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Dedicated to Dick Termes, whose work and talent
have contributed much to the quality of this book.

If there’s a book you really want to read, but it

hasn’t been written yet, then you must write it.

—Toni Morrison



Preface

It is probably a coincidence that the three main terms discussed in this book, namely
transformations, projections, and perspective, are ambiguous. Here is what the dictio-
nary has to say about these terms.

Transformation

(a) The act or an instance of transforming. (b) The state of being transformed.

A marked change, as in appearance or character, usually for the better.

Mathematical transformation. (a) Replacing a variable in an expression by its
value. (b) Mapping a mathematical space onto another or onto itself.

In geometry. Moving, rotating, reflecting, or otherwise systematically deforming a
geometric figure (discussed in this book).

In linguistics. (a) A rule to convert a syntactic form into another. (b) A sentence
or sentential form derived by such a rule; a transform.

In genetics. (a) The change undergone by a cell upon infection by a cancer-causing
virus. (b) The alteration of a bacterial cell caused by the transfer of DNA from another
bacterial cell, especially a pathogen.

Projection

The act of projecting or the condition of being projected.

(a) An object or part thereof that extends outward. (b) Spiky projections on top
of a fence. (c) A projection of land along the coast.

A prediction or an estimate of a future situation, based on current data or trends.

(a) The process of projecting a recorded image onto a viewing surface. (b) An
image so projected.

In mathematics. The image of an n-dimensional geometric figure reproduced in
n−1 or fewer dimensions. The most common case is for n = 3 (discussed in this book).
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In psychology. The attribution of one’s own beliefs or suppositions to others (such
as when a scientist projects his beliefs into the subjects of his research or into theories
he develops).

Perspective

(a) A view or scene. (b) A mental view or outlook.

The appearance of objects in depth as perceived by normal binocular vision.

(a) The relationship of aspects of a subject to each other and to a whole, “let’s
put this into perspective.” (b) Subjective evaluation of relative significance, “in my
perspective as an electrician, this wire is defective.” (c) The ability to perceive things
in their actual interrelations or comparative importance “in perspective, this flood is
minor.”

The technique of representing three-dimensional objects and depth relationships on
a two-dimensional surface (discussed in this book).

(Adjective) Of, relating to, seen, or represented in perspective.

This is why writing is such a liberating thing. You get to know what you didn’t know
you knew.

—Richard Lederer

There is no question that computer graphics has become an important field that
pervades our lives in many areas. Many advertisements on television and in magazines
are graphical and are created on computers. The screens of computers, PDAs, cellular
telephones, and similar devices interact graphically with the user. More and more full-
length feature films are being created entirely by computers. Graphics software enables
users to draw engineering plans, to create technical and artistic illustrations, and to
develop fonts of text. (For a short history of computer graphics, see [hocg 06].)

Computer graphics is an immense discipline, encompassing many fields, but this
book concentrates on the three key terms mentioned above. Following is a short discus-
sion of each term.

The term “transformation” as discussed in this book refers to a geometric opera-
tion applied to all the points of an object. An object may be moved, rotated, or scaled
(shrunk or stretched). It may be reflected about a plane (as in a mirror) or deformed
in some way, as illustrated by Figures Intro.1 and 1.1. Several transformations may
be combined and may completely change the position, orientation, and shape of the
object. Many graphics operations are greatly simplified with the help of transforma-
tions. A forest can be created from a single tree by duplicating the tree several times
and moving and transforming each copy differently. An object can be animated by
moving it along a path in small steps while also rotating and scaling it slightly at each
step. Transformations, both two-dimensional and three-dimensional, are discussed in
Chapter 1.

Currently, virtually all our graphics output devices are two dimensional, but many
graphics projects and objects are three-dimensional. Converting a three-dimensional
graphics object or scene into two dimensions is a mathematical operation called projec-
tion. In general, a projection transforms an object from n dimensions to n− 1 or fewer
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dimensions, but in computer graphics n is always 3. Because of the loss of dimensions,
an object loses some of its details when projected. It is therefore important to study
the various types of projections and always use the right one. Chapters 2 through 4
describe the three main classes of projections: parallel, perspective, and nonlinear.

� Exercise Pre.1: Discuss the impossible fork of Figure Pre.1.

Figure Pre.1: An Impossible Fork.

Perspective (or more accurately, linear perspective) is the general name of several
techniques that create the illusion of depth in a two-dimensional drawing. The rules of
perspective determine where and how to place objects in a painting or drawing so that
they appear to have depth and seem to be at the correct distance from the observer. A
picture in perspective creates in the viewer’s brain the same sensation as the original
three-dimensional scene. The main tool employed by linear perspective is vanishing
points. Perspective, including its history, its use in art, its applications to computer
graphics, and its mathematical representation, is the topic of Chapter 3.

Following is a short description of the chapters and appendices of the book.

Chapter 1 introduces geometric transformations. Both two-dimensional and three-
dimensional transformations are included, and it is shown that the latter are more
plentiful and more complex than the former and are also more difficult to specify. A
good example is rotations. In two dimensions there are only two directions, clockwise
and counterclockwise, for a rotation and rotations are performed about a point. In three
dimensions, rotations are about an axis and the terms clockwise and counterclockwise
are ambiguous.

Fortunately, all the important two-dimensional transformations can be specified by
a 3×3 transformation matrix, and this matrix is easy to extend to the three-dimensional
case, where all the important transformations can be specified by means of a 4×4 matrix.
Thus, the use of a transformation matrix is elegant and leads to a deep understanding
of transformations.

Other topics discussed in this chapter are (1) the use of homogeneous coordinates,
(2) combinations of transformations, such as a rotation followed by a reflection, and (3)
transforming the coordinate system instead of the object.

The remainder of the book is devoted to projections, and Chapter 2 introduces
parallel projections. These are used mostly in engineering drafting but can also be
found in Eastern art. There are three classes of parallel projections: orthographic,
axonometric, and oblique (although it is shown at the end of this chapter that the last
two types are similar). An orthographic projection displays one side or one face of the
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object. The downside of this type is that three projections are needed in order to see
the entire object. On the other hand, it is easy to compute dimensions of object details
from measurements made on the projection.

Axonometric projections normally show three sides of the object. Thus, a single
projection shows more of the object, but it is more difficult to compute dimensions of
parts of the object because each face of the object may be shrunk by a different factor
when drawn in the projection.

Oblique projections are similar to axonometric projections and employ certain pro-
jection angles in order to simplify the process of measuring and computing dimensions.

Perspective projections are the topic of Chapter 3. The chapter starts with an
intuitive explanation of the important concept of vanishing points. It follows with a
short history of perspective, its origins, and its applications to art. The short but im-
portant Section 3.3 is devoted to perspective projection in curved objects, a topic that
is neglected by most texts on perspective. The bulk of the chapter develops the math-
ematics of perspective in a systematic way, approaching this topic from several points
of view and illustrating it with examples. The chapter ends with a long presentation of
stereoscopic images, an important application of perspective.

Chapter 4 treats the important (and alas neglected) topic of nonlinear projections.
The most important nonlinear projections are the fisheye projection (Section 4.2), the
panoramic projection (Section 4.4), and the many sphere projections (Section 4.14). In
addition, this chapter includes material and examples on circle inversion (Section 4.3),
six-point perspective (Section 4.8), panoramic cameras (Section 4.10), telescopic and
microscopic projections (Sections 4.11 and 4.12), and anamorphosis (Section 4.13).

Appendix A, on vector products, and Appendix B, on quaternions, provide infor-
mation on these mathematical topics that may be unfamiliar to some readers. Finally,
Appendix C consists of color figures.

The heart of mathematics consists of concrete examples and concrete problems.
—Paul Halmos, How to Write Mathematics (1973).

I have collected and developed the material in this book over many years of studying
and teaching. Some of it has been published in [Salomon 99] and in various class notes,
but most of it is seeing the light of day for the first time in this book. I hope the readers
will find the presentation clear and unambiguous and will immediately bring any errors,
omissions, and misprints to my attention.

I cannot tell my learned reader (whose eyebrows, I suspect, have by now
traveled all the way to the back of his bald head), I cannot tell him how
the knowledge came to me.

—Vladimir Nabokov, Lolita (1955).

Readership of the Book

This book is aimed mostly at mathematically mature readers (i.e., those who can deal
comfortably with mathematical abstractions), who are familiar with computers and
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computer graphics and are looking for a mathematically easy presentation of the trans-
formations and projections used in computer graphics. The material presented here
requires no previous knowledge of transformations, projections, or perspective. The key
ideas are introduced slowly, are examined, whenever possible, from several points of
view, and are illustrated by figures, examples, and (solved) exercises. The discussion
must involve some mathematics, but it is nonrigorous and therefore easy to grasp. The
mathematical background required is the basics of linear algebra, mostly vectors, vector
operations, and matrices. The following features enhance the usefulness of the book:

The book has many figures. It is my belief that a book on aspects of graphics
should have figures to illustrate the concepts under discussion. Drawings, paintings, and
photographs are included. Most color figures have been printed in place in grayscale.
All of them appear in color in Appendix C.

Many exercises are sprinkled throughout the text. These are important and should
be worked out. The answers are also provided, but should be consulted only to verify
the reader’s own answer, or as a last resort.

Learn from other people’s mistakes. Life isn’t long enough to make them all yourself.
—Harry S. Truman

Books and Internet resources for transformations and projections.

Godel, Escher, Bach: An Eternal Golden Braid, by Douglas Hofstadter. Basic
Books, 20th Anniversary edition, 1999. This classical volume discusses symmetries in
art, literature, and science.

Transformation Geometry: An Introduction to Symmetry, by George E. Martin.
Springer-Verlag, 1982. An excellent mathematical reference.

Symmetry Discovered: Concepts and Applications in Nature and Science, by Joe
Rosen. Dover Press, 1975. An accessible introduction to the ideas of symmetry.

The New Ambidextrous Universe, by Martin Gardner. W. H. Freeman and Com-
pany, 1990. A beautifully written exploration of symmetry.

Symmetry, by Hermann Weyl. Princeton University Press, 1952. A classic illus-
trated introduction to symmetry.

The Renaissance and Rediscovery of Linear Perspective, by Samuel Y. Edgerton.
Harper and Row, 1976 (especially chapters 9 and 18).

Secret Knowledge: Rediscovering the Lost Techniques of the Old Masters, by David
Hockney. Viking, 2001.

The Science of Art, Optical Themes in Western Art From Brunelleschi to Seurat,
by Martin Kemp. Yale University Press, 1990.

The Life of Brunelleschi, by Antonio Tuccio Manetti, edited by Howard Saalman.
Penn State University, 1970.

Geometry: An Investigative Approach, and Laboratory Investigations in Geometry,
by Phares G. O’daffer and Stanley R. Clemens. Addison-Wesley, 1976.

Reference [Wolfram 06] has information, examples of, and code to create many
panoramic projections and map projections.

Reference [handprint 06] has a detailed discussion titled “Elements of Perspective.”
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Currently, the book’s Web site is part of the author’s Web site, which is located
at http://www.ecs.csun.edu/~dsalomon/. Domain name DavidSalomon.name has
been reserved and will always point to any future location of the Web site. The
author’s email address is dsalomon@csun.edu, but any email sent to email address
〈anyname〉@DavidSalomon.name will reach the author.

This book is dedicated to Dick Termes whose work and talent have contributed
much to the quality of the book. The many images by Dick that are included in the
book serve to illustrate important concepts. In addition, I would like to thank Ari
Salomon for Figure 4.25 and Professor Shinji Araya, Fukuoka Institute of Technology,
for Figure 4.32.

Lakeside, California David Salomon

The university as a step to anything but ordination seemed,

to this man of fixed ideas, a preface without a volume.

—Thomas Hardy, Tess of the d’Urbervilles (1891)
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Introduction

The 1960s were the golden age of computer graphics. This was the time when many
of the basic methods, algorithms, and techniques were developed, improved, and im-
plemented. Two of the most important concepts that were identified and studied in
those years were transformations and projections. Workers in the graphics field im-
mediately recognized the importance of transformations. Once a graphical object is
created, the use of transformations enables the designer to create copies of the object
and modify them in significant ways. The necessity of projections was also realized
early. Sophisticated graphics requires three-dimensional objects, but graphics output
devices are two-dimensional. A three-dimensional object has to be projected on the flat
output device in a way that will preserve its depth information. Thus, early researchers
in computer graphics developed the mathematics of parallel and perspective projec-
tions and implemented these techniques. Nonlinear projections deform the projected
image in various ways and are mostly used for artistic and ornamental purposes. These
projections were also studied and implemented over the years by many people.

� Exercise Intro.1: Most nonlinear projections are valued for their artistic and orna-
mental effects, but there is at least one type of nonlinear projection that has important
applications. What is it?

Today, transformations and projections are important components of computer
graphics and computer-aided design (CAD). Transformations save the designer work
and time, while projections are necessary because three-dimensional output devices are
still rare (but see [deeplight 06] for a new, revolutionary technique for three-dimensional
displays) hence this book.

Figure Intro.1 shows the power of even the simplest two-dimensional transforma-
tions. It illustrates, from left to right, the following transformations: rotation, reflection,
deformation (shearing), and scaling (see also Figure 1.1). It is not difficult to imagine
the power of combining these transformations, but it is more difficult to imagine and
visualize the power and flexibility of three-dimensional transformations.

The basic two-dimensional transformations are translation, rotation, reflection,
scaling, and shearing. They are simple, but it is their combinations that make them
powerful. It comes as a surprise to realize that these transformations can be specified
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Figure Intro.1: Elementary Two-Dimensional Transformations.

by means of a single 3×3 matrix where only six of the nine elements are used. The
same five basic transformations also exist in three dimensions, but have more degrees
of freedom and therefore require more parameters to fully specify them. The general
transformation matrix in three dimensions is 4×4, where 13 of the 16 elements control
the transformations and 3 are used to specify the orientation of the projection plane in
the case of perspective projections.

� Exercise Intro.2: What transformations are possible in one dimension?

In contrast with the five basic transformations, there are more than five types of
projections. As Figure Intro.2 illustrates, we distinguish between linear and nonlinear
projections. The former class consists of parallel and perspective projections, while the
latter class includes many different types. Each type of projection has variants. Thus,
parallel projections are classified into orthographic, axonometric, and oblique, while
perspective projections include one-, two-, and three-point projections.

Projections

Linear Nonlinear

Parallel Perspective

Orthographic

Axonometric

Oblique

One-point

Two-point

Three-point

Fisheye, Panorama, Telescopic,

Microscopic, Map, others...

Figure Intro.2: Classification of Projections.

Nonlinear projections are all different and employ different approaches and ideas.
Linear projections, on the other hand, are all based on the following simple rule of
projection.
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Rule. A three-dimensional object is projected on a two-dimensional plane called
the projection plane. The object must be fully located on one side of the plane, and
we imagine a viewer or an observer located on the other side. On that side, we select a
point termed the center of projection, and it is the location of this point that determines
the class of linear projection, parallel or perspective. A three-dimensional point P
on the object is projected to a two-dimensional point P∗ on the projection plane by
connecting P to the center of projection with a straight segment. Point P∗ is placed
at the intersection of this segment with the projection plane. When the center of
projection is at infinity, the result is a parallel projection. If the center of projection is
at the observer, the projection is perspective.

dictionary definition of projection: the representation of a figure or solid on a plane
as it would look from a particular direction.

Emma was not sorry to be pressed. She read, and was surprised. The

style of the letter was much above her expectation. There were not

merely no grammatical errors, but as a composition it would not have

disgraced a gentleman; the language, though plain, was strong and

unaffected, and the sentiments it conveyed very much to the

credit of the writer. It was short, but expressed good sense,

warm attachment, liberality, propriety, even delicacy of feeling.

—Jane Austen, Emma (1816)
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Transformations

When working on computer graphics projects, we discover very quickly that transfor-
mations are an important part of the process of building an image. If an image has
two identical (or even similar) parts, such as wheels, only one part need be constructed
from scratch. The other ones can be obtained by copying the first and then moving,
reflecting, and rotating it to bring it to the right shape, size, position, and orientation.
Often, we want to zoom in on a small part of an image so more detail can be seen.
Sometimes it is useful to zoom out, so a large image can be seen in its entirety on
the screen, even though no details can then be discerned. Operations such as moving,
rotating, reflecting, or scaling an image are called geometric transformations and are
discussed in this chapter for two and three dimensions.

1.1 Introduction

Mathematically, a geometric transformation is a function f whose domain and range are
points. We denote by P a general point before any transformation and by P∗ the same
point after a transformation. The notation P∗ = f(P) implies that the transformed
point P∗ is obtained by applying f to P. We call our transformations geometric because
they have geometric interpretations. Thus, only certain functions f can be used. Years
of study and practical experience have shown that in order for it to be meaningful as a
geometric transformation, a function must satisfy two conditions: it has to be onto and
one-to-one.

A general function f maps its domain D into its range R. If every point in R
has a corresponding point in D, then the function maps its domain onto its range. An
example is f(x) = �x�, which maps the real numbers onto the integers. Every integer
has a real number (in fact, infinitely many real numbers) that map to it. Another
example is g(x) = 1/x, a mapping from the real numbers into the real numbers. This
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mapping is not onto because no real number maps to zero. Requiring a transformation
to be onto makes sense since it guarantees that there will not be any special points P∗

that cannot be reached by the transformation.

An arbitrary function may map two distinct points x and y into the same point.
Function f(x) above maps the two distinct numbers 9.2 and 9.9 into the integer 9. A
one-to-one function satisfies x �= y → f(x) �= f(y). Function g(x) above is one-to-
one. Requiring a transformation to be one-to-one makes sense because it implies that a
given point P∗ is the transformed image of one point only, thereby making it possible
to reconstruct the inverse transformation.

Definition. A geometric transformation is a function that is both onto and one-
to-one, and whose range and domain are points.

� Exercise 1.1: Do either of the two real functions f1(x, y) = (x2, y) and f2(x, y) =
(x3, y) satisfy the definition above?

There are two ways to look at geometric transformations. We can interpret them
as either moving the points to new locations or as moving the entire coordinate system
while leaving the points alone. The latter interpretation is discussed in Section 1.5, but
the reader should realize that whatever interpretation is used, the movement caused by
a geometric transformation is instantaneous. We should not think of a point as moving
along a path from its original location to a new location, but rather as being grabbed
and immediately planted in its new location.

The description of right lines and circles, upon which geometry is founded, belongs to
mechanics. Geometry does not teach us to draw these lines, but requires them to be
drawn.

—Isaac Newton (1687)

Combining transformations is an important operation that is discussed in detail
in Section 1.2.2. This paragraph intends to make it clear that such a combination
(sometimes called a product) amounts to a composition of functions. If functions f and
g represent two transformations, then the composition g◦f represents the product of the
two transformations. Such a composition is often written as P∗ = g(f(P)). It can be
shown that combining transformations is associative (i.e., g ◦ (f ◦h) = (g ◦ f) ◦h). This
fact, together with a few other basic properties of transformations, makes it possible
to identify groups of transformations. A discussion of mathematical groups is beyond
the scope of this book but can be found in many texts on linear algebra. A set of
transformations constitutes a group if it includes the identity transformation, if it is
closed, and if every transformation in the set has an inverse that is also included in the
set.

An example of a group of transformations is the set of two-dimensional rotations
about the origin through angles of 0◦ and 180◦. This two-element set is a group since
a zero-degree rotation is an identity transformation and since a 180◦ rotation is the
inverse of itself.
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� Exercise 1.2: Is the operation of combining transformations commutative?

Another important example of a group of transformations is the set of linear trans-
formations that map a point P = (x, y, z) to a point P∗ = (x∗, y∗, z∗), where

x∗ = a11x + a12y + a13z + a14,

y∗ = a21x + a22y + a23z + a24,

z∗ = a31x + a32y + a33z + a34.

(1.1)

Each new coordinate depends on all three original coordinates, and the dependence
is linear. Such transformations are called affine and are defined more rigorously on
page 22.

A little thinking shows that the coefficients ai4 of Equation (1.1) represent quanti-
ties that are added to the transformed coordinates (x∗, y∗, z∗) regardless of the original
coordinates, thereby simply translating P∗ in space. This is why we start the detailed
discussion here by temporarily ignoring these coefficients, which leads to the simple
system of equations

x∗ = a11x + a12y + a13z,

y∗ = a21x + a22y + a23z,

z∗ = a31x + a32y + a33z.

(1.2)

If the 3×3 coefficient matrix of this system of equations is nonsingular or, equivalently,
if the determinant of the coefficient matrix is nonzero (see any text on linear algebra for
a refresher on matrices and determinants), then the system is easy to invert and can be
expressed in the form

x = b11x
∗ + b12y

∗ + b13z
∗,

y = b21x
∗ + b22y

∗ + b23z
∗,

z = b31x
∗ + b32y

∗ + b33z
∗,

(1.3)

where the bij ’s are expressed in terms of the aij ’s. It is now easy to see that, for
example, the two-dimensional line Ax + By + C = 0 is transformed by Equation (1.3)
to the two-dimensional line

(Ab11 + Bb21)x∗ + (Ab12 + Bb22)y∗ + C = 0.

� Exercise 1.3: Show that Equation (1.3) maps the general second-degree curve

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

to another second-degree curve.

In general, an affine transformation maps any curve of degree n to another curve
of the same degree.
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1.2 Two-Dimensional Transformations

In practice, a complete two-dimensional image is constructed on the screen object-by-
object and it may be edited before it is deemed satisfactory. One aspect of editing is
to transform objects. Typical transformations (Figures 1.1 and Intro.1) are moving or
sliding (translation), reflecting or flipping (mirror image), zooming (scaling), rotating,
and shearing (distorting).

Original Y scaledShearedY reflected

Rotated X scaled Reflected and sheared

Figure 1.1: Two-Dimensional Transformations.

The transformation can be applied to every pixel of the object. Alternatively, it
can be applied only to some key points that fully define the object (such as the four
corners of a rectangle), following which the transformed object is constructed from the
transformed key points.

As soon as we use words like “image,” we are already thinking of how one shape cor-
responds to the other—of how you might move one shape to bring it into coincidence
with the other. Bilateral symmetry means that if you reflect the left half in a mirror,
then you obtain the right half. Reflection is a mathematical concept, but it is not
a shape, a number, or a formula. It is a transformation—that is, a rule for moving
things around.

—Ian Stewart, Nature’s Numbers (1995)
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The same principle applies to a three-dimensional image. Such an image consists of
one or more three-dimensional objects that can be transformed individually, following
which the entire image should be projected on the two-dimensional screen (or other
output device). We first take a look at the mathematics of two-dimensional transfor-
mations.

We use the notation P = (x, y) for a point and P∗ = (x∗, y∗) for the transformed
point. We are looking for a simple, fast transformation rule, so it is natural to try a linear
transformation (i.e., a mathematical rule that does not use functions more complicated
than x). The simplest linear transformation is x∗ = ax + cy and y∗ = bx + dy, in
which each of the new coordinates is a linear combination of the two old ones. This
transformation can be written P∗ = PT, where T is the 2×2 matrix

(
a b
c d

)
. Thus, the

transformation depends on just four parameters, which makes it easy to analyze and
fully understand it.

To understand the effect of each of the four matrix elements, we start by setting
b = c = 0. The transformation becomes x∗ = ax, y∗ = dy. Such a transformation is
called scaling. If applied to all the points of an object, all the x dimensions are scaled
by a factor of a and all the y dimensions are scaled by a factor of d. Note that a and d
can also be less than 1, which causes shrinking of the object. If a or d (or both) equal
−1, the transformation is a reflection. Any other negative values result in both scaling
and reflection.

Note that scaling an object by factors of a and d changes its area by a factor of
a×d and that this factor is also the value of the determinant of the scaling matrix

(
a 0
0 d

)
.

Here are examples of scaling and reflection. In A, the y coordinates are scaled by
a factor of 2. In B, the x coordinates are reflected. In C, the x dimensions are shrunk
to 0.001 of their original values. In D, the figure is shrunk to a vertical line.

A =
(

1 0
0 2

)
, B =

(−1 0
0 1

)
, C =

(
0.001 0

0 1

)
, D =

(
0 0
0 1

)
.

� Exercise 1.4: What scaling transformation changes a circle to an ellipse?

The next step is to set a = 1 and d = 1 (no scaling or reflection) and explore the
effect of matrix elements b and c. The transformation becomes x∗ = x+cy, y∗ = bx+y.
We first set b = 1 and c = 0 and look at how matrix

(
1 1
0 1

)
transforms the four points (1, 0),

(3, 0), (1, 1), and (3, 1). They are transformed to (1, 1), (3, 3), (1, 2), and (3, 4). When we
plot the original and the transformed points (Figure 1.2a), it becomes obvious that the
original rectangle has been sheared vertically and was transformed into a parallelogram.
A similar shearing effect results from matrix

(
1 0
1 1

)
. The quantities b and c are therefore

responsible for shearing. Figure 1.2b shows the connection between shearing and the
operation of scissors. This is the reason for the name shearing.

� Exercise 1.5: Apply the shearing transformation
(
1−1
0 1

)
to the four points (1, 0), (3, 0),

(1, 1), and (3, 1). What are the transformed points? What geometrical figure do they
represent?

The next important transformation is rotation. Figure 1.3 shows a point P rotated
clockwise about the origin through an angle θ to become P∗. Simple trigonometry yields
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x

y

1

(a) (b)

1

2

2

3

3

4

4

5

Rectangle

Pa
ra
lle

log
ra
m

Figure 1.2: Scissors and Shearing.

x = R cos α and y = R sin α. From this, we get the expressions for x∗ and y∗

x∗ = R cos(α − θ) = R cos α cos θ + R sin α sin θ = x cos θ + y sin θ,

y∗ = R sin(α − θ) = −R cos α sin θ + R sin α cos θ = −x sin θ + y cos θ.

Hence, the clockwise rotation matrix in two dimensions is

(
cos θ − sin θ
sin θ cos θ

)
,

which also
equals
the product

(
cos θ 0

0 cos θ

)(
1 − tan θ

tan θ 1

)
. (1.4)

This shows that any rotation in two dimensions is a combination of scaling (and, per-
haps, reflection) by a factor of cos θ and shearing, an unexpected result (that’s true for
all angles where tan θ is finite).

x x*

θ

φα

P

P*

Figure 1.3: Clockwise Rotation.

� Exercise 1.6: Show how a 45◦ rotation can be achieved by scaling followed by shearing.
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� Exercise 1.7: Discuss rotation in two dimensions using the polar coordinates (r, θ) of
points instead of the Cartesian coordinates (x, y).

A rotation matrix has the following property: When any row is multiplied by itself,
the result is 1, and when a row is multiplied by another row, the result is 0. The same
is true for columns. Such a matrix is called orthonormal.

Matrix T1 below rotates counterclockwise. Matrix T2 reflects about the line y = x,
and matrix T3 reflects about the line y = −x. Note the determinants of these matrices.
In general, a determinant of +1 indicates pure rotation, whereas a determinant of −1
indicates pure reflection. (As a reminder, det

(
a b
c d

)
= ad − bc.)

T1 =
(

cos θ sin θ
− sin θ cos θ

)
; T2 =

(
0 1
1 0

)
; T3 =

(
0 −1
−1 0

)
. (1.5)

� Exercise 1.8: Show that a y-reflection (i.e., reflection about the x axis) followed by a
reflection through the line y = −x produces pure rotation.

� Exercise 1.9: Show that the transformation matrix⎛
⎝ 1 − t2

1 + t2
2t

1 + t2

−2t
1 + t2

1 − t2

1 + t2

⎞
⎠

produces pure rotation.

� Exercise 1.10: For what values of A does the following matrix represent pure rotation
and for what values does it represent pure reflection?(

a/A b/A
−b/A a/A

)
.

A 90◦ Rotation: In the case of a 90◦ clockwise rotation, the rotation matrix is(
cos(90) − sin(90)
sin(90) cos(90)

)
=
(

0 −1
1 0

)
. (1.6)

A point P = (x, y) is therefore transformed to the point (y,−x). For a counterclockwise
90◦ rotation, (x, y) is transformed to (−y, x). This is called the negate and exchange
rule.

Representations rotated not always by one hundred and eighty degrees, but sometimes
by ninety or forty-five, completely subvert habitual perceptions of space; the outline
of Europe, for instance, a shape familiar to anyone who has been even only to junior
school, when swung around ninety degrees to the right, with the west at the top,
begins to look like Denmark.

—Georges Perec, Life, A User’s Manual (1976)
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The Golden Ratio

Start with a straight segment of length l and divide it into two parts a and b such
that a + b = l and l/a = a/b.

l

a b

The ratio a/b is a constant called the Golden Ratio and is denoted φ. It is one of the
important mathematical constants, like π and e, and was already known to the ancient
Greeks. It is believed that geometric figures can be made more pleasing to the human
eye if they involve this ratio. One example is the golden rectangle, whose sides are x
and xφ long. Many classical buildings and paintings involve this ratio. [Huntley 70] is
a lively introduction to the Golden Ratio. It illustrates properties such as

φ =

√
1 +

√
1 +

√
1 +

√
1 + · · · and φ = 1 +

1
1 + 1

1+ 1
···

.

The value of φ is easy to calculate. The basic ratio l/a = a/b = φ implies (a + b)/a =
a/b = φ, which, in turn, means 1 + b/a = φ or 1 + 1/φ = φ, an equation that can be
written φ2−φ−1 = 0. This equation is easy to solve, yielding φ = (1+

√
5)/2 ≈ 1.618 . . ..

1

1 1/φ

φ

(a) (c)(b)

Figure 1.4: The Golden Ratio.

The equation φ = 1 + 1/φ illustrates another unusual property of φ. Imagine the
golden rectangle with sides 1 × φ (Figure 1.4a). Such a rectangle can be divided into
a 1 × 1 square and a smaller golden rectangle of dimensions 1 × 1/φ. The smaller
rectangle can now be divided into a 1/φ × 1/φ square and an even smaller golden
rectangle (Figure 1.4b). When this process continues, the rectangles converge to a
point. Figure 1.4c shows how a logarithmic spiral can be drawn through corresponding
corners of the rectangles.
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1.2.1 Homogeneous Coordinates

Unfortunately, our simple 2×2 transformation matrix cannot generate all the basic
transformations that are needed in practice! In particular, it cannot generate transla-
tion. This is easy to see by arguing that any object containing the origin will, after any
of the transformations above, still contain the origin [i.e., the result of (0, 0)T is (0, 0)
for any matrix T].

Translations can be expressed by x∗ = x+m, y∗ = y+n, and one way to implement
them is to generalize our transformations to P∗ = PT+(m, n), where T is the familiar
2 × 2 transformation matrix. A more elegant approach, however, is to stay with the
compact notation P∗ = PT and to extend T to the 3×3 matrix

T =

⎛
⎝ a b 0

c d 0
m n 1

⎞
⎠ . (1.7)

This approach is called homogeneous coordinates and is commonly used in projective
geometry. It makes it possible to unify all the two-dimensional transformations within
one 3 × 3 matrix with six parameters. The problem is that a two-dimensional point (a
pair) cannot be multiplied by a 3×3 matrix. This is solved by representing our points
in homogeneous coordinates, which is done by extending the point (x, y) to the triplet
(x, y, 1). The rules for using homogeneous coordinates are the following:

1. To transform a point (x, y) to homogeneous coordinates, simply add a third
component of 1. Hence, (x, y) ⇒ (x, y, 1).

2. To transform the triplet (a, b, c) from homogeneous coordinates back into a pair
(x, y), divide by the third component. Hence, (a, b, c) ⇒ (a/c, b/c).

This means that a point (x, y) has an infinite number of representations in homo-
geneous coordinates. Any triplet (ax, ay, a) where a is nonzero is a valid representation
of the point. This suggests a way to intuitively understand homogeneous coordinates.
We can consider the triplet (ax, ay, a) a point in three-dimensional space. When a
varies from 0 to ∞, the point travels along a straight ray from the origin to infinity.
The direction of the ray is determined by x and y but not by a. Therefore, each two-
dimensional point (x, y) corresponds to a ray in three-dimensional space. To find the
“real” location of the point, we look at the z = 1 plane. All points on this plane have
coordinates (x, y, 1), so we only have to strip off the “1” in order to see where the
point is located. Section 1.4 shows that homogeneous coordinates can also be applied
to three-dimensional points.

� Exercise 1.11: Write the transformation matrix that performs (1) a y-reflection, (2)
a translation by −1 in the x and y directions, and (3) a 180◦ counterclockwise rotation
about the origin. Apply this compound transformation to the four corners (1, 1), (1,−1),
(−1, 1), and (−1,−1) of a square centered on the origin. What are the transformed
corners?

Matrix (1.7) is the general transformation matrix in two dimensions. It produces
the most general linear transformation, x∗ = ax + cy + m, y∗ = bx + dy + n, and it
shows that this transformation depends on just six numbers.
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We can gain a deeper understanding of homogeneous coordinates when we add two
more parameters to matrix (1.7), writing it as⎛

⎝ a b p
c d q
m n 1

⎞
⎠ . (1.8)

A general point (x, y) is now transformed to

(x, y, 1)

⎛
⎝ a b p

c d q
m n 1

⎞
⎠ = (ax + cy + m, bx + dy + n, px + qy + 1).

Applying rule 2 shows that the transformed point (x∗, y∗) is given by

x∗ =
ax + cy + m

px + qy + 1
, y∗ =

bx + dy + n

px + qy + 1
.

To understand what this means, we apply this result to the four points (2, 1), (6, 1),
(2, 5), and (6, 5) that constitute the four corners of a square (Figure 1.5a). Using the
simple transformation ⎛

⎝ 1 0 1
0 1 1
0 0 1

⎞
⎠

(i.e., no scaling, rotation, shearing, or translation and p = q = 1), the points are
transformed to

P1 = (2, 1) → (2, 1, 4) → (1/2, 1/4),
P2 = (6, 1) → (6, 1, 8) → (3/4, 1/8),
P3 = (2, 5) → (2, 5, 8) → (1/4, 5/8),
P4 = (6, 5) → (6, 5, 12) → (1/2, 5/12).

The transformed points (Figure 1.5b) also seem to form a square, but one that’s viewed
from a different direction and seen in perspective. This suggests that our transformation
(using just p and q, without scaling, reflection, rotation, or shearing) has moved the
square from its original position in the xy plane to another plane. Such transformations
are called projections and are useful when dealing with objects in three-dimensional
space.

1.2.2 Combining Transformations

Matrix notation is useful when working with transformations since it makes it easy to
combine transformations. To combine transformations A, B, and C, we write the three
transformation matrices and multiply them. An example is an x-reflection, followed by
a y-scaling, followed by a 45◦ rotation(−1 0

0 1

)(
1 0
0 2

)(
0.707 −0.707
0.707 0.707

)
=
(−0.707 0.707

1.414 1.414

)
.
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P1 P2

P3

P4

Figure 1.5: A Two-Dimensional Projection of a Square.

In general, matrix multiplication is noncommutative, reflecting the fact that geo-
metric transformations are also noncommutative. It is easy to convince yourself that,
for example, a rotation about the origin followed by a translation is not the same as a
translation followed by a rotation about the origin.

Note that all the transformations discussed earlier are performed about the origin.
Figure 1.6a shows an object rotated 40◦ clockwise. It is easy to see that the center
of rotation is the origin. If, for example, we want to rotate an object about a point
P, we have to translate both the object and the point such that P goes to the origin
(Figure 1.6b), then rotate the object, and finally translate back (Figure 1.6c). Similarly,
to reflect an object through an arbitrary line, we have to (1) translate the line (and the
object) until it passes through the origin, (2) rotate the line (and the object) until it
coincides with one of the coordinate axes, (3) reflect through that axis, (4) rotate back,
and (5) translate back.

(Transformations are usually done about the origin. See Exercise 3.10 for an ex-
ample on how this affects scaling in three dimensions.)

� Exercise 1.12: Derive the rotation matrix for a two-dimensional rotation about a point
(x0, y0) using just trigonometry (i.e., without using translation).

Example: Reflection through the line y = x + 1. This line has a slope of 1
(i.e., it makes an angle of 45◦ with the x axis) and it intercepts the y axis at y = 1.
We first translate down one unit, then rotate clockwise by 45◦, then reflect through the
x axis, rotate back, and translate back. The result is (α stands for both sin 45◦ and
cos 45◦)

T =

⎛
⎝ 1 0 0

0 1 0
0 −1 1

⎞
⎠
⎛
⎝α −α 0

α α 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠
⎛
⎝ α α 0

−α α 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 1 0
0 1 1

⎞
⎠

=

⎛
⎝ 0 2α2 1

2α2 0 0
−2α2 1 1

⎞
⎠ =

⎛
⎝ 0 1 0

1 0 0
−1 1 1

⎞
⎠
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(a) (b) (c)

translate

rotate

translate back
rotate
about
origin

Figure 1.6: Rotation About a Point.

(because 2α2 = sin2 45◦ + cos2 45◦ = 1). Note that detT = −1 (i.e., pure reflection).

� Exercise 1.13: Show that the result in the example is correct.

Example: Reflection about an arbitrary line. Given the line y = ax + b,
it is possible to reflect a point about this line by transforming the line to the x axis,
reflecting about that axis, and transforming the line back. Since a is the slope (i.e., the
tangent of the angle α between the line and the x axis) and b is the y intercept, the
individual transformations needed are (1) a translation of −b units in the y direction, (2)
a clockwise rotation of α degrees about the origin, (3) a reflection about the x axis, (4) a
counterclockwise rotation, and (5) a reverse translation. The combined transformation
matrix is therefore

Treflect =

⎛
⎝ 1 0 0

0 1 0
0 −b 1

⎞
⎠
⎛
⎝ cos α − sin α 0

sin α cos α 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠

×
⎛
⎝ cos α sin α 0

− sin α cos α 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 1 0
0 b 1

⎞
⎠

=

⎛
⎝ cos(2α) sin(2α) 0

sin(2α) − cos(2α) 0
−b sin(2α) 2b cos2 α 1

⎞
⎠ . (1.9)

The determinant of this transformation matrix equals −1, as should be for pure reflec-
tion. For the two special cases α = b = 0 and α = 45◦ and b = 0, Equation (1.9)
becomes
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⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠ and

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ , respectively.

One feature that makes Equation (1.9) less than general is the way the sine and
cosine are obtained from the tangent of a known angle. Given that the slope a equals
tanα, we can calculate

a = tanα =
sin α

cos α
=

sin α√
1 − sin2 α

,

which yields sin2 α = a2/(1 + a2) or

sin α = ± a√
1 + a2

and cosα = ± 1√
1 + a2

.

The signs depend on the angle (or rather the quadrant in which the angle happens to
be) and cannot be determined in a general way.

� Exercise 1.14: Calculate the numerical value of matrix Treflect for the case α = 30◦

and b = 1.

� Exercise 1.15: Digital images displayed on a screen or printed on paper consist of
pixels. Even smooth curves are made of pixels. Thus, there is a need for efficient
algorithms to compute the best pixels for a given curve or geometric figure. The circle
has a high degree of symmetry, which is why it is possible to determine the best pixels for
a given circle by computing the pixels for one octant and duplicating and transforming
each pixel seven times to complete the remaining seven octants. The question is, is it
possible to improve such an algorithm even more by doing half an octant and duplicating
each pixel 15 times?

Another feature that makes Equation (1.9) less than general is the use of the
explicit representation y = ax + b. This representation is limited because it cannot
express vertical lines (for which a would be infinite). When reflecting a point about an
arbitrary line, it is better to use the more general implicit representation of a straight
line ax + by + c = 0, where a or b but not both can be zero. The slope of this line is
−a/b, and substituting b = 0 yields a vertical line.

Given such a line, we start with a point P = (x, y) and its reflection P∗ = (x∗, y∗)
about the line. It is clear that the segment PP∗ must be perpendicular to the line, so
its equation must be bx − ay + d = 0. Since both P and P∗ are on such a line, they
satisfy bx− ay + d = 0 and bx∗ − ay∗ + d = 0. Subtracting these two expressions yields

b(x − x∗) = a(y − y∗). (1.10)

We assume that P∗ is the reflection of P about the line ax+ by + c = 0, so the midpoint
of segment PP∗, which is the point

(
(x + x∗)/2, (y + y∗)/2

)
, must be on this line and
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must therefore satisfy

a
x + x∗

2
+ b

y + y∗

2
+ c = 0. (1.11)

Equations (1.10) and (1.11) can easily be solved for x∗ and y∗. The solutions are

P∗ = (x∗, y∗) =
(

x − 2a(ax + by + c)
a2 + b2

, y − 2b(ax + by + c)
a2 + b2

)

=
(

(b2 − a2)x − 2aby − 2ac

a2 + b2
,
−2abx + (a2 − b2)y − 2bc

a2 + b2

)
. (1.12)

Equation (1.12) is easy to verify intuitively for vertical and for horizontal lines.
When b is zero, the line becomes the vertical line x = −c/a and Equation (1.12) reduces
to

P∗ = (x∗, y∗) =
(

x − 2a(ax + c)
a2

, y

)
=
(
−x − 2c

a
, y

)
.

When a = 0, the line is the horizontal y = −c/b, and the same equation reduces to

P∗ = (x∗, y∗) =
(

x, y − 2b(by + c)
b2

)
=
(

x,−y − 2c

b

)
.

The transformation matrix for reflection about an arbitrary line ax + by + c = 0 is
directly obtained from Equation (1.12)

T =

⎛
⎝ b2 − a2 −2ab 0

−2ab a2 − b2 0
−2ac −2bc 1

a2+b2

⎞
⎠ . (1.13)

Its determinant is

detT =
(b2 − a2)(a2 − b2) − 4a2b2

a2 + b2
= −a4 + 2a2b2 + b4

a2 + b2
= −(a2 + b2),

which equals −1 (pure reflection) for lines expressed in the standard form (defined as
the case where a2 + b2 = 1).

� Exercise 1.16: Use Equation (1.12) to obtain the transformation rule for reflection
about a line that passes through the origin.

We turn now to the product of two reflections about the two arbitrary lines L1 :
ax + by + c = 0 and L2 : dx + ey + f = 0 (Figure 1.7a). This product can be calculated
from Equation (1.13) as the matrix product

⎛
⎝ b2 − a2 −2ab 0

−2ab a2 − b2 0
−2ac −2bc 1

a2+b2

⎞
⎠
⎛
⎝ e2 − d2 −2de 0

−2de d2 − e2 0
−2df −2ef 1

d2+e2

⎞
⎠ ,
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but this product is complex and hard to interpret geometrically. In order to simplify
it, we assume, without loss of generality, that both lines pass through the origin and
that the first is also horizontal (Figure 1.7b). The first assumption means that the lines
intersect at the origin and that c = f = 0. The second assumption means that the first
line is identical to the x axis, so a = 0 and b = 1. Also, f = 0 implies dx + ey = 0
or y = −(d/e)x. The quantity −d/e is the slope (i.e., tan θ) of the second line, so we
conclude that

−d

e
= − tan θ = − sin θ

cos θ
, implying d2 + e2 = 1.

(a) (b)

L1

L1

L2

L2

θ θ

Figure 1.7: Reflections About Two Intersecting Lines.

Under these assumptions, the matrix product above becomes

⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠
⎛
⎝ e2 − d2 −2de 0

−2de d2 − e2 0
0 0 1

⎞
⎠

=

⎛
⎝ e2 − d2 −2de 0

2de e2 − d2 0
0 0 1

⎞
⎠

=

⎛
⎝ cos(2θ) − sin(2θ) 0

sin(2θ) cos(2θ) 0
0 0 1

⎞
⎠ , (1.14)

leading to the important conclusion that the product of two reflections about arbitrary
lines is a rotation through an angle 2θ about the intersection point of the lines, where
θ is the angle between the lines. It can be shown that the opposite is also true; any
rotation is the product of two reflections about two intersecting lines.

The discussion above assumes that both lines pass through the origin. In the special
case where θ = 0, such lines would be identical, so reflecting a point P about them would
move it back to itself. However, for θ = 0, matrix (1.14) reduces to the identity matrix,
so it is valid even for identical lines.

In the special case where the lines are parallel, their intersection point is at infinity
and a rotation about a center at infinity is a translation.
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� Exercise 1.17: Given the two parallel lines y = 0 and y = c, calculate the double
reflection of a point (x, y) about them.

� Exercise 1.18: Consider the shearing transformation Ta of Equation (1.15), followed
by the 90◦ rotation Tb. What is the combined transformation, and what kind of trans-
formation is it?

Ta =

⎛
⎝ 0 1 0

2 0 0
0 0 1

⎞
⎠ , Tb =

⎛
⎝ cos 90◦ − sin 90◦ 0

sin 90◦ cos 90◦ 0
0 0 1

⎞
⎠ . (1.15)

� Exercise 1.19: Given the two rotations

T1 =

⎛
⎝ cos θ1 − sin θ1 0

sin θ1 cos θ1 0
0 0 1

⎞
⎠ and T2 =

⎛
⎝ cos θ2 − sin θ2 0

sin θ2 cos θ2 0
0 0 1

⎞
⎠ ,

calculate the combined transformation T1T2. Is it identical to a rotation through
(θ1 + θ2)?

� Exercise 1.20: Given the two shearing transformations

T1 =

⎛
⎝ 1 b 0

0 1 0
0 0 1

⎞
⎠ and T2 =

⎛
⎝ 1 0 0

c 1 0
0 0 1

⎞
⎠ ,

calculate the combined transformation T1T2. Is it identical to a shearing by factors b
and c?

� Exercise 1.21: Prove that three successive shearings about the x, y, and x axes is
equivalent to a rotation about the origin.

� Exercise 1.22: Matrix
(
a 0
0 d

)
scales an object by factors a and d along the x and y axes,

respectively. If we want to scale the object by the same factors, but in the i and j
directions (see Figure 1.8, where i and j are perpendicular and form an angle θ with
the x and y axes, respectively), we need to (1) rotate the object θ degrees clockwise, (2)
scale along the x and y axes using matrix

(
a 0
0 d

)
, and (3) rotate back. Write the three

transformation matrices and their product. Discuss the case a = d (uniform scaling).

� Exercise 1.23: We can perform an exercise with shearing, similar to Exercise 1.22.
Matrix

(
1 b
c 1

)
shears an object by factors c and b along the x and y axes, respectively.

Calculate the matrix that shears the object by the same factors, but in the i and j
directions (Figure 1.8).
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Figure 1.8: Scaling Along Rotated Axes.

� Exercise 1.24: Discuss scaling relative to a point (x0, y0), and show that the result
is identical to the product of a translation followed by scaling, followed by a reverse
translation.

Using Equation (Ans.2) in the Answers to Exercises, it is easy to explore the effect
of two consecutive scaling transformations, with scaling factors of k1 and k2 and about
points P1 = (x1, y1) and P2 = (x2, y2), respectively. We simply multiply the two
transformation matrices⎛

⎝ k1 0 0
0 k1 0

x1(1 − k1) y1(1 − k1) 1

⎞
⎠
⎛
⎝ k2 0 0

0 k2 0
x2(1 − k2) y2(1 − k2) 1

⎞
⎠

=

⎛
⎝ k1k2 0 0

0 k1k2 0
k2(1 − k1)x1 + (1 − k2)x2 k2(1 − k1)y1 + (1 − k2)y2 1

⎞
⎠ . (1.16)

The result is similar to Equation (Ans.2) except for the bottom row. It seems that the
product of two scalings is a third scaling with a factor k1k2, but about what point? To
write Equation (1.16) in the form of Equation (Ans.2), we write

k2(1 − k1)x1 + (1 − k2)x2 = xc(1 − k1k2),
k2(1 − k1)y1 + (1 − k2)y2 = yc(1 − k1k2),

and solve for (xc, yc), obtaining

xc =
k2(1 − k1)x1 + (1 − k2)x2

1 − k1k2
,

yc =
k2(1 − k1)y1 + (1 − k2)y2

1 − k1k2
.

The center of the double scaling is therefore point

Pc =
k2(1 − k1)
1 − k1k2

P1 +
1 − k2

1 − k1k2
P2 = aP1 + bP2.
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Notice that a + b = 1, which is why Pc is a point on the straight segment connecting
P1 and P2 (see also Equation (Ans.7)).

In the special case P1 = P2, it is easy to see that the center of the double scaling
is Pc = P1 = P2.

� Exercise 1.25: What is the result of two consecutive scalings with the same scaling
factors but about two different points?

� Exercise 1.26: Show that all the points with coordinates (t2, t), where 0 ≤ t ≤ 1, after
being transformed by ⎛

⎝−1 0 1
0 2 0
1 0 1

⎞
⎠ ,

lie on the perimeter of the unit circle x2 + y2 = 1. (Hint: See Figure 1.9.)

1+
t2

1−t2

2t
x

y

θ

Figure 1.9: A Unit Circle.

It is easy to see that the transformations discussed here can change lengths and
angles. Scaling changes the lengths of objects. Rotation and shearing change angles.
One feature that’s preserved, though, is parallel lines. A pair of parallel lines will
remain parallel after any scaling, reflection, rotation, shearing, and translation. A
transformation that preserves parallelism (and also maps finite points to finite points)
is called affine.

1.2.3 Fast Rotations

Rotation requires the calculation of the transcendental sine and cosine functions, which
is time-consuming. If many rotations are needed, it is preferable to precalculate the
trigonometric functions for many angles and store them in a table. This section shows
how to do this using integers only, a method that results in much faster rotations than
using floating-point numbers.

The method is illustrated for the first quadrant (rotation angles of 0◦ to 90◦) in
increments of 1◦. Notice that rotations in other quadrants can be achieved by a first-
quadrant rotation followed by a reflection. The following Mathematica code generates
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91 sine values, from sin 0◦ = 0 to sin 90◦ = 1, multiplies each by 214 = 16,384, rounds
them, and stores them in a table as 16-bit integers ranging from 0 to 16,384.

d2r=Pi/180;
Table[Round[N[16384*Sin[i*d2r]]], {i,0,90}]

θ sin θ θ sin θ θ sin θ θ sin θ θ sin θ

0 0 1 286 2 572 3 857 4 1143
5 1428 6 1713 7 1997 8 2280 9 2563

10 2845 11 3126 12 3406 13 3686 14 3964
15 4240 16 4516 17 4790 18 5063 19 5334
20 5604 21 5872 22 6138 23 6402 24 6664
25 6924 26 7182 27 7438 28 7692 29 7943
30 8192 31 8438 32 8682 33 8923 34 9162
35 9397 36 9630 37 9860 38 10087 39 10311
40 10531 41 10749 42 10963 43 11174 44 11381
45 11585 46 11786 47 11982 48 12176 49 12365
50 12551 51 12733 52 12911 53 13085 54 13255
55 13421 56 13583 57 13741 58 13894 59 14044
60 14189 61 14330 62 14466 63 14598 64 14726
65 14849 66 14968 67 15082 68 15191 69 15296
70 15396 71 15491 72 15582 73 15668 74 15749
75 15826 76 15897 77 15964 78 16026 79 16083
80 16135 81 16182 82 16225 83 16262 84 16294
85 16322 86 16344 87 16362 88 16374 89 16382
90 16384

Table 1.10: Sine Values as 16-Bit Integers.

The 91 values are listed in Table 1.10, but notice that they are only approximations
of the true sine values. (Even floating-point sine values are, in general, just approxi-
mations, but normally better than our integers.) This means that the use of this table
for many successive rotations of a point may place it farther and farther away from its
true position. When we perform many successive rotations of an object that consists
of many points, placing points away from where they should be generally results in a
deformation of the object.

We assume that the points are represented by coordinates that are 16-bit integers.
Calculating the rotated coordinates (x∗, y∗) of a point (x, y) can now be done, for
example, by

x∗ = rshift(x × Table(90 − θ), 14) − rshift(y × Table(θ), 14),
y∗ = rshift(x × Table(θ), 14) + rshift(y × Table(90 − θ), 14).

Notice how the required cosine values are obtained from the end of the table. This
method works because the table has 91 entries. Multiplying a 16-bit integer coordinate
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by a 16-bit integer sine value yields a 32-bit product. The right shift effectively divides
the product by 214 = 16,384, a necessary operation because our integer sine values have
been premultiplied by this scale factor.

� Exercise 1.27: Use this method to calculate the results of rotating point (1, 2) by 60◦

and by 80◦. In each case, compare the results with those obtained when built-in sine
and cosine functions are used.

1.2.4 CORDIC Rotations

We routinely use calculators to compute values of common functions, but have you ever
wondered how a calculator determines the value of, say, tan 72.81◦ so fast? Many cal-
culators use CORDIC (COordinate Rotation, DIgital Computer), a general method for
computing many elementary functions. CORDIC was originally proposed by [Volder 59]
and was extended by [Walther 71]. The original references are hard to find but are in-
cluded in [Swartzlander 90]. Here, we show how CORDIC can be used to implement
fast rotations.

It is sufficient to consider a rotation about the origin where the rotation angle θ is in
the interval [0, 90◦) (the first quadrant). The special case θ = 90◦ can be implemented
by the negate and exchange rule [Equation (1.6)]. Rotations in other quadrants can be
achieved by a first-quadrant rotation, followed by a reflection.

The rotation is expressed by [see Equation (1.4)]

(x∗, y∗) = (x, y)
(

cos θ − sin θ
sin θ cos θ

)
. (1.17)

Because θ is less than 90◦, we know that cos θ is nonzero, so we can factor out cos θ,
yielding

(x∗, y∗) = cos θ (x, y)
(

1 − tan θ
tan θ 1

)
.

We now express θ as the sum
∑m

i=0 θi, where angles θi are defined by the relation

tan θi = 2−i or θi
def= arctan(2−i). The first 16 θi, for i = 0, 1, . . . , 15, are listed in

Table 1.11.
In order to express any angle θ as the sum of these particular θi, some θi will have

to be subtracted. Consider, for example, θ = 58◦. We start with θ0 = 45◦. Since θ0 < θ,
we add θ1. The sum θ0 + θ1 = 45 + 26.5651 = 71.5651 is greater than θ, so we subtract
θ2. The new sum, 57.5289, is less than θ, so we add θ3, and so on.

� Exercise 1.28: We want to be able to express any angle θ in the range [0◦, 90◦) by
adding and subtracting a number of consecutive θi, from θ0 to some θm, without skipping
any θi in between. Is that possible?

It is easy to write a program that decides which of the θi’s should be added and
which should be subtracted. Thus, we end up with

θ =
m∑

i=0

diθi =
m∑

i=0

di arctan(2−i), where di = ±1.
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i θi (degrees) θi(radians) Ki

0 45. 0.785398 0.70710678118654746
1 26.5651 0.463648 0.63245553203367577
2 14.0362 0.244979 0.61357199107789628
3 7.12502 0.124355 0.60883391251775243
4 3.57633 0.0624188 0.60764825625616825
5 1.78991 0.0312398 0.60735177014129604
6 0.895174 0.0156237 0.60727764409352614
7 0.447614 0.00781234 0.60725911229889284
8 0.223811 0.00390623 0.60725447933256249
9 0.111906 0.00195312 0.60725332108987529

10 0.0559529 0.000976562 0.60725303152913446
11 0.0279765 0.000488281 0.60725295913894495
12 0.0139882 0.000244141 0.60725294104139727
13 0.00699411 0.00012207 0.60725293651701029
14 0.00349706 0.0000610352 0.60725293538591352
15 0.00174853 0.0000305176 0.60725293510313938

Table 1.11: The First 16 θi’s and Scale Factors.

Once the number m of necessary di’s and their values have been determined, we
rotate (x, y) to (x∗, y∗) in a loop where each iteration rotates a point (xi, yi) through
an angle diθi to a point (xi+1, yi+1). A general iteration can be expressed in the form

(xi+1, yi+1) = cos(diθi) (xi, yi)
(

1 − tan θi

tan θi 1

)

= cos(diθi) (xi, yi)
(

1 −di2−i

di2−i 1

)
= cos(diθi) (xi + yidi2−i, yi − xidi2−i). (1.18)

We interpret the result (xi+1, yi+1) of an iteration as the vector from the origin to
point (xi+1, yi+1). Equation (1.18) shows that this vector is the product of two terms.
The second term, (xi + yidi2−i, yi − xidi2−i), determines the direction of the vector,
while the first term, cos(diθi), affects only the magnitude of the vector. The second
term is easy to calculate since it just involves shifts. We know that di is just a sign and
that a product of the form xi2−i can be computed by shifting xi i positions to the right.
The problem is to calculate the first term, cos(diθi), and to multiply the two terms.

This is why CORDIC proceeds by first performing all the iterations

(xi+1, yi+1) ← (xi + yidi2−i, yi − xidi2−i)

using just right shifts and additions/subtractions; the cosine terms are ignored. The
result is a vector that points in the right direction but is too long (Figure 1.13). To
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bring this vector to its correct size, it should be multiplied by the scale factor

Km =
m∏

i=0

cos θi.

(Notice that cos(diθi) = cos θi since cosine is an even function.) This is discouraging
because it suggests that m multiplications are needed just to calculate the scale factor
Km. However, the first 16 scale factors are listed in Table 1.11 and even a quick glance
shows that they converge to the number 0.60725. . . . Reference [Vachss 87] shows that
Km can be obtained simply by using the m most significant bits of this number and
ignoring the rest.

Using the identity sin2 θ + cos2 θ = 1 and the definition tan θi = 2−i, we get

cos θi =
1√

1 + tan2 θi

=
1√

1 + 2−2i
,

which is why the scale factors of Table 1.11 were so easily calculated to a high precision
by the code
N[Table[Product[(2^(-2i)+1)^(-1/2),{i,0,n}],{n,0,16}],17]//TableForm.

x

y

P=(x,y)

P*=(x*,y*)

θ0

θ

θ1

θ2

θ3

Figure 1.12: CORDIC Rotation.

� Exercise 1.29: Suggest another way to calculate Km.

Any practical CORDIC implementation (see [Jarvis 90] for a C program) should
have the following two features.
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1. CORDIC employs only shifts and additions/subtractions, so any implementation
should use fixed-point, instead of floating-point, arithmetic. This is fast since shifting
and adding fixed-point numbers can be done with integer operations. Notice that all the
numbers involved in the computations are less than unity, except perhaps the original
coordinates (x, y). A software package for graphics employing this method should there-
fore use normalized coordinates (fixed-point numbers in the interval [0, 1]) throughout
and perform all the calculations on these small numbers. Each iteration results in a pair
(xi+1, yi+1) that’s slightly larger than its predecessor, but the last iteration results in
a pair that can be larger than (x, y) by a factor of at most 1/0.60725 . . . = 1.64676 . . ..
This pair is then scaled down when multiplied by Km. The final step is to scale the
final coordinates up.

All this suggests a 32-bit fixed-point format where the leftmost bit is reserved, as
usual, for the sign, the next two bits are the integer part, and the remaining 29 bits are
the fractional part (29 bits being equivalent to 9 decimal digits). The largest number
that can be represented by this format is 11.11 . . . 12 = 3.999 . . . and the smallest one
is 110 . . . 02 = −4. It’s a good idea to reserve two bits for the integer part because (1)
even though all the numbers involved are 1 or smaller, some intermediate results may
be greater than 1 and (2) this convention makes it possible to represent the important
constants π, e, and φ (the Golden Ratio).

2. Earlier, we said, “It is easy to write a program that decides which of the θi’s
should be added and which should be subtracted.” The practical way to do this is to
initialize a variable z to θ and try to drive z to zero during the iterations. In iteration
i the program should calculate both z + θi and z − θi, select the value that’s closer to
zero, use it to decide whether to add or subtract θi, and then update z. If z − θi is
closer to zero, then θi should be added; otherwise, θi should be subtracted. An example
is θ = 58◦. We initialize z to 58. In iteration 0, it is clear that 58 − 45 = 13 is closer
to zero than 58 + 45. The program therefore adds θ0 and updates z to 13. In iteration
1, the program finds that 13− 26.5651 = −13.5651 is closer to zero than 13 + 26.5651,
so it adds θ1 and updates z to −13.5651. In iteration 2, the program discovers that
−13.5651 + 14.0362 = 0.4711 is closer to zero than −13.5651 − 14.0362, so it subtracts
θ2 and updates z to 0.4711.

Finally, we realize that there is really no need to compare z+θi and z−θi in iteration
i. We simply start by selecting d0 = +1 and update z by subtracting z ← z − θ0,
z ← z − θ1, etc., until we get a negative value in z. We then change di to −1 (the new
sign of z) and update z by z ← z− diθi (which now amounts to adding θi to z). This is
summarized by the Mathematica code of Figure 1.13. (But note that the Sign function
of Mathematica returns +1, 0, or −1, while we need a result of +1 or −1. The code as
shown is simple but not completely general.)

Compared to other approaches, CORDIC is a clear winner when a hardware multiplier
is unavailable (e.g. in a microcontroller) or when you want to save the gates required
to implement one (e.g. in an FPGA). On the other hand, when a hardware multiplier
is available (e.g. in a DSP microprocessor), table-lookup methods and good old-
fashioned power series are generally faster than CORDIC.

—Grant R. Griffin, www.dspguru.com/info/faqs/cordic.htm
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t=Table[ArcTan[2.^{-i}], {i,0,15}]; (* arctans in radians *)
d=1; x=2.1; y=0.34; z=46. Degree;
Do[{Print[i,", ",x,", ",y,", ",z,", ",d],
xn=x+y d 2^{-i}, yn=y-x d 2^{-i},
zn=z-d t[[i+1]], d=Sign[zn], x=xn, y=yn, z=zn}, {i,0,14}]
Print[0.60725x,", ",0.60725y]

Figure 1.13: Mathematica Code for CORDIC Rotations.

� Exercise 1.30: Instead of using the complex CORDIC method, wouldn’t it be simpler
to perform a rotation by a direct use of Equation (1.17)? After all, this only requires
the calculation of one sine and one cosine values.

1.2.5 Similarities

A similarity is a transformation that scales all distances by a fixed factor. It is easy to
show that a similarity is produced by the special transformation matrix

⎛
⎝ a c 0

−c a 0
m n 1

⎞
⎠ .

To show this, we observe that translations preserve distances, so we can ignore
the translation part of the matrix above and restrict ourselves to the matrix

(
a c
−c a

)
. It

transforms a point P = (x, y) to the point P∗ = (x∗, y∗) = (ax − cy, cx + ay). Given
the two transformations P1 → P∗

1 and P2 → P∗
2, it is straightforward to illustrate the

relation

distance2(P∗
1P

∗
2) =

(
(Δx∗)2 + (Δy∗)2

)
= [(ax2 − cy2) − (ax1 − cy1)]2 + [(cx2 + ay2) − (cx1 + ay1)]2

= (aΔx − cΔy)2 + (cΔx + aΔy)2

= a2Δx2 − 2aΔxcΔy + c2Δy2 + c2Δx2 + 2cΔxaΔy + a2Δy2

= (a2 + c2)(Δx2 + Δy2)

= (a2 + c2)distance2(P1P2),

implying that distance(P∗
1P

∗
2) =

√
a2 + c2 distance(P1P2). Thus, all distances are

scaled by a factor of
√

a2 + c2.

In general, a similarity is a transformation of the form P∗ = (x∗, y∗) = (ax − cy +
m,±(cx + ay) + n), where the ratio of expansion (or shrinking) is k =

√
a2 + c2. If k is

positive, the similarity is called direct; if k is negative, the similarity is opposite.

� Exercise 1.31: Discuss the case k = 0.
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Using the ratio k, we can write a similarity (ignoring the translation part) as the
product ⎛

⎝ a c 0
−c a 0
0 0 1

⎞
⎠
⎛
⎝ k 0 0

0 k 0
0 0 1

⎞
⎠
⎛
⎝ a/k c/k 0

−c/k a/k 0
0 0 1

⎞
⎠ ,

which shows that a similarity is a combination of a scaling/reflection (by a factor k)
and a rotation. (The definition of k implies that (a/k)2 +(c/k)2 = 1, so we can consider
c/k and a/k the sine and cosine of the rotation angle, respectively.)

1.2.6 A 180◦ Rotation

Another interesting example of combining transformations is a 180◦ rotation about a
fixed point P = (Px, Py). This combination is called a halfturn. It is performed, as
usual, by translating P to the origin, rotating about the origin, and translating back.
The transformation matrix is (notice that cos(180◦) = −1)

T =

⎛
⎝ 1 0 0

0 1 0
−Px −Py 1

⎞
⎠
⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 1 0
Px Py 1

⎞
⎠ =

⎛
⎝ −1 0 0

0 −1 0
2Px 2Py 1

⎞
⎠ .

A general point (x, y) is therefore transformed by a halfturn to

(x, y, 1)

⎛
⎝ −1 0 0

0 −1 0
2Px 2Py 1

⎞
⎠ = (−x + 2Px,−y + 2Py, 1) (1.19)

(Figure 1.14a), but it’s more interesting to explore the effect of two consecutive halfturns,
about points P and Q. The second halfturn transforms point (−x + 2Px,−y + 2Py, 1)
to

(−x+2Px,−y +2Py, 1)

⎛
⎝ −1 0 0

0 −1 0
2Qx 2Qy 1

⎞
⎠ = (x−2Px +2Qx, y−2Py +2Qy, 1). (1.20)

If P = Q, then the result of the second halfturn is (x, y), showing how two identical
180◦ rotations return a point to its original location. If P and Q are different, the result
is a translation of the original point (x, y) by factors −2Px + 2Qx and −2Py + 2Qy

(Figure 1.14b).

� Exercise 1.32: What is the result of three consecutive halfturns about the distinct
points P, Q, and R?

Things turn out best for the people who make the best out of the
way things turn out.

—Art Linkletter
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S

P Q

R

P

Q
P

(x,y)

(x,y)
(x,y)

(x*,y*)

(x*,y*)
(x*,y*)

(a) (b)

Translati
on

(c)

Figure 1.14: Halfturns.

1.2.7 Glide Reflections

This transformation is a special combination of three reflections. Imagine the two
vertical parallel lines x = L and x = M and the horizontal line y = N (Figure 1.15a).
Reflecting a point P = (x, y) about the line x = L is done by translating the line to the
y axis, reflecting about that axis, and translating back. The transformation matrix is⎛

⎝ 1 0 0
0 1 0
−L 0 1

⎞
⎠
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 1 0
L 0 1

⎞
⎠ =

⎛
⎝−1 0 0

0 1 0
2L 0 1

⎞
⎠ ,

and the transformed point is

(x, y, 1)

⎛
⎝−1 0 0

0 1 0
2L 0 1

⎞
⎠ = (−x + 2L, y, 1).

Reflecting this point about the line x = M results in

(−x + 2L, y, 1)

⎛
⎝ −1 0 0

0 1 0
2M 0 1

⎞
⎠ = (x − 2L + 2M, y, 1)

(a translation), and reflecting this about the horizontal line y = N yields

(x − 2L + 2M, y, 1)

⎛
⎝ 1 0 0

0 −1 0
0 2N 1

⎞
⎠ = (x − 2L + 2M,−y + 2N, 1).

This particular glide reflection is therefore a translation in x and a reflection in y. A
general glide reflection is the product of three reflections, the first two about parallel
lines L and M and the third about a line N perpendicular to them (Figure 1.15b).
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(a) (b)

x=L x=M

y=N

L

MN

Figure 1.15: Glide Reflection.

1.2.8 Improper Rotations

A rotation followed by a reflection about one of the coordinate axes is called an improper
rotation. The transformation matrices for the two possible improper rotations in two
dimensions (Figure 1.16) are

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)
=
(

cos θ sin θ
sin θ − cos θ

)
,(

cos θ − sin θ
sin θ cos θ

)(−1 0
0 1

)
=
(− cos θ − sin θ
− sin θ cos θ

)
,

and the transformation rules therefore are

x∗ = x cos θ + y sin θ, y∗ = x sin θ − y cos θ,

x∗ = −x cos θ − y sin θ, y∗ = −x sin θ + y cos θ.

Notice that the determinant of an improper rotation matrix equals −1, like that of a
pure reflection.

(a) (b)

Figure 1.16: Improper Rotations.
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An improper rotation differs from a rotation in one important aspect. When we
rotate an object through a small angle and repeat this transformation, the object seems
to move smoothly along a circle. Each time we repeat an improper rotation, however,
the object “jumps” from one side of the coordinate plane to the other. The total effect
is very different from that of a smooth circular movement.

1.2.9 Decomposing Transformations

Sometimes, a certain transformation A may be equivalent to the combined effects of
several different transformations B, C, and D. We say that A can be decomposed into B,
C, and D. Mathematically, this is equivalent to saying that the original transformation
matrix TA equals the product TBTCTD. We have already seen that a rotation in two
dimensions can be decomposed into a scaling followed by a shearing; here are other
examples.

It may come as a surprise that the general two-dimensional transformation matrix,
Equation (1.7), can be written as a product of shearing, scaling, rotation, and translation
as follows:⎡

⎣ a b 0
c d 0
m n 1

⎤
⎦ =

⎡
⎣ 1 0 0

(ac + bd)/A2 1 0
0 0 1

⎤
⎦
⎡
⎣A 0 0

0 (ad − bc)/A 0
0 0 1

⎤
⎦
⎡
⎣ a/A b/A 0
−b/A a/A 0

0 0 1

⎤
⎦
⎡
⎣ 1 0 0

0 1 0
m n 1

⎤
⎦ ,

(1.21)

where A =
√

a2 + b2. The third matrix produces rotation since (a/A)2 + (b/A)2 = 1.
Even something as simple as shearing in one direction can be written as the product

of a unit shearing and two scalings:⎛
⎝ 1 0 0

c 1 0
0 0 1

⎞
⎠ =

⎛
⎝ 1/c 0 0

0 1 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

1 1 0
0 0 1

⎞
⎠
⎛
⎝ c 0 0

0 1 0
0 0 1

⎞
⎠ .

Even the simple transformation of a unit shearing can be decomposed into a product
that involves a scaling and two rotations. Note that the Golden Ratio φ is involved,⎛

⎝ 1 0 0
1 1 0
0 0 1

⎞
⎠ =

⎛
⎝ cos α − sin α 0

sin α cos α 0
0 0 1

⎞
⎠
⎛
⎝φ 0 0

0 1/φ 0
0 0 1

⎞
⎠
⎛
⎝ cos β sin β 0

− sin β cos β 0
0 0 1

⎞
⎠ ,

where α = tan−1 φ ≈ 58.28◦ and β = tan−1(1/φ) ≈ 31.72◦.
(This is indeed a surprising result. It means that a clockwise rotation of 58.28◦,

followed by a scaling of φ in the x direction and 1/φ in the y direction, followed by
a counterclockwise rotation of 31.72◦, is equivalent to a unit shear in the x direction.
This is illustrated by Figure 1.17.)
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(a)

rotate 580

(b)

(c) (d)

clockwise

scale by
1.618 and 0.618

rotate 320

counterclockwise

Figure 1.17: Shearing Decomposed into Rotation and Scaling.

Geometry has two great treasures: one the Theorem of Pythagoras; the other,
the division of a line into extreme and mean ratio. The first we may compare
to a measure of gold; the second we may name a precious jewel.

—Johannes Kepler

� Exercise 1.33: Given the transformation

x∗ = 3x − 2y + 1, y∗ = 4x + 5y − 6,

calculate the transformation matrix and decompose it into a product of four matrices
as shown in Equation (1.21).

1.2.10 Reconstructing Transformations

Given a sequence of two-dimensional transformations, we normally write the 3×3 matrix
for each and then multiply the matrices. The result is another 3×3 matrix which is used
to transform all the points of an object. An interesting question is: Given the points
of an object before and after a transformation, can we reconstruct the transformation
matrix from them?

The answer is yes! The general two-dimensional transformation matrix depends
on six numbers, so all we need are six equations involving transformed points. Since
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each point consists of two numbers, three points are enough to reconstruct the trans-
formation matrix. Given three points both before (P1, P2, P3) and after (P∗

1, P∗
2,

P∗
3) a transformation, we can write the three equations P∗

1 = P1T, P∗
2 = P2T, and

P∗
3 = P3T and solve for the six elements of T.

Example. The three points (1, 1), (1, 0), and (0, 1) are transformed to (3, 4),
(2,−1), and (0, 2), respectively. We write the general transformation (x∗, y∗) = (ax +
cy + m, bx + dy + n) for the three sets

(3, 4) = (a + c + m, b + d + n),
(2,−1) = (a + m, b + n),
(0, 2) = (c + m, d + n),

and this is easily solved to yield a = 3, b = 2, c = 1, d = 5, m = −1, and n = −3. The
transformation matrix is therefore

T =

⎛
⎝ 3 2 0

1 5 0
−1 −3 1

⎞
⎠ .

� Exercise 1.34: Inverse transformations. From P∗ = PT, we get P∗T−1 = PTT−1

or P = P∗T−1. We can therefore reconstruct an original point P from the transformed
one, P∗, if we know the inverse of the transformation matrix T. In general, the inverse
of the 3 × 3 matrix

T =

⎛
⎝ a b 0

c d 0
m n 1

⎞
⎠

is

T−1 =
1

ad − bc

⎛
⎝ d −b 0

−c a 0
cn − dm bm − an 1

⎞
⎠ . (1.22)

Calculate the inverses of the transformation matrices for scaling, shearing, rotation, and
translation, and discuss their properties.

� Exercise 1.35: Given that the four points

P1 = (0, 0), P2 = (0, 1), P3 = (1, 1), and P4 = (1, 0)

are transformed to

P∗
1 = (0, 0), P∗

2 = (2, 3), P∗
3 = (8, 4), and P∗

4 = (6, 1),

reconstruct the transformation matrix.
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1.2.11 A Note

All the expressions derived so far for transformations are based on the basic relation
P∗ = PT. Some authors prefer the equivalent relation P∗ = TP, which changes the
mathematics somewhat. If we want the coordinates of the transformed point to be the
same as before (i.e., x∗ = ax + cy + m, y∗ = bx + dy + n), we have to write the relation
P∗ = TP in the form ⎛

⎝x∗

y∗

1

⎞
⎠ =

⎛
⎝ a c m

b d n
0 0 1

⎞
⎠
⎛
⎝x

y
1

⎞
⎠ .

The first difference is that both P and P∗ are columns instead of rows. This is because of
the rules of matrix multiplication. The second difference is that the new transformation
matrix T is the transpose of the original one. Hence, rotation, for example, is achieved
by the matrices ⎛

⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠

for a clockwise rotation, and

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠

for a counterclockwise rotation.

Similarly, translation is done by

⎛
⎝ 1 0 m

0 1 n
0 0 1

⎞
⎠ instead of

⎛
⎝ 1 0 0

0 1 0
m n 1

⎞
⎠ .

1.2.12 Summary

The general two-dimensional affine transformation is given by x∗ = ax + cy + m, y∗ =
bx+ dy +n. This section shows the values or constraints that should be assigned to the
four coefficients a, b, c, and d in order to obtain certain types of transformations (we
ignore translations).

A general affine transformation is obtained when ad − bc �= 0. For ad − bc = +1,
the transformation is rotation, and for ad − bc = −1, it is reflection.

The case ad − bc = 0 corresponds to a singular transformation.

The identity transformation is obtained when a = d = 1 and b = c = 0.

An isometry is obtained by a2 + b2 = c2 +d2 = 1 and ac+ bd = 0. An isometry is a
transformation that preserves distances. If P and Q are two points on an object, then
the distance d between them is preserved, meaning that the distance d between P∗ and
Q∗ is the same. Rotations, reflections, and translations are isometries.
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A similarity is obtained for a2 + b2 = c2 + d2 and ac + bd = 0. A similarity is a
transformation that preserves the ratios of lengths. A typical similarity is scaling, but
it may be combined with rotation, reflection, and translation.

An equiareal transformation (preserving areas) is obtained when |ad − bc| = 1.

A shearing in the x direction is caused by a = d = 1 and b = 0. Similarly, a
shearing in the y direction corresponds to a = d = 1 and c = 0.

A uniform scaling is a = d > 0 and b = c = 0. (The identity is a special case of
scaling.)

A uniform reflection is a = d < 0 and b = c = 0.

A rotation is the result of a = d = cos θ and b = −c = sin θ.

1.3 Three-Dimensional Coordinate Systems

We now turn to transformations in three dimensions. In most cases, the mathematics of
linear transformations is easy to extend from two dimensions to three, but the discus-
sion here demonstrates that certain transformations, most notably rotations, are more
complex in three dimensions because there are more directions about which to rotate
and because the simple terms clockwise and counterclockwise no longer apply. We start
with a short discussion of coordinate systems in three dimensions.

In two dimensions, there is only one Cartesian coordinate system, with two per-
pendicular axes labeled x and y (actually, the axes don’t have to be perpendicular, but
this is irrelevant for our discussion of transformations). A coordinate system in three
dimensions consists similarly of three perpendicular axes labeled x, y, and z, but there
are two such systems, a left-handed and a right-handed (Figure 1.18a), and they are
different. A right-handed coordinate system is constructed by the following rule. Align
your right thumb with the positive x axis and your right index finger with the positive y
axis. Your right middle finger will then point in the direction of positive z. The rule for
a left-handed system uses the left hand in a similar manner. It is also possible to define
a left-handed coordinate system as the mirror image (reflection) of a right-handed one.
Notice that one coordinate system cannot be transformed into the other by translating
or rotating it.

The difference between left-handed and right-handed coordinate systems becomes
important when a three-dimensional object is projected on a two-dimensional screen
(Chapter 3). We assume that the screen is positioned at the xy plane with its origin
(i.e., its bottom left corner) at the origin of the three-dimensional system. We also
assume that the object to be projected is located on the positive side of the z axis
and the viewer is located on the negative side, looking at the projection of the image
on the screen. Figure 1.18b shows that in a left-handed three-dimensional coordinate
system, the directions of the positive x and y axes on the screen coincide with those of
the three-dimensional x and y axes. In a right-handed system (Figure 1.18c), though,
the two-dimensional x axis (on the screen) and the three-dimensional x axis point in
opposite directions.
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Figure 1.18: Three-Dimensional Coordinate Systems.

Principle: Express co-ordinate ideas in similar form.
This principle, that of parallel construction, requires that expressions of similar con-
tent and function should be outwardly similar. The likeness of form enables the reader
to recognize more readily the likeness of content and function. Familiar instances from
the Bible are the Ten Commandments, the Beatitudes, and the petitions of the Lord’s
Prayer.

—W. Strunk Jr. and E. B. White, The Elements of Style

1.4 Three-Dimensional Transformations

We develop three-dimensional transformations by extending the methods used in two-
dimensional transformations, especially the concept of homogeneous coordinates. A
three-dimensional point P = (x, y, z, 1) is transformed to a point P∗ = (x∗, y∗, z∗, 1) by
multiplying it by a 4×4 matrix

T =

⎛
⎜⎝

a b c p
d e f q
h i j r
l m n s

⎞
⎟⎠ . (1.23)
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The last column of T is not (0, 0, 0, 1)T because it is used for projections. (See the
discussion of n-point perspective on page 110.) As a result, the product PT is the
4-tuple (X, Y, Z, H), where H equals xp + yq + zr + s and is generally not 1. The
three coordinates (x∗, y∗, z∗) of P∗ are obtained by dividing (X, Y, Z) by H. Hence,
(x∗, y∗, z∗) = (X/H, Y/H, Z/H).

The top left 3 × 3 part of T is responsible for scaling and reflection (a, e, and j),
shearing (b, c, f and d, h, i), and rotation (all nine elements). The three quantities l, m,
and n are responsible for translation, and the only new parameters are those in the last
column (p, q, r, s).

To understand the meaning of s, we examine the matrix T =
( 1

1
1

S

)
. Mul-

tiplying P by T transforms (x, y, z, 1) into (x, y, z, s), so the new point has coordinates
(x/s, y/s, z/s). The parameter s is therefore responsible for global scaling (by a factor

of 1/s). Its effect is identical to transforming by
( 1/s

1/s
1/s

1

)
.

Translation in three dimensions is a direct extension of the two-dimensional case.
A point can be translated in the direction of any of the coordinate axes.

Scaling in three dimensions is simple. An object can be scaled about the origin
along any of the three coordinate axes. To scale about another point P0, a sequence
of three transformations is needed. The point should be translated to the origin, the
scaling performed, and the point translated back. Notice that scaling an object is done
by scaling all its points. Scaling a point does not change its dimensions (since a point
has no dimensions) but simply moves it to another location.

Shearing in three dimensions is difficult to visualize. It is controlled by the six
off-diagonal matrix elements b, c, f , d, h, and i, which is why many variations are
possible. Perhaps the best way to become familiar with three-dimensional shearing is
to experiment with the effect of varying each of the six parameters. Figure 1.19 shows
a few possible shearings of a rectangular box.

Figure 1.19: Shearing in Three Dimensions.

Shearing: A transformation in which all points along a given line L remain fixed while
other points are shifted parallel to L by a distance proportional to their perpendicular
distance from L. Shearing a plane figure does not change its area. This can also be
generalized to three dimensions, where planes are translated instead of lines.

—Eric W. Weisstein, http://mathworld.wolfram.com/Shear.html
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1.4.1 Reflection

It is easy to reflect a point (x, y, z) about any of the three coordinate planes xy, xz, or
yz. All that’s needed is to change the sign of one of the point’s coordinates. In this
section, we discuss and explain the general case where an arbitrary plane and a point
are given and we want to reflect the point about the plane. We proceed in three steps
as follows: (1) We discuss planes and their equations, (2) show how to determine the
distance of a point from a given plane, and (3) explain how to compute the reflection
of a point about a plane.

The (implicit) equation of a straight line is Ax+By+C = 0, where A or B but not
both can be zero. The equation of a flat plane is the direct extension Ax+By+Cz+D =
0, where A, B, and C cannot all be zero. Four equations are needed to calculate the
four unknown coefficients A, B, C, and D. On the other hand, we know that any three
independent (i.e., noncollinear) points Pi = (xi, yi, zi), i = 1, 2, 3 define a plane. Thus,
we can write a set of four equations, three of which are based on three given points and
the fourth one expressing the condition that a general point (x, y, z) lies on the plane

0 =

∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣
=x

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣− y

∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣+ z

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
We cannot solve this system of equations because x, y, and z can have any values,

but we don’t need to solve it! We just have to guarantee that this system has a solution.
In general, a system of linear algebraic equations has a solution if and only if its deter-
minant is zero. The expression below assumes this and also expands the determinant
by its top row:

0 =

∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣
=x

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣− y

∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣+ z

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
This is of the form Ax + By + Cz + D = 0, so we conclude that

A =

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣ B = −
∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣ C =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ D = −
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
(1.24)
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� Exercise 1.36: Calculate the expression of the plane containing the z axis and passing
through the point (1, 1, 0).

� Exercise 1.37: In the plane equation Ax + By + Cz + D = 0 if D = 0, then the
plane passes through the origin. Assuming D �= 0, we can write the same equation as
x/a + y/b + z/c = 1, where a = −D/A, b = −D/B, and c = −D/C. What is the
geometrical interpretation of a, b, and c?

We operate with nothing but things which do not exist, with lines, planes, bodies,
atoms, divisible time, divisible space—how should explanation even be possible when
we first make everything into an image, into our own image!

—Friedrich Nietzsche

In some practical applications, the normal to the plane and one point on the plane
are known. It is easy to derive the plane equation in such a case.

We assume that N is the (known) normal vector to the plane, P1 is a known
point on the plane, and P is an arbitrary point in the plane. The vector P − P1 is
perpendicular to N, so their dot product N • (P − P1) equals zero. Since the dot
product is associative, we can write N •P = N •P1. The dot product N •P1 is just a
number, to be denoted by s, so we get

N • P = s or Nxx + Nyy + Nzz − s = 0. (1.25)

Equation (1.25) can now be written as Ax + By + Cz + D = 0, where A = Nx,
B = Ny, C = Nz, and D = −s = −N • P1. The three unknowns A, B, and C are the
components of the normal vector, and D can be calculated from any known point P1

on the plane. The expression N •P = s is a useful equation of the plane and is used in
many applications.

� Exercise 1.38: Given N(u, w) = (1, 1, 1) and P1 = (1, 1, 1), calculate the plane equa-
tion.

P1

P3

P

r

urs

ws
P2

(a)
(3,0,0)

(0,0,3)

(b)

x

y

z

Figure 1.20: (a). A Plane. (b) Three Points on a Plane.
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Note that the direction in which the normal is pointing is irrelevant for the plane
equation. Substituting (−A,−B,−C) for (A, B, C) would also change the sign of D,
resulting in the same equation. However, the direction of the normal is important when
a surface is to be shaded. We want the normal, in such a case, to point outside the
surface. Often, this has to be done manually since the computer has no concept of the
shape of the object in question and the meaning of the terms “inside” and “outside.”
However, in cases where a plane is defined by three points, the direction of the normal
can be specified by arranging the three points (in the data structure in memory) in a
certain order.

It is also easy to derive the equation of a plane when three points on the plane,
P1, P2, and P3, are known. In order for the points to define a plane, they should not
be collinear. We consider the vectors r = P2 − P1 and s = P3 − P1 a local coordinate
system on the plane. Any point P on the plane can be expressed as a linear combination
P = ur + ws, where u and w are real numbers. Since r and s are local coordinates on
the plane, the position of point P relative to the origin is expressed as (Figure 1.20b)

P(u, w) = P1 + ur + ws, −∞ < u, w < ∞. (1.26)

� Exercise 1.39: Given the three points P1 = (3, 0, 0), P2 = (0, 3, 0), and P3 = (0, 0, 3),
write the equation of the plane defined by them.

P

Q

N
v v•N

Figure 1.21: Distance of a Point from a Plane.

The next step is to determine the distance between a point and a plane. Given the
point P = (x, y, z) and the plane Ax + By + Cz + D = 0, we select an arbitrary point
Q = (x0, y0, z0) on the plane. Since Q is on the plane, it satisfies Ax0+By0+Cz0+D = 0
or −Ax0 − By0 − Cz0 = D. We construct the vector v from Q to P as the difference
v = P − Q = (x − x0, y − y0, z − z0). Figure 1.21 shows that the required distance
(the size of the vector from the plane to P that’s perpendicular to the plane) is the
component vN of v in the direction of the normal N = (A, B, C). This component is
given by

vN =
|v • N|
|N| =

|A(x − x0) + B(y − y0) + C(z − z0)|√
A2 + B2 + C2

=
|Ax + By + Cz − Ax0 − By0 − Cz0|√

A2 + B2 + C2

=
|Ax + By + Cz + D|√

A2 + B2 + C2
. (1.27)
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If we omit the absolute value, then the distance becomes a signed quantity. We can
think of the plane as if it divides all of space into two parts, one in the direction of N
and the other on the other side of the plane. The distance is positive if P is located in
that part of space pointed to by the normal (which is the case in Figure 1.21), and it is
negative in the opposite case.

� Exercise 1.40: What’s the distance of a plane from the origin?

Now that we can figure out the distance between a point and a plane, the last
step is to reflect a point about a given plane. We start with a point P = (x, y, z)
and a plane Ax + By + Cz + D = 0. We denote the normal unit vector by N =
(A, B, C)/

√
A2 + B2 + C2 and the (signed) distance between P and the plane by d. To

get from P to the plane, we have to travel a distance d in the direction of N. To arrive
at the reflection point P∗, we should travel another d units in the same direction. Thus,
the reflection P∗ of P is given by

P∗ = P − 2dN = P − 2(Ax + By + Cz + D)
A2 + B2 + C2

(A, B, C). (1.28)

� Exercise 1.41: Why P − 2dN and not P + 2dN?

Most neurotics have been mindful of their five W’s since grammar school: why, why,
why, why, why.

—Terri Guillemets

(a) (b)

(1,1,1)

(−1,0,2)

(0,1,2)

(−1,−1,1)

(1,1,1)

xx

y y

z

Figure 1.22: Reflection in Three Dimensions: Examples.

Examples. We select (Figure 1.22a) the plane x+y = 0 and the point P = (1, 1, 1).
Equation (1.28) becomes

P∗ = (1, 1, 1) − 2(1 + 1)
1 + 1 + 0

(1, 1, 0) = (−1,−1, 1).

Similarly, point P = (0, 1, 2) is reflected to

P∗ = (0, 1, 2) − 2(0 + 1)
1 + 1 + 0

(1, 1, 0) = (−1, 0, 2).
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We now select (Figure 1.22b) the plane x + y + z − 1 = 0 and the point P = (1, 1, 1).
Equation (1.28) becomes

P∗ = (1, 1, 1) − 2(1 + 1 + 1 − 1)
1 + 1 + 1

(1, 1, 1) = −1
3
(1, 1, 1).

Similarly, point P = (0, 0, 0) is reflected to

P∗ = (0, 0, 0) − 2(0 + 0 + 0 − 1)
1 + 1 + 1

(1, 1, 1) =
2
3
(1, 1, 1).

The special case of a reflection about one of the coordinate planes is also obtained
from Equation (1.28). The equation of the xy plane, for example, is z = 0, where
Equation (1.28) yields

P∗ = (x, y, z) − 2(0 + 0 + z + 0)
02 + 02 + 12

(0, 0, 1) = (x, y,−z).

1.4.2 Rotation

Rotation in three dimensions is difficult to visualize and is often confusing. One ap-
proach is to write three rotation matrices that rotate about the three coordinate axes:

⎛
⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

cos θ 0 − sin θ 0
0 1 0 0

sin θ 0 cos θ 0
0 0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎞
⎟⎠ .

(1.29)
Let’s look at the first of these matrices. Its third row and third column are (0, 0, 1, 0),
which is why multiplying a point (x, y, z, 1) by this matrix leaves its z coordinate un-
changed. The sines and cosines in the first two rows and two columns mix up the x and
y coordinates in a way similar to a two-dimensional rotation [Equation (1.4)]. Thus,
this transformation matrix causes a rotation about the z axis. The two other matrices
rotate about the y and x axes.

(1,0,0)

(0,1,0)

(0,
0,1

)

(0,1,0)

x x x

y
y y

z z z

(a) (b) (c)

Figure 1.23: Rotating About the Coordinate Axes.
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Okay, so I assume going into this tutorial that you know how to perform matrix
multiplication. I don’t care to explain it, and it’s available all over the Internet.
However, once you know how to perform that operation, you should be good to go for
this tutorial.

(Found on the Internet)

It is therefore easy to identify the axis of rotation for each of the three rotation
matrices of Equation (1.29), but what about their direction of rotation? To figure out
the directions, we select θ = 90◦ and substitute sin θ = 1 and cos θ = 0. Simple tests in a
right-handed coordinate system show that the first matrix of Equation (1.29) (rotation
about the z axis) rotates point (1, 0, 0) to (0,−1, 0) and point (0, 1, 0) to (1, 0, 0). Thus,
when we observe this 90◦ rotation looking in the direction of positive z, the rotation
is counterclockwise (Figure 1.23a). The second matrix, however, behaves differently.
It rotates point (1, 0, 0) to (0, 0,−1) and point (0, 0, 1) to (1, 0, 0). When we observe
this 90◦ rotation about the y axis looking in the direction of positive y, the rotation is
clockwise (Figure 1.23b). The third matrix (rotation about the x axis) rotates point
(0, 1, 0) to (0, 0,−1) and point (0, 0, 1) to (0, 1, 0). When we observe this 90◦ rotation
looking in the direction of positive x, the rotation is counterclockwise (Figure 1.23c).

We therefore decide (somewhat arbitrarily) to switch the signs (positive and neg-
ative) of the sine functions in the matrices that rotate about the z and x axes. The
result,⎛

⎜⎝
cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

cos θ 0 − sin θ 0
0 1 0 0

sin θ 0 cos θ 0
0 0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎞
⎟⎠ ,

(1.30)
is a set of three rotation matrices that rotate a point about the three coordinate axes in
such a way that if we look in the positive direction of that axis, the rotation is clockwise.

(Surprisingly, it turns out that there is an elegant way to specify the direction
of rotation that’s generated by the rotation matrices of Equation (1.29), and this is
described below.)

The rotation matrices of Equations (1.29) and (1.30) are simple but not very useful
because in practice we rarely know how to break a general rotation into three rotations
about the coordinate axes. There are some cases, however, where rotations about the
coordinate axes are common. One such case is discussed in Section 2.2; two more are
presented here.

Case 1: Rotations about the coordinate axes are common in the motion of a sub-
marine or an airplane. These vehicles have three degrees of freedom and have three
natural, mutually perpendicular axes of rotation that are called roll, pitch, and yaw
(Figure 1.24). Roll is a rotation about the direction of motion of the vehicle. An air-
plane rolls when it banks by dipping one wing and lifting the other. Pitch is an up or
down rotation about an axis that goes through the wings. An airplane uses its elevators
for this. Yaw is a left–right rotation about a vertical axis, accomplished by the rudder.
These terms originated with sailors because a ship can yaw and also has limited roll
and pitch capabilities.
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Yaw

Pitch

Roll

Figure 1.24: Roll, Pitch, and Yaw.

Case 2: Another example of an application where rotations about the three coor-
dinate axes are common is L-systems. This is a system of formal notation developed
by the biologist Aristid Lindenmayer (hence the “L”) in 1968 as a tool to describe the
morphology of plants [Lindenmayer 68]. In the 1970s, this notation was adopted by
computer scientists and used to define formal languages. Since 1984, it has also been
used to describe and draw many types of fractals. Today, L-systems are used to generate
tilings, geometric art, and even music.

The main idea of L-systems is to define a complex object by (1) defining an initial
simple object, called the axiom, and (2) writing rules that show how to replace parts
of the axiom. The rules are written in terms of turtle moves, a concept originally
introduced in the LOGO programming language [Abelson and DiSessa 82]. L-systems,
however, specify the structure of three-dimensional objects, so the turtle must move in
three dimensions and can rotate about its three main axes. For more information on
L-systems, see [Prusinkiewicz 89].

It has already been mentioned that rotation in three dimensions is more complex
than in two dimensions. One reason for this is that rotation in two dimensions is about
a point, whereas rotation in three dimensions is about an axis (any axis, not just one
of the three coordinate axes). Another reason is that the direction of rotation in two
dimensions can be only clockwise or counterclockwise, but the direction of rotation in
three dimensions is more complex to specify. The rotation is about an axis, but its direc-
tion, clockwise or counterclockwise, about this axis depends on how we look at the axis.
Thus, a general rule is needed to specify the direction of a three-dimensional rotation
unambiguously. We state such a rule for the rotation matrices of Equation (1.29).

The direction of a three-dimensional rotation generated by the matrices of (1.29)
in a right-handed coordinate system is determined by the following rule: Write down
the sequence “x, y, z” and erase the symbol that corresponds to the axis of rotation.
The two remaining symbols are denoted by l and r. Draw the coordinate axes such that
the positive direction of l will be up and the positive direction of r will be to the right.
(This is not a necessary requirement, but it conforms to Figure 1.25.) The rotation will
then be from positive r to positive l to negative r to negative l (Figure 1.25 and see also
Exercise 3.12).

Example: A rotation about the z axis produced by the leftmost matrix
of (1.29). After erasing z, the two symbols left are x and y. We draw the coordinate
axes such that positive x is up and positive y is to the right. The matrix produces
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Figure 1.25: Direction of Three-Dimensional Rotations.

counterclockwise rotation. To achieve clockwise rotation, either use a negative angle or
the inverse of the rotation matrix. Inverting our rotation matrices is especially easy and
requires only that we change the signs of the sine functions.

Example. Consider the following compound transformation: (1) a translation by
l, m, and n units along the three coordinate axes, (2) a rotation of θ degrees about the
x axis, (3) a rotation of φ degrees about the y axis, and (4) the reverse translation. The
four transformation matrices are

Tr =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
l m n 1

⎞
⎟⎠ , Trr =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
−l −m −n 1

⎞
⎟⎠ ,

Rx =

⎛
⎜⎝

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎞
⎟⎠ , Ry =

⎛
⎜⎝

cos φ 0 − sin φ 0
0 1 0 0

sin φ 0 cos φ 0
0 0 0 1

⎞
⎟⎠ .

Their product equals the 4×4 matrix

T = TrRxRyTrr

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos φ 0 − sin φ 0
sin φ sin θ cos θ cos φ sin θ 0
cos θ sin φ − sin θ cos φ cos θ 0

−l + l cos φ
+m cos(φ − θ)/2
−m cos(φ + θ)/2
+n sin(φ − θ)/2
+n sin(φ + θ)/2

−m
+m cos θ
−n sin θ

[−2n + n cos(φ − θ)
+n cos(φ + θ)

−2l sin φ
−m sin(φ − θ)

+m sin(φ + θ)]/2

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Substituting the values θ = 30◦, φ = 45◦, and l = m = n = −1, we get the 4× 4 matrix

T =

⎛
⎜⎝

0.7071 0 −0.7071 0
0.3540 0.866 0.3540 0
0.6124 −0.50 0.6124 0
−0.673 0.634 0.7410 1

⎞
⎟⎠ .
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A point at (1, 2, 3), for example, is transformed by T to the point

(1, 2, 3, 1)T = (2.5793, 0.866, 2.5791, 1).

� Exercise 1.42: Do the same operations for the compound transformation TrRxTrr.

1.4.3 General Rotations

In practice, we normally don’t know how to express an arbitrary rotation as a product of
rotations about the coordinate axes, so we have to derive the important transformation
of general rotation explicitly. The problem is easy to state. A point P is to be rotated
through an angle θ about a specified axis. We first have to realize that there is a
difference between an axis and a vector. A vector is fully specified by three numbers.
It has direction and magnitude, but no specific location in space. An axis has both
direction and location (it starts at a certain point), but its magnitude is normally
irrelevant. A full specification of an axis requires a start point and a vector, a total
of six numbers. (However, because the magnitude of the vector is irrelevant, it can be
represented by two numbers only.) In order to simplify our derivation, we assume that
our axis of rotation starts at the origin. If it starts at point P0, we have to precede
the rotation by a translation of P0 to the origin and follow the rotation by the inverse
translation.

We therefore denote by u a unit vector located on an axis that starts at the origin.
We can now fully specify a general rotation in three dimensions by four numbers—the
rotation angle θ and the three components of u. The rotated point P ends up at P∗.
We connect P to the origin and call the resulting vector r. Rotating point P to P∗ is
identical to rotating vector r to r∗.

Figure 1.26a shows that the component OC of r along u is left unchanged, but
the component CP is rotated to CP*. The distance OC is seen from the diagram to
be (r • u), so the vector �OC can be written (r • u)u. From r = �OC + �CP, we get
�CP = r − (r • u)u or, in terms of magnitudes, | �CP| = |r − (r • u)u|. It can also be

seen from the diagram that | �CP| = |r| sin φ. Since u is a unit vector, we can write
|u × r| = |r| sin φ. We thus obtain | �CP| = |r − (r • u)u| = |u × r|.

Figure 1.26b shows the situation when looking from the origin in the positive u
direction. (The diagram shows the tail of u.) Note that the vector �CQ is perpendicular
to both u and r, so it is in the direction of u × r.

The next step is to resolve CP* into its components. From Figure 1.26b, we get

�CP∗ = cos θ[r − (r • u)u] + sin θ[r − (r • u)u] = cos θ[r − (r • u)u] + sin θ(u × r),

which can be used to express r∗:

r∗ = �OC + �CP∗ = (r • u)u + cos θ[r − (r • u)u] + sin θ(u × r). (1.31)
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Figure 1.26: A General Rotation.

Using Equations (A.3) and (A.5) (page 222), we can rewrite this as r∗ = (uuT )r +
cos θr − cos θ(uuT )r + sin θUr, where

U =

⎛
⎝ 0 −uz uy

uz 0 −ux

−uy ux 0

⎞
⎠ .

The result can now be summarized as r∗ = Mr, where

M = uuT + cos θ(I − uuT ) + sin θU (1.32)

=

⎡
⎢⎣

u2
x + cos θ(1 − u2

x) uxuy(1 − cos θ) − uz sin θ uxuz(1 − cos θ) + uy sin θ

uxuy(1 − cos θ) + uz sin θ u2
y + cos θ(1 − u2

y) uyuz(1 − cos θ) − ux sin θ

uxuz(1 − cos θ) − uy sin θ uyuz(1 − cos θ) + ux sin θ u2
z + cos θ(1 − u2

z)

⎤
⎥⎦ .

Direction cosines. If v = (vx, vy, vz) is a three-dimensional vector, its direction
cosines are defined as

N1 =
vx

|v| , N2 =
vy

|v| , N3 =
vz

|v| .

These are the cosines of the angles between the direction of v and the three coordinate
axes. It is easy to verify that N2

1 + N2
2 + N2

3 = 1. If u = (ux, uy, uz) is a unit vector,
then |u| = 1 and ux, uy, and uz are the direction cosines of u.

It can be shown that a rotation through an angle −θ is performed by the transpose
MT . Consider the two successive and opposite rotations r∗ = Mr and r′ = MT r∗. On
the one hand, they can be expressed as the product r′ = MT r∗ = MT Mr. On the
other hand, they rotate in opposite directions, so they return all points to their original
positions; therefore r′ must be equal to r. We end up with r = MT Mr or MMT = I,
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where I is the identity matrix. The transpose MT therefore equals the inverse, M−1,
of M, which shows that a rotation matrix M is orthogonal.

Example. Consider a rotation about the z axis. The rotation axis is u = (0, 0, 1),
resulting in

uuT =

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ and U =

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ , and hence M =

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ ,

which is the familiar rotation matrix about the z axis. It is identical to the z-rotation
matrix of Equation (1.29), so we conclude that it rotates counterclockwise when viewed
from the direction of positive z.

The general rotation matrix of Equation (1.32) can also be constructed as the
product of five simple rotations about various coordinate axes. Given a unit vector
u = (ux, uy, uz), consider the following rotations.

1. Rotate u about the z axis into the xz plane, so its y coordinate becomes zero.
This is done by a rotation matrix of the form

A =

⎡
⎣ cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎤
⎦ ,

and the angle ψ of rotation can be computed from the requirement that the y component
of vector v = uA be zero. This component is −ux sin ψ + uy cos ψ, which implies

cos ψ = ux/
√

u2
x + u2

y and sinψ = uy/
√

u2
x + u2

y. Notice that rotating u does not affect
its magnitude, so v is also a unit vector. In addition, since the rotation is about the z
axis, the z component of u does not change, so vz = uz.

2. Rotate vector v about the y axis until it coincides with the z axis. This is
accomplished by the matrix

B =

⎡
⎣ cos φ 0 sin φ

0 1 0
− sin φ 0 cos φ

⎤
⎦ .

The angle φ of rotation is computed from the dot product cosφ = v · (0, 0, 1) = vz = uz,
implying that sinφ =

√
1 − u2

z. Since v is a unit vector, it is rotated by B to vector
(0, 0, 1).

3. Rotate (0, 0, 1) about the z axis through an angle θ. This is done by matrix

C =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ .

This is a trivial rotation that does not change (0, 0, 1).
4. Rotate the result of step 3 by B−1 (which equals BT ).
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5. Rotate the result of step 4 by A−1 (which equals AT ).

When these five steps are performed on a point (x, y, z), the effect is to rotate
the point through an angle θ about u. In practice, the five steps are combined by
multiplying the five matrices above, as shown in the listing of Figure 1.27. The result
is identical to Equation (1.32).

tm=Sqrt[x^2+y^2];
a={{x/tm,-y/tm,0},{y/tm,x/tm,0},{0,0,1}};
b={{z,0,Sqrt[1-z^2]},{0,1,0},{-Sqrt[1-z^2],0,z}};
c={{Cos[t],-Sin[t],0},{Sin[t],Cos[t],0},{0,0,1}};
FullSimplify[a.b.c.Transpose[b].Transpose[a] /. x^2+y^2->1-z^2]

Figure 1.27: Mathematica Code for a General Rotation.

1.4.4 Givens Rotations

The general rotation matrix, Equation (1.32), can be constructed for any general ro-
tation in three dimensions. Given such a matrix A, it is possible to reduce it to a
product of rotation matrices that cause the same rotation by performing a sequence of
rotations about the coordinate axes. This process [Givens 58] is based on the QR
decomposition of matrices, a subject discussed in any text on matrices, and it re-
sults in a set of Givens rotations. Each Givens rotation matrix Ti,j is identified by
two indexes, i and j, where i > j. The matrix is an identity matrix except for the
two diagonal elements (i, i) and (j, j) that are cosines of some angle and for the two
off-diagonal elements (i, j) and (j, i) that are the ± sin of the same angle. Specifi-
cally, Ti,j [i, i] = Ti,j [j, j] = c and Ti,j [j, i] = −Ti,j [i, j] = s, where c = A[j, j]/D,
s = A[i, j]/D, and D =

√
A[j, j]2 + A[i, j]2. The special construction of Ti,j implies

that the matrix product Ti,jA transforms A to a matrix whose (i, j)th element is zero.
Once a general rotation matrix A is given, its Givens rotations can be found by

preparing the Givens rotation matrices Ti,j that zero those elements of A located below
the main diagonal, column by column, from the bottom up. Figure 1.28 is a listing of
Matlab code that does that for the rotation matrix that rotates point (1, 1, 1) to the x
axis.

The three rotation matrices produced by this computation are listed in Figure 1.29,
where they are used to rotate point (1, 1, 1) to the x axis. Matrix T1 rotates (1, 1, 1)
45◦ about the y axis to (1.4142, 1, 0), which is rotated by T2 35.26◦ about the z axis to
(1.7321, 0, 0), which is trivially rotated by T3 15◦ about the x axis to itself.

1.4.5 Quaternions

Appendix B is a general introduction to quaternions and should be reviewed before
reading ahead. Quaternions can elegantly express arbitrary rotations in three dimen-
sions. Those familiar with complex numbers may have noticed that a rotation in two
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n=3;
A=[.5774,-.5774,-.5774; .5774,.7886,-.2115; .5774,-.2115,.7886]
% Rotation from 1,1,1 to x-axis
Q=eye(n);
for j=1:n-1,
for i=n:-1:j+1,
T=eye(n);
D=sqrt(A(j,j)^2+A(i,j)^2);
cos=A(j,j)/D; sin=A(i,j)/D;
T(j,j)=cos; T(j,i)=sin; T(i,j)=-sin; T(i,i)=cos; T
A=T*A;

Q=Q*T’;
end;

end;
Q
A

Figure 1.28: Computing Three Givens Matrices.

T1=[0.7071,0,0.7071; 0,1,0; -0.7071,0,0.7071];
T2=[0.8165,0.5774,0; -0.5774,0.8165,0; 0,0,1];
T3=[1,0,0; 0,0.9660,0.2587; 0,-0.2587,0.9660];
p=[1;1;1];
a=T1*p
b=T2*a
c=T3*b

Figure 1.29: Rotating Point (1,1,1) to the x Axis.

J. Wallace Givens, Jr. (1910–1993) pioneered the use of plane rotations in the early
days of automatic matrix computations. Givens graduated from Lynchburg College
in 1928, and he completed his Ph.D. at Princeton University in 1936. After spending
three years at the Institute for Advanced Study in Princeton as an assistant of Oswald
Veblen, Givens accepted an appointment at Cornell University, but later moved to
Northwestern University. In addition to his academic career, Givens was the director
of the Applied Mathematics Division at Argonne National Laboratory and, like his
counterpart Alston Scott Householder at Oak Ridge National Laboratory, Givens
served as an early president of SIAM. He published his work on the rotations in 1958.

—Carl D. Meyer

dimensions is similar to multiplying two complex numbers because the product

(a, b)
(

c d
−d c

)
= (ac − bd, ad + bc)
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is identical to the product (a + ib)(c + id). Quaternions extend this similarity to three
dimensions as follows. To rotate a point P by an angle θ about a direction v, we first
prepare the quaternion q = [cos(θ/2), sin(θ/2)u], where u = v/|v| is a unit vector in the
direction of v. The rotation can then be expressed as the triple product q · [0,P] · q−1.
Note that our q is a unit quaternion since sin2(θ/2) + cos2(θ/2) = 1.

� Exercise 1.43: Prove that the triple product q· [0,P]· q−1 really performs a rotation
of P about v (or u). [Hint: Perform the multiplications and show that they produce
Equation (1.31).]

As an example of quaternion rotation, consider a 90◦ rotation of point P = (0, 1, 1)
about the y axis. The quaternion required is q = [cos 45◦, sin 45◦(0, 1, 0)]. It is a unit
quaternion, so its inverse is q−1 = [cos 45◦,− sin 45◦(0, 1, 0)]. The rotated point is thus

q[0,P]q−1

= [− sin 45◦, (sin 45◦, cos 45◦, cos 45◦)] [0, (0, 1, 1)] [cos 45◦,− sin 45◦(0, 1, 0)]
= [0, (1, 1, 0)].

The quaternion resulting from the triple product always has a zero scalar. We ignore
the scalar and find that the point has been moved, by the rotation, from the x = 0
plane to the z = 0 plane.

Figure 1.30 illustrates this particular rotation about the y axis and also makes it
easy to understand the rule for the direction of the quaternion rotation q[0,P]q−1. The
rule is: Let q = [s,v] be a rotation quaternion in a right-handed three-dimensional
coordinate system. To an observer looking in the direction of v, the triple product
q[0,P]q−1 rotates point P clockwise. For a negative rotation angle, the rotation is
counterclockwise. In a left-handed coordinate system (Figure 1.30b), the direction of
rotation is the opposite.

x

y
z (outside
the page)

(a) (b)

z (inside
the page)

x

y

Figure 1.30: Rotation in a Right-Handed (a) and in a Left-Handed (b) Coordinate System.
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1.4.6 Concatenating Rotations

Sometimes, we have to perform two consecutive rotations on an object. This turns out
to be easy and numerically stable with a quaternion representation.

If q1 and q2 are unit quaternions representing the two rotations, then associativity
of quaternion multiplication implies that the combined rotation of q1 followed by q2 is
represented by the quaternion q2 · q1. The proof is

q2 · (q1 · P · q−1
1 ) · q−1

2 = (q2 · q1) · P · (q−1
1 · q−1

2 ) = (q2 · q1) · P · (q2 · q1)−1.

Quaternion multiplication involves fewer operations than matrix multiplication, so
combining rotations by means of quaternions is faster. Performing fewer multiplications
also implies better numerical accuracy.

In general, we use 4×4 transformation matrices to express three-dimensional trans-
formations, so we would like to be able to express the rotation P∗ = q[0,P]q−1 as P∗ =
PM, where M is a 4×4 matrix. Given the two quaternions q1 = w1 +x1i+y1j+z1k =
(w1, x1, y1, z1) and q2 = w2 + x2i + y2j + z2k = (w2, x2, y2, z2), their product is

q1 · q2 = (w1w2 − x1x2 − y1y2 − z1z2) + (w1x2 + x1w2 + y1z2 − z1y2)i
+ (w1y2 − x1z2 + y1w2 + z1x2)j + (w1z2 + x1y2 − y1x2 + z1w2)k.

The first step is to realize that each term in this product depends linearly on the
coefficients of q1. This product can therefore be expressed as

q1 · q2 = q2 · L(q1) = (x2, y2, z2, w2)

⎛
⎜⎝

w1 z1 −y1 −x1

−z1 w1 x1 −y1

y1 −x1 w1 −z1

x1 y1 z1 w1

⎞
⎟⎠ .

When L(q1) multiplies the row vector q2, the result is a row vector representation for
q1 · q2. Each term also depends linearly on the coefficients of q2, so the same product
can also be expressed as

q1 · q2 = q1 · R(q2) = (x1, y1, z1, w1)

⎛
⎜⎝

w2 −z2 y2 −x2

z2 w2 −x2 −y2

−y2 x2 w2 −z2

x2 y2 z2 w2

⎞
⎟⎠ .

When R(q2) multiplies the row vector q1, the result is also a row vector representation
for q1 · q2.

We can now write the triple product q · [0,P] · q−1 in terms of the matrices L(q)
and R(q):

q[0,P]q−1 = q([0,P] · q−1) = q([0,P]R(q−1))

= ([0,P]R(q−1))L(q) = [0,P](R(q−1)L(q))
= [0,P]M,
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where matrix M is

M =R(q−1) · L(q)

=

⎛
⎜⎝

w z −y x
−z w x y
y −x w z
−x −y −z w

⎞
⎟⎠
⎛
⎜⎝

w z −y −x
−z w x −y
y −x w −z
x y z w

⎞
⎟⎠

=

⎛
⎜⎝

w2+x2−y2−z2 2xy + 2wz 2xz − 2wy 0
2xy − 2wz w2−x2+y2−z2 2yz + 2wx 0
2xz + 2wy 2yz − 2wx w2−x2−y2+z2 0

0 0 0 w2+x2+y2+z2

⎞
⎟⎠ .

Since we have unit quaternions, they satisfy w2 + x2 + y2 + z2 = 1, so we can write the
final result

M =

⎛
⎜⎝

1 − 2y2 − 2z2 2xy + 2wz 2xz − 2wy 0
2xy − 2wz 1 − 2x2 − 2z2 2yz − 2wx 0
2xz + 2wy 2yz − 2wx 1 − 2x2 − 2y2 0

0 0 0 1

⎞
⎟⎠ . (1.33)

In a left-handed coordinate system, the same rotation is expressed by the triple product
q−1[0,P]q or, equivalently, by P∗ = P · MT , where MT is the transpose of M.

1.5 Transforming the Coordinate System

Our discussion so far has assumed that points are transformed in a static coordinate
system. It is also possible (and sometimes useful) to transform the coordinate system
instead of the points. To understand the main idea, let’s consider the simple example
of translation. Suppose that a two-dimensional point P is transformed to a point P∗

by translating it m and n units in the x and y directions, respectively. How can the
transformation be reversed? We consider two ways.

1. Suppose that the original transformation was P∗ = PT, where

T =

⎛
⎝ 1 0 0

0 1 0
m n 1

⎞
⎠ .

It is clear that the transformation matrix

S =

⎛
⎝ 1 0 0

0 1 0
−m −n 1

⎞
⎠

will transform P∗ back to P. However, it is trivial to show, by using Equation (1.22),
that S is the inverse of T.
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2. The transformation can be reversed by translating the coordinate system in the
reverse directions (i.e., by −m and −n units) by using an (unknown) transformation
matrix M.

Since the two methods produce the same result, we conclude that M = S = T−1.
Transforming the coordinate axes is therefore done by a matrix that’s the inverse of
transforming a point. This is true for any affine transformations, not just translation.

The magic transformation from the minute to the vast has

not been so cunningly effected but that the rich adornment

still counteracts the impression of space and loftiness.

—Nathaniel Hawthorne, The Marble Faun (1860)



2
Parallel Projections

There are several variants of parallel projections, but they are all based on the following
principle: Select a direction v and construct a ray that starts at a general point P on
the object and goes in the direction v. The point P∗ where this ray intercepts the
projection plane becomes the projection of P. The process is repeated for all the points
on the object, creating a set of parallel rays, which is why this class of projections is
called parallel. Figure 2.1 illustrates the principle of parallel projections. In Figure 2.1a
the rays are perpendicular to the projection plane and in Figure 2.1b they strike at a
different angle. This is why the latter method is called oblique projection (Section 2.3).

Figure 2.1c shows a different interpretation of parallel projections. Because the
rays are parallel, we can imagine that they originate at a center of projection located
at infinity. This interpretation unifies parallel and perspective projections and is in
accordance with the general rule of projections (page 2) which distinguishes between
parallel and perspective projections by the location of the center of projection.

The three types of parallel projections are orthographic, axonometric, and oblique.

(a) (b) (c)

∞

Figure 2.1: Parallel Projections.
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I will sette as I doe often in woorke use, a paire of paralleles, or [twin] lines of one
lengthe, thus =, bicause noe 2. thynges, can be moare equalle.

—Robert Recorde, 1557

2.1 Orthographic Projections

The term orthographic (or orthography) is derived from the Greek oρθo (correct) and
γραϕoζ (that writes). This term is used in several areas, such as orthographic projection
of a sphere (page 206) and the orthography of a language. The latter is the set of rules
that specify correct writing in a language. An example of an orthographic rule in English
is i comes before e (as in “view”) except after a c (as in “ceiling”).

The family of orthographic projections is the simplest of the three types of parallel
projections. The principle is to imagine a box around the object to be projected and to
project the object “flat” on each of the six sides of the box (Figure 2.2a). If the object
is simple and familiar, three projections, on three orthogonal sides, may be enough
(Figure 2.2b). If the object is complex or is unfamiliar, a perspective projection may
be needed in addition to the three or six parallel projections. For even more complex
objects, sectional views may be necessary. Such a view is obtained by passing an
imaginary plane through the object and drawing a projection of the plane.

(a) (b)

Figure 2.2: Six and Three Orthographic Projections.

If one side of the box is the xy plane, then a point P = (x, y, z) is projected on this
side by removing its z coordinate to become P∗ = (x, y). This operation can be carried
out formally by multiplying P by matrix Tz of Equation (2.1). Similarly, matrices Tx
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and Ty project points orthographically on the yz and the xz planes, respectively.

Tx =

⎛
⎝ 0 0 0

0 1 0
0 0 1

⎞
⎠ , Ty =

⎛
⎝ 1 0 0

0 0 0
0 0 1

⎞
⎠ , Tz =

⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ . (2.1)

The object of Figure 2.2 has two properties that make it especially easy to project.
It is similar to a cube, and its edges are aligned with the coordinate axes. In general, if
the main edges of the object are not aligned with the coordinate axes, its orthographic
projections along the axes may look unfamiliar and confusing, and it is preferable to
rotate the object, if at all possible, and align it before it is projected. If the object is
not cubical, the best option is to select on the object three axes that are judged the
“main” ones and align them with the coordinate axes. The object is then surrounded
by a bounding box (Figure 2.3) and the box is projected. Once this is done, the object
is transferred into the projected bounding box in a process similar to that described in
Section 3.3. If the object is so complex that it is impossible to find three such axes, then
the designer should consider projecting several sectional views of the object or using a
nonorthographic projection.

Figure 2.3: Orthographic Projection of a Curved Object.

� Exercise 2.1: Try to interpret the three orthographic projections of Figure 2.4.

(a) (b) (c)

Figure 2.4: Three Orthographic Projections for Exercise 2.1.
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The main advantage of orthographic projections is the ease of measuring dimen-
sions. The projection of a segment of length l on the object is a segment of length l
(or of a length related to l in a simple way) on the projection plane. This helps in
manufacturing an object directly from a drawing and is the main reason orthographic
projections are used in technical drawing.

Figure 2.5 shows a side view and the top view of a thin hexagon. It is easy to
see that a segment of length l on side a becomes a segment of the same length on the
projection, while a segment of length l on side b becomes a segment of length l cos β on
the projection (where β = 270◦ − α).

Side view Top view

α

a

a

b b

l

l l

l cosβ

Figure 2.5: Segments on the Sides of a Hexagon.

I feel like I am diagonally parked in a parallel universe.
—Unknown

2.2 Axonometric Projections

The term axonometric is derived from the Greek αξων or αξoναζ (axon, axis) and
μετρoν (metron, a measure). We approach this type of parallel projections from two
points of view.

Approach 1: Linear perspective, the topic of Chapter 3, was developed in the West
during the Renaissance and is based on geometric optics. The observer is considered
a point that receives straight rays of light and senses only the color, the intensity, and
the direction of a ray but not the distance it has traveled. Oriental art, in contrast, has
developed in a different direction and has adopted a different system of perspective, one
that is suitable for scroll paintings.

A Chinese scroll painting is normally executed on a horizontal rectangle about
40 cm high and several meters long. The painting is viewed slowly from right to left
while unrolling the scroll, and it tells a story in time. As the eye moves to the left, we
see later occurrences of the same scene, not new views. We can call this approach to
art “narrative,” in contrast to Western art, which is situational. Figure C.4 (page 236)
is an example of this type of art. It is a 33-foot-long scroll titled A City of Cathay that
was painted by artists of the Qing court (1662–1795).
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Because of the temporal approach to scroll art, Chinese (and other Oriental artists)
had to develop a system of perspective with no vanishing points, no explicit light sources,
and no shadows. The result was a special type of parallel perspective, known today as
“Chinese perspective” or axonometric projection. If we imagine the scroll to be the xy
plane and we view it along the z axis, then lines that are parallel to the z axis are drawn
parallel on the scroll instead of converging to a vanishing point.

Approach 2: An orthographic projection of an object shows the details of only
one of its main faces, which is why three or even six projections are needed. Each
projection may be detailed and it may show the true shape of that face with the correct
dimensions, but it shows little or nothing of the rest of the object. Thus, interpreting
and understanding orthographic projections requires experience. Viewing an object
from above, from below, and from four sides tends to confuse an inexperienced person.
Engineers, architects, and designers may be familiar with orthographic projections, but
they have to draw plans that will be viewed and comprehended by their superiors and
customers, and this suggests a projection method that will include some perspective,
will show more than one face of the object, and will also make it easy to compute
dimensions from the drawing. Linear perspective is easy to visualize and understand,
but for engineers and designers it has at least three disadvantages: (1) it is complex
to compute and draw, (2) the relation between dimensions on the diagram and real
dimensions of the object is complex, and (3) distant objects look small. A common
compromise is a drawing in one of the three varieties of axonometric projections.

Axonometric projections show more of the object in each projection but at the
price of having wrong dimensions and angles. An axonometric projection typically
shows three or more faces of the object, but it shrinks some of the dimensions. When
a dimension is measured on the drawing, some computations are needed to convert
it to a true dimension on the object. This is an easy, albeit nontrivial, procedure.
An axonometric projection shows the true shape of a face of the object (with true
dimensions) only if the face happens to be parallel to the projection plane. Otherwise,
the shape of the face is distorted and its dimensions are shrunk.

Before we get to the details, here is a summary of the properties of axonometric
projections:

Axonometric projections are parallel, so a group of parallel lines on the object will
appear parallel in the projection.

There are no vanishing points. Thus, a wide image can be scrolled slowly while dif-
ferent parts of it are observed. At every point, the viewer will see the same perspective.

Distant objects retain their size regardless of their distance from the observer. If
the parameters of the projection are known, then the dimensions of any object, far or
nearby, can be computed from measurements taken on the projection.

There are standards for axonometric projections. A standard may specify the
orientation of the object relative to the observer, which makes it easy for the observer
to compute distances directly from the projection.

To construct an axonometric projection, the object may first have to be rotated to
bring the desired faces toward the projection plane. It is then projected on that plane
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in parallel. We assume that the projection plane is the xy plane, so the projection is
done by clearing the z coordinates of all the points or, equivalently, by multiplying each
point, after rotating it, by matrix Tz of Equation (2.1). Assuming that we first rotate
the object φ degrees about the y axis and then θ degrees about the x axis, the combined
rotation/projection matrix is [see Equation (1.30)]

T =

⎛
⎝ cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ

⎞
⎠
⎛
⎝ 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠
⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠

=

⎛
⎝ cos φ sin φ sin θ 0

0 cos θ 0
sin φ − cos φ sin θ 0

⎞
⎠ . (2.2)

To find how various dimensions are affected by these transformations, we start with the
vector (1, 0, 0). This is a unit vector in the direction of the x axis. Multiplying it by T
gives another vector, which we denote by (x1, x2, 0). Its magnitude is sx =

√
x2

1 + x2
2

and since the original vector had magnitude 1, the quantity sx expresses the ratio of
magnitudes or the factor by which all dimensions in the x direction have shrunk after
the transformation/projection T. Similarly, selecting unit vectors (0, 1, 0) and (0, 0, 1)
in the y and z directions and multiplying them by T produces vectors (y1, y2, 0) and
(z1, z2, 0) and shrinking factors sy =

√
y2
1 + y2

2 and sz =
√

z2
1 + z2

2 in the y and z
directions, respectively.

Figure 2.6a shows a unit cube rotated such that its three sides, which used to be
parallel to the coordinate axes, seem to have different lengths. Such an axonometric
projection is called trimetric.

(a) (b) (c)

Figure 2.6: The Three Types of Axonometric Projections.

Figure 2.6b shows the same unit cube rotated such that two of its three sides
seem to have the same length, while the third side looks shorter. Such an axonometric
projection is called dimetric. Similarly, Figure 2.6c shows the same unit cube rotated



2.2 Axonometric Projections 63

such that all its sides seem to have the same length. This type of axonometric projection
is called isometric.

Matrix T of Equation (2.2) can be used to calculate the special rotations that
produce a dimetric projection. Consider the product of a unit vector in the x direction
and T:

(1, 0, 0)

⎛
⎝ cos φ sin φ sin θ 0

0 cos θ 0
sin φ − cos φ sin θ 0

⎞
⎠ = (cos φ, sin φ sin θ, 0). (2.3)

This product shows that any vector in the x direction shrinks, after being rotated by
matrix T, by a factor sx given by Equation (2.4). The same equation also produces the
shrink factors sy and sz of any vector in the y and z directions.

sx =
√

cos2 φ + sin2 φ sin2 θ, sy =
√

cos2 θ, sz =
√

sin2 φ + cos2 φ sin2 θ. (2.4)

If we want a dimetric projection where equal-size segments in the x and y directions
will have equal sizes after the projection, we set sx = sy or, equivalently,

cos2 φ + sin2 φ sin2 θ = cos2 θ,

which produces the relation

sin2 φ =
sin2 θ

1 − sin2 θ
. (2.5)

Equation (2.5) together with the expression for s2
z yields

s2
z = sin2 φ + cos2 φ sin2 θ = sin2 φ + (1 − sin2 φ) sin2 θ

= sin2 φ(1 − sin2 θ) + sin2 θ

=
sin2 θ

1 − sin2 θ
(1 − sin2 θ) + sin2 θ,

or 2 sin4 θ − (2 + s2
z) sin2 θ + s2

z = 0, a quadratic equation in sin2 θ whose solutions are
sin2 θ = s2

z/2 and sin2 θ = 1. The second solution cannot be used in Equation (2.5) and
has to be discarded. The first solution produces

θ = sin−1

(
± sz√

2

)
and φ = sin−1

(
± sz√

2 − s2
z

)
. (2.6)

Since the sine function has values in the range [−1, 1], the argument of sin−1 must
be in this range. The expression sz/

√
2 is in this range when −√

2 ≤ sz ≤ +
√

2, and
the expression sz/

√
2 − s2

z is in this range when −1 ≤ sz ≤ +1. Since sz is a shrinking
factor, it is nonnegative, which implies that it must be in the interval [0, 1]. Also, since
Equation (2.6) contains a ±, any value of sz produces four solutions.
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Example: Given sz = 1/2, we calculate θ and φ:

θ = sin−1

(
±0.5√

2

)
= sin−1(±0.35355) = ±20.7◦,

φ = sin−1

(
± 0.5√

2 − 0.52

)
= sin−1(±0.378) = ±22.2◦.

The two rotations are illustrated in Figure 2.7.

(a) (b) (c)

x

y

Figure 2.7: Rotations for Dimetric Projection.

� Exercise 2.2: Repeat the example for sz = 0.625.

� Exercise 2.3: Calculate θ and φ for sx = sz (equal shrink factors in the x and z
directions).

The condition for an isometric projection (Figure 2.6c) is sx = sy = sz. We already
know that sx = sy results in Equation (2.5). Similarly, it is easy to see that sy = sz

results in cos2 θ = sin2 φ + cos2 φ sin2 θ, which can be written

sin2 φ =
1 − 2 sin2 θ

1 − sin2 θ
. (2.7)

Equations (2.5) and (2.7) result in sin2 θ = 1 − 2 sin2 θ or sin2 θ = 1/3, yielding θ =
±35.26◦. The rotation angle φ can now be calculated from Equation (2.5):

sin2 φ =
1/3

1 − 1/3
= 1/2, yielding φ = ±45◦.

The shrink factors can be calculated from, for example, sy = cos2 θ =
√

2/3 ≈ 0.8165.
We conclude that the isometric projection is the most useful but also the most

restrictive of the three axonometric projections. Given a diagram with the isometric
projection of an object, we can measure distances on the diagram and divide them by
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0.8165 to obtain actual dimensions on the object. However, the diagram must show the
object (whose main edges are assumed to be originally aligned with the coordinate axes)
after being rotated by ±45◦ about the y axis and by ±35.26◦ about the x axis. If these
rotations result in obscuring important object features, a less restrictive projection, such
as dimetric or trimetric, must be used.

Standards for Axonometric Projections

Several common standards for axonometric projections exist and are described here. We
start with a simple 30◦ standard for isometric projections whose principle is illustrated in
Figure 2.8. Part (a) of the figure shows a cube projected in this standard after it has been
rotated φ = 45◦ about the y axis and θ = 35◦ about the x axis. Part (b) shows the same
cube with dimensions and angles. It is not difficult to see that α satisfies tan α = h/w,
which is why α = arctan(h/w). The standard specifies the ratio h/w = 1/

√
3, which

results in α ≈ 30◦. The 30◦ angle is convenient because sin 30◦ = 1/2. This part of the
figure also shows that θ = arcsin(h/w), a quantity that happens to be close to 35◦. This
projection is attributed by [Krikke 00] to William Farish, who developed it in 1822.

h

w

300300 α

450

350

x

y

(a) (b)

Figure 2.8: The 30◦ Standard for Isometric Projections.

A 30◦ angle is convenient for drafters because sin 30◦ = 1/2. However, in our age of
computers and computer-aided design, virtually all graphics output devices (monitors,
plotters, and printers) use a raster scan and are based on pixels. A line is drawn as a
set of individual pixels, and even a little experience with such lines shows that a line
at 30◦ to the horizontal looks bad. Much better results are obtained when drawing a
line at about 27◦ because the tangent of this angle is 0.5, resulting in a line made of
identical sets of pixels (Figure 2.9).

300 270

Figure 2.9: Pixels for 30◦ and 27◦ Lines.
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As a result, the 27◦ standard for axonometric projections (Figure 2.10) makes more
sense. This standard is sometimes also called the 1: 2 isometric projection because it is
based on the ratio h/w = 1/2.

h

w

270270 α

450

300

x

y

(a) (b)

Figure 2.10: The 27◦ Isometric Projection.

A similar standard is based on the ratio h/w = 1, which leads to α = 45◦. This case
is also known as the military isometric projection. This projection is suitable for appli-
cations where the horizontal faces of the projected object are important. Figure 2.11
shows that the xz plane becomes a regular rhombus in this projection, which makes it
easy to read details and measure distances on this plane.

h

w

450450 α

450

450

x

y

Figure 2.11: The 45◦ Isometric Projection.

A Dutch standard for dimetric projections is based on the ratio h/w = 0.33. It
is known as the 42◦/7◦ standard because it results in angles α and β of these sizes
(Figure 2.12). The z axis (the one that’s drawn at 42◦) is scaled by a factor of 1/2.
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Figure 2.12: The 42◦/7◦ Dimetric Projection.

What recurrent impressions of the same were possible by hypothesis?
Retreating, at the terminus of the Great Northern Railway, Amiens Street, with con-
stant uniform acceleration, along parallel lines meeting at infinity, if produced: along
parallel lines, reproduced from infinity, with constant uniform retardation, at the
terminus of the Great Northern Railway, Amiens Street, returning.

—James Joyce, Ulysses

2.3 Oblique Projections

An oblique projection is a special case of a parallel projection (i.e., with a center of
projection at infinity) where the projecting rays are not perpendicular to the projection
plane. We have already seen that axonometric projections show more object details than
orthographic projections but make it more cumbersome to compute object dimensions
from the flat projection. Similarly, oblique projections generally show more object
details than axonometric projections but distort angles and dimensions even more. In
an oblique projection, only those faces of the object that are parallel to the projection
plane are projected with their true dimensions. Other faces are distorted such that
measuring dimensions on them requires calculations.

Figure 2.13 illustrates the principle of oblique projections. A three-dimensional
point P = (x, y, z) is projected obliquely onto a point P∗ on the xy plane. We denote
the point (x, y, 0) by Q and examine the angle θ between the two segments PP∗ and
P∗Q. A cavalier projection is obtained when θ = 45◦ and a cabinet projection is the
result of θ = 63.43◦.

Because of the special 45◦ angle, the three shrink factors of a cavalier projection
are equal, as will be shown later. In a cabinet projection, the shrink factors in the x
and y directions (assuming that the object is projected on the xy plane) equal 1/2.

Figure 2.14a illustrates the geometry of oblique projections and can be used to
derive their transformation matrix. We assume that the projection plane is z = 0 (the
xy plane) and that all the projecting rays hit this plane at an angle θ. Two projecting
rays are shown, one projecting the special point P = (0, 0, 1) to a point (a, b, 0) and the
other projecting Q = (0, 0, z), a general point on the z axis, to a point (A, B, 0). The
origin (0, 0, 0) is projected onto itself, so the projection of the unit segment from the
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θ

P*

P
Q

z

Figure 2.13: Oblique Projections.

origin to P is the segment of size s from the origin to (a, b, 0). The value s is therefore
the shrink factor of the oblique projection. The three quantities a, b, and s are related
by a = s cos φ and b = s sin φ, where φ is measured on the projection plane. The shrink
factor s is also related to the projection angle θ by tan θ = 1/s or s = cot θ.

The diagram can be drawn quite quickly because the designer used a style of drawing
called oblique projection. So long as basic rules are followed, oblique projection is
quite easy to master and it may be a suitable style for you to use in a design project.
The basic rules are outlined below.

http://www.technologystudent.com/designpro/oblique1.htm

We now consider the projecting ray from Q to (A, B, 0). Since Q is at a distance
z from the origin, the distance on the projection plane between the origin and point
(A, B, 0) is sz. From this we obtain the relations A = sz cos φ and B = sz sin φ. The
next step is to consider the projection of a general point (x, y, z). All the projecting
rays are parallel, so a little thinking shows that moving a point from (0, 0, z) to (x, 0, z)
moves its projection from (A, B, 0) to (x + A, B, 0). Similarly, moving a point from
(0, 0, z) to (0, y, z) moves its projection from (A, B, 0) to (A, y + B, 0). A general point
located at (x, y, z) is therefore projected to a point at (x + A, y + B, 0). Thus, the rule
of oblique projections is

(x, y, z) −→ (x + sz cos φ, y + sz sin φ, 0), (2.8)

which can be written in terms of a transformation matrix

P∗ = PT = (x, y, z)

⎛
⎝ 1 0 0

0 1 0
s cos φ s sin φ 0

⎞
⎠ . (2.9)

With the help of this matrix we examine the following special cases.
1. A cavalier projection. It is defined as the case where the projection angle is 45◦,

which implies s = cot(45◦) = 1. Thus, all edges and segments have shrink factors of 1.
2. A projection angle of 90◦. A value θ = 90◦ implies a shrink factor s = cot(90◦) =

0. Matrix T of Equation (2.9) reduces to matrix Tz of Equation (2.1), showing how
the oblique projection reduces in this case to an orthographic projection.
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Figure 2.14: Oblique Projections.

3. A cabinet projection. It is defined as the case where the projection angle is
63.43◦, which implies s = cot(63.43◦) = 1/2. All edges and segments perpendicular to
the projection plane have shrink factors of 1/2.

Figure 2.14b shows how φ and θ are independent. For a given projection angle θ,
it is possible to assign φ any value by rotating the triangle in the figure. In practice,
this means that an object can be projected several times, with different values of φ but
with the same projection angle θ. Such projections may give all the necessary visual
information about the object while having the same shrink factors.

Shrink: To become constricted from heat, moisture, or cold.
(A typical dictionary definition)
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Axonometric and oblique projections are generally considered different, but Fig-
ure 2.15 shows that the difference between them is a matter of taste and terminology. If
we rotate the object and light rays of the oblique projection 45◦ counterclockwise, the
result on the projection plane is identical to the axonometric projection.

Orthographic Axonometric Oblique

Figure 2.15: Comparing Parallel Projections.

She could afterward calmly discuss with him such

blameless technicalities as hidden line algorithms and

buffer refresh times, cabinet versus cavalier projections

and Hermite versus Bézier parametric cubic curve forms.

—John Updike, Roger’s Version (1986)
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Perspective Projection

The term perspective refers to several techniques that create the illusion of depth (three
dimensions) on a two-dimensional surface. Linear perspective is one of these methods.
It can be defined as a method for correctly placing objects in a painting or a drawing
so they appear closer to the observer or farther away from him. The keyword in this
definition is correctly. It implies that a flat picture in linear perspective creates in the
viewer’s brain the same sensation as the original three-dimensional scene. The main
tool employed by linear perspective is vanishing points.

This chapter starts by explaining vanishing points. This is followed, in Section 3.2,
by a short history of perspective in art. The remainder of the chapter develops simple
mathematical tools to compute the two-dimensional perspective projection of any given
three-dimensional point.

Figure 3.1: Ancient Art.

The Bible is eternal and is always the same, but most other objects and processes
around us change and develop continually. Hot air balloons, cheese making, and bicycles
are familiar examples of items that constantly develop and improve. Art is another
example. Ancient art tends to be flat, as illustrated by Figure 3.1. The Lascaux cave
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drawings, Navajo rock drawings, and ancient Egyptian art shown in the figure are two-
dimensional. They are flat and do not attempt to create a sensation of depth.

Flatness is also a common feature of modern art. The abstract art and cartoons of
Figure 3.2 look flat and use the painter’s algorithm to create the barest hints of depth.
(The painter’s algorithm is simply the way painters work. The first objects painted may
be partly or fully covered and obscured by objects painted later.)

Figure 3.2: Modern Art (Color Version on Page 231).

Art, especially painting and drawing, went through a revolution during the Italian
renaissance in the late Middle Ages. An important part of this revolution was the
technique of perspective. Almost overnight it became possible to create the illusion of
a three-dimensional scene in a flat, two-dimensional picture. Section 3.2 surveys the
historical developments that led to an understanding of perspective, but Figure 3.3
illustrates the basic idea. Part (a) of the figure shows a small, flat plane defined by two
sets of parallel lines. In part (b), some lines are made to converge to a vanishing point,
thereby creating the sensation of depth. Part (c) maintains this feeling even though the
vanishing point itself has been removed. Finally, part (d) illustrates how four copies of
this plane can be connected to form an object that appears to us as a cube, a box, or
a room, even though we know that it is only a collection of lines on a flat surface.

(a) (b) (c) (d)

Figure 3.3: Converging Lines.

Figure 3.4 is another illustration of the same concept. It is easy to see that the
railway tracks of part (a) are wrong, while part (b) looks realistic.
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(a) (b)

Figure 3.4: (a) Wrong and (b) Correct Perspective.

� Exercise 3.1: Search the works of art (modern or otherwise) for examples of wrong or
reversed perspective.

Simply stated, sound perspective means that something seen happening in the fore-
ground of the shot must make a louder noise than something seen to be further away.
Most failures to respect the rule are instinctively heard as “bad sound,” as imperfect
or amateur use of recording technology.

—David Bellos, Jacques Tati (1999).

3.1 One Two Three. . .Infinity

The first step toward understanding perspective is an understanding of converging lines
and vanishing points. Imagine a simple house shaped like a cube. If we stand in front
of it, we see only its front wall, a square, much like the one depicted in Figure 3.5a.
If, however, we imagine the house to be transparent, it would look like part (b) of the
figure. Its back wall is farther away from us, so it looks smaller than its front wall, which
is why the four parallel lines connecting the front and back walls do not look parallel;
they seem to converge to an imaginary point called a vanishing point. The vanishing
point exists only in our imagination, and we can imagine it only if we extend the four
lines in question. Thus, the vanishing point is a result of the way the brain interprets
what the eyes see.

We now walk around our transparent, cubic house and turn to the left, such that
our line of sight is aimed at one of the corners, as shown in Figure 3.5c. The house is
the same: it hasn’t moved or changed shape. We, the viewers, are also the same, only
our position and orientation have changed. Yet, when we look at the house, we see two
groups of lines converging at two vanishing points (Figure 3.5d).
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(a) (b) (c) (d)

Front

Front
Back

Back

Roof

Figure 3.5: Vanishing Points.

Figure 3.6 shows examples of perspective with three vanishing points. Imagine a
person standing in front of a corner of a skyscraper, craning his neck in an attempt to
see all the way to the top of the building. Because of the height of the building, its top
seems smaller than its bottom, so the straight, parallel lines connecting top to bottom
also seem to converge to a vanishing point. Even a small object, such as a cube, can
feature three vanishing points if it is hoisted up and we are positioned under it. Even a
small, one-story house can feature three vanishing points if it has a traditional pitched
roof.

Figure 3.6: Three Vanishing Points.

We live in a three-dimensional world, which is why we can visualize objects with
one, two, or three dimensions, but not more. A line or a curve has one dimension. A
flat plane or a curved surface is two-dimensional. A solid object has three dimensions,
so the question is, can an object feature more than three vanishing points? The answer,
which may come as a surprise to some, is yes, as illustrated by Figures C.1 (page 232)
and 3.7. Everyday objects, such as a chest of drawers (if you have messed yours up in
order to prove my point, please take the time to put it back in order) and a circular
staircase, can feature any number of vanishing points.

� Exercise 3.2: Come up with other common objects or scenes that feature many van-
ishing points.
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Figure 3.7: Many Vanishing Points.

We therefore conclude that an object seen in perspective can have any number of
vanishing points, even zero. In addition, the number and positions of those points vary
when the object is moved or changes its orientation and when the viewer moves, turns,
bends, tilts his head, or cranes his neck. The rule governing the number and position of
the vanishing points is simple and can be considered the main principle of perspective.
Before this rule is stated, let’s take another look at Figure 3.5d. It features two vanishing
points, each created by a group of parallel lines. The point is that originally (i.e., in
Figure 3.5b) these lines seem parallel, but when the viewer moves to a different location,
looking at the same object from a different direction, these same lines no longer look
parallel and seem to converge.

*
*

*
*

*
*

*
*

(a) (b)

Figure 3.8: Effects of a Small Rotation.

Figure 3.8 serves to further illustrate the behavior of the vanishing points. Part (a)
of the figure shows the cube of Figure 3.5b with the four parallel edges marked with
an asterisk. In part (b), the cube is rotated through a small angle, which slightly
changes the orientation of these four edges relative to the viewer. They no longer
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appear parallel, and seem to converge to a distant vanishing point on the far left of the
figure. In addition, the four lines that originally converged at the center of the cube
now converge to a vanishing point slightly to the right of center.

This small rotation has resulted in the same cube featuring two vanishing points.
It can be interpreted by saying that the rotation has moved the original vanishing point
slightly to the right and the new vanishing point isn’t really new. It was originally
located at infinity and has moved by the rotation to a finite (albeit distant) location.

These observations should help the reader to understand and agree with the follow-
ing statement: In order for an object to feature vanishing points, it must have groups of
straight parallel lines. The lines may be generated by the intersection of two planes on
the object, as in the case of a cube, or they may be painted or scribed on the surface of
the object. They may even be located inside the object, if it is transparent. Any such
group of lines results in a vanishing point, except if the lines are perpendicular to the
line of sight of the viewer. Rotating the cube of Figure 3.8 has changed the orientation
of a group of four parallel lines that were originally perpendicular to the line of sight
but are no longer so. The new orientation has therefore added a vanishing point.

The conclusion is that an object may have any number of vanishing points depend-
ing on its shape and orientation, on groups of parallel lines that happen to be on it, and
on the direction from which it is viewed.

The statement above is the rule governing vanishing points. It should be stressed
that the vanishing points are not real. They exist only in our imagination and we
imagine them because of the particular way our brain interprets the signals sent from
our eyes.
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Figure 3.9: The Rule of Reflection.

An interesting example of vanishing points is a reflection in a mirror. A ray of
light that strikes a mirror is reflected in a direction determined by the normal to the
mirror. The rule of reflection (Figure 3.9) is that the angle of incidence equals the angle
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of reflection. Points “A” and “B” in the figure are seen by the viewer as if they are deep
in the mirror, and any group of parallel lines on a reflected object seems to converge in
the mirror to a new vanishing point.

Figure 3.10 shows a cube (in two-point perspective) reflected in a mirror. The two
real vanishing points are vp1 and vp2. The cube seen in the mirror also has two virtual
vanishing points, vp∗1 and vp∗2, and it is easy to see the symmetric relation between the
real and virtual points.
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Figure 3.10: Real and Virtual Vanishing Points.

Note. This section discusses straight lines and their convergence, which is why the
examples here employ cubes and other objects with large, flat surfaces and straight
lines. However, curved objects with no straight, parallel lines can also be seen (and
drawn) in perspective, and techniques for achieving this are described in Section 3.3.

Vanishing points and converging lines are important in perspective, but perspective
has another important aspect. When an object is moved away from the viewer, it
appears smaller, but it also features less perspective. The amount of perspective seen
depends on the relation between the size of the viewed object and its distance from the
viewer. To see why this is so, we go back to the cube of Figure 3.5b, duplicated in
Figure 3.11a. Assuming that this cube is 10 cm on a side and that it is viewed from a
distance of 10 cm, its back face is 20 cm from the viewer, twice the distance of the front
face. The back face therefore seems to the viewer much smaller than the front face, and
the object is seen with a lot of perspective. If this cube is moved 90 cm away from the
viewer, its front face ends up at 100 cm and its back face at 110 cm from the viewer.
The difference between front and back is much smaller compared with the distance from
the viewer, causing the back face to appear just a shade smaller than the front, with
the result that the object appears to have much less perspective (Figure 3.11b).

� Exercise 3.3: In addition to featuring less perspective, a distant object also looks
small. Can we bring such an object closer without increasing its perspective?
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Figure 3.11: (a) More and (b) Less Perspective.

3.2 History of Perspective

In art, the term “perspective” refers to a technique for depicting a three-dimensional
scene on a two-dimensional flat surface. The result is similar, but not identical, to the
way we perceive three-dimensional objects and scenes in space. Our eyes are separated
by a few centimeters and therefore see slightly different views of the same scene. The
brain combines these views in a complex way to generate the sensation of depth. When
we move, turn, or raise or lower our head, the image we see changes continuously. A
painting or drawing in perspective, on the other hand, is based on a fixed viewpoint
and is equivalent to looking at the scene through a peephole with one eye.

The principles of perspective were known to the ancients. Many Greek vase paint-
ings indicate a grasp of the principles of perspective. Roman wall paintings show lines
converging to vanishing points, and the Roman architect Vitruvius describes perspec-
tive in his writings [Vitruvius 06]. In the Middle Ages, especially in the 13th and 14th
centuries, several artists in Italy, France, and Holland (and perhaps also in the East)
independently discovered (or rediscovered) some of the principles of perspective, espe-
cially the concept of lines converging to a vanishing point. However, none came up
with a complete and consistent theory of perspective. Such a theory had to wait until
the second decade of the 15th century, when it was developed first experimentally by
Filippo Brunelleschi and later in more detail by Leon Battista Alberti. (Some experts
also credit the painter Paolo Uccello with major contributions to the understanding of
perspective.)

[Uccello] would remain the long night in his study to work out the vanishing
points of his perspective, and when summoned to his bed by his wife replied
in the celebrated words: “How fair a thing is this perspective.” Being
endowed by nature with a sophisticated and subtle disposition, he took
pleasure in nothing save in investigating difficult and impossible questions
of perspective. . . . When engaged in these matters, Paolo would remain
alone in his house almost like a hermit, with hardly any intercourse, for
weeks and months, not allowing himself to be seen. . . . By using up his time
on these fancies he remained more poor than famous during his lifetime.

—Giorgio Vasari, The Lives of the Artists (1567)

The remainder of this section discusses the contributions made by three Renaissance
figures, Brunelleschi, Masaccio, and Alberti, to the understanding of perspective.
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Brunelleschi

Filippo Brunelleschi, known to his contemporaries as “Pippo,” was born in Florence in
1377. His father, Ser Brunellesco di Lippo Lapi, was a prosperous notary, but young
Filippo showed an interest in machines and in solving mechanical problems. (The term
“ser” was a title of respect, while “di Lippo Lapi” indicates that Brunellesco’s father
was named Lippo and was from the Lapi family.) Filippo was therefore apprenticed, at
age 15, to a local goldsmith (perhaps one Benincasa Lotti). For the next six years he
learned to cast metals, work with enamel, engrave and emboss silver, and use precious
metals to decorate manuscripts with gold leaf and to make jewels and religious artifacts.

After completing his apprenticeship in 1398 at age 21, Brunelleschi was sworn as
a master goldsmith and became a well-known goldsmith in Florence and other cities.
From 1401 to 1416 or 1417, he seems to have spent most of his time in Rome (although
this is uncertain), working as a goldsmith, making clocks, and surveying the many ruins
of the eternal city. Returning to Florence after 13 years of absence, Brunelleschi, then
40, became involved in the competition for the great dome of the Santa Maria del Fiore
Cathedral. This was to be both the largest dome ever attempted, with a diameter of
more than 143 feet, and the tallest one, starting at a height of about 170 feet off the
ground and reaching about 280 feet. (The lantern on top of it adds more than 70 feet
to that.)

Even though known as a goldsmith, not an architect, Brunelleschi won the 1418
competition because of his original approach to the problem. The novel aspect of his plan
for the dome was to build it without any scaffolding. (The term “centering” was then
used.) This idea, and the 1:12 model of the dome that he built in brick to demonstrate
his method, helped convince the committee of judges to give him the commission. He
then spent the years from 1420 to 1436 supervising the construction while also designing
and building ingenious machines to haul heavy loads to the top.

Brunelleschi, a true Renaissance man both because of his interests and achievements
and because of his time period, died in 1446. Like Donatello, Masaccio, da Vinci, and
Michelangelo, he never married. For more information on Brunelleschi, his work, and
his times, see [King 00] and [Walker 02].

A biography of Brunelleschi [Manetti 88] was written in the 1480s, four decades after
the death of its subject, by his pupil Antonio Manetti, which brings us to Brunelleschi’s
contribution to perspective. In this biography, Manetti describes Brunelleschi’s panel
drawing, a trompe l’oeil that was then used by Brunelleschi in an experiment that fuses
nature and art, similar to an optical trick. This historically important painting has
since been lost, but it (and the experiment) are described in detail by Manetti.

trompe l’oeil.
1. A style of painting that gives an illusion of photographic reality.
2. A painting or effect created in this style.

The peepshow experiment. Brunelleschi placed himself at a point three braccia
(about six feet) inside the doorway of the not yet completed cathedral of Santa Maria del
Fiore. His idea was to specify a precise viewing point at which a viewer could compare
a real scene with a perspective painting of the same scene. Looking outside across the
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Piazza del Duomo, he clearly saw, about 115 feet away, the Baptistery of San Giovanni,
one of Florence’s most well-known landmarks. This structure was a good choice for the
study of perspective because it is shaped like an octagon, so someone standing in front of
it sees its three front walls in two-point perspective. (It also features left–right symmetry,
so reflecting it horizontally does not change its shape.) Brunelleschi then painted what
he saw through the doorframe—the Baptistery and some of the surrounding streets—in
perspective on a small panel about 12 inches wide. Finally, he drilled a small hole in
the panel at the center of the Baptistery’s door (Figure 3.12a) because this point of
the Baptistery would be directly opposite the eye of a viewer standing at the specified
viewing point.

The world having so long been without artists of lofty soul or inspired talent, heaven
ordained that it should receive from the hand of Filippo the greatest, the tallest, and
the finest edifice of ancient and modern times, demonstrating that Tuscan genius,
although moribund, was not yet dead.

—Giorgio Vasari, The Lives of the Artists (1567)

Hole

Painting Mirror

(a) (b)

(c) (d)

530

Figure 3.12: Brunelleschi’s Experiment in Perspective.
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Figure 3.13: Plan of the Piazza del Duomo, Florence (After [Sgrilli 33]).

Brunelleschi then rotated the panel 180◦ and looked through the hole at the Bap-
tistery. He then inserted a mirror and held it at arm’s length as shown in Figure 3.12bc
and looked at his painting reflected in the mirror. This became Brunelleschi’s cele-
brated peepshow experiment, which proved the lifelike qualities of perspective. In his
biography, Manetti claims to have held this painting in his hands and to have repeated
the experiment. He was unable to tell the difference between the image reflected in the
mirror and the real scene (without the mirror). (However, modern travelers to Florence
recommend the use of a pair of heavy-duty tripods to hold the image and the mirror at
their precise locations.)

[Brunelleschi] had made a hole in the panel on which there was this painting;. . .which
hole was as small as a lentil on the painting side of the panel, and on the back it
opened pyramidally, like a woman’s straw hat, to the size of a ducat or a little more.
And he wished the eye to be placed at the back, where it was large, by whoever had
it to see, with the one hand bringing it close to the eye, and with the other holding
a mirror opposite, so that there the painting came to be reflected back. . .which on
being seen,. . . it seemed as if the real thing was seen: I have had the painting in my
hand and have seen it many times in these days, so I can give testimony.

—Antonio Manetti, The Life of Brunelleschi (1480s)

Manetti mentions another interesting fact. The painting was about 12 inches wide
and Brunelleschi recommended watching it from a distance of 6 inches, so the reflection
seen in the mirror appears to be at a distance of 12 inches from the viewer. We know
that tan 26.6◦ = 0.5, which implies that the apex angle of an isosceles triangle whose
height equals its base is 2×26.6 ≈ 53◦ (see also Exercise 3.29). This trigonometric fact
suggests that, as seen from the viewing point specified by Brunelleschi, the Baptistery
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spans a viewing angle of about 53◦, and this is verified by Figure 3.13, which follows the
site plan given by [Sgrilli 33]. Finally, Manetti mentions that the diameter of the hole on
the painted side of the panel was about the thickness of a bean (6–7 mm). Figure 3.12d
illustrates how the same angle of 53◦ is obtained if the eye of the viewer is glued to the
back of the panel (where according to Manetti the hole was bigger, about the size of a
ducat, 20 mm) and the thickness of the panel is the same 6–7 mm.

Masaccio

Perhaps the first great Renaissance painter to use the ideas of Brunelleschi in a serious
work of art was Tommaso di ser Giovanni di Mone (or Tommaso di ser Giovanni cassai),
known to us as Masaccio, a nickname that can be translated as Big Thomas, Rough
Thomas, Clumsy Thomas, Sloppy Thomas, Bad Thomas, or even the Messy Thomas.
He died in 1428, at age 27, and in his last two years he painted a fresco, today titled
Trinity (or Holy Trinity), in the church of Santa Maria della Novella in Florence. The
accurate execution of one-point perspective in this picture creates the illusion of a
sculpture placed in a cavity in the wall, although the picture is flat. This large picture
(approximately 6.7×3.2 m, or 21 ft 101

2 in by 10 ft 5 in) has a sad history of incompetent
restoration and a 19th century attempt to cut it off the wall and move it to another
wall in the same church. Figure C.2 (page 233) is a small replica showing how the single
vanishing point was placed by the artist at the viewer’s position.

The architectural setting of this fresco [the Trinity] is so accurate in its perspective
and so Brunelleschian in style that some scholars have suggested Brunelleschi drew
the sinopia, or cartoon, on the wall for Masaccio to paint. This is certainly possible,
but it is also quite possible that Masaccio—a master draftsman as well as an inspired
painter—could have done the whole work himself. Perhaps it doesn’t matter. The
important fact for the future of Western art is that Masaccio met Brunelleschi and
gained such a deep knowledge of perspective that he set a standard for every painter
to follow.

—Paul Robert Walker, The Feud that Sparked the Renaissance (2002)

Alberti

In 1435–36, Leon Battista Alberti wrote and published (in Latin and Italian) Il Trat-
tato della Pittura e I Cinque Ordini Archittonici (“On Painting”), where he describes
a simple geometric method for constructing a correct one-point perspective of a hori-
zontal grid on a vertical picture plane. This method was later simplified by Piero della
Francesca in his 1478 mathematical treatise De prospectiva pingendi and is illustrated
in Figure 3.14.

The left part of the figure shows a side view where the picture plane is intercepted
by a family of visual rays that emanate from the viewer’s eye. Each ray connects the
eye to one of the transversals (or divisions) of the grid on the ground. The point where
the ray intercepts the picture plane is then transferred to the front view (on the right
part of the figure) to indicate where to place the particular transversal in the picture.
It is easy to see how the transversals, which are equally spaced on the ground, become



3.2 History of Perspective 83

Horizon c

Grid on ground

Viewer to picture

Picture plane

Front view

Check line

Transversals

Visual rays

Side view

Figure 3.14: Alberti’s Method of Traversals in One-Point Perspective.

closer and closer in the picture. The last step is to draw a diagonal line in the front
view to check for the accuracy of this geometric construction.

The canvas is an open window through which I see what I want to paint.
—Leon Battista Alberti

In his book, Alberti also shows how such a floor, accurately drawn in perspective,
can serve to determine the correct dimensions (both horizontal and vertical) of objects
positioned on the floor and elsewhere in the picture. Figure 3.15 illustrates how a grid
on a floor is used to determine the height of a large, box-like object placed on the floor.
Alberti used the braccio (plural braccia), a length unit that equals approximately 58 cm
(or 23 in, roughly the length of a man’s arm), and a length of four braccia, measured
on the floor, is employed to determine the heights of the box at its front and back.

Four braccia

Four braccia

Figure 3.15: Determining Vertical Dimensions from the Floor.
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It is such precisely described methods and techniques that distinguish Alberti from
his predecessors and justify the title “pioneer” or “originator” of perspective.

� Exercise 3.4: Given the simple two-point perspective of Figure 3.16, show how the
equally spaced vertical lines (labeled “e”) were constructed.

e e e e e ee e

Figure 3.16: Two-Point Perspective with Equally Spaced Lines.

Leonardo da Vinci, who certainly knew about perspective, developed his own pro-
jection, now known as aerial or atmospheric perspective. This method of adding depth
to a two-dimensional painting is based on the perception that contrasts of color and
shade appear greater in nearby objects than in those far away, and that warm colors
(such as red, orange, and yellow) appear to advance, while cool colors (blue, violet, and
green) appear to recede. Aerial perspective is also used in East Asian art, where zones
of mist are sometimes used to separate near and distant parts of the scene.

3.3 Perspective in Curved Objects

Up until now, we have discussed perspective, converging lines, and vanishing points
in cubes or other objects with large flat surfaces on which it is easy to draw straight
lines. Our accumulated life experience, however, teaches us that even curved objects—
objects without flat parts and with no groups of straight, parallel lines—are seen in
perspective. This section shows how to extend the principles of perspective discussed
earlier to arbitrary surfaces.

(a) (b)

Figure 3.17: Alberti’s Method of Perspective Drawing.
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The main idea was already proposed by Alberti and is illustrated in Figure 3.17 for
a circle. Start with a flat, nonperspective drawing of a curved object and place a regular
rectangular grid on it [part (a)]. Redraw the grid in perspective, with a vanishing point
[part (b)], and go over the two grids box by box. For each box, copy that part of the
object seen in the first grid and modify it according to the shape of the box in the
second grid. The final result (the circle in perspective) looks like an ellipse, but notice
how the left and right extreme points of the projected circle (i.e., the ellipse’s major
axis) no longer lie on the central horizontal line but have moved below it.

� Exercise 3.5: Explain why.

A variant of this method starts by locating key points on the curved object (points
that make it easy to draw the entire object), assigning them coordinates, and locating
them on the perspective grid. Figure 3.18 shows an example of a large digit 5 where
5 × 7 = 35 key points have been located. The digit is placed in a rectangle, and grid
lines are added and labeled 1 through 5 and “A” through “G,” resulting in a nonuniform
grid. This grid is then transformed in perspective (one-point or two-point) and the key
points located in the new grid, which makes it easy to draw the large 5 in perspective.

� Exercise 3.6: Show the geometric construction that transfers the 35 key points to a
grid in one-point perspective.

1 2 3 4 5
A

B

C

D

E

F
G

Figure 3.18: A Large Digit “5.”

The great German painter Albrecht Dürer showed how to extend Alberti’s approach
to three-dimensional objects (Figure 3.19). Lay the object (a lute in the figure) on a
table behind a frame and attach a string with a pulley and a weight to the wall in front
of the frame. A wooden leaf is attached to the frame with hinges, and a sheet of blank
paper is mounted on the leaf. Now move the free end of the string to an arbitrary point
on the object and determine the point where the string intercepts the frame. (This
is done by two moveable wires or threads, as shown in the upper part of the figure.)
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Figure 3.19: Dürer’s Method of Perspective Drawing.
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Remove the string temporarily, close the hinged leaf, and mark the intersection point
of the wires on the paper. This is repeated for many points on the object, which later
permits the artist to interpolate the points and complete the drawing.

In contrast with Renaissance and classical artists, who mostly tried to create works
true to nature, many impressionist and modern artists consider the use of color and
technique more important than accurate perspective. Figure C.3 (page 234) is a classic
example of this approach. It shows the famous yellow chair painted by Vincent van
Gogh several times during his short stay in Arles. Even a quick glance at it creates the
impression that something is wrong. However, van Gogh fans (this author not numbered
among them) claim that his mastery of color, combined with his technique and style,
resulted in paintings full of appeal and charm, in spite of the crude perspective (or even
because of it). Another example that some may call divergent perspective is The Chair
by David Hockney (1985).

3.4 The Mathematics of Perspective

The mathematics of linear perspective is easy to derive and to apply to various situa-
tions. The mathematical problem involves three entities, a (three-dimensional) object
to be projected, a projection plane, and a viewer watching the projection on this plane.
The object and the viewer are located on different sides of the projection plane, and
the problem is to determine what the viewer will see on the plane. It is like having a
transparent plane and looking through it at an object. Specifically, given an arbitrary
point P = (x, y, z) on the object, we want to compute the two-dimensional coordinates
(x∗, y∗) of its projection P∗ on the projection plane. Once this is done for all the points
of the object, the perspective projection of the object appears on the projection plane.
Thus, the problem is to find a transformation T that will transform P to P∗. We use
the notation P∗ = PT from Chapter 1.

Often, there is no need to compute the projections of all the points of the object.
If P1 and P2 are the two endpoints of a straight line on the object, then only their
projections P∗

1 and P∗
2 need be computed and a straight line is then drawn between

them on the plane. In the case of a curve, it is enough to compute the projections
of several points on the curve and either interpolate them on the projection plane or
simply connect them with short, straight segments.

It is obvious that what the viewer will see on the projection plane depends on the
position and orientation of the viewer. The viewer and the object have to be located on
different sides of the plane, and the viewer should look at the plane. If the viewer moves,
turns, or tilts his head, he will see something else on the projection plane and may not
even see this plane at all. Similarly, if the object is moved or if the projection plane is
moved or is rotated, the projection will change. Thus, the mathematical expressions for
perspective must depend on the location and orientation of the viewer and the projection
plane, as well as on the location of each point P on the object.

We start with a special case—where the viewer is positioned at a special location,
looking in a special direction at a specially placed projection plane—and show how to
project any three-dimensional point to a two-dimensional point on the projection plane.



88 3 Perspective Projection

There is no need to consider the orientation of the object because each point P on the
object is projected separately. Starting in Section 3.5, this treatment is generalized and
we show how to project an object on any projection plane and with the viewer located
anywhere and looking in an arbitrary direction.

The discussion of perspective and of converging lines earlier in this chapter implies
that we are looking for a transformation T that satisfies the following conditions:

1. As the object is moved away from the projection plane, its projection shrinks.
This corresponds to the well-known fact that distant objects appear small.

2. The projection of a distant object features less perspective, as illustrated by
Figure 3.11. The reader may claim that the projection of a distant object is too small
to be seen, so the loss of perspective may not matter, but the point is that we can look
at a distant object through a telescope. This brings the object closer, so it looks big,
but there is still loss of perspective.

3. Any group of straight parallel lines on the object seems to converge to a vanishing
point, except if the lines are perpendicular to the line of sight of the viewer. This rule
of vanishing points is stated and discussed in Section 3.1.

The remainder of this section derives the special case of perspective projection in
four steps as follows:

1. We describe the special case and state the rule of projection.
2. The mathematical expressions are derived using just similar triangles.
3. We show that this rule satisfies the three requirements above.
4. We include this rule in the general three-dimensional transformation matrix.

This produces a 4×4 matrix that can be used to transform the points of an object and
also project them on a plane.

Step 1. The special case discussed in this section places the viewer at point
(0, 0,−k), where k, a positive real number, is a parameter selected by the user. The
viewer looks in the positive z axis, so the line of sight is the vector (0, 0, 1). Finally, the
projection plane is the xy plane. In order for the projection to make sense, we state
again that the viewer and the object must be on different sides of the projection plane,
which implies that all the points of the object must have nonnegative z coordinates.
[The points will normally have positive z coordinates, but they may also be of the form
(x, y, 0); i.e., located on the projection plane.]

This special case is referred to as the standard position (Figure 3.20a) and is men-
tioned often in this book. The rule of perspective projection is a special case of the
general rule of projection (page 2) where the center of projection is at the viewer. Thus,
in order to project point P, we compute the line segment that connects P to the viewer
at point (0, 0,−k) and place the projected point P∗ where this segment intercepts the
xy plane. (The segment always intercepts the xy plane because the object and the
viewer are located on opposite sides of the plane.) Because the projection plane is the
xy plane, the coordinates of the projected point are (x∗, y∗, 0), indicating that it is
two-dimensional.

It is important to realize that the viewer and the projection plane constitute a single
unit and have to be moved and rotated together. This is illustrated in Figure 3.20b
and especially in Figure 3.21a, which shows the viewer-plane unit moving around the
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Figure 3.20: (a) Standard and (b) Nonstandard Positions.

object and the viewer looking at the object from different directions, examining various
projections of it on the plane. It is pointless to move the viewer around the object while
the projection plane stays at the same location (Figure 3.21b) because such a viewer
will generally not even be looking at the plane. Thus, the projection plane must move
with the viewer and must remain perpendicular to the line of sight of the viewer and at
a distance of k units from him (although k may be varied by the user).

(a) (b)

kk
k

k

Figure 3.21: Moving the Viewer and the Projection Plane.

Step 2. The two similar triangles of Figure 3.22 yield the simple relations

x∗

k
=

x

z + k
and

y∗

k
=

y

z + k
,

from which we obtain

x∗ =
x

(z/k) + 1
and y∗ =

y

(z/k) + 1
. (3.1)

(Some authors assign the x coordinate a negative sign. This is a result of the difference
between left-handed and right-handed coordinate systems as discussed in Section 1.3.
See also Exercise 3.27.) The +1 in the denominator of Equation (3.1) is important. It
guarantees that the denominator will never be zero. The denominator can be zero only
if z/k = −1, but k is positive and z is nonnegative.
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Figure 3.22: Perspective by Similar Triangles.

Step 3. Equation (3.1) can be employed to show that the projection rule of Step 1
results in a projection that satisfies the three conditions above and can therefore be
called perspective. Condition 1 says that a distant object should appear small. The
object can become distant in three ways:

1. increasing the z coordinates of its points;
2. increasing the x or y coordinates;
3. increasing the value of k.

For large values of z, Equation (3.1) yields small values for x∗ and y∗. Specifically

lim
z→∞x∗ = 0 and lim

z→∞ y∗ = 0.

For large values of x or y, imagine two points, P1 = (x1, y1, z1) and P2 = (x2, y1, z1), on
the object that differ only in their x coordinates. They are projected to the two points
P∗

1 = (x∗
1, y

∗
1) and P∗

2 = (x∗
2, y

∗
1), which have identical y coordinates, and the ratio of

their x coordinates is

x∗
1

x∗
2

=
x1

(z1/k) + 1

/ x2

(z1/k) + 1
=

x1

x2
. (3.2)

Thus, when both x1 and x2 grow, the ratio x∗
1/x∗

2 approaches 1, which implies that
the two projected points P∗

1 and P∗
2 get closer. Since P1 and P2 are any points with

the same y and z coordinates, this implies that all the points with the same y and z
coordinates produce projections that are very close. The object seems to have shrunk
in the x dimension (Figure 3.23a).

The case where k increases (i.e., the viewer moves away from the projection plane)
is different. Figure 3.23b shows how the projection of the object becomes bigger and
bigger in this case until, at the limit, when the viewer is at infinity, the projection
reaches the actual size of the object. The perspective projection is reduced in this limit
to a parallel projection. However, even though the projection itself gets bigger, the
viewer sees a small projected object because the projection plane and everything on it
look small to a distant viewer.

Condition 2 demands that a distant object feature less perspective. We already
know that an object can become distant in three ways each of which is individually
treated here.
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Figure 3.23: (a) Large x Dimensions. (b) Large Values of k.

1. The z coordinates are increased. We select two object points P1 = (x1, y1, z1)
and P2 = (x1, y1, z2) with the same x and y coordinates and different z coordinates.
We denote their projected points by P∗

1 = (x∗
1, y

∗
1) and P∗

2 = (x∗
2, y

∗
2) and compute the

ratio x∗
1/x∗

2:
x∗

1

x∗
2

=
x1

(z1/k) + 1

/ x1

(z2/k) + 1
=

z2 + k

z1 + k
. (3.3)

When the z coordinates are increased, this ratio approaches 1, thereby showing that
the distance between the projected points is decreased, resulting in less perspective.

2. The x or y coordinates are increased. Equation (3.2) shows that the projected
points get closer in this case, too.

3. The value of k is increased. In this case, Equation (3.3) shows that the projected
points get closer, again implying less perspective.

Condition 3 is also easy to verify, at least in the case of lines parallel to the z
axis. Figure 3.24 shows how a group of lines parallel to the z axis are projected to line
segments that converge at the origin.

x

z

Figure 3.24: Lines Parallel to the z Axis.

Step 4. The projection expressed by Equation (3.1) can be included in the general
4×4 transformation matrix in three dimensions [Equation (1.23)]. The result is

Tp =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠ . (3.4)
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A simple test verifies that the product (x, y, z, 1)Tp yields (x, y, 0, rz + 1) or, after
dividing by the fourth coordinate, (x/(rz + 1), y/(rz + 1), 0, 1). This agrees with Equa-
tion (3.1) if we assume that r = 1/k. (Recall that k is strictly positive and is never
zero. The viewer never presses his eyes to the projection plane.)

It is now clear that there are two more special cases that are geometrically equiv-
alent to our standard position. These are the cases where the viewer is positioned on
the negative side of the x axis (or the y axis) at a certain distance from the origin and
the projection plane is the yz (or xz) plane. The object is located on the positive side
of the x (or y) axis. These cases correspond to the transformation matrices

Tx =

⎛
⎜⎝

0 0 0 p
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ and Ty =

⎛
⎜⎝

1 0 0 0
0 0 0 q
0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

where both 1/p and 1/q are the distances of the viewer from the origin.
The general case, where the viewer can be positioned anywhere and looking in

any direction, is covered in Section 3.5. Before we get to this material, here are some
examples of points projected in the standard position.

Linear example. We arbitrarily select the two points P1 = (2, 3, 1) and P2 =
(3,−1, 2) and the distance k = 1. Notice that the z coordinates of these points are
nonnegative. The points are projected to

P∗
1 =

[
2

(1/1) + 1
,

3
(1/1) + 1

]
= (1, 3/2) and P∗

2 =
[

3
(2/1) + 1

,
−1

(2/1) + 1

]
= (1,−1/3).

We now select the midpoint Pm = (P1 + P2)/2 = (5/2, 1, 3/2) and project it to

P∗
m =

[
5/2

3/2
1 + 1

,
1

3/2
1 + 1

]
= (1, 2/5).

Point Pm is located on the straight segment connecting P1 to P2 (it is the midpoint
of the segment) and P∗

m is on the segment connecting P∗
1 to P∗

2 (although it isn’t
the midpoint, because it is easy to see that P∗

m = 0.4P∗
1 + 0.6P∗

2). The perspective
projection of a straight segment is a straight segment, which is why it is done in practice
by projecting the two endpoints and connecting them on the projection plane with a
straight segment.

Converging lines. We now select an arbitrary point P3 = (0, 2, 3) and compute
a new point P4 = (1,−2, 4) from the relation P4 − P3 = P2 − P1. The difference of
two points is a vector, so this relation guarantees that the vector from P3 to P4 equals
the vector from P1 to P2, or, equivalently, that the two line segments P1P2 and P3P4

are parallel. The two new points are projected to yield

P∗
3 =

[
0,

2
(3/1) + 1

]
= (0, 1/2) and P∗

4 =
[

1
(4/1) + 1

,
−2

(4/1) + 1

]
= (1/5,−2/5).
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The parametric equation of the straight segment connecting P∗
3 to P∗

4 is (see Equa-
tion (Ans.7))

L2(w) = w(P∗
4 − P∗

3) + P∗
3 = w(1/5,−9/10) + (0, 1/2) for 0 ≤ w ≤ 1,

and the parametric equation of the straight segment connecting P∗
1 to P∗

2 is

L1(u) = u(P∗
2 − P∗

1) + P∗
1 = u(0,−4/3) + (1, 3/2) for 0 ≤ u ≤ 1,

the point is that although the original segments P1P2 and P3P4 are parallel, the two
projected segments are not parallel. They meet at point L1(33/8) = L2(5) = (1,−4).

Another way to prove that the two projected line segments converge is to show that
they are not parallel by computing and comparing their directions (or slopes). It’s easy
to see that P∗

2 − P∗
1 = (0,−4/3) but P∗

4 − P∗
3 = (1/5,−9/10). Line segment L1 moves

straight down, whereas L2 has a slope of (−9/10)/(1/5) = −4.5.

� Exercise 3.7: Select two line segments that are perpendicular to the line of sight of
the viewer, and show that their projections on the xy plane are parallel.

Projecting curves. We select the three points P1 = (−1, 0, 1), P2 = (0, 1, 2), and
P3 = (1, 1, 3) and compute the Bézier curve P(t) defined by them

P(t) = (1 − t)2(−1, 0, 1) + 2t(1 − t)(0, 1, 2) + t2(1, 1, 3).

The midpoint of this curve is

P(0.5) = (−1/4, 0, 1/4) + (0, 1/2, 1) + (1/4, 1/4, 3/4) = (0, 3/4, 2).

We now project the three original points and obtain

P∗
1 =

[ −1
(1/1) + 1

, 0
]

= (−1/2, 0), P∗
2 =

[
0,

1
(2/1) + 1

]
= (0, 1/3),

P∗
3 =

[
1

(3/1) + 1
,

1
(3/1) + 1

]
= (1/4, 1/4).

The Bézier curve defined by these points is

P∗(t) = (1 − t)2(−1/2, 0) + 2t(1 − t)(0, 1/3) + t2(1/4, 1/4).

The point of this example is that the projection of P(0.5), which is (0, 1/4), is not
located on P∗(t). This illustrates the nonlinear nature of the Bézier curve (as well as
most other curves).
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� Exercise 3.8: Show why point (0, 1/4) is not located on P∗(t).

Transforming and projecting. This example illustrates the advantage of the
projection matrix Tp of Equation (3.4). Given an object, we might want to transform
it before we project its points. In such a case, all we have to do is prepare the individual
4 × 4 transformation matrices, multiply them together in the order of the transforma-
tions, and multiply the result by Tp. Assume that we want to apply the following
transformations to our object: (1) Rotate it about the x axis by 90◦ from the direction
of positive y to the direction of positive z (Figure 3.25a). (2) Translate it by 3 units in
the positive z direction. (3) Scale it by a factor of 1/2 (i.e., shrink it to half its size) in
the y dimension. The three transformation matrices are

TR =

⎡
⎢⎣

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎤
⎥⎦ , TT =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 3 1

⎤
⎥⎦ , TS =

⎡
⎢⎣

1 0 0 0
0 1/2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

and their product with Tp (we assume k = 1, so r = 1) produces

T = TRTT TS

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0 0
0 0 0 1
0 −1/2 0 0
0 0 0 4

⎤
⎥⎦ . (3.5)

x x

y y

z z

(a) (b)

Figure 3.25: Rotation about the x Axis.

We can now pick any point on the object, write it as a 4-tuple in homogeneous
coordinates, and multiply it by T to obtain its projection after applying the three
transformations to it. Notice that a point cannot be scaled, but the effect of scaling is
to move points such that the scaled object will shrink to half its size in the y dimension.
As an example, multiplying point (0, 1,−4, 1) by T results in (0, 2, 0, 5), which, after
dividing by the fourth coordinate, produces the two-dimensional point (0, 2/5).

� Exercise 3.9: Multiply point (0, 1,−4, 1) by the product TRTT TS and explain the
result.
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� Exercise 3.10: The previous paragraph has mentioned scaling, so let’s consider another
subtle effect of this simple transformation. The transformation matrix for scaling is

⎛
⎜⎝

T1 0 0 0
0 T2 0 0
0 0 T3 0
0 0 0 1

⎞
⎟⎠ .

When combined with perspective projection, it yields

⎛
⎜⎝

T1 0 0 0
0 T2 0 0
0 0 T3 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠ =

⎛
⎜⎝

T1 0 0 0
0 T2 0 0
0 0 0 T3r
0 0 0 1

⎞
⎟⎠ .

Hence, a point (x, y, z, 1) is transformed to (T1x, T2y, 0, T3rz + 1), which implies

x∗ =
T1x

T3rz + 1
, y∗ =

T2y

T3rz + 1
.

In the special case of uniform scaling, T1 = T2 = T3 = T , we get x∗ = x/(rz + 1/T ),
y∗ = y/(rz + 1/T ). The problem is that when T gets large (large magnification), 1/T
becomes small, resulting in

x∗ ≈ x

rz
=

xk

z
, y∗ ≈ y

rz
=

yk

z
.

We don’t seem to get the expected magnification. What’s the explanation?

The rightmost column of matrix T of Equation (3.5) is important and will serve
(on page 110) to illuminate the properties of the general perspective projection. The
three top elements of this column are 0, 1, and 0. The reader may remember that the
general transformation matrix [Equation (1.23)] denotes these elements by p, q, and r.
Thus, element q of matrix T is nonzero. It has already been mentioned that element r
of matrix Tp is nonzero because the viewer is positioned on the z axis. The reason that
element q of matrix T is nonzero is the rotation about the x axis. We can interpret this
rotation either as a rotation of the point or as a rotation of the coordinate system. In
the latter case, this rotation has changed the projection plane from the xy plane to the
xz plane and has also moved the viewer (because the viewer and the projection plane
constitute one unit) from his standard position on the z axis to a new location on the
y axis (Figure 3.25b). The fact that q is nonzero tells us that the y axis now intercepts
the projection plane. Page 110 sheds more light on the function of matrix elements p,
q, and r.

� Exercise 3.11: Compute the coordinates of the object point P that happens to be
projected to the origin after the three transformations.

Negative z coordinates. It has already been mentioned several times that the
viewer and the object have to be located on different sides of the projection plane. In
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the standard position, this means that all the object points have to have nonnegative
z coordinates. This example shows what happens when object points have invalid
coordinates. (See also Exercise 3.19.) Figure 3.26a shows the two points P1 = (0, 1,−1)
and P2 = (0, 1, 1) and a viewer located at (0, 0,−3). When Equation (3.1) is used to
project the two points, the results are

P∗
1 =

[
0,

1
(−1/3) + 1

, 0
]

= (0, 3/2, 0) and P∗
2 =

[
0,

1
(1/3) + 1

, 0
]

= (0, 3/4, 0).

The result seems to make sense, but Figure 3.26b shows that when P1 is moved to the
left (i.e., toward larger negative z values), its projection climbs up the y axis quickly
and without limit, thereby creating a distorted projection of the entire object. When
P1 is located right over the viewer [when it is moved to (0, 1,−3)], its projection is
undefined, and when it is moved farther to the left, its projection becomes negative. In
such a case, those parts of the object that are in front of the viewer are projected right
side up but distorted, and those parts that are behind the viewer are projected upside
down.
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Figure 3.26: Perspective Projection with Negative z Coordinates.

3.5 General Perspective

The standard position is just a special case of perspective projection. It simplifies the
computations of the projected points and should be used whenever possible. There are
cases, however, where the viewer has to be positioned at different points and has to
look in different directions. A common example is computer animation. In a typical
animation sequence, there is an object or a scene and we imagine a camera moving
around or above the scene, taking snapshots much like a real movie camera. While the
camera is moving, the object or objects in the scene may also move along a path, rotate,
shrink, or become distorted by shearing.

An animation sequence is therefore done in steps, where each step starts by moving,
rotating, or otherwise transforming the object (if necessary), moving the camera (which
becomes the viewer) to its appropriate position for the step, orienting it, so it looks in
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the right direction, and finally taking a snapshot. The last operation, taking a snapshot,
is done by computing the perspective projections of all the object’s points and plotting
the points on the projection plane. The resulting image on the projecting plane then
becomes the next animation frame, and the final animation is screened at a fast rate
(typically 18 to 24 frames per second) to create the illusion of smooth animation.

Because animation is such an important application of perspective projection, we
often use the term “screen” instead of “projection plane.” The main difference between
a screen and a plane is that the former has a finite size, whereas the latter is infinitely
large. In order to derive the mathematics of general perspective, we need to know at
least (1) the location B of the viewer, (2) the direction D of the viewer’s line of sight,
and (3) the coordinates of all the points P on the object. Figure 3.27 illustrates another
complication that often arises. The figure shows viewers located at the same point
and looking in the same direction, but with screens that have different orientations
(although each is perpendicular to the line of sight). Thus, in order to fully specify the
viewer-screen unit, we sometimes also need to specify the direction T of the top of the
screen.

x
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z

x
y

z

x
y

z

T
T

Figure 3.27: General Perspective with Different Screen Orientations.

We start this section with a simple example that illustrates how rotation and trans-
lation, combined with basic concepts from geometry, can be applied to the computation
of perspective projection. Similar computations can be carried out in other cases, but
they are normally very messy. Future sections of this chapter illustrate better ap-
proaches to the problem of general perspective.

In this example, we assume that the viewer has been moved from the standard
position by a translation and his line of sight has been rotated. (It is also possible to first
rotate the viewer and then translate him.) We compute the new location and direction
of the viewer and use this information to compute the equation of the projection plane.
(Alternatively, we can determine the new equation of the projection plane by applying
to it the same transformations applied to the viewer.) Once this equation is known, we
compute the straight segment P(t) that connects the object point P to the viewer. The
final step is to calculate the point P(t0) where this segment intercepts the projection
plane. This point is the projection P∗ of P.

In the example, we rotate the viewer θ degrees counterclockwise about the y axis
from the positive z to the positive x direction (Figure 3.28a). The viewer ends up at
point
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(0, 0,−k)

⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠ = (−k sin θ, 0,−k cos θ) = (−kα, 0,−kβ), (3.6)

where α = sin θ and β = cos θ (notice that α2 + β2 = 1). We select a general point
P = (l, m, n) on the object and compute its projection P∗ on the new projection plane.
Notice that the new projection plane is still perpendicular to the line of sight of the
viewer and is still at a distance of k units. It is no longer identical to the xy plane, but
it still contains the origin.

x x
z

y
z

k

θ
P

Projection plane

φ
θ

(a) (b)

Figure 3.28: Viewer Rotated About the y Axis.

� Exercise 3.12: The previous paragraph talks about rotating the viewer counterclock-
wise, but Equation (3.6) looks like Equation (1.4), which generates clockwise rotation.
What’s the explanation?

The first task is to find the equation of the projection plane. Vector (−kα, 0,−kβ)
is perpendicular to the plane (it is the normal to the plane), so it is perpendicular to
any general vector (x, y, z) on the plane. This is why their dot product is zero. From
(−kα, 0,−kβ) • (x, y, z) = 0, we obtain the plane equation αx = −βz.

� Exercise 3.13: Why doesn’t this equation involve y?

An alternate way to derive the plane equation is to start with the equation of the
original plane and transform it by means of Equation (3.6). The original plane was the
xy plane, whose equation is z = 0. A general point on this plane has coordinates (a, b, 0).
When multiplied by the rotation matrix of Equation (3.6), the point is transformed to
(βa, b,−αa). Thus, a general point (x, y, z) on the new plane has an x coordinate that’s
the product of an arbitrary number a and cos θ, a z coordinate that’s the product of
the same number a and − sin θ, and an arbitrary y coordinate. The relation between
the coordinates can therefore be expressed as z = −αa = −α(x/β) or αx = −βz.

Next, we find the equation of the line segment from the viewer to point P. We
use the parametric representation P(t) = (P2 − P1)t + P1 [Equation (Ans.7)]. When
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applied to the viewer (denoted by P1) and to point P = (l, m, n) (denoted by P2), it
yields

P(t) = (l + kα, m, n + kβ)t + (−kα, 0,−kβ)
= ((l + kα)t − kα, mt, (n + kβ)t − kβ)

=
(
Px(t), Py(t), Pz(t)

)
.

Our next task is to find the intersection point of the line and the projection plane.
This is obtained at the value t0 that satisfies αPx(t0) = −βPz(t0) or

α
(
(l + kα)t0 − kα

)
= −β

(
(n + kβ)t0 − kβ

)
.

The solution is

t0 =
k(α2 + β2)

αl + βn + k(α2 + β2)
=

k

αl + βn + k
.

The intersection point is P(t0).

The next task is to find the three coordinates of the projected point P∗ = P(t0).
The x coordinate is

x∗ = Px(t0) = (l + kα)t0 − kα = (l + kα)
k

αl + βn + k
− kα =

lkβ2 − nkαβ

αl + βn + k
.

The y coordinate is

y∗ = Py(t0) = mt0 =
mk

αl + βn + k
,

and the z coordinate is

z∗ = Pz(t0) = (n + kβ)t0 − kβ = (n + kβ)
k

αl + βn + k
− kβ =

−lkαβ + nkα2

αl + βn + k
.

From (x∗, y∗, z∗) = (X/H, Y/H, Z/H), we obtain

X = lkβ2 − nkαβ,

Y = mk,

Z = −lkαβ + nkα2,

H = αl + βn + k.

Using the four expressions above and keeping in mind that (l, m, n) are the coor-
dinates of point P, it is easy to figure out the transformation matrix that projects P to
P∗:

(l, m, n, 1)T = (X, Y, Z, H) implies T =

⎛
⎜⎝

kβ2 0 −kαβ α
0 k 0 0

−kαβ 0 kα2 β
0 0 0 k

⎞
⎟⎠ . (3.7)
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The three quantities α, 0, and β that appear at the top of the rightmost column of
matrix T correspond to elements p, q, and r of the general 4×4 transformation matrix.
They tell us which of the three coordinate axes is intercepted by the projection plane.
In our case, the first and third quantities are nonzero (except for θ = 0 and θ = 90◦),
which implies that the new projection plane intercepts the x and z axes. Page 110 has
more to say about elements p, q, and r.

� Exercise 3.14: Calculate the values of matrix (3.7) for the three special cases θ = 0◦,
45◦, and 90◦.

� Exercise 3.15: Given the point P = (βl, m,−αl), calculate its projection. Explain the
result!

� Exercise 3.16: Imagine rotating the viewer, who is now at (−kα, 0,−kβ), a second
time, by an angle φ about the x axis (Figure 3.28b). The new position of the viewer is

(−kα, 0,−kβ)

⎛
⎝ 1 0 0

0 cos φ − sin φ
0 sin φ cos φ

⎞
⎠

= (−k sin θ,−k cos θ sin φ,−k cos θ cos φ)
= (kα,−kβγ,−kβδ),

where γ = sinφ and δ = cos φ. Derive the projection matrix for this case using steps
similar to the ones above.

� Exercise 3.17: After two rotations, the viewer may be located at any point in space.
This is still not the most general case because there is another constraint. What is it?

It is important to realize that matrix (3.7) isn’t as useful as it may seem at first.
It generates the coordinates of projected points, but those coordinates are on the plane
αx = −βz. In practice, we want to display the projected points on the screen, which is
two-dimensional, so we have to go through another step. We have to define two local
axes on αx = −βz and then figure out the coordinates of the projected points relative
to those axes. This is why the approaches discussed in the remainder of this chapter
are preferable. They project points onto the xy plane, where they effectively have just
two coordinates. Before looking at these approaches, however, here is a short summary
of the method used in this section.

Summary. The method of this section proceeds in the following steps:
1. Derive the equation of the projection plane.
2. Determine the equation of the line segment connecting an arbitrary point P on

the object to the viewer (see Equation (Ans.7)).
3. Locate the intersection point of the line and the plane.
4. Convert the coordinates of the intersection point to screen coordinates.
It is possible to use these steps to figure out the projection matrix for the general

case where the viewer may be located at any point B, looking in an arbitrary given
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direction D. This approach to the computation, however, is messy because in addition
to B, D, and k, another vector is needed to define the “up” direction of the projection
plane. In this section, we started with the “up” direction in the positive y direction.
After the two rotations, that direction has changed, but it is fully determined by the ro-
tations and does not need to be explicitly specified. Another drawback of this approach
is that points are projected on a three-dimensional plane, so they have three dimensions.
In practice, the projected image should be displayed on the computer monitor, which is
two-dimensional, so we would like the computations to produce two-dimensional points.
The following two sections show how to project points on the xy plane, which effectively
makes them two-dimensional.

Perspective, as its inventor remarked, is a beautiful thing. What horrors of damp huts,
where human beings languish, may not become picturesque through aerial distance!
What hymning of cancerous vices may we not languish over as sublimest art in the
safe remoteness of a strange language and artificial phrase! Yet we keep a repugnance
to rheumatism and other painful effects when presented in our personal experience.

—George Eliot, Daniel Deronda (1876)

3.6 Transforming the Object

The theory of special relativity teaches that movement (at a constant speed and in a
straight line) is relative, which suggests the following idea. Instead of transforming the
viewer to a new location, computing the new equation of the projection plane, and going
through all the computations of the previous section, why not leave the viewer at the
standard position and transform the object instead? After all, we are interested only
in what the viewer sees on the screen. The absolute locations of the viewer and the
object are irrelevant. If the viewer is left at the standard position, then any point on
the (transformed) object can be projected by means of matrix Tp of Equation (3.4),
which greatly simplifies the computations.

This approach is ideal for cases where the viewer is located at the standard position
and has to be transformed by means of translations and/or rotations (or even reflections,
but no scaling or shearing) to a new location, where he can observe the object from
a different direction. This approach is useful, for example, in computer animation.
Suppose that we have to transform the viewer from the standard position to a new
location by means of a transformation A that consists of several translations, rotations,
and/or reflections (thus, A = T1 · T2 · · ·Tn). Instead of this, we leave the viewer in
the standard position and apply the inverse transformation A−1 to the object. Direct
multiplication proves that the inverse A−1 of our product matrix A is given by A−1 =
T−1

n · · ·T−1
2 · T−1

1 (where T−1
i is the reverse of transformation Ti). A nice feature of

this approach is that the individual Ti transformations are only translations, rotations,
and reflections, and these transformations have simple inverses.
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The point is that transforming the viewer with A or transforming the object with
A−1 will bring them to the same relative position. Once the object has been trans-
formed, we can use matrix Tp [Equation (3.4)] to compute the perspective projection
because the viewer is still located at the standard position. In practice, there is, of
course, no need to actually transform the object. All that we have to do is compute
matrix T = A−1 · Tp and multiply each point of the object by T.

Example: A viewer located at the standard position and an object close
to the origin (Figure 3.29). Suppose that we want to translate the viewer to the
origin, rotate him 45◦ counterclockwise and then translate him k units in both the
negative x and negative z directions (Figure 3.29a,b,c). The transformation matrices
are

T1 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 k 1

⎞
⎟⎠ , T2 =

⎛
⎜⎝

cos 45◦ 0 − sin 45◦ 0
0 1 0 0

sin 45◦ 0 cos 45◦ 0
0 0 0 1

⎞
⎟⎠ ,

T3 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
−k 0 −k 1

⎞
⎟⎠ .

z

xx x

x x x

z

(a) (b) (c)

(d) (e) (f)

Figure 3.29: Transforming Viewer or Object.

The reverse transformations, performed in reverse order, are (Figure 3.29d,e,f)

A−1 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
k 0 k 1

⎞
⎟⎠
⎛
⎜⎝

cos 45◦ 0 sin 45◦ 0
0 1 0 0

− sin 45◦ 0 cos 45◦ 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −k 1

⎞
⎟⎠
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=

⎛
⎜⎝

sin 45◦ 0 sin 45◦ 0
0 1 0 0

− sin 45◦ 0 sin 45◦ 0
0 0 −k + 2k sin 45◦ 1

⎞
⎟⎠ .

Any point P = (x, y, z, 1) on the object can be projected to a two-dimensional point P∗

on the screen by

P∗ = PA−1Tp = (x, y, z, 1)

⎛
⎜⎝

a 0 0 a/k
0 1 0 0

−a 0 0 a/k
0 0 0 2a

⎞
⎟⎠

= (a(x − z), y, 0, a(2k + x + z)/k),

resulting in

x∗ =
k(x − z)

2k + x + z
, y∗ =

yk

a(2k + x + z)
,

where a = sin 45◦. A comparison of parts (c) and (f) in Figure 3.29 shows how the
viewer and the object end up in the same relative positions.

If transforming the viewer involves only translations and rotations (and no reflec-
tions), it is possible to transform the viewer from the standard position to any location
in space by means of (1) a translation to the origin, (2) a general rotation about the
origin, and (3) another translation from the origin to the final location. The two trans-
lations are easy to express, and Section 3.7 shows how to derive the transformation
matrix that will rotate the viewer so his line of sight becomes any given direction D.

The following example serves to illustrate this claim. Suppose that we want to
translate the viewer from the standard position (0, 0,−k) to an arbitrary location
B = (a, b, c) and then rotate him about some axis that goes through the origin (or,
equivalently, first rotate him and then translate him to B). A rotation about the origin
requires a temporary translation from B to the origin, a rotation, and a translation
back to B. Thus, we need the four transformation matrices

T1 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
a b c + k 1

⎤
⎥⎦ , T2 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
−a −b −c 1

⎤
⎥⎦ ,

T3 =

⎡
⎢⎣

. . . 0

. . . 0

. . . 0
0 0 0 1

⎤
⎥⎦ , T4 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
a b c 1

⎤
⎥⎦ ,

where the elements of the rotation matrix T3 are irrelevant and are not shown. Direct
multiplication verifies that the product T1T2 is a transformation matrix that translates
from the standard position (0, 0,−k) to the origin. Thus, instead of the four matrices
above, we need only three transformation matrices, a translation to the origin, a rotation
about the origin, and a translation to point B.
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� Exercise 3.18: Suppose that we first want to rotate the viewer about the origin and
then translate him to point B = (a, b, c). The rotation requires three transformations, a
translation T1 to the origin, a rotation T2 about the origin, and a translation T3 back
to (0, 0,−k). This must be followed by a translation T4 from the standard position to
B. Show that the last two translations, T3 and T4, can be replaced by one translation.

When reflections are included in addition to translations and rotations, more than
four transformation matrices may be needed. Figure 3.30a shows a simple example.
Given a viewer at (0, 0,−2), we want to reflect it about the plane (x, 0, x−1) and rotate
it 45◦ about the y axis (Figure 3.30b). The viewer can be considered a point which
has no dimensions and no “left” and “right” directions. Thus, the reflection moves the
viewer to another location but does not “reverse” him. However, the viewer and the
screen have to be treated and moved as a single unit, which is why a full treatment of
perspective projection should include a “top” vector that points in the direction of the
top of the screen. When the viewer-screen unit is reflected, the left and right sides of
the screen are reversed and the “top” vector changes direction (Figure 3.30c).

(a)

z

x

(b)

z

x

L L
R R

(c)

Figure 3.30: Reflecting the Viewer.

In general, a reflection about an arbitrary plane in three dimensions requires five
transformations: (1) a translation that brings one point of the plane to the origin, (2)
a rotation about the origin that brings the plane to one of the three coordinate planes,
(3) a reflection about that plane, (4) a reverse rotation, and (5) the reverse translation.
In many special cases, such as a plane parallel to one of the coordinate planes, this
process can be simplified, but in general a reflection followed by a rotation requires
eight (5 + 3) transformations. In order to apply the inverse transformations to points
on the object, we have to determine the inverses of all the transformation matrices
involved, but fortunately the inverses of translation, rotation, and reflection about one
of the coordinate planes are trivial to figure out.

It should again be emphasized that the viewer and the projection plane constitute
a single unit and should be transformed together. Even though the approach discussed
in this section transforms the object and not the viewer, it is still important to make
sure that the object remains on the other side of the projection plane from the viewer
after all the transformations. Thus, after an object point is transformed and before
it is projected, it is important to verify that its z coordinate is still nonnegative. It
is also important to make sure that enough points are selected on the object, because
otherwise it may happen that two points with nonnegative z coordinates are connected
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on the object with a curve, some of whose points may have negative z coordinates when
projected. Figure 3.31a is an example of an object where P3 initially is not included
as an object point. The transformations move the object to the left such that part of
the curve between points P1 and P2 ends up to the left of the xy plane and P3 has a
negative z coordinate. Once P3 is included as an object point, the software discovers
that its projection has a negative z coordinate of, say, a units. The software then moves
all the object points a units to the right (Figure 3.31b) to obtain the correct projection
on the xy plane.

z

x

(a) (b)

P1

P2

P3

z

x

P1

P2P3

Figure 3.31: An Object with Negative z Coordinates.

On the other side of the screen, it all looks so easy.
—Jeff Bridges (as Kevin Flynn) in Tron (1982)

3.7 Viewer at an Arbitrary Location

The previous section dealt with the case where the viewer is initially located at the
standard position. This section looks at the more general problem where the viewer is
located at an arbitrary point B = (a, b, c), looking in a given direction D = (d, e, f)
(Figure 3.32a). The approach taken here is to transform the viewer to the standard
position in three simple steps: (1) translate the viewer from B to the origin (the screen
is also translated by the same amount; Figure 3.32b); (2) rotate the viewer-screen unit in
three dimensions until D coincides with (0, 0, 1) (i.e., it points in the positive z direction,
Figure 3.32c), and (3) translate the viewer and screen from the origin to point (0, 0,−k)
(Figure 3.32d). These three transformations bring the viewer to the standard position
and the screen to the xy plane. The same transformations are then applied to every
point P of the image, thereby bringing the viewer and the image to the same relative
positions they had before the transformations. One way to understand this approach is
to imagine that the viewer and all the image points are transformed as one unit, such
that the viewer ends up at the standard position. Another way to look at this approach
is to imagine that we transform the coordinate axes (Section 1.5), while the viewer and
the image are not moved.

Now that the viewer is located at the standard position, matrix Tp [Equation (3.4)]
can be used to project image points. This approach has the advantage that all the image
points are projected on the xy plane, so that the projected points are effectively two-
dimensional. In practice, there is no need to actually transform the viewer and the
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(a) (b) (c) (d)
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Figure 3.32: Transforming the Viewer-Screen Unit.

screen. We simply use the coordinates (a, b, c) of point B and the components (d, e, f)
of vector D to derive the three transformation matrices T1 (translation), T2 (rotation),
and T3 (second translation) and multiply T = T1T2T3Tp. Any point P on the object
is then transformed and projected in a single step by the multiplication P∗ = PT.

This approach is developed here for the general case but is first illustrated by two
examples where the coordinates of B and the components of D are known numbers.

Example 1. The viewer is located at B = (1, 1, 1) and is looking in direction
D = (1, 0, 1) (i.e., midway between the directions of positive x and positive z). Matrix
T1 below translates from (1, 1, 1) to the origin. Matrix T2 rotates by 45◦ from the
positive x to the positive z direction. Matrix T3 translates from the origin to point
(0, 0,−k). The result is (we denote s = cos 45◦ = sin 45◦ = 1/

√
2)

T = T1T2T3Tp

=

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
−1 −1 −1 1

⎞
⎟⎠
⎛
⎜⎝

s 0 s 0
0 1 0 0
−s 0 s 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −k 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠

=

⎛
⎜⎝

s 0 s 0
0 1 0 0
−s 0 s 0
0 −1 −2s − k 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠

=

⎛
⎜⎝

s 0 0 sr
0 1 0 0
−s 0 0 sr
0 −1 0 1 − kr − 2rs

⎞
⎟⎠

=

⎛
⎜⎝

s 0 0 sr
0 1 0 0
−s 0 0 sr
0 −1 0 −2rs

⎞
⎟⎠ . (3.8)

(Recall that k = 1/r.) The projection of any point P = (x, y, z) is calculated by
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P∗ = PT. We illustrate this for two points.

1: Point P = (1, 1, 1) is projected to P∗ = (0, 0, 0) because

(1, 1, 1, 1)

⎛
⎜⎝

s 0 0 sr
0 1 0 0
−s 0 0 sr
0 −1 0 −2rs

⎞
⎟⎠ = (0, 0, 0, 0).

2: Point P = (2k, 0, 2k) is projected to P∗ = (0,−1/
√

2(2 − r), 0) because

(2k, 0, 2k, 1)

⎛
⎜⎝

s 0 0 sr
0 1 0 0
−s 0 0 sr
0 −1 0 −2rs

⎞
⎟⎠ = (0,−1, 0, 2s(2 − r)).

� Exercise 3.19: The product

(0, 0, 0, 1)

⎛
⎜⎝

s 0 0 sr
0 1 0 0
−s 0 0 sr
0 −1 0 −2rs

⎞
⎟⎠

equals (0,−1, 0,−2sr), which suggests that the origin (0, 0, 0) is projected on the screen
at point P∗ = (0, k/

√
2, 0). This, however, does not make sense since point (0, 0, 0) was

originally “behind” the viewer and should remain behind it after all the transformations.
What’s the explanation?

Mighty is geometry; joined with art, resistless.
—Euripides

Note. Notice the rightmost column of matrix T [Equation (3.8)]. The first and
third elements of that column are nonzero, which indicates that the projection plane
intercepts the x and z axes. This is discussed in detail on page 110.

Example 2. The viewer is located at B = (−k sin θ, 0,−k cos θ) = (−kα, 0,−kβ)
and is looking in direction D = (α, 0, β) (i.e., toward the origin). Matrices T1, T2, T3,
and Tp below are similar to the ones from the previous example. The result is

T = T1T2T3Tp

=

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

kα 0 kβ 1

⎞
⎟⎠
⎛
⎜⎝

β 0 α 0
0 1 0 0
−α 0 β 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −k 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠



108 3 Perspective Projection

=

⎛
⎜⎝

β 0 α 0
0 1 0 0
−α 0 β 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠

=

⎛
⎜⎝

β 0 0 αr
0 1 0 0
−α 0 0 βr
0 0 0 1

⎞
⎟⎠ . (3.9)

It is easy to see that for θ = 0 (where α = 0 and β = 1), matrix (3.9) reduces to
matrix (3.4).

� Exercise 3.20: Assuming a viewer positioned as in the example above, calculate the
projection of point P = (βl, m,−αl).

� Exercise 3.21: Projection matrices (3.9) and (3.7) correspond to the same geometry,
so one would think that they should be identical. Why are they different?

We now develop this approach for the general case where a viewer is located at an
arbitrary point B = (a, b, c) looking in an arbitrary direction D = (d, e, f), where vector
D is assumed to be normalized (i.e., d2 + e2 + f2 = 1). Translating the viewer to the
origin is done, as usual, by matrix T1:

T1 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
−a −b −c 1

⎞
⎟⎠ . (3.10)

The main task is to rotate vector D so it coincides with the positive z direction. The
rotation should be about an axis that’s perpendicular to both D and the z axis. A
general vector in this direction is obtained by the cross product

D × (0, 0, 1) = (d, e, f) × (0, 0, 1) = (e,−d, 0).

Normalizing this vector yields

u =
(e,−d, 0)√

e2 + d2
=

(
e√

1 − f2
,

−d√
1 − f2

, 0

)
.

Vector u is a unit vector in the direction of rotation. The rotation angle θ is the angle
between vectors D and z = (0, 0, 1). Since both are unit vectors, we can employ the dot
product to obtain cos θ = D • (0, 0, 1) = f and sin θ =

√
1 − cos2 θ =

√
1 − f2. Notice

that sin θ is nonnegative because the angle between vector D and the z axis is measured
between the direction of D and the positive z direction and is consequently always in
the interval [0, π].
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The rotation matrix is obtained from Equation (1.32)

T2 =

⎛
⎜⎜⎜⎝

e2+f−f3−e2f
1−f2

−ed
1+f d 0

−ed
1+f

d2+f−f3−d2f
1−f2 e 0

−d −e f 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (3.11)

The two other tasks are to translate the viewer from the origin to point (0, 0,−k)
by means of T3 and to use matrix Tp to project from the standard position:

T3 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −k 1

⎞
⎟⎠ , Tp =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠ . (3.12)

The result is the matrix product

Tg = T1T2T3Tp (3.13)

=

⎡
⎢⎢⎢⎣

e2+f+f2

1+f
−de
1+f 0 dr

−de
1+f

d2+f+f2

1+f 0 er
−d −e 0 fr

cd+bde−ae2−af+cdf−af2

1+f
−bd2+ce+ade−bf+cef−bf2

1+f 0 −(ad + be + cf)r

⎤
⎥⎥⎥⎦ .

For the special case of a viewer located at B = (−k sin θ, 0,−k cos θ) = (−kα, 0,−kβ)
and looking in direction D = (α, 0, β), this reduces to matrix (3.9).

x

y

z

(a)

(−1,1,0)

(−
1,
1,
k)

k x

y

z

(b)

2k (2k,0,0)

2k

(2k,−2k,2k)

Figure 3.33: Two Tests of Matrix Tg.

Matrix Tg is now tested twice. The first test (Figure 3.33a) assumes that the
viewer is at the standard location (0, 0,−k) but looking in direction (−1, 1, k). (These
components still have to be normalized.) We compute the projection of point (−1, 1, 0)
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and the figure shows that this projection should be at the origin because the viewer is
looking directly at the point. The Mathematica code

<< LinearAlgebra‘Orthogonalization‘
k = 3.; r = 1/k;
{a, b, c} = {0, 0, -k}; {d, e, f} = Normalize[{-1, 1, k}]
T = {{(e^2 + f + f^2)/(1 + f), -d e/(1 + f), 0, d r},
{-d e/(1 + f), (d^2 + f + f^2)/(1 + f), 0, e r},
{-d, -e, 0, f r},
{(c d + b d e - a e^2 - a f + c d f - a f^2)/(1 + f),
(-b d^2 + c e + a d e - b f + c e f - b f^2)/(1 + f),
0, -(a d + b e + c f) r}};

{-1, 1, 0, 1}.T

computes the normalized components of D as (−0.3015, 0.3015, 0.9045) and the pro-
jected point as the 4-tuple (0, 0, 0, 1.1) (i.e., the origin).

The second test (Figure 3.33b) assumes that the viewer is located at B = (0, 2k,−2k)
looking in (the still unnormalized) direction (2k,−2k, 2k). We compute the projection
of point (2k, 0, 0), and the figure again suggests that this projection should be at the ori-
gin because the viewer is looking directly at the point. Code similar to the above yields
the normalized direction vector D as (0.577,−0.577, 0.577) and the projected point as
(0, 0, 0, 3.5), again the origin.

� Exercise 3.22: Perform a similar test for B = (0, 2k,−k) and unnormalized D =
(0,−1,−1). Use mathematical software to compute the projection of point (0, 0,−4k).
Notice that the viewer is looking at the z axis a little “past” this point.

The rightmost column of Tg is especially interesting. Its three top elements are
dr, er, and fr, where r = 1/k is the inverse of the (strictly positive) distance k of the
viewer from the screen and (d, e, f) are the components of vector D. If any of these
components is zero, the corresponding element of Tg will also be zero, which implies
that there is a simple relationship between these three matrix elements and the direction
D of the viewer’s line of sight. Since the screen is perpendicular to the line of sight, we
end up with the following interesting result.
The three matrix elements dr, er, and fr indicate which of the three coordinate axes is
intercepted by the screen before the screen is transformed to the standard position.
For example, if e = 0 and d and f are nonzero, then D is a vector in the xz plane (and
is not in the x or z direction), so the projection plane intercepts the x and z axes but is
parallel to the y axis and does not intercept it. This result has already been mentioned
several times in the past and is often referred to as n-point perspective, where n can
be 1, 2, or 3. Figure 3.34 illustrates the justification for this term. The figure shows a
cube centered on the origin and three viewers looking at it. Viewer 1 is located on the
z axis and sees one vanishing point. Viewer 2 is located on the xz plane and therefore
sees two vanishing points, and viewer 3 is located above the xz plane and so sees three
vanishing points. However, the term “n-point perspective” refers to the number of
coordinate axes, 1, 2, or 3, intercepted by the projection plane, not to the number of
vanishing points actually observed by the viewer. The viewer can observe any number
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Figure 3.34: n-Point Perspective.

of vanishing points, depending on the existence of groups of straight, parallel lines on
the object (page 76).

� Exercise 3.23: Calculate matrix (3.13) twice, first for the case where D = (0, 0, 1)
(viewer looking in the positive z direction) and then for D = (0, 0, 1) and B = (0, 0,−k)
(the standard position).

� Exercise 3.24: Assuming a viewer at point B = (0, 1, 0) looking in direction D =
(0, 1, 1), calculate the projection of point P = (0, 1, 10).

Matrix Tg of Equation (3.13) contains the expression 1 + f in the denominators
of certain elements, which may cause undefined values when f = −1. Since we assume
that vector D is normalized, d2 +e2 +f2 must be equal to 1, so the case f = −1 implies
d = e = 0, which, in turn, implies D = (0, 0,−1) (i.e., a viewer looking in the negative
z direction). It turns out that Tg can be used even in this case. When d = e = 0, we
can write

Tg[1, 1] =
e2 + f + f2

1 + f
=

f(1 + f)
1 + f

= f = −1,

Tg[2, 2] =
d2 + f + f2

1 + f
=

f(1 + f)
1 + f

= f = −1.

Tg[4, 1] =
cd + bde − ae2 − af + cdf − af2

1 + f
= −af

1 + f

1 + f
= a,

Tg[4, 2] =
−bd2 + ce + ade − bf + cef − bf2

1 + f
= −bf

1 + f

1 + f
= b.

Matrix elements Tg[1, 2] = Tg[2, 1] = −de/(1 + f) have the indefinite form 0/0, but we
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artificially set them to zero. Matrix Tg becomes

Tg =

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 0 −r
a b 0 cr

⎞
⎟⎠ . (3.14)

This is a matrix that transforms a point P = (x, y, z, 1) to point

P∗ =
( −x + a

(c − z)r
,
−y + b

(c − z)r
, 0
)

.

Following are two quick tests of this matrix. They were performed with the following
Mathematica code:

(* code to check matrix T_g for the case 1 + f = 0 *)
r = 1/k; {a, b, c} = {0, 0, -k};
T = {{-1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 0, -r}, {a, b, 0, c r}};
{x, y, z, 1}.T

1. When the viewer B is located at the standard location (0, 0,−k), matrix Tg of
Equation (3.14) transforms an arbitrary point P = (x, y, z) to the point

P∗ =
(

x

(k + z)r
,

y

(k + z)r
, 0
)

=
(

x

1 + z/k
,

y

1 + z/k
, 0
)

,

which is the familiar Equation (3.1).
2. When the viewer B is located at (1, 1, 1), point (x, y, z) = (1, 1,−1) is trans-

formed to (
1 − 1

(1 + 1)r
,

1 − 1
(1 + 1)r

, 0
)

= (0, 0, 0).

The reader should visualize this situation with the help of a diagram to see why the
result is correct.

The Top Vector. This section’s approach to general perspective moves the viewer
from an arbitrary location B to the standard position while rotating his line of sight
from an arbitrary direction D to the positive z direction. This is done in the following
three steps: (1) a translation from B to the origin, (2) a rotation, and (3) a translation
to point (0, 0,−k). However, Figures 3.27 and Ans.8b illustrate why another rotation
is sometimes needed after step 3 in order to correct the orientation of the screen. Fig-
ure 3.35 shows a viewer moved from a general location to the standard position and how
the extra rotation serves to align the top of the screen with the y axis in a new step 4.

The software normally has no idea how the screen is oriented initially and how
it should be oriented when the viewer is brought to the standard position. If this
orientation is important, the user should specify the direction Q of the top of the
screen, and step 4 should be added to rotate the viewer-screen unit about the z axis
until Q is aligned with the x or y axis or any other desired direction.
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Figure 3.35: The Top Vector.

This extra step can be ignored in cases where the projection plane is rotated through
a small angle or is infinitely large. In practice, however, the projection plane is the
screen on which the three-dimensional scene is projected. This screen has a finite size
and should normally be oriented such that its top points in the positive y direction.

The rotation matrix of step 4 is easy to derive. We assume that the first three steps
have brought the screen to the xy plane and have transformed the original top vector
Q to Q = (h, i, 0). [We assume that (h, i, 0) is already normalized, so h2 + i2 = 1 or
h = ±√

1 − i2.] We further assume that the rotation of step 4 should align Q with the
positive y axis (0, 1, 0). The rotation is about the z axis, and the angle φ of rotation is
determined by cosφ = Q • (0, 1, 0) = i and sinφ =

√
1 − i2 = h. The rotation matrix is

therefore given by

T4 =

⎡
⎢⎣

i h 0 0
−h i 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ .

Matrix T4 rotates vector (h, i, 0, 1) to the positive y axis. The following Mathemat-
ica code verifies this for the four special normalized vectors (a, a, 0, 0), (a,−a, 0, 0),
(−a, a, 0, 0), and (−a,−a, 0, 0), where a = 1/

√
2. In each case, once the values of h and

i on line 1 are set to a or -a, the result is (0, 1, 0, 0).

1 a = 1/Sqrt[2]; h = a; i = a;
2 T = {{i, h, 0, 0},{-h, i, 0, 0},{0, 0, 1, 0},{0, 0, 0, 1}};
3 {h, i, 0, 1}.T

� Exercise 3.25: Assume a viewer located at B = (0, 2k,−2k) looking in (unnormalized)
direction D = (0,−1,−1), as in Exercise 3.22 and a value k =

√
2. Figure Ans.8a

illustrates the geometry of this case.
1. Derive the equation of the projection plane.
2. Multiply the transformation matrices of Equations (3.10), (3.11), and (3.12) to

obtain one transformation T123 that brings the viewer to the standard position.
3. Pick up a point on the projection plane and compute its coordinate on the xy

plane after transformation T123.
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3.8 A Coordinate-Free Approach: I

The discussion of general perspective in the previous sections is based on points and their
coordinates relative to a three-dimensional coordinate system. This section presents
a coordinate-free approach to the same problem that is based on vectors and vector
operations. The location of the origin and the directions of the coordinate axes are not
needed, although they may serve to illuminate the particular geometry of the examples
presented here. The term “point” is still used, but we refer to a point in terms of the
vector connecting it with the origin instead of as a triplet (x, y, z) of coordinates.

Figure 3.36a shows a viewer at point B looking in an arbitrary direction a. The
screen is, as always, perpendicular to the line of sight a, and we assume that |a| = k > 0.
The center of the screen is at point C. Note that vector a gives both the direction of
view of the viewer and the distance between the viewer and the screen.

Origin

C

a

b
c

d

d−b

e

Viewer B
Screen

Screen

p

B

y

z

C
a

(a) (b)

P

P

P*

P*

Figure 3.36: (a) General Perspective with Vectors. (b) Example.

The derivation of the projection is surprisingly easy. We select an arbitrary point
P on the other side of the screen from the viewer and connect it with the viewer. The
intersection of line BP and the screen is the projected point P∗. Vector b indicates the
position of the viewer. Vector c indicates the direction CP∗ on the screen. Vector d is
the position vector of point P∗. Vector e connects B to P. Vector p points from the
origin to point P. Vector d − b connects point B to point P∗.

Vector p is the sum p = b+e, which implies e = p−b. From d = b+a+c, we get
c = d−b−a. Vector d−b is in the direction of e, so we can write d−b = αe = α(p−b),
where α is a real number. This implies c = α(p − b) − a or

d = b + a + c = b + α(p − b). (3.15)

Since the line of sight is perpendicular to the screen, we can write a • c = 0, which
implies a • [α(p − b) − a] = 0, or αa • (p − b) = a • a, or

α =
|a|2

a • (p − b)
. (3.16)
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Before we continue with the analysis, the following cases should be discussed:
1. α is positive. This is the normal case. It means that the viewer and point P are

on different sides of the screen and the projection is meaningful.
2. α is zero. This implies a vector a of magnitude zero (i.e., a viewer positioned

at the screen). Either the viewer or the screen should be moved before anything can be
meaningfully displayed.

3. α is negative. This implies that P and the viewer are on the same side of the
screen, so P should not be projected.

4. α is undefined. This occurs when a•(p−b) = 0, implying that a is perpendicular
to p − b and therefore to e. Vector e is therefore parallel to the screen, making it
impossible to project P.

After α is computed and checked, we can proceed in one of two ways: (1) We can
use Equation (3.15) to calculate vector d, which points directly to P∗ on the screen, or
(2) we can calculate the screen coordinates of vector c. In the latter case, we consider
the center of the screen (point C) a local origin and we define two unit vectors u and
w to serve as local axes on the screen. The screen coordinates of c are, in this case, the
projections u • c and w • c of c on these axes.

In order to compute u and w, we recall that they should be on the screen (and
therefore perpendicular to a) and also perpendicular to each other. We can therefore
write a • u = a • w = u • w = 0. It also makes sense to require that u be in the xy
plane (which will cause w to point in the z direction as much as possible). Solving these
equations results in

u = (ay,−ax, 0) and w = (axaz, ayaz,−a2
x − a2

y). (3.17)

Vectors u and w should then be normalized.
Note that u and w are undefined if a points in the z direction [if a = (0, 0, az), then

u = w = (0, 0, 0), an undefined direction]. However, in this case the screen is parallel
to the xy plane, so we can simply define the local coordinate axes as u = (1, 0, 0) = i
and w = (0, 1, 0) = j.

This novel approach to general perspective is illustrated by two examples.
Example 1. This is a simple example (Figure 3.36b) where all the points lie on

the yz plane.
We assume a viewer at B = (0, 1, 0), looking in direction (0, 1, 1) (i.e., 45◦ in the

yz plane). Vector a must point in this direction, and we assume a = (0, 2, 2) (i.e., the
center of the screen is at a distance of |a| =

√
22 + 22 =

√
8 units from the viewer). We

further assume that the point P to be projected is at (0, 1, 10). The center of the screen
(point C) is easily seen to be at b + a = (0, 1, 0) + (0, 2, 2) = (0, 3, 2). The first step is
to determine α

α =
|a|2

a • (p − b)
=

8
(0, 2, 2) • (0 − 0, 1 − 1, 10 − 0)

=
2
5
.

The next step is to compute d = b + α(p − b) = (0, 1, 0) + (2/5)(0, 0, 10) = (0, 1, 4).
The projected point P∗ is therefore at (0, 1, 4). (See the diagram to convince yourself
that the precise value of the z coordinate of P is irrelevant in this case.)
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Next, we calculate the local coordinates of this point on the screen. Vector c is
first obtained by c = α(p − b) − a = (2/5)(0, 0, 10) − (0, 2, 2) = (0,−2, 2). The local
axes on the screen are computed next from Equation (3.17). They are u = (2, 0, 0)
and w = (0, 4,−4). We normalize them by dividing each by its magnitude, obtaining
u = (1, 0, 0) and w = (0, 1/

√
2,−1/

√
2). (Note that u is in the x direction and w is in

the yz plane.)
Thus, the screen coordinates of c are u • c = (1, 0, 0) • (0,−2, 2) = 0 and w • c =

(0, 1/
√

2,−1/
√

2) • (0,−2, 2) = −√
8. The projected point is therefore

√
8 units away

from the center of the screen C. Note that this equals the absolute value of vector c.
As an added bonus, we compute the plane equation of the screen. Let (x, y, z)

be a general point on the screen. The vector from the center (point C) to (x, y, z) is
(x − 0, y − 3, z − 2). This vector must be perpendicular to the normal to the screen
(vector a), which implies

0 = a • (x, y − 3, z − 2) = (0, 2, 2) • (x, y − 3, z − 2), or y + z = 5.

This equation relates the y and z coordinates of all the points on the screen. Any point
with coordinates (x, y, 5−y) is therefore on the screen regardless of the value of x. Note
that the projected point P∗ also satisfies this relation.

� Exercise 3.26: Generalize the previous example to the case of a general point P =
(x, y, z).

Example 2. Again we give a simple example, illustrated in Figure 3.37. The screen
is centered on the origin at a 45◦ angle, and the viewer is at point (−k/

√
2, 0,−k/

√
2), a

distance of k units from the screen. To simplify the notation, we introduce the quantity
ψ = k/

√
2. From Figure 3.36a it is clear that a = (ψ, 0, ψ) and b = −a = (−ψ, 0,−ψ).

The center of the screen is, as always, at a + b, which is point (0, 0, 0).

x

z

k

Screen

Viewer

P

450

Figure 3.37: Viewer Rotated About the y Axis.

The first step is to determine α:

α =
|a|2

a • (P − b)
=

2ψ2

(ψ, 0, ψ) • (x + ψ, y, z + ψ)
=

2ψ

x + z + 2ψ
.



3.9 A Coordinate-Free Approach: II 117

(Try to convince yourself that α is positive in the gray area above and to the right of
the screen because x + z + 2ψ is positive in this area.)

The next step is to compute vector d

d = b + α(P − b)

= (−ψ, 0,−ψ) +
2ψ

x + z + 2ψ
(x + ψ, y, z + ψ)

=
ψ

x + z + 2ψ
(x − z, y, z − x) .

Notice that P = (0, 0, 0) is transformed to P∗ = (0, 0, 0). Also, every point P =
(x, 0,−x) is transformed to P∗ = (0, 0, 0).

Since the screen is centered at the origin, we have c = α(P−b)−a = α(P−b)+b =
d. The next step is to calculate the local screen vectors u and w from Equation (3.17).
This is straightforward and results in u = (0,−ψ, 0) and w = (ψ, 0,−ψ). After normal-
ization, these become u = (0,−1, 0) and w = (1/

√
2, 0,−1/

√
2). Notice that u is the y

axis and w is in the xz plane.
The screen equation is obtained from a • (x, y, z) = 0, which implies ψ(x + z) = 0

or x = −z. The last step is to derive the transformation matrix. From

x∗ =
X

H
=

ψ(x − z)
x + z + 2ψ

, y∗ =
Y

H
=

ψy

x + z + 2ψ
, z∗ =

Z

H
=

ψ(z − x)
x + z + 2ψ

,

we get

(X, Y, Z, H) = (x, y, z, 1)

⎛
⎜⎝

ψ 0 −ψ 1
0 ψ 0 0
−ψ 0 ψ 1
0 0 0 2ψ

⎞
⎟⎠ .

(Notice the two 1’s in the last column. They indicate that the projection plane intercepts
the x and z axes but not the y axis. This is a two-point perspective.)

3.9 A Coordinate-Free Approach: II

This approach to the problem of perspective projection also uses vectors instead of
coordinates, but we assume that the following are given (Figure 3.38):

1. the position of the viewer (vector b);
2. the direction and distance from the viewer to the projection plane (vector a);
3. an “up” vector Z, which determines the direction of the local screen vector w;
4. two viewing half-angles h and v, an approach that is handy when we want to

limit the projected image to certain viewing angles, as in Figure 3.13.
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Figure 3.38: A Viewing Geometry.

We proceed in the following simple steps:
1. Calculate vector U as perpendicular to both a and Z. U = a × Z.
2. Compute vector W as perpendicular to both U and a. W = U× a. Vector W

is in the Za plane and is perpendicular to a. It will serve to determine vector w on the
screen in step 4.

3. Denote C = b + a. This points to the center of the screen.
4. Construct the half-screen vectors u and w. They are in the directions of U and

W, respectively, but their sizes are determined by the viewing angles

u =
U
|U| |a| tanh, w =

W
|W| |a| tan v.

5. Compute α = |a|2
a•(P−b) and vectors d = b + α(P − b) and c = α(P − b) − a in

the usual way.
6. Now that c is known, we use it to determine the two scale factors cx and cy:

cx =
|c| cos θ

|u| =
1

|u|2 (c • u) , cy =
|c| cos φ

|w| =
1

|w|2 (c • w) .

These are numbers in the range [−1, 1]. Any point P = (x, y, z) for which either cx or
cy is greater than 1 or less than −1 is therefore outside the screen and should not be
displayed.

The range of values of cx and cy assumes that the origin of the screen is at its
center. The actual screen coordinates (sx, sy) of a pixel depend on the dimensions of
the screen (measured in pixels). They are given by

sx = (half the screen width) × cx, sy = (half the screen height) × cy.
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If the origin is at the bottom left corner, then

sx = (half the screen width) + (half the screen width)× cx,

sy = (half the screen height) + (half the screen height) × cy.

If it is at the top left corner,

sx = (half the screen width) + (half the screen width)× cx,

sy = (half the screen height) − (half the screen height) × cy.

Example. We apply the method above to the standard case depicted in Fig-
ure 3.22, where the screen is part of the xy plane and is centered on the origin and the
viewer is located k units from the origin on the negative z axis. Assuming that the two
half-angles h and v are given, we need to compute scale factors cx and cy that will make
it possible to determine for any given point P whether its projection on the xy plane is
inside or outside the screen.

It is clear that b = (0, 0,−k) and a = (0, 0, k) = −b. We also select the positive y
direction as our “up” direction, so Z = (0, 1, 0). To express the final results in a general
way, we denote m = tanh and n = tan v. The calculation is straightforward.

1. U = a × Z = (0, 0, k) × (0, 1, 0) = (−k, 0, 0).
2. W = U × a = (−k, 0, 0) × (0, 0, k) = (0, k2, 0).
3. C = b + a = (0, 0, 0). The center of the screen is at the origin.
4. The local screen axes are

u =
U
|U| |a| tanh = (−km, 0, 0), w =

W
|W| |a| tan v = (0, kn, 0).

5. The three quantities α, d, and c are determined next:

α =
|a|2

a • (P − b)
=

k2

(0, 0, k) • (x, y, z + k)
=

k

z + k
,

d = b + α(P − b) = (0, 0, k) +
k

z + k
(x, y, z + k) =

k

z + k
(x, y, 0),

c = α(P − b) − a = α(P − b) + b = d.

6. The scale factors cx and cy can now be obtained:

cx =
c • u
|u|2 =

k
z+k (−xkm)

k2m2
=

−x

m(z + k)
,

cy =
c • w
|w|2 =

k
z+k (ykn)

k2n2
=

y

n(z + k)
.

(3.18)
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As a simple application of these results, let’s select h = v = 45◦, which implies
m = n = 1. Let’s also assume screen dimensions of 100 × 100 pixels, a local origin at
the center of the screen, and k = 1. For point P = (1, 2, 1), we get the scale factors

cx =
−x

m(z + k)
=

−1
1 + 1

= −0.5, cy =
y

n(z + k)
=

2
1 + 1

= 1.

Thus, the screen coordinates are sx = 50 × (−0.5) = −25 and sy = 1 × 50 = 50 (the
top of the screen). However, any point with coordinates (1, y, 1) where y > 2 would
produce a scale factor cy > 1, implying that its projection is outside the screen.

� Exercise 3.27: Why is Equation (3.18) asymmetric with respect to x and y (i.e., why
−x and not −y)?

3.9.1 Perspective Depth

The perspective projection converts a three-dimensional point to a two-dimensional
point. It completely erases any information about the depth (the z coordinate) of the
original point. However, certain algorithms for hidden surface removal need precisely
such information. We therefore need to generalize our perspective projection to create
a third coordinate z∗ with information about the original z coordinate of the projected
point. The obvious choice is z∗ = z, but this has a serious downside: It does not
preserve straight lines.

Imagine two three-dimensional points, P1 = (x1, y1, z1) and P2 = (x2, y2, z2),
projected to the points

P∗
1 =

(
x1k

k + z1
,

y1k

k + z1
, z1

)
and P∗

2 =
(

x2k

k + z2
,

y2k

k + z2
, z2

)
.

Note that the two projected points are not necessarily on the projection plane. We say
that they are located in the image space.

The straight segment P(t) = P1 +(P2 −P1)t (Equation (Ans.7)) connects the two
original points, while the segment P∗(u) = P∗

1 +(P∗
2 −P∗

1)u connects the two projected
ones. It can be shown that an arbitrary point P(t0) on P(t) is projected to a point
that’s not on P∗(u).

This is why the perspective depth projection is not chosen simply as z∗ = z but as
z∗ = z/(k+z). This definition preserves depth information, because it has the property
z1 > z2 ⇒ z∗1 > z∗2 . It also preserves straight lines.

� Exercise 3.28: Prove the claim above.



3.10 The Viewing Volume 121

3.10 The Viewing Volume

In order to display realistic images, we have to limit the items that are being displayed
to those that would actually be seen by a viewer located at (0, 0,−k) and looking at
the image projected on the screen. There are three cases to consider:

1. The viewer and the object being projected should be located on different sides
of the projection plane. Any parts of the object located on the same side as the viewer
should not be projected. Such parts should be identified and ignored. If the software
does not do that, such parts would be projected in a wrong way, upside down and back
to front. (See also the discussion of negative z coordinates on page 95.) As an example,
consider points P1 and P2 in Figure 3.39a. The former is on the other side of the screen
from the viewer and is therefore projected correctly. The latter is on the viewer’s side
of the screen and is projected on the negative side of the x axis. Including points such
as P2 in the projection creates a confusing effect.

z

x

z

x

k K

W/2
α

far
plane

(a) (b)

(c)

View
er

P1

L2

L1

P1

P2
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P3

P1*

P2*

P2

Figure 3.39: The Viewing Volume in Three Dimensions.

2. Those parts of the scene that are located very far away may be too small to be
seen by an actual viewer, and we may choose not to project and display them on the
screen. User-friendly software should therefore make it possible for the user to select
a value K and clip off those parts of the scene whose z coordinates are greater than
K. The effect of this is to define a plane located at z = K beyond which nothing is
projected.
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3. The screen and the far plane now define a truncated pyramid, called the viewing
volume or frustum (Latin for a piece broken off). Those parts of the image that are
outside it are either irrelevant or invisible to the viewer and should not be displayed.

Imagine a picture made up of points connected with straight lines. Before displaying
the picture, the software should determine which points are outside the viewing volume.
Those points should not be displayed but should not be ignored either. Figure 3.39b
shows four points connected to form a rectangle. Notice how some of the lines connecting
the points should not be displayed and others should be clipped. In general, only those
parts of the image that are inside the viewing volume should be displayed.

It is easy to determine if a point P = (x, y, z) is inside the viewing volume. We
assume that the screen is a square that is W units on a side. Figure 3.39c shows two
of the four lines that bound the pyramid. It is easy to see that tanα = (W/2)/k =
W/(2k). This is also the slope of line L1. The x-intercept of the line is W/2, so the
line’s equation is x = (W/2k)z + W/2 = (W/2)(z/k + 1). The equation of L2 is,
similarly, x = −(W/2)(z/k + 1). Since the diagram is symmetric with respect to x
and y, we conclude that point P is located inside the pyramid if its coordinates satisfy
|x|, |y| ≤ (W/2)(z/k + 1).

� Exercise 3.29: Assume that the distance k of the viewer from the screen equals the
size W of the screen. What will be the width of the field of view of the viewer?

Let’s assume that two points, P and Q, are part of the total image and are to be
connected with a straight line. The first step is to determine, for each point, whether it
is located inside or outside the viewing volume. (If a point is located on the edge of the
viewing volume, it is considered to be inside.) In the second step, three cases should be
distinguished:

1. Both points are inside the viewing volume. The line connecting them is com-
pletely inside the volume and should be fully displayed. This is because the viewing
volume is convex. (It is a convex polyhedron.)

2. One point is inside and the other is outside the viewing volume. The line
connecting them intercepts the volume at exactly one point. (This, again, is a result
of the convexity of the viewing volume.) The interception point should be determined
and the line should be clipped.

3. Both points are outside. The line connecting them is either completely outside
(and should therefore be ignored) or it intercepts the viewing volume at two points.
Both interception points should be calculated and the line segment connecting them
should be displayed. (There is also the degenerate case where both interception points
are identical; the line is tangent to the viewing volume. In such a case, the line can be
ignored or just one pixel displayed.)

3.10.1 Application: Flight Simulation

People have been fascinated by flight since the dawn of history. It is therefore not
surprising that simple, inexpensive flight simulators for personal computers appeared
as soon as these computers became fast and powerful enough to complete the necessary
computations in real time. A flight simulator, even a simple one, is a complex program
because it has to simulate the behavior of an airplane and display both the interior
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(instruments) and exterior (the view from the cockpit) in real time. This section is
concerned with displaying the view from the cockpit, and we show that this task is an
application of the important concept of viewing volume.

(a) (b)
ground

pilot

Viewing
volume

sky projected

k

z

{

L2

L1

{

Figure 3.40: (a) Two Fields of View. (b) A Viewing Volume.

Figure 3.40a shows part of a typical World War II bomber. It is obvious that the
field of view of the pilots in the cockpit is restricted. They see a lot of sky and part
of the airplane, but only distant parts of the ground in front and on the sides. The
bombardier, however, has almost a 180◦ field of view and can see all the way from 6
o’clock (the ground below their feet) to 12 o’clock (straight up).

Figure 3.40b is a schematic diagram showing the viewing volume of the pilot (ig-
noring the curvature of the Earth). We assume that the flight simulator has to display
the pilot’s view on a screen placed k units in front of the pilot. It is obvious that the
view depends on the precise shape of the aircraft. (This determines the orientation of
lines L1 and L2.) Most of the screen in the figure is a projection of the sky and only a
small part shows a projection of the ground in front of the aircraft. It is also trivial to
use similar triangles to obtain the basic perspective expression [Equation (3.1)]

z + k

y
=

k

y∗ or y∗ =
ky

z + k
=

y

z/k + 1
.

3.11 Stereoscopic Images

We now turn to an important application of transformations and perspective projection,
namely stereoscopic view. This section explains the principles and theory of stereoscopic
images, how to create them, and how to view them.

Stereo (from the Greek στερεoσ)—solid, three-dimensional.

It is generally agreed that the concepts of stereoscopy were discovered in 1833 by
Charles Wheatstone, who is mostly known for the Wheatstone bridge (an electrical
circuit for the precise comparison of resistances). His 1833 lecture to the Royal Society
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in London on his discoveries has been published and became the first milestone in the
history of this topic. In this lecture, he describes how his discovery came about as a result
of his acoustical experiments. Wheatstone also developed the first stereoscopic viewer,
which worked with mirrors. Initially, a pair of stereo pictures had to be drawn by hand,
but with the invention of photography by Louis Daguerre in 1839, it became possible to
generate precise pairs of stereo pictures and watch them as a single stereoscopic image.

The ideal graphics output device should be three-dimensional. Unfortunately, only
a few such devices are available today and they are expensive and cumbersome. This
is why stereo pictures, displayed on a two-dimensional screen or printed on paper, are
interesting and have important applications. The reason we see real-life objects in three
dimensions is that our eyes are separated (by about 60–70 mm) and hence look at the
same object from slightly different positions (Figure 3.41a). They see slightly different
images, which are “fused” by the brain to create the three-dimensional image.

The principle of stereo images is therefore to create and display two slightly different
images of the same object and to make sure that each eye sees just one image. This
may be achieved by displaying the two images in two different colors and watching them
through special glasses that allow each color to reach just one eye. Other methods for
viewing such a pair of images in stereo are discussed in Section 3.13.

(a)

A
A

B

B

(b)

leftleft eye
eye

right

right eye
eye

x

k
z

A B

P*

P*left

P*
right

Figure 3.41: Principle of Stereo Images.

The simplest way to calculate the two stereo images is to use translation and
perspective projection. This is what makes stereoscopy a useful application of the
concepts described earlier. Figure 3.41b shows each eye as a viewer. The left eye is
located at (−e, 0,−k) and the right one at (e, 0,−k). To create the image seen by the
left eye (the projection P∗

left of point P), we first have to translate the eye to the origin
and then follow with a standard perspective projection. The transformations are

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
e 0 0 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
e 0 0 1

⎞
⎟⎠ = Tleft.
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The transformation for the right eye is similarly

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
−e 0 0 1

⎞
⎟⎠ = Tright.

It projects P to P∗
right.

The stereo pair is created by transforming each point P on the original image twice,
to the two points Pleft = PTleft and Pright = PTright. The value selected for e depends
on how the picture is to be viewed. For the dual-color method mentioned earlier, 2e
should equal the distance between the eyes (about 60–70 mm). This is a small value, so
there is not much difference between Pright and Pleft. The two images highly overlap.

For a general point P = (x, y, z), the projections for both eyes are

Pleft = (x, y, z, 1)Tleft = (x + e, y, 0, zr + 1) →
(

x + e

zr + 1
,

y

zr + 1

)
,

Pright = (x, y, z, 1)Tright = (x − e, y, 0, zr + 1) →
(

x − e

zr + 1
,

y

zr + 1

)
.

This means that the smaller z is (i.e., the closer the point is to the viewer), the greater
the difference between what the two eyes see. A good way to visualize this is to imagine
an object sliding past the viewer. The front of the object slides faster than the back,
an effect known as parallax.

As an example, consider the two points P = (5, 0, 1) and Q = (5, 0, 2). They differ
only in their z coordinate. Assuming that e = 2 and r = 3, their projections are

Pleft =
(

5 + 2
3 + 1

, 0
)

=
(

7
4
, 0
)

, Pright =
(

5 − 2
3 + 1

, 0
)

=
(

3
4
, 0
)

,

Qleft =
(

5 + 2
2 · 3 + 1

, 0
)

=
(

7
7
, 0
)

, Qright =
(

5 − 2
2 · 3 + 1

, 0
)

=
(

3
7
, 0
)

.

The difference between Pleft and Pright is 7/4−3/4 = 1, whereas the difference between
Qleft and Qright is only 7/7 − 3/7 = 4/7.

Figure 3.42 is an example of a stereo pair of a polyline connecting the eight corners
of a cube. The Mathematica code that did the computations is also listed. Figure 3.43
shows the complete cubes.

A more sophisticated approach to generating a stereo image is shown in Fig-
ure 3.44a. The two eyes are located at (e, 0,−k) and (−e, 0,−k), and they view the
general point P = (x, y, z) from different directions. Point P is projected twice on the
projection plane, at points PL and PR, using the general rule for perspective projec-
tions. Assuming that the distance between the eyes is 2e, Figure 3.44c,d shows how to
calculate the x coordinates of points PL and PR, respectively. Using similar triangles,
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Figure 3.42: Example of a Stereo Image Pair.

(* display two cubes as a stereo pair *)
Clear[Trg, Tlf, pt, e, r, qt];
Tlf={{1,0,0,0},{0,1,0,0},{0,0,0,r},{e,0,0,1}};
Trg={{1,0,0,0},{0,1,0,0},{0,0,0,r},{-e,0,0,1}};
pt={{1,1,1,1},{-1,1,1,1},{1,-1,1,1},{-1,-1,1,1},
{1,1,-1,1},{-1,1,-1,1},{1,-1,-1,1},
{-1,-1,-1,1},{1,1,1,1}}; e=.1; r=3;
qt=Table[0, {i,9},{j,4}];
Do[qt[[i]]=pt[[i]].Tlf, {i,1,9}]; (* use Tlf for other image *)
Do[qt[[i,1]]=qt[[i,1]]/qt[[i,4]], {i,1,9}];
Do[qt[[i,2]]=qt[[i,2]]/qt[[i,4]], {i,1,9}];
ListPlot[Table[{qt[[i,1]], qt[[i,2]]},{i,1,9}],
PlotJoined->True, Axes->False]

Code for Figure 3.42.

Figure 3.43: Stereo Pair Shown as Complete Cubes.
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Figure 3.44c yields

x − e

k + z
=

xL − w

k
or xL =

x − e

1 + z/k
+ e =

x + ez/k

1 + z/k
,

and, similarly, from Figure 3.44d we get

x + e

k + z
=

xR + w

k
or xR =

x + e

1 + z/k
− e =

x − ez/k

1 + z/k
.

Since both eyes are at y = 0, the y∗ coordinates of both PL and PR are given by

y∗ =
y

1 + z/k
.

We thus obtain the transformation matrices TL and TR that transform P to PL and
PR,

TL =

⎛
⎜⎝

1 0 0 0
0 1 0 0

e/k 0 0 1/k
0 0 0 1

⎞
⎟⎠ , TR =

⎛
⎜⎝

1 0 0 0
0 1 0 0

−e/k 0 0 1/k
0 0 0 1

⎞
⎟⎠ . (3.19)

(a) (b)

(d)(c)
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PR

x

zzk

left eye

right eye

left eye

right eye
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x
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e
e

θ

203

Figure 3.44: Perspective Projection of a Stereo Pair.

Figure 3.44b shows how to select reasonable values for e and k. We first assume that
the distance between the eyes is about 75 mm (about 3 in). Normal reading distance is
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about 20 in. Using the values 3 and 20, we get tan θ/2 = 1.5/20, yielding θ/2 = 4.29◦

or θ = 8.58◦. This is the average stereo angle between the eyes. To get a stereo pair
that will look natural and will be free of distortions, we should select values for e and
k that should maintain this angle. A natural value for k is 4 in, since this is the focal
length of the lenses used by most commercial stereoscopes. If we reduce k from 20 to
4 (a factor of 5), we should reduce e from 3 to 3/5 = 0.6 to maintain the same stereo
angle.

A stereo pair is therefore calculated by substituting e = 0.6, k = 4 in Equa-
tion (3.19) and computing PL = TL · P and PR = TR · P for every point P of the
object.

� Exercise 3.30: What would be good values for e and k assuming a distance of 2.5 in
between the eyes?

3.12 Creating a Stereoscopic Image

The discussion in Section 3.11 suggests that the simplest way to obtain a left-eye,
right-eye pair of stereoscopic images is to select a camera, choose a good subject, take
a picture and then shift the camera along the baseline (normally about 65 mm) to
the right and take another picture. This pair of two-dimensional images can then be
watched as a single three-dimensional (stereoscopic) image with the methods discussed
in Section 3.13. (Actually, what will be seen in three dimensions are those parts that
are common to both pictures. Any objects that appear only in one picture because they
are near an edge will disappear or will confuse the brain, depending on how the pictures
are watched.) Here we show several simple ways to photograph such a pair, and we
start with the basic rules for obtaining good stereoscopic images.

The first rule is to take sharp pictures. All the objects in the photograph should be
in focus. The professional term for this is a large depth of field. Photographers some-
times take pictures where certain elements, normally in the background, are blurred,
while the main subject is sharp. Such a picture may have artistic value, but it does not
translate well to three dimensions.

The second rule is to select an appropriate subject. The aim is to produce a stereo-
scopic, three-dimensional image, preferably also interesting and in color. Thus, the
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subject must be in color and must have depth. Professional photographers and artists
recommend selecting a subject that has three main elements, one near the camera,
one far away, and the third in between. A simple example is a nearby gray rock, a
green/brown tree in the background, and a white fence
running between them. A similar example is a nearby
statue in the Palais de Chaillot, the Eiffel Tower in the
background, and the Pont d’Iena in between. Once such
an image is converted to stereoscopic, the viewer can eas-
ily see the relative positions of the three elements. In addi-
tion, the subject should have other background elements,
because a picture with only three items looks empty and
disappointing. Experience shows that the best results are
achieved if the distance of the nearest picture element
from the camera is 30 times the baseline. For the normal
baseline of 6.5 cm, this translates to a distance of 195 cm
or about 6.4 ft. However, many stereo enthusiasts have
discovered that the baseline does not have to be 6.5 cm as
long as a ratio of 30 is obtained. Thus, if the nearest ob-
ject is 300 cm from the camera, then a baseline of 10 cm
will produce a realistic-looking stereoscopic image.

The third rule is to maintain precise vertical alignment of the two pictures. Every
picture element must appear at the same height in the two pictures. Thus, the camera
should not be tilted, raised, or lowered between the two exposures. It should only be
shifted horizontally.

Rule 4 is to avoid having many red and blue (or red and green) objects in the
picture. Section 3.13 shows that a stereoscopic image generated as a color anaglyph
looks bad if it uses these colors extensively.

Also, make sure the camera is held vertically and is not tilted up or down, as this
may cause unwanted converging lines and extra vanishing points, features that tend
to confuse the viewer. Only static images can be photographed (images with moving
elements, such as clouds, flags, or vehicles, can be photographed with a pair of cameras;
see below). Finally, remember which image is for the left eye and which is for the right
eye. Switching these two results in a nonworking stereo image.

We now turn to techniques for taking a pair of stereo pictures with a camera.
Perhaps the simplest (and cheapest) technique is to use a small, 6 ft (2 m) ladder.

Place the camera on several steps of the ladder until you find the ideal height for your
subject. Take a picture, move the camera horizontally about 6.5 cm, and make the
second exposure. A ruler or a straight piece of wood makes it easier to slide the camera
without tilting or rotating it.

If you own a tripod, you can get better results. The simplest way to use a tripod
is to take one picture, lift the tripod, move it to the left or right, and take the second
picture. Before you start, draw a straight line on the ground, perpendicular to the line
of sight of the camera, and position the tripod such that two of its legs are on the line.

Much more accurate results can be yours if you build a simple jig like the one
illustrated in Figure 3.45.
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Figure 3.45: A Jig to Photograph a Stereo Pair.

The jig consists of two pieces of wood or plywood that are attached to the tripod
with a clamp. The camera is placed on the wider piece, while the smaller piece serves
as a support and guide. The dimensions of the two pieces depend on the size of the
camera and the length of the required baseline. Before taking any pictures, mark two
points on the guide, about 6.5 cm apart, to serve as marks for the standard baseline.
With a bit of experience, this primitive device produces very accurate stereo pairs. It
is easy to come up with variations on this simple design.

Good-quality kitchen cabinets often have drawers mounted on special ball-bearing
metal slides. Anyone planning to take many stereo pictures might want to attach a
camera to such a slide and attach the slide to a heavy-duty tripod. Such an arrangement
is accurate, easy to use, and lasts a long time. Detailed instructions are available at
[berezin 06]. Similar devices are sold commercially by [photo3d 06] and others.

A completely different approach to taking such pairs of pictures is to make or obtain
a pair of cameras whose lenses are placed the right distance apart and are operated
together with a common shutter release cable (Figure 3.46). Such a device can produce
stereo pairs of scenes that change rapidly, such as flocks of birds or racing cars. The two
cameras can be placed either side by side [part (b)] or one above the other, as long as
the distance between the centers of their lenses is the right one. If one camera is placed
on top of the other [part (a)], it is important to leave enough room between them for
the shutter release cable. If the cameras are mounted bottom to bottom, care should
be taken to align their lenses vertically [part (c)]. In the latter case, the user should
verify that the two pictures are vertically aligned (rule 3 above). Every point should be
at the same height in the two pictures.

(a) (b) (c)

Figure 3.46: A Pair of Cameras.
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Such double cameras are available commercially and can also be homemade. Fig-
ure 3.47 shows one made in 1998 by Andreas Petersik [Petersik 05] from two Nikon
cameras. Yet another solution is to construct a camera with a sliding lens. The lens is
shifted to the left and a picture is taken. The lens is then shifted to the right and an-
other picture is taken. If film is used, the two pictures are taken on two adjacent frames
of the roll of film. In a digital camera of this type, the CCD sensor slides with the
lens and both pictures are captured by the same sensor and stored in different memory
areas.

Figure 3.47: A Homemade Double Nikon Camera (Courtesy of Andreas Petersik).

Note. When a pair of stereo pictures is taken, a flash should be avoided because it
normally casts shadows. The subject being photographed is shifted in the two pictures
because the camera has moved, but any shadows cast on a wall behind the subject are
shifted twice because the camera has moved and because the light from the flash is
coming from a different direction. Thus, shadows would be placed incorrectly in the
two pictures and would interfere with the correct visualization of the brain.

Our range of expression is small, so that a smile in genuine pleasure photographs
indistinguishably from a grimace of pain; they are the same unless we know their
history and their nature.

—C. P. Snow, Strangers and Brothers (George Passant) (1948)

� Exercise 3.31: The two pictures of a stereo pair differ by a horizontal shift, which
suggests the following idea. Instead of taking two pictures, take just one, copy it, shift
the copy horizontally, and use it as the second picture. What’s wrong with this method?
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3.13 Viewing a Stereoscopic Image

A stereoscopic image consists of a pair (right-eye, left-eye) of images. To see this pair
in three dimensions, we have to view it in a special way. The guiding principle is that
our brain must receive from our eyes the same signals it receives when we watch a real
three-dimensional image. Given a stereoscopic pair of images on paper or on a screen,
the most common techniques to view it are as follows:

1. View it through a stereoscope. This is a simple device that can easily be built
at home.

2. The cross-eye technique. The two images of a pair are laid side by side and the
viewer has to cross his eyes in order to slide the images and see them fused into a single
image.

3. The parallel-view technique. This is similar to the cross-view method but is
appropriate for small images.

4. The anaglyph method. The two original images are combined into a single image
where they are painted different colors. Special glasses are used to make sure each eye
sees only one color.

5. Page-flipped techniques, where the left and right pictures are continually flipped
on the screen.

6. Line alternate methods, where the left-eye and right-eye pictures are interleaved
on the screen. These are popular with head-mounted displays.

There are other, more sophisticated techniques, such as the Pulfrich effect and dot
stereograms. We follow with detailed descriptions of the most common methods.

Stereoscope

A stereoscope (Figure 3.48) is a simple device for viewing a stereo pair. It can easily be
made at home from cardboard, wood, and two lenses. In a piece of cardboard, cut two
circular holes with a diameter of about 1.5 in each and with about 6.5 cm separation
between their centers. Place a lens with a focal length of 4 in in each hole. Look at a
stereo pair located about 4 in away through the lenses, using another piece of cardboard
to make sure each eye sees only one image. More sophisticated devices are available
from several sources, such as [StereoGraphics 05] and [Edmund Scientific 05].

The Cross-Eye View Technique

Note. If you wear glasses, keep them on when trying this method.
The right and left images should be displayed side by side, with the right image on

the left and the left image on the right, as illustrated here:

R L
right eye left eye

Start by staring at the center point between the two images. Slowly cross your eyes
and watch the two images slide closer. With a little patience and practice, you should
be able to make the two images overlap. You will then see three images, as illustrated
here:
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Figure 3.48: Stereoscopes.

R RL L
At this point, your right eye sees the right image and your left eye sees the left image.

Try to ignore them and concentrate on the central image. When you are successful, the
center image will feature depth; it will be stereoscopic.

If you are one of those who find this technique difficult in practice, try the following
aid.

Place a finger here

R

L

1. Observe the image above with the R and L targets.
2. Place a finger on the paper, right under the two targets, as indicated.
3. Stare at your fingertip and, while still looking at it, slowly move your finger

away from the image pair and toward your eyes.
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If you relax, practice this method several times, and do it slowly, you should be
able to slide the two targets and align them perfectly. You may need to tilt your head
slightly left or right to align the targets vertically.

4. When the two targets fuse, move your eyes slowly from your fingertip to the
fused image on the page. Don’t forget to keep your eyes crossed during this step.

If this “trick” is successful, apply it to a pair of stereo images such as Figure 3.49.
Experience indicates that most people get used to this way of viewing stereoscopic
images and don’t find it tiring or uncomfortable. However, if you feel discomfort or
if your eyes get tired, don’t try this method again! There are other ways to enjoy
stereoscopic images.

Figure 3.49: A Stereo Pair (color version on page 235).

The Parallel View Technique

This technique (also referred to as relaxed viewing) is appropriate for small images
where each image of a stereoscopic pair fits between the eyes. The pair is displayed
with the right-eye image on the right and the left-eye image on the left, as illustrated
here:

L R
left eye right eye

The following steps show how such an image can be viewed stereoscopically without
any tools or instruments. Those who wear glasses may get better results trying these
steps without their glasses.

1. Watch the image pair from close range so that each eye is over one of the images.
This is possible if the images are small enough.

2. Stare straight ahead and try to gaze through the images to infinity. The stereo
images will look blurred.

3. Slowly pull your head away from the page while maintaining the same gaze. The
two images will turn into four images. Continue to move away while gazing to infinity.
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4. At a certain point, the four images will merge into three. Concentrate on the
central image and you will suddenly see it in three dimensions. The effect is more
noticeable if the original image pair is in vivid colors.

You can try this technique on the image pair of Figure 3.49, but avoid prolonged
viewing and concentration, which may lead to eye fatigue.

The Anaglyph Method

This approach to stereoscopic viewing combines the right-eye and left-eye images (partly
overlapping) in one image but in different colors, normally red and blue (or cyan)
but sometimes red and green. The method requires the use of special glasses with
different color filters for the two eyes, as illustrated here. (See also [kspark 05] for several
well-known Escher drawings that have been converted to three dimensions, mostly as
anaglyphs.)

Red
Blue

The red filter on the left eye looks red because it reflects red light. Any other colors
are partly absorbed and partly transmitted through the filter. Thus, this filter lets the
blue parts of the image through to the left eye. Similarly, the blue filter on the right
lets only the red parts of the image to the right eye.

Warning. Some people may be sensitive to these glasses. If you feel discomfort or
if you get tired very quickly, take off the glasses and take a break. In any case, try to
use these glasses for short periods and only to view an anaglyph image. They are not
intended for normal use!

From the Dictionary
Anaglyph. From Late Latin anaglyphus, carved in
low relief. Also from Greek anagluphos (to carve).

An anaglyph image is encoded in one of three ways as follows:

Color. The left-eye image is left mostly in its original colors, but certain crucial
parts, such as edges, curves, lines, and points, are painted blue (or cyan or green). The
right-eye image is treated similarly with red. Thus, a color anaglyph (Figure 3.50a)
preserves much of the original colors of the image, but its red/blue (or red/green)
stereo information is diluted throughout the image. The result is that many images
lose their depth information in this format and don’t look three-dimensional. This is
especially true if the original image has vivid red or blue colors. However, if an image
does look good in a color anaglyph, it looks real and vivid.

Gray. The two original images are converted to grayscale and the same crucial
elements are painted red and blue. A gray anaglyph image (Figure 3.50b) is therefore
seen in grayscale, but its depth information is normally easy to perceive.

Pure. The right-eye image is entirely converted to shades of red. The left-eye
image is treated as in the color anaglyph method. The combined image looks reddish
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on paper (Figure 3.50c) but has much depth information when seen through the glasses.
Some of the original color information naturally is lost.

An interesting difference between the three anaglyphs of Figure 3.50 is the person
on the left-hand side (he is clearly seen in Figure 3.49) who completely disappears in
the pure version.

Experienced users recommend creating all three anaglyphs of a given image, trying
the color, gray, and pure versions (in this order), and selecting the one judged best.

There are many sources of software (much of it free) to generate anaglyphs. Those
too lazy to search can check the list at [anabuilder 05].

(a) (b)

(c)

Figure 3.50: Three Anaglyph Encodings (color version on page 235).

Pick a good-quality anaglyph and examine it carefully. You will notice that each
crucial picture element P is shown twice in the anaglyph, in red and blue. The relative
positions of these two color elements is interpreted by the brain as the depth of element
P. Let’s assume that the left-eye view becomes the red parts and the right-eye view
becomes the blue parts. If the red and blue parts of P overlap, the brain considers P to
be on the image plane (i.e., the paper or screen on which the anaglyph image is printed
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or displayed). Such picture elements are said to be at the stereo window and are always
comfortable for the eye to watch, regardless of where they are located in the image.

If the red part of a picture element P is placed on the anaglyph to the right of the
corresponding blue part, the brain perceives P as being located in front of the stereo
window. Figure 3.51 shows that this effect requires a large separation of the red and
blue parts. If the red part of a picture element P is placed on the anaglyph to the
left of the corresponding blue part, the brain visualizes P as located behind the stereo
window. Figure 3.51 shows that this can be achieved with only a small separation of
the red and blue parts.

If P is seen in only one of the two eye views (because it is close to a border of the
image), then it is translated to one color only and is not seen in stereo. It may even
confuse the brain if the viewer concentrates on P.

Figure 3.51 also illustrates the effect of moving the viewer closer to and away from
the anaglyph. As we watch an anaglyph from close by, we see the entire image bigger
but with less depth. As we move our head away from the anaglyph, the stereo image
becomes smaller, but the difference between points A and B increases; the image acquires
more depth.

A

A B

B

red

red

blue

blue

red

red

blue

blue

Figure 3.51: Relative Positions of the Red and Blue Parts (color on page 242).

Page-Flipped Techniques

These techniques require a special monitor screen and special shutter glasses. The screen
switches rapidly between the left-eye and right-eye images. The glasses are triggered
by the monitor hardware to block the right lens when the left-eye image is displayed
and block the left lens when the right-eye image is displayed (Figure 3.52). Thus, the
brain receives the correct image from each eye, and if the images are sent to the brain
at a fast rate, the brain fuses them as usual into a single three-dimensional image. If
the switching rate is low, the brain interprets the signals as a flickering image (still
three-dimensional). The shutters in the glasses are electronic and are normally made
from liquid crystals. The glasses themselves are connected to the monitor (actually, to
the video card) through a special cable or through one of the input/output ports (serial
or parallel). New types of shutter glasses are wireless.
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Left-eye image Right-eye imageTime

Figure 3.52: Page-Flip Monitor and Shutter Glasses.

This method generates high-quality, high-resolution color stereoscopic images but
requires special hardware, so it is not as common as the previous methods.
Line-Alternate Techniques
In the past, most monitors used with computers were cathode-ray tubes (CRTs). Re-
cently, liquid crystal display (LCD) monitors have become popular. Both types of moni-
tors operate as raster scan displays and generate an image in the interleaved mode. The
term “raster scan” means that the image is displayed on the monitor screen row by row,
from top to bottom, and each row of pixels is generated from left to right. A complete
scan of the screen is known as a refresh. In a CRT, this is achieved by sweeping the
electron beam over the screen row by row from the top left corner to the bottom right
corner. In an LCD monitor, the individual LCDs are scanned in this order and turned
on or off as needed. The term “interleaved” means that each refresh of the screen is
done in two parts. The first part refreshes the display of the odd-numbered screen rows,
and the second part refreshes the even-numbered rows.

Figure 3.53: Line-Alternate Techniques.

A line-alternate technique for stereoscopic images displays the right-eye image on
the odd-numbered rows and the left-eye image on the even-numbered rows or vice versa
(Figure 3.53). Special shutter glasses block the left eye from seeing the display during
the first part of the refresh (i.e., when the odd-numbered rows are scanned and refreshed)
and blocks the right eye during the second part. Such techniques are popular in small,
head-mounted displays.

A three-dimensional image created by the various line-alternate techniques is stable
and doesn’t suffer from flickers because the screen is normally scanned at a flicker-free
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speed. In addition, there is no loss of color. The downside is loss of resolution because
each image is displayed on half the rows of the display.

A variation of the line-alternate technique is a lenticular lens. Figure 3.55 shows
the principles of this technique. Each of the two stereo eye images is cut into narrow
strips that are then interleaved and viewed through a special lens made of many small
half-circular elements (placed at about 100 elements per inch). Each lens element sends
one image strip to the left eye and one strip to the right eye.

The Pulfrich Effect

The Pulfrich effect, described by Carl Pulfrich in 1922, is best explained as an optical
illusion (but then one might argue that any stereoscopic image is an optical illusion).
Imagine an object moving in the plane perpendicular to our line of sight. If we look
at the object with both eyes and dim the light reaching one eye, the object seems to
move out of this plane and to either approach us or recede from us. The simplest way
to observe this effect is to use one sunglass lens, but most pieces of dark glass or plastic,
as well as many optical filters, work fine.

It is easy to demonstrate the Pulfrich effect with a swinging pendulum. When
viewed normally with both eyes, we can verify that the pendulum swings in a plane
back and forth. When a dark lens or filter is placed in front of one eye, the pendulum
suddenly seems to be swinging in an ellipse parallel to the ground. The light has to
be dimmed to one eye only. Dimming the light equally to both eyes results in a dim
pendulum seen swinging in a plane.

Figure 3.54: The Pulfrich Effect.

There are several Web sites with Java applets that illustrate this effect very con-
vincingly through animation. One such site is [Newbold 05], but a Web search for
pulfrich, java, and animation yields many more.

I have never been able to observe these effects myself, for I have been blind in the left
eye for 16 years as a result of a traumatic (blutigen) injury of the eye suffered when I
was young.

—Carl Pulfrich (1922)
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Figure 3.55: Lenticular Lens Principles.
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Dot Stereograms

Figure 3.56 illustrates the principle of this interesting method (for a complete descrip-
tion, see [Thimbleby et al. 94]). A three-dimensional scene is projected on a screen and
a point P1 is selected at random. The two eyes of the viewer see point P1 projected
at points Q1 and Q2. We now select another point P2 such that its projections for the
two eyes are Q2 and Q3. Thus, point Q2 is both the left-eye projection of P1 and the
right-eye projection of P2. (P2 must be at the same height as P1, which is not obvious
in our two-dimensional figure.) A little thinking shows that most points on the screen
do similar “double duty.” The exceptions are points close to the edges of the screen,
or points whose P1 or P2 are hidden by other parts of the scene. Since Q2 is common
to P1 and P2, we face the question of what color to paint it. In fact, Q1, Q2, and Q3

have to be painted the same color.

P1

P2

Q1

Q2

Q3 Scene

Left eye

Right eye

Figure 3.56: Dot Stereograms: The Principle.

The algorithm described in [Thimbleby et al. 94] has to decide what color to paint
each point (dot) on the screen and also to determine the two parents, P1 and P2, of
each point on the screen.

The result of this algorithm is a stereogram that consists of dots and can be watched
in three dimensions by crossing the eyes, without the need for special glasses or any other
device. There are three types of dot stereograms, as we now discuss.

SIRDS (Single Image Random Dot Stereograms). This is the oldest type. It
goes back to the pioneering work of Béla Julesz in the 1960s. Such a stereogram consists
of a random pattern of dots, each representing two pixels of the object. Figure 3.57 is
an example of this type of stereogram.

SIS (Single Image Stereograms). This is currently the most common type. The
picture consists of (slightly modified) tiles. This type of dot stereogram is somewhat
more complex to generate, but the basic algorithm is the same.

SIRTS (Single Image Random Text Stereograms). This type is identical to
SIRDS but uses ASCII characters instead of dots. The resulting stereogram has low
resolution.

A dot stereogram is easier to perceive in three dimensions if it is printed on pa-
per rather than displayed on a screen. Here are two simple methods for viewing this
interesting type of stereoscopic image.

In the pull-back method, hold the picture close to and in front of your face. Imagine
that you are looking straight ahead, right through the picture. When your eyes relax and
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Figure 3.57: Example of an SIRDS Dot Stereogram.

are no longer focused on any point, start moving the picture away from you slowly. When
you reach your normal reading distance, you should perceive the three-dimensional
image. It’s important not to focus on the image.

The reflection method works for stereograms that are printed on reflecting paper.
Turn and tilt the paper until it reflects light into your eyes. Focus on the reflection and
wait. After a few seconds, you should see the three-dimensional image.

3.14 Autostereoscopic Displays

The autostereoscopic display presents a completely different approach to the problem
of creating and viewing three-dimensional images. Such a display generates a three-
dimensional image without the need for special glasses, any headgear, or any other
auxiliary device. The price for this is a limited field of view. A correct, lifelike three-
dimensional image can be seen only from certain points. A viewer positioned elsewhere
sees either a confusing image or nothing at all.

The original idea of the autostereoscopic display is due to Adrian Travis [Travis 90]
who patented it in 1992 [Travis 92]. Practical autostereoscopic displays are currently
being developed by DeepLight, Inc., of Westlake Village, California [deeplight 06].

Imagine two cameras L and R separated by the correct distance for stereoscopic
viewing (about 6–7 cm), sending images to a computer (Figure 3.58a). The computer
displays the two images alternately at high speed (we say that the images are time
multiplexed). It sends image L, followed by image R, followed again by image L, and so
on, to a monitor screen. A person is sitting in front of the screen, watching the images.
The two time-multiplexed images are synchronized with a fast shutter device such that
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when image L is displayed, only the left eye of the viewer sees the display and when
image R is displayed, only the right eye sees the screen.

(a) (b) (c)
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Figure 3.58: Autostereoscopic Display With Light Bars.

The ideal way to achieve such optical synchronization is to use a liquid crystal
(LCD) display. This type of display does not generate light and has to be illuminated
from behind. Two special light sources and a Fresnel lens are now placed behind the
display. Each light source is a narrow vertical rectangle (a light bar) that illuminates
the display from a different direction, thereby causing the light from the display to be
sent in a different direction. Figure 3.58b illustrates this configuration as seen from
above. The viewer has to be positioned at the center of the eye box. (The eye box is
simply a region in space, not a screen or a device.). When light from bar x reaches the
lens and the display, the image from the display is seen only by the viewer’s right eye.
A little later, light bar x is turned off and light bar y is turned on, causing the image
from the display to shift to the left (in the figure, it is shifted down) and be seen only
by the viewer’s left eye.

Figure 3.58c shows how this idea can be extended to more than two images. Imagine
six cameras positioned in front of a scene. The cameras are set precisely at the same
height, they are parallel, and are separated horizontally by seven cm. Six images are
sent to the computer and are time-multiplexed by it to the display. Six light bars are
synchronized with the images, such that each image is directed by the display to a
different area in the eye box. The viewer can now shift his head left and right from area
to area within the eye box and can see the scene in three dimensions from five positions
with the correct parallax.

Unfortunately, this ideal arrangement is currently impractical because of the fol-
lowing reasons:

1. The images must be sent to the LCD display at a high rate in order to create
the illusion of a single, three-dimensional image. In a system with six images, if we
want to send each image to the display 60 times a second, we need a refresh rate of
6×60 = 360 Hz. Unfortunately, the refresh rate of current LCD displays is low. A
practical autostereoscopic display must therefore use a high-speed CRT.

2. It is difficult to arrange six cameras at the same height while also keeping
them parallel and separated by the right distance. The autostereoscopic display that is
currently developed by Deeplight uses two cameras and a special, proprietary algorithm
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to generate four additional stereo images, for a total of six images that are then time-
multiplexed and sent to the display one by one.

Because of these reasons, autostereoscopic displays currently available use a differ-
ent arrangement that is illustrated in Figure 3.59. (The figure shows the main com-
ponents from above.) Light from a high-speed CRT is sent through a lens to form an
image. An array of fast LCD shutters “looks” at the image. Each shutter is a narrow
rectangle through which the entire image is sent to the Fresnel lens. At any time, only
one shutter is open, allowing the image to pass through the shutter and be focused by
the Fresnel lens in one area of the eye box.
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Figure 3.59: Autostereoscopic Display With LCD Shutters.

The shutters are switched rapidly, in synchronization with the image displayed by
the CRT, so a viewer looking in two adjacent areas in the eye box sees two (time-
multiplexed) stereoscopic images.

Applications of autostereoscopic displays are currently limited by the high cost
of the hardware. There is also the fact that only one viewer can see the image at
any time, and only a limited number of views is available in the eye box. Current
applications include laparoscopic surgery and geologic displays employed in searching
for oil and gas deposits. Once costs start coming down, future applications may include
three-dimensional graphics design and game playing on personal computers.

Perspective is the rein and rudder of painting.

—Leonardo da Vinci
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Nonlinear Projections

In addition to the parallel and perspective projections, other projections may be de-
veloped that are useful for special applications or that create ornamental or artistic
effects. Such projections are termed nonlinear because they cannot be expressed by
linear transformations such as x∗ = ax + cy + m and y∗ = bx + dy + n. It seems that
the number of possible nonlinear projections is vast and is limited only by the imagi-
nations of those who try to develop new ones. This chapter discusses some of the more
common nonlinear projections, including the false perspective, the fisheye projection,
several 360◦ panoramic projections, the telescopic and microscopic projections, sphere
projections, and circle inversion (a special projection from two dimensions to two di-
mensions). These projections create aesthetically pleasing (and sometimes confusing)
effects and are mathematically simple and easy to derive. However, since they are
nonlinear, they generally cannot be represented by means of transformation matrices.
[Recall that multiplying a point (x, y, z) by a matrix results in a linear expression such
as ax + by + cz, but never in nonlinear constructs such as ax2.]

Back in the corridor of the building, posters of computer-generated fractal images
depicting the “arithmetic limits of iterative nonlinear equations” line the walls.

—Douglas Rushkoff, Cyberia: Life in the Trenches of Hyperspace (1994)

4.1 False Perspective

Equation (3.1) is the main expression for the linear perspective projection; it is dupli-
cated here:

x∗ =
x

1 + (z/k)
, y∗ =

y

1 + (z/k)
. (3.1)

It shows that the (two-dimensional) coordinates of the projected point P∗ are obtained
by dividing by the z coordinate (the depth) of the original point P. False perspective (or
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pseudoperspective) is a technique to artificially add depth and introduce perspective (or
an effect similar to perspective) into a two-dimensional image, thereby making it appear
three-dimensional. Points in a two-dimensional image have just x and y coordinates,
which makes it natural to modify Equation (3.1) to

x∗ =
x

1 + f(x, y)
, y∗ =

y

1 + f(x, y)
, (4.1)

where f(x, y) is a function chosen by the user according to the desired effect. For
example, the function

f(x, y) = −1
2
e−ax2−by2

,

where a and b are real constants, returns the value −0.5 for x = y = 0 (the origin)
and values that approach zero for very large x or y coordinates (positive or negative).
Points (x, y) near the origin are therefore projected to (2x, 2y), while points on the edges
of the image are hardly affected by this projection. This has the effect of magnifying
the center of the image, thereby making it appear closer. Other functions may create
different effects. Figure 4.1 shows an example of a 5×5 grid of points moved in such a
way.

Figure 4.1: Moving Points in False Perspective.

Psychedelics and VR are both ways of creating a new, nonlinear reality, where self-
expression is a community event.
If you realize that the world is nonlinear and random, then it means that you can be
completely annihilated by chaos for no particular reason at all. These things happen.
There’s no cosmic justice. And that’s a disquieting thing to have to face. It’s damaging
to people’s self-esteem.
—Douglas Rushkoff,

Cyberia: Life in the Trenches of Hyperspace (1994)
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4.2 Fisheye Projection

This type of projection is named after the fisheye camera lenses that many photography
enthusiasts like to use. The name “fisheye” reflects the shape of such a lens, which
resembles the protruding eye of a fish. Such lenses are also used in peepholes installed
in doors. The basic idea in this type of projection is to take the half-sphere of space
(with infinite radius) located in front of the viewer and project it
into a flat circle. The half-sphere is infinite, whereas the circle is
finite and may be quite small. Thus, the projected image must be
distorted. Just shrinking the image uniformly will make most of
its details too small to see. A better idea is to implement nonlinear
shrinking that should get more pronounced as we move from the
center toward the periphery of the image. Objects close to the
center of the image are more visible to a viewer and should therefore
be shrunk only a little. The shrinking should increase for objects located away from the
center. In principle, the scale factor should vary from 1 (no shrinking) at the center to
0 (shrinking all the way to zero) for image points on the periphery (i.e., at 180◦ to the
line of sight of the viewer).

He sat by Chrystal’s side, red-complexioned, opulent, with protruding eyes that
glanced round whenever he spoke to make sure that all were listening.

—C. P. Snow, The Light and the Dark (1947)

Hemispherical Fisheye Projection

We start with a simple variant that can be called hemispherical fisheye. This variant is
easy to understand but requires the computations of both the tangent and arctangent
for each point being projected. The projection of points in this variant is derived in two
steps. In the first step, illustrated in Figure 4.2a, all the points in the hemisphere where
z is nonnegative are projected into an infinitely large circle on the xy plane, centered
on the origin. In the second step, all the points on this circle are moved closer to the
center and end up on the radius-k circle centered at the origin (Figure 4.2b).

The first step employs parallel projection to project points onto a plane. Figure 4.2a
shows how the parallel projection of a point simply amounts to clearing its z coordinate.
The three-dimensional point (x, y, z) is projected to (x, y, 0) on the infinite circle on the
xy plane.

The second step compresses the infinite circle to a radius-k circle nonlinearly. The
user selects a positive value k and each point on the xy plane is moved toward the
origin by halving its angle of view θ as seen from the standard position (0, 0,−k). (See
page 88 for a definition of the standard position.) Figure 4.2b shows a point P on the
xy plane where the angle between the z axis and line VP is θ. The point is moved closer
to the origin along the segment PO and becomes P∗ with a view angle of θ/2. Since
both P and P∗ are on the xy plane, we can consider this transformation scaling in two
dimensions. The transformed point P∗ equals sP, where the scale factor s is less than
one (i.e., shrinking). However, it is easy to see intuitively that points located away from
the origin will be scaled more than points closer to the origin. The scale factor s is
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Figure 4.2: Hemispherical Fisheye Projection.

therefore a variable; it depends on P, which is why this type of projection justifies the
name nonlinear.

The derivation of s starts with Figure 4.2b, which shows that tan θ = |P|/k, im-
plying θ = arctan[|P|/k]. Similarly, the transformed point satisfies tan(θ/2) = |P∗|/k,
which yields the scaling factor

s =
|P∗|
|P| =

k tan(θ/2)
|P| =

k tan
(
(arctan[|P|/k])/2

)
|P| . (4.2)

� Exercise 4.1: Use mathematical software to compute the scale factors for several |P|
values from 1 to 10,000.

If the programming language or mathematical software being used cannot compute
the arctan to the desired accuracy, the following expressions (where h stands for |P|) are
equivalent and employ only sines and cosines. From h/k = tan θ and sh/k = tan(θ/2),
we obtain

s =
k

h
tan(θ/2) =

tan(θ/2)
tan θ

=
1 − cos θ

sin θ

/ sin θ

cos θ
=

cos θ(1 − cos θ)
sin2 θ

,

or equivalently

s h = k tan(θ/2) = k
1 − cos θ

sin θ
.

Notice that points that are the farthest from the origin on the xy plane have an
angle θ in Figure 4.2b close to 90◦. Thus, their projections have an angle close to 45◦.
A view angle of 45◦ implies that the distance of such a projected point from the origin
equals the distance k of the standard position from the origin. The result is that all
the points on the (infinitely large) xy plane are moved by the hemispherical fisheye
projection onto the radius-k circle located in the xy plane and centered on the origin.
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Figure 4.3 illustrates this process with 50 points. It is easy to see how the distance of
a point from the center of the circle affects the amount by which it is moved toward
the center. (The code that generated this figure is kept simple. It generates 50 points
with random coordinates in the interval [−10, 10], which is why some points are located
outside the radius-10 circle.)

Figure 4.3: Moving Points in Hemispherical Fisheye Projection.

(* hemispherical fisheye projection *)
Clear[k, n, P, Q, L]
k=10; n=50;
scal[q_]:=(k Tan[ArcTan[q/k]/2])/q;
P=Table[{Random[Real,{-10.,10.}], Random[Real,{-10., 10.}]},{n}];
Q=Table[Sqrt[P[[i]].P[[i]]], {i, n}];
L=Table[Line[{P[[i]], scal[Q[[i]]] P[[i]]}], {i, n}];
Show[Graphics[L], Graphics[Circle[{0, 0}, 10]],
Graphics[Point[{0, 0}]], AspectRatio -> 1]

Code for Figure 4.3

It is possible to extend this variant of the fisheye projection to cover more than
180◦ of space. Figure 4.4a shows how a coverage of up to about 220◦ can be achieved
by bending the xy plane “backward” (i.e., toward the negative z axis) and projecting
all the three-dimensional points that are located to the “right” of this bent plane. Once
this is done, the points are scaled as before into the radius-k circle.

Figure 4.4b is an example of the type of distortion typical of the hemispherical
fisheye projection. The figure shows the old executive office building in Washington,
D.C., and it is easy to see that both the vertical lines (the tree in the foreground) and
horizontal lines (the fence) are curved and that image elements in the center are more
detailed than those near the periphery.

� Exercise 4.2: Explain why we expect vertical and horizontal straight lines to become
curved in a fisheye projection.

Well-known examples of the hemispherical fisheye projection are Hand with Re-
flecting Sphere and Circle Limit IV (Heaven and Hell) by M. C. Escher [Ernst 76].
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Figure 4.4: (a) Extended Hemispherical Fisheye Projection. (b) Example.

Approximate Hemispherical Fisheye Projection

The downside of the hemispherical fisheye projection is the extensive computations
required by the tangent and arctangent functions. The method described here uses
approximations to simplify the computations. The tradeoff is loss of accuracy, but since
the fisheye projection introduces distortions anyway, many viewers may not be able to
tell accurate results from approximate ones.

Figure 4.2b illustrates the principle. Each point P on the infinitely large circle
corresponds to an angle θ and is moved toward the origin such that its new angle is θ/2.
Thus, we can compute the radii of several concentric circles that correspond to, say,
θ = 22.5◦, 45◦, 67.5◦, and 89◦. Similarly, we can compute the radii of the corresponding
circles (the circles for θ/2 values) on the radius-k circle. Figure 4.5 shows an example.
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Figure 4.5: Approximate Fisheye Projection.

If a point P happens to be located on circle A, it is scaled by moving it to the
corresponding circle a on the radius-k circle. Its scale factor is the ratio ra/rA of the
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radii of the two circles. If a point Q happens to be located 30% of the distance between
circles A and B, then it is moved 30% of the distance between circles a and b. Its scale
factor is [(1−0.3)ra +0.3rb]/[(1−0.3)rA +0.3rB ]. This simplifies the computations but
introduces inaccuracies because the interpolation between circles is linear. However,
the inaccuracies can be reduced as much as desired by precomputing the radii of more
circles.

The circle that corresponds to 89◦ is large and the circle for 90◦ has infinite radius.
Points whose θ is between 89◦ and 90◦ will be moved to the radius-k circle and placed in
the narrow region between the (89/2)◦ circle and the outer edge. Such points increase
the inaccuracies of this method, but this may be acceptable because this region suffers
from maximum distortion anyway.

Table 4.6 lists large and small radii for five angles and for k = 10. The code that
performs the computations is also listed.

n θ◦ Rn rn

0 0 0 0
1 22.5 4.142 1.989
2 45 10 4.142
3 67.5 24.142 6.682
4 89 572.9 9.827

k = 10;
angl = {22.5, 45., 67.5, 89.};
k Tan[angl Degree]
k Tan[angl/2 Degree]

Table 4.6 Code for Table 4.6

A given point (x, y) is at a distance d =
√

x2 + y2 from the origin. This distance is
compared with all the radii in the table. If d equals an Rn, then the point is multiplied
by the scale factor rn/Rn. Otherwise, we find the smallest Rn such that Rn < d < Rn+1.
The relative distance of the point from Rn is (d − Rn)/(Rn+1 − Rn). As an example
(recall that our table is based on k = 10), consider the point (15, 10). Its distance from
the origin is

√
152 + 102 ≈ 18. Thus, it is between R2 = 10 and R3 = 24. We compute

(18 − 10)/(24 − 10) ≈ 0.57, which tells us that the point is located 57% of the distance
from R2 to R3.

The scale factor of the point is given by [(1−0.57)4.142+0.57·6.682]/[(1−0.57)10+
0.57 · 24] = 5.59/18 = 0.31, so it has to be moved to 0.31(15, 10) = (4.66, 3.11) on the
radius 10 circle, where its new distance from the origin is 5.6, or 57% of the distance
from r2 = 4.142 to r3 = 6.682.

A story of particular facts is a mirror which obscures and distorts that which should
be beautiful; poetry is a mirror which makes beautiful that which it distorts.

—Percy Bysshe Shelley, A Defence of Poetry.

Angular Fisheye Projection

The hemispherical fisheye projection assigns more importance to those image parts
located near the line of sight of the viewer. These parts are displayed in detail, while
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image elements close to the periphery are displayed in compressed form near the edges
of the projection. In contrast, the angular fisheye projection described here assigns
the same importance to all the image parts. Each is compressed by the same amount.
Perhaps a better name for this method would be “linear fisheye,” but the term “linear”
seems a misnomer because even this projection introduces distortions and is therefore
nonlinear. An important feature of the angular fisheye projection is that it can easily be
extended to viewing angles of more than 180◦ and can even encompass the entire 360◦

space surrounding the viewer. Figure 4.7 illustrates the principle. The (infinite) sphere
of space surrounding the viewer is divided into eight vertical slices of equal viewing
angle, each of which is projected into a ring in the final circular projection. We actually
see only seven of the eight slices because we are looking at the sphere from an angle.
Six points a–f are shown on the sphere with their approximate projections on the circle.
Notice that point “d” (shown in gray in slice 5) is supposed to be on the side of the
sphere away from us, which is why it is projected on the right-hand side of ring 5.
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Figure 4.7: Angular Fisheye Projection.

The mathematical analysis of this method is a bit tedious but requires only basic
geometry and trigonometry. To start, notice that there is one long dashed line in
Figure 4.7. A little thinking should convince the reader that all the points in space
along this line are projected to the same point on the radius-k circle. Thus, generating
a 360◦ angular fisheye projection is done by scanning the entire space around the viewer
and, for each direction in space, selecting that point on the scene that is the closest to
the viewer. This point should be projected to the surface of the sphere and the scan
continued to the next direction. Once all the directions have been examined, the surface
of the radius-k sphere around the viewer is full of points. The next step is to divide
the sphere into slices and project each slice on the radius-k circle. As a result, we can
consider a radius-k sphere centered on the viewer and figure out how to scan it and
project any point on this sphere to the radius-k circle.

Figure 4.8a shows the half-circle of radius k in the xz plane. Those familiar with
the parametric representations of curves and surfaces know that the parametric rep-
resentation of this half-circle is k(cos u, 0, sin u) for 0 ≤ u ≤ 180◦. Those unfamiliar
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with parametric methods should either notice that cos2 u+sin2 u = 1 or should refer to
[Salomon 05]. A complete sphere of radius k is created when this half-circle is rotated
360◦ about the x axis. The parametric equation of the sphere is therefore the product
of the half-circle with the matrix that rotates about the x axis,

k(cos u, 0, sin u)

⎛
⎝ 1 0 0

0 cos w − sin w
0 sin w cos w

⎞
⎠ = k(cos u, sin u sin w, sin u cos w), (4.3)

for 0 ≤ u ≤ 180◦ and 0 ≤ w ≤ 360◦.
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Figure 4.8: Analysis of the Angular Fisheye Projection.

The word barycentric is derived from barycenter, meaning “center of gravity,” be-
cause such weights are used to calculate the center of gravity of an object. Barycentric
weights have many uses in geometry in general and in curve and surface design in
particular.

Figure 4.8b shows the half-circle in the xz plane and how it is rotated. It is clear
that the angle w of a point P on the sphere is one of the parameters of the projected
point P∗. This angle determines the distance r of P∗ from the center of the radius-k
circle. In the figure, r equals k sin w, but the point is that for w = 0 we want r = 0,
while for w = 90◦ we want r = k/2 and not r = k. This is because r values from k/2 to
k correspond to w values in the “right” hemisphere (i.e., from 90◦ to 270◦). Thus, for
w values in the interval [0, 90], we write r = k

2 sin w, and Table 4.9 lists the expressions
of r for the remaining three intervals of w.

Once we have r, we still need to decide where in the radius-k circle to place P∗,
and this is determined by u. This angle varies in the interval [0, 180◦], and P∗ has
to be placed either in the “top” half (if 0 ≤ w ≤ 180◦) or the “bottom” half (if
180◦ ≤ w ≤ 360◦) of the circle, as indicated by Table 4.9.
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w r r interval u sin w

0 → 90 k
2 sin w [0, k/2] top 0 → 1

90 → 180 (1 − sin w
2 )k [k/2, k] top 1 → 0

180 → 270 (1 + sin w
2 )k [k, k/2] bottom 0 → −1

270 → 360 −k
2 sin w [k/2, 0] bottom −1 → 0

Table 4.9: Four Cases of w, r, and u.

The complete mapping of the radius-k sphere to the radius-k circle is done in a
double loop, where w varies from 0 to 360◦ in the outer loop and u varies from 0 to 180◦

in the inner loop. For each pair (u, w), the point of the three-dimensional scene nearest
the viewer (who is located at the origin) is determined and is projected by computing
its r value from the table and using the pair (r, u), as well as information about “up”
or “down” from the table, as the polar coordinates of P∗.

� Exercise 4.3: Rewrite Table 4.9 for a 180◦ angular fisheye projection.

The point directly behind the observer presents a special case. This point is reached
when w = 180◦ (implying r = k), in which case any value of u will select this point.
This special point is therefore mapped to every point on the circle r = k.

� Exercise 4.4: Explain the special case of the point directly in front of the viewer.

Often, a three-dimensional scene occupies every direction in space. The scene may
consist of several objects with patches of ground, water, and sky filling up every other
point. In such cases, every direction (u, w) will correspond to at least one point of the
scene. Sometimes, a scene consists of just objects, with no background. In such cases,
many pairs (u, w) will not correspond to any point of the scene. For such a pair, its
projection on the radius-k circle can be painted white or any other background color.

When the entire space around the viewer is projected into a circle, the angular
fisheye projection becomes one of many ways to map a sphere on a plane. Sphere
projections are the topic of Section 4.14. Every projection of a sphere into a plane
introduces distortions, and the two main distortions of the angular fisheye projection
are that (1) straight lines are mapped into curves and that (2) the hemisphere in front
of the viewer is projected into the inner half of the circle and can, with some practice,
be perceived and understood, but the hemisphere behind the viewer is projected into
the outer half of the circle, which is a ring, and this makes it unintuitive to perceive its
details.

Figure 4.10 shows two 180◦ examples (in grayscale and color; see page 236) of the
angular fisheye projection. It is possible to see that the distortion is uniform over the
entire picture. Also, the many straight lines are curved, but it is obvious that the curva-
ture diminishes in lines that are close to the center of the figure. The figure on the left
(courtesy of Joseph Bly [joebly 06]) is a lawn in New York’s Central Park. It is obvious
that both the vertical lines (the tree in the foreground) and horizontal lines (the horizon
and the seats) are curved and that image details in the center are larger than those near
the periphery. The figure on the right (courtesy of Dick Termes [termespheres 05]) is
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Figure 4.10: Two Angular Fisheye Examples. (The one on the left is courtesy of Joseph Bly

[joebly 06]. The one on the right is courtesy of Dick Termes.)

titled Food for Thought, 2004 and features the La Plazula restaurant at the La Fonda
Hotel in Santa Fe, New Mexico.

� Exercise 4.5: Show why most straight lines are mapped to curves under the angular
fisheye projection.

Another point worth mentioning is that the sphere is larger than the circle. Even
if u and w are varied in large steps, there may be more directions to scan than there
are pixels in the radius-k circle. This suggests another approach to the angular fisheye
projection. Instead of scanning the 360◦ sphere in many directions, scan the radius-k
circle pixel by pixel, compute the polar coordinates (r, u) of each pixel, and use them to
determine the corresponding direction (u, w) in space. If a point of the scene is found
in that direction, it is projected to the pixel without any additional calculations.

Here is a summary of this derivation. (Actual C code can be found in [Bourke 05].)
We assume that the circle is embedded in a rectangular bitmap of height H pixels and
width W pixels. We scan this rectangle row by row. If the current pixel has coordinates
(a, b), we first convert them to normalized coordinates (x, y) in the interval [−k,+k] by

x =
(

2a

W
− 1

)
k and y =

(
2b

H
− 1

)
k.

The distance of the pixel from the center of the rectangular image is r =
√

x2 + y2. If
r is greater than k, the pixel is outside the radius-k circle and is ignored. Otherwise,
angle u is computed by

u =

{ 0, r = 0,
π − arcsin(y/r), x < 0,
arcsin(y/r), x ≥ 0.
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Angle w equals r/2, so it is in the interval [0, k/2], and the direction vector is

k(cos u, sin u sin w, sin u cos w).

The distortion introduced by the fisheye projection can be used to convert it to
a spherical panoramic projection (which is discussed in more detail in Section 4.6).
Imagine a radius-k circle on which a 180◦ fisheye projection is displayed. We scan the
circle pixel by pixel and translate the Cartesian coordinates (a, b) of a pixel to polar
coordinates r =

√
a2 + b2 and u = arctan(b/a) (if a = 0, then u = 0 or u = 180◦,

depending on b). Once r is known, we can use the relations r = ±k sin w to compute
angle w. Once u and w have been computed, we know that pixel (a, b) is the projection of
a point P located in direction (cosu, sin u sin w, sin u cos w) on the radius-k hemisphere
centered on the viewer. Thus, in principle it is possible to map each pixel in the fisheye
projection to a three-dimensional point P on this hemisphere. We don’t know how
far from the viewer the original point was because this information was lost when the
fisheye projection was prepared, but we know that of all the three-dimensional points
in direction (u, w) in the scene, point P was the nearest to the viewer, blocking all
the points directly behind it. In practice, however, this technique is not that simple to
implement because the number of pixels in the circle is much smaller than the number
of pixels in the hemisphere.

In this month’s Hemispheres Magazine, the magazine of United Airlines, you’ll find
my article about exploring the chocolate shops of Paris. I talk about many of my
favorite places, why I like them. . . and what I recommend you get while you’re there!

—David Lebovitz in [davidlebovitz 05], October 2005.

Off-Axis Fisheye Projection

The discussion of both the hemispherical and angular fisheye projections assumes that
the viewer is looking at a radius-k circle on which an infinite hemisphere is projected.
Figures 4.2b and 4.7 further imply that the line of sight of the viewer passes through the
center of the circle. We can say that the viewer is located on the axis of the circle and we
can ask what the viewer will see when he moves away from the axis, still looking in the
same direction. This is not just a theoretical problem. Many planetariums use a fisheye
lens to project an image on a hemispherical dome, where some (or even many) viewers
sit away from the center. Those viewers see a twice-distorted image, once because it is
a fisheye projection and again because they observe it off-axis.

The mathematics of an off-axis fisheye projection is illustrated in Figure 4.11. We
start with four points, depicted as circles and labeled 1 through 4. In part (a) of the
figure, the viewer is assumed to be on the axis and the points are shifted toward the
viewer by halving their view angles. The shifted points are depicted as small squares.
In part (b), the viewer is assumed to be located off-axis, and the four points are shifted
toward the viewer by halving their new view angles. The new points are depicted as
triangles. It is obvious that points 1 and 2 are shifted more in part (a) than in part (b).
Thus, those parts of the image are more distorted when the viewer is on-axis. In
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Figure 4.11: Off-Axis Fisheye Projection.

contrast, points 3 and 4 are shifted more when the viewer is off-axis, thereby distorting
those parts of the image on the “right” side.

Figure 4.12 illustrates the overall effect of an off-axis projection. It shows 50 points
moved toward an off-axis viewer. In the three parts of the figure, from left to right, the
viewer is located at (10, 0), (−5, 5), and (0, 5). This figure illustrates the effects of the
viewer being off-axis and ignores the distortions (such as straight lines transformed into
curves) introduced by the fisheye projection itself.

k = 10; n = 50; scal[q_] := (k Tan[ArcTan[q/k]/2])/q;
P = Table[{Random[Real, {-10.,10.}], Random[Real, {-10.,10.}]}, {n}];
x = -5; y = 5; (* Location of viewer *)
Pt = P - Table[{x, y}, {n}];
Q = Table[Sqrt[Pt[[i]].Pt[[i]]], {i, n}];
L = Table[Line[{P[[i]]+{x, y}, (scal[Q[[i]]] P[[i]])+{x, y}}], {i, n}];
Show[Graphics[L], Graphics[Circle[{0, 0}, k]],
Graphics[{AbsolutePointSize[5], Point[{0, 0}]}],
Graphics[{AbsolutePointSize[5], Point[{x, y}]}],
AspectRatio -> Automatic, PlotRange -> All]

Figure 4.12: Off-Axis Fisheye Projection and Code.
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Those who took the trouble to read Chapter 1 know how to compute the off-axis
fisheye projection. Figure out how to translate the viewer on the xy plane to the on-axis
position, and then use the translation vector (a, b) to translate each point with (−a,−b),
project it according to Equation (4.2), then translate the result back with (a, b). If the
last translation brings the point outside the radius-k circle, the point is ignored because
the off-axis viewer cannot see it.

Rectangular Fisheye Projection

The hemispherical fisheye projection projects the entire 180◦ space located in front of the
viewer, an infinitely large image, into a finite-sized circle, and it does this by distorting
the image, especially in areas away from its center. The rectangular fisheye projection
discussed here is a compromise on this technique. It creates less distortion but can
project only part of the space in front of the viewer. Those parts that are too high above
the viewer or too low are not included in this type of projection. Figure 4.13a shows the
principle. We imagine a rectangle of infinite width and a finite height h centered on the
xy plane. A three-dimensional point (x, y, z) is projected on the rectangle in parallel
into the point (x, y, 0), but only if the y coordinate is in the interval [−h/2, +h/2]. (The
figure shows one point that’s too high.) Points above or below the rectangle are not
included in the projection.
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Figure 4.13: Rectangular Fisheye Projection.

Once a point has been projected on the rectangle, it is shifted in the x direction
to bring it into the rectangle of width k. This is done by halving its view angle θ, as
in the hemispherical fisheye projection, but only in the x direction (Figure 4.13b). The
final projection is distorted only in the x direction; all the y dimensions are preserved.
The final result is that point (x, y, z) is projected into (s·x, y, 0), where the scale factor
s is given by [compare with Equation (4.2)]

s =
k tan

(
(arctan[|x|/k])/2

)
|x| .
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This variant of the fisheye projection is a relative of the semicylindrical fisheye pro-
jection. We start with half a cylinder, on which three-dimensional points are projected
in parallel. The semicylinder is then unrolled and viewed as a flat rectangle. Notice
that points “d” and “e” in Figure 4.14 are close in three-dimensional space, but their
projections on the cylinder are separated. This type of projection magnifies details close
to the vertical edges of the final projection, which is the opposite of the other fisheye
variants.
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Figure 4.14: Semicylindrical Fisheye Projection.

4.2.1 Fisheye Menus

The topic of this section is not a projection from three dimensions to two dimensions,
but it is included here because it is a useful and interesting application of the fisheye
principle: the technique of local magnification combined with global shrinking. Often,
a computer program has to display a long, dynamic menu of items. An address book
has to display the list of addresses, an Internet browser must display a list of URLs,
and a commercial Web site should display a list of items described on the site or offered
for sale. The user watches such a menu—normally with other menus, text, images,
and miscellaneous items—on the computer monitor, where “real estate” (i.e., space) is
limited.

Software designers have been aware of this problem for a long time and have come
up with various solutions. Perhaps the simplest solution is to shrink the size of individual
menu items as more items are added to the menu and it gets taller than the screen.
This solution can only go so far because text under a certain size (typically 5 printer’s
points) is impossible to read on a screen, where the pixel resolution is typically 72 dots
per inch (dpi). A slightly better solution is to scroll the screen. Once the menu is taller
than the screen (or taller than the window assigned to the menu), a scroll bar appears
on the side, so the user can scroll the menu up or down. Sometimes arrows at the
top and bottom are used instead of a scroll bar. This is a simple, effective, and very
common solution. Its only downside is that only part of the menu is displayed at any
given time, but if the menu items are sorted in some way, which they often are, this
may not present a serious problem.
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Another common technique is to use hierarchical “cascading” menus, where the
main menu is kept small, but any items in it can have a submenu. Selecting an item,
normally with a mouse, opens (after a short delay, allowing the mouse to slide to another
item) its submenu and lists its items, which may have subsubmenus. This allows for
very large menus, but again only a small part of the menu is displayed at any time.
Another disadvantage of this type of menu is the time it takes to open a submenu,
examine it, and, if it is the wrong one, slide to another submenu.

A more sophisticated solution is the fisheye menu. In such a menu, all the items
are displayed simultaneously on the screen or in the window. If there are many items,
most are shrunk to small sizes or even very small sizes, where it is impossible to read
or perceive an item. Sliding the cursor along such a list magnifies the items closest to
the cursor, so they can be read or observed at their full size. Items slightly away from
the cursor are displayed at somewhat smaller sizes, and items far from the cursor are
displayed at very small sizes. Figure 4.15 shows two examples of fisheye menus. One is
a long list of text items (country names from [fisheyemenu 05]) sorted alphabetically. It
is obvious that sliding the cursor along such a list is a fast and easy way to select any
desired name, even though at any given time most of the list is too small to read. The
other example is the Macintosh dock, a feature familiar to Macintosh users since the
introduction of OS X in 2001. The dock is a graphical menu with icons of files, folders,
and applications that are commonly used. A dock item is selected by sliding the cursor
along the dock. The icon sizes vary from small to medium to large and back to small
in real time, making it easy for the user to locate any desired item. Once an item is
found, merely selecting it also launches it.

When a menu is short, all its items can be displayed in full size and the entire menu
fits comfortably on the screen. When items are added to the menu, it gets taller until
the time comes to shrink items. The algorithm for that must consider three features:

1. The total height of the menu must equal the height of the screen regardless of
the number of items. The only exception is a menu that’s too short even when all its
items are displayed at maximum size.

2. The maximum font size (or size of the graphical icon) must be specified by the
user, with a reasonable default value. Some fisheye menus require a large maximum
size, while others can be used with a fairly small maximum size.

3. The item at the cursor location is displayed at the maximum size, and all the
items within a distance of f/2 items above it and f/2 items below it must be displayed
at a size that will make it possible for the user to read and identify them. The sizes
of the remaining items are selected such that the entire menu will fill up the screen.
This creates a dynamic bubble of f readable items around the main item, which enables
the user to identify items adjacent to the main item and select any of them with ease.
The parameter f is referred to as the focus length of the fisheye menu and should be
specified by the user, with a reasonable default value. Notice that large-sized items
require larger spacing between them, while the spacing between the smaller items can
be shrunk accordingly.

A large focus length, such as 10 or 20, will cause the peripheral items to be very
small, while a small focus length, such as 2 or 3, will force the user to slide the cursor
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Figure 4.15: Fisheye Menus (color version on page 237).
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slowly in order to be able to read the current two or three large items. Thus, the choice
of focus length is a compromise between fast selection and ease of reading.

When a menu becomes very large, most of its items are shrunk to the size of a
dot. In such a case, it helps to embed index items in the menu. These items are always
kept at a readable size and are used to locate the start of any desired region in the
menu. This idea is illustrated in the left part of Figure 4.15, where the index items
are the single letters “A” through “Z.” A user looking for an item that starts with “Q”
can quickly slide the cursor to the index “Q,” where the first few relevant items will
immediately be readable.

A fast implementation of fisheye menus is a must and is based on arrays or other
data structures, each of which contains relevant data at a certain size. If the menu items
are text, then fonts at several sizes must be available. If the items are icons, then each
new icon added to the menu must be immediately prepared at several sizes and added
to the appropriate data structures.

For more information on fisheye menus, see [fisheyemenu 05].

4.3 Circle Inversion

This projection is an exception, perhaps the only one, to the material in this chapter.
It projects (or rather transforms) a two-dimensional image to another two-dimensional
image. In spite of this, it is included here because of its simplicity and mathematical
elegance. Circle inversion was the brainchild, around 1830, of Jakob Steiner. It has
been researched and studied extensively since its first publication, and much is known
about it (as is shown by a simple Internet search).

He [Steiner] is a middle-aged man, of pretty stout proportions, has a long intellectual
face, with beard and moustache and a fine prominent forehead, hair dark rather
inclining to turn grey. The first thing that strikes you on his face is a dash of care
and anxiety, almost pain, as if arising from physical suffering—he has rheumatism.
He never prepares his lectures beforehand. He thus often stumbles or fails to prove
what he wishes at the moment, and at every such failure he is sure to make some
characteristic remark.

—Thomas Hirst, Diary (1852)

Figure 4.16 illustrates the principle. The figure shows the unit circle centered on the
origin and an arbitrary point P with polar coordinates (r, θ). Circle inversion projects
P to P∗ = (1/r, θ). Both P and P∗ have the same angle θ, which places them on
the same straight line that passes through the origin. If r > 1, then P is outside the
unit circle and P∗ is inside it (because 1/r < 1). Thus, this projection inverts points
with respect to the unit circle centered on the origin. It is easy to see that points on
the circumference of the circle are projected to themselves and that circle inversion is
undefined for the origin, where r = 0. (Although we can say that the origin is projected
to the point at infinity, but this claim is not very useful and may cause confusion with
parallel lines, which are also sometimes said to meet at infinity.) Since P is moved to P∗
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Figure 4.16: Circle Inversion.

along the line that connects P to the origin, we can think of this projection as scaling.
From P∗ = (1/r, θ), we obtain x∗2 + y∗2 = 1/r2 and this implies

P∗ = (x∗, y∗) =
(x, y)

x2 + y2
=

P
x2 + y2

= sP

because this relation means that

x∗2 + y∗2 =
x2

(x2 + y2)2
+

y2

(x2 + y2)2
=

1
(x2 + y2)

= 1/r2.

Notice that the scale factor s depends on P, showing that this type of projection is
nonlinear.

Currently, there are several applets on the Internet that make it easy to explore
the properties of circle inversion. This projection has a number of interesting features,
the most important of which are the following:

1. Any circle that intersects the unit circle at right angles is projected to itself.
2. The angle between two projected lines is preserved. Thus, circle inversion is a

conformal projection.
3. Circles that do not pass through the origin are projected into circles (that do

not pass through the origin and generally have a different radius).
4. Similarly, lines that do not pass through the origin are projected into circles

that do pass through the origin (Figure 4.17).
5. A circle centered on the origin is projected to another circle similarly centered.
6. Lines through the origin are projected to themselves (except that the projection

of the origin is undefined).
7. The inverse of an inverse is the original point. Thus, (P∗)∗ = P. (This is

trivial.)
Curves that are their own inverse are called anallagmatic.
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Figure 4.17: Four Circles and Lines.

� Exercise 4.6: Search the mathematical literature or the Internet (or just think about
this) to find another anallagmatic curve.
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Projection of

L

Figure 4.18: Circular Inversion of a Line.

Here is a proof of feature 4. Figure 4.18 shows a line L that does not pass through
the origin. Consequently, there must be a perpendicular to L from the origin. The point
where this perpendicular meets L is denoted P and its projection is denoted P∗. We
now select another arbitrary point Q on L and denote its projection Q∗. It is obvious
that OP ·OP ∗ = 1 and OQ ·OQ∗ = 1, so we conclude that OP/OQ∗ = OQ/OP ∗. This
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shows that triangles OPQ and OP ∗Q∗ are similar (notice that they have a common
angle), which, in turn, implies that angles OPQ and OQ∗P ∗ are equal. Since the former
is a right angle, the latter must be also. However, point Q is an arbitrary point on L,
so angle OQ∗P ∗ equals 90◦ for any point Q on L, showing that the projection Q∗ lies
on a circle that passes through the origin O and has a diameter OP ∗. The projection
of P is P∗, and the projection of the origin is the point (or points) at infinity. Line L of
Figure 4.18 passes inside the unit circle. For lines outside this circle, the diagram looks
different but the proof is identical.

� Exercise 4.7: Use similar arguments to prove feature 3.

� Exercise 4.8: The discussion so far has assumed inversion with respect to the unit
circle. Given a circle C of radius R about the origin, show how to project a point P
with respect to it.

Figure 4.19 shows a simple geometric construction of the inverse of a point P. In
part (a) of the figure, P is inside the circle. Line L1 is constructed from the center
through P and continues outside the circle. Line L2 is then constructed perpendicular
to L1. Point A is the intersection of L2 with the circle. A tangent L3 to the circle is
constructed at A, and P∗ is placed at the intersection of the tangent and L1. Part (b)
shows the similar construction when P is outside the circle.

(a)

A A

(b)

P
P0

PP*

P*
L1 L1

L2 R L2

L3 L3

Figure 4.19: Construction of Circle Inversion.

Figure 4.19b illustrates another feature of circle inversion. Up to now, we assumed
that the inversion is about a unit circle centered on the origin. Given a circle of radius
R, the two triangles PP0A and P∗P0A are similar, implying that P0P/R = R/P0P∗

or R2 = P0P×P0P∗. The quantity R2 is termed the circle power. The inverse P∗ of a
point P with respect to an inversion circle of radius R centered at P0 is given by

P∗ = P0 + R2 P − P0

|P − P0|2 .

As is common with nonlinear projections, it is possible to come up with many
variants of circle inversions. For example, project point (r, θ) to (1/r, 180◦ + θ). An
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obvious (but perhaps not very useful) extension of circle inversion is sphere inversion,
where the spaces inside and outside a sphere are swapped. Reference [Coxeter 69]
presents the complete theory of circle inversions. A more general treatment of inversive
geometry can be found in [Stothers 05].

Figure 4.20 (after [Gardner 84]) shows the circle inversion of a chessboard.

Figure 4.20: The Circle Inversion of a Chessboard.

4.4 Panoramic Projections

Visitors to an exceptionally lovely spot sometimes wish they could see the view behind
them as well as in front of them simultaneously. This kind of effect is generated by the
various panoramic projections. A panorama is defined as an unbroken view of an entire
surrounding area, and panoramas have always been a favorite with artists, painters,
and photographers. The insert below discusses the Mesdag panorama, one of the few
surviving large panoramas painted in the 18th and 19th centuries. When cameras came
into general use in the early 20th century, inventors started developing panoramic cam-
eras (Section 4.10). With the advent of fast, inexpensive personal computers and digital
cameras in the 1980s, it became possible, even easy, to take a sequence of (partially over-
lapping) photographs with any camera and stitch them by software into a single picture
that depicts a large area, sometimes an entire 360◦ view around a point, including parts
that are very high or very low and cannot normally be included in a single picture.
The price for including so much visual information in one picture is distortion. Any
method for projecting a three-dimensional scene into a panoramic picture introduces
some distortion. Straight lines become curved and familiar shapes may look funny or
become completely unrecognizable.

The main types of panoramic projections described here are the cylindrical, spher-
ical, and cubic. All three are based on the same principle, but only the first is popular
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because it manages to squeeze the most visual data into a flat image with the minimum
of distortion. Section 4.8 presents a different approach to panoramic projections, where
they are considered variants of the linear perspective projection but with several vanish-
ing points (up to six) placed at certain strategic locations in the projection. Section 4.9
mentions other techniques for panoramic projections.

The Mesdag Panorama

The Mesdag Panorama is a painting depicting a 360◦ panoramic view of the surround-
ings of Scheveningen, a fishing port northwest of The Hague, as seen by the painter
in 1881.
The painting is huge, measuring 120×14 meters (390×45 feet) for an area of about
17,000 square feet. It is folded into a cylinder and several observers can enter from
below and stand at the center, turning, watching, and admiring.
The Mesdag panorama was painted by the 19th-century Dutch painter Hendrik Willem
Mesdag, with the help of S. Mesdag-van Houten, Theophile de Bock, B.J. Blommers,
G.H. Breitner, and A. Nijberck.
Similar panoramas were exhibited throughout Europe and America during the 19th
century (they were sometimes called cycloramas). The Mesdag panorama is one of the
last panorama paintings still in existence. It can be viewed at the Museum Panorama
Mesdag in The Hague, The Netherlands.
See [Mesdag Documentation Society 98] for more information.

4.5 Cylindrical Panoramic Projection

Imagine a rectangle made of transparent material being rolled into a cylinder and placed
around an observer (Figure 4.21a). The observer is located at the origin, which is also
the center of the cylinder, and is looking at the view outside through the transparent
surface of the cylinder. The observer now starts turning around. We imagine that
everything that the observer sees is magically fused into the cylinder material. (In
the absence of magic, the observer may simply use a paintbrush or a magic marker to
paint what he sees through the cylinder.) As an example, point P in Figure 4.21a is
projected to point P∗ by connecting P to the observer as in linear perspective. After
the observer has turned a full circle, the surface of the cylinder is entirely covered with
images. The cylinder is now unrolled and is hung flat on a wall, to be viewed as a
rectangular picture. The image shown in such a picture is a 360◦ cylindrical panorama
(or a cylindrical projection) of the view seen by the observer. Notice that certain details
seen by the observer are too high or too low to be seen through the cylinder. Point Q
in Figure 4.21a is such an example. Thus, the unrolled cylinder does not contain the
entire scene surrounding the observer. The top and bottom parts are missing, and the
sizes of the missing parts depend on the height of the cylinder.

Figure 4.21a shows a cylinder centered about the origin. It is easy to see how a
three-dimensional point P is projected to a point P∗ on the cylinder. Figure 4.21b
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shows the cylinder unrolled. Point P is located in the same place in space, but its
projection has moved with the opening of the cylinder.

Figure 4.21c shows the geometry of the problem. We assume that the dimensions
of the original rectangle are 2Y ×2Z. When rolled into a cylinder of radius R, the
perimeter of the cylinder satisfies 2πR = 2Y , so R = Y/π. Consider an arbitrary
three-dimensional point P = (x, y, z) viewed by the observer. When the cylinder is
eventually unrolled, P will be projected to a point P∗ = (x∗, y∗, z∗) and our problem is
to determine the coordinates of P∗ as functions of x, y, z, Y , and Z.
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Figure 4.21: A 360◦ Panoramic Projection.

The x∗ coordinate is trivial to determine. The figure shows that all the points on
the unrolled cylinder have the same x coordinate. We can set it to R or, even simpler,
to zero. The y∗ coordinate should equal the length of the arc subtended by θ, which is
Rθ. Angle θ depends on the x and y coordinates of P but not on its z coordinate. The
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relation is (x, y) = D(cos θ, sin θ), where D is the distance (projected on the xy plane)
of P from the origin. This distance is

√
x2 + y2. From this we get

(x, y)√
x2 + y2

= (cos θ, sin θ),

or
θ = arcsin

y√
x2 + y2

= arccos
x√

x2 + y2
= arctan

(y

x

)
.

Notice that the signs of x and y determine the quadrant number. If θ is in quadrant III
or IV, then y∗ should be negative.

The z∗ coordinate is determined by perspective projection. Figure 4.21d shows
how this is done with similar triangles:

z

D
=

z∗

R
→ z∗ =

z R

D
=

z Y

π
√

x2 + y2
.

� Exercise 4.9: It seems that the projected point P∗ is given by

(x∗, y∗, z∗) =

(
0,±Rθ,

z Y

π
√

x2 + y2

)
,

so its coordinates depend on x, y, z, and Y, but not on Z. What’s the explanation?

The panoramic projection leads naturally to the concept of curved perspective (see
also Section 4.8). This concept comes up when we consider the panoramic projection of
a straight line. Figure 4.22a shows a cylinder and a line A in space. Several projection
lines are shown going from A to the center of the cylinder. These lines are contained in a
plane L, and we know from elementary geometry that the intersection of a cylinder and
a plane is, in general, an ellipse (Figure 4.22b). The projection of A on the cylinder is
therefore an elliptical arc. When the cylinder is unrolled, this arc turns into a sinusoidal
curve (Figure 4.22c).

� Exercise 4.10: Prove this claim!

This behavior means that the panoramic projection converts straight lines into
curves, resulting in what can be termed curved perspective. Two special cases should
be considered. One is when the plane is perpendicular to the cylinder (corresponding
to an angle θ = 0◦ in Figure Ans.15, page 271), and the other occurs when it is parallel
to the axis of the cylinder (corresponding to an angle θ = 90◦ in Figure Ans.15). In the
former case, the intersection is a circle and the sinusoidal curve has zero amplitude (i.e.,
it degenerates into a straight segment). In the latter case, the intersection is an infinite
ellipse and the sinusoidal curve has infinite amplitude; it degenerates into three lines.

Figure 4.22d shows an observer positioned at the center of a cylinder and looking
to the north. Three horizontal infinitely long lines are shown. The projections of lines
1 and 3 are ellipses and become the sinusoids shown in Figure 4.22e. The projection
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Figure 4.22: Projections of Straight Segments.

You’re wasting that panorama on me, Nan. Save it for Dave Slade.
—Robert McWade (as District Attorney) in Ladies They Talk About (1933)



4.5 Cylindrical Panoramic Projection 171

of line 2 is a half-circle (not shown) that becomes a straight line when the cylinder is
unrolled. This shows how horizontal straight lines are projected by curved perspective
into either horizontal segments or curves. The three segments are projected into the
cylinder in the region bounded by the W and E directions. Two segments become curves
(whose curvature depends on the height of the projected segment), and the central one
remains straight. Vertical lines are always projected into vertical straight segments.

Figure 4.23 is an extension of Figure 4.22e. It illustrates the 360◦ cylindrical projec-
tion of horizontal straight segments in four directions. Part (a) of the figure shows four
segments and their directions. Part (b) shows how each segment becomes a curve on
the unrolled cylinder. Segment 1, to the north, is projected into a curve between W and
E (several curves are shown, which are the projections of segments at various heights).
Segment 4, to the south, is projected from E to W through S, so it is displayed in two
halves. Segment 2, to the west, is projected from S through W to N, and segment 3 is
projected from N through E to S. Some straight vertical segments are also shown. Such
a grid corresponds to the continuous four-point perspective of Section 4.8.
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Figure 4.23: (a) Four segments. (b) Cylindrical Projections of Horizontal Segments.

Such a grid is handy when we want to compute or paint the cylindrical projection
of a three-dimensional scene on a rectangular canvas. This can be done either manually
or by special software. Any point in the space around the cylinder of Figure 4.23a is
projected onto the surface of the cylinder by moving it to the surface along the segment
that connects it to the center of the cylinder. Once a point is on the surface of the
cylinder, it is easy to tell where it should go on the grid of Figure 4.23b.

Art, like morality, consists in drawing the line somewhere.
—G. K. Chesterton

A great artist is always before his time or behind it.
—George Moore

Figure 4.24 (courtesy of Dick Termes) is an example of such a drawing. It depicts
a familiar scene, so there is no need to include the original three-dimensional image or
any hints. The reader should especially note how the vertical lines are straight and how
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horizontal lines are curved mostly around the center of the drawing, as discussed in the
answer to Exercise 4.10. This figure is also an example of the four-point continuous
perspective discussed in Section 4.8.

Figure 4.24: Cylindrical Panoramic Projection (courtesy of Dick Termes).

Almost everything in Dick Termes’ world is round—the sun breaking through morning
haze, the tennis ball he batted back and forth before breakfast, and the four geodesic
domes in which he lives and works.
For more than 36 years, Termes has eschewed traditional flat canvases to create his
art on polycarbonate globes he calls “Termespheres.” He came up with the idea while
completing his master’s degree at the University of Wyoming in the late 1960s, and
it has been his passion ever since. Termes estimates he has painted more than 300
major spheres so far—about a third of those by commission—and his work is displayed
internationally from North Pole High School in Alaska to the Sphere Museum in Tokyo,
Japan.
“In art, the most important thing to find is an original thing to do,” he says. “There
have been lots of paintings done over thousands of years, most on flat surfaces. The
sphere adds a whole new set of geometries that fits with the real world better than a
flat surface. Three-dimensional space is what we live in.”

—David Eisenhauer, University of Wyoming Magazine

Figure 4.25a (courtesy of Ari Salomon [helloari 05]) shows three examples of cylin-
drical panoramas. Each was made by taking several overlapping photographs and stitch-
ing them with appropriate software. Part (a), a bathroom in Paris, France, is vertical. It
was made by taking pictures with a 20% overlap and tilting the camera to point higher
and higher between images. It is obvious that the vertical lines are curved while the
horizontal lines remain straight (but not completely parallel since the camera was held
by hand during the shots). Part (b) is a street scene in Tel-Aviv, Israel. After watching
this image for a few seconds and trying to “digest” it, it becomes clear that we are
looking at three parallel streets (even though they seem to diverge). On the right-hand
side, we see cars going toward the center of the image (away from our viewpoint). On
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(a) (b) (c)

Figure 4.25: (a) Vertical and (b,c) Horizontal Cylindrical Projections (courtesy of Ari Salomon).
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the left, cars are parked pointing toward us. (One such car can be seen at the extreme
right of the image.) These are the two directions of the same street. The center street,
where we see a park bench, stroller, and people walking, is a paved walkway sandwiched
between the two directions of the street. The implicit assumption behind this image is
that viewers’ familiarity with street scenes will help them to “straighten out” the distor-
tions in the image and thus to enjoy it. The reader should also notice that vertical lines
in this image seem to tilt toward the edges of the image, and this tilting becomes more
pronounced for lines close to the edges. This is probably an artifact of the particular
software used to create these images. Part (c) of this figure shows a large space serving
as artists’ studios in Lyon, France. Here we see the four sets of curved horizontal lines
that are the hallmark of Figure 4.23b. The vertical lines are also tilted as in part (b).

An intuitive way to understand and accept curved perspective is to print the curved
projection of a familiar scene on paper, roll the sheet of paper into a cylinder, go inside
into the center, and look around at the scene. (This may be simple if the projection
incorporates less than 360◦.) When seen this way, any curves on the paper that are the
projections of straight lines should look straight. This method also provides a simple
test of any software used to compute and render the projection.

Commercial software for creating cylinder-shaped panoramas already exists. Pop-
ular examples are the Apple QuickTime VR Authoring Studio, PhotoVista from Live
Picture Inc., and PhotoStitch, which comes with every Canon digital camera. A qual-
itative discussion of curved perspective can be found in [Ernst 76], pp. 102–103. The
well-known drawing High and Low by M. C. Escher is an example of curved perspective.

4.6 Spherical Panoramic Projection

The following quotation, from [Ernst 76], suggests a way to generalize the cylindrical
panoramic projection of the previous section.

Perhaps it has already struck you that the cylinder perspective used by Escher,
leading to curved lines in place of the straight lines prescribed by traditional
perspective, could be developed even further. Why not a spherical picture
around the eye of the viewer instead of a cylindrical one? A fish-eye objective
produces scenes as they would appear on a spherical picture. Escher certainly
did give some thought to this, but he did not put the idea into practice, and
therefore we will not pursue this further.

The idea raised by Ernst (but not pursued by Escher) is to imagine a transparent
sphere placed around the observer, where everything seen by the observer through the
sphere is fused (or painted by the observer) onto the sphere’s material. The sphere is
then somehow flattened, resulting in a full 360◦ spherical perspective. The trouble with
this idea is that a sphere cannot be unrolled into a flat surface without introducing
further distortions (see Section 4.14).

We start with what is perhaps the simplest approach to the problem of deforming
and flattening a sphere. Once a three-dimensional point P has been projected onto the
surface of the sphere, it becomes a point P∗ with longitude and latitude. We construct
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a rectangle of width 360 and height 180 units and project P∗ on the rectangle by simply
using its longitude and latitude as the x and y coordinates, respectively, on the rectangle.
Figure 4.26 illustrates the Earth in this projection, and the deformation is immediately
obvious. On the rectangle, the lines of latitude are the same length, so polar latitudes,
which on the sphere are short, have to be stretched.

Figure 4.26: Equidirectional Projection of a Sphere.

When the entire 360◦ space around an observer is projected onto the rectangle in
this way, the regions directly above and below the observer (which often are less impor-
tant) are stretched and feature much detail. The regions at the height of the observer
(the equator), however, lack detail, but are to scale. This projection is sometimes used
in map making and is referred to as equirectangular projection, rectangular projection,
plane chart, or plate carre.

The remainder of this section describes another, highly distorted version of spherical
panoramic projection. This version is another manifestation of the concept of curved
perspective.

What you see on these screens up here is a fantasy; a computer enhanced
hallucination!

—John Wood (as Stephen Falken) in WarGames (1983).

Imagine a transparent sphere of radius R centered on the origin, where an observer
is located, looking through the sphere in the z direction. The sphere is now truncated
by selecting a value θ in the range [0, π/2] and removing the parts of the sphere above
and below latitude θ. The remaining part is shaped like a barrel (Figure 4.27a). The
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Figure 4.27: Spherical Panoramic Perspective.

barrel is now cut behind the observer and is unrolled into a flat, two-dimensional fig-
ure resembling a Band-Aid (Figure 4.27c) that’s called a band or a capsule (see also
Figure 4.58). The image seen by the observer through the barrel is displayed on this
band, in contrast with the cylindrical panoramic projection, where the projected image
is displayed on a rectangle.

At its center, the band has a width of 2πR (the circumference of the sphere),
while at the top and bottom its width equals 2πR cos θ. The height of the band is 2Rθ.
Truncating the sphere into a barrel makes it possible to control the amount of distortion
in the final projected image. Small values of θ result in a narrow band whose shape is
close to a rectangle. Only a small part of the scene around the observer is displayed
on this band, but with a minimum of distortion. When θ is set close to π/2, the band
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becomes taller and its shape approaches a circle. It includes more of the scene (only
those parts located directly above and below the observer are omitted) but with more
distortions, especially at the top and bottom.

As in the cylindrical panoramic projection, horizontal lines are projected on the
band as sinusoids, but we now show that even vertical lines, which in the cylindrical
projection are projected straight, now become curved. Figure 4.27b shows the barrel
from above (i.e., looking in the y direction). A long vertical line (parallel to the y axis)
is shown, and we assume that a general point on this line is projected to a point v on
the barrel. After the barrel is unrolled, the y coordinate of point v varies in the range
[−Rθ, +Rθ]. The x coordinate depends on the y coordinate and equals the radius of
the barrel at height y times the angle φ. The radius of the barrel at height y is easily
seen to be R cos(y/R), so point v is located on the band at position

(
φR cos(y/R), y

)
,

where −Rθ ≤ y ≤ +Rθ. This position varies from
(
φR cos(−θ),−Rθ

)
to (φR, 0) to(

φR cos(θ), Rθ
)

when y varies from −Rθ to 0 to Rθ. The projection of the vertical line
on the band is therefore the thick curve shown in Figure 4.27c. It is easy to see that
the closer θ is to π/2 (or 180◦), the smaller cos θ is and the more curved (distorted) the
projection.

Given an arbitrary point P = (x, y, z), it is relatively easy to calculate the xy
coordinates of its projection on the band. Figure 4.27b shows the situation on the xz
plane and makes it clear that the x coordinate of the projected point on the band is
the arc Rφ. Since tanφ = x/z, we get the x coordinate as R arctan(x/z). Similarly,
Figure 4.27a shows that the y coordinate of the projected point on the band is the
arc Rα or R arctan(y/z). Thus, the projected point has band coordinates (Rφ, Rα) or(
R arctan(x/z), R arctan(y/z)

)
. Both φ and α can vary in the interval [−π,+π], so the

projected x coordinate varies in [−πR, +πR]. The projected y coordinate varies in the
same interval, but it is clear from the figure that any point P for which |α| is greater
than |θ| is projected outside the barrel (i.e., on one of the sphere parts that have been
removed) and should consequently be rejected.

The IPIX Wizard software [IPIX 05] can create a spherical panorama from two
scanned fisheye photographs.

To some people, spherical panoramas may seem less interesting (and perhaps also
less useful) than cylindrical panoramas, as the following 1998 quotation, from David
Palermo, a virtual-reality professional, suggests: “Our market is not craving [sphere-
shaped panoramas] right now. You can convey a sense of place without looking at the
sky or floor.”

For me it remains an open question whether [this work] pertains to the realm
of mathematics or to that of art.

—M. C. Escher

4.6.1 Curvilinear Perspective

However, Figure 4.28 (courtesy of Dick Termes) suggests that it is possible to create
full spherical panoramas that show everything an observer sees in front of him and
behind him, while also maintaining their artistic value in spite of the many vertical
and horizontal distortions. The reader should especially note that the few vertical and
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Figure 4.28: Spherical Panoramic Perspective (courtesy of Dick Termes).
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horizontal lines located close to the center of the picture (noticeable in the upper half)
are essentially straight. The five-point grid of Figure 4.34 is an artist’s tool that helps
draw such pictures. Reference [New Perspective 98] has more on such tools.

This section explains the principles behind the five-point grid. The material pre-
sented here is based on the concept of curvilinear perspective, developed by Albert
Flocon and André Barre [Flocon and Barre 68]. Curvilinear perspective is a two-step
spherical panoramic projection whereby points in the 180◦ space in front of the ob-
server are first projected on a hemisphere and then from the hemisphere onto a flat
circle. When this is repeated for the 180◦ space behind the observer, the result is two
circles that contain the entire 360◦ of space surrounding the observer.

Their book beckons us to join with the fun and excitement, but it is also a revo-
lutionary manifesto, a call to liberation from dogma. Not “Down with Traditional
Perspective!” but “Down with the Tyranny of Official Rules.” Not “Learn the Only
True Perspective!” but “Let a Hundred Flowers Bloom!”

—Robert Hansen in [Flocon and Barre 68]

Figure 4.29a illustrates the first step. A point P in space is projected to a point
P∗ on a hemisphere. The observer is located at the center of the sphere. Part (b) of the
figure shows how the hemisphere is projected onto a flat circle. The center of the circle
is tangent to point R on the sphere (the point right in front of the observer). Given a
point Q on the sphere, we draw the great-circle arc from R to Q. Denoting the length
of this arc by L, point Q is projected to the point at distance L from the center of the
circle in the direction from R to Q. This particular projection of a hemisphere to a
circle was proposed in the 16th century by Guillaume Postel and has the useful property
that its distortions of angles and distances are minimal. Clearly, the distance between
R and Q on the hemisphere is preserved on the circle, whereas the distance between
points A and B on the hemisphere of Figure 4.29c suffers a minimal distortion. For a
30◦ angle, the ratio between the arc length AB and its projection is only 1.01, and for
a 90◦ angle this ratio is 1.57, much smaller than distance distortions caused by other
sphere projections.

� Exercise 4.11: Show how to determine the distance between points A and B on the
hemisphere of Figure 4.29c and on the circle of the same figure. Compute the ratio of
these distances and show that it equals 1.01 for a 30◦ angle and 1.57 for a 90◦ angle.

Normally, the radius of the circle is R(π/2) because this is the length of the longest
radial arc on a hemisphere of radius R. However, it is possible to extend the Postel
projection to project an arc of length r on the hemisphere to a segment of length s r on
the circle, where s is any desired scale factor. The radius of the circle in such a case is
s R(π/2).

When the two steps of curvilinear perspective are performed for a vertical line,
it becomes a vertical curve on the circle (Figure 4.29d). This curve is very close to a
circular arc and for all practical purposes can be approximated by such an arc. Similarly,
a horizontal line in space is projected to a horizontal circular arc on the final circle. Lines
that are parallel to the line of sight of the observer are projected on the circle to straight
segments that converge at the center. Thus, the five-point grid of Figure 4.34 serves as
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Figure 4.29: Principle of Curvilinear Perspective.

a useful artist’s tool to draw the curvilinear perspective projection of any scene on a
circle of radius s R(π/2) in a single step.

4.7 Cubic Panoramic Projection

The principle of the cubic panoramic projection is similar to those of the other panoramic
projections. We imagine an observer located at the center of a cube (Figure 4.30a) and
looking at the three-dimensional scene outside. Everything the observer sees is etched on
the sides of the cube (or is painted there by the observer), and the cube is then flattened
into six squares connected as in Figure 4.30b,c. This creates a full 360◦ panorama in
six parts.

The main advantage of the cubic panoramic projection is the absence of distor-
tion. Straight lines are projected into straight lines, and the only deviation from total
linearity is discontinuous slopes at the boundaries between the six planes of the cube.
This behavior is best illustrated by Figure 4.32 (courtesy of Shinji Araya) but is also
demonstrated here rigorously by means of an example.
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Figure 4.30: Cubic Panoramic Projection.

Figure 4.31a shows two faces (we’ll call them panels) of a cube viewed from the
positive z direction. Each face of the cube is 2k units long, and we see the two panels
located at x = k and y = k. Figure 4.31b shows the two panels after they have been
rotated to stand side by side, and we look at their outside surfaces. To best visualize
this, imagine that there are hinges between the two panels, so they look like a folding
closet door (notice the direction of the x axis). The figure indicates that the x = k
panel is parallel to the yz plane, which is why all points on it have coordinates of the
form (k, y, z), while the y = k panel is parallel to the xz plane and all its points are of
the form (x, k, z).
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Figure 4.31: Cubic Projection of a Straight Segment.

We arbitrarily select the two points P1 = (4k, k/2, 0) and P2 = (k/2, 2k, 1). The
former is projected to the x = k panel, where points have coordinates (k, y, z), which
is why it is projected to P∗

1 = (k, k/8, 0). The latter is projected to the y = k panel,
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where its y coordinate must be k, so it is projected to P∗
2 = (k/4, k, 1/2). We denote by

L(t) the straight segment connecting P1 to P2 and compute it (from Equation (Ans.7))
as the weighted sum L(t) = (1 − t)P1 + tP2 = (4k − 7tk/2, k/2 + 3tk/2, t). Next, we
determine the coordinates of point P0 on this segment. This point will be projected to
the cube corner where x = y = k, so its x and y coordinates must be equal even before
it is projected. Since P0 is on segment L(t), it must equal L(t0) for some t0. Thus, we
can compute t0 from the relation 4k − 7t0k/2 = k/2 + 3t0k/2, which yields t0 = 7/10.
The coordinates of P0 are therefore L(t0) = (31

20k, 31
20k, 7

10 ), and this is projected to
P∗

0 = (k, k, 7
10× 20

31 ) = (k, k, 14/31).
Once the z coordinate of P∗

0 is known, we can compute the slopes of the two
segments that constitute the projection of L(t). On the y = k panel, the slope is

1
2 − 14

31
3k
4

=
2

31k
,

whereas on the x = k panel it is

14
31 − 0

7k
8

=
16
31k

.

The straight segment connecting P1 to P2 has been projected into two segments that
are straight but travel with different slopes on the two panels. Because of the symmetry
of a cube, there is no difference between horizontal and vertical lines and they all feature
the same discontinuity of slope between panels.

� Exercise 4.12: In what cases will the slopes be continuous across a panel boundary?

It is clear that a panorama made of six squares doesn’t create a satisfying visual
sensation, and Figure 4.32 (courtesy of Shinji Araya) proves this claim. The figure
shows a beautiful scene, but the projection seems fractionated and unnatural. This
lack of artistic value is why the cubic panoramic projection was not seen much in
the past. Currently, however, cubic panoramas are very popular because version 5 of
the popular QuickTime software for the Macintosh computer can create this type of
panoramic projection and can also scroll it on the monitor screen such that the viewer
can eventually examine a field of view that encompasses 180◦ vertically and a full 360◦

horizontally. The main advantage of this scrolling is that it eliminates the discontinuities
of the slopes between panels. The image seems to flow smoothly on the screen without
any jumps or distortions. Such a panorama cannot be included in a book, but many
can be found on the Internet by searching under “cubic panorama.”

MakeCubic is a simple OSX-ready app for creating cubic QTVR movies from six faces
or from equirectangular (a kind of sphere-to-rectangle projection which is used in some
java-based players and other places) images.

—From http://developer.apple.com/quicktime/quicktimeintro/tools/
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Figure 4.32: Cubic Panoramic Perspective (color version on page 239).

(Courtesy of Professor Shinji Araya, Fukuoka Institute of Technology.)

4.8 Six-Point Perspective

Chapter 3 introduces the concept of n-point perspective, where n can be 1, 2, or 3. This
section extends the term “n-point” and discusses n values up to 6. The discussion is
based on the work of and terms coined by Dick Termes, who also created the images,
art, and grids in this section.

Figure 3.14 shows Alberti’s method of traversals in one-point perspective. The
important feature of this figure for our present discussion is the converging grid. Certain
lines in this grid converge to a vanishing point and thereby turn the grid into an aid
to the artist. Such a one-point grid becomes a tool that helps to draw any image in
one-point perspective. Section 3.3 discusses perspective in curved objects and employs
a similar grid (Figure Ans.6).

Figure 4.33 shows grids for 1, 2, and 3 vanishing points and artistic drawings based
on them. It is natural to accept these drawings. They look familiar and don’t seem
distorted or unusual (although the viewpoint in some of them may be unusual). They
are drawn in linear perspective.

In contrast, drawings based on similar grids with more than three vanishing points
are distorted. They belong in the realm of nonlinear projections. Figure 4.34 shows
grids for four and five vanishing points, and it is immediately clear that they must
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Figure 4.33: Grids and Art for 1, 2, and 3 Vanishing Points (courtesy of Dick Termes).

introduce distortions in any artwork based on them. The former grid shows straight
lines bending and converging to four points. The vanishing points on the left and right
sides are familiar. They result in the familiar two-point perspective. The extra two
vanishing points, at the top and bottom of the grid, force all the vertical lines to bend
and introduce distortions in this way. The result is an image (see example to the right
of the grid) that becomes more distorted as the eye moves up or down away from the
center of the image. This type of distortion has its own artistic value but it is not
immediately clear to which of the projections discussed in this chapter it corresponds.
A closer look at the four-point grid of Figure 4.34, however, shows its resemblance
to Figure 4.23b, which corresponds to the cylindrical panoramic projection. Thus, a
complete 360◦ cylindrical projection, such as the one depicted by Figure 4.25c, can be
obtained by placing four four-point grids side by side. This type of grid is referred to
by Dick Termes as a continuous four-point perspective.

Initially, the five-point grid of Figure 4.34 looks unfamiliar and strange. It is not
trivial to guess the type of distortion that results from bending lines in five different
directions, toward the four extreme points on the periphery as well as toward the center.
However, a glance at Figure 4.10 should convince the reader that the effect of five-
point perspective is similar (perhaps even identical) to the angular fisheye projection
(page 151) as well as the spherical panoramic projection of Section 4.6. All the horizontal
and vertical lines, except those passing through the middle of the figure, are curved.
This drawing shows only half a sphere (180◦ vertically and horizontally), but it points
the way toward depicting a complete sphere on a flat surface. Simply place two five-point
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Figure 4.34: Grids and Art for 4 and 5 Vanishing Points (courtesy of Dick Termes).

perspective images side by side or one above the other. The result, which Dick Termes
terms six-point perspective (no pun intended), is shown in Figure 4.28. Section 4.6.1
discusses an approach to the construction of the five-point grid that is based on the
Postel sphere projection.

Some viewers are impatient with attempts to create panoramic projections on flat
surfaces. Such people may like the solution adopted by Dick Termes, namely to actually
sit inside a sphere and paint a spherical panoramic projection on its surface. The result,
which is naturally termed a Termesphere [termespheres 05], is a unique kind of art, but
cannot be included in a book. (See Figure C.5 for a rough idea.) A side benefit of
this technique is that the finished sphere can easily be converted to two flat disks in
six-point perspective [Keith 01]. The original sphere is made of two thin polyethylene
hemispheres. Once they are painted with acrylic paint, each hemisphere is heated until
the polyethylene melts to become a plastic disk. The painting on the two disks is now
in six-point perspective. An added advantage of this process is that such disks can be
copied to make more disks that can, in turn, be blown into hemispheres by the same
heating process.

My dad’s work is like taking your eyeball out of your head, putting it in a building,
and when it spins you can see everything from that one point in space.

—Lang Termes (as a child)

4.9 Other Panoramic Projections

The cylindrical and cubic projections of Sections 4.5 and 4.7 have a common feature that
makes them attractive. The cylinder and the cube can be unrolled or opened into a flat
surface without additional distortions. Other geometric shapes have the same feature,
and this section mentions the most important of them, namely the five Platonic solids
(Figure 4.35) and the cone.
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Figure 4.35: The Five Platonic Solids.

A polyhedron whose faces are congruent convex regular polygons is known as a Pla-
tonic solid. These figures were known in antiquity, and Euclid has already proved
that there are only five of them, the tetrahedron (a pyramid of four triangles), the
cube, the octahedron (eight faces, each a triangle), the dodecahedron (12 faces, each a
pentagon), and the icosahedron (20 triangles). Many properties and pictures of these
solids can be found in [Steinhaus 83].
One of the most original works of art depicting Platonic solids is the wood engraving
Stars by M. C. Escher. It takes a while to disentangle the many details in this picture
and locate the intersecting octahedra, tetrahedra, cubes, and other figures. The only
items that stand out immediately are the chameleons, placed by the artist inside the
polyhedra to attract nonmathematically-oriented viewers and capture their attention.

The principle of projection is always the same. We imagine an observer located
somewhere inside the surface, at the center or at some other preferred point, looking at
the three-dimensional scene outside and painting it on the surface. The surface is then
opened or unrolled to become a flat panoramic projection. In practice, only the cylinder
and the cube are commonly used for panoramic projections. It is rare to find a pyramidal
or a conic panoramic projection because opening and flattening such surfaces results in
a two-dimensional picture that looks foreign and unfamiliar and is often difficult to
visualize, perceive, and enjoy, even though it does not create any distortions.

Figure 4.36 (courtesy of Dick Termes) is a typical example. It shows a panorama
of the interior of St. Peter’s Basilica in Rome projected on a dodecahedron. It is
immediately obvious that in spite of the high precision of the drawing and the many
details that are easy to observe, it is difficult, perhaps even impossible, to place the 12
individual pentagons of the projection in the viewer’s mind and grasp them as a single
coherent work of art. Such a projection is best viewed after it is cut out, folded, and
glued together to actually form a dodecahedron (notice the matching tabs designed to
help in this process). The details of this process and how such pictures are taken are
described on page 191.
Conic Panoramic Projection

Given a cone of height H and radius R, we imagine an observer located at the center
of the base of the cone. Such an observer sees the hemisphere of space above him and
projects it on the cone, which is later cut and laid flat. It is also possible to place the
observer at the center of the cone, where he can see the entire 360◦ of space around him,
but this results in even more distortion because part of the lower hemisphere is seen by
the observer through the lower sides of the cone, while the rest of this hemisphere is
seen through the flat bottom.
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Figure 4.36: A Panoramic Projection on a Dodecahedron (courtesy of Dick Termes).

Reference [lampshade 05] shows how to apply the conic panoramic projection to
create original lampshades.

The derivation presented here starts with a point P = (x, y, z) that is projected
onto the surface of the cone. Once the surface is opened, the coordinates of the projected
point P∗ are given (Figure 4.37) in terms of the angle θ it makes with the top of the
cone, and the distance r from the top. These are polar coordinates on the open cone.
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Figure 4.37: Conic Panoramic Projection.
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The height S of the open cone is given by S =
√

H2 + R2. The vertical angle β
between the xy plane and the direction of P is given by tanβ = z/

√
x2 + y2. (Notice

that β varies from 0 to 90◦.) Once β is known, the polar coordinate r is determined
by r = S(1 − sin β). It varies between 0 and S. The top angle α of the open cone is
computed from 2R/S = cos(α/2), and the polar coordinate θ lies between 0 and α, so
it is given by θ = αγ/(2π), where γ is determined by the x and y coordinates of P by
means of tan γ = |y/x| (90, 180, or 270 degrees may have to be added to γ depending
on the quadrant, see Figure 4.21).

4.10 Panoramic Cameras

A typical dictionary definition of panorama is “a picture taken in three-dimensional
space and presented on a continuous surface encircling the viewer.”

There are a large variety of lenses available for current cameras (both digital and
film based), ranging from extreme wide angle to powerful telephoto, but even the widest
wide-angle lenses cannot capture an image that spans more than 180◦. Most fisheye
lenses can capture 180◦ images, but the result is highly distorted, especially along the
edges. Professional as well as amateur photographers like to be able to stand at a given
point and capture an image of everything visible from all directions, which explains
why panoramic cameras are popular. Inexpensive high-resolution digital cameras have
become powerful and popular, and this has encouraged the development of panoramic
software. Given a digital camera and a tripod, it is easy to take a series of overlapping
photos, input them directly from the camera into the computer, and stitch them by
software into a panorama (normally cylindrical). In spite of this, special panoramic
cameras, both digital and film-based, the latter of which have been made since the
1840s, are still being made and used.

An important resource for information on all aspects of panoramic cameras is the
International Association of Panoramic Photographers [IAPP 05], whose mission is “to
educate, promote, exchange artistic and technical ideas, and to expand public aware-
ness regarding panoramic photography.” Two important resources maintained by this
organization are a list, located at [cameraInproduction 05], of panoramic cameras in
production and a timeline of panoramic cameras, located at [cameraTimeline 05].

A fun guide for do-it-yourselfers is [funsci 05]. Information on panoramic cameras
and creating panoramic images can be found on many Internet sites. See, for example,
[shortcourses 05] and [philohome 05].

A new reference book for this topic is [Jacobs 05].
There are currently three types of cameras that capture panoramic images: a rotat-

ing camera, a swing-lens camera, and a camera with a parabolic panoramic lens system.
The first two can produce undistorted images, while the third type produces a highly
distorted image that has to be “unfolded” by special software to look like other types
(normally cylindrical or cubic) of panoramas. A description of all three (followed by a
note on pinhole cameras) follows.
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A rotating camera, as its name implies, works by rotating on its base, transferring
the image to the film while moving the film in the opposite direction, so the film stays
stationary relative to the ground. Examples of this type are the Swiss-made RoundShot
[roundshot 05], some of whose models are digital, the Globuscope [Globuscope 05], and
the Hulcherama camera, invented and built by Charles A. Hulcher [hulchercamera 05].
Following is some information on the latter type.

The Hulcherama is a slit-scanning panoramic camera that works by rotating on its
base. An electronically controlled motor is responsible for uniform rotation. (The rate
of rotation may be varied from 1 s to 144 s per revolution.) During the rotation, the
image passes through the lens and then through an adjustable narrow slit onto the film
(Figure 4.38a). The slit masks out most of the image but lets a narrow portion pass
through, which is how any optical distortion is minimized. As the camera rotates in one
direction, the film moves past the slit in the opposite direction. The camera rotation
and film movement are synchronized so that the film is stationary relative to the image
being photographed. As the camera makes a complete revolution, 8.9 inches of film
pass behind the slit, creating a 360◦ panoramic image with a height of 2.25 inches.
The aspect ratio is therefore a pleasing 2.25: 8.9 ≈ 1: 4. It is possible to let the camera
rotate more than one revolution (possibly varying the image each time), and a roll of
120-format film is long enough for three revolutions (the Hulcherama uses standard 120
or 220 roll film).
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Figure 4.38: Panoramic Cameras.

A swing-lens camera (Figure 4.38b) has a lens that rotates during an exposure,
thereby “painting” the image on the film through a narrow, vertical, constant-width
slit. In order to keep the same distance between the film and the lens, the film has
to be curved. An advantage of this type of camera is that the lens only has to cover
the vertical dimension of the film and the width of the slit, so it does not have to
be complex. The downside of this type is the limited field of view, which is less than
180◦. A complete 360◦ panorama is created by taking several shots and combining them
using special equipment (for a film camera) or special software (for a digital camera).
Examples of this type are the Widelux (now discontinued) and the Noblex.
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The Noblex [Noblex 05] is a family of cameras that consists of models 135, 150, and
175. Model 135 takes a 136◦-wide image and uses standard 35-mm film. The Noblex-
150 provides a 146◦ angle of view, uses 120 film, and produces six 5-inch-wide images
on a roll. It can take multiple exposures on the same film.

A panoramic lens system (Figure 4.38c) is somewhat similar to a reflecting tele-
scope. Its main part is a convex parabolic mirror (in contrast to the mirrors used in
telescopes, which are concave) that captures the entire (or almost the entire) half-sphere
of image above it and sends it up, where it is reflected by a small, flat mirror and sent
down through a hole in the main mirror to a camera. There are no moving parts, no
rotating parts, no need for multiple images, and no need to stitch multiple photos to-
gether. The price for all this (aside from the price of the camera and mirror) is image
distortion. This lens can, in principle, be used with any camera, digital or film.

Since the mirror captures everything above it and on all sides, the only way for the
photographer to stay out of the picture is to crawl under the camera. A panoramic lens
system is therefore used while mounted on a tripod or a pole and operated from below.

An example of this type is the Portal S1 panoramic lens system made by the BeHere
company [BeHere 05]. It is 12.5 inches in diameter, 13 inches tall, and weighs less than
10 pounds. It has a 35-mm Nikon mount, so any Nikon-compatible camera body, digital
or film, can be used with the Portal S1. The depth of field of the Portal is from one
inch to infinity. (There is no need to focus the camera.) Its lateral field of view is, of
course, 360◦, but its vertical field of view is limited to the gray area in the figure and
equals 100◦ (the angle between the two lines marked L). When anything outside this
area is reflected in the main mirror, it cannot reach the secondary mirror.

If a film camera is used, the film can later be scanned and then processed with
special software provided by the manufacturer. This software flattens the donut-shaped
image and can also perform other processing such as evening out the lighting, correcting
brightness and contrast, and slightly sharpening the edges. The image can then be saved
in one of the popular panoramic formats such as QuickTime VR.

� Exercise 4.13: Explain why the image produced by a panoramic lens system is shaped
like a donut.

The OmniAlert panoramic video camera system from Remotereality [remotereal-
ity 05] also employs a parabolic mirror, but the mirror points down, toward the camera,
which results in a circular picture with no hole. This camera has been developed for se-
curity and surveillance applications, where a wide field of view is important. The video
camera is mounted on a high pole right under the parabolic mirror and uses special
software to detect and track moving objects in its field of view and alert operators to
any suspicious activities.

The 360 One VR parabolic mirror system, from Kaidan [Kaidan 05], also uses a
down-pointing mirror and can be attached to several different cameras. Special software
must be used to convert the highly distorted image to a flat panorama (Flash VR,
cylindrical, QuickTime VR cylindrical, spherical, cubic, or QuickTime VR cubic) that
can be displayed and printed.

See also [eclipsechaser 05] for astronomical applications of this type of panoramic
camera.
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Note: The pinhole used to be the first camera of many a poor youngster. This
is simply a box with a small hole in front and film or light-sensitive paper loaded in
back. The shutter can be as simple as a piece of tape that’s removed to expose the film,
then reapplied manually, or it can be a purchased, cable-operated shutter assembly. If
the hole is small enough, the resulting image is sharp; if the film is wide, this primitive
device can produce wide-angle images.

The total photograph. We now turn to a completely different approach to
the problem of creating a panorama with a camera. This approach, termed by its
inventor the total photograph, was developed and patented by Dick Termes in 1980
and is described in [Termes 80]. To understand this technique, consider the cubic
panoramic projections of Section 4.7. We imagine an observer located at the center of
a cube (Figure 4.30a) and looking at the three-dimensional scene outside. Everything
the observer sees is etched on the sides of the cube or is painted there by the observer.
Given a three-dimensional scene and a camera, the problem is to generate such a cube.
In general, we want a method where we can project a scene on the sides of any of the
five regular polyhedra, as discussed in Section 4.9.

The first step is to decide what regular polyhedron we want. For example, we may
want to create a panorama on the 20 triangular sides (or faces) of an icosahedron. We
use suitable material, such as wood, plastic, or metal, to construct a solid icosahedron
and mount it on a good-quality, stable camera tripod. (The tripod may have to be
loaded with extra weight to make it extremely stable.) The icosahedron stays fixed
while pictures are taken. We drill small holes (labeled #34 in Figure 4.39) in each of
the 20 sides of the icosahedron to enable us to quickly attach a special bracket to any
side. A camera is mounted on the bracket. (The camera has to have a wide field of view,
so pictures taken from adjacent faces of the polyhedron do overlap). We then place the
bracket with the camera in one of the 20 sides of the icosahedron and, while holding it
stable in our hand, take a snapshot. This guarantees that the center of the camera lens
is right over the center of the polygon face. It is also important to make sure that the
camera’s line of sight is perpendicular to the polygon face. We repeat this for the 19
remaining sides to end up with 20 pictures, each showing what a viewer located on that
face of the icosahedron would see.

Figure 4.39 is taken from the patent application. The first five figures show the
five Platonic solids, each with two holes on each face, for quick mounting of the bracket.
Part 6 of the figure shows the bracket, part 7 shows a camera mounted on the bracket,
and part 8 is an exploded view of an icosahedron mounted on a camera tripod and the
bracket mounted on one side.

The only problem is that the camera is located outside the icosahedron, not inside.
Thus, the camera sees more than an inside observer would see through each face. The
20 photographs therefore partially overlap and we need to identify the overlapping parts
and remove them. The result should be 20 triangular pictures, each corresponding to
what an observer inside the icosahedron would see through one face. These triangles
can then be pasted together to form an actual icosahedron.

Figure 4.40 illustrates this process. Two partially overlapping pictures are placed
such that the overlapping parts match precisely (part 9). The centers of the pictures
are then identified and connected by a straight segment (#56 in part 10), and another
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Figure 4.39: Details of Invention (courtesy of Dick Termes).
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Figure 4.40: Details of Invention (courtesy of Dick Termes).
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segment (#58) is drawn, perpendicularly bisecting the first one, as shown in part 10.
Once this is done, it is easy to construct the two segments 62 and 64 of part 11 and
end up with an equilateral triangle on the picture. The picture is then trimmed as in
part 12, with small tabs that are later used to paste this picture to several (up to three)
other ones. Part 13 shows how the 20 triangles resulting from this process are mounted
in one horizontal strip that can later be converted to an actual icosahedron (part 14).

Each face of a dodecahedron is a pentagon, and each side of a cube is a square, but
the details of removing overlapping parts and trimming each picture in these cases are
similar to the triangular case. Figure 4.36 is an example of a panorama constructed on
a dodecahedron.

From around 1930 on, therefore, the standard photographic image on 35 mm film was
15.6 mm high by 20.8 mm wide, a proportion of roughly four by three. The same
proportion of height to width (the aspect ratio) is obtained on the screen when such
a frame is projected, and this shape of image (ratio 1:1.33) came to be called the
“Academy ratio.” But substantial variations are possible even on conventional 35 mm
film. Masks or caches can cut the height of each frame, and thus increase the aspect
ratio of the projected image: alternatively, special lenses can be used which “squeeze”
a wider image on to the film (through a procedure called anamorphosis, often used by
Renaissance painters) and “unsqueeze” it again when the film is projected. A French
optical scientist called Chrétien invented the anamorphic lens and its application to
the cinema in the 1920s; Autant-Lara experimented with it in a film version of Jack
London’s To Make A Fire, but the Hypergonar, as Chrétien called his invention, failed
to catch on, and development work on it stopped.

—David Bellos, Jacques Tati (1999)

4.11 Telescopic Projection

Seen through a microscope, small objects look bigger than they are. The telescope,
however, does not enlarge objects; it brings them closer. Objects close to the telescope
are brought a little closer, while objects located far away are moved much closer. This
short section discusses the mathematics of the telescopic projections, but it should
be emphasized that this is not a projection from three dimensions to two dimensions,
but rather a three-dimensional transformation. (This is also true for the microscopic
projection.) Nevertheless, these topics are discussed here because of their nonlinearity.

The diameter of the moon is 3,476 kilometers (2,160 miles). When we see the moon
through a telescope, its diameter seems only a few centimeters or a few meters, much
smaller than the real diameter. This shows that the telescope does not increase the
size of the object being viewed. Instead, it decreases the apparent distance of the
object.

Figure 3.4 is a perspective projection of a long row of telephone poles. The poles,
which are the same height and are equally spaced, seem to get smaller and closer together
as they get farther from the viewer. This is a common effect of linear perspective.
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Looking at the same poles through a telescope brings them closer and makes them look
bigger, but not by the same amount. Poles closer to the telescope move just a little
closer to the viewer, while poles far away move much closer and also get bigger (although
still smaller than nearby poles).

In order to compute such a projection mathematically, we need an expression that
will take a quantity z (the distance of a telephone pole) and will shrink it nonlinearly to
z∗ such that z = 0 (a telephone pole at the viewer’s position) will result in z∗ = 0 (no
movement) and large values of z will yield z∗ values in the interval [0, k] and approaching
k slowly. One choice for such an expression is

z∗ = kz/(z + k), (4.4)

where k is a parameter selected by the user. This expression is similar to the thin lens
equation from optics and also Equation (3.1). The Mathematica code

k=10.;
Table[k z/(z+k), {z,0,100,5}]
Table[%[[i+1]]-%[[i]], {i,1,20}]
Table[Point[{%%[[i]],0}], {i,1,21}];
Show[Graphics[%]]

selects k = 10 and 21 z values from 0 to 100 in steps of 5. It produces the 21 numbers
0, 3.33, 5, 6, 6.67, 7.14, 7.5, 7.78, 8, 8.18, 8.33, 8.46, 8.57, 8.67, 8.75, 8.82, 8.89, 8.95,
9, 9.05, and 9.09. They start at zero and approach k (Figure 4.41a). The third line
computes the 20 differences between consecutive numbers. It produces 3.33, 1.67, 1,
0.67, 0.47, 0.36, 0.28, 0.22, 0.18, 0.15, 0.13, 0.11, 0.10, 0.083, 0.074, 0.065, 0.058, 0.053,
0.048, and 0.043, and it is obvious that the differences get smaller and smaller, showing
that points brought in from infinity converge at distance k from the viewer.

0 5 10

(a)

(b)

Figure 4.41: (a) Twenty Nonuniformly Spaced Points. (b) Varying Heights.

� Exercise 4.14: What should be the distance z of a point in order for it to be moved
to a distance z∗ = k/2 by the telescopic transformation?
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In prophetic utterances, time is often telescoped.
—Anonymous

The heights of the transformed telephone poles can be determined by a similar
expression. A pole located right at the viewer’s location should maintain its height,
while poles that are moved closer should become taller but should remain smaller than
the nearest pole. If the nearest pole is l units tall, then the expression

l∗ = l

[
1 − z r

z + l

]

produces l∗ values that range from l (for z = 0) to (1 − r)l (for very large z). The
Mathematica code

l=20.; r=0.1;
Table[l(1-(z r/(z+l))), {z,0,100,5}]
Table[%[[i]]-%[[i+1]], {i,1,20}]
Table[Line[{{i, 17}, {i, %%[[i]]}}], {i,1,21}]
Show[Graphics[%]]

selects l = 20 and r = 0.1 to obtain l∗ values ranging from l to 0.9l = 18. The results
are 20, 19.6, 19.33, 19.14, 19, 18.89, 18.8, 18.72, 18.67, 18.62, 18.57, 18.53, 18.5, 18.47,
18.44, 18.42, 18.40, 18.38, 18.363, 18.35, and 18.33. Figure 4.41b shows the top parts of
the poles to illustrate how the differences in height between consecutive poles diminish.
The third line of the code yields the 20 differences 0.4, 0.27, 0.19, 0.14, 0.11, 0.09, 0.073,
0.061, 0.051, 0.044, 0.038, 0.033, 0.029, 0.026, 0.0234, 0.021, 0.019, 0.017, 0.016, and
0.014. Thus, the height differences between consecutive telephone poles get smaller and
smaller.

After a three-dimensional scene has been telescoped point by point, we can use
perspective projection to display it in two dimensions.

Love looks through a telescope; envy, through a microscope.
—Josh Billings

4.12 Microscopic Projection

A sample observed through a microscope is normally thin. We can therefore assume that
points that go through a microscopic projection have the same (or similar) z coordinates.
In contrast to a telescope, which brings points closer to the observer, a microscope
“opens up” the points. Figure 4.42 shows how this is done by moving points away from
the z axis. If the view angle of a point P is θ, then the microscope places its projection
P∗ such that its view angle is mθ, where m is the magnification power of the microscope.
Thus, the projection rule is

x

z + k
= tan θ and

x∗

z + k
= tan(mθ). (4.5)
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Figure 4.42: Microscopic Projection.

Computing x∗ therefore involves the two steps θ = arctan(x/(z + k)) and x∗ =
(z+k) tan(mθ). For small angles, tan θ is close to θ, so we can write as an approximation

x∗

z + k
= m

x

z + k
or x∗ = mx.

This is a linear scaling transformation where both x and y are scaled by a factor of m,
while z is left unchanged. The transformation matrix is

⎛
⎜⎝

m 0 0 0
0 m 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ .

Nature composes some of her loveliest poems for the microscope
and the telescope.

—Theodore Roszak, Where the Wasteland Ends (1972)

4.13 Anamorphosis

An anamorphosis is a distorted image that can be visualized and perceived only when
viewed in a special way. The two most common types of anamorphosis are oblique and
catoptric. The former type has to be viewed from an unusual angle or from a specific
location or distance. The latter has to be seen reflected in a special mirror.

Anamorphosis

A distorted or monstrous projection or representation of an image on a plane or curved
surface, which, when viewed from a certain point, or as reflected from a curved mirror
or through a polyhedron, appears regular and in proportion; a deformation of an
image.

—From Webster’s Dictionary (1913)

Figure 4.43 illustrates oblique anamorphosis. We imagine the artist painting a
subject as if seen through a window. A conventional window is perpendicular to the
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Figure 4.43: An Anamorphosis Window.

line of sight of the artist, whereas an anamorphosis window is tilted at a sharp angle to
the line of sight.

The Hungarian artist István Orosz has produced striking examples [Orosz 05] of
catoptric anamorphosis. An example of oblique anamorphosis is the well-known paint-
ing The Ambassadors by Hans Holbein the young [Holbein 05]. It features, in the
foreground, a small detail, the distorted image of a skull. In order to actually see the
skull, it has to be viewed from a point to the right of the painting and very close to it

A cylindrical anamorphosis is a popular variant of oblique anamorphosis. A cylin-
drical mirror is placed on a flat plane and a deformed image is drawn on the plane.
When viewed in the mirror, the image looks correct.

Web site www.anamorphosis.com [anamorphosis 05] is a lively introduction to
anamorphosis, with many examples and special software, Anamorph Me [Anamorph
Me 05], that can input an image in one of several popular formats and prepare an
anamorphosis (either oblique or catoptric). The four variations of Figure C.6 were
generated by this software.

Figure 4.44 shows how to create an anamorphosis manually. Start with an image,
cover it with a regular grid, stretch the grid and distort it, and then copy the details
of the image from each original grid box to the corresponding box (which is no longer
a rectangle) in the new grid. In order to obtain a cylindrical anamorphosis, the square
(or rectangular) grid covering the original image has to be stretched and bent into a
circular arc, as depicted in the figure.

Figure 4.44: Creating an Anamorphosis.
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4.14 Map Projections

According to [wikipedia 05], the ancients generally believed that the Earth is flat, but by
the time of Pliny the Elder (the first century a.d.) its spherical shape had already been
generally acknowledged. Many scientists and cartographers strongly
believed in a round Earth, which led Columbus to risk his life, in
1492, trying to reach Japan by going west. Today, most of us believe
that the Earth is a sphere (more accurately, a spheroid, since it is
slightly flattened at the poles), but there is still a persistent minority
that believes otherwise (see [flatearthsociety 05] for an interesting
example). Regardless of anyone’s beliefs or convictions, our aim in
this section is to describe the chief methods for projecting a sphere
on a flat plane.

The equation of a sphere of radius R centered on the origin is x2 + y2 + z2 = R2.
This is a special case of the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1 and the spheroid

x2 + y2

a2
+

z2

c2
= 1.

The sphere may also be described in spherical coordinates as (compare with Equa-
tion (4.3))

x = R cos θ sin φ, y = R sin θ sin φ, z = R cos φ,

where θ is the longitude (or azimuthal coordinate), which varies from 0 to 2π, and φ is
the colatitude (or polar coordinate, the latitude measured from the north pole), which
varies from 0 to π.

� Exercise 4.15: Look up (in a dictionary or on the Internet) the definitions of latitude,
longitude, antipode, and graticule.

First, let’s convince ourselves that projecting a sphere on a plane is a practical,
important problem. After all, we have globes of the Earth, so perhaps we don’t need
maps as well. A globe is a true representation of the Earth’s surface because it maintains
the true scale of areas and distances and shows the correct shapes of regions and the
correct angles between lines. However, its use is limited. Only one half of a globe can be
viewed at a time. Normally, the size or scale of a globe is too small to show the details
of a small region, such as a town, and large globes are expensive and difficult to handle.
Maps, on the other hand, are much more versatile. A flat map is portable because it can
be rolled or folded. It is easy to print maps in large quantities and store them digitally
in a computer where they can be edited, processed, displayed, and printed.

There is vast literature on map projections, map making, and cartographic tech-
nique. Distilling it to just four items yields, in the opinion of this author, [Pearson 90]
(very mathematical), [Snyder 87], [Snyder 93], and [Furuti 97].

The main problem with mapping a globe is the fact that a sphere is an undevel-
opable surface. Any attempt to open, unfold, or unroll a sphere to lie flat results in
stretching and deforming it in some way. (This is also mentioned in Section 4.6.) Thus,
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every projection of a sphere onto a flat plane must introduce distortions, and the prob-
lem of mapping a globe is to design and develop sphere
projections that eliminate or minimize certain distortions
(while perhaps increasing others). Thus, we can say that
cartography is the art and science of designing and choosing
the least inappropriate projection for a given application.
A map that preserves distances may be useful in certain ap-
plications even if it corrupts angles. Similarly, a map that
minimizes distortions around the equator may be ideal for
certain countries, such as Ecuador, even if it deforms the
shapes of regions close to the poles.

An important requirement in sphere projection is to preserve spatial relationships.
If a region A lies to the north of another region B on the globe, it should also appear
to the north of B on the projection (i.e., on the map resulting from the projection).

Other than preserving spatial relationships, any sphere projection is a compromise,
displaying some properties accurately while deforming others. Thus, when classifying
sphere projections, one attribute that should be considered is the extent to which a pro-
jection preserves or distorts certain properties. Following is a list and a short discussion
of the most important properties of maps. These properties are identified by answering,
for a given map, the following questions:

Can distances be accurately measured?

How easy is it to determine the shortest path between two points?

Are directions between points preserved?

Are shapes of geographical features preserved?

Are areas preserved to scale?

Which regions suffer the most distortion, and what kind of distortion?

These features are discussed here.

Scale. A map has to shrink the globe down to a convenient size that is determined
by the scale. In a 1: 10,000 scale map, points separated by two units on the map
represent geographical locations separated by 20,000 units on the sphere. However, no
map satisfies this condition perfectly. Scale on a flat map changes with location on the
map and the direction between the points. Measuring arbitrary distances on a map can
at best serve as an estimate of the real distances on the sphere. Recall that the shortest
distance between two points on a sphere is a great-circle arc, but such an arc is only
rarely represented by a straight line on a map.

However, some projections produce maps where certain lines are to scale. Dis-
tances measured along those lines are accurate. Such lines are called standard lines. In
a sinusoidal projection centered on the equator, all latitudes (parallels) are standard
lines. In an azimuthal equidistant map, all lines that pass through the central point
are standard. In a cylindrical equidistant map, the vertical lines (longitudes) and the
equator are standard lines.
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A small-scale map portrays a large area and a large-scale map portrays a small area
of the Earth. It is intuitively clear that a small region of a sphere is not much different
from a flat plane, which is why a large-scale map is not sensitive to the projection
algorithm. When mapping a small area of a sphere, practically any projection method
will produce a map where distances, areas, and angles are fairly accurate. The problem
of distortion arises when a large area of a sphere has to be mapped. In such a case, no
projection method will produce ideal results, and the algorithm used has to be selected
depending on the application at hand. One projection method may be suitable for
navigation, while another may produce maps useful for surveying.

The shortest path between any two points on a sphere is a great-circle arc, also
called a geodesic. Thus, a projection where great circles are displayed as straight lines
is ideal for measuring shortest paths. No sphere projection can generate such a map,
but the stereographic projection comes close to satisfying this requirement because it
preserves circles. Any circle on the sphere is mapped by this projection to a circle. In
particular, a great circle passing through the center of the projection is mapped to a
circle with infinite radius, a straight line. Thus, straight lines through the center of a
stereographic projection are great circles and indicate shortest paths. The downside is
that this projection can show only one hemisphere, which limits its use in air navigation
to short and medium distances. The gnomonic projection maps all great circles, not just
those passing through the central point, into straight lines, but this projection projects
even less than a hemisphere.

A map prepared especially for determining property taxes should allow for accurate
measurements of areas. If the scale of the map is s and if the area of a certain region
is A, then the area of the region as measured on the map should be A/s. Such a map
is termed equal-area and may distort the shapes of areas and display wrong distances
between points.

Even a quick glance at a Mercator map shows a huge Greenland about the same
size as all of Africa, obviously not to scale because the ratio of their areas is 1: 13.7. In
this projection, areas close to the poles appear bigger than they should. In contrast,
the Mollweide projection preserves areas.

It is easy to tell when a familiar shape becomes distorted or deformed. On the
other hand, it is not obvious how to measure distortion quantitatively. We are familiar
with the shape of the continents on Earth, so when a landmass gets distorted by a
projection, we recognize the deformation, but it took cartographers several centuries to
come up with a simple measure that shows the amount and direction of the distortion.
This measure was introduced by Nicolas Tissot in the 19th century and is known today
as Tissot’s indicatrix. The idea is simply to add a grid of small circles to the globe area
being mapped. The circles are mapped with the other items in the area (land areas,
oceans, rivers, etc.), and a quick look at a circle shows the amount and direction of its
distortion. A circle may retain its shape and area, it may get scaled but keep its shape,
or it may become deformed.

Figure 4.45a shows the Tissot indicatrix for the sinusoidal projection. It is obvious
that distortion is minimal around the equator and increases toward the poles. Also,
the circles are distorted, but their area is preserved. In contrast, part (b) of the figure
indicates that the Mercator projection, which is conformal, does not distort shapes but
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increases areas as we move away from the equator. (At the poles, the Tissot circles
would become infinitely large.)

(a) (b)

Figure 4.45: Tissot Indicatrix for Sinusoidal and Mercator Projections.

A map prepared for determining the routes of new highways should be equidistant;
it should preserve distances. If the distance between two points on the sphere is L, then
the distance between them on the map should be L/s. In practice, an equidistant map
often shows true distances only from one point, the center of projection.

An azimuthal or zenithal projection preserves angles. Ideally, if the angle between
three points is α, then the angle between the same points on the map should be the same
α. In practice, azimuthal maps maintain true angles only from one central point, and
even this property is achieved at the price of great distortions of areas and distances.

A map projection is conformal (also referred to as orthomorphic or equiangular)
when (1) all angles at any point are preserved, (2) lines of latitude and longitude intersect
at right angles, and (3) the shapes of small areas are preserved. Such a map corrupts
the size of large areas.

Table 4.46 lists the pairs of properties that can be combined in a single projection.

Projection Area Scale Angle Shape

Equal-area — no yes no
Equidistant no — yes no
Azimuthal yes yes — yes
Conformal no no yes —

Table 4.46: Properties That Can Be Combined.
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May I repeat what I told you here: treat nature by means of the cylinder, the sphere,
the cone, everything brought into proper perspective so that each side of an object or
a plane is directed towards a central point.

—Paul Cézanne to Emile Bernard, 15 April 1904

Developable surfaces. A developable surface is one that can be opened or un-
rolled to become flat without introducing any distortions or deforming it. A plane is
developable, as are the cone and the cylinder. As a result, most methods for projecting
a globe start by projecting it on a cone or a cylinder (while introducing distortions) and
then unfolding this projection to become flat.

A developable surface is constructed by rolling or twisting a flat sheet of material
without stretching or shrinking it. A ruled (or lofted) surface is linear in one direction.
The parametric expression of such a surface is of the form P(u, w) and it is linear either
in u or in w. Such surfaces are simple but are not always developable.

� Exercise 4.16: Are there any other developable surfaces in addition to the cylinder,
cone, and plane?

(a)

(b)

Figure 4.47: Principles of Projection.

Figure 4.47 illustrates the principle of employing developable surfaces for sphere
projection. The cylinder, cone, or plane can either be tangent to the sphere [part (a) of
the figure] or secant to it [part (b)]. In the latter case, the cylinder and cone intersect
the sphere in two circles and the plane intersects it in a single circle. The areas of
contact between the sphere and the developable surface are called the standard parallel
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or the standard line. These areas are important because they correspond to the regions
of least distortion in the map. The difference between the various projection algorithms
is in the precise way they project points on the sphere to the developable surface.

Definitions of secant

Line, ray, or segment that contains a chord of a circle.
A line that crosses the circle only twice.
A line extending through a circle, connecting two nonadjacent points.
A straight line that intersects a curve at two or more points.
Ratio of the hypotenuse to the adjacent side of a right-angle triangle.

Figure 4.49 shows how the orientation of the developable surface can vary relative
to the poles of the globe. The surface can be polar, equatorial, or oblique. It is obvious
that the orientation significantly affects the graticule and thus the appearance of the
map. In the oblique projections, the poles are no longer at the top and bottom of the
map but have migrated to unexpected places.

Azimuthal projections, also called planar projections, are those that project (nor-
mally only part of) a sphere directly to a plane, so there is no need to unroll and flatten
a developable surface. The plane is tangent to the sphere at a point that becomes the
center of projection. If the center is a pole, then lines of latitude become concentric
circles on the projection and lines of longitude become straight segments that converge
at the center. Figure 4.48 shows that these projections preserve directions from the
center but distort distances and areas as well as directions from other points.

(a) (b) (c)

Figure 4.48: Azimuthal Projections.

The case where the center of projection is at the center of the sphere is called a
gnomonic projection [part (a) of the figure]. Each line of latitude becomes a circle, but
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Normal ObliqueTransverse

ObliqueEquatorialPolar

Figure 4.49: Various Orientations.
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the distance between consecutive circles shrinks for high latitudes. Thus, equatorial
regions are shown in more detail, while polar regions are shrunk in this type of pro-
jection. The figure demonstrates that this projection is limited to less than half the
sphere; it cannot include the equator. On the other hand, any great circle is displayed
in this projection as a straight segment. (A great circle is one whose center is at the
center of the sphere.) Great circles are important for navigation because a great circle
arc is the shortest distance between two points on the surface of a sphere. This is why
the gnomonic projection is commonly used in air navigation. This projection is neither
conformal nor equal-area.

Part (b) of the figure shows a stereographic projection. This is the case where
the center of projection is at the pole opposite the plane of projection. The circles of
latitude are uniformly spaced, which results in uniform distortions throughout.

When the center of projection is at infinity on the side of the sphere opposite that
of the projection plane, the lines of projections are parallel and the projection is referred
to as orthographic. Part (c) of the figure illustrates this type, and it is obvious that
the pole that’s tangent to the plane of projection is shown in much detail and little
distortion, thereby making this projection ideal for mapping polar regions. Figure 4.50
illustrates the coordinate transformation for the orthographic projection. The polar
coordinates of the projected point are θ = longitude and r = R cos (latitude).

φ
R

Point on
North pole

North

globe

Equator

E
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Figure 4.50: Polar Coordinates in Orthographic Projection.

Cylindrical projections. Figure 4.51 shows the three main ways to project a sphere
on a cylinder tangent to it. Part (a) of the figure illustrates a perspective projection
from the center of the sphere. In part (b), points on the sphere are projected to the
cylinder in parallel, while the projection principle in part (c) is to project equal arc
lengths on the sphere to equal vertical segments on the cylinder.

In all three types of cylindrical projections, unrolling the cylinder results in equally
spaced longitudes on the map. However, in a perspective cylindrical projection, the
spaces between consecutive latitudes on the map increase as we move toward the pole
and approach infinity at the pole. Thus, it is impractical to extend this projection
beyond about latitude 80◦. The simple projection depicted in Figure 4.51a projects a
point at latitude φ and longitude θ on the globe to Cartesian coordinates x = θ − θ0

(where θ0 is the longitude at the center of the map) and y = R tanφ on the map. Such
a projection stretches the vertical dimensions of any regions between about latitude 30◦

and the poles, resulting in so much distortion that it is rarely used.



4.14 Map Projections 207

(a) (b) (c) (d)
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Figure 4.51: Three Types of Cylindrical Projections.

Mercator projection. A common variant of the cylindrical perspective projection
is the popular Mercator projection, developed by Gerhardus Mercator in 1569. Its
principle is to increase the distance between consecutive latitudes in proportion to the
increased distance between meridians. This effect is illustrated in Figure 4.51d. The
circumference of a globe of radius R at the equator is 2πR and at latitude φ it is
2πR cos φ. Thus, the width of a longitude at latitude φ [the distance between longitude
θ◦ and (θ+1)◦] is smaller than the width of a longitude at the equator by a factor of cosφ.
In a cylindrical projection, the longitudes are shown as parallel lines, which means that
at latitude φ, the width of a longitude in the projection has been artificially increased by
a factor of 1/ cos φ. The width of a meridian can be considered the horizontal scale, so
the principle of the Mercator projection is to also increase the vertical scale by the same
factor. In the basic cylindrical projection, the y coordinate depends on the latitude φ
as y = R tanφ. Now, we have to change the dependence such that a small change Δφ
in φ changes y by a factor of RΔφ/ cos φ. The basic equation of y as a function of φ is
therefore

dy =
R dφ

cos φ
,

which integrates to yield

y(φ) = R ln tan
[
π

4
− φ

2

]
.

Any integration constant is eliminated if we impose the condition that φ = 0 implies
y = 0.

Now imagine a small region at latitude φ. Both its width and its height have been
increased by a factor of 1/ cos φ, so its area is increased by a factor of 1/ cos2 φ, but its
shape hasn’t changed. A large region tends to spread beyond a single latitude, so its
shape is distorted. Thus, the Mercator projection preserves the shapes of small regions
and makes it relatively easy to compute their true areas. Large regions are distorted and
also appear very large. Greenland, for example, appears bigger than South America,
even though the latter is nine times bigger than Greenland.
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“What’s the good of Mercator’s north poles and equators, tropics, zones, and merid-
ian lines?” so the Bellman would cry: and the crew would reply “They are merely
conventional signs!”

—Lewis Carroll, The Hunting of the Snark (1876)

Figure 4.54 shows the standard Mercator projection of the Earth (where the cylin-
der is tangent to the equator), and Figure 4.55 is the oblique 45◦ Mercator projection
introduced by Charles Peirce in 1894.

Cylindrical equal-area projection. When the cylinder is aligned with the rotation
axis of the globe, any cylindrical projection results in uniformly spaced, parallel merid-
ians and parallel latitudes. However, the latitudes don’t have to be spaced uniformly,
and their spacings can be adjusted to preserve areas. There is essentially only one way
to design a cylindrical equal-area projection, and it was first described by Johann H.
Lambert in 1772.

In a cylindrical projection, the x coordinate for longitude θ on the unrolled cylinder
is the length of the arc between θ and θ0. Thus x = R(θ − θ0). We have to adjust the
space between consecutive latitudes such that any area on the cylinder will equal the
corresponding area on the sphere, and this is easy to achieve by comparing areas on the
sphere and the cylinder. The total surface area of a sphere is 2πR2, so the area below
latitude φ is 2πR2 sin φ. The area of a cylinder below a certain height y is 2πRy, so
equating the expressions 2πR2 sin φ and 2πRy results in y = R sin φ.

Table 4.52 lists y values for R = 1 and for latitudes from 0 to 90◦ and the stretch
factor for each. This factor is the extra amount the y coordinate has to be moved
relative to its “natural” position. For example, for φ = 30◦, the natural position for
the y coordinate is 0.3, but it has moved to 0.5, a stretch factor of 1.67. Figure 4.53
illustrates how each latitude is raised (the dashed lines in the Northern Hemisphere) in
order to preserve areas. The figure illustrates the fact that such a projection is useful
in the equatorial regions but useless in the polar regions, where the small gaps between
consecutive latitudes make it impossible to distinguish shapes, borders, and distances.

φ◦ y Stretch φ◦ y Stretch

0 0 0.00 50 0.77 1.53
10 0.17 1.74 60 0.87 1.44
20 0.34 1.71 70 0.94 1.34
30 0.50 1.67 80 0.98 1.23
40 0.64 1.61 90 1.00 1.11

10
10

30

50

70

90

20

40

30

50
60
70

Table 4.52 Cylindrical Equal-Area Projection. Figure 4.53 Cylindrical Equal-Area Projection.

Lambert’s design for an equal-area projection can be varied and is used by several
similar equal-area cylindrical projections. These vary the standard parallels, the general
map proportions, and the ways of distorting shapes. These projections can be converted
back to Lambert’s by rescaling both the width and height.

Cylindrical equidistant projection. Perhaps the most familiar feature of the cylin-
drical projections discussed so far is the straight, parallel, and equidistant meridians.
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Gerardus Mercator was a well-known 16th century cartographer who is remembered
mostly for the useful projection now named after him. He was Flemish (his birth
name was Gerard de Cremer) of German ancestry, and the name “Mercator” means
“merchant” or “marketer.” Although not a traveler himself, he became interested in
geography, maps, and cartography as a young man. His first project, in the mid-1530s,
was to construct, with two collaborators, a globe of the Earth. Later, he produced
maps of the Holy Land, the world, and Flanders.
After being charged with heresy and spending time in prison, he moved to the town of
Duisburg, where he became a professional cartographer and also taught mathematics.
In 1564 he reached the peak of his career when he became court cosmographer to
Duke Wilhelm of Cleve. His famous projection was conceived a few years later as an
aid to sea navigation.
(Continues. . . )

Figure 4.54: Mercator Projection.
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(Mercator’s life, continued)

In 1552, in Duisburg, he opened a cartographic workshop, where he completed a six-
panel map of Europe (in 1554) and produced more maps. He devised his famous globe
projection and first used it in 1569; it had parallel lines of longitude to aid navigation
by sea, as compass courses could be marked as straight lines.
The Mercator Museum in Sint-Niklaas, Belgium, features exhibits about Mercator’s
life and work. A simple, detailed description of his life and projection can be found
in [mercator 05].

Figure 4.55: 45◦ Oblique Mercator Projection.
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A distance measured along a meridian will have true scale because all the meridians
have the same length. Given a projection with such meridians, how can we draw the
latitudes so as to preserve scale along them too? There seems to be no solution to this
problem because the latitudes get shorter as we approach the poles and the only way
to fit shorter latitudes among the longitudes is to bend the longitudes. Thus, there is
no cylindrical projection that preserves distances along both dimensions.

Pseudocylindrical projections. All the cylindrical projections discussed here
(and also those not mentioned here) feature noticeable shape distortions at higher lati-
tudes (where area is normally also greatly exaggerated). The poles are either infinitely
stretched to lines or are impossible to include in the projection. Various pseudocylindri-
cal projections have therefore been developed in attempts to correct these shortcomings.
These projections feature (1) straight horizontal parallels, not necessarily equidistant,
and (2) arbitrary curves for meridians, equidistant along every parallel.

The horizontal parallels help to compute and predict phenomena that depend on
distance from the equator such as the lengths of day and night. The constant scale at
any point of a parallel makes it easy to measure distances in the direction of a latitude.

Parallels and meridians do not always cross at right angles in a pseudocylindrical
projection, which is why this type is nonconformal. Most pseudocylindrical projections
are known to cause severe shape distortions at polar regions.

Figure 4.56: Mollweide Projection.

The following are examples of pseudocylindrical projections:

The Mollweide projection (Figure 4.56) was created in 1805 by Karl Mollweide and
popularized by Jacques Babinet in 1857. This equal-area projection was designed to
inscribe the world into a 2: 1 ellipse, keeping the latitudes straight while still preserving
areas. It was developed for educational purposes. All meridians except the central one
are equally spaced semiellipses intersecting at the poles and concave toward the central
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meridian. Because of the aspect ratio chosen by Mollweide, the central meridian is half
as long as the equator. The two meridians 90◦ east and west of the central meridian
form a circle.

The mathematical expression of this projection starts with a point with longitude
θ and latitude φ on the sphere. The point is mapped by this projection to the point

x =
2
√

2(θ − θ0) cos α

π
and y =

√
2 sin α

on the map, where θ0 is the longitude at the center of the map and α is the solution to
the equation 2α + sin(2α) = π sin φ.

This projection is also called homalographic, homolographic (from the Greekhomo,
meaning “same”), elliptical, or Babinet. There is also an interrupted version of the
Mollweide projection. Mathematically, this projection is pseudocylindrical equal-area.

This projection is sometimes used in thematic world maps. It preserves scale up
to latitude 40◦ (north and south). North and south of this latitude, distortions become
more and more severe.

The sinusoidal projection (Figure 4.57), also known as the Sanson-Flamsteed pro-
jection and the Mercator equal-area projection, is the simplest pseudocylindrical equal-
area projection.

Figure 4.57: Sinusoidal Projection.

The width of a degree of longitude is proportional to the cosine of the latitude,
and the lines of latitude become straight segments placed uniformly on the map. This
combination preserves areas. Specifically, a point with longitude θ and latitude φ on
the sphere will be mapped by this projection to the point ((θ− θ0) cos φ, φ) on the map
(where θ0 is the longitude at the center of the map).
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This projection does not preserve shapes. Landmasses away from the central merid-
ian are sheared, making them look extremely deformed or even unrecognizable.

An interrupted version of this projection reduces distortions considerably because
(1) the scale on the equator is uniform, (2) the meridians cross it at right angles, and
(3) the vertical scale of the projection does not vary along the equator for different
longitudes.

It is worth mentioning that the sinusoidal and Mollweide projections handle polar
regions in complementary ways; while the former crowds them together, the latter results
in widely spaced meridians, which leads to more pronounced angular distortion. These
two projections are combined in Goode’s homolosine projection.

The Eckert IV equal-area world map projection (Figure 4.58) is the fourth in a
set of six projections developed in the 1920s by Max Eckert as a pseudocylindrical
compromise projection to obtain equal areas. The projection is in the form of a capsule,
similar to an ellipse but larger, with curved lines of longitude (see also Figure 4.27).
The outer meridians are semicircles, and the inner meridians are elliptical arcs. The
central meridian is straight and its height is identical to the length of the equator.

Figure 4.58: Eckert IV Projection.

The mathematical expression of this projection starts with a point with longitude
θ and latitude φ on the sphere. The point is mapped by this projection to the point

x =
2√

π(4 + π)
(θ − θ0)(1 + cos α) and y = 2

√
π

4 + π
sin α

on the map, where θ0 is the longitude at the center of the map and α is the solution to
the equation α + sinα cos α + 2 sinα = (2 + π/2) sin α.
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This projection is often the one favored by climatologists to display climate data.
Sometimes it is used as a small inset inside another map (probably because of its pleasing
shape), and the National Geographic Society in the United States used it for printing
large wall maps of the world.

Conical projections. Projections that employ a cone as the developable sur-
face have limited applications because they result in a noticeable distortion of shapes.
Figure 4.59a portrays a cone of height h and radius R. We denote half its top angle
by α and notice that α varies in the interval [0, 90◦). It is immediately obvious that
l2 = h2 + R2 and sinα = R/l. Part (b) of the figure shows the cone flattened, and the
problem is to compute its top angle β. The bottom part of the flattened cone is a cir-
cular arc whose length equals the circumference 2πR of the original cone bottom. Thus
βl = 2πR or β = 2πR/l = 2π sin α = 2πR/

√
h2 + R2. For example, when α = 45◦, we

get β ≈ 2π ·0.7071 = 255◦.

(a) (b)

α

h

ll

l

R

β

2πR

Figure 4.59: A Cone (a) Before and (b) After Flattening.

Clouds are not spheres, mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does lightning travel in a straight
line.

—Benôıt Mandelbrot, The Fractal Geometry of Nature (1982)

Figure 4.60 illustrates a simple equidistant conic projection of the Earth. This
projection is appropriate for small regions regardless of their shape. It is also acceptable
for large regions or even continents of predominant east–west extent. It illustrates the
main features of a conic projection which are as follows:

1. Meridians are straight equidistant lines converging at the apex of the cone
(normally a pole). The angular distance between meridians shrinks linearly as we move
toward the apex, and the shrink factor is referred to as the cone constant.

2. Parallels are concentric circular arcs whose center is the point of convergence
of the meridians. As a result, the parallels cross all the meridians at right angles and
distortion is constant along each parallel.

3. In addition, the particular conical projection of Figure 4.60 is neither conformal
nor equal-area, but such variations of the conical projection are possible.
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Figure 4.60: A Conical Projection.

Lambert’s conic conformal projection. This type of projection was developed by
Johann Lambert in 1772. After staying dormant for many years, it was revived dur-
ing World War I and became the standard projection for intermediate and large-scale
maps of regions in midlatitudes. Recall that “conformal” means shape preserving. A
conformal mapping also preserves all angles between intersecting lines or curves. The
principle of this projection is illustrated in Figure 4.61a. A cone is placed at a secant
to the globe, intersecting the globe in two circles that become standard parallels. The
distance between those parallels, which we denote by d, becomes 4/6 of the vertical di-
mension of the projection. Thus, the projection covers a distance of 6d/4 in the vertical
direction. The projection extends d/4 above and d/4 below the standard parallels. The
top and bottom of the cone are trimmed, and it is unrolled and takes a shape similar to
that featured in Figure 4.61b. Notice the right angles between the (straight) meridians
and the (curved) parallels. The scale along the two standard parallels is exact: The
scale between them is less than 1 but its smallest value is only 0.99. The scale above
and below them is greater than 1 but does not exceed 1.01.

Albers’s conic equal-area projection. This projection, developed by Heinrich Albers
in 1805, is very similar to Lambert’s conical conformal projection. The cone is at a
secant to the globe and intersects it at two latitudes. The difference between these two
projections is that Albers shifts the parallels on the cone in order to preserve areas in a
way similar to the cylindrical equal-area projection.

Given a point P on the globe, its projection P∗ is determined by constructing a
straight segment from P that is normal to the cone.
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Figure 4.61: Lambert Conic Conformal Projection.

Perspective conic. Neither conformal nor equal-area, this projection maintains true
scale at one standard latitude, while increasing distortion away from it. The principle
is illustrated in Figure 4.62a. A cone covers part of the globe and is tangent to one
latitude φ0. Given a point P on the globe (inside the cone), we extend the straight
segment from the center of the globe to P until it intersects the cone. The intersection
point is the projection P∗ of P. A pole may be used instead of the center of the globe
as the center of projection.
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(a) (b)
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Figure 4.62: Conic Perspective Projection.
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A simple application of similar triangles shows that φ0, the latitude of tangency,
is also half the apex angle of the cone. Thus, r0/R = cot φ0. The figure also shows
that r = r0 − R tan(φ − φ0) = R cot φ0 − R tan(φ − φ0). It is therefore natural to
indicate the position of P∗ on the flat projection by the polar coordinates (r, θ), where
r is the distance from the top (the projection of the pole) and θ is simply the sine of
the longitude of P. Table 4.63 lists the ten latitudes from 0◦ to 90◦ for R = 1 and for
φ0 = 45◦ (where R cot φ0 = 1). The differences between consecutive latitudes are also
listed in this table, and it is clear that they increase as we move away (above or below)
from φ0.

φ r diff. φ r diff.
0 1.999 50 0.913 0.175

10 1.700 0.300 60 0.732 0.180
20 1.466 0.234 70 0.534 0.198
30 1.268 0.198 80 0.300 0.234
40 1.087 0.180 90 0.001 0.300

Table 4.63: Ten Latitudes and Their Differences.

The most common example of this type of projection is the stereographic projection
developed by Carl Braun in 1867. It wraps the globe in a cone aligned with the rotation
axis. The cone is 1.5 times taller than the globe and is tangent to it at the 30◦ north
parallel. The projection center is at the south pole, not at the center of the globe, and
the resulting map is a perfect semicircle.

Pseudoconical projections. In this type of projection (Figure 4.64), the latitudes
are still circular arcs with a common center (concentric), and the meridians still converge
to this center but are no longer straight. Such projections have been known since the
time of Ptolemy but are not commonly used today.

Figure 4.64: Pseudoconical Projections.
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Figure 4.64 shows the Bonne (left) and the second Stabius-Werner (right) pseudo-
conical projections. The first was developed by R. Bonne and the second is one of three
pseudoconical designs by Johann Stabius and Johannes Werner.

Other Sphere Projections
Certain applications are best served by sphere projections that do not preserve any of
the properties above but instead are a compromise where no feature is greatly distorted.
The following are examples of such special projections. Perhaps the most original among
them cut (or interrupt) the continuous map into slices or gores.

Projections that were especially developed to portray the entire world on one map
often result in much distortion, mostly in regions located at the extremes of the projec-
tion. To improve the depiction of these distorted areas, “interrupted” forms splitting
the projection into gores have been developed. In this approach, many landmasses (or
oceans) can have their own central meridian, resulting in true shapes or conformality in
each region of the projected map.

Goode’s homolosine equal-area projection (Figure 4.65) is not a general sphere
projection. It was developed in 1923 by J. Paul Goode specifically to project the entire
Earth while trying to minimize the overall distortion of landmasses. Its main feature
is discontinuity. It “interrupts” the map (splitting it into slices called “gores”) in the
oceans, with the result that the gores distort the shapes of the oceans while showing
the continents in their true shapes. Mathematically, this projection is a combination of
the homolographic and sinusoidal projections, hence the name homolosine.

Figure 4.65: Goode’s Homolosine Equal-Area Projection.

Gore is also:
1. A triangular point of land often found at road merges and diverges.
2. A triangular piece of cloth or metal used in three-dimensional fabrication.
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Figure 4.66: Miller Cylindrical Projection.

The Miller cylindrical projection (Figure 4.66) was developed by Osborn Miller in
1942 in an attempt to modify the Mercator projection to reduce the distortions around
the poles and to make it possible to include the poles in the map. This projection is
neither equal-area, equidistant, or conformal, nor is it perspective. Along the equa-
tor, scale is true, and near the equator there is no distortion (although the distortion
increases away from the equator, becoming significant at the poles).

Miller started with the Mercator projection and moved the latitude lines closer
to the equator. The distance L in the Mercator projection between each parallel and
the equator was measured, and the parallel was moved to a distance of 0.8L from the
equator. Thus, near the equator, this projection is virtually identical to Mercator.
Another result of this shrinking of distances is that the height of the lines of longitude
(the meridians) is 0.73 the length of the latitudes. Each pole, which on the Earth is
a point, is displayed in this projection as a line of latitude, thereby causing maximum
distortions at the poles.

The mathematical expression of this projection starts with a point with longitude
θ and latitude φ on the sphere. The point is mapped by this projection to the point

x = θ − θ0, y =
5
4

ln
[
tan

(
π

4
+

2φ

5

)]
=

5
4
sinh−1

[
tan

(
4φ

5

)]

on the map (where θ0 is the longitude at the center of the map).
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The Miller cylindrical projection is often selected by cartographers for atlas maps
of the world instead of the more popular Mercator projection. Evidently, some mapping
experts feel that this variant is somewhat more appropriate or is simply more pleasing
to the eye.

Nonlinear: Behaving in an erratic and unpredictable fashion;

unstable. When used to describe the behavior of a machine or

program, it suggests that said machine or program is

being forced to run far outside of design specifications.

—Eric Raymond, The Jargon File (1997)
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Vector Products

It is trivial to add and subtract vectors, but vectors can also be multiplied. This short
appendix is a reminder of (or a refresher on) the two important operations of dot product
and cross product.

The dot product (or inner product) of two vectors is denoted by P•Q and is defined
as the scalar

(Px, Py, Pz)(Qx, Qy, Qz)T = PQT = PxQx + PyQy + PzQz.

This simple definition implies that the dot product is commutative, P • Q = Q • P,
and is also distributive with respect to vector addition or subtraction, P • (Q ± T) =
P • Q ± P • T.

The dot product also has a simple and useful geometric interpretation; it equals
|P| |Q| cos θ, where θ is the angle between the vectors. The dot product of perpendicular
(or orthogonal) vectors is therefore zero. We use Figure A.1 to prove this interpretation.
Part a shows a triangle with three sides a, b, and c and three angles A, B, and C opposite
those sides. We draw a line from vertex B that is perpendicular to side b. This line
divides the triangle into two right-angle triangles. The three sides of the triangle on the
right are a, a sin C, and a cos C, while the sides of the triangle on the left are c, a sin C,
and b − a cos C. Applying Pythagoras’s theorem to the latter triangle yields the law of
cosines

c2 = (a sin C)2 + (b − a cos C)2

= a2 sin2 C + b2 − 2ab cos C + a2 cos2 C

= a2(sin2 C + cos2 C) + b2 − 2ab cos C

= a2 + b2 − 2ab cos C.

This extends the Pythagorean theorem to arbitrary triangles.
Given two arbitrary vectors a and b separated by an angle θ, Figure A.1b shows

how we can subtract them to obtain a third vector c = a− b, such that a, b and c form
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Figure A.1: Law of Cosines.

the three sides of a triangle. Applying the law of cosines to this triangle yields

c2 = a2 + b2 − 2ab cos θ. (A.1)

Applying the dot product to vector c yields

c2 = c2
x + c2

y + c2
z = c • c = (a − b) • (a − b)

= a • a + b • b − 2(a • b)
= a2 + b2 − 2(a • b). (A.2)

Equating Equations (A.1) and (A.2) yields a • b = ab cos θ.
The triple product (P • Q)R is sometimes useful. It can be represented as

(P • Q)R = (PxQx + PyQy + PzQz)(Rx, Ry, Rz)
=
(
(PxQx + PyQy + PzQz)Rx, (PxQx + PyQy + PzQz)Ry,

(PxQx + PyQy + PzQz)
)
Rz

= (Qx, Qy, Qz)

⎛
⎝PxRx PyRx PzRx

PxRy PyRy PzRy

PxRz PyRz PzRz

⎞
⎠

= Q(PR), (A.3)

where the notation (PR) stands for the 3×3 matrix above. (This material is used in
Section 1.4.3.)

The cross product of two vectors (also called the vector product) is denoted by P×Q
and is defined as the vector

(P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1). (A.4)

It is easy to show that P×Q is perpendicular to both P and Q.
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� Exercise A.1: Show it!

Perhaps the best proof is to construct the cross product from first principles. Given
the two vectors P and Q, we are looking for a vector R perpendicular to both P and Q.
This requirement does not fully define R, since both R and −R satisfy it and since it
says nothing about the magnitude of R. We therefore extend our definition of the cross
product by requiring that the triplet (P,Q,R) be a right-handed triad of vectors and
also that the magnitude of R be the product |P| |Q| sin θ, where θ is the angle between
P and Q.

The derivation exploits the orthogonality of the three coordinate axes i = (1,0,0),
j = (0,1,0), and k = (0,0,1) and also uses our definition. The definition implies that
i×i = 0 because the angle between i and itself is zero, and the same holds for j and k. It
also implies that the cross product of any two of the three basis vectors is a unit vector
because the basis vectors are unit vectors and because sin 90◦ = 1. Once we realize
that the triplet (i, j,k) is a right-handed triad, we can deduce the following: i×j = k,
j×k = i, k×i = j, j×i = −k, k×j = −i, and i×k = −j.

Armed with this information, we can easily derive the cross product R:

R = P×Q = (P1i + P2j + P3k)×(Q1i + Q2j + Q3k)
= (P1i + P2j + P3k)×Q1i + (P1i + P2j + P3k)×Q2j + (P1i + P2j + P3k)×Q3k

= (P2Q3 − P3Q2)i + (−P1Q3 + P3Q1)j + (P1Q2 − P2Q1)k
= (P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1).

The magnitude of R can be calculated explicitly

|R|2 = (P2Q3 − P3Q2)2 + (−P1Q3 + P3Q1)2 + (P1Q2 − P2Q1)

= (P 2
1 + P 2

2 + P 2
3 )(Q2

1 + Q2
2 + Q2

3) − (P1Q1 + P2Q2 + P3Q3)2

= |P|2|Q|2 − (P · Q)2 = |P|2|Q|2 − (|P||Q| cos θ)2

= |P|2|Q|2(1 − cos2 θ) = |P|2|Q|2 sin2 θ.

To illustrate the magnitude, we can draw the parallelogram defined by P and Q (with
an angle θ between them) and show that vector Q sin θ is perpendicular to P.

The following expressions show how P × Q can be expressed by means of a deter-
minant,

P×Q =

∣∣∣∣∣∣
i j k

P1 P2 P3

Q1 Q2 Q3

∣∣∣∣∣∣ = i
∣∣∣∣ P2 P3

Q2 Q3

∣∣∣∣− j
∣∣∣∣ P1 P3

Q1 Q3

∣∣∣∣+ k
∣∣∣∣ P1 P2

Q1 Q2

∣∣∣∣
= (P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1),

or, alternatively, by means of a matrix

P×Q = (Q1, Q2, Q3)

⎛
⎝ 0 P3 −P2

−P3 0 P1

P2 −P1 0

⎞
⎠ . (A.5)



224 A Vector Products

� Exercise A.2: The cross product P×Q is perpendicular to both P and Q. In what
direction does it point?

The cross product is not commutative and is not associative. It is, however, dis-
tributive with respect to addition or subtraction of vectors. Hence, P× (Q ± T) =
P×Q ± P×T.

The magnitude of P×Q equals |P| |Q| sin θ, where θ is the angle between the
two vectors. The cross product therefore has a simple geometric interpretation. Its
magnitude equals the area of the parallelogram defined by the two vectors.

� Exercise A.3: Given that P×Q = 0, what does it tell us about the vectors involved?

As an example, the vector equation of a straight line is shown below for the case
where the direction of the line and one point on the line are known. Assume that d is a
unit vector in the direction of the line and P1 is a given point on the line. The equation
of the entire line is

P(t) = P1 + td, (A.6)

where t can take any real value.

� Exercise A.4: Derive the vector line equation for the straight segment between two
given points P1 and P2.

Incidentally, there is a completely different way of looking at the cross product.
It has to do with the following property of vectors. If we transform the coordinate
system by reversing the direction of every coordinate axis, then any vector v will be
transformed to −v. However, the cross product of two vectors P and Q retains its sign
when both P and Q are reversed (which can be seen directly from Equation (A.4)). The
cross product, which otherwise behaves like a “normal” vector, differs from a vector in
this respect and is therefore called a pseudovector or sometimes an axial vector. (A
“normal” vector, incidentally, is called a polar vector.) It is also easy to show that the
cross product of two pseudovectors is a pseudovector and that the cross product of a
vector and a pseudovector is a vector.

The different way of looking at the cross product of two vectors is to interpret
it as a rotation in the plane defined by the vectors. Imagine a flat plane spanned by
two vectors. Select a point P in this plane and rotate it about another point C. It is
natural to visualize this rotation as if it takes place around a vector perpendicular to
the plane (its normal vector) whose tail is at C. The alternative interpretation of the
cross product considers its three components not as the x, y, and z components of a
vector but as numbers associated with the yz, zx, and xy planes defined by the three
coordinate axes.

This interpretation makes more sense when we consider the cross product in higher
dimensions. The four orthogonal coordinate axes of a four-dimensional space define six
planes, so the cross product of two four-dimensional vectors should have six components.
If it were a vector, it would have four components. In five dimensions, the five coordinate
axes define ten planes, so the cross product of five-dimensional vectors should have ten
components. In general, the cross product in n dimensions has n(n− 1)/2 components,
which is why the cross product in three dimensions happens to have three components.
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Mathematicians long ago developed a notation to describe the components of the
general cross product. It is called an antisymmetric tensor and is written as an n×n
antisymmetric matrix whose diagonal elements are zero. There are n(n− 1)/2 elements
in the top half and the same number (with an opposite sign) in the bottom half of the
matrix. Each element corresponds to a rotation in one of the n(n− 1)/2 planes defined
by the n coordinate axes.

The tensors for n = 3 and n = 4 are

(P1, P2, P3)×(Q1, Q2, Q3) =

⎡
⎣ 0 P1Q2 − P2Q1 P1Q3 − P3Q1

P2Q1 − P1Q2 0 P2Q3 − P3Q2

P3Q1 − P1Q3 P3Q2 − Q2P3 0

⎤
⎦ .

(P1, P2, P3, P4)×(Q1, Q2, Q3, Q4) =⎡
⎢⎣

0 Q1P2 − Q2P1 Q1P3 − Q3P1 Q1P4 − Q4P1

P1Q2 − P2Q1 0 Q2P3 − Q3P2 Q2P4 − Q4P2

P1Q3 − P3Q1 P2Q3 − P3Q2 0 Q3P4 − Q4P3

P1Q4 − P4Q1 P2Q4 − P4Q2 P3Q4 − P4Q3 0

⎤
⎥⎦ .

We are here to study laws and vectors

and constitutions, not to run in circles.

Mike Resnick, Mwalimu in the Squared Circle (1993)
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Quaternions

Complex numbers can be interpreted as points in the xy plane. The complex number
(a, b) can be interpreted as the point with coordinates (a, b). Is it possible to define hy-
percomplex numbers of the form (a, b, c) that could be interpreted as three-dimensional
points? This question bothered the Irish mathematician William Rowan Hamilton for a
long time. The problem was that multiplying complex numbers could be interpreted as
a rotation in two dimensions (Section 1.4.5), so it made sense to require that multiplying
the new hypercomplex numbers would be equivalent to a rotation in three dimensions.
Readers of this book know (from Section 1.4.3) that a general rotation in three dimen-
sions is fully defined by four numbers: one for the rotation angle and three for the
rotation axis. Three numbers are not enough to fully specify such a rotation.

Hamilton could not come up with a reasonable rule for multiplying hypercomplex
numbers that are triplets, and he eventually discovered, in October 1843, that he needed
to add a fourth component to his triplets (i.e., turn them into 4-tuples) in order to
multiply them in a way that made sense. He called these new entities quaternions.
Using modern notation, a quaternion q can be represented as a 2×2 matrix of complex
numbers

q =
(

z w
−w∗ z∗

)
=
(

a + ib c + id
−c + id a − ib

)
,

where z and w are complex numbers and a, b, c, and d are real. This can also be written
(by analogy with the complex numbers a · 1 + b · i) as q = aU + bI + cJ + dK, where

U =
(

1 0
0 1

)
, I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
, and K =

(
0 i
i 0

)
.

(Note that U, not I, is used here to denote the identity matrix. These matrices are
closely related to the Pauli spin matrices used in particle physics.) From the definitions
above, it follows that I2 = −U, J2 = −U, and K2 = −U. We therefore conclude that
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I, J, and K are three different solutions of the matrix equation X2 = −U and should
be considered the square roots of minus the identity matrix.

Quaternions can also be viewed as elements of a four-dimensional vector space, one
of whose bases are given by

i =

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ , j =

⎛
⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠ ,

k =

⎛
⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎠ , 1 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ .

Quaternions satisfy the following identities, also known as Hamilton’s Rules,

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

They have the following multiplication table:

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

The eight quaternions ±1, ±i, ±j, and ±k form a group of order 8 with multipli-
cation as the group operation.

Quaternions can also be interpreted as a combination of a scalar and a vector. They
are consequently closely related to 4-vectors. Using this interpretation, a quaternion q
can be represented as the sum q = w + xi + yj + zk, the 4-tuples (x, y, z, w) and
(w, x, y, z), or the pair [s,v], where s = w and v = (x, y, z).

The conjugate quaternion is given by q∗ = w−xi− yj− zk. The sum or difference
of two quaternions is the obvious

q1 ± q2 = (w1 + w2) ± (x1 + x2)i ± (y1 + y2)j ± (z1 + z2)k = [s1 ± s2, (v1 ± v2)],

and the product is the nonobvious

q1 · q2 = (w1w2 − x1x2 − y1y2 − z1z2) + (w1x2 + x1w2 + y1z2 − z1y2)i
+ (w1y2 − x1z2 + y1w2 + z1x2)j + (w1z2 + x1y2 − y1x2 + z1w2)k

= [(s1s2 − v1 • v2), (s1v2 + s2v1 + v1×v2)].

A quaternion product is associative (i.e., (q1q2)q3 = q1(q2q3)) but not commutative.
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An appropriate measure of the size of a quaternion is its norm, defined as

|q| = q · q∗ = q∗ · q =
√

w2 + x2 + y2 + z2 =
√

s2 + x2 + y2 + z2.

It is easy to verify that the norm is multiplicative, |q1q2| = |q1| |q2| (i.e., the norm of a
product equals the product of the two individual norms). A unit quaternion is one for
which |q| = 1.

The inverse of a quaternion is given by

q−1 =
q∗

(qq∗)
=

q∗

|q|2 =
q∗

w2 + x2 + y2 + z2
,

so quaternion division q1/q2 (except by zero) is performed by multiplying q1 by the
inverse q−1

2 . It’s easy to verify that qq−1 = [1, (0, 0, 0)] = [0,0].
[Mathworld 05] and [WikiQuaternion 05] are basic references for quaternions.

� Exercise B.1: (If 4, why not more?) Quaternions are an extension of vectors. Are
there extensions of quaternions?

Every morning in the early part of the above-cited month [Oct. 1843]

on my coming down to breakfast, your brother William Edwin

and yourself used to ask me, “Well, Papa, can you multiply

triplets?” Whereto I was always obliged to reply, with a sad

shake of the head, “No, I can only add and subtract them.”

—William Rowan Hamilton



Answers to Exercises

She smiled, but made no answer.
—Jane Austen, Pride and Prejudice (1813)

Pre.1: This is an impossible three-dimensional object. Such objects cannot be created
in three dimensions but can be drawn in two dimensions because any projection causes
loss of image detail. There are many examples of impossible objects, and this one, which
is known as Schuster’s conundrum or the Devil’s fork, is especially simple. Notice that
this impossible object cannot be colored.

The following original, succinct description of impossible objects is given by [Pen-
rose and Penrose 58]. “Each individual part is acceptable as a representation of an
object normally situated in three-dimensional space; and yet, owing to false [connec-
tions] of the parts, acceptance of the whole figure on this basis leads to the illusory
effect of an impossible structure.”

Intro.1: Map projections. Projecting a sphere on a flat surface always results in
deformations, but such projections are important in cartography.

Intro.2: In one dimension the “universe” is a straight line. The only graphical ele-
ments on a line are points and line segments. They can be moved about on the line
(translated), and segments can also be scaled. A rotation takes a line segment outside of
the line, so rotation is not a one-dimensional transformation. A reflection is identical to
moving a segment or a point, so it cannot be considered an independent transformation.
Similarly, shearing a line segment either changes its length (which makes it identical to
scaling) or takes it outside the line. Thus, the only basic independent transformations
in one dimension are translation and scaling. The latter applies only to line segments.

1.1: Function f1 is not onto since point (−1, 0) is not the mapping of any real point.
This function is also not one-to-one since the two different points (a, b) and (−a, b) map
to (a2, b). Function f2, however, is a valid geometric transformation.
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1.2: No. It is easy to come up with examples of two transformations f and g such
that f ◦ g �= g ◦ f . One example is a 90◦ counterclockwise rotation about the origin
and a reflection about the x axis. When the point (1, 0) is first rotated 90◦ about the
origin and then reflected about the x axis, it is first moved to (0, 1) and then ends up
at (0,−1). If the same point is first reflected and then rotated, it first moves to itself
and then to (0, 1).

1.3: This is a direct application of Equation (1.3). The result is

A(b11x
∗ + b12y

∗)2 + B(b11x
∗ + b12y

∗)(b21x
∗ + b22y

∗) + C(b21x
∗ + b22y

∗)2

+ D(b11x
∗ + b12y

∗) + E(b21x
∗ + b22y

∗) + F = 0,

which is a second-degree curve.

1.4: A point (x, y) on a circle with radius R satisfies x2+y2 = R2 or (x/R)2+(y/R)2 =
1. The transformed point (x∗, y∗) on an ellipse should satisfy (x/a)2 + (y/b)2 = 1. It is
easy to guess that the transformation rule is x∗ = ax/R, y∗ = by/R, but this can also
be proved as follows. The general scaling transformation is x∗ = k1x, y∗ = k2y. For the
transformed point to be on an ellipse, it should satisfy (k1x/a)2 + (k2y/b)2 = 1, which
can be simplified to k2

1b
2x2 + k2

2a
2y2 = a2b2. Substituting y2 = R2 − x2 yields

(k2
1b

2 − k2
2a

2)x2 = a2b2 − k2
2a

2R2.

This equation must hold for every value of x, which is possible only if k2
1b

2 − k2
2a

2 = 0
and a2b2 − k2

2a
2R2 = 0. Solving these equations yields k1 = a/R and k2 = b/R.

1.5: The transformation can be written (x, y) → (x,−x + y), so (1, 0) → (1,−1),
(3, 0) → (3,−3), (1, 1) → (1, 0), and (3, 1) → (3,−2). The original rectangle is therefore
transformed into a parallelogram.

1.6: From cos 45◦ = 0.7071 and tan 45◦ = 1, we get the 45◦ rotation matrix as the
product: (

0.7071 0
0 0.7071

)(
1 −1
1 1

)
.

Figure Ans.1 shows how a 2×2 square centered on the origin (Figure Ans.1a) is first
shrunk to about 70% of its original size (Figure Ans.1b), then sheared by the second
matrix according to (x∗, y∗) = (x + y,−x + y), and then becomes the rotated diamond
shape of Figure Ans.1c. Direct calculations show that the two original corners (−1, 1)
and (1, 1) are transformed to (0, 1.4142) and (1.4142, 0), respectively.

1.7: Figure 1.3 gives the polar coordinates P = (r, α) and P∗ = (r, φ) = (r, α − θ).
There is no 2×2 matrix for this rotation because our transformation matrices are linear,
while the transformation between polar and Cartesian coordinates is nonlinear. This is
true because, for example, (αx, αy) = (αr, θ). Multiplying both the x and y components
by a constant multiplies r by that constant but does not change θ.
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(a)

(−1,1) (1,1)

(1.4142,0)

(0,1.4142)

(b) (c)

Figure Ans.1: A 45◦ Rotation As Scaling and Shearing.

We can artificially construct a matrix T =
(
a b
c d

)
such that P∗ will equal the product

PT. It does not take much to figure out that what we are looking for is

T =
(

1 −θ/r
0 1

)
.

However, this matrix, which should be independent of the coordinates of the rotated
point, depends on r. Also, it is not orthonormal (and not even orthogonal).

1.8: A reflection about the x axis transforms a point (x, y) to a point (x,−y). A
reflection about y = −x similarly transforms a point (x, y) to a point (−y,−x). [This
is matrix T3 of Equation (1.5).] Thus, the combination of these two transformations
transforms (x, y) to (y,−x), which is another form of the negate and exchange rule,
corresponding to a 90◦ clockwise rotation about the origin. This rotation can also be
expressed by the matrix [compare with Equation (1.6)](

cos 90◦ sin 90◦

− sin 90◦ cos 90◦

)
=
(

0 1
−1 0

)
.

1.9: The determinant of this matrix equals

(
1 − t2

1 + t2

)2

− −4t2

(1 + t2)2
=

(1 − t2)2 + 4t2

(1 + t2)2
= +1,

which shows that it generates pure rotation. Also, if we denote this matrix by(
a11 a12

a21 a22

)
,

it is easy to see that a11 = a22, a12 = −a21, a2
11 + a2

12 = 1, and a2
21 + a2

22 = 1. These
properties are all satisfied by a rotation matrix.
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1.10: The determinant of this matrix is( a

A

)2

− b

A

(
− b

A

)
=

a2 + b2

A2
.

It equals 1 for A = ±√
a2 + b2 but cannot equal −1 since it is the ratio of the two

nonnegative numbers a2 + b2 and A2. We consequently conclude that this matrix can
represent pure rotation but never pure reflection. An example of pure rotation is a =
b = 1, which produces A = ±√

2 ≈ ±1.414. The rotation matrices for this case are(
1/

√
2 1/

√
2

−1/
√

2 1/
√

2

)
=
(

0.7071 0.7071
−0.7071 0.7071

)
,(−1/

√
2 −1/

√
2

1/
√

2 −1/
√

2

)
=
(−0.7071 −0.7071

0.7071 −0.7071

)
,

and they correspond to 45◦ rotations about the origin.

1.11: The combined transformation matrix is the product⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 1 0
−1 −1 1

⎞
⎠
⎛
⎝ cos 180◦ − sin 180◦ 0

sin 180◦ cos 180◦ 0
0 0 1

⎞
⎠ =

⎛
⎝−1 0 0

0 1 0
1 1 1

⎞
⎠ .

This matrix combines a reflection of the x coordinates with a one-unit translation in
the x and y directions. Applying it to the four points yields (0, 2), (0, 0), (2, 2), and
(2, 0). This is the same square but is now located in the first quadrant (Figure Ans.2).

(a)

reflect x
translate

(b) (c)

x  and y

Figure Ans.2: An x Reflection and Translation.

1.12: Using angles φ and θ from Figure 1.3 but assuming that the rotation is coun-
terclockwise about (x0, y0), we get

x∗ = x0 + (x − x0) cos θ − (y − y0) sin θ,

y∗ = y0 + (x − x0) sin θ + (y − y0) cos θ.
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We are looking for a matrix T that satisfies

(x∗, y∗, 1) = (x, y, 1)

⎛
⎝ a b 0

c d 0
m n 1

⎞
⎠ .

The simple solution is

T =

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
x0(1 − cos θ) + y0 sin θ y0(1 − cos θ) − x0 sin θ 1

⎞
⎠ .

In a similar way, it can be shown that a clockwise rotation about (x0, y0) is produced
by

T =

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
x0(1 − cos θ) − y0 sin θ y0(1 − cos θ) + x0 sin θ 1

⎞
⎠ .

1.13: If a point P = (x, y, 1) is reflected to a point P∗ = (x∗, y∗, 1) = (y − 1, x + 1, 1)
about the line y = x+1, then their midpoint [which is (P+P∗)/2 = (x+y−1, y+x+1)/2]
should be on the line. It’s easy to see that the midpoint is on the line because its y
coordinate equals 1 more than its x coordinate.

1.14: This is easily done with the help of appropriate mathematical software, and the
result is ⎛

⎝ 0.5 0.866 0
0.866 −0.5 0
−0.866 1.5 1

⎞
⎠ .

1.15: Such a thing is possible but would not improve the algorithm. Transforming a
point from octant 1 to octant 2 is done by reflecting it about the 45◦ line y = x. A point
(x, y) is therefore transformed to the point (y, x). The similar transformation between
half-octants amounts to reflection about the 22.5◦ line y = ax (where a = tan 22.5◦ ≈
0.414). This transforms point (x, y) to (0.7071x + 0.7071y, 0.7071x − 0.7071y) (see
the following proof) and would slow down the algorithm since it involves real-number
arithmetic.

Proof. Let’s denote α = sin 22.5◦, β = cos 22.5◦. To reflect about the 22.5◦ line,
we rotate clockwise by 22.5◦, reflect about the x axis, and rotate back. The combined
transformation matrix is⎛

⎝ β −α 0
α β 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠
⎛
⎝ β α 0

−α β 0
0 0 1

⎞
⎠

=

⎛
⎝β2 − α2 2αβ 0

2αβ α2 − β2 0
0 0 1

⎞
⎠ ≈

⎛
⎝ .7071 .7071 0

.7071 −.7071 0
0 0 1

⎞
⎠ .
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The last equality is true because

0.7071 ≈ sin 45◦ = sin 22.5◦ cos 22.5◦ + cos 22.5◦ sin 22.5◦ = 2αβ,

0.7071 ≈ cos 45◦ = cos 22.5◦ cos 22.5◦ − sin 22.5◦ sin 22.5◦ = β2 − α2.

1.16: In order for the general line ax + by + c = 0 to pass through the origin, it must
satisfy c = 0. This implies y = −(a/b)x, so −a/b is the slope (i.e., tan θ) and a and
b equal sin θ and cos θ, respectively, up to a sign. This also implies a2 + b2 = 1 and
ab = sin θ cos θ. When this is substituted in Equation (1.12), it reduces to

x∗ = x − 2a(ax + by) = x(1 − 2a2) − 2aby

= x cos(2θ) + y sin(2θ),

y∗ = y − 2b(ax + by) = −2abx + y(1 − 2b2)
= x sin(2θ) − y cos(2θ).

(Ans.1)

1.17: Reflecting a point (x, y) about the line y = c moves it to (x, 2c − y). Reflecting
this about line y = 0 simply reverses the y coordinate. Thus, the two reflections move
(x, y) to (x, y − 2c). This is a translation of −2c units in the y direction.

1.18: Starting with sin 90◦ = 1, cos 90◦ = 0, we multiply the matrices to obtain⎛
⎝ 0 1 0

2 0 0
0 0 1

⎞
⎠
⎛
⎝ 0 −1 0

1 0 0
0 0 1

⎞
⎠ =

⎛
⎝ 1 0 0

0 −2 0
0 0 1

⎞
⎠ ,

which is a reflection and scaling in the y dimension.

1.19: Direct multiplication yields⎛
⎝ cos θ1 cos θ2 − sin θ1 sin θ2 − cos θ1 sin θ2 − cos θ2 sin θ1 0

sin θ1 cos θ2 + cos θ1 sin θ2 − sin θ1 sin θ2 + cos θ1 cos θ2 0
0 0 1

⎞
⎠

=

⎛
⎝ cos(θ1 + θ2) − sin(θ1 + θ2) 0

sin(θ1 + θ2) cos(θ1 + θ2) 0
0 0 1

⎞
⎠ ,

thereby proving that two-dimensional rotations are additive.

1.20: Direct multiplication yields

T1T2 =

⎛
⎝ 1 + bc b 0

c 1 0
0 0 1

⎞
⎠ .

This is a combination of shearing and scaling in the x direction. It is pure shearing only
if bc = 0. This shows that shearing is not an additive transformation.
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1.21: The product of the three shears is

(
1 a
0 1

)(
1 0
b 1

)(
1 c
0 1

)
=
(

ab + 1 a + abc + c
b bc + 1

)
.

When we equate this to the standard rotation matrix

(
cos θ − sin θ
sin θ cos θ

)
,

we end up with

a = c =
cos θ − 1

sin θ
= − tan

θ

2
, and b = sin θ,

which shows how to calculate a, b, and c from θ. Notice that both (cos θ − 1) and sin θ
approach zero for small angles. The ratio of two small numbers is hard to calculate
with any precision, which is why it is preferable to use tan(θ/2) instead. This particular
combination of transformations does not save any time because we still have to calculate
sin θ and cos θ in order to obtain a, b, and c. Still, it is an interesting, unexpected result
that’s illustrated in Figure Ans.3 for θ = 45◦.

(a) (b)

(c) (d)

Figure Ans.3: A 45◦ Rotation As Three Successive Shearings.
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1.22: The transformation matrices are⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝ a 0 0

0 d 0
0 0 1

⎞
⎠
⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠

=

⎛
⎝ a cos2 θ + d sin2 θ (d − a) cos θ sin θ 0

(d − a) cos θ sin θ a sin2 θ + d cos2 θ 0
0 0 1

⎞
⎠ .

When a = d, this reduces to ⎛
⎝ a 0 0

0 a 0
0 0 1

⎞
⎠ ,

which does not depend on θ! This proves that uniform scaling produces identical results
regardless of the particular axes used.

1.23: We simply multiply

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝ 1 b 0

c 1 0
0 0 1

⎞
⎠
⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠

=

⎛
⎜⎜⎜⎜⎝

cos2 θ − c sin θ cos θ− sin θ cos θ − c sin2 θ+
−b sin θ cos θ + sin2 θ +b cos2 θ − sin θ cos θ

0

sin θ cos θ + c cos2 θ− sin2 θ + c sin θ cos θ+
−b sin2 θ − sin θ cos θ +b sin θ cos θ + cos2 θ

0

0 0 1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎝ 1 − (b + c) sin θ cos θ b cos2 θ − c sin2 θ 0

c cos2 θ − b sin2 θ 1 + (b + c) sin θ cos θ 0
0 0 1

⎞
⎠ .

This expression does depend on θ! When b = c = 0, the expression reduces to the
identity matrix. However, when b = c �= 0, this does not reduce to anything simple or
elegant.

1.24: A direct scaling of point P = (x, y) relative to (x0, y0) is done by

x∗ = x0 + (x − x0)sx = x · sx + x0(1 − sx),
y∗ = y0 + (y − y0)sy = y · sy + y0(1 − sy).

Using matrix notation, this is written as

(x∗, y∗, 1) = (x, y, 1)

⎛
⎝ sx 0 0

0 sy 0
x0(1 − sx) y0(1 − sy) 1

⎞
⎠ . (Ans.2)
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Performing the same transformation by means of translation, scaling, and reverse trans-
lation is done by the matrix product

⎛
⎝ 1 0 0

0 1 0
−x0 −y0 1

⎞
⎠
⎛
⎝ sx 0 0

0 sy 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 1 0
x0 y0 1

⎞
⎠ ,

which produces the same result.

1.25: Substituting k1 = k2 = k in Equation (1.16) yields

⎛
⎝ k2 0 0

0 k2 0
k(1 − k)x1 + (1 − k)x2 k(1 − k)y1 + (1 − k)y2 1

⎞
⎠ .

This is equivalent to a single scaling by a factor k2 about point

Pc =
k(1 − k)
1 − k2

P1 +
1 − k

1 − k2
P2 =

k

1 + k
P1 +

1
1 + k

P2.

1.26: Using homogeneous coordinates, we transform

(t2, t, 1)

⎛
⎝−1 0 1

0 2 0
1 0 1

⎞
⎠ = (1 − t2, 2t, 1 + t2),

which, after dividing by the third component, becomes the point

(
1 − t2

1 + t2
,

2t

1 + t2

)
.

This point satisfies the relation x2 + y2 = 1, so it is located on the unit circle.

1.27: The Mathematica code

t14=2^14;
Print["(x*=",(8192-(2 14189.))/t14,",y*=",(14189.+(2 8192))/t14,")"]
Print["(x*=",Cos[60 Degree]-2. Sin[60 Degree],
",y*=",Sin[60 Degree]+2. Cos[60 Degree], ")"]

calculates the rotated point twice, first using integers and then using Mathematica’s
built-in sine and cosine functions. The results are identical: (x∗ = −1.23206, y∗ =
1.86603).

For an 80◦ rotation, the code

t14=2^14;
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Print["(x*=",(2845.-(2 16135.))/t14,",y*=",(16135.+(2 2845.))/t14,
")"]

Print["(x*=",Cos[80 Degree]-2. Sin[80 Degree],
",y*=",Sin[80 Degree]+2. Cos[80 Degree], ")"]

produces (x∗ = −1.79596, y∗ = 1.33209) and (x∗ = −1.79597, y∗ = 1.3321) (a slightly
different result).

1.28: From the definition of θi, we know that the ratio tan θi+1/ tan θi is 1/2. Small
angles satisfy tan θ ≈ θ, so we conclude that the ratio θi+1/θi equals approximately 1/2,
except for the first few θi’s. This can also be confirmed by manually checking the ratios
from Table 1.11. Given an infinite sequence of numbers t, t/2, t/4,. . . , t/2i, we can
express every number from 0 (which is obtained by subtracting all the numbers in the
sequence from the first one) to 2t (which is obtained by adding all the numbers in the
sequence). Our sequence of θi is finite and the ratio of consecutive elements isn’t always
precisely 1/2, but [Walther 71] proves that every number in the range [0, 90◦) can be
reached, up to a certain precision, by adding and subtracting a number of consecutive
θi’s.

1.29: The method proposed here is based on the fact that the magnitude of the
rotated vector (x∗, y∗) should be identical to that of the original vector (x, y). This can
be achieved by first normalizing (x∗, y∗) and then multiplying it by the magnitude of
(x, y),

(x∗, y∗) ← (x∗, y∗)

√
x2 + y2√

x∗2 + y∗2 = (x∗, y∗)

√
x2 + y2

x∗2 + y∗2 ,

a calculation involving four exponentiations, one division, one multiplication, and one
square root.

1.30: The traditional way of calculating a sine function is by its power series

sin(θ) =
θ

1!
− θ3

3!
+

θ5

5!
− θ7

7!
+ · · · ,

and similarly for cosine. These series, however, converge very slowly, requiring many
multiplications and divisions. If a graphics application needs just rotations, the method
of Section 1.2.3 may be simpler and faster than CORDIC. The advantage of CORDIC is
that it can be adapted to the calculation of many different functions. A general software
package that is concerned not just with rotations may benefit from the application of
CORDIC.

1.31: From the definition k =
√

a2 + c2, it follows that k = 0 implies a = c = 0.
In this case, the similarity becomes x∗ = m, y∗ = n, and this is not a transformation
because it is not one-to-one.
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1.32: Transforming point (x − 2Px + 2Qx, y − 2Py + 2Qy) through another halfturn
yields

(x − 2Px + 2Qx, y − 2Py + 2Qy, 1)

⎛
⎝ −1 0 0

0 −1 0
2Rx 2Ry 1

⎞
⎠

= (−x + 2Px − 2Qx + 2Rx,−y + 2Py − 2Qy + 2Ry, 1).

Comparing this with Equation (1.19) shows that the result of three halfturns is a halfturn
about the point S = P−Q + R. Writing this as S−P = R−Q shows that PQRS is
a parallelogram (Figure 1.14c). Thus, point S completes the original three points to a
parallelogram.

1.33: The first part results in

(x∗, y∗) = (x, y)

⎛
⎝ 3 4 0

−2 5 0
1 −6 1

⎞
⎠ .

The decomposition is simple because A =
√

9 + 16 = 5:

⎛
⎝ 1 0 0

14/25 1 0
0 0 1

⎞
⎠
⎛
⎝ 5 0 0

0 23/5 0
0 0 1

⎞
⎠
⎛
⎝ 3/5 4/5 0

−4/5 3/5 0
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 1 0
1 −6 1

⎞
⎠ .

1.34: From Equation (1.22), we get the following.

1. For scaling, the inverse of

T =

⎛
⎝ a 0 0

0 d 0
0 0 1

⎞
⎠ is T−1 =

1
ad

⎛
⎝ d 0 0

0 a 0
0 0 1

⎞
⎠ ,

so

(x, y)T−1 =
(

x

a
,
y

d
,

1
ad

)
→ (x∗, y∗) = (dx, ay),

which is also scaling by factors d and a.
2. For shearing, the inverse of

T =

⎛
⎝ 1 b 0

c 1 0
0 0 1

⎞
⎠ is T−1 =

1
−bc

⎛
⎝ 1 −b 0

−c 1 0
0 0 1

⎞
⎠ ,

so

(x, y, 1)T−1 =
(

x − yc

−bc
,
−xb + y

−bc
,

1
−bc

)
→ (x∗, y∗) = (x − yc,−xb + y),
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which is a combination of shearing and scaling.
3. For rotation, the inverse of

T =

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠

is

T−1 =
1

cos2 θ + sin2 θ

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠ =

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠ .

This is a rotation in the opposite direction.
4. For translation, the inverse of⎛

⎝ 1 0 0
0 1 0
m n 1

⎞
⎠ is

⎛
⎝ 1 0 0

0 1 0
−m −n 1

⎞
⎠ .

This is a reverse of the original translation.

1.35: We denote the transformation matrix by
(
a b
c d

)
and write the four equations

Pi

(
a b
c d

)
= P∗

i for 1 ≤ i ≤ 4.

These are easy to solve and yield a = 6, b = 1, c = 2, and d = 3.

1.36: The plane should pass through the three points (0, 0, 0), (0, 0, 1), and (1, 1, 0).
Equation (1.24) gives

A =

∣∣∣∣∣∣
0 0 1
0 1 1
1 0 1

∣∣∣∣∣∣ = −1, B = −
∣∣∣∣∣∣
0 0 1
0 1 1
1 0 1

∣∣∣∣∣∣ = 1,

C =

∣∣∣∣∣∣
0 0 1
0 0 1
1 1 1

∣∣∣∣∣∣ = 0, D = −
∣∣∣∣∣∣
0 0 0
0 0 1
1 1 0

∣∣∣∣∣∣ = 0.

The expression of the plane is therefore −x + y = 0.

1.37: They are the points where the plane x/a + y/b + z/c = 1 intercepts the three
coordinate axes.

1.38: s = N • P1 = (1, 1, 1) • (1, 1, 1) = 3, so the plane is given by x + y + z −
3 = 0. It intercepts the three coordinate axes at points (3, 0, 0), (0, 3, 0), and (0, 0, 3)
(Figure 1.20a).
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1.39: The expression is

P(u, w) = P1 + u(P2 − P1) + w(P3 − P1) = (3, 0, 0) + u(−3, 3, 0) + w(−3, 0, 3).

1.40: This is trivial. The origin is point (0, 0, 0), and Equation (1.27) shows that the
distance between it and the plane Ax + By + Cz + D = 0 is

D√
A2 + B2 + C2

.

1.41: Because d is the signed distance. If the normal points from the plane in the
direction of P, then d is positive, but we have to travel in the direction of −N. If the
normal points in a direction opposite that of P, then we travel from P to P∗ in the
direction of N but d is negative.

1.42: The product TrRxTrr yields

⎛
⎜⎝

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 m(cos θ − 1) − n sin θ n(cos θ − 1) + m sin θ 1

⎞
⎟⎠ .

Substituting θ = 30◦ produces the matrix

⎛
⎜⎝

1 0 0 0
0 0.866 0.5 0
0 −0.5 0.866 0
0 0.634 −0.366 1

⎞
⎟⎠ ,

which transforms point (1, 2, 3, 1) to (1, 0.866, 3.232, 1).

1.43: Using the rule for quaternion multiplication and the three trigonometric identi-
ties

cos θ = cos2 θ
2 − sin2 θ

2 , sin θ = 2 sin θ
2 cos θ

2 , and cos θ = 1 − 2 sin2 θ
2 ,

we can write

q · [0,P] · q−1 =
[
cos θ

2 ,u sin θ
2

] · [0,P] · [cos θ
2 ,−u sin θ

2

]
=
{[

cos θ
2 ,u sin θ

2

] · [0,P]
} · [cos θ

2 ,−u sin θ
2

]
=
[− sin θ

2 (u • P), cos θ
2P + sin θ

2 (u × P)
] · [cos θ

2 ,−u sin θ
2

]
= [− sin θ

2 cos θ
2 (u • P) + sin θ

2 cos θ
2 (P • u) − sin2 θ

2 (u × P) • u,

sin2 θ
2 (u • P)u + cos2 θ

2P + sin θ
2 cos θ

2 (u × P)
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− sin θ
2 cos θ

2 (P × u) − sin2 θ
2 (u × P) × u]

=
[
0, sin2 θ

2 (u • P)u + cos2 θ
2P + 2 sin θ

2 cos θ
2 (u × P)

− sin2 θ
2 (P − (u • P)u)

]
=
[
0, 2 sin2 θ

2 (u • P)u + (cos2 θ
2 − sin2 θ

2 )P + 2 sin θ
2 cos θ

2 (u × P)
]

= [0, (1 − cos θ)(u • P)u + cos θP + sin θ(u × P)]
= [0, (u • P)u + cos θ(P − (u • P)u) + sin θ(u × P)],

that is Equation (1.31).

2.1: They could be (a) a cube, (b) the same cube seen edge on, and (c) the same cube
seen rotated through 30◦ with one front edge and one back edge.

2.2: Given sz = 0.625, we calculate θ and φ

θ = sin−1

(
±0.625√

2

)
= sin−1(±0.44194) = ±26.23◦,

φ = sin−1

(
± 0.625√

2 − 0.6252

)
= sin−1(±0.49266) = ±29.52◦.

2.3: Equation (2.4) shows that s2
x = s2

z is equivalent to

cos2 φ + sin2 φ sin2 θ = sin2 φ + cos2 φ sin2 θ.

This can be simplified to (sin2 φ − cos2 φ) cos2 θ = 0, with the two solutions cos2 θ =
0 → θ = ±90◦ and sin2 φ − cos2 φ = 0, which implies sinφ = ± cos φ and results in
φ = 90◦ ± 45◦ and 270◦ ± 45◦.

3.1: Such examples abound, mostly in modern art, which is one reason why many
consider modern art trivial or false. Figure C.7 on page 242 [The Old Testament Trinity,
c. 1410s, by the Russian painter Andrei Rublev is an example of reversed perspective.
A well-known example of diverging lines is Woman in Mirror (1937) by Picasso.

3.2: A rolodex [eldonoffice 05] features many vanishing points because each of its index
cards is oriented differently, causing its sides to seem to converge to a different point. A
striped shirt may feature several vanishing points because the groups of parallel stripes
on a sleeve, on the shirt itself, and on the flat parts of the collar may point in different
directions. Long, meandering railway tracks may feature straight segments that go in
different directions and create different vanishing points. Many scenes feature multiple
vanishing points, as illustrated by the flat rectangles of Figure Ans.4. The well-known
drawing High and Low by Escher [Ernst 76] features five vanishing points, four near the
four corners of the figure and the fifth one at the center.
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Figure Ans.4: Many Vanishing Points.

3.3: Yes, by viewing it through a telescope. This device “telescopes” a scene and
brings objects closer to the observer rather than magnifying them, but it does not affect
the perspective. See Section 4.11 for the telescopic projection.

3.4: Figure Ans.5 illustrates the construction. First, lines “a” and “b” are constructed,
followed by the two lines labeled “c.” This is followed by the eight “d” lines, four of
which are equally spaced on the left-hand side of “b” and the other four equally spaced
on the right-hand side of “b.” The last step is to construct the eight “e” vertical line
segments.

We shall therefore borrow all our rules for the finishing of our proportions, from the
musicians, who are the greatest masters of this sort of numbers, and from those things
wherein nature shows herself most excellent and compleat.

—Leon Battista Alberti

c c

e e e e e ee e

d d d
d d d

d

b

a

Figure Ans.5: Two-Point Perspective With Equally-Spaced Lines.

3.5: Because the seven horizontal lines of the grid of part (b) are no longer equally
spaced. Instead, they converge toward the top of the grid.

3.6: We start with a rectangle in one-point perspective and determine its single van-
ishing point (Figure Ans.6). We then copy the bottom line of the original rectangle
(with the five numbered key points) and move it between the converging lines to form
line “a.” This makes it easy to construct the three lines “b.” Next, the left-hand side of
the original rectangle (with the seven points labeled “A” through “G”) is placed to the
right of the perspective rectangle and point “G” is connected with point “x.” This seg-
ment is continued until it intercepts line “h” to determine point “f.” Connecting points
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G

1 2 3 4 5

A B C D E F

a

b b b

g
g
g

g

g

x

hf

c

Figure Ans.6: A Large Digit “5” in One-Point Perspective.

“B” through “F” to point “f” determines the locations of the five horizontal guidelines
“g,” which completes the construction of the perspective grid. It is now obvious how to
move the various key points of the large digit to their new locations.

3.7: In the standard position, the line of sight of the viewer is the z axis. In order
for a line segment to be perpendicular to this direction, all its points must have the
same z coordinate (i.e., the segment must be contained in a plane parallel to the xy
plane). We therefore select two endpoints with z = 1 and two other endpoints with
z = 3. The first two points are selected, somewhat arbitrarily, as P1 = (2, 3, 1) and
P2 = (3,−1, 1). The third point is chosen as P3 = (0, 2, 3) and the last point is
determined from P4 = P2 − P1 + P3 = (1,−2, 3). The four points are now projected
to P∗

1 = (1, 3/2), P∗
2 = (3/2,−1/2), P∗

3 = (0, 1/2), and P∗
4 = (1/4,−1/2).

It is easy to show that the two straight segments defined by the four projected
points are parallel by computing the differences v1 = P∗

2 − P∗
1 = (1/2,−2) and v2 =

P∗
4 − P∗

3 = (1/4,−1). The difference of two points is a vector, and the two vectors v1

and v2 point in the same direction.

3.8: We are looking for a t value for which P∗(t) = (0, 1/4). This can be written as
the vector equation

(1 − t)2(−1/2, 0) + 2t(1 − t)(0, 1/3) + t2(1/4, 1/4) = (0, 1/4)

or as the two separate scalar equations (1 − t)2(−1/2) + 2t(1 − t)(0) + t2(1/4) = 0 and
(1 − t)2(0) + 2t(1 − t)(1/3) + t2(1/4) = (1/4). The first equation yields the solutions
t ≈ 0.5858 and t ≈ 3.414, while the second equation has the solutions t = 0 and t = 1.6.
The two equations are therefore contradictory.
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3.9: Appropriate mathematical software produces the result (0, 2, 4, 1). The rotation
transforms (0, 1,−4, 1) to (0, 4, 1, 1), the translation transforms this to (0, 4, 4, 1), and
the scaling produces (0, 2, 4, 1).

3.10: When T1 or T2 gets large, the object is magnified. However, when T3 gets large,
the object is scaled in the z direction relative to the origin. All the z coordinates become
large, effectively moving the object away from the observer. When all three scale factors
get large, the magnification in the x and y directions is canceled out by the effect of
moving away in the z direction, so the object does not seem to change in size.

3.11: Equation (3.5) gives us

T =

⎡
⎢⎣

1 0 0 0
0 0 0 1
0 −1/2 0 0
0 0 0 4

⎤
⎥⎦ ,

and we know that (0, 1,−4, 1)T = (0, 2, 0, 5). We are looking for a point P = (x, y, z)
such that (x, y, z, 1)T = (0, 0, 0, w) for any w �= 0. The explicit form of this set of
equations is (x,−z/2, 0, y + 4) = (0, 0, 0, w), and this is satisfied by all the points of
the form (0, y, 0), where y �= −4. The interpretation of this result is simple. The
rotation brings the points on the y axis to the z axis, where they are translated by three
units and remain on the z axis. The scaling doesn’t move these points any farther.
Point (0,−4, 0) is rotated to (0, 0,−4) and translated to (0, 0,−1), which is the viewer’s
position. All the points on the z axis are projected to the origin except the viewer’s
location. The projection of the viewer is undefined because the case z = −k results in
Equation (3.1) having a zero denominator. The next example sheds more light on the
perspective projection of points with negative z coordinates.

3.12: The terms clockwise and counterclockwise fully describe rotations in two dimen-
sions. Our example, however, is in three dimensions, where rotations are more complex
and can have more directions. The rotation produced by matrix (3.6) is from the posi-
tive z to the positive x direction (or, alternatively, from the negative x direction to the
negative z direction).

3.13: Because of the special orientation of the projection plane. This equation says
that any point (x, y, z) satisfying αx = −βz lies on the projection plane, regardless of
its y coordinate.

3.14: The case θ = 0 means α = 0 and β = 1. Matrix (3.7) reduces to

⎛
⎜⎝

k 0 0 0
0 k 0 0
0 0 0 1
0 0 0 k

⎞
⎟⎠ = k

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠ .
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The case θ = 45◦ implies α = β = 1/
√

2. Matrix (3.7) is reduced to

⎛
⎜⎝

k/2 0 −k/2 1/
√

2
0 k 0 0

−k/2 0 k/2 1/
√

2
0 0 0 k

⎞
⎟⎠ .

The case θ = 90◦ means α = 1 and β = 0. Matrix (3.7) reduces to

⎛
⎜⎝

0 0 0 1
0 k 0 0
0 0 k 0
0 0 0 k

⎞
⎟⎠ = k

⎛
⎜⎝

0 0 0 r
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ .

3.15: Direct multiplication yields

(βl, m,−αl, 1)

⎛
⎜⎝

kβ2 0 −kαβ α
0 k 0 0

−kαβ 0 kα2 β
0 0 0 k

⎞
⎟⎠

= (klβ3 + klα2β, mk,−klαβ2 − klα3, lαβ − lαβ + k)
= (klβ, km,−klα, k).

The transformed point is P∗ = (lβ, m,−lα) = P. Point P is thus transformed to itself!
This happens because P resides on the projection plane. The equation of the plane
is αx = −βz, and a simple check verifies that the coordinates of point P satisfy this
relation.

3.16: The steps are similar to the ones used to derive matrix (3.7):

Use the relation (−kα,−kβγ,−kβδ) • (x, y, z) = 0 to derive the equation of the
projection plane. This is trivial, and the equation is −xkα − ykβγ − zkβδ = 0.

Compute the straight segment from the viewer to a general point P = (l, m, n):

(l + kα, m + kβγ, n + kβδ)t + (−kα,−kβγ,−kβδ).

Calculate the value of t0 at the intersection point of the segment and the plane.
From[

(l + kα)t0 − kα
]
kα +

[
(m + kβγ)t0 − kβγ

]
kβγ +

[
(n + kβδ)t0 − kβδ

]
kβδ = 0,

we get

t0 =
k(α2 + β2γ2 + β2δ2)

(l + kα)α + (m + kβγ)βγ + (n + kβδ)βδ

=
k(α2 + β2γ2 + β2δ2)

lα + mβγ + nβδ + k(α2 + β2γ2 + β2δ2)
.
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The coordinates of the projected point can now be determined. The x∗ coordinate
is

x∗ = (l + kα)t0 − kα = (l + kα)
k(α2 + β2γ2 + β2δ2)

lα + mβγ + nβδ + k(α2 + β2γ2 + β2δ2)
− kα

=
lkβ2(γ2 + δ2) − mkαβγ − nkαβδ

lα + mβγ + nβδ + k(α2 + β2γ2 + β2δ2)
.

The y∗ coordinate is

y∗ = (m + kβγ)t0 − kβγ

= (m + kβγ)
k(α2 + β2γ2 + β2δ2)

lα + mβγ + nβδ + k(α2 + β2γ2 + β2δ2)
− kβγ

=
−lkαβγ + mk(α2 + β2δ2) − nkβ2γδ

lα + mβγ + nβδ + k(α2 + β2γ2 + β2δ2)
.

The z∗ coordinate is

z∗ = (n + kβδ)t0 − kβδ

= (n + kβδ)
k(α2 + β2γ2 + β2δ2)

lα + mβγ + nβδ + k(α2 + β2γ2 + β2δ2)
− kβδ

=
−lkαβδ − mkβ2γδ + nk(α2 + β2γ2)

lα + mβγ + nβδ + k(α2 + β2γ2 + β2δ2)
.

The projection matrix is now easy to calculate. It is⎛
⎜⎝

kβ2(γ2 + δ2) −kαβγ −kαβδ α
−kαβγ k(α2 + β2δ2) −kβ2γδ βγ
−kαβδ −kβ2γδ k(α2 + β2γ2) βδ

0 0 0 k(α2 + β2γ2 + β2δ2)

⎞
⎟⎠ . (Ans.3)

To check our result, we consider the special case of no rotation about the x axis. In
this case, φ = 0, γ = 0, and δ = 1. It is easy to see that this reduces matrix (Ans.3) to
matrix (3.7).

3.17: After the two rotations, the viewer may end up at any point in space, but the
projection plane still passes through the origin. This is why our case is not completely
general.

3.18: These two translation matrices can easily be written, and it is obvious that their
product is a translation from the origin to B.

T3 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −k 1

⎤
⎥⎦ , T4 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
a b c + k 1

⎤
⎥⎦ , T3 ·T4 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
a b c 1

⎤
⎥⎦ .
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3.19: Recall that the basic rule of perspective projection is to connect an image point
to the viewer with a line that intercepts the projection plane. The viewer and the image
points should therefore be on different sides of the projection plane. In our case, point
(0, 0, 0) is behind the viewer, so it is on the same side of the projection plane as the
viewer and, consequently, it does not make sense to project it.

3.20: Direct multiplication yields

(βl, m,−αl, 1)

⎛
⎜⎝

β 0 0 αr
0 1 0 0
−α 0 0 βr
0 0 0 1

⎞
⎟⎠ = (lβ2 + lα2, m, 0, lrαβ − lrαβ + 1) = (l, m, 0, 1),

so the transformed point is P∗ = (l, m, 0). Figure Ans.7 shows that point P =
(βl, m,−αl) resides on the projection plane. After the transformations, it is still lo-
cated on the projection plane, only now this is the xy plane.

x

z

k

θ
Viewer

x

z
Viewer

Screen

P
P

Figure Ans.7: Transforming and Projecting.

3.21: Because they project on different projection planes. Matrix (3.7) projects on
plane αx = −βz, where the z coordinate is proportional to the x coordinate, whereas
matrix (3.9) projects on the xy plane, where the z coordinate is zero.

3.22: Figure Ans.8a shows the geometry of the problem. Notice that the viewer looks
in the direction of negative z and also down. The Mathematica code

<< LinearAlgebra‘Orthogonalization‘
k = 3.; r = 1/k;
{a, b, c} = {0, 2k, -k}; {d, e, f} = Normalize[{0, -1, -1}]
T = {{(e^2 + f + f^2)/(1 + f), -d e/(1 + f), 0, d r},
{-d e/(1 + f), (d^2 + f + f^2)/(1 + f), 0, e r},
{-d, -e, 0, f r},
{(c d + b d e - a e^2 - a f + c d f - a f^2)/(1 + f),
(-b d^2 + c e + a d e - b f + c e f - b f^2)/(1 + f),
0, -(a d + b e + c f) r}};

{0,0,-4k,1}.T

computes the normalized components of D as (0,−0, 7071,−0.7071) and the projected
point as the 4-tuple (0,−2.12132, 0, 3.53553) (i.e., point (0,−0.6) on the xy plane, shown
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in the diagram). This is the first example where the viewer is not looking in the positive
z direction or anywhere near that direction, and this fact raises the issue of the top of
the screen. If the viewer is looking at or near the positive z direction, the rotation that
aligns the screen with the xy plane is about a small angle. In such a case, the screen
does not change its orientation much, so there is no problem with the direction of the
top of the screen. If we assume that the top of the screen was in the positive y direction
(or close to it) before the rotation, then the rotation aligns the top of the screen with
the positive y axis.

x

y

z

k

2k

(0
,−

1,
−1

)

2k

z

y

1

2

3

(a) (b)

D

Figure Ans.8: A Viewer Looking “Backward.”

In this example, however, the rotation is about an angle that is close to 180◦,
so the direction of the top of the screen becomes important. Figure Ans.8b suggests
that the top of the screen is a vector in the direction (0, 1,−1) because this direction is
perpendicular to the line of sight of the viewer and isn’t very different from the direction
of positive y. If this is so, then after the large rotation this top becomes the bottom of
the screen in the xy plane. Figure Ans.8b shows how the top of the screen retains its
orientation when the screen is translated from 1 to 2 but becomes the bottom when the
screen is rotated about the x axis from 2 to 3. Thus, a complete treatment of general
perspective should include an optional rotation of the screen about the z axis. (See the
discussion of the top vector in Section 3.7.)

3.23: This is easily done with the help of appropriate software. The results for the
two cases are ⎛

⎜⎝
1 0 0 0
0 1 0 0
0 0 0 r
−a −b 0 −cr

⎞
⎟⎠ and

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

⎞
⎟⎠ . (Ans.4)

Notice how the second matrix of (Ans.4) is the standard perspective projection matrix
Tp of Equation (3.4).
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3.24: We substitute (a, b, c) = (0, 1, 0) and (d, e, f) = (0, 1/
√

2, 1/
√

2) in matrix (3.13).
The transformation is therefore

(0, 1, 10, 1)

⎛
⎜⎜⎜⎝

1 0 0 0
0 1√

2
0 r√

2

0 −1√
2

0 r√
2

0 −1√
2

0 −r√
2

⎞
⎟⎟⎟⎠ =

(
0,

1 − 10 − 1√
2

, 0,
r + 10r − r√

2

)
,

so P∗ = (0,−1/r, 0) = (0,−k, 0). The following Mathematica code may be helpful for
further experimentation:

<<LinearAlgebra‘Orthogonalization‘

{a,b,c}={0,1.,0}; {d,e,f}=Normalize[{0,1,1}]

T = {{(e^2 + f + f^2)/(1 + f), -d e/(1 + f), 0, d r},

{-d e/(1 + f), (d^2 + f + f^2)/(1 + f), 0, e r},

{-d, -e, 0, f r},

{(c d + b d e - a e^2 - a f + c d f - a f^2)/(1 + f),

(-b d^2 + c e + a d e - b f + c e f - b f^2)/(1 + f),

0, -(a d + b e + c f) r}};

{0,1,10,1}.T

3.25: 1. The magnitude of vector D is
√

12 + 12 =
√

2 = k, so the choice k =
√

2
implies that D has the correct length. It goes from point B to the center of the projection
plane. The coordinates of the center are therefore B + D = (0, 2k − 1,−2k − 1). To
find the equation of the projection plane, we consider an arbitrary point P = (x, y, z)
on this plane. The vector from the center point to P is the difference P − (B + D) =
(x, y − 2k + 1, z + 2k + 1). This vector is perpendicular to D, so their dot product
(x, y − 2k + 1, z + 2k + 1) • (0,−1,−1) must be zero. This produces the equation
y + z = −2, and Figure Ans.9 illustrates how this plane is parallel to the x axis, which
is why its equation does not depend on x. Thus, a general point on the projection plane
has coordinates (x, y,−y − 2)

D

Q

B

B+D

y

z

−2

−2

Figure Ans.9: Projection Plane y+z=−2.
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2. Appropriate mathematical software produces the 4×4 transformation matrix

T123 = (Ans.5)⎡
⎢⎢⎢⎣

e2+f−e2f−f3

1−f2 − de
1+f 0 dr

− de
1+f

d2+f−d2f−f3

1−f2 0 er
−d −e 0 fr

cd + bde
1+f − a(e2+f−e2f−f3)

1−f2 ce + ade
1+f − b(d2+f−d2f−f3)

1−f2 0 1 + (−ad − be − cf)r

⎤
⎥⎥⎥⎦ .

Notice the denominators in this matrix. They imply that values f = ±1 require special
treatment. In our first case, vector D = (0,−1,−1) has f = −1, so we change it to
(0,−1,−0.99). We pick up the point Q = (0, 2k−3,−2k +1) ≈ (0,−0.17,−1.83) that’s
on the projection plane, located “below” the center of the plane. The product Q ·T123

yields the 4-tuple (0, 3.97, 0, 2.42), which is point (0, 1.64, 0), located on the xy plane
but above the origin.

3.26: We first determine α

α =
|a|2

a • (p − b)
=

8
(0, 2, 2) • (x − 0, y − 1, z − 0)

=
4

y + z − 1
.

[Note that P = (0, 1, 10), implying α = 4/(1 + 10 − 1) = 2/5.]
Next, we compute vector d

d = b + α(p − b)

= (0, 1, 0) +
4

y + z − 1
(x, y − 1, z)

=
4

y + z − 1
(
x, (5y − z − 5)/4, z

)
.

[A check verifies that P = (0, 1, 10) ⇒ d = (0, 1, 4).]
Vector c can now be calculated

c = α(p − b) − a

=
4

y + z − 1
(x, y − 1, z) − (0, 2, 2)

=
4

y + z − 1
(
x, (y − z − 1)/2,−(y − z − 1)/2

)
.

Thus, the screen coordinates are

u • c = (1, 0, 0) • 4
y + z − 1

(
x, (y − z − 1)/2,−(y − z − 1)/2

)
=

4x

y + z − 1
,
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w • c = (0, 1/
√

2,−1/
√

2) • 4
y + z − 1

(
x, (y − z − 1)/2,−(y − z − 1)/2

)
=

4(y − z − 1)√
2(y + z − 1)

.

Again, a direct check verifies that P = (0, 1, 10) results in

u • c = 0 and w • c =
4(1 − 10 − 1)√
2(1 + 10 − 1)

=
−4√

2
= −

√
8.

Also, the screen coordinates of point P = (0, 5, 4) are

u • c = 0, and w • c =
4(5 − 4 − 1)√
2(5 + 4 − 1)

= 0,

as should be expected (why?).

3.27: Figure Ans.10 shows that in a right-handed coordinate system, the positive y
axis is in the direction of vector w and vector u is in the direction of negative x.

w

y

x

u z
Viewer

k

Figure Ans.10: A Right-Handed Coordinate System.

3.28: The proof is straightforward but a little messy. We start with two three-
dimensional points, P1 = (x1, y1, z1) and P2 = (x2, y2, z2). Their projections are

P∗
1 =

(
x1k

k + z1
,

y1k

k + z1
,

z1

k + z1

)
and P∗

2 =
(

x2k

k + z2
,

y2k

k + z2
,

z2

k + z2

)
.

Now consider the two lines P(t) = P1 + (P2 − P1)t and P∗(u) = P∗
1 + (P∗

2 − P∗
1)u.

We need to prove that every point on P(t) is transformed to a point on P∗(u), where u
depends on t, k, P1, and P2 only.

The coordinates of a general point on P(t) are
((

x1 + (x2 − x1)t
)
k

k + z1 + (z2 − z1)t
,

(
y1 + (y2 − y1)t

)
k

k + z1 + (z2 − z1)t
,

(
z1 + (z2 − z1)t

)
k

k + z1 + (z2 − z1)t

)
.
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The coordinates of a general point on P∗(u) are

(
x1k

k + z1
+
(

x2k

k + z2
− x1k

k + z1

)
u,

y1k

k + z1
+
(

y2k

k + z2
− y1k

k + z1

)
u,

z1

k + z1
+
(

z2

k + z2
− z1

k + z1

)
u

)
.

In order for the points to be equal, the following two equations have to hold:

(
x1 + (x2 − x1)t

)
k

k + z1 + (z2 − z1)t
=

x1k

k + z1
+
(

x2k

k + z2
− x1k

k + z1

)
u,(

z1 + (z2 − z1)t
)
k

k + z1 + (z2 − z1)t
=

z1

k + z1
+
(

z2

k + z2
− z1

k + z1

)
u.

(There are actually three equations, but the second one, for y, is equivalent to the first
one, so it is not included here.) Because of the way the depth transformation is defined,
both equations are satisfied if u is defined by

u = t
k + z2

k + z1 + (z2 − z1)t
.

Note that t = 0 ⇒ u = 0 and t = 1 ⇒ u = 1.

3.29: The tangent of half the angle is (W/2)/k = 1/2. Therefore, half the angle equals
26.5◦ and the entire field of view is twice that, or 53◦ wide. (See also the discussion of
Brunelleschi’s peepshow experiment on page 82.)

3.30: Since k is scaled by the same factor of 5, we should scale e by this factor, bringing
it down from 2.5 to 0.5.

3.31: The difference between the two pictures of a stereo pair is a horizontal shift, but
various parts of the pictures are shifted by different amounts. Parts close to the camera
are shifted more than parts that are far away. Thus, the two pictures are not simply
shifted versions of each other. However, a person looking at a picture can often tell the
approximate distance of each picture element from the camera. This makes it possible,
at least in principle, to create a copy of a picture and have the user specify the amount
of shift of every picture element in the copy. In practice, such a method is slow and
cumbersome, and the result depends on the depth estimates of the user, so it should be
used only as a last resort, when only one picture is available and it is important to see
it in three dimensions.

4.1: The Mathematica code

(* exercise for hemispherical fisheye projection *)
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k=1;

scal[q_]:=(k Tan[ArcTan[q/k]/2])/q;

{scal[1.],scal[10.], scal[100.], scal[1000.], scal[10000.]}

produces the values 0.414214, 0.0904988, 0.0099005, 0.000999, and 0.00009999.

4.2: Figure Ans.11 illustrates this effect. We see a few points on a vertical line. In
the fisheye projection, each point is moved toward the origin, but points that are close
to the origin are moved less than points that are further away. The result is a curve.
Applying this argument to straight lines that pass through the center of the circle shows
that they are not bent.

Figure Ans.11: Vertical Distortion in Fisheye Projection.

4.3: The only differences are that (1) w varies in the intervals [0, 90◦] (for the top half
of space) and [270◦, 360◦] (for the bottom half) and (2) the entire radius-k circle, not
just half of it, is now devoted to the hemisphere of space in front of the viewer. As a
result, the new table (Ans.12) has just two rows.

w r r interval u sin w

0 → 90 k sin w [0, k] top 0 → 1
270 → 360 −k sin w [k, 0] bottom −1 → 0

Table Ans.12: Two Cases of w, r, and u.

4.4: This point corresponds to w = 0◦ (implying r = 0), and the pair of polar
coordinates (0, u) corresponds to the center of the radius-k circle regardless of u. This
special point is therefore mapped to the center of the circle.
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4.5: Imagine a straight segment parallel to the x axis (Figure Ans.13a). The angle w is
the same for all the points of this segment, so a point in direction (u, w) on the segment
is projected on the circle into a point with polar coordinates (k

2 sin w, u). The result is
a set of points with polar coordinates (r, u), where r is constant (i.e., a circular arc).
When this straight segment is slightly perturbed, as in Figure Ans.13b, its projection
does not vary much and remains a curve. On the other hand, when a straight segment
passes through the viewer’s line of sight, as in Figure Ans.13c, all its points have the
same angle u. The projection of such a segment is a set of points (r, u), where r normally
varies but u is constant, a straight segment.

x

y

z

(a) (b) (c)

Figure Ans.13: Straight Segments in the Angular Fisheye Projection.

4.6: The Cassinian oval is another anallagmatic curve. Recall that an ellipse is the
locus of all the points the sum of whose distances from two foci is constant. The
Cassinian oval is similarly defined as the locus of the points the product of whose
distances from two foci is constant.

See [xahlee 05] for a detailed discussion and figures.

4.7: Figure Ans.14 shows a circle C that does not pass through the origin. (Notice
that the circle of inversion itself is not shown.) We construct the line L from O through
the center of C and examine the intersection points P and Q. Their projections P∗

and Q∗ must be on L. We select an arbitrary point R on C and denote its projection
R∗. From OP ·OP ∗ = OQ ·OQ∗ = OR ·OR∗, we get OR∗/OP = OP ∗/OR, indicating
that the two triangles ORP and OR∗P ∗ are similar. This implies that angles OP ∗R∗

and ORP are equal and also that angles OQ∗R∗ and ORQ are equal. We subtract
angles and find that OP ∗R∗ −OQ∗R∗ = ORP −ORQ = 90◦, which implies that angle
P ∗R∗Q∗ = 90◦. Since this is true for a general point R, we conclude that all the points
R∗ (which together constitute the projection of C) are located on the circle C∗ centered
on L with diameter P ∗Q∗.

4.8: The rule P∗ = 1/P is generalized to P∗ = R2/P. This projection retains all the
features mentioned in the text with regard to the unit circle.
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C

Q

R

P

O P*

R*

Q*

C*

Figure Ans.14: Circular Inversion of a Circle.

4.9: The z∗ coordinate depends on Z in the sense that point P should be projected
on the cylinder only if |z∗| ≤ Z.

4.10: Figure Ans.15a shows a cylinder of radius R centered on the origin, with its
axis in the z direction. We start with a circle in the xy plane. The circle’s equation
is
(
R cos(2πt), R sin(2πt), 0

)
. The circle is now rotated θ degrees about the y axis, as

shown in Figure Ans.15b. The new circle is given by

(
R cos(2πt), R sin(2πt), 0

)⎛⎝ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞
⎠

=
(
R cos(2πt) cos θ, R sin(2πt), R cos(2πt) sin θ

)
.

Figure Ans.15c shows that in order to convert this tilted circle into an ellipse, its x and
z coordinates should be scaled by a factor of 1/ cos θ. The equation of this ellipse is
thus (

R cos(2πt), R sin(2πt), R cos(2πt) tan θ
)
. (Ans.6)

In order to prove that this is an ellipse, we can rotate it back to the xy plane. The
result is

(
R cos(2πt), R sin(2πt), R cos(2πt) tan θ

)⎛⎝ cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎞
⎠

=
(
R(cos θ + sin2 θ) cos(2πt), R sin(2πt), 0

)
,

an expression that satisfies x2/a2 + y2/b2 = 1 for a = R(cos θ + sin2 θ) and b = R.
Figure Ans.15d shows the unrolled cylinder, cut along the y = 0 line, with the origin at
its center.

The behavior of the resulting flat curve can be figured out when we notice that the
x and y coordinates of the ellipse of Equation (Ans.6) form a circle, which is a curve
with constant speed. This means that when the curve is flattened, it has constant speed
in the horizontal direction (i.e., incrementing t in equal steps moves us equal horizontal
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z
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z z2πR
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z

(a) (b)

(c)

cut here

(d)

θ

Figure Ans.15: Ellipse and Sinusoid.

increments on the unrolled cylinder). The vertical behavior of the flattened curve is
determined by the z coordinate of Equation (Ans.6), and this coordinate behaves like
a sine curve with an amplitude R tan θ. The result is the parametric curve(

(2t − 1)πR, R tan θ cos
[
(2t − 1)π

])
, 0 ≤ t ≤ 1.

As t varies from zero to one, the horizontal coordinate varies from −πR to +πR and
the vertical coordinate varies as a sine curve from −1 to 0 to +1, back to 0, and ends
up at −1.

It is also interesting to consider the curvature of this sine curve. The curvature is
essentially given by the second derivative, which, in the case of sin(t), equals − sin(t).
We are interested only in the absolute magnitude of the curvature, so we can disregard
the minus sign. The result is that for t = 0 and t = π the curvature is zero, while for
t = π/2 it is maximum. The conclusion is that when a straight line is projected by curved
perspective into a sinusoid, those parts of the line that are close to the observer become
highly curved, while the distant parts remain straight or close to straight. Figure 4.24
is a typical example of this behavior.

4.11: Figure Ans.16 illustrates the geometry of the problem. Parts a and b show
that the distance between the two points on the hemisphere is R(sin θ)φ, and part c
shows that the distance between them on the circle is Rθφ. The ratio of the distances
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is θ/ sin θ and this number, which is undefined for θ = 0, starts at 1 for small angles,
reaches 1.01 for 30◦, and becomes π/2 ≈ 1.57 for 90◦.

θ
φ

φ

(a)

R
R

R(sinθ)φ

Rsinθ Rsinθ

Rθ
Rθ

Rθ

(b) (c)

A

A

B

B
R
θφ

Figure Ans.16: Distance Between Points in Curvilinear Perspective.

4.12: Imagine a straight horizontal line of the form (x(t), y(t), 0). All its z coordinates
are zero, which makes it easy to show (and also to visualize) that the projected segments
of this line (there can be up to three segments) are all horizontal and therefore have
identical slopes. Figure Ans.17 illustrates an example. Given the two points P1 =
(3k,−3k/2, 0) and P2 = (k, 5k/4, 0), it is trivial to determine that P∗

1 = (k,−k/2, 0)
and P∗

2 = (4k/5, k, 0). Since both P1 and P2 have z coordinates of zero, the entire
line segment connecting them has z = 0. Thus, even though we don’t know the precise
location of point P0, we know that its z coordinate is zero. The coordinates of its
projection P∗

0 are between those of P0 and the origin, implying that the z coordinate
of P∗

0 is also zero. Thus, the two segments P∗
1P

∗
0 and P∗

0P
∗
2 have z = 0 and therefore

have the same slope.

x

y

z

P*
1

P*
2

P1

P2

P0

x=k

y=k

Figure Ans.17: Cubic Projection of a Horizontal Straight Segment.

On the other hand, a straight horizontal line of the form
(
x(t), y(t), a

)
for a �= 0

features an interpanel slope discontinuity that’s proportional to a. Here is an illustrative
example. Given the two points P1 = (2k, 0, a) and P2 = (2k, 100k, a), the line segment
connecting them is L(t) = (2k, 100tk, a). Point P1 is projected to P∗

1 = (k, 0, a/2),
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and point P2 is projected to P∗
2 = (k/50, k, a/100). Point P0 is a point L(t0) on this

segment with the property that its x and y coordinates are equal. This produces the
equation 2k = 100t0k, which yields t0 = 1/50. Thus, P0 is the point (2k, 2k, a) and is
projected to P∗

0 = (k, k, a/2). The result is two projected segments. The one on panel
x = k goes from P∗

1 = (k, 0, a/2) to P∗
0 = (k, k, a/2), so its slope is zero. The projected

segment on the y = k segment goes from P∗
0 = (k, k, a/2) to P∗

2 = (k/50, k, a/100), so
its slope is (a

2
− a

100

) / (
k − k

50

)
.

Assuming that the y coordinate of P2 is very large (more than 100), we obtain the
approximate slope a/(2k). The slope discontinuity is proportional to the z coordinate
a. It is zero for a = 0 and becomes large (positive or negative) with a.

4.13: The image is circular because the main mirror is circular. It has a hole in the
middle because the main mirror has a hole in it (more accurately, because light hitting
the top of the main mirror, around its hole, cannot reach the secondary mirror).

I’ve finally figured out what’s wrong with photography. It’s a one-eyed man looking
through a little ’ole. Now, how much reality can there be in that?

—David Hockney

4.14: It is easy to see from Equation (4.4) that z = k → z∗ = k/2.

4.15: These concepts are defined for the Earth or for any rotating sphere. The rotation
naturally defines two special points, the poles. These, in turn, define the equator (the
great circle at equal distances from the poles and parallel to the axis of rotation). Now
imagine a point P on the surface of the sphere. Draw a vertical great circle arc from P
to the equator. (The term “vertical” means part of a great circle that passes through
the poles.) This arc meets the equator at a point Q. The angle POQ (where O is
the center of the sphere) is the latitude of P. It varies in the interval [0, 90◦] for each
hemisphere. Thus, latitude is a natural coordinate on the rotating sphere. Its definition
does not require any arbitrary choices.

She wanted to live in Canada, he wanted to live in Mexico, so they parted. Years
later, when asked the reason she replied simply “I just didn’t like his latitude!”

—Charles Schultz, Peanuts

The definition of longitude, on the other hand, is arbitrary and depends on a special
direction that must be chosen by general agreement. This direction, which is referred to
as longitude zero (or meridian zero), is perpendicular to the rotation axis. The longitude
of a point P is the angle between its direction (the segment connecting it to the axis)
and longitude zero. Thus, longitude varies in the interval [0, 360◦], although many maps
show it in the interval [0, 180◦] and add the designation “east” or “west.”

The antipode of point P is the point on the surface of the sphere at maximum
distance from P.
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A graticule is a spherical grid of coordinate lines, latitudes and longitudes, over the
surface of the sphere. The latitudes are circles perpendicular to the axis, which is why
they are also called parallels. Each longitude is a semicircular arc (a meridian) with the
axis as its chord. All the meridians meet at each pole, and every parallel crosses every
meridian at a right angle.

4.16: Yes, there are infinitely many developable surfaces, one of which is shown in
Figure Ans.18. Notice that at every point on a developable surface it is possible to
draw a straight line that lies completely on the surface.

Figure Ans.18: A Developable Surface.

A.1: This is easily proved by showing that both dot products (P×Q)•P and (P×Q)•Q
equal zero,

(P × Q) • P = P1(P2Q3 − P3Q2) + P2(−P1Q3 + P3Q1) + P3(P1Q2 − P2Q1) = 0,

and similarly for (P × Q) • Q.

A.2: In the special case where i = (1, 0, 0) and j = (0, 1, 0), it is easy to verify that the
product i×j equals (0, 0, 1) = k. Thus, the triplet (i, j, i × j = k) has the handedness
of the coordinate system. (It is either right-handed or left-handed, depending on the
coordinate system.) In a right-handed coordinate system, the right-hand rule says: If
your thumb points in the direction of P and your second finger in the direction of Q,
then your middle finger will point in the direction of P×Q. In a left-handed coordinate
system, a similar left-hand rule applies.

A.3: They either point in the same direction or in opposite directions.

A.4: We are looking for a vector P(t) that’s linear in t and that satisfies P(0) = P1

and P(1) = P2. It is easy to guess that

P(t) = (1 − t)P1 + tP2 = t(P2 − P1) + P1 (Ans.7)

satisfies both conditions. This equation can also be considered a weighted sum of P1 and
P2 with the weights 1 − t and t. It is an important and useful relation often employed
in graphics.
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B.1: Yes, there are two and only two such extensions, octonions and sedenions.
Octonions are a nonassociative extension of the quaternions. They form an 8-

dimensional normed division algebra over the real numbers. Octonions were defined
and developed in 1843 by John T. Graves, an associate of William Hamilton, who
referred to them as octaves.

Sedenions form a 16-dimensional algebra over the real numbers obtained by apply-
ing the Cayley-Dickson construction to the octonions. Like octonions, multiplication of
sedenions is neither commutative nor associative.

Two references to these exotic mathematical objects are [Carmody 88] and [Car-
mody 97].

He always answered at extreme speed, as though the questions

were reflected instantaneously off the front of his head.

—C. P. Snow, The Light and the Dark (1947)
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“So few?” asked Frost. “Many of them contained bibliographies

of books I have not yet scanned.” “Then those books

no longer exist,” said Mordel. “It is only by accident that my

master succeeded in preserving as many as there are.”

—Roger Zelazny, For a Breath I Tarry (1966)
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This index reflects my belief that a detailed index is invaluable in a scientific/technical
book. A special effort was made to include full names (first and middle names instead
of initials) and dates of persons mentioned in the book. Any mistakes, inaccuracies,
and omissions found in the index and brought to my attention will be included in the
errata list and corrected in any future editions of the book.

180◦ rotation, 6, 29
360◦ panoramic projection, see panoramic

projection, 145
90◦ rotation, 11

aerial perspective (in art), 84
affine transformations, 7, 22, 55
Albers equal-area projection, 215
Albers, Heinrich Christian (1773–1833), 215
Alberti, Leon Battista (1404–1472), 78,

82–85, 183, 257
anaglyph (stereoscopic image), 129, 132,

135–137
anallagmatic curves, 163, 164, 269
anamorphosis, x, 197–199, 241
antipode (definition of), 199, 273
Araya, Shinji, xii, 180, 182, 183, 239
Austen, Jane (1775–1817), 3, 243
author’s email address, xii
autostereoscopic displays, 142–144
axonometric projections, 60–66
azimuthal projection, 202, 204–206

Barre, André, 179
Bellos, David, 73, 194
Bernard, Emile (1868–1941), 203

Billings, Josh, 196
Bly, Joseph, 154, 155, 236
Bonne, Rigobert (1727–1795), 218
braccio (unit of length used in the

Renaissance, plural braccia), 83
Braun, Carl, 217
Bridges, Jeff (1949–), 105
Brunelleschi’s peepshow experiment, 79–82,

267
Brunelleschi, Filippo di Ser (1377–1446),

78–82
Buonarroti, Miguel Angel (Michelangelo,

1475–1564), 79

cabinet projection, 67
cameras, panoramic, x, 188–194
Carroll, Lewis, (1832–1898), 208
Cassai, Tommaso, see Masaccio
Cassinian oval, 269
cavalier projection, 67
Cézanne, Paul (1839–1906), 203
Chesterton, Gilbert Keith (1874–1936), 171
circle, 9

scaled to ellipse, 9, 244
circle inversion, x, 145, 162–166
clipping (in three dimensions), 122
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Columbus, Christopher (1451–1506), 199
computer animation, 96, 97, 101
conformal projection, 163, 202
conic equidistant projection, 214–215
conic panoramic projection, 186–188
conical projection, 214–217
convex polygons, 122
convex polyhedra, 122
CORDIC rotations, 24–28
cross product, 222–225, 274

in four dimensions, 224–225
cubic projection, 180–182
curved perspective, 169–188
curvilinear perspective, 177–180
cyclorama, see Mesdag Panorama
cylindrical equal-area projection, 208, 215
cylindrical equidistant projection, 208–211
cylindrical projection, 167–174, 206–211

Daguerre, Louis Jacques Mande
(1787–1851), 124

da Vinci, Leonardo (1452–1519), 79, 84, 144
decomposing transformations, 32–33
determinant

and cross product, 223
and plane equation, 39
pure reflection, 11
pure rotation, 11
use in scaling, 9

developable surfaces, 274
definition of, 203

Devil’s fork (an impossible object), 243
dimetric projections, 62
direction cosines, 48
dock (a fisheye menu on the Macintosh), 160
dot product, 221–222
dot stereograms, 132, 141–142
double scaling, 21–22
Dürer, Albrecht (1471–1528), 85

Eckert IV projection, 213–214
Eckert, Max (1868–1938), 213
Egyptian art, 72
Eisenhauer, David, 172
Eliot, George (Mary Ann Evans 1819–1880),

101
ellipse, 9
email address of author, xii
equal-area projection, 201

equiangular projection, see conformal
projection

equiareal transformation, 36
equidistant projection, 202
equirectangular projection, 175
Escher, Maurits Cornelis (1898–1972), 135,

149, 174, 177, 186, 256
Euripides (c. 480–406 b.c.), 107
explicit representation of lines, 17

false perspective projection, 145–146
Farish, William, 65
Feiffer, Jules (1929–), 242
fisheye menus, 159–162
fisheye projection, x, 145, 147–162, 268

angular, 151–156
approximate, 150–151
convert to spherical, 156
hemispherical, 147–150
off-axis, 156–158
rectangular, 158–159
semicylindrical, 159

flight simulation (example), 122–123
fractals (and L-systems), 45
Francesca, Piero della (1420?–1492), 82
frustum (viewing volume), 122
functions

one-to-one, 5
onto, 5

geodesic, 201
geometric transformations, 5–55

definition of, 6
Givens rotations, 50
Givens, J. Wallace (1910–1993), 51
glide reflection, 30
gnomonic projection, 201, 204
Gogh, Vincent van, see van Gogh
Golden Ratio, 12, 27, 32
Goode, John Paul (1862–1932), 218
graticule (definition of), 199, 274
Graves, John T., 275
Griffin, Grant R., 27
groups (of transformations), 6
Guillemets, Terri, 42

half-angles (for perspective), 117
halfturns, 29
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Halmos, Paul Richard (1916–2000), x
Hamilton, William Rowan (1805–1865), 227,

229, 275
Hansen, Robert, 179
Hardy, Thomas (1840–1928), xii
Hawthorne, Nathaniel (1804–1864), 55
Hirst, Thomas (1830–1892), 162
history of perspective, 78–84
Hockney, David (1937–), 87, 273
Holbein, Hans (the young, 1497/98–1543),

198
homogeneous coordinates, 13–14, 94
homolosine projection, 218
Hulcher, Charles A. (camera inventor), 189
Hulcherama panoramic camera, 189

Ikemoto, Howard, 236
implicit representation of lines, 17, 39
improper rotations, 31–32
inner product, see dot product
interleaved mode, 138
isometric projections, 63, 64
isometry, 35

Joyce, James Aloysius Augustine
(1882–1941), 67

Julesz, Bela (1928–2003), 141

Kepler, Johannes (1571–1630), 33

L-systems, 45
Lambert conformal projection, 215–216
Lambert, Johann Heinrich (1728–1777),

208, 215
Lascaux cave drawings, 71
latitude (definition of), 199, 273
law of cosines, 221
Lebovitz, David, 156
Lederer, Richard (1938–), viii
left-handed coordinate system, 36
Lindenmayer, Aristid (1925–1989), 45
line

explicit representation of, 17
implicit representation of, 17, 39
standard form of, 18
vector equation, 224

Linkletter, Art (Gordon Arthur Kelly,
1912–), 29

LOGO (programming language), 45

longitude (definition of), 199, 273
Lubbock, John (1834–1913), 242

Mandelbrot, Benôıt (1924–), 214
Manetti, Antonio di Tuccio pupil and

biographer of Filippo Brunelleschi
(1423–1497), 79, 81

map projections, see sphere projections
Marcus Vitruvius Pollio (c. 80–70 b.c.–?),

78
Masaccio (Tommaso di ser Giovanni di

Mone, 1401–1428), 82
Matisse, Henri (1869–1954), 235
matrices

inverse, 34, 46, 254
orthonormal, 11

McWade, Robert, 170
Mercator projection, 201, 206–208
Mercator, Gerhardus (1512–1594), 207, 209,

210
meridian, see longitude
Mesdag Panorama, 167
Mesdag, Hendrik Willem (1831–1915), 167
Michelangelo (Michaelangelo), see

Buonarroti
microscopic projection, x, 145, 196–197
Miller cylindrical projection, 218–220
Miller, Osborn Maitland (1897–1979), 219
Mollweide projection, 201, 211–213
Mollweide, Karl B. (1774–1825), 211
Moore, George Augustus (1852–1933), 171
Morrison, Toni (1931–), v
multidimensional spaces, 224–225

n-point perspective, 38, 110, 183
Nabokov, Vladimir (1899–1977), x
Navajo rock drawings, 72
negate and exchange rule, 11, 24, 245
Newton, Isaac (1643–1727), 6
Nietzsche, Friedrich (1844–1900), 40
Noblex panoramic camera, 190
nonlinear projections, x, 145–220

O’Keeffe, Georgia Totto (1887–1986), 231
oblique projections, 67–70
Octonions, 275
one-to-one (function), 6
onto (function), 5
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Orosz, István, 198
orthographic projections, 58–60, 206
orthomorphic projection, see conformal

projection
orthonormal matrix, 11

painter’s algorithm, 72
Palermo, David, 177
panoramic cameras, x, 188–194
panoramic projection, x, 145, 166–194
parallax (in stereo images), 125
parallel projections, 57–70, 147
Pauli, Wolfgang (1900–1958), 227
Peirce, Charles S. (1839–1914), 208
Perec, Georges (1936–1982), 11
perspective conical projection, 215–217
perspective projection, ix–x, 71–144

n-point, 38, 110, 183
coordinate-free, 114–120
curved, 169–188
curved objects, x, 77, 84–87, 183
depth projection, 120
history of, 78–84
mathematical treatment, 87–123
vanishing points, x, 72–77

Petersik, Andreas, 131
Picasso, Pablo (1881–1973), 239, 256
pinhole camera, 191
pitch (in rotation), 44
pixels and raster scan, 65
plane

distance from point, 41–42
equation of, 39–41

plane chart, 175
plate carre, 175
Platonic solids, 186

projection, 185–186, 191–194
Pliny the Elder (Gaius Plinius Secundus,

23–79), 199
polygons (convex), 122
polyhedra (convex), 122
Pope, Alexander (1688–1744), 288
Portal panoramic lens system, 190
Postel projection, 179–180, 185
Postel, Guillaume (1510–1581), 179
projections

aerial perspective, 84
anamorphosis, x, 197–199, 241
axonometric, 60–66

cabinet, 67
cavalier, 67
circle inversion, x, 145, 162–166
conformal, 163
conic panoramic, 186–188
cubic, 180–182
cylindrical, 167–174
dimetric, 62
false perspective, 145–146
fisheye, x, 145, 147–162, 268
general rule, 57
isometric, 63, 64
microscopic, x, 145, 196–197
nonlinear, x, 145–220
oblique, 67–70
orthographic, 58–60
panoramic, x, 145, 166–194
parallel, 57–70, 147
perspective, ix–x, 71–144

curved, 169–188
Platonic solids, 185–186, 191–194
six-point, x, 183–185
sphere, x, 145, 154, 199–220
spherical, 174–180, 184
telescopic, x, 145, 194–196, 257
trimetric, 62

pseudoconical projection, 217–218
pseudocylindrical projection, 211–214
pseudovector, 224
Ptolemy, Claudius (85–165), 217
Pulfrich effect, 132, 139
Pulfrich, Carl (1858–1927), 139

quaternions, x, 50–54, 227–229
and spin matrices, 227

raster scan display, 138
Raymond, Eric, 220
reconstructing transformations, 33–34
Recorde, Robert (1510–1558), 58
rectangular projection, 175
reflection, 9, 36

glide, 30
in three dimensions, 38–43
two consecutive, 18

Resnick, Mike (1942–), 225
reverse transformations, 54–55
right-hand rule, 274



Index 287

right-handed coordinate system, 36
roll, 44
Roszak, Theodore, 197
rotation, 9, 36

180◦, 29
90◦, 11
CORDIC, 24–28
Givens, 50
in three dimensions, 43–50
in two dimensions, 9–11
matrix, 11
pitch, 44
polar coordinates, 11, 244
roll, 44
yaw, 44

Rublev, Andrei (c. 1360/70-1430), 242, 256
rule of projections, 57
Rushkoff, Douglas, 145, 146

Salomon, Ari, xii, 172, 173, 238
Sanson-Flamsteed projection, see sinusoidal

projection
Santa Maria del Fiore (Cathedral), 79
scaling, 9, 36

double, 21–22
fisheye, 147
in three dimensions, 38

Schultz, Charles (1922–2000), 273
Schuster’s conundrum (an impossible

object), 243
Sedenions, 275
SeuKehoerat, Brendan P., 278
Shakespeare, William (1564–1616), xiv
shearing, 9, 36

in three dimensions, 38
in two dimensions, 9
three successive, 20

Shelley, Percy Bysshe (1792–1822), 151
similarities, 28–29
similarity, 36
sinusoidal projection, 200–202, 212–213
six-point projection, x, 183–185
Snow, Charles Percy (1905–1980), 131, 147,

275
sphere projections, x, 145, 154, 199–220

Albers equal-area, 215
azimuthal, 202, 204–206
conformal, 202
conic equidistant, 214–215

conical, 214–217

cylindrical, 206–211

cylindrical equal-area, 208, 215

cylindrical equidistant, 208–211

Eckert IV, 213–214

equal-area, 201

equidistant, 202

equirectangular, 175

gnomonic, 201, 204

homolosine, 218

Lambert conformal, 215–216

Mercator, 201, 206–208

Miller cylindrical, 218–220

Mollweide, 201, 211–213

orthographic, 58, 206

perspective conical, 215–217

plane chart, 175

plate carre, 175

Postel, 179–180, 185

pseudoconical, 217–218

pseudocylindrical, 211–214

rectangular, 175

sinusoidal, 200–202, 212–213

stereographic, 201, 206, 217

spherical panoramic projection, 174–180,
184

Stabius, Johann (1450–1522), 218

standard position

definition of, 88

fisheye, 147

transform the viewer from, 103

viewer moved from, 97

Steiner, Jakob (1796–1863), 162

stereographic projection, 201, 206, 217

stereoscope, 132

stereoscopic images, x, 123–144

anaglyph, 129, 132, 135–137

autostereoscopic displays, 142–144

creating pictures, 128–131

cross-eye view, 132–134

lenticular lens, 139–140

line alternate, 138–139

page flipped, 137–138

rules of, 128–129

stereoscope, 132

viewing, 132–142

stereoscopy, 123–144

dot stereograms, 132, 141–142
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Pulfrich effect, 132, 139
Stewart, Ian, 8
Strunk, William (1869–1946), 37
summary of transformations, 35–36

telescopic projection, x, 145, 194–196, 257
Termes, Dick A., v, xii, 154, 155, 171, 172,

177, 178, 183–187, 192, 193, 236, 240
the total photograph, 191

Termes, Lang, 185
Termespheres, 172, 240
thin lens equation, 195
three-dimensional transformations, 37–54
total photograph (panoramic photography),

191–194
transformations, 5–55

180◦ rotation, 29
affine, 7, 22, 55
decomposing, 32–33
definition of, 6
equiareal, 36
glide reflection, 30
halfturns, 29
improper rotations, 31–32
reconstructing, 33–34
reverse, 54–55
similarities, 28–29
summary of, 35–36
three-dimensional, 37–54
two-dimensional, 8–36

translation
and homogeneous coordinates, 13
in three dimensions, 38
in two dimensions, 13

Travis, Adrian R. L., 142
trimetric projections, 62
Trinity (fresco), 82

triple product, 222
Truman, Harry S. (1884–1972), xi
two-dimensional transformations, 8–36

Uccello, Paolo (di Dono, 1396/97–1475), 78
Updike, John Hoyer (1932–), 70

van Gogh, Vincent (1853–1890), 87
vanishing points, x, 72–77

in six-point perspective, 183
rule of, 76, 88

Vasari, Giorgio (1511–1574), 78, 80
vectors

axial, 224
cross product, 222–225, 274

direction of, 224, 274
dot product, 221–222
orthogonal, 221
polar, 224
pseudo, 224
triple product, 222
vector product, 222

viewing volume, 121–123
Vinci, Leonardo da, see da Vinci

Walker, Paul Robert, 82
Web site of this book, xii
Weisstein, Eric W., 38
Werner, Johannes (1466–1528), 218
Wheatstone, Charles (1802–1875), 123
White, Elwyn Brooks (1899–1995), 37
Wood, John, 175

yaw, 44

Zelazny, Roger Joseph (1937–1995), 281
zenithal projection, see azimuthal projection

How index-learning turns no student pale,

Yet holds the eel of science by the tail!

—Alexander Pope, The Dunciad (1743)



Colophon

The idea of writing this book originated during 2003–2004, when I noticed a number
of new computer programs for creating panoramas from several individual overlapping
images and for processing images in various ways. It became obvious that more and
more computer users and digital camera owners were interested in manipulating images,
which could justify a book of this kind. Most of the material was written during the
second half of 2005. This material is based on my long experience with computer
graphics methods, on text from my 1999 book on computer graphics, and on material
found on the Internet. Chapter 3 has material from the history of art, but otherwise this
book is mathematically oriented. The many inserts with quotations have been included
to liven up the book and also to push the text up or down in order to improve the page
breaks.

The book was designed and typeset by me in plain TEX (plus about
150 macros). The figures and diagrams were generated in Adobe Illustrator.
The following numbers convey an idea of the amount of work that went into
the book:

The book contains about 101,500 words, consisting of about 600,000 characters.

The text is typeset mainly in font cmr10, but about 30 other fonts were used.

The raw index file has about 810 items.

There are about 330 cross references in the book.

The difference between a mountain and a molehill is your perspective.

—Anonymous




