general form is as follows:

int SetDIBitsToDevice(
 HDC hdc, // 1
 int XDest, // 2
 int YDest, // 3
 DWORD dwWidth, // 4
 DWORD dwHeight, // 5
 int XSrc, // 6
 int YSrc, // 7

Windows bitmapped graphics 791

 UINT uStartScan, // 8
 UINT cScanLines, // 9
 CONST VOID *lpvBits, // 10
 CONST BITMAPINFO *lpbmi, // 11
 UINT fuColorUse // 12
);

The first parameter is the handle to the display context to which the bitmap is to be
output. The second and third parameters are the x- and y-coordinates of the destination
rectangle, in logical units. This is the screen location where the bitmap is displayed. The
fourth and fifth parameters are the width and height of the DIB. These values are often
read from the corresponding members of the BITMAPINFOHEADER structure variable
that defines the bitmap. The sixth and seventh parameters are the x- and y-coordinates of
the lower-left corner of the DIB. The eighth parameter is the starting scan line of the DIB.
The ninth parameter is the number of scan lines. The tenth parameter is a pointer to the
bitmap data and the eleventh parameter is a pointer to the BITMAPINFO structure
variable that describes the bitmap. The twelfth parameter is a flag that determines
whether the bmiColors member of the BITMAPINFO structure contains explicit color
values in RGB format or palette indices. In the first case the constant
DIB_RGB_COLORS is used, and in the second case the constant DIB_PAL_COLORS.
If the function suc-ceeds the return value is the number of scan lines displayed. The
function returns NULL if it fails.

In the current example, the bitmap can be displayed with the following call to
SetDIBitsToDevice():

SetDIBitsToDevice (hdc, 50, 50,
 pDibInfo->bmiHeader.biWidth,
 pDibInfo->bmiHeader.biHeight,
 0, 0, 0,
 pDibInfo->bmiHeader.biHeight,
 pDib,
 (BITMAPINFO FAR*) pDibInfo,
 DIB_RGB_COLORS);

22.4.3 Operations on Blank Bitmaps

Sometimes an application needs to fill a blank bitmap using GDI functions. The functions
can include all the drawing and text display primitives discussed in previous chapters.
There are several programming approaches to creating a bitmap on which GDI operations
can be performed. The simplest approach is to select a bitmap into a memory device
context and then perform the draw operation on the memory device context. Note that all
the drawing functions discussed previously require a handle to the device context. When
the drawing takes place on a memory DC, the results are not seen on the video display
until the memory DC is blitted to the screen. In this approach the following steps are
required:

1. Select the bitmap into a memory device context using the SelectObject() function.
2. Clear or otherwise paint the bitmap using the PatBlt() function.

The pc graphics handbook 792

3. Perform drawing operations on the memory device context that contains the bitmap.
4. Display the bitmap by blitting it on the screen, typically with BitBlt().

The CreateCompatibleBitmap() function has the following general form:

HBITMAP CreateCompatibleBitmap(
 HDC hdc, // 1
 int nWidth, // 2
 int nHeight // 3
);

The first parameter is the handle to the device context with which the created bitmap is to
be compatible. If the bitmap is to be displayed this parameter is set to the display context.
The second and third parameters are the width and height of the bitmap, in pixels. If the
function succeeds it returns the handle to the bitmap. The function returns NULL if it
fails.

In the following code sample we create a blank, 300 by 300-pixel bitmap, draw a
rectangle and an ellipse on it, and then blit it to the screen. First we start by creating the
blank bitmap:

static HDC aMemDC; // memory device
context
static HBITMAP bmBlank; // handle to a
bitmap
static HGDIOBJ oldObject; // storage for
current object
.
.
// Preliminary operations
aMemDC = CreateCompatibleDC (NULL); // Memory device
handle
mapMode = GetMapMode (hdc); // Obtain mapping
mode
SetMapMode (aMemDC, mapMode); // Set memory DC
mapping mode
// Create the bitmap
bmBlank = CreateCompatibleBitmap (hdc, 300, 300);
oldObject = SelectObject (aMemDC, bmBlank);

Note that we use a generic handle (HGDIOBJ) to store the current handle in the device
context.

There is no guarantee that the bitmap thus created and selected into the device is
initialized. The PatBlt() function can be used to set all the bitmap bits to a particular
attribute or to a predefined pattern. The function’s general form is as follows:

BOOL PatBlt(
 HDC hdc, // 1
 int nXLeft, // 2
 int nYLeft, // 3

Windows bitmapped graphics 793

 int nWidth, // 4
 int nHeight, // 5
 DWORD dwRop // 6
);

The first parameter is the handle to the device context, which can be a memory device
context. The second and third parameters are the x- and y-coordinates of the upper-left
corner of the rectangle to be filled. The fourth and fifth parameters are the width and
height of the bitmap, in logical units. The sixth parameter is one of the following
constants: PATCOPY, PATINVERT, DSTINVERT, BLACKNESS, or WHITENESS.
The constants are defined in Table 22–2. The call returns TRUE if it succeeds and
FALSE if it fails.

Following the current example, the call clears the bitmap and sets all bits to the white
attribute:

PatBlt (aMemDC, 0, 0, 300, 300, WHITENESS);

At this point in the code we can start performing drawing operations on the the memory
device context where the blank bitmap was selected, as in the following bitmap. The only
requirement is that the drawing primitives reference the handle to example:

Ellipse (aMemDC, 10, 10, 210, 110);
Polyline (aMemDC, rectangle, 5);

Once you have finished drawing on the blank bitmap, it can be displayed by means of a
bitblt, as in the following example:

BitBlt(hdc, 50, 50, 300, 300, aMemDC, 0, 0, SRCCOPY);

In this case, the call references both the display context (hdc) and the memory device
context containing the bitmap (aMemDC).

Clean-up operations consist of reselecting the original object to the memory device
context, then deleting the device context and the bitmap.

22.4.4 Creating a DIB Section

The methods described in the preceding section are satisfactory when the bitmap area
requires drawing operations that can be implemented by GDI functions, but code has no
direct access to the bitmap itself. This is due to the fact that CreateCompatibleBitmap()
does not return a pointer to the bitmap data area. The CreateDIBSection() function, first
introduced in Win32 and formalized in Windows 95, allows creating a device-
independent bitmap that applications can access directly.

Note that the original Windows documentation for Win32 contained incorrect
information about the CreateDIBSection() function and the associated DIBSECTION
structure. Some of the errors and omissions were later corrected so that current
documentation is more accurate, although not very clear.

The pc graphics handbook 794

Before CreateDIBSection(), an application would access bitmap data by calling the
GetDIBits() function, which copies the bitmap into a buffer supplied by the caller. At the
same time, the bitmap size and color data is copied into a BITMAPINFO structure from
which the application can read these values. After the bitmap is changed, the SetDIBits()
function is used to redisplay the bitmap. Both functions, GetDIBits() and SetDIBits(),
allow selecting the first scan line and the number of scan lines. When operating on large
bitmaps, this feature makes it possible to save memory by reading and writing portions of
it at a time.

There are several shortcomings to modifying bitmaps at run time using GetDIBits()
and SetDIBits(). The most obvious one is that the system bitmap must be copied into the
application’s memory space, then back into system memory. The process is wasteful and
inefficient. If the entire bitmap is read during the GetDIBits() call, there are two copies of
the same data, thus wasting memory. If it is broken down into regions in order to reduce
the waste, then processing speed suffers considerably. The solution offered by
CreateDIBSection() is to create a bitmap that can be accessed by both the system and the
application. Figure 22–5 shows both cases.

Although CreateDIBSection() provides a better alternative than GetDIBits() and
SetDIBits(), it is by no means the ultimate in high-performance graphics. DirectDraw
methods, discussed starting in Chapter 9, provide ways of accessing video memory
directly and of taking advantage of raster graphics hardware accelerators.

In the following example, we create a DIB section, using the pointer returned by the
CreateDIBSection() call to fill the bitmap, and the bitmap handle to perform GDI
drawing functions on its memory space. The bitmap is 50 pixels wide and 255 scan lines
long. It is encoded in 32-bit true color format. The code starts by defining the necessary
data structures, initializing the variables, and allocating memory.

Windows bitmapped graphics 795

Figure 22–5 Memory Image of
Conventional and DIB Section Bitmaps

HDC aMemDC; // Memory DC
Static HBITMAP aBitmap,
static BYTE* lpBits;
BITMAPINFOHEADER bi;
BITMAPINFOHEADER* lpbi;
HANDLE hDIB;
int shade;
static int BMScanLines; // Bitmap y-dimension
static int BMWidth; // Bitmap x-dimension
.
.
.
// Initialize size variables
BMScanLines = 255;
BMWidth = 50;
// Initialize BITMAPINFOHEADER structure
bi.biSize = sizeof(BITMAPINFOHEADER);
bi.biWidth = BMWidth;
bi.biHeight = BMScanLines;
bi.biPlanes = 1;

The pc graphics handbook 796

bi.biBitCount = 32;
bi.biCompression = BI_RGB;
bi.biSizeImage = 0;
bi.biXPelsPerMeter = 0;
bi.biYPelsPerMeter = 0;
bi.biClrUsed = 0;
bi.biClrImportant = 0;
// Allocate memory for DIB
hDIB = GlobalAlloc (GMEM_FIXED,
sizeof(BITMAPINFOHEADER));
// Initialize bitmap pointers
lpbi = (BITMAPINFOHEADER*) hDIB;
*lpbi = bi;

At this point everything is ready to call CreateDIBSection(). The function’s general form
is as follows:

HBITMAP CreateDIBSection(
 HDC hdc, // 1
 CONST BITMAPINFO *pbmi, // 2
 UINT iUsage, // 3
 VOID *ppvBits, // 4
 HANDLE hSection, // 5
 DWORD dwOffset // 6
);

The first parameter is the handle to a device context associated with the DIB section. The
second parameter is a pointer to a structure variable of type BITMAPINFOHEADER,
which holds the bitmap attributes. The first five members of the BITMAPINFOHEADER
structure are required; the other ones can often be omitted, although it is usually a good
idea to fill in the entire structure. The third parameter is either the constant
DIB_PAL_COLORS or DIB_RGB_COLORS. In the first case the bmiColors array
member of the RGBQUAD structure in BITMAPINFO is a set of 16-bit palette color
indices. In the second case the bmiColors member is not used and the colors are encoded
directly in the bitmap. The fourth parameter is a pointer to a pointer to type VOID that
contains the location of the bitmap values. This parameter is incorrectly documented in
the Windows help files as a pointer to type VOID. If the parameter is not correctly
typecast to (VOID**) the CreateDIBSection() call fails.

The fifth parameter is a handle to a file-mapping object. In file mapping, a physical
file on disk is associated with a portion of the virtual address space of a process. The file-
mapping object is the mechanism that maintains this association. Its main purpose is to
share data between applications and to facilitate access to files. Although file mapping is
a powerful mechanism, it is outside the scope of this book and is not discussed any
further. If no file mapping is used, the fifth parameter is set to NULL, and the sixth one,
which sets the offset of the file mapping object, is set to zero.

Following the current example, the call to CreateDIBSection() is coded as follows:

aBitmap = CreateDIBSection (hdc,

Windows bitmapped graphics 797

 (LPBITMAPINFO)lpbi, // Pointer to
 // BITMAPINFOHEADER
 DIB_RGB_COLORS, // True color in RGB
format
 (VOID**) &lpBits, // Pointer to bitmap
data
 NULL, // File mapping object
 (DWORD) 0); // File mapping object
offset
assert (aBitmap);
assert (lpBits);

The two assertions that follow the call ensure that a valid bitmap and pointer are returned.
If the call succeeds we now have a handle to a bitmap and its address in system memory.
Using the address, we can fill the bitmap. The following code fragment uses the soft-
coded bitmap parameters to fill the entire bitmap, scan line by scan line, with increasing
intensities of blue. The access to the bitmap is by means of the pointer (lpBits) returned
by the previous call.

// Fill the bitmap using 32-bit color data
// <--------- BMWidth * 4--------->
// |
// | ... BMScanLines
shade = 0;
for (k = 0; k < BMScanLines; k++){ // Counts 255
lines
 for (i = 0; i < BMWidth; i++){ // Counts 50
pixels
 for(j = 0; j < 4; j++) { //Counts 4 bytes per
pixel
 lpBits[(k*(BMWidth*4)) + (i*4) +0] = shade; //
blue
 lpBits[(k*(BMWidth*4)) + (i*4) +1] = 0×0; //
green
 lpBits[(k*(BMWidth*4)) + (i*4) +2] = 0×0; //
red
 lpBits[(k*(BMWidth*4)) + (i*4) +3] = 0; //
zero
 };
 };
 shade++;
};

Since we have also acquired the handle to the bitmap, we can use GDI functions to
perform drawing operations on its surface. As described earlier in this chapter, the GDI
functions require that the bitmap be first selected into a memory device context. The
following code fragment shows one possible processing method:

 aMemDC = CreateCompatibleDC (NULL); // Memory device
handle

The pc graphics handbook 798

 mapMode = GetMapMode (hdc); // Obtain
mapping mode
 SetMapMode (aMemDC, mapMode); // Set memory DC
 // mapping mode
 // Select the bitmap into the memory DC
 oldObject = SelectObject (aMemDC, aBitmap);
Drawing operations can now take place, as follows:
// Draw on the bitmap
blackPenSol = CreatePen (PS_SOLID, 2, 0) ;
redPenSol = CreatePen (PS_SOLID, 2, (RGB (0xff, 0x0,
0x0)))
SelectPen (aMemDC, blackPenSol);
Polyline (aMemDC, rectsmall, 5); // Draw a rectangle
SelectPen (aMemDC, redPenSol);
Ellipse (aMemDC, 4, 4, 47, 47); // Draw a circle

You may be tempted to display the bitmap at this time; the display operation, however,
cannot take place until the memory device context has been deleted. In the following
instructions we re-select the original object in the memory device context and then delete
it. We also delete the pens used in the drawing operations.

// Erase bitmap and free heap memory
SelectObject (aMemDC, oldObject);
DeleteDC (aMemDC);
DeleteObject (redPenSol);
DeleteObject (blackPenSol);

Displaying the bitmap can be performed by any of the methods already discussed. In this
code fragment we use the ShowBitmap() function developed earlier in the chapter. A
necessary precaution relates to the fact that some versions of Windows NT place GDI
calls that return a boolean value in a batch for later execution. In this case, it is possible to
attempt to display a DIB section bitmap before all the calls in the GDI batch have been
executed. In order to prevent this problem, it is a good idea to flush the GDI batch buffer
before displaying a DIB section bitmap, as shown in the following code:

GdiFlush(); // Clear the batch buffer
ShowBitmap (hdc, Abitmap, 50, 50, SRCCOPY);

Now that you have finished displaying the bitmap, a tricky problem arises: how to free
the system memory space allocated by CreateDIBSection(). The solution is easy. Since
the bitmap resides in system memory, all we have to do in application code is delete the
bitmap; Windows takes care of freeing the memory. On the other hand, if the
BITMAPINFOHEADER structure was defined in heap memory, your code must take
care of freeing this memory space in the conventional manner. Processing is as follows:

// Erase bitmap and free heap memory
// Note: deleting a DIB section bitmap also frees
// the allocated memory resources

Windows bitmapped graphics 799

DeleteObject (aBitmap); // Delete the bitmap
GlobalFree (hDIB);

Figure 22–6 is a screen snapshot of a program that executes the listed code. The listing is
found in the Bitmap Demo project folder on the book’s software package

Figure 22–6 Screen Snapshot Showing
a DIB Section Bitmap Manipulation

22.4.5 Creating a Pattern Brush

In Chapter 21 we mentioned that applications can create a brush with a hatch pattern
different than the ones predefined in Windows. This is done by using a bitmap to define
the brush pattern. In Windows 95/98 the size of the bitmap cannot exceed 8-by-8 pixels,
but there is no size restriction in Windows NT. The function's general form is as follows:

HBRUSH CreatePatternBrush (HBITMAP hbitmap);

The function's only parameter is a handle to the bitmap that defines the brush. The bitmap
can be created with CreateBitmap(), CreateBitmapIndirect(), or
CreateCompatibleBitmap() functions. It can also be a bitmap drawn using Developer
Studio bitmap editor, or any other similar utility, and loaded with the LoadBitmap()
function. The one type of bitmap that is not allowed is one created with the
CreateDIBSection() function. CreatePatternBrush() returns the handle to the brush if it
succeeds, and NULL if it fails.

The pc graphics handbook 800

Once the handle to the brush has been obtained, the pattern brush is selected into the
device context. Thereafter, all GDI drawing functions that use a brush use the selected
pattern brush. The following code fragment shows the creation of a pattern brush from a
bitmap resource named IDC_BITMAP5. The pattern brush is then used to draw a
rectangle.

static HBITMAP brushBM1; // Handle to a bitmap
static HBRUSH patBrush; // Handle to a brush
.
.
.
brushBM1 = LoadBitmap (pInstance,
 MAKEINTRESOURCE (IDB_BITMAP5);
patBrush = CreatePatternBrush (brushBM1);
SelectBrush (hdc, patBrush);
Rectangle (hdc, 10, 10, 110, 160);
DeleteObject (patBrush);

In displaying solid figures that use a pattern brush, Windows sets the origin of the brush
bitmap to the origin of the client area. The SetBrushOrgEx() function is used to
reposition the brush bitmap in relation to the origin of the client area. This matter was
discussed in Chapter 7 in relation to brush hatch patterns.

22.5 Bitmap Transformations

In addition to manipulating bitmaps, Windows provides functions that transform the
bitmaps themselves. You have already seen that the BitBlt() function allows you to define
a ternary raster operation code that determines how the source bitmap and a pattern are
combined to form the destination bitmap. In this section we discuss the following
transformations that are useful in bitmap programming:

• Painting a bitmap using a raster operation based on the brush selected in the device
context

• Stretching or compressing a bitmap according to the dimensions of a destination
rectangle, a predefined stretch mode, and the selected ternary raster operation code

Windows NT provides two powerful bitmap transforming functions named MaskBlt()
and PlgBlt(). Since the scope of this book includes functions that are available only in
Windows 95/98, these functions are not discussed.

22.5.1 Pattern Brush Transfer

A pattern brush transfer consists of transferring the pattern in the current brush into a
bitmap. The PatBlt() function is used in this case. If the PATCOPY raster operation code
is selected, as is usually the case, the brush pattern is copied to the destination bitmap. If
the PATINVERT raster operation code is used, then the brush and the destination bitmap
are combined by performing a boolean XOR operation. The remaining raster operation

Windows bitmapped graphics 801

codes that are documented for the PatBlt() function with symbolic names (DSTINVERT,
BLACKNESS, and WHITENESS) ignore the brush and are useless in a pattern block
transfer. The raster operation performed by PatBlt() is a binary one since it combines a
pattern and a destination. In theory, any of the raster operations codes listed in Appendix
B that do not have a source operand can be used in PatBlt(), although it may be difficult
to find a useful application for most of them.

Note that there is a not-so-subtle difference between a rectangle filled with a pattern
brush, and a bitmap created by means of a pattern transfer. Although the results can be
made graphically identical by drawing the rectangle with a NULL pen, the possibilities of
further manipulating and transforming a bitmap are not possible with a figure created by
means of a GDI drawing function.

The following code fragment creates a blank bitmap in a memory device context and
fills it with a pattern brush. Since the processing is based on functions already discussed,
the code listing needs little comment.

static HBITMAP brushBM1; // Handle to a bitmap
static HBRUSH patBrush; // Handle to a brush
.
.
.
// Create the brush pattern bitmap from a resource
brushBM1 = LoadBitmap (pInstance,
 MAKEINTRESOURCE (IDB_BITMAP5);
// Create a pattern brush
patBrush = CreatePatternBrush (patBM1);
// Create a memory device context
aMemDC = CreateCompatibleDC (NULL); // Memory DC
mapMode = GetMapMode (hdc); // Obtain mapping
mode
SetMapMode (aMemDC, mapMode); // Set memory DC
 // mapping mode
// Create the bitmap
bmBlank = CreateCompatibleBitmap (hdc, 300, 300);
oldObject = SelectObject (aMemDC, bmBlank);
// Select the pattern brush into the memory DC
SelectBrush (aMemDC, patBrush);
// Blit the pattern onto the memory DC
PatBlt (aMemDC, 0, 0, 300, 300, PATCOPY);
// Display the bitmap
BitBlt(hdc, 50, 50, 300, 300, aMemDC, 0, 0, SRCCOPY);
// Clean-up
SelectObject (aMemDC, oldObject);
DeleteDC (aMemDC);
DeleteObject (bmBlank);

The demonstration program named Bitmap Demo, in the book’s software package,
displays a pattern bitmap using code very similar to the one listed.

22.5.2 Bitmap Stretching and Compressing

The pc graphics handbook 802

Occasionally, an application must fit a bitmap into a destination rectangle that is of
different dimensions, and even of different proportions. In order to do this, the source
bitmap must be either stretched or compressed. One possible use of bitmap stretching or
compressing is adapting imagery to a display device that has a different aspect ratio than
the one for which it was created. The method can also be used to accommodate a bitmap
to a resizable window, as well as for producing intentional distortions, such as simulating
the effect of a concave or convex mirror, or other special visual effects.

The StretchBlt() function, one of the more elaborate ones in the API, allows stretching
or compressing a bitmap if this is necessary to fit it into a destination rectangle.
StretchBlt() is a variation of BitBlt(); therefore, it is used to stretch or compress and later
display the resulting bitmap. StretchBlt() is also used to reverse (vertically) or invert
(horizontally) a bitmap image. The stretching or compressing is done according to the
stretching mode attribute selected in the device context. The stretch mode is selected by
means of the SetStretchBltMode() function, which has the following general form:

int SetStretchBltMode(
 HDC hdc, // 1
 int iStretchMode // 2
);

The first parameter is the handle to the device context to which the stretch mode attribute
is applied. The second parameter is a predefined constant that corresponds to one of four
possible stretching modes. All stretching modes have an old and a new name. Table 22–
4, on the following page, lists and describes the stretching modes. The new, preferred
names are listed first.

Note that, on many systems, the entire discussion on stretch modes is purely academic,
since Microsoft has reported a Windows 95 bug in which the StretchBlt() function always
uses the STRETCH_DELETESCANS mode, no matter which one has been selected by
means of SetStretchBltMode(). The Microsoft Knowledge Base article describing this
problem is number Q138105. We have found no other Microsoft Knowledge Base update
regarding this matter.

The actual stretching or compression of the bitmap is performed by means of the
StretchBlt() function. The function’s general form is as follows:

BOOL StretchBlt(
 HDC hdcDest, // 1
 int nXOriginDest, // 2
 int nYOriginDest, // 3
 int nWidthDest, // 4
 int nHeightDest, // 5
 HDC hdcSrc, // 6
 int nXOriginSrc, // 7
 int nYOriginSrc, // 8
 int nWidthSrc, // 9
 int nHeightSrc, // 10
 DWORD dwRop // 11
);

Windows bitmapped graphics 803

Table 22–4
Windows Stretching Modes

NAME DESCRIPTION
STRETCH_ANDSCANS
BLACKONWHITE

Performs a logical AND operation using the color values for the
dropped pixels and the retained ones. If the bitmap is a
monochrome bitmap, this mode preserves black pixels at the
expense of whiteones.

STRETCH_DELETESCANS
COLORONCOLOR

Deletes the pixels. This mode deletes all dropped pixel lines
without trying to preserve their information. This mode is
typically used to preserve color in a color bitmap.

STRETCH_HALFTONE
HALFTONE

Maps pixels from the source rectangle into blocks of pixels in
the destination rectangle. The average color over the destination
block of pixels approximates the color of the source pixels.
Windows documentation recommends that after setting the
HALFTONE stretching mode, an application must call the
SetBrushOrgEx() function in order to avoid brush
misalignment.

STRETCH_ANDSCANS
WHITEONBLACK

Performs a logical OR operation using the color values for the
dropped and preserved pixels. If the bitmap is a monochrome
bitmap, this mode preserves white pixels at the expense of black
ones.

The first parameter is the destination device context and the sixth parameter is the source
device context. The second and third parameters are the x- and y-coordinates of the
upper-left corner of the destination rectangle. The fourth and fifth parameters are the
width and height of the destination rectangle. The seventh and eighth parameters are the
x- and y-coordinates of the upper-left corner of the source rectangle. The ninth and tenth
parameters are the width and height of the source rectangle. The eleventh parameter is
one of the ternary raster operation codes listed in Table 22–2 and in Appendix B.

Although the function's parameter list is rather large, it can be easily simplified.
Parameters 1 through 5 are the handle to the device context and the location and size of
the destination rectangle. Parameters 6 through 10 contain the same information in
regards to the source rectangle. The last parameter defines the raster operation code,
which is usually set to SRCCOPY.

If the source and destination width parameters have opposite signs, the bitmap is
flipped about its vertical axis. In this case the left side of the original bitmap is displayed
starting at the right edge. If the source and destination height parameters have opposite
signs the image is flipped about its horizontal axis. If both, the width and the height
parameters have opposite signs, the original bitmap is flipped about both axes during the
transfer. Figure 22–7 shows the image changes in each case.

The pc graphics handbook 804

Figure 22–7 Horizontal and Vertical
Bitmap Inversion with StretchBlt()

The following example takes an existing bitmap and stretches or compresses it to fit the
size of the client area. Code assumes an existing bitmap resource named IDB_BITMAP2.
The code starts by creating a bitmap from the resource and storing its dimensions in a
structure variable of type BITMAP. The dimensions of the client area, which serves as a
destination bitmap, are also retrieved and stored in a structure variable of type RECT.

BITMAP bm; // Storage for bitmap data
RECT rect; // Client area dimensions
Static HBITMAP hstScope; // Handle for a bitmap
. . .
// Create bitmap from resource
hstScope = LoadBitmap (pInstance, MAKEINTRESOURCE
(IDB_BITMAP2);
// Get bitmap dimensions into BITMAP structure variable
GetObject (hstScope, sizeof(BITMAP), &bm);
// Get client area dimensions
GetClientRect (hwnd, &rect) ;

Windows bitmapped graphics 805

The StretchBlt() function requires two device contexts: one for the source bitmap and
another one for the destination. In this case we create a memory device context and select
the bitmap into it. This device context is the source rectangle. The code also sets the
stretch mode.

aMemDC = CreateCompatibleDC (hdc);
SelectObject (aMemDC, hstScope);
SetStretchBltMode (hdc, STRETCH_DELETESCANS);

All that is left is to display the bitmap using StretchBlt(). Once the bitmap is blitted, the
destination device context can be deleted. If the bitmap is not necessary, it can also be
erased at this time.

StretchBlt(hdc, // Destination DC
 0, 0, rect.right, rect.bottom, // dest.
dimensions
 aMemDC, // Source DC
 0, 0, bm.bmWidth, bm.bmHeight, // Source
dimensions
 SRCCOPY);
DeleteDC (aMemDC);

22.6 Bitmap Demonstration Program

The program named BMP_DEMO, located in the Bitmap Demo project folder of the
book’s software package, is a demonstration of the bitmap operations and functions
discussed in this chapter. The Operations menu contains commands that correspond to all
the bitmap programming primitives, manipulations, and transformations discussed in the
text.

The pc graphics handbook 806

Part IV
DirectX Graphics

Chapter 23
Introducing DirectX

Topics:

• Why was DirectX created
• 2D and 3D graphics
• DirectX components and features
• Obtaining and installing the DirectX SDK
• Overview of the DirectX software components
• Testing the SDK installation

In this chapter we start our discussion about graphics programming with DirectX. We
begin the chapter with a short review of Microsoft’s reasons for creating the DirectX
package and describe its fundamental features. Then we look at obtaining, installing, and
testing the DirectX software.

23.1 Why DirectX?

Computer games and other high-performance graphics programs require interactive
processing, animation, and realistic object rendering, all of which rapidly consume CPU
cycles and video resources. Game programmers in particular have traditionally pressed
the boundaries of machine performance in order to improve the quality of their products.

In the PC world the first computer games were developed in DOS. Because DOS is a
single-user single-task operating system, a DOS program can use any operation that is
valid in the machine’s instruction set. In other words, a DOS application is in total
control of the machine hardware: it is “the god of the machine.” Because of this power, a
DOS program can accidentally (or intentionally) destroy files and resources that are not
its own, including the operating system itself.

As the PC evolved into a serious business platform, it became a major concern that an
application could destroy code, erase data belonging to other programs, or create havoc
with the operating system itself. In the business world a computer en-vironment that is
intrinsically unsafe is intolerable. Who would ask a client to trust its valuable business
information and processing operations to such a machine? If the PC were to be used in
business, this situation had to be resolved.

The problem first had to be addressed in hardware. An operating system capable of
providing a safe and reliable environment requires hardware components that support this
protection. The 286 was the first Intel microprocessor that came equipped with such
hardware features. The 286 CPU allows the operating system to detect and prevent access
to restricted memory areas and to disallow instructions that are considered dangerous to
the integrity of other programs, or to the environment’s stability. These special features

made possible an operating system environment generically called “protected mode.”
Protected mode functions were expanded and enhanced in the 386, the 486, and in the
various versions of the Pentium.

In the mid eighties Microsoft and other companies started developing PC operating
systems that would execute in protected mode. The results were several new operating
systems, of which Windows has been the only major survivor. Although safer and more
reliable, Microsoft Windows imposes many restrictions on applications. In the original
versions of Windows, games and other high-performance graphics applications could not
access the hardware resources directly. This resulted in applications with much less
performance and limited functionality. The natural consequence of this situation was that
game programmers continued to exercise the craft in DOS. Windows users had to switch
to the DOS mode in order to run games, simulations, and other high-end graphical
programs. In the PC this state-of-affairs created a major contradiction: Windows was a
graphical operating system in which graphics applications would execute with marginal
performance.

Microsoft attempted to remedy the situation by providing programmers with limited
access to hardware and system resources. The goal was to allow applications sufficient
control of video hardware and other resources so as to improve performance and control,
and to do it in a way that does not compromise system stability. The first effort in this
direction was a product named WinG, in reference to Windows for Games. WinG, which
was first made available in 1994, required Windows 3.1 in Win32 mode. WinG’s main
feature was to allow game programmers to rapidly transfer bitmaps from system memory
into video memory. The result was a host of new Windows games that executed with
performance comparable to DOS. The immediate success of WinG prompted Microsoft
to develop a more elaborate product, called the Game Software Development Kit, or
Game SDK.

23.1.1 From the Game SDK to DirectX 8.1

The first version of the Game SDK made evident that the usefulness of direct access to
video memory and hardware extended beyond computer games. Many other multimedia
applications, and other graphics programs that required high performance could also
benefit from these enhanced facilities. Consequently, the new version of the Game SDK
was renamed DirectX 2. Other versions later released were named DirectX 3, DirectX 5,
DirectX 6, DirectX 7, and currently DirectX 8.1. Notice that no DirectX 4 version exists.
DirectX version 8.1 SDK, released in the year 2001, is the one discussed in this book. A
beta versions of DirectX 9 was released in May 2002.

The functionality of the DirectX is available to applications running in Windows 95,
Windows 98, Windows Me, Windows 2000, and Windows XP. To a limited extent
DirectX is also available in the various versions of Windows NT. In the more recent
versions of Windows DirectX is furnished as part of the operating system software. This
means that applications running under Windows are able to execute programs that use
DirectX without the loading of additional drivers or other support software. Each new
version of DirectX is provided with a setup utility that allows upgrading a compatible
machine.

The pc graphics handbook 810

23.1.2 2D and 3D Graphics in DirectX

In previous versions of the DirectX SDK the 2D graphics interface was referred to as
DirectDraw, while 3D graphics were part of the Direct3D interface. Starting with DirectX
8.1 DirectDraw and Direct3D were merged into a single interface. The Microsoft
documentation for DirectX 8.1 de-emphasizes the presence of a 2D and a 3D component
and refers to both of them as DirectX graphics. Furthermore, most of the DirectX 8.1
SDK documentation and tutorials are about 3D, while the 2D topics, that were previously
discussed in great detail, are not included. It is difficult to ponder why 2D graphics topics
were excluded from the DirectX 8.1 SDK documentation. One could guess that the 3D
element of DirectX has achieved such complexity that a simple matter of space forced the
documentation designers to leave out the 2D part. The decision may also be related to the
fact that the DirectX 8.1 package includes the DirectX 7 documentation.

As a consequence of this attitude, Microsoft’s DirectX 8.1 documentation often
equates DirectX graphics with Direct3D, as if 2D graphics no longer existed in DirectX.
Whatever reasons Microsoft had for leaving 2D graphics out of the SDK documentation,
the fact remains that, in practical programming, 2D graphics cannot be ignored. In the
first place, many graphics applications do not required 3D-level modeling or rendering:
sophisticated and powerful graphics can be obtained in 2D. Often animations are easier to
implement and show better performance in 2D than in 3D graphics. Many successful
computer games and other high-level graphics applications are implemented in 2D.
Furthermore, most 3D applications rely heavily on 2D graphics for rendering
backgrounds, sprites, and other non-3D elements. Another reason for separating 2D and
3D graphics is that the learning curve for 3D graphics is quite steep. 2D provides a
reasonable introduction to a complex and sometimes intimidating technology. For all
these reasons, in this book we maintain the distinction between the 2D and the 3D
components of DirectX.

23.1.3 Obtaining the DirectX SDK

Several versions of the DirectX SDK are available for download, at no cost, on the
Microsoft web site located at:

http://msdn.microsoft.com/directx

DirectX has grown in size during its evolution. The current version (8.1 at the present
time) takes up approximately 390 Mb. Downloading the SDK, even in compressed
format, can take considerable time online.

23.2 DirectX 8.1 Components

The DirectX 8.1 SDK includes the following components:

• DirectX Graphics combines the DirectDraw and Direct3D components of previous
versions of DirectX. This single API can be used for either 2D or 3D graphics

Introducing directx 811

programming. DirectX Graphics includes the Direct3DX utility library that simplifies
many graphics programming tasks.

• DirectX Audio combines the DirectSound and DirectMusic components of previous
DirectX versions. All audio programming is done with this single API.

• DirectPlay makes possible connecting applications over a modem link or a network.
• DirectInput provides support for input devices including joystick, mouse, keyboard, and

game controllers. It also provides support for feedback game devices.
• DirectShow provides capture and playback of multimedia streams.
• DirectSetup provides a simple installation procedure for DirectX. It simplifies the

updating of display and audio drivers and makes sure that there are no software or
hardware conflicts.

• AutoPlay allows creating a CD ROM disk that installs automatically once inserted in
the drive. AutoPlay is not unique to DirectX since it is part of the Microsoft Win32
API.

This book is concerned mostly with DirectX graphics. The other components of DirectX
are discussed only incidentally.

23.3 New Features in DirectX 8

The DirectX documentation lists the following new features for the SDK:

• Integration of DirectDraw and Direct3D into a single DirectX Graphics component.
This approach supposedly makes it easier to use and to support the latest graphics
hardware.

• DirectMusic and DirectSound are more integrated. Wave files and other resources can
now be loaded by the DirectMusic loader, and played through the DirectMusic
performance, synchronized with MIDI notes.

• DirectPlay has been updated to increase its capabilities and improve its ease-of-use.
DirectPlay now supports voice communication between players.

• DirectInput introduces a major new feature called action mapping. Action mapping
enables you to establish a connection between input actions and input devices. The
connection does not depend on the existence of particular device objects.

• DirectShow is now part of DirectX and has been updated.
• You can use the DirectX Control Panel Application to switch between the debug and

retail builds of DirectInput, Direct3D, and DirectMusic.
• The DirectX 8.1 SDK includes several new sample programs with the corresponding

source code and development tools.

Version 8.1 of DirectX contains the following new features:

• Added new Direct3D samples (cull, lighting, volume fog, self-shadowing and enhanced
usage of D3DX in the samples).

• Continued improvement of the D3Dx documentation.
• SDK contains a graphics screensaver framework.
• A MView mesh utility, useful for previewing meshes, normals, etc.
• DirectX AppWizard for Visual C++ v6.0.

The pc graphics handbook 812

• DirectX error lookup tool providing error lookup for Directx 8.x interfaces only. There
is also an error lookup function you may use in your application.

The SDK screensaver framework is modeled after the graphics sample framework. It
provides multi-monitor support, a feature the standard graphics sample framework does
not privide.

23.3.1 Installing the DirectX SDK

DirectX 8.1 contains an installation utility that loads and sets up the software on the
target system. Microsoft recommends that any previous versions of the SDK be
uninstalled before the setup program is executed, but take into account that only the most
recent versions of the DirectX SDK are equipped with uninstall utilities. The SDK
installs to a default folder C:\DXSDK. Certain uncommon features of the SDK directory
structure are designed for compatibility with Microsoft Developers Network (MSDN)
Platform SDK, which duplicates most of DirectX 8.1.

If the SDK is in a CD ROM the installation will begin automatically when the disk is
recognized. If not you can execute the install application located in the DirectX main
directory. Figure 23–1 shows the initial screen of the DirectX 8.1 installation program.

Figure 23–1 DirectX 8.1 Installation
Main Screen

To install the SDK you double-click on the Install DirectX 8.1 SDK option. The
software then presents the Microsoft license agreement, which the user must accept, and
continues by offering three installations modes: complete, custom, and runtime only. The
first option installs all SDK files in your system and updates the system-level support
software. The second option allows choosing the SDK components to be installed in your
machine. This option displays a screen containing check boxes for each installation
component that can be selected, as shown in Figure 23–3.

Introducing directx 813

Figure 23–2 DirectX 8.1 Custom
Installation Screen

The custom installation option may allow you to save some hard-disk space by excluding
components that will not be used. For example, if you do not plan to develop Visual
Basic applications that use DirectX you may de-select these options, as in Figure 23–2. If
options not originally installed are needed later, you may run the custom installation
again.

As the DirectX installation continues, another screen is displayed which offers the
option of installing the debug or the retail version of the DirectX dynamic-link libraries
(DLLs). This screen is shown in Figure 23–3.

Figure 23–3 DirectX 8.1 Retail or
Debug Runtime Selector

Selecting the debug version installs both debug and retail DLLs on your system. The
debug DLLs have additional code that displays error messages while your program is
executing. In this case errors are described to a greater detail. On the other hand, the
debug DLLs execute more slowly than the retail DLLs. Programmers working in Visual

The pc graphics handbook 814

C++ can configure their system so that debug output is displayed in a Window, in a
second monitor, or even in another computer. You can toggle between DirectX retail and
debug system components in Direct3D and DirectInput by selecting the corresponding
box in the DirectX Properties dialog box. This utility is activated by clicking the DirectX
icon in the Windows Control Panel.

23.3.2 Compiler Support

DirectX 7 documentation states that the SDK is compatible with Microsoft Visual C++
version 4.2 and later, as well as with Watcom 11.0 and Borland C Builder 3 and 4.
However, documented compiler support in DirectX 8.1 is limited to Visual Studio 6.0 or
higher. All sample programs in DirectX 8.1 were developed with Visual Studio 6.0.
Visual C++ 6.0 project files (.dsp) are included in the sample code and demonstration
programs contained in the package.

23.3.3 Accessing DirectX Programs and Utilities

You may inspect the various components of the SDK by navigating through the Windows
toolbar Start button, selecting Programs, then Microsoft DirectX 8.1 SDK, as shown in
Figure 23–4.

Figure 23–4 Navigating to the DirectX
8.1 Programs and Utilities

The DirectX executable files are signaled by the x-shaped DirectX logo or by a custom
icon. You can execute the programs by clicking the corresponding icon.

If you are planning on developing DirectX software it may be a good idea to create a
desktop item for the DirectX 8.1 documentation utility, which is actually the Windows
HTMLHelp viewer. This can be accomplished by right-clicking and dragging the item

Introducing directx 815

named DirectX Documentation (Visual C++) from the program list onto the desktop.
When the right mouse button is released, a menu box with several options is displayed.
Select the option labeled Create Shortcut(s) Here. Figure 23–5 shows the DirectX 8.1
documentation using the HTMLHelp viewer utility.

Figure 23–5 DirectX 8.1
Documentation Utility

Table 23–1 lists the directory layout of the DirectX 8.1 CD ROM.

The pc graphics handbook 816

Table 23–1
DirectX 8.1 CD ROM Directory Layout

\Bin
 \DXUtils High level DirectX applications & tools.
 \AppWizard
DirectX 8.1 application Wizard that can be plugged into Microsoft Visual C++ 6.0. The
AppWizard creates a minimal C++ template application that optionally integrates Direct3D,
DirectInput, DirectMusic, DirectSound, and DirectPlay to work.

\Doc
 Reference documentation for the DirectX 8.1 APIs. This documentation must be viewed with
Windows HTMLHelp.

\Essentls
 \DMusProd (DirectMusic Producer)
The authoring tool for DirectMusic. Allows composers and sound designers to use the interactive
and variable resources of DirectMusic along with the consistent sound performance of DLS. The
DirectMusic Producer setup program and all files are located here.

\Extras
 \Direct3D
Skinning exporter tools
\DirectShow

 \DVDBoilerplate
Contains additional media that can be used with DirectShow and the DirectShow Editing Services
(DES) interfaces.

 \Documentation
DirectX 7 HTMLHelp Documentation for English and Japanese.
Also contains DirectX 7 Documentation in Microsoft Word format.
\Symbols

 Directories of DirectX 8.1 symbol files for Win9x, Win2000 and WinXP (retail and debug for
each).

\Include
 DirectX 8.1 include files for DirectX core components.
\Lib
 DirectX 8.1 library files for DirectX core components.
\License
 Text versions of the DirectX SDK and End User License Agreements and the Redistributable
License Agreement.

\Redist
 Redistributable versions of the DirectX 8.1 Runtime.
\Samples
 Sample code and sample binaries. Most samples can be accessed from the Start menu when
installed via the downloaded InstallShield setup.

\SDKDev
 Contains the runtime installs that are installed with the SDK.
They are English only and contain both debug and retail DirectX 8.1 system components that can
be “switched” between retail and debug without reinstalling.

\Suppport

Introducing directx 817

 Contains support tools required for the SDK installation.
The folder can be deleted following installation.

\System32
 Contains support tools required for the SDK installation. This folder can also be deleted following
installation.

23.4 Testing the Installation

The DirectX SDK contains several diagnostic tools that provide information about the
DirectX components installed in the system and tests that the various DirectX
components are working properly. The easiest way to access the diagnostic utility is by
double-clicking on the DirectX propeller-shaped icon in the Windows Control Panel. The
DirectX diagnostic program, named directx, is located in the \bin\DXUtils folder which is
located in the DirectX installation directory, by default named DXSDK. Alternatively,
the program can be executed by clicking the directx program icon. Figure 23–6 shows the
initial screen of the DirectX Properties Dialog box.

Figure 23–6 DirectX Properties
Dialog Box

The Properties Dialog box access to the following DirectX components:

• DirectMusic
• DirectPlay
• DirectSound
• DirectX

The pc graphics handbook 818

• Direct3D
• DirectDraw
• DirectInput

You can move to the different components by clicking the tabs. The DirectX Properties
Dialog contains a button labeled DxDiag… (see Figure 23–6) which activates the
diagnostic function. It is the diagnostic utility that provides the most information about
the DirectX API components and drivers installed on the system. It also enables you to
test the system capabilities and to selectively enable and disable some hardware
acceleration features. The information provided by the diagnostic tool can be saved to a
text file for later reference. Clicking the DxDiag… button produces the screen shown in
Figure 23–7, on the following page.

The display screen of the DirectX Diagnostic Tool utility changes according to the
system configuration. The one shown in Figure 23–10 corresponds to a machine
equipped with two video systems. Information regarding one of them is found in the
Display1 tab, and the other one in the Display2 tab. By clicking the Next Page button you
can visit each tab page in succession. Figure 23–8, on the following page, shows the
Display1 screen in one of the author’s machines.

Figure 23–7 DirectX Diagnostic
Utility

Introducing directx 819

Figure 23–8 DirectX Diagnostic
Utility Display Test

The Display function of the DirectX Diagnostic Tool provides information about the
display device, the installed drivers, and the DirectX features available in the hardware. It
also provides tests for the supported hardware features. Notice that the machine tested
does not support AGP (Accelerated Graphics Port) texture acceleration.

Clicking the corresponding buttons allows testing DirectDraw and Direct3D
functionality in the hardware. Figure 23–9 shows the results of the DirectDraw test on the
same machine.

Figure 23–9 Testing DirectDraw
Functionality

The pc graphics handbook 820

The first note in the bottom window shows that no problems were detected with the
installed drivers or the hardware features. The Test Direct3D button performs similar
functions for the 3D features. It is usually a good idea to run all available hardware tests,
especially if the system is to be used in DirectX software development.

Introducing directx 821

Chapter 24
DirectX and COM

Topics:

• Fundamentals of object orientation
• Review of C++ indirection
• COM in DirectX
• Creating the COM object
• Accessing the COM Object

The first hurdle in learning DirectX programming relates to understanding Microsoft’s
Component Object Model (COM). The COM is a foundation for an object oriented
system, at the operating system level, which supports and promotes the reuse of
interfaces. COM originated as a support for Windows object linking and embedding
(OLE). The COM has often been criticized as being difficult to understand and use. But
as DirectX programmers we have no choice in the matter: DirectX is based on COM.

The DirectX programmer deals with the COM only superficially. It is not necessary
for the programmer to know how to implement COM functionality, but just how to use it.
But even then, understanding COM requires knowledge of some of the fundamentals of
object orientation and some notion of C++ indirection. We start with a review of these
concepts.

24.1 Object Orientation and C++ Indirection

This section is intended as a review of some C++ concepts on which the COM is based. It
can be skipped if you are already familiar the basics of object orientation, as well as with
pointers, double indirection, and virtual functions.

24.1.1 Indirection Fundamentals

One of the most unique features of C and C++ is their extensive use of indirection. Other
programming languages, such as Pascal, Ada, and PL/I, implement pointer variables,
however, C and C++ do so in a unique way. This uniqueness is particularly evident in
how C and C++ treat pointers to void, pointers to functions, pointers to objects, and
pointers to pointers. In C++ the use of pointers is necessary in implementing inheritance
and runtime polymorphism. Only with a thorough understanding of pointers will the C++
programmer be able to take advantage of all the power and flexibility of object
orientation.

The following short program uses pointers to transfer a string from one buffer into
another one.

#include <iostream.h>
main(){
 char buffer1[] = "This is a test"; // buffer1 is
initialized
 char buffer2[20]; // buffer2 is
reserved
 char* buf1_ptr; // One pointer
variable
 char* buf2_ptr; // A second
pointer variable
// Set up pointers to buffer1 and buffer2. Note that
since array
// names are pointer constants, we can equate the
pointer variables
// to the array name. However, we cannot say: buf1_ptr
= &buffer1;
 buf1_ptr = buffer1;
 buf2_ptr = buffer2;
// Proceed to copy buffer1 into buffer2
 while (*buf1_ptr) {
 *buf2_ptr = *buf1_ptr; // Move character using
pointers
 buf1_ptr++; // Bump pointer to
buffer1
 buf2_ptr++; // Bump pointer to
buffer2
 }
 *buf2_ptr = NULL; // Place string terminator
// Display both buffers to check program operation
 cout << "\n\n\n"
 << buffer1 << "\n"
 << buffer2 << "\n\n";
 return 0;
}

The code has several peculiarities, for example, the statements

 char* buf1_ptr;
 char* buf2_ptr;

declare that buf1_prt and buf2_ptr are pointer variables to variables of type char. If the
statements had been:

 char *buf1_ptr;
 char *buf2_ptr;

the results would have been identical since C and C++ allow this and other syntax
variations. Placing the asterisk close to the data type seems to emphasize that the pointer
is a pointer to a type. However, if we were to initialize several variables simultaneously
we would have to place an asterisk before each variable name, either in the form:

Directx and com 823

 char* buf_ptr1, * buf_ptr2;

or in the form:

 char *buf ptr1, *buf ptr2;

Either syntax seems to favor the second style.
Once a pointer variable has been created, the next step is to initialize the pointer

variables (in this case buf_ptr1 and buf_ptr2) to the address of the first byte of the data
areas named buffer1 and buffer2. Someone familiar with the use of the & operator to
obtain the address of a variable may be tempted to code:

buf1_ptr = &buffer1; // INVALID FOR ARRAYS

However, in C and C++ an array name is an address constant. Therefore, this expression
is illegal for arrays, but legal and valid for any other data type. In the case of an array we
must initialize the pointer variable with an expression such as:

buf1_ptr = buffer1;

We again overload the * symbol when we need to address the characters pointed to by the
pointer variable. As is the case in the expressions:

while (*buf1_ptr)
{
 *buf2_ptr = *buf1_ptr;
 buf1_ptr++;
 buf2_ptr++;
}
*buf2_ptr = NULL;

The process of accessing the value of the target variable by means of a pointer is called
dereferencing. The asterisk symbol (*) is also used in dereferencing a pointer. In this case
it precedes the name of the pointer variable and is sometimes called the indirection
operator. For example, if prt1 is a pointer to the integer variable var1, which holds the
value 22, then the following statement displays this value:

cout << *ptr1;

The pc graphics handbook 824

24.1.2 Pointers to Pointers

The concept of double indirection is familiar to most C/C++ programmers. In this case a
pointer variable is used to hold the address of another pointer variable. For example:

int value1 = 20;

We can now create and initialize a pointer to the variable value1:

int *ptr = &value1;

and another pointer variable to hold the address of the first pointer:

int **pptr = &ptr;

Now the value of the variable value1 can be accessed directly or by dereferencing the
pointer variable or the pointer to a pointer variable:

value1 = 50;

or

*ptr = 55;

or

**pptr = 60;

In Hungarian notation the prefix p is usually assigned to simple pointer variables and pp
to pointers to pointers.

In COM functions are accessed through a pointer to an interface. To invoke the
function you use essentially the same syntax that you would to invoke a pointer to a C++
function. For example, to invoke the IAnInterface::DoIt you would use the following
syntax.

IAnInterface *pAnIface;
...
pAnIface->DoIt(...);

The need for a second level of indirection results from the fact that to use a function you
must first obtain an interface pointer. In order to do so, you declare a variable as a pointer
to the desired interface, and pass the address of the pointer variable to the method. In
other words, what you pass to the method is the address of a pointer. When the method

Directx and com 825

returns, the variable (of type pointer to pointer) will point to the requested interface. You
use this pointer to call any of the interface’s functions.

24.1.3 Pointers to Functions

The Intel x86 family of microprocessors supports indirect jumps and calls. Indirect access
to code is achieved either through a register or memory operand, or through both
simultaneously. One commonly used technique of indirect access to code is by means of
a memory table which holds a set of addresses to various routines. An offset value is
added to the address of the start of the table to determine the destination for a particu-lar
jump or call.

C++ implements code indirection by means of pointers to functions. Since a function
address is its entry point, this address can be stored in a pointer and used to call the
function. When these addresses are stored in an array of pointers, then the resulting
structure is called a call table. Jump and call tables are sometimes called dispatch tables
by C and C++ programmers.

The implementation of pointers to functions and dispatch tables in C and C++ requires
a special syntax. In the first place, a pointer to a function has a type that corresponds to
the data type returned by the function and is declared inside parentheses. For example, to
declare a function pointer named fun_ptr, which receives two parameters of int type in
the variables named x and y, and returns void, you would code:

void (*fun_ptr) (int x, int y);

In this special syntax, the parentheses have the effect of binding to the function name, not
to its data type. If you were to remove the parentheses, the result would be a pointer to a
function that returns type void. Note that the previous line creates a function pointer that
is not yet initialized. This pointer can be set to point to any function that receives two int-
type parameters and returns void. For example, if there was a function named Fun1 with
these characteristics we could initialize the function pointer with the statement:

fun_ptr = Fun1;

C and C++ compilers assume that a function name is a pointer to its entry point, thus the
address of (&) operator is not used. Once the function pointer is initialized, we can access
the function Fun1 with the statement:

(*Fun1)(6, 8);

In this case we are passing to the function the two integer parameters, in the conventional
manner.

The pc graphics handbook 826

24.1.4 Polymorphism and Virtual Functions

Run-time polymorphism is also called late or dynamic binding. This topic is at the core of
object-oriented programming since it provides a powerful mechanism for achieving
several very desirable properties: reusability, isolation of program defects, and the
component-based architecture previously discussed. The fundamental notion of dynamic
binding is that the method to be executed is determined when the program runs, not when
it is compiled. Suppose a class hierarchy which includes a base class named B and
several derived classes named D1, D2, and D3 respectively. Also assume that there is a
method named M() in the base class, which is inherited and perhaps modified in the
derived classes. We now implement a pointer named ptr to the method in the base class.
In C++ we can access this method by means of the statement:

ptr-> M();

However, in dynamic binding terms this does not imply that the method of the base class
is forcefully executed. Instead, which method is used depends on the object referenced by
the pointer variable. If ptr is currently pointing to method M() in class D2, then it is this
implementation of M() that is executed, not the one in the base class.

In most modern object-oriented languages, methods are dynamically bound by default.
This is not the case with C++, where methods are statically bound by default. Dynamic
binding in C++ is accomplished by means of virtual functions. A virtual function is
declared in the base class and redefined in one or more derived classes. This means that
the function declared virtual in the base class defines a general type of methods and
serves to specify the interface. Other functions with the same name and interface can be
implemented in the derived classes to override the one in the base class. If the virtual
function is accessed by means of its name, it behaves as any other function. However,
when a function declared virtual in the base class is accessed via a pointer, then the one
executed depends on the object which the pointer is referencing.

In C++ a pointer to an object in the base class can be set to point to an object in a
derived class. It is this mechanism that allows implementation of dynamic binding in
C++. The following short program shows how it is accomplished:

//***

// Program name: virtual_1.cpp
// C++ program to illustrate virtual functions and run-
time
// polymorphism
//***

#include <iostream.h>
//****************************
// classes
//****************************
// Base class

Directx and com 827

class BaseClass{
public:
 virtual void DisplayMsg() {
 cout << "Method in BaseClass executing\n"
 }
};
// A derived class
class DerClass1 : public BaseClass {
public:
 virtual void DisplayMsg() {
 cout << "Method in DerClass1 executing\n"
 }
};
// A second derived class
class DerClass2 : public BaseClass {
public:
 virtual void DisplayMsg() {
 cout << "Method in DerClass2 executing\n"
 }
};
//****************************
// main()
//****************************
main() {
 BaseClass *base_ptr; // Pointer to object of
base class
 BaseClass base_obj; // Object of BaseClass
 DerClass1 der_obj1; // Object of DerClass1
 DerClass2 der_obj2; // Object of DerClass2
// Access object of base class using base class pointer
 base_ptr = &base_obj; // Pointer to base class
object
 base_ptr-> DisplayMsg();
// Access object of first derived class using base
class pointer
 base_ptr = &der_obj1; // Pointer to derived
class object
 base_ptr-> DisplayMsg();
// Access object of second derived class using base
class pointer
 base_ptr = &der_obj2; // Pointer to derived
class object
 base_ptr-> DisplayMsg();
 return 0;
}

When the virtual_1 program executes, the following text messages are displayed:

Method in BaseClass executing
Method in DerClass1 executing
Method in DerClass2 executing

The pc graphics handbook 828

During program execution (run-time) the base class pointer named base_ptr is first set to
the base class and the base class method is executed. The coding is as follows:

 base_ptr = &base_obj;
 base_ptr-> DisplayMsg();

Next, the same pointer is reset to the first derived class and the execution statement is
repeated:

 base_ptr = &der_obj1;
 base_ptr-> DisplayMsg();

The fact that the statement

 base_ptr-> DisplayMsg();

executes different methods in each case proves that the decision regarding which method
executes is made at runtime, not at compile time, since two identical statements generate
the same object code. The program virtual_1 uses pointers to access methods in the base
and derived classes. A pointer to the base class is redirected to derived classes at run
time, thus achieving dynamic binding.

The program virtual_2, listed below, uses an array of pointers to the various functions.

//***

// Program name: virtual_2.cpp
// C++ program to illustrate virtual functions and run-
time
// polymorphism by means of an array of pointers
//***

#include <iostream.h>
//****************************
// classes
//****************************
// Base class
class BaseClass{
public:
 virtual void DisplayMsg() {
 cout << "Method in BaseClass executing\n"
 }
};
// A derived class
class DerClass1 : public BaseClass {
public:
 virtual void DisplayMsg() {
 cout << "Method in DerClass1 executing\n"
 }
};

Directx and com 829

// A second derived class
class DerClass2 : public BaseClass {
public:
 virtual void DisplayMsg() {
 cout << "Method in DerClass2 executing\n" ;
 }
};
//****************************
// main()
//****************************
main() {
 BaseClass* ptr_list[3]; // Array of 3 pointers
 BaseClass base_obj; // Object of BaseClass
 DerClass1 der_obj1; // Object of DerClass1
 DerClass2 der_obj2; // Object of DerClass2
// Initialize pointer array with objects
 ptr_list[0] = &base_obj;
 ptr_list[1] = &der_obj1;
 ptr_list[2] = &der_obj2;
// Create variable to store user input
int user_input = 0;
// Prompt user for input
 cout << "\nEnter a number from 1 to 3:";
 cin >> user_input;
// Test for invalid input
 if(user_input < 1 || user_input > 3){
 cout << "\ninvalid input\n" ;
 return 1;
 }
// Index into array of pointers using user input
 ptr_list [user_input—1]-> DisplayMsg () ;
 return 0;
}

The program virtual_2.cpp selects the method to be executed using the user input as an
offset into a pointer array, by means of the statement:

 ptr_list[user_input − 1] -> DisplayMsg();

The preceding programs (virtual_1.cpp and virtual_2.cpp) both use pointers to access
methods in the base and derived classes. In the first program (virtual_1.cpp) a pointer to
the base class is redirected to derived classes at run time, thus achieving dynamic
binding. In the second program (virtual_2.cpp), three different pointers are stored in an
array at compile time, with the statements:

 ptr_list[0] = &base_obj;
 ptr_list[1] = &der_obj1;
 ptr_list[2] = &der_obj2;

The pc graphics handbook 830

The program then requests input from the user and scales this value to use it as an offset
into the pointer array. The selection is done by means of the statement:

 ptr_list[user_input − 1] -> DisplayMsg();

In the case of the program virtual_2.cpp, although the pointer to be used is not known
until program execution, the selection is not based on redirecting a base class pointer at
run time. Therefore, it is not a true example of dynamic binding. However, if we
eliminate the virtual keyword from the code, then every valid user input brings about the
execution of the base version of the DisplayMsg() method. This leads to the conclusion
that the virtual keyword is doing something in the code, although it is not producing
dynamic binding.

Virtual functions, by themselves, do not guarantee dynamic binding since a virtual
function can be accessed by means of the dot operator. For example, if der_obj1 is an
object of the class Der1Class, then the statement:

 der_obj1.DisplayMsg();

executes the corresponding method in this class. However, in this case the virtual
attribute is not necessary since the class is bound directly by its object.

The mechanism for selecting among two or more functions of the same name by
means of the virtual attribute is called overriding. It is different from the notion of
overloaded functions, since overloaded functions must differ in their data types or
number of parameters. Overridden functions, on the contrary, must have an identical
interface. The prototypes of virtual functions must be identical in the base and in the
derived classes. If a function with the same name is defined with a different prototype,
then the compiler reverts to overloading and the function is bound statically.

The virtual keyword is not necessary in the derived classes, since the virtual attribute
is inherited. For this reason the class definition for DerClass1 could have read as follows:

// A derived class
class DerClass1 : public BaseClass{
public:
 void DisplayMsg() {
 cout << "Method in DerClass1 executing\n" ;
 }
};

The implicit virtual attribute is inherited; consequently, we may have to trace through the
entire inheritance tree in order to determine if a method is virtual or not. For this reason
we prefer to explicitly state the virtual attribute since it should not be necessary to refer to
the base class to determine the virtual or non-virtual nature of a method.

Virtual functions exist in a class hierarchy that follows the order of derivation. This
concept is important since overriding a method in a base class is optional. If a derived
class does not contain a polymorphic method, then the next one in reverse order of
derivation is used.

Directx and com 831

24.1.5 Pure Virtual Functions

Virtual functions are implemented in the base class and possibly redefined in the derived
classes. However, what would happen if a polymorphic method were not implemented in
the base class? For instance, suppose that the class named BaseClass in the program
virtual_1.cpp was recoded as follows:

class BaseClass
{
public:
 virtual void DisplayMsg();
};

In a DOS based C++ compiler, if the method DisplayMsg() was not implemented in the
base class, the program would compile correctly but would generate a linker error. That
happens because there is no address for the method DisplayMsg() in the base class since
the method does not exist. Therefore, the statement:

 base_ptr-> DisplayMsg();

cannot be resolved by the linker. However, there are occasions in which there is no
meaningful definition for a method in the base class. Consider the class structure shown
in Figure 24–1.

Figure 24–1 Abstract Class Structure

In the case of Figure 24–1 there is no possible implementation of the methods Define(),
Draw(), and Move() in the base class FigureGraphics. The implementations are left to the
subclasses. The method Draw() in the base class serves to define the method name and
the interface, but the implementation is left for the derived class or classes: it is a pure
virtual function.

In C++ a pure virtual function is declared in the following general form:

virtual return-type function-name(parameter-list) = 0;

The pc graphics handbook 832

When a function is declared in the this manner, implementation must be provided by all
derived classes. A compiler error occurs if any derived class fails to provide an
implementation for a pure virtual function. Note that the case of the pure virtual function
is quite different from that of non-virtual functions, in which a missing implementation is
automatically replaced by the closest one in reverse order of derivation.

Pure virtual functions have two organizational effects. The first one is that the base
class serves to define a general interface that sets a model that all derived classes must
follow. The second one is that implementation in the derived classes is automatically
assured since the code does not compile otherwise.

Abstract Classes

C++ pure virtual functions furnish a mechanism whereby a base class is used to define an
interface by declaring the method’s parameters and return type, while one or more
derived classes define implementations for the specific cases. A class that contains a pure
virtual function is designated an abstract class. The abstract class model satisfies the “one
interface, multiple methods” approach that is a core notion of object orientation. The
programmer is able to create a class hierarchy that goes from the most general to the
more specific; from conceptual abstraction to implementation details. The following short
program shows a possible use of abstract classes.

//***

// Program name: virtual_3.cpp
// C++ program to illustrate a pure virtual function
//***

#include <iostream.h>
//****************************
// classes
//****************************
// Abstract base class
class GeoFigure{
private:
 float dim1; // First dimension
 float dim2; // Second dimension
public:
 virtual float Area(float, float) = 0; // Pure
virtual function
};
// derived class
class Rectangle : public GeoFigure {
public:
 virtual float Area(float x, float y) {
 return (x * y);
 }
};
class Triangle : public GeoFigure {
public:

Directx and com 833

 virtual float Area(float x, float y) {
 return (x * y)/2;
 }
};
class Circle : public GeoFigure {
public:
 virtual float Area(float x, float y) {
 return (x * x)* 3.1415;
 }
};
//****************************
// main()
//****************************
main() {
 GeoFigure *base_ptr; // Pointer to the base class
 Rectangle obj1; // Declare objects of
derived classes
 Triangle obj2;
 Circle obj3;
// Polymorphically access methods in derived classes
 base_ptr = &obj1; // Set base class pointer to
Rectangle
 cout << "\nRectangle area:" << base_ptr-> Area(5.1,
10);
 base_ptr = &obj2; // Set base class pointer to
Triangle
 cout << "\nTriangle area:" << base_ptr-> Area(3.7,
11.22);
 base_ptr = &obj3; // Set base class pointer to
Circle
 cout << "\nCircle area:" << base_ptr-> Area(3.22,
0);
 return 0;
}

In program virtual_3.cpp you can note that the pure virtual function in the base class
defines the interface, which must be adhered to by all implementations in the derived
classes. In this manner the Area() method in the class Circle must preserve the interface,
which passes two parameters, although a single one suffices for calculating the area in the
circle case.

In C++ it is not possible to declare an object of an abstract class, even if the class
contains other methods that are not virtual. For example, we modify the class GeoFigure
in the program virtual_3.cpp as follows:

class GeoFigure
{
private:
 float dim1; // First dimension
 float dim2; // Second dimension
public:
 float GetDim1() {return dim1;}

The pc graphics handbook 834

 virtual float Area(float, float) = 0; // Pure
virtual function
};

The class now includes a nonvirtual function named GetDim1(). However, we still cannot
instantiate an object of class GeoFigure, therefore the statement:

GeoFigure objx; // ILLEGAL STATEMENT

would be rejected by the compiler. However, any method implemented in the base class
can be accessed by means of a pointer to an object of a derived class, in which case the
C++ rules for inheritance are followed. If a method has a unique name in the base class,
then it is executed independently of the object referenced. If the classes constitute a
simple inheritance hierarchy, then the selection is based on the rules for overloading. If
the classes contain non-pure virtual functions, overriding takes place. If the class is an
abstract class, then the derived classes must provide implementations of the method
declared to be pure virtual.

Virtual Function Table (vtable)

A class with at least one pure virtual function is an abstract class. The class GeoFigure in
the program virtual_3.cpp is an abstract class since it contains the pure virtual function
named Area(). In Figure 9–3 the class FigureGraphics is also abstract since it contains
three pure virtual functions: Define(), Draw(), and Move(). In C++ the implementation of
virtual functions is relatively consistent from one compiler to another one. The
mechanism takes advantage of the processor’s capability of making a function call
indirectly, that is, through a pointer to a function. In implementation, virtual functions use
indirect addressing to ensure the following capabilities:

• Function calls are expressed in terms of member functions.
• Each class contains a table of pointers to the implementations.
• The indirect call syntax is the same as calls to any other member function.

For each class with at least one pure virtual function the compiler creates a table of
function pointers. This table is known as the vtable, the VTBL, or the v-table. Each entry
in the vtable contains the address of a function. For example, the class FigureGraphics in
Figure 9–3 could be defined as follows:

class FigureGraphics {
 public:
 virtual bool Define(double, double) = 0;
 virtual bool Draw(int, int) = 0;
 virual bool Move(int, int) = 0;
};

Directx and com 835

The C++ compiler now constructs a table that contains a pointer definition for each
virtual function in the class. This is the vtable for the class. Figure 24–2 shows the virtual
function table.

Figure 24–2 The Virtual Function
Table (vtable)

The vtable exists at the class level. Each class contains a single vtable and every object
instantiated from the class is given a reference to the class vtable. This reference, which
is one of the object’s data members, is implemented as a pointer. Assuming that the
pointer to the vtable is named pVtable, then each object’s pVtable member points to
class’ vtable. In regards to the class diagram in Figure 24–1 and 24–2 the code could be
as follows:

FigureGraphics fig1; // Declare a class object
FigureGraphics *pFigs; // Declare a pointer to the
base class
pFigs = &fig1; // Initialize pointer to base
class object
pFigs->Define(); // Use pointer to access method

Notice that the pointer to the base class serves as a pointer to the vtable. With some
additional complications, the virtual function mechanism can be implemented in standard
C. The memory layout for the COM implementation of the component-based model is
identical to the one used for abstract base classes and virtual functions in C++, as you
will see in the sections that follow.

24.2 COM in DirectX Programming

Microsoft's Component Object Model (COM) is a foundation for an object oriented
system that attempts to improve on the C++ model. COM is described as an object model

The pc graphics handbook 836

at the operating system level, which supports and promotes the reuse of interfaces. The
fundamental notion of the COM relates to the idea of a component-based architecture.

24.2.1 COM Fundamentals

In order to understand the COM model consider a conventional program in which all of
its elements are defined when the application is compiled and linked. This type of
program is based on what has been called a monolithic architecture. If such a program
requires to be updated, it must be re-compiled and re-linked. This means that the user will
have to be provided with a new copy of the application software with every program
update. A more effective model considers the application as a set of individual
components. In this new model, called a component-based or component architecture,
each program element (or component) behaves as a mini-application. Each component is,
in fact, a unit of execution which is compiled and linked independently. The application
itself provides the interaction between its various components. Since each component can
be replaced independently, the application can be more easily customized and updated.
Figure 24–3 graphically represents a monolithic and a component-based application.

Figure 24–3 Monolithic and
Component-Based Applications

For the COM model to work we must be able to replace a component without breaking
the application. Suppose that Component C in the program shown in Figure 9–3 has
become obsolete and must be updated. In this case we must be able to create a new
component, say Component C New, that replaces the old Component C. There are two
requirements that make possible component replacement:

• Components must link to the application at runtime.
• Components must encapsulate the implementation details.

The first requirement results from the fact that if the components were to link statically
with the application, then the code would have to be re-compiled and we would be back
into the monolithic model. To have replaceable components it must be possible to replace
them at runtime, that is, the binding between the component and the application code
must be dynamic. The second requirement is a consequence of the first one. In order to
change a component dynamically, the new component must connect with the application

Directx and com 837

exactly in the same manner as the old one. Otherwise the application itself would have to
be changed.

One of the golden rules of object orientation is to program to an interface, not to an
implementation. In the COM model encapsulation is achieved by creating components
with different implementation but identical interfaces. If we refer to a program or
component that uses another component as a client, then we can say that a client connects
to a component through an interface. If the interface is not changed, then a new
component can be designed to replace an old one without breaking the client. By the
same token, another client with the same interface can use the same component. Striving
to design interfaces that do not change, while hiding the implementation details, is the
basic task of the COM programmer. In other words, programming to and interface, not to
an implementation.

To isolate the component from the client’s implementation details requires several
constraints:

• The component must be language neutral. That is, clients should be able to use
components coded in any computer language. This implies that a component is a
binary entity that is shipped ready-to-use.

• Components must be replaceable without breaking the client.
• Components must be relocatable on a network. That is, to the client a component on a

remote system appears identical to a local one.

Defining COM

COM is a protocol for building component-based applications. It defines components that
can be dynmically interchanged and clients that can use these components. In this sense
COM is a standard. The COM specification document, called the Component Object
Model Specification, was developed jointly by Microsoft Corporation and Digital
Equipment Corporation in 1995. The document is available on-line from the Microsoft
Web site at

http://www.microsoft.com/oledev/

COM is not a computer language, an API, or a DLL, although COM uses DLLs to
implement dynamic linking. On the other hand, COM is not only a formal specification
since is does provide some component management services in the form of an API. These
services are furnished as a COM library. The purpose of the COM library is to save
developers time in the creation of components and clients. In short, COM is a way of
writing programs with reusable, replaceable components.

24.2.2 COM Concepts in DirectX

DirectX is presented to the programmer using the COM. From C++, the COM object
appears as an abstract class. Access, in this model, is by means of the pointer to the
DirectX COM object. When using straight C, the function must pass the pointer to the
COM object as an additional parameter. In addition, the call must include a pointer to a

The pc graphics handbook 838

property of the COM object called the vtable. Since this book assumes C++
programming, we use the simpler interface to the COM.

The bulk of the Microsoft DirectX run time is in the form of COM-compliant objects.
For this reason DirectX developers need to have a basic understanding of COM
principles and programming techniques. There are two distinct flavors of COM
programming:

• Applications that use existing COM objects.
• Applications that implement new COM objects.

Using existing COM objects by application code is straightforward and uncomplicated.
Creating COM objects, on the other hand, is a more complicated matter. DirectX
applications do not need to implement COM objects, but must deal with those provided
by DirectX. This means that DirectX developers are usually concerned only with the
easiest flavor of COM programming.

The COM Object

A COM object can be visualized as a black box that can be used by applications to
perform one or more tasks. In DirectX COM objects are always implemented as DLLs. A
COM object, like a conventional DLL, contains methods that an application can call to
perform a specific task.

COM objects enforce stricter encapsulation that C++ objects. The public functions of
a COM objects are grouped into one or more interfaces. To use a function, application
code must first create the object and obtain the its interface. Typically, the interface to a
COM object contains a related set of methods that provide access to a particular DirectX
feature. For example, the IDirect3D8 interface contains methods that allow creating
Direct3D objects, setting up the environment, and obtaining device capabilities. Once
enable you obtained the interface you can access all its methods, but not those that are not
part of IDirect3D8.

Although COM objects are typically contained in a DLL, you do not need to explicitly
load the DLL or link to a static library in order to use a COM object. Each COM object
has a unique registered identifier that is used to create the object. COM automatically
loads the required DLL when the object is referenced.

The COM Interface

The concepts of object and interface are at the core of the COM. Although in casual
reference we sometimes refer to an object by the name of its interface, the concepts of
object and interface are unique and should not be confused. In this sense it is often said
that an object exposes several interfaces. An interface is described as a group of methods
that performs a set of related operations. To say that an object exposes an interface is
equivalent to stating that, in order to use a particular function, you must first create the
object and then obtain the interface.

All COM objects must expose the IUnknown interface, as well as at least one
additional interface. Some COM objects expose many interfaces and more than one
object might expose the same interface. The interface specifies the syntax of the methods

Directx and com 839

and their general functionality. A highly specialized interface is usually exposed by a
single object. Generally useful interfaces are often exposed by many objects. The most
generally useful interface, named IUnknown, is exposed by all COM objects.

COM requires that if an object exposes an interface, it must support every method in
the interface definition. For this reason you can call any function with the confidence that
it exists. How a particular function is implemented may vary from object to object. For
example, two object that perform the same calculation may use different algorithms to
obtain the result.

The COM specification requires that a published interface must not change once. For
this reason it is not possible to add a new function to an existing interface. Instead, you
must create a new interface. Although it is not strictly required by the standard, common
practice is to have the new interface include all the of the old interface's functions, plus
the new function.

Interfaces can be implemented in several generations. Generally all generations of an
interface perform essentially the same overall task, but they may differ in implementation
details. Often, an object exposes every generation of interface. This allows older
applications to continue using the object's older interfaces, while newer applications take
advantage of the features of the newer interfaces. Family of interfaces usually have the
same name, plus an integer indicating the generation. For example, the original
DirectDraw interface was named IDirectDraw. This interface was later updated to
IDirectDraw2, IDirectDraw4, and IDirectDraw7. Microsoft typically labels successive
generations of DirectX interfaces with the corresponding version number. For this reason
the integer identifier may not be a dense set.

The GUID

To insure that every interface is unique it is assigned an identifier, called the IID. Every
new version or interface receives its own unique IID. Therefore the IID is permanently
linked to the interface. In the COM the IID is a 16-byte (128 bit) structure called the
Globally Unique Identifier (GUID). GUIDs are created so that no two GUIDs are the
same. COM uses GUIDS extensively for two primary purposes:

• To uniquely identify a COM object.
• To uniquely identify a particular COM interface.

The term IID is used to request a particular interface from an object. An interface's IID
will be the same, regardless of which object exposes the interface. DirectX
documentation refers to objects and interfaces by a descriptive name, such as IDirect3D8.
Although descriptive names are useful, there is no guarantee that another object or
interface does not have the same name. The only unambiguous way to refer to a
particular object or interface is by its GUID.

Although GUIDs are structures, they are often expressed as an equivalent string. The
general format of the string form of a GUID is:

The pc graphics handbook 840

{VVVVVVVV-WWWW-XXXX-YYYY-ZZZZZZZZZZZ}

In this format each letter corresponds to a hexadecimal integer. For example, the string
form of the IID for the IDirect3D8 interface is:

{1DD9E8DA-1C77–4D40-B0CF-98FEFDFF9512}

In order to make the GUID identifier more difficult to mistype it is also provided with a
name. The customary naming convention is to prefix either IID_ or CLSID_ to the
descriptive name of the interface or object. For example, the name of the IDirect3D8
interface's IID is IID_IDirect3D8.

The HRESULT Structure

All COM methods return a 32-bit integer called an HRESULT. Although the name
HRESULT seems to suggest a handle, it is essentially a structure that contains two
separate pieces of information:

• Whether the method succeeded or failed.
• Information about the outcome of the operation.

The value returned as an HRESULT can normally be found in the function’s
documentation. Figure 24–4 shows the HRESULT bitmap.

Figure 24–4 HRESULT Bitmap

The most significant bit of HRESULT, called the severity bit, reports whether the
function succeeded or failed. The last 16 bits contain the return code, and the 15 bits of
the facility field provide additional information regarding the type and origin of the return
code. Applications usually need not look into these bit fields since macros are available
for this purpose.

By convention, success codes have names that start with S_, while failure codes start
with the E_ prefix. The two most commonly used codes are S_OK, to indicate success,
and E_FAIL, to indicate simple failure. Because COM functions can return a variety of
success or failure codes, you have to be careful how you test the HRESULT value.
Suppose a function is documented to return S_OK if successful. However, since a
function may also return other failure or success codes it is dangerous to assume that it

Directx and com 841

will always return E_FAIL if not successful. If you coded a test assuming that failure is
always associated with E_FAIL, then another error code could be interpreted as a
successful call. For example:

HRESULT res;
. . .
if(res != E_FAIL)
 {
 // Assume success
}
else
 {
 // Handle the failure
}

Applications that need detailed information on the outcome of the function call need to
test each relevant HRESULT value. To simplify processing it is recommended that
applications use the macros SUCCEEDED or FAILED to test HRESULT. The
SUCCEEDED macro returns TRUE for a success code and FALSE for a failure code.
The FAILED macro returns TRUE for a failure code and FALSE for a success code. The
following code fragment shows the use of the FAILED macro.

HRESULT res;
. . .
if(FAILED(res))
 {
 //Handle failure
}
else
 {
 //Handle success
}

Table 24–1 lists some frequently used error codes.

The pc graphics handbook 842

Table 24–1
HRESULT Frequently Used Error Codes

NAME MEANING
S_OK Function succeeded and returns boolean TRUE.
NOERROR Same as S_OK
S_FALSE Function succeeded and returns boolean FALSE.
E_UNEXPECTED Function failed unexpectedly.
E_NOTIMPL Function not implemented
E_NOINTERFACE Component does not support the interface.

This error code is returned by the QueryInterface() call.
E_OUTOFMEMORY Could not allocated required memory.
E_FAIL Unspecified failure.
E_INVALIDARG Invalid argument in function call

A few COM methods return a simple integer as an HRESULT. These methods are
implicitly successful. In these cases the SUCCESS macro always returns TRUE. For
example, the IUnknown::Release method decrements an object's reference count by one
and returns the current reference count. In this case HRESULT always holds the current
reference count.

24.2.3 The IUnknown Interface

All COM objects support an interface called IUnknown. The IUnknown interface
provides DirectX objects with the ability to retrieve other interfaces and with the control
of the object's lifetime. This is accomplished through the three methods of IUnknown:

• QueryInterface() allows the object to request pointers to a specific interface.
• AddRef() increments the object's reference count by 1.
• Release() decrements the object's reference count by 1.
• Reference Counting

Reference counting is a COM memory-management mechanism that allows an object to
destroy itself once it is no longer used. Each COM component maintains a reference
count. The AddRef() and Release() methods manage the reference count. AddRef()
increments the reference count and Release() decrements it. When the reference count
reaches 0, the object de-allocates itself and releases the memory it used. For example, if
you create a Microsoft Direct3D object, the object's reference count is set to 1. Every
time a function returns a pointer to an interface for that object, the function should call
AddRef(), using the pointer as an argument. The effect of the AddRef() call is to
increment the object's reference count. Each AddRef() call is matched with a call to
Release(). When an object's reference count reaches 0 it is destroyed and all interfaces to
it become invalid. The rules for reference counting are as follows:

• Functions that return interfaces automatically call AddRef() before returning. This
means that when code obtains an interface through a COM function it does not need to
call AddRef().

Directx and com 843

• When application code is finished with an interface it should call Release() using the
interface pointer as an argument. This action decrements the reference count for the
interface. If as the result of the call to Release() the reference count became zero, the
object is automatically destroyed.

• If application code assigns an interface pointer to an interface pointer variable, it should
call AddRef() in order to increment the reference count.

Using QueryInterface()

The QueryInterface() method of IUknown is used to determine whether an object
supports a specific interface. Furthermore, if an object supports an interface,
QueryInterface() returns a pointer to the interface. Code can then use the methods of the
interface by means of the interface pointer. If QueryInterface() is successful, it calls
AddRef() to increment the reference count. The application must call Release() to
decrement the reference count before destroying the pointer to the interface.

24.3 Creating and Accessing the COM Object

COM objects can be created in several ways. The two most common methods used in
DirectX programming are:

• Directly, by passing the object's CLSID to the CoCreateInstance function. The function
will create an instance of the object, and it will return a pointer to an interface that you
specify.

• Indirectly, by calling a DirectX function that creates the object for you. In this case the
function creates the object and returns the interface to the object When you create an
indirectly you cannot specify which interface should be returned.

24.3.1 Creating the COM Object

When an object is created directly it must be initialized by calling the CoInitialize()
function. However, the object's creation method will handle this task is the object is
created indirectly. In this case the caller passes the address of a variable that is to serve as
an interface pointer to the object creation method. The method then creates the object and
returns an interface pointer. The following code fragment calls the
IDirect3D8::CreateDevice() method to create a device object to represent a display
adapter. It returns a pointer to the object's IDirect3DDevice8 interface.

IDirect3DDevice8 *pd3dDevice=NULL;
...
if(FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT,
 3 DDEVTYPE_HAL,
 hWnd,
 D3DCREATE_SOFTWARE_VERTE
XPROCESSING,
 &d3dpp,

The pc graphics handbook 844

 &pd3dDevice)))
 return E_FAIL;

The first four parameters of the CreateDevice() method provide information needed to
create the object, and the fifth parameter receives the interface pointer.

24.3.2 Using COM Objects

Once the COM object has been created, and the interface pointer has been obtained, this
pointer can be used to access any of the interface's methods. The syntax is the same as
that used to access a C++ method by means of a pointer. In the previous code fragment
we called the CreateDevice() methods to obtain a pointer to IDirect3D8::CreateDevice. If
the call succeeded, we can now use the returned interface pointer to access any method in
IDirect3D8. For example, the method GetAdapterCount() of IDirect3D8 returns the
number of adapters in the system in a variable of type UINT. Assuming that you have
obtained a valid pointer with the CreateDevice() call, you could now get the number of
display adapters as follow:

UINT adapters;
. . .
adapters = pd3dDevice->GetAdapterCount();

The COM Object’s Lifetime

A COM object consumes system memory resources. When it is no longer needed, it
should be destroyed so that memory can be used for other purposes. In C++ you control
the object’s lifetime with the new and delete operators. COM objects cannot be created or
destroyed directly. The reason is that the same COM object may be used by more than
one application. If one application were to destroy the object, the others may fail.

COM uses a system of reference counting to control an object’s lifetime. An object’s
reference count is the number of times one of its interfaces has been requested. Each time
an interface is requested, the reference count is incremented. When an application
releases an interface reference count is decremented. The object remains in memory as
long as it reference count is greater than zero. When the reference count reaches zero, the
object is automatically destroyed. This mechanism ensures that code does not need to
know about an object’s reference count as long as object interfaces are obtained and
released correctly. In other words, an object ensures its own appropriate lifetime. By the
same token, when interfaces are not properly released, the reference count will never
reach zero, and the object will remain in memory indefinitely. The result is usually a
memory leak.

Manipulating the Reference Count

You have already seen that the appropriate processing consists of incrementing the
reference count whenever a new interface pointer is obtained, and decrementing it
whenever an interface is released. Recall that the reference count is incremented by a call

Directx and com 845

to IUnknown::AddRef. However, applications do not usually need to explicitly call this
method. If the interface pointer is obtained calling an object creation method, or by
calling IUnknown::QueryInterface, the call automatically increments the reference count.

On the other hand, code must release all interface pointers, regardless of whether you
or the object incremented the reference count. This is done by calling IUnknown::Release
to decrement the reference count. A good programming practice is to initialize all
interface pointers to NULL, and set them back to NULL when they are released. In this
manner the cleanup routine can test all interface pointers. Those that are non-NULL are
released before you terminate the application.

Problems with an objects reference count may originate in code that copies interface
pointers and then calls AddRef(). The following code fragment, taken from the Microsoft
DirectX 8 documentation, shows one possible way to handle reference counting in such
cases.

IDirectSoundBuffer8* pDSBPrimary=NULL;
IDirectSound3DListener8* pDSListener=NULL;
IDirectSound3DListener8* pDSListener2=NULL;
...
//Create the object and obtain an additional interface.
//The object increments the reference count.
if(FAILED(hr=g_pDS->CreateSoundBuffer(&dsbd,
&pDSBPrimary, NULL)))
 return hr;
if(FAILED(hr = pDSBPrimary-
>QueryInterface(IID_IDirectSound3DListener8
 (LPVOID
*)&pDSListener)))
 return hr;
//Make a copy of the IDirectSound3DListener8 interface
pointer.
//Call AddRef to increment the reference count and to
ensure that
//the object is not destroyed prematurely
pDSListener2 = pDSListener;
pDSListener2->AddRef();
...
//Cleanup code. Check to see if the pointers are still
active.
//If they are, call Release to release the interface.
if(pDSBPrimary != NULL)
{
 pDSBPrimary->Release();
 pDSBPrimary = NULL;
}
if(pDSListener != NULL)
{
 pDSListener->Release();
 pDSListener = NULL;
}
if(pDSListener2 != NULL)

The pc graphics handbook 846

{
 pDSListener2->Release();
 pDSListener2 = NULL;

Directx and com 847

Chapter 25
Introducing DirectDraw

Topics:

• 2D graphics in DirectX
• DirectDraw graphics fundamentals
• DirectDraw architecture
• Programming with DirectDraw

In this chapter we start discussing DirectDraw, which is the 2D component of DirectX.
Although DirectDraw was merged with Direct3D in DirectX 8, COM insures that
DirectDraw functionality continues to be available to applications.

25.1 2D Graphics and DirectDraw

In Chapter 23 we discussed that, in previous versions of the DirectX SDK, the 2D
graphics interface was referred to as DirectDraw. Starting with DirectX 8, DirectDraw
and Direct3D were merged into a single interface. However, in practical programming,
2D graphics cannot be ignored for the following reasons:

• Many graphics applications do not required 3D modeling or rendering.
• Most 3D applications use 2D graphics extensively.
• Some types of animations are easier to implement and show better performance in 2D

than in 3D graphics.
• Many successful computer applications, including some successful and popular games,

are implemented entirely in 2D.
• The learning curve for 3D graphics is quite steep. Starting with 2D provides a

reasonable introduction to a complex and difficult technology.

DirectDraw is usually considered the most basic component of DirectX. It allows an
application to access display memory as well as some of the hardware functions in the
video card. The result is that a Windows program can obtain a high level of graphics
performance without sacrificing device independence and while maintaining
compatibility with the GDI. DirectDraw is implemented as a software interface to the
card’s video memory and graphics functions. Although its original intention was merely
to facilitate game development under Windows, many other types of graphics
applications can benefit from the higher degree of control and the performance gains that
it provides.

DirectDraw has been described as a display memory manager that also furnishes
access to some hardware acceleration features, as well as other graphics facilities
available on the video card. Unfortunately, there is no uniform set of graphics features

that all DirectDraw devices must provide. For this reason, the decision to use DirectDraw
also entails the burden of accommodating varying degrees of Direct Draw functionality.
DirectDraw provides services that allow querying the capabilities of a particular video
card as well as the level of hardware support. Most features not supported by the
hardware are emulated in software by DirectX, but at a substantial performance penalty.

A DirectDraw system implements its functionality both in hardware and in software
emulation, each one with its own capabilities. Applications can query DirectDraw to
retrieve the hardware and software capabilities of the specific implementation in the
installed video card. DirectDraw is furnished as a 32-bit dynamic link library named
DDRAW.DLL.

25.1.1 DirectDraw Features

The following are the most important features of DirectDraw:

• Direct access to video memory
• Manipulation of multiple display surfaces
• Page flipping
• Back buffering
• Clipping
• Palette management
• Video system support information

25.1.2 Advantages and Drawbacks

The following are possible advantages of using DirectDraw:

1. DirectDraw provides direct access to video memory. Accessing video memory directly
allows the programmer to increase performance and obtain the highest degree of
control. This feature also makes it easier to port some DOS graphics programs and
routines into the Windows environment.

2. DirectDraw improves application performance by taking advantage of the hardware
capabilities in the video card. For example, if the video card supports hardware blits,
DirectDraw uses this feature.

3. DirectDraw provides hardware emulation to simulate features that are not supported by
the hardware.

3. DirectDraw uses 32-bit flat memory addressing of video memory. This model is much
easier to handle by code than one based on the Intel segmented architecture.

4. DirectDraw supports page flipping with multiple back buffers while executing in full-
screen mode. This technique allows implementing very powerful animations.

5. In windowed mode, DirectDraw supports clipping, hardware-assisted overlays, image
stretching, and other graphics manipulations.

The major disadvantages of DirectDraw are:

1. Programming in DirectDraw is more complicated and difficult than using the Windows
GDI. Programs that do not need the additional performance or control provided by
DirectDraw may find little additional justification for using it.

The pc graphics handbook 850

2. The graphics functions emulated by DirectDraw are often slower than those in the
GDI.

3. Applications that rely on DirectDraw are less portable than those that do not.

25.2 Basic Concepts for DirectDraw Graphics

The following basic graphics concepts are extensively used in DirectDraw:

• Device-independent bitmaps
• Drawing surfaces
• Blitting
• Page flipping and back buffers
• Bounding rectangles

In this section we provide a brief review of these concepts, to serve as an introduction to
DirectDraw. Some of these topics are covered in more detail later in the section on
DirectDraw programming, later in the chapter.

25.2.1 Device-Independent Bitmaps

Windows and DirectX have adopted the device-independent bitmap (DIB) as its native
graphics file format. A DIB file contains the image’s dimensions, the number of color
and the corresponding color values, and data describing the attributes of each pixel. The
DIB file also contains some additional parameters, such as information about file
compression and the image physical dimensions. DIB files usually have the .bmp file
extension, although the .dib extension is also used.

The Windows APIs contain many functions that can be used in loading and
manipulating DIB files. These functions can be used in DirectX applications. The
following function, taken from the Ddutil.cpp file that is furnished with the DirectX
SDK, combines Windows and DirectX functions to load a DIB onto a DirectX surface.

extern "C" IDirectDrawSurface * DDLoadBitmap(
IDirectDraw *pdd,
 LPCSTR szBitmap,
int dx,
int dy)
{
 HBITMAP hbm;
 BITMAP bm;
 DDSURFACEDESC ddsd;
 IDirectDrawSurface *pdds;
 //
 // This is the Win32 part.
 // Try to load the bitmap as a resource.
 // If that fails, try it as a file.
 //
 hbm = (HBITMAP)LoadImage(

Introducing directdraw 851

 GetModuleHandle(NULL), szBitmap,
 IMAGE_BITMAP, dx, dy, LR_CREATEDIBSECTION);
 if (hbm == NULL)
 hbm=(HBITMAP)LoadImage(
 NULL, szBitmap, IMAGE_BITMAP, dx, dy,
 LR_LOADFROMFILE|LR_CREATEDIBSECTION);
 if (hbm == NULL)
 return NULL;
 //
 // Get the size of the bitmap.
 //
 GetObject(hbm, sizeof(bm), &bm);
 //
 // Now, return to DirectX function calls.
 // Create a DirectDrawSurface for this bitmap.
 //
 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT |DDSD_WIDTH;
 ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
 ddsd.dwWidth = bm.bmWidth;
 ddsd.dwHeight = bm.bmHeight;
 if (pdd->CreateSurface(&ddsd, &pdds, NULL) !=
DD_OK)
 return NULL;
 DDCopyBitmap(pdds, hbm, 0, 0, 0, 0);
 DeleteObject(hbm);
 return pdds;
}

25.2.2 Drawing Surfaces

As the name implies, a drawing surface is a region of memory that receives video data to
be displayed on the screen. In Windows programming the drawing surface is associated
with the device context. You obtain access to the drawing surface when you obtain the
handle to the device context by means of a function such as GetDC(). After the
application obtains the handle to the device context it can draw to the screen.

In this case the Windows GDI provides an abstraction layer to allow a standard
Windows applications to access the screen. But GDI was not designed for high per-
formance graphics. GDI uses system memory to provide access to the video buffer, not
the much faster video memory. In addition, GDI has no facilities to take advantage of
special hardware features in the video card. This makes the GDI interface too slow for
most games and multimedia applications.

DirectDraw, on the other hand, uses drawing surfaces that are defined in actual video
memory. Furthermore, DirectDraw allows the programmer with the base address of the
video buffer, which allows direct access to video memory. Applications that use
DirectDraw can write directly to the memory on the video card, which results in very fast
rendering. The fact that DirectDraw uses a 32-bit flat memory model simplifies
programming.

The pc graphics handbook 852

Drawing surfaces are covered in greater detail in the context of DirectDraw
programming, later in this chapter.

25.2.3 Blitting

The term blit stands for “bit block transfer.” A blit consists of transferring a block of data
from one location in memory to another. In computer graphics blitting usually consists of
transferring an image between storage locations, from a storage location to video
memory, or from video memory to a storage locations. Blits are also used in
implementing sprite-based animation.

25.2.4 Page Flipping and Back Buffers

Page flipping is a technique often used in game and multimedia software. Page flipping is
reminiscent of the animation achieved in some children’s books that contain slightly
different images on consecutive pages. By using your thumb to rapidly flip through the
pages, the object and characters in the images appear to move. In software page flipping a
series of DirectDraw surfaces are set up with slightly varying images. The image is
animated when these surfaces are rapidly flipped to the screen.

In DirectDraw flipping techniques the first surface is usually referred to as the primary
surface, while the other surfaces are called back buffers. The application blits the image
to a back buffer, then flips the primary surface so that the back buffer appears on screen.
While the system is displaying the image, the software is updating the back buffer with
the next image. The process continues for the duration of the animation.

DirectDraw animation through page flipping can consists of a single pair of surfaces,
that is, a primary surface and a single back buffer. More complicated schemes based on
several back buffers allow producing more sophisticated effects.

25.2.5 Bounding Rectangles

Windows GDI uses a simplification for defining screen objects in terms of a rectangle
that tightly binds it. This rectangle is called the bounding rectangle. By definition, the
sides of the bounding rectangle are parallel to the sides of the screen. This allows
defining the bounding rectangle by two points: one located at the top-left corner and the
other one at the bottom-right corner. The Windows RECT structure provides a conve-
nient way of storing the coordinates of the points that define the bounding rectangle. The
RECT structure is defined as follows:

 typedef struct tagRECT {
 LONG left; // x coordinate of top-left
corner
 LONG top; // y coordinate of top left
corner
 LONG right; // x coordinate of bottom-right
corner

Introducing directdraw 853

 LONG bottom; // y coordinate of bottom-right
corner
} RECT;

For example, a RECT structure can be initialized as follows:

RECT aRect;
. . .
aRect.left = 10;
aRect.top = 20;
aRect.right = 100;
aRect.bottom = 200;

Or as follows:

RECT aRect = {10,20,100,200};

In either case the left and top members are the x- and y-coordinates of a bounding
rectangle’s top-left corner. Similarly, the right and bottom members make up the
coordinates of the bottom-right corner. Figure 25–1 shows a visualization of the
bounding rectangle.

Figure 25–1 DirectDraw Bounding
Rectangle

The pc graphics handbook 854

25.3 DirectDraw Architecture

The architecture of DirectDraw is defined by the following elements:

• The DirectDraw interface
• The DirectDraw hardware abstraction layer (HAL)
• The DirectDraw hardware emulation layer (HEL)

25.3.1 DirectDraw Interfaces

DirectDraw provides services through COM-based interfaces. The various versions of
this interface are named IDirectDraw, IDirectDraw2, IDirectDraw4, and IDirectDraw7.
Note that the numbers of the DirectDraw interfaces are discontinuous. IDirectDraw3,
IDirectDraw5, and IDirectDraw6 do not exist, although DirectDraw3 it is erroneously
mentioned in some Microsoft documents. These interfaces to DirectDraw correspond to
different releases of the Game SDK and of DirectX. Since DirectDraw disappeared in
DirectX 8 it is safe to assume that IDirectDraw7 will be the last implementation.

Programs can gain access to DirectDraw by means of the DirectDrawCreate() function
or by the CoCreateInstance() COM function. In this book we use DirectDrawCreate()
which is the easiest and more common one. Later in this chapter we discuss how a
program can query at runtime which of the three DirectDraw interfaces is available.

25.4.1 DirectDraw Objects

As mentioned in Chapter 24, DirectX APIs are implemented as instances of COM
objects. Communication with these objects is by means of the methods in each interface;
for example, if IDirectDraw7 is the interface, the method SetDisplayMode() is accessed
as follows:

IDirectDraw7::SetDisplayMode

You already know that COM interfaces are derived from a base class called IUnknown.
The following DirectDraw object types are currently defined: DirectDraw,
DirectDrawSurface, DirectDrawPalette, DirectDrawClipper, and DirectDrawVideoPort.
Figure 25–2, on the following page, shows the object composition of the DirectDraw
interface.

The DirectDraw objects are described as follows:

• DirectDraw is the basic object of all applications. It is considered to represent the
display adapter card. The corresponding COM object is named IDirectDraw. This is
the first object created by a program and it relates to all other DirectDraw objects. A
call to DirectDrawCreate() creates a DirectDraw object. If the call is successful, it
returns a pointer to either IDirectDraw, IDirectDraw2, or IDirectDraw4 interfaces.
IDirectDraw7 objects are created by calling IDirectDrawCreateEx().

• DirectDrawSurface object, sometimes called a “surface,” represents an area in memory.
The COM object name is IDirectDrawSurface. This object holds the image data to be

Introducing directdraw 855

displayed, or images to be moved to other surfaces. Applications usually create a
surface by calling the IDirectDraw7::CreateSurface method of the DirectDraw object.
The surface object interfaces are named IDirectDrawSurface, IDirectDrawSurface2,
IDirectDrawSurface4, and IDirectDrawSurface7.

• DirectDrawPalette object, sometimes referred to as a “palette,” represents a 16- or 256-
color indexed palette. The palette object simplifies palette manipulations. It contains a
series of indexed RGB triplets that describe colors associated with values within a
surface. Palettes are limited to surfaces that use a pixel format of 8 bits or less. Palette
objects are usually associated with corresponding surface objects, whose color
attributes the palette object defines. The DirectDrawPalette objects are created by
calling IDirectDraw7:: CreatePalette method.

• DirectDrawClipper object, sometimes referred to as a “clipper,” serves to prevent
applications from drawing outside a predefined area. Clipper objects are usually
convenient when a DirectDraw application is displayed in a window. In this case the
clipper object prevents the application from drawing outside of its client area. A
DirectDrawClipper object is created by calling IDirectDraw7::CreateClipper.

• DirectDrawVideoPort object was introduced in DirectX 5. The object represents the
video-port hardware present in some systems. It allows direct access to the frame
buffer without intervention of the CPU or the PCI bus.

Figure 25–2 DirectDraw Object Types

The pc graphics handbook 856

25.4.2 Hardware Abstraction Layer (HAL)

DirectDraw ensures device independence by implementing a Hardware Abstraction
Layer, or HAL. The HAL is provided by the video card manufacturer, board
manufacturer, or OEM, according to Microsoft’s specifications. However, applications
have no direct access to the HAL, but to the interfaces exposed by DirectDraw. It is this
indirect access mechanism that ensures HAL consistency and reliability.

In Windows 95/98, device manufacturer implements the HAL in both 16-bit and 32-
bit code. Under Windows NT the HAL is always in 32-bit code. It can be furnished as
part of card’s display driver or a separate DLL. The HAL contains device-dependent
code. It performs no emulation and provides no programmer accessible services. The
only point of contact between an application and the HAL is when the application needs
to query DirectDraw to find out what capabilities are directly supported.

25.4.3 Hardware Emulation Layer (HEL)

DirectDraw emulates in software those basic features that are not supported through the
HAL. The Hardware Emulation Layer (HEL) is the part of DirectDraw that provides this
functionality. Applications do not access the HEL directly. Whether a given functionality
is provided through hardware features, or through emulation, is transparent to an
application using DirectDraw. Code must specifically query DirectDraw to determine the
origin of a given functionality. The IDirectDraw7::GetCaps() method, discussed later in
this chapter, furnishes this information.

Unfortunately, some combinations of hardware-supported and emulated functions may
lead to slower performance than pure emulation. DirectDraw documentation cites an
example in which a display device driver supports DirectDraw but not stretch blitting.
When the stretch blit function is emulated in video memory, a noticeable performance
loss occurs. The reason is that video memory is often slower than system memory;
therefore, the CPU is forced to wait when accessing video memory surfaces. Cases like
this make evident one of the greatest drawbacks of DirectDraw, which is that applications
must provide alternate processing for hardware dependencies.

25.4.4 DirectDraw and GDI

Several Windows graphics components lay between the application code and the video
card hardware. Figure 25–3, on the following page, shows the relations between the
various Windows graphics components.

The right-hand side of Figure 25–3 shows that an application can access the Windows
video functions through the GDI, which, in turn, use the Display Device Interface. On the
left-hand side an application accesses the video functions through DirectDraw.
DirectDraw, in turn, uses the Hardware Abstraction Layer and the Hardware Emulation
Layer to provide the necessary functionality. The horizontal arrow connecting the HAL
and the DDI indicates that applications that use DirectDraw can also use the GDI
functions, since both channels of video card access are open simultaneously.

Introducing directdraw 857

Figure 25–3 Relations between
Windows Graphics Components

25.5 DirectDraw Programming Essentials

There are several topics that relate specifically to DirectDraw programming.
Understanding these fundamental concepts is a prerequisite to successful DirectDraw
programming. These following are core topics of DirectDraw programming:

• Cooperative levels
• Display modes
• Palettes
• Clippers

25.5.1 Cooperative Levels

Cooperative levels refers to the relationship between DirectDraw and Windows. A
DirectDraw program can execute full-screen, with exclusive access to the display
resources, or it can execute in a window, sharing video resources with other running
programs. In this last case the DirectDraw application and the other Windows programs
executing concurrently must cooperate in their use of the video resources. When a

The pc graphics handbook 858

DirectDraw application requests and obtains total control of the video func-tions it is said
to execute in exclusive mode. DirectDraw applications that do not execute in exclusive
mode are usually referred to as windowed DirectDraw programs.

The SetCooperativeLevel() function is used by an application to set cooperative level.
The predefined constants DDSCL_FULLSCREEN and DDSCL_EXCLUSIVE allow the
application to execute full-screen and to ensure control of the display mode and the
palette. In this case the DirectDraw program has almost exclusive control of the video
resources. The use of this function is described later in this chapter.

DirectDraw cooperative levels have the following additional features:

• A DirectDraw application can be enabled to use a non-standard VGA resolution known
as Mode X. Mode X, which executes in 320 by 240 pixels in 256 colors, was a very
popular mode with DOS game programmers.

• DirectDraw applications that execute in exclusive mode can be prevented from
responding to CTRL+ALT+DEL keystrokes.

• A DirectDraw application can be enabled to minimize or maximize itself.

Microsoft considers the normal cooperative level the one in which the DirectDraw
application cooperates as a windowed program. However, DirectDraw applications that
execute in windowed mode are not able to change the display mode or perform page
flipping. Display mode control and page flipping are essential to many high-performance
graphics programs, especially those that use animation. For this reason many high-
performance DirectDraw programs execute in exclusive mode.

25.5.2 Display Modes

Display modes date back to the first PC graphics video system. By the time the VGA was
released (1987) there were 18 different display modes. A display mode is a hardware
configuration of the video system registers and hardware that enables a particu-lar
resolution and color depth. Display modes are described in terms of their pixel width,
height, and bit depth. For example, VGA mode 18H has a resolution of 640-by-480-by-4.
This means that it displays 640 pixel columns and 480 pixel rows in 16 colors. The last
digit of the mode specification, in this case 4, is the number of bits used in the pixel color
encoding. In VGA mode 18H the color range is 16, which is the maximum number of
combinations of the 4 binary digits used to encode the color.

Palletized and Nonpalletized Modes

PC display modes are often classified as palletized and nonpalletized. In palletized
display modes each color value is an index into an associated color table, called the
palette. The bit depth of the display mode determines the number of colors in the palette.
For example, in a 4-bit palletized mode, such as VGA mode 18H, each pixel attribute is a
value in the range 0 to 15. This makes possible a palette with 16 entries. The actual colors
displayed depend on the palette settings. The programmer can select and change the
pallet colors at any time, thus selecting a sub-range of displayed colors. However, when
the palette is changed, all displayed objects are shown with the new settings.

Introducing directdraw 859

Nonpalletized display modes, on the other hand, encode pixel colors directly. In
nonpalletized modes the bit depth represents the total number of color attributes that can
be assigned to each pixel. There is no look up table to define the color attributes.

The higher the resolution and the color depth of a display mode, the more video
memory that is required to encode the pixel data. Since not all video adapters contain the
same amount of memory, not all of them support the same video modes. The DirectDraw
EnumDisplayModes() function is used to list all the display modes supported by a device,
or to confirm if a particular display mode is available in the video card.

Applications using DirectDraw can call the SetDisplayMode() function. The
parameters passed to the call describe the dimensions, bit depth, and refresh rate of the
mode to be set. A fifth parameter indicates special options for the given mode. Currently
this parameter is used only to differentiate between Mode 13H, with 320 by 200
resolution and 16 colors, and VGA Mode X, also with 320 by 200 resolution but in 256
colors. Although an application can request a specific display mode resolution and bit
depth, it cannot specify how the pixel depth is achieved by the hardware. After a mode is
set, the application can call GetDisplayMode() to determine if the mode is palletized and
to examine the pixel format. In other words, DirectDraw reserves the right to implement a
particular color depth in a palletized or nonpalletized mode.

DirectDraw programs that do not execute in exclusive mode allow other applications
to change the video mode. At the same time, an application can change the bit depth of
the display mode, only if it has exclusive access to the DirectDraw object. DirectDraw
applications that execute in exclusive mode allow other applications to allocate
DirectDrawSurface objects, and to use DirectDraw and GDI services. For the same
reason, applications that execute at the exclusive cooperative level are the only ones that
can change the display mode or manipulate the palette.

A DirectDraw application can explicitly restore the display hardware to its original
mode by calling the RestoreDisplayMode(). A DirectDraw exclusive mode application
that sets the display mode by calling SetDisplayMode() can automatically restore the
original display mode by calling RestoreDisplayMode().

DirectDraw supports all screen resolutions and pixel depths that are available in the
card’s device driver. Thus, a DirectDraw application can change to any mode supported
by the display driver, including 24- and 32-bit true-color modes.

25.5.3 Surfaces

A DirectDraw surface is a linear memory area that holds image data. A surface can reside
in display memory, which is located in the video card, or in system memory.
Applications create a DirectDraw surface by calling the IDirectDraw7::CreateSurface()
function. The call can create a single surface object, a complex surface-flipping chain, or
a three-dimensional surface. The IDirectDrawSurface interface allows an application to
indirectly access memory through blit functions, such as Blt() and BltFast(). In addition, a
surface provides a device context to the display, which can be used with GDI functions.

IDirectDrawSurface surface functions can be used to directly access display memory.
The Lock() function retrieves the address of an area of display memory and ensures
exclusive access to this area. This operation is said to “lock” the surface. A primary
surface is one in which the display memory area is mapped to the video display.

The pc graphics handbook 860

Alternatively, a surface can refer to a nondisplayed area. In this case the surface is called
an off-screen or overlay surface. Nonvisible buffers usually reside in display memory, but
they can be created in system memory if DirectDraw is performing a hardware emulation,
or if it is otherwise necessary due to hardware limitations. Surface objects that use a pixel
depth of 8 bits or less are assigned a palette that defines the color attributes in the
encoding. Figure 25–4 shows the surface-based layout of video memory.

Figure 25–4 Visualization of Primary
and Overlay Surfaces

Once a DirectDraw application receives a pointer to video memory it can use this pointer
to draw on the screen, with considerable gain in control and performance. However, a
program that accesses video memory directly must concern itself with many details of the
video system layout that are transparent at a higher programming level. The first
complicating factor is that video buffer mapping can be different in two modes with the
same resolution. This possible variation is related to the fact that the video buffer is
actually a storage for pixel attributes. If an attribute is encoded in 8 bits, then the buffer
requires 1 byte per pixel. If a pixel attribute is stored in 24 bits, then the buffer requires 3
bytes per pixel.

Figure 25–5, on the following page, shows two video modes with different pixel
depths. In the 8-bits per pixel mode the fourth memory byte is mapped to the fourth
screen pixel. However, in the 24-bits per pixel mode it is the thirteenth to the fifteenth
video memory bytes that are mapped to the fourth pixel. The calculations required to
obtain the offset in video memory for a particular screen pixel are different in each case.

Introducing directdraw 861

Figure 25–5 Video Memory Mapping
Variations

There is another complication in direct access programming: in display modes the
number of bytes in each video buffer row is not exactly the product of the number of
pixels on the row by the number of bytes per pixel. For example, consider a row of 400
pixels in which each pixel is mapped to 3 data bytes. In this case it would be reasonable
to expect that the pixel row would take up 700 bytes of video memory. However, due to
video system design and performance considerations, sometimes it necessary to allocate a
number of bytes in each buffer row that is a multiple of some specific number. This
determines that, in some display modes, there are data areas that are not mapped to screen
pixels.

Here is a real life example: a display mode with a resolution of 640 pixels per row and
a color depth of 24 bits per pixel requires 1,920 bytes to store the data corresponding to a
single row of screen pixels. However, the some video card designers have assigned 2,560
bytes of video buffer space for each screen row, so that the same buffer size can be used
in a 32 bits per pixel mapping. The result is that in the 24-bit mode there is an area of 640
unmapped bytes at the end of each row.

This explains the difference between the terms pitch and width in regards to video
buffer data. While pitch describes the actual byte length of each row in the video buffer,
width refers to the number of pixels in each screen row. In programming direct access
operations it is important to remember that pitch and width can have different values.

The pc graphics handbook 862

25.5.4 Palettes

A palette is a color look-up table. Palettes are a way of indirectly mapping pixel
attributes. This scheme is useful when in extending the number of displayable colors in
modes with limited pixel depths. For example, a display mode with 4 bits per pixel
normally allows representing 16 different color attributes. Alternatively, it is possible to
make each video buffer values serve as an index into a data structure called the palette.
The actual pixel colors are defined in the palette. By changing the values stored in the
palette the application can map many 16-color sets to the display attributes. By means of
the palette mechanism the number of simultaneously displayable colors remains the
same, but the actual colors mapped to the video buffer values can be changed by the
application. Figure 25–6 shows how a palette provides an indirect mapping for the color
attributes stored in the video buffer.

Figure 25–6 Palette-Based Pixel
Attribute Mapping

In DirectDraw palettes are linked to surfaces. Surfaces that use a 16-bit or greater pixel
format do not use palettes, since this pixel depth allows encoding rich colors directly.
Therefore, the so-called real color modes (16 bits per pixel) and true color modes (24 and
32 bits per pixel) are nonpalletized. Palettes are used in modes with 1, 2, 4, and 8 bits per
pixel. In these cases the palette can have 2, 4, 16, or 256 entries. In DirectDraw a palette
must be attached to a surface with the same color depth. In addition, it is possible to
create palettes that do not contain a color table. In these so-called index palettes, the
palette values serve as an index into another palette’s color table.

Each palette entry is in the form of an RGB triplet that describes the color to be used
when displaying the pixel. The RGB values in the color table can be in 16- or 24-bit
format. In 16 bit RGB format each palette entry is encoded in 5–6-5 form. This means
that the first 5 pixels are mapped to the red attribute, the second 6 pixels to the green
attribute, and the last 5 pixels to the blue attribute. This is the same mapping scheme used
in the real color modes. In the 24-bit RGB palette format each of the primary colors (red,
green, and blue) is mapped to 8 pixels, as in the true color modes.

Introducing directdraw 863

An application creates a palette by calling IDirectDraw7::CreatePalette() function. At
call time the application defines if the palette contains 2, 4, 16, or 256 entries and
provides a pointer to a color table used in initializing the palette. If the call is successful,
DirectDraw returns the address of the newly created DirectDrawPalette object. This
palette object can then be used to attach the palette to a DirectDraw surface. The same
palette can be attached to multiple surfaces. Once a palette is attached to a surface, an
application can call the GetPalette() and SetPalette() functions to query or change the
palette entries.

A type of animation is based on changing the appearance of a surface object by
modifying the palette attached to the surface that contains it. By repeatedly changing the
palette, the surface object can be made to appear differently without actually modifying
the contents of video memory. Two different types of palette manipulations can be used
to for this. The first method is based on modifying the values in a single palette. The
second method is based on switching between several palettes. Since palette
modifications are not hardware intensive, either method often produces satisfactory
results.

Historically, the need for palettes resulted from the memory limitations of the original
video systems used in the PC. In VGA the video space was on the order of a few hundred
kilobytes, while the low-end PCs of today are furnished with video cards that have 2 or 4
Mb of on-board video memory. This abundance of video memory has made palettes less
important. However, palletized modes allow interesting animation effects, which are
achieved by manipulating the color table data. For example, an object can be made to
disappear from the screen by changing to a palette in which the object attributes are the
same as the background. The object can then be made to reappear by restoring the
original palette.

25.5.5 Clipping

In DirectDraw clipping is a manipulation by which video output is limited to one or more
rectangular-shaped regions. DirectDraw supports clipping in applications that execute in
exclusive mode and windowed. The term “clippers” is often used to refer to
DirectDrawClipper objects. A single bounding rectangle is sometimes used to limit the
display to the application’s client area. Several associated bounding rectangles are called
a clip list.

The most common use for a clipper is to define the boundaries of the screen or of a
rectangular window. A DirectDraw clipper can be used to define the screen area of an
application so as to ensure that a bitmap is progressively displayed as it moves into this
area. If a clipping area is not defined, then the blit fails because the destination drawing
surface is outside the display limits. However, when the boundaries of the video display
area are defined by means of a clipper, DirectDraw knows not to display outside this area
and the blit succeeds. Blitting a bitmap to unclipped and clipped display areas is shown in
Figure 25–7.

The pc graphics handbook 864

Figure 25–7 Clipping a Bitmap at
Display Time

In Figure 25–7 shows how clipping makes it possible to display a bitmap that does not
entirely fit in the display area. The top of the illustration shows a blit operation that fails
because the source bitmap does to fit in the destination area. When clipping is enabled it
possible to display the bitmap of the automobile as it progressively enters the screen area,
instead of making it pop onto the screen all at once.

To implement clipping in DirectDraw you create a clipper with the screen rectangle as
its clip list. Once the clipper is created, trimming of the bitmap is performed automatic.
Clipper objects are also used to designate areas within a destination surface. If the
designated areas are tagged as writable, DirectDraw automatically crops images that fall
outside this area. Figure 25–8, on the following page, shows a display area with a clipper
defined by two rectangles. When the text bitmap is blitted onto the screen, only those
parts that fall inside the clipper are displayed. The pixel data is preserved in the screen
areas not included in the clipper. In this case the clip list consists of the two rectangles for
which output is validated.

Introducing directdraw 865

Figure 25–8 Clipper Consisting of
Two Rectangular Areas

The pc graphics handbook 866

Chapter 26
Setting Up DirectDraw

Topics:

• Configuring Developer Studio
• Creating the DirectDraw object
• Obtaining the interface version
• Selecting the level of interaction
• Obtaining the hardware capabilities
• Obtaining and listing the display modes

DirectX applictions that use DirectDraw must first initialize the software and perform a
series of configuration tests. One of the most critical elements is to determine and select
how the DirectX program cooperates with concurrent Windows applications. In this
chapter we describe the initialization and setup operations for DirectDraw programming
and develop code that serves as a template for creating DirectDraw programs.

26.1 Set-up Operations

DirectDraw programs must first set up the development system so that application code
can access the DirectDraw functions in DirectX. The first step is to include the
DirectDraw header file, named ddraw.h, which is part of the DirectX SDK as well as the
newer versions of Windows.

26.1.1 DirectDraw Header File

As newer versions of the DirectX SDK are installed, either directly or through operating
system patches, it is possible to find several versions of the ddraw.h file on the same
computer. The DirectX programmer needs to make sure that the software under
development is using the most recent release of the DirectDraw header file. One way to
ensure this is use the Windows Explorer search feature to look for all files named
ddraw.h. Once the files are located, it is easy to rename or delete the older versions of
ddraw.h. Usually the date stamp and the file size serve to identify the most recent one.
However, you cannot assume that the installation program for the operating system, the
SDK, or the development environment will do this for you.

In addition, the ddraw.h file must be located so that it is accessible to the development
software. This may require moving or copying the newest version of ddraw.h to the
corresponding include directory, as well as making certain that the path in the
development environment corresponds with this directory. In Visual C++ the directories
searched by the development system can be seen by means of the Options command in

the Tools menu. In this case the Show directories for scroll box should be set for include
files. At this time you may enter, in the edit box, the path to the DirectDraw include file
and libraries. The edit is located at the bottom of the Directories window. While in this
window, it is a good idea to drag the box to the top of the list so that this directory is
searched first. Figure 26–1 shows the Directories tab for the Include files when DirectX
is installed in the default drive and path.

Figure 26–1 Directories Tab (Include
Files) in the Options Dialog Box

26.1.2 DirectDraw Libraries

Another software component necessary for DirectDraw programming is the ddraw.lib
library file. Here again, it is possible that duplicate versions of the software be present in
the system. It is necessary that all but the most recent one be eliminated. The same
process described for the Include files in the preceding section can be applied to the
library files. Figure 26–2 shows the Directories tab for the library files.

In addition to finding the newest version of the library, and installing it in the system’s
library path, Visual C++ users must also make sure that the development environment is
set up to look for the DirectDraw libraries. To make sure of this you can inspect the
dialog box that is displayed when the Settings command is selected in Developer Studio
Project menu. The ddraw.lib and the dxguid.lib files must be listed in both the
Object/Library Modules and the Project Options windows of the Link tab in the Project
Settings dialog box, as shown in Figure 26–3.

The pc graphics handbook 868

Figure 26–2 Directories Tab (Library
files) in the Options Dialog Box

Figure 26–3 Link Tab in Developer
Studio Project Settings Dialog Box

The ddraw.lib library contains the DirectDraw functions, and the dxguid.lib has the
identifiers required for accessing the various interface versions. If the Link tab in the
Project Settings dialog box does not show a reference to ddraw.lib and dxguid.lib, you
can manually insert the library names in the Object/library modules edit box. The library
names are automatically copied to the Project Options box. Once access to the
DirectDraw header file and the libraries are in place, the development system is ready for
use.

Setting up directdraw 869

26.2 Creating the DirectDraw Object

To use DirectDraw an application must first create a DirectDraw object. The DirectDraw
object is actually a pointer to the DirectDraw interface as implemented in the video card.
Since this pointer provides access to all other DirectDraw functions, a DirectDraw
application can do little else without this object. To create the object you use the
DirectDrawCreateEx() function. This function creates a DirectDraw object that supports
a new set of Direct3D functions first released with DirectX 7. The function’s general
form is as follows:

HRESULT DirectDrawCreateEx (
 GUID FAR lpGUID, // 1
 LPVOID *lplpDD, // 2
 REFIID iid // 3
 IUnknown FAR *pUnkOutter, // 4
);

The first parameter (lpGUID) is a globally unique identifier (GUID) that represents the
driver to be created. If this parameter is NULL then the call refers to the active display
driver. The newer versions of DirectDraw allow passing one of two flags in this
parameter. The flags control the behavior of the active display, as follows:

• DDCREATE_EMULATIONONLY: DirectDraw use only emulation. Hardware support
features are not be used.

• DDCREATE_HARDWAREONLY: DirectDraw object does not use emulated features.
If a hardware supported features is not available the call returns
DDERR_UNSUPPORTED.

The second parameter (*lplpDD) is a pointer that the call initializes if it succeeds. This is
IDirectDraw7 interface pointer object returned by DirectDrawCreateEx().

The third parameter (iid) must be set to IID_DirectDraw7. Any other interface returns
an error.

The fourth parameter (*pUnkOutter) is provided for future compatibility with the
COM interface. At present it should be set to NULL.

The call returns DD_OK if it succeeds. If it fails, one of the following predefined
constants is returned:

• DDERR_DIRECTDRAWALREADYCREATED
• DDERR GENERIC
• DDERR_INVALIDDIRECTDRAWGUID
• DDERR_INVALIDPARAMS
• DDERR_NODIRECTDRAWHW
• DDERR_OUTOFMEMORY

On systems with multiple monitors, specifying NULL for the first parameter causes the
DirectDraw object to run in emulation mode. In these systems the call must specify the
device’s GUID in order to use hardware acceleration.

The pc graphics handbook 870

26.2.1 Obtaining the Interface Version

You have seen that the COM requires that objects update their functionality by means of
new interfaces, rather than by changing methods within existing interfaces. The purpose
of this requirement is to keep existing interfaces static, so that older applications continue
to be compatible with the newer interfaces.

The availability of various interfaces facilitates component updating, but it also creates
some coding complications. For example, currently the DirectDraw surface object
supports three different interfaces, named IDirectDrawSurface, IDirectDrawSurface2,
and IDirectDrawSurface4. Consistent with the COM requirement, each interface version
supports all the methods of its predecessor, and adds new ones for the new features. But
there is no assurance that a host machine contains the newest version of the interface. For
this reason applications must query DirectDraw to determine which interface or
interfaces are available in the host, then provide alternative processing routes for each
case. The situation is further complicated by the fact that, in some rare cases, a new
interface may not support all the functions provided in a previous one. The result is a
return to device-dependent programming that Windows was designed to avoid in the first
place.

Once the DirectDraw application has used the DirectDrawCreateEx() function to
obtain a pointer to the DirectDraw object, COM provides the IUnknown::QueryInterface
method which allows finding out whether the object supports other interfaces. If the call
succeeds, QueryInterface() returns a pointer to the interface requested as a parameter. It is
through this pointer that code gains access to the methods of the new interface. If the
QueryInterface() function returns any other value but S_OK call can assume that the
interface is not available. Possible options in this case are to provide some sort of work-
around for the missing functionality, or to abort execution if the lack of processing
capabilities in the host machine cannot be remedied.

The QueryInterface() has the following general form:

HRESULT QueryInterface(
 REFIID riid, // 1
 LPVOID* obj, // 2
);

The first parameter (riid) is a reference identifier for the object being queried. The calling
code must know this unique identifier before the call is made. The second parameter is
the address of a variable that will contain a pointer to the new in-terface, if the call is
successful. The return value is S_OK if the call succeeds or one of the following error
messages if it fails:

• E_NOINTERFACE
• E_POINTER
• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_OUTOFMEMORY

The DDERRR_OUTOFMEMORY error message is returned by IDirectDrawSurface2
and IDirectDrawSurface4 objects only. If, after making the call, the application

Setting up directdraw 871

determines that it does not need to use the interface, it should call the Release() function
to free it.

Four IDirectDraw interfaces are implemented in DirectX . The corresponding
reference identifiers are IID_DirectDraw, IID_DirectDraw2, IID_DirectDraw4, and
IID_DirectDraw7. It is not recommended that an application mix methods from two or
more interfaces since the results are sometimes unpredictable.

Microsoft attempts to ensure the portability of applications that commit to a specific
DirectX implementation by furnishing an installation utility that upgrades the host system
to the newest components. In the DirectSetup element of DirectX there are the
diagnostics and installation programs, as well as the drivers and library files, that serve to
update a system to the corresponding version of the SDK. DirectSetup also includes a
ready-to-use installation utility that copies all the system components to the
corresponding directories of the client’s hard drive and performs the necessary
modifications in the Windows registry. In the DirectX SDK Microsoft also provides all
the required project files for a sample installation application named dinstall. The
DirectX programmer can use the source code of the dinstall program as a base on which
to create a customized installation utility for DirectX.

The following code fragment shows how to determine the version of the DirectDraw
interface installed in the host system:

// Global variables for DirectDraw operations
HRESULT DDConnect;
// Interfaces pointers
LPDIRECTDRAW lpDD;
LPDIRECTDRAW lpDD2;
LPDIRECTDRAW lpDD4;
LPDIRECTDRAW lpDD7;
int dDLevel 0; // Implementation level
.
.
.
//*************************
// DirectDraw Init
//*************************
DDConnect=DirectDrawCreate (NULL,
 &lpDD0,
 NULL);
// Querying the interface to determine most recent
// version
if(DDConnect == DD_OK)
{
 DDLevel = 1; // Store level
 lpDD = lpDD0; // copy pointer
 DDConnect = lpDD0->QueryInterface(
 IID_IDirectDraw2,
 (LPVOID *) &lpDD2);
}
if(DDConnect == S_OK)
{
 DDLevel =2; // Update level

The pc graphics handbook 872

 lpDD0->Release(); // Release old pointer
 lpDD = (LPDIRECTDRAW) lpDD2;
 DDConnect = lpDD->QueryInterface(
 IID_IDirectDraw4,
 (LPVOID *) &lpDD4);
}
if(DDConnect == S_OK)
{
 DDLevel=4; // Update level
 lpDD2->Release(); // Release old pointer
 lpDD = (LPDIRECTDRAW) lpDD4;
 DDConnect = lpDD->QueryInterface(
 IID_IDirectDraw7,
 (LPVOID *) &lpDD7);
}
if(DDConnect == S_OK)
{
 DDLevel =7; // Update level
 lpDD4->Release(); // Release old pointer
 lpDD = (LPDIRECTDRAW) lpDD7;
}
// Note that the pointer returned is typecast into
LPDIRECTDRAW.

Notice in the preceding code that when a valid object is found, the preceding one is
released by calling the Release() function. In Chapter 9 you saw that IUnknown contains
a function named AddRef() which increments the object’s reference count by 1 when an
interface or an application binds itself to an object. Also that the Release() function
decrements the object’s reference count by 1 when it is no longer needed. When the count
reaches 0, the object is automatically de-allocated. Normally, every function that returns
a pointer to an interface calls AddRef() to increment the object reference count. By the
same token, the application calls Release() to decrement the object reference count. When
an object’s reference count reaches 0, it is destroyed and all interfaces to it become
invalid. In the previous sample code we need not call the AddRef() method since
QueryInterface() implicitly calls AddRef() when a valid object is found. However, the
code must still call Release() to decrement the reference object count and destroy the
pointer to the interface.

26.2.2 Interface Version Strategies

The preceding code fragment allows determining which DirectDraw interface version is
available in the host machine. If a DirectDraw interface is found, the pointer is used to
make a few calls to the DirectDraw interface. But notice that this scheme works only in
trivial applications, such as the DD Info project listed later in this chapter. DirectDraw
implements version-specific pointers for the different interfaces, of types
LPDIRECTDRAW, LPDIRECTDRAW2, LPDIRECTDRAW4, and
LPDIRECTDRAW7. Any substantial DirectDraw program will almost certainly generate
errors when calls are made with a pointer that is not of the version-specific type. In the

Setting up directdraw 873

preceding code we have typecast the version-specific pointers to a generic pointer of type
LPDIRECTDRAW, for example, in the code fragment:

if(DDConnect == S_OK)
{
 DDLevel = 7; // Update level
 lpDD4->Release(); // Release old pointer
 lpDD = (LPDIRECTDRAW) lpDD7;
}

The resulting pointer assumes the functionality of IDirectDraw.
Although programmers often wish to know what is the DirectX interface version

installed in the host machine, writing substantial application code that runs in several
possible interfaces can be a complicated matter. One problem often encountered is that
function signatures change from one interface to another one. For example, a function
call in IDirectDraw may take three parameters and the same function takes four
parameters in IDirectDraw2. Accommodating the variations in the different interfaces
usually requires a considerable amount of contingency code.

A more practical strategy is to decide beforehand which is the lowest interface version
required by the application, then make sure that this version of the interface is available
in the host machine. The strategy usually works since the COM architecture insures that
the functionality of older versions of the interface is always maintained. For example, if
you have decided that your application requires the IDirectDraw7 interface, the following
function can be used to test for the presence of this interface level and to obtain the
corresponding pointer.

// Global variable
LPDIRECTDRAW7 lpDD7; // Pinter to IDirectDraw7
.
.
.
//***
// Name : DD7Interface()
// Desc : Created DirectDraw object and finds
// DirectDraw7 interface
// PRE:
// Caller's code contains pointer
// variable :
// LPDIRECTDRAW7 lpDD7 ;
//
// POST:
// returns 0 if no DirectDraw7 interface
// returns 1 if DirectDraw7 found
// Caller's pointer variable is
// initialized
//**
int DD7Interface()
{
 HRESULT DDConnect;

The pc graphics handbook 874

 LPDIRECTDRAW lpDD; // Pointer to DirectDraw
 DDConnect = DirectDrawCreate (NULL,
 &lpDD,
 NULL);
 if(DDConnect != DD_OK)
 return 0;
 // Atempt to locate DirectDraw4 interface
 DDConnect = lpDD->QueryInterface(
 IID_IDirectDraw7,
 (LPVOID *) &lpDD7);
 if(DDConnect != S_OK)
 return 0;
 lpDD->Release(); // Release old pointer
 return 1;
}

The function DD7Interface(), listed previously is used by most of the DirectDraw sample
programs listed in this book.

26.2.3 Setting the Cooperative Level

A DirectDraw application can obtain almost exclusive control over the system hardware
resources, while a normal Windows application shares these resources with other
programs. One of the most critical of these resources is the video system. Control over
the video system is necessary for implementing some types of interactive, animated
games and other high-performance graphics programs. But not all DirectDraw programs
need this special functionality. Some DirectDraw applications execute in a window and
behave like a normal Windows program. The SetCooperativeLevel() function is used to
request a specific level of resource control and, at the same time, to establish the level of
cooperation with other Windows applications.

The function SetCooperativeLevel() has slightly different implementations in the
DirectDraw, DirectDraw2, DirectDraw4, and DirectDraw? interfaces. The following
discussion refers to IDirectDraw7::SetCooperativeLevel.

The basic decision that must be made at the time of calling SetCooperativeLevel() is
whether the application is to run full-screen, with exclusive access to the display
resources, or as a normal windowed program. DirectDraw cooperative levels also have
the following effects:

1. Enable DirectDraw to use of Mode X resolutions.
2. Prevent DirectDraw from releasing exclusive control of the display or rebooting if the

user pressed CTRL+ALT+DEL.
3. Enable DirectDraw to minimize or maximize the application in response to user

events.

Table 26–1 lists the predefined constants that are recognized by the
SetCooperativeLevel() function.

Setting up directdraw 875

Table 26–1
Cooperative Level Symbolic Constants

FLAG DESCRIPTION
DDSCL_ALLOWMODEX Allows the use of Mode X display modes. This flag

can only be used with the DSCL_EXCLUSIVE and
DDSCL_FULLSCREEN modes.

DDSCL_ALLOWREBOOT Allows the CTRL+ALT+DEL keystroke to function
while in exclusive mode.

DDSCL_CREATEDEVICEWINDOW DirectDraw is to create and manage a default device
window for this DirectDraw object. Focus and
device windows are multi-monitor functions
supported by Windows 98 and Windows 2000.

DDSCL_EXCLUSIVE Requests the exclusive level. Must be used with
DDSCL_FULLSCREEN.

DDSCL_FPUPRESERVE The calling application cares about the FPU state
and does not want Direct3D to modify it in ways
visible to the application. In this mode, Direct3D
saves and restores the FPU state every time that it
needs to modify the FPU state.

DDSCL_FPUSETUP Indicates that the DirectDraw application will keep
the math unit set up for single precision and
exceptions disabled, which is the best setting for
optimal Direct3D performance.

DDSCL_FULLSCREEN The exclusive-mode owner is responsible for the
entire primary surface. GDI is ignored. Must be
used with DDSCL_EXCLUSIVE.

DDSCL_MULTITHREADED Requests multithread-safe DirectDraw behavior.
This causes Direct3D to take the global critical
section more frequently.

DDSCL_NORMAL Indicates a regular Windows application. Cannot be
used with the DDSCL_ALLOWMODEX,
DDSCL_EXCLUSIVE, or
DDSCL_FULLSCREEN flags. Applications
executing in this mode cannot perform page
flipping or change the palette.

DDSCL_NOWINDOWCHANGES DirectDraw is not allowed to minimize or restore
the application window.

DDSCL_SETDEVICEWINDOW The hWnd parameter is the window handle of the
device window for this DirectDraw object.
DDSCL_SETFOCUSWINDOW The hWnd
parameter is the window handle of the focus
window for the DirectDraw object. Cannot be used
with the

 DDSCL_SETDEVICEWINDOW flag. Supported by Windows 98 and NT 5.0 only.

The SetCooperativevel() function’s general form is as follows:

The pc graphics handbook 876

HRESULT SetCooperativeLevel(
 HWND hwnd, // 1
 DWORD aDword // 2
);

The first parameter (hwnd) is the handle to the application window; however, if an
application requests DDSCL_NORMAL in the second parameter, it can use NULL for
the window handle. The second parameter (aDword) is one or more of the flags defined
by the symbolic constants listed in Table 26–1. The function returns DD_OK if the call
succeeds, or one of the following error messages:

• DDERR_EXCLUSIVEMODEALREADYSET
• DDERR_HWNDALREADYSET
• DDERR_HWNDSUBCLASSED
• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_OUTOFMEMORY

The DDERR_EXCLUSIVEMODEALREADYSET message refers to the fact that only
one application can request the exclusive mode. If this message is received, then there is
another application that has been granted the exclusive mode and code should provide
alternative processing or an exit.

Full-screen applications receive the DDERR_NOEXCLUSIVEMODE return value if
they lose exclusive device access, as is the case when the user has pressed ALT+TAB to
switch to another program. In this event one possible coding alternative is to call
TestCooperativeLevel() function in a loop, exiting only when it returns DD_OK,
indicating that exclusive mode is now available.

Applications that use the normal cooperative level (DDSCL_NORMAL flag) receive
DDERR_EXCLUSIVEMODEALREADYSET if another application has taken exclusive
device access. In this case a windowed application can be coded to loop until
TestCooperativeLevel() returns DD_OK.

The two most common flag combinations used in the SetCooperativeLevel() call are
for programs that execute in exclusive mode and those that are windowed. The following
code fragment shows the call to SetCooperativeLevel() for a DirectDraw application that
requests exclusive mode:

LPDIRECTDRAW lpDD; // DirectDraw object
HWND hwnd; // Handle to the window
...
lpDD->SetCooperativeLevel(hwnd, DDSCL_EXCLUSIVE |
DDSCL_FULLSCREEN);

For some unexplained reason two flags are required to set DirectDraw exclusive mode:
DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN. In reality all exclusive mode
applications execute full screen so the second flag is actually redundant.

To set the cooperative level to the normal mode the code can be as follows:

LPDIRECTDRAW lpDD; // DirectDraw object

Setting up directdraw 877

...
lpDD->SetCooperativeLevel(NULL, DDSCL_NORMAL);

Note that exclusive mode applications pass the handle to the window parameter (hwnd)
so that Windows has a way of recovering from conditions that freeze the otherwise
disabled video system. This is not required for normal Windows programs that use
conventional recovery procedures.

26.2.4 Hardware Capabilities

Conventional Windows applications often ignore the specific configuration of the system
hardware; however, this is not the case in programs that use DirectDraw. Video systems
support DirectDraw to varying degrees of hardware compatibility and to varying degrees
of DirectDraw functionality. Most DirectDraw programs need to know what level of
DirectDraw hardware support is available in a particular machine, as well as the amount
of video memory available, before deciding if the code is compatible with the host, or
how to proceed if a given functionality is not present.

In order to determine the supported hardware-accelerated features a DirectDraw
application can enumerate the hardware capabilities. In general, it is safe to assume that
most features that are not implemented in hardware are emulated by DirectX. Notice,
however, that there are a few cases in which this is not true. It is this emulation that
makes possible some degree of device independence. The IDirectDraw7::GetCaps
function returns runtime information about video resources and hardware capabilities. By
examining these capabilities during the initialization stage, an application can decide
whether the available functionality is insufficient and abort execution, or make other
adjustments, in order to provide the best possible performance over varying levels of
support.

It has been documented that, in some cases, a particular combination of hardware
supported features and emulation can result in worse performance than emulation alone.
For example, if the device driver does not support stretch blitting from video memory,
noticeable performance losses occur. The reason is that video memory is usually slower
than system memory, which forces the CPU to wait when accessing video memory
surfaces. For this reason, applications that use features not supported by the hardware are
usually better off creating surfaces in system memory, rather than in video memory.

The GetCaps() function returns the capabilities of the device driver for the hardware
(HAL) and for the hardware-emulation layer (HEL). The general form of the GetCaps()
function is as follows:

HRESULT GetCaps(
 LPDDCAPS lpDDDriverCaps, // 1
 LPDDCAPS lpDDHelCapS // 2
);

The first parameter (lpDDDriverCaps) is the address of a structure of type DDCAPS that
is filled with the capabilities of the hardware abstraction layer (HAL), as reported by the
device driver. Code can set this parameter to NULL if the hardware capabilities are not

The pc graphics handbook 878

necessary. The second parameter (lpDDHelCaps) is the adhardware emulation layer
(HEL). This parameter can also be set to NULL if these cadress of a structure, also of
type DDCAPS, that is filled with the capabilities of the pabilities are not to be retrieved.
Code can only set one of the two parameters to NULL, otherwise the call would be
trivial. If the method succeeds, the return value is DD_OK. If the method fails, the return
value is one of the following error constants:

• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS

The DDCAPS structure is a large one indeed: it contains 58 members in the DirectDraw4
and DirectDraw? versions. The structure is defined as follows:

typedef struct _DDCAPS {
 DWORD dwSize; // size of
structure DDCAPS
 DWORD dwCaps; // driver-specific
caps
 DWORD dwCaps2; // more driver-
specific caps
 DWORD dwCKeyCaps; // color key caps
 DWORD dwFXCaps; // stretching and
effects caps
 DWORD dwFXAlphaCaps; // alpha caps
 DWORD dwPalCaps; // palette caps
 DWORD dwSVCaps; // stereo vision
caps
 DWORD dwAlphaBltConstBitDepths;
 // alpha bit-depth
members
 DWORD dwAlphaBltPixelBitDepths; // .
 DWORD dwAlphaBltSurfaceBitDepths; // .
 DWORD dwAlphaOverlayConstBitDepths; // .
 DWORD dwAlphaOverlayPixelBitDepths; // .
 DWORD dwAlphaOverlaySurfaceBitDepths // .
 DWORD dwZBufferBitDepths; // Z-buffer bit
depth
 DWORD dwVidMemTotal; // total video
memory
 DWORD dwVidMemFree; // total free video
memory
 DWORD dwMaxVisibleOverlays; // maximum visible
overlays
 DWORD dwCurrVisibleOverlays; // overlays
currently visible
 DWORD dwNumFourCCCodes; // number of
supported FOURCC
 // codes
 DWORD dwAlignBoundarySrc; // overlay
alignment
 // restrictions
 DWORD dwAlignSizeSrc; // .

Setting up directdraw 879

 DWORD dwAlignBoundaryDest; // .
 DWORD dwAlignSizeDest; // .
 DWORD dwAlignStrideAlign; // stride alignment
 DWORD dwRops[DD_ROP_SPACE]; // supported raster
ops
 DWORD dwReservedCaps; // reserved
 DWORD dwMinOverlayStretch; // overlay stretch
factors
 DWORD dwMaxOverlayStretch; // .
 DWORD dwMinLiveVideoStretch; // obsolete
 DWORD dwMaxLiveVideoStretch; // .
 DWORD dwMinHwCodecStretch; // .
 DWORD dwMaxHwCodecStretch; // .
 DWORD dwReserved1; // reserved
 DWORD dwReserved2; // .
 DWORD dwReserved3; // .
 DWORD dwSVBCaps; // system-to-video
blit related
 // caps
 DWORD dwSVBCKeyCaps; // .
 DWORD dwSVBFXCaps; // .
 DWORD dwSVBRops[DD_ROP_SPACE]; // .
 DWORD dwVS BC aps; // video-to-system
blit related caps
 DWORD dwVSBCKeyCaps; // .
 DWORD dwVSBFXCaps; // .
 DWORD dwVSBRops[DD_ROP_SPACE]; // .
 DWORD dwSSBCaps; // system-to-system
blit related
 // caps
 DWORD dwSSBCKeyCaps; //.
 DWORD dwSSBCFXCaps; //.
 DWORD dwSSBRops[DD_ROP_SPACE]; //.
 DWORD dwMaxVideoPorts; // maximum number
of live video
 // ports
 DWORD dwCurrVideoPorts; // current number
of live video
 // ports
 DWORD dwSVBCaps2; // additional
system-to-video
 // blit
 // caps
 DWORD dwNLVBCaps; // nonlocal-to-
local video
 // memory
 // blit caps
 DWORD dwNLVBCaps2; // .
 DWORD dwNLVBCKeyCaps; // .
 DWORD dwNLVBFXCaps; // .
 DWORD dwNLVBRops[DD_ROP_SPACE];// .

The pc graphics handbook 880

 DDSCAPS2 ddsCaps; // general surface
caps
DDCAPS,FAR* LPDDCAPS;

Most applications are only concerned with a few of the capabilities of a DirectDraw
device. Table 26–2 lists some of the most often needed capabilities.

Table 26–2
Device Capabilities in the GetCaps() Function

DWCAPS MEMBER CONSTANTS:
DDCAPS_3D Display hardware has 3D acceleration.
DDCAPS_ALPHA Display hardware supports alpha-only surfaces.
DDCAPS_BANKSWITCHED Display hardware is bank-switched. Therefore it is very slow at

random access operations to display memory.
DDCAPS_BLT Display hardware is capable of blit operations.
DDCAPS_BLTCOLORFILL Display hardware is capable of color filling with a blitter.
DDCAPS_BLTSTRETCH Display hardware is capable of stretching during blit operations.
DDCAPS_CANBLTSYSMEM Display hardware is capable of blitting to or from system memory.
DDCAPS_CANCLIP Display hardware is capable of clipping with Blitting.

DWCAPS MEMBER CONSTANTS:
DDCAPS_CANCLIPSTRETCHED Display hardware is capable of clipping while stretch blitting.
DDCAPS_COLORKEY System supports some form of color key in either overlay or

blit operations.
DDCAPS_GDI Display hardware is shared with GDI.
DDCAPS_NOHARDWARE No hardware support.
DDCAPS_OVERLAY Display hardware supports overlays.
DDCAPS_OVERLAYCANTCLIP Display hardware supports overlays but cannot clip.
DDCAPS_PALETTE DirectDraw is capable of creating and supporting

DirectDrawPalette objects for more surfaces than the primary
one.

DDCAPS_READSCANLINE Display hardware is capable of returning the current scan line.
DDCAPS_ZBLTS Supports the use of z-buffers with blit operations.
DWCAPS2 MEMBER CONSTANTS:
DDCAPS2_VIDEOPORT Display hardware supports live video.
DDCAPS2_WIDESURFACES Display surfaces supports surfaces wider than the primary

surface.
DWPALCAPS MEMBER CONSTANTS:
DDPCAPS_1BIT Supports 2-color palettes.
DDPCAPS_2BIT Supports 4-color palettes.
DDPCAPS_4BIT Supports 16-color palettes.
DDPCAPS_8BIT Supports 256-color palettes.
DDPCAPS_8BITENTRIES Specifies an index to an 8-bit color index. This field is valid

only when used with the DDPCAPS_1BIT, DDPCAPS_2BIT,
or DDPCAPS_4BIT capability.

DDPCAPS_ALPHA Supports palettes that include an alpha component.

Setting up directdraw 881

DDPCAPS_ALLOW256 Supports palettes with all 256 entries defined.

Device capabilities in the GetCaps() Function (continued)
DWCAPS MEMBER CONSTANTS:
DDPCAPS_PRIMARYSURFACE
 The palette is attached to the primary surface. Changing the palette

has an immediate effect on the display unless the
DDPCAPS_VSYNC capability is specified and supported.

OTHER STRUCTURE MEMBERS:
DwVidMemTotal Total amount of display memory.
DwVidMemFree Amount of free display memory.
DwMaxVisibleOverlays Maximum number of visible overlays or overlay sprites.
DwCurrVisibleOverlays Current number of visible overlays or overlay sprites.
DwReservedCaps Reserved. Prior to DirectX 6.0, this member contained general

surface capabilities.
DwMinOverlayStretch
DwMaxOverlayStretch

Minimum and maximum overlay stretch factors multiplied by 1000.
For example, 1.3=1300.

DwSVBCaps Driver-specific capabilities for system-memory-to-display-memory
blits.

DwVSBRops Raster operations supported for display-memory-to-system-memory
blits.

DwSSBCaps Driver-specific capabilities for system-memory-to-system-memory
blits.

The following code fragment shows the processing required in order to read the hardware
capabilities using DirectDraw7::GetCaps. The code reads various capabilities and
displays the corresponding screen messages. After each message is displayed, the screen
position is indexed by one or more lines. The project named DD Info, in the book’s
software package, uses similar processing.

DDCAPS DrawCaps; // DDCAPS structure
LPDIRECTDRAW lpDD; // DirectDraw object
.
.
.
//**********************************
// DirectDraw hardware capabilities
//**********************************
DrawCaps.dwSize=sizeof (DrawCaps);
// Call to capabilities function
 lpDD->GetCaps (&DrawCaps, NULL);
// Video memory
 strcpy (message, " Total Video Memory: ");
 sprintf (message+strlen(" Total Video Memory: "),
 "%i",DrawCaps.dwVidMemTotal);
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;

The pc graphics handbook 882

// Free video memory
 strcpy (message, " Free Video Memory: ");
 sprintf (message+strlen(" Free Video Memory: "),
 "%i", DrawCaps.dwVidMemFree);
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 text_y += tm.tmHeight+tm.tmExternalLeading;
 // Video card hardware
 strcpy (message,
 " Video card hardware support as
follows:");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 text_x = 16;
 if (DrawCaps.dwCaps & DDCAPS_NOHARDWARE)
 {
 strcpy (message, " No DirectDraw hardware support
available");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 return;
 }
 if (DrawCaps.dwCaps & DDCAPS_3D)
 {
 strcpy (message, " 3D support ");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 else
 {
 strcpy (message, " No 3D support");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 if (DrawCaps.dwCaps & DDCAPS_BLT)
 {
 strcpy (message, " Hardware Bitblt support");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 else
 {
 strcpy (message, " No hardware Bitblt
support");
 TextOut (hdc, text_x, text_y, message, strlen
(message));

Setting up directdraw 883

 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 if (DrawCaps.dwCaps & DDCAPS_OVERLAY)
 {
 strcpy (message, " Hardware overlays
supported");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y+= tm.tmHeight+tm.tmExternalLeading;
 }
 else
 {
 strcpy (message, " No hardware overlays ");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 if (DrawCaps.dwCaps & DDCAPS_CANCLIP)
 {
 strcpy (message, " Clipping supported in
hardware");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 else
 {
 strcpy (message, " No hardware clipping
support ");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 if (DrawCaps.dwCaps & DDCAPS_BANKSWITCHED)
 {
 strcpy (message, " Memory is bank switched");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 else
 {
 strcpy (message, " Memory not bank
switched");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 if (DrawCaps.dwCaps & DDCAPS_BLTCOLORFILL)
 {
 strcpy (message, " Color fill Blt support ");

The pc graphics handbook 884

 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 else
 {
 strcpy (message, " No Blt color fill
support");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 if (DrawCaps.dwCaps & DDCAPS_COLORKEY)
 {
 strcpy (message, " Color key hardware
support");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 else
 {
 strcpy (message, " No color key support");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 if (DrawCaps.dwCaps & DDCAPS_ALPHA)
 {
 strcpy (message, " Alpha channels
supported");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }
 else
 {
 strcpy (message, " No Alpha channels
support");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 }

26.2.5 Display Modes

The DOS concept of a display mode has a different flavor in DirectDraw programming.
In DOS display modes are numbered, in DirectDraw a display mode is defined by its
resolution and color depth. Therefore, a DirectDraw display mode of 640 by 480 by 8
executes with a resolution of 640 pixel rows, 480 pixel columns, and encodes the pixel
attribute in 8 bits. Since 8 bits support 256 combinations, this mode supports a range of

Setting up directdraw 885

256 colors. DirectDraw applications can obtain the available display modes. An
application that executes in exclusive mode can also set a display mode and restore the
previous one when it concludes.

Not all devices support all display modes. To determine the display modes supported
on a given system, an application can call EnumDisplayModes. The function can be used
to list all supported display modes, or to confirm that a single display mode is available in
the hardware. The function’s general form is as follows:

HRESULT EnumDisplayModes (
 DWORD dwFlags, // 1
 LPDDSURFACEDESC2 lpDDSurfaceDesc, // 2
 LPVOID lpContext, // 3
 LPDDENUMMODESCALLBACK2 lpCallBack // 4
);

The first parameter (dwFlags) determines the function’s options by means of two flags:
DDEDM_REFRESHRATES and DDEDM_STANDARDVGAMODES. The first flag
(DDEDM_REFRESHRATES) enumerates separately the modes that have different
refresh rates, even if they have the same resolution and color depth. The second flag
(DDEDM_STANDARDVGAMODES) enumerates Mode X and VGA Mode 13H as
different modes. This parameter can be set to 0 to ignore both of these options.

The second parameter (lpDDSurfaceDesc) is the address of a DDSURFACEDESC2
structure. The structure is used to store the parameters of a particular display mode,
which can be confirmed or not by the call. This parameter is set to NULL in order to
request a listing of all available modes.

The third parameter (lpContext) is a pointer to an application-defined structure that is
passed to the callback function associated with EnumDisplayModes(). This provides a
mechanism whereby the application code can make local data visible to the callback
function. If not used, as is most often the case, then the third parameter is set to NULL.

The fourth parameter (lpCallBack) is the address of a callback function, of prototype
EnumModesCallback2(). This function is called every time a supported mode is found.
Applications use this callback function to provide the necessary processing for each
display mode reported by the call.

The callback function, whose address your code supplies when it calls
EnumDisplayModes() must match the prototype for EnumModesCallback2(). Each time
that a supported mode is found, the callback function receives control. The function’s
general form is:

HRESULT WINAPI EnumModesCallback(
 LPDDSURFACEDESC2
lpDDSurfaceDesc2, // 1
 LPVOID
lpContext // 2
);

The first parameter (lpDDSurfaceDesc2) is the address of a DDSURFACEDESC2
structure that describes the display mode. The second one (lpContext) is the address of

The pc graphics handbook 886

the application-defined data structure, which may have been passed in the third parameter
of the EnumDisplayModes() function call. Code can examine the values in the
DDSURFACEDESC2 structure to determine the characteristics of each available display
mode.

The most important members of the DDSURFACEDESC2 structure are dwWidth,
dwHeight, and ddpfPixelFormat. The dwWidth and dwHeight hold the display mode’s
dimensions. The ddpfPixelFormat member is a DDPIXELFORMAT structure that
contains information about the mode’s bit depth and describes whether the display mode
is palletized or not. If the dwFlags member contains the DDPF_PALETTEINDEXED1,
DDPF_PALETTEINDEXED2, DDPF_PALETTEINDEXED4, or
DDPF_PALETTEINDEXED8 flag, then the display mode’s bit depth is 1, 2, 4, or 8 bits.
In this case the pixel value is an index into the corresponding palette. If dwFlags contains
DDPF_RGB, then the display mode’s bit depth in the dwRGBBitCount member of the
DDPIXELFORMAT structure is valid.

Applications that call EnumDisplayModes() usually do most of the processing in the
EnumModesCallback2() function. For example, a program can list all the DirectDraw
display modes on the screen by storing the display modes data in one or more arrays each
time the callback function receives control. When execution returns to the caller, then all
modes have been stored or a predetermined maximum was reached. The calling code can
now read the mode data from the arrays and display the values on the screen. In this case
the callback function could be coded as follows:

// Global variables for DirectDraw operations
HRESULT DDConnect;
DDCAPS DrawCaps;
// DirectDraw object
LPDIRECTDRAW lpDD;
int DDLevel = 0; // DirectDraw
implementation
// DirectDraw modes data
int modesCount = 0; // Counter for DirectDraw
modes
static int MAX_MODES=60; // Maximum number of modes
DWORD modesArray[180]; // Array for mode data
 // 3 parameters per mode
.
.
.
//***

// Callback function for EnumDisplayModes(
//***

static WINAPI ModesProc(LPDDSURFACEDESC aSurface,
 LPVOID Context)
{
 static int i; // Index into array
 i = modesCount * 3; // Set array pointer
 // Store mode parameters in public array

Setting up directdraw 887

 // Note: code assumes that the dwRGBBitFormat member
of
 // the DDPIXELFORMAT structure contains valid
data
 modesArray[i] = aSurface->dwWidth;
 modesArray[i + 1] = aSurface->dwHeight;
 modesArray[i + 2] = aSurface-
>ddpfPixelFormat.dwRGBBitCount;
 modesCount++; // Bump display modes counter
 // Check for maximum number of display modes
 if(modesCount >= MAX_MODES)
 return DDENUMRET_CANCEL; // Stop mode listing
 else
 return DDENUMRET_OK; // Continue
}

The callback function, named ModesProc(), uses an array of type DWORD to store the
height, width, and color depth for each mode reported by DirectDraw. A public variable
named modesCount keeps track of the total number of modes. In this case the calling
code can be implemented in a function called DDModes, as follows:

//***

// DDModes - Obtain and list DD display modes
//***

void DDModes (HDC hdc)
{
 TEXTMETRIC tm;
 char message[255];
 int j = 0; // Display buffer
offset
 int i = 0; // Modes counter
 int x; // Loop counter
 int text_x = 0;
 int text_y = 0;
 int cxChar;
 GetTextMetrics (hdc, &tm);
 cxChar = tm.tmAveCharWidth ;
 // Test for no DirectDraw interface
 if (DDLevel == 0) {
 strcpy (message, "No DirectDraw interface");
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 return;
 }
 //*******************************
 // if there is DirectDraw, obtain
 // and list display modes
 //*******************************
 strcpy (message, "DirectDraw Display Modes");

The pc graphics handbook 888

 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 // Call EnumDisplayModes()
 if(MODES_ON == 0) {
 MODES_ON=1; // set switch
 DDConnect=lpDD->EnumDisplayModes(0, NULL, NULL,
ModesProc);
 }
 if (DDLevel != 0) {
 strcpy (message, "Number of display modes:
");
 sprintf (message+strlen(" Number of display
modes: "),
 "%i", modesCount);
 TextOut (hdc, text_x, text_y, message, strlen
(message));
 text_y += tm.tmHeight+tm.tmExternalLeading;
 // Format and display mode data
 // First column
 if(modesCount >= 20) {
 for(x = 0; × < 20; x++)
 {
 if(x >= modesCount)
 break;
 j = sprintf (message," %d",
modesArray[i*3]);
 j += sprintf (message+ j , "× %d",
modesArray[i*3 + 1]);
 j += sprintf (message+ j , "× %d",
modesArray[i*3 + 2]);
 TextOut (hdc, text_x, text_y, message,
strlen (message))
 text_y +=
tm.tmHeight+tm.tmExternalLeading;
 i++;
 }
 }
 // Done if 20 or less modes
 if(modesCount <= 20)
 return;
 // Display second column if more than 20 modes
 text_x = cxChar * 20;
 text_y = 2 * tm.tmHeight+tm.tmExternalLeading;
 for(x=0; x < 20; x++)
 {
 if((x+20) >= modesCount)
 break;
 j = sprintf (message," %d",
modesArray[i*3]);
 j += sprintf (message+j," x %d",
modesArray[i*3+1]);

Setting up directdraw 889

 j += sprintf (message+j," x %d",
modesArray[i*3+2]);
 TextOut (hdc, text_x, text_y, message,
strlen (message))
 text_y +=
tm.tmHeight+tm.tmExternalLeading;
 text_x = cxChar * 20;
 i++;
 }
 // Done if 40 or less modes
 if(modesCount <= 40)
 return;
 // Display third column if more than 40 modes
 text_x = cxChar * 40;
 text_y = 2 * tm.tmHeight+tm.tmExternalLeading;
 for(x = 0; x < 20; x++)
 {
 if((x+40) >= modesCount)
 break;
 j = sprintf (message," %d",
modesArray[i*3]);
 j += sprintf (message+j," x %d",
modesArray[i*3+1]);
 j += sprintf (message+j," x %d",
modesArray[i*3+2]);
 TextOut (hdc, text_x, text_y, message,
strlen (message));
 text_y +=
tm.tmHeight+tm.tmExternalLeading;
 text_x = cxChar * 40;
 i++;
 }
 return;
 }
}

The processing calls EnumDisplayModes() in the statement:

DDConnect = lpDD4->EnumDisplayModes(0, NULL, NULL,
ModesProc);

The first parameter is set to 0 to indicate that no special control flags are required.
Therefore, the refresh rate is not taken into consideration and mode X is not reported
separately. The second parameter is NULL to indicate that no structure data for checking
against available modes is used. The NULL value for the third parameter relates to the
fact that no user-defined data structure is being passed to the callback function. The last
parameter is the address of the callback function, in this case the ModesProc() function
previously listed. When the callback function returns, the code tests for a return value of
DD_OK, which indicates that the call was successful, and then proceeds to display the

The pc graphics handbook 890

header messages and to convert the code data stored in ModesArray[] into ASCII strings
for display.

26.3 The DD Info Project

The program named DD info.cpp, located in the DD Info project folder of the book’s
software package, is a demonstration of the initialization and preparatory operations for a
DirectDraw application. The program starts by initializing DirectDraw. The program’s
menu contains commands to read and display system hardware information and to list the
available display modes.

One of the first operations performed by the DD info program, which is the source for
the DD Info Project, is to determine which version of the DirectDraw interface is
installed in the target system. Then the code obtains and displays hardware support, and
lists the available display modes in whatever DirectDraw interface is present.

Setting up directdraw 891

Chapter 27
DirectDraw Exclusive Mode

Topics:

• Programming DirectDraw in exclusive mode
• Developing WinMain() for exclusive mode
• Initializing for DirectDraw exclusive mode
• Using GDI functions
• A DirectDraw exclusive mode template

In Chapter 26 you saw how a DirectDraw application is configured and initialized. You
also learned the basics of DirectDraw architecture and developed a conventional
windowed program that uses DirectDraw functions. But the fundamental purpose of
DirectDraw programming is high-performance graphics. This requires a DirectDraw
program that executes in exclusive mode, which is made easier if we first develop a code
structure that can serve as a template for this type of application. The template must
perform two critical tasks: create a WinMain() function suited for DirectDraw exclusive
mode, and ensure access to the latest version of the DirectDraw interface.

27.1 WinMain() for DirectDraw

A WinMain() function DirectDraw programming in exclusive mode has some unique
features, since the program needs to perform several DirectDraw-specific initializations
that are not common in standard Windows. In this section we develop a template for
DirectDraw exclusive mode programming that includes a suitable version of WinMain().

In addition to the usual Windows initializations, the DirectDraw-specific WinMain()
must perform the following operations:

• Obtain the DirectDraw interface and store the interface pointer.
• Confirm that the desired mode is available in the host machine.
• Set the cooperative level.
• Set the display mode.
• Create the drawing surfaces. Most DirectDraw programs require at least one primary

surface.
• Obtain the DirectDraw device context if the program is to execute GDI functions.

The WinMain() function for DirectDraw exclusive mode creates the program window
and performs Windows and DirectDraw-specific initialization and setup. The following
are the fundamental tasks to be performed by WinMain():

• Create and fill the WNDCLASS structure.

• Register the window class.
• Create the DirectDraw-compatible window.
• Set the window’s show state.
• Provide a suitable message loop, according to the application type.

27.1.1 Filling the WNDCLASSEX Structure

The WINDCLASSEX structure contains window class information. There are not many
differences between the WNDCLASSEX structure that is used in conventional Windows
programming, and the one required for an exclusive mode DirectDraw application. One
difference that can be noted is that a DirectDraw window class does not use a private
device context; therefore, the CS_OWNDC constant is not present in the style member of
the WNDCLASSEX structure member. In the template file the structure is filled as
follows:

WNDCLASSEX wndclass ;
wndclass.cbSize = sizeof (wndclass) ;
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadIcon (NULL,
IDI_APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject
 (GRAY_BRUSH) ;
wndclass.lpszMenuName = szAppName;
wndclass.lpszClassName = szAppName;
wndclass.hIconSm = LoadIcon (NULL,
IDI_APPLICATION) ;

27.1.2 Registering the Window Class

The window class serves to define the characteristics of a particular window as well as
the address of the window procedure. Having filled the structure members, code can now
register the class, with the following call:

RegisterClass(&wndclass);

27.1.3 Creating the Window

Once the WNDCLASSEX structure has been initialized, you can proceed to create the
window by means of the CreateWindowEx() function. Many combinations of parameters
can be used in the call, according to the characteristics desired for the specific ap-
plication window. In the case of a DirectDraw exclusive mode application, some of the
predefined values are meaningless.

The pc graphics handbook 894

The extended style WS_EX_TOPMOST defines a window that is placed above all
non-topmost windows. WS_EX_TOPMOST is usually the appropriate style for creating a
DirectDraw exclusive mode application. The window style parameter should be
WS_POPUP. If the DirectDraw application is to execute full screen, which is always the
case in exclusive mode, then the horizontal and vertical origins are set to zero and the
xsize and ysize parameters are filled using GetSystemMetrics(), which returns the pixel
size of the entire screen area. In the template file the structure is filled as follows:

hWnd=CreateWindowEx(
 WS_EX_TOPMOST, // Extended style
 szAppName, // Application name
 "DirectDraw Demo No. 2",
 WS_POPUP, // Window style
 0, // Horizontal origin
 0, // Vertical origin
 GetSystemMetrics(SM_CXSCREEN), // x size
 GetSystemMetrics(SM_CYSCREEN), // y size
 NULL, // Handle of parent
 NULL, // Handle to menu
 hInstance, // Application instance
 NULL); // Additional data
if (!hWnd)
 return FALSE;

27.1.4 Defining the Window Show State

CreateWindowEx() creates the window internally but does not display it. Code specifies
how the window is to be shown by calling ShowWindow(). Conventional Windows
programs first call ShowWindow() to set the show state, and then UpdateWindow() to
update the client area by sending a WM_PAINT message to the window procedure. It is
different in the case of a DirectDraw exclusive mode application. Since the DirectDraw
interface has not been yet established, no WM_PAINT message can be sent at this point.
This explains why the template file makes the call to the ShowWindow() function, but
not the one to UpdateWindow(). The code is as follows:

ShowWindow (hwnd, iCmdShow);

The first parameter (hwnd) is the handle to the window returned by CreateWindowEx()
function. The second parameter (iCndShow) is the window’s display mode. In this first
call to ShowWindow() applications must use the value received by WinMain().

27.1.5 Creating a Message Loop

At this point WinMain() can initialize DirectDraw and perhaps perform some preliminary
display operations. The processing details in the case of the sample program are
discussed in the following section. The last step in WinMain() is the ever-present
message loop. In a standard DirectDraw exclusive mode application, the message loop is

Directdraw exclusive mode 895

no different than the one in a conventional windows program. In the context of anima-
tion programming, later in this book, we discuss a different type of message loop. The
present code is as follows:

while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
}
 return msg.wParam;
}

27.2 DirectDraw Initialization

Exclusive mode applications often initialize DirectDraw in WinMain(). The reason is that
exclusive mode applications cannot perform display operations until they have obtained
the interface, set the cooperative level, and the display mode. If display operations are to
be performed by means of GDI functions, then the application must also obtain the
device context. Note that DirectDraw programs can draw to the screen using both GDI
and direct memory access methods.

Typically, the DirectDraw exclusive mode initialization includes the following steps:

• Obtain the current interface. In DirectX 8 this is IDirectDraw7.
• Check that the desired display mode is available in the host machine.
• Set the cooperative level and display mode.
• Create the drawing surfaces. This usually means at least a primary surface, but often

other surfaces are also necessary.
• Display some initial screen text or graphics.

Screen display operations can be accomplished by means of conventional GDI functions,
by direct access to video memory, by DirectDraw specific functions, or by a combination
of these methods. Programs of greater complexity usually perform other initialization,
setup, and initial display functions at this time. The example used in this chapter has
minimal DirectDraw functionality. In the chapters that follow we develop more complex
DirectDraw programs.

A preliminary issue is to provide a mechanism whereby the DirectDraw application
can recover if a terminal condition is encountered during initialization and setup. In our
DirectDraw template program we have included a function named DDInitFailed() that
creates a message box with the corresponding diagnostic prompt. When the user
acknowledges by pressing the OK button, the terminal error handler destroys the
application window and returns control to the operating system. The function is coded as
follows:

//***************************************
// Name: DDInitFailed()
// Desc: This function is called if an
// initialization operation fails

The pc graphics handbook 896

//***************************************
HRESULT DDInitFailed(HWND hWnd, HRESULT hRet, LPCTSTR
szError)
{
 char szBuff[128];
 sprintf(szBuff, szError);
 ReleaseObj ects() ;
 MessageBox(hWnd, szBuff, "DirectDraw Demo No. 2",
MB_OK);
 DestroyWindow(hWnd);
 return hRet;
}

The parameters for the DDInitFailed() function are the handle to the window, the result
code from the call the caused the failure, and a string pointer with the diagnostic text to
be displayed in the message box. All DirectDraw initialization calls performed in the
template code test for a valid result code; and if no valid code is found, they exit
execution through the DDInitFailed() function. The same is true of the DirectDraw
examples used in the rest of the book.

27.2.1 Obtaining the Interface Pointer

In Chapter 26 we discussed suitable strategies for managing interface pointer versions.
The first processing step is to obtain the DirectDraw object that corresponds to the
desired version of the interface. It is usually a good idea to store the pointer in a global
variable, which can be accessed by other program elements. The function named
DD7Interface() attempts to find the IDirectDraw7 object. It is coded as follows:

// Global data
LPDIRECTDRAW7 lpDD7; // Pointer to IDirectDraw7
.
.
.
//**
// Name: DD7Interface()
// Desc: Created DirectDraw object and finds
// DirectDraw7 interface
// PRE:
// Caller's code contains pointer
// variable:
// LPDIRECTDRAW7 lpDD7;
//
// POST:
// returns 0 if no DirectDraw7 interface
// returns 1 if DirectDraw7 found
// Caller’s pointer variable
// is initialized
//**
int DD7Interface()
{

Directdraw exclusive mode 897

 HRESULT DDConnect;
 LPDIRECTDRAWlpDD; // Pointer to DirectDraw
 DDConnect = DirectDrawCreate (NULL,
 &lpDD,
 NULL);
 if(DDConnect != DD_OK)
 return 0;
 // Atempt to locate DirectDraw4 interface
 DDConnect = lpDD->QueryInterface(
 IID_IDirectDraw7,
 (LPVOID *) &lpDD7) ;
 if(DDConnect != S_OK)
 return 0;
 lpDD->Release(); // Release old pointer
 return 1;
}

The above code releases the local pointer to DirectDraw if the IDirectDraw7 pointer is
found. In this manner the application code need only be concerned with releasing the
object actually in use. Note that the pointer to the DirectDraw? interface pointer is
defined globally, so that is can be seen throughout the application. In WinMain() the call
to the DD4Interface() function is as follows:

// Attempt to fetch the DirectDraw4 interface
 hRet = DD7Interface();
 if (hRet == 0)
 return DDInitFailed(hWnd, hRet,
 "QueryInterface() call
failed");

If the IDirectDraw7 interface is not found, then the program exits through the
DDInitFailed() function previously described. In the template file the diagnostic
messages simply express the name of the failed function. In your own programs you will
probably substitute these text messages for more appropriate ones. For example, the
failure of the QueryInterface() call can be interpreted to mean that the user needs to
upgrade the host system to DirectX 7 or later version. A more detailed diagnostics may
be advisable in some cases.

27.2.2 Checking Mode Availability

If the call succeeds, we have obtained a pointer to IDirectDraw7. This pointer can be
used in all DirectDraw function calls. The fact that we have a pointer to the version 7 of
DirectDraw does not mean that the application will execute correctly. DirectDraw
programming sometimes introduces hardware dependencies that are not a found in
conventional Windows code.

Video display operations in DirectDraw are dependent upon the selected display
mode. Before you attempt to set a display mode, it is usually a good idea to investigate if
the desired mode is available in the host system. This gives code the opportunity to select

The pc graphics handbook 898

an alternative mode if the ideal one is not available, or to exit with a diagnostic message
if no satisfactory display mode is found.

In Chapter 26 we used of the EnumDisplayModes() function to list the display modes
available in a system. The same function can be used to query if a particular mode is
available. The code used in the template file is as follows:

//***
// Name: ModesProc
// Desc: Callback function for EnumDisplayModes()
//***
HRESULT WINAPI ModesProc(LPDDSURFACEDESC2 aSurface,
 LPVOID Context)
 static int i; // Index into array of mode
data
 i = modesCount * 3; // Set array pointer
 if(modesCount >= MAX_MODES)
 return DDENUMRET_CANCEL; // Stop mode listing
 // Store mode parameters in public array
 // Note: code assumes that the dwRGBBitFormat member
if
 // the DDPIXELFORMAT structure contains valid
data
 modesArray[i] = aSurface->dwWidth;
 modesArray[i +1] = aSurface->dwHeight;
 modesArray[i +2] = aSurface-
>ddpfPixelFormat.dwRGBBitCount;
 modesCount++; // Bump display modes counter
 return DDENUMRET_OK; // Continue
}
//***

// Name: hasDDMode
// Desc: Tests for mode availability
//***

// PRE:
// 1. Public variable modesArray[] to store mode data
// 2. Public int variable modesCount to store number of
// display modes
// 3. ModesProc() is an associated function that stores
// mode data in array and count modes
//
// POST:
// Returns 1 if mode is available
//***

int HasDDMode(DWORD pixWidth, DWORD pixHeight, DWORD
pixBits)
{
static HRESULT DDConnect;
// Call EnumDisplayModes()
if(MODES_ON == 0)

Directdraw exclusive mode 899

{
 MODES_ON=1; // set switch
 DDConnect=lpDD4->EnumDisplayModes(0,
 NULL,
 NULL,
 ModesProc);
}
// Modes are now stored in modeArray[] as triplets
encoding
// width, height, and pixel bit size
// Variable modesCount holds the total number of
display modes
for(int x = 0; x < (modesCount * 3); x += 3)
{
 if(modesArray[x] == pixWidth && modesArray[x+1] ==
pixHeight\
 && modesArray[x+2] == pixBits)
 return 1;
}
return 0;
}

DirectDraw documentation states the EnumDisplayModes() function can be passed the
address of a DDSURFACEDESC2 structure, that is then checked for a specific mode.
We have found that this mode of operation is not always reliable. In order to make sure
that all available modes are checked, the HasDDMode() function loads a predetermined
number of modes into a global array variable, then searches the array for the desired one.

In the WinMain() template, the call to the HasDDMode() function is coded as follows:

// Check for available mode (640 by 480 in 24-bit
color)
if (HasDDMode(640, 480, 24) == 0)
 return DDInitFailed(hWnd, hRet, "Display mode
not available");

The code in the HasDDMode() function provides no alternative processing for the case in
which the desired true-color mode is not available in the system. In your own programs
you may call HasDDMode() more than once, and provide alternative processing
according to the best mode found. Here again, you should note that this programming
style creates device-dependencies that could bring about other complications.

27.2.3 Setting Cooperative Level and Mode

If the desired mode is available, then the code must determine the cooperative level and
proceed to set the mode. Exclusive mode DirectDraw programs require the constants
DDSLC_EXCLUSIVE and DDSCL_FULLSCREEN. The processing is as follows:

// Set cooperative level to exclusive and full screen

The pc graphics handbook 900

 hRet = lpDD7->SetCooperativeLevel(hWnd,
DDSCL_EXCLUSIVE
 |
DDSCL_FULLSCREEN);
 if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "SetCooperativeLevel() call
failed");
 // Set the video mode to 640 × 480 × 24
 hRet = lpDD7->SetDisplayMode(640, 480, 24, 0, 0);
 if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "SetDisplayMode() call failed");

27.2.4 Creating the Surfaces

In Chapter 25 you encountered the concept of DirectDraw surfaces. At that time we
defined a drawing surface as an area of video memory, typically used to hold image data,
and IDirectDrawSurface as a COM object in itself. Most DirectDraw? applications
require at least two types of COM objects: one, of type LPDIRECTDRAW7, is a pointer
to the DirectDraw object. The second one, of type LPDIRECTDRAWSURFACE4, is a
pointer to a surface. All surface-related functions use this second pointer type, while the
core DirectDraw calls require the first one. Applications that manipulate several surfaces
often cast a pointer for each surface. A third type of object, called a DirectDraw palette
object, is necessary for programs that perform palette manipulations, while DirectDraw
clipper objects are used in clipping operations.

Before accessing a DirectDraw surface you must create it by means of a call to the
IDirectDraw7::CreateSurface. The call can produce a single surface object, a complex
surface-flipping chain, or a three-dimensional surface. The call to CreateSurface()
specifies the dimensions of the surface, whether it is a single surface or a complex
surface, and the pixel format. These characteristics are previously stored in a
DDSURFACEDESC2 structure whose address is included in call’s parameters. The
function’s general form is as follows:

HRESULT CreateSurface(
 LPDDSURFACEDESC2 lpDDSurfaceDesc, //
1
 LPDIRECTDRAWSURFACE7 FAR *lplpDDSurface, //
2
 IUnknown FAR *pkUnkOutter //
3
);

The first parameter is the address of a structure variable of type
LPDDSURFACEDESC2. The CreateSurface() API requires that all unused members of
the structure be set to zero. In the code sample that follows you will see how this is easily
accomplished. The second parameter is the address of a variable of type
LPDIRECTDRAWSURFACE7 which is set to the interface address if the call succeeds.

Directdraw exclusive mode 901

This is the pointer used in the calls that relate to this surface. Applications often store this
pointer in a global variable so that it is visible throughout the code. The third parameter is
provided for future expansion of the COM. Presently, applications must set this
parameter to NULL.

If the call succeeds, the return value is DD_OK. If it fails the following self-
explanatory error values can be returned:

• DDERR_INCOMPATIBLEPRIMARY
• DDERR_INVALIDCAPS
• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_INVALIDPIXELFORMAT
• DDERR_NOALPHAHW
• DDERR_NOCOOPERATIVELEVELSET
• DDERR_NODIRECTDRAWHW
• DDERR_NOEMULATION
• DDERR_NOEXCLUSIVEMODE
• DDERR_NOFLIPHW
• DDERR_NOMIPMAPHW
• DDERR_NOOVERLAYHW
• DDERR_NOZBUFFERHW
• DDERR_OUTOFMEMORY
• DDERR_OUTOFVIDEOMEMORY
• DDERR PRIMARYSURFACEALREADYEXISTS
• DDERR_UNSUPPORTEDMODE

DirectDraw always attempts to create a surface in local video memory. If there is not
enough local video memory available, then DirectDraw tries to use non-local video
memory. Finally, if no video memory is available at all, then the surface is created in
system memory. The call to CreateSurface() can explicitly request that a surface be
created in a certain type of memory. This is done by means of the appropriate flags in the
associated DDSCAPS2 structure. DDSCAPS2 structure is part of DDSURFACEDESC2.

The primary surface is the one currently displayed on the monitor. It is identified by
the DDSCAPS_PRIMARYSURFACE flag. There is only one primary surface for each
DirectDraw object. The dimensions and pixel format of the primary surface must match
the current display mode. It is not necessary to explicitly enter these values when calling
CreateSurface(); in fact, specifying these parameters generates an error even if they
match the ones in the current display mode. In this template program we create the
simplest possible surface object, which is the one that corresponds to a primary surface.
The code is as follows:

// Global data
LPDIRECTDRAWSURFACE7 lpDDSPrimary = NULL; //
DirectDraw primary
DDSURFACEDESC2 ddsd; // DirectDraw7
surface
.
.

The pc graphics handbook 902

.
// Create a primary surface
// ddsd is a structure of type DDSRUFACEDESC2
// First, zero all structure variables using the
ZeroMemory()
// function
 ZeroMemory(&ddsd, sizeof(ddsd));
// Now fill in the required members
 ddsd.dwSize = sizeof(ddsd); // Structure size
 ddsd.dwFlags = DDSD_CAPS ;
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
 hRet = lpDD7->CreateSurface(&ddsd, &lpDDSPrimary,
NULL);
 if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "CreateSurface() call failed");

If the call succeeds, we obtain a pointer by which to access the functions that relate to
DirectDraw surfaces. The pointer, named lpDDSPrimary, is stored in a global variable of
type LPDIRECTDRAWSURFACE7. The surface pointer can be used to obtain a
DirectDraw device context, which allows using GDI graphics in the application, or to
lock the surface for direct access and retrieve its base address and pitch.

27.2.5 Using Windows GDI Functions

DirectDraw applications have access to the display functions in the GDI. As in
conventional Windows programming, access to GDI requires obtaining a handle to the
Windows device context. For example, an application can use a GDI function to display a
message on the screen. The DirectDrawSurface7 interface contains a function called
GetDC() that can be used for this purpose. This function is not the same one as GetDC()
in the general Windows API. Its general form is as follows:

HRESULT GetDC(HDC);

The function's only parameter is the address of the handle to the device context which is
associated with the surface. If the call succeeds it returns DD_OK. If it fails it returns one
of the following error codes:

• DDERR_DCALREADYCREATED
• DDERR_GENERIC
• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_INVALIDSURFACETYPE
• DDERR_SURFACELOST
• DDERR_UNSUPPORTED
• DDERR_WASSTILLDRAWING

Directdraw exclusive mode 903

Note that the GetDC() function uses an internal version of the
IDirectDrawSurface7::Lock function to lock the surface. The surface remains locked
until the IDirectDrawSurface7::ReleaseDC function is called. In the template program the
code proceeds as follows:

static char szDDMessage1[] =
"Hello World -- Press <Esc> to end program";
. . .
// Display some text on the primary surface
if(lpDDSPrimary->GetDC(&hdc) != DD_OK)
return DDInitFailed(hWnd, hRet, "GetDC() call failed");
// Display screen message
 SetBkColor(hdc, RGB(0, 0, 255)); // Blue
background
 SetTextColor(hdc, RGB(255, 255, 0)); // Yellow
letters
 TextOut(hdc, 120, 200, szDDMessage1,
lstrlen(szDDMessage1));
 lpDDSPrimary->ReleaseDC(hdc);

27.3 The DD Exclusive Mode Template

The project file named DD Exclusive Mode, in the book’s software pckage, contains the
program DD Exclusive Mode.cpp which can be used as a template for developing simple
DirectDraw applications in exclusive mode. The code contains all of the support
functions previously mentioned, that is, functions to find a DirectDraw7 interface object,
to test for availability of a particular display mode, to release objects, and to handle
terminal errors during DirectDraw initialization. The processing consists of displaying a
screen message using the text output GDI service. The code also includes a skeletal
window procedure to handle keyboard input, disable the cursor, and terminate execution.

The pc graphics handbook 904

Chapter 28
Access to Video Memory

Topics:

• Programming memory-mapped video
• Using in-line assembly language
• Multi-language programming
• Developing direct access primitives
• Raster operations

The program DD Exclusive Mode, developed in Chapter 12, initializes DirectDraw,
defines the cooperative level, sets a display mode, and draws text on the screen using a
GDI function. The preliminary and setup operations performed by the DD Exclusive
Mode program are necessary in many DirectDraw applications. However, not much is
gained in performance and control by a DirectDraw application that is limited to the GDI
functions. The purpose of DirectX in general, and DirectDraw specifically, is to provide a
higher level of control and to improve graphics rendering speed. Neither of these are
achieved using the GDI services. Before an application can enjoy the advantages that
derived from the DirectDraw interface, it must gain access to video memory. Once an
application has gained access to video memory, the use of low-level code to further
optimize processing becomes an option. The second level of DirectDraw advantages,
those that result from using the hardware features in the video card, are discussed in the
chapters that follow.

28.1 Direct Access Programming

Graphics programming in DOS is based on video functions being mapped to a specific
area of system memory. The DOS graphics programmer determines the base address to
which the video system is mapped, and the pixel format used in the current display mode.
The code then proceeds to store pixel data in this memory area and the video hardware
takes care of automatically updating the display by reflecting the contents of the memory
region to which it is mapped. The process is simple, although in some display modes
manipulating the data can be relatively complicated.

28.1.1 Memory-Mapped Video

The greatest difficulty of programming direct access to video memory in DOS is related
to the segmented architecture of the Intel CPUs. The 16-bit internal architecture of the
original Intel microprocessors limits each addressable segment to 64 kilobytes. Thus, a
display mode with a resolution of 640 by 480 pixels, in which each pixel attribute is

stored in 1 data byte, requires 307,200 bytes (640×480×1). Since each segment is limited
to 65,536 bytes, the screen memory data exceeds the span of a single segment. In fact,
307,200 data bytes require five segments for storing the pixel information. This forces the
use of data splitting schemes, one of which is called memory banking. By switching the
segment mapping of a hardware element called the bank, it is possible to assign several
areas of system memory to the same segment. The programming appears complicated,
but once the access routines are developed for a particular display mode, the code can set
any screen pixel to any desired color attribute by just passing the pixel’s screen column
and row address and the desired color code.

Until the advent of DirectDraw, Windows graphics programmers had no way of
accessing video memory directly. Even if a Windows programmer had been able to find
the address to which the video display was mapped in a particular system, any attempt to
access this area of memory would generate a general protection fault. DirectDraw solves
both problems: it temporarily relaxes the operating system's access restriction, and it
provides information about the location and mapping of the video system.

An additional advantage is that in Win32 video display area is defined in a flat
memory space. Once the base address of the video buffer is stored in a 32-bit register, the
entire video memory space can be accessed without any segment mapping or memory
banking scheme. In this case application code uses DirectDraw functions to obtain the
base address of video memory, and its bit-to-pixel mapping. With this information, the
DirectDraw program can proceed to perform display operations directly and in a
straightforward manner.

Hi-Color Modes

The development of SuperVGA video cards, with more video memory than the standard
VGA, made possible display modes with a much richer color range than had been
previously available. Modes that devote 16 bits or more for the color encoding of each
screen pixel are called the hi-color modes. Although no formal designation for these
mode has been defined, the 16-bit per pixel modes are usually called real-color modes,
and those with 24- and 32-bits per pixel are called true-color modes.

An adapter with 4Mb of video memory, which is common in today's desktop
hardware, allows several real-color and true-color modes. The screen snapshot Figure
11–4 corresponds to a video card with 4Mb of memory. In this case real-color and true
color modes are available up to a resolution of 1,600 by 1,200 pixels. The graphics
programmer working with current video system technology can safely assume that most
PCs support real-color and true-color modes with standard resolutions. However, many
laptop computers have a more limited range of video modes.

Palettes were developed mostly to increase the colors available in modes with limited
pixel depth. In Windows, all display modes with a resolution of 16-bits per pixel or
higher are nonpalletized. For general graphics programming the use of palette-
independent display modes considerably simplifies program design and coding.
Programming today's video cards, with several megabytes of display memory, there is
little justification for using palletized modes. All real-color and true-color modes are, by
definition, nonpalletized. Figure 28–1 shows the mapping of video memory bits to pixel
attributes in a real-color mode.

Access to video memory 907

Figure 28–1 Pixel Mapping in Real-
Color Modes

Not all real-color modes use the same mapping. The fact that 16 bits cannot be exactly
divided into the three primary colors poses a problem. One possible solution is to leave 1
bit unused and map each primary color to a 5-bit field. Another option is to map the green
color to a 6-bit field and the other two colors to 5-bit fields. This scheme, sometimes
called a 5–6–5 mapping, is justified by the fact that the human eye is more sensitive to
green than to red and blue. Figure 28–1 shows a 5–6–5 real-color mapping.

True-Color Modes

In the real color modes, the fact that the individual colors are not located at a byte
boundary introduces some programming complications. To handle this uneven mapping
code must perform bitwise operations to set the corresponding fields to the required
values. The true-color modes, on the other hand, use 8 bits for each primary colors. This
makes the direct access operations much easier to implement.

The name true-color relates to the idea that these modes are capable of reproducing a
color range that is approximately equivalent to the sensitivity of the human eye. In this
sense it is sometimes said that the true color modes produce a rendition that is of
photographic quality. Two different mappings are used in the true-color modes, shown in
Figure 28–2.

The pc graphics handbook 908

Figure 28–2 Pixel Mapping in True-
Color Modes

The 24-bit mapping, shown at the top of Figure 28–2, uses three consecutive bytes to
represent each of the primary colors. In the 32-bit mappings, at the bottom of Figure 28–
2, there is an extra byte, which is unused, at the end of each pixel field. The reason for the
unused byte in the 32-bit true-color modes relates to the 32-bit architecture of the Intel
CPUs, which is also the bus width of most video cards. By assigning 4 bytes to encoding
the color attribute it is possible to fill a pixel with a single memory transfer. A low-level
program running in an Intel machine can store the pixel attribute in an extended machine
register, such as EAX, and then transfer it into video memory with a single move
instruction. By the same token, a C or C++ program can place the value into a variable of
type LONG and use a pointer to LONG to move the data, also in a single operation. In

Access to video memory 909

other words, the 32-bit mapping scheme sacrifices memory storage space for the sake of
faster rendering.

28.1.2 Locking the Surface

DirectDraw applications access the video buffer, or any surface memory area, by first
calling the Lock() function. Lock() returns a pointer to the top-left corner of the rectangle
that defines the surface, as well as the surface pitch and other relevant information
necessary for accessing the surface. When calling Lock() the application can define a
rectangular area within the surface, or the entire surface. If the surface is a primary
surface, and the entire area is requested, then Lock() returns the base address of the video
buffer and the number of bytes in each buffer row. This last parameter is called the
surface pitch. When execution returns from the Lock() call the DirectDraw application
has gained direct access to video display memory.

The Lock() function is related to the surface; therefore, it is accessed, not by the
DirectDraw object, but by a surface object returned by the call to CreateSurface(). The
use of the CreateSurface() function was discussed in Chapter 12. The general form of the
Lock() function is as follows:

HRESULT Lock(
 LPRECT lpDestRect, //
1
 LPDDSURFACEDESC2 lpDDSurfaceDesc, //
2
 DWORD dwFlags, //
3
 HANDLE hEvent //
4
);

The first parameter is a pointer to a RECT structure that describes a rectangular area on
the surface that is to be accessed directly. To lock the entire surface this parameter is set
to NULL. If more than one rectangle is locked, they cannot overlap. The second
parameter is the address of a structure variable of type DDSURFACEDESC2, which is
filled with all the information necessary to access the surface memory directly. The
information returned in this structure includes the base address of the surface, its pitch,
and its pixel format. Applications should never make assumptions about the surface pitch,
since this value changes according to the location of surface memory and even the
version of the DirectDraw driver. The third parameter contains one or more flags that
define the function's mode of operation. Table 28–1, on the following page, lists the
constants currently implemented in the IDirectDrawSurface4 interface.

The DDLOCK_NOSYSLOCK flag relates to the fact that while a surface is locked
DirectDraw usually holds the Win16Mutex (also known as the Win16Lock) so that
gaining access to surface memory can occur safely. The Win16Mutex in effect shuts
down Windows for the time that elapses between the Lock() and the Unlock() calls. If the
DDLOCK_NOSYSLOCK flag is present, and the locked surface is not a primary surface,
then the Win16Mutex does not take place. If a blit is in progress when Lock() is called,

The pc graphics handbook 910

the function returns an error. This can be prevented by including the DDLOCK_WAIT
flag, which causes the call to wait until a lock can be successfully obtained.

The fourth parameter to the Lock() call was originally documented to be a handle to a
system event that is triggered when the surface is ready to be locked. The newest version
of the DirectDraw documentation states that it is not used and should always be set to
NULL.

Table 28–1
Flags the IDirectDrawSurface7::Lock Function

FLAG MEANING
DDLOCK_DONOTWAIT
 OIDirectDrawSurface7 interfaces, the default is DDLOCK_WAIT. Use this

flag to override the default and use time when the accelerator is busy (as
denoted by the DDERR_WASSTILLDRAWING return value).

DDLOCK_EVENT
 Not currently implemented.
DDLOCK_NOOVERWRITE
 New for DirectX 7.0. Used only with Direct3D vertex-buffer locks. This flag

can be useful to append data to the vertex buffer.
DDLOCK_DISCARDCONTENTS
 New for DirectX 7.0. Used only with Direct3D vertex-buffer locks. Indicates

that no assumptions are made about the contents of the vertex buffer during
this lock. This enables Direct3D or the driver to provide an alternative
memory area as the vertex buffer. This flag is useful to clear the contents of
the vertex buffer and fill in new data.

DDLOCK_OKTOSWAP
 Obsolete. Replaced by DDLOCK_DISCARDCONTENTS.
DDLOCK_NOSYSLOCK
 Do not take the Win16Mutex. This flag is ignored when locking the primary

surface.
DDLOCK_READONLY
 The surface being locked will only be read.
DDLOCK_SURFACEMEMORYPTR
 A valid memory pointer to the top-left corner of the specified rectangle should

be returned. If no rectangle is specified, a pointer to the top of the surface is
returned. This is the default and need not be entered explicitly.

DDLOCK_WAIT
 Retries lock if it cannot be obtained because a blit operation is in progress.
DDLOCK_WRITEONLY
 The surface being locked will be write enabled.

Lock() returns DD_OK if it succeeds or one of the following error codes:

• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_OUTOFMEMORY

Access to video memory 911

• DDERR_SURFACEBUSY
• DDERR_SURFACELOST
• DDERR_WASSTILLDRAWING

When Lock() succeeds, the application can retrieve a surface memory pointer and other
necessary data and start accessing surface memory directly. Code can continue to access
surface memory until a call to the Unlock() function is made. As soon as the surface is
unlocked, the surface memory pointer becomes invalid. While the lock is in progress,
applications cannot blit to or from surface memory. GDI functions fail when used on a
locked surface.

28.1.3 Obtaining Surface Data

When the Lock() call returns DD_OK, the application can access the corresponding
members of the DDSURFACEDESC2 structure variable passed as a parameter. This
structure contains the data necessary for direct access. If application code knows the
display mode and its corresponding pixel format, then the two data elements necessary
for accessing the locked surface are its base address and the surface pitch. The base
address is returned in a structure member of type LPVOID, and the surface pitch in a
structure member of type LONG. Applications that plan to dereference the surface
pointer typically cast it into one that matches the surface’s color format. For example, a
program that has set a 24-bit true-color mode is likely to access surface memory in byte-
size units. In this case the pointer can be cast into a variable of type LPBYTE. On the
other hand, an application executing in a 16-bit real-color mode typecasts the pointer into
a LPWORD type, and one that has set a 32-bit true-color mode may typecast into an
LPLONG data type.

The following code fragment shows the use of the Lock() function in a routine that
fills a 50-by-50 pixel box in a 24-bit true-color video mode. The box is arbitrarily located
at screen row number 80 and pixel column number 300. The pixels are filled with the red
attribute by setting each third surface byte to 0×ff and the other three color bytes to 0×0.

LONG localPitch; // Local variable for surface
pitch
LPBYTE localStart; // and for buffer start
LPBYTE lastRow; // Storage for row start
.
.
.
// Attempt to lock the surface for direct access
if (lpDDSPrimary->Lock(NULL, &ddsd, DDLOCK_WAIT, NULL)\
 != DD_OK)
 DDInitFailed(hWnd, hRet, "Lock failed");
// Store video system data
 vidPitch = ddsd.lPitch; // Pitch
 vidStart = ddsd.lpSurface; // Buffer address
// ASSERT:
// Surface is locked. Global video data is as follows:
// vidPitch holds surface pitch

The pc graphics handbook 912

// vidStart holds video buffer start
// Copy to local variables typecasting void pointer
 localPitch = vidPitch;
 localStart = (LPBYTE) vidStart;
// Index to row 80
 localStart = localStart + (80 * localPitch);
// Move right 300 pixels
 localStart += (400 * 3);
// Display 50 rows, 50 times
for(int i = 0; i < 50; i++){
 lastRow = localStart; // Save start of row
 for(int j = 0; j < 50; j++) {
 *localStart = 0x0; // blue attribute
 localStart++;
 *localStart = 0x0; // green attribute
 localStart++;
 *localStart = 0xff; // red attribute
 localStart++;
 }
localStart = lastRow+localPitch;
}
lpDDSPrimary->Unlock(NULL);

28.2 In-Line Assembly Language

The maximum advantages of direct access to video memory are realized when the code is
highly optimized, and the most dependable way to produce highly optimized code is by
programming in 80x86 assembly language. Although an entire DirectDraw application
can be coded in assembly language, this approach usually entails more difficulties and
complications than can be justified by the relatively few advantages. On the other hand,
most C and C++ compilers provide in-line assemblers that allow embedding assembly
language code in a C or C++ program. The result is an easy-to-produce multilanguage
program with the advantages of both environments. It is also possible to use an assembler
program, such as MASM, to produce stand-alone assembly language modules that can be
incorporated with the application at link time. Later in this chapter we discuss the
development of assembly language modules that can be used by a program developed in
Visual C++.

A benefit of in-line assembly is that the low-level code can reference, by name, any
C++ language variable or function that is in scope. This makes it easy to access program
data and processing routines. In-line assembly also avoids many of the complication and
portability problems usually associated with parameter passing conventions in multi-
language programming. The resulting development environment has all the advantages of
high-level programming, as well as the power and flexibility of low-level code. Visual
C++ and Borland C Builder support in-line assembly.

On the other hand, in-line code cannot use assembler directives to define data and
perform other initialization and synchronization functions. Another advantage of stand-
alone assembler modules is that the code can be easily integrated into libraries and DLL
files that can be ported to other applications.

Access to video memory 913

DirectDraw made assembly language coding in Windows applications an attractive
option. Direct access to video memory, made possible by DirectX, opens the possibility
of using assembly language to maximize performance and control. The result is a DOS-
like development environment. However, in conventional GDI programming there is
little justification for using low-level code.

28.2.1 The _asm Keyword

The _asm keyword is used in Visual C++ to produce assembly language instructions, one
at a time, or in blocks. When the compiler encounters the _asm symbol it invokes the in-
line assembler. The asembler, in turn, generates the necessary opcodes and inserts them
into the object file. In this process the development system limits its action to that of an
assembler program; no modification of the coding takes place and no interpretation or
optimization effort is made. Thus, the programmer is certain that the resulting code is
identical to the source. The fact that no separate assembly or linking is necessary
considerably simplifies the development process.

Although the _asm keyword can precede a single instruction, it is more common to
use it to generate a block of several assembly language lines. Braces are used to delimit
the source block, as in the following example:

_asm
{
 ; Assembly language code follows:
 PUSH EBX ; EBX to stack
 MOV EAX,vidPitch ; vidPitch is a C variable
 MOV EBX,80 ; Constant to register
 MUL EBX ; Integer multiply
 POP EBX ; Restore EBX
}

The second instruction of the preceding code fragment loads a variable defined in C++
code into a machine register. Accessing high-level language variables is one of the most
convenient features of in-line assembly. Assembly language code can also store results in
high-level variables.

28.2.2 Coding Restrictions

There are a few rules and conventions that in-line assembly language code must follow.
Perhaps the most important one is to preserve the registers used by C++. A possi-ble
source of problems is when the C++ program is compiled with the _fastcall switch or the
/Gr compiler option. In these cases, arguments to functions are passed in the ECX and
EDX machine registers; therefore, they must be preserved by the assembly language
program section. The easiest way to avoid this concern is to make sure that programs that
use in-line assembly are not compiled with either of these options. In Visual C++ the
compiler options can be examined by selecting the Settings command in the Project
Menu and then clicking on the C/C++ tab. The Project Options window in this dialog box

The pc graphics handbook 914

shows the compiler switches and options that are active. Make sure that you inspect the
settings for both the Release and the Debug options, as shown in the Settings For: scroll
box.

Programs that do not use the _fastcall switch or the /Gr compiler options can assume
that the four general purpose registers need not be preserved. Consequently, EAX, EBX,
ECX, and EDX are free and available to the assembly language code. In regards to the
pointer registers and the direction flag the Microsoft documentation is inconsistent. Some
versions of the Visual C++ Programmers Guide state that ESI and EDI must be
preserved, while other versions state the contrary. Regarding the direction flag, the
original Microsoft C++ compilers required that the flag be cleared before returning, while
the most recent manuals say that the state of the direction flag must be preserved. In view
of these discrepancies, and in fear of future variations, the safest approach is to use the
general purpose registers freely (EAX, EBX, ECX, and EDX) but to preserve all other
machine registers and the direction flag. This means that on entry to the routine the in-
line assembly code must push on the stack the registers that must be preserved, as well as
the flags, and restore them before exiting the _asm block. This is the approach that we
use in the book’s sample code. The processing in a routine that uses the ESI and EDI
registers can be as follows:

_asm
{
 PUSH ESI ; Save context
 PUSH EDI
 PUSHF
 ; Processing operations go here
 ; .
 ; .
 ; .
 ; Exit code
 POPF ; Restore context
 POP EDI
 POP ESI
}

28.2.3 Assembly Language Functions

Often the low-level processing routines can be conveniently located in functions that can
be called by the C++ code. When the assembly code is not created by means of the on-
line feature of the compiler, that is, when it is written for a separate assembler, then the
assembly language routine and the C++ must interface following the calling conventions
adopted by the compiler. The usual procedure is that C++ places the parameters in the
stack at the time the call is made, and the assembly language routine removes them from
the stack making sure that the stack integrity is preserved. In this case the assembly and
the C++ code usually reside in separate files which are referenced at link time.

For applications that use in-line assembly, the inter-language protocol is considerably
simplified by creating a C++ function shell to hold the assembly code. In this case the use
of the stack for parameter passing becomes almost unnecessary, since the assembly code
can reference the C++ variables directly. One possible drawback is that the in-line

Access to video memory 915

assembler does not allow the use of the data definition directives DB, DW, DD, DQ, and
DT or the DUP operator. Therefore, the data elements used by the assembly language
code must be defined as C++ variables. The following example is an assembly language
routine to add three integers and return the sum to the calling code. The processing is
contained in a C++ function shell, as follows:,

int SumOf3(
 int x,
 int y,
 int z)
{
 int total; // C++ variable to hold sum
 _asm
 {
 MOV EAX,x ; move first parameter to
accumulator
 ADD EAX,y ; add second parameter
 ADD EAX,z ; and third parameter
 MOV total,EAX ; store sum
 }
 return total;
}
The calling code could be as follows:
 int aSum; // local variable for sum
 . . .
 aSum = SumOf3(10, 20, 30);

This example shows that the assembly language code can access the parameters passed to
the C++ function, as well as store data in a local variable that is also accessible to C++.
This easy mechanism for sharing data is one of the major advantages of in-line assembly.

28.3 Multi-Language Programming

Instead of using in-line assembly language, it is possible to develop entire assembly
language modules which can be accessed at link-time or at runtime. The topic of
developing libraries and DLLs is outside the scope of this book. However, this section is
about developing independent modules using MASM, which can later be incorporated
into a C++ program. The development tools considered here are Microsoft’s MASM and
Visual C++ version 6.0. The resulting program is developed partly in assembly language
and partly in C++. Therefore it is a case of multi-language programming.

28.3.1 Stand-Alone Assembler Modules

You have seen that one of the major limitations of in-line assembly is that it does not
permit the use of assembler directives. One of the consequences of this limitation is that
the programmer must declare all data as C++ variables and access this data from the in-
line assembler code. Another limitation is that it is not possible to create assembly

The pc graphics handbook 916

language procedures with in-line code. Therefore the assembly language routines must be
defined as C or C++ functions. In many cases it is possible to work around these
limitations, but not always. For example, the current version of Visual C++ does not
support10-byte floating-point variables in ANSI-IEEE extended format. Applications that
manipulate floating point data using the math unit of the Pentium can often benefit from
the extended format. Among other reasons, for defining constants and storing temporary
results. Other uses of stand-alone assembly is in creating libraries and DLLs that can be
accessed by any application.

C++/Assembler Interface Functions

The transition between C++ and assembly language code is made easier by creating
interface routines that receive the C++ call, format the data for the low-level code, call
the low-level procedure, and re-format the results before returning to the caller. If
properly designed, the interface function makes the multi-language environment
transparent to the programmer. For example, imagine a low-level routine, coded in
assembly language, that performs matrix multiplication. The header of the low-level
procedure is as follows:

_MUL_MATRICES PROC USES esi edi ebx ebp
; Procedure to multiply two matrices (A and B) for
which a matrix
; product (A * B) is defined. Matrix multiplication
requires that
; the number of columns in matrix A be equal to the
number of
; rows in matrix B, as follows:
; A B
; R C r cr
; |______=______|
;
; Example:
; A = (2 by 3) B = (3 by 4)
; All A12 A13 B11 B12 B13 B14
; A21 A22 A23 B21 B22 B23 B24
; B31 B32 B33 B34
;
; The product matrix (C) will have 2 rows and 4 columns
; C = (2 by 4)
; C11 C12 C13 C14
; C21 C22 C23 C24
;
; In this case the product matrix is obtained as
follows:
; C11 = (A11*B11) + (A12*B21) + (A13*B31)
; C12 = (A11*B12) + (A12*B22) + (A13*B32)
; C13 = (A11*B13) + (A12*B23) + (A13*B33)
; C14 = (A11*B14) + (A12*B24) + (A13*B34)
;

Access to video memory 917

; C21 = (A21*B11) + (A22*B21) + (A23*B31)
; C22 = (A21*B12) + (A22*B22) + (A23*B32)
; C23 = (A21*B13) + (A22*B23) + (A23*B33)
; C24 = (A21*B14) + (A22*B24) + (A23*B34)
;
; On entry:
; ESI --> first matrix (A)
; EDI --> second matrix (B)
; EBX --> storage area for products matrix (C)
; AH = rows in matrix A
; AL = columns in matrix A
; CH = rows in matrix B
; CL = columns in matrix B
; EDX = number of bytes per entry
; Assumes:
; Matrix C is dimensioned as follows:
; Columns of C=columns of B
; Rows of C = rows of A
; On exit:
; Matrix C is the products matrix
; Note: the entries of matrices A, B, and C must be of
type float
; and of the same data format
;
.
.
.
_MUL_MATRICES ENDP

The _MUL_MATRICES procedure requires that ESI and EDI point to the two
multiplicand matrices stored in a valid ANSI/IEEE floating-point format. EBX points to a
storage area to hold the products matrix. AH and AL holds the row/column dimen-sions
of one source matrix, and CH and CL the dimensions of the other source matrix. EDX
holds the number of bytes in each matrix entry. This is usually called the skip factor.

The interface routine uses in-line assembly and C++ code to format the data received
from the caller. Code can be as follows:

template <class A>
bool MulMatrices(A *matA, A *matB, A *matC,
 int rowsA, int colsA,
 int rowsB, int colsB)
{
// Perform matrix multiplication: C=A * B using low-
level code
// defined in an assembly language module
// On entry:
// *matA and *matB are matrices to be multiplied
// *matC is matrix for products
// rowsA is number of the rows in matrix A
// colsA is number of columns in the matrix A
// rowsB is number of the rows in matrix B

The pc graphics handbook 918

// colsB is number of columns in the matrix B
// Requires:
// Matrices must be multiplication compatible
// All three matrices must be of the same float
// data type
// Asumes:
// Matrix C dimensions are the product of the
// columns of matrix B times the rows or matrix A
// Routine expects:
// ESI --> first matrix (A)
// EDI --> second matrix (B)
// EBX --> storage area for products matrix (C)
// AH = number of rows in matrix A
// AL = number of columns in matrix A
// CH = number of rows in matrix B
// CL = number of columns in matrix B
// EDX = horizontal skil factor
// On exit:
// returns true if matC[] = matA[] * matB[]
// returns false if columns of matA[] not = rows
// of matB[]. If so, matC[] is undefined
int eSize = sizeof(matA[0]);
// Test for valid matrix sizes:
// columns of matA[] = rows of matB[]
if(colsA != rowsB)
 return false;
_asm
{
 MOV AH,BYTE PTR rowsA
 MOV AL,BYTE PTR colsA
 MOV CH,BYTE PTR rowsB
 MOV CL,BYTE PTR colsB
 MOV ESI,matA // Address to ESI
 MOV EDI,matB
 MOV EBX,matC
 MOV EDX,eSize // Horizontal skip
 CALL MUL_MATRICES
}
return true;
}

Notice that the interface function, called MulMatrices(), calls the low-level procedure
_MUL_MATRICES. The C++ interface function uses C++ code to test that the two
matrices are multiplicationcompatible, in other words, that the number of columns of the
first matrix is equal to the number of rows of the second one. Code also uses the sizeof
operator on one of the matrix entries to determine the skip factor. The data received as
parameters by the interface function is moved to processor registers. Notice that the skip
factor, now in the C++ variable eSize, is moved into the EDX register. The call to the
low-level procedure is made in the statement:

Access to video memory 919

CALL MUL_MATRICES

In this call the leading underscore is appended automatically by the C++ compiler. This
makes it necessary to use the underscore symbol as the first character in the name of an
assembly language procedures that is to be called from C++.

Once the interface function has been defined, client code can ignore all the data
formatting details of the interface. The following code fragment shows the C++ data
definition and calling of the MulMatrices() interface function.

float matA[] = {1.0, 2.0, 4.0,
 2.0, 6.0, 0.0};
float matB[] = {4.0, 1.0, 4.0, 3.0,
 0.0,-1.0, 3.0, 1.0,
 2.0, 7.0, 5.0, 2.0};
// Product matrix has rows of matA[] * columns of
matB[]
// 2*4 = 8
float matAB[8];
bool result;
.
.
.
result = MulMatrices(matA, matB, matAB, 2, 3, 3, 4);
if(result)
 // Success!
else
 cout << "Invalid matrix size";

MASM Module Format

The assembly language modules compatible with Visual C++ and Win32 must follow a
specific protocol. For example, the module containing the _MUL_MATRICES
procedure, mentioned previously, is defined as follows:

PUBLIC _MUL_MATRICES
;
 .486
 .MODEL flat
 .DATA
// Module data elements defined here
MAT_A_ROWS DB 0 ; Rows in matrix A
.
.
.
 .CODE
// Low-level procedures coded here
_MUL_MATRICES PROC
.

The pc graphics handbook 920

.

.
_MUL_MATRICES ENDP
end

The first element in the module is the PUBLIC declaration of the procedures that are to
be accessed from outside the module. The .486 directive and the .MODEL flat directive
ensure that the code in Win32 compatible. In the Intel flat memory model the segment
registers are unnecessary since 32-bit registers can access the entire code memory space.

The module is assembled normally. To facilitated debugging it is a good idea to use
the /Zi switch. For example, a module named test_1.asm is assembled with the command:

masm test_1 /Zi;

The resulting object file must be added to the Visual C++ project in which it is to be
used. This is done with Developer Studio Project/Add To Project/Files… command. At
this point you may have to select the Files of type: All Files(*.*) option to make the
object file visible in the dialog box. The source file can also be added to the project if it
needs to be edited during development. Once added, the object and assembler source files
will be listed as Resource Files in Developer Studio File View window.

C++ Module Format

The Visual C++ source files for multi-language programs must contain an external
declaration of the low-level functions that are to be accessed by code. For example, if the
C++ code is to call the procedure named _MUL_MATRICES, located in a separate
object file, the C++ source must contain the following statement:

extern "C" void MUL_MATRICES();

The remainder of the code is conventional C++.
If you use C++ interface functions, as suggested earlier in this chapter, it may be a

good idea to place the interface functions in a header file. The header file can be
incorporated into the main C++ source with an #include statement.

28.3.2 Matrix Ops Project

The Matrix Ops project, located in the Chapter 13 directory in the book's software
package, is a demonstration of the multi-language programming techniques discussed in
this section. The project is developed as a Win32 Console Application, but the same
method can be followed to create a Win32 Application. The project contains the
following source files:

1. Matrix Ops.cpp is the main C++ source file.
2. Matrix Ops.h is a header file with the C++ interface functions.
3. Mat_math.asm is the assembler source.

Access to video memory 921

The low-level module mat_math.asm contains several procedures to perform matrix
mathematics. These include scalar addition, subtraction, multiplication, and division of
rows and matrices, as well as matrix addition and multiplication. The C++ header file
named Matrix Ops.h contains the interface functions for the low-level code, as well as an
auxiliary function to display a matrix. All of the functions in Matrix Ops.h are defined as
template functions. This is in order to facilitate its use with matrices of different numeric
types. The driver source is the file named Matrix Ops.cpp. This module declares data for
several test matrices and exercises all the functions in the interface module.

28.4 Direct Access Primitives

An application that uses direct access to video memory can usually benefit from a few
primitive functions that perform the core processing operations. These primitives can be
coded in C++ or using in-line assembly. Most primitive routines are mode specific. They
assume that a particular display mode is available and has been selected. It is impossible
to predict the specific functions and the number of primitives that are necessary for a
particular graphics program. This depends, among other factors, on what portion of the
processing is performed using direct access to video memory and on the size and scope of
the application. The resulting complexity can range from a few simple routines to a full-
size, stand-along graphics package. In this section we consider several direct access
primitives that can be generally useful; they are:

• Lock a DirectDraw primary surface and store the video buffer's base address and pitch.
• Release a DirectDraw primary surface.
• Set an individual screen pixel at given coordinates and color attributes and to read the

attributes of a screen pixel located at given coordinates.
• Lock a DirectDraw primary surface, fill a pixel rectangle, at given coordinates,

dimensions, and color attributes, then release the surface.
• Lock a DirectDraw primary surface, draw a single-line box, at given coordinates,

dimensions, and color attributes, then release the surface.

Many of the routines that access video memory directly must perform calculations to
determine the offset of a particular pixel in the display surface. For example, a call to fill
a screen rectangle passes the address of its top-left corner as parameters. The processing
must convert this address, usually in column/row format, into a video memory offset. It is
possible to develop a primitive function that calculates this pixel offset, but this approach
introduces a call-return overhead that adversely affects performance. More often the
address calculations are part of the processing routine. Therefore, before attempting to
develop the direct access primitives, we take a closer look at the low-level operations
necessary for calculating a pixel addresses.

28.4.1 Pixel Address Calculations

A display mode's resolution, color depth, and pitch determine the location of each pixel
on the surface. For this reason, pixel address calculations are specific to a display mode.
In the case of the hi-color modes, the variables that enter into the calculation of a pixel

The pc graphics handbook 922

offset are the number of bytes per pixel and the surface pitch. In addition, the horizontal
and vertical resolution of the display mode can be used to check for invalid input values,
since it is the responsibility of direct access routines not to read or write outside of the
locked surface area. Figure 28–3 shows the parameters that define the location of a screen
pixel and the formula used for calculating its offset.

Figure 28-3 Pixel Offset Calculation

28.4.2 Defining the Primary Surface

You have seen that the DirectDraw Lock() function is used to lock the surface so that it
can be accessed directly. The call also returns a pointer to the top-left corner of the
rectangle that defines the surface, as well as its pitch. When Lock() references to the
entire primary surface, the call returns the base address of the video buffer. The pitch, in
this case, is the number of bytes in each screen buffer row.

In addition, the Lock() call forces Windows to relax its normal protection over video
display memory. Normally, any instruction that attempts to access video memory
immediately generates a protection violation exception and the application is terminated.
This is important to keep in mind while designing direct access functions, since it is this
feature that makes the Lock() call necessary if a previous Lock() has been released. This
is true even when the video buffer address and pitch have been previously obtained and
stored. On the other hand, the surface lock can be retained during more than one access to
video memory. Therefore, a routine that sequentially sets several screen pixels need only
call the Lock() function once. Once the pixel sequence is set, then the lock can be
released. Also recall that the Lock() call requires a pointer to an IDirectDrawSurface
object, which is usually obtained by means of the CreateSurface() function. The
following is a simple locking function for the entire primary surface:

// Global variables for surface pitch and base address

Access to video memory 923

LONG vidPitch;
LPVOID vidStart;
.
.
.
//***

// Name: LockSurface
// Desc: Function to lock the entire DirectDraw primary
surface
// and store the direct access parameters
//
// PRE:
// 1. First parameter is a pointer to DirectDraw
surface
// 2. Video display globals have been declared as
follows :
// LONG vidPitch; // Pitch
// LPVOID vidStart; // Buffer address
//
// POST:
// Returns 1 if call succeeds and 0 if it fails
//***

int LockSurf ace (
 LPDIRECTDRAWSURFACE4 lpSurface)
{
 // Attempt to lock the surface for direct access
 if (lpSurface->Lock(NULL, &ddsd, DDLOCK_WAIT,
NULL)\
 != DD_OK)
 return 0; // Lock failed
 // Store video system data
 vidPitch = ddsd.lPitch; // Pitch
 vidStart = ddsd.lpSurface; // Buffer address
 return 1; // Surface locked
}

28.4.3 Releasing the Surface

Developing a function to release the locked surface is also convenient. In this case the
processing is based on the DirectDraw Unlock() functions. It may be a good idea to have
the routine that calls the Unlock() function also reset the access variables to zero. This
makes it easier to determine if a lock is being held, since a zero value is invalid for either
variable. The routine itself tests one of these variables before attempting to release the
lock.

//***

// Name: ReleaseSurface
// Desc: Function to release locked surface

The pc graphics handbook 924

// PRE:
// 1. Parameter is pointer to locked DirectDraw surface
// 2. Video display globals as follows:
// LONG vidPitch; // Pitch
// LPVOID vidStart; // Buffer address
//***

void ReleaseSurface(
 LPDIRECTDRAWSURFACE4 lpSurface)
 if(vidStart != 0) {
 lpSurface->Unlock(NULL);
 // Clear global variables
 vidPitch = 0;
 vidStart = 0;
 }
 return;
}

This version of the ReleaseSurface() function assumes that the object of the lock was the
entire surface.

28.4.4 Pixel-Level Primitives

Pixel-level operations are the lowest-level graphics routines available, which explains
why they are often considered device driver components, rather than primitives. In
theory, it is possible to perform any graphics operations by using a pixel read and a pixel
write routine.

The Windows GDI provides functions to set and read a single pixel. However, the
GDI functions are extremely slow. Direct access, pixel-level routines execute several
hundred times faster than the GDI counterparts. The pixel-level read and write primitives
could be coded as follows:

// Global variables for surface pitch and base address
LONG vidPitch;
LPVOID vidStart;
.
.
.
//***

// Name: DASetPixel
// Desc: Assembly language code to set a single screen
pixel
// using direct access to the video buffer
//
// PRE:
// 1. Successful Lock() of surface
// Video display globals are stored as follows:
// LONG vidPitch; // Pitch
// LPVOID vidStart; // Buffer address

Access to video memory 925

// 2. First and second parameters are the pixel
coordinates
// 3. Last three parameters are pixel RGB attributes
// 4. Assumes true color mode 640 by 480 by 28
//
// POST:
// None
//***

void DASetPixel(
 int xCoord,
 int yCoord,
 BYTE redAtt,
 BYTE greenAtt,
 BYTE blueAtt)
{
 _asm
 {
 PUSH ESI ; Save context
 PUSHF
 MOV EAX,yCoord ; Row number to EAX
 MUL vidPitch;
 MOV EBX,EAX ; Store in EBX
 MOV EAX,xCoord ; x coordinate
 MOV CX,3
 MUL CX ; 3 bytes per pixel
 ADD EAX,EBX ; move right to x
coordinate
 MOV ESI,vidStart
 ADD ESI,EAX
 ; Load color attributes into registers
 MOV AL,blueAtt
 MOV DH,greenAtt
 MOV DL,redAtt
 ; Set the pixel
 MOV [ESI],AL ; Set blue attribute
 INC ESI
 MOV [ESI],DH ; Set green
 INC ESI
 MOV [ESI],DL ; Set red
 POPF ; Restore context
 POP ESI
 }
 return;
}
//***

// Name: DAReadPixel
// Desc: Assembly language code to read a single screen
pixel
// using direct access to the video buffer
//

The pc graphics handbook 926

// PRE:
// 1. Successful Lock() of surface
// Video display globals are stored as follows:
// LONG vidPitch; // Pitch
// LPVOID vidStart; // Buffer address
// 2. First and second parameters are the pixel
coordinates
// values are returned in public variables named
// pixelRed, pixelGreen, and pixelBlue
// 3. Assumes true color mode 640 by 480 by 28
//
// POST:
// None
//***

void DAReadPixel (
 int xCoord,
 int yCoord)
{
 _asm
 {
 PUSH ESI ; Save context
 PUSHF
 MOV EAX,yCoord ; Row number to EAX
 MUL vidPitch
 MOV EBX,EAX ; Store in EBX
 MOV EAX,xCoord ; x coordinate
 MOV CX,3
 MUL CX ; 3 bytes per pixel
 ADD EAX,EBX ; move right to x coordinate
 MOV ESI,vidStart
 ADD ESI,EAX
 ; Read and store pixel attributes
 MOV AL,[ESI] ; Get blue attribute
 INC ESI
 MOV DH,[ESI] ; green
 INC ESI
 MOV DL,[ESI] ; and red
 MOV pixelBlue,AL ; Store blue
 MOV pixelGreen,DH ; green
 MOV pixelRed,DL ; and red
 POPF ; Restore context
 POP ESI
 }
 return;
}

Filling a Rectangular Area

Filling a rectangular area with a particular color attribute is such a useful manipulation
that most applications that access memory directly can profit from such a primitive. To

Access to video memory 927

define a screen rectangle you can use the coordinates of its diagonally opposite corners,
or the coordinates of one corner and the rectangle's dimensions. The following listed
function adopts the second approach. In addition, the routine needs to know the values for
the RGB color attributes to use in the fill. The code is as follows:

//***

// Name: DARectangle
// Desc: Assembly language code to draw a rectangle on
the screen
// using direct access to the video buffer
//
// PRE:
// 1. First parameter is pointer to surface
// 2. Second and third parameters are rectangle's x and
y
// coordinates
// 3. Fourth parameter is rectangle width, in pixels
// 4. Fifth parameter is rectangle height, in pixels
// 5. Last three parameters are RGB attributes
// 6. Assumes true color mode is 640 by 480 by 24
// POST:
// Returns 1 if lock succeeded and 0 if it failed
//***

int DARectangle(
 LPDIRECTDRAWSURFACE4 lpPrimary,
 int yCoord,
 int xCoord,
 int width,
 int height,
 BYTE redAtt,
 BYTE greenAtt,
 BYTE blueAtt)
{
// Attempt to lock the surface for direct access
if (!LockSurface(lpPrimary))
 return 0; // Lock failed
_asm
{
 PUSH ESI ; Save context
 PUSHF
 MOV EAX,yCoord ; Row number to EAX
 MUL vidPitch;
 MOV EBX,EAX ; Store in EBX
 MOV EAX,xCoord ; x coordinate
 MOV CX,3
 MUL CX ; 3 bytes per pixel
 ADD EAX,EBX ; move right to x
coordinate
 MOV ESI,vidStart
 ADD ESI,EAX

The pc graphics handbook 928

 ; Load color attributes into registers
 MOV AL,blueAtt
 MOV DH,greenAtt
 MOV DL,redAtt
 MOV EBX,height ; number of lines in
rectangle
NEXT_LINE:
 PUSH ESI ; Save start of line
 MOV ECX,width ; x dimension of
rectangle
SET_PIX:
 MOV [ESI],AL ; Set blue attribute
 INC ESI ; Next pixel
 MOV [ESI],DH ; Set green
 INC ESI ; Next pixel
 MOV [ESI] ,DL ; Set red
 INC ESI ; Next pixel
 LOOP SET_PIX
 ; Pixel line is set
 POP ESI
 ADD ESI,vidPitch
 DEC EBX
 JNZ NEXT_LINE
 POPF ; Restore context
 POP ESI
 }
ReleaseSurface(lpPrimary);
return 1; // Exit
}

Observe that the DARectangle() calls LockSurface() and ReleaseSurface() functions
previously developed. To improve performance, the function can be easily modified to
call Lock() and Unlock() directly.

Box-Drawing

Drawing a box is a little more complicated than filling a rectangle. The actual processing
can be based on two simple routines: one to draw a horizontal line and another one to
draw a vertical line. The core routine sets up the machine registers with the necessary
data and then calls the horizontal and vertical line routines to do the actual drawing. Since
there are other possible uses for the vertical and horizontal line drawing operations they
are coded as separate functions. The parameters to the box drawing routine are the same
as those for the rectangle fill. They include the pointer to the surface, the box coordinates,
its dimensions, and the color attributes. The code is as follows:

//***

// Name: DABox
// Desc: Assembly language code to draw a screen box
with

Access to video memory 929

// single-pixel wide lines, using direct access
to the
// video buffer
//
// PRE:
// 1. First parameter is pointer to surface
// 2. Second and third parameters are the coordinates
of the
// top-left corner of the box
// 3. Fourth parameter is box width, in pixels
// 4. Fifth parameter is box height, in pixels
// 5. Last three parameters are RGB attributes
// 6. True color mode is 640 by 480 by 24
//
// POST:
// Returns 1 if lock succeeds and 0 if it fails
//***

int DABox(
 LPDIRECTDRAWSURFACE4 lpPrimary,
 int xCoord,
 int yCoord,
 int width,
 int height,
 BYTE redAtt,
 BYTE greenAtt,
 BYTE blueAtt)
{
 // Attempt to lock the surface for direct access
 if (!LockSurface(lpPrimary))
 return 0; // Lock failed
 _asm
 {
 PUSH ESI ; Save context
 PUSHF
 MOV EAX,yCoord ; Row number to EAX
 MUL vidPitch;
 MOV EBX,EAX ; Store in EBX
 MOV EAX,xCoord ; x coordinate
 MOV CX,3
 MUL CX ; 3 bytes per pixel
 ADD EAX,EBX ; move right to x coordinate
 MOV ESI,vidStart
 ADD ESI,EAX
 ; Load color attributes into registers
 MOV AL,blueAtt
 MOV DH,greenAtt
 MOV DL,redAtt
 ; Draw top horizontal line
 MOV ECX,width ; x dimension of rectangle
 CALL DAHorLine
 ; Draw bottom horizontal line

The pc graphics handbook 930

 PUSH ESI ; Save top left corner
address
 PUSH EAX ; Save color
 PUSH EDX
 MOV EAX,height ; Number of lines to EAX
 MUL vidPitch ; Times the length of each
line
 ADD ESI,EAX ; Add to start
 MOV ECX,width ; x dimension of rectangle
 POP EDX ; Restore color
 POP EAX
 CALL DAHorLine ; Draw line
 POP ESI ; Restore start of rectangle
 ; Draw left vertical line
 MOV EBX,vidPitch ; Pitch to EBX
 MOV ECX,height ; Pixel height of vertical
line
 CALL DAVerLine
 ; Draw right vertical line
 ; ESI holds address of top-left corner
 PUSH EAX ; Save color
 PUSH EDX
 MOV EAX,width ; Number of lines to EAX
 MOV CX,3 ; Pixels per line
 MUL CX
 ADD ESI,EAX ; Add to start
 MOV ECX,height ; Line y dimensions
 INC ECX ; One more pixel
 POP EDX ; Restore color
 POP EAX
 CALL DAVerLine ; Draw line
 POPF ; Restore context
 POP ESI
 }
 ReleaseSurface(lpPrimary);
 return 1; // Exit
}
//***

// Name: DAHorLine
// Desc: Assembly language support function for DABox()
// draws a horizontal pixel line
// PRE:
// ESI holds buffer address of start of line
// ECX hold pixel length of line
// AL = blue attribute
// DH = green attribute
// DL = red attribute
// POST:
// ECX is destroyed
// All others are preserved

Access to video memory 931

//***

void DAHorLine()
{
 _asm
 {
 PUSH ESI ; Save start of line
DRAW_HLINE:
 MOV [ESI],AL ; Set blue attribute
 INC ESI
 MOV [ESI],DH ; Set green
 INC ESI
 MOV [ESI],DL ; Set red
 INC ESI
 LOOP DRAW_ HLINE
 POP ESI
 }
 return;
}
//***

// Name: DAVerLine
// Desc: Assembly language support function for DABox()
// draws a vertical pixel line
// PRE:
// ESI holds buffer address of start of line
// ECX hold pixel height of line
// EBX holds surface pitch
// AL = blue attribute
// DH = green attribute
// DL = red attribute
// POST:
// ECX is destroyed
// All others are preserved
//***

void DAVerLine()
{
 _asm
 {
 PUSH ESI ; Save start of line
DRAW_VLINE:
 PUSH ESI ; Save start address
 MOV [ESI],AL ; Set blue attribute
 INC ESI
 MOV [ESI],DH ; Set green
 INC ESI
 MOV [ESI],DL ; Set red
 POP ESI ; Restore start
 ADD ESI,EBX ; Index to next line
 LOOP DRAW_VLINE
 POP ESI

The pc graphics handbook 932

 }
 return;
}

28.5 Raster Operations

Direct access to video memory, combined with low-level coding, provides the
programmer with all the necessary elements to develop a powerful, DOS-like, graphics
toolkit. One of the many possibilities consists of using logical operations to combine
object and screen data. These are sometimes called raster operations, raster ops, or mixes.
A raster operation determines how two or more source images are combined to produce a
destination image. Arithmetic and logical operators are used to produce the desired effect.
The simplest one is to replace the destination with the source. This is what takes place
when you directly write a pixel value to the video screen. When the MOV instruction
writes a color value to the screen you are actually replacing the destination with the
source, as follows:

MOV [ESI],AL

In many cases a raster operation requires a read-modify-write sequence. For example,
you could increase the brightness of a specific pixel by adding a constant to its value, as
follows:

MOV AL,[ESI] ; Read pixel
ADD AL,20 ; Modify
MOV [ESI],AL ; Write

The problem with this type of processing is that the read-modify-write cycle takes
considerable processing time. For this reason some graphics processors perform raster
operations in hardware.

The Pentium CPU has several logical operators that allow combining foreground and
background data by means of a single instruction. For example, a logical AND operation
can be used to combine foreground bits (object data) and background data. The result is
that the background bits are preserved whenever the foreground bit is zero, and vice
versa. The object data is sometimes referred to as a mask. Thus, code can overlay a white
grid over an existing image by ANDing a mask consisting of 1-bits in the solid portion of
the grid and 0-bits in the transparent portion. The Pentium logical opcodes are AND, OR,
XOR, and NOT. For example, the following operation ANDs the value in the AL register
with the screen data contained in the address pointed at by ESI:

AND [ESI],AL

In C++ programming the bitwise operators perform a similar action, at a much greater
processing cost. In the following sections we examine the XOR mix, which is one of the
most useful raster graphics operations.

Access to video memory 933

28.5.1 XOR Animation

Animating a screen object usually requires erasing an image from its current screen
position and then redrawing it at a new location. Graphics programmers sometimes call
this sequence the "save-draw-redraw" cycle. The "save" element in this sequence is
determined by the fact that the original screen image must be preserved so that it can later
be restored to its original form. At the same time, if the object is not erased before it is
redrawn, its apparent movement leaves an undesirable image track on the display surface.
You can make an object appear to move laterally, left to right, by progressively
redrawing and erasing its screen image at consecutively larger x coordinates. To do this
in a conventional manner we have to perform a rather complex sequence of operations:

1. Save phase: preserve the screen image data in the area where the object is to be
displayed.

2. Draw phase: draw the object.
3. Redraw phase: erase the object by restoring the original screen image.

Step 1 requires reading all data in the screen area that is to be occupied by the animated
object, while step 3 requires redisplaying the saved image. Both operations are time-
consuming, and in computer animation, time is always in short supply.

Several hardware and software techniques have been devised for performing the save-
draw-redraw cycle. In later chapters we explore DirectDraw animation techniques that
are powerful and versatile. These higher-level methods are based on flipping surfaces
containing images and on taking advantage of the hardware blitters that are available in
most video cards. Here we are concerned with the simplest possible approach to figure
animation. This technique, which is made feasible by the high performance obtained with
direct access to video memory, is based on the properties of the logical exclusive or XOR
operation. Although it is theoretically possible to perform XOR animation using high-
level code, the most efficient and powerful technique requires assembly language.

The action of the logical XOR can be described by saying that a bit in the result is set
if both operands contain opposite values. It follows that XORing the same value twice
restores the original contents, as in the following case:

 10000001 <= original value ----|
XOR value => 10110011 |
 --------- |
 00110010 <= first result |
XOR value => 10110011 |
 --------- |
 10000001 <= final result ------|

XOR, like all bitwise operations, takes place on a bit-by-bit basis. In this example the
final result (10000001) is the same as the original value.

Animation techniques can be based on this property of the bitwise XOR since it
provides a convenient and fast way for consecutively drawing and erasing a screen
object. The object is drawn on the screen by XORing it with the background data.
XORing a second time erases the object and restores the original background. Therefore,
the save-draw-redraw cycle now becomes an XOR-XOR cycle, which is considerably

The pc graphics handbook 934

faster and simpler to implement. The XOR method is particularly useful when more than
one animated object can coincide on the same screen position, since it ensures that the
original screen image is automatically preserved.

There are also disadvantages to using XOR in computer animation. The most
important one is that the image itself is dependant upon the background attributes. This is
due to the fact that each individual pixel in the object is determined both by the XORed
value and by the destination pixel. The following XOR operation produces a red object
(in RGB format) on a bright white screen background:

 R G B
background => 1 1 1 (white)
XOR value => 0 1 1

 result => 1 0 0 (red)

However, if the same XOR operation is applied over a black background the color of the
object is cyan, instead of red:

 R G B
background => 0 0 0 (black)
XOR value => 0 1 1

 result => 0 1 1 (cyan)

The property of the XOR operation that makes the object's color change as it moves over
different backgrounds can be at times an advantage, and at times a disadvantage. For
example, an object displayed by conventional methods can disappear as it moves over a
background of its same color. If this object is XORed onto the screen, it remains visible
over most backgrounds. On the other hand, it may happen that the color of a graphics
object is an important characteristic. In this case the changes brought about by XOR
display operations may not be acceptable. Figure 28-4 shows how the XOR operation
changes the attributes of an object (circle) as it is displayed over different backgrounds.

Figure 28-4 Visualizing the XOR
Operation

Access to video memory 935

28.5.2 XORing a Bitmap

One of the many possible uses of the XOR raster operation is to project a bitmap over an
existing background. The graphics programmer can take advantage of the automatic
draw-erase action of the XOR function to animate cursors and small sprites with minimal
processing. The main drawback has already been mentioned: the object's color is partially
determined by the background color. The following function XORs a variable-size
bitmap onto the video display, at any desired screen location. The function assumes a
true-color display mode in 640 by 480 by 24 format.

// Cross-shaped bitmap for demonstrating the
DAXorBitmap()
// function
// 2 by 8
Bitmap 0 1 2 3 4 5 6 7
BYTE mapData[] = {
0×00,0×00,0×00,0×7f,0×7f,0×00,0×00,0×00, // 0
 0×00,0×00,0×00,0×7f,0×7f,0×00,0×00,0
×00, // 1
 0×00,0×00,0×00,0×7f,0×7f,0×00,0×00,0
×00, // 2
 0×7f,0×7f,0×7f,0×7f,0×7f,0×7f,0×7f,0
×7f, // 3
 0×7f,0×7f,0×7f,0×7f,0×7f,0×7f,0×7f,0
×7f, // 4
 0×00,0×00,0×00,0×7f,0×7f,0×00,0×00,0
×00, // 5
 0×00,0×00,0×00,0×7f,0×7f,0×00,0×00,0
×00, // 6
 0×00,0×00,0×00,0×7f,0×7f,0×00,0×00,0
×00};// 7
 . . .
//***

// Name: DAXorBitmap
// Desc: Assembly language code to XOR a bitmap onto
the screen
// using direct access to the video buffer
//
// PRE:
// 1. First parameter is pointer to surface
// 2. Second and third parameters are x and y screen
coordinates
// 3. Fourth parameter is bitmap width, in pixels
// 4. Fifth parameter is bitmap height, in pixels
// 5. Sixth parameter is pointer to bitmap
// 6. Assumes true-color mode 640 by 480 by 28
//
// POST:
// Returns 1 if call succeeds and 0 if it fails

The pc graphics handbook 936

//***

int DAXorBitmap(
 LPDIRECTDRAWSURFACE4 lpPrimary,
 int xCoord,
 int yCoord,
 int bmWidth,
 int bmHeight,
 LPBYTE bitMapPtr)
{
 // Attempt to lock the surface for direct access
 if (!LockSurface(lpPrimary))
 return 0; // Lock failed
 _asm
 {
 PUSH ESI ; Save context
 PUSH EDI
 PUSHF
 MOV EAX,yCoord ; Row number to EAX
 MUL vidPitch;
 MOV EBX,EAX ; Store in EBX
 MOV EAX,xCoord ; x coordinate
 MOV CX,3
 MUL CX ; 3 bytes per pixel
 ADD EAX,EBX ; move right to x-
coordinate
 MOV EDI,vidStart
 ADD EDI,EAX
 MOV ESI,bitMapPtr ; Pointer to bitmap
 MOV EBX,bmHeight ; number of lines in
bitmap
NEXT_BM_LINE:
 PUSH EDI ; Save start of line
 MOV ECX,bmWidth ; x-dimension of bitmap
XOR_PIX_LINE:
 MOV AL,[ESI] ; Bitmap data to AL
 XOR [EDI],AL ; Set blue attribute
 INC EDI
 XOR [EDI],AL ; Set green
 INC EDI
 XOR [EDI],AL ; Set red
 INC EDI
 INC ESI ; Bitmap pointer to next
byte
 LOOP XOR_PIX_LINE
; End of line
 POP EDI ; Pointer to start of line
 ADD EDI,vidPitch ; Index to next line
 DEC EBX ; EBX is Lines counter
 JNZ NEXT BM LINE
 ; Done!
 POPF ; Restore context

Access to video memory 937

 POP EDI
 POP ESI
 }
 ReleaseSurface(lpPrimary)
 return 1; // Exit

In this function a single bitmap attribute is XORed with all three background colors. This
keeps the bitmap small but limits the range of possible results. It would be quite easy to
modify the routine so that the bitmap contains a byte value for each color attribute in a
true-color mode.

28.6 Direct Access Project

The DD Access Demo project, located in the book's software package, is a demonstration
of the direct access techniques discussed in this chapter. The program contains all the
functions listed in this chapter, plus some other ones not mentioned in the text. It
executes in exclusive, full-screen display mode. The text messages are displayed using
GDI graphics and the geometrical figures using the direct access functions developed in
this chapter. Color Figure 3 is a screen snapshot of the demo program. The labels lists the
program functions that perform the corresponding operations.

The pc graphics handbook 938

Chapter 29
Blitting

Topics:

• Surfaces revisited
• Image transparency
• Color keys
• Using Blt() and BltFast()
• Blit-time transformations

This chapter is about a fundamental mechanism for rendering bitmaps called a blit, short
for bit block transfer. The Windows GDI contains a blit function but DirectDraw
provides its own versions, in the form of two functions named Blt() and BltFast(). A third
variation, called BltBatch(), was announced but never implemented. Another rendering
technique is called an overlay. Overlays are like a transparent media which can be placed
over an image and then removed, restoring the original. Overlays have been implemented
inconsistently in the video hardware, and for this reason they are not discussed.

29.1 Surface Programming

Before discussing DirectDraw blits, we must expand some of the notions related to
DirectDraw surfaces. The following are the fundamental notions introduced in this
section:

• The surface concept
• Primary and off-screen surfaces
• Enumerating surfaces
• Loosing and restoring surfaces

29.1.1 The DirectDraw Surface Concept

A DirectDraw surface is a linear area of video memory that holds image data. A
DirectDrawSurface is a COM object in itself, with its own interface, and this interface is
referenced in all surface-related operations. The current interface is
IDirectDrawSurface7. Applications create a DirectDraw surface by calling the
CreateSurface() function. If the call is successful it returns a pointer to the surface. In
DirectX 7 this pointer is of type LPDIRECTDRAWSURFACE7. It is this pointer that is
used in calling the functions of the IDirectDrawSurface7 interface. Table 29–1 lists these
functions.

Table 29–1
Surface-Related Functions in DirectDraw

TYPE OR TOPIC FUNCTION NAME
Allocating memory Initialize()
 IsLost()
 Restore()
Attaching surfaces AddAttachedSurface()
 DeleteAttachedSurface()
 EnumAttachedSurfaces()
 GetAttachedSurface()
Blitting Blt()
 BltBatch() (not implemented in DirectX 6)
 BltFast()
 GetBltStatus()
Color keys GetColorKey()
 SetColorKey()
Device contexts GetDC()
 ReleaseDC()
Flipping Flip()
 GetFlipStatus()
Locking surfaces Lock()
 PageLock()
 PageUnlock()
 Unlock()
Textures GetLOD
 GetPriority
SetLOD PetPriority
Overlays AddOverlayDirtyRect()
 EnumOverlayZOrders()
 GetOverlayPosition()
 SetOverlayPosition()
 UpdateOverlay()
 UpdateOverlayDisplay()
 UpdateOverlayZOrder()
Private data FreePrivateData()
 GetPrivateData()
 SetPrivateData()
Capabilities GetCaps()
Clipper GetClipper()
 SetClipper()
Characteristics ChangeUniquenessValue()
 GetPixelFormat()
 GetSurfaceDesc()
 GetUniquenessValue()

The pc graphics handbook 940

 SetSurfaceDesc()
Miscellaneous GetDDInterface()

29.1.2 Surface Types

DirectDraw first attempts to create a surface in local video memory. If there is not
enough video memory available to hold the surface, then DirectDraw tries to use non-
local video memory, and finally, if no other option is available, it creates the surface in
system memory. Code can also explicitly request that a surface be created in a certain
type of memory by including the appropriate flags in the CreateSurface() call. A typical
DirectDraw application operates on several surfaces.

The primary surface is the one visible on the monitor and it is identified by the
DDSCAPS_PRIMARYSURFACE flag. There can be only one primary surface for each
DirectDraw object. The size and pixel format of the primary surface matches the current
display mode. For this reason, the surface dimensions, mode, and pixel depth are not
specified in the CreateSurface() call for a primary surface. In fact, the call fails if these
dimensions are entered, even if they match those of the display mode.

Off-screen surfaces are often used to store bitmaps, cursors, sprites, and other forms of
bitmapped imagery. Off-screen surfaces can reside in video memory or in system
memory. For an off-screen surface to exist in video memory the total memory on the card
must exceed the memory mapped to the video display. For example, a video card with
2Mb of video memory (2,097,152 bytes), executing in mode with a resolution of 640 by
480 pixels, at a rate of 3 bytes per pixel, requires 921,600 bytes for storing the displayed
image (assuming that there are no unused areas in the pixel mapping). This leaves
1,175,552 bytes of memory on the video card which can be used as off-screen memory.

A special type of off-screen surface is the back buffer. A back buffer can be created if
the amount of free video memory is sufficient to store a second displayable image. In the
previous example, it is possible to create one back buffer since the display area requires
921,600 bytes, and there are 1,175,552 bytes of additional video memory available on the
card. Back buffers, which are frequently used in animation, are discussed in Chapter 15.

An off-screen surface is created with the CreateSurface() function. The call must
specify the surface dimensions, which means that it must include the DDSD_WIDTH and
DDSD_HEIGHT flags. The corresponding values must have been previously entered in
the dwWidth and dwHeight members of the DDSURFACEDESC2 structure. The call
must also include the DDSCAPS_OFFSCREENPLAIN flag in the DDSCAPS2 structure.
If possible, DirectDraw creates a surface in display memory. If there is not enough video
memory available, it creates the surface in system memory. Code can explicitly choose
display or system memory by entering the DDSCAPS_SYSTEMMEMORY or
DDSCAPS_VIDEOMEMORY flags in the dwCaps member of the DDSCAPS2
structure. The call fails, returning an error, if DirectDraw cannot create the surface in the
specified location. Figure 29-1, on the following page, shows different types of
DirectDraw surfaces.

Blitting 941

Figure 29–1 DirectDraw Surface
Types

A surface is lost when the display mode is changed or when another application receives
exclusive mode privileges. The Restore() function can be used to recreate lost surfaces
and reconnect them to their DirectDrawSurface object. Applications using the
IDirectDraw7 interface can restore all lost surfaces by calling RestoreAllSurfaces(). Note
that restoring a surface does not reload bitmaps that may have existed before the surface
was lost. It is up to the application to reconstruct the graphics on each of the surfaces.

When a surface is no longer needed it should be released by calling the Release()
function. Each surface must be explicitly released, since there is no call to release all
surfaces. However, if you implicitly created multiple surfaces with a single call to
IDirectDraw7::CreateSurface, you need only release the front buffer. In this case, any
pointers to back buffer surfaces are implicitly released and can no longer be used.
Explicitly releasing a back buffer surface doesn’t affect the reference count of the other
surfaces in the chain.

The pc graphics handbook 942

29.1.3 Enumerating Surfaces

Applications often need to know if a surface that matches certain characteristics can be
created, or may need a list of the existing surfaces and their properties. The IDirectDraw7
EnumSurfaces() function is used to enumerate surfaces. The function's general form is as
follows:

HRESULT EnumSurfaces(
 DWORD dwFlags, // 1
 LPDDSURFACEDESC2 lpDDSD, // 2
 LPVOID lpContext, // 3
 LPDDENUMSURFACESCALLBACK2 lpEnumCallback // 4
);

The first parameter is a combination of a search-type flag and a matching flag. The
search-type flag determines how the method searches for surfaces. Code can search for
surfaces that can be created by using the description in the second parameter, or it can
search for existing surfaces that already match that description. The matching flag
determines whether the method enumerates all surfaces, those that match, or those that do
not match the description specified in the second parameter. Table 29–2 lists the search
and matching flags used in the EnumSurfaces() function.

Table 29-2
Flags in the EnumSurfaces() Function

FLAG FUNCTION NAME
SEARCH-TYPE FLAGS:
DDENUMSURFACES_CANBECREATED
 Enumerates the first surface that can be created and that meets the

specifications in the second parameter. This flag can only be used with the
DDENUMSURFACES_MATCH flag.

DDENUMSURFACES_DOESEXIST
 Enumerates the already existing surfaces that meet the specification in the

second Parameter.
MATCHING-TYPE FLAGS:
DDENUMSURFACES_ALL
 Enumerates all of the surfaces that meet the specification in the second

parameter. This Flag can only be used with the
DDENUMSURFACES_DOESEXIST search type flag.

DDENUMSURFACES_MATCH
 Searches for any surface that matches the specification in the second

parameter.
DDENUMSURFACES_NOMATCH
 Searches for any surface that does not match the specification in the second

parameter.

Blitting 943

The second parameter to EnumSurfaces() is the address of a structure variable of type
DDSURFACEDESC2 that defines the characteristics of the surface. If the first parameter
includes the DDENUMSURFACES_ALL flag, then this second parameter must be
NULL.

The third parameter is the address of an application-defined structure that is passed to
each enumeration member.

The fourth parameter is the address of a callback function, of type
lpEnumSurfacesCallback, that is called every time the enumeration procedure finds a
surface matching the predefined characteristics.

If the call succeeds the return value is DD_OK. If it fails, the return value may be one
of the following errors:

• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS

Implementing the callback function for EnumSurfaces() is very similar to the processing
described in Chapter 8 for the EnumDisplayModes() callback function. The project DD
Info Demo contained in the book’s software package contains sample code of the
EdnumDisplayModes() callback.

Applications often need to know if a surface of certain characteristics is possible
before it attempts to create it. In this case it is possible to combine the
DDENUMSURFACES_CANBECREATED and DDENUMSURFACES_MATCH flags
when calling EnumSurfaces(). The DDSURFACEDESC2 structure variable is initialized
to contain the desired surface characteristics. If the characteristics include a particular
pixel format, then the DDSD_PIXELFORMAT flag must also be present in the dwFlags
member of the DDSURFACEDESC2 structure. In addition, the DDPIXELFORMAT
structure in the surface description must be initialized and the flags set to the desired
pixel format flags. These can be DDPF_RGB, DDPF_YUV, or both. In order to specify
surface dimensions, code must include the DDSD_HEIGHT and DDSD_WIDTH flags in
DDSURFACEDESC2. The dimensions are then specified in the dwHeight and dwWidth
structure members. If the dimensions flags are not included, DirectDraw uses the
dimensions of the primary surface.

The following code fragment shows a call to IDirectDraw7::EnumSurfaces to
determine if a 640-by-480-by-24-bit RGB surface is available in the card's video memory
space:

// Public variables
DDSURFACEDESC2 ddsd;
int surfCount = 0;
. . .
// Determine if a surface of 640 by 480 pixels, in 24-
bits
// RGB color can be created in video memory
ZeroMemory(&ddsd, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS |
 DDSD_PIXELFORMAT |
 DDSD_HEIGHT |
 DDSD_WIDTH;

The pc graphics handbook 944

ddsd.ddpfPixelFormat.dwFlags = DDPF_RGB;
ddsd.ddpfPixelFormat.dwRGBBitCount = 24;
ddsd.ddsCaps.dwCaps = DDSCAPS_VIDEOMEMORY |
 DDSCAPS_LOCALVIDMEM;
ddsd.dwHeight = 480;
ddsd.dwWidth = 640;
lpDD7->EnumSurfaces(
 DDENUMSURFACES_CANBECREATED |
DDENUMSURFACES_MATCH,
 &ddsd, NULL,
 SurfacesProc);
if (surfCount == 0)
 DDInitFailed(hWnd, hRet,
 "Surface not available");
//***
// Callback function for EnumSurfaces()
//***
HRESULT WINAPI SurfacesProc(LPDIRECTDRAWSURFACE7
aSurfPtr,
 LPDDSURFACEDESC2 aSurface,
 LPVOID Context)
{
 surfCount++;
 return DDENUMRET_OK; // Continue
}

Because the DDENUMSURFACES_MATCH flag is present in the call, the callback
function, in this case named SurfacesProc(), receives control only if a surface can be
created. In the preceding code sample each iteration of the callback function increments
the variable surfCount. This variable holds the number of similar surfaces that can be
created and its value is zero if no surfaces can be created. The calling routine inspects this
variable to determine the results of the EnumSurfaces() call. The previous code fragment
uses the DDInitFailed() function, developed in Chapter 13, to provide a terminal exit in
case the surface cannot be created. In practice, an application may take another action,
such as creating the surface in system memory instead of video memory. Note that the
fourth parameter of EnumSurfaces() has to be typecast into a type
LPDDENUMSURFACESCALLBACK2, otherwise a compiler error results.

The call to EnumSurfaces() attempts to create a temporary surface with the desired
characteristics; however, code should not assume that a surface is not supported just
because it is not enumerated. DirectDraw attempts to create a temporary surface with the
memory constraints that exist at the time of the call. This can result in a surface not being
enumerated even when the driver actually supports it.

29.1.4 Restoring Surfaces

It is possible to free surface memory associated with a DirectDrawSurface object, while
the DirectDrawSurface objects representing these pieces of surface memory are not
released. In this case several DirectDraw functions return DDERR_SURFACELOST.
Surfaces can be lost because the display mode was changed, or because another

Blitting 945

application requested and obtained exclusive mode and freed all of the currently allocated
surface memory. The DirectDraw Restore() function recreates these lost surfaces and
reconnects them to their DirectDrawSurface object. If the application uses more than one
surface, code can call the RestoreAllSurfaces() function to restore all surfaces at once.
However, restoring a surface does not reload any imagery that may have previously
existed in the surface.

29.1.5 Surface Operations

Most DirectDraw rendering operations relate to surfaces. The DirectX 7 SDK includes a
program named ddtest which allows experimenting with DirectDraw options such as
surfaces, blits, display modes, and capabilities, without actually writing code.
Unfortunately, this program is not furnished in DirectX 8.

29.1.6 Transparency and Color Keys

In graphics programming you often need to display a new bitmap over an existing one.
For example, the bitmap of an airplane is to overlay a background of mountains, sky, and
clouds, contained in another bitmap. Since bitmaps are rectangular areas, the airplane
bitmap is likely a rectangle that contains the image of the airplane. If we were to display
the airplane by simply projecting its rectangular bitmap over the background, the result
would be as shown in Color Figure 4.

The solution is to select the color of the framing rectangle of the airplane bitmap so
that it is different from the colors used in drawing the airplane. The software can then be
programmed to ignore the framing color while displaying the airplane bitmap. The
processing logic is as follows:

• If bitmap pixel is equal to framing color, then leave the background pixel undisturbed.
• Otherwise, replace background pixel with foreground image pixel.

The effect is similar to having the image of the airplane drawn on a sheet of transparent
plastic. The selection of a framing color, called the color key, plays an important role in
the result. If a color key can be found that is not present in the source bitmap, then
transparency is achieved perfectly. If not, some pixels of the foreground image will not
be shown. The greater the color range, the easier it is to find a satisfactory color key. It is
hard to imagine a 24-bit color bitmap (16.7 million colors) that will not have a single
color value that is absent in the image. Color Figure 5 shows the elements of transparency
using a color key.

An alternative option is based on a color key located in the background image, also
called the destination. In this case the color key determines if the foreground image pixel
is used or not. The logic is as follows:

• If background pixel is the color key, then use foreground pixel over background.
• Otherwise, leave background undisturbed.

The result of using a destination color key is a window on which the foreground image is
displayed. Here again, the programmer must find an attribute for the color key that is not
used in the background.

The pc graphics handbook 946

DirectDraw supports both source and destination color keys. Application code
supplies either a single color, or a color range for source or destination color keying.
Source and destination color keys can be combined on different surfaces. For example, a
destination color key can be attached to a surface in order to create a window on which
the mountains, sky, and clouds are visible. Then a source color key can be used in a
second surface in order to display a bitmap transparently over this back-ground. Color
plate 4 shows transparency based on the simultaneous use of source and destination color
keys.

Color Figure 5 shows the manipulation of three different surfaces in implementing
source and destination color key transparency. Surface 1 contains a window in which a
destination color key has been defined. Surface 2 is a bitmap image. Surface 3 is a sprite
representing an airplane in which the background is a source color key. This sprite is
transparently blitted onto the bitmap on surface 2, and then surface 2 is transparently
blitted onto surface 1. The resulting image is shown at the bottom of the illustration.

29.1.7 Selecting and Setting the Color Key

A DirectDraw color key is always associated with a surface. Code can set the color keys
for a surface when it is created, or afterward. To set a color key or keys when creating a
surface you assign the desired color values to one or both of the ddckCKSrcBlt and
ddckCKDestBlt members of the DDSURFACEDESC2 structure. When CreateSurface()
is called, the color keys are automatically assigned. If the color key is to be used in
blitting, one or both of DDSD_CKSRCBLT or DDSD_CKDESTBLT must be included
in the dwFlags member.

The DirectDraw function SetColorKey() sets the color key for an existing
DirectDrawSurface object. The function’s general form is as follows:

HRESULT SetColorKey(
 DWORD dwFlags, // 1
 LPDDCOLORKEY lpDDColorKey // 2
);

The first parameter is a flag that determines the type of color key to be used. Table 29–3
lists the predefined constants used in this parameter.

Blitting 947

Table 29–3
Constants Used in SetColorKey() Function

CONSTANT ACTION
DDCKEY_COLORSPACE The structure contains a color range. Not set if the structure

contains a single color key.
DDCKEY_DESTBLT The structure specifies a color key or color space to be used

as a destination color key for blit operations.
DDCKEY_DESTOVERLAY The structure specifies a color key or color space to be used

as a destination color key for overlay operations.
DDCKEY_SRCBLT The structure specifies a color key or color space to be used

as a source color key for blit operations.
DDCKEY_SRCOVERLAY The structure specifies a color key or color space to be used

as a source color key for overlay operations.

Color keys are used in two different types of DirectDraw bitmap display operations: blits
and overlays. Because the specification of overlays were never defined in DirectX, and
because they are currently supported by few video cards, we do not cover hardware
overlays in this book.

The second parameter is the address of a structure variable of type DDCOLORKEY
structure that contains the new color key values for the DirectDrawSurface object. If this
value is NULL, then the existing color key is removed from the surface.

If the call to SetColorKey() succeeds, the function returns DD_OK. If it fails, one of
the following error codes is returned:

• DDERR_GENERIC
• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_INVALIDSURFACETYPE
• DDERR_NOOVERLAYHW
• DDERR_NOTAOVERLAYSURFACE
• DDERR_SURFACELOST
• DDERR_UNSUPPORTED
• DDERR_WASSTILLDRAWING

The DDCOLORKEY Structure

The color key is described in a DDCOLORKEY structure. The structure is used for either
a source color key, a destination color key, or a color range. A single color key is
specified when both structure members have the same value. DDCOLORKEY is defined
in the Windows header files as follows:

typedef struct _DDCOLORKEY{
 DWORD dwColorSpaceLowValue;
 DWORD dwColorSpaceHighValue;
} DDCOLORKEY,FAR* LPDDCOLORKEY;

The pc graphics handbook 948

The member dwColorSpaceLowValue contains the low value (inclusive) of the color
range that is to be used as the color key. The member dwColorSpaceHighValue contains
the high value (also inclusive). Tthe color key is a single color, not a range, when both
members are assigned the same value.

Color keys are specified using the pixel format of the surface. If a surface is palletized,
then the color key is an index or a range of indexes. If the surface is a 16-bit color (hi-
color), then the color key is a word-size value. If the surface's pixel format is RGB or
YUV, then the color key is specified in an RGBQUAD or YUVQUAD structure, as in
the following code fragments:

// Hi color mode is the single color key.
dwColorSpaceLowValue = 0×f011;
dwColorSpaceHighValue = 0×f011;
// RGB color 255,128,128 is the single color key.
dwColorSpaceLowValue = RGBQUAD(255,128,128);
dwColorSpaceHighValue = RGBQUAD(255,128,128);
// YUV color range used as a color key
dwColorSpaceLowValue = YUVQUAD(120,50,50);
dwColorSpaceHighValue = YUVQUAD(140,50,50);

The YUV format was developed to more easily compress motion video data. It is based
on the physics of human vision, which makes the eye is more sensitive to brightness
levels than to specific colors. The YUV acronym refers to a three-axes coordinate system.
The y-axis encodes the luminance component, while the u- and vaxes encode the
chrominance, or color, element. Although several different implementations of the YUV
format are available, no one format is directly supported by DirectDraw.

In the third example the YUV color range extends from 120–50–50 to 150–50–50. In
this case any pixel with a y value between 120 and 150, and u and v values of 50, serve as
a color key. Range values for color keys are often used when working with video data or
photographic images, since in this case, there are usually variations in the background
color values. Art work composed with draw or paint programs often use single-key
colors.

29.1.8 Hardware Color Keys

Transparency and color keys are supported by the HEL. Although you can always assume
that these functions are available, support for a color key range is not required. Code
should check the dwCKeyCaps member of the DDCAPS structure. The
DDCAPS_COLORKEY constant of the dwCaps member identifies some form of color
key support for either overlay or blit operations. The dwCKeyCaps member defines the
options listed in Table 29–4.

Blitting 949

Table 29–4
Color Key Capabilities in the dwCKeyCaps
Member of DDCAPS Structure

CONSTANT MEANING
DDCKEYCAPS_DESTBLT
 Supports transparent blitting. Color key identifies the replaceable bits of the

destination surface for RGB colors.
DDCKEYCAPS_DESTBLTCLRSPACE
 Supports transparent blitting. Color space identifies the replaceable bits of

the destination surface for RGB colors.
DDCKEYCAPS_DESTBLTCLRSPACEYUV
 Supports transparent blitting. Color space identifies the replaceable bits of

the destination surface for YUV colors.
DDCKEYCAPS_DESTBLTYUV
 Supports transparent blitting. Color key identifies the replaceable bits of the

destination surface for YUV colors.

CONSTANT MEANING
DDCKEYCAPS_DESTOVERLAY
 Supports overlaying with color keying of the replaceable bits

of the destination surface being overlaid for RGB colors.
DDCKEYCAPS_DESTOVERLAYCLRSPACE
 Supports a color space as the color key for the destination of

RGB colors.
DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV
 Supports a color space as the color key for the destination of

YUV colors.
DDCKEYCAPS_DESTOVERLAYONEACTIVE
 Supports only one active destination color key value for visible

overlay surfaces.
DDCKEYCAPS_DESTOVERLAYYUV
 Supports overlaying using color keying of the replaceable bits

of the destination surface being overlaid for YUV colors.
DDCKEYCAPS_NOCOSTOVERLAY
 No bandwidth trade-offs for using the color key with an

overlay.

DDCKEYCAPS_SRCBLT Supports transparent blitting using the color key for the source

with this surface for RGB colors.
DDCKEYCAPS_SRCBLTCLRSPACE
 Supports transparent blitting using a color space for the source

with this surface for RGB colors.
DDCKEYCAPS_SRCBLTCLRSPACEYUV
 Supports transparent blitting using a color space for the source

with this surface for YUV colors.
DDCKEYCAPS_SRCBLTYUV

The pc graphics handbook 950

 Supports transparent blitting using the color key for the source
with this surface for YUV colors.

DDCKEYCAPS_SRCOVERLAY
 Supports overlaying using the color key for the source with this

overlay surface for RGB colors.
DDCKEYCAPS_SRCOVERLAYCLRSPACE
 Supports overlaying using a color space as the source color key

for the overlay surface for RGB colors.
DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV
 Supports overlaying using a color space as the source color key

for the overlay surface for YUV colors.
DDCKEYCAPS_SRCOVERLAYONEACTIVE
 Supports only one active source color key value for visible

overlay surfaces.
DDCKEYCAPS_SRCOVERLAYYUV
 Supports overlaying using the color key for the source with this

overlay surface for YUV colors.

Some hardware support color ranges only for YUV pixel data, which is usually video.
The transparent background in video footage (the "blue screen" against which the subject
was photographed) might not be a pure color. For this reason a color range in the key is
desirable in this case.

29.2 The Blit

In the blit a rectangular block of memory bits, called the source, is transferred as a block
into a rectangular memory area called the destination. If the destination of the transfer is
screen memory, then the bitmapped image is immediately displayed. The source and
destination bit blocks can be combined logically or arithmetically, or a unary operation
can be performed on the source or the destination bit blocks.

GDI blits have extremely slow performance, thus, they are rarely used in high-quality
graphics. DirectDraw contains its own blit functions, which execute considerably faster
than the GDI blit. The DirectDraw blit functions are named Blt() and BltFast(). They are
both associated with DirectDraw surface objects. Microsoft announced a third blit
version, called BltBatch(), but it has not been implemented and probably never will.

In DirectDraw blit operations usually take place from an off-screen surface onto the
back buffer or to the primary surface. Much of the processing time of a typical
DirectDraw application is spent blitting imagery. Also, the performance capability, which
is related to the band width of a particular blitter, determines the speed of the video
output. Figure 29–2 shows the most common forms of the DirectDraw blit operation.

Blitting 951

Figure 29–2 The DirectDraw Blit.

Both blit functions, Blt() and BltFast(), operate on a destination surface, which is
referenced in the call, and receive the source surface as a parameter. It is possible for both
source and destination to be the same surface. In this case DirectDraw preserves all
source pixels before overwriting them. Blt() is more flexible, but BltFast() is faster,
especially if there is no hardware blitter. Applications can determine the blitting
capabilities of the hardware from the DDCAPS structure obtained by means of the
GetCaps() function. If the dwCaps member contains DDCAPS_BLT, the hardware
supports blitting.

29.2.1 BltFast()

BltFast requires a valid rectangle in the source surface. The pixels are copied from this
rectangle onto the destination surface. If the entire surface is to be copied, then the source
rectangle is defined NULL. BltFast() also requires x- and y-coordinates in the destination
surface. The source rectangle must fit within the destination surface. If the source
rectangle is larger than the destination the call fails and BltFast() returns
DDERR_INVALIDRECT. BltFast() cannot be used on surfaces that have an attached
clipper. Neither does it support stretching, mirroring, or other effects that can be
performed with Blt().

The function's general form is as follows:

HRESULT BltFast(
 DWORD
dwX, // 1

The pc graphics handbook 952

 DWORD
dwY, // 2
 LPDIRECTDRAWSURFACE7
lpDDSrcSurface, // 3
 LPRECT
lpSrcRect, // 4
 DWORD
dwTrans // 5
);

The first and second parameters are the x- and y-coordinates to blit to on the destination
surface. The third parameter is the address of a IDirectDrawSurface7 interface for the
DirectDrawSurface object that is the source of the blit. The fourth parameter is a RECT
structure that defines the upper-left and lower-right points of the rectangle on the source
surface. The fifth parameter defines the type of blit, as listed in Table 29–5.

Table 29–5
Type of Transfer Constants in BltFast()

CONSTANT ACTION
DDBLTFAST_DESTCOLORKEY
 Transparent blit that uses the destination’s color key.
DDBLTFAST_NOCOLORKEY
 Normal copy blit with no transparency.
DDBLTFAST_SRCCOLORKEY
 Transparent blit that uses the source’s color key.
DDBLTFAST_WAIT
 Does not produce a DDERR_WASSTILLDRAWING message if the

blitter is busy. Returns as soon as the blit can be set up or another error
occurs.

If the call succeeds, BltFast() returns DD_OK. If it fails it returns one of the following
self-explanatory values:

• DDERR_EXCEPTION
• DDERR_GENERIC
• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_INVALIDRECT
• DDERR_NOBLTHW
• DDERR_SURFACEBUSY
• DDERR_SURFACELOST
• DDERR_UNSUPPORTED
• DDERR_WASSTILLDRAWING

BltFast() always attempts an asynchronous blit if it is supported by the hardware. The
function works only on display memory surfaces and cannot clip when blitting.
According to Microsoft, BltFast() is 10 percent faster than the Blt() method if there is no

Blitting 953

hardware support, but there is no speed difference if the display hardware is used. Figure
29–3 is a diagram showing the parameters and operation of the BltFast() function.

Figure 29–3 The BltFast() Function

29.2.2 Blt()

Like BltFast(), Blt() performs a bit block transfer from a source surface onto a destination
surface, but Blt() is the more flexible and powerful of the two. Blt() allows a clipper to be
attached to the destination surface, in which case clipping is performed if the destination
rectangle falls outside of the surface. Blt() can also scale the source image to fit the
destination rectangle. Scaling is disabled when both surfaces are of the same size. The
function's general form is as follows:

HRESULT Blt(
 LPRECT
lpDestRect, // 1
 LPDIRECTDRAWSURFACE7
lpDDSrcSurface, // 2
 LPRECT
lpSrcRect, // 3
 DWORD
dwFlags, // 4

The pc graphics handbook 954

 LPDDBLTFX
lpDDBltFx // 5
);

Table 29–6
Flags for the Blt() Function

FLAGS MEANING
VALIDATION
FLAGS:

DDBLT_COLORFILL The dwFillColor member of the DDBLTFX structure is the RGB
color that fills the destination rectangle.

DDBLT_DDFX The dwDDFX member of the DDBLTFX structure specifies the
effects to use for the blit.

DDBLT_DDROPS The dwDDROP member of the DDBLTFX structure specifies the
raster operations (ROPS) that are not part of the Win32 API.

DDBLT_DEPTHFILL The dwFillDepth member of the DDBLTFX structure is the depth
value with which to fill the destination rectangle.

FLAGS MEANING
DDBLT_KEYDESTOVERRIDE
 The ddckDestColorkey member of the DDBLTFX structure is the color key for the

destination surface.
DDBLT_KEYSRCOVERRIDE
 The ddckSrcColorkey member of the DDBLTFX structure is the color key for the

source surface.
DDBLT_ROP
 The dwROP member of the DDBLTFX structure is the ROP for this blit. The ROPs

are the same as those defined in the Win32 API.
DDBLT_ROTATIONANGLE
 The dwRotationAngle member of the DDBLTFX structure is the rotation angle, in

1/100th of a degree units, for the surface.
COLOR KEY FLAGS:
DDBLT_KEYDEST
 The color key is associated with the destination surface.
DDBLT_KEYSRC
 The color key is associated with the source surface.
BEHAVIOR FLAGS:
DDBLT_ASYNC
 Blit asynchronously in the FIFO order received. If no room is available in the FIFO

hardware, the call fails.
DDBLT_WAIT
 Postpones the DDERR_WASSTILLDRAWING return value if the blitter is busy, and

returns as soon as the blit can be set up or another error occurs.

The second parameter is the address of the IDirectDrawSurface4 interface for the

DirectDrawSurface object that is the source of the blit.

Blitting 955

The first parameter is the address of a RECT structure that defines the upper-left and
lower-right points of the source rectangle. If this parameter is NULL, the entire
destination source surface is used.

The third parameter is the address of a RECT structure that defines the upper-left and
lower-right points of the source rectangle from which the blit is to take place. If this
parameter is NULL, then the entire source surface is used.

The fourth parameter is one or more flags that determine the valid members of the
associated DDBLTFX structure, which specifies color key information or requests a
special behavior. Three types of flags are currently defined: validation flags, color key
flags, and behavior flags. Table 29–6 lists the predefined constants for this parameter.

The fifth parameter is the address of a structure variable of type DDBLTFX that
defines special effects during the blit, including raster operation codes (ROP) and
override information. Because of their complexity, special effects during blit operations
are discussed in a separate section. Figure 29–4, on the following page, shows the
parameters and operation of the Blt() function.

If the call succeeds, the return value is DD_OK. If it fails, the return value is one of
the following error codes:

• DDERR_GENERIC
• DDERR_INVALIDCLIPLIST
• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_INVALIDRECT

The pc graphics handbook 956

Figure 29–4 The Blt() Function
• DDERR_NOALPHAHW
• DDERR_NOBLTHW
• DDERR_NOCLIPLIST
• DDERR_NODDROPSHW
• DDERR_NOMIRRORHW
• DDERR_NORASTEROPHW
• DDERR_NOROTATIONHW
• DDERR_NOSTRETCHHW
• DDERR_NOZBUFFERHW
• DDERR_SURFACEBUSY
• DDERR_SURFACELOST
• DDERR_UNSUPPORTED

Blitting 957

• DDERR_WASSTILLDRAWING

The Blt() function is capable of synchronous or asynchronous blits. Source and
destination can be display memory to display memory, display memory to system
memory, system memory to display memory, or system memory to system memory. The
default is asynchronous. The function supports both source and destination color keys. If
the source and the destination rectangles are not the same size, Blt() performs the
necessary stretching. Blt() returns immediately with an error if the blitter is busy. If the
code specifies the DDBLT_WAIT flag, then a synchronous blit takes place and the call
waits until the blit can be set up or until another error occurs.

In the Blt() function there must be a valid rectangle in the source surface (or NULL to
specify the entire surface), and a rectangle in the destination surface to which the source
image is copied. Here again, NULL means the destination rectangle is the entire surface.
If a clipper is attached to the destination surface, then the bounds of the destination
rectangle can fall outside the surface and clipping is automatically performed. If there is
no clipper, the destination rectangle must fall entirely within the surface or else the
method fails with DDERR_INVALIDRECT.

29.3 Blit-Time Transformations

Several transformations can take place at blit-time. The most important ones are color
fills, scaling, mirroring, and raster operations. Other effects, such as rotation, are not
required by the HEL; therefore, they cannot be used if the hardware does not support
them. Applications that do not require any special blit-time transformations other than
scaling can pass NULL as in the fourth parameter of the Blt() function. Code can
determine the hardware support for blit-time transformations by calling GetCaps().

Applications that require a particular blit-time transformation must pass the
corresponding value in one of the members of the DDBLTFX structure. The appropriate
flags must also be included in the fourth parameter to Blt(), which determines which
members of the structure are valid. Some transformations require only setting a single
flag, others require several of them.

The dwFlags member of DDBLTFX named DDBLTFX_NOTEARING can be used
when blitting images directly to the front buffer. The action of this flag is to time the blit
so that it coincides with the screen’s vertical retrace cycle, thus minimizing the possibility
of tearing. Tearing and screen update timing are discussed in the context of DirectDraw
animation, in Chapter 16.

Applications that use surface color keys when calling BltFast() or Blt() must set one or
both of the DDBLTFAST_SRCCOLORKEY or DDBLTFAST_DESTCOLORKEY flags
in the corresponding function parameter. Alternatively, code can place the ap-propriate
color values in the ddckDestColorkey and ddckSrcColorkey members of the DDBLTFX
structure that is passed to the function in the lpDDBltFx parameter. In this case it is also
necessary to set the DBLT_KEYSRCOVERRIDE or DDBLT_KEYDESTOVERRIDE
flag, or both, in the dwFlags parameter. The resulting action is that the selected color
keys are taken from the DDBLTFX structure rather than from the surface properties.

The pc graphics handbook 958

29.3.1 Color Fill Blit

A blit operation can be used to fill the entire surface, or a part of it, with a single color.
This can be used for creating backgrounds when using a destination color key, and for
clearing large screen areas. When Blt() is used to perform a color fill, the call must
reference the DDBLT_COLORFILL flag. The following code fragment fills an entire
surface with the color blue. Code assumes that lpDDS is a valid pointer to an
IDirectDrawSurface7 interface.

HRESULT ddrval;
DDBLTFX ddbltfx;
.
.
.
ZeroMemory(&ddbltfx, sizeof(ddbltfx));
ddbltfx.dwSize = sizeof(ddbltfx);
ddbltfx.dwFillColor = ddpf.dwBBitMask; // Pure blue
ddrval = lpDDS->Blt(
 NULL, // Destination is entire
surface
 NULL, // No source surface
 NULL, // No source rectangle
 DDBLT_COLORFILL, &ddbltfx);
if(ddrval != DD_OK)
// Error handler goes here

29.3.2 Blit Scaling

The Blt() function automatically scales the source image to fit the destination rectangle.
Blt() automatically re-scales the source image to fit the destination rectangle. If resizing
is not required, the source and destination rectangles should be exactly the same size.
Scaling must be implemented in the HEL, so it is always available. Some video cards
have hardware support for scaling operations. Hardware acceleration for scaling can be
detected by examining the flags that start with DDFXCAPS_BLT in the dwFXCaps
member of the DDCAPS structure for the device. For example, the
DDFXCAPS_BLTSTRETCHXN capability indicates integer shrinking support, and
DDFXCAPS_BLTSTRETCHX arbitrary stretching support. If a device has the first flag,
but not the second one, then it provides hardware support when the x-axis of the source
rectangle is being multiplied by a whole number, but not when the factor is non-integral.

Applications can inspect the dwCXCaps member of the DDCAPS structure to
determine if hardware support is available and of which type. Table 29–7 lists the most
used predefined constants in the scaling capabilities flag.

Blitting 959

Table 29–7
Scaling Flags for the Blt() Function

FLAG MEANING
DDFXCAPS_BLTALPHA
 Supports alpha-blended blit operations.
DDFXCAPS_BLTARITHSTRETCHY
 Arithmetic operations, rather than pixel-doubling techniques,

are used to stretch and shrink surfaces along the y-axis.
DDFXCAPS_BLTARITHSTRETCHYN
 Arithmetic operations, rather than pixel-doubling techniques,

are used to stretch and shrink surfaces along the y-axis.
Stretching must be integer based.

DDFXCAPS_BLTSHRINKX
 Arbitrary shrinking of a surface along the x-axis (horizontally).
DDFXCAPS_BLTSHRINKXN
 Integer shrinking of a surface along the x-axis.
DDFXCAPS_BLTSHRINKY
 Arbitrary shrinking of a surface along the y-axis.
DDFXCAPS_BLTSHRINKYN
 Integer shrinking of a surface along the y-axis.
DDFXCAPS_BLTSTRETCHX
 Arbitrary stretching of a surface along the x-axis.
DDFXCAPS_BLTSTRETCHXN
 Integer stretching of a surface along the x-axis.
DDFXCAPS_BLTSTRETCHY
 Arbitrary stretching of a surface along the y-axis (vertically).
DDFXCAPS_BLTSTRETCHYN
 Supports integer stretching of a surface along the y-axis.

Scaling is automatically disabled when the source and destination rectangles are exactly
the same size. An application can use the BltFast() function, instead of Blt(), in order to
avoid accidental scaling due to different sizes of the source and destination rectangles.

Some video cards support arithmetic scaling. In this case the scaling operation is
performed by interpolation rather than by multiplication or deletion of pixels. For
example, if an axis is being increased by one-third, the pixels are recolored to provide a
closer approximation to the original image than would be produced by doubling every
third pixel on that axis. Code has little control over the type of scaling performed by the
driver. The only possibility is to set the DDBLTFX_ARITHSTRETCHY flag in the
dwDDFX member of the DDBLTFX structure passed to Blt(). This flag requests that
arithmetic stretching be done on the y-axis. Arithmetic stretching on the x-axis and
arithmetic shrinking are not currently supported in the DirectDraw API, but a driver may
perform them on its own.

The pc graphics handbook 960

29.3.3 Blit Mirroring

Mirroring is another blit-time transformation supported by the HEL. Applications can
assume that it is available even if it not supported in the hardware. Mirroring is defined in
the x-axis and the y-axis of the blit rectangle. Figure 29–5 shows mirroring along either
axis.

Figure 29–5 Bit-Time Mirroring
Transformations

Table 29–8 lists the predefined constants used in mirroring transformations during Blt().

Table 29–8
Mirroring Flags for the Blt() Function

FLAGS MEANING
DDBLTFX_MIRRORLEFTRIGHT
 Mirrors on the y-axis. The surface is mirrored from left to right.
DDBLTFX_MIRRORUPDOWN
 Mirrors on the x-axis. The surface is mirrored from top to bottom.

Applications sometimes need several versions of a symmetrical sprite, in which the
image faces in different directions. Rather than creating a bitmap for each image, it is
possible to generate them by mirroring the original. Hardware support for mirroring can
be determined by the presence of the DDFXCAPS-_BLTMIRRORLEFTRIGHT and
DDFCAPS_BLTMIRRORUPDOWN identifiers in the dwFXCaps member of the
DDCAPS structure.

Blitting 961

29.3.4 Raster Operations

Blit-time transformations can include some of the standard raster operations (ROPs) used
by the GDI BitBlt() functions. At present only SRCCOPY (the default), BLACKNESS,
and WHITENESS are supported by the HEL. Hardware support for other raster
operations can be determined by examining the DDCAPS structure. Code that uses any of
the standard ROPS with the Blt method must set the corresponding flag in the dwROP
member of the DDBLTFX structure. The dwDDROP member of the DDBLTFX
structure is for specifying ROPs specific to DirectDraw. No such ROPs have been
defined at this time.

29.4 Blit-Rendering Operations

Many types of applications rely heavily on bitmaps; these include image processing,
simulations, virtual reality, artificial life, and electronic games. The real-color and true-
color modes make it possible to use bitmaps to encode images with photo-realistic
accuracy. The processing capabilities make possible the effective manipulation of
bitmapped images. DirectDraw implements a new dimension of functionality in bitmap
processing and display operations. In DirectDraw bitmap manipulations consist of four
basic steps:

• Loading the bitmap into application memory
• Obtaining the bitmap data
• Moving the bitmap onto a DirectDraw surface
• Blitting the bitmap onto the video display

29.4.1 Loading the Bitmap

Loading a bitmap onto the application’s memory space is an operation of GDI graphics,
not actually part of DirectDraw. The demonstration program DD Bitmap Blit, in the
book’s software package, loads several bitmaps during WM_CREATE message
processing. In this case we used Developer Studio to define the bitmaps as program
resources, and then used LoadBitmap() to load them into the application’s memory space.
Alternatively, instead of defining the bitmap as a program resource, we can use
LoadImage() to load the bitmap directly from the disk file in which it is stored. At this
time we can also perform certain preliminary checks to make sure that the DirectDraw
surface is compatible with the bitmap to be displayed. Note that the sample code requires
that the surface be nonpalletized. GetSurfaceDesc() is used to fill a DDSURFACEDESC2
structure. The DDPIXELFORMAT structure, which is part of DDSURFACEDESC2,
contains two relevant values: the flag DDPF_RGB indicates that the RGB data is valid,
and the dwRGBBitCount member contains the number of RGB bits per pixel. If the
DDPF_RGB flag is set and dwRGBBitCount>15 we can assume that the surface is
nonpalletized, and therefore, compatible.

Note that the LoadImage() function does not return palette information. Microsoft
Knowledge Base Article Q158898 lists the function LoadBitmapFromBMPFile() which

The pc graphics handbook 962

uses the DIBSection’s color table to create a pal-ette. If no color table is present, then a
half-tone palette is created. The source for this function can be found in the MSDN
Library that is part of Visual C++.

Once code has determined that a compatible surface is available, it can proceed to load
the bitmap. The general form of the LoadImage() function is as follows:

HANDLE LoadImage(
 HINSTANCE hInst, //
1
 LPCTSTR lpszName, //
2
 UINT uType, //
3
 int cxDesired, //
4
 int cyDesired, //
5
 UINT fuLoad //
6
);

The first parameter is a handle to an instance of the module that contains the image to be
loaded. In the case of an image contained in a file, this parameter is set to zero.

The second parameter is a pointer to the image to load. If it is non NULL and the sixth
parameter (described later) does not include LR_LOADFROMFILE, then it is a pointer
to a null-terminated string that contains the filename of the image resource.

The third parameter is the image type. It can be one of the following constants:

• IMAGE_BITMAP
• IMAGE_CURSOR
• IMAGE_ICON

The fourth and fifth parameters specify the pixel width and height of the bitmap, cursor,
or icon. If this parameter is zero and the sixth parameter is LR_DEFAULTSIZE, then the
function uses the SM_CXICON or SM_CXCURSOR system metric value to set the
width. If this parameter is zero, and if LR_DEFAULTSIZE is present in the sixth
parameter, then the function uses the actual width and height of the bitmap.

The sixth and last parameter is one or more flags represented by the predefined
constants listed in Table 29–9.

LoadImage() returns the handle of the newly loaded image if the call succeeds. If the
function fails, it returns NULL. Although the system automatically deletes all resources
when the process that created them terminates, applications can save memory by
releasing resources that are no longer needed. DeleteObject() is used to release a bitmap,
DestroyIcon() for icons, and DestroyCursor() for cursor resources.

The following function is used to load a bitmap into the application’s memory space
and obtain its handle. In this case the code checks for a surface compatible with a
nonpalletized bitmap.

Blitting 963

Table 29–9
Predefined Constants in LoadImage() Function

CONSTANT MEANING
LR_DEFAULTCOLOR Default flag. Does nothing.
LR_CREATEDIBSECTION
 When the third parameter is IMAGE_BITMAP, this flag causes

the function to return a DIB section bitmap rather than a
compatible bitmap. It is useful for loading a bitmap without
mapping it to the colors of the display device.

LR_DEFAULTSIZE
 For cursor and icons the width or height values are those specified

by the system metric values, but only if the fourth and fifth
parameters are set to zero. If this flag is not specified and the
fourth and fifth parameters are set to zero, the function uses the
actual resource size.

LR_LOADFROMFILE
 Loads the image from the file specified by the second parameter.

If this flag is not specified, lpszName is the name of the resource.
LR_LOADMAP3DCOLORS
 Searches the color table for the image and replaces the following

shades of gray with the corresponding 3D color:
Color RGB value Replaced with
Dk Gray RGB(128, 128, 128) COLOR_3DSHADOW
Gray RGB(192, 192, 192) COLOR_3DFACE
Lt Gray RGB(223, 223, 223) COLOR_3DLIGHT
LR_LOADTRANSPARENT
 Retrieves the color value of the top-left pixel in the image and

replaces the corresponding entry In the color table with the
default window color (COLOR_WINDOW). All pixels in the
image that use that entry become the default window color. This
value applies only to images that have corresponding color tables.

LR_MONOCHROME
 Converts the image to black and white pixels.
LR_SHARED
 Shares the image handle if the image is loaded multiple times. If

LR_SHARED is not used, a second call to LoadImage for the
same resource will load the image again and returns a different
handle. LR_SHARED should not be used for images that have
nonstandard sizes, that may change after loading, or that are
loaded from a file. In Windows 95 and Windows 98 LoadImage()
finds the first image with the requested resource name in the
cache, regardless of the size requested.

LR_VGACOLOR
 Use true VGA colors.

The pc graphics handbook 964

//***

// Name: DDLoadBitmap
// Desc: Loads a bitmap file into memory and returns
its handle
//
// PRE:
// 1. Parameter 1 is pointer to a DirectDraw surface
// Parameter 2 is pointer to bitmap filename string
//
// POST:
// Returns handle to bitmap
//
// ERROR:
// All errors exit through DDInitFailed() function
//***

HBITMAP DDLoadBitmap(LPDIRECTDRAWSURFACE4 lpDDS,
 LPSTR szImage)
{
 HBITMAP hbm;
 DDSURFACEDESC2 ddsd;
 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 if (lpDDS->GetSurfaceDesc(&ddsd) != DD_OK)
 DDInitFailed(hWnd, hRet,
 "GetSurfaceDesc() call failed in
DDLoadBitmap()");
 // Test for compatible pixel format
 if ((ddsd.ddpfPixelFormat.dwFlags != DDPF_RGB) ||
 (ddsd.ddpfPixelFormat.dwRGBBitCount < 16))
 DDInitFailed(hWnd, hRet,
 "Incompatible surface in DDLoadBitmap()");
 // Load the bitmap image onto memory
 hbm = (HBITMAP)LoadImage(NULL, szImage,
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE);
 if (hbm == NULL)
 DDInitFailed(hWnd, hRet,
 "Bitmap load failed in DDLoadBitmap()");
 return hbm;
}

Note that in DDLoadBitmap() all errors are considered terminal and directed through the
DDInitFailed() function. This mode of operation can be changed if the code is to provide
alternate processing in these cases.

29.4.2 Obtaining Bitmap Information

In order to display and manipulate a bitmap, the processing routines usually require
information about its size and organization. The GDI GetObject() function is used for this
purpose. This function fills a structure of type BITMAP, defined as follows:

Blitting 965

typedef struct tagBITMAP {
 LONG bmType; // Must be zero
 LONG bmWidth; // bitmap width (in pixels)
 LONG bmHeight; // bitmap height (in pixels)
 LONG bmWidthBytes; // bytes per scan line
 WORD bmPlanes; // number of color planes
 WORD bmBitsPixel; // bits per pixel color
 LPVOID bmBits; // points to bitmap values
array
} BITMAP;

The bmWidth member specifies the width, in pixels, of the bitmap, while bmHeight
specifies the height, also in pixels. Both values must be greater than zero. The
bmWidthBytes member specifies the number of bytes in each scan line. Windows
assumes that the bitmap is word aligned; therefore, this value must be divisible by 2. The
member bmPlanes specifies the number of color planes. The member bmBitsPixel
specifies the number of bits required to indicate the color of a pixel. The member bmBits
points to the location of the bit values for the bitmap. It is a long pointer to an array of
char-size (1 byte) values.

How much of the information in the BITMAP structure is used depends on the type of
bitmap processing performed by the application. The direct access operations, described
earlier, allow code to manipulate bitmap data directly. In this case most of the BITMAP
structure members are required in order to locate and access the bitmap data. On the other
hand, applications can use high-level functions to display bitmap. Such is the case with
the BitBlt() GDI function and the DirectDraw Blt() and BltFast() functions. When high-
level functions are used, only the bmWidth and bmHeight members are usually
necessary.

29.4.3 Moving a Bitmap to a Surface

Blit operations in DirectDraw take place between surfaces. Therefore, a useful function is
one that loads a bitmap onto a surface. The function, named DDBmapToSurf(), copies a
memory-resident bitmap, specified by its handle, into a DirectDraw surface.

//***

// Name: DDBmapToSurf
// Desc: Moves a bitmap to a DirectDraw Surface
// PRE:
// 1. Parameter 1 is pointer to a IDirectDraw7 surface
// Parameter 2 is handle to the bitmap
//
// POST:
// Bitmap is moved to surface
// Returns 1 if successful
// /
// ERROR:
// All errors exit through DDInitFailed() function

The pc graphics handbook 966

//***

HRESULT DDBmapToSurf(LPDIRECTDRAWSURFACE7 pdds,
 HBITMAP hbm)
{
 HDC hdcImage;
 HDC hdc;
 DDSURFACEDESC2 ddsd;
 HRESULT hr=1;
 BOOL retValue;
 if (hbm == NULL || pdds == NULL)
 DDInitFailed(hWnd, hRet,
 "Invalid surface or bitmap in
DDBmapToSurf");
 // Create compatible DC and select bitmap into it
 hdcImage = CreateCompatibleDC(NULL);
 if (!hdcImage)
 DDInitFailed(hWnd, hRet,
 "CreateCompatibleDC() failed in
DDBmapToSurf");
 SelectObject(hdcImage, hbm);
 // Get size of surface
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_HEIGHT DDSD_WIDTH;
 pdds->GetSurfaceDesc(&ddsd);
 if ((hr = pdds->GetDC(&hdc)) != DD_OK)
 DDInitFailed(hWnd, hRet,
 "GetDC() failed in DDBmapToSurf") ;
 retValue = BitBlt(hdc, 0, 0, ddsd.dwWidth,
ddsd.dwHeight,
 hdcImage, 0, 0, SRCCOPY);
 // Release surface immediately
 pdds->ReleaseDC(hdc);
 if(retValue == FALSE)
 DDInitFailed(hWnd, hRet,
 "BitBlt() failed in DDBmapToSurf");
 DeleteDC(hdcImage);
 return hr;
}

29.4.4 Displaying the Bitmap

As previously mentioned, the BitBlt() GDI function provides a flexible, yet slow,
mechanism for displaying bitmaps. In the case of a DirectDraw application, executing in
exclusive mode, the device context must be obtained with the DirectDraw-specific
version of the GetDC() function. IDirectDrawSurface7::GetDC not only returns a GDI-
compatible device context, but also locks the surface for access. The following function
displays a bitmap using a DirectDraw device context:

Blitting 967

//***

// Name: DDShowBitmap
// Desc: Displays a bitmap using a DirectDraw device
context
//
// PRE:
// 1. Parameter 1 is pointer to a IDirectDraw7 surface
// Parameter 2 is handle to the bitmap
// Parameters 3 and 4 are the display location
// Parameters 5 and 6 are the bitmap dimensions
//
// POST:
// Returns TRUE if successful
//
// ERROR:
// All errors exit through DDInitFailed() function
//***

BOOL DDShowBitmap(LPDIRECTDRAWSURFACE7 lpDDS,
 HBITMAP hBitmap,
 int xLocation, int yLocation,
 int bWidth, int bHeight)
{
 HDC hdcImage = NULL;
 HDC hdcSurf = NULL;
 HDC thisDevice = NULL;
 // Create a DC and select the image into it.
 hdcImage = CreateCompatibleDC(NULL);
 SelectObject(hdcImage, hBitmap);
 // Get a DC for the surface.
 if(lpDDS->GetDC(&hdcSurf) != DD_OK) {
 DeleteDC(hdcImage);
 DDInitFailed(hWnd, hRet,
 "GetDC() call failed in DDShowBitmap () ")
;
 }
 // BitBlt() is used to display bitmap
 if (BitBlt(hdcSurf, xLocation, yLocation, bWidth,
 bHeight, hdcImage, 0, 0, SRCCOPY) == FALSE) {
 lpDDS->ReleaseDC(hdcSurf);
 DeleteDC(hdcImage);
 // Take terminal error exit
 DDInitFailed(hWnd, hRet,
 "BitBlt() call failed in DDShowBitmap()");
 }
 // Release device contexts
 lpDDS->ReleaseDC(hdcSurf);
 DeleteDC(hdcImage);
 return TRUE;
}

The pc graphics handbook 968

The following code fragment shows the processing required for loading and displaying a
bitmap onto the primary surface, as implemented in the project named DD Bmap Demo
contained in the book’s software package.

// Load bitmap named nebula.bmp
aBitmap = DDLoadBitmap(lpDDSPrimary, "nebula.bmp");
// Get bitmap data for displaying
GetObject(aBitmap, sizeof (BITMAP), &bMap1);
// Display bitmap
DDShowBitmap(lpDDSPrimary, aBitmap, 130, 50,
 (int) bMap1.bmWidth,
 (int) bMap1.bmHeight);

In Chapter 30 we examine bitmap rendering in greater detail and develop a DirectDraw
windowed application that displays a bitmap.

29.5 DD Bitmap Blit Project

The DD Bitmap Blit project, in the book’s software package, is a demonstration of the
programming concepts and techniques discussed in this chapter. The program
demonstrates the display of a bitmap on the primary surface, the creation and use of off-
screen surfaces, and blitting bitmaps to and from off-screen surfaces.

Blitting 969

Chapter 30
DirectDraw Bitmap Rendering

Topics:

• Loading a bitmap
• Obtaining bitmap data
• Moving the bitmap onto a surface
• Blitting the bitmap
• Developing a DirectDraw windowed application

Most graphics rendering consists of manipulating and displaying raster images. The color
richness and high definition of today's graphics cards allow using bitmaps to encode
images with photo-realistic accuracy. The hardware features of the graphics engines
makes possible the effective manipulation of bitmapped images. DirectX provides a new
level of functionality in bitmap processing and rendering. Applications that rely heavily
on bitmaps include games, image processing, simulations, virtual reality, and artificial
life.

This chapter is devoted to bitmap rendering in the context of a DirectDraw windowed
application. In Chapter 16 we discuss manipulating and rendering bitmaps in exclusive
mode.

30.1 Bitmap Manipulations

In DirectX bitmap manipulations consist of four basic steps:

• Loading the bitmap into memory
• Obtaining the bitmap data necessary for displaying it on the screen
• Moving the bitmap onto a surface
• Blitting the bitmap

30.1.1 Loading the Bitmap

In Chapter 29 you saw that loading a bitmap onto the application's memory space is an
operation of GDI graphics. In the program DD Bitmap Blit, developed in Chapter 14 and
contained in the book's software package, we load several bitmaps during WinMain()
processing. The LoadBitmap() function is used to load the images into the application's
memory space. Alternatively, instead of defining the bitmap as a program resource, we
can use LoadImage() to load the bitmap directly from the disk file in which it is stored.
At this time we can also perform certain preliminary checks to make sure that the
DirectDraw surface is compatible with the bitmap to be displayed. Note that the sample

code requires that the surface be nonpalletized. The GetSurfaceDesc() DirectDraw
function is used to fill a DDSURFACEDESC2 structure. The DDPIXELFORMAT
structure, which is part of DDSURFACEDESC2, contains two relevant values: the flag
DDPF_RGB indicates that the RGB data is valid, and the dwRGBBitCount member
contains the number of RGB bits per pixel. If the DDPF_RGB flag is set and
dwRGBBitCount>15 we can assume that the surface is nonpalletized, and therefore,
compatible.

Note that the LoadImage() function does not return palette information. Microsoft
Knowledge Base Article Q158898 lists the function LoadBitmapFromBMPFile() which
uses the DIBSection's color table to create a palette. If no color table is present, then a
half-tone palette is created. The source for this function can be found in the MSDN
Library that is part of Visual C++.

Once code has determined that a compatible surface is available, it can proceed to load
the bitmap. The general form of the LoadImage() function is as follows:

HANDLE LoadImage(
 HINSTANCE hInst, //
1
 LPCTSTR lpszName, //
2
 UINT uType, //
3
 int cxDesired, //
4
 int cyDesired, //
5
 UINT fuLoad //
6
);

The first parameter is a handle to an instance of the module that contains the image to be
loaded. In the case of an image contained in a file, this parameter is set to zero.

The second parameter is a pointer to the image to load. If it is non NULL and the sixth
parameter (described later) does not include LR_LOADFROMFILE, then it is a pointer
to a null-terminated string that contains the filename of the image resource.

The third parameter is the image type. It can be one of the following constants:

• IMAGE_BITMAP
• IMAGE_CURSOR
• IMAGE_ICON

The fourth and fifth parameters specify the pixel width and height of the bitmap, cursor,
or icon. If the fourth parameter is zero and the sixth parameter is LR_DEFAULTSIZE,
then the function uses the SM_CXICON or SM_CXCURSOR system metric value to set
the width. If the fourth parameter is zero, and if LR_DEFAULTSIZE is present in the
sixth parameter, then the function uses the actual width and height of the bitmap. The
sixth and last parameter is one or more flags represented by the predefined constants
listed in Table 30–1.

The pc graphics handbook 972

Table 30–1
Predefined Constants in LoadImage() Function

CONSTANT MEANING
LR_DEFAULTCOLOR Default flag. Does nothing.
LR_CREATEDIBSECTION
 When the third parameter is IMAGE_BITMAP, this flag

causes the function to return a DIB section bitmap rather than
a compatible bitmap. It is useful for loading a bitmap without
mapping it to the colors of the display device.

LR_DEFAULTSIZE For cursor and icons the width or height values are those
specified by the system metric values, but only if the fourth
and fifth parameters are set to zero. If this flag is not specified
and the fourth and fifth parameters are set to zero, the function
uses the actual resource size.

LR_LOADFROMFILE Loads the image from the file specified by the second
parameter. If this flag is not specified, lpszName is the name
of the resource.

LR_LOADMAP3DCOLORS
 Searches the color table for the image and replaces the

following shades of gray with the corresponding 3D color:
Color RGB value Replaced with
Dk Gray RGB(128, 128, 128) COLOR_3DSHADOW
Gray RGB(192, 192, 192) COLOR_3DFACE
Lt Gray RGB(223, 223, 223) COLOR_3DLIGHT
LR_LOADTRANSPARENT
 Retrieves the color value of the top-left pixel in the image and

replaces the corresponding entry in the color table with the
default window color (COLOR_WINDOW). All pixels in the
image that Use that entry become the default window color.
This value applies only to images that have corresponding
color tables.

LR_MONOCHROME Converts the image to black and white pixels.
LR_SHARED Shares the image handle if the image is loaded
 multiple times. If LR_SHARED is not used, a second call to

LoadImage for the same resource will load the image again
and returns a different handle. LR_SHARED should not be
used for images that Have nonstandard sizes, that may change
after Loading, or that are loaded from a file. In Windows
95/98 LoadImage() finds the first image with the requested
resource name in the cache, regardless of the size requested.

LR_VGACOLOR Use true VGA colors.

LoadImage() returns the handle of the newly loaded image if the call succeeds. If the
function fails, the return value is NULL. Although the system automatically deletes all
resources when the process that created them terminates, applications can save memory

Directdraw bitmap rendering 973

by releasing resources that are no longer needed. DeleteObject() is used to release a
bitmap, DestroyIcon() for icons, and DestroyCursor() for cursor resources.

The following function is used to load a bitmap into the application’s memory space
and obtain its handle. In this case the code checks for a surface compatible with a
nonpalletized bitmap.

//***

// Name: DDLoadBitmap
// Desc: Loads a bitmap file into memory and returns
its handle
//
// PRE:
// 1. Parameter 1 is pointer to a DirectDraw surface
// Parameter 2 is pointer to bitmap filename string
//
// POST:
// Returns handle to bitmap
//
// ERROR:
// All errors exit through DDInitFailed() function
//***

HBITMAP DDLoadBitmap(LPDIRECTDRAWSURFACE7 lpDDS,
 LPSTR szImage)
{
 HBITMAP hbm;
 DDSURFACEDESC2 ddsd;
 ZeroMemory(&ddsd, sizeof(ddsd));
 ddsd.dwSize = sizeof(ddsd);
 if (lpDDS->GetSurfaceDesc(&ddsd) != DD_OK)
 DDInitFailed(hWnd, hRet,
 "GetSurfaceDesc() call failed in
DDLoadBitmap()");
 // Test for compatible pixel format
 if ((ddsd.ddpfPixelFormat.dwFlags != DDPF_RGB) ||
 (ddsd.ddpfPixelFormat.dwRGBBitCount < 16))
 DDInitFailed(hWnd, hRet,
 "Incompatible surface in DDLoadBitmap()");
 // Load the bitmap image onto memory
 hbm = (HBITMAP)LoadImage(NULL, szImage,
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE);
 if (hbm == NULL)
 DDInitFailed(hWnd, hRet,
 "Bitmap load failed in DDLoadBitmap()");
 return hbm;

Note that in DDLoadBitmap() all errors are considered terminal and directed through the
DDInitFailed() function. This mode of operation can be changed if the code is to provide
alternate processing in these cases.

The pc graphics handbook 974

30.1.2 Obtaining Bitmap Information

In order to display and manipulate a bitmap, the processing routines usually require
information about its size and organization. The GDI GetObject() function is used for this
purpose. The GetObject() function fills a structure of type BITMAP, defined as follows:

typedef struct tagBITMAP {
 LONG bmType; // Must be zero
 LONG bmWidth; // bitmap width (in pixels)
 LONG bmHeight; // bitmap height (in pixels)
 LONG bmWidthBytes; // bytes per scan line
 WORD bmPlanes; // number of color planes
 WORD bmBitsPixel; // bits per pixel color
 LPVOID bmBits; // points to bitmap values
array
} BITMAP;

The bmWidth member specifies the width, in pixels, of the bitmap, while bmHeight
specifies the height, also in pixels. Both values must be greater than zero. The
bmWidthBytes member specifies the number of bytes in each scan line. Windows
assumes that the bitmap is word aligned; therefore, this value must be divisible by 2. The
member bmPlanes specifies the number of color planes. The member bmBitsPixel
specifies the number of bits required to indicate the color of a pixel. The member bmBits
points to the location of the bit values for the bitmap. It is a long pointer to an array of
char-size (1 byte) values.

How much of the information in the BITMAP structure is used depends on the type of
bitmap processing performed by the application. The direct access operations described
in Chapter 13 allow code to manipulate bitmap data directly. If this is the case, then most
of the BITMAP structure members are required in order to locate and access the bitmap
data. On the other hand, applications can use high-level functions to display bitmap. Such
is the case with the BitBlt() GDI function and the DirectDraw Blt() and BltFast()
functions. When high-level functions are used, only the bmWidth and bmHeight
members are usually necessary.

30.1.3 Moving a Bitmap onto a Surface

Blit operations in DirectDraw take place between surfaces. A useful function is one that
loads a bitmap onto a surface. The local function, named DDBmapToSurf(), copies a
memory-resident bitmap, specified by its handle, into a DirectDraw surface.

//***

// Name: DDBmapToSurf
// Desc: Moves a bitmap to a DirectDraw Surface
// PRE:
// 1. Parameter 1 is pointer to a DirectDraw surface
// Parameter 2 is handle to the bitmap
//

Directdraw bitmap rendering 975

// POST:
// Bitmap is moved to surface
// Returns 1 if successful
// /
// ERROR:
// All errors exit through DDInitFailed() function
//***

HRESULT DDBmapToSurf(LPDIRECTDRAWSURFACE7 pdds,
 HBITMAP hbm)
{
 HDC hdcImage;
 HDC hdc;
 DDSURFACEDESC2 ddsd;
 HRESULT hr=1;
 BOOL retValue;
 if (hbm == NULL || pdds == NULL)
 DDInitFailed(hWnd, hRet,
 "Invalid surface or bitmap in
DDBmapToSurf");
 // Create compatible DC and select bitmap into it
 hdcImage = CreateCompatibleDC(NULL);
 if (!hdcImage)
 DDInitFailed(hWnd, hRet,
 "CreateCompatibleDC() failed in
DDBmapToSurf");
 SelectObject(hdcImage, hbm);
 // Get size of surface
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_HEIGHT | DDSD_WIDTH;
 pdds->GetSurfaceDesc(&ddsd);
 if ((hr = pdds->GetDC(&hdc)) != DD_OK)
 DDInitFailed(hWnd, hRet,
 "GetDC() failed in DDBmapToSurf");
 retValue = BitBlt(hdc, 0, 0, ddsd.dwWidth,
ddsd.dwHeight,
 hdcImage, 0, 0, SRCCOPY);
 // Release surface immediately
 pdds->ReleaseDC(hdc);
 if(retValue == FALSE)
 DDInitFailed(hWnd, hRet,
 "BitBlt() failed in DDBmapToSurf");
 DeleteDC(hdcImage);
 return hr;
}

30.1.4 Displaying the Bitmap

We have mentioned that the BitBlt() GDI function provides a flexible, yet slow,
mechanism for displaying bitmaps. In the case of a DirectDraw application, executing in
exclusive mode, the device context must be obtained with the DirectDraw-specific

The pc graphics handbook 976

version of the GetDC() function. IDirectDrawSurface7::GetDC not only returns a GDI-
compatible device context, but also locks the surface for access. The following local
function displays a bitmap using a DirectDraw device context:

//***

// Name: DDShowBitmap
// Desc: Displays a bitmap using a DirectDraw device
context
//
// PRE:
// 1. Parameter 1 is pointer to a DirectDraw surface
// Parameter 2 is handle to the bitmap
// Parameters 3 and 4 are the display location
// Parameters 5 and 6 are the bitmap dimensions
//
// POST:
// Returns TRUE if successful
//
// ERROR:
// All errors exit through DDInitFailed() function
//***

BOOL DDShowBitmap(LPDIRECTDRAWSURFACE7 lpDDS,
 HBITMAP hBitmap,
 int xLocation,
 int yLocation,
 int bWidth,
 int bHeight)
{
 HDC hdcImage = NULL;
 HDC hdcSurf = NULL;
 HDC thisDevice = NULL;
 // Create a DC and select the image into it.
 hdcImage = CreateCompatibleDC(NULL);
 SelectObject(hdcImage, hBitmap);
 // Get a DC for the surface.
 if(lpDDS->GetDC(&hdcSurf) != DD_OK) {
 DeleteDC(hdcImage);
 DDInitFailed(hWnd, hRet,
 "GetDC() call failed in DDShowBitmap () ")
;
 }
 // BitBlt() is used to display bitmap
 if (BitBlt(hdcSurf, xLocation, yLocation, bWidth,
 bHeight, hdcImage, 0, 0, SRCCOPY) == FALSE) {
 lpDDS->ReleaseDC(hdcSurf);
 DeleteDC(hdcImage);
 // Take terminal error exit
 DDInitFailed(hWnd, hRet,
 "BitBlt() call failed in DDShowBitmap()");
 }

Directdraw bitmap rendering 977

 // Release device contexts
 lpDDS->ReleaseDC(hdcSurf);
 DeleteDC(hdcImage);
 return TRUE;
}

The following code fragment shows the processing required for loading and displaying a
bitmap onto the primary surface, as implemented in the project named DD Bitmap In
Window located in the Chapter 15 folder in the book’s software package.

// Load bitmap named hubble.bmp
aBitmap = DDLoadBitmap(lpDDSPrimary, "hubble.bmp");
// Get bitmap data for displaying
GetObject(aBitmap, sizeof (BITMAP), &bMap1);
// Display bitmap
DDShowBitmap(lpDDSPrimary, aBitmap, 130, 50,
 (int) bMap1.bmWidth,
 (int) bMap1.bmHeight);

30.2 Developing a Windowed Application

Exclusive mode provides the maximum power and functionality of DirectDraw. For this
reason most DirectDraw applications execute in exclusive mode. But this does not
preclude conventional windows programs from using DirectDraw functions in order to
obtain considerable gains in performance and to perform image manipulations that are
not possible in the GDI.

Running in a window usually means that the program can be totally or partially
obscured by another program, that it can lose focus, that surfaces may be unbound from
their memory assignments, and that the application window can be minimized or resized
by the user. Most of these circumstances, which are often ignored in exclusive mode,
require careful attention in windowed DirectDraw. In other words, DirectDraw
programming in windowed mode restores most of the device independence that is lost in
exclusive mode, which means that windowed DirectDraw code must use the conventional
multitasking, message based, paradigm that is characteristic of Windows. The following
are the main differences between DirectDraw programs in exclusive and non-exclusive
mode:

• Exclusive mode applications usually require window style WS_POPUP, while
windowed application use WS_THICKFRAME if they are resizeable. The
combination WS_SYSMENU, WS_CAPTION, and WS_MINIMIZEBOX is used if
the window cannot be resized by the user. WS_OVERLAPPEDWINDOW style
includes WS_THICKFRAME.

• Exclusive mode programs use DDSCL_FULLSCREEN and DDSCL_EXCLUSIVE
cooperative level, while windowed programs use DDSCL_NORMAL.

• Exclusive mode programs can use page flipping in implementing animation (animation
techniques are covered in Chapter 16), while windowed programs have very limited

The pc graphics handbook 978

flipping capabilities. This is one of the reasons why games and other animation-
intensive applications usually execute in exclusive mode.

• Full-screen programs can set their own display mode, while windowed programs must
operate in the current desktop display mode. By the same token, exclusive mode
programs can assume a particular display mode, while windowed programs must be
designed with sufficient flexibility to execute in several display modes.

• Exclusive mode applications may use clipping to produce specific graphics effects.
Windowed programs often rely on clipping to facilitate interaction with other
programs and with the Windows desktop.

• Exclusive mode programs can be switched to the background, but usually they cannot
be minimized or resized by the user. Windowed programs can be moved on the
desktop, resized, minimized, or obscured by other applications.

• Exclusive mode programs have direct control over the palette and can be designed for a
particular palette. Windowed programs must use the palette manager to make changes
and must accommodate palette changes made by the user or by other programs.

• Exclusive mode programs can display or hide the system cursor but cannot use system-
level mouse support, as is the case with the system menu or by the buttons on the
program’s title bar.

• Exclusive mode programs must furnish most of the cursor processing logic. On the
other hand, DirectDraw windowed applications can make use of all the cursor and
cursor-related support functions in the Windows API.

• Exclusive mode applications must implement their own menus. Windowed applications
can use the menu facilities in the API.

In summary, although windowed programs must address some specific issues in using
DirectDraw services, they do have almost unrestricted access to the functionality of a
conventional application. Thus, a DirectDraw program that executes in a windowed mode
can have a title bar, resizeable borders, menus, status bar, sizing grip, scroll bars, as well
as most of the other GUI components. Although there is no "standard" design for a
DirectDraw windowed application, there are issues that are usually confronted by a
typical DirectDraw application when executing in windowed mode. In the following
sections we discuss the most important ones.

30.2.1 Windowed Mode Initialization

A DirectDraw windowed program can execute with so many variations that it is difficult
to design a general template for it. The same abundance of options applies to the
initialization of a windowed application. However, there are certain typical initialization
steps for DirectDraw windowed applications. The project named DD WinMode
Template, in the book's software package, contains a template file with minimal
initializations for a DirectDraw application in windowed mode.

The first step in WinMain() processing is defining and filling the WNDCLASSEX
structure variable and registering the window class. In the template file this is
accomplished as follows:

// Defining a structure of type WNDCLASSEX
WNDCLASSEX wndclass ;

Directdraw bitmap rendering 979

wndclass.cbSize = sizeof (wndclass) ;
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadIcon (NULL,
IDI_APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject
 (WHITE_BRUSH) ;
wndclass.lpszMenuName = szAppName;
wndclass.lpszClassName = szAppName;
wndclass.hIconSm =LoadIcon (NULL, IDI_APPLICATION)
;
// Register the class
RegisterClassEx(&wndclass);

Next, the code creates the window and defines its show state. In the case of a resizeable
window with the three conventional buttons and the system menu box in the title bar we
can use the WS_OVERLAPPEDWINDOW style. Since it is impossible to predict in the
template the window size and initial location, we have used CW_USEDEFAULT for
these parameters.

hWnd = CreateWindowEx(0, // Extended style
 szAppName,
 "DirectDraw Nonexclusive Mode Template",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL, // Handle of parent
 NULL, // Handle to menu
 hInstance, // Application instance
 NULL); // Additional data
if (!hWnd)
 return FALSE;
ShowWindow(hWnd, nCmdShow);

The processing for creating a DirectDraw object and a primary surface is similar to that
used in exclusive mode programming. In the template we use the same support
procedures previously developed. DD7Interface() attempts to find a DirectDraw? object
and returns 1 if found and 0 if not. If the call is successful, a global pointer variable
named lpDD4, of type LPDIRECTDRAW7, is initialized. DDInitFailed() provides a
terminal exit for failed initialization operations. The primary surface is created by means
of a call to CreateSurface(). The surface pointer is stored in the public variable
lpDDSPrimary. Code is as follows:

The pc graphics handbook 980

//*************************************
// Create DirectDraw object and
// create primary surface
//*************************************
// Fetch DirectDraw7 interface
hRet = DD7Interface();
if (hRet == 0)
 return DDInitFailed(hWnd, hRet,
 "QueryInterface() call
failed");
// Set cooperative level to exclusive and full screen
hRet = lpDD7->SetCooperativeLevel(hWnd, DDSCL_NORMAL);
if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "SetCooperativeLevel() call
failed");
//**********************************
// Create the primary surface
//**********************************
// ddsd is a structure of type DDSRUFACEDESC2
ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure
with zeros
// Fill in other members
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS ;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
hRet = lpDD7->CreateSurface(&ddsd, &lpDDSPrimary,
NULL);
if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "CreateSurface() call
failed");

30.2.2 Clipping the Primary Surface

Clipping is the DirectDraw operation by which output is limited to a rectangular area,
usually defined in a surface. DirectDraw supports clipping in both exclusive and
windowed modes. Since exclusive mode applications have control over the entire client
area, clipping is used mostly as a graphics output manipulation. Windowed applications,
on the other hand, often share the display with the Windows desktop and with other
applications. In this case clipping is often used to ensure that the application’s output is
limited to its own client area. Color Figure 7 shows the clipped execution of two copies
of a DirectDraw application on the Windows desktop. The application is the DD Bitmap
In Window program developed earlier in this chapter.

A clipper is used to define the program's screen boundaries in a DirectDraw windowed
application. The clipper ensures that a graphics object is not displayed outside the client
area. Failure to define a clipper may cause the blit operation to fail because the
destination drawing surface could be the limits of the display surface. When the
boundaries of the primary surface are defined in a clipper, then DirectDraw knows not to

Directdraw bitmap rendering 981

display outside of this area and the blit operation succeeds, as is the case in Color Figure
7. Recall that the Blt() function supports clipping but that BltFast() does not.

Pixel coordinates are stored in one or more structures of type RECT in the clip list.
DirectDraw uses the clipper object to manage clip lists. Clip lists can be attached to any
surface by using a DirectDrawClipper object. The simplest clip list consists of a single
rectangle which defines the area within the surface to which a Blt() function outputs.
Figure 30–1 shows a DirectDraw surface with an attached clipper consisting of a single
rectangle.

Figure 30–1 Using a Clipper to
Establish the Surface's Valid Blit Area.

DirectDraw's Blt() function copies data to the rectangles in the clip list only. Clip lists
consisting of several rectangles are often necessary in order to protect a specific surface
area from output. For example, if an application requires a rectangular area in the top-
center of the screen to be protected from output, it would need to define several clipping
rectangles. Figure 30–2 shows this case.

The pc graphics handbook 982

Figure 30–2 Multiple Clipping
Rectangles

To manage a clip list, application code creates a series of rectangles and stores them in a
data structure of type RGNDATA (region data), described later in this section. One of the
members of RGNDATA is the RGNDATAHEADER structure, which is used to define
the number of rectangles that make up the region. The function SetClipList() is called
with the RGNDATA structure variable as a parameter. The SetClipList() function has the
following general form:

The IDirectDrawClipper::SetClipList method sets or deletes the clip list used by the
IDirectDrawSurface7::Blt, IDirectDrawSurface7::BltBatch, and
IDirectDrawSurface7::UpdateOverlay methods on surfaces to which the parent
DirectDrawClipper object is attached.

HRESULT SetClipList(
 LPRGNDATA lpClipList, // 1
 DWORD dwFlags // 2
);

The first parameter is the address of a valid RGNDATA structure or NULL. If there is an
existing clip list associated with the DirectDrawClipper object and this value is NULL,
the clip list is deleted.

The second parameter is currently not used and must be set to 0.
The function returns DD_OK if it succeeds, or one of the following error codes:

• DDERR_CLIPPERISUSINGHWND
• DDERR_INVALIDCLIPLIST
• DDERR_INVALIDOBJECT

Directdraw bitmap rendering 983

• DDERR_INVALIDPARAMS
• DDERR_OUTOFMEMORY

The RGNDATA structure used with this method has the following syntax:

typedef struct _RGNDATA {
 RGNDATAHEADER rdh;
 char Buffer[1];
} RGNDATA;

The third member of the RGNDATA structure is an RGNDATAHEADER structure that
has the following syntax:

typedef struct _RGNDATAHEADER {
 DWORD dwSize;
 DWORD iType;
 DWORD nCount;
 DWORD nRgnSize;
 RECT rcBound;
} RGNDATAHEADER;

To delete a clip list from a surface, the SetClipList() call is made using NULL for the
RGNDATA parameter.

DirectDraw can automatically manage the clip list for a primary surface. Attaching a
clipper to the primary surface requires several steps. In the first place, a clipper is a
DirectDraw object in itself, which must be created using the DirectDraw? interface
object. The CreateClipper() function is used in this step. The function’s general form is as
follows:

HRESULT CreateClipper(
 DWORD dwFlags, //
1
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper, //
2
 IInknown FAR *pUnkOuter //
3
);

The first and third parameters are not used in current implementations: the first one
should be set to zero and the third one to NULL. The second parameter is the address of a
variable of type LPDIRECTDRAWCLIPPER which is set to the interface if the call
succeeds; in this case the return value is DD_OK. If the call fails it returns one of the
following constants:

• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_NOCOOPERATIVELEVELSET
• DDERR_OUTOFMEMORY

The pc graphics handbook 984

Once the clipper to the primary surface is created, it must be attached to the application's
window. This requires a call to the SetHWnd() function. The function's general form is as
follows:

HRESULT SetHWnd(
 DWORD dwFlags, // 1
 HWND hWnd // 2
);

The first parameter must be set to zero in the current implementation.
The second parameter is the handle to the window that uses the clipper object. This

has the effect of setting the clipping region to the client area of the window and ensuring
that the clip list is automatically updated as the window is resized, covered, or uncovered.
Once a clipper is set to a window, additional rectangles cannot be added.

The clipper must be associated with the primary surface. This is done by means of a
call to the IDirectDrawSurface7::SetClipper function, which has the following general
form:

HRESULT SetClipper(
 LPDIRECTDRAWCLIPPER lpDDClipper // 1
);

The function's only parameter is the address of the IDirectDrawClipper interface for the
DirectDrawClipper object to be attached to the DirectDrawSurface object. If NULL, the
current DirectDrawClipper object is detached.

SetClipper() returns DD_OK if it succeeds, or one of the following error codes:

• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_INVALIDSURFACETYPE
• DDERR_NOCLIPPERATTACHED

When a clipper is set to a surface for the first time, the call to SetClipper() increments the
reference count. Subsequent calls do not affect the clipper's reference count. If you pass
NULL as the lpDDClipper parameter, the clipper is removed from the surface, and the
clipper's reference count is decremented. If you do not delete the clipper, the surface
automatically releases its reference to the clipper when the surface itself is released. The
application is responsible for releasing any references that it holds to the clipper when the
object is no longer needed, according to the COM rules.

The SetClipper() function is primarily used by surfaces that are being overlaid, or
surfaces that are blitted to the primary surface. However, it can be used on any surface.

The code in the template program is as follows:
//**********************************
// Create a clipper
//**********************************
hRet = lpDD7->CreateClipper(0, &lpDDClipper, NULL);
if (hRet != DD_OK)

Directdraw bitmap rendering 985

 return DDInitFailed(hWnd, hRet,
 "Create clipper failed");
// Associate clipper with application window
hRet = lpDDClipper->SetHWnd(0, hWnd);
if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "Clipper not linked to
application window");
// Associate clipper with primary surface
hRet = lpDDSPrimary->SetClipper(lpDDClipper);
 if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "Clipper not linked to
primary surface");

30.3 Rendering in Windowed Mode

A simple rendering scheme in DirectDraw windowed mode programming consists of
storing a bitmap in an offscreen surface and then blitting it to the primary surface. It is in
the blitting stage that the windowed nature of the application introduces some constraints.
The DirectDraw interface allows the program to access video memory directly, while the
windowed nature of the application requires that video output be limited to the
application's client area. A terminal error occurs if a windowed program attempts to
display outside its own space. In GDI programming Windows takes care of clipping
video output. In DirectDraw programming these restrictions must be observed and
enforced by the application itself.

The most powerful rendering function for DirectDraw windowed applications is Blt().
Figure 14–7 shows some of the controls and options available in this case. DirectDraw
windowed applications that use Blt() often create a destination surface clipper, and
manipulate the size and position of the source and destination rectangles in order to
achieve the desired effects. The BltFast() function can be used in cases that do not require
clippers or other output controls that are available in Blt().

30.3.1 Rendering by Clipping

The project named DD Bitmap In Window, in the book's software package, contains two
versions. Both versions display a bitmap of the Orion nebula images obtained by the
Hubble Space Telescope. The first program version corresponds to the source file named
DD Bitmap In Window.cpp. In this case the bitmap image is blitted to the entire primary
surface and a clipper is used to restrict which portion of the image is displayed in the
application's window. Color Figure 8 shows the original bitmap stretched to fill the
primary surface.

The clipper, which in this case is the size of the application window, is attached to the
primary surface. Color Figure 7 shows two copies of the DD Bitmap In Window program
on the desktop. Each executing copy of the program displays the underlaying portion of a
virtual image according to the clipper, which is automatically resized by Windows to the

The pc graphics handbook 986

application's client area. This ensures that video output is limited to the application's
video space.

During initialization, the wndclass.style member of the WNDCLASSEX structure is
set to CS_HREDRAW and CS_VREDRAW so that the entire client area is redrawn if
there is vertical or horizontal resizing. The program design calls for creating an initial
application window of the same size as the bitmap. In order to obtain the bitmap
dimensions, the code must load the bitmap into memory before creating the application
window. The processing is as follows:

// Global handles and structures for bitmaps
HBITMAP aBitmap;
BITMAP bMap1; // Structures for bitmap
data
. . .
// Local data
RECT progWin; // Application window
dimensions
//**************************************
// Load bitmap into memory
//**************************************
// Load the bitmap image into memory
aBitmap = (HBITMAP)LoadImage(NULL, "nebula.bmp",
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE) ;
if (aBitmap == NULL)
 DDInitFailed(hWnd, hRet,
 "Bitmap load failed in DDLoadBitmap()");
// Get bitmap data
GetObject(aBitmap, sizeof (BITMAP), &bMap1);
// Store bitmap in RECT structure variable
progWin.left = 0;
progWin.top = 0;
progWin.right = bMap1.bmWidth;
progWin.bottom = bMap1.bmHeight;

The bitmap dimensions are now stored in a structure of type RECT, with the variable
name progWin. But the application window is larger than the client area, since it includes
the title bar and the border. It is necessary to adjust the size by calling
AdjustWindowRectEx(). This function corrects the data stored in a RECT structure
variable according to the application’s window style. Once the size has been adjusted,
code can proceed to create the window, as follows:

//***
// Create a window with client area
// the same size as the bitmap
//***
// First adjust the size of the client area to the size
// of the bounding rectangle (this includes the border,
// caption bar, menu, etc.)
AdjustWindowRectEx(&progWin,
 WS_OVERLAPPEDWINDOW,

Directdraw bitmap rendering 987

 FALSE,
 0) ;
hWnd = CreateWindowEx(0, // Extended style
 szAppName,
 "DD Bitmap In Window",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, // x of initial position
 CW_USEDEFAULT, // y of initial position
 (progWin.right—progWin.left), // x size
 (progWin.bottom—progWin.top), // y size
 NULL, // Handle of parent
 NULL, // Handle to menu
 hInstance, // Application instance
 NULL); // Additional data
if (!hWnd)
 return FALSE;
ShowWindow(hWnd, nCmdShow);

In the call to CreateWindowEx() we used the default initial position and arbitrarily set the
Windows dimension to that of the bitmap, the size of which is stored object and a
primary surface in the conventional manner. Note that the cooperative in the progWin
structure variables. The code now proceeds to create a DirectDraw level in this case is
DDSCL NORMAL.

//*************************************
// Create DirectDraw object and
// create primary surface
//*************************************
// Fetch DirectDraw7 interface
hRet = DD7Interface();
if (hRet == 0)
 return DDInitFailed(hWnd, hRet,
 "QueryInterface() call
failed");
// Set cooperative level to exclusive and full screen
hRet = lpDD7->SetCooperativeLevel(hWnd, DDSCL_NORMAL);
if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "SetCooperativeLevel() call
failed");
// ddsd is a structure of type DDSRUFACEDESC2
ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure
with zeros
// Fill in other members
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS ;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
hRet = lpDD7->CreateSurface(&ddsd, &lpDDSPrimary,
NULL);
if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,

The pc graphics handbook 988

 "CreateSurface() call
failed");

It is now time to create a clipper associated with the application window and attach it to
the primary surface, as described previously in this chapter. The surface element tells
DirectDraw which surface to clip. The window element defines the clipping rectangle to
the size of the application's client area. The processing is as follows:

//**********************************
 // Create a clipper
 //**********************************
hRet = lpDD7->CreateClipper(0, &lpDDClipper, NULL);
if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "Create clipper failed");
// Associate clipper with application window
hRet = lpDDClipper->SetHWnd(0, hWnd);
if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "Clipper not linked to
application window");
// Associate clipper with primary surface
hRet = lpDDSPrimary->SetClipper(lpDDClipper);
if (hRet != DD_OK)
return DDInitFailed(hWnd, hRet,
 "Clipper not linked to primary
surface");

Although the bitmap has been loaded, it has not yet been stored in an offscreen surface.
Blt() requires that the bitmap be located on a surface, so this must be the next step. Since
speed is not a factor in this program, we create the surface in system memory. This
allows running several copies of the program simultaneously. The code is as follows:

//**************************************
// Store bitmap in off screen surface
//**************************************
// First create an off-screen surface
// in system memory
ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure
with zeros
// Fill in other members
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN |
 DDSCAPS_SYSTEMMEMORY;
ddsd.dwHeight = bMap1.bmHeight;
ddsd.dwWidth = bMap1.bmWidth;
hRet = lpDD7->CreateSurface(&ddsd, &lpDDSOffscreen,
NULL);
if (hRet != DD_OK)

Directdraw bitmap rendering 989

 return DDInitFailed(hWnd, hRet,
 "Off Screen surface creation failed");
// Move bitmap to surface using DDBmapToSurf()function
hRet=DDBmapToSurf(lpDDSOffscreen, aBitmap);
if(hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "DDBMapToSurf() call failed");
// ASSERT:
// Bitmap is in offscreen surface -> lpDDSOffscreen

Finally, the bitmap stored in the offscreen surface can be blitted to the primary surface
using the clipper attached to the primary surface. The Blt() call is as follows:

//***********************************
// Blit the bitmap
//***********************************
// Update the window with the new sprite frame. Note
that the
// destination rectangle is our client rectangle, not
the
// entire primary surface.
hRet=lpDDSPrimary->Blt(NULL, lpDDSOffscreen, NULL,
 DDBLT_WAIT, NULL);
 if(hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "Blt() failed");

Since the window is resizeable, we must also provide processing in the WM_PAINT
message intercept. However, WM_PAINT is first called when the window is created; at
this time the application has not yet performed the necessary initialization operations. To
avoid a possible conflict we create a public switch variable, named DDOn, which is not
set until the application is completely initialized. Another consideration is that the call to
BeginPaint(), often included in WM_PAINT processing, automatically sets the clipping
region to the application's update region. Since we are providing our own clipping, the
call to BeginPaint() is undesirable. In the sample program WM_PAINT message
processing is as follows:

case WM_PAINT:
 if(DDOn)
 hRet = lpDDSPrimary->Blt(NULL, lpDDSOffscreen,
NULL,
 DDBLT_WAIT, NULL);
 return 0;

30.3.2 Blit-Time Cropping

In the preceding section we saw the first variation of the DD Bitmap In Window
program. In this case the bitmap image is stretch-blitted to the entire primary surface. A
clipper that was previously attached to the primary surface automatically restricts which

The pc graphics handbook 990

portion of the image is displayed in the application's window. As you move the
application window on the desktop, or resize it, a different portion of the bitmap becomes
visible.

An alternative option, which produces entirely different results, is blitting to a
destination rectangle in the primary surface which corresponds to the size of the
application's client area. Because the destination of the blit is restricted to the client area
there is no need for a clipper in this case, since the output is cropped by the Blt()
function. Figure 30–3 graphically shows the basic operation of the two versions of the
DD InWin Demo program.

Figure 30–3 Comparing the Two
Versions of the DD Bitmap In Window
Program

In the version DD Bitmap In WindowB.cpp the code proceeds as follows: The
WNDCLASSEX structure is defined similarly as in the first version of the sample
program except that, since the program window is not resizeable, the CS_HREDRAW
and CS_VREDRAW window style constants are not necessary. The fixed size of the
program window also determines that the code uses WS_SYSMENU, WS_CAPTION,
and WS_MINIMIZEBOX as the window style constants in both AdjustWindowRectEx()
and CreateWindowEx() functions. Note that a resizeable window requires the
WS_THICKFRAME or WS_SIZEBOX styles. Also note that the

Directdraw bitmap rendering 991

WS_OVERLAPPEDWINDOW style, used in the first version of the sample program,
includes WS_THICKFRAME and therefore also produces a resizeable window.

In the version DD Bitmap In WindowB.cpp the program window is made the same
size as the original bitmap, as is the case in the first version. In the first version the size of
the display area is arbitrary, since the program window is resizaeable. In the second
version the bitmap is displayed identically as is it stored. Therefore, the display area must
match the size of the bitmap.

Much of the initialization and setup of the second version of the program is similar to
the first one. The bitmap is loaded into memory and its size is stored in the corresponding
members of a RECT structure variable. The DirectDraw7 object and the primary surface
are created. In this case the clipper is not attached to the primary surface since it is not
used. Then the off screen surface is created and the bitmap is stored in it. Code is now
ready to blit the bitmap from the offscreen surface to the primary surface, but before the
blit can take place it is necessary to determine the screen location and the size of the
application's client area. It is also necessary to define the destination rectangle, which is
the first parameter of the Blt() function. One way to visualize the problem is to realize
that, at this point, the program window is already displayed, with a blank rectangle on its
client area, which is the same size as the bitmap. Also that the primary surface is the
entire screen. Figure 30–4 shows the application at this stage and the dimensions
necessary for locating the client area on the primary surface.

Figure 30–4 Locating the Blt()
Destination Rectangle

The GetClientRect() API function returns the coordinates of the client area of a
window. The function parameters are the handle of the target window and the address of
a variable of type RECT which holds the client area dimensions. The values returned by
GetClientRect() correspond to the x and y dimensions shown in Figure 30–5. Since the
coordinates are relative to the application's window, the value returned by the call for the
upper-left corner of the rectangle is always (0, 0). This makes the left and top members of
the RECT structure variable passed to the call always zero. Since you need the location of

The pc graphics handbook 992

application's window in the primary surface, the code must determine the values labeled
dx and dy in Figure 30–5 and add them to the coordinates stored in the RECT structure.

The ClientToScreen() function performs this operation. Its parameters are the handle
to the application’s window and the address of a structure of type POINT containing two
coordinate values that are to be updated to screen coordinates. ClientToScreen() actually
performs an addition operation on the coordinate pair: it calculates the distances labeled
dx and dy in Figure 30–5 and adds these values to those stored in the structure variable.
Since the POINT structure contains two members of type long, and the RECT structure
contains four members, you can consider that the RECT structure member holds two
structures of type POINT. The code in the sample program is as follows:

RECT clientArea; // For Blt()
destination
. . .
// Obtain client rectangle and convert to screen
coordinates
GetClientRect(hWnd, &clientArea);
ClientToScreen(hWnd, (LPPOINT) &clientArea.left);
ClientToScreen(hWnd, (LPPOINT) &clientArea.right);
// Blit to the destination rectangle
hRet=lpDDSPrimary->Blt(&clientArea, lpDDSOffscreen,
NULL,
 DDBLT_WAIT, NULL);
 if(hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "Blt() failed");

Notice that the ClientToScreen() function is called twice. First, for the coordinate pair
that holds the top-left corner of the client area rectangle; these are the zero values
returned by GetClientRect(). Then, for the coordinate pair of the bottom-right corner of
the client area rectangle, which correspond to the x and y dimensions in Figure 30–4.
Similar processing must be performed in the WM_PAINT message intercept.

The project folder DD Bitmap In Window, in the Chapter 30 folder of the book’s
software package, contains two versions of the source program.

Directdraw bitmap rendering 993

Chapter 31
DirectDraw Animation

Topics:

• Animation in real time
• Preventing surface tearing
• Obtaining a timed pulse
• Sprite animation
• Flipping techniques
• Multiple buffering
• Improving performance

This chapter is about real-time computer animation using the DirectDraw facility in
DirectX. Before DirectX, animation in Windows was considered somewhat of an
oxymoron. DirectX provides mechanisms that make possible graphics rendering at a high
speed. One of these mechanisms is the storage of image data in so-called back buffers.
The back buffers and the display surface can be rapidly flipped to simulate screen
movement. The results are often a smooth and natural simulation of movement that can
be used in computer games, simulations, and in high-performance applications.

Palette animation techniques were popular and effective in DOS programming, but the
resolution and color depth of state-of-the-art video systems makes them unnecessary.
Overlays, although powerful and useful, were never well defined and are supported
inconsistently in the video hardware. Since overlay operations are not emulated in the
HEL, they can only be used if implemented in the hardware. For these reasons neither
palette animation nor overlays are discussed.

31.1 Animating in Real-Time

Computer animation is defined as the simulation of movement or lifelike actions by the
manipulation of digital objects. It is a complex field on which many books have been
written. Here we are concerned with real-time animation, rather than with computer-
assisted techniques. Real-time animation is found in arcade machines, simula-tors,
trainers, electronic games, multimedia applications, and in interactive programs of many
kinds. In real-time animation the computing machine is both the image generator, and the
display media.

Real-time animation is possible because of the physiology of the human eye. In our
vision system, a phenomena is called visual retention makes the image of an object
persist in the brain for a brief period of time after it no longer exists. Smooth animation is
achieved by consecutively displaying images at a faster rate than our period of visual

retention. The sequence of rapidly displayed images creates in our minds the illusion a
moving object.

Motion picture technology uses an update rate of 24 images per second. Television is
based on a slightly faster rate. In animation programming the number of images displayed
in a time period is called the frame rate. The threshold rate, which is subject variations in
different individuals, is that at which the animation begins to appear bumpy or jerky. In
motion picture technology the threshold is about 17 images per second. In computer
animations the threshold rate is considerably higher.

While the animator’s principal concerns are usually speed and performance, too much
speed can lead to image quality deterioration. A raster scan display system is based on
scanning each horizontal row of screen pixels with an electron beam. The pixel rows are
refreshed starting at the top-left screen corner of the screen and ending at the bottom-right
corner, as shown in Figure 1.2. The electron beam is turned off at the end of each scan
line, while the gun is re-aimed to the start of the next one. This period is called the
horizontal retrace. When this process reaches the last scan line on the screen, the beam is
turned off again while the gun is re-aimed to the top-left screen corner. The period of
time required to re-aim the electron gun from the right-bottom of the screen to the top-left
corner is known as the vertical retrace or screen blanking cycle. The fact that a CPU is
capable of executing hundreds of thousands of instructions per second makes it
possiblefor the image in video memory to be modified before the video system has
finished displaying it. The result is a breaking of the image, known as tearing.

31.1.1 The Animator’s Predicament

Computer animation is a battle against time. The animation programmer resorts to every
possible trick in order to squeeze the maximum performance. Because execution speed is
limited by the hardware, most of the work of the programmer-animator consists of
making compromises and finding acceptable levels of undesirable effects. The animator
often has to decide how small an image satisfactorily depicts the object, how much
tearing is acceptable, how much bumpiness can be allowed in depicting movement, how
little definition is sufficient for a certain scenery, or with how few colors can an object be
realistically represented.

31.2 Timed Pulse Animation

Representing movement requires a display sequence, executed frame-by-frame, that
creates the illusion of motion. Figure 31–1 shows several frames in the animation of a
stick figure of a walking person.

The pc graphics handbook 996

Figure 31–1 Stick Figure Animation

The real-time display of the frame-by-frame sequence requires a mechanism for
producing a timed pulse. Windows applications have several ways of generating a timed
pulse. One is based on a program loop that reads the value in a ticker register and
proceeds to update the frame whenever it matches or exceeds a predefined constant. A
second and more effective approach is to enable a system timer pulse, which can be
intercepted in a callback function or by a window message. In the following sections we
discuss both methods. Other alternatives, sometimes called high-resolution timers, are
discussed in the context of performance tuning, later in this chapter.

31.2.1 The Tick Counting Method

Windows maintains a counter with the number of milliseconds elapsed since the system
was started. This period, called the Windows time, is stored in a DWORD variable that
can be read by code. Two identical functions allow reading this counter:
GetCurrentTime() and GetTickCount(). Windows documentation states that
GetCurrentTime() is now obsolete and should not be used. GetTickCount(), which takes
no parameters, returns the number of milliseconds elapsed since Windows was started.
Application code can determine the number of milliseconds elapsed since the last call by
storing the previous value in a static or public variable, as in the following function:

// Public variables for counter operation
DWORD thisTickCount; // New ticker value
DWORD lastTickCount; // Storage for old
value
static DWORD TIMER_VALUE=25; // Constant for time
lapse
.
.
.
static void UpdateFrame()
{
 thisTickCount = GetTickCount(); // Read counter
 if((thisTickCount—lastTickCount) < TIMER_VALUE)

Directdraw animation 997

 return;
 else
 {
 // Frame update operations go here
 lastTickCount = thisTickCount; // Reset tick
counts
 }
 return;
}

In order for the ticker counter reading method to produce a smooth animation, the value
in the ticker counter must be polled frequently. One possible approach is to include the
frame update function call as part of the application's message loop. The processing logic
can be expressed as follows: If the application is active, and no other messages are
waiting to be processed, then call the frame update routine.

The PeekMessage() function checks the thread's message queue without pausing for a
message to be received. The function's general form is as follows:

BOOL PeekMessage(
 LPMSG lpMsg, // 1
 HWND hWnd, // 2
 UINT wMsgFilterMin, // 3
 UINT wMsgFilterMax, // 4
 UINT wRemoveMsg // 5
);

The first parameter points to an MSG structure variable that contains message
information.

The second parameter is the handle to the window whose messages are being checked.
This parameter can be set to NULL to check messages for the current application.

The third and the fourth parameters are used to specify the lowest and highest value of
the messages to be checked. If both parameters are set to 0, then all messages are
retrieved.

The fifth parameter is one of two predefined constants: PM_REMOVE is used if the
message is to be removed from the queue, and PM_NOPREMOVE otherwise. The call
returns TRUE if a message is available, and FALSE if not available.

Another API function often used in message polling routines is WaitMessage(). This
function, which takes no parameters, suspends thread execution and does not return until
a new message is placed in the queue. The result is to yield control to other threads when
the current one has nothing to do with its CPU cycles. PeekMessage() and WaitMessage()
can be combined with GetMessage() in the following message polling routine:

MSG msg; // Message structure variable
int appActive = 0; // Application active switch
 // initialized to inactive
.
.
.

The pc graphics handbook 998

while(1)
 {
 if(PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) {
 if(!GetMessage(&msg, NULL, 0, 0)
 return msg.wParam;
 TranslateMessage(&msg);
 DispatchMessage(&msg);
}
else if (appActive)
{
// call to read ticker counter and/or update frame
// go here
}
else
 WaitMessage() ;
}

In using this sample code the application must define when to set and reset the appActive
swtich. This switch determines if the frame update function is called, or if the thread just
waits for another message. The method just described, that is, reading the Windows tick
count inside a program loop, is usually capable of generating a faster pulse than the
system timer intercept, described in the following section. On the other hand the system
timer intercept is easier to implement and more consistent with the Windows multitasking
environment. Therefore, the system timer intercept method is generally preferred.

31.2.2 System Timer Intercept

An alternative way of obtaining a timed pulse is by means of the Windows system timer.
The SetTimer() function is used to define a time-out value, in milliseconds. When this
time-out value elapses, the application gets control either at the WM_TIMER message
intercept or in an application-defined callback function that has the generic name
TimerProc(). Either processing is satisfactory and which one is selected is a matter of
coding convenience. SetTimer() has the following general form:

UINT SetTimer(
 HWND hWnd, // 1
 UINT nIDEvent, // 2
 UINT uElapse, // 3
 TIMERPROC lpTimerFunc // 4
);

The first parameter is the handle to the Window associated with the timer.
The second parameter is the timer number. This allows more than one timer per

application. The timer identifier is passed to the WM_TIMER intercept and to the
TimerProc().

The third parameter is the number of milliseconds between timer intercepts.

Directdraw animation 999

The fourth parameter is the address of the application's TimerProc(), if one is
implemented, or NULL if processing is to be done in the WM_TIMER message
intercept.

If the call succeeds, the return value is an integer identifying the new timer. Sixteen
timers are available to applications, so it is a good idea to check if a timer is actually
assigned to the thread. Applications must pass this timer identifier to the KillTimer()
function to destroy a particular timer. If the function fails to create a timer, the return
value is zero. Once a system timer has been initialized, processing usually consists of
calling the application's frame update function directly, since the timer tick need not be
checked in this case.

Notice that code cannot assume that system timer events will be generated at the
requested rate. The only valid assumption is that the events will be produced
approximately at this rate, and not more frequently. According to the Windows
documentation, the minimum time between events is approximately 55 milliseconds.

31.3 Sprites

A sprite is a rather small screen object, usually animated at display time. Sprites find use
in general graphics programming, but most frequently in games. Sprite animation can be
simple or complex. In the first case an object represented in a single bitmap is animated
by translating it to other screen positions. Alternatively, the sprite itself can perform an
intrinsic action, for example, a sprite representing a rotating wheel. In complex animation
both actions are performed simultaneously: a rocket moves on the screen until it reaches a
point where it explodes. Sprites are typically encoded in one or more images that
represent the object or its action sequence. The images can be stored in separate bitmaps,
or in a single one. Figure 31–2 shows the image set of a a Pacman-like sprite.

Figure 31–2 Animation Image Set

When the eight images in the set of Figure 31–2 are rapidly displayed, the Pacman-like
sprite appears to close its mouth. If the image set is then re-displayed in reverse order, the
mouth will appear to open. The 16-image sequence simulates a biting action. If the

The pc graphics handbook 1000

Pacman-like sprite is also moved on the screen, then the results would be a of complex
sprite animation.

Sprites often use color keys in order to achieve transparency. To automate sprite
source color keying some applications assume that the pixel at the top-left corner of the
bitmap is the color key. Later in this chapter we discuss the use of dynamic color keys.

It is possible to encode each image of the sprite image set in separate bitmaps, but this
usually leads to many disk files and complicated file access operations. A better approach
is to store the entire sprite image set in a single bitmap, and then use source rectangle
selection capability of either the Blt() or BltFast() functions to pick the corresponding
image.

Many factors determine how a sprite is actually rendered. One of the most important
ones is if the application executes in exclusive mode or windowed. Exclusive mode
programs can use back buffers and flipping manipulations that considerably increase
performance, while windowed programs are much more limited in the available rendering
options. Other factors are the sprite's size, the number of images in the set, and the
required rendering speed. Programmers often have to juggle these and other program
elements in order to come up with a satisfactory animation.

31.3.2 Creating Sprites

Animated programs spend considerable resources in manipulating sprites and
backgrounds. The better the image quality of these objects, the better graphics that result.
Backgrounds are usually animated by panning and zooming transformations, discussed
later in this chapter. In this case the programmer's effort is limited to creating a few,
relatively large images. But sprites are a more complicated matter, specially if the sprite
is to have internal action. In the case of sprites the individual images in the set must be
tied to a common point. Perhaps the most important factor in creating good sprites is the
sprite itself. For some time the creation of attractive sprites was considered some sort of
black art. 3D graphics makes it possible to create solid sprites that add a new dimension
to the animation.

The animator often spends a large part of his time in designing, drawing, encoding,
and testing sprites. This is particularly true in 3D graphics. The process of sprite design
implies several apparently contradictory decisions, for instance:

• The higher the resolution the better the image quality, but it is more difficult to animate
a larger sprite.

• The more images in the sprite image set the smoother the animation, but it takes longer
to display a large sprite image set.

The details of how the sprite image sets are produced is more in the realm of graphics
design than in programming. The higher the quality of the drawing or paint program
used, and the more experienced and talented the sprite artist, the better the resulting
image set. The DD Sprite Animation project, included in the book's software package,
shows two rotating, meshed gears. The image set consists of 18 images. In each image
the gears are rotated by an angle of 2.5 degrees. After 18 iterations the gears have rotated
through an angle of 45 degrees. Since the gears have eight teeth each, the images are
symmetrical after a rotation of 45 degrees. For this reason this animation requires one-

Directdraw animation 1001

eighth the number of images that would be necessary to rotate a non-symmetrical object
by the same angle. Figure 31–3 shows the image set for the DD Animation Demo
program.

Figure 31–3 The Sprite Image Set for
the DD Sprite Animation Program

31.3.3 Sprite Rendering

The actual display of the sprite requires obtaining a timing pulse and blitting the image
onto the screen. In each case we must decide whether the rendering is done with Blt() or
BltFast(), with or without transparency, using source or destination color keys, or
applying any blit-time transformations. The sprite image sequence is usually stored in a
single bitmap, as in Figure 31–3, but it is also possible to store several bitmaps in
different disk files and then read all of these files into a single surface. In either case the
result is a surface with multiple images. The program logic selects the corresponding
portion of the bitmap at blit time.

Displaying partial images stored in a contiguous memory area or surface is made
possible by the source area definition capabilities of both Blt() and BltFast(). A structure
of type RECT can be used to store the offset of the source rectangle in the surface. If the
sprite image set is stored in a rectangular bitmap, and the bitmap is then loaded onto a
surface, code can then select which of the images in the set is displayed during each time-
pulse iteration by assigning values to the corresponding members of the RECT structure.
For example, the bitmap image set in Figure 31–3 contains a sequence of 18 individual
rotations of the gears. Each of these individual bitmaps is often called an animation
frame, or simply, a frame. Figure 31–4 shows the image set partitioned into six rows and
three columns. The dimensions labeled x and y refer to the size of each frame in the set.

Given the pixel size of each image in the set, once the number of rows and columns in
the image set are known, code can determine the coordinates of the RECT structure
variable for each frame. The dotted rectangle in Figure 31–4 delimits each frame. The
members of a structure variable named rect, of type RECT, are calculated using the
consecutive frame number and the number of columns in the bitmap. The case illustrated
shows frame number 8, of a bitmap with six columns and three rows.

In the DD Sprite Animation program, the processing has been generalized so that the
code can be used to display any rectangular bitmap image set. This makes it useful for
experimenting with various image sets before deciding which one is better suited for the

The pc graphics handbook 1002

purpose at hand. Code starts by creating global variables that define the characteristics of
the image set. Code is as follows:

// Constants identifying the bitmap image set
static char bmapName[] = {"gears.bmp"};
static int imageCols = 6; // Number of
image columns
static int imageRows = 3; // Number of
rows
// Variables, constants, handles, and structure for
bitmaps
int frameCount = (imageCols * imageRows) − 1;
int bmapXSize; // Calculated x size of
bitmap
int bmapYSize; // Calculated y size of
bitmap
HBITMAP aBitmap;
BITMAP bMap1; // Structures for bitmap
data

Figure 31–4 Partitioning the Sprite
Image Set

In this case the programmer defines the name of the bitmap and states the number of
image columns and rows. Code uses these values to calculate to number of frames; this

Directdraw animation 1003

number is stored in the variable frameCount. The dimensions of the bitmap are obtained
after it is loaded into memory. The x dimension is stored in the variable bmapXSize and
the y dimension in bmapYSize. The bitmap dimensions are also used in the sample
program to define the size of the application window, all of which is shown in the
following code fragment

//**************************************
// Load the bitmap image into memory
aBitmap = (HBITMAP)LoadImage(NULL, bmapName,
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE)
 if (aBitmap == NULL)
 DDInitFailed(hWnd, hRet,
 "Bitmap load failed in DDLoadBitmap()");
// Get bitmap data
GetObject(aBitmap, sizeof (BITMAP), &bMap1);
// Calculate and store bitmap and image data
bmapXSize = bMap1.bmWidth / imageCols;
bmapYSize = bMap1.bmHeight / imageRows;
// Store bitmap in RECT structure variable
progWin.left = 0;
progWin.top = 0;
progWin.right = bmapXSize;
progWin.bottom = bmapYSize;
//***
// Create window with client area
// the same size as the bitmap
//***
// First adjust the size of the client area to the size
// of the bounding rectangle (this includes the border,
// caption bar, menu, etc.)
AdjustWindowRectEx(&progWin,
 WS_SYSMENU | WS_CAPTION,
 FALSE,
 0);
hWnd=CreateWindowEx(0, // Extended style
 szAppName,
 "Sprite Animation Demo",
 WS_SYSMENU | WS_CAPTION,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 (progWin.right—progWin.left),
 (progWin.bottom—progWin.top),
 NULL, // Handle of parent
 NULL, // Handle to menu
 hInstance, // Application instance
 NULL); // Additional data
if (!hWnd)
 return FALSE;

The actual display of the bitmap is performed by a local function named BlitSprite(). The
function begins by checking the tick counter. If the difference between the old and the

The pc graphics handbook 1004

new tick counts is smaller than the predefined delay, execution returns immediately. If it
is equal to or larger than the delay, then the offset of the next frame in the source surface
is calculated and the bitmap is blitted by means of the Blt() function. In this case the
frame number counter is bumped; if this is the last frame in the set, the counter is
restarted. Execution concludes by updating the tick counter variable. Coding is as
follows:

//**************************************
// update animation frame
//**************************************
static void BlitSprite()
{
 thisTickCount = GetTickCount();
 if((thisTickCount—lastTickCount) < TIMER_VALUE)
 return;
 else
 {
 // Update the sprite image with the current frame.
 bmapArea.top = ((frameNum / imageCols) *
bmapYSize);
 bmapArea.left = ((frameNum % imageCols) *
bmapXSize);
 bmapArea.bottom = bmapArea.top+bmapYSize;
 bmapArea.right = bmapArea.left+bmapXSize;
 hRet = lpDDSPrimary->Blt(&clientArea,
lpDDSOffscreen,
 &bmapArea, DDBLT_WAIT, NULL);
 if(hRet != DD_OK)
 DDInitFailed(hWnd, hRet, "Blt() failed");
 // Update the frame counter
 frameNum++;
 if(frameNum > imageCount)
 frameNum = 0;
 lastTickCount = thisTickCount;
 return;
 }
}

Color Figure 9 is a screen snapshot of the DD Animation Demo program.

31.4 Page Flipping

Page flipping is a rendering technique frequently used in multimedia applications,
simulations, and computer games. The process is reminiscent of the schoolhouse method
of drawing a series of images, each consecutive one containing a slight change. The
figures are drawn on a paper pad. By thumbing through the package you perceive an
illusion of movement. In the simplest version of computerized page flipping the
programmer sets up two DirectDraw surfaces. The first one is the conventional primary

Directdraw animation 1005

surface and the other one is back buffer. Code updates the image in the back buffer and
then flips the back buffer and the primary surface. The result is usually a clean and
efficient animation effect. Figure 31–5, on the following page, shows the sprite animation
by page flipping.

In Figure 31–5 we see that consecutive images in the animation set are moved from
the image set onto the back buffer. The back buffer is then flipped with the primary
surface. In this illustration the arrows represent the flip operations. The back buffers are
shown in dark gray rectangles. The sequence of operations is: draw to back buffer, flip,
draw to back buffer, flip, and so on.

Figure 31–5 Sprite Animation by Page
Flipping

One limitation of multiple buffering and page flipping is that it can only be used in
DirectDraw exclusive mode. This is because flipping requires manipulating video
memory directly, which is not possible in a windowed environment. In the DirectDraw
flip operation it is the pointers to surface memory for the primary surface and the back
buffers that are swapped. In other words, flipping is actually performed by switching
pointers, not by physically copying data. By exception, when the back buffer cannot fit

The pc graphics handbook 1006

into display memory, or when the hardware does not support flipping, DirectDraw
performs the flip by copying the surfaces.

In programming a flip-based animation you should keep in mind that code need only
access the back buffer surface in order to perform the image updates. Every time the
DirectDraw Flip() function is called, the primary surface becomes the back buffer and
vice versa. The surface pointer to the back buffer always points to the area of video
memory not displayed, and the surface pointer to the primary surface points to the video
memory being displayed. If more than one back buffer is included in the flipping chain,
then the surfaces are rotated in circular fashion. The case of a flipping chain with a
primary surface and two back buffers is shown in Figure 31–6. In this case the flip
operation rotates the surfaces as shown.

Initializing and performing flip animation consists of several well-defined steps. In
most cases the following operations are necessary:

• Creating a flipping chain.
• Obtaining a back buffer pointer.
• Drawing to the back buffer.
• Flipping the primary surface and the back buffer.

Figure 31–6 Flipping Chain with Two
Back Buffers

The first two steps of this sequence relate to initializing the flipping surfaces, and the
second two steps refer to flip animation rendering operations. Table 31–1 lists the
flipping-related functions in DirectDraw.

Directdraw animation 1007

Table 31–1
Flipping-Related DirectDraw Functions

FUNCTION OBJECT ACTION
CreateSurface() IDIRECTDRAW7 Create surface and Attached back

buffers.
GetAttachedSurface() IDIRECTDRAWSURFACE7 Obtain back buffer pointer.
Flip() IDIRECTDRAW7 Perform flipping.
GetFlipStatus() IDIRECDRAWSURFACE7 Indicates whether a surface has

concluded flipping.

The function FlipToGDISurface(), which is rarely used in practice, is not discussed in
this book.

31.4.1 Flipping Surface Initialization

Any DirectDraw surface can be constructed as a flipping surface, although most
commonly the flipping surfaces consist of a primary surface and at least one back buffer.
The surfaces involved in the flipping are called the flipping chain. Creating the flipping
chair requires two DirectDraw functions: CreateSurface() is used to create both the
primary surface and the back buffer, and GetAttachedSurface() to obtain the back buffer
pointer. In the case of a flipping chain, the call to CreateSurface() must include the flag
DDSD_BACKBUFFERCOUNT, which defines the member dwBackBufferCount, which
in turn is used to set the number of back buffers in the chain. Other flags usually listed in
the call are DDSCAPS_PRIMARYSURFACE, DDSCAPS_FLIP,
DDSCAPS_COMPLEX, and DDSCAPS_VIDEOMEMORY. The following code shows
a call to CreateSurface() for a flipping chain consisting of a primary surface and a single
back buffer:

DDSURFACEDESC2 ddsd;
.
.
.
// Create the primary surface with a back buffer
 ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure
with zeros
// Fill in other members
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |
 DDSCAPS_FLIP |
 DDSCAPS_COMPLEX |
 DDSCAPS_VIDEOMEMORY;
 ddsd.dwBackBufferCount = 1;
 hRet = lpDD7->CreateSurface(&ddsd, &lpDDSPrimary,
NULL);

The pc graphics handbook 1008

If the call to CreateSurface() returns DD_OK, then the flipping chain surfaces have been
created. In order to use the flipping chain, code must first obtain the pointer to the back
buffer, since the call to CreateSurface() returns only the pointer to the primary surface (in
its second parameter). The GetAttachedSurface() function has the following general
form:

HRESULT GetAttachedSurface(
 LPDDSCAPS
lpDDSCaps, // 1
 LPDIRECTDRAWSURFACE7 FAR
*lplpDDAttachedSurface // 2
);

The first parameter is a pointer to a DDSCAPS2 structure that contains the hardware
capabilities of the surface.

The second parameter is the address of a variable that is to hold the pointer, of type
IDIRECTDRAWSURFACE7, retrieved by the call. The retrieved surface matches the
description in the first parameter. If the function succeeds, it returns DD_OK. If it fails it
returns one of the following errors:

• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_SURFACELOST
• DDERR_NOTFOUND

The following code fragment obtains the back buffer surface pointer for the primary
surface previously described.

// Get back buffer pointer
ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
hRet = lpDDSPrimary->GetAttachedSurface(&ddscaps,
 &lpDDSBackBuf);

If the calls to CreateSurface() and GetAttachedSurface() are successful, DirectDraw
creates two attached surfaces in display memory, and the application retrieves the
pointers to each of these surfaces. The pointer to the back buffer surface is used at draw
time, and the pointer to the primary surface at flip time. DirectDraw automatically
switches the surface pointers, transparently to application code.

31.4.2 The Flip() Function

Once the application has concluded drawing, and the frame timer count has expired, the
actual rendering is performed by calling DirectDraw Flip(). The Flip() function
exchanges the surface memory of the primary surface and the back buffer. If more than
one back buffer is specified when the flip chain is created, then each call to Flip() rotates
the surfaces in a circular manner, as shown in Figure 31–6. When DirectDraw flipping is
supported by the hardware, as is the case in most current video cards, flipping consists of

Directdraw animation 1009

changing pointers and no image data is physically moved. The function’s general form is
as follows:

HRESULT Flip(
 LPDIRECTDRAWSURFACE7
lpDDSurfaceTargetOverride, // 1
 DWORD
dwFlags // 2
);

The first parameter, sometimes called the target override, is the address of the
IDirectDrawSurface7 interface for any surface in the flipping chain. The default value for
this parameter is NULL, in which case DirectDraw cycles through the flip chain surfaces
in the order they are attached to each other. If this parameter is not NULL, then
DirectDraw flips to the specified surface instead of the next surface in the flipping chain,
thus overriding the default order. The call fails if the specified surface is not a member of
the flipping chain.

The second parameter specifies one of the predefined constants that control flip
options. The constants are listed in Table 31–2.

Table 31–2
DirectDraw Flip() Function Flags

FLAG ACTION
DDFLIP_EVEN Used only when displaying video in an overlay surface. The new

surface contains data from the even field of a video signal. Cannot be
used with the DDFLIP_ODD flag.

DDFLIP_INTERVAL2
DDFLIP_INTERVAL3
DDFLIP_INTERVAL4 Indicate how many vertical retraces to wait between each flip. The

default is 1. DirectDraw returns DERR_WASSTILLDRAWING until
the specified number of vertical retraces has occurred. If
DDFLIP_INTERVAL2 is set, DirectDraw flips on every second
vertical retrace cycle. If DDFLIP_INTERVAL3, on every cycle, and so
on. These flags are effective only if DDCAPS2_FLIPINTERVAL is set
in the DDCAPS structure for the device.

FLAG ACTION
DDFLIP_NOVSYNC DirectDraw performs the physical flip as close as possible to the next

scan line. Subsequent operations involving the two flipped surfaces do
not check to see if the physical flip has finished, that is, they do not
return
DDERR_WASSTILLDRAWING.
This flag allows an application to perform flips at a higher frequency
than the monitor refresh rate. The usual consequence is the introduction
of visible artifacts. If DDCAPS2_FLIPNOVSYNC is not set in the
DDCAPSstructure for the device, DDFLIP_NOVSYNC has no effect.

DDFLIP_ODD Used only when displaying video in an overlay surface. The new
surface contains data from the odd field of a video signal. This flag

The pc graphics handbook 1010

cannot be used with the DDFLIP_EVEN flag.
DDFLIP_WAIT If the flip cannot be set up because the state of the display hardware is

not appropriate, then the DDERR_WASSTILLDRAWING is
immediately returned and no flip occurs. Setting this flag causes Flip()
to continue trying if it receives the DDERR_WASSTILLDRAWING.
In this case the call does not return until the flipping operation has been
successfully set up, or another error, such as
DDERR_SURFACEBUSY, is returned.

If the Flip() call succeeds, the return value is DD_OK. If it fails, one of the following
errors is returned:

• DDERR_GENERIC
• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_NOFLIPHW
• DDERR_NOTFLIPPABLE
• DDERR_SURFACEBUSY
• DDERR_SURFACELOST
• DDERR_UNSUPPORTED
• DDERR_WASSTILLDRAWING

The Flip() function can be called only for surfaces that have the DDSCAPS_FLIP and
DDSCAPS_FRONTBUFFER capabilities. The first parameter is used in rare cases, that
is, when the back buffer is not the buffer that should become the front buffer. In most
cases this parameter is set to NULL. In its default state, the Flip() function is always
synchronized with the vertical retrace cycle of the video controller. When working with
visible surfaces, such as a primary surface flipping chain, Flip() function is asynchronous,
except if the DDFLIP_WAIT flag is included.

Applications should check if Flip() returns with a DDERR_SURFACELOST. If so,
code can make an attempt to restore the surface by means of the DirectDraw Restore()
function, discussed in Chapter 15. If the restore is successful, the application loops back
to the Flip() call and tries again. If the restore is unsuccessful, the application breaks from
the while loop, and returns a terminal error.

31.4.3 Multiple Buffering

The call to Flip() can return before the actual flip operation takes place, because the
hardware waits until the next vertical retrace to actually flip the surfaces. While the Flip()
operation is pending, the back buffer directly behind the currently visible surface cannot
be locked or blitted to. If code attempts to call Lock(), Blt(), BltFast(), or GetDC() while
a flip is pending, the call fails and the function returns DDERR_WASSTILLDRAWING.
The effect of the surface update time on the frame rate is shown in Figure 31–7.

Directdraw animation 1011

Figure 31–7 Surface Update Time and
Frame Rate

Case A in Figure 31–7 shows an application with a relatively short surface update time.
In this case the rendering is finished well before the next vertical retrace cycle starts. The
result is that the image is updated at the monitor's refresh rate. In Case B the rendering
time is longer than the refresh cycle. In this case, the application’s frame rate is reduced
to one-half the monitor's refresh rate. In such situations, any attempt to access the back
buffer during the period represented by the dark gray rectangles results in
DDERR_WASSTRILLDRAWING error message.

A possible way of improving the frame rate is by using two back buffers instead of a
single one. With two back buffers the application can draw to the back buffer that is not
immediately behind the primary surface, thereby reducing the wasted time since the blits
to this rearmost surface are not subject to the DDERR_WASSTILLDRAWING error
condition. This is shown in case B in Figure 31–7.

Creating a flipping chain with two or more back buffers is no great programming
complication. DirectDraw takes care of flipping the surfaces and the application draws
using the same back buffer pointer. The middle buffer, or buffers, are ignored by the
code, which only sees the primary surface and a back buffer. The one drawback of
multiple buffering is that each back buffer requires as much display memory as the
primary surface. Also the law of diminishing returns applies to back buffers: the more
back buffers the less increase in performance for each back buffer. Past a certain limit,
adding more back buffers will actually degrade performance.

Exclusive mode applications are sometimes forced to select lower resolutions or color
depths in order to make possible multiple back buffers. For example, in a video system
with 2Mb of video memory, executing in 640-by-480 pixels resolution in 24-bit color can
only create one back buffer, since the primary surface requires 921,600 bytes. By
reducing the color depth to 16 bits, the sample application needs only 614,400 bytes for
the primary surface, and it can now create two back buffers in display memory. The
following code fragment shows the creation of a primary surface with two back buffers:

//Global variables

The pc graphics handbook 1012

LPDIRECTDRAWSURFACE7 lpDDSPrimary = NULL;
LPDIRECTDRAWSURFACE7 lpDDSBackBuf = NULL;
DDSURFACEDESC2 ddsd; // Surface
description
HRESULT hRet;
. . .
// Create a primary surface with two back buffers
// ddsd is a structure of type DDSRUFACEDESC2
 ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure
with zeros
// Fill in other members
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
 ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE
 DDSCAPS_FLIP |
 DDSCAPS_COMPLEX |
 DDSCAPS_VIDEOMEMORY;
 ddsd.dwBackBufferCount =2; // Two back buffers
requested
 hRet=lpDD4->CreateSurface(&ddsd, &lpDDSPrimary,
NULL);
 // At this point code can examine hRet for DD_OK and
 // provide alternate processing if the surface
creation
 // call failed
 // Get backbuffer pointer
 ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
 hRet = lpDDSPrimary->GetAttachedSurface(&ddscaps,
 &lpDDSBackBuf);
 // At this point code can examine hRet for DD_OK and
 // provide alternate processing if the back buffer
pointer
 // was not returned

31.5 Animation Programming

Exclusive mode applications that use flipping animation start by initializing DirectDraw,
setting a display mode, creating the flip chain, obtaining the corresponding pointers to the
front and back buffers, and setting up a timer mechanism that produces the desired beat.
Once these housekeeping chores are finished, the real work can begin, which consists of
rendering the imagery to the back buffer, usually by means of blits from other surfaces in
video memory or off screen. The design and cod-ing challenge in creating an animated
application using DirectDraw can be broken down into two parts:

1. Assign the minimum resources that will allow the program to perform satisfactorily.
2. Make the best use of these resources in order to produce the finest and smoothest

animation possible.

Directdraw animation 1013

31.5.1 Background Animation

A typical computer game or real-time simulation often contains two different types of
graphics objects: backgrounds and sprites. The backgrounds consist of larger bitmaps
over which the action takes place. For example, a flight simulator program can have
several background images representing different views from the cockpit. These may
include landscapes, seascapes, and views of airports and runways used during takeoff and
landing. A computer game that takes place in a medieval castle may use backgrounds
depicting the various castle rooms and hallways where the action takes place. Sprites, on
the other hand, are rather small, animated objects represented in two or three dimensions.
In the flight simulator program the sprites could be other aircraft visible from the cockpit
and the cabin instruments and controls that are animated during the simulation. In the
computer game, the sprites could be medieval knights that do battle in the castle, as well
as weapons and other objects used in the battle.

31.5.2 Panning Animation

The design and display of background images is relatively straightforward. The most
difficult part consists of creating the background imagery and using clipping and blit-time
rectangles to generate panning and zoom effects. The project named DD Panning
Animation in the book's software package, demonstrates panning animation of a
background bitmap. In the program the source rectangle has the same vertical dimension
as the background bitmap, which is 480 pixels. The image bitmap is 1280 pixels wide
and the source rectangle is one-half that size (640 pixels). This creates a source window
that can be moved 639 pixels to the right from its original position. The white, dotted
rectangle in Color Figure 10 represents the source rectangle within the background
bitmap.

The program DD Panning Animation, in the book's software package, demonstrates
panning animation. The logic is based on panning to right until the image right border is
reached, and then reverse the panning direction until the left border is reached. The
primary surface and a single back buffer are created and a clipper is installed in both
surfaces. The background bitmap, in this case a mountain range, is stored in the file
named image.bmp. This bitmap is twice as wide as the viewport; therefore, the source
rectangle can moved horizontally within the bitmap. The panning variables and the
display routine are coded as follows:

// Global panning animation controls
RECT thisPan; // Storage for source
rectangle
LONG panIteration = 0; // panning iteration
counter
LONG panDirection = 0; // 1 = left, 0 = right
// Constants
LONG PAN_LIMIT_LEFT = 1;
LONG PAN_LIMIT_RIGHT = 639;
.

The pc graphics handbook 1014

.
//***
// Name: PanImage
// Desc: Update back with a source rectangle that
// is a portion of the background bitmap
// and flip to create a panning animation
//***
static void PanImage()
{
 thisTickCount = GetTickCount();
 if((thisTickCount—lastTickCount) < TIMER_VALUE)
 return;
 else
 {
 lastTickCount = thisTickCount;
 // Bump pan iteration according to direction
 if(panDirection == 1)
 panIteration−−;
 else
 panIteration++;
 // Reset panning iteration counter at limits
 if(panIteration == PAN_LIMIT_RIGHT)
 panDirection=1; // Pan left
 if(panIteration == PAN_LIMIT_LEFT)
 panDirection = 0;
 // Set panning rectangle in source image
 thisPan.left = panIteration;
 thisPan.top = 0;
 thisPan .right = 640+panIteration;
 thisPan.bottom = 480;
 // Blit background bitmap to back buffer
 hRet = lpDDSBackBuf->Blt(NULL,
 lpDDSBackGrnd,
 &thisPan,
 DDBLT_WAIT,
 NULL);
 if(hRet != DD_OK){
 DDInitFailed(hWnd, hRet,
 "Blt() on background failed") ;
 return;
 }
 // Flip surfaces
 hRet = lpDDSPrimary->Flip(NULL, DDFLIP_WAIT);
 if(hRet != DD_OK){
 DDInitFailed(hWnd, hRet,
 "Flip() call failed") ;
 return;
 }
 return;
 }

Directdraw animation 1015

The local function named PanImage(), listed previously, performs the panning animation.
First it bumps and checks the ticker counter. If the counter has not yet expired, execution
returns immediately. Code then checks the panDirection variable. If the direction is 1,
then panning is in the left-to-right cycle and the panIteration variable is decremented. If
not, then panning is right-to-left and the panIteration variable is incremented. When
either variable reaches the limit, as defined in the constants PAN_LIMIT_LEFT and
PAN_LIMIT_RIGHT, the panning direction is reversed. A structure variable named
thisPan, of type RECT, is used to define the source rectangle for the blit. The panIteration
variable is used to define the offset of the source rectangle within the image bitmap.
Since panning takes place on the horizontal axis only, and the display mode is defined in
the code, then the image size can be hard-coded into the thisPan structure members. Once
the image is blitted onto the back buffer, surfaces are flipped in the conventional manner.

31.5.3 Zoom Animation

Zooming is a background animation that can be implemented by manipulating the source
or destination rectangles, or both. This is possible due to the fact that both Blt() and
BltFast() perform automatic scaling when the source and destination areas are of a
different size. The simplest approach to zooming animation consists of reducing the area
covered by the source rectangle and letting Blt() or BltFast() perform the necessary
adjustments. Color Figure 10 shows the initial and final source rectangles in a zoom
animation.

The program DD Zoom Animation.cpp, in the book's software package, demonstrates
zoom animation using an image of Mount Rushmore. The program action is to zoom into
a bitmap by changing the position and progressively reducing the dimensions and the
source rectangle. When an arbitrary maximum zoom value is reached, the process
reverses and the source rectangle is made progressively larger until it is restored to the
original size. As in the panning animation demo program, the primary surface and a
single back buffer are created, and a clipper is installed in both surfaces. The background
image, which in this case is stored in the file image.bmp, is then moved to an offscreen
surface. This bitmap is the size of the viewport. In the following code fragment we show
the zoom controls and display operations that are different from the panning animation,
previously listed:

// Zoom animation controls
RECT thisZoom; // Storage for source rectangle
LONG zoomIteration = 0; // panning iteration
counter
LONG zoomDirection = 0; // 1 = left, 0 = right
// Constants
LONG ZOOM_LIMIT_OUT = 1;
LONG ZOOM_LIMIT_IN = 200;
.
.
.
// Bump zoom iteration according to direction
if(zoomDirection == 1)

The pc graphics handbook 1016

 zoomIteration−−;
else
 zoomIteration++;
// Reset zoom iteration counter at limits
if(zoomIteration == ZOOM_LIMIT_IN)
 zoomDirection = 1; // Pan left
if(zoomIteration == ZOOM_LIMIT_OUT)
 zoomDirection = 0;
// Set zoom rectangle in source image
 thisZoom.left = zoomIteration;
 thisZoom.top = zoomIteration;
 thisZoom.right = 640 − zoomIteration;
 thisZoom.bottom = 480 − ((zoomIteration * 3)/4);

Notice that the dimensioning of the source rectangle for zoom animation must take into
account the screen's aspect ratio, which is approximate 3:4. Therefore the y coordinate of
the end point of the source rectangle is changed at a rate slower than the x coordinate. If
both coordinates were reduced by the same amount, the resulting images would be
stretched along this axis during the zoom.

31.5.4 Animated Sprites

Sprites are often animated. An animated sprite can be a fuel gauge on the dashboard of a
race car simulation, a spaceship on a futuristic game, or a medieval warrior. Designing,
encoding, and manipulating sprites require all the talents and skills of the animator. The
project named DD Multi Sprite Animation, in the book's software package, demonstrates
sprite animation by simultaneously moving three screen objects at different speeds. Color
Figure 12 is a screen snapshot of the demonstration program. The three hot-air balloons
are the sprites. During program execution the balloons rise at different speeds. The
largest balloon, which appears closer to the viewer, moves up one pixel during every
iteration of the frame counter. The balloon on the left moves every second iteration and
the one on the right every third iteration. The background is fixed in this sample.

Controlling several sprites, simultaneously displayed, can be a challenge regarding
program design and data structures, but does not present any major programming
problems in DirectDraw. The program DD Multi Sprite Animation starts by creating a
primary surface and two back buffers. The use of a second back buffer improves program
execution in most machines. A clipper is then installed on both surfaces. The clipper
makes the animated objects appear to come into the display area, and disappear from it,
softly and pleasantly. The background image, which is located in the bitmap named
backgrnd.bmp, is stored in an offscreen surface. This bitmap is the size of the viewport.
The code creates three additional surfaces, one for each of the sprites, and moves the
sprite bitmaps into these surfaces. The sprite surfaces are assigned a source color key to
make the bitmap backgrounds transparent at display time. To ensure a smooth animation,
all the surfaces in the sample program are located in video memory.

Sprite control in the demo program is based on a structure of type SpriteCtrl defined
globally, as follows:

Directdraw animation 1017

// Sprite control structure
struct SpriteCtrl
{
 LONG startY; // Start x coordinate
 LONG startX; // Start y coordinate
 LONG bmapX; // Width of bitmap
 LONG bmapY; // Height of bitmap
 LONG iterMax; // Maximum iteration
count
 LONG skipFactor; // Display delay
 LONG iteration; // Sprite iteration
counter
} Sprite1, Sprite2, Sprite3;

Three structure variables, named Sprite1, Sprite2, and Sprite3 are allocated, one for each
animated object. The sprites are numbered left-to-right as they are disstartX and startY
that define the start coordinates for each sprite. The members played, as shown in Color
Figure 11. Each structure variable contains the members bmapX and bmapY store the
bitmap dimensions, which are obtained as the bitmaps are loaded from their files.

The sprite animation control is performed by the last three members of the SpriteCtrl
structure. The iterMax member stores the value of the iteration counter at which the sprite
is repositioned to the bottom of the screen. The skipFactor member determines how many
iterations are skipped at display time. This value is used to slow down the smaller
balloons. Sprite1 is assigned a skipFactor of 2. Sprite2, the largest one, has skipFactor
equal to 1. Sprite3, the smallest one, has a skipFactor of 3. The iteration member keeps
track of the number of frame beats corresponding to each sprite. The counters are reset
when the iterMax value is reached for each sprite. The range of the iteration counters are
from 0 to iterMax. The code initializes the structure members for each sprite, as follows:

//***

// Fill SpriteCtrl structure members for each sprite
//***

// Sprite1 is balloon bitmap in bMap1
// Resolution is 640 by 480 pixels
Sprite1.startY = 479; // Starts at screen bottom
Sprite1.startX = 70; // x for start position
Sprite1.bmapX = bMap1.bmWidth;
Sprite1.bmapY = bMap1.bmHeight;
Sprite1.skipFactor = 2;
Sprite1.iterMax = (480+(bMap1.bmHeight)) *
Sprite1.skipFactor;
Sprite1.iteration = 50; // Init iteration counter
// Sprite2 is balloon bitmap in bMap2
Sprite2.startY = 479; // Starts at screen bottom
Sprite2.startX = 240; // x for start position
Sprite2.bmapX = bMap2.bmWidth;
Sprite2.bmapY = bMap2.bmHeight;
Sprite2.skipFactor=1;

The pc graphics handbook 1018

Sprite2.iterMax = 480+(bMap2.bmHeight);
Sprite2.iteration = 50; // Init iteration counter
// Sprite3 is balloon bitmap in bMap3
Sprite3.startY = 479; // Starts at screen bottom
Sprite3.startX = 500; // x for start position
Sprite3.bmapX = bMap3.bmWidth;
Sprite3.bmapY = bMap3.bmHeight;
Sprite3.skipFactor = 3;
Sprite3.iterMax = (480+(bMap3.bmHeight)) *
Sprite3.skipFactor;
Sprite3.iteration = 20; // Init iteration counter

During initialization, the dimensions of each sprite are read from the corresponding
bmWidth and bmHeight members of the BITMAP structure for each sprite. This ensures
that the code continues to work even if the size of a sprite bitmap is changed. The
maximum number of iterations for each sprite is calculated by adding the number of
screen pixels in the selected mode (480), to the bitmap pixel height, and multiplying this
sum by the sprite's skip factor. At display time the surface with the background bitmap is
first blitted to the back buffer. Then the code calls a local function, named SpriteAction(),
for each sprite. The FlipImages() function is coded as follows:

//***
// Name: FlipImages
// Desc: Update back buffer and flip
//***
static void FlipImages()
{
 thisTickCount = GetTickCount();
 if((thisTickCount—lastTickCount) < TIMER_VALUE)
 return;
 else
 {
 lastTickCount = thisTickCount;
 // Blit background bitmap to back buffer
 hRet = lpDDSBackBuf->Blt(NULL,
 lpDDSBackGrnd,
 NULL,
 DDBLT_WAIT,
 NULL);
 if(hRet != DD_OK){
 DDInitFailed(hWnd, hRet,
 "Blt() on background failed");
 return;
 }
 // Animate sprites. Farthest ones first
 SpriteAction(Sprite3, lpDDSBmap3);
 SpriteAction(Sprite2, lpDDSBmap2);
 SpriteAction(Sprite1, lpDDSBmap1);
 // Flip surfaces
 hRet = lpDDSPrimary->Flip(NULL, DDFLIP_WAIT);
 if(hRet != DD_OK){

Directdraw animation 1019

 DDInitFailed(hWnd, hRet,
 "Flip() call failed") ;
 return;
 }
 return;
 }
}

The actual display of the sprites is performed by the local function named SpriteAction().
This function receives the SpriteCtrl structure variable for the sprite being animated, and
the pointer to the surface that contains the sprite image. The code checks the iteration
number for the sprite against the maximum count, to determine if the iteration counter
needs resetting. Then the position of the sprite is calculated by dividing the current
iteration number by the skip factor. This informa-tion is stored in a RECT structure
corresponding to the destination surface rectangle and the Blt() function is called.
SpriteAction() code is as follows:

//**
// Name: SpriteAction
// Desc: Animate a sprite according
// to its own parameters
// PRE:
// 1. Pointer to structure containing
// sprite data
// 2. Pointer to DirectDraw surface
// containing sprite bitmap
//***
void SpriteAction(SpriteCtrl &thisSprite,
 LPDIRECTDRAWSURFACE4 lpDDSBmap)
{
 RECT destSurf;
 LONG vertUpdate;
 thisSprite.iteration++;
 if(thisSprite.iteration == thisSprite.iterMax)
 thisSprite.iteration = 0;
 vertUpdate = thisSprite.iteration /
thisSprite.skipFactor;
 // Set coordinates for balloon1 display
 destSurf.left = thisSprite.startX;
 destSurf.top = thisSprite.startY − vertUpdate;
 destSurf.right = destSurf.left + thisSprite.bmapX;
 destSurf.bottom = destSurf.top + thisSprite.bmapY;
 // Use Blt() to blit bitmap from the off-screen
surface
 // (->lpDDSBitamp), onto the back buffer (-
>lpDDSBackBuf)
 hRet = lpDDSBackBuf->Blt(&destSurf,
 lpDDSBmap,
 NULL,
 DDBLT_WAIT | DDBLT_KEYSRC,
 NULL);

The pc graphics handbook 1020

 if(hRet != DD_OK){
 DDInitFailed(hWnd, hRet,
 "Blt() on sprite failed");
 return;
 }
 return;
}

After the background bitmap and all three sprites have been blitted onto the back buffer,
the code calls the Flip() function to render the results onto the primary surface.

31.6 Fine-Tuning the Animation

In computer animation the greatest concern is to produce a smooth and uniform effect,
with as little bumpiness, screen tearing, and interference as possible. Today’s machines,
with 1000 MHz and faster CPUs, video cards with graphics coprocessors and 8, 16, or
more megabytes of video memory, high-speed buses, and DirectX software, can often
produce impressive animations with straightforward code. For example, the DD Multi
Sprite Animation program, in the book's software package, smoothly animates three
sprites, even when running in a 200-MHz Pentium machine equipped with a low-end
display card and 2Mb of video memory.

In most cases the animation programmer is pushing graphics performance to its limits.
If the animator finds that the code can successfully manipulate three sprites, then perhaps
it can manipulate four, or even five. The rule seems to be: the more action, and the faster
the action, the better the animation. In this section we discuss several topics that relate to
improving program performance or to facilitating implementation.

31.6.1 High-Resolution Timers

Earlier in this chapter we explored two methods of obtaining the timed pulse that is used
to produce frame updates in an animation routine. One method is based on a milliseconds
counter maintained by the system, which can be read by means of the GetTickCount()
function. The other one sets an interval timer that operates as an alarm clock. When the
timer lapse expires the application receives control, either in a message handler intercept
or a dedicated callback function. Although both methods are often used, processing based
on reading the windows tick counter has considerably better resolution than the alarm
clock approach. Windows documentation states that the resolution of the timer intercepts
is approximately 55 milliseconds. This produces a beat of 18.2 times per second, which is
precisely the default speed of the PC internal clock. In many cases this beat is barely
sufficient to produce smooth and lifelike animations.

There are several ways of improving the frequency and reliability of the timed pulse.
The multimedia extensions to Windows include a high-resolution timer with a reported
resolution of 1 millisecond. The multimedia timer produces more accurate results because
it does not rely on WM_TIMER messages posted on the queue. Each multimedia timer
has its own thread, and the callback function is invoked directly regardless of any

Directdraw animation 1021

pending messages. To use the multimedia library code must include MMSYSTEM.H and
make sure that WINMM.LIB is available and referenced at link time. Several timer
functions are found in the multimedia library. The most useful one in animation
programming is timeSetEvent(). This function starts an event timer, which runs in its own
thread. A callback function, defined in the call to timeSetEvent() receives control every
time the counter timer expires. The function’s general form is as follows:

MMRESULT timeSetEvent(
 UINT
uDelay, // 1
 UINT
uResolution, // 2
 LPTIMECALLBACK
lpTimeProc, // 3
 DWORD
dwUser, // 4
 UINT
fuEvent // 5
);

The first parameter defines the event delay, in milliseconds. If this value is not in the
timer’s valid range, then the function returns an error. The second parameter is the
resolution, in milliseconds, of the timer event. As the values get smaller, the res-olution
increases. A resolution of 0 indicates that timer events should occur with the greatest
possible accuracy. Code can use the maximum appropriate value for the timer resolution
in order to reduce system overhead. The third parameter is the address of the callback
function that is called every time that the event delay counter expires. The fourth
parameter is a double word value passed by Windows to the callback procedure. The fifth
parameter encodes the timer event type. This parameter consists of one or more
predefined constants listed in Table 31–3.

Table 31–3
Event-Type Constants in TimeSetEvent() Function

VALUE MEANING
TIME_ONESHOT Event occurs once, after uDelay milliseconds.
TIME_PERIODIC Event occurs every uDelay milliseconds.
TIME_CALLBACK_FUNCTION
 Windows calls the function pointed to by the third parameter.

This is the default.
TIME_CALLBACK_EVENT_SET
 Windows calls the SetEvent() function to set The vent pointed

to by the third parameter. The fourth parameter is ignored.
TIME_CALLBACK_EVENT_PULES
 TIME_CALLBACK_EVENT_PULSE Windows calls the

PulseEvent() function to pulse the event pointed to by the third
parameter. The fourth parameter is ignored.

The pc graphics handbook 1022

Notice that the multimedia timers support two different modes of operation. In one mode
(TIME_ONESHOT) the timer event occurs but once. In the other mode
(TIME_PERIODIC) the timer event takes place every time that the timer counter expires.
This mode is the one most often used in animation routines. If successful, the call returns
an identifier for the timer event. This identifier is also passed to the callback function.
Once the timer is no longer needed, applications should call the timeKillEvent() function
to terminate it.

Despite its high resolution, it has been documented that the multimedia timer can
suffer considerable delays. One author states having recorded delays of up to 100
milliseconds. Applications requiring very high timer accuracy are recommended to
implement the multimedia timer in a 16-bit DLL.

The WIN32 API first made available a high-resolution tick counter. These counters
are sometimes called performance monitors since they were originally intended for
precisely measuring the performance of coded routines. Using the high-performance
monitors is similar to using the GetTickCount() function already described, but with a
few special accommodations. Two Windows functions are associated with performance
monitor counters: QueryPerformanceFrequency() returns the resolution of the counter,
which varies according to hardware. QueryPerformanceCounter() returns the number of
timer ticks since the system was started. QueryPerformanceFrequency() can also be used
to determine if high-performance counters are available in the hardware, although the
presence of the performance monitoring function can be assumed in any Windows 95, 98,
or ME, Windows 2000, or NT machine.

The function prototypes are identical for QueryPerformanceFrequency() and
QueryPerformanceCount(): the return type is of type BOOL and the only parameter is a
64-bit integer of type LARGE_INTEGER. The general forms are as follows:

BOOL QueryPerformanceCounter(LARGE_INTEGER*);
BOOL QueryPerformanceFrequency(LARGE_INTEGER*);

Although it has been stated that the performance frequency on Intel-based PCs is 0.8
microseconds, it is safer for applications to call QueryPerformanceFrequency() to obtain
the correct scaling factor. The following code fragment shows this processing:

_int64 TIMER_DELAY = 15; // Milliseconds
_int64 frequency; // Timer frequency
.
.
.
QueryPerformanceFrequency((LARGE_INTEGER*) &frequency);
TIMER_DELAY = (TIMER_DELAY * frequency) / 1000;

After executing, the TIMER_DELAY value has been scaled to the frequency of the high-
resolution timer. The QueryPerformanceCounter() can now be called in the same manner
as GetTickCount(), for example:

_int64 lastTickCount;
_int64 thisTickCount;

Directdraw animation 1023

.

.

.
QueryPerformanceCounter((LARGE_INTEGER*)
&thisTickCount);
if((thisTickCount − lastTickCount) < TIMER_DELAY)
 return;
else {
 lastTickCount = thisTickCount;
.
.
.

The DD Multi Sprite Animation program, in the book's software package, uses a high-
performance timer to produce the animation beat.

31.6.2 Dirty Rectangles

Color Figure 11 shows a background image overlayed by three sprites. During every
iteration of the animation pulse, code redraws the background in order to refresh those
parts of the surface that have been overwritten by the sprites. The process is wasteful
since most of the background remains unchanged. In fact, only the portion of the
background that was covered by the sprite image actually needs to be redrawn. Figure
31–8 shows the rectangular areas that actually need refreshing in producing the next
animation iteration of the image, as shown in Color Figure 11. These are called the "dirty
rectangles."

Figure 31–8 Dirty Rectangles in
Animation

The pc graphics handbook 1024

DirectDraw clipping operations can be used to identify the dirty rectangles. In this case a
clip list defines the areas that require refreshing, and these are the only ones updated
during the blit. The processing is simplified by the fact that the last position of the sprite,
and its stored dimensions, can be used to determine the dirty rectangles.

Whether the use of dirty rectangles actually improves performance depends on several
factors: the total image area covered by the dirty rectangles, the number of rectangles, the
processing overhead in calculating the rectangles and creating the clip list, and, above all,
the efficiency of the DirectDraw clipping operations of the particular hardware.
Unfortunately, in many cases, the screen update takes longer with dirty rectangle schemes
than without them. The most rational approach is to develop the animation without dirty
rectangles. If the results are not satisfactory, then try the dirty rectangles technique. The
comparative results can be assessed by measuring the execution time in both case.
Methods for measuring performance of routines are discussed later in this section.

31.6.3 Dynamic Color Keys

It is difficult to image a sprite that can be transparently overlayed on a bitmapped
background without the use of a source color key. When we create our own sprites using
draw or paint programs, and these sprites are stored in 24- or 32-bit color depth bitmaps,
the color key is usually known at coding time, or can be easily determined. If there is any
doubt, the sprite can be loaded into a bitmap editor in order to inspect the RGB value of
the background pixels. However, there are cases in which determining the color key is
more difficult. One of the complicating factors with color keys occurs when the color
depth of the application's video mode does not coincide with that of the sprite bitmap.
This can a problem in the palletized display modes, particularly when the palette changes
during execution, or in applications that use several possible video modes.

One solution is to determine the bitmap's color key dynamically, that is, at runtime.
The method is based on the assumption that there is a fixed location in the bitmap which
is transparent at blit time. For example, the pixel at the bitmap's upper-left corner of the
sprite image rectangle is typically part of the background. Color Figure 13 shows the
fixed location of the color key for one of the balloon bitmaps used in the program DD
Multi Sprite Animation contained in the book’s software package.

Once the relative location of a color key pixel has been determined, code can load the
bitmap onto a surface, and then read the surface data at the predefined position in order to
obtain the color key. The manipulation is made possible by the direct access to memory
areas that is available in DirectDraw. Since the application knows the color depth of the
target surface, it can read the color key directly from the surface. In this case you need
not be concerned with how Windows converts a pixel value in one color depth into
another one, since the code is reading the resulting color key directly. The following code
is used in the DD Multi Sprite Animation program for dynamically loading the color key
for Sprite1.

// Video display globals
LONG vidPitch = 0; // Pitch
LPVOID vidStart = 0; // Buffer address
// Color key data

Directdraw animation 1025

DDCOLORKEY bColorKey;
WORD dynamicKey;
.
.
.
//***
// move first balloon bitmap to off-screen surface
//***
// Load the bitmap into memory
bal1Bitmap = (HBITMAP)LoadImage(NULL,
"balloon1.bmp",
 IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE);
 if (bal1Bitmap == NULL)
 DDInitFailed(hWnd, hRet,
 "Balloon1 bitmap load failed");
// Get bitmap dimensions to determine surface size
 GetObject(bal1Bitmap, sizeof (BITMAP), &bMap1);
// Create the off-screen surface for bitmap in system
memory
 ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure
with zeros
// Fill in other members
 ddsd.dwSize = sizeof(ddsd);
 ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;
 ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN |
 DDSCAPS_VIDEOMEMORY;
 ddsd.dwHeight = bMap1.bmHeight;
 ddsd.dwWidth = bMap1.bmWidth;
 hRet = lpDD4->CreateSurface(&ddsd, &lpDDSBmap1,
NULL);
 if (hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "Off screen surface1 creation
failed ");
// Move bitmap to surface using DDBmapToSurf()function
hRet = DDBmapToSurf(lpDDSBmap1, bal1Bitmap);
 if(hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "DDMapToSurf() call failed");
//***
// read color key from loaded sprite
//***
// Attempt to lock the surface for direct access
if (!LockSurface(lpDDSBmap1))
 return DDInitFailed(hWnd, hRet,
 "Surface Lock failed ");
// Surface data is stored as follows:
// LONG vidPitch; // Pitch (not used here)
// LPVOID vidStart; // Buffer address
_asm
{
 PUSH ESI ; Save context

The pc graphics handbook 1026

 PUSHF
 MOV ESI,vidStart ; Left-top pixel address
 ; Read and store pixel attributes
 MOV AX,[ESI] ; Get attribute
 MOV dynamicKey,AX ; Store value in variable
 POPF ; Restore context
 POP ESI
}
ReleaseSurface(lpDDSBmap1);
// Set color key for balloon1 surface using values
stored
// in variable dynamicKey
bColorKey.dwColorSpaceLowValue = dynamicKey;
bColorKey.dwColorSpaceHighValue = dynamicKey;
 hRet = lpDDSBmap1->SetColorKey(DDCKEY_SRCBLT,
&bColorKey);
 if(hRet != DD_OK)
 return DDInitFailed(hWnd, hRet,
 "SetColorKey() for Balloon1 failed");

31.7 Measuring Performance

Programmers often need to know the execution time of a routine or function in order to
determine if it is suitable for an animation application. Several software engineering
techniques allow estimating performance and efficiency of algorithms. These methods,
which are based on mathematical analysis, are usually difficult and time-consuming.
Alternatively, you can often obtain the necessary performance metrics of a routine by
physically measuring its execution time.

In cases in which time-of-execution ranges from several seconds to several minutes it
is often possible to measure it with a stopwatch. More often the time of execution is in
the milliseconds order, in which case it may be possible to use the computer’s timing
mechanisms to determine the time lapsed between the start and the end of a processing
routine or code segment. The QueryPerformanceCounter() function, described
previously, has a resolution in the order of one-millionth of a second. In order to measure
the execution time of a program segment, function, or routine we need to read the tick
counter at the start and the end of the processing routine, then subtract these values. The
difference is the approximate execution time.

Unfortunately, there are many complicating factors that can affect the accuracy of this
simple scheme. In the first place, the scheduler in a multitasking environment can
interrupt a thread of execution at any time, thereby delaying it. Sometimes the unit-
boundary at which a data item is located in memory affects the time required for a
memory fetch operation. Another consideration relates to the occasional state of a
memory cache, which can also change the fetch-time for data. This means that the
measurements should be repeated as many times as practicable in order to obtain a more
reliable value. Even with many repetitions the resulting numbers may not be accurate.
However, for many practical programming situations the data obtained in this manner is
sufficient for a decision regarding which of two or more routines is more suitable for the

Directdraw animation 1027

case at hand. The following code fragment shows measuring the execution time of two
routines:

// Timer data
_int64 startCount;
_int64 endCount;
_int64 timeLapse1; // First routine
_int64 timeLapse2; // Second routine
.
.
.
// First routine starts here
QueryPerformanceCounter((LARGE_INTEGER*) &startCount);
//
// First routine code
//
QueryPerformanceCounter((LARGE_INTEGER*) &endCount);
timeLapse1 = endCount − startCount;
. . .
// Second routine starts here
QueryPerformanceCounter((LARGE_INTEGER*) &startCount);
//
// Second routine code
//
QueryPerformanceCounter((LARGE_INTEGER*) &endCount);
timeLapse2 = endCount − startCount;

The variables timeLapse1 and timeLapse2 now hold the number of timer ticks that
elapsed during the execution of either routine. Code can display these values or a
debugger can be used to inspect the variables.

The pc graphics handbook 1028

Chapter 32
Direct3D Fundamentals

Topics:

• Description and origins of Direct3D
• Retained mode and immediate mode
• Direct3D and COM
• Direct3D modules
• Basic elements of retained mode
• Rendering mathematics
• File formats

In this chapter we begin our discussion of Direct3D programming with the higher-level
functions, called retained mode. This chapter presents a smorgasbord of topics. The glue
that holds them together is the fact that they are all necessary in order to understand and
use Direct3D.

Before reading this chapter, make sure that you have grasped the material in Part I of
the book, which provides the necessary background in 3D graphics.

32.1 3D Graphics in DirectX

There is some confusion regarding the scope and application of 3D graphics. One reason
for this confusion is that 3D displays are not yet commercially available for the PC.
Devices that render solid images, on a three-dimensional screen, are still experimental.
Therefore, in a strict sense, 3D graphics do not yet exist commercially. However, systems
capable of storing and manipulating images of solid objects and displaying these objects
on 2D media do exist. What we call 3D graphics in today’s technology is actually a 2D
rendering of a 3D object.

Direct3D is the component of Microsoft’s DirectX software development kit that
provides support for real-time, three-dimensional graphics, as available in today's
machines. 3D programming is a topic at the cutting edge of PC technology. But cutting-
edge infrastructures are rarely stable. Many of its features are undergoing revi-sions and
redesigns, and there are still some basic weaknesses and defects. Furthermore, the
performance of 3D applications depends on a combination of many factors, some of
which are hidden in the software layers of the development environment. In today's world
3D applications developers spend much of their time working around the system’s
inherent weaknesses. Scores of video cards are on the market, each one supporting its
own set of features and functionality. Developing a 3D application that executes
satisfactorily in most systems is no trivial task. The bright side of it is that the rewards
can be enormous.

32.1.1 Origin of Direct3D

Direct3D is described as a graphics operating system, although it would be less
pretentious, and perhaps more accurate, to refer to it as a 3D graphics back end. Its core
function is to provide an interface with the graphics hardware, thus insulating the
programmer from the complications and perils of device dependency. It also provides a
set of services that enable you to implement 3D graphics on the PC. In this sense it is
similar to other back ends, such as OpenGL and PHIGS. But Direct3D is also a provider
of low-level 3D services for Windows. In Microsoft's plan the low-level components of
Direct3D (immediate mode) serve and support its higher-level components (retained
mode) and those of other 3D engines (OpenGL).

In the beginning 3D was exclusively in the realm of the graphics workstation and the
mainframe computer. The standards were PHIGS (Programmer's Hierarchical Interactive
Graphics Systems), and GKS (Graphical Kernel System). During the 1980s it was
generally accepted that the processing power required to manipulate 3D images, with its
associated textures, lightning, and shadows, was not available on the PC. However, some
British game developers thought differently and created some very convincing 3D games
that ran on a British Broadcasting Corporation (BBC) micro equipped with a 2MHz 6502
processor. This work eventually led Servan Keondjian, Doug Rabson, and Kate Seekings
to the founding of a company named RenderMorphics and the development of the Reality
Lab rendering engine for 3D graphics. Their first 3D products were presented at the
SIGGRAPH '94 trade show.

In February 1995, Microsoft bought RenderMorphics and proceeded to integrate the
Reality Lab engine into their DirectX product. The result was called Direct3D. Direct3D
has been one of the components of DirectX since its first version, called DirectX 2. Other
versions of the SDK, namely DirectX 3, DirectX 5, DirectX 6, and currently, DirectX 7,
also include Direct3D. The functionality of the Direct3D is available to applications
running in Windows 95/98 and Windows NT 3.1 and later. The full functionality of
DirectX SDK is part of Windows 98 and will also be found in Windows NT 5.0 and
Windows 2000. This means that applications running under Windows 98 and later will be
able to execute programs that use Direct3D without the loading of additional drivers or
other support software.

32.1.2 Direct3D Implementations

Direct3D is an application-programming interface for 3D graphics on the PC. The other
major 3D API for the PC is OpenGL, which is discussed in Part IV. Figure 32–1 shows
the structure of the graphics development systems under Windows.

The pc graphics handbook 1030

Figure 32–1 Windows Graphics
Architecture

Direct3D provides the API services and device independence required by developers,
delivers a common driver model for hardware vendors, enables turnkey 3D solutions to
be offered by personal-computer manufacturers, and makes it easy for end-users to add
high-end 3D functions to their systems. Because the system requires little memory, it
runs well on most of the installed base of computer systems.

The 3D graphics services in Direct3D execute in real-time. The functions include
rendering, transformations, lighting, shading, rasterization, z-buffering, textures, and
transparent access to acceleration features available in the hardware. The Direct3D
architecture consists of two well-defined modes: a low-level one called immediate mode,
and a high-level one called retained mode. The term retained mode originally referred to
the images being preserved after rendering, but this notion is no longer literally true.

32.1.3 Retained Mode

Retained mode was designed as a set of API for the high-level manipulation of 3D
objects and managing 3D scenes. It is Microsoft’s competition for OpenGL and other
high-level 3D development environments. It is implemented as a set of interrelated COM
objects that enable you to build and manipulate a 3D scene. Its intention was to make it
easy to create 3D Windows applications or to add 3D capabilities to existing ones. The
programmer working in retained mode can take advantage of its geometry engine, which
contains advanced 3D capabilities, without having to create object databases or be
concerned with internal data structures. The application uses a single call to load a
predefined 3D object, usually stored in a file in .x format. The loaded object can then be
manipulated within the scene and rendered in real-time. All of this is done without having
to deal with the object’s internals.

Retained mode is tightly coupled with DirectDraw, which serves as its rendering
engine, and is built on top of the immediate mode. OpenGL and other high-level systems

Direct3d fundamentals 1031

exist at the same level as retained mode. Figure 32–2, on the following page, shows the
elements of this interface.

Figure 32–2 DirectX Graphics
Architecture

32.1.4 Immediate Mode

Direct3D immediate mode is a layer of low-level 3D API. Its original intention was to
facilitate the porting of games and other high-precision and high-performance graphics
applications to the Windows operating system. It allows access to hardware features in
the 3D chip and offers software rendering when the function is not available in the
hardware. The intention of immediate mode is to enable applications to communicate
with the 3D hardware in a device-independent manner and to provide maximum
performance.

In contrast with retained mode, immediate mode does not contain a graphics engine.
Code that uses immediate mode must provide its own routines to implement object and
scene management. This means that the effective use of immediate mode requires
considerable knowledge and skills in 3D graphics.

32.1.5 Hardware Abstraction Layer

In Figure 32–2 you see that both the Immediate and the Retained Modes of Direct3D are
built on top of the Hardware Abstraction Layer (HAL). It is this software layer that
insulates the programmer from the device-specific dependencies. The Hardware
Emulation Layer (HEL) provides support for those features that are not present in the
hardware. The combination of HEL and HAL ensure that the complete Direct3D
functionality is always available.

The pc graphics handbook 1032

32.1.6 DirectDraw

DirectDraw is the Windows rendering engine for 2D and 3D graphics. DirectDraw
functions enable you to quickly compose images into front and back buffers, and to apply
transformations, blitting, and flipping. The result is a capability of implementing smooth
animation as required in computer games and other multimedia and high-performance
graphics applications. DirectDraw functions can be used with images that originate in the
Windows GDI, in Direct3D, or in OpenGL.

DirectDraw is implemented as an API layer that lies above the display hardware, as
shown in Figure 32–2. It enables the graphics programmer to take advantage of the
capabilities of graphics accelerators and coprocessors in a device-independent manner.
DirectDraw is a COM-based interface.

The following are the most important connections between DirectDraw and Direct3D:

• IDirect3D, the interface to Direct3D, is obtained from a DirectDraw object by calling
the QueryInterface() method.

• Direct3DDevice, the low-level interface to the 3D renderer, is similar to
IDirectDrawSurface and is created by querying IDirectDrawSurface for a 3D device
GUID. The 3D renderer will also render to a 2D surface and recognizes all
DirectDraw 2D functions.

• IDirect3DTexture, the texture manager in Direct3D, is an extension of
IDirectDrawSurface and is created by querying IDirectDrawSurface for an
IID_IDirect3DTexture interface. Code can access all DirectDraw surface functions on
a 2D surface.

• A Direct3D z-buffer is a DirectDraw surface created with the DDSCAPS_ZBUFFER
flag. Code can use DirectDraw 2D functions in relation to z-buffers. Z-buffers are
discussed later in this chapter.

32.1.7 OpenGL

OpenGL is an alternative 3D development environment that originated in graphics
workstations. Its main area of application is in programs that require precise 3D image
rendering, such as CAD/CAM, technical modeling and animation, simulations, scientific
visualization, and others. OpenGL is part of Windows NT and is available for Windows
95 and 98. When installed, the system can execute programs that use the OpenGL APIs.
Because of its high level, OpenGL appears to the programmer as an alternative to
Direct3D retained mode.

32.1.8 Direct3D and COM

Like DirectDraw, Direct3D is based on Microsoft’s Component Object Model (COM).
COM is an object-oriented system that exists at the operating system level. In COM an
interface is a group of related methods. COM’s main purpose is to support and promote
the reuse of interfaces. Direct3D is presented to the programmer using the Component
Object Model. The COM object is a data structure that contains a pointer to the
associated methods. Because it is not specific to C++, a program written in C, or even in
a non-C development system, can use APIs based on the COM protocol.

Direct3d fundamentals 1033

There are several ways of accessing the COM interface. In C++ the COM object
appears like an abstract class. In this case access is by means of the pointer to the
DirectDraw COM object, which then allows code to obtain the Direct3D COM object.
When programming in C the function must pass the pointer to the COM object as an
additional parameter. In addition, the call must include a pointer to a property of the
COM object called the vtable. In this book we use the simpler, C++ interface to the
COM.

32.2 Direct3D Rendering

Direct3D uses a 3D rendering engine composed of three separate modules:

• Transformation Module. This module consists of four modifiable state registers:
viewport, viewing matrix, world matrix, and projection matrix. It supports arbitrary
projection matrices, and allows perspective and orthographic views. As the name
implies, the transformation module handles the geometrical transformations. It is also
called the Geometry Module.

• Lighting Module. This module calculates lighting and color information. It uses a stack-
like structure to maintain a record of the current lights. It supports ambient,
directional, point, and spotlight light sources and two lighting models: monochromatic
and RGB.

• Rasterization Module. This module uses the output of the transformation and lighting
modules to render the scene. The rasterization module is the 3D renderer in Direct3D.
The scene description is based on an extensible display-list that supports both 2D and
3D primitives. Raster options such as wireframe, solid fill, and texture map are
defined in this module.

Figure 32–3 shows the modules of the Direct3D rendering engine and their interaction
with the other modules and with the rest of the system.

Together, these three modules form the Direct3D rendering pipeline. Direct3D is

The pc graphics handbook 1034

Figure 32–3 Direct3D Rendering
Modules

furnished with one transformation module and a choice of two lighting and two
rasterization modules. This ensures greater flexibility in lighting and rendering. For
example, a scene can be rendered more realistically by switching the lighting module.

32.2.1 Transformation Module

The transformation module has four state registers: the viewport, the viewing matrix, the
world matrix, and the projection matrix. All four are modifiable by code. Whenever one
or more of the state registers are modified, they are recombined to form a new
transformation matrix. The transformation matrix defines the rotation and projection of a
set of 3D vertices.

In Direct3D a display list is the name given to a set of 3D commands. The
transformation module supports a number of different vertex types in the display list. The
D3DTLVERTEX structure is a transformed and lit vertex that contains screen
coordinates and colors. This structure contains the data and color information that is used
by the lighting module. The D3DLVERTEX structure is used when the model contains
data and color information only. Alternatively, the D3DHVERTEX structure is used
when the application uses model-coordinate data with clipping. When this structure is
used the transformations are performed in hardware. The D3DVERTEX structure is used
if the hardware supports lighting. This type of vertex can be transformed and lit during
rendering.

Direct3d fundamentals 1035

The transformation module contains two different types of methods: those that set the
state and those that use the transformation module directly to act on a set of vertices. The
second type of method is useful for testing bounding volumes or for acting on a set of
vectors. These operations are based on the current transformation matrices. The structure
used for all the direct transformation functions is D3DTRANSFORMDATA.
Geometrical transformations were discussed in Chapter 3 and are revisited later in this
chapter.

32.2.2 Lighting Module

The lighting module maintains a stack-like structure representing the current lights, as
well as the ambient light level, and a material. When the module is used directly, the
input data includes a direction vector. If the light source is positional, as is the case with
point- and spotlights, then the input also contains light source position information.

The monochromatic lighting model calculates the value for each light in a shade of
gray. It is also called the ramp model. The RGB model uses the color component of light
sources in order to produce more realistic and pleasant results. Internal color
representations are always based on a palette-based color ramp.

In the ramp mode each color is represented by an index into a look-up table that can be
located either in hardware or in software. Ramp modes use either 8- or 16-bit indices. In
the ramp mode the lighting module has no knowledge of the particular color; it just works
with a number of shades. Because color lights are treated as white lights, the ramp mode
is sometimes called the monochromatic mode. The pre-calculated color ramps are divided
into two sections. The first three-quarters of the ramp are the material's diffuse color. The
values of this portion of the ramp range from the ambient color to the maximum diffuse
color. The last quarter of the precalculated ramp encode the maximum diffuse color to the
maximum specular color of the material. At rendering time the shade value is scaled by
the size of the ramp and used as an index into the look-up table.

If the material does not have a specular component, the shade is calculated using the
diffuse component of the light intensity. In this case the value ranges from 0 (ambient
light) to 1 (full intensity light). If the material has a specular component, then the shade
calculation combines both the specular and diffuse components of the light according to
the following equation

where s is the shade value, d is the diffusion, and sp is the specular value of the light.
s =(¾d×(1−s))+sp

Notice that the first term of the equation takes into account the first three quarters of the
ramp, which is equivalent to the material's diffuse color. The second term takes into
account the last quarter of the ramp, which corresponds with the material’s diffuse or
specular color value.

Whether you use the RGB or the ramp color model depends mostly on the capabilities
of the hardware. Ramp color is faster in software, but the RGB model supports color
lights and is as fast, or even faster, than the ramp model if there is a hardware rasterizer.

The pc graphics handbook 1036

32.2.3 Rasterization Module

The rasterization module is the one that draws the triangles, lines, and points to the frame
buffer. It responds only to execute calls. Instructions stored in the execute buffer
determine the mode of operation of the rasterization module.

Execute buffers is just another name for display lists. They consist of self-contained,
independent packets of information. The execute buffer contains a vertex list followed by
an instruction stream. The instruction stream consists of individual instructions, each one
containing an operation code (opcode), followed by the data. The instructions determine
how the vertex list is lit and rendered. One of the most common instructions is a triangle
list, which consists of a list of triangle primitives that reference vertices in the vertex list.

The size of the execute buffer is determined by the hardware. Usually, 64K is
considered satisfactory. How caching is implemented by the video card influences the
best size for the buffer. The GetCaps() method can be used to retrieve the buffer size.

In processing execute buffers the transformation module runs through the vertex list,
generating the transformed vertices. If clipping is enabled, the corresponding clipping
information is attached. If there is no vertex in view at this point, the entire buffer can be
rejected. Otherwise, vertices are processed by the lighting module, which adds color to
them according to the lighting instructions in the execute buffer. Finally, the rasterization
module parses the instruction stream. Primitives are rendered based on the generated
vertex information.

The only geometric types that can be processed by the rasterization module are
triangles. The screen coordinates range from (0, 0) for the top left of the screen or
window device to width −1, height −1 for the bottom right of the device. The depth
values range from zero at the front of the viewing frustum to one at the back.
Rasterization is performed so that if two triangles that share two vertices are rendered, no
pixel along the line joining the shared vertices is rendered twice. The rasterizer culls back
facing triangles by determining the winding order of the three vertices of the triangle.
Only those triangles whose vertices are traversed in a clockwise orientation are rendered.

32.3 Retained Mode Programming

Retained mode programming consists of building 3D scenes out of components in
Direct3D. The retained mode programmer does not need to be concerned with the
development of geometrical primitives, or the structures of 3D objects and databases.
You can load, rotate, scale, light, translate, and otherwise manipulate a 3D object, in real-
time, using high-level API functions. In this section we discuss the core elements of
Direct3D retained mode. These are the building blocks that we use in the following
chapter to construct a Direct3D program.

Direct3d fundamentals 1037

32.3.1 Frames

A scene in Direct3D, sometimes called a scene graph, is a collection or hierarchy of
frames. The term frame relates to the notion of a frame of reference. It should not be
confused with that of single animation image, also called a frame. In retained mode the
role of a frame is to serve as a container for 3D objects, such as polygon meshes, lights,
and cameras. These objects have no meaning by themselves. For example, a cube cannot
be rendered until it is assigned a position within a frame, relative to a light and a camera,
and possibly a material, color, and texture.

Each scene contains a root or master frame and any number of child frames, each of
which can have other children of its own. It is a tree-like structure in which the root frame
has no parent frame and the leaf frames have no children. The root frame is the highest
level element of a 3D scene. Child frames inherit their characteristics from the parent
frames and are physically attached to the parent. When a frame is moved, all the objects
attached to it, including its child frames, move with it. For example, a helicopter in a 3D
scene may consist of several frames. One frame could model the body, another one the
lift rotor blades, and a third one the steering rotor blades. In this case the rotor blades
would be children frames to the helicopter body. The helicopter is made to fly by rotating
the blades in the main and tail rotors and by translating the helicopter body frame.
Because the rotors are child frames of the helicopter body frame, the entire machine
moves as a unit. Figure 32–4 shows the frame hierarchy in this case.

Figure 32–4 Frame Hierarchy in a
Scene

The pc graphics handbook 1038

Frame hierarchies in Direct3D are not rigid. Functions are available that enable you to
change the reference frame, regardless of the parent-child relationships originally
established. This flexibility adds considerable power to retained mode.

Meshes

The mesh is the principal visual object of a scene and the cornerstone of retained mode
programming. Direct3D objects are made up of meshes. A mesh is described as a set of
faces, each of which consists of a simple polygon. This makes a mesh equivalent to a set
of polygons. Polygon meshes were discussed in Chapter 2.

The fundamental polygon type in Direct3D is the triangle. Retained mode applications
can describe polygons with more than three vertices, but the system automatically
translates them into triangles when rendering them. Immediate mode applications, on the
other hand, are limited to triangles. Figure 32–5 shows two versions of the same mesh.
The one at the top consists of 12 quadrilaterals. The one at the bottom is made up of 24
triangles.

The principal objection to modeling with nontriangular polygons is that in a polygon
with more than three vertices it is possible for the vertices to lie on different planes. In
addition, polygons with more than three vertices can be concave. The triangle is not only
the simplest of polygons, but all the points in the surface of a triangular polygon must lie
on the same plane and any line drawn from two points in a triangle is inside it. In other
words, a figure defined by three vertices is coplanar and convex. The renderer requires
that polygons are convex and coplanar, so triangular modeling facilitates rendering.

Figure 32–5 Quadrilateral and
Triangular Meshes

Most graphics systems, including Direct3D, model objects by means of polygon meshes.
Mesh information is stored in a database containing the vertices of each polygon and their
attributes, such as color, texture, and shading. A state-of-the-art hardware-based renderer
is capable of displaying hundreds of thousands to over one million of these polygons in 1
second, and at the same time applying texture, lighting and other effects.

Direct3d fundamentals 1039

Mesh Groups

The mesh group is an organizational concept used by Direct3D immediate mode. A mesh
group consists of a collection of polygons. Each group can have its own material, color,
texture, and rendering quality. Groups have no names and are not supported in retained
mode.

Faces

If a face is a polygon, and a mesh is a collection of faces, then building a mesh consists of
building the individual faces of which it is composed. Each face is a set of vertices. If the
face is a triangle, then it is defined by three vertices. A front face is one in which vertices
are defined in clockwise order. Figure 32–6 shows the front face of a triangular polygon
in the Direct3D’s left-handed coordinate plane.

Figure 32–6 Front Face of a
Triangular Polygon

Each face has a normal vector, perpendicular to the face. If the normal vector of a face
is oriented toward the viewer, that side of the face is its front. In Direct3D, only the front
side of a face is visible. For this reason, if the vertices of the polygon in Figure 32–7 had
been defined in counterclockwise order, the polygon's face would not be visible at
rendering time. Face normals are used in Direct3D flat shading mode. Vertex normals are
used in Phong and Gouraud shading. Figure 32–7 shows the face and vertex normals of a
pyramidal object modeled with triangular polygons.

The pc graphics handbook 1040

Figure 32–7 Vertex Normals and Face
Normals in a Pyramid

32.3.2 Shading Modes

Direct3D documents three shading modes: flat, Gouraud, and Phong shading, but Phong
is not currently supported. These shading algorithms were described in Chapter 4. In the
flat shading mode the color of the first vertex of the polygon is duplicated across all the
pixels on the object's faces. The result is that each face is rendered in a single color. Often
the only way of improving the rendering is by increasing the number of polygons, which
can be computationally expensive. An improvement to flat shading is called interpolative
or incremental shading. In this case each polygon is rendered in more than one shade by
interpolating, for the polygon interior points, the values calculated for the vertices or the
edges. This type of shading algorithm is capable of producing a more satisfactory shade
rendering with a smaller number of polygons. Direct3D describes two incremental
shading methods, called Gouraud and Phong shading. Phong is not yet supported.

In the Gouraud and Phong shade modes, vertex normals are used to give a more
satisfactory appearance to a polygonal object. In Gouraud shading, the color and intensity
of the polygon edges are interpolated across the polygon face (see Figure 4–30). In Phong
shading, the system calculates the appropriate shade value for each pixel. Because
Gouraud shading is based on the intensity at the edges, it is possible to completely miss a
highlight or a spotlight that is contained within a face. Figure 32–8 shows two possible
cases in which Gouraud shading renders erroneously.

Direct3d fundamentals 1041

Figure 32–8 Error in Gouraud
Rendering

Phong shading is the most effective shading algorithm in use today. This method,
developed by Phong Bui-Toung is also called normal-vector interpolation. It is based on
calculating pixel intensities by means of the approximated normal vector at each pixel
point in the polygon. Phong shading improves the rendering of bright points and
highlights that are misrendered in Gouraud shading. The one objection to Phong shading
is that it takes considerably longer than Gouraud shading.

Interpolation of Triangle Attributes

At rendering time Direct3D interpolates the attributes of a triangle's vertices across the
triangle face. Color, specular reflection, fog, and alpha blending attributes are
interpolated. In interpolation the attributes are modified according to the current shade
mode, as previously described. The interpolation of color and specular attributes depends
on the color model. In the RGB model the red, green, and blue color components are used
in the interpolation. In the monochromatic model only the blue component of the vertex
color is taken into account. The alpha component of a color is treated as a separate
interpolant. This is because device drivers can implement transparency in two different
ways: by texture blending or by stippling.

32.3.3 Z-Buffers

One of the problems encountered by the renderer concerns the display of overlapping
polygons. Figure 32–9, on the following page, shows three triangles located between the

The pc graphics handbook 1042

viewer and the display buffer. In this case the question is whether the pixel should be
rendered as dark gray, white, or light gray. The answer is obviously dark gray because the
dark gray polygon is the one closest to the viewer.

Figure 32–9 Rendering Overlapping
Triangles

Several algorithms have been developed for eliminating hidden surfaces at rendering
time. One of the best known, attributed to Catmull, is called the z-buffer or depth buffer
method. Because of its simplicity of implementation and relative efficiency it has become
popular in 3D graphics.

Direct3D supports the z-buffer method for solving the so-called "polygon-on-top"
problem. In Direct3D the z-buffer is a rather large block of memory where the depth
value for each screen pixel is stored. Initially the depth value for a pixel is that of the
background. As each polygon is rendered, its depth value is examined. This is the z-
order. If its depth value is less than the one in the z-buffer, then the pixel is rendered with
the polygon’s attribute. Otherwise it is ignored.

In Direct3D z-buffering can be turned on and off. The general rule is that z-buffering
improves performance when a screen pixel is set several times in succession. The average
number of times a pixel is written to is called the scene overdraw. Although overdraw is
difficult to calculate exactly, it is possible to estimate it. If the scene overdraw is less than
2, then best performance is achieved by turning z-buffering off.

32.3.4 Lights

Earlier in this chapter we discussed the lighting module in Direct3D as well as the RGB
and ramp color models. In processing lights the lighting module uses information about
the light source, and the normal vectors of the polygon vertices, to determine how to
render the light source in each pixel.

Direct3d fundamentals 1043

The vertex normals are calculated from the face normals of the triangles adjacent to
that vertex. Face normals are perpendicular to the polygon face, as shown in Figure 32–
10, on the following page. The angle between the vertex normals and the light source
determines how much light intensity and color are applied to the vertex. The
mathematical calculations are performed by the lighting module.

Figure 32–10 Calculating the Vertex
Normals

Lighting effects are used to improve the visual quality of a scene. Applications can attach
lights to a frame to represent a light source in a scene. In this case the attached light
illuminates the objects in the scene. The position and orientation for the light is defined in
the frame. Code can move and redirect a light source simply by moving and reorienting
the frame to which the light is attached.

Retained mode supports five types of light sources:

• ambient
• directional
• parallel point
• point
• spotlight

Ambient Light

An ambient light source illuminates the entire scene, regardless of the orientation,
position, and surface characteristics of the objects. All objects are illuminated with equal
strength, therefore the position and orientation of the containing frame is inconsequential.
Multiple ambient light sources can be combined within a scene.

The pc graphics handbook 1044

Directional Light

A directional light source has a specific orientation, but no position. The light appears to
illuminate all objects with equal intensity, as if it were at an infinite distance from the
objects. Directional lighting is often used to simulate distant light sources, such as the
sun. It provides maximum rendering speed.

Parallel Pint Light

The parallel point light can be considered a variation of direction light. In this case the
orientation of the light is determined by the position of the light source. Whereas a di-
rectional light source has orientation, but no position, a parallel point light source has
orientation and position. The parallel point light source has similar rendering-speed
performance to the directional source.

Point Light

A point light source radiates light equally in all directions. This makes it necessary to
calculate a new lighting vector for every face it illuminates, which makes the method
more computationally expensive than a parallel point light source. One advantage of the
point light source is that it produces a more faithful lighting effect. When visual fidelity is
a concern, a point light source is the best option.

Spotlight

A spotlight is a cone-shaped light source with the light at the cone’s vertex. Objects
within the cone are illuminated. The cone produces light of two degrees of intensity, with
a central brightly lit section called the umbra, and a surrounding dimly lit section called
the penumbra. In Direct3D the angles of the umbra and penumbra can be individually
specified. Figure 32–11 shows the umbra and the penumbra in spotlight illumination.

Direct3d fundamentals 1045

Figure 32–11 Umbra and Penumbra
in Spotlight Illumination

32.3.5 Textures

A texture is an image, usually encoded in a 2D bitmap that can be applied to the face of a
polygon to improve its visual quality. Color Figure 14 is a coffee cup to which a red
marble texture has been applied.

Textures are usually stored in standard file formats, most commonly as a Windows
bitmap, PCX or GIF. Although any image can be used as a texture, not all images make
good textures. Textures can be scaled at the time they are applied. Each element of a
texture is called a textel, which is a composite of the words texture and pixel.

In its simplest implementation, sometimes called point mapping, the rendering
software looks up each pixel in a texture map and applies it to the corresponding screen
pixel. In most cases point sampling produces coarse effects that are unnatural and
disturbing to the viewer. Satisfactory texturing requires that the distance between the
object and the viewer be taken into account at the time of applying the texture, in other
words, that the texture be rendered perspectively.

The bilinear filtering method of texture rendering uses the weighted average of four
texture pixels. This results in more pleasant textures than those that result from point
mapping.

Direct3D supports five texture-rendering styles:

• Decals
• Texture colors
• Mipmaps
• Texture filters and blends
• Texture transparency

The pc graphics handbook 1046

Decals

A decal is a texture applied directly to a scene. Decals are not rendered on a polygon
face, but as an independent object. They are rectangular in shape, the rectangle facing the
viewport, and they grow and shrink according to their distance from the viewer. The fact
that decals always appear facing the viewer considerably limits their usefulness.

The origin point of a decal is defined as an offset from the top-left corner of the
containing rectangle. The default origin is (0, 0). In Direct3D an application can set and
retrieve the origin of a decal. When the decal is rendered, its origin is aligned with its
frame’s position.

Texture colors

Direct3D code in retained mode can set and retrieve the number of colors that are used to
render a texture. Applications that use the RGB color model can encode textures in 8-,
24-, and 32-bit formats. In the ramp color model textures are represented in 8 bits.
However, code that uses the ramp model should be careful regarding the number of
texture colors. In this mode each color requires its own lookup table. If an application
uses hundreds of colors, the system must allocate and manipulate as many lookup tables.

Mipmaps

The term mipmap originates in the Latin expression multum in parvo, which can be
translated literally as many in few or many objects in a small space. This texture-
rendering method, sometimes referred to as MIP maps, was described by L.Williams in
1983 and has since gained considerable favor.

In Direct3D a mipmap is a set of textures representing the same image at progressively
lower resolutions. Each image in the set is one-quarter the size of the preced-ing one,
which makes the entire mipmap take up 4/3 the memory of the original image.
Mipmapping provides a computationally efficient way of improving the quality of
rendered textures. Each scaled image in the mipmap is called a level. The image at level 0
is at the same resolution as the original. Figure 32–12 is a diagram of the mipmap
structure.

Direct3d fundamentals 1047

Figure 32–12 Mipmap Structure

Mipmaps are created by the DirectDraw interface. Each mipmap level contains its own
front and back surfaces, which can be flipped in the conventional manner. When the
mipmap is created, code defines the number of levels, as well as the dimensions of the
level 0 mipmap. Figure 32–13 shows the DirectDraw structure of a mipmap consisting of
4 levels. In the DirectDraw implementation of mipmaps, each level consists of a front and
a back surface. As is the case with all mipmaps, successive levels have one-half the
resolution of the preceding one, and one-quarter the size.

Figure 32–13 Example of a
DirectDraw Mipmap

The pc graphics handbook 1048

Texture Filters and Blends

The elements of a texture (texels) rarely correspond to individual pixels in the original
image. Texture filtering is used to specify how to interpolate texels to pixels.

Direct3D supports six texture-filtering modes. They are:

• Nearest
• Linear
• Mip-nearest
• Mip-linear
• Linear-mip-nearest
• Linear-mip-linear

The nearest mode uses the texel with coordinates nearest to the desired pixel value. The
result is a point filter with no mipmapping. The linear mode uses a weighted average of
an area of 2-by-2 texels surrounding the desired pixel. This is equivalent to bilinear
filtering with no mipmapping. In the mip-nearest mode the closest mipmap level is
chosen and a point filter is applied. In the mip-linear mode the closest mipmap level is
chosen and a bilinear filter is applied. The linear-mip-nearest mode uses the two closest
mipmap levels, and a linear blend is used between point filtered samples of each level. In
the linear-mip-linear mode the two closest mipmap levels are chosen and then combined
using a bilinear filter.

Texture blending consists of combining the colors of a texture with the colors of the
surface to which the texture is applied. If done correctly, the result is a translucent
surface. Because texture blending can result in unexpected colors, the color white is often
used for the material texture. There are a total of seven texture blending modes:

• Decal
• Modulate
• Decal-alpha
• Modulate-alpha
• Decal-mask
• Copy
• Add

Texture Transparency

Direct3D contains methods to directly produce transparent textures. In addition,
immediate mode programs can take advantage of DirectDraw support for color keys to
achieve transparency. By selecting a color key that contains a color or color range in the
texture, the material's color will show through the texture areas within the color key
range. The result is a transparent texture.

Direct3d fundamentals 1049

Wraps

In Direct3D a wrap is a way of applying a texture to a face or mesh. Four kinds of wraps
are available:

• Flat
• Cylindrical
• Spherical
• Chrome

The flat wrap conforms to the faces of an object. The effect is sometimes compared to
stretching a piece of rubber over the object. The cylindrical wrap treats the texture as if it
were a sheet of paper wrapped around a cylinder. The left edge of the texture rectangle is
joined to the right edge. The object is then placed in the middle of the cylinder and the
texture is deformed inward onto the surface of the object. The spherical wrap is similar to
the cylindrical wraps, but in this case the wrapping form is a sphere, instead of a cylinder.
A chrome wrap allocates texture coordinates so that the texture appears to be reflected
onto the objects. The chrome wrap takes the reference frame position and uses the vertex
normals in the mesh to calculate reflected vectors, which are based on an imaginary
sphere that surrounds the mesh. The resulting effect is that of the mesh reflecting
whatever is wrapped on the sphere.

Texture wrapping is a complex procedure in which a two-dimensional surface is
deformed to cover the surface of a three-dimensional object. The above analogies are
coarse simplifications that do not take into account many of the complexities of
wrapping. In practice, the results of wrapping operations are often different from what
was expected. This has led some to believe that, in most cases, the complications do not
justify the results. The reader interested in the more specific details on texture wrapping
can refer to the article Texture Wrapping Simplified by Peter Donnelly that appears in
Microsoft Developers Network documentation. The article includes a demonstration
program for experimenting with texture wrapping operations.

32.3.6 Materials

Direct3D provides support for an object property called a material. A material determines
how a surface reflects light. It has two components: an emissive property and a specular
property. The emissive property determines whether the material emits light. This
property is useful in modeling lamps, neon signs, or other light-emitting objects. The
specular property determines if and how the material reflects light.

Code controls the emission property of a material by defining the red, green, and blue
values for the emissive color. The specular property is also defined by the red, green, and
blue values of the reflected light and by a power setting. The default specular color is
white, but code can change it to any desired RGB value. The power setting determines
the size, and consequently the sharpness, of the reflected highlights. A small highlight
makes an object appear shiny or metallic. A large highlight gives a plastic appearance.

The pc graphics handbook 1050

32.3.7 User Visuals

A user-visual object is an application-defined data structure that can be added to a scene
and rendered, typically by means of a customized rendering module. For example, an
application can add sound as a user-visual object in a scene, and then render the sound
during playback. A user-visual object has no methods, but it does have a callback
function that will be called by the renderer. The callback function is called twice: when
the object is rendered and when the object is told to render itself. This property makes it
possible for applications that execute in retained mode to use the user-visual mechanism
to provide a hook into Direct3D immediate mode.

32.3.8 Viewports

The viewport contains a camera reference frame that determines which scene is to be
rendered, as well as the viewing position and direction. Rendering takes place along the
z-axis of the camera frame, assuming the conventional Direct3D Cartesian plane with the
positive y-axis in the upward direction and the positive x-axis toward the right.

Viewing Frustum

What the camera sees from the vantage point of a particular frame is called the viewing
frustum. The viewport uses a frame object as a camera. In the perspective viewing mode,
the viewing frustum is a truncated pyramid with its apex at the camera position. The
camera's viewing axis runs from the pyramid's apex to the center of the base, as shown in
Figure 32–14.

Figure 32–14 The Viewing Frustum

Direct3d fundamentals 1051

If we assume that the front clipping plane is at a distance D from the camera, and the
back clipping plane is at a distance F from the front clipping plane, then the viewing
angle A is determined by the formula

where h is one-half the height of the front clipping plane, if it is square. If the clipping
plane is rectangular, then h is one half the height or the width of the front clipping plane,
whichever is larger. The parameter h defines the field of view of the viewport. The above
formula can be used to calculate the value of h for a specific camera angle. Figure 32–15
shows the viewport parameters.

Figure 32–15 Viewport Parameters

Direct3D retained mode applications can set or retrieve the front and the back clipping
planes, set the camera frame, as well as the viewport's field of view as defined by the
parameter h in Figure 32–15. Direct3D supports two projection types: perspective and
orthographic.

Transformations

In the context of Direct3D viewports, transformations are used to convert between screen
and world coordinates. Direct3D transformations are based on homogenous coordinates
as described in Chapter 3. The projection matrix, which is a combination of a scaling and
a translation transformation, produces a four-element homogenous coordinate [x y z w].
The three-element homogeneous coordinates are derived by performing x/w, y/w, and
z/w operations, where x/w and y/w are the coordinates to be used in the window and z/w
is the depth. The depth ranges from 0 at the front clipping plane to 1 at the back clipping
plane. The projection matrix is defined as follows:

The pc graphics handbook 1052

In the above matrix the parameters h and D are as in Figure 32–15.

Picking

Direct3D supports the selection of an object by specifying its location in the viewport.
This operation, called picking, is typically based on the position of the mouse cursor.
Picking is accurate to the pixel; therefore it can be used in precise object selection by
technical applications. The drawback of the picking operation is that it involves
considerable processing, which may introduce a visible delay in the rendering.

To pick an object, code passes the x and y screen coordinates to the corresponding
method. Usually these coordinates are those of the mouse cursor at the time of the pick
action. The pick function returns either the closest object in the scene, or a depth-sorted
list, called the picked array, of the objects found at that location.

32.3.9 Animations and Animations Sets

In retained mode an animation provides a mechanism for adding behavior to a 3D scene.
An animation set consists of one or more animations and a time reference.

An animation is defined by a set of keys, which consists of a time value, an associated
scaling operation, an orientation, or a position. A Direct3D animation object defines how
a transformation is modified according to the time value. The animation can be set to
animate the position, orientation, and scaling of visuals, lights, or viewport objects.

Applications can define position keys, rotation keys, and scale keys in the animation.
Each key references a time value in zero-based arbitrary units. For example, if an
application adds a position key with a time value of 99, a new position key with a time
value of 49 would occur halfway between the beginning of the animation and the first
position key. An animation is driven by calling a method that sets its time component.
This call sets the visual object's transformation to the interpolated position, orientation,
and scale of the nearby keys. As with the methods that add animation keys, the time value
is arbitrary and based on the positions of keys that the application has already added.
Rotation keys in an animation are based on quaternions. Quaternions, a mathematical
structure that facilitates rotation transformations, are discussed later in this chapter.

A Direct3D animation set allows animation objects to be grouped together. The result
is that all the animations in the set share the same time parameter, which sim-plifies the
playback of complex sequences. Applications can add and remove animations to and
from an animation set.

Direct3d fundamentals 1053

32.3.10 Quaternions

Direct3D retained mode supports a mathematical structure called a quaternion that has
found use in 3D animation. The quaternion is described as an extension to complex
numbers that describes both an orientation and a rotation in 3D space. In Direct3D the
quaternion consists of a vector that provides the orientation component and a scalar, that
defines the rotation component. This can be expressed as

q=(s, v)

where s is the rotation scalar of the quaternion and v is the orientation vector.
Quaternions provide a fast alternative to the matrix operations that are typically used

for 3D rotations. The quaternion can be visualized as an axis in 3D space, represented by
a vector, and a rotation around that axis, represented by a scalar, as shown in Figure 32–
16.

Figure 32–16 Vector/Scalar
Interpretation of the Quaternion

Two fundamental operations can be performed on quaternions: composition and
interpolation. Composition consists of combining quaternions. For example, the
composition of two quaternions, q1 and q2, in reference to an object in 3D space, is
interpreted to mean: rotate the object on the specified axis, by the rotation contained in
quaternion q1, and then rotate the object on the specified axis by the rotation contained in
quaternion q2. Quaternion interpolation is used to calculate a smooth path from one axis
and orientation to another.

A common problem in computer animation is the generation of in-between frames that
are necessary to simulate the smooth movement of an object from one position to another
one. For example, Figure 32–25 shows images of an F-111 jet. The images at the top,
called the key frames, represent the initial and final position of the aircraft in a planned
animation. To simulate this movement, it is necessary to generate a set of in-between
images that produce a smooth transition from the start frame to the end frame. Part of this
image set, usually called the in-betweens, are shown in the lower part of Figure 32–17.

The pc graphics handbook 1054

Figure 32–17 In-Between Frames in
Animation

Rendering the in-between frames in the case of Figure 32–17 consists of performing
several rotations on the image data for the F-111 aircraft. Aircraft dynamics uses three
angles: the yaw refers to the vertical axis, the pitch to a horizontal axis through the wings,
and the roll through the fuselage axis. These angles are shown in Figure 32–18.

Figure 32–18 Aircraft Dynamic
Angles

Generating the animation image set in Figure 32–18 requires rotating the aircraft along
its yaw, pitch, and roll angles. Traditionally, rotations of 3D models have been by means

Direct3d fundamentals 1055

of independent coordinates called Euler angles. This approach, although feasible, is
computationally expensive because the composite rotation is based on three individual
rotations along the axes.

Quaternions provide a way of changing the orientation of the aircraft by performing a
single rotation, that is a composite of the three primary ones along the yaw, pitch, and roll
angles. This is achieved by using composition and interpolation together. A composition
is first used to go from the original to the final frame. The smooth transition from the start
frame to the end frame is then achieved through interpolation. In Direct3D programming
code determines an angle, called the slerp value, that defines the position for the
intermediate quaternion between two vectors. For example, a slerp value of 0.5 creates a
quaternion that is midway between the two input quaternions. The quaternion method
provides a much simpler and computationally faster approach to calculating in-between
images for animation.

32.4 Direct3D File Formats

The information that defines a 3D object must be stored in a special file format. You
cannot use the conventional BMP, GIF, or TIFF file types developed for 2D bitmaps for a
3D image, although a 3D application may be capable of rendering a particular vie w of a
3D object into one of the 2D file formats. Several 3D formats have been developed for
the PC; in fact, it seems that every 3D drawing program supports its own proprietary
format. What is worse, file conversion utilities that are relatively abundant for 2D
imagery are difficult to develop for the 3D formats and, consequently, not always
available.

Some of the 3D file formats have gained some level of prominence, usually
proportional to the muscle of its corporate sponsors. One of the first PC programs that
effectively used 3D was AutoCAD, a computer-assisted design application that enjoys a
lion’s share of this market. The .dxf file format was designed by AutoCAD primarily for
the CAD environment. Its image handling capabilities are confined to 3D faces and
polylines, which makes it quite crude for 3D modeling and authoring applications.
However, these limitations also imply an inherent simplicity and ease of implementation,
which have made the .dxf format quite popular. In many cases the only way of moving
image data between two 3D applications is by means of a .dxf file, although the results
usually leave much to be desired.

One of the leading 3D image editing programs is 3D Studio. The current version is
named 3D Studio MAX. The native file format for 3D Studio, named .3ds, comes close
to being the industry standard at the present time. Microsoft recognized this hegemony by
providing a utility, named conv3ds, that converts 3ds files into the format supported by
Direct3D.

Direct3D supports a single file format called .x. It is used to store objects, meshes,
textures, and animation sets. It also supports animation sets, which allow playback in
real-time. The .x format supports multiple references to a single object (such as a mesh)
while storing the data for the object only once per file. Earlier ver-sions of Direct3D used
a file format named .xof, which is now considered obsolete. Direct3D retained mode uses

The pc graphics handbook 1056

the .x format for loading objects into an application and for writing mesh information,
constructed by the application, in real-time.

34.4.1 Description

The DirectX file format is a template-driven structure that allows the storage of user-
defined object, meshes, textures, animations, and animation sets. The format supports
multiple references to an object, such as a mesh. Multiple references allow storing data
only once per file. The format provides low-level data primitives as well as application-
defined higher level primitives via templates. The higher level primitives include vectors,
meshes, matrices and colors.

34.4.2 File Format Architecture

The DirectX file format is context-free. Its template-driven architecture does not depend
on any usage knowledge. The format is used in Direct3D retained mode to describe
geometry data, frame hierarchies and animations.

Reserved Words

The following words are reserved for use by the DirectX format:

• ARRAY
• BYTE
• CHAR
• CSTRING
• DOUBLE
• DWORD
• FLOAT
• STRING
• TEMPLATE
• UCHAR
• UNICODE
• WORD

Header

The variable length header, which is compulsory, must be located at the beginning of the
data stream. Table 32–1, on the following page, lists the elements in the DirectX file
header. For example, the header

xof 0302txt

corresponds to a file in text format. The code "xof" refers to the old extension for the .x
format and, when found in the header, indicates an .x file. The digits 0302 correspond to

Direct3d fundamentals 1057

the .x format version number, in this case 3.2. The digits 64 indicate that floating-point
numbers are encoded in 64-bit. Because no compression code is listed, the file is not
compressed.

The header

xof 0302bin 0032

corresponds to an .x file in binary format, version 3.2, in which floating-point numbers
are encoded in 32-bits, uncompressed.

Table 32–1
DirectX File Header

TYPE SUB TYPE SIZE CONTENTS CONTENT MEANING
Magic number (required)
 4 bytes "xof"
Version number (required)
 Major number 2 bytes 03 Major version 3
 Minor number 2 bytes 02 Minor version 2
Format type (required)
 4 bytes "txt" Text file
 "bin" Binary file
 "com" Compressed file Compression type: required
If format is compressed
 4 bytes "lzw"
 "zip" etc…
Float size (required)
 4 bytes 0064 64-bit floats
 0032 32-bit floats

Comments

Comments, which are only applicable in text files, may occur anywhere in the data
stream. A comment begins with either double slashes "//", or a hash character "#". The
comment runs to the next newline.

This is a comment.
// This is also a comment.

Templates

Templates are the basic element of the .x file format. A template contains no data but
defines the type and order of the data objects in the file. A template is similar to a
structure definition. The general template format is as follows:

The pc graphics handbook 1058

template <template-name> {
<UUID>
<member 1>;
<member 2>;
…
<member n>;
[open/close/restricted]
[…]
}

The template name is a string that must not begin with a digit. The underscore character
is allowed. UUID is the Windows universally unique identifier in OSF DCE format. The
UUID is surrounded by angle brackets. The template members describe the data elements
to which the template refers. The member format is as follows:

<data-type> <name>;

The primitive data types are listed in Table 32–2.

Table 32–2
Primitive Data Types for the .x File Format
TYPE SIZE
WORD 16 bits
DWORD 32 bits
FLOAT IEEE float
DOUBLE 64 bits
CHAR 8 bits
UCHAR 8 bits
BYTE 8 bits
STRING NULL terminated string
CSTRING Formatted C-string (currently unsupported)
UNICODE Unicode string (currently unsupported)

The template can contain any valid data type as an array. In this case the syntax is

array <data-type> <name>[<dimension-size>] ;

where <dimension-size> can be either an integer or a named reference to another
template member whose value is then substituted. Arrays may be n-dimensional. In this
case n is determined by the number of paired square brackets trailing the statement. For
example:

array DWORD FixedArray[24];
array DWORD VariableArray[nElements];
array FLOAT Matrix8x8[8][8];

Direct3d fundamentals 1059

Templates may be open, closed, or restricted. These elements determine which data types
may appear in the immediate hierarchy of a data object. An open template has no
restrictions, a closed template rejects all data types, and a restricted template allows a
named list of data types.

Data

The actual data of the .x file is contained in the data objects. Data objects are formatted as
follows:

<Identifier> [name] {
<member 1>;
...
<member n>;
}

The Identifier element is compulsory and must match a previously defined data type or
primitive. The name element is optional. The data members can be a data object, which
can be nested, a data reference to a previous data object, an integer, float, or string list, in
which the individual elements are separated by semicolons.

Retained mode templates

The following templates are used by Direct3D retained mode:

• Template Name: Header
• Template Name: Vector
• Template Name: Coords2d
• Template Name: Quaternion
• Template Name: Matrix4x4
• Template Name: ColorRGBA
• Template Name: ColorRGB
• Template Name: Indexed Color
• Template Name: Boolean
• Template Name: Boolean2d
• Template Name: Material
• Template Name: TextureFilename
• Template Name: MeshFace
• Template Name: MeshFaceWraps
• Template Name: MeshTextureCoords
• Template Name: MeshNormals
• Template Name: MeshVertexColors
• Template Name: MeshMaterialList
• Template Name: Mesh
• Template Name: FrameTransformMatrix
• Template Name: Frame

The pc graphics handbook 1060

• Template Name: FloatKeys
• Template Name: TimedFloatKeys
• Template Name: AnimationKey
• Template Name: AnimationOptions
• Template Name: Animation
• Template Name: AnimationSet

Direct3d fundamentals 1061

Chapter 33
Direct3D Programming

Topics:

• Creating a Direct3D program
• Creating the objects
• Building the scene
• Rendering the scene
• Direct3D retained mode sample program
• Windowed retained mode coding template

We introduce Direct3D retained mode by developing a simple, windowed mode
application. In order to make clear the fundamentals of retained mode programming we
have stripped off everything that is not essential. The result is that the processing
described at this stage has minimal functionality: all we do in the code is render a static
image from a file in DirectX format. The code executes by performing four clearly
distinct steps:

• Initializing the software interface. That is, creating the Direct3D and DirectDraw
components that are necessary to the program.

• Creating the objects. This implies creating the frames, meshes, lights, materials, and
other object that serve as parts of the scene.

• Building the scene from the individual component objects.
• Rendering the scene. In this step the viewport is cleared and the frame is rendered.

Each of these steps is explained in detail and packaged in its own function. All of the
coding comes together in the sample project 3DRM InWin Demo1 which is furnished in
the book's software package. We also include in this chapter a coding template for
windowed retained mode programming.

33.1 Initializing the Software Interface

Direct3D, as its parent DirectX, uses the Component Object Model (COM) interface
specification defined by Microsoft. COM is a standard for a component-based archi-
tecture that aims at being language independent, reusable, upgradable, and transparent to
application code. Whether you like or dislike COM, in Direct3D programming you have
no other option than to use it.

33.1.1 The IUnknown Interface

COM interfaces are derived from a general interface called IUnknown. All other COM
interfaces inherit from IUnknown, therefore IUnknown methods are always
polymorphically visible to COM client code. This means that any object instantiated as a
COM object has access to the methods of IUnknown. There are three relevant methods in
IUnknown:

• The QueryInterface() method interrogates the object about the features it supports. If the
call is successful, it returns a pointer to the interface.

• AddRef() increments the object's reference count by 1 when an interface or another
application binds itself to the object. Application code rarely uses this function.

• Release() decrements the object's reference count by 1. When the count reaches 0, the
object is deallocated.

The reference count is a memory management technique that enables components to self-
destroy. It is based on keeping a tally of the number of interfaces allocated to a COM
object. Each time an interface is allocated, the reference count is incremented. When
client code is finished using an interface it decrements the reference count by calling the
Release() method. If at any time the reference count goes to zero, the interface object
deletes itself. The AddRef() method is normally called by the function, while the
Release() method is called by your code. When QueryInterface() successfully returns a
pointer to an interface, it implicitly calls AddRef to increment the reference count. This
means that your application must call the Release() method before destroying the pointer
to the interface.

33.1.2 Direct3DRM Object

The word "object" in the context of Direct3D is not directly related to object orientation.
When you hear the word object in the context of Direct3D you should not interpret it as
an "instance of a class," but in its generic and more conventional sense. Textures,
cameras, viewports, meshes, and many other elements of Direct3D are loosely refered to
as "objects". The common superclass of all these objects is the Direct3DRMObject.
Direct3DRMObject is instantiated as a COM object and can, therefore, access the
methods of the IUnknown interface.

Before an application can create the Direct3DRNObject it must first instantiate a
Direct3D retained mode object. This is achieved by calling Direct3DRMCreate(). The
function’s general form is as follows:

HRESULT Direct3DRMCreate(
 LPIRECT3DRM FAR * lplpD3DRM // Address of
interface
);

Direct3d programming 1063

The function returns D3DRM_OK if it succeeds. In this case the pointer is valid and can
be used to access the interface. Any other return value indicates that the function failed
and that the pointer is invalid.

33.1.3 Calling QueryInterface()

The pointer returned by Direct3DRMCreate() is a COM object and can therefore access
the IUnknown methods. Of these methods, QueryInterface() is the one usually called
first, since it provides information regarding whether a particular COM interface is
supported. The function’s general form is as follows:

HRESULT QueryInterface(
 REFIID riid, // 1
 LPVOID* obp // 2
);

The first parameter is the reference to the unique identifier for the particular interface. It
is sometimes called the interface identifier, or IID. In DirectX programming this
parameter is passed to the call as a predefined constant. For example, in the DD Info
Demo program developed previously, we used cascaded calls to QueryInterface() using
different IIDs in order to determine the most recent version of DirectDraw supported by
the system. Code is as follows:

DDConnect = DirectDrawCreate (NULL,
 &lpDD0,
 NULL);
// Store pointer and continue if call succeeded
if(DDConnect == DD_OK) {
 DDLevel = 1; // Store level
 lpDD = lpDD0; // copy pointer
// Query the interface to determine most recent version
 DDConnect = lpDD0->QueryInterface(
 IID_IDirectDraw2,
 LPVOID *)
&lpDD2);
}
if(DDConnect == S_OK){
 DDLevel = 2; // Update level
 lpDD0->Release(); // Release old pointer
 lpDD = lpDD2;
 DDConnect = lpDD->QueryInterface(
 IID_IDirectDraw4,
 (LPVOID *)
&lpDD4);
}
if(DDConnect == S_OK){
 DDLevel = 4; // Update level
 lpDD2->Release(); // Release old pointer
 lpDD = lpDD4;

The pc graphics handbook 1064

}

Notice that in the above code the call to QueryInterface() is first made with the identifier
IID_IDirectDraw2, then with IID_IDirectDraw4, to determine if either of these newer
version of DirectDraw is available. In this case the call Returns S_OK if it succeeeds. If it
fails QueryInterface returns E_NOINTERFACE or one of the following interface-
specific error values listed in Table 33–1.

Table 33–1
Interface-Specific Error Values Returned by
Queryinterface()

DIRECTX INTERFACE RETURNS (COMMENT)
DirectDraw DDERR_INVALIDOBJECT
 DDERR_INVALIDPARAMS
 DDERR_OUTOFMEMORY(IDirectDrawSurface2 only
DirectSound DSERR_GENERIC (IDirectSound and IDirectSoundBuffer only)
 DSERR_INVALIDPARAM
DirectPlay DPERR_INVALIDOBJECT
 DPERR_INVALIDPARAMS
Direct3D Retained Mode D3DRM_OK (No error)
 DRMERR_BADALLOC (Out of memory)
 D3DRMERR_BADDEVICE (Device not compatible)
 D3DRMERR_BADFILE
 D3DRMERR_BADMAJORVERSION
 D3DRMERR_BADMINORVERSION
 D3DRMERR_BADOBJECT
 D3DRMERR_BADTYPE
 D3DRMERR_BADVALUE
 D3DRMERR_FACEUSED (Face already used in a mesh)
 D3DRMERR_FILENOTFOUND
 D3DRMERR_NOTFOUND (Object not found)
 D3DRMERR_UNABLETOEXECUTE

When the application is finished using the interface retrieved by a call to this method, it
must call the Release() method for that interface to free it.

The COM provides two macros, named SUCCEEDED and FAILED, which are
defined as follows:

#define SUCCEEDED(Status) ((HRESULT)(Status) >= 0)
#define FAILED(Status) ((HRESULT)(Status)<0)

These macros are a convenient way to check for the success or failure of any COM
function without having to deal with the specific error codes. We frequently use these
macros in our code samples.

Direct3d programming 1065

In Direct3D retained mode programs the call to QueryInterface() uses the
IID_IDirect3DRM identifier. The call requires a Direct3DRM object. Code usually
releases the object after the interface has been validated since there is not further use for
it. The following code fragment is from a function listed later in this chapter.

// Create the Direct3DRM object.
LPDIRECT3DRM pD3DRMTemp;
HRETURN retval;
…
retval = Direct3DRMCreate(&pD3DRMTemp);
if (retval != D3DRM_OK)
{
 // Display error message here
 return FALSE;
}
retval = pD3DRMTemp->QueryInterface(IID_IDirect3DRM3,
 (void **)&lpD3DRM)))
if(retval != D3DRM_OK)
{
 pD3DRMTemp->Release();
 // Display error message here
 return FALSE;
}
// Release the object
pD3DRMTemp->Release();

Creating the DirectDraw Clipper

We have mentioned that Direct3D is closely related to DirectDraw and uses much of its
functionality. At this point we are interested in creating a DirectDraw clipper object that
will determine which portion of the 3D scene is visible on the viewport. In a windowed
mode application all we need to do is to create a DirectDraw clipper object and then to
assign to it our application window as the clipping plane.

The DirectDraw clipper that we need for Direct3D must not be owned by a
DirectDraw object. The DirectDraw API provide a function named
DirectDrawCreateClipper for this purpose. The resulting objects are known as driver-
independent DirectDrawClipper objects. Notice that the function
DirectDrawCreateClipper() is not equivalent to IDirectDraw::CreateClipper, which
creates a clipper owned by a specific DirectDraw object. The function’s general form is
as follows:

HRESULT DirectDrawCreateClipper(
 DWORD
dwFlags, // 1
 LPDIRECTDRAWCLIPPER FAR
*lplpDDClipper, // 2
 IUnknown FAR
*pUnkOuter // 3
);

The pc graphics handbook 1066

The first parameter is currently not implemented and must be set to zero. The second
parameter is the address of a pointer to be filled in with the address of the new
DirectDrawClipper object. The third parameter is provided for future COM features but
at the present time must be set to NULL. The function returns DD_OK if successful, or
one of the following error codes:

• DDERR_INVALIDPARAMS
• DDERR_OUTOFMEMORY

The object created by this function is not automatically released when an application's
objects are released. They should be explicitly released by application code, although
DirectDraw documentation states that they will be automatically released when the
application terminates.

33.1.4 The Clip List

In the context of Direct3D windowed applications a clip list is a series of rectangles that
delimit the visible areas of the surface. We have seen that a DirectDrawClipper object
can be attached to any surface and that a window handle can be attached to a
DirectDrawClipper object. In this case DirectDraw updates the DirectDrawClipper clip
list using the application window as a clipping plane. As the window changes, the clip list
is updated.

The call to DirectDrawCreateClipper() creates the clipper but does not define the clip
list. In order to do this, the application must use the pointer returned by
DirectDrawCreateClipper() to call SetHWnd(). The function’s general form is as follows:

HRESULT SetHWnd(
 DWORD dwFlags, // 1
 HWND hWnd // 2
);

The first parameter is currently not used and should be set to 0. The second parameter is
the handle to the window that will be used as a clipping place. The call returns DD_OK if
successful, or one of the following error codes:

• DDERR_INVALIDCLIPLIST
• DDERR_INVALIDOBJECT
• DDERR_INVALIDPARAMS
• DDERR_OUTOFMEMORY

The following code fragment creates a driver-independent DirectDrawClipper object and
then attaches to it the current window as a clipping plane.

HRESULT retval;
HWND hwnd;
. . .
// Create a DirectDrawClipper object
 retval = DirectDrawCreateClipper(0, &lpDDClipper,
NULL);

Direct3d programming 1067

 if (retval != DD_OK)
 {
 // Display error message here
 return FALSE;
 }
 // Attach the program Window as a clipper
 retval = lpDDClipper->SetHWnd(0, hwnd);
 if (retval != DD_OK)
 {
 // Display error message here
 return FALSE;
 }

33.1.5 InitD3D() Function

The function InitD3D() in the 3DRM InWin Demo1 project, included in the book's
software package, performs the processing operations described in this section. A slightly
modified version of this function is included in the retained mode windowed coding
template described later in this chapter. Follows a listing of this function.

//***

// Name: InitD3D()
// Description: Initialize Direct3D interface
//***

BOOL InitD3D(HWND hwnd)
{
 HRESULT retval; // Return value
 // Initialize the entire global variable structure
to zero.
 memset(&globVars, 0, sizeof(globVars));
 // Create the Direct3DRM object.
 LPDIRECT3DRM pD3DRMTemp;
 retval = Direct3DRMCreate(&pD3DRMTemp);
 if (FAILED(retval))
 {
 D3DError("Failed to create Direct3DRM.");
 return FALSE;
 }
 if(FAILED(pD3DRMTemp-
>QueryInterface(IID_IDirect3DRM3,
 (void **)&lpD3DRM)))
 {
 pD3DRMTemp->Release();
 D3DError("Direct3DRM3 interface not found");
 return FALSE;
 }
 pD3DRMTemp->Release();
 // Create DirectDrawClipper object

The pc graphics handbook 1068

 retval = DirectDrawCreateClipper(0, &lpDDClipper,
NULL);
 if (FAILED(retval))
 {
 D3DError("Failed to create DirectDrawClipper
object");
 return FALSE;
 }
 // Attach the program Window as a clipper
 retval = lpDDClipper->SetHWnd(0, hwnd);
 if (FAILED(retval))
 {
 D3DError("Failed to set the window handle");
 return FALSE;
 }
return TRUE;
}

33.2 Building the Objects

At this point in the code, the Direct3D retained mode, windowed application has
performed the necessary initializations and is ready to start building the scene. In order to
do this, code must first create the objects that are used in the scene. Before we tackle the
details of object building there are a few housekeeping chores that need to be discussed.

To create the objects, and later, the scene itself, we need the pointer to returned in the
second parameter to the QueryInterface() call discussed previously. In the code used in
this chapter the pointer is publicly defined as follows:

LPDIRECT3DRM3 lpD3DRM = NULL;

By giving the pointer public visibility we are able to use it from several functions without
having to pass it as a parameter in each call.

In addition to the basic Direct3D retained mode pointer (lpD3DRM) just mentioned,
we also need pointers to the specific objects and devices. For example, to load a file in
DirectX format into the scene we need to create a meshbuilder object using the
CreateMeshBuilder() function that is available in the IDirect3DRM interface. The pointer
of type LPDIRECT3DRM (stored in the named variable lpD3DRM in these examples)
provide access to the interface services in IDirect3DRM. The CreateMeshBuilder()
function takes as a parameter a variable of the type LPDIRECT3DMESHBUILDER3.
The returned pointer is then used to access the Load() method. Other Direct3D objects,
such as devices, scenes, cameras, lights, frames, materials, and meshes also require
pointers to their specific interfaces. In the code samples that follow we require the
following sub-set of interface-specific pointers:

• LPDIRECT3DRMDEVICE3
• LPDIRECT3DRMFRAME3
• LPDIRECT3DRMMESHBUILDER3

Direct3d programming 1069

• LPDIRECT3DRMLIGHT
• LPDIRECT3DRMMATERIAL2

Sometimes the same pointer type is used for referencing different types of objects, for
example, the type LPDIRECT3DRMFRAME3 is used to access a scene, a camera, a
light, and a child frame.

Whether to make this pointers globally visible or not is mostly a matter of
programming style. The most common guideline is that if the pointer will be required in
several functions then it should be public. The problem with this rule is that at the time
we are developing code it is often difficult to predict if a pointer will be required in other
functions. Our excuse for abusing public variables in the code samples presented in this
book excuse is that, today, wasting a few bytes of memory at runtime is not as important
an issue as it was in the memory-starved systems of a few years ago.

Direct3D retained mode applications frequently manipulate several objects, such as
frames, scenes, cameras, lights, and textures. In this case it is useful to create one or more
structures that define the individual pointers and variables and then instantiate structure
variables as required for different objects used in the code. An additional benefit of using
structures is that all the variables in the structure can be cleared simultaneously by means
of the memset buffer manipulation routine. The following global structure and variables
are used in the sample code listed in this chapter and in the 3DRM InWin Demo1
program in the book's software package.

// Global variables
struct _globVars
{
 LPDIRECT3DRMDEVICE3 aDevice; // Retained mode
device
 LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM
viewport
 LPDIRECT3DRMFRAME3 aScene; // Master frame
 LPDIRECT3DRMFRAME3 aCamera; // Camera frame
 BOOL isInitialized; // All D3DRM
objects
 // have been
 // been
initialized.
} globVars;
LPDIRECT3DRM3 lpD3DRM = NULL; // Direct3DRM
object manager
LPDIRECTDRAWCLIPPER lpDDClipper = NULL;
 //
DirectDrawClipper object
HWND hWnd;
char szXfile[] = "teapot.x"
; // File to load

Notice that the template _globVars includes a boolean variable that keeps track of the
application's initialization state, named isInitialized.

The pc graphics handbook 1070

In addition to global variables Direct3D applications often require local ones, typically
located inside the functions that perform object creation and scene building. As we will
see later in this chapter, the variables used in creating objects and building a scene can
have local lifetime, as long as the resulting master frame and its component object are
global. In our code the master frame is stored in the global structure variable
globVars.aScene, listed previously.

33.2.1 Creating the Objects

The following objects are needed to create a simple, Direct3D scene:

• A device
• A master scene frame
• A camera frame
• A viewport

The functions to be used in creating these object have in common that their names started
with the word "create", for example, CreateDeviceFromClipper(), CreateFrame(), and
CreateViewport. Once the objects are created they can be assembled into a master scene.
A global variable, in this case the structure variable isInitialized, is used to record the fact
that the master scene has been built.

Creating the Device

The term "device" in the context of Direct3D retained mode is equivalent to a "display
device." It can be visualized as the video memory area to which the scene is rendered. In
practice, a Direct3D device is always a DirectDraw surface. The viewport is a rectangular
area within the device. We should also note that neither the device nor the viewport are
equivalent to the video buffer, which is the area directly mapped to the display surface
and shown on the screen.

In Direct3D the size of a device is defined when it is created and cannot be changed.
In order to change the size of the device you must destroy the old device and create a new
one with different dimensions. In Direct3D you can create a device from Direct3D
objects, from a surface, or from a DirectDraw clipper. For the moment we will be
concerned with this last method.

Since the size of the device must be defined at the time it is created, code needs to
obtain the width and height of the client area. The GetClientRect() function can be used
for this purpose. When the call returns, the bottom member of the RECT structure
variable contains the height of the client area and the right member contains the width.

The CreateDevicFromClipper() function of IDirect3DRM2 interface allows creating a
device from a DirectDraw clipper object. Previously in this chapter we called
DirectDrawCreateClipper() and stored the resulting pointer in the variable lpDDClipper.
This variable is now needed to create the device. CreateDeviceFromClipper() has the
following general form:

HRESULT CreateDeviceFromClipper(

Direct3d programming 1071

 LPDIRECTDRAWCLIPPER lpDDClipper, //
1
 LPGUID lpGUID, //
2
 int width, //
3
 int height, //
4
 LPDIRECT3DRMDEVICE * lplpD3DRMDevice //
5
);

The first parameter is the address of the DirectDrawClipper object, mentioned in the
preceding paragraph. The second parameter is a globally unique identifier (GUID).
Normally, this parameter is set to NULL. This forces the system to search for a device
with a default set of capabilities. This is the recommended way to create a device in
retained mode programming, since the method always works, even if the user installs
new hardware. Parameters 3 and 4 refer to the width and height of the device and usually
correspond with the values obtained by the call to GetClientRect(). If the call succeeds,
the fifth parameter will be filled with the address of a pointer to an IDirect3DRMDevice
interface.

The call returns D3DRM_OK if successful, or an error otherwise.
The following code fragment shows creating a device using the

CreateDeviceFromClipper() function

HWND hwnd; // Handle to the window
HRESULT retval; // Return value
RECT rc; // Storage for viewport
dimensions
. . .
// Obtain size of client area
GetClientRect(hwnd, &rc);
retval = lpD3DRM->CreateDeviceFromClipper(lpDDClipper,
 NULL, // Default
device
 rc.right,
 rc.bottom,
 &globVars.aDevice);
if (FAILED(retval))
{
 // Display error message here
 return FALSE;

33.2.2 CreateObjects() Function

The function CreateObjects() in the 3DRM InWin Demo1 program, in the book's
software package, performs the processing operations discussed in this section. Following
is a code listing of this function.

The pc graphics handbook 1072

//***

// Name: CreateObjects()
// Description: Create the device and the scene objects
//***

BOOL CreateObjects(HWND hwnd)
{
 // Local variables
 HRESULT retval; // Return value
 RECT rc; // Bounding rectangle for main
window
 int width; // Device’s width
 int height; // Device’s height
 // Get client area dimensions
 GetClientRect(hwnd, &rc);
 // Create device from DirectDraw clipper
 retval = lpD3DRM-
>CreateDeviceFromClipper(lpDDClipper,
 NULL, // Default aDevice
 rc.right, rc.bottom,
 &globVars.aDevice);
 if (FAILED(retval))
 {
 D3DError("Failed to create the D3DRM device");
 return FALSE;
 }
 // Create the master scene
 retval = lpD3DRM->CreateFrame(NULL,
&globVars.aScene);
 if (FAILED(retval))
 {
 D3DError("Failed to create the master scene
frame")
 return FALSE;
 }
 // Create the camera frame
 retval = lpD3DRM->CreateFrame(globVars.aScene,
 &globVars.aCamera);
 if (FAILED(retval))
 {
 D3DError("Failed to create the camera frame");
 return FALSE;
 }
 // Create the Direct3DRM viewport using the device,
the
 // camera frame, and the device’s width and height.
 width = globVars.aDevice->GetWidth();
 height = globVars.aDevice->GetHeight();
 retval = lpD3DRM->CreateViewport(globVars.aDevice,
 globVars.aCamera,
0, 0

Direct3d programming 1073

 width, height,
 &globVars.aViewpor
t);
 if (FAILED(retval))
 {
 globVars.isInitialized = FALSE;
 globVars.aDevice->Release();
 return FALSE;
 }
 // Create the scene
 if (!BuildScene(globVars.aDevice, globVars.aScene,
 globVars.aCamera))
 return FALSE;
 // Record that global variables are initialized
 globVars.isInitialized = TRUE;
 return TRUE;
}

33.3 Master Scene Concepts

In Direct3D literature the notions of a scene and that of a frame sometimes overlap. A
frame may have a parent frame from which it inherits all its attributes, even dynamic
ones. For example, if a parent frame is rotating at a given rate, the resulting child frame
rotates identically. A scene, on the other hand, is described as a frame with no parent.
Some confusion results from the fact that you can create a scene (a frame with no parent)
and later on associate it with a parent frame, at which time is ceases to be a scene and
becomes a child frame. The CreateFrame() function of the IDirect3DRM2 interface is
used for creating both frames and scenes. The function’s general form is as follows:

HRESULT CreateFrame(
 LPDIRECT3DRMFRAME
lpD3DRMFrame, // 1
 LPDIRECT3DRMFRAME*
lplpD3DRMFrame // 2
);

The first parameter is the address of the frame that serves as a parent. If this parameter is
NULL, then a scene is created. The second parameter is the variable that will be filled
with a pointer to an IDirect3DRMFrame interface if the call succeeds.

The method returns D3DRM_OK if successful, or an error otherwise.
As previously discussed, we usually store the master scene in a global variable in

order to make it visible throughout the code. The following code fragment shows the
creation of a master scene.

// Create the master scene
retval = lpD3DRM->CreateFrame(NULL, &globVars.aScene);
if (FAILED(retval))
{

The pc graphics handbook 1074

 // Display error message here
 return FALSE;
}

Notice that using NULL for the first parameter in the call to CreateFrame() ensures that
the results are a scene, in other words, a frame with no parent.

33.3.1 The Camera Frame

In Direct3D retained mode the camera is implemented as a frame object. The camera
frame determines the viewing position and direction, since the viewport renders only
what is visible along the positive z-axis of the camera frame. In addition, the camera
frame determines which scene is rendered. Later in this chapter we will set the camera’s
position. For now, we need to create the camera frame, which we do by means of the
same CreateFrame() function that was used in creating the master scene in the previous
section. The one difference is that the camera frame is a child frame of the master scene.
Therefore, in this case, the first parameter passed to CreateFrame() refers to the master
scene, and the second one to the camera frame. The following code fragment shows the
processing.

// Create the camera frame
retval = lpD3DRM->CreateFrame(globVars.aScene,
 &globVars.aCamera);
if (FAILED(retval))
{
 // Display error message here
 return FALSE;
}

33.3.2 The Viewport

The viewport defines the rectangular area into which the scene is rendered. In this sense
the viewport can be described as a 2D construct that is used in rendering 3D objects. Here
again we should keep in mind that they viewport is not the video buffer, and that
rendering to the viewport does not display the image.

We have seen that the viewport uses the camera frame object to define which scene is
rendered as well as the viewing position and direction. A viewport is defined in terms of
its viewing frustum, as explained in Chapter 32. The viewport is created by calling the
CreateViewport() function of the IDirect3DRM interface. The function’s general from is
as follows:

HRESULT CreateViewport(
 LPDIRECT3DRMDEVICE
lpDev, // 1
 LPDIRECT3DRMFRAME
lpCamera, // 2

Direct3d programming 1075

 DWORD
dwXPos, // 3
 DWORD
dwYPos, // 4
 DWORD
dwWidth, // 5
 DWORD
dwHeight, // 6
 LPDIRECT3DRMVIEWPORT*
lplpD3DRMViewport // 7
);

The first parameter is the device on which the viewport is to be created. The second
parameter is the camera frame that defines the position and direction of the viewport.
Parameters 3 and 4 refer to the position of the viewport and parameters 5 and 6 to its
dimension. All of these are expressed in device coordinates.

If the call succeeds, parameter 7 is the variable that will be filled with a pointer to an
IDirect3DRMViewport interface. The call returns D3DRM_OK if successful, or an error
otherwise.

The position of the viewport relative to the device frame is specific to the application's
design and the proposed rendering operations. However, the size of the viewport must not
be greater than that of the physical device, otherwise the call to CreateViewport() fails.
To make sure that the viewport is not larger than the physical device we can use the
GetWidth() and GetHeight() functions, of IDirect3DRMDevice, to obtain the necessary
dimensions. Note that the IDirect3DRMViewport interface also has GetWidth() and
GetHeight() methods that retrieve the size of the viewport. At this time, since the
viewport has not yet been created we must use the functions of IDirect3DRMDevice. The
following code fragment shows obtaining the device size and then creating the viewport.

int width; // Storage for device size
int height;
. . .
// Obtain device size and store in local variables
width = globVars.aDevice->GetWidth();
height = globVars.aDevice->GetHeight();
// Create the viewport
retval = lpD3DRM->CreateViewport(globVars.aDevice,
 globVars.aCamera,
 0, 0,
 width, height,
 &globVars.aViewport);
if (FAILED(retval))
{
 // Display error message here
 globVars.isInitialized = FALSE;
 globVars.aDevice->Release();
 return FALSE;
}

The pc graphics handbook 1076

33.4 Master Scene Components

Once all the global objects have been built (in this case the device, the scene, the camera,
and the viewport) we can proceed to build the master scene. In this example we assume
that the mesh object is stored in a file in Directx format, and that it is located in the same
directory as the executable code. In the case that we are following, the following steps are
required:

• Creating a meshbuilder object and using it to load the mesh file
• Creating a child frame within the scene and adding the loaded mesh into the child frame
• Setting the camera position
• Creating the light frame
• Creating the lights used in illuminating the scene and attaching them to frames
• Creating a material and setting it in the mesh
• Setting the mesh color
• Releasing all local variables used in building the scene

In regards to this last step we must consider that in the process of building the master
scene we create and use a host of Direct3D retained mode objects, such as meshes,
cameras, lights, textures, and materials. Once the scene is created, the individual objects
that were used in building it are no longer needed, since they have become part of the
scene itself. For this reason, it is usually possible to limit the lifetime of these objects to
the process of scene creation. This means that the pointers and variables required for
creating the objects can have local scope and visibil-ity. Also, that the individual objects
can and should be released once they are incorporated into the scene.

33.4.1 The Meshbuilder Object

As its name implies, the meshbuilder component is a tool for building meshes. The
meshbuilder itself cannot be rendered. In this chapter we use the meshbuilder object to
load a mesh previously stored in a file in Directx format. The meshbuilder functions can
be used to manually assemble 3D images. However, by far the most common way of
creating images is by using a 3D image editor program, such as 3D Studio Max.

The first step is to create the meshbuilder object by means of the CreateMeshBuilder()
function that is part of IDirect3DRM interface. The function has the following general
form:

HRESULT CreateMeshBuilder(
 LPDIRECT3DRMMESHBUILDER*
lplpD3DRMMeshBuilder // 1
);

The call’s only parameter is the address of a pointer that is filled with the
IDirect3DRMMeshBuilder interface if the call is successful. The function returns
D3DRM_OK if it succeeds, or an error otherwise.

In the example that we are currently following we use the meshbuilder object’s Load()
a file in DirectX format. The file is loaded into the meshbuilder itself and takes the form

Direct3d programming 1077

of a mesh. Later in the code this mesh is stored in a frame. The Load() function has the
following general form:

HRESULT Load(
 LPVOID
lpvObjSource, // 1
 LPVOID
lpvObjID, // 2
 D3DRMLOADOPTIONS
d3drmLOFlags, // 3
 D3DRMLOADTEXTURECALLBACK
d3drmLoadTextureProc, // 4
 LPVOID
lpvArg // 5
);

The first parameter is the source to be loaded. It can be a file, a resource, a memory
block, or a stream, depending on the source flags specified in the third parameter. The
second parameter is the object name or position. This parameter depends on the identifier
flags specified in the third parameter. If the D3DRMLOAD_BYPOSITION flag is
specified, the second parameter is a pointer to a DWORD value that gives the object’s
order in the file. This parameter can be NULL. The third parameter is a flag of type
D3DRMLOADOPTIONS describing the load options. Table 33–2, on the following
page, lists these flags.

Table 33–2
Flags in the D3DRMLOADOPTIONS Type

FLAG ACTION
Flags modifying the first parameter (lpvObjSource):
D3DRMLOAD_FROMFILE The lpvObjSource parameter is interpreted as a string

representing a local file name.
D3DRMLOAD_FROMRESOURCE
 The lpvObjSource parameter is interpreted as a pointer to a

D3DRMLOADRESOURCE structure.
D3DRMLOAD_FROMMEMORY
 The lpvObjSource parameter is interpreted as a pointer to a

D3DRMLOADMEMORY structure.
D3DRMLOAD_FROMURL The lpvObjSource parameter is interpreted as a URL.
Flags modifying the second paramenter (lpvObjID):
D3DRMLOAD_BYNAME The lpvObjID parameter is interpreted as a string.
D3DRMLOAD_BYGUID The lpvObjID parameter is interpreted as a UUID.
Other flags:
D3DRMLOAD_FIRST The first progressive mesh found is loaded. This is the default

mode.
The fourth parameter to the Load() function is used when loading textures that require

special formatting. In this case the specified callback function is called. This parameter

The pc graphics handbook 1078

can be NULL. The fifth parameter is the address of a data structure passed to the callback
function in the fourth parameter. The function returns D3DRM_OK if successful, or an
error otherwise.

The following code fragment shows the creation of a meshbuilder object and its use in
loading a file in DirectX format.

char szXfile[] = "teapot.x" ; //
DirectX file
LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;
HRESULT retval;
...
// Create the meshbuilder object
retval = lpD3DRM->CreateMeshBuilder(&meshbuilder);
 if (FAILED(retval))
 // Meshbuilder creation error handler goes here
 . . .
// Use meshbuilder to load a mesh from a DirectX file
retval = meshbuilder->Load(szXfile,
 NULL,
 D3DRMLOAD_FROMFILE,
 NULL,
 NULL);
if (FAILED(retval))
{
 // Load error handler goes here
. . .

After this code executes the file named teapot.x is converted into a mesh which becomes
the meshbuilder object itself.

33.4.2 Adding a Mesh to a Frame

Currently our mesh is stored in a meshbuilder object, which cannot be rendered. The next
step consists of creating a frame and loading the mesh into this frame. We have
previously used CreateFrame(). We now use this same method to create a child frame.
The coding is as follows:

LPDIRECT3DRMFRAME3 childframe = NULL;
...
// Create a child frame within the scene
retval = lpD3DRM->CreateFrame(aScene, &childframe);
if(FAILED(retval))
 // Error in creating frame handler goes here
. . .

In Direct3D a visual object, or simply a visual, is one that is displayed when the frame is
in view. Meshes, textures, and even frames, can be visuals, although the most common
visual is the mesh. When a texture object is labeled as a visual it becomes a decal. In this

Direct3d programming 1079

example we use the AddVisual() function, of the IDirect3DRMFrame interface, to add
the mesh to the child frame as a visual. AddVisual() has the following general form:

HRESULT AddVisual(
 LPDIRECT3DRMVISUAL
lpD3DRMVisual // 1
);

The function’s only parameter is the address of a variable that represents the
Direct3DRMVisual object to be added to the frame.

The call returns D3DRM_OK if successful, or an error otherwise. The following code
fragment shows adding the mesh to the child frame.

// Add mesh into the child frame as a visual
retval = childframe->AddVisual(
 (LPDIRECT3DRMVISUAL)mesh
builder);
if(FAILED(retval))
{
 // Failed AddVisual() error handler goes here
}

Notice that we used the pointer returned by the CreateFrame() call, which in this case is
the variable childframe, of type LPDIRECT3DRMFRAME3, to access the AddVisual()
function. The meshbuilder object is passed as a parameter and the result is that the mesh
is added to the frame, and therefore, to the scene.

33.4.3 Setting the Camera Position

Previously in this chapter we created the camera as a global object. The camera object
was stored in the variable named aCamera, of type LPDIRECT3DRMFRAME3, which is
a member of the globVars structure. The camera object was created with the following
statement:

// Create the camera frame
retval = lpD3DRM->CreateFrame(globVars.aScene,
 &globVars.aCamera);

We have seen that the camera frame determines which scene is rendered and the viewing
position and direction. In Direct3D the viewport renders only what is visible along the
positive z-axis of the camera frame, with the up direction being in the direction of the
positive y-axis.

When a child frame is created, it is positioned at the origin of the parent frame, that is,
at coordinates (0, 0, 0). Applications can call the SetPosition() function of the
IDirect3DRMFrame interface, to set the position of a frame relative to a reference point
in the parent frame. To position the camera in its parent frame (the scene) we call

The pc graphics handbook 1080

SetPosition() using the variable aCamera as an interface reference. The general from of
the SetPosition() function is as follows:

HRESULT SetPosition(
 LPDIRECT3DRMFRAME lpRef, // 1
 D3DVALUE rvX, // 2
 D3DVALUE rvY, // 3
 D3DVALUE rvZ // 4
);

The first parameter is the address of the parent frame that is used as a reference. The
second, third, and fourth parameters are the x, y, and z coordinates of the new position for
the child frame. The call returns D3DRM_OK if successful, or an error otherwise.

The camera position determines what, if anything, is visible when the scene is
rendered. For example, changing the position of the camera along the z-axis makes the
objects in the scene appear larger or smaller (see Figure 33–1). The default position of the
camera frame at the scene origin may be so close to the viewing frustum that a small
portion of the object is visible. The following code fragment shows positioning of the
camera frame so that it is located −7 units along the z-axis.

retval = aCamera->SetPosition(aScene,
 D3DVAL(0), // x
 D3DVAL(0), // y
 −D3DVAL(7) // z
);
if (FAILED(retval))
// Camera position error handler goes here

There is no default lighting in Direct3D retained mode. The objects in a scene without
lights are invisible. In order to illuminate the scene, code must create the light frame and
position it in relation to the parent frame. Once this is done, one or more lights can be
added to the light frame and the scene illuminated. This means that we will be dealing
with two different types of objects: the light frame object, which is of type
LPDIRECT3DRMFRAME3, and one or more lights, which are of type
LPDIRECT3DRMLIGHT.

Figure 33–1 Changing the Camera
Position along the z-axis

Direct3d programming 1081

33.4.4 Creating and Positioning the Light Frame

We start by creating the light frame which is attached to the scene as a parent frame. Here
again we use the CreateFrame() function, which is part of the IDirect3DRM3 interface.
The following code fragment shows the processing.

LPDIRECT3DRMFRAME3 lights = NULL;
. . .
// Create a light frame as a child of the scene frame
retval = lpD3DRM->CreateFrame(aScene, &lights);
if(FAILED(retval))
{
 // Light frame creation error handler goes here
}

To set the position of the light frame we use the SetPosition() function of
IDirect3DRMFrame interface, as in the following code fragment.

// Position the light frame within the scene
retval = lights->SetPosition(aScene,
 D3DVAL(5), //
x
 D3DVAL(0), //
y
 -D3DVAL(7)); //
z
if(FAILED(retval))
{
 // Light frame positioning error handler goes here
}

The position of the light frame is often related to the position of the camera frame. Since
our camera frame was located at coordinates (0, 0, -7), we position the light frame at the
same y and z coordinates as the camera, but at a greater x coordinate. The result is that
the light or lights placed in this frame will appear to come from the right of the camera
and at the same vertical level (y coordinate) and distance from the object (z coordinate).

33.4.5 Creating and Setting the Lights

Now that we have a light frame, we are able to create one or more lights. There are two
methods in the IDirect3DRM interface that allow creating lights: CreateLight() and
CreateLightRGB(). CreateLight() requires that we specify the light color by referring a
structure of type D3DCOLOR, which is obtained by calling the macros D3DRGB or
D3DRGBA. CreateLightRGB() allows defining the light color directly. Because it is
easier to code, we will use CreateLightRGB() in the examples in this chapter. The
function’s general form is as follows:

The pc graphics handbook 1082

HRESULT CreateLightRGB(
 D3DRMLIGHTTYPE ltLightType, //
1
 D3DVALUE vRed, //
2
 D3DVALUE vGreen, //
3
 D3DVALUE vBlue, //
4
 LPDIRECT3DRMLIGHT* lplpD3DRMLight //
5
);

The first parameter is one of the lighting types defined in the D3DRMLIGHTYPE
enumerated type. Table 33–3 lists the constants that enumerate the different light types.

Table 33–3
Enumerator Constants in D3DRMLIGHTTYPE

CONSTANT DESCRIPTION
D3DRMLIGHT_AMBIENT Light is an ambient source
D3DRMLIGHT_POINT Light is a point source
D3DRMLIGHT_SPOT Light is a spotlight source
D3DRMLIGHT_DIRECTIONAL Light is a directional source
D3DRMLIGHT_PARALLELPOINT Light is a parallel point source

The second, third, and fourth parameters are the RGB color values for the light. They are
expressed in a D3DVALUE type, which is Direct3D’s designation for a float data type.
The valid range is 0.0 to 1.0. A value of 0.0 indicates the maximum dimness and a value
of 1, 0 the maximum brightness. The fifth parameter is the address that will be filled by a
pointer to an IDirect3DRMLight interface. The call returns D3DRM_OK if successful, or
an error otherwise.

The following code fragment shows creating a parallel point source light with a slight
bluish tint.

LPDIRECT3DRMLIGHT light1 = NULL;
. . .
// Create a bright parallel point light
// Color values are as follows:
// 0.0 = totally dim and 1.0 = totally bright
retval = lpD3DRM-
>CreateLightRGB(D3DRMLIGHT_PARALLELPOINT,
 D3DVAL(0.8), // Red
intensity
 D3DVAL(0.8), // Green
intensity

Direct3d programming 1083

 D3DVAL(1.0), // Blue
intensity
 &light1);
if(FAILED(retval))
{
 // Light creation error handler goes here
}

With the above call to CreateLightRGB() we have created a parallel point type light of a
specific intensity and color composition. This light is stored in a variable of type
LPDIRECT3DRMLIGHT, in this case named light1. But not until the light is attached to
a frame will it illuminate the scene. The light frame created in the preceding section can
be used at this time. The code is as follows:

// Add light to light frame
retval = lights->AddLight(light1);
if(FAILED(retval))
{
 // Light-to-frame attachment error handler goes
here
}

Often the visual quality of a scene improves considerably if a dim, ambient light is added.
Non-ambient lights (directional, parallel-point, point, and spot lights) are usually attached
to a frame so that the light source can be positioned within the scene. Ambient light
sources have no position and, therefore, it is inconsequential to which frame they are
attached. Most often we attach ambient lights to the master scene frame.

You create an ambient light using the same CreateLightRGB() or CreateLight()
method used for a non-ambient light. In this case the enumerator constant passed in the
first parameter (see Table 33–3) is D3DRMLIGHT_AMBIENT. For ambient lights the
values for the red, green, and blue component are usually in the lower part of the range.
Once created, the ambient light can be attached to any frame or to the master scene.
Either option produces identical results since the light uniformly illuminates the scene
independent of its position. The following code fragment shows creating a dim, ambient
light and attaching it to the master scene.

LPDIRECT3DRMLIGHT light2=NULL;
. . .
// Create a dim, ambient light and attach it to the
scene frame,
retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_AMBIENT,
 D3DVAL(0.1), // Red
value
 D3DVAL(0.1), //
Green value
 D3DVAL(0.1), //
Blue value
 &light2);
if(FAILED(retval))

The pc graphics handbook 1084

{
 // Ambient light creation error handler goes here
}
// Attach ambient light to scene frame
retval = aScene->AddLight(light2);
 if(FAILED(retval))
{
 // Light attachment error handler goes here
}

Increasing the intensity of the ambient light often results in washed-out images. Color
Figure 15 shows three versions of a teapot images in which the intensity of the ambient
light has been increased from 0.1 to 0.8 for all three primary colors.

33.4.6 Creating a Material

The material property of an object determines how it reflects light. Two properties are
associated with a material: emissive and specular. The emissive property of a material
makes it appear to emit light and the specular property determines the sharpness of the
reflected highlights thus making the surface appear hard and metallic or soft and plastic.
The value of the specular property is defined by a power setting which determines the
sharpness of the reflected highlights. A specular value of 5 gives a metallic appearance
and higher values give a more plastic appearance.

Applications set the emissive property of a material using the SetEmissive() method of
the IDirect3DRMMaterial interface. The function’s general form is as follows:

HRESULT SetEmissive(
 D3DVALUE *lpr, // 1
 D3DVALUE *lpg, // 2
 D3DVALUE *lpb // 3
);

The function’s three parameters are the intensity settings for the red, green, and blue
components of the emitted light. The valid range for each color is 0.0 to 1.0. The function
returns D3DRM_OK if it succeeds or an error otherwise.

The emissive property is useful in simulating self-luminous objects such as neon
lights, radioactivity, or ghostly characters. The specular property of a material is more
commonly used than the emissive property. The specular property has a power and a
color component. The color component is set with the SetSpecular() function if the
IDirect3DRMMaterial interface. The general form for this function is as follows:

HRESULT SetSpecular(
 D3DVALUE r, // 1
 D3DVALUE g, // 2
 D3DVALUE b // 3
);

Direct3d programming 1085

The three parameters correspond to the value of the RGB color components for the
specular highlights. The function returns D3DRM_OK if it succeeds, or an error
otherwise.

The power setting for the specular property of a material can be defined when the
material is created or afterwards. In the first case you use the CreateMaterial() method of
the IDirect3DRM interface. To change the specular power of an existing material you can
use the SetSpecular() method of IDirect3DRMMaterial interface. CreateMaterial() has
the following general form:

HRESULT CreateMaterial(
 D3DVALUE
vPower, // 1
 LPDIRECT3DRMMATERIAL *
lplpD3DRMMaterial // 2
);

The first parameter is the sharpness of the reflected highlights, with a value of 5
corresponding to a metallic appearance. The second parameter is the address that will be
filled with a pointer to an IDirect3DRMMaterial interface. The function returns
D3DRM_OK if it succeeds, or an error otherwise.

Once a material is created it must be attached to a mesh or to a specific face of a mesh.
Retained mode provides two related functions, both of which are named SetMaterial().
The function SetMaterial() of the IDirect3DRMFace interface attaches the material to a
specific face of a mesh. The SetMaterial() function of the IDirect3DRMMeshBuilder
interface attaches the material to all the faces of a mesh. The latter function has the
following general form:

HRESULT SetMaterial(
 LPDIRECT3DRMMATERIAL2
lpIDirect3DRMmaterial // 1
);

The function’s only parameter is the address of IDirect3DRMMaterial interface for the
Direct3DRMMeshBuilder object, which is of type LPDIRECT3DMATERIAL2. The
function returns D3DRM_OK if it succeeds, or an error otherwise.

The following code fragment shows creating a material and assigning to it a specular
power of 0.8. After the material is created, it is attached to an existing mesh.

LPDIRECT3DRMMATERIAL2 material1 = NULL;
. . .
// Create a material setting its specular property
retval = lpD3DRM->CreateMaterial(D3DVAL(8.0),
&material1);
if(FAILED(retval))
{
 // Failed material creation error handler goes
here
}

The pc graphics handbook 1086

// Set the material on the mesh
retval = meshbuilder->SetMaterial(material1);
if(FAILED(retval))
{
 // Material attachment error handler goes here
}

33.4.7 Setting the Mesh Color

Meshes have no natural color. If we attempt to render a mesh without setting it to a color
attribute the result is an image in shades of gray, as shown in the top part of Color Figure
16. Retained mode includes several methods to set the color of objects, all of which are
named SetColorRGB(). One of these methods belongs to the Direct3DRMFace interface
and is used to set the color of a mesh face. A second SetColorRGB() function is part of
IDirect3DRMFrame interface and serves to set the color of a mesh contained in a mesh.
In this case the material mode is set to D3DRMMATERIAL_FROMFRAME. A third
SetColorRGB() method is used to set the color of a light. The fourth one belongs to the
IDirect3DRMMeshBuilder interface and is used to set all the faces of a mesh to a
particular color attribute. This version of the SetColorRGB() function has the following
general form:

HRESULT SetColorRGB(
 D3DVALUE red, // 1
 D3DVALUE green, // 2
 D3DVALUE blue // 3
);

The three parameters of this function determines the red, green, and blue color
components of the mesh. The function returns D3DRM_OK if it succeeds, or an error
otherwise.

The following code fragment shows using the SetColorRGB() function referenced by
a meshbuilder object. In this case the color is set to bright green.

LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;
. . .
// Set the mesh color (bright green in this case).
retval = meshbuilder->SetColorRGB(D3DVAL(0.0), // red
 D3DVAL(0.7) , //
green
 D3DVAL(0.0)); //
blue
if(FAILED(retval))
{
 // Mesh color setting error handler goes here
}

The lower image in Color Figure 16 shows the object rendered after the mesh is assigned
the color value (0.0, 0.7, 0.0).

Direct3d programming 1087

33.4.8 Clean-Up Operations

Once the master scene has been built (usually by creating a meshbuilder and a mesh,
loading the mesh into a child frame, setting the camera position, creating and positioning
the lights, and creating the mesh material and color) we can proceed to release all the
local objects used in the process. The individual objects are preserved in the scene and
will be rendered on the screen. The Release() function of the IUnknown interface,
mentioned earlier in this chapter, is used to deallocate the individual object and reduce
the object count by one. The function’s general form is as follows:

ULONG Release();

The function returns the new reference count in a variable of type ULONG. The COM
object deallocates itself when its reference count reaches 0.

In reference to the code samples listed in this section, the clean-up operation is in the
following code fragment:

// Local variables
LPDIRECT3DRMFRAME3 lights = NULL;
LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;
LPDIRECT3DRMLIGHT light1 = NULL;
LPDIRECT3DRMLIGHT light2 = NULL;
LPDIRECT3DRMMATERIAL2 material1 = NULL;
. . .
// Release local objects
lights->Release();
meshbuilder->Release();
light1->Release();
light2->Release();
materiall->Release();

33.4.9 Calling BuildScene()

The BuildScene() Function in the 3DRM InWin Demo1 program in the book’s software
package, performs all of the processing operations discussed in this section. Following is
a code listing of this function.

//***

// Name: BuildScene()
// Description: Create the scene
//***

BOOL BuildScene(LPDIRECT3DRMDEVICE3 aDevice,
 LPDIRECT3DRMFRAME3 aScene,
 LPDIRECT3DRMFRAME3 aCamera)
// Local varaibles
LPDIRECT3DRMFRAME3 lights =NULL;
LPDIRECT3DRMMESHBUILDER3 meshbuilder=NULL;

The pc graphics handbook 1088

LPDIRECT3DRMFRAME3 childframe =NULL;
LPDIRECT3DRMLIGHT light1 =NULL;
LPDIRECT3DRMLIGHT light2 =NULL;
LPDIRECT3DRMMATERIAL2 material1 =NULL;
HRESULT retval;
// Create the meshbuilder object
retval = lpD3DRM->CreateMeshBuilder(&meshbuilder);
 if (FAILED(retval))
 goto ERROR_EXIT;
// Use meshbuilder to load a mesh from a DirectX file
retval = meshbuilder->Load(szXfile, //
Source
 NULL,
 D3DRMLOAD_FROMFILE, //
Options
 NULL, NULL);
if (FAILED(retval))
{
 D3DError("Failed to load file.");
 goto DIRECT_EXIT;
}
// Create a child frame within the aScene.
retval = lpD3DRM->CreateFrame(aScene, &childframe);
if(FAILED(retval))
 goto ERROR_EXIT;
// Add mesh into the child frame as a visual
retval = childframe->AddVisual(
 (LPDIRECT3DRMVISUAL)meshbuil
der)
if(FAILED(retval))
 goto ERROR_EXIT;
// Set up the camera frame position
retval = aCamera->SetPosition(aScene,
 D3DVAL(0), // x
 D3DVAL(0) , // y
 -D3DVAL(7)); // z
if (FAILED(retval))
{
 D3DError("Failed to position the camera in the
frame.")
 goto DIRECT_EXIT;
}
// Create a light frame as a child of the scene frame
retval = lpD3DRM->CreateFrame (aScene, &lights);
 if(FAILED(retval))
 goto ERROR_EXIT;
// Position the light frame within the scene
retval = lights->SetPosition(aScene,
 D3DVAL(5), // x
 D3DVAL(0), // y
 -D3DVAL(7)); // z
if(FAILED(retval))

Direct3d programming 1089

 goto ERROR_EXIT;
// Create a bright, parallel point light
// Color values are as follows:
// 0.0 = totally dim and 1.0 = totally bright
retval = lpD3DRM-
>CreateLightRGB(D3DRMLIGHT_PARALLELPOINT,
 D3DVAL(0.8), // Red
intensity
 D3DVAL(0.8), // Green
intensity
 D3DVAL(1.0), // Blue
intensity
 &light1);
if(FAILED(retval))
 goto ERROR_EXIT;
// Add light to light frame
retval = lights->AddLight(light1);
if(FAILED(retval))
 goto ERROR_EXIT;
// Create a dim, ambient light and attach it to the
scene
// frame,
retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_AMBIENT,
 D3DVAL(0.2), //
red
 D3DVAL(0.2), //
green
 D3DVAL(0.2), //
blue
 &light2);
if(FAILED(retval))
 goto ERROR_EXIT;
retval = aScene->AddLight(light2);
 if(FAILED(retval))
 goto ERROR_EXIT;
// Create a material setting its specular property
retval = lpD3DRM->CreateMaterial(D3DVAL(8.0),
&material1);
if(FAILED(retval))
 goto ERROR_EXIT;
// Set the material on the mesh
retval = meshbuilder->SetMaterial(material1);
if(FAILED(retval))
 goto ERROR_EXIT;
// Set the mesh color (bright green in this case).
retval = meshbuilder->SetColorRGB(D3DVAL(0.0), // red
 D3DVAL(0.7), //
green
 D3DVAL(0.0)); //
blue
if(FAILED(retval))
 goto ERROR_EXIT;

The pc graphics handbook 1090

//******************************
// Function succeeds. Clean up
//******************************
childframe->Release();
lights->Release();
meshbuilder->Release();
light1->Release();
light2->Release();
materiall->Release();
return TRUE;
//******************************
// Error exits
//******************************
 ERROR_EXIT:
 D3DError("Failure building the scene");
 DIRECT_EXIT:
 childframe->Release();
 lights->Release();
 meshbuilder->Release();
 light1->Release();
 light2->Release();
 materiall->Release();
 return FALSE;
}

33.5 Rendering Operations

To render is to convert image data into an actual image. In all the processing operations
performed so far in this chapter, all we have done is manipulate data. Nothing has been
shown on the screen, or even formatted into a displayable construct.

In Chapter 32 you saw that Direct3D rendering takes place on three separate modules,
called the transformation, lighting, and rasterization modules. But when programming in
retained mode, the individual modules are not visible. Instead, the rendering operation is
conceptualized as consisting of four functions:

• The Move() function of the IDirect3DRMFrame interface applies the rotations and
velocities to all the frames in the hierarchy.

• The Clear() function of the IDirect3DRMViewport interface clears the viewport to the
current background color.

• The Render() function, of the IDirect3DRNFrame, renders the scene into the viewport.
• The Update() function of the IDirect3DRMDevice interface copies the rendered image

to the display surface.

33.5.1 Clearing the Viewport

In Direct3D retained mode the viewport is one of the objects of the IDirect3DRM
interface. It is defined as a rectangular area in the device space. The viewport extent is
always measured in device units, which are pixels for the screen device. The viewport
origin is the offset of the viewport within the device space. Previously in this chapter we

Direct3d programming 1091

created a viewport using the CreateViewport() function of the lpD3DRM interface. At
that time we assigned the viewport to a device frame and a camera frame. We also
defined the viewport origin by means of its position in the device frame, as well as its
extent.

Clearing the viewport is accomplished by calling the Clear() function if
IDirect3DRMViewport. The function’s general form is as follows:

HRESULT Clear();

No parameters are necessary since the viewport to be cleared is the one calling the
function, as in the following code fragment:

// Global Structure
struct _globVars
{
. . .
 LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM
viewport
. . .
} globVars;
// Clear the viewport.
retval = globVars.aViewport->Clear(D3DRMCLEAR_ALL);
if (FAILED(retval))
{
 // Viewport clearing error handler goes here
}

32.5.2 Rendering to the Viewport

In Chapter 32 a scene is organized in a tree-like structure that consists of a root, or master
frame, and any number of child frames. Child frames inherit their characteristics from the
parent frames to which they are physically attached. When a frame is moved, all the child
frames move with it. The parent frame and its child frames are known as a frame
hierarchy. In retained mode this frame hierarchy can we changed by code.

The Render() function of the IDirect3DRMViewport interface renders a frame
hierarchy to a given viewport. The call renders the visual on a given frame and all of its
child frames. Frames above it on the hierarchy are not rendered or affected. This mode of
operation is sometimes described as being “state based”, which means that the state of the
renderer is determined by the part of the frame tree currently being traversed. The general
form of the Frame() function is as follows:

HRESULT Render(
 LPDIRECT3DRMFRAME lpD3DRMFrame // 1
);

The function’s only parameter is the address of the variable that represents the
Direct3DRMFrame object at the top of the frame hierarchy to be rendered. The function

The pc graphics handbook 1092

returns D3DRM_OK if it succeeds, or an error otherwise. The following code fragment
shows a call to the Render() function.

// Global Structure
struct _globVars
{
. . .
 LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM
viewport
 LPDIRECT3DRMFRAME3 aScene; // Master frame
. . .
} globVars;
. . .
// Render the scene
retval = globVars.aViewport->Render(globVars.aScene);
if (FAILED(retval))
{
 // Rendering failure error handler goes here
}

In this case since the argument of the Render() call is the master frame, which determines
that all other frames attached to the master frame are rendered.

33.5.3 Updating the Screen

We have now rendered the scene to the viewport, but nothing yet shows on the video
display. For this to happen we must call the Update() function of the
IDirect3DRMDevice interface. Update() copies the image in the viewport to the display
surface. It also provides a system-level tick, called the heartbeat. This tick was discussed
in the context of DirectDraw animation. The general form of the Update() function is as
follows:

HRESULT Update();

No parameters are necessary since the device is referenced in the call. Each time
Update() is called, the system optionally sends execution to an application-defined
callback function. Applications define the callback function by means of the
AddUpdateCallback() function of the IDirect3DRMDevice interface. The callback
function is convenient when the application needs to update scene data during each beat
of the renderer. The Update() function returns D3DRM_OK if it succeeds, or an error
otherwise.

33.5.4 RenderScene() Function

The RenderScene() function that is part of the 3DRM InWin Demo1 program in the
book’s software package performs the processing operations discussed in this section.
Follows a code listing of this function.

Direct3d programming 1093

//***

// Name: RenderScene()
// Description: Clear the viewport, render the frame,
and
// update the window.
//***

static BOOL RenderScene()
{
 HRESULT retval;
 // Clear the viewport.
 retval = globVars.aViewport->Clear(D3DRMCLEAR_ALL);
 if (FAILED(retval))
 {
 D3DError("Clearing viewport failed.");
 return FALSE;
 }
 // Render the aScene to the viewport.
 retval = globVars.aViewport->Render(globVars.aScene
 if (FAILED(retval))
 {
 D3DError("Rendering scene failed.");
 return FALSE;
 }
 // Update the window.
 retval = globVars.aDevice->Update();
 if (FAILED(retval))
 {
 D3DError("Updating device failed.");
 return FALSE;
 }
 return TRUE;

33.6 Sample Project 3DRM InWin Demo1

The project named 3DRM InWin Demo1 contained in the Chapter 33 subfolder in the
book’s software package, demonstrates the basic retained mode operations discussed in
this chapter. The program displays a file in DirectX format. The filename is contained in
a global string and can be edited by the user. The file furnished in the workspace
directory is named “teapot.x”. This is one of the 3D files that comes with the DirectX
SDK. Rendering is static since no animation is attempted at this point. Color Figure 17 is
a screen snapshot of the 3DRM InWin Demo1 program.

To facilitate reuse we have grouped the processing into four functions:

1. InitD3D() initializes the retained mode interface and creates a DirectDraw clipper
object based on the application window.

2. CreateObjects() creates the device and objects that form the 3D scene.

The pc graphics handbook 1094

3. BuildScene() uses the objects created in the previous step to build the application’s
main frame.

4. RenderScene() renders the scene to the viewport and displays it.

The functions were discussed in detail and are listed in previous sections of this Chapter.

33.6.1 Windowed Retained Mode Coding Template

The project directory 3DRM InWin Template, located in the Chapter 33 directory in the
book’s software package, contains a template program that could be useful in the initial
stages of developing a Direct3D retained mode, windowed application. To use it you can
copy the template file named 3DRM InWin Template.cpp to your own workspace. Then
rename the file and edit it to suit your application. Alternatively you can copy or rename
the entire directory. When using the template file make sure that you have referenced the
libraries dxguid.lib, ddraw.lib, d3drm.lib, and winmm.lib. To include these libraries you
must edit the Object/Libraries modules windows on the Link tab of Developer Studio
Project Settings dialog box.

Direct3d programming 1095

Appendix A
Windows Structures

This appendix contains the structures mentioned in the text. Structures are listed in
alphabetical order.

BITMAP
 typedef struct tagBITMAP { /* bm */
 int bmType;
 int bmWidth;
 int bmHeight;
 int bmWidthBytes
 BYTE bmPlanes;
 BYTE bmBitsPixel;
 LPVOID bmBits;
 };
BITMAPCOREHEADER
 typedef struct tagBITMAPCOREHEADER { // bmch
 DWORD bcSize;
 WORD bcWidth;
 WORD bcHeight;
 WORD bcPlanes;
 WORD bcBitCount;
 } BITMAPCOREHEADER;
BITMAPCOREINFO
 typedef struct _BITMAPCOREINFO { // bmci
 BITMAPCOREHEADER bmciHeader;
 RGBTRIPLE bmciColors[1];
 } BITMAPCOREINFO;
BITMAPFILEHEADER
 typedef struct tagBITMAPFILEHEADER { // bmfh
 WORD bfType;
 DWORD bfSize;
 WORD bfReserved1;
 WORD bfReserved2;
 DWORD bfOffBits;
 } BITMAPFILEHEADER;
BITMAPINFO
 typedef struct tagBITMAPINFO { // bmi
 BITMAPINFOHEADER bmiHeader;

 RGBQUAD bmiColors[1];
 } BITMAPINFO;
BITMAPINFOHEADER
 typedef struct tagBITMAPINFOHEADER{ // bmih
 DWORD biSize;
 LONG biWidth;
 LONG biHeight;
 WORD biPlanes;
 WORD biBitCount
 DWORD biCompression;
 DWORD biSizeImage;
 LONG biXPelsPerMeter;
 LONG biYPelsPerMeter;
 DWORD biClrUsed;
 DWORD biClrImportant;
 } BITMAPINFOHEADER;
CHOOSECOLOR
 typedef struct { // cc
 DWORD lStructSize;
 HWND hwndOwner;
 HWND hInstance;
 COLORREF rgbResult;
 COLORREF* lpCustColors;
 DWORD Flags;
 LPARAM lCustData;
 LPCCHOOKPROC lpfnHook;
 LPCTSTR lpTemplateName
 } CHOOSECOLOR;
COLORADJUSTMENT
 typedef struct tagCOLORADJUSTMENT { /* ca /*
 WORD caSize;
 WORD caFlags;
 WORD caIlluminantIndex;
 WORD caRedGanuna;
 WORD caGreenGamma;
 WORD caBlueGamma;
 WORD caReferenceBlack;
 WORD caReferenceWhite;
 SHORT caContrast;
 SHORT caBrightness;
 SHORT caColorfulness;
 SHORT caRedGreenTint;
 } COLORADJUSTMENT;
CREATESTRUCT
 typedef struct tagCREATESTRUCT { // cs
 LPVOID lpCreateParams;
 HINSTANCE hInstance;
 HMENU hMenu;
 HWND hwndParent;
 int cy;
 int cx;
 int y;

Appendix a—windows structures 1097

 int x;
 LONG style;
 LPCTSTR lpszName;
 LPCTSTR lpszClass;
 DWORD dwExStyle;
 } CREATESTRUCT;
DDBLTFX
 typedef struct _DDBLTFX{
 DWORD dwSize;
 DWORD dwDDFX;
 DWORD dwROP;
 DWORD dwDDROP;
 DWORD dwRotationAngle;
 DWORD dwZBufferOpCode;
 DWORD dwZBufferLow;
 DWORD dwZBufferHigh;
 DWORD dwZBufferBaseDest;
 DWORD dwZDestConstBitDepth;
 union
 {
 DWORD dwZDestConst;
 LPDIRECTDRAWSURFACE lpDDSZBufferDest;
 };
 DWORD dwZSrcConstBitDepth;
 union
 {
 DWORD dwZSrcConst;
 LPDIRECTDRAWSURFACE lpDDSZBufferSrc;
 };
 DWORD dwAlphaEdgeBlendBitDepth;
 DWORD dwAlphaEdgeBlend;
 DWORD dwReserved;
 DWORD dwAlphaDestConstBitDepth;
 union
 {
 DWORD dwAlphaDestConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaDest;
 };
 DWORD dwAlphaSrcConstBitDepth;
 union
 {
 DWORD dwAlphaSrcConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;
 };
 union
 {
 DWORD dwFillColor;
 DWORD dwFillDepth;
 LPDIRECTDRAWSURFACE lpDDSPattern;
 };
 DDCOLORKEY ddckDestColorkey;
 DDCOLORKEY ddckSrcColorkey;

Appendix a—windows structures 1098

 } DDBLTFX,FAR* LPDDBLTFX;
DDCAPS
 typedef struct _DDCAPS{
 DWORD dwSize;
 DWORD dwCaps;
 DWORD dwCaps2;
 DWORD dwCKeyCaps;
 DWORD dwFXCaps;
 DWORD dwFXAlphaCaps;
 DWORD dwPalCaps;
 DWORD dwSVCaps;
 DWORD dwAlphaBltConstBitDepths;
 DWORD dwAlphaBltPixelBitDepths;
 DWORD dwAlphaBltSurfaceBitDepths;
 DWORD dwAlphaOverlayConstBitDepths;
 DWORD dwAlphaOverlayPixelBitDepths;
 DWORD dwAlphaOverlaySurfaceBitDepths;
 DWORD dwZBufferBitDepths;
 DWORD dwVidMemTotal;
 DWORD dwVidMemFree;
 DWORD dwMaxVisibleOverlays;
 DWORD dwCurrVisibleOverlays;
 DWORD dwNumFourCCCodes;
 DWORD dwAlignBoundarySrc;
 DWORD dwAlignSizeSrc;
 DWORD dwAlignBoundaryDest;
 DWORD dwAlignSizeDest;
 DWORD dwAlignStrideAlign;
 DWORD dwRops[DD_ROP_SPACE];
 DDSCAPS ddsCaps;
 DWORD dwMinOverlayStretch;
 DWORD dwMaxOverlayStretch;
 DWORD dwMinLiveVideoStretch;
 DWORD dwMaxLiveVideoStretch;
 DWORD dwMinHwCodecStretch;
 DWORD dwMaxHwCodecStretch;
 DWORD dwReserved1;
 DWORD dwReserved2;
 DWORD dwReserved3;
 DWORD dwSVBCaps;
 DWORD dwSVBCKeyCaps;
 DWORD dwSVBFXCaps;
 DWORD dwSVBRops[DD_ROP_SPACE];
 DWORD dwVSBCaps;
 DWORD dwVSBCKeyCaps;
 DWORD dwVSBFXCaps;
 DWORD dwVSBRops[DD_ROP_SPACE];
 DWORD dwSSBCaps;
 DWORD dwSSBCKeyCaps;
 DWORD dwSSBCFXCaps;
 DWORD dwSSBRops[DD_ROP_SPACE];
 DWORD dwReserved4;

Appendix a—windows structures 1099

 DWORD dwReserved5;
 DWORD dwReserved6;
 } DDCAPS,FAR* LPDDCAPS;
DDCOLORKEY
 typedef struct _DDCOLORKEY{
 DWORD dwColorSpaceLowValue;
 DWORD dwColorSpaceHighValue;
 } DDCOLORKEY,FAR* LPDDCOLORKEY;
DDPIXELFORMAT
 typedef struct _DDPIXELFORMAT{
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwFourCC;
 union
 {
 DWORD dwRGBBitCount;
 DWORD dwYUVBitCount;
 DWORD dwZBufferBitDepth;
 DWORD dwAlphaBitDepth;
 };
 union
 {
 DWORD dwRBitMask;
 DWORD dwYBitMask;
 };
 union
 {
 DWORD dwGBitMask;
 DWORD dwUBitMask;
 };
 union
 {
 DWORD dwBBitMask;
 DWORD dwVBitMask;
 };
 union
 {
 DWORD dwRGBAlphaBitMask;
 DWORD dwYUVAlphaBitMask;
 };
 } DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;
DDSCAPS2
 typedef struct _DDSCAPS2 {
 DWORD dwCaps; // Surface capabilities
 DWORD dwCaps2; // More surface capabilities
 DWORD dwCaps3; // Not currently used
 DWORD dwCaps4; // .
 } DDSCAPS2, FAR* LPDDSCAPS2;
DDSURFACEDESC2
 typedef struct _DDSURFACEDESC2 {
 DWORD dwSize;
 DWORD dwFlags;

Appendix a—windows structures 1100

 DWORD dwHeight;
 DWORD dwWidth;
 union
 {
 LONG lPitch;
 DWORD dwLinearSize;
 } DUMMYUNIONNAMEN(1);
 DWORD dwBackBufferCount;
 union
 {
 DWORD dwMipMapCount;
 DWORD dwRefreshRate;
 } DUMMYUNIONNAMEN(2);
 DWORD dwAlphaBitDepth;
 DWORD dwReserved;
 LPVOID lpSurface;
 DDCOLORKEY ddckCKDestOverlay;
 DDCOLORKEY ddckCKDestBlt;
 DDCOLORKEY ddckCKSrcOverlay;
 DDCOLORKEY ddckCKSrcBlt;
 DDPIXELFORMAT ddpfPixelFormat;
 DDSCAPS2 ddsCaps;
 DWORD dwTextureStage;
 } DDSURFACEDESC2, FAR* LPDDSURFACEDESC2;
DIBSECTION
 typedef struct tagDIBSECTION {
 BITMAP dsBm;
 BITMAPINFOHEADER dsBmih;
 DWORD dsBitfields[3];
 HANDLE dshSection;
 DWORD dsOffset;
 } DIBSECTION;
DIDATAFORMAT
 typedef struct {
 DWORD dwSize;
 DWORD dwObjSize;
 DWORD dwFlags;
 DWORD dwDataSize;
 DWORD dwNumObjs;
 LPDIOBJECTDATAFORMAT rgodf;
 } DIDATAFORMAT;
DIDEVCAPS
 typedef struct {
 DWORD dwSize;
 DWORD dwDevType;
 DWORD dwFlags;
 DWORD dwAxes;
 DWORD dwButtons;
 DWORD dwPOVs;
 } DIDEVCAPS;
DIDEVICEINSTANCE
 typedef struct {

Appendix a—windows structures 1101

 DWORD dwSize;
 GUID guidInstance;
 GUID guidProduct;
 DWORD dwDevType;
 TCHAR tszInstanceName[MAX_PATH];
 TCHAR tszProductName[MAX_PATH];
 } DIDEVICEINSTANCE;
DIDEVICEOBJECTDATA
 typedef struct {
 DWORD dwOfs;
 DWORD dwData;
 DWORD dwTimeStamp;
 DWORD dwSequence;
 } DIDEVICEOBJECTDATA;
DIJOYSTATE
 typedef struct DIJOYSTATE {
 LONG lX;
 LONG lY;
 LONG lZ;
 LONG lRx;
 LONG lRy;
 LONG lRz;
 LONG rglSlider[2];
 DWORD rgdwPOV[4];
 BYTE rgbButtons[32];
 } DIJOYSTATE, *LPDIJOYSTATE;
DIJOYSTATE2
 typedef struct DIJOYSTATE2 {
 LONG lX;
 LONG lY;
 LONG lZ;
 LONG lRx;
 LONG lRy;
 LONG lRz;
 LONG rglSlider[2];
 DWORD rgdwPOV[4];
 BYTE rgbButtons[128];
 LONG lVX;
 LONG lVY;
 LONG lVZ;
 LONG lVRx;
 LONG lVRy;
 LONG lVRz;
 LONG rglVSlider[2];
 LONG lAX;
 LONG lAY;
 LONG lAZ;
 LONG lARx;
 LONG lARy;
 LONG lARz;
 LONG rglASlider[2];
 LONG lFX;

Appendix a—windows structures 1102

 LONG lFY;
 LONG lFZ;
 LONG lFRx;
 LONG lFRy;
 LONG lFRz;
 LONG rglFSlider[2];
 } DIJOYSTATE2, *LPDIJOYSTATE2;
DIMOUSESTATE
 typedef struct {
 LONG lX;
 LONG lY;
 LONG lZ;
 BYTE rgbButtons[4];
 } DIMOUSESTATE;
DIPROPDWORD
 typedef struct {
 DIPROPHEADER diph;
 DWORD dwData
 } DIPROPDWORD;
DIPROPHEADER
 typedef struct {
 DWORD dwSize;
 DWORD dwHeaderSize;
 DWORD dwObj;
 DWORD dwHow;
 } DIPROPHEADER;
DIPROPRANGE
 typedef struct {
 DIPROPHEADER diph;
 LONG lMin;
 LONG lMax;
 } DIPROPRANGE;
 DISPLAY_DEVICE
 typedef struct _DISPLAY_DEVICE {
 DWORD cb;
 WCHAR DeviceName[32];
 WCHAR DeviceString[128];
 DWORD StateFlags;
 } DISPLAY_DEVICE, *PDISPLAY_DEVICE,
*LPDISPLAY_DEVICE;
DSETUP_CB_UPGRADEINFO
 typedef struct _DSETUP_CB_UPGRADEINFO
 {
 DWORD UpgradeFlags;
 } DSETUP_CB_UPGRADEINFO;
LOGBRUSH
 typedef struct tag LOGBRUSH { /* lb */
 UINT lbStyle;
 COLORREF lbColor;
 LONG lbHatch;
 } LOGBRUSH;
LOGPEN

Appendix a—windows structures 1103

 typedef struct tagLOGPEN { /* lgpn */
 UINT lopnStyle;
 POINT lopnWidth;
 COLORREF lopnColor;
 } LOGPEN;
LV_KEYDOWN
 typedef struct tagLV_KEYDOWN {
 NMHDR hdr;
 WORD wVKey;
 UINT flags;
 } LV_KEYDOWN;
MONITORINFO
 tpedef struct tagMONITORINFO {
 DWORD cbSize;
 RECT rcMonitor;
 RECT rcWork;
 DWORD dwFlags;
 } MONITORINFO, *LPMONITORINFO;
MONITORINFOEX
 typedef struct tagMONITORINFOEX {
 DWORD cbSize;
 RECT rcMonitor;
 RECT rcWork;
 DWORD dwFlags;
 TCHAR szDevice[CCHDEVICENAME]
 } MONITORINFOEX, *LPMONITORINFOEX;
MSG
 typedef struct tagMSG { // msg
 HWND hwnd;
 UINT message;
 WPARAM wParam;
 LPARAM lParam;
 DWORD time;
 POINT pt;
 } MSG;
NMHDR
 typedef struct tagNMHDR {
 HWND hwndFrom;
 UINT idFrom;
 UINT code;
 } NMHDR;
PAINTSTRUCT
 typedef struct tagPAINTSTRUCT { // ps
 HDC hdc;
 BOOL fErase;
 RECT rcPaint;
 BOOL fRestore;
 BOOL fIncUpdate;
 BYTE rgbReserved[32];
 } PAINTSTRUCT;
POINT
 typedef struct tagPOINT {

Appendix a—windows structures 1104

 LONG x;
 LONG y;
 } POINT;
 RECT
 typedef struct tagRECT {
 LONG left;
 LONG top;
 LONG right;
 LONG bottom;
 } RECT;
RGBQUAD
 typedef struct tagRGBQUAD { // rgbq
 BYTE rgbBlue;
 BYTE rgbGreen;
 BYTE rgbRed;
 BYTE rgbReserved;
 } RGBQUAD;
RGBTRIPLE
 typedef struct tagRGBTRIPLE { // rgbt
 BYTE rgbtBlue;
 BYTE rgbtGreen;
 BYTE rgbtRed;
 } RGBTRIPLE;
RGNDATA
 typedef struct _RGNDATA { /* rgnd */
 RGNDATAHEADER rdh;
 char Buffer[1];
 } RGNDATA;
RGNDATAHEADER
 typedef struct _RGNDATAHEADER { // rgndh
 DWORD dwSize;
 DWORD iType;
 DWORD nCount;
 DWORD nRgnSize;
 RECT rcBound;
 } RGNDATAHEADER;
SCROLLINFO
 typedef struct tagSCROLLINFO { // si
 UINT cbSize;
 UINT fMask;
 int nMin;
 int nMax;
 UINT nPage;
 int nPos;
 int nTrackPos;
 } SCROLLINFO;
 typedef SCROLLINFO FAR *LPSCROLLINFO;
SIZE
 typedef struct tagSIZE {
 int cx;
 int cy;
 } SIZE;

Appendix a—windows structures 1105

TBBUTTON
 typedef struct _TBBUTTON { \\ tbb
 int iBitmap;
 int idCommand;
 BYTE fsState;
 BYTE fsStyle;
 DWORD dwData;
 int iString;
 } TBBUTTON, NEAR* PTBBUTTON, FAR* LPTBBUTTON,
 typedef const TBBUTTON FAR* LPCTBBUTTON;
TEXTMETRICS
 typedef struct tagTEXTMETRIC { /* tm */
 int tmHeight;
 int tmAscent;
 int tmDescent;
 int tmInternalLeading;
 int tmExternalLeading;
 int tmAveCharWidth;
 int tmMaxCharWidth;
 int tmWeight;
 BYTE tmItalic;
 BYTE tmUnderlined;
 BYTE tmStruckOut;
 BYTE tmFirstChar;
 BYTE tmLastChar;
 BYTE tmDefaultChar;
 BYTE tmBreakChar;
 BYTE tmPitchAndFamily;
 BYTE tmCharSet;
 int tmOverhang;
 int tmDigitizedAspectX;
 int tmDigitizedAspectY;
 } TEXTMETRIC;
TOOLINFO
 typedef struct { // ti
 UINT cbSize;
 UINT uFlags;
 HWND hwnd;
 UINT uId;
 RECT rect;
 HINSTANCE hinst;
 LPTSTR lpszText;
 } TOOLINFO, NEAR *PTOOLINFO, FAR *LPTOOLINFO;
WNDCLASSEX
 typedef struct _WNDCLASSEX { // wc
 UINT cbSize;
 UINT style;
 WNDPROC lpfnWndProc;
 int cbClsExtra;
 int cbWndExtra;
 HANDLE hInstance;
 HICON hIcon;

Appendix a—windows structures 1106

 HCURSOR hCursor;
 HBRUSH hbrBackground;
 LPCTSTR lpszMenuName;
 LPCTSTR lpszClassName;
 HICON hIconSm;
 } WNDCLASSEX;

Appendix a—windows structures 1107

Appendix B
Ternary Raster Operation Codes

This appendix describes the ternary raster-operation codes used by The Windows GDI
and DirectX. These codes determine how the bits in a source are combined with those of
a destination, taking into account a particular pattern.

The following abbreviations are used for the ternary operands and the boolean
functions:

• D=destination bitmap
• P=pattern (determined by current brush)
• S=sSource bitmap
• &=bitwise AND
• ~=bitwise NOT (inverse)
• |=bitwise OR
• ^=bitwise exclusive OR (XOR)

The most commonly used raster operations have been given special names in the
Windows include file, windows.h. The following table, taken from Developers Studio
help files, lists all 256 ternary raster operations.

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME
00 00000042 0 BLACKNESS
01 00010289 ~(P|S|D) -
02 00020C89 ~(P|S)&D -
03 000300AA ~(P|S) -
04 00040C88 ~(P|D)&S -
05 000500A9 ~(P|D) -
06 00060865 ~(|P~(S^D)) -
07 000702C5 ~(P|(S&D)) -
08 00080F08 ~P&S&D -
09 00090245 ~(P|(S^D)) -
0A 000A0329 ~P&D -

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME
0B 000B0B2A ~P(|(S&~D)) -
0C 000C0324 ~P&S -
0D 000D0B25 ~P|(~S&D)) -
0E 000E08A5 ~P|~(SID) -

OF 000F0001 ~P -
10 00100C85 P&~(S|D) -
11 001100A6 ~(S|D) NOTSRCERASE
12 00120868 ~(S|~(P^D)) -
13 001302C8 ~(S|(P&D) -
14 00140869 ~(D|~(P^S) -
15 001502C9 ~(D|(P&S)) -
16 00165CCA P^(S^(D&~(P&S))) -
17 00171D54 ~(S^((S^P)&(S^D))) -
18 00180D59 (P^S)&(P^D) -
19 00191CC8 ~(S^D&~(P&S))) -
1A 001A06C5 P^(D|(S&P)) -
1B 001B0768 ~(S^(D&(P^S))) -
1C 001C06CA P^(S|(P&D)) -
1D 001D0766 ~(D^(S&(P^D))) -
1E 001E01A5 P^(S|D) -
1F 001F0385 ~(P&(S|D)) -
20 00200F09 P&~S&D -
21 00210248 ~(S|(P^D)) -
22 00220326 ~S&D -
23 00230B24 ~(S|(P&~D)) -
24 00240D55 (S^P)&(S^D) -
25 00251CC5 ~(P^(D&~(S&P))) -
26 002606C8 S^(D|((P&S)) -
27 00271868 S^(D|~(P^S)) -
28 00280369 D&(P^S) -
29 00291 6CA ~(P^(S^(D|(P&S)))) -
2A 002A0CC9 D&~(P&S) -
2B 002B1D58 ~(S^((S^P)&(P&D))) -
2C 002C0784 S^(P&(S|D)) -
2D 002D060A P^(S|~D) -
2E 002E064A P^(S|(P^D)) -
2F 002F0E2A ~(P&(S|~D)) -
30 0030032A P&~S -
31 00310B28 ~(S|(~P&D)) -
32 00320688 S^(P|S|D) -
33 00330008 ~S NOTSRCCOPY
34 003406C4 S^(P|(S&D)) -
35 00351864 S^(P|~(S^D)) -
36 003601A8 S^(P|D) -
37 00370388 ~(S&(P|D)) -
38 0038078A P^(S&(P|D)) -
39 00390604 S^(P|~D) -
3A 003A0644 S^(P^(S^D)) -
3B 003B0E24 ~(S&(P|~D)) -

Appendix b—ternary raster operation codes 1110

3C 003C004A P^S -
3D 003D18A4 S^(P|~(S|D)) -
3E 003E1B24 S^(P|(~S&D)) -
3F 003F00EA ~(P&S) -
40 00400F0A P&S&~D -
41 00410249 ~(D|(P^S)) -
42 00420D5D (S^D)&(P^D) -
RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME

 00431 CC4 ~(S^(P&~(S&D))) -
44 00440328 S&~D SRCERASE
45 00450B29 ~(D|(P&~S)) -
46 004606C6 D^(S|(P&D)) -
47 0047076A ~(P^(S&((P^D))) -
48 00480368 S&(P^D) -
49 004916C5 ~(P^(D^(S|(P&D)))) -
4A 004A0789 D^(P&(S|D) -
4B 004B0605 P^(~S|D) -
4C 004C0CC8 S&~(P&D) -
4D 004D1954 ~(S^((P^S)|(S^D))) -
4E 004E0645 P^(D|(P^S)) -
4F 004F0E25 ~(P&(~S|D)) -
50 00500325 P&~D -
51 0051 0B26 ~(D|(~P&S)) -
52 005206C9 D^(P|(S&D)) -
53 00530764 ~(S^(P&(S^D))) -
54 005408A9 ~(D|~(P|S)) -
55 00550009 ~D DSTINVERT
56 005601A9 D^(P|S) -
57 00570389 ~(D&(P|S)) -
58 00580785 P^(D&(P|S)) -
59 00590609 D^(P|~S) -
5A 005A0049 P^D PATINVERT
5B 005B18A9 D^(P|~(S|D)) -
5C 005C0649 D^(P|(S^D)) -
5D 005D0E29 ~(D&(P|~S)) -
5E 005E1B29 D^(P|(S&~D)) -
5F 005F00E9 ~(P&D) -
60 00600365 P&(S^D) -
61 006116C6 ~(D^(S^(P|(S&D)))) -
62 00620786 D^(S&(P|D)) -
63 00630608 S^(~P|D) -
64 00640788 S^(D&(P|S)) -
65 00650606 D^(~P|S) -
66 00660046 S^D SRCINVERT
67 00671 8A8 S^(D|~(P|S)) -

Appendix b—ternary raster operation codes 1111

68 006858A6 ~(D^(S^(P|~(S|D)))) -
69 00690145 ~(P^(S^D)) -
6A 006A01E9 D^(P&S) -
6B 006B178A ~(P^(S^(D&(S|P)))) -
6C 006C01E8 S^(P&D) -
6D 006D1785 ~(P^(D^(S&(P|D)))) -
6E 006E1E28 S^(D&(P|~S)) -
6F 006F0C65 ~(P&~(S^D)) -
70 00700CC5 P&~(S&D) -
71 00711D5C ~(S^((S^D)&(P^D))) -
72 00720648 S^(D|(P^S)) -
73 00730E28 ~(S&(~P|D)) -
74 00740646 D^(S|(P^D)) -
75 00750E26 ~(D&(~P|S)) -
76 00761 B28 S^(D|(P&~S)) -
77 007700E6 ~(S&D) -
78 007801E5 P^(S&D) -
79 00791786 ~(D^(S^(P&(S|D)))) -
7A 007A1E29 D^(P&(S|~D)) -
7B 007B0C68 ~(S&~(P^D)) -

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME
7C 007C1E24 S^(P&(~S|D)) -
7D 007D0C69 ~(D&~(S^P)) -
7E 007E0955 (P^S)|(S^D) -
7F 007F03C9 ~(P&S&D) -
80 008003E9 P&S&D -
81 00810975 ~((P^S)|(S^D)) -
82 00820C49 ~(P^S)&D -
83 00831 E04 ~(S^(P&(~S|D))) -
84 00840C48 S&~(P^D) -
85 00851E05 ~(P^(D&(~P|S))) -
86 00861 7A6 D^(S^(P&(S|D))) -
87 008701C5 ~(P^(S&D)) -
88 008800C6 S&D SRCAND
89 00891B08 ~(S^(D|(P&~S))) -
8A 008A0E06 (~P|S)&D -
8B 008B0666 ~(D^(S|(P^D))) -
8C 008C0E08 S&(~P|D) -
8D 008D0668 ~S(^(D|(P^S))) -
8E 008E1D7C S^((S^D)&(P^D)) -
8F 008F0CE5 ~(P&~(S&D)) -
90 00900C45 P&~(S^D) -
91 00911E08 ~(S^(D&(P|~S))) -
92 009217A9 D^(P^(S&(P|D))) -
93 009301C4 ~(S^(P&D)) -

Appendix b—ternary raster operation codes 1112

94 009417AA P^(S^(D&(P|S))) -
95 009501C9 ~(D^(P&S)) -
96 00960169 P^S^D -
97 0097588A P^(S^(D|~P|S))) -
98 00981888 ~(S^(D|~(P|S))) -
99 00990066 ~(S^D) -
9A 009A0709 (P&~S)^D -
9B 009B07A8 ~(S^(D&(P|S))) -
9C 009C0704 S^(P&~D) -
9D 009D07A6 ~(D^(S&(P|D))) -
9E 009E16E6 (S^(P|(S&D)))^D -
9F 009F0345 ~(P&(S^D)) -
A0 00A000C9 P&D -
A1 00A11B05 ~(P^(D|(~P&S))) -
A2 00A20E09 (P|~S)&D -
A3 00A30669 ~(D^(P|(S^D))) -
A4 00A41885 ~(P^(D|~(P|S))) -
A5 00A50065 ~(P^D) -
A6 00A60706 (~P&S)^D -
A7 00A707A5 ~(P^(D&(P|S))) -
A8 00A803A9 (P|S)&D -
A9 00A90189 ~((P|S)^D) -
AA 00AA0029 D -
AB 00AB0889 ~(P|S)|D -
AC 00AC0744 S^(P&(S^D)) -
AD 00AD06E9 ~(D^(P|(S&D))) -
AE 00AE0B06 (~P&S)|D -
AF 00AF0229 ~P|D -
B0 00B00E05 P&(~S|D) -
B1 00B10665 ~(P^(D|(P^S))) -
B2 00B21974 S^((P^S)|(S^D)) -
B3 00B30CE8 ~(S&~(P&D)) -
B4 00B4070A P^(S&~D) -

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME
B5 00B507A9 ~(D^(P&(S|D))) -
B6 00B616E9 D^(P^(D|(P&D))) -
B7 00B70348 ~(S&(P^D)) -
B8 00B8074A P^(S&(P^D)) -
B9 00B906E6 ~(D^(S|(P&D))) -
BA 00BA0B09 (P&~S)|D -
BB 00BB0226 ~S|D MERGEPAINT
BC 00BC1CE4 S^(P&~(S&D)) -
BD 00BD0D7D ~((P^D)&(S^D)) -
BE 00BE0269 (P^S)|D -
BF 00BF08C9 ~(P&S)|D -

Appendix b—ternary raster operation codes 1113

C0 00C000CA P&S MERGECOPY
C1 00C11B04 ~(S^(P|(~S&D))) -
C2 00C21884 ~(S^(P|~(S|D))) -
C3 00C3006A ~(P^S) -
C4 00C40E04 S&(P|~D) -
C5 00C50664 ~(S^(P|(S^D))) -
C6 00C60708 S^(~P&D) -
C7 00C707AA ~(P^(S&(P|D))) -
C8 00C803A8 S&(P|D) -
C9 00C90184 ~(S^(P|D)) -
CA 00CA0749 D^(P&(S^D)) -
CB 00CB06E4 ~(S^(P|(S&D))) -
CC 00CC0020 S SRCCOPY
CD 00CD0888 S|~(P|D) -
CE 00CE0B08 S|(~P&D) -
CF 00CF0224 S|~P -
DO 00D00E0A ~(^(S|(P^D))) -
D1 00D1066A P^(~S&D) -
D2 00D20705 ~(S^(P&(S|D))) -
D3 00D307A4 S^((P^S)&(P^D)) -
D4 00D41D78 (~(D&~(P&S)) -
D5 00D50CE9 P^(S^(D|(P&S))) -
D6 00D616EA ~(D&(P^S)) -
D7 00D70349 ~(D&(P&S)) -
D8 00D80745 P^(D&(P^S)) -
D9 00D906E8 ~(S^(D|(P&S))) -
DA 00DA1CE9 D^(P&~(S&D)) -
DB 00DB0D75 ~((P^S)&(S^D)) -
DC 00DC0B04 S|(P&~D) -
DD 00DD0228 S|~D -
DE 00DE0268 S|(P^D) -
DF 00DF08C8 S|~(P&D) -
E0 00E003A5 P&(D|S) -
E1 00E10185 ~(P^(S|D)) -
E2 00E20746 D^(S&(P^D)) -
E3 00E306EA ~(P^(S|(P&D))) -
E4 00E40748 S^(D&(P^S)) -
E5 00E506E5 ~(P^(D|(P&S))) -
E6 00E61CE8 S^(D&~(P&S)) -
E7 00E70D79 ~((P^S)&(P^D)) -
E8 00E81D74 S^((P^S)&*S^D)) -
E9 00E95CE6 ~(D^(S^(P&~(S&D)))) -
EA 00EA02E9 (P&S)ID -
EB 00EB0849 ~(P^S)|D -
EC 00EC02E8 S|(P&D) -

Appendix b—ternary raster operation codes 1114

ED 00ED0848 S|(~(P^D) -
RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME

EE 00EE0086 S|D SRCPAINT
EF 00EF0A08 ~P|S|D -
F0 00F00021 P PATCOPY
F1 00F10885 P|(~(S|D) -
F2 00F20B05 P|(~S&D) -
F3 00F3022A P|~S -
F4 00F40B0A P|(S&~D) -
F5 00F50225 P|~D -
F6 00F60265 P|(S^D) -
F7 00F708C5 P|(~(S&D) -
F8 00F802E5 P|(S&D) -
F9 00F90845 P|~(S^D) -
FA 00FA0089 P|D -
FB 00FB0A09 P|-S|D PATPAINT
FC 00FC008A P|S -
FD 00FD0A0A P|S|~D -
FE 00FE02A9 P|S|D -
FF 00FF0062 1 WHITENESS

Appendix b—ternary raster operation codes 1115

Bibliography

Arnheim, Rudolf. Art and Visual Perception. Berkeley, CA: University of California Press, 1974.
Artwick, Bruce A. Applied Concepts in Microcomputer Graphics. Englewood Cliffs: Prentice-Hall,

1984.
Bargen, Bradley and Peter Donnelly. Inside DirectX. Microsoft Press, 1998.
Box, Don. Essential COM. Addison-Wesley, 1998.
Bronson, Gary. A First Book of C++ . West Publishing Company, 1995.
Cluts, Nancy Winnick. Programming the Windows 95 User Interface. Microsoft Press, 1995.
Coelho, Rohan and Maher Hawash. DirectX, RDX, RSX, and MMX Technology. Addison-Wesley,

1998.
Conger, James L. Windows API Bible: the Definite Programmer’s Reference. Waite Group, 1992.
Conrac Corporation. Raster Graphics Handbook. New York: Van Nostrand Reinholt, 1985.
Cooper, Alan. About Face: Essentials of User Interface Design. IDG Books, 1995.
Egerton, P A. and W.S.Hall. Computer Graphics: Mathematical First Steps. Prentice Hall, 1999.
Doty, David B. Programmer’s Guide to the Hercules Graphics Cards. Reading, MA: Addison-

Wesley, 1988.
Ezzell, Ben and Jim Blaney. Windows 98 Developer’s Handbook. Sybex, 1998.
Ferraro, Richard F. Programmer’s Guide to EGA and VGA Cards. Reading, MA: Addison-Wesley,

1988.
Foley, James D., Andries van Damm, Steven K.Feiner, and John P Hughes. Computer Graphics:

Principles and Practice. Addison-Wesley, 1997.
Glidden, Rob. Graphics Programming with Direct3D. AddisonWesley, 1997.
Giambruno, Mark. 3D Graphics & Animation. New Riders, 1997.
Giesecke, Frederick E et al. Engineering Graphics. Fourth Edition. Macmillan, 1987.
Harrington, Steven. Computer Graphics: A Programming Approach. New York: McGraw-Hill,

1983.
Hearn, Donald and M.Pauline Baker. Computer Graphics. Prentice-Hall, 1986.
Hearn, Donald, and M.Pauline Baker. Computer Graphics: C Version. Second Edition. Prentice-

Hall, 1997.
Hoggar, S.G. Mathematics for Computer Graphics. Cambridge, 1992.
IBM Corporation. Technical Reference, Personal Computer. Boca Raton: IBM, 1984.
IBM Corporation. Technical Reference, Personal System/2. Boca Raton: IBM, 1987.
IBM Corporation. Personal System/2 and Personal Computer BIOS Interface Technical Reference.

Boca Raton: IBM, 1987.
IBM Corporation. Technical Reference, Options and Adapters. Boca Raton: IBM, 1986.
IBM Corporation. Technical Reference, Options and Adapters. XGA Video Subsystem. Boca Raton:

IBM, 1986.
IBM Corporation. XGA Video Subsystem Hardware User’s Guide. Boca Raton: IBM, 1990.
IBM Corporation. Personal System/2 Hardware Interface Technical Reference Video Subsystems.

Boca Raton: IBM, 1992.

Kawick, Mickey. Real-Time Strategy Game Programming using DirectX 6.0. Wordware, 1999.
Kernigham, Brian W. and Dennis M.Ritchie. The C Programming Language. Prentice Hall, 1978.
Kliewer, Bradley Dyck. EGA/VGA A Programmer’s Reference Guide. New York: McGraw-Hill,

1988.
Kold, Jason. Win32 Game Developer’s Guide with DirectX 3. Waite Group Press, 1997.
Kovach, Peter J. The Awesome Power of Direct3D/DirectX. Manning, 1998.
Mandelbrot, Benoit B. The Fractal Geometry of Nature. W.T.Freeman and Co., 1982.
Microsoft Corporation. Programmer’s Guide to Microsoft Windows 95. Microsoft Press, 1995.
Micosoft Corporation. The Windows Interface Guidelines for Software Design. Microsoft Press,

1995.
Microsoft Corporation. DirectX 5 SDK documentation. 1998.
Microsoft Corporation. DirectX 6 SDK documentation. 1999.
Microsoft Corporation. DirectX 7 SDK documentation. 1999.
Microsoft Corporation. DirectX 8 SDK documentation. 2000.
Minasi, Mark. Secrets of Effective GUI Design. Sybex, 1994.
Moller, Thomas, and Eric Haines. Real-Time Rendering. A.K.Peters Ltd., 1999.
Morris, Charles W Signs, Language and Behaviors. George Braziller, 1955.
O’Rourke, Michael. Principles of Three Dimensional Computer Animation. Norton, 1998.
Petzold, Charles. Programming Windows. Fifth Edition. Microsoft Press, 1999.
Pokorny, Cornel K. and Curtis F.Gerald. Computer Graphics: The Principles Behind the Art and

Science. Irvine, CA: Franklin, Beedle & Associates .
Ratner, Peter. 3-D Human Modeling and Animation. Wiley, 1998.
Rector, Brent E. and Joseph M.Newcomer. Win32 Programming. Addison-Wesley, 1997.
Redmond, Frank E. III. DCOM- Microsoft Distributed Component Object Model. IDG Books,

1997.
Rimmer, Steve. Windows Bitmapped Graphics. McGraw-Hill, 1993.
Rimmer, Steve. Supercharged Bitmapped Graphics. New York: McGraw-Hill, 1992.
Rimmer, Steve. SuperVGA Graphics Programming Secrets. New York: McGraw-Hill, 1993.
Richter, Jake, and Bud Smith. Graphics Programming for the 8514/A. Redwood City, CA: M & T

Books, 1990.
Ritcher, Jeffrey. Advanced Windows. Third Edition. Microsoft Press, 1997.
Rogerson, Dale. Inside COM. Microsoft Press, 1997.
Root, Michael and James Boer. DirectX Complete. McGraw-Hill, 1999.
Salmon, Rod and Mel Slater. Computer Graphics: Systems and Concepts. AddisonWesley, 1987.
Sanchez, Julio and Maria P.Canton. High Resolution Video Graphics. McGraw-Hill, 1994.
Sanchez, Julio and Maria P.Canton. Space Image Processing. CRC Press, 1999.
Sanchez, Julio and Maria P Canton. Windows Graphics Programming. M & T Books, 1999.
Sanchez, Julio and Maria P.Canton. DirectX 3D Graphics Programming Bible. M & T Books.

2000.
Schildt, Herbert. C++ The Complete Reference. Second Edition. McGraw-Hill, 1995.
Schildt, Herbert. Windows 98 Programming from the Ground Up. Osborne, 1998.
Simon, Richard. Win32 Programming API Bible. Waite Group Press, 1996.
Stein, Michael L., Eric Bowman, and Gregory Pierce. Direct3D Professional Reference. New

Riders, 1997.
Sutty, George and Steve Blair. Advanced Programmer’s Guide to SuperVGAs. New York: Simon

& Schuster, 1990.
Thompson, Nigel. 3D Graphics Programming for Windows 95. Microsoft Press, 1996.
Timmins, Bret. DirectDraw Programmming. M & T Books, 1996.
Trujillo, Stan. High Performance Windows Graphics Programming. Coriolis Group Books, 1998.
Trujillo, Stan. Cutting-Edge Direct3D Programming. Coriolis Group Books, 1996.
VESA. Super VGA BIOS Extension, June 2, 1990. San Jose, CA: VESA, 1990.
VESA. Super VGA Standard, Version 1.2, October 22, 1991. San Jose, CA: VESA, 1991.

Bibliography 1117

VESA. XGA Extensions Standard, Version 1.0, May 8, 1992. San Jose, CA: VESA, 1992.
Walmsley, Mark. Graphics Programming in C++. Springer, 1998.
Watt, Alan, and Mark Watt. Advanced Animation and Rendering Techniques: Theory and Practice.

Addison-Wesley, 1992.
Watt, Alan, and Fabio Policarpo. The Computer Image. Addison-Wesley, 1998.
Walnum, Clayton. Windows 95 Game SDK Strategy Guide. Que, 1995.
Young, Michael J. Introduction to Graphics Programming for Windows 95: Vector Graphics Using

C++. AP Professional, 1996.
Zaratian, Beck. Microsoft Visual C++ Owner’s Manual. Version 5.0. Microsoft Press, 1997.

Bibliography 1118

Index

.486 directive 809
.MODEL flat directive 809
_asm Keyword 803
_itoa 531–532, 593
2D

and 3D graphics 705, 707, 912
graphics 707, 741
transformations and homogeneous coordinates 35

3D
applications 707, 741, 934, 947
engines 910
graphics 18, 23–24, 26, 30, 32, 34, 57, 89, 93–95, 97–98, 101, 105, 110, 587, 705, 707–708,
741, 883, 909–912, 922
modeling 19, 29, 741, 934
rotation 53–54, 932
scaling 51
transformations 35, 930
translation 53

80x87 emulator 193
8514/A 10–12, 221–231, 233–239, 241–247, 249, 251, 253, 255, 257–259, 261–263, 265, 267,
269–271, 273, 275–277, 327, 354, 436
8514/A Display Adapter 10–11

A
abstract classes 727
accelerator 15, 22, 24, 473, 542, 549–550, 554–555, 557, 692, 800, 913

keys 542, 554
access key 550–551, 553
Adapter Interface 12, 221–225, 227, 229–238, 241, 248, 250, 258, 275, 327, 393
Adapter Interface software 221, 223, 227, 233, 275, 327
afxres.h 553
Agfa Corporation 436
AGP port 23
AI

address 237, 251
fundamentals 221
programming 221, 243, 247

ALDUS Corporation 422
allocate and release heap memory 685

alphanumeric functions 229
alphanumeric modes 8–9, 13, 114, 116–117, 121, 124, 129, 136, 140–141, 178, 338
ALTERNATE mode 623
ambient

illumination 99
light 17, 100, 103, 915–916, 923, 959, 964

angle of incidence 100–101
animation

controls 534, 565, 895, 897
image set 377, 934
programming 21, 37, 878, 902

animations 707, 741, 743, 878, 902, 931, 935
arc direction 581, 620
area fill 171, 235, 258
array processing 62, 64
artificial life 671, 847, 855
asynchronous blits 843
Attribute Controller registers 121, 138

B
back buffer 743, 745, 827–828, 837, 877, 883, 887–898, 900–901, 912

pointer 889–890, 894
backface elimination (see culling)
background

animation 897
modes 600–601

basic controls 540, 547 586, 655, 659, 872–873
bicubic parameteric patch nets 30
bilinear filtering 925, 927
BIOS character sets 180–181
bit block transfer 222, 245, 277, 674, 745, 825, 840
bitblt operation 671
bitmap

as a resource 744
blitting onto a surface 851, 855, 859, 906
display 184, 186, 401, 679–680, 833
formats 671, 675
in heap memory 682, 687
information 687
manipulations 847, 855
programming 677, 697, 702

bitwise XOR 821
blank bitmap 682, 690–691, 698
blit functions 752, 837–838
blit-time transformation 843, 846, 884
blitting 678–679, 681, 690, 745, 770, 772, 836–838, 843, 853, 869, 873, 884
BMP_DEMO 702
bounding rectangles 756
Bresenham’s algorithm 199, 216, 316–317
brush

Index 1121

hatch patterns 599, 697
origin 620–621

brushes 507, 581, 586–588, 595, 598, 601, 624, 626
building the scene 945, 952, 965
Bui-Toung Phong 101, 105, 921
built-in cursors 527, 529–531
buttons 368, 373, 449, 458, 460, 523, 528, 530, 534, 536, 539–541, 543, 547–549, 558, 565, 567–
577, 635, 716, 863–864

C
C++ indirection 717
CAD systems 19–20
callback

function 777–779, 781, 830–831, 879, 881, 902–903, 929, 953, 967
symbol 466

camera
frame 929–930, 947, 949–951, 955–957, 963, 965
position 92–93, 929, 952, 956, 962

capturing the mouse 527
CAR_DEMO program 519–520
caret 509, 518–522, 538, 541, 566

processing 519
cathode-ray tube 3–4, 114
center of projection 82–83, 105
Color/Graphics Monitor Adapter 6
character

code processing 515
fonts 139, 179, 222, 229, 265, 276
generator 180–182

check boxes 710
CHI_DEMO 536, 538, 547–548
child

menus 550, 552, 556
windows 457, 462, 482, 510, 527, 533–536, 538, 540, 542, 548, 583

chrominance 835
client area

messages 524–525
mouse messages 524, 526

clip
list 756–757, 865–868, 905, 943–944
path 660–661
clippers 756, 869

clipping
operations 653, 655, 660, 790, 905
path 661
regions 657, 659
transformation of an ellipse 213

closed figures 222, 586, 616, 619–620, 626, 647
CNC (see Computer Numerical Control)

Index 1122

Computer Numerical Control 20
color

keys 832–833, 835, 843, 882, 884, 905, 927
look-up table 142, 222–223, 228–229, 251, 280, 357, 397, 755
palette 222, 289, 298, 406, 408, 416, 427
ramp 348, 360, 915

COLORREF Bitmap 594
Component Object Model 717, 730–731, 913, 939
COM

object 717, 732–734, 736–738, 747–748, 790, 825, 911, 913, 940–941, 962
specification 731, 733

combining regions 648
combo box 460, 533, 539, 541–542, 575–576

in a toolbar 575
COM-compliant objects 732
commdlg.h header file 563
common controls 533, 565–566, 573–574

library 565, 573–574
common DC 484
common dialog boxes 558, 562–563, 565
component-based

applications 731
architecture 721, 730, 940

Computer Assisted Manufacturing 20
Compuserve 402–403, 422
computer games 18, 705–707, 877, 887, 912
CON_DEMO 542, 547–548
concatenation 46, 56, 89
conic curve 191, 202, 209–210
Conrac Corporation 5
control keys 511, 554
cooperative level 751–752, 767, 769–770, 783, 786, 790, 795, 862, 864, 871
coordinate

plane 25, 27, 29, 40–41, 47, 55, 92, 919
systems 487–488

coprocessor registers 278, 298, 302, 304, 317–318
creating

a material 961
a toolbar 568, 570

critical
flicker frequency 377–378, 381
jerkiness frequency 364–365, 378, 381

CRT Controller registers 120, 122, 125
CS_CLASSDC 456, 484, 535
CS_HREDRAW 455–457, 468, 478, 485, 526, 536, 584, 784, 863, 869, 874
CS_OWNDC 457, 484–485, 535–536, 784
CS_PARENTDC 457, 484, 535
cursor location 125
custom brushes 626

Index 1123

D
D3DX 709
digital-to-analog converter 120, 222–223, 251
DAC Pixel Address Register 142
DCI_DEMO 591
DDCOLORKEY structure 834, 872, 875, 886–887, 896, 900–901, 906–907
ddraw.lib library 760, 762
decals 925
default windows procedure 524
depth buffer method 922
dereferencing a pointer 719
derived classes 721, 723–728
desktop surface 484
Developer Studio 447–452, 470, 473–476, 482, 529–530, 540, 552–556, 558, 560–562, 566, 568,
570–571, 573, 575, 578, 675–676, 682, 697, 759, 761, 809, 847, 968

menu editor 552, 554
developing libraries 805
device

capabilities 626, 732
dependent bitmap 675, 687–688

DIA_DEMO 565
diagnostic tools 713
dialog box 448–450, 453, 457–458, 462, 473–476, 484, 510, 529, 534, 540, 551–554, 557–558,
560–566, 570–572, 578–579, 581, 711, 761–762, 803, 809, 968

editor 558, 560–561, 566
procedure 560–562

DIB Section 692–693, 696
diffuse reflection 99–100
direct access

primitives 795, 810
programming 754
to video memory 706, 742, 745, 786, 796, 802, 810, 820

direct and indirect lighting 98
Direct3D 24, 32, 707–709, 711–714, 716, 732, 734, 736–737, 741, 762, 768, 800, 909–915, 917–
925, 927–935, 937–953, 955–961, 963, 965–968

and COM 909, 913
immediate mode 912, 919, 929
modules 909
rendering 914, 965
retained mode sample program 939

Direct3DRM object 942, 945, 947
DirectDraw

animation 745, 820, 843, 967
architecture 741, 783
functionality 741, 770, 786
header file 759, 762
initialization 787, 793
interface 733, 747, 762, 764, 766, 779, 781, 783, 785, 795, 869, 926
libraries 761

Index 1124

object 747–748, 752, 759, 762–763, 766, 768–770, 774, 778, 787, 790, 792, 799, 827, 864, 867,
871, 913, 943
object types 747
programming 745, 750, 759–760, 777, 783, 788, 862, 869
surfaces 745, 790, 792, 825, 827, 887

DirectDrawSurface objects 752, 831
DirectDraw-compatible window 784
directional light 923–924
DirectInput 708, 711–712, 714
DirectMusic 708, 712, 714
DirectPlay 708, 712, 714, 942
DirectSetup 708, 764
DirectShow 708, 713
DirectSound 708, 712, 714, 738–739, 942
DirectX

AppWizard 709
Audio 708
file format 935
file header 935
graphics 707–708
programming 717, 737, 941
software components 705
version 3 706, 910
version 5 706, 748, 910
version 6 706, 774, 826, 910
version 7 706–707, 711, 713, 762, 788, 800, 826, 832, 910
version 8.1 706–713
SDK 707–711

dirty rectangles 904–905
discardable memory 686–687
dispatch tables 720
display

context 481, 483–486, 488, 492, 494, 507, 535, 538, 548, 582, 587, 679, 688–691
context types 484, 486
file 4, 210, 376–377
modes 9–10, 114, 129, 224, 227, 285, 407, 751–752, 754, 759, 768, 777–781, 788–789, 795–
797, 832, 862, 906
surfaces 742

displaying
text 180, 229
the bitmap 696

dithering 428, 626
DOS

cursor 518
imaging techniques 363

double-click
processing 526
time 526

double-clicks 456, 526, 541
drawMode variable 584

Index 1125

drawing
attributes 619
surfaces 745, 784, 786

dynamic
binding 721, 723–725
color keys 882
RAMs 8, 120, 126

E
edges 33–34, 86, 95, 105, 558, 589, 635, 786, 920
EGA (see Enhanced Graphics Adapter)
Enhanced Graphics Adapter 9, 115
ellipse 84, 204, 213, 626, 628–629, 646, 661, 691, 695
emissive property 928, 959–960
evolution of PC graphics 3, 15
Exclusive mode 751–752, 756, 768–770, 777, 783–786, 793, 828, 831, 852, 855, 860, 862, 864–
865, 883, 887

programs 862
template 783

eye space 92, 95

F
face normals 922
Font Access and Interchange Format 436
FAR PASCAL 453, 466
FIL_DEMO program 624, 669
file formats 398, 403, 924, 934
fixed

memory 686–687
size mapping modes 486, 489

flat
memory space 796
shading 103, 920

flip 745, 826, 877, 887–889, 891–893, 896, 900–901
flipping

chain 752, 791, 888–892, 894
techniques 745

font
descriptor 436–439
mapper 503–506

fonts 10, 114, 139, 171, 179, 181–182, 221–222, 229–232, 265–266, 276, 397, 435–436, 443, 451,
473, 491–494, 502, 504–506, 562, 581, 586, 588, 591, 595
foreground mix mode 598
Fractal Graphics 22
frame

hierarchy 917, 966
of reference 917
rate 878, 893

frames 542, 547, 565, 878, 885, 917, 932–933, 939, 946, 950, 952, 955, 965–966

Index 1126

functions
AbortPath 661–662
AboutDlgProc 560–561
AddRef 736, 738–739, 765, 940
AddUpdateCallback 967
AddVisual 955, 963
AdjustWindowRectEx 870, 874, 886
AngleArc 585, 602–603, 608–610, 618, 661
AppendMenu 552
Arc 11, 13, 19, 22, 276, 338, 585, 602–603, 606–610, 618, 629–631, 661, 747, 910–911, 935
ArcTo 603, 608, 610, 661
AutoPlay 708
BeginPaint 467–469, 471, 479, 482, 485–486, 497, 501, 507, 516, 521, 584–586, 655, 659,
872–873
BeginPath 507–508, 660–662, 667
BitBlt 678–679, 682, 690–691, 697–699, 847, 851–853, 859–861
BlitSprite 886
Blt 16, 276, 302, 305, 309–313, 315, 332–334, 342–343, 379–380, 396, 589, 622, 676, 678–
679, 682, 690–691, 697–699, 701–702–705, 771, 776, 825–826, 833, 837–847, 851–853, 859–
861, 865–866, 869, 872–875, 883–884, 886–887, 893, 896–897, 900–901, 972, 974
BltBatch 825–826, 837, 866
BltFast 752, 825–826, 837–840, 843, 845, 851, 859, 865, 869, 883884, 893, 897
BuildScene 950, 962, 968
ChildWndProc 536–537, 548
ChooseColor 563
Chord 626, 629–630, 661
ClientToScreen 488, 556–557, 875
CloseFigure 660–661, 664
CoCreateInstance 737, 747
CoInitialize 737
CombineRgn 644–645, 648–650, 657
CopyRect 637–638
CreateBitmap 625, 684–685, 697
CreateBitmapIndirect 625, 685, 697
CreateBrushIndirect 598, 621–622, 624
CreateCaret 519, 522
CreateClipper 748, 867–868, 871, 943–945, 948
CreateCompatibleBitmap 625, 690–692, 697–698
CreateDevice 737, 947–949
CreateDeviceFromClipper 947–949
CreateDIBitmap 687–689
CreateDIBSection 676, 692, 694, 696–697
CreateEllipticRegionIndirect 644, 646
CreateEllipticRgn 644, 646–647, 649
CreateFont 502, 506
CreateFontIndirect 502
CreateFrame 947, 949–951, 955–957, 963
CreateLight 957–959, 964
CreateLightRGB 957–959, 964
CreateMaterial 960–961, 964
CreateMenu 552

Index 1127

CreateObjects 949, 968
CreatePatternBrush 624–625, 635–636, 697–698
CreatePen 508, 595–598, 601, 604–605, 666, 695
CreatePenIndirect 595–596, 601
CreatePolygonRgn 644, 647
CreatePolyPolygonRgn 644, 647
CreateRectRgn 644–646, 649
CreateRectRgnIndirect 644, 646
CreateRoundRectRgn 644, 646
CreateSurface 744, 748, 752, 791–792, 799, 812, 826–828, 833, 864–865, 871–872, 889–890,
894, 906
CreateToolbarEx 566, 572–574, 577
CreateViewport 947, 949, 951–952, 965
CreateWindow 453–454, 456, 460, 463–464, 466, 468, 471, 478, 488, 533, 535, 537, 540, 543,
545, 548–549, 566, 575, 784–785, 864, 870–871, 874, 886
CreateWindowEx 456, 460, 463–464, 468, 478, 488, 533, 535, 540, 566, 784–785, 864, 870–
871, 874, 886
CreateWindowsEx 463, 471, 535, 543
DDBmapToSurf 851–852, 859–860, 872, 907
DDInitFailed 786–788, 790, 792–793, 801, 831, 850–853, 858–861, 864–865, 868–872, 875,
886–887, 896, 900–901, 906–907
DDLoadBitmap 743, 850, 853, 858–859, 862, 870, 886
DefWindowsProc 468–469
DeleteMenu 552
DeleteObject 508, 564, 695–698, 744, 848, 858
DestroyCaret 519, 521–522
DestroyCursor 848, 858
DestroyIcon 848, 858
DestroyMenu 552
DialogBox 560, 562
DirectDrawClipper 747–748, 756, 865–866, 868, 943–945, 947–948
DirectDrawCreate 747, 762–764, 767, 787, 941, 943–945, 948
DirectDrawCreateClipper 943–945, 948
DirectDrawCreateEx 747, 762–763
DirectDrawPalette 747–748, 756, 773
DirectDrawPalette object 748, 756, 773
DirectDrawPalette objects 748, 773
DirectDrawSurface 743–744, 747–748, 752–753, 763–764, 790, 792–793, 799–800, 812, 825–
826, 828, 831, 833–834, 838, 840, 844, 852, 860, 866, 868, 891, 913, 942
DirectDrawVideoPort 747–748
DispatchMessage 465, 467, 478, 555, 786, 881
DisplayMsg 722–726
DPtoLP 679, 682
DrawFocusRect 634, 636–637
DrawMenuBar 552
DrawText 471–472, 479, 486, 499–502, 517, 521, 532, 593
EndPaint 467–469, 471, 479, 485, 498, 501, 508, 517, 521, 585
EndPath 507–508, 660–662, 667
EnumDisplayModes 752, 777–778, 780–781, 788–790, 830
EnumSurfaces 829–831
EqualRect 637, 643
EqualRgn 645, 654

Index 1128

ExcludeClipRect 656, 658
ExtCreatePen 595–598, 601, 666
ExtCreateRegion 654
ExtSelectClipRgn 645, 653, 656–657, 659, 663
FillPath 507–508, 661, 663–664, 669
FillRect 634
FillRgn 644–645, 649–650
FlattenPath 662, 665
FlipImages 900
FrameRect 634, 636
FrameRgn 645, 650–651
GdiFlush 696
GetAdapterCount 737
GetAttachedSurface 826, 889–890, 894
GetBrushOrg 622
GetCaps 749, 770, 772–774, 826, 838, 843, 916
GetClientRect 467–469, 471, 479, 486, 585, 701, 875, 947–949
GetClipBox 656, 659
GetCurrent Position 601
GetCurrentPositionEx 601, 615–616
GetCurrentTime 879
GetDC 482, 485, 494, 497, 501, 536–537, 549, 556, 564, 655, 744, 792–793, 826, 852–853,
860–861, 893
GetDeviceCaps 503, 506, 588–594, 677
GetDIBits 589, 679, 692
GetDisplayMode 752
GetFocus 510
GetHeight 949, 951–952
GetKeyState 513–514, 517
GetMessage 464–466, 469, 478, 515, 555, 786, 880
GetMiterLimit 662, 667–668
GetObject 678–679, 682, 701, 744, 850, 853, 859, 862, 870, 886, 906
GetPalette 756
GetPath 662, 665, 667–668
GetPixel 603, 826
GetPolyFillMode 624, 645, 662, 669
GetRegionData 645, 654
GetRgnBox 645, 654
GetScrollInfo 545
GetScrollPos 545
GetScrollRange 545
GetSurfaceDesc 826, 847, 850, 852, 856, 858, 860
GetSystemMetrics 522–523, 526, 785
GetTextAlign 502
GetTextColor 587
GetTextMetric 492, 494–495, 497, 501, 779
GetTickCount 879, 886, 896, 900, 902–904
GetUpdateRect 583
GetWidth 949, 951–952
GetWindowRgn 645, 652
GlobalAlloc 686, 694
GlobalFree 686, 696

Index 1129

GlobalLock 686
HasDDMode 789–790
HideCaret 519, 521–522
InflateRect 637, 639–640
InitCommonControls 566
InsertMenuItem 552
IntersectClipRect 656–658
IntersectRect 637, 640
InvalidateRect 518, 564, 583–584, 586
InvalidateRgn 583–584, 645, 653
InvertRect 634
InvertRgn 645, 651–652
IsRectEmpty 637, 642
KillTimer 881
LineTo 585–586, 602–604, 609, 613, 615–616, 618, 661, 664, 667
LoadAccelerator 554–555
LoadBitmap 676, 678, 697–698, 701, 743, 847, 850, 853, 856, 858–859, 862, 870, 886
LoadBitmapFromBMPFile 847, 856
LoadCursor 455, 457, 478, 529–531, 536, 784, 863
LoadImage 459, 476, 478, 744, 847–850, 856–858, 870, 885, 906
LoadMenuIndirect 552
LocalAlloc 686–687
LocalFree 686
Lock 512–514, 686, 753, 793, 799–801, 810–817, 823, 826, 893, 907
MaskBlt 698
ModesProc 779–781, 788–789
ModifyMenu 552
MoveToEx 586, 601, 604–605, 610, 615–616, 661, 664, 667
MulMatrices 78, 807–808
OffsetClipRgn 656, 658
OffsetRect 637–639
OffsetRgn 645, 652–653
PackBits 397, 402, 422, 427, 431–433, 435
PaintRgn 645, 650
PanImage 896–897
PatBlt 690–691, 698
PathToRegion 644, 647, 661–663
PeekMessage 515, 880
PolyBezier 585, 602–603, 610, 612–616, 618, 661
PolyBezierTo 602–603, 613–616, 661
PolyDraw 585, 602–603, 613–618, 661–662, 665, 667
PolyDraw95 615, 617
PolyDraw95A 615, 617
Polygon 25, 27, 29–34, 108, 212, 622–624, 626, 631–634, 644, 647, 661
Polyline 585, 602–607, 631, 633, 661, 691, 695
PolylineTo 585, 602–605, 661
PolyPolygon 626, 633–634, 644, 647, 661
PolyPolyline 585, 606, 633, 661
PostQuitMessage 468–469, 479, 498, 501, 522
PtInRect 637, 643
PtInRegion 645, 654
PulseEvent 903

Index 1130

QueryInterface 735–736, 738–739, 763, 765, 767, 788, 864, 871, 913, 940–943, 945
QueryPerformanceFrequency 903–904
RectInRegion 645, 654
RectVisible 656, 659
RegisterClassEx 455, 459–460, 478, 484, 537, 540, 864
ReleaseCapture 527
RemoveMenu 552
RestoreAllSurfaces 828, 831
RestoreDisplayMode 752
RoundRect 626–628, 644, 646, 661
ScreenToClient 488
SelectBitmap 622, 677–678, 682
SelectBrush 622, 624, 626, 667, 697–698
SelectClipPath 656, 658, 660–661, 663
SelectClipRgn 645, 653, 656–657, 659, 663
SelectFont 622
SelectPen 483, 622, 667, 695
SendMessage 544, 549–550, 576–577
SetArcDirection 602, 607, 629
SetBrushOrgEx 620–622, 697, 700
SetCapture 527
SetCaretPos 519, 522
SetClipList 866–867
SetColorKey 826, 833–834, 907
SetColorRGB 961–962, 964
SetCooperativeLevel 751, 767–770, 790, 864, 871
SetDIBits 589, 687, 689–690, 692
SetDIBitsToDevice 589, 687, 689–690
SetDisplayMode 747, 752, 790
SetDoubleClickTime 526
SetEmissive 960
SetEmptyRect 637–638
SetHWnd 867–869, 871, 944–945
SetMaterial 960–961, 964
SetMiterLimit 596, 662, 666–669
SetPalette 756
SetPixel 586, 603–604, 618, 813
SetPixelV 586, 603–604, 618
SetPolyFillMode 622, 632, 634, 645, 647
SetPosition 956–957, 963
SetRect 501, 516–517, 521, 532, 593, 637–638
SetScrollInfo 545–546
SetScrollPos 545–546
SetScrollRange 545
SetSpecular 960
SetStretchBltMode 622, 699, 702
SetTextAlign 502, 592
SetTextColor 587, 793
SetTimer 881
SetWindowRgn 645, 651–652
ShowBitmap 681, 685, 689, 696, 852–853, 861–862
ShowCaret 519, 522

Index 1131

ShowWindow 464, 478, 535, 540, 555, 785, 864, 871
SpriteAction 900–901
StretchBlt 589, 622, 699, 701–702
StrokeAndFillPath 507–508, 661, 663–664, 669
StrokePath 507–508, 603, 661, 663–664, 667
SubratctRect 637
SurfacesProc 831
TestCooperativeLevel 769
TextOut 498–500, 502, 507–508, 521–522, 537, 592, 661, 775–777, 779–781, 793
TextOutExt 502
TimerProc 881
TimeSetEvent 902
TrackPopupMenu 556–557
TranslateAccelerator 554–555
TranslateMessage 465, 478, 515, 555, 786, 881
UnionRect 637, 641
Unlock 799, 801–802, 812–813, 816, 826
UpdateWindow 464, 478, 537, 549, 555, 564, 785
WaitMessage 880–881
WidenPath 662, 665

G
game

programmers 706, 751
software development kit 706

GDI
(see also Graphics Device Interface)
functions 581, 586–587, 682, 690, 692, 695, 749, 753, 783–784, 786, 795, 801, 813

general registers 120
geometrical transformations 35, 47, 50, 81, 89, 176, 210, 363, 376–377, 914
Graphics Interchange Format (see GIF)
GIF

data stream 404–408
file format 397
header 404–405
image descriptor 407
logical screen descriptor 405
trailer 408

GIF87a
format 404
specifications 404

Geographic Information Systems 19
global color table 404–408, 415
Gouraud shading 104–105, 107, 920–921
GKS 910
Graphics
Controller registers 121

coprocessors 16, 22–24, 901
Device Interface 482, 581, 586

Index 1132

modes 9, 11, 114–116, 118–119, 121, 131, 135–136, 140–141, 162, 171, 177–178, 181, 277,
292–294, 350, 354, 368, 378, 401, 466, 481
toolkit 819

GUID 733–734, 762–763, 913, 948, 954, 974

H
hardware
abstraction layer 747, 749, 912
blitters 820
hard-coded bitmap 682
heap memory 682, 685, 687–688, 695–696

DirectDraw hardware emulation layer 747, 749, 912
HelloWindows program 447
Hercules Computer Technologies 8, 23
Hewlett-Packard 181–182, 422, 435–436, 442–443
Hercules Graphics Card 8
hi-color modes 796, 811
hIcon 455–459, 473, 476, 478, 536–537, 784, 863–864, 979
hidden surface removal 104–108
high-performance graphics 16, 447, 692, 705–706, 751, 767, 783, 912
homogeneous coordinates 35, 46, 49, 54, 56, 930
hotkey 565
Hubble Space Telescope 869

I
IBM

Hursley Laboratories 11
PC 7
Personal Computer 6–7

icon 24, 192, 319–320, 370–373, 380, 447–448, 454–455, 457–459, 471, 473, 475–478, 518, 529,
534–535, 553, 558–559, 565, 583, 711, 713, 848–849, 856–858

bitmap 476
IDirectDraw 733, 743–744, 747–749, 752–753, 756, 762–767, 770, 786–788, 790–791, 793, 799–
800, 812, 826, 828–830, 838, 840, 844, 851–852, 860, 866, 868, 891, 913, 941–943
IDirectDraw2 733, 747, 765–766, 941
IDirectDraw4 733, 747, 765, 941
IDirectDraw7 733, 747–749, 752, 756, 762, 765–767, 770, 786–788, 791, 828–830, 851–852
IDirectDraw7 interface 762, 766, 788, 828
IDirectDrawSurface 743–744, 748, 752–753, 763–764, 790, 793, 799–800, 812, 826, 838, 840,
844, 852, 860, 866, 868, 891, 913, 942

interface 752
IID 733–734, 739, 762–765, 767, 788, 913, 941–943, 945
illumination model 98, 103, 105–106
Image

Adapter/A 12
animation 363–364, 374–375
file encoding 398
lists 565
mapping, panning and geometrical transformations 363

Index 1133

processing 5, 20, 430–431, 673, 847, 855
set 377, 882–884, 887, 933–934
space method 107
transformations 27, 37
transparency 409
techniques 363

immediate mode 909–912, 919, 927, 929
in-between frames 932–933
index table 240, 268
indirect lighting 98
InitD3D 944, 968
initializing the XGA system 327
input focus 464, 509–510, 519–520, 524, 541, 567
installing the DirectX SDK 705
interactive animation 364
interface

identifier 941
pointer 720, 736–739, 762, 783, 787–788
pointer versions 787
routine 67, 72, 805, 807

interference 6, 8, 114, 121, 173, 177–178, 278, 368, 378, 381, 384–387, 389, 391–392, 395, 901
problems 6, 381, 384

inter-language protocol 804
invalid rectangle 583
IRGB encoding 127, 158–160, 163, 229, 401
isometric, dimetric, and trimetric projections 85
IUnknown interface 733, 736, 940, 962

K
KBR_DEMO program 515
key state 511
keyboard input 509–510, 514, 518, 524, 542, 558, 793
keystroke processing 512

L
lateral translation 176, 378
light frame 952, 956–959, 963–964
lighting 19, 92, 97–100, 526, 709, 911, 914–915, 917, 919, 922–924, 956, 958, 965

module 914–915, 917, 922
line width 235, 245, 666
line-drawing functions 603–604, 613
list box 460, 538–539, 541–542
list view control 565, 567
loading a bitmap 568, 849, 856–857
local space coordinates system 92
logical coordinates 471, 486–487, 500, 601, 679
lParam 455, 466, 468–469, 479, 485, 495, 497–498, 501, 511, 513, 515–517, 520, 525, 528–529,
531–532, 536–537, 544, 546, 548, 553, 556–557, 560–561, 563, 566, 576–578, 977
LRESULT 466, 477–478, 485, 497, 501, 516, 520, 536–537, 544, 548, 555, 563, 576
LZW

Index 1134

algorithm 402, 415–416
code size 408, 413, 415–416
compression 397, 402, 408, 410–411, 413–416, 419, 422, 431
decompression example 420

M
MAKEINTRESOURCE macro 458, 476, 530, 676
malloc 686
mapping modes 486–487, 489, 587, 679
MASM 802, 805, 808

module format 808
master scene frame 947, 949, 959
material

property 959
specular reflection exponent 101

math unit 23–24, 768, 805
matrix

addition 38–39, 45, 49, 71–74, 78, 810
arithmetic 37, 62
concatenation 46, 89
data 57
multiplication 38–39, 41–42, 44–45, 47, 50–51, 71–72, 75–76, 805, 807
subtraction 38

matrix-by-matrix operations 71
member functions 638, 729

allocation and deallocation 686
device context 677–681, 690–692, 695, 698, 702

management 685–686, 940
memory-mapped

system 278
video 5, 795

MEN_DEMO 557
menu

bar 550, 567, 575
commands 550–551, 567–568, 584, 591, 618
items 550–553, 556–557, 568, 572, 584
title 550–552, 556

menus 319, 457, 469, 473, 486, 535, 550–553, 555–556, 635, 669, 863
mesh color 952, 961, 964
meshbuilder object 946, 952–955, 961, 963
meshes 25, 34–35, 709, 917–919, 934–935, 939–940, 946, 952–953
message

box 488, 522–523, 533, 540, 557–560, 574, 786–787
loop 464–465, 467, 510, 515, 784–785, 880
passing mechanism 464, 542
queue 464–465, 467, 469, 509–510, 515, 544, 582–584, 880

metaregions 655
Microsoft Foundation Classes 447
microchannel 7, 10–12, 276, 282

Index 1135

computers 12, 276
mipmaps 926
miter

length 666
limit 666–668

mix modes 222, 600
MM_ANISOTROPIC 486, 489, 587
MM_ISOTROPIC 486, 489, 587
Multicolor Graphics Array 10
Multimedia Extension 23–24
modal dialog boxes 558, 565
modeless dialog boxes 558
monochromatic

lighting model 915
mode 915, 921

monolithic architecture 730
monospaced

font 491, 495, 515, 536
typeface 491

Motorola
6845 CRT controller 7–8
byte ordering 423

MOU_DEMO 530, 532
mouse

messages 523–524, 526
motion counters 372
movement handler 370
programming 363–364, 509, 526

moveable memory 686–687
Multi-color Graphics Array 113
multi-display 226
multi-language programming 802, 805, 809
multiple buffering 887, 894
multiview projection 84, 86

N
new common controls 565
non-coplanar polygons 32
nonqueued messages 467
normal-vector interpolation 105, 921
notification codes 542, 544
NUMCOLORS 588, 595

O
object

orientation 717, 727, 731, 940
selection macros 622, 678

object-oriented graphics 191
offscreen surface 869, 872, 874, 897–898

Index 1136

one-point perspective 87–88, 95
Open Graphics Language (see OpenGL)
OpenGL 22, 24, 32, 910–913
overlay surfaces 836
overriding 725, 728, 891

P
Pacman-like sprite 882
page flipping 743, 745, 751, 768, 862, 887
PAINTSTRUCT 467–469, 479, 485, 497, 501, 516, 520, 536, 585, 977

variable 467
palette animation 877
panning 125, 136, 140, 363, 375–377, 883, 895–897

animation 375–377, 895–897
parallel

point light 923–924, 958, 963
projections 83, 86

parent DC 484
Pascal 58, 453, 576, 717
path-related functions 660
pattern brush transfer 698
PC

AT 7
Convertible 7
operating systems 706
system buses 22
XT 7

PCjr 7, 119
PCL

bitmap 397, 435–436, 443
font 182, 443

pen position 581, 601–606, 608, 612–615, 661, 664, 668
perspective 19, 83–84, 86–90, 92, 95, 106, 914, 925, 929–930

projection 83–84, 86–90
PHIGS 910
Phong shading 103, 105, 920–921
picking 931
pixel

address calculations 811
adjacency 205, 207–208
mapping 8, 14, 147, 154, 754, 796, 827
lines and curves 581

PL/I 717
planes of projection 82
plotting straight lines 202
point light 923–924, 958, 963
POINT structures 632–633, 668, 679
pointer array 724
pointers

Index 1137

to functions 717, 720
to pointers 720

point-slope form 200
polygon

fill mode 622–624, 631, 647, 661–662, 664, 669
approximation of a circle 32
approximation of a cylinder 33
representations 25, 30

polymorphic method 725
polymorphism 718, 721–723
pop-up

menus 555–556, 669
window 534, 565, 567

program resource 447, 459, 473, 553–554, 558, 560, 675, 847, 856
PHIGS 910
programming

the mouse 366
the SuperVGA 337
the XGA graphics coprocessor 276

progress bar 534, 565
projection matrix 914–915, 930
projections 19, 29, 81, 83–87, 89
projectors 82, 84
property sheets 534, 565
proportionally spaced fonts 491
PS/2

line 7, 10–11, 113
Video Systems 10

PUBLIC declaration 809
pure virtual functions 727–729
PXL_DEMO program 610, 618

Q
quaternions 931–932, 934

R
raster

fonts 505, 591
graphics 25, 171, 191, 671, 692, 820
operations 262, 677, 680, 698, 819–820, 840, 843, 847, 981

rasterization module 914–917, 965
rasterized images 26
ray tracing 19, 30, 105–106
read mode 129–131, 134, 142–143, 153, 156, 167, 174–175, 185–186
real-color modes 796–797
real-time animation 376, 378, 385, 877
RECT structure 467, 472, 634, 636–644, 646, 654, 659, 745–746, 799, 838, 840, 870, 874–875,
884, 886, 948, 728, 745–746, 815–816, 866, 874, 904–905
rectangular fill 184, 186, 258–259, 313

Index 1138

redraw responsibility 582
reference count 736, 738–739, 765, 828, 868, 940, 962
reflection 37, 98–104, 106, 110, 644, 921

model 98, 103–104, 106
region

combination modes 649
data 654, 866
manipulations 651

regions 162, 507, 619–620, 622, 644–645, 647–649, 653–655, 657, 659, 692
registering the window class 484, 863
regular polygons 31, 620
rendering

algorithms 30, 98, 106
operations 107, 832, 889, 951
pipeline 81, 91, 93, 95–96, 914
to the viewport 951

RenderMorphics 910
resource definition file 473
restoring surfaces 825
retained mode

coding template 939
programming 918, 939, 948

retention 364, 377, 878
reusability 721
RGB value 142–143, 164, 563, 594, 599, 625, 755, 849, 857, 905, 928
rich edit controls 534, 565
rotation transformation 29, 42, 44, 46, 53–55, 212–213, 377, 931
run-length encoding 401–402, 427

S
save-draw-redraw cycle 820
Scaling

and rotation 377
transformation 41–42, 46, 50–53, 55, 87, 211, 376

scan-line algorithm 104, 107–108
scene graph 917
screen space 93, 95
script file 473, 476, 529–530, 552–553, 561
scroll bar 458, 461–463, 482, 486, 534, 539, 541–542, 544–547, 635, 863

controls 539, 544–545
culling 93, 95, 106
depth buffer algorithm 108

separator 407, 415, 517–518, 550, 567–572, 574–575, 577
Sequencer registers 120
Silicon Graphics International 24
shading 19, 34, 92, 97, 103–107, 911, 919–921

modes 920
shortcut key 550, 552, 554, 557
simple transformations 176

Index 1139

simulations 24, 671, 706, 847, 855, 877, 887, 913
single DC 484
sizing border 463, 482, 534
slider 565
smooth animation 364–365, 386, 396, 880, 898, 912
specular

color 916, 928
reflection 99, 101–102, 921
value 916, 959
spin button 565
spotlight 914–915, 920, 923–924, 958
illumination 924

sprite
animation 882, 887, 898–899
by page flipping 887
image set 882–884

sprites 707, 774, 822, 827, 883, 895, 898–902, 904–905
standard toolbar buttons 573–574
static

controls 460, 542, 547
RAMs 8

status bar 482, 486, 533–534, 565–566, 863
storage tube CRT 4
stretch-blit 873
stroking the path 620
SuperVGA

Architecture 13
Enhanced Modes. 13, 337
library 358

surface
data 906
tearing 877
update time 893

surface-related functions 790
system

font 492, 494, 538
queue 464, 510
timer 363, 381–384, 467, 879, 881–882
timer intercept 381, 881

system-memory bitmap 682

T
testing the DirectX software 705
TEX1_DEMO 497, 499, 502
text formatting 472, 495
textel 924
TEXTMETRIC structure 492–495, 503
texture

blending modes 927

Index 1140

colors 925
texture-filtering modes 927
textures 26, 98–99, 103, 110, 910–911, 924–925, 927, 934–935, 946, 952–953, 955
three-point perspective 86, 89, 95
threshold rate 364, 878
Tag Image File Format (see TIFF)
TIFF

file format 397
file header 423
file structure 423
image data 428, 431
tags 426

timed pulse 381, 386, 877, 879, 881, 902
time-pulse animation 364, 366, 381
TMS340 Coprocessor 16
toolbar 461, 473–476, 482, 530, 533–534, 540, 554, 558, 561, 565–577, 579, 711

states 570
tooltip 583
trackbar 533, 565
transformation module 914–916
translation transformation 39–41, 45–50, 52, 55, 92, 930
transparency 22, 34, 343, 409, 427–428, 825, 832–833, 838, 882, 884, 921, 925, 927
tree view control 534, 565
true-color modes 752, 796–798, 847
TrueType fonts 491–492, 505
TT_DEMO 579
tunnel projection 88
two-point perspective 88–89, 95
type style 491
typeface 438, 491

family 491
typematic action 510–511

U
umbra and penumbra 924
unclassed child windows 534
Unisys Corporation 402
updating the screen 381

V
vector

fonts 230, 232, 436, 505, 591
graphics 25, 191, 436, 490, 671

vector-refresh display 4
vertex normals 920, 922, 928
vertical

retrace interrupt 363, 385–387, 389–390
retrace or screen blanking cycle 378, 878
retrace timing 387

Index 1141

Video Electronics Standards Association (see VESA)
VESA

BIOS services 337, 344, 354
SuperVGA standard 14, 337, 341
Video Graphics Array (see VGA)

VGA
area fill primitives 171
bit-map primitives 171
components 113
image display primitives 171
modes 13, 15, 119, 147, 186, 277, 337, 339, 341, 346, 357, 374, 443
primitives 146, 171
primitives for video system setup 171
registers 114, 118, 120, 137, 145, 161, 172–173, 177, 280
standard 13–14, 113, 115–117, 146–147, 174, 224, 337–338, 341
text display primitives 171
write mode 132, 135, 149

viewing
frustum 917, 929, 951, 956
matrix 914–915

viewport parameters 930
viewports 242, 489, 930, 940
virtual

attribute 725
functions 717, 721–723, 725–730
graphics device 374
keyword 725
reality 21, 671, 847, 855

virtual-key codes 511, 514
virtual-keys 513
Visual C++ 57, 67, 448, 459, 473–474, 529, 568, 576, 655, 663, 675, 709, 711–712, 760–761, 802–
803, 805, 808–809, 848, 856
Visual C++ 6.0 711–712
visual retention 364, 878
VRAM memory 279
Virtual Function Table 728–729

W
Win16 APIs 538
WINAPI 453, 466, 477, 778–779, 788, 831
WINDING mode 622, 624, 647
window

class 455–456, 458–460, 462, 465, 484, 526, 535, 538, 540, 784, 863
procedure 457, 465, 477, 511, 528, 531, 534–535, 537, 560–561, 568, 583, 784–785, 793
styles 533–534

windowed application 769, 853, 855, 862–863, 865, 869, 943, 945, 968
windowed mode 743, 751, 862–863, 865, 869, 939, 943
Windows

bitmap formats 671
device context 792

Index 1142

for Games 706
GDI 619–620, 743–745, 792, 813, 825, 912, 981
Graphics Architecture 910
Graphics Device Interface 581
NT 458, 473, 502–505, 507, 565, 596–597, 608, 620–621, 625, 655, 660–663, 665, 696–698,
707, 749, 910, 913
procedure 454, 456, 463–469, 485, 524, 527, 531
styles 533

WinG 706
WinHello program 475–476, 482
WinMain 447, 452–454, 460, 463–465, 467–468, 471, 477, 510, 528, 535, 553–555, 566, 783–786,
788, 790, 856, 863
wizards 447, 534, 565
WM_CREATE 467–468, 479, 485, 494, 497, 501, 515, 520, 529, 531, 536–538, 548–549, 556–
557, 572, 576, 685, 847
WM_DESTROY 468–469, 479, 498, 501, 537, 685
WM_PAINT 462, 464, 467–469, 471, 479, 482, 485–486, 495–497, 501, 507–508, 516, 518, 520,
537, 582–586, 645, 653, 785, 872–873, 875
WM_PARENTNOTIFY 461, 534
WM_SIZE 495–496, 573
WNDCLASSEX structure 453, 455, 459, 465, 473, 475, 484, 528–529, 531, 533, 535, 537, 540,
784, 863, 869, 874
world

matrix 914–915
space 92–93
space transformation 92

wraps 928

X
XGA

features and architecture 275
Graphics Coprocessor 277, 298–299
hardware 12, 225–226, 275–277, 279, 281–282, 298, 380, 393
Interrupt Enable Register 391
library 275, 327
screen blanking interrupt 392–394
sprite 275, 320

XOR
animation 821
mask 379–380
operations 380
raster operation 822

Z
z-buffer algorithm 109
z-buffers 773, 913
zoom animation 897–898

Index 1143

	Book Cover
	Half Title
	Title
	Copyright
	Table of Contents
	List of Tables
	List of Illustrations
	Preface
	Part I: Graphics Fundamentals
	1. PC Graphics Overview
	2. Polygonal Modeling
	3. Image Transformations
	4. Programming Matrix Transformations
	5. Projections and Rendering
	6. Lighting and Shading

	Part II: DOS Graphics
	7. VGA Fundamentals
	8. VGA Device Drivers
	9. VGA Core Primitives
	10. VGA Geometrical Primitives
	11. XGA and 8514/A Adapter Interface
	12. XGA Hardware Programming
	13. SuperVGA Programming
	14. DOS Animation
	15. DOS Bitmapped Graphics

	Part III: Windows API Graphics
	16. Graphics Programming in Windows
	17. Text Graphics
	18. Keyboard and Mouse Programming
	19. Child Windows and Controls
	20. Pixels, Lines, and Curves
	21. Drawing Figures, Regions, and Paths
	22. Windows Bitmapped Graphics

	Part IV: DirectX Graphics
	23. Introducing DirectX
	24. DirectX and COM
	25. Introducing DirectDraw
	26. Setting Up DirectDraw
	27. DirectDraw Exclusive Mode
	28. Access to Video Memory
	29. Blitting
	30. DirectDraw Bitmap Rendering
	31. DirectDraw Animation
	32. Direct3D Fundamentals
	33. Direct3D Programming

	Appendix A: Windows Structures
	Appendix B: Ternary Raster Operation Codes
	Bibliography
	Index

