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Preface

Images are all around us. We see them in color and in high resolution. In fact, the
natural images we see with our eyes seem perfectly smooth, with no jagged edges and
no graininess. Computer graphics, on the other hand, deals with images that consist
of small dots, pixels. When we first hear of this feature of computer graphics, we tend
to dismiss the entire field as trivial. It seems intuitively obvious that an image that
consists of dots would always look artificial, rough, and inferior to what we see with our
eyes. Yet state-of-the-art computer-generated images are often difficult or impossible to
distinguish from their real counterparts, even though they are discrete, made of pixels,
and not continuous.

A similar dichotomy exists in painting. Many painters try to mimic nature and
paint smooth and continuous pictures. Others choose to be pointillists. They paint by
placing many small dots on their canvas. The most important pointillist was the 19th
century French impressionist Georges Seurat.

Georges Seurat (1859–1891) was a leader in the late 19th century neo-impressionism
movement, a school of painting that uses tiny brushstrokes of contrasting colors to
achieve a delicate play of light and create subtle changes in form (Figure C.1). Seurat
used this technique, which became known as pointillism or divisionism, to create huge
paintings that are made entirely of small dots of pure color. The dots are too small to
be distinguished when looking at the work in its entirety, but they make his paintings
shimmer with brilliance. His most well-known works are Une Baignade (1883–84) and
Un dimanche après-midi à l’Ile de la Grande Jatte (1884–86). The art critic Arsène
Alexandre had this to say about the latter painting: “Everything was so new in this
immense painting—the conception was bold and the technique one that nobody had
ever seen or heard before. This was the famous pointillism.”

Even though it generates discrete images made of dots, the field of computer graph-
ics has been extremely successful. It has started from nothing in the 1960s and has
since attracted many workers and researchers. They developed general techniques and
specialized algorithms to generate and manipulate images and thereby turned computer
graphics into the useful, practical discipline it is today.
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The chief aim of computer graphics is to display and print realistic-looking images.
This task is achieved by computing the outer surface of the object or objects to be
displayed, and rendering it by simulating the way it is seen in real life. Most real objects
are visible because they reflect light, so the main task of rendering is to simulate light
reflection. (Relatively few objects are visible because of light that they generate. A
completely transparent object is visible by the light it refracts. Most objects, however,
do not generate light and are not transparent. They are seen because they reflect some
of the light that falls on them.)

Rendering is therefore an important part of computer graphics, but this book is
concerned with the computations of surfaces. In order to render a real object, such as
a teapot or a car, its surface has first to be calculated and stored in the computer as
a mathematical expression. This expression is a model of the real object, which is why
the process of generating the model is known as geometric modeling. The rendering
algorithm then scans the surface point by point, computes the normal vector to the
surface at every point, and uses the normal to compute the amount and color of light
reflected from the point.

The book also deals with curves, because an understanding of curves is a key to
understanding surfaces. Most mathematical methods for curves can be extended to
surfaces, which is why this book covers various approaches to curve design and shows
that many curve methods can be generalized to surfaces.

The most important term in the field of curve and surface design is interpolation.
It comes from the Latin inter (between) and polare (to polish) and it means to compute
new values that lie between (or that are an average of) certain given values. A typical
algorithm for curves starts with a set of points and employs interpolation to compute a
smooth curve that passes through the points. Such points are termed data points and
they define an interpolating curve. Some methods start with both points and vectors
and compute a curve that passes through the points and at certain points also moves in
the directions of the given vectors.

Another important term in this field is approximation. Certain curve and surface
methods start with points and perhaps also vectors and compute a curve or a surface
that passes close to the points but not necessarily through them. Such points are known
as control points and the curve or the surface defined by them is referred to as an
approximating curve or surface. Most chapters of this book describe interpolation or
approximation methods.

Chapter 1 presents the basic theory of curves and surfaces. It discusses the all-
important parametric representation and covers basic concepts such as curvature, tan-
gent vectors, normal vectors, curve and surface continuity, and Cartesian products.

Chapter 2 introduces the simplest curves and surfaces. Straight lines, flat planes,
triangles, and bilinear and lofted surfaces are presented and illustrated with examples.

Chapter 3 discusses polynomial interpolation. Given a set of points, the problem is
to compute a polynomial that passes through them. This problem is then extended to
a surface patch that passes through a given two-dimensional set of points. The chapter
starts with the important parametric cubic (PC) curves. It continues with the general
method of Lagrange interpolation and its relative, the Newton interpolation method.
Simple polynomial surfaces are presented, followed by Coons surfaces, a family of simple
surface patches based on polynomials.
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The mathematically-elegant Hermite interpolation technique is the topic of Chap-
ter 4. The chapter discusses cubic and higher-order Hermite curve segments, special
and degenerate hermite segments, Hermite interpolation curves, the Ferguson surface
patch, the Coons surface patch, the bicubic surface patch, and Gordon surfaces. A few
less-important topics are also touched upon.

The important concept of splines is covered in Chapter 5. Spline methods for curves
and surfaces are more practical than polynomial methods and several spline methods are
based on Hermite interpolation. The main topics in this chapter are cubic splines (sev-
eral varieties are discussed), cardinal splines, Kochanek–Bartels splines, spline surface
patches, and cardinal spline patches.

Chapter 6 is devoted to Bézier methods for curves and surfaces. The Bernstein
form of the Bézier curve is introduced, followed by techniques for fast computation of
the curve and by a list of the properties of the curve. This leads to a discussion of
how to smoothly connect Bezier segments. The de Casteljau construction of the Bézier
curve is described next. It is followed by the technique of blossoming and by methods for
subdividing the curve, for degree elevation and for controlling its tension. Sometimes one
wants to interpolate a set of points by a Bézier curve and this problem is also discussed.
Rational Bézier curves have important advantages and are assigned a separate section.

The chapter continues with material on Bézier surfaces. The topics discussed are
rectangular Bézier surfaces and their smooth joining, triangular Bézier surfaces and their
smooth joining, and the Gregory surface patch and its tangent vectors.

The last of the “interpolation/approximation” chapters is Chapter 7, on the all-
important B-spline technique. B-spline curve topics are the quadratic uniform B-spline
curve, the cubic uniform B-spline curve, multiple control points, cubic B-splines with
tension, higher-degree uniform B-splines, interpolating B-splines, open uniform B-spline,
nonuniform B-splines, matrix form of the nonuniform B-spline curve, subdividing the
B-spline curve, and NURBS. The B-spline surface topics are uniform B-spline surfaces,
an interpolating bicubic patch, and a quadratic-cubic B-spline patch.

Subdivision methods for curves and surfaces are discussed in Chapter 8. These
methods are also based on interpolation, but are different from the traditional interpo-
lation methods discussed in the preceding chapters. The following important techniques
are described in this chapter: The de Casteljau refinement process, Chaikin’s algorithm,
the quadratic uniform B-spline curve, the cubic uniform B-spline curve, bi-quadratic
B-spline patches, bicubic B-spline patches, Doo–Sabin subdivision methods, Catmull–
Clark surfaces, and Loop subdivision surfaces.

Chapter 9 presents the various types of sweep surfaces. This is a completely dif-
ferent approach to surface design and representation. A sweep surface is generated by
constructing a curve and moving it along another curve, while optionally also rotating
and scaling it, to create a surface patch. A special case of sweep surfaces is surfaces of
revolution. They are created when a curve is rotated about an axis.

Appendix A is a short discussion of conic sections, a family of simple curves that
have special applications.

Appendix B discusses simple methods for the approximate representation of circles
by polynomials.

Appendix C is a small collection of color images, most of which appear elsewhere
in the book in grayscale.
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Finally, Appendix D discusses several useful and interesting commands and tech-
niques employed in the various Mathematica code listings sprinkled throughout the book.

History of Curves and Surfaces

Section 2.4 discusses lofted surfaces but does not explain the reason for this unusual
name. Historically, shipbuilders were among the first to mechanize their operation by
developing mathematical models of surfaces. Ships tend to be big and the only dry place
in a shipyard large enough to store full-size drawings of ship parts was in the sail lofts
above the shipyard’s dry dock. Certain parts of a ship’s surface are flat in one direction
and curved in the other direction, so such surfaces became known as lofted.

In the 1960s, both car and aircraft manufacturers became interested in applying
computers to automate the design of their vehicles. Traditionally, artists and designers
had to make clay models of each part of the surface of a car or airplane and these models
were later used by the production people to produce stamp molds. With the help of
the computer it became possible to design a section of surface on the computer in an
interactive process, then have the computer drive a milling machine to actually make
the part.

The box on page 175 mentions the work of Pierre Bézier at Renault and Paul
de Casteljau at Citroën, the contributions of Steven Coons to Ford Motors and William
Gordon and Richard F. Riesenfeld to General Motors, and the efforts of James Ferguson
in constructing airplane surfaces.

As a result of these developments in the 1960s and 1970s, the area of computer
graphics that deals with curves and surfaces has become known, in 1974, as computer
assisted geometric design (CAGD). Several sophisticated CAGD software systems have
been developed in the 1980s for general use in manufacturing and in other fields such as
chemistry (to model molecules), geoscience (for specialized maps), and architecture (for
three-dimensional models of buildings).

Hardware developments in the 1980s made it possible to use CAGD techniques
in the 1990s to produce computer-generated special effects for movies (an example is
Jurassic Park), followed by full-length movies, such as Toy story, Finding Nemo, and
Shrek, that were entirely generated by computer.

A detailed survey of the history of this field can be found in [Farin 04]. Several
first-person historical accounts by pioneers in this field are collected in [Rogers 01].

Resources for Curves and Surfaces

As is natural to expect, the World Wide Web has many resources for CAGD. In addition
to the many texts available in this field, the journals CAD and CAGD carry state-of-
the-art papers and articles. See [CAD 04] and [CAGD 04]. Following is a list of some
of the most important resources for computer graphics, not just CAGD, current as of
mid-2005.

http://www.siggraph.org/ is the official home page of SIGGRAPH, the special
interest group for graphics, one of many SIGs that are part of the ACM.

The Web page http://www.siggraph.org/conferences/fundamentals has useful
course notes from SIGGRAPH conferences.
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The Web page http://www.faqs.org/faqs/graphics/faq/ by John Grieggs has
answers to frequently-asked questions on graphics, as well as pointers to other resources.
It hasn’t been updated since 1995.

See http://www.cis.ohio-state.edu/~parent/book/outline.html for the lat-
est version of Richard Parent’s book on computer animation.

http://mambo.ucsc.edu/psl/cg.html is a jumping point to many sites that deal
with computer graphics.

A similar site is http://www.cs.rit.edu/~ncs/graphics.html that also has many
links to CG sites.

http://ls7-www.cs.uni-dortmund.de/cgotn/ is a very extensive site of computer-
graphics-related pointers.

IEEE Computer Graphics and Applications is a technical journal carrying research
papers and news. See http://computer.org/cga.

Animation Magazine is a monthly publication covering the entire animation field,
computer and otherwise. Located at http://www.bcdonline.com/animag/.

Computer Graphics World is a monthly publication concentrating on news, see
http://cgw.pennnet.com/home.cfm.

An Internet search for CAD or CAGD returns many sites.

Software Resources

Those who want to experiment with curves and surfaces can either write their own soft-
ware (most likely in OpenGL) or learn to use one of several powerful software packages
available either commercially or as freeware. Here are the ones found by the author in
mid 2005.

Mathematica, from [Wolfram Research 05], is the granddaddy of all mathematical
software. It has facilities for numerical computations, symbolic manipulations, and
graphics. It also has all the features of a very high-level programming language.

Matlab (matrix lab), from [Mathworks 05] is a similar powerful package that many
find easier to use.

Blender is powerful software that computes and displays many types of curves and
surfaces. It has powerful tools for animation and game design and is available for several
platforms from [Blender 05].

DesignMentor is a free software package that computes and displays curves, surfaces,
and Voronoi regions and triangulations. It is available from [DesignMentor 05].

Wings3D, from [Wings3D 05], is free software that constructs subdivision surfaces.

GIMP is a free image manipulation program for tasks such as photo retouching,
image composition, and image authoring. It is available from [GIMP 05] for many
operating systems, in many languages, but it does not compute curves and surfaces.
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A Word on Notation

It is common practice to represent nonscalar quantities such as points, vectors, and
matrices with boldface. Below are examples of the notation used here:

x, y, z, t, u, v Italics are used for scalar quantities such as coordinates
and parameters.

P, Qi, v, M Boldface is used for points, vectors, and matrices.

�CP An alternative notation for vectors, used when the two
endpoints of the vector are known.

P(t), P(u, v) Boldface with arguments is used for nonscalar functions
such as curves and surfaces.(

a11 a12

a21 a22

)
Parentheses (sometimes square brackets) are used for ma-
trices.

a11 a12

a21 a22
Vertical bars are used for determinants.

|v| The absolute value (length) of vector v.

AT The transpose of matrix A.

x∗, P∗ The transformed values of scalars and points.

fu(u), Pt(t), Ptt(t) The (first or second) derivatives of scalar and vector func-
tions. For third and higher derivatives, a prime is usually
used.

df(u)
du

,
dP(t)

dt
Alternative notation for derivatives.

df2(u)
du2

,
dP2(t)

dt2
Alternative notation for higher-order derivatives.

∂f(u, v)
∂u

,
∂P(u, v)

∂v
Partial derivatives.

f(x)|x0 or f(x0) Value of function f(x) at point x0.

n∑
i=1

xi The sum x1 + x2 + · · · + xn.

n∏
i=1

xi The product x1x2 . . . xn.
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� Exercise 1: What is the meaning of (P1,P2,P3,P4)?

Readership of the Book

The book aims at mathematically mature readers (i.e., those who can deal comfortably
with mathematical abstractions), who are familiar with computers and computer graph-
ics, and are looking for a mathematically-easy presentation of geometric modeling. The
material presented here requires no previous knowledge of curves, splines, or surfaces.
The key ideas are introduced slowly, are examined, when possible, from several points
of view, and are illustrated by figures, examples, and (solved) exercises. The discussion
must involve some mathematics, but it is nonrigorous and therefore easy to grasp. The
mathematical background required includes polynomials, matrices, vector operations,
and elementary calculus. The following features enhance the usefulness of the book:

The powerful Mathematica software system is used throughout the book to imple-
ment the various concepts discussed. When a figure is computed in Mathematica, the
code is listed with the figure. These codes are meant to be readable rather than ef-
ficient and fast, and are therefore easy to read and to modify even by inexperienced
Mathematica users.

The book has many examples. Experience shows that examples are important for
a thorough understanding of the kind of material discussed in this book. The conscien-
tious reader should follow each example carefully and try to work out variations of the
examples. Many examples also include Mathematica code.

Many exercises are sprinkled throughout the text. These are also important and
should be worked out. The answers are also provided, but should be consulted only to
verify the reader’s own answer, or as a last resort.

The book aims to be practical, not theoretical. After reading and understanding a
topic, the reader should be able to design and implement the concepts discussed there.
The few mathematical proofs found in the book are simple, and there is no attempt to
present an overall theory encompassing all curves and surfaces. The following advice by
Proust is adhered to:

A book in which there are theories is like an article from which the price mark has
not been removed.

—Marcel Proust, Time Regained (1921).

Currently, the book’s Web site is part of the author’s Web site, which is located
at http://www.ecs.csun.edu/~dsalomon/. Domain name DavidSalomon.name has
been reserved and will always point to any future location of the Web site. The
author’s email address is dsalomon@csun.edu, but any email sent to email address
〈anyname〉@DavidSalomon.name will reach the author.

I would like to thank Garry Helzer for his Mathematica implementation of the
triangular Bézier surfaces. Figures 6.31 and C.2 were computed with this code. The
Mathematica notebook for this code is available in the book’s Web site.
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This book is dedicated to the memory of Pierre Bézier, but the field of computer
aided geometric design (CAGD) is the creation of many dedicated researchers, program-
mers, users, and authors. Let us remember their contributions.

Over the projected image he worked with a pointillist technique, using

infinitesimal gradations of color, covering the whole spectrum

dot by dot, so that he always began from a blindingly bright

nucleus and ended at absolute black, or vice versa, depending on

the mystical or cosmological concept he wanted to express.

—Umberto Eco, Foucault’s Pendulum (1988)

Lakeside, California David Salomon
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1
Basic Theory

1.1 Points and Vectors

Real life methods for constructing curves and surfaces often start with points and vectors,
which is why we start with a short discussion of the properties of these mathematical enti-
ties. The material in this section applies to both two-dimensional and three-dimensional
points and vectors, while the examples are given in two-dimensions.

Points and vectors are different mathematical entities. A point has no dimensions; it
represents a location in space. A vector, on the other hand, has no well-defined location
and its only attributes are direction and magnitude. People tend to confuse points and
vectors because it is natural to associate a point P with the vector v that points from
the origin to P (Figure 1.1a). This association is useful, but the reader should bear in
mind that P and v are different.

Both points and vectors are represented by pairs or triplets of real numbers, but
these numbers have different meanings. A point with coordinates (3, 4) is located 3 units
to the right of the y axis and 4 units above the x axis. A vector with components (3, 4),
however, points in direction 4/3 (it moves 3 units in the x direction for every 4 units in
the y direction, so its slope is 4/3) and its magnitude is

√
32 + 42 = 5. It can be located

anywhere.
In mathematics, entities are always associated with operations. An entity that

cannot be operated on is generally not useful. Thus, we discuss operations on points
and vectors. The first operation is to multiply a point P by a real number α. The
product αP is a point on the line connecting P to the origin (Figure 1.1b). Note that
this line is infinite and αP can be located anywhere on it, depending on the value of α.

The next operation is subtracting points. Let P0 = (x0, y0) and P1 = (x1, y1) be
two points. The difference P1 − P0 = (x1 − x0, y1 − y0) = (∆x,∆y) is well defined. It
is the vector (the direction and distance) from P0 to P1 (Figure 1.1b).
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Figure 1.1: Operations on Points.

Figure 1.1c shows two pairs of points a b and c d. Points a and c are different and
so are b and d. The vectors b − a and d − c, however, are identical

Example: The two points P0 = (5, 4) and P1 = (2, 6) are subtracted to produce
the pair P1 − P0 = (−3, 2). The new pair is a vector, because it represents a direction
and a distance. To get from P0 to P1, we need to move −3 units in the x direction
and 2 units in the y direction. Similarly, P0 − P1 is the direction from P1 to P0. The
distance between the points is

√
(−3)2 + 22. These properties do not depend on the

particular coordinate axes used. If we translate the origin—or, equivalently, translate
the points—m units in the x direction and n units in the y direction, the points will have
new coordinates, but the difference will not change. The same property (the difference of
points being independent of the coordinate axes) holds after rotation, scaling, shearing,
and reflection: the so-called affine transformations (or mappings). This is why the
operation of subtracting two points is affinely invariant. (Note that the product αP is
also affinely invariant.)

The sum of a point and a vector is well defined and is a point. Figure 1.2a shows
the two sums P∗

1 = P1 +v and P∗
2 = P2 +v. It is easy to see that the relative positions

of P∗
1 and P∗

2 are the same as those of P1 and P2. Another way to look at the sum P+v
is to observe that it moves us away from P, which is a point, in a certain direction and
by a certain distance, thereby bringing us to another point. Yet another way of showing
the same thing is to rewrite the relation a − b = v as a = b + v, which shows that the
sum of point b and vector v is a point a.

Given any two points P0 and P2, the expression P0 + α(P2 − P0) is the sum of a
point and a vector, so it is a point that we can denote by P1. The vector P2−P0 points
from P0 to P2, so adding it to P0 produces a point on the line connecting P0 to P2.
Thus, we conclude that the three points P0, P1, and P2 are collinear. Note that the
expression P1 = P0 + α(P2 −P0) can be written P1 = (1− α)P0 + αP2, showing that
P1 is a linear combination of P0 and P2. In general, any of three collinear points can
be written as a linear combination of the other two. Such points are not independent.

� Exercise 1.1: Given the three points P0 = (1, 1), P1 = (2, 2.5), and P2 = (3, 4), are
they collinear?
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(a) (b)
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Figure 1.2: (a) Adding a Point and a Vector. (b) Adding Points.

� Exercise 1.2: What can we say about four collinear points?

The next operation to consider is the sum of points. In general this operation is
not well defined. We intuitively feel that adding two points should be done like adding
vectors. The lines connecting the points with the origin should be added, to produce a
sum vector. In fact, as Figure 1.2b shows, this operation depends on the coordinate axes.
Moving the origin (or moving the points) will move the sum of the vectors a different
distance or in a different direction, thereby changing the sum of the points. This is why
the sum of points is, in general, undefined.

Example: Given the two points (5, 3) and (7,−2), we add them to produce (12, 1).
We now move the two points one unit to the left to become (4, 3) and (6,−2). Their
new sum is (10, 1), a point located two units to the left of the original sum.

There is, however, one important special case where the sum of points is well defined,
the so-called barycentric sum. If we multiply each point by a weight and if the weights
add up to 1, then the sum of the weighted points is affinely invariant, i.e., it is a valid
point. Here is the (simple) proof: If

∑n
i=0 wi = 1, then

n∑
i=0

wiPi = P0 +
n∑

i=1

wiPi − (1 − w0)P0

= P0 + w1P1 + w2P2 + · · · + wnPn − (w1 + · · · + wn)P0

= P0 + w1(P1 − P0) + w2(P2 − P0) + · · · + wn(Pn − P0)

= P0 +
n∑

i=1

wi(Pi − P0). (1.1)

This is the sum of the point P0 and the vector
∑n

i=1 wi(Pi −P0), and we already know
that the sum of a point and a vector is a point.

Notice that the proof above does not assume that the weights are nonnegative
and barycentric weights can in fact be negative. A little experiment may serve to



4 1. Basic Theory

convince the sceptics. Given two points (a, b) and (c, d) we construct the barycentric
sum (x, y) = −0.5(a, b) + 1.5(c, d). If we now translate both points by the vector (α, β),
the sum is modified to

−0.5(a + α, b + β) + 1.5(c + α, d + β) = −0.5(a, b) + 1.5(c, d) + (α, β) = (x, y) + (α, β).

The barycentric sum (x, y) is translated by the same vector.
Mathematically-savvy readers may be familiar with the concept of normalization.

Given a set of weights wi that add up to α �= 1, they can be normalized by dividing
each weight by the sum α. Thus, if we need a barycentric sum of certain quantities Pi

and we are given nonbarycentric weights wi, we can compute

n∑
i=1

wi∑n
j=1 wj

Pi =
n∑

i=1

(wi

α

)
Pi =

n∑
i=1

riPi,

where the new, normalized weights ri are barycentric.
Barycentric sums are common in curve and surface design. This book has numerous

examples of curves and surfaces that are constructed as weighted sums of points, and
they all must be barycentric. When a curve consists of a non-barycentric weighted sum of
points, its shape depends on the particular coordinate system used. The shape changes
when either the curve or the coordinate axes are moved or are affinely transformed. Such
a curve is ill conditioned and cannot be used in practice.

The Isotropic Principle

Given a curve that’s constructed as the sum

P(t) =
∑

wiPi +
∑

uivi,

where Pi are points and vi are vectors, the curve is independent of the particular
coordinate system used if and only if the weights wi are barycentric. There is no similar
requirement for the ui weights. Notice that the points can be data points, control
points, or any other points. The vectors can be tangents, second derivatives or any
other vectors, but the statement above is always true. This statement is sometimes
known as the isotropic principle.

A special case is the barycentric sum of two points (1− t)P0 + tP1. This is a point
on the line from P0 to P1. In fact, the entire straight segment from P0 to P1 is obtained
when t is varied from 0 to 1 (Figure 1.3a). To see this, we write P(t) = (1− t)P0 + tP1.
Clearly, P(0) = P0 and P(1) = P1. Also, since P(t) = t(P1 −P0)+P0, P(t) is a linear
function of t, which implies a straight line in t. The tangent vector is the derivative dP

dt
and it is the constant P1 −P0, the direction from P0 to P1. Notice that this derivative
is a vector, not a number. Selecting t = 1/2 yields P(0.5) = 0.5P1+0.5P0, the midpoint
between P0 and P1.

The concept of barycentric weights is so useful that the two numbers 1 − t and t
are termed the barycentric coordinates of point P(t) with respect to P0 and P1.
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P1

P2

P

P1
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(1−t)P0+tP1

(1−0.5)P0+0.5P1

(a) (b)

Figure 1.3: Line and Triangle.

The word barycentric seems to have first been used in [Dupuy 48]. It is derived from
barycenter, meaning “center of gravity,” because such weights are used to calculate
the center of gravity of an object. Barycentric weights have many uses in geometry
in general and in curve and surface design in particular.

Another useful example is the barycentric coordinates of a two-dimensional point
with respect to the three corners of a triangle. Imagine a triangle with corners P0, P1,
and P2 (Figure 1.3b). Any point P inside the triangle can be expressed as the weighted
combination

P = uP0 + vP1 + wP2, where u + v + w = 1. (1.2)

The proof is that Equation (1.2) can be written explicitly as three equations in the three
unknowns u, v, and w:

Px = uP0x + vP1x + wP2x,

Py = uP0y + vP1y + wP2y, (1.3)
1 = u + v + w.

The solutions are unique provided that the three equations are independent. �

� Exercise 1.3: Show that Equation (1.3) consists of three independent equations if the
three points P0, P1, and P2 are independent.

� Exercise 1.4: Show that the barycentric coordinates of point P0 with respect to P0,
P1, and P2 are (1, 0, 0). Also discuss the barycentric coordinates of points outside the
triangle.

Example: Let P0 = (1, 1), P1 = (2, 3), P2 = (5, 1), and P = (2, 2). Equation (1.3)
becomes

(2, 2) = u(1, 1) + v(2, 3) + w(5, 1); u + v + w = 1,
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or
2 = u + 2v + 5w,

2 = u + 3v + w,

1 = u + v + w,

which yield

⎧⎨
⎩

u = 3/8,
v = 1/2,
w = 1/8.

� Exercise 1.5: For a given triangle, calculate the (x, y, z) coordinates of the point with
barycentric coordinates (1/3, 1/3, 1/3). This point is called the centroid and is one of
many centers that can be defined for a triangle. (Imagine cutting the triangle out of a
piece of cardboard. If you try to support it at the centroid, it will balance.)

(This material is useful for the triangular Bézier surface patches described in Sec-
tion 6.23.)

The barycentric combination is the most fundamental operation on points; so much
so that it is used to define affine transformations. The definition is: a transformation
of points in space is affine if it leaves barycentric combinations invariant. Hence, if P =∑

wiPi and
∑

wi = 1, and if T is an affine transformation, then TP =
∑

wiTPi. All
common geometric transformations—such as scaling, shearing, rotation, and reflection—
are affine.

Note: The difference of two points is a vector. We can consider such a difference
a weighted sum where the weights add up to zero (they are +1 and −1). It turns out
that a weighted sum of points where the weights add up to zero is a vector. To prove
this, let

Q =
n∑

i=1

wiPi, where
∑

wi = 0,

and let P be a point. The sum R = Q + P is barycentric (since its coefficients add up
to 1) and is therefore a point. The difference R−P = Q is a difference of points and is
therefore a vector.

Note: Multiplying a point by a number produces a point, so if P is a point, then
−P is also a point. It is located on the line connecting P with the origin, on the other
side of the origin from P. Once this is understood, we notice that the sum of points
P+Q can be written as the difference of points P− (−Q). This difference is, of course,
the vector from point −Q to point P (Figure 1.4), so we conclude that the sum P + Q
of two points is well defined but is not very useful, since it tells us something about the
relative positions of P and −Q, not of P and Q. Assuming that Figure 1.4 depicts the
points Q = (−5,−1) and P = (4, 3), the sum P + Q equals (−5,−1) + (4, 3) = (−1, 2).
This shows that in order to get from point −Q to point P, we need to move one negative
step in the x direction for every two steps in the y direction.

P
P+Q

Q

−Q

x

y

Figure 1.4: Adding Two Points.
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� Exercise 1.6: Let P and Q be points and let v and w be vectors. What is the sum
P − Q + v + w?

1.1.1 Operations on Vectors

The notation |P| indicates the magnitude (or absolute value) of vector P. Vector addi-
tion is defined by adding the individual elements of the vectors being added: P + Q =
(Px, Py, Pz) + (Qx, Qy, Qz) = (Px + Qx, Py + Qy, Pz + Qz). This operation is both com-
mutative P + Q = Q + P and associative P + (Q + T) = (P + Q) + T. Subtraction of
vectors (P − Q) is done similarly and results in the vector from Q to P.

Vectors can be multiplied in three different ways as follows:
1. The product of a real number α by a vector P is denoted by αP and produces the

vector (αx, αy, αz). It changes the magnitude of P by a factor α, but does not change
its direction.

2. The dot product of two vectors is denoted by P •Q and is defined as the scalar

(Px, Py, Pz)(Qx, Qy, Qz)T = PQT = PxQx + PyQy + PzQz.

This also equals |P| |Q| cos θ, where θ is the angle between the vectors. The dot prod-
uct of perpendicular vectors (also called orthogonal vectors) is therefore zero. The dot
product is commutative, P • Q = Q • P.

The triple product (P • Q)R is sometimes useful. It can be represented as

(P • Q)R = (PxQx + PyQy + PzQz)(Rx, Ry, Rz)
=
(
(PxQx + PyQy + PzQz)Rx, (PxQx + PyQy + PzQz)Ry,

(PxQx + PyQy + PzQz)
)
Rz

= (Qx, Qy, Qz)

⎛
⎝PxRx PyRx PzRx

PxRy PyRy PzRy

PxRz PyRz PzRz

⎞
⎠

= Q(PR), (1.4)

where the notation (PR) stands for the 3×3 matrix of Equation (1.4).
3. The cross product of two vectors (also called the vector product) is denoted by

P×Q and is defined as the vector

(P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1). (1.5)

It is easy to show that P×Q is perpendicular to both P and Q.

� Exercise 1.7: Show it!

The following expressions show how P × Q can be expressed by means of a deter-
minant:

P×Q =

∣∣∣∣∣∣
i j k

P1 P2 P3

Q1 Q2 Q3

∣∣∣∣∣∣ = i
∣∣∣∣ P2 P3

Q2 Q3

∣∣∣∣− j
∣∣∣∣ P1 P3

Q1 Q3

∣∣∣∣+ k
∣∣∣∣ P1 P2

Q1 Q2

∣∣∣∣
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= (P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1),
or, alternatively, by means of a matrix

= (Q1, Q2, Q3)

⎛
⎝ 0 P3 −P2

−P3 0 P1

P2 −P1 0

⎞
⎠ . (1.6)

� Exercise 1.8: The cross-product P×Q is perpendicular to both P and Q. In what
direction does it point?

The cross-product is not commutative and is not associative. It is, however, distribu-
tive with respect to addition or subtraction of vectors. Hence, P×(Q±T) = P×Q±P×T.

The magnitude of P×Q equals |P| |Q| sin θ, where θ is the angle between the
two vectors. The cross-product, therefore, has a simple geometric interpretation. Its
magnitude equals the area of the parallelogram defined by the two vectors.

� Exercise 1.9: Given that P×Q = 0, what does it tell us about the vectors involved?

� Exercise 1.10: Derive the vector line equation for the straight segment between two
given points P1 and P2.

1.1.2 The Scalar Triple Product

The scalar triple product of three vectors, P, Q, and R, is defined as

S = P • (Q × R) = P1(Q2R3 − Q3R2) + P2(Q3R1 − Q1R3) + P3(Q1R2 − Q2R1)

=

∣∣∣∣∣∣
P1 P2 P3

Q1 Q2 Q3

R1 R2 R3

∣∣∣∣∣∣ . (1.7)

Interchanging two rows in a determinant changes its sign, so interchanging rows twice
leaves the determinant unchanged. This is why the triple product is not affected by a
cyclic permutation of its three components. We can therefore write

S = P • (Q×R) = Q • (R×P) = R • (P×Q).

The triple product has a simple geometric interpretation. It equals the volume
of the parallelepiped defined by the three vectors. An important corollary is: if the
three vectors are coplanar, then the parallelepiped defined by them has zero volume,
implying that their scalar triple product is zero. This property is used in Section 2.2.1
to determine whether or not a given polygon is planar.

1.1.3 Projecting a Vector

A common and useful operation on vectors is projecting a vector a on another vector b.
The idea is to break vector a up into two perpendicular components c and d, such that
c is in the direction of b.

Figure 1.5a shows that a = c + d and |c| = |a| cos α. On the other hand, a • b =
|a| |b| cos α, yielding the magnitude of c:

|c| = |a| (a • b)
|a| |b| =

(a • b)
|b| . (1.8)
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Figure 1.5: Projecting a Vector.

The direction of c is identical to the direction of b, so we can write vector c as

c = |c| b
|b| =

(a • b)
|b|2 b. (1.9)

Example: Given vectors a = (2, 1) and b = (1, 0), we compute the projection of
a on b.

c =
(a • b)
|b|2 b =

2×1 + 1×0
12 + 02

(2, 0) = (4, 0), d = a − c = (−2, 1).

� Exercise 1.11: The projection method works also for three-dimensional vectors. Given
vectors a = (2, 1, 3) and b = (1, 0,−1), calculate the projection of a on b.

Summary: The following operations have been discussed in this section:

point − point = vector, scalar×point = point, vector ± vector = vector,
scalar×vector = vector, point + vector = point, vector • vector = scalar,

vector × vector = vector.

The operation point + point is left undefined (since it is not useful). A barycentric sum
of points is a point, and a weighted sum of points where the weights add up to zero is a
vector.

From the dictionary

Vector: (1) A variable quantity that can be resolved into components. (2) A straight
line segment whose length is magnitude and whose orientation in space is direction.
(3) Any agent (person or animal or microorganism) that carries and transmits a
disease.
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1.2 Parametric Blending

Parametric blending is a family of techniques that make it possible to vary the value of
some quantity in small steps, without any discontinuities. Blending can be thought of
as averaging or interpolating. The following are examples:

1. Numbers. The average of the two numbers 15 and 18 is (15+18)/2 = 16.5. This
can also be written as 0.5×15 + 0.5×18, which can be interpreted as the blend, or the
weighted sum, of the two numbers, where each is assigned a weight of 0.5. When the
weights are different, such as 0.9×15 + 0.1×18, the result is a blend of 90% 15 and 10%
18.

2. Points. If P1 and P2 are points, then the expression αP1 + βP2 is a blend of
the two points, in which α and β are the weights (or the coefficients). If α and β are
nonnegative and α+β = 1, then the blend is a point on the straight segment connecting
P1 and P2.

3. Rotations. A rotation in three dimensions is described by means of the rotation
angle (one number) and the axis of rotation (three numbers). These four numbers can
be combined into a mathematical entity called quaternion and two quaternions can also
be blended, resulting in a smooth sequence of rotations that proceeds in small, equal
steps from an initial rotation to a final one. This type of blending is useful in computer
animation.

4. Curve construction. Given a number of points, a curve can be created as a
weighted sum of the points. It has the form

∑
wi(t)Pi, where the weights wi(t) are

barycentric. Such a curve is a blend of the points. For each value of t, the blend is
different, but we have to make sure that the sum of the weights is always 1. It is
possible to blend vectors, in addition to points, as part of the curve, and the weights of
the vectors don’t have to satisfy any particular requirement. Most of the curve methods
described in this book generate a curve as a blend of points, vectors, or both.

A special case of curve construction is the linear blending of two points, which can
be expressed as (1 − t)P1 + tP2 for 0 ≤ t ≤ 1 [this is Equation (2.1)].

5. Surfaces. Using the same principle, points, vectors, and curves can be blended
to form a surface patch.

6. Images. Various types of image processing, such as sharpening, blurring, and
embossing, are performed by blending an image with a special mask image.

7. It is possible to blend points in nonlinear ways. An intuitive way to get, for
example, quadratic blending is to square the two weights of the linear blend. However,
the result, which is P(t) = (1− t)2P1 + t2P2, depends on the particular coordinate axes
used, since the two coefficients (1− t)2 and t2 are not barycentric. It turns out that the
sum (1 − t)2 + 2t(1 − t) + t2 equals 1. As a result, we can use quadratic blending to
blend three points, but not two.

Similarly, if we try a cubic blend by simply writing P(t) = (1 − t)3P1 + t3P2, we
end up with the same problem. Cubic blending can be achieved by adding four terms
with weights t3, 3t2(1 − t), 3t(1 − t)2, and (1 − t)3.

We therefore conclude that Bézier methods (Chapter 6) can be used for blending.
The Bézier curve is a result of blending several points with the Bernstein polynomials,
which add up to unity. Quadratic and cubic blending are special cases of the Bézier
blending (or the Bézier interpolation).
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1.3 Parametric Curves

As mentioned in the Preface, the main aim of computer graphics is to display an arbitrary
surface so that it looks real. The first step toward this goal is an understanding of curves.
Once we have an algorithm to calculate and display any curve, we may try to extend it
to a surface.

In practice, curves (and surfaces) are specified by the user in terms of points and
are constructed in an interactive process. The user starts by entering the coordinates
of points, either by scanning a rough image of the desired shape and digitizing certain
points on the image, or by drawing a rough shape on the screen and selecting certain
points with a pointing device such as a mouse. After the curve has been drawn, the user
may want to modify its shape by moving, adding, or deleting points. Such points can
be employed in two different ways:

1. We may want the curve to pass through them. Such points are called data points
and the curve is called an interpolating curve.

2. We may want the points to control the shape of the curve by exerting a “pull” on
it. A point may pull part of the curve toward it, allowing the user to change the shape
of the curve by moving the point. Generally, however, the curve does not pass through
the point. Such points are called control points and the curve is called an approximating
curve.

A mathematical function y = f(x) can be plotted as a curve. Such a function is
the explicit representation of the curve. The explicit representation is not general, since
it cannot represent vertical lines and is also single-valued. For each value of x, only a
single value of y is normally computed by the function.

The implicit representation of a curve has the form F (x, y) = 0. It can represent
multivalued curves (more than one y value for an x value). A common example is the
circle, whose implicit representation is x2 + y2 − R2 = 0.

The explicit and implicit curve representations can be used only when the function
is known. In practical applications—where complex curves such as the shape of a car
or of a toaster are needed—the function is normally unknown, which is why a different
approach is required.

The curve representation used in practice is called the parametric representation. A
two-dimensional parametric curve has the form P(t) =

(
f(t), g(t)

)
or P(t) =

(
x(t), y(t)

)
.

The functions f and g become the (x, y) coordinates of any point on the curve, and the
points are obtained when the parameter t is varied over a certain interval [a, b], normally
[0, 1].

A simple example of a two-dimensional parametric curve is P(t) = (2t − 1, t2).
When t is varied from 0 to 1, the curve proceeds from the initial point P(0) = (−1, 0) to
the final point P(1) = (1, 1). The x coordinate is linear in t and the y coordinate varies
as t2.

The first derivative dP(t)
dt is denoted by Pt(t), or by Ṗ, or by (P t

x(t), P t
y(t)). This

derivative is the tangent vector to the curve at any point. The derivative is a vector
and not a point because it is the limit of the difference (P(t + ∆) − P(t))/∆, and the
difference of points is a vector. As a vector, the tangent possesses a direction (the
direction of the curve at the point) and a magnitude (which indicates the speed of the
curve at the point). The tangent, however, is not the slope of the curve. The tangent is
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a pair of numbers, whereas the slope is a single number. The slope equals tan θ, where θ
is the angle between the tangent vector and the x axis. The slope of a two-dimensional
parametric curve is obtained by

dy

dx
=

dy
dt
dx
dt

=
P t

y(t)
P t

x(t)
.

Example: The curve P(t) = (x(t), y(t)) = (1 + t2/2, t2). Its tangent vector is
Pt(t) = (t, 2t) and the slope is 2t/t = 2. The slope is constant, which indicates that the
curve is a straight line. This is also easy to see from the tangent vector. The direction
of this vector is always the same since it can be described by saying “for every t steps
in the x direction, move 2t steps in the y direction.”

Example: A circle. Because of its high symmetry, a circle can be represented in
different ways. We list four different parametric representations of a circle of radius R
centered on the origin.

1. P(t) = R(cos t, sin t), where 0 ≤ t ≤ 2π. This is identical to the polar represen-
tation.

2. Substituting t = tan(u/2) yields P(t) = R[(1 − t2)/(1 + t2), 2t/(1 + t2)]. When
0 ≤ t ≤ 1, this generates the first quadrant from (R, 0) to (0, R) (see also Figure 1.6a).

3. P(t) = R(t,±√
1 − t2). When 0 ≤ t ≤ 1 this generates the first quadrant from

(0, R) to (R, 0) and, simultaneously, the third quadrant from (0,−R) to (−R, 0).
4. P(t) = (0.441,−0.441)t3 + (−1.485,−0.162)t2 + (0.044, 1.603)t + (1, 0). When

0 ≤ t ≤ 1, this generates (approximately) the first quadrant from (1, 0) to (0, 1).

(See also circle example in Section 6.15, and Equation (Ans.31).)

� Exercise 1.12: Explain how representation 4 is derived.

� Exercise 1.13: Figure 1.6b shows a polygon inscribed in a circle. It is clear that adding
sides to the polygon brings it closer to the circle. Calculate the difference R − d as a
function of n, the number of polygon sides.

The particle paradigm: Better insight into the behavior of parametric functions
can be gained by thinking of the curve P(t) = (x(t), y(t)) as a path traced out by a
hypothetical particle. The parameter t can then be interpreted as time and the first
two derivatives Pt(t) and Ptt(t) can be interpreted as the velocity and acceleration of
the particle, respectively. It turns out that different parametric representations of the
same curve may have different “speeds.” The particle represented by (cos t, sin t), for
example, “moves” along the circle at speed Pt(t) = (− sin t, cos t), which is constant
since |Pt(t)| =

√
sin2 t + cos2 t = 1. The particle of circle representation 2, on the other

hand, moves at the variable velocity

Pt(t) =
( −4t

(1 + t2)2
,
2(1 − t2)
(1 + t2)2

)
.
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Figure 1.6: (a) A Parametric Representation.

(b) A Polygon Inscribed in a Circle.

� Exercise 1.14: Show that this velocity does vary with t.

� Exercise 1.15: What three-dimensional curve is described by the parametric function
(cos t, sin t, t)? (Hint: see Section 2.4.1).

See also page 354 for the parametric representations of the sphere, the ellipsoid,
and of the torus as a small circle rotating around a larger circle.

1.4 Properties of Parametric Curves

Generally, it is impossible to tell much about the behavior of a parametric curve P(t) =
(x(t), y(t)) by examining the two components x(t) and y(t) separately. Each of the two
functions may have features that do not exist in the combination. The reverse is also
true—the combined curve may have features not found in any of the two components.

Here is an example of two smooth curves whose combination is a parametric plane
curve with a cusp (a sharp corner). The following two curves are polynomials in t:

x(t) = −18t2 + 18t + 2, y(t) = −16t3 + 24t2 − 12t + 5, where 0 ≤ t ≤ 1.

They are smooth, since their derivatives x′(t) = −36t + 18 and y′(t) = −48t2 + 48t− 12
are continuous in the range 0 ≤ t ≤ 1. However, the combined curve

P(t) = (0,−16)t3 + (−18, 24)t2 + (18,−12)t + (2, 5)

has a sharp corner (a cusp or a kink), because its tangent vector

Pt(t) = 3(0,−16)t2 + 2(−18, 24)t + (18,−12)

satisfies Pt(0.5) = (0, 0).

� Exercise 1.16: Find two curves x(t) and y(t), each with a cusp, such that the combined
curve P(t) = (x(t), y(t)) is smooth.
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The parametric curves used in computer
graphics are normally based on polynomials,
since polynomials are simple functions that are
easy to calculate and are flexible enough to cre-
ate many different shapes. However, in princi-
ple, any functions can be used to create a para-
metric curve. Here is an example that uses
the smooth sine and cosine curves to create
the nonsmooth parametric curve shown on the
right. It is defined by the simple expression

P(t) = (2 cos(t) + cos(2t), 2 sin(t) − sin(2t)),

2

1

-1

2

-2

where 0 ≤ t ≤ 2π. This curve has cusps at t = 0, t = 0.261799, and
t = 0.523599. Another example of a parametric curve that’s not a simple
polynomial is the circular Bézier curve, Equation (4.141) of [Salomon 99].

� Exercise 1.17: Find three curves x(t), y(t), and z(t), each a cubic polynomial, such
that the combined curve P(t) = (x(t), y(t), z(t)) is not a cubic polynomial.

Note. A word about the notation used here. We have used the letter P to denote
both points and curves. The same letter is later used to denote surfaces. In spite of using
the same letter, the notation is unambiguous. It is always easy to tell what a particular
P stands for by counting the number of free parameters. Something like P(u, w) denotes
a surface since it depends on two variable parameters, whereas P(0, w) is a curve and
P(u0, 1) (for a fixed u0) is a point.

One important feature of curves is independence of the coordinate axes. We don’t
want the curve to change shape when the coordinate axes (or the points defining the
curve) are moved rigidly or rotated. Here is an example of how such a thing can happen.
Consider the parametric curve

P(t) = (1 − t)3P0 + t3P1 =
(
(1 − t)3x0 + t3x1, (1 − t)3y0 + t3y1

)
.

It is easy to see that P(0) = P0 and P(1) = P1 (the curve passes through the two
points). What kind of a curve is P(t)? The tangent vector of our curve is

(
dx

dt
,
dy

dt

)
=
(−3(1 − t)2x0 + 3t2x1,−3(1 − t)2y0 + 3t2y1

)
.

To calculate the slope, we have to select actual points. We start with the two points
P0 = (0, 0) and P1 = (5, 6). The slope of the curve is

dy

dx
=

dy

dt

/dx

dt
=

−3(1 − t)20 + 3t2 × 6
−3(1 − t)20 + 3t2 × 5

=
6
5

= constant,

so the curve is a straight line.
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Next, we translate both points by the same amount (0,−1), so the new points are
P0 = (0,−1) and P1 = (5, 5). The new slope is

3(1 − t)2 + 15t2

15t2
=

1
5

(
1
t
− 1

)
+ 1.

It is no longer constant and therefore the curve is no longer a straight line (Figure 1.7).
The curve has changed its shape just because its endpoints have been moved!

1 2 3 4 5−1

1

2

3

4

5

6

(* non-barycentric weights example *)
Clear[p0,p1,g1,g2,g3,g4];
p0={0,0}; p1={5,6};
g1=ParametricPlot[(1-t)^3 p0+t^3 p1,{t,0,1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
g3=Graphics[{AbsolutePointSize[4], {Point[p0],Point[p1]} }];
p0={0,-1}; p1={5,5};
g2=ParametricPlot[(1-t)^3 p0+t^3 p1,{t,0,1},PlotRange->All, Compiled->False,
PlotStyle->AbsoluteDashing[{2,2}], DisplayFunction->Identity];
g4=Graphics[{AbsolutePointSize[4], {Point[p0],Point[p1]} }];
Show[g2,g1,g3,g4, DisplayFunction->$DisplayFunction, DefaultFont->{"cmr10", 10}];

Figure 1.7: Effect of Nonbarycentric Weights.

It turns out that a curve of the form P(t) =
∑n

i=0 wi(t)Pi, is independent of the
particular coordinate axes used if

∑n
i=0 wi(t) = 1. This is arguably the most important

property of barycentric weights.
It is easy to extend the concept of parametric curves to three dimensions (space

curves) with two minor differences (1) P(t) should be of the form
(
x(t), y(t), z(t)

)
and

(2) the slope of a three-dimensional curve is undefined. Such a curve has a tangent
vector dP/dt, but not a slope.

� Exercise 1.18: Show that the parametric curve

P(t) = P + 2α(Q − P)t + (1 − 2α)(Q − P)t2, 0 ≤ t ≤ 1 (1.10)

(where α is any real number) is a straight line, even though it is a polynomial of degree
2 in t. Note that the curve goes from point P to point Q.
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1.4.1 Uniform and Nonuniform Parametric Curves

So far, we have assumed that the parameter t of a parametric curve P(t) = (x(t), y(t))
varies in the interval [0, 1]. It is also possible to vary t in other ranges, and such curves
may be useful in special applications. This idea arises naturally when we try to fit a
curve to a given set of data points. One question that should be answered in such a
case is what value should the parameter t have at each point. It turns out that this is
both a problem and an opportunity. A practical, interactive algorithm for curve design
should make it possible to treat the values of t at the data points as parameters, and
therefore to produce an entire family of curves, all of whose members pass through the
given data points (but behave differently between points). This gives the designer an
extra tool that can be used to construct the right curve.

The two approaches to this problem are (1) increment t by one for each point and
(2) increment t by different values. The former approach yields a uniform parametric
curve, while the latter results in a nonuniform parametric curve. Uniform parametric
curves are normally easy to calculate and they produce good results when the points
are roughly equally spaced. However, when the spacing of the points is very different,
a uniform curve may look strange and unnatural, even though it passes through all the
data points. This is when a nonuniform parametric curve should be used.

If the spacings of the points are far from uniform, it is common to increase the
value of t at point Pi by the distance |Pi −Pi−1|. Notice that this distance is the chord
length from point Pi−1 to point Pi. If this convention is used, then t starts at zero
and is assigned the accumulated chord length at every data point. If the curve does not
oscillate much between data points, the chord length is a good approximation to the
arc length of the curve, with the result that t is assigned, in such a case, values that
are close to the arc length. A curve P(s) where the parameter is the arc length s has a
tangent vector Ps(s) of magnitude one (it’s a unit vector). If we express such a curve as
P(s) = (x(s), y(s)), then (xs(s), ys(s)) is a unit vector, which implies that |xs(s)| ≤ 1
and |ys(s)| ≤ 1. This, in turn, means that the slopes of both curves x(s) and y(s) are
bounded between −1 and +1, so the two curves are never too steep and are generally
well behaved.

1.4.2 Curve Continuity

In practice, a complete curve is often made up of segments, so it is important to un-
derstand how individual segments can be connected. There are two types of curve
continuities: geometric and parametric. If two consecutive segments meet at a point,
the total curve is said to have G0 geometric continuity. (It may look as in Figure 1.8a.)
If, in addition, the directions of the tangent vectors of the two segments are the same at
the point, the curve has G1 geometric continuity at the point. The two segments connect
smoothly (Figure 1.8b). In general, a curve has geometric continuity Gn at a join point
if every pair of the first n derivatives of the two segments have the same direction at
the point. If the same derivatives also have identical magnitudes at the point, then the
curve is said to have Cn parametric continuity at the point.

We can refer to C0, C1, and C2 as point, tangent, and curvature continuities,
respectively. Figure 1.9 illustrates the geometric meanings of the three types. In part
C0 of the figure, the curve is continuous at the interior point, but its tangent is not.
The curve changes its direction abruptly at the point; it has a kink. In part C1, both
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(a) (b) (c)

Figure 1.8: (a) G0 Continuity (a Sharp Corner). (b) G1 Continuity (a Smooth

Connection). (c) G2 Continuity (a Tight Curve).

the curve and its tangent are continuous at the interior point, but the curve changes
its shape at the point from a straight line (zero curvature) to a curved line (nonzero
curvature). Thus, the curvature is discontinuous at the point. In part C2 the curve
starts curving before it reaches the interior point, in order to preserve its curvature at
the point. Generally, high continuity results in a smoother curve.

C0 C1 C2

Figure 1.9: Three Curve Continuities.

A Ck continuity is more restrictive than Gk, so a curve that has Ck continuity at
a join point also has Gk continuity at the point, but there is an exception. Imagine
two segments connecting at a point, where both have tangent vectors of (0, 0, 0) at the
point. The vectors are identical, so the curve has C1 continuity at the point. However,
Exercise 5.3 (page 146) shows that the two segments may move in different directions
at the point, in which case the curve will not have G1 continuity.

Parameter Substitution

Instead of naming the parameter t, we can give it a different name. Moreover, we
can use a function of t as the parameter. It can be shown that if g(t) is a function
that increases monotonically with t (i.e., if t2 > t1 implies g(t2) > g(t1)), then the
curve P(g(t)) will have the same shape as P(t) (although g(t) will normally have to
vary in a different range than t).
For two-dimensional curves, the substitution does not affect the slope of the curve
since

dy(g)
dg /dg(t)

dt

dx(g)
dg /dg(t)

dt

=
dy(t)

dt
dx(t)

dt

=
dy(t)
dx(t)

.

The reason for having two types of continuities has to do with parameter substitu-
tion (see box). Given a curve segment P(t) where 0 ≤ t ≤ 1, we can substitute T = t2.
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The new segment Q(T ) = Q(t2), where 0 ≤ T ≤ 1, is identical in shape to P(t). The
two identical curves must, of course, have the same tangents. However, their calculated
tangent vectors have different magnitudes because

dQ(t2)
dt

= 2t
dQ(t)

dt
= 2t

dP(t)
dt

.

This is why we separate the direction and the magnitude of the tangent vectors when
considering curve continuities. If the directions of the tangent vectors are equal, they
produce a smooth join and we call this case G1 continuity (which is often all that is
required in practice).

Example: Consider the two straight segments P(t) = (8t, 6t) and Q(t) = (4(t +
2), 3(t+2)). The first goes from (0, 0) to (8, 6) and the second goes from (8, 6) to (12, 9).
Their tangent vectors are Pt(t) = (8, 6) and Qt(t) = (4, 3). The segments connect
smoothly at (8, 6) (in fact, they look like one straight segment), but their tangent vectors
are different at that point! Thus, the total curve has G1 continuity at point (8, 6), but
not C1 continuity.

It is interesting to note, however, that the unit tangent vectors are equal at the
joint. The magnitude of Pt(t) is

√
82 + 62 = 10 and that of Qt(t) =

√
42 + 32 = 5. The

two unit tangent vectors are therefore equal (8/10, 6/10) = (4/5, 3/5). Thus, the unit
tangent vector provides a better measure of the direction of the curve than the tangent
vector itself. Another natural vector that’s associated with every point of a smooth
curve is the curvature, a basic concept that’s discussed in Section 1.6.

A curve whose tangent vector and curvature vector (Section 1.6.6) are everywhere
continuous is said to have G2 (second-order geometric) continuity.

You can do anything you like with me except paint me, Hughie dear. I have to draw
the line somewhere. But that’s just what you can’t do—draw a line, I mean. I like
you in every way, as you well know, except as a painter. You would have been a good
painter if you had never painted—did I invent that?

—L. P. Hartley, The Hireling

1.5 PC Curves

Parametric curves used in computer graphics are based on polynomials. A polynomial
of degree one has the form P1(t) = At+B and is, therefore, a straight line so it can only
be used in limited cases. A parametric polynomial of degree 2 (quadratic) has the form
P2(t) = At2 + Bt + C and is always a parabola (see next paragraph and Appendix A).
A polynomial of degree 3 (cubic) has the form P3(t) = At3 + Bt2 + Ct + D and is
the simplest curve that can have complex shapes and can also be a space curve. (The
complexity of this polynomial is limited, though. It can have at most one loop, and,
if it does not have a loop, it can have at most two inflection points, see Section 1.6.8).
Polynomials of higher degrees are sometimes needed, but they generally wiggle too much
and are difficult to control. They also have more coefficients, so they require more input
data to determine all the coefficients. As a result, a complete curve is often constructed
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from segments, each a parametric cubic polynomial (also called a PC). The complete
curve is a piecewise polynomial curve, sometimes also called a spline (see definition on
page 141).

Plane curves described by degree-2 polynomials are conic sections, but this is true
only for the implicit representation. A plane curve described parametrically by a degree-
2 polynomial can only be a parabola. Given such a curve P(t) = a t2 +b t+c we observe
that it has a single value for any value of t and that it grows without limit when t becomes
very large (positive or negative). Thus, when t approaches ±∞, P(t) also approaches
∞ or −∞ (depending on the sign of a) but there is only one branch that goes toward
∞ and one branch that goes toward −∞. We therefore conclude that P(t) cannot be
an ellipse because ellipses are finite, and it cannot be a hyperbola because these curves
approach ±∞ in two directions. It must therefore be a parabola. A more rigorous proof,
using parameter substitution, can be found in [Gallier 00], page 66.

Figure 1.10 shows seven data points and two curves that fit them. The dashed
curve is a polynomial of degree 6; the solid curve is a spline. It is easy to see that the
polynomial oscillates, whereas the spline curve is tight and is therefore more pleasing to
the eye.

1 2 3 4 5 6

1.5

2

2.5

3

3.5

Clear[points];
points={{0,1},{1,1.1},{2,1.2},{3,3},{4,2.9},{5,2.8},{6,2.7}};
InterpolatingPolynomial[points,x];
Interpolation[points,InterpolationOrder->3];
Show[ListPlot[points,Prolog->AbsolutePointSize[5]],
Plot[%%,{x,0,6},PlotStyle->Dashing[{0.05,0.05}]],
Plot[%[x],{x,0,6}]]

Figure 1.10: Polynomial and Spline Fit.

� Exercise 1.19: Show that a quadratic polynomial must be a plane curve.

� Exercise 1.20: Why does a high-degree polynomial wiggle?
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Question: The word “quad” comes from Latin for “four,” so why is a degree-2 poly-
nomial called quadratic? While we are at it, why is a degree-3 polynomial called
cubic?
Answer: A square of side length n has four sides (it is quadratic), but its area is
n2 and this is associated with a degree-2 polynomial, which has terms up to x2.
Similarly, a cube of side length n has volume n3, which is why the term “cubic” has
become associated with a degree-3 polynomial.

A single PC segment is determined by means of points (data or control) or tangent
vectors. Continuity considerations are also used sometimes to constrain the curve. Re-
gardless of the input data, the segment always has the form P(t) = At3 +Bt2 +Ct+D.
Thus, four unknown coefficients have to be calculated, which requires four equations.
The equations must depend on four known quantities, points or vectors, that we denote
by G1 through G4. The PC segment is expressed as the product

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎞
⎟⎠
⎛
⎜⎝

G1

G2

G3

G4

⎞
⎟⎠ = T(t) · M · G,

where M is the basis matrix that depends on the method used and G is the geometry
vector, consisting of the four given quantities. The segment can also be written as the
weighted sum

P(t) = (t3m11 + t2m21 + tm31 + m41)G1 + (t3m12 + t2m22 + tm32 + m42)G2

+ (t3m13 + t2m23 + tm33 + m43)G3 + (t3m14 + t2m24 + tm34 + m44)G4

= B1(t)G1 + B2(t)G2 + B3(t)G3 + B4(t)G4 = B(t) · G = T(t) · N · G,

where B(t) equals the product T(t)·M and the Bi(t) are the weights. They are also called
the blending functions, since they blend the four given quantities. If any of the quantities
being blended are points, their weights should be barycentric. In the case where all four
quantities are points, this requirement implies that the sum of the elements of matrix
M should equal 1 (because the 16 elements of M are also the elements of the Bi(t)’s).

A PC segment can also be written in the form

P(t) = At3 + Bt2 + Ct + D = (t3, t2, t, 1)

⎛
⎜⎝

Ax Ay Az

Bx By Bz

Cx Cy Cz

Dx Dy Dz

⎞
⎟⎠ = T(t) · C,

where A = (Ax, Ay, Az) and similarly for B, C, and D. Its first derivative is

dP(t)
dt

=
dT(t)

dt
· C = (3t2, 2t, 1, 0)C
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and this is the tangent vector of the curve. This vector points in the direction of the
tangent to the curve, but its magnitude is also important. It describes the speed of the
curve.

In physics, if the function x(t) describes the position of an object at time t, then
dx(t)/dt describes its velocity, and d2x(t)/dt2 gives its acceleration. This is also true for
curves, but the speed in question is not the speed of drawing the curve on the screen!
Rather, it is the distance covered on the curve when t is incremented in equal steps (see
the particle paradigm of Section 1.3).

This concept is important in computer animation. Imagine a camera moving along
the curve while t is incremented in equal steps. The speed of the camera at a point is
given by the magnitude of the tangent vector at that point. If we want the camera to
move at a constant speed, all tangent vectors must have the same magnitude. For this
to happen, the tangent vector must be independent of t, a constant. This implies that
the second derivative (the acceleration) is the zero vector, and the curve itself must be a
linear function of t, a straight line. Any other curve has a tangent vector that depends
on t, implying that the curve itself moves at variable speed.

1.5.1 Fast Computation of a PC

This section employs the method of forward differences, together with the Taylor series
representation, to speed up the calculation of a point on a parametric curve P(t). Once
this method is implemented, an entire curve can be drawn in a loop where t is incre-
mented from 0 to 1 in small, equal steps of ∆. In iteration i + 1, a point P([i + 1]∆)
is computed and is connected to the previous point P(i∆) by a short, straight segment.
Section 6.3 applies this method to the Bézier curve.

The principle of forward differences is to find a quantity dP such that P(t + ∆) =
P(t) + dP for any value of t. If such a dP can be found, then it is enough to calculate
P(0), and use forward differences to compute

P(0 + ∆) = P(0) + dP,

P(2∆) = P(∆) + dP = P(0) + 2dP,

...
P([i + 1]∆) = P

(
i∆

)
+ dP = P(0) + (i + 1)dP.

The point is that dP should not depend on t. If dP turns out to depend on t, then
as we advance t from 0 to 1, we have to use different values of dP, slowing down the
calculations. The fastest way to calculate the curve is to precalculate dP before the
loop starts and repeatedly add this precalculated value to P(0) inside the loop.

We calculate dP from the Taylor series representation of the curve. The Taylor
series of a function f(t) at a point f(t + ∆) is the infinite sum

f(t + ∆) = f(t) + f ′(t)∆ +
f ′′(t)∆2

2!
+

f ′′′(t)∆3

3!
+ · · · .

In order to avoid dealing with an infinite sum, we limit our discussion to the popular
PC curves. The mathematical treatment for any other type of curve (a different-degree
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polynomial or a nonpolynomial) is similar, although normally more complex. A general
PC curve has the form P(t) = at3 + bt2 + ct + d, so only its first three derivatives are
nonzero. These derivatives are

Pt(t) = 3at2 + 2bt + c, Ptt(t) = 6at + 2b, Pttt(t) = 6a,

so the Taylor series representation produces

dP = P(t + ∆) − P(t)

= Pt(t)∆ +
Ptt(t)∆2

2
+

Pttt(t)∆3

6
= 3a t2∆ + 2b t∆ + c∆ + 3a t∆2 + b∆2 + a∆3.

This seems a failure since dP is a function of t (it should therefore be denoted
by dP(t) instead of just dP) and is also slow to calculate. However, the original PC
curve P(t) is a degree-3 polynomial, whereas dP(t) is only a degree-2 polynomial. This
suggests a way out of our difficulty. We can try to express dP(t) by means of the Taylor
series, similar to what we did with the original curve P(t). This should result in a
forward difference ddP(t) that’s a polynomial of degree 1 in t. The quantity ddP(t)
can, in turn, be represented by another Taylor series to produce a forward difference
dddP that’s a degree-0 polynomial in t, i.e., a constant. Once this is done, we hope to
end up with an algorithm of the form

Compute P(0), dP, ddP, and dddP;
P = P(0);
for t:=0 to 1 step ∆t do
PN:=P+dP; dP:=dP+ddP; ddP:=ddP+dddP;
line(P,PN);
P:=PN;
endfor;

The quantity ddP(t) is obtained by

dP(t + ∆) = dP(t) + ddP(t) = dP(t) + dPt(t)∆ +
dP(t)tt∆2

2
,

yielding

ddP(t) = dPt(t)∆ +
dP(t)tt∆2

2

= (6a t∆ + 2b∆ + 3a∆2)∆ +
6a∆∆2

2
= 6a t∆2 + 2b∆2 + 6a∆3.

Finally, dddP is similarly obtained by ddP(t + ∆) = ddP(t) + dddP = ddP(t) +
ddPt(t)∆, yielding dddP = ddPt(t)∆ = 6a∆3, a constant.
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The four quantities involved in the calculation of the curve are therefore

P(t) = at3 + bt2 + ct + d,

dP(t) = 3a t2∆ + 2b t∆ + c∆ + 3a t∆2 + b∆2 + a∆3,

ddP(t) = 6a t∆2 + 2b∆2 + 6a∆3,

dddP = 6a∆3.

They have to be calculated at t = 0 before the loop starts, then each iteration computes
the first three quantities from those of the previous iteration (dddP doesn’t depend on
t). Here are the details

P(0) = d, dP(0) = a∆3 + b∆2 + c∆, ddP(0) = 6a∆3 + 2b∆2, dddP = 6a∆3.

P(∆) = a∆3 + b∆2 + c∆ + d = P(0) + dP(0),
dP(∆) = a∆3 + 2b∆2 + c∆ + 3a∆3 + b∆2 + a∆3 = dP(0) + ddP(0),

ddP(∆) = 6a∆3 + 2b∆2 + 6a∆3 = ddP(0) + dddP,

· · ·
P([i + 1]∆) = P(i∆) + dP(i∆),

dP([i + 1]∆) = dP(i∆) + ddP(i∆),
ddP([i + 1]∆) = ddP(i∆) + dddP.

Thus, each iteration computes a point P([i+1]∆) on the curve by performing six simple
operations, three additions and three assignments. No multiplications are needed.

1.5.2 Subdividing a Parametric Curve

Parametric curves are defined by means of points (data or control) and sometimes also
vectors. Editing such a curve is normally done by moving points around and by adding
new points. Intuitively, it is clear that adding points allows for finer control of the shape
of the curve. On the other hand, adding points results in a curve that’s a high-degree
polynomial, and such polynomials tend to oscillate. Also, more points implies more
calculations to compute and display the curve.

It therefore seems that a reasonable method to obtain the right curve is to start
with a few points, and if these are not enough to obtain the desired shape of the curve,
to add a point (or a few points) at a time until the desired shape is achieved.

This section discusses a different approach whereby the correct curve is achieved
by subdividing a parametric curve into two segments. Together, the two segments have
the same shape as the original curve, but they are defined by more entities (points or
vectors), thereby making it possible to fine-tune the curve. This approach is applied in
Section 6.8 to the Bézier curve. Section 1.12 extends this approach to surface patches.

The control of large numbers is possible, and like unto that of small numbers,
if we subdivide them.

—Sun Tze
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We limit our discussion to cubic curves, but the method illustrated here applies to
polynomial curves of any degree. Let

P(t) = (t3, t2, t, 1)M

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ (1.11)

be any cubic parametric curve defined by four nonscalar entities (points or vectors)
where the parameter t varies from 0 to 1. We construct the two halves P1(t) and P2(t)
of this curve by varying the parameter in the intervals [0, 0.5] and [0.5, 1] (Section 6.8
shows how the unequal ranges [0, α] and [α, 1] can be used instead).

Each of the two new curves should have the same shape as half of the original curve.
Each half should therefore be written as an expression similar to Equation (1.11) but
based on a new set of entities Qi computed from the original set Pi. To construct the
first half P1(t), we define a new parameter u = 2t. When t varies in the range [0, 0.5],
u varies from 0 to 1. The first half of the curve is obtained from Equation (1.11) by
substituting t = u/2

P1(u) = (u3/8, u2/4, u/2, 1)M

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (u3, u2, u, 1)

⎛
⎜⎝

1
8 0 0 0
0 1

4 0 0
0 0 1

2 0
0 0 0 1

⎞
⎟⎠M

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (u3, u2, u, 1)LM

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (u3, u2, u, 1)M

⎛
⎜⎝

Q0

Q1

Q2

Q3

⎞
⎟⎠ . (1.12)

The last line of Equation (1.12) expresses P1(u) in terms of new entities Qi. It shows
that these entities can be calculated from the equation

M

⎛
⎜⎝

Q0

Q1

Q2

Q3

⎞
⎟⎠= LM

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ , whose solution is

⎛
⎜⎝

Q0

Q1

Q2

Q3

⎞
⎟⎠= M−1LM

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (1.13)

� Exercise 1.21: Why does P1(t) have the same shape as the first half of P(t)?

The second half, P2(t) is calculated similarly. We first define a new parameter
u = 2t − 1. When t varies in the range [0.5, 1], u varies from 0 to 1. The second half of
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the curve is obtained from Equation (1.11) by substituting t = (u + 1)/2:

P2(u) =
(
(u + 1)3/8, (u + 1)2/4, (u + 1)/2, 1

)
M

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (u3, u2, u, 1)

⎛
⎜⎜⎝

1
8 0 0 0
3
8

1
4 0 0

3
8

2
4

1
2 0

1
8

1
4

1
2 1

⎞
⎟⎟⎠M

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (u3, u2, u, 1)RM

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (u3, u2, u, 1)M

⎛
⎜⎝

Q4

Q5

Q6

Q7

⎞
⎟⎠ . (1.14)

The new entities Qi are calculated for this second half by⎛
⎜⎝

Q4

Q5

Q6

Q7

⎞
⎟⎠ = M−1RM

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (1.15)

Given matrix M and four entities Pi, the eight new entities Qi can be calculated
from Equations (1.13) and (1.15). The generalization of this method to higher-degree
curves is straightforward. As an example, we apply this method to the cubic Bézier
curve, Equation (6.8). Matrix M and its inverse are

M =

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠ , M−1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1

⎞
⎟⎟⎠ .

The matrix products of Equations (1.13) and (1.15) now become

M−1LM =

⎛
⎜⎜⎝

1 0 0 0
1
2

1
2 0 0

1
4

2
4

1
4 0

1
8

3
8

3
8

1
8

⎞
⎟⎟⎠ , M−1RM =

⎛
⎜⎜⎝

1
8

3
8

3
8

1
8

0 1
4

2
4

1
4

0 0 1
2

1
2

0 0 0 1

⎞
⎟⎟⎠ . (1.16)

The eight new entities (which in this case are control points) are

Q0 = P0,
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Q1 =
1
2
P0 +

1
2
P1 =

1
2
(P0 + P1),

Q2 =
1
4
P0 +

2
4
P1 +

1
4
P2 =

1
2

(
1
2
(P0 + P1) +

1
2
(P1 + P2)

)
,

Q3 =
1
8
P0 +

3
8
P1 +

3
8
P2 +

1
8
P3

=
1
2

(
1
2

(
1
2
(P0 + P1) +

1
2
(P1 + P2)

)
+

1
2

(
1
2
(P1 + P2) +

1
2
(P2 + P3)

))
,

Q4 =
1
8
P0 +

3
8
P1 +

3
8
P2 +

1
8
P3

=
1
2

(
1
2

(
1
2
(P0 + P1) +

1
2
(P1 + P2)

)
+

1
2

(
1
2
(P1 + P2) +

1
2
(P2 + P3)

))
,

Q5 =
1
4
P1 +

2
4
P2 +

1
4
P3 =

1
2

(
1
2
(P1 + P2) +

1
2
(P2 + P3)

)
,

Q6 =
1
2
P1 +

1
2
P2 =

1
2
(P1 + P2),

Q7 = P3.

Section 6.8 shows a different approach, using the mediation operator, to the problem
of subdividing a curve. That approach is applied to the Bézier curve.

1.6 Curvature and Torsion

The first derivative Pt(t) of a parametric curve P(t) is the tangent vector of the curve.
In this section, we denote the unit tangent vector at point P(i) by T(i). Thus,

T(i) =
Pt(i)
|Pt(i)| .

The tangent vector is an example of an intrinsic property of a curve. An intrinsic
property of a geometric figure depends only on the figure and not on the particular
choice of the coordinate axes. Any geometric figure may have intrinsic and extrinsic
properties. A triangle has three angles and a quadrilateral has four edges, regardless of
the choice of coordinates. The tangent vector of a curve, as well as its curvature, does
not depend on the particular coordinate system used. In contrast, the slope of a curve
depends on the particular coordinates chosen, which makes it an extrinsic property of
the curve.

� Exercise 1.22: Give a few more intrinsic and extrinsic properties of geometric figures.

This section discusses the important intrinsic properties of parametric curves. They
include the principal vectors (the tangent, normal, and binormal vectors), the principal
planes (the osculating, rectifying, and normal planes), and the concepts of curvature and
torsion. These properties are all local and they vary from point to point on the curve.



1.6 Curvature and Torsion 27

They are therefore functions of the parameter t. Notice that these properties exist for
all curves, but the discussion here is limited to parametric curves.

Newton was seeking better methods—more general—for finding the slope of a curve
at any particular point, as well [as] another quantity, related but once removed, the
degree of curvature, rate of bending, “the crookedness in lines.” He applied himself
to the tangent, the straight line that grazes the curve at any point. The straight line
that the curve would become at that point, if it could be seen through an infinitely
powerful microscope.

—James Gleick, Isaac Newton (2003)

1.6.1 Normal Plane

The normal plane to a curve P(t) at point P(i) is the plane that’s perpendicular to the
tangent Pt(i) and contains point P(i). If Q is an arbitrary point on the normal plane,
then Figure 1.11 shows that (Q − P(i)) • Pt(i) = 0. This can be written Q • Pt(i) −
P(i) • Pt(i) = 0 or

x · xt
i + y · yt

i + z · zt
i − (xi · xt

i + yi · yt
i + zi · zt

i) = 0, (1.17)

an expression that has the familiar form Ax + By + Cz + D = 0 (Section 2.2.2).

Q

Ti

P(i)

Figure 1.11: The Normal Plane.

1.6.2 Principal Normal Vector

Another important vector associated with a curve is the principal normal vector N(t).
This unit vector is normal to the curve (and is therefore contained in the normal plane
and is also perpendicular to the tangent vector), but it is called the principal normal
since it points in a special direction, the direction in which the curve is turning. The
principal normal vector points toward a point called the center of curvature of the curve.
To express N(t) in terms of the curve and its derivatives, we select two nearby points,
t and t + ∆t, on the curve. The tangent vectors at the two points are a = Pt(t) and
b = Pt(t + ∆t), respectively. If we subtract them as in Figure 1.12a, we get c = b − a.
The difference vector c can be interpreted in two ways. On one hand, we can say that
it is a small change in the tangent vector Pt(t), so we can denote it ∆Pt(t). On the
other hand, since the tangent vector can be interpreted as the velocity of the curve, any
changes in it can be interpreted as acceleration, that is, the second derivative Ptt(t).
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Thus, we can write c = ∆Pt(t) = Ptt(t). The two vectors a = Pt(t) and b = Pt(t+∆t)
define a plane and the principal normal vector lies at the intersection of this plane and
the normal plane. Our task is therefore to compute a vector that is perpendicular to
the tangent a = Pt(t) and that is contained in the plane defined by a and b.

N(t)

P(t)

Pt(t)

Ptt(t)

T(t)

l

m

n

a

b

c

(b)(a)

(c)

Figure 1.12: The Principal Normal Vector.

Figure 1.12b shows vector �nl, which is the projection of Ptt(t) (vector �nm) onto
Pt(t). Equation (1.8) tells us that the length of �nl is

Ptt(t) • Pt(t)
|Pt(t)| .

Since �nl is in the direction of Pt(t), we can write the vector �nl as

�nl =
Ptt(t) • Pt(t)

|Pt(t)| · Pt(t)
|Pt(t)| =

Ptt(t) • Pt(t)
|Pt(t)|2 Pt(t).

We denote the vector �lm by K(t) and compute it from the relation �nl + �lm = �nm =
Ptt(t):

K(t) = Ptt(t) − �nl = Ptt(t) − Ptt(t) • Pt(t)
|Pt(t)|2 Pt(t). (1.18)

The principal normal vector N(t) is a unit vector in the direction of K(t), so it is given
by

N(t) =
K(t)
|K(t)| .
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� Exercise 1.23: What can we say about the nature of the principal normal vector of a
straight line?

� Exercise 1.24: Calculate the principal normal vector of the PC curve P(t) = (−1, 0)t3+
(1,−1)t2 + (1, 1)t. Notice that this curve is Equation (4.10), so we know that it goes
from (0, 0) to (1, 0) with start and end tangents (1, 1), (0,−1), respectively. Use this to
check your results.

1.6.3 Binormal Vector

The third important vector associated with a curve is the binormal vector B(t). It is
defined as the vector perpendicular to both the tangent and principal normal, so its
definition is simply B(t) = T(t) × N(t). Notice that it is a unit vector. Since the
binormal is perpendicular to the tangent, it is contained in the normal plane. The three
vectors T(t), N(t), and B(t) therefore constitute an orthogonal coordinate system that
moves along the curve as t varies, except at cusps, where they are undefined.

1.6.4 The Osculating Plane

Imagine three points h, i, and j, located close to each other on a curve. If they are not
collinear, they define a plane. Now, move h and j independently closer and closer to i.
As these points move, the plane may change. The plane obtained at the limit is called
the osculating plane at point i (Figure 1.13). It contains the tangent vector T(i) and
the principal normal N(i). If Q is an arbitrary point on the osculating plane, then the
plane equation is given by the determinant |(Q − P(i)) Pt(i) Ptt(i)| = 0, which can be
written explicitly as

(x − xi)(yt
iz

tt
i − ytt

i zt
i) − (y − yi)(xt

iz
tt
i − xtt

i zt
i) + (z − zi)(xt

iy
tt
i − xtt

i yt
i) = 0.

Another way to obtain the plane equation is to use the fact that point P(i) and vectors
T(i) and N(i) are contained in the osculating plane. Any general point Q in the oscu-
lating plane can, therefore, be expressed as Q = P(i) + αT(i) + βN(i), where α and β
are real parameters. The osculating plane of a plane curve is, of course, the plane of the
curve. The osculating plane of a straight line is undefined.

Origin

Osculatin
g plane

a

b

c

P(i)
N(i)

T(i)

Center of 
curvature

Figure 1.13: The Osculating Plane.
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Incidentally, two curves joined at a point have C2 continuity (Section 1.4.2) at the
point if they have the same osculating planes and the same curvature vectors at the
point.

� Exercise 1.25: (1) Calculate the Bézier curve for the four points P0 = (0, 0, 0), P1 =
(1, 0, 0), P2 = (2, 1, 0), and P3 = (3, 0, 1). [Those unfamiliar with this curve should use
Equation (6.8).] Notice that this is a space curve since the first three points are in the
z = 0 plane, while the fourth one is outside that plane. (2) Calculate the (unnormalized)
principal normal vector of the curve and find its values for t = 0, 0.5, and 1. (3) Calculate
the osculating plane of the curve and find its equations for t = 0, 0.5, and 1 as above.

1.6.5 Rectifying Plane

The plane perpendicular to the principal normal vector of a curve is called the rectifying
plane of the curve. If the curve is P(t), N(t) is its principal normal, and Q is an arbitrary
point on the rectifying plane, then the equation of the rectifying plane at point P(i) is
[Q − P(i)] • N(i) = 0. Another equation is obtained when we realize that both the
tangent and binormal vectors are contained in the rectifying plane. A general point on
this plane can therefore be expressed as Q = P(i) + αT(i) + βB(i).

Figure 1.14 shows the three unit vectors and three planes associated with a particu-
lar point P(i) on a curve. They constitute intrinsic properties of the curve and together
they form the moving trihedron of the curve, which can be considered a local coordinate
system for the curve. The three vectors constitute the local coordinate axes and the
three planes divide the space around point P(i) into eight octants. The curve passes
through the normal plane and is tangent to both the osculating and rectifying planes.

T

B

N

h
i

j

Normal 
plane

Rectifying plane

Oscu
lati

ng 

plan
e

Figure 1.14: The Moving Trihedron.

1.6.6 Curvature

The curvature of a curve is a useful entity, so it deserves to be rigorously defined.
Intuitively, the curvature should be a number that measures how much the curve deviates
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from a straight line at any point. It should be large in areas where the curve wiggles,
oscillates, or makes a sudden direction change; it should be small in areas where the curve
is close to a straight line. It is also useful to associate a direction with the curvature,
i.e., to make it a vector.

Given a parametric curve P(t) and a point P(i) on it, we calculate the first two
derivatives Pt(i) and Ptt(i) of the curve at the point. We then construct a circle that
has these same first and second derivatives and move it so it grazes the point. This is
called the osculating circle of the curve at the point. The curvature is now defined as
the vector κ(i) whose direction is from point P(i) to the center of this circle and whose
magnitude is the reciprocal of the radius of the circle.

Using differential geometry, it can be shown that the vector

Pt(t) × Ptt(t)
|Pt(t)|3

has the right magnitude. However, this vector is perpendicular to both Pt(t) and Ptt(t),
so it is perpendicular to the osculating plane. To bring it into the plane, we need to
cross-product it with Pt(t)/|Pt(t)|, so the result is

κ(t) =
Pt(t) × Ptt(t) × Pt(t)

|Pt(t)|4 . (1.19)

Figure 1.13 shows that the curvature (vector b) is in the direction of the binormal N(t),
so it can be expressed as κ(t) = ρ(t)N(t) where ρ(t) is the radius of curvature at point
P(t).

Given a curve P(t) with an arc length s(t), we assume that dP/ds is a unit tangent
vector:

dP(t)
ds

=
dP(t)

dt

ds(t)
dt

=
Pt(t)
st(t)

. (1.20)

Equation (1.20) shows the following:
1. dP(t)/ds and Pt(t) point in the same direction. Therefore, since dP(t)/ds is a

unit vector, we get
dP(t)

ds
=

Pt(t)
|Pt(t)| .

2. st(t) = |Pt(t)|.
We now derive the expression for curvature from a different point of view. The

curvature k is defined by d2P(t)/ds2 = kN, where N is the unit principal normal vector
(Section 1.6.2). The problem is to express k in terms of the curve P(t) and its derivatives,
not involving the (normally unknown) function s(t). We start with

d2P(t)
ds2

=
d

ds

(
Pt(t)
|Pt(t)|

)
=

d

dt

(
Pt(t)
|Pt(t)|

)
st(t)

=

Ptt(t)
|Pt(t)| −

Pt(t)
|Pt(t)|2 · d|Pt(t)|

dt

|Pt(t)| . (1.21)
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The identity A • A = |A|2 is true for any vector A(t) and it implies

A(t) • At(t) = |A(t)|d|A(t)|
dt

.

When we apply this to the vector Pt(t), we get

d2P(t)
ds2

=
Ptt(t)

Pt(t) • Pt(t)
− Pt(t) • Ptt(t)(

Pt(t) • Pt(t)
)2 Pt(t), (1.22)

which can also be written

kN =
d2P(t)

ds2
=

Pt(t) × (
Ptt(t) × Pt(t)

)
(
Pt(t) • Pt(t)

)2 . (1.23)

1.6.7 Torsion

Torsion is a measure of how much a given curve deviates from a plane curve. The torsion
τ(i) of a curve at a point P(i) is defined by means of the following two quantities:

1. Imagine a point h close to i. The curve has rectifying planes at points h and i
(Figure 1.15). Denote the angle between them by θ.

h i

Bi

Ti

B
h

Rectifying 
plane h

Rectifying 
plane i

Angle between planes

θ

Figure 1.15: Torsion.

2. Denote by s the arc length from point h to point i.
The torsion of the curve at point i is defined as the limit of the ratio θ/s when

h approaches i. Figure 1.15 shows how the rectifying plane rotates about the tangent
as we move on the curve from h to i. The torsion can be expressed by means of the
derivatives of the curve and by means of the curvature

τ(t) =
|Pt(t) Ptt(t) Pttt(t)|
|Pt(t) × Pt(t)|2 =

|Pt(t) Ptt(t) Pttt(t)|
|Pt(t)|6 ρ(t)2.
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(The numerator is a determinant and the denominator is an absolute value. This ex-
pression is meaningful only when ρ(t) < ∞.) The torsion of a plane curve is zero.

It is interesting to note that a curve can be fully defined by specifying its curvature
and torsion as functions of its arc length s. The functions κ = f(s) and τ = g(s)
uniquely define the shape of a curve (although not its location in space). An alternative
is the single (implicit) function F (κ, τ, s) = 0.

An alternative representation can be derived for a plane curve. Assume that P(t) =
(x(t), y(t)) is a curve in the xy plane. Figure 1.16 shows that its shape can be determined
if its start point P(0) and its slope (or, equivalently, angle θ) are known as functions of
the arc length s. Since θ is the angle between the tangent and the x axis, functions x(s)
and y(s) must satisfy

dx

ds
= cos θ,

dy

ds
= sin θ.

Differentiating produces

d2x

ds2
= − sin θ

dθ

ds
= −dy

ds

dθ

ds
,

d2y

ds2
= cos θ

dθ

ds
=

dx

ds

dθ

ds
. (1.24)

Figure 1.16 also shows that dθ/ds is the magnitude of the curvature κ, so the conclusion is
that, given the curvature κ(s) of a curve as a function of its arc length, the two functions
x(s) and y(s) can be calculated, either analytically, or point by point numerically, from
the differential equations (1.24).

θ x

y

s

ds

dθ

dθ

Figure 1.16: A Plane Curve.

� Exercise 1.26: Given κ(s) = R (a constant), solve Equation (1.24) for x(s) and y(s).
What kind of a curve is this?

1.6.8 Inflection Points

An inflection point is a point on a curve where the curvature is zero. On a straight
line, every point is an inflection point. On a typical curve, an inflection point is created
when the curve reverses its direction of turning (for example, from a clockwise direction
to a counterclockwise direction). From the definition of curvature [Equation (1.19)] it
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follows that an inflection point satisfies

0 = |Pt(t) × Ptt(t)| =
√

(Pt(t) × Ptt(t)) • (Pt(t) × Ptt(t)).

Therefore,
(Pt(t) × Ptt(t)) • (Pt(t) × Ptt(t)) = 0,

which is equivalent to

(Pt(t) × Ptt(t))2x + (Pt(t) × Ptt(t))2y + (Pt(t) × Ptt(t))2z = 0,

or (ytztt − ztytt)2 + (ztxtt − xtztt)2 + (xtytt − ytxtt)2 = 0. (1.25)

This is the sum of three nonnegative quantities, so each must be zero. Since

dy

dx
=

dy

dt
/
dx

dt
=

yt

xt
,

we get
d2y

dx2
=

d

dt

(
yt

xt

)
dt

dx
=

xtytt − xttyt

(xt)3
.

Therefore, saying that the three quantities above are zero is the same as saying that

d2y

dx2
=

d2x

dz2
=

d2z

dy2
= 0.

Equation (1.25) can be used to show that a two-dimensional parametric cubic can
have at most two inflection points. We denote a general PC by

P(t) = at3 + bt2 + ct + d = (ax, ay)t3 + (bx, by)t2 + (cx, cy)t + (dx, dy),

which implies xt = 3axt2 + 2bxt + cx and xtt = 6axt + bx, and similarly for yt and
ytt. Using this notation, we write Equation (1.25) explicitly (notice that for a two-
dimensional PC, only the third part is nonzero) as

0 = xtytt − ytxtt

= (3axt2 + 2bxt + cx)(6ayt + by) − (3ayt2 + 2byt + cy)(6axt + bx)

= 6(aybx − axby)t2 + 6(aycx − axcy)t + 2(bycx − bxcy).

This is a quadratic equation in t, so there can be at most two solutions.
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1.7 Special and Degenerate Curves

Parametric curves may exhibit unusual behavior when their derivatives satisfy certain
conditions. Such curves are referred to as special or degenerate. Here are four examples:

1. If the first derivative Pt(t) of a curve P(t) is zero for all values of t, then P(t)
degenerates to the point P(0).

2. If Pt(t) �= 0 and Pt(t)×Ptt(t) = 0 (i.e., the tangent vector points in the direction
of the acceleration vector), then P(t) is a straight line.

3. If Pt(t) × Ptt(t) �= 0 and |Pt(t) Ptt(t) Pttt(t)| = 0, then P(t) is a plane curve.
(The notation |a b c| refers to the determinant whose three columns are a, b, and c.)

4. Finally, if both Pt(t) × Ptt(t) and |Pt(t) Ptt(t) Pttt(t)| are nonzero, the curve
P(t) is nonplanar (i.e., it is a space curve).

1.8 Basic Concepts of Surfaces

Section 1.3 mentions the explicit, implicit, and parametric representations of curves.
Surfaces can also be represented in these three ways. The explicit representation of a
surface is z = f(x, y) and the implicit representation is F (x, y, z) = 0 (Figure C.3). In
practice, however, the parametric representation is used almost exclusively, for the same
reasons that parametric curves are so important.

A simple, intuitive way to grasp the concept of a parametric surface is to visualize
it as a set of curves. Figure 1.17a shows a single curve and Figure 1.17b shows how it is
duplicated several times to create a family of identical curves. The brain finds it natural
to interpret such a family as a surface. If we denote the curve by P(u), we can denote
each of its copies in the family by Pi(u), where i is an integer index.

Taking this idea a step further, a solid surface is obtained by creating infinitely many
copies of the curve and placing them next to each other without any gaps in between.
It makes sense to replace the integer index i of each curve by a real (continuous) index
w. The solid version of the surface of Figure 1.17b can therefore be denoted by Pw(u),
where varying u moves us along a curve and varying w moves us from curve to curve in
steps that can be arbitrarily small.

The next step is to obtain a general surface by varying the shape of the curves so
they are not identical (Figure 1.17c). The shape of a curve should therefore depend on
w, which suggests a notation such as P(u, w) for the surface. The shape of each curve
depends on both u and w but in a special way. Each of the two parameters moves us
along a different direction on the surface, so we can talk about the u direction and the
w direction (Figure 1.17d).

The general form of a parametric surface is P(u, w) = (f1(u, w), f2(u, w), f3(u, w)).
The surface depends on two parameters, u and w, that vary independently in some
interval [a, b] (normally, but not always, limited to [0, 1]). For each pair (u, w), the
expression above produces the three coordinates of a point on the surface.
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(a) (b) (c) (d)

u

w

Figure 1.17: A Surface as a Family of Curves.

� Exercise 1.27: A curve can be either two-dimensional or three-dimensional. A surface,
however, exists only in three dimensions, and each surface point has three coordinates.
Why is it that the expression for the surface depends on two, and not on three, param-
eters? We would expect the surface to be of the form P(u, v, w), a function of three
parameters. What’s the explanation?

A simple example of a parametric surface is

P(u, w) = [0.5(1 − u)w + u, w, (1 − u)(1 − w)] (1.26)

[this is also Equation (2.11)]. Such a surface is called bilinear since it is linear in both
parameters. We use this example to discuss the concept of a surface patch and to show
how a wire-frame surface can be displayed.

1.8.1 A Surface Patch

The expression P(u, 0.2) (where w is held fixed and u varies) depends on just one
parameter and is therefore a curve on the surface. The four curves P(u, 0), P(u, 1),
P(0, w), and P(1, w) are of special interest. They are the boundary curves of the surface
(Figure 1.18a). Since there are four such curves, our surface is a patch that has a
(roughly) rectangular shape. Of special interest are the four quantities P(0, 0), P(0, 1),
P(1, 0), and P(1, 1). They are the corner points of the surface patch and are sometimes
denoted by Pij .

We say that the curve P(u, 0.2) lies on the surface in the u direction. It is an
isoparametric curve. Similarly, any curve P(u0, w) where u0 is fixed, lies in the w direc-
tion and is an isoparametric curve. These are the two main directions on a rectangular
surface patch.

Two more special curves, the surface diagonals, are P(u, 1 − u) and P(u, u). The
former goes from P01 to P10 and the latter goes from P00 to P11.

A large surface is obtained by constructing a number of patches and connecting
them. The method used to construct the patch should allow for smooth connection of
patches.

� Exercise 1.28: Compute the corner points, boundary curves, and diagonals of the
bilinear surface patch of Equation (1.26).
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(a) (b)

P00
P01

P10
P11

u

w

P(0,w)

P(1,w)

P(u,1)
P(u,0)

Figure 1.18: (a) A Surface Patch. (b) A Wire Frame.

� Exercise 1.29: Calculate the corner points and boundary curves of the surface patch

P(u, w) =
(
(c − a)u + a, (d − b)w + b, 0

)
,

where a, b, c, and d are given constants and the parameters u and w vary independently
in the range [0, 1]. What kind of a surface is this?

1.8.2 Displaying a Surface Patch

A surface patch can be displayed either as a wire frame (Figure 1.18b) or as a solid
surface. The pseudo-code of Figure 1.19 shows how to display a surface patch as a wire
frame. The code consists of two similar loops—one drawing the curves in the w direction
and the other drawing the curves in the u direction. The first loop varies u from 0 to
1 in steps of 0.2, thereby drawing six curves. Each of the six is drawn by varying w in
small steps (0.01 in the example). The second loop is similar and draws six curves in
the u direction.

Procedure SurfacePoint receives the current values of u and w, and calculates the
coordinates (x, y, z) of one surface point. Procedure PersProj uses these coordinates
to calculate the screen coordinates (xs, ys) of a pixel (it projects the three-dimensional
pixel on the two-dimensional screen using perspective projection). Finally, procedure
Pixel actually displays the pixel in the desired color. Better results are obtained by
eliminating those parts of the surface that are hidden by other parts, but this topic is
outside the scope of this book.

To display a solid surface, the normal vector of the surface (Section 1.13) has to be
calculated at every point and a shading algorithm applied to compute the amount of
light reflected from the point. Most texts on computer graphics discuss shading models
and algorithms.
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for u:=0 to 1 step 0.2 do
begin
for w:=0 to 1 step 0.01 do
begin
SurfacePoint(u,w,x,y,z);
PersProj(x,y,z,xs,ys);
Pixel(xs,ys,color)
end;
end;

for w:=0 to 1 step 0.2 do
begin
for u:=0 to 1 step 0.01 do
begin
SurfacePoint(u,w,x,y,z);
PersProj(x,y,z,xs,ys);
Pixel(xs,ys,color)
end;

end;

Figure 1.19: Procedure for a Wire-Frame Surface.

1.9 The Cartesian Product

The concept of blending was introduced in Section 1.2. This is an important concept
that is used in many curve and surface algorithms. This section shows how blending can
be used in surface design. We start with two parametric curves Q(u) =

∑n
i=1 fi(u)Qi

and R(w) =
∑m

i=1 gi(w)Ri where Qi and Ri can be points or vectors. Now examine
the function

P(u, w) =
n∑

i=1

m∑
j=1

fi(u)gj(w)Pij =
n∑

i=1

m∑
j=1

hij(u, w)Pij , (1.27)

where hij(u, w) = fi(u)gj(w). The function P(u, w) describes a surface, since it is a
function of the two independent parameters u and w. For any value of the pair (u, w),
the function computes a weighted sum of the quantities Pij . These quantities—which
are normally points, but can also be vectors—are triplets, so P(u, w) returns a triplet
(x, y, z) that are the three-dimensional coordinates of a point on the surface. When u
and w vary over their ranges independently, P(u, w) computes all the three-dimensional
points of a surface patch.

I don’t blend in at a family picnic.
—Batman in Batman Forever, 1995.

The technique of blending quantities Pij into a surface by means of weights taken
from two curves is called the Cartesian product, although the terms tensor product and
cross-product are also sometimes used. The quantities Pij can be points, tangent vectors,
or second derivatives. Equation (1.27) can also be written in the compact form

P(u, w) =
(
f1(u), . . . , fn(u)

)⎛⎝P11 P12 . . . P1m
...

...
...

Pn1 Pn2 . . . Pnm

⎞
⎠
⎛
⎜⎝ g1(w)

...
gm(w)

⎞
⎟⎠ . (1.28)

Notice that it uses a matrix whose elements are nonscalar quantities (triplets). Even
more important, Equation (1.27), combined with the isotropic principle (Section 1.1),
tells us that if all Pij are points, then the surface P(u, w) is independent of the particular



1.9 The Cartesian Product 39

coordinate axes used if
∑

ij hij(u, w) = 1. If the two original curves Q(u) and R(w) are
isotropic, then it’s easy to see that the surface is also isotropic because

∑
ij

hij(u, w) =
∑

i

∑
j

figj =
(∑

j

gj

)(∑
i

fi

)
= 1.

The following two examples illustrate the importance of the Cartesian product.
The first example applies this technique to derive the equation of the bilinear surface
(Section 2.3) from that of a straight segment. The parametric representation of the line
segment from P0 to P1 is Equation (2.1)

P(t) = (1 − t)P0 + tP1 = P0 + (P1 − P0)t

= [1 − t, t]
[
P0

P1

]
= [B10(t), B11(t)]

[
P0

P1

]
, (1.29)

where B1i(t) are the Bernstein polynomials of degree 1 [Equation (6.5)]. The Cartesian
product of Equation (1.29) with itself is

P(u, w) = [B10(u), B11(u)]
[
P00 P01

P10 P11

] [
B10(w)
B11(w)

]

= [1 − u, u]
[
P00 P01

P10 P11

] [
1 − w

w

]
= P00(1 − u)(1 − w) + P01(1 − u)w + P10u(1 − w) + P11uw,

and this is the parametric expression of the bilinear surface patch, Equation (2.8).
The second example starts with the parametric cubic polynomial that passes through

four given points. This curve is derived from first principles in Section 3.1 and is given
by Equation (3.6), duplicated here

P(t) = (t3, t2, t, 1)

⎡
⎢⎣
−4.5 13.5 −13.5 4.5

9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0

1.0 0 0 0

⎤
⎥⎦
⎡
⎢⎣

P1

P2

P3

P4

⎤
⎥⎦

= (t3, t2, t, 1)N

⎡
⎢⎣

P1

P2

P3

P4

⎤
⎥⎦ . (3.6)

The principle of Cartesian product is now applied to multiply this curve by itself in
order to obtain a bicubic surface patch that passes through 16 given points. The result
is obtained immediately

P(u, w) = (u3, u2, u, 1)N

⎡
⎢⎣

P33 P32 P31 P30

P23 P22 P21 P20

P13 P12 P11 P10

P03 P02 P01 P00

⎤
⎥⎦NT

⎡
⎢⎣

w3

w2

w
1

⎤
⎥⎦ . (1.30)
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Note that this result is also obtained in Section 3.6.1 [Equation (3.27)], where it is derived
from first principles and requires the solution of a system of 16 equations. Cartesian
product is obviously a useful, simple, and elegant method to easily derive the expressions
of many types of surfaces.

1.10 Connecting Surface Patches

Often, a complex surface is constructed of individual patches that have to be con-
nected smoothly, which is why this short section examines the conditions required for
the smooth connection of two rectangular patches. Figure 1.20 illustrates two patches
P(u, w) and Q(u, w) connected along the w direction such that P(1, w) = Q(0, w) for
0 ≤ w ≤ 1. Specifically, the two corner points Q00 and P10 are identical and so are Q01

and P11. The two patches will connect smoothly if any of the following conditions are
met:

1. Qu(0, w) = Pu(1, w) for 0 ≤ w ≤ 1.
2. Qu(0, w) = f(w)Pu(1, w) for 0 ≤ w ≤ 1 and a positive function f(w).
3. Qu(0, w) = f(w)Pu(1, w) + g(w)Pw(1, w) for 0 ≤ w ≤ 1 and positive functions

f(w) and g(w).
These conditions involve the three tangent vectors:
1. Qu(0, w), the tangent in the u direction of patch Q at u = 0.
2. Pu(1, w), the tangent in the u direction of P at u = 1.
3. Pw(1, w), the tangent in the w direction of P at u = 1.
Condition 1 implies that tangents 1 and 2 are equal. Condition 2 implies that they

point in the same direction but their sizes differ. Condition 3 means that tangent 1 does
not point in the direction of tangent 2, but lies in the plane defined by tangents 2 and
3.

P(u,w)
P(1,0)=Q(0,0)

P(1,1)=Q(0,1)

Q(u,w)

Qu(0,w)Pu(1,w) Pw(1,w)

1

0

1

1

1

1

3

3

2

2

22

w

patch

patch

Figure 1.20: Tangent Vectors For Smooth Connection.

Note that condition 3 includes condition 2 (in the special case g(w) = 0) and
condition 2 includes condition 1 (in the special case f(w) = 1).
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1.11 Fast Computation of a Bicubic Patch

A complete rectangular surface patch is displayed as a wireframe by drawing two families
of curves, in the u and w directions, as pointed out in Section 1.8.2. This section shows
how to apply the technique of forward differences to the problem of fast computation
of these curves. The material presented here is an extension of the ideas and methods
presented in Section 1.5.1. We limit this discussion to a general bicubic surface patch,
whose expression is

P(u, w) = (u3, u2, u, 1)

⎡
⎢⎣

M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

⎤
⎥⎦
⎡
⎢⎣

w3

w2

w
1

⎤
⎥⎦ . (1.31)

(Where matrix elements Mij are derived from the 16 points Pij and from the elements
of matrix N. Compare with Equation (3.21).)

For a fixed w, the surface P(u, w) reduces to a PC curve in the u direction Pw(u) =
Au3 +Bu2 +Cu+D. Each of the four coefficients is a cubic polynomial in w as follows:

A(w) = M00w
3 + M01w

2 + M02w + M03,

B(w) = M10w
3 + M11w

2 + M12w + M13,

C(w) = M20w
3 + M21w

2 + M22w + M23,

D(w) = M30w
3 + M31w

2 + M32w + M33.

Applying the forward differences technique of Section 1.5.1, we can compute the
n points Pw(0), Pw(∆), Pw(2∆),. . . , Pw([n − 1]∆) [where (n − 1)∆ = 1] with three
additions and three assignments for each point. This, however, requires that the four
quantities A(w), B(w), C(w), and D(w) be computed first, which involves multipli-
cations and exponentiations. Moreover, to display the entire surface patch we need to
compute and display U curves Pw(u) for U values of w in the interval [0, 1]. The natural
solution is to apply forward differences to the computations of A(w), B(w), C(w), and
D(w) for each value of w.

To compute A(w) = M00w
3 + M01w

2 + M02w + M03 we compute the following

A(0) = M03, dA(0) = M00∆3 + M01∆2 + M02∆, ddA(0) = 6M00∆3 + 2M01∆2,

dddA = 6M00∆3,

A(∆) = A(0) + dA(0), dA(∆) = dA(0) + ddA(0), ddA(∆) = ddA(0) + dddA,

A([j + 1]∆) = A(j∆) + dA(j∆),
dA([j + 1]∆) = dA(j∆) + ddA(j∆),
ddA([j + 1]∆) = ddA(j∆) + dddA,

and similarly for B(w), C(w), and D(w). Each requires three additions and three
assignments, for a total of 12 additions and 12 assignments.

Thus, a complete curve P(u, j∆) is drawn in the u direction on the surface in the
following two steps:
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1. Compute A(j∆) from A([j−1]∆), dA([j−1]∆), and ddA([j−1]∆) and similarly
for B(j∆), C(j∆), and D(j∆), in 12 additions and 12 assignments.

2. Use these four quantities to compute the n points P(0, j∆), P(∆, j∆), P(2∆, j∆),
up to P(1, j∆), in three additions and three assignments for each point.

The total number of simple operations required for drawing curve P(u, j∆) is there-
fore 12 + 12 + n(3 + 3) = 6n + 24. If U such curves are drawn in the u direction, the
total number of operations is (6n + 24)U .

To complete the wireframe, another family of W curves of the form P(i∆, w) should
be computed and displayed. We assume that m points are computed for each curve,
which brings the total number of operations for this family of curves to (6m + 24)W .

A PC curve Pu(w) in the w direction on the surface has the form Pu(w) = Ew3 +
Fw2 +Gw +H, where each of the four coefficients is a cubic polynomial in u as follows:

E(u) = M00u
3 + M10u

2 + M20u + M30,

F(u) = M01u
3 + M11u

2 + M21u + M31,

G(u) = M02u
3 + M12u

2 + M22u + M32,

H(u) = M03u
3 + M13u

2 + M23u + M33.

Thus, E, F, G, and H are similar to A(w), B(w), C(w), and D(w), but are computed
with the transpose of matrix M.

A complete curve P(i∆, w) is drawn in the w direction on the surface in the following
two steps:

1. Compute E(i∆), F(i∆), G(i∆), and H(i∆) from the corresponding quantities
for [i − 1]∆ in 12 additions and 12 assignments.

2. Use these four quantities to compute the m points P(i∆, 0), P(i∆,∆), P(i∆, 2∆),
up to P(i∆, 1), in three additions and three assignments for each point.

The total number of simple operations required to compute the m points for curve
P(i∆, w) is therefore 6m + 24. If W such curves are drawn in the w direction, the total
number of operations is (6m + 24)W .

Thus, it seems that the entire wireframe can be computed and drawn with (6n +
24)U + (6m + 24)W operations. For m = n and U = W this becomes 2(6n + 24)U .
Typical values of these parameters may be m = n = 100 and U = W = 15, which results
in 624×30 = 18,720 operations.

However, as Figure 1.21 illustrates, some of the points traversed by the curves of
the two families are identical, so a sophisticated algorithm may identify them and store
them in memory to eliminate double computations and thereby reduce the total number
of operations. The figure shows seven curves in the w direction, with 13 points each
(the white circles) and five curves in the u direction, consisting of 19 points each (the
black circles). Thus, n = 19, m = 13, W = 7, and U = 5. The total number of points is
19×5+13×7 = 186, and of these, 7×5, or about 19%, are identical (the U×W squares).
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u=0
w=0

u=1
w=0

u=0
w=1

u=1
w=1

u

w

Figure 1.21: A Rectangular Wireframe With 186 Points.

1.12 Subdividing a Surface Patch

The surface subdivision method illustrated here is based on the approach employed in
Section 1.5.2 to subdivide a curve. Hence, the reader is advised to read and understand
Section 1.5.2 before tackling the material presented here.

Imagine a user trying to construct a surface patch with an interactive algorithm.
The patch is based on quantities Pij that are normally points (some of these quantities
may be tangent vectors, but we’ll refer to them as points), but the surface refuses to
take the desired shape even after the points Pij have been moved about, shuffled, and
manipulated endlessly. This is a common case and it indicates that more points are
needed. Just adding new points is a bad approach, because the extra points will modify
the shape of the surface and will therefore require the designer to start afresh. A better
solution is to add points in such a way that the new surface will have the same shape
as the original one. A surface subdivision method takes a surface patch defined by n
points Pij and partitions it into several smaller patches such that together those patches
have the same shape as the original surface, and each is defined by n points Qij , each
of which is computed from the original points.

We illustrate this approach to surface subdivision using the bicubic surface patch
as an example. The general expression of such a patch is Equation (3.21), duplicated
here

P(u, w) = (u3, u2, u, 1)N

⎡
⎢⎣

P33 P32 P31 P30

P23 P22 P21 P20

P13 P12 P11 P10

P03 P02 P01 P00

⎤
⎥⎦NT

⎡
⎢⎣

w3

w2

w
1

⎤
⎥⎦ = UNPNT WT ,

where both u and w vary independently over the interval [0, 1]. We now select four
numbers u1, u2, w1, and w2 that satisfy 0 ≤ u1 < u2 ≤ 1 and 0 ≤ w1 < w2 ≤ 1. The
expression P(u, w) where u and w vary in the intervals [u1, u2] and [w1, w2], respectively,
is a rectangle on this surface (Figure 1.22a).
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(a) (b)

0 1u

0

1

w

u1 u2

w1

w2

Figure 1.22: Rectangles On A Bicubic Surface Patch.

The next step is to substitute new parameters t and v for u and w, respectively,
and express rectangle P(u, w) as P(t, v) where both t and v vary independently in [0, 1].
If the original rectangle is expressed as

P(u, w) = UNPNT WT , u1 ≤ u ≤ u2, w1 ≤ w ≤ w2,

then after the substitutions its shape will be the same and its form will be

P(t, v) = TNQNT VT , for 0 ≤ t ≤ 1, 0 ≤ v ≤ 1.

Both rectangles have the same shape, but P(t, v) is defined by means of new points Qij ,
and the main task is to figure out how to compute the Qij ’s from the original points
Pij while preserving the shape.

Once this is clear, a surface patch can be divided into several rectangles, as in
Figure 1.22b, and each expressed in terms of new points. Each new rectangle has the
same shape as that part of the surface from which it came, but is defined by the same
number of points as the entire original surface. Each rectangle can now be reshaped
because of the extra points.

The parameter substitutions from u and w to t and v are the linear relations t =
(u − u1)/(u2 − u1) and v = (w − w1)/(w2 − w1). These imply

u = (u2 − u1)
[
t +

u1

u2 − u1

]
and w = (w2 − w1)

[
v +

w1

w2 − w1

]
.

The rectangle is expressed by means of the new parameters in the form

P(t, v)

=

[
(u2 − u1)3

[
t +

u1

u2 − u1

]3

, (u2 − u1)2
[
t +

u1

u2 − u1

]2

, (u2 − u1)
[
t +

u1

u2 − u1

]
, 1

]

×NPNT

⎡
⎢⎢⎢⎢⎢⎣

(w2 − w1)3
[
v + w1

w2−w1

]3
(w2 − w1)2

[
v + w1

w2−w1

]2
(w2 − w1)

[
v + w1

w2−w1

]
1

⎤
⎥⎥⎥⎥⎥⎦
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= [t3, t2, t, 1]

⎡
⎢⎣

(u2 − u1)3 0 0 0
3u1(u2 − u1)2 (u2 − u1)2 0 0
3u2

1(u2 − u1) 2u1(u2 − u1) u2 − u1 0
u3

1 u2
1 u1 0

⎤
⎥⎦ (1.32)

×NPNT

⎡
⎢⎣

(w2 − w1)3 3w1(w2 − w1)2 3w2
1(w2 − w1) w3

1

0 (w2 − w1)2 2w1(w2 − w1) w2
1

0 0 w2 − w1 w1

0 0 0 1

⎤
⎥⎦
⎡
⎢⎣

v3

v2

v
1

⎤
⎥⎦

= [t3, t2, t, 1]LNPNT R[v3, v2, v, 1]T

= [t3, t2, t, 1]NQNT [v3, v2, v, 1]T ,

where the new points Q are related to the original points by Q = N−1LNPNT R(NT )−1.
To illustrate the application of matrices L and R of Equation (1.32), we apply them

to the special case u1 = 0, u2 = 1/2, w1 = 1/2, and w2 = 1 to isolate the gray rectangle
of Figure 1.23. The resulting matrices are

L =

⎛
⎜⎝

1/8 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1

⎞
⎟⎠ R =

⎛
⎜⎝

1/8 3/8 3/8 1/8
0 1/4 1/2 1/4
0 0 1/2 1/2
0 0 0 1

⎞
⎟⎠ .

These should be compared with matrices L and R of Equations (1.12) and (1.14),
respectively.

0 1u

0

1

w

Figure 1.23: A Rectangle on a Surface Patch.

1.13 Surface Normals

The main aim of computer graphics is to display real-looking, solid surfaces. This is
done by applying a shading algorithm to every pixel on the surface. Such algorithms
may be very complex, but the main task of shading is to compute the amount of light
reflected from every surface point. This requires the calculation of the normal to the
surface at every point. The normal is the vector that’s perpendicular to the surface at
the point. It can be defined in two ways:

1. We imagine a flat plane touching the surface at the point (this is called the
osculating plane). The normal is the vector that’s perpendicular to this plane.
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2. We calculate two tangent vectors to the surface at the point. The normal is the
vector that’s perpendicular to both tangents.

The following shows how to calculate the normal vectors for various types of sur-
faces.

The normal to the implicit surface F (x, y, z) = 0 at point (x0, y0, z0) is the vector(
∂F (x0, y0, z0)

∂x
,
∂F (x0, y0, z0)

∂y
,
∂F (x0, y0, z0)

∂z

)
.

Example: The ellipsoid x2/a2 + y2/b2 + z2/c2 − 1 = 0. A partial derivative would
be, for example, ∂f/∂x = 2x/a2, so the normal is(

2x

a2
,
2y

b2
,
2z

c2

)
which is in the same direction as

( x

a2
,

y

b2
,

z

c2

)
.

For example, the normal at point (0, 0,−c) is (0, 0,−c/c2) = (0, 0,−1/c). This is a
vector in the direction (0, 0,−1).

� Exercise 1.30: What is the normal to the explicit surface z = f(x, y) at point (x0, y0)?

No money, no job, no rent. Hey, I’m back to normal.
—Mickey Rourke (as Henry Chinaski) in Barfly, 1987.

The normal to the parametric surface P(u, w) is calculated in two steps. In step
1, the two tangent vectors U = ∂P(u, w)/∂u and V = ∂P(u, w)/∂w are calculated. In
step 2, the normal is calculated as their cross-product U × V (Equation (1.5), page 7).

The normal to a polygon in a polygonal surface (Section 2.2) can be calculated as
shown for an implicit surface. The (implicit) plane equation is F (x, y, z) = Ax + By +
Cz + D = 0, so the normal is

(
∂F
∂x , ∂F

∂y , ∂F
∂z

)
, which is simply (A, B, C). Another way

of calculating the normal, especially suited for triangles, is to find two vectors on the
surface and calculate their cross-product. Two suitable vectors are U = P1 − P2 and
V = P1 − P3, where P1, P2, and P3 are the triangle’s corners. Their cross product is

U × V = (UyVz − UzVy, UzVx − UxVz, UxVy − UyVx).

Example: A polygon with vertices (1, 1,−1), (1, 1, 1) (1,−1, 1), and (1,−1,−1).
All the vertices have x = 1, so they are on the x = 1 plane, which means that the normal
should be a vector in the x direction. The calculation is straightforward:

U = (1, 1, 1) − (1, 1,−1) = (0, 0, 2),
V = (1,−1, 1) − (1, 1,−1) = (0,−2, 2),

U × V = (0 − (−4), 0 − 0, 0 − 0) = (4, 0, 0).

This is a vector in the right direction.
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� Exercise 1.31: What will happen if we calculate U as (1, 1,−1) − (1, 1, 1)?

� Exercise 1.32: Find the normal to the pyramid face of Equation (Ans.4).

� Exercise 1.33: Find the normal to the cone of Equation (Ans.3).

� Exercise 1.34: Construct a cylinder as a sweep surface (Chapter 9) and find its normal
vector. Assume that the cylinder is swept when the line from (−a, 0, R) to (a, 0, R) is
rotated 360◦ about the x axis.

John’s leaning against the window, probably trying to

figure out what parametric equation generated the

petals on that eight-foot-tall, carnivorous plant. He

turns around to be introduced. “John Cantrell.”

“Harvard Li. Didn’t you get my e-mail?”

Harvard Li! Now Randy is starting to remember

this guy. Founder of Harvard Computer Company,

a medium-sized PC clone manufacturer in Taiwan.

Neal Stephenson, Cryptonomicon (2002)





2
Linear Interpolation

In order to achieve realism, the many algorithms and techniques employed in computer
graphics have to construct mathematical models of curved surfaces, models that are
based on curves. It seems that straight line segments and flat surface patches, which are
simple geometric figures, cannot play an important role in achieving realism, yet they
turn out to be useful in many instances. A smooth curve can be approximated by a
set of short straight segments. A smooth, curved surface can similarly be approximated
by a set of surface patches, each a small, flat polygon. Thus, this chapter discusses
straight lines and flat surfaces that are defined by points. The application of these
simple geometric figures to computer graphics is referred to as linear interpolation. The
chapter also presents two types of surfaces, bilinear and lofted, that are curved, but are
partly based on straight lines.

2.1 Straight Segments

We start with the parametric equation of a straight segment. Given any two points A
and C, the expression A + α(C−A) is the sum of a point and a vector, so it is a point
(see page 2) that we can denote by B. The vector C−A points from A to C, so adding
it to A results in a point on the line connecting A to C. Thus, we conclude that the
three points A, B, and C are collinear. Note that the expression B = A + α(C − A)
can be written B = (1 − α)A + αC, showing that B is a linear combination of A and
C with barycentric weights. In general, any of three collinear points can be written as
a linear combination of the other two. Such points are not independent.

We therefore conclude that given two arbitrary points P0 and P1, the parametric
representation of the line segment from P0 to P1 is

P(t) = (1 − t)P0 + tP1 = P0 + (P1 − P0)t = P0 + td, for 0 ≤ t ≤ 1. (2.1)
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The tangent vector of this line is the constant vector dP(t)
dt = P1−P0 = d, the direction

from P0 to P1.
If we think of Pi as the vector from the origin to

point Pi, then the figure on the right shows how the
straight line is obtained as a linear, barycentric combi-
nation of the two vectors P0 and P1, with coefficients
(1 − t) and t. We can think of this combination as
a vector that pivots from P0 to P1 while varying its
magnitude, so its tip always stays on the line.

The expression P0 + td is also useful. It describes
the line as the sum of the point P0 and the vector
td, a vector pointing from P0 to P1, whose magnitude
depends on t. This representation is useful in cases
where the direction of the line and one point on it are
known. Notice that varying t in the interval [−∞,+∞]
constructs the infinite line that contains P0 and P1.

P0 P1

2.1.1 Distance of a Point From a Line

Given a line in parametric form L(t) = P0 + tv (where v is a vector in the direction of
the line) and a point P, what is the distance between them? Assume that Q is the point
on L(t) that’s the closest to P. Point Q can be expressed as Q = L(t0) = P0 + t0v for
some t0. The vector from Q to P is P−Q. Since Q is the nearest point to P, this vector
should be perpendicular to the line. Thus, we end up with the condition (P−Q)•v = 0
or (P − P0 − t0v) • v = 0, which is satisfied by

t0 =
(P − P0) • v

v • v
.

Substituting this value of t0 in the line equation gives

Q = P0 +
(P − P0) • v

v • v
v. (2.2)

The distance between Q and P is the magnitude of vector P − Q.
This method always works since vector v cannot be zero (otherwise there would be

no line).
In the two-dimensional case, the line can be represented explicitly as y = ax+b and

the problem can be easily solved with just elementary trigonometry. Figure 2.1 shows
a general point P = (Px, Py) at a distance d from a line y = ax + b. It is easy to see
that the vertical distance e between the line and P is |Py −aPx − b|. We also know from
trigonometry that

1 = sin2 α + cos2 α = tan2 α cos2 α + cos2 α = cos2 α(1 + tan2 α),

implying

cos2 α =
1

1 + tan2 α
.
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We therefore get

d = e cos α = e
√

cos2 α =
e√

1 + tan2 α
=

|Py − aPx − b|√
1 + a2

. (2.3)

P=(Px,Py)

ed

y=ax+b(Px,aPx+b)

α

α

α
Py−aPx−b

x

y

Figure 2.1: Distance Between P and y = ax + b.

� Exercise 2.1: Many mathematics problems can be solved in more than one way and
this problem is a good example. It is easy to solve by approaching it from different
directions. Suggest some approaches to the solution.

A man who boasts about never changing his views is a man who’s decided always to
travel in a straight line—the kind of idiot who believes in absolutes.

—Honoré de Balzac, Père Goriot, 1834

2.1.2 Intersection of Lines

Here is a simple, fast algorithm for finding the intersection point(s) of two line segments.
Assuming that the two segments P1 + α(P2 − P1) and P3 + β(P4 − P3) are given
[Equation (2.1)], their intersection point satisfies

P1 + α(P2 − P1) = P3 + β(P4 − P3),

or
α(P2 − P1) − β(P4 − P3) + (P1 − P3) = 0.

This can also be written αA + βB + C = 0, where A = P2 − P1, B = P3 − P4, and
C = P1 − P3. The solutions are

α =
ByCx − BxCy

AyBx − AxBy
, β =

AxCy − AyCx

AyBx − AxBy
.

The calculation of A, B, and C requires six subtractions. The calculation of α and
β requires three subtractions, six multiplications (since the denominators are identical),
and two divisions.
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Example: To calculate the intersection of the line segment from P1 = (−1, 1) to
P2 = (1,−1) with the line segment from P3 = (−1,−1) to P4 = (1, 1), we first calculate

A = P2 − P1 = (2,−2), B = P3 − P4 = (−2,−2), C = P1 − P3 = (0, 2).

Then calculate
α =

0 + 4
4 + 4

=
1
2
, β =

4 − 0
4 + 4

=
1
2
.

The lines intersect at their midpoints.
Example: The line segment from P1 = (0, 0) to P2 = (1, 0) and the line segment

from P3 = (2, 0) to P4 = (2, 1) don’t intersect. However, the calculation shows the
values of α and β necessary for them to intersect,

A = P2 − P1 = (1, 0), B = P3 − P4 = (0,−1), C = P1 − P3 = (−2, 0),

yields

α =
2 − 0
0 + 1

= 2, β =
0 − 0
0 + 1

= 0.

The lines would intersect at α = 2 (i.e., if we extend the first segment to twice its length
beyond P2) and β = 0 (i.e., point P3).

� Exercise 2.2: How can we identify overlapping lines (i.e., the case of infinitely many
intersection points) and parallel lines (no intersection points)? See Figure 2.2.

Parallel

Overlapping

Figure 2.2: Parallel and Overlapped Lines.

The description of right lines and circles, upon which geometry is founded, belongs
to mechanics. Geometry does not teach us to draw these lines, but requires them to
be drawn.

—Isaac Newton, 1687.
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2.2 Polygonal Surfaces

A polygonal surface consists of a number of flat faces, each a polygon. A polygon in
such a surface is typically a triangle, because the three points of a triangle are always
on the same plane. With higher-order polygons, the surface designer should make sure
that all the corners of the polygon are on the same plane.

Each polygon is a collection of vertices (the points defining it) and edges (the lines
connecting the points). Such a surface is easy to display, either as a wire frame or as a
solid surface. In the former case, the edges of all the polygons should be displayed. In
the latter case, all the points in a polygon are assigned the same color and brightness.
They are all assumed to reflect the same amount of light, since the polygon is flat and
has only one normal vector. As a result, a polygonal surface shaded this way appears
angular and unnatural, but there is a simple method, known as Gouraud’s algorithm
[Gouraud 71], that smooths out the reflections from the individual polygons and makes
the entire polygonal surface look curved.

Three methods are described for representing such a surface in memory:

1. Explicit polygons. Each polygon is represented as a list

(
(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)

)
of its vertices, and it is assumed that there is an edge from point 1 to point 2, from 2 to
3, and so on, and also an edge from point n to point 1.

This representation is simple but has two disadvantages:
I. A point may be shared by several polygons, so several copies have to be stored.

If the user decides to modify the point, all its copies have to be located and updated.
This is a minor problem, because an edge is rarely shared by more than two polygons.

II. An edge may also be shared by several polygons. When displaying the surface,
such an edge will be displayed several times, slowing down the entire process.

2. Polygon definition by pointers. There is one list

V =
(
(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)

)
of all the vertices of the surface. A polygon is represented as a list of pointers, each
pointing to a vertex in V. Hence, P = (3, 5, 7, 10) implies that polygon P consists of
vertices 3, 5, 7, and 10 in V. Problem II still exists.

3. Explicit edges. List V is as before, and there is also an edge list

E = ( (v1, v6, p3), (v5, v7, p1, p3, p6, p8), . . .).

Each element of E represents an edge. It contains two pointers to the vertices of the edge
followed by pointers to all the polygons that share the edge. Each polygon is represented
by a list of pointers to E, for example, P1 = (e1, e4, e5). Problem II still exists, but it is
minor.
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2.2.1 Polygon Planarity

Given a polygon defined by points P1, P2, . . . , Pn, we use the scalar triple product
[Equation (1.7)] to test for polygon planarity (i.e., to check whether all the polygon’s
vertices Pi are on the same plane). Such a test is necessary only if n > 3. We select P1

as the “pivot” point and calculate the n− 1 pivot vectors vi = Pi −P1 for i = 2, . . . , n.
Next, we calculate the n− 3 scalar triple products vi • (v2 × v3) for i = 4, . . . , n. If any
of these products are nonzero, the polygon is not planar. Note that limited accuracy
on some computers may cause an otherwise null triple product to come out as a small
floating-point number.

� Exercise 2.3: Consider the polygon defined by the four points P1 = (1, 0, 0), P2 =
(0, 1, 0), P3 = (1, a, 1), and P4 = (0,−a, 0). For what values of a will it be planar?

2.2.2 Plane Equations

A polygonal surface consists of flat polygons (often triangles). To calculate the normal
to a polygon, we first need to know the polygon’s equation. The implicit equation of
a flat plane is Ax + By + Cz + D = 0. It seems that we need four equations in order
to calculate the four unknown coefficients A, B, C, and D, but it turns out that three
equations are enough. Assuming that the three points Pi = (xi, yi, zi), i = 1, 2, 3, are
given, we can write the four equations

Ax + By + Cz + D = 0,

Ax1 + By1 + Cz1 + D = 0,

Ax2 + By2 + Cz2 + D = 0,

Ax3 + By3 + Cz3 + D = 0.

The first equation is true for any point (x, y, z) on the plane. We cannot solve this
system of four equations in four unknowns, but we know that it has a solution if and
only if its determinant is zero. The expression below assumes this and also expands the
determinant by its top row:

0 =

∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣
=x

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣− y

∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣+ z

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
This expression is of the form Ax + By + Cz + D = 0 where

A =

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣ B = −
∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣ C =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ D = −
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
(2.4)
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� Exercise 2.4: Calculate the expression of the plane containing the z axis and passing
through the point (1, 1, 0).

� Exercise 2.5: In the plane equation Ax + By + Cz + D = 0, if D = 0, then the
plane passes through the origin. Assuming D �= 0, we can write the same equation as
x/a + y/b + z/c = 1, where a = −D/A, b = −D/B, and c = −D/C. What is the
geometrical interpretation of a, b, and c?

We operate with nothing but things which do not exist, with lines, planes, bodies,
atoms, divisible time, divisible space—how should explanation even be possible when
we first make everything into an image, into our own image!

—Friedrich Nietzsche

In some practical situations, the normal to the plane as well as one point on the
plane, are known. It is easy to derive the plane equation in such a case.

We assume that N is the (known) normal vector to the plane, P1 is a known point,
and P is any point in the plane. The vector P−P1 is perpendicular to N, so their dot
product N • (P − P1) equals zero. Since the dot product is associative, we can write
N • P = N • P1. The dot product N • P1 is just a number, to be denoted by s, so we
obtain

N • P = s or Nxx + Nyy + Nzz − s = 0. (2.5)

Equation (2.5) can now be written as Ax + By + Cz + D = 0, where A = Nx, B = Ny,
C = Nz, and D = −s = −N • P1. The three unknowns A, B, and C are therefore the
components of the normal vector and D can be calculated from any known point P1

on the plane. The expression N • P = s is a useful equation of the plane and is used
elsewhere in this book.

� Exercise 2.6: Given N = (1, 1, 1) and P1 = (1, 1, 1), calculate the plane equation.

Note that the direction of the normal in this case is unimportant. Substituting
(−A,−B,−C) for (A, B, C) would also change the sign of D, resulting in the same
equation. However, the direction of the normal is important when the surface is to be
shaded. To be used for the calculation of reflection, the normal has to point outside the
surface. This has to be verified by the user, since the computer has no idea of the shape
of the surface and the meaning of “inside” and “outside.” In the case where a plane is
defined by three points, the direction of the normal can be specified by arranging the
three points (in the data structure in memory) in a certain order.

It is also easy to derive the equation of a plane when three points on the plane, P1,
P2, and P3, are known. In order for the points to define a plane, they should not be
collinear. We consider the vectors r = P2 − P1 and s = P3 − P1 a local coordinate
system on the plane. Any point P on the plane can be expressed as a linear combination
P = ur + ws, where u and w are real numbers. Since r and s are local coordinates on
the plane, the position of point P relative to the origin is expressed as (Figure 2.3)

P(u, w) = P1 + ur + ws, −∞ < u, w < ∞. (2.6)
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P1

P3

P

r

urs

ws
P2

Figure 2.3: Three Points on a Plane.

� Exercise 2.7: Given the three points P1 = (3, 0, 0), P2 = (0, 3, 0), and P3 = (0, 0, 3),
write the equation of the plane defined by them.

2.2.3 Space Division

An infinite plane divides the entire three-dimensional space into two parts. We can call
them “outside” and “inside” (or “above” and “below”), and define the outside direction
as the direction pointed to by the normal. Using the plane equation, N • P = s, it
is possible to tell if a given point Pi lies inside, outside, or on the plane. All that’s
necessary is to examine the sign of the dot product N • (Pi −P), where P is any point
on the plane, different from Pi.

This dot product can also be written |N| |Pi−P| cos θ, where θ is the angle between
the normal N and the vector Pi − P. The sign of the dot product equals the sign of
cos θ, and Figure 2.4a shows that for −90◦ < θ < 90◦, point Pi lies outside the plane,
for θ = 90◦, point Pi lies on the plane, and for θ > 90◦, Pi lies inside the plane.

The regular division of the plane into congruent figures evoking an association in the
observer with a familiar natural object is one of these hobbies or problems. . . . I have
embarked on this geometric problem again and again over the years, trying to throw
light on different aspects each time. I cannot imagine what my life would be like if
this problem had never occurred to me; one might say that I am head over heels in
love with it, and I still don’t know why.

—M. C. Escher

(a) (b)

(Pi−P)

P

NPi

Pi

Pi

a
b

θ

Inside (below)

Outside (above)

Figure 2.4: (a) Space Division. (b) Turning On a Polygon.
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2.2.4 Turning Around on a Polygon

When moving along the edges of a polygon from vertex to vertex, we make a turn at
each vertex. Sometimes, the “sense” of the turn (left or right) is important. However,
the terms “left” and “right” are relative, depending on the location of the observer,
and are therefore ambiguous. Consider Figure 2.4b. It shows two edges, a and b, of a
“thick” polygon, with two arrows pointing from a to b. Imagine each arrow to be a bug
crawling on the polygon. The bug on the top considers the turn from a to b a left turn,
while the bug crawling on the bottom considers the same turn to be a “right” turn.

It is therefore preferable to define terms such as “positive turn” and “negative turn,”
that depend on the polygon and on the coordinate axes, but not on the position of any
observer. To define these terms, consider the plane defined by the vectors a and b (if
they are parallel, they don’t define any plane, but then there is no sense talking about
turning from a to b). The cross product a × b is a vector perpendicular to the plane.
It can point in the direction of the normal N to the plane, or in the opposite direction.
In the former case, we say that the turn from a to b is positive; in the latter case, the
turn is said to be negative.

To calculate the sense of the turn, simply check the sign of the triple scalar product
N • (a × b). A positive sign implies a positive turn.

� Exercise 2.8: Why?

2.2.5 Convex Polygons

Given a polygon, we select two arbitrary points on its edges and connect them with a
straight line. If for any two such points the line is fully contained in the polygon, then
the polygon is called convex. Another way to define a convex polygon is to say that a
line can intersect such a polygon at only two points (unless the line is identical to one
of the edges or it grazes the polygon at one point).

The sense of a turn (positive or negative) can also serve to define a convex polygon.
When traveling from vertex to vertex in such a polygon all turns should have the same
sense. They should all be positive or all negative. In contrast, when traveling along a
concave polygon, both positive and negative turns must be made (Figure 2.5).

Convex Concave

Figure 2.5: Convex and Concave Polygons.

We can think of a polygon as a set of points in two dimensions. The concept of a
set of points, however, exists in any number of dimensions. A set of points is convex if it
satisfies the definition regardless of the number of dimensions. One important concept
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associated with a set of points is the convex hull of the set. This is the set of “extreme”
points that satisfies the following: the set obtained by connecting the points of the
convex hull contains all the points of the set. (A simple, two-dimensional analogy is to
consider the points nails driven into a board. A rubber band placed around all the nails
and stretched will identify the points that constitute the convex hull.)

2.2.6 Line and Plane Intersection

Given a plane N •P = s and a line P = P1 + td [Equation (2.1)], it is easy to calculate
their intersection point. We simply substitute the value of P in the plane equation to
obtain N • (P1 + td) = s. This results in t = (s − N • P1)/(N • d). Thus, we compute
the value of t and substitute it in the line equation, to get the point of intersection.
Such a process is important in ray tracing, an important rendering algorithm where the
intersections of light rays and polygons are computed all the time.

� Exercise 2.9: The intersection of a line parallel to a plane is either the entire line (if
the line happens to be in the plane) or is empty. How do we distinguish these cases from
the equation above?

2.2.7 Triangles

A polygonal surface is often constructed of triangles. A triangle is flat but finite, whereas
the plane equation describes an infinite plane. We therefore need to modify this equation
to describe only the area inside a given triangle

Given any three noncollinear points P1, P2, and P3 in three dimensions, we first
derive the equation of the (infinite) plane defined by them. Following that, we limit
ourselves to just that part of the plane that’s inside the triangle. We start with the two
vectors (P2 −P1) and (P3 −P1). They can serve as local coordinate axes on the plane
(even though they are not normally perpendicular), with point P1 as the local origin.
The linear combination u(P2 − P1) + w(P3 − P1), where both u and w can take any
real values, is a vector on the plane. To get the coordinates of an arbitrary point on the
plane, we simply add point P1 to this linear combination (recall that the sum of a point
and a vector is a point). The resulting plane equation is

P1 + u(P2 − P1) + w(P3 − P1) = P1(1 − u − w) + P2u + P3w. (2.7)

To limit the area covered to just the triangle whose corners are P1, P2, and P3, we note
that Equation (2.7) yields

P1, when u = 0 and w = 0,

P2, when u = 1 and w = 0,

P3, when u = 0 and w = 1.

The entire triangle can therefore be obtained by varying u and w under the conditions
u ≥ 0, w ≥ 0, and u + w ≤ 1.

� Exercise 2.10: Given the three points P1 = (10,−5, 4), P2 = (8,−4, 3.2), and P3 =
(8, 4, 3.2), derive the equation of the triangle defined by them.
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If triangles had a God, He’d have three sides.
—Yiddish proverb

� Exercise 2.11: Given the three points P1 = (10,−5, 4), P2 = (8,−4, 3.2), and P3 =
(12,−6, 4.8), calculate the triangle defined by them.

For more information, see [Triangles 04] or [Kimberling 94].

2.3 Bilinear Surfaces

A flat polygon is the simplest type of surface. The bilinear surface is the simplest
nonflat (curved) surface because it is fully defined by means of its four corner points.
It is discussed here because its four boundary curves are straight lines and because the
coordinates of any point on this surface are derived by linear interpolations. Since this
patch is completely defined by its four corner points, it cannot have a very complex
shape. Nevertheless it may be highly curved. If the four corners are coplanar, the
bilinear patch defined by them is flat.

Let the corner points be the four distinct points P00, P01, P10, and P11. The top
and bottom boundary curves are straight lines and are easy to calculate (Figure 2.6).
They are P(u, 0) =

(
P10 − P00

)
u + P00 and P(u, 1) =

(
P11 − P01

)
u + P01.

P00
P10

P11

P01

P(0,w)

P(1,w)

P(u,1)

P(u0,1)

P(u,0)

P(u0,0)

P(u0,w)

Figure 2.6: A Bilinear Surface.

To linearly interpolate between these boundary curves, we first calculate two cor-
responding points P(u0, 0) and P(u0, 1), one on each curve, then connect them with a
straight line P(u0, w). The two points are

P(u0, 0) = (P10 − P00)u0 + P00 and P(u0, 1) = (P11 − P01)u0 + P01,

and the straight segment connecting them is

P(u0, w) = (P(u0, 1) − P(u0, 0))w + P(u0, 0)

=
[
(P11 − P01)u0 + P01 −

(
(P10 − P00)u0 + P00

)]
w

+ (P10 − P00)u0 + P00.
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The expression for the entire surface is obtained when we release the parameter u from
its fixed value u0 and let it vary. The result is:

P(u, w) = P00(1 − u)(1 − w) + P01(1 − u)w + P10u(1 − w) + P11uw

=
1∑

i=0

1∑
j=0

B1i(u)PijB1j(w), (2.8)

= [B10(u), B11(u)]
[
P00 P01

P10 P11

] [
B10(w)
B11(w)

]
,

where the functions B1i(t) are the Bernstein polynomials of degree 1, introduced in
Section 6.16. This implies that the bilinear surface is a special case of the rectangular
Bézier surface, introduced in the same section. (The Bernstein polynomials crop up in
unexpected places.) Mathematically, the bilinear surface is a hyperbolic paraboloid (see
answer to exercise 2.12). Its parametric expression is linear in both u and w.

The expression P(t) = (1 − t)P1 + tP2 has already been introduced. This is the
straight segment from point P1 to point P2 expressed as a blend (or a barycentric sum)
of the points with the two weights (1 − t) and t. Since B10(t) = 1 − t and B11(t) = t,
this expression can also be written in the form

[B10(t), B11(t)]
[
P1

P2

]
. (2.9)

The reader should notice the similarity between Equations (2.8) and (2.9). The former
expression is a direct extension of the latter and is a simple example of the technique
of Cartesian product, discussed in Section 1.9, which is used to extend many curves to
surfaces.

Figure 2.7 shows a bilinear surface together with the Mathematica code that pro-
duced it. The coordinates of the four corner points and the final, simplified expression
of the surface are also included. The figure illustrates the bilinear nature of this surface.
Every line in the u or in the w directions on this surface is straight, but the surface itself
is curved.

Example: We select the four points P00 = (0, 0, 1), P10 = (1, 0, 0), P01 = (1, 1, 1),
and P11 = (0, 1, 0) (Figure 2.7) and apply Equation (2.8). The resulting surface patch
is

P (u, w) = (0, 0, 1)(1 − u)(1 − w) + (1, 1, 1)(1 − u)w + (1, 0, 0)u(1 − w) + (0, 1, 0)uw

=
(
u + w − 2uw, w, 1 − u

)
. (2.10)

It is easy to check the expression by substituting u = 0, 1 and w = 0, 1, which reduces
the expression to the four corner points. The tangent vectors can easily be calculated.
They are

∂P(u, w)
∂u

= (1 − 2w, 0,−1),
∂P(u, w)

∂w
= (1 − 2u, 1, 0).

The first vector lies in the xz plane, and the second lies in the xy plane.
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(* a bilinear surface patch *)
Clear[bilinear,pnts,u,w];
<<:Graphics:ParametricPlot3D.m;
pnts=ReadList["Points",{Number,Number,Number}, RecordLists->True];
bilinear[u_,w_]:=pnts[[1,1]](1-u)(1-w)+pnts[[1,2]]u(1-w) \
+pnts[[2,1]]w(1-u)+pnts[[2,2]]u w;
Simplify[bilinear[u,w]]
g1=Graphics3D[{AbsolutePointSize[5], Table[Point[pnts[[i,j]]],{i,1,2},{j,1,2}]}];
g2=ParametricPlot3D[bilinear[u,w],{u,0,1,.05},{w,0,1,.05}, Compiled->False,
DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{0.063, -1.734, 2.905}];
{{0, 0, 1}, {1, 1, 1}, {1, 0, 0}, {0, 1, 0}}
{u + w - 2 u w, u, 1 - w}

Figure 2.7: A Bilinear Surface.

Example: The four points P00 = (0, 0, 1), P10 = (1, 0, 0), P01 = (0.5, 1, 0), and
P11 = (1, 1, 0) are selected and Equation (2.8) is applied to them. The resulting surface
patch is (Figure 2.8)

P (u, w) = (0, 0, 1)(1 − u)(1 − w) + (0.5, 1, 0)(1 − u)w + (1, 0, 0)u(1 − w) + (1, 1, 0)uw

=
(
0.5(1 − u)w + u, w, (1 − u)(1 − w)

)
. (2.11)

Note that the y coordinate is simply w. This means that points with the same w value,
such as P(0.1, w) and P(0.5, w) have the same y coordinate and are therefore located on
the same horizontal line. Also, the z coordinate is a simple function of u and w, varying
from 1 (when u = w = 0) to 0 as we move toward u = 1 or w = 1.

The boundary curves are very easy to calculate from Equation (2.11). Here are two
of them

P(0, w) = (0.5w, w, 1 − w), P(u, 1) = (0.5(1 − u) + u, 1, 0).

The tangent vectors can also be obtained from Equation (2.11)

∂P(u, w)
∂u

= (−0.5w + 1, 0, w − 1),
∂P(u, w)

∂w
= (0.5(1 − u), 1, u − 1). (2.12)
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(* Another bilinear surface example *)
ParametricPlot3D[{0.5(1-u)w+u,w,(1-u)(1-w)}, {u,0,1},{w,0,1}, Compiled->False,
ViewPoint->{-0.846, -1.464, 3.997}, DefaultFont->{"cmr10", 10}];

Figure 2.8: A Bilinear Surface.

The first is a vector in the xz plane, while the second is a vector in the y = 1 plane. The
following two tangent values are especially simple: ∂P(u,1)

∂u = (0.5, 0, 0) and ∂P(1,w)
∂w =

(0, 1, 0). The first is a vector in the x direction and the second is a vector in the y
direction.

Finally, we compute the normal vector to the surface. This vector is normal to the
surface at any point, so it is perpendicular to the two tangent vectors ∂P(u, w)/∂u and
∂P(u, w)/∂w and is therefore the cross-product [Equation (1.5)] of these vectors. The
calculation is straightforward:

N(u, w) =
∂P
∂u

× ∂P
∂w

= (1 − w, 0.5(1 − u), 1 − 0.5w). (2.13)

There are two ways of satisfying ourselves that Equation (2.13) is the correct expression
for the normal:

1. It is easy to prove, by directly calculating the dot products, that the normal
vector of Equation (2.13) is perpendicular to both tangents of Equation (2.12).

2. A closer look at the coordinates of our points shows that three of them have a z
coordinate of zero and only P00 has z = 1. This means that the surface approaches a
flat xy surface as one moves away from point P00. It also means that the normal should
approach the z direction when u and w move away from zero, and it should move away
from that direction when u and w approach zero. It is, in fact, easy to confirm the
following limits:

lim
u,w→1

N(u, w) = (0, 0, 0.5), lim
u,w→0

N(u, w) = (1, 0.5, 1).

� Exercise 2.12: (1) Calculate the bilinear surface for the points (0, 0, 0), (1, 0, 0), (0, 1, 0),
and (1, 1, 1). (2) Guess the explicit representation z = F (x, y) of this surface. (3) What
curve results from the intersection of this surface with the plane z = k (parallel to the
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xy plane). (4) What curve results from the intersection of this surface with a plane
containing the z axis?

The scale, properly speaking, does not permit the measure of the intelligence, because
intellectual qualities are not superposable, and therefore cannot be measured as linear
surfaces are measured.

—Alfred Binet (on his new IQ test)

Example: This is the third example of a bilinear surface. The four points P00 =
(0, 0, 1), P10 = (1, 0, 0), and P01 = P11 = (0, 1, 0) create a triangular surface patch
(Figure 2.9) because two of them are identical. The surface expression is

P (u, w) = (0, 0, 1)(1−u)(1−w) + (0, 1, 0)(1−u)w + (1, 0, 0)u(1−w) + (0, 1, 0)uw

=
(
u(1 − w), w, (1 − u)(1 − w)

)
.

Notice that the boundary curve P(u, 1) degenerates to the single point (0, 1, 0), i.e., it
does not depend on u.
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(* A Triangular bilinear surface example *)
ParametricPlot3D[{u(1-w),w,(1-u)(1-w)}, {u,0,1},{w,0,1}, Compiled->False,
ViewPoint->{-2.673, -3.418, 0.046}, DefaultFont->{"cmr10", 10}];

Figure 2.9: A Triangular Bilinear Surface.

� Exercise 2.13: Calculate the tangent vectors and the normal vector of this surface.

� Exercise 2.14: Given the two points P00 = (−1,−1, 0) and P10 = (1,−1, 0), consider
them the endpoints of a straight segment L1.

(1) Construct the endpoints of the three straight segments L2, L3, and L4. Each
should be translated one unit above its predecessor on the y axis and should be rotated
60◦ about the y axis, as shown in Figure 2.10. Denote the four pairs of endpoints by
P00P10, P01P11, P02P12 and P03P13.
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(2) Calculate the three bilinear surface patches

P1(u, w) =P00(1 − u)(1 − w) + P01(1 − u)w + P10u(1 − w) + P11uw,

P2(u, w) =P01(1 − u)(1 − w) + P02(1 − u)w + P11u(1 − w) + P12uw,

P3(u, w) =P02(1 − u)(1 − w) + P03(1 − u)w + P12u(1 − w) + P13uw.

60o

120o
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y

P00

P10

P01

P11

P03

P02

P13

P12

−1

1

2

L1

L2

L3

L4

Figure 2.10: Four Straight Segments for Exercise 2.14.

2.4 Lofted Surfaces

This kind of surface patch is curved, but it belongs in this chapter because it is linear
in one direction. It is bounded by two arbitrary curves [that we denote by P(u, 0) and
P(u, 1)] and by two straight segments P(0, w) and P(1, w) connecting them. Surface
lines in the w direction are therefore straight, whereas each line in the u direction is a
blend of P(u, 0) and P(u, 1). The blend of the two curves is simply (1 − w)P(u, 0) +
wP(u, 1), and this blend, which is linear in w, constitutes the expression of the surface

P(u, w) = (1 − w)P(u, 0) + wP(u, 1). (2.14)

This expression is linear in w, implying straight lines in the w direction. Moving in the
u direction, we travel on a curve whose shape depends on the value of w. For w0 ≈ 0,
the curve P(u, w0) is close to the boundary curve P(u, 0). For w0 ≈ 1, it is close to the
boundary curve P(u, 1). For w0 = 0.5, it is 0.5P(u, 0) + 0.5P(u, 1), an equal mixture of
the two.

Note that this kind of surface is fully defined by specifying the two boundary curves.
The four corner points are implicit in these curves. These surfaces are sometimes called
ruled, because straight lines are an important part of their description. This is also
the reason why this type of surface is sometimes defined as follows: a surface is a lofted
surface if and only if through every point on it there is a straight line that lies completely
on the surface.
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This definition implies that any cylinder is a lofted surface, but a little thinking
shows that even a bilinear surface is lofted.

Example: We start with the six points P1 = (−1, 0, 0), P2 = (0,−1, 0), P3 =
(1, 0, 0), P4 = (−1, 0, 1), P5 = (0,−1, 1), and P6 = (1, 0, 1). Because of the special
coordinates of the points (and because of the way we will compute the boundary curves),
the surface is easy to visualize (Figure 2.11). This helps to intuitively make sense of the
expressions for the tangent vectors and the normal. Note especially that the left and
right edges of the surface are in the xz plane, whereas we will see that all the other lines
in the w direction have a small negative y component.

x

y

zP4

P5

P6

P3
P2

P1

Figure 2.11: A Lofted Surface.

We proceed in six steps as follows:
1. As the top boundary curve, P(u, 1), we select the quadratic polynomial passing

through the top three points P4, P5, and P6. There is only one such curve and it has
the form P(u, 1) = A + Bu + Cu2, where the coefficients A, B, and C have to be
calculated. We use the fact that the curve passes through the three points to set up
the three equations P(0, 1) = P4, P(0.5, 1) = P5, and P(1, 1) = P6, that are written
explicitly as

A + B×0 + C×02 = (−1, 0, 1),

A + B×0.5 + C×0.52 = (0,−1, 1),

A + B×1 + C×12 = (1, 0, 1).
These are easy to solve and result in A = (−1, 0, 1), B = (2,−4, 0), and C = (0, 4, 0).
The top boundary curve is therefore P(u, 1) =

(
2u − 1, 4u(u − 1), 1

)
.

2. As the bottom boundary curve, we select the quadratic Bézier curve [Equa-
tion (6.6)] defined by the three points P1, P2, and P3. The curve is

P(u, 0) =
2∑

i=0

B2i(u)Pi+1

= (1 − u)2(−1, 0, 0) + 2u(1 − u)(0,−1, 0) + u2(1, 0, 0)

=
(
2u − 1,−2u(1 − u), 0

)
.

3. The expression of the surface is immediately obtained

P(u, w) = P(u, 0)(1 − w) + P(u, 1)w =
(
2u − 1, 2u(u − 1)(1 + w), w

)
.
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(Notice that it does not pass through P2.)
4. The two tangent vectors are also easy to compute

∂P
∂u

=
(
2, 2(2u − 1)(1 + w), 0

)
,

∂P
∂w

=
(
0, 2u(u − 1), 1

)
.

5. The normal, as usual, is the cross-product of the tangents and is given by
N(u, w) =

(
2(2u − 1)(1 + w),−2, 4u(u − 1)

)
.

6. The most important feature of this example is the ease with which the expressions
of the tangents and the normal can be visualized. This is possible because of the simple
shape and orientation of the surface (again, see Figure 2.11). The reader should examine
the expressions and make sure the following points are clear:

The two boundary curves are very similar. One difference between them is, of
course, the x and z coordinates. However, the only important difference is in the y
coordinate. Both curves are quadratic polynomials in u, but although P(u, 1) passes
through the three top points, P(u, 0) passes only through the first and last points.

The tangent in the u direction, ∂P/∂u, features z = 0; it is a vector in the xy plane.
At the bottom of the surface, where w = 0, it changes direction from (2,−2, 0) (when
u = 0) to (2, 2, 0) (when u = 1), both 45◦ directions in the xy plane. However, at the
top, where w = 1, the tangent changes direction from (2,−4, 0) to (2, 4, 0), both 63◦

directions. This is because the top boundary curve goes deeper in the y direction.

The tangent in the w direction, ∂P/∂w features x = 0; it is a vector in the yz
plane. Its z coordinate is a constant 1, and its y coordinate varies from 0 (on the left,
where u = 0), to −0.5 (in the middle, where u = 0.5), and back to 0 (on the right,
where u = 1). On the left and right edges of the surface, this vector is therefore vertical
(0, 0, 1). In the middle, it is (0,−0.5, 1), making a negative half-step in y for each step
in z.

The normal vector features y = −2 with a small z component. It therefore points
mostly in the negative y direction, and a little in x. At the bottom (w = 0), it varies from
(−2,−2, 0), to (0,−2,−1),* and ends in (2,−2, 0). At the top (w = 1), it varies from
(−4,−2, 0), to (0,−2,−1), and ends in (4,−2, 0). The top boundary curve is deeper,
causing the tangent to be more in the y direction and the normal to be more in the x
direction, than on the bottom boundary curve.

� Exercise 2.15: (a) Given the two three-dimensional points P1 = (−1,−1, 0) and P2 =
(1,−1, 0), calculate the straight line from P1 to P2. This will become the bottom
boundary curve of a lofted surface.

(b) Given the three three-dimensional points P4 = (−1, 1, 0), P5 = (0, 1, 1), and
P6 = (1, 1, 0), calculate the quadratic polynomial P(t) = At2 + Bt + C that passes
through them. This will become the top boundary curve of the surface.

(c) Calculate the expression of the lofted surface patch and the coordinates of its
center point P(0.5, 0.5).

* it has a small z component, reflecting the fact that the surface is not completely
vertical at u = 0.5.



2.4 Lofted Surfaces 67

2.4.1 A Double Helix

This example illustrates how the well-known double helix can be derived as a lofted
surface. The two-dimensional parametric curve (cos t, sin t) is, of course, a circle (of
radius one unit, centered on the origin). As a result, the three-dimensional curve
(cos t, sin t, t) is a helix spiraling around the z axis upward from the origin. The similar
curve (cos(t + π), sin(t + π), t) is another helix, at a 180◦ phase difference with the first.
We consider these the two boundary curves of a lofted surface and create the entire
surface as a linear interpolation of the two curves. Hence,

P(u, w) = (cos u, sin u, u)(1 − w) + (cos(u + π), sin(u + π), u)w,

where 0 ≤ w ≤ 1, and u can vary in any range. The two curves form a double helix, so
the surface looks like a twisted ribbon. Figure 2.12 shows such a surface, together with
the code that generated it.

xx
y

y

z

z

Clear[loftedSurf]; (* double helix as a lofted surface *)
<<:Graphics:ParametricPlot3D.m;
loftedSurf:={Cos[u],Sin[u],u}(1-w)+{Cos[u+Pi],Sin[u+Pi],u}w;
ParametricPlot3D[loftedSurf, {u,0,Pi,.1},{w,0,1}, Compiled->False,
Ticks->False, ViewPoint->{-2.640, -0.129, 0.007}]

Figure 2.12: The Double Helix as a Lofted Surface.

� Exercise 2.16: Calculate the expression of a cone as a lofted surface. Assume that the
vertex of the cone is located at the origin, and the base is a circle of radius R, centered
on the z axis and located on the plane z = H.

� Exercise 2.17: Derive the expression for a square pyramid where each face is a lofted
surface. Assume that the base is a square, 2a units on a side, centered about the origin
on the xy plane. The top is point (0, 0, H).
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2.4.2 A Cusp

Given the two curves P1(u) = (8, 4, 0)u3−(12, 9, 0)u2+(6, 6, 0)u+(−1, 0, 0) and P2(u) =
(2u−1, 4u(u−1), 1), the lofted surface defined by them is easy to calculate. Notice that
the curves pass through the points P1(0) = (−1, 0, 0), P1(0.5) = (0, 5/4, 0), P1(1) =
(1, 1, 0), P2(0) = (−1, 0, 1), P2(0.5) = (0,−1, 1), and P2(1) = (1, 0, 1), which makes it
easy to visualize the surface (Figure 2.13). The tangent vectors of the two curves are

Pu
1 (u) = (24, 12, 0)u2 − (24, 18, 0)u + (6, 6, 0), Pu

2 (u) = (2, 8u − 4, 0).

Notice that Pu
1 (0.5) equals (0, 0, 0), which implies that P1(u) has a cusp at u = 0.5.

The lofted surface defined by the two curves is

P(u, w) =
(
4u2(2u−3)(1−w)−4uw+6u−1, u2(4u−9)(1−w)+4u2w−10uw+6u, w

)
.
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(* Another lofted surface example *)
<<:Graphics:ParametricPlot3D.m
Clear[ls];
ls=Simplify[{8u^3-12u^2+6u-1,4u^3-9u^2+6u,0}(1-w)+{2u-1,4u(u-1),1}w];
ParametricPlot3D[ls, {u,0,1,.1},{w,0,1,.1}, Compiled->False,
ViewPoint->{-0.139, -1.179, 1.475}, DefaultFont->{"cmr10", 10},
AspectRatio->Automatic, Ticks->{{0,1},{0,1},{0,1}}];

Figure 2.13: A Lofted Surface Patch.

Now, look Gwen, y’know if we’re gonna keep living together in this loft, we’re gonna
have to have some rules.

—Leah Remini (as Terri Reynolds) in Fired Up (1997)
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� Exercise 2.18: Calculate the tangent vector of this surface in the u direction, and
compute its value at the cusp.

LERP, a quasi-acronym for Linear Interpolation, used

as a verb or noun for the operation. “Bresenham’s algorithm

lerps incrementally between the two endpoints of the line.”

The New Hacker’s Dictionary version 4.2.2, a.k.a., The Jargon File





3
Polynomial Interpolation

Definition: A polynomial of degree n in x is the function

Pn(x) =
n∑

i=0

aix
i = a0 + a1x + a2x

2 + · · · + anxn,

where ai are the coefficients of the polynomial (in our case, they are real numbers). Note
that there are n + 1 coefficients.

Calculating a polynomial involves additions, multiplications, and exponentiations,
but there are two methods that greatly simplify this calculation. They are the following:

1. Horner’s rule. A degree-3 polynomial can be written in the form

P (x) =
(
(a3x + a2)x + a1

)
x + a0,

thereby eliminating all exponentiations.
2. Forward differences. This is one of Newton’s many contributions to mathe-

matics and it is described in some detail in Section 1.5.1. Only the first step requires
multiplications. All other steps are performed with additions and assignments only.

Given a set of points, it is possible to construct a polynomial that when plotted
passes through the points. When fully computed and displayed, such a polynomial be-
comes a curve that’s referred to as a polynomial interpolation of the points. The first
part of this chapter discusses methods for polynomial interpolation and shows their lim-
itations. The second part extends the discussion to a two-dimensional grid of points,
and shows how to compute a two-parameter polynomial that passes through the points.
When fully computed and displayed, such a polynomial becomes a surface. The methods
described here apply the algebra of polynomials to the geometry of curves and surfaces,
but this application is limited, because high-degree polynomials tend to oscillate. Sec-
tion 1.5, and especially Exercise 1.20 show why this is so. Still, there are cases where
high-degree polynomials are useful.
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This chapter starts with a simple example where four points are given and a cubic
polynomial that passes through them is derived from first principles. Following this, the
Lagrange and Newton polynomial interpolation methods are introduced. The chapter
continues with a description of several simple surface algorithms based on polynomials.
It concludes with the Coons and Gordon surfaces, which also employ polynomials.

3.1 Four Points

Four points (two-dimensional or three-dimensional) P1, P2, P3, and P4 are given. We
are looking for a PC curve that passes through these points and has the form

P(t) = at3 + bt2 + ct + d = (t3, t2, t, 1)(a,b, c,d)T = T(t)A for 0 ≤ t ≤ 1, (3.1)

where each of the four coefficients a, b, c, and d is a pair (or a triplet), T(t) is the row
vector (t3, t2, t, 1), and A is the column vector (a,b, c,d)T . The only unknowns are a,
b, c, and d.

Since the four points can be located anywhere, we cannot assume anything about
their positions and we make the general assumption that P1 and P4 are the two end-
points P(0) and P(1) of the curve, and that P2 and P3 are the two interior points
P(1/3) and P(2/3). (Having no information about the locations of the points, the best
we can do is to use equi-distant values of the parameter t.) We therefore write the four
equations P(0) = P1, P(1/3) = P2, P(2/3) = P3, and P(1) = P4, or explicitly

a(0)3 + b(0)2 + c(0) + d = P1,

a(1/3)3 + b(1/3)2 + c(1/3) + d = P2,

a(2/3)3 + b(2/3)2 + c(2/3) + d = P3,
(3.2)

a(1)3 + b(1)2 + c(1) + d = P4.

The solutions of this system of equations are

a = −(9/2)P1 + (27/2)P2 − (27/2)P3 + (9/2)P4,

b = 9P1 − (45/2)P2 + 18P3 − (9/2)P4,

c = −(11/2)P1 + 9P2 − (9/2)P3 + P4,
(3.3)

d = P1.

Substituting these solutions into Equation (3.1) gives

P(t) =
(−(9/2)P1 + (27/2)P2 − (27/2)P3 + (9/2)P4

)
t3

+
(
9P1 − (45/2)P2 + 18P3 − (9/2)P4

)
t2

+
(−(11/2)P1 + 9P2 − (9/2)P3 + P4

)
t + P1.
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After rearranging, this becomes

P(t) =(−4.5t3 + 9t2 − 5.5t + 1)P1 + (13.5t3 − 22.5t2 + 9t)P2

+ (−13.5t3 + 18t2 − 4.5t)P3 + (4.5t3 − 4.5t2 + t)P4

=G1(t)P1 + G2(t)P2 + G3(t)P3 + G4(t)P4

=G(t)P,

(3.4)

where the four functions Gi(t) are cubic polynomials in t

G1(t) = (−4.5t3 + 9t2 − 5.5t + 1), G3(t) = (−13.5t3 + 18t2 − 4.5t),
G2(t) = (13.5t3 − 22.5t2 + 9t), G4(t) = (4.5t3 − 4.5t2 + t), (3.5)

P is the column (P1,P2,P3,P4)T and G(t) is the row (G1(t), G2(t), G3(t), G4(t)) (see
also Exercise 3.8 for a different approach to this polynomial).

The functions Gi(t) are called blending functions because they represent any point
on the curve as a blend of the four given points. Note that they are barycentric (they
should be, since they blend points, and this is shown in the next paragraph). We can
also write

G1(t) = (t3, t2, t, 1)(−4.5, 9,−5.5, 1)T

and similarly for G2(t), G3(t), and G4(t). The curve can now be expressed as

P(t) = G(t)P = (t3, t2, t, 1)

⎡
⎢⎣
−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎤
⎥⎦
⎡
⎢⎣

P1

P2

P3

P4

⎤
⎥⎦ = T(t)NP. (3.6)

Matrix N is called the basis matrix and P is the geometry vector. Equation (3.1) tells
us that P(t) = T(t)A, so we conclude that A = NP.

The four functions Gi(t) are barycentric because of the nature of Equation (3.2),
not because of the special choice of the four t values. To see why this is so, we write
Equation (3.2) for four different, arbitrary values t1, t2, t3, and t4 (they have to be
different, otherwise two or more equations would be contradictory).

at31 + bt21 + ct1 + d = P1,

at32 + bt22 + ct2 + d = P2,

at33 + bt23 + ct3 + d = P3,
(3.7)

at34 + bt24 + ct4 + d = P4,

(where we treat the four values Pi as numbers, not points, and as a result, a, b, c, and
d are also numbers). The solutions are of the form

a = c11P1 + c12P2 + c13P3 + c14P4,

b = c21P1 + c22P2 + c23P3 + c24P4,

c = c31P1 + c32P2 + c33P3 + c34P4,
(3.8)

d = c41P1 + c42P2 + c43P3 + c44P4.
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Comparing Equation (3.8) to Equations (3.3) and (3.5) shows that the four functions
Gi(t) can be expressed in terms of the cij in the form

Gi(t) = (c1it
3 + c2it

2 + c3it + c4i). (3.9)

The point is that the 16 coefficients cij do not depend on the four values Pi. They are
the same for any choice of the Pi. As a special case, we now select P1 = P2 = P3 = P4 = 1
which reduces Equation (3.8) to

at31 + bt21 + ct1 + d = 1, at32 + bt22 + ct2 + d = 1,

at33 + bt23 + ct3 + d = 1, at34 + bt24 + ct4 + d = 1.

Because the four values ti are arbitrary, the four equations above can be written as the
single equation at3 + bt2 + ct + d = 1, that holds for any t. Its solutions must therefore
be a = b = c = 0 and d = 1.

Thus, we conclude that when all four values Pi are 1, a must be zero. In general,
a = c11P1 + c12P2 + c13P3 + c14P4, which implies that c11 + c12 + c13 + c14 must be zero.
Similar arguments show that c21 + c22 + c23 + c24 = 0, c31 + c32 + c33 + c34 = 0, and
c41 + c42 + c43 + c44 = 1. These relations, combined with Equation (3.9), show that the
four Gi(t) are barycentric.

To calculate the curve, we only need to calculate the four quantities a, b, c, and d
(that constitute vector A), and write Equation (3.1) using the numerical values of a, b,
c, and d.

Example: (This example is in two dimensions, each of the four points Pi along
with the four coefficients a,b, c,d form a pair. For three-dimensional curves the method
is the same except that triplets are used instead of pairs.) Given the four two-dimensional
points P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1), we set up the equation⎛

⎜⎝
a
b
c
d

⎞
⎟⎠ = A = NP =

⎛
⎜⎝

−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(0, 0)
(1, 0)
(1, 1)
(0, 1)

⎞
⎟⎠ .

Its solutions are

a = −4.5(0, 0) + 13.5(1, 0) − 13.5(1, 1) + 4.5(0, 1) = (0,−9),
b = 19(0, 0) − 22.5(1, 0) + 18(1, 1) − 4.5(0, 1) = (−4.5, 13.5),
c = −5.5(0, 0) + 9(1, 0) − 4.5(1, 1) + 1(0, 1) = (4.5,−3.5),
d = 1(0, 0) − 0(1, 0) + 0(1, 1) − 0(0, 1) = (0, 0).

So the curve P(t) that passes through the given points is

P(t) = T(t)A = (0,−9)t3 + (−4.5, 13.5)t2 + (4.5,−3.5)t.

It is now easy to calculate and verify that P(0) = (0, 0) = P1, and

P(1/3) = (0,−9)(1/27) + (−4.5, 13.5)(1/9) + (4.5,−3.5)(1/3) = (1, 0) = P2,

P(1) = (0,−9)13 + (−4.5, 13.5)12 + (4.5,−3.5)1 = (0, 1) = P4.
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� Exercise 3.1: Calculate P(2/3) and verify that it equals P3.

� Exercise 3.2: Imagine the circular arc of radius 1 in the first quadrant (a quarter
circle). Write the coordinates of the four points that are equally spaced on this arc. Use
the coordinates to calculate a PC approximating this arc. Calculate point P(1/2). How
far does it deviate from the midpoint of the true quarter circle?

� Exercise 3.3: Calculate the PC that passes through the four points P1 through P4

assuming that only the three relative coordinates ∆1 = P2 − P1, ∆2 = P3 − P2, and
∆3 = P4 − P3 are given. Show a numeric example.

The main advantage of this method is its simplicity. Given the four points, it is
easy to calculate the PC that passes through them. This, however, is also the reason for
the downside of the method. It produces only one PC that passes through four given
points. If that PC does not have the required shape, there is nothing the user can do.
This simple curve method is not interactive.

Even though this method is not very useful for curve drawing, it may be useful for
interpolation. Given two points P1 and P2, we know that the point midway between
them is their average, (P1 +P2)/2. A natural question is: given four points P1 through
P4, what point is located midway between them? We can answer this question by
calculating the average, (P1 +P2 +P3 +P4)/4, but this weighted sum assigns the same
weight to each of the four points. If we want to assign more weight to the interior points
P2 and P3, we can calculate the PC that passes through the points and compute P(0.5)
from Equation (3.6). The result is

P(0.5) = −0.0625P1 + 0.5625P2 + 0.5625P3 − 0.0625P4.

This is a weighted sum that assigns more weight to the interior points. Notice that
the weights are barycentric. Exercise 3.13 provides a hint as to why the two extreme
weights are negative. This method can be extended to a two-dimensional grid of points
(Section 3.6.1).

A precisian professor had the habit of saying: “. . . quartic polynomial ax4 + bx3 +
cx2 + dx + e, where e need not be the base of the natural logarithms.”

—J. E. Littlewood, A Mathematician’s Miscellany

� Exercise 3.4: The preceding method makes sense if the four points are (approximately)
equally spaced along the curve. If they are not, the following approach may be taken.
Instead of using 1/3 and 2/3 as the intermediate values, the user may specify values α
and β, both in the interval (0, 1), such that P2 = P(α) and P3 = P(β). Generalize
Equation (3.6) such that it depends on α and β.
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3.2 The Lagrange Polynomial

The preceding section shows how a cubic interpolating polynomial can be derived for
a set of four given points. This section discusses the Lagrange polynomial, a general
approach to the problem of polynomial interpolation.

Given the n + 1 data points P0 = (x0, y0), P1 = (x1, y1), . . . ,Pn = (xn, yn), the
problem is to find a function y = f(x) that will pass through all of them. We first try
an expression of the form y =

∑n
i=0 yiL

n
i (x). This is a weighted sum of the individual yi

coordinates where the weights depend on the xi coordinates. This sum will pass through
the points if

Ln
i (x) =

{
1, x = xi,
0, otherwise.

A good mathematician can easily guess that such functions are given by

Ln
i (x) =

Πj �=i(x − xj)
Πj �=i(xi − xj)

=
(x − x0)(x − x1) · · · (x − xi−1)(x − xi+1)(x − xn)
(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

.

(Note that (x− xi) is missing from the numerator and (xi − xi) is missing from the de-
nominator.) The function y =

∑n
i=0 yiL

n
i (x) is called the Lagrange polynomial because

it was originally developed by Lagrange [Lagrange 77] and it is a polynomial of degree
n. It is denoted by LP.

Horner’s rule and the method of forward differences make polynomials very desirable
to use. In practice, however, polynomials are used in parametric form as illustrated in
Section 1.5, since any explicit function y = f(x) is limited in the shapes of curves it can
generate (note that the explicit form y =

∑n
i=0 yiL

n
i (x) of the LP cannot be calculated

if two of the n + 1 given data points have the same x coordinate).
The LP has two properties that make it impractical for interactive curve design, it

is of a high degree and it is unique.

1. Writing Pn(x) = 0 creates an equation of degree n in x. It has n solutions (some
may be complex numbers), so when plotted as a curve it intercepts the x axis n times.
For large n, such a curve may be loose because it tends to oscillate wildly. In practice,
we normally prefer tight curves.

2. It is easy to show that the LP is unique (see below). There are infinitely many
curves that pass through any given set of points and the one we are looking for may not be
the LP. Any useful, practical mathematical method for curve design should make it easy
for the designer to change the shape of the curve by varying the values of parameters.

It’s easy to show that there is only one polynomial of degree n that passes through
any given set of n + 1 points.

A root of the polynomial Pn(x) is a value xr such that Pn(xr) = 0. A polynomial
Pn(x) can have at most n distinct roots (unless it is the zero polynomial). Suppose that
there is another polynomial Qn(x) that passes through the same n + 1 data points. At
the points, we would have Pn(xi) = Qn(xi) = yi or (Pn − Qn) (xi) = 0. The difference
(Pn − Qn) is a polynomial whose degree must be ≤ n, so it cannot have more than n
distinct roots. On the other hand, this difference is 0 at the n + 1 data points, so it has



3.2 The Lagrange Polynomial 77

n+1 roots. We conclude that it must be the zero polynomial, which implies that Pn(x)
and Qn(x) are identical.

This uniqueness theorem can also be employed to show that the Lagrange weights
Ln

i (x) are barycentric. Given a function f(x), select n+1 distinct values x0 through xn,
and consider the n + 1 support points (x0, f(x0)) through (xn, f(xn)). The uniqueness
theorem states that there is a unique polynomial p(x) of degree n or less that passes
through the points, i.e., p(xk) = f(xk) for k = 0, 1, . . . , n. We say that this polynomial
interpolates the points. Now consider the constant function f(x) ≡ 1. The Lagrange
polynomial that interpolates its points is

LP(x) =
n∑

i=0

yiL
n
i (x) =

n∑
i=0

1×Ln
i (x) =

n∑
i=0

Ln
i (x).

On the other hand, LP(x) must be identical to 1, because LP(xk) = f(xk) and f(xk) = 1
for any point xk. Thus, we conclude that

∑n
i=0 Ln

i (x) = 1 for any x.

Because of these two properties, we conclude that a practical curve design method
should be based on polynomials of low degree and should depend on parameters that
control the shape of the curve. Such methods are discussed in the chapters that follow.
Still, polynomial interpolation may be useful in special situations, which is why it is
discussed in the remainder of this chapter.

� Exercise 3.5: Calculate the LP between the two points P0 = (x0, y0) and P1 = (x1, y1).
What kind of a curve is it?

I have another method not yet communicated. . . a convenient, rapid and general so-
lution of this problem, To draw a geometrical curve which shall pass through any
number of given points. . .These things are done at once geometrically with no cal-
culation intervening. . .Though at first glance it looks unmanageable, yet the matter
turns out otherwise. For it ranks among the most beautiful of all that I could wish
to solve.
(Isaac Newton in a letter to Henry Oldenburg, October 24, 1676, quoted in [Turn-
bull 59], vol. II, p 188.)

—James Gleick, Isaac Newton (2003).

The LP can also be expressed in parametric form. Given the n + 1 data points
P0, P1, . . . ,Pn, we need to construct a polynomial P(t) that passes through all of
them, such that P(t0) = P0, P(t1) = P1, . . . , P(tn) = Pn, where t0 = 0, tn = 1, and
t1 through tn−1 are certain values between 0 and 1 (the ti are called knot values). The
LP has the form P(t) =

∑n
i=0 PiL

n
i (t). This is a weighted sum of the individual points

where the weights (or basis functions) are given by

Ln
i (t) =

Πn
j �=i(t − tj)

Πn
j �=i(ti − tj)

. (3.10)

Note that
∑n

i=0 Ln
i (t) = 1, so these weights are barycentric.
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� Exercise 3.6: Calculate the parametric LP between the two general points P0 and P1.

� Exercise 3.7: Calculate the parametric LP for the three points P0 = (0, 0), P1 = (0, 1),
and P2 = (1, 1).

� Exercise 3.8: Calculate the parametric LP for the four equally-spaced points P1, P2,
P3, and P4 and show that it is identical to the interpolating PC given by Equation (3.4).

The parametric LP is also mentioned on page 109, in connection with Gordon
surfaces.

The LP has another disadvantage. If the resulting curve is not satisfactory, the user
may want to fine-tune it by adding one more point. However, all the basis functions
Ln

i (t) will have to be recalculated in such a case, since they also depend on the points,
not only on the knot values. This disadvantage makes the LP slow to use in practice,
which is why the Newton polynomial (Section 3.3) is sometimes used instead.

3.2.1 The Quadratic Lagrange Polynomial

Equation (3.10) can easily be employed to obtain the Lagrange polynomial for three
points P0, P1, and P2. The weights in this case are

L2
0(t) =

∏2
j �=0(t − tj)∏2
j �=0(t0 − tj)

=
(t − t1)(t − t2)

(t0 − t1)(t0 − t2)
,

L2
1(t) =

∏2
j �=1(t − tj)∏2
j �=1(t1 − tj)

=
(t − t0)(t − t2)

(t1 − t0)(t1 − t2)
,

L2
2(t) =

∏2
j �=2(t − tj)∏2
j �=2(t2 − tj)

=
(t − t0)(t − t1)

(t2 − t0)(t2 − t1)
,

(3.11)

and the polynomial P2(t) =
∑2

i=0 PiL
2
i (t) is easy to calculate once the values of t0, t1,

and t2 have been determined.
The Uniform Quadratic Lagrange Polynomial is obtained when t0 = 0, t1 = 1, and

t2 = 2. (See discussion of uniform and nonuniform parametric curves in Section 1.4.1.)
Equation (3.11) yields

P2u(t) =
t2 − 3t + 2

2
P0 − (t2 − 2t)P1 +

t2 − t

2
P2

= (t2, t, 1)

⎛
⎝ 1/2 −1 1/2

−3/2 2 −1/2
1 0 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ . (3.12)

The sums of three rows of the matrix of Equation (3.12) are (from top to bottom) 0, 0,
and 1, showing that the three basis functions are barycentric, as they should be.

The Nonuniform Quadratic Lagrange Polynomial is obtained when t0 = 0, t1 =
t0+∆0 = ∆0, and t2 = t1+∆1 = ∆0+∆1 for some positive ∆0 and ∆1. Equation (3.11)
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gives

L2
0(t) =

(t − ∆0)(t − ∆0 − ∆1)
(−∆0)(−∆0 − ∆1)

, L2
1(t) =

(t − 0)(t − ∆0 − ∆1)
∆0(−∆1)

, L2
2(t) =

(t − 0)(t − ∆0)
(∆0 + ∆1)∆1

,

and the nonuniform polynomial is

P2nu(t) = (t2, t, 1)

⎡
⎢⎢⎢⎢⎣

1
∆0(∆0 + ∆1)

− 1
∆0∆1

1
(∆0 + ∆1)∆1

−1
∆0 + ∆1

− 1
∆0

1
∆0

+
1

∆1
− 1

∆1
+

1
∆0 + ∆1

1 0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎣P0

P1

P2

⎤
⎦ . (3.13)

For ∆0 = ∆1 = 1, Equation (3.13) reduces to the uniform polynomial, Equation (3.12).
For ∆0 = ∆1 = 1/2, the parameter t varies in the “standard” range [0, 1] and Equa-
tion (3.13) becomes

P2std(t) = (t2, t, 1)

⎛
⎝ 2 −4 2

−3 4 −1
1 0 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ . (3.14)

(Notice that the three rows again sum to 0, 0, and 1, to produce three barycentric basis
functions.) In most cases, ∆0 and ∆1 should be set to the chord lengths |P1 −P0| and
|P2 − P1|, respectively.

� Exercise 3.9: Use Cartesian product to generalize Equation (3.14) to a surface patch
that passes through nine given points.

Example: The three points P0 = (1, 0), P1 = (1.3, .5), and P2 = (4, 0) are given.
The uniform LP is obtained when ∆0 = ∆1 = 1 and it equals

P2u(t) =
(
1 − 0.9t + 1.2t2, 0.5(2 − t)t

)
.

Many nonuniform polynomials are possible. We select the one that’s obtained when
the ∆ values are the chord lengths between the points. In our case, they are ∆0 =
|P1 − P0| ≈ 0.583 and ∆1 = |P2 − P1| ≈ 2.75. This polynomial is

P2nu(t) = (1 + 0.433t + 0.14t2, 1.04t − 0.312t2).

These uniform and nonuniform polynomials are shown in Figure 3.1. The figure il-
lustrates how the nonuniform curve based on the chord lengths between the points is
tighter (features smaller overall curvature). Such a curve is generally considered a better
interpolation of the three points.

Figure 3.2 shows three examples of nonuniform Lagrange polynomials that pass
through the three points P0 = (1, 1), P1 = (2, 2), and P2 = (4, 0). The value of ∆0 is
1.414, the chord length between P0 and P1. The chord length between P1 and P2 is 2.83
and ∆1 is first assigned this value, then half this value, and finally twice it. The three
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P1

P2

P0

Uniform Curve
Nonuniform Curve

(* 3-point Lagrange polynomial (uniform and nonunif) *)
Clear[T,H,B,d0,d1];
d0=1; d1=1;
T={t^2,t,1};
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
B={{1,0},{1.3,.5},{4,0}};
Simplify[T.H.B];
C1=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
PlotStyle->AbsoluteDashing[{2,2}], DisplayFunction->Identity];
d0=.583; d1=2.75;
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
Simplify[T.H.B];
C2=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
Show[C1, C2, AspectRatio->Automatic, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction];

Figure 3.1: Three-Point Lagrange Polynomials.

resulting curves illustrate how the Lagrange polynomial can be reshaped by modifying
the ∆i parameters. The three polynomials in this case are

(1 + 0.354231t + 0.249634t2, 1 + 1.76716t − 0.749608t2),
(1 + 0.70738t − 0.000117766t2, 1 + 1.1783t − 0.333159t2),
(1 + 0.777945t − 0.0500221t2, 1 + 0.919208t − 0.149925t2).

3.2.2 The Cubic Lagrange Polynomial

Equation (3.10) is now applied to the cubic Lagrange polynomial that interpolates the
four points P0, P1, P2, and P3. The weights in this case are

L3
0(t) =

∏3
j �=0(t − tj)∏3
j �=0(t0 − tj)

=
(t − t1)(t − t2)(t − t3)

(t0 − t1)(t0 − t2)(t0 − t3)
,

L3
1(t) =

∏3
j �=1(t − tj)∏3
j �=1(t1 − tj)

=
(t − t0)(t − t2)(t − t3)

(t1 − t0)(t1 − t2)(t1 − t3)
,

L3
2(t) =

∏3
j �=2(t − tj)∏3
j �=2(t2 − tj)

=
(t − t0)(t − t1)(t − t3)

(t2 − t0)(t2 − t1)(t2 − t3)
,
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P1

P0

P2

P1P2∆1= | |−
P1P2∆1= | |−0.5

P1P2∆1= | |−2

(* 3-point Lagrange polynomial (3 examples of nonuniform) *)
Clear[T,H,B,d0,d1,C1,C2,C3];
d0=1.414; d1=1.415; (* d1=0.5|P2-P1| *)
T={t^2,t,1};
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
B={{1,1},{2,2},{4,0}};
Simplify[T.H.B]
C1=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
d1=2.83; (* d1=|P2-P1| *)
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
Simplify[T.H.B]
C2=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
d1=5.66; (* d1=2|P2-P1| *)
H={{1/(d0(d0+d1)),-1/(d0 d1),1/(d1(d0+d1))},
{-1/(d0+d1)-1/d0,1/d0+1/d1,-1/d1+1/(d0+d1)},{1,0,0}};
Simplify[T.H.B]
C3=ParametricPlot[T.H.B,{t,0,d0+d1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
Show[C1,C2,C3, AspectRatio->Automatic, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction];
(* (1/24,-1/8)t^3+(-1/3,3/4)t^2+(1,-1)t *)

Figure 3.2: Three-Point Nonuniform Lagrange Polynomials.
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L3
3(t) =

∏3
j �=3(t − tj)∏3
j �=3(t3 − tj)

=
(t − t0)(t − t1)(t − t2)

(t3 − t0)(t3 − t1)(t3 − t2)
, (3.15)

and the polynomial P3(t) =
∑3

i=0 PiL
3
i (t) is easy to calculate once the values of t0, t1,

t2, and t3 have been determined.
The Nonuniform Cubic Lagrange Polynomial is obtained when t0 = 0, t1 = t0 +

∆0 = ∆0, t2 = t1 + ∆1 = ∆0 + ∆1, and t3 = t2 + ∆2 = ∆0 + ∆1 + ∆2 for positive ∆i.
The expression for the polynomial is

P3nu(t) = (t3, t2, t, 1)Q

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ , (3.16)

where Q is the matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
(−∆0)(−∆0−∆1)(−∆0−∆1−∆2)

1
∆0(−∆1)(−∆1−∆2)

− 3∆0+2∆1+∆2
(−∆0)(−∆0−∆1)(−∆0−∆1−∆2)

− 2∆0+2∆1+∆2
∆0(−∆1)(−∆1−∆2)

∆0(∆0+∆1)+(∆0+∆1)(∆0+∆1+∆2)+(∆0+∆1+∆2)∆0
(−∆0)(−∆0−∆1)(−∆0−∆1−∆2)

(∆0+∆1)(∆0+∆1+∆2)
∆0(−∆1)(−∆1−∆2)

− ∆0(∆0+∆1)(∆0+∆1+∆2)
(−∆0)(−∆0−∆1)(−∆0−∆1−∆2)

0

1
(∆0+∆1)∆1(−∆2)

1
(∆0+∆1+∆2)(∆1+∆2)∆2

− 2∆0+∆1+∆2
(∆0+∆1)∆1(−∆2)

− 2∆0+∆1
(∆0+∆1+∆2)(∆1+∆2)∆2

∆0(∆0+∆1+∆2)
(∆0+∆1)∆1(−∆2)

∆0(∆0+∆1)
(∆0+∆1+∆2)(∆1+∆2)∆2

0 0

⎞
⎟⎟⎟⎟⎟⎠ .

The Uniform Cubic Lagrange Polynomial . We construct the “standard” case, where
t varies from 0 to 1. This implies t0 = 0, t1 = 1/3, t2 = 2/3, and t3 = 1. Equation (3.16)
reduces to

P3u(t) = (t3, t2, t, 1)

⎛
⎜⎝

−9/2 27/2 −27/2 9/2
9 −45/2 18 −9/2

−11/2 9 −9/2 1
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (3.17)

Figure 3.3 shows the quadratic and cubic Lagrange basis functions. It is easy to
see that there are values of t (indicated by arrows) for which one of the basis functions
is 1 and the others are zeros. This is how the curve (which is a weighted sum of the
functions) passes through a point. The functions add up to 1, but most climb above
1 and are negative in certain regions. In the nonuniform case, the particular choice of
the various ∆i reshapes the basis functions in such a way that a function still retains
its basic shape, but its areas above and below the t axis may increase or decrease
significantly. Those willing to experiment can copy Matrix Q of Equation (3.16) into
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(* Plot quadratic and cubic Lagrange basis functions *)
lagq={t^2,t,1}.{{1/2,-1,1/2},{-3/2,2,-1/2},{1,0,0}};
Plot[{lagq[[1]],lagq[[2]],lagq[[3]]},{t,0,2},
PlotRange->All, AspectRatio->Automatic, DefaultFont->{"cmr10", 10}];
lagc={t^3,t^2,t,1}.{{-9/2,27/2,-27/2,9/2},{9,-45/2,18,-9/2},
2{-11/2,9,-9/2,1},{1,0,0,0}}
Plot[{lagc[[1]],lagc[[2]],lagc[[3]],lagc[[4]]},{t,0,1},
PlotRange->All, AspectRatio->Automatic, DefaultFont->{"cmr10", 10}];

Figure 3.3: (a) Quadratic and (b) Cubic Lagrange Basis Functions.

appropriate mathematical software and use code similar to that of Figure 3.3 to plot the
basis functions for various values of ∆i.

It should be noted that the basis functions of the Bézier curve (Section 6.2) are more
intuitive and provide easier control of the shape of the curve, which is why Lagrange
interpolation is not popular and is used in special cases only.

3.2.3 Barycentric Lagrange Interpolation

Given the n+1 data points P0 = (x0, y0) through Pn = (xn, yn), the explicit (nonpara-
metric) Lagrange polynomial that interpolates them is LP(x) =

∑n
i=0 yiL

n
i (x), where

Ln
i (x) =

Πn
j �=i(x − xj)

Πn
j �=i(xi − xj)

=
(x − x0)(x − x1) · · · (x − xi−1)(x − xi+1)(x − xn)
(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

.

This representation of the Lagrange polynomial has the following disadvantages:

1. The denominator of Ln
i (x) requires n subtractions and n−1 multiplications, for a

total of O(n) operations. The denominators of the n+1 weights therefore require O(n2)
operations. The numerators also require O(n2) operations, but have to be recomputed
for each value of x.

2. Adding a new point Pn+1 requires the computation of a new weight Ln+1
n+1(x)
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and a recomputation of all the original weights Ln
i (x), because

Ln+1
i (x) = Ln

i (x)
x − xn+1

xi − xn+1
, for i = 0, 1, . . . , n.

3. The computations are numerically unstable. A small change in any of the data
points may cause a large change in LP(x).

Numerical analysts have long believed that these reasons make the Newton poly-
nomial (Section 3.3) more attractive for practical work. However, recent research has
resulted in a new, barycentric form of the LP, that makes Lagrange interpolation more
attractive. This section is based on [Berrut and Trefethen 04].

The barycentric form of the LP is

LP(x) =
n∑

i=0

yiL
n
i (x) =

n∑
i=0

yi

Πn
j �=i(x − xj)

Πn
j �=i(xi − xj)

=
n∑

i=0

yi
wi

x − xi

[
Πn

j=0(x − xj)
]

= Πn
j=0(x − xj)

n∑
i=0

yi
wi

x − xi

= L(x)
n∑

i=0

yi
wi

x − xi
, (3.18)

where
wi =

1
Πn

j �=i(xi − xj)
, for i = 0, 1, . . . , n.

Each weight wi requires O(n) operations, for a total of O(n2), but these weights no
longer depend on x and consequently have to be computed just once! The only quantity
that depends on x is L(x) and it requires only O(n) operations. Also, when a new point
is added, the only operations required are (1) divide each wi by (xi − xn+1) and (2)
compute wn+1. These require O(n) steps.

A better form of Equation (3.18), one that’s more numerically stable, is obtained
when we consider the case yi = 1. If all the data points are of the form (xi, 1), then the
interpolating LP should satisfy LP(x) ≡ 1, which brings Equation (3.18) to the form

1 = L(x)
n∑

i=0

wi

x − xi
, (3.19)

We can now divide Equation (3.18) by Equation (3.19) to obtain

LP(x) =

[
n∑

i=0

yi
wi

x − xi

] / ⎡
⎣ n∑

j=0

wj

x − xj

⎤
⎦ . (3.20)

The weights of Equation (3.20) are

wi
x − xi∑n

j=0 wj/(x − xj)
, i = 0, 1, . . . , n,
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and it’s easy to see that they are barycentric. Also, any common factors in the weights
can now be cancelled out. For example, it can be shown that in the case of data points
that are uniformly distributed in the interval [−1,+1]

P0 = (−1, y0), P1 = (−1 + h, y1), P2 = (−1 + 2h, y2), . . . ,Pn = (+1, yn)

(where h = 2/n), the weights become wi = (−1)n−i
(
n
i

)
/(hnn!). The common factors

are those that do not depend on i. When they are cancelled out, the weights become
the simple expressions

wi = (−1)i

(
n

i

)
.

(This is also true for points that are equidistant in any interval [a, b]. Incidentally, it can
be shown that the case of equidistant data points is ill conditioned and the LP, in any
form, can change its value wildly in response to even small changes in the data points.)

3.3 The Newton Polynomial

The Newton polynomial offers an alternative approach to the problem of polynomial in-
terpolation. The final interpolating polynomial is identical to the LP, but the derivation
is different. It allows the user to easily add more points and thereby provide fine control
over the shape of the curve. We again assume that n + 1 data points P0, P1, . . . ,Pn

are given and are assigned knot values

t0 = 0 < t1 < · · · < tn−1 < tn = 1.

We are looking for a curve expressed by the degree-n parametric polynomial

P(t) =
n∑

i=0

Ni(t)Ai,

where the basis functions Ni(t) depend only on the knot values and not on the data
points. Only the (unknown) coefficients Ai depend on the points. This definition (orig-
inally proposed by Newton) is useful because each coefficient Ai depends only on points
P0 through Pi. If the user decides to add a point Pn+1, only one coefficient, An+1, and
one basis function, Nn+1(t), need be recomputed.

The definition of the basis functions is

N0(t) = 1 and Ni(t) = (t − t0)(t − t1) · · · (t − ti−1), for i = 1, . . . , n.

To calculate the unknown coefficients, we write the equations

P0 = P(t0) = A0,

P1 = P(t1) = A0 + A1(t1 − t0),
P2 = P(t2) = A0 + A1(t2 − t0) + A2(t2 − t0)(t2 − t1),

...
Pn = P(tn) = A0 + · · · .
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These equations don’t have to be solved simultaneously. Each can easily be solved after
all its predecessors have been solved. The solutions are

A0 = P0,

A1 =
P1 − P0

t1 − t0
,

A2 =
P2 − P0 − (P1 − P0)(t2 − t0)

t1 − t0
(t2 − t0)(t2 − t1)

=

P2 − P1

t2 − t1
− P1 − P0

t1 − t0
t2 − t0

.

This obviously gets very complicated quickly, so we use the method of divided differences
to express all the solutions in compact notation. The divided difference of the knots titk
is denoted [titk] and is defined as

[titk] def=
Pi − Pk

ti − tk
.

The solutions can now be expressed as

A0 = P0,

A1 =
P1 − P0

t1 − t0
= [t1t0],

A2 = [t2t1t0] =
[t2t1] − [t1t0]

t2 − t0
,

A3 = [t3t2t1t0] =
[t3t2t1] − [t2t1t0]

t3 − t0
,

...

An = [tn . . . t1t0] =
[tn . . . t1] − [tn−1 . . . t0]

tn − t0
.

� Exercise 3.10: Given the same points and knot values as in Exercise 3.7, calculate the
Newton polynomial that passes through the points.

� Exercise 3.11: The tangent vector to a curve P(t) is the derivative dP(t)
dt , which we

denote by Pt(t). Calculate the tangent vectors to the curve of Exercises 3.7 and 3.10 at
the three points. Also calculate the slopes of the curve at the points.



3.4 Polynomial Surfaces 87

3.4 Polynomial Surfaces

The polynomial y =
∑

aix
i is the explicit representation of a curve. Similarly, the

parametric polynomial P(t) =
∑

tiPi and also P(t) =
∑

ai(t)Pi (where ai(t) is a
polynomial in t) are parametric representations of curves. These expressions can be
extended to polynomials in two variables, which represent surfaces. Thus, the double
polynomial z =

∑
i

∑
j aijx

iyj is the explicit representation of a surface patch, because
it yields a z value for any pair of coordinates (x, y). Similarly, the double parametric
polynomial P(u, w) =

∑
i

∑
j uiwjPij is the parametric representation of a surface

patch. For the cubic case (polynomials of degree 3), such a double polynomial can be
expressed compactly in matrix notation

P(u, w) = [u3, u2, u, 1]N

⎡
⎢⎣

P33 P32 P31 P30

P23 P22 P21 P20

P13 P12 P11 P10

P03 P02 P01 P00

⎤
⎥⎦NT

⎡
⎢⎣

w3

w2

w
1

⎤
⎥⎦ . (3.21)

The corresponding surface patch is accordingly referred to as bicubic.

3.5 The Biquadratic Surface Patch

This section introduces the biquadratic surface patch and constructs this simple surface
as a Cartesian product. Given the two quadratic (degree 2) polynomials

Q(u) =
2∑

i=0

fi(u)Qi and R(w) =
2∑

j=0

gj(w)Rj

the biquadratic surface immediately follows from the principle of Cartesian product

P(u, w) =
2∑

i=0

2∑
j=0

fi(u)gj(w)Pij . (3.22)

Different constructions are possible depending on the geometric meaning of the nine
quantities Pij . The following section presents such a construction and Section 4.10
discusses another approach, based on points, tangent vectors, and twist vectors.

3.5.1 Nine Points

Equation (3.14), duplicated below, gives the quadratic standard Lagrange polynomial
that interpolates three given points:

P2std(t) = (t2, t, 1)

⎛
⎝ 2 −4 2

−3 4 −1
1 0 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ . (3.14)
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Cartesian product yields the corresponding biquadratic surface

P(u, w) = (u2, u, 1)

⎛
⎝ 2 −4 2

−3 4 −1
1 0 0

⎞
⎠
⎛
⎝P22 P21 P20

P12 P11 P10

P02 P01 P00

⎞
⎠

×
⎛
⎝ 2 −4 2

−3 4 −1
1 0 0

⎞
⎠T ⎛

⎝w2

w
1

⎞
⎠ ,

(3.23)

where the nine quantities Pij are points defining this surface patch. They should be
roughly equally spaced over the surface.

Example: Given the nine points of Figure 3.4a, we compute and draw the bi-
quadratic surface patch defined by them. The surface is shown in Figure 3.4b. The code
is also listed.

0 0.5 1 1.5 2

0
0.5

11.52
−0.5

0

0.5

1

x
x

yy
zz

(a) (b)

(0,0,−.5)

(2,2,0)

(1,1,1)(0,1,0)

(1,0,0)
(2,0,0)

(0,0,0)

(0,2,0) (1,2,0)

<<:Graphics:ParametricPlot3D.m; (* Biquadratic patch for 9 points *)
Clear[T,pnt,M,g1,g2];
T[t_]:={t^2,t,1};
pnt={{{0,0,0},{1,0,0},{2,0,0}}, {{0,1,0},{1,1,1},{2,1,-.5}},
{{0,2,0},{1,2,0},{2,2,0}}};
M={{2,-4,2},{-3,4,-1},{1,0,0}};
g2=Graphics3D[{AbsolutePointSize[4],
Table[Point[pnt[[i,j]]],{i,1,3},{j,1,3}] }];
comb[i_]:=(T[u].M.pnt)[[i]](Transpose[M].T[w])[[i]];
g1=ParametricPlot3D[comb[1]+comb[2]+comb[3], {u,0,1},{w,0,1},
Compiled->False, DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{1.391, -2.776, 0.304}, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction]

Figure 3.4: A Biquadratic Surface Patch Example.

It is also possible to construct similar biquadratic surfaces from the expressions
for the uniform and nonuniform quadratic Lagrange polynomials, Equations (3.12)
and (3.13).
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� Exercise 3.12: The geometry vector of Equation (3.14) has point P0 at the top, but
the geometry matrix of Equation (3.23) has point P00 at its bottom-right instead of its
top-left corner. Why is that?

3.6 The Bicubic Surface Patch

The parametric cubic (PC) curve, Equation (3.1), is useful, since it can be used when
either four points, or two points and two tangent vectors, are known. The latter approach
is the topic of Chapter 4. The PC curve can easily be extended to a bicubic surface
patch by means of the Cartesian product.

A PC curve has the form P(t) =
∑3

i=0 ait
i. Two such curves, P(u) and P(w), can

be combined to form the Cartesian product surface patch

P(u, w)

=
3∑

i=0

3∑
j=0

aiju
iwj

= a33u
3w3 + a32u

3w2 + a31u
3w + a30u

3 + a23u
2w3 + a22u

2w2 + a21u
2w + a20u

2

+ a13uw3 + a12uw2 + a11uw + a10u + a03w
3 + a02w

2 + a01w + a00 (3.24)

= (u3, u2, u, 1)

⎛
⎜⎝

a33 a32 a31 a30

a23 a22 a21 a20

a13 a12 a11 a10

a03 a02 a01 a00

⎞
⎟⎠
⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ , where 0 ≤ u, w ≤ 1. (3.25)

This is a double cubic polynomial (hence the name bicubic) with 16 terms, where each
of the 16 coefficients aij is a triplet [compare with Equation (3.21)]. When w is set to
a fixed value w0, Equation (3.25) becomes P(u, w0), which is a PC curve. The same is
true for P(u0, w). The conclusion is that curves that lie on this surface in the u or in
the w directions are parametric cubics. The four boundary curves are consequently also
PC curves.

Notice that the shape and location of the surface depend on all 16 coefficients.
Any change in any of them produces a different surface patch. Equation (3.25) is the
algebraic representation of the bicubic patch. In order to use it in practice, the 16
unknown coefficients have to be expressed in terms of known geometrical quantities,
such as points, tangent vectors, or second derivatives.

Two types of bicubic surfaces are discussed here. The first is based on 16 data points
and the second is constructed from four known curves. A third type—defined by four
data points, eight tangent vectors, and four twist vectors—is the topic of Section 4.9.
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Milo. . . glanced curiously at the strange circular room, where sixteen tiny arched
windows corresponded exactly to the sixteen points of the compass. Around the
entire circumference were numbers from zero to three hundred and sixty, marking
the degrees of the circle, and on the floor, walls, tables, chairs, desks, cabinets, and
ceiling were labels showing their heights, widths, depths, and distances to and from
each other.

—Norton Juster, The Phantom Tollbooth.

3.6.1 Sixteen Points

We start with the sixteen given points

P03 P13 P23 P33

P02 P12 P22 P32

P01 P11 P21 P31

P00 P10 P20 P30.

w=0

w=1/3

u=1/3

u

w=2/3
u=2/3

w=1

P20

P10P00

P01

P02

P03

P30

P33

(a) (b)

Figure 3.5: (a) Sixteen Points. (b) Four Curves.

We assume that the points are (roughly) equally spaced on the rectangular surface patch
as shown in Figure 3.5a. We know that the bicubic surface has the form

P(u, w) =
3∑

i=0

3∑
j=0

aiju
iwj , (3.26)

where each of the 16 coefficients aij is a triplet. To calculate the 16 unknown coefficients,
we write 16 equations, each based on one of the given points

P(0, 0) = P00, P(0, 1/3) = P01, P(0, 2/3) = P02, P(0, 1) = P03,
P(1/3, 0) = P10, P(1/3, 1/3) = P11, P(1/3, 2/3) = P12, P(1/3, 1) = P13,
P(2/3, 0) = P20, P(2/3, 1/3) = P21, P(2/3, 2/3) = P22, P(2/3, 1) = P23,
P(1, 0) = P30, P(1, 1/3) = P31, P(1, 2/3) = P32, P(1, 1) = P33.
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After solving, the final expression for the surface patch becomes

P(u, w) = (u3, u2, u, 1)N

⎛
⎜⎝

P00 P10 P20 P30

P01 P11 P21 P31

P02 P12 P22 P32

P03 P13 P23 P33

⎞
⎟⎠NT

⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ , (3.27)

where

N =

⎛
⎜⎝

−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5

−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎞
⎟⎠ .

is the basis matrix used to blend four points in a PC [Equation (3.6)]. As mentioned,
this type of surface patch has only limited use because it cannot have a very complex
shape. A larger surface, made up of a number of such patches, can be constructed, but
it is difficult to connect the individual patches smoothly.

(This type of surface is also derived in Section 1.9 as a Cartesian product.)

Example: Given the 16 points listed in Figure 3.6, we compute and plot the bicubic
surface patch defined by them. The figure shows two views of this surface.
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<<:Graphics:ParametricPlot3D.m; (* BiCubic patch for 16 points *)
Clear[T,pnt,M,g1,g2];
T[t_]:={t^3,t^2,t,1};
pnt={{{0,0,0},{1,0,0},{2,0,0},{3,0,0}}, {{0,1,0},{1,1,1},{2,1,-.5},{3,1,0}},
{{0,2,-.5},{1,2,0},{2,2,.5},{3,2,0}},{{0,3,0},{1,3,0},{2,3,0},{3,3,0}}};
M={{-4.5,13.5,-13.5,4.5},{9,-22.5,18,-4.5},{-5.5,9,-4.5,1},{1,0,0,0}};
g2=Graphics3D[{AbsolutePointSize[3],
Table[Point[pnt[[i,j]]],{i,1,4},{j,1,4}] }];
comb[i_]:=(T[u].M.pnt)[[i]](Transpose[M].T[w])[[i]];
g1=ParametricPlot3D[comb[1]+comb[2]+comb[3]+comb[4], {u,0,1},{w,0,1},
Compiled->False, DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{2.752, -0.750, 1.265}, DefaultFont->{"cmr10", 10},
(* ViewPoint->{1.413, 2.605, 0.974} for alt view *)
DisplayFunction->$DisplayFunction]

Figure 3.6: A Bicubic Surface Patch Example.
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Even though this type of surface has limited use in graphics, it can be used for
two-dimensional bicubic polynomial interpolation of points and numbers. Given a set of
three-dimensional points arranged in a two-dimensional grid, the problem is to compute
a weighted sum of the points and employ it to predict the value of a new point at the
center of the grid. It makes sense to assign more weights to points that are closer to the
center, and a natural way to achieve this is to calculate the surface patch P(u, w) that
passes through all the points in the grid and use the value P(0.5, 0.5) as the interpolated
value at the center of the grid.

The MLP image compression method [Salomon 04] is an example of the use of this
approach. The problem is to interpolate the values of a group of 4×4 pixels in an image
in order to predict the value of a pixel at the center of this group. The simple solution
is to calculate the surface patch defined by the 16 pixels and to use the surface point
P(0.5, 0.5) as the interpolated value of the pixel at the center of the group. Substituting
u = 0.5 and w = 0.5 in Equation (3.27) produces

P(0.5, 0.5)
= 0.00390625P00 − 0.0351563P01 − 0.0351563P02 + 0.00390625P03

− 0.0351563P10 + 0.316406P11 + 0.316406P12 − 0.0351563P13

− 0.0351563P20 + 0.316406P21 + 0.316406P22 − 0.0351563P23

+ 0.00390625P30 − 0.0351563P31 − 0.0351563P32 + 0.00390625P33.

The 16 coefficients are the ones used by MLP.

� Exercise 3.13: The center point of the surface is calculated as a weighted sum of the 16
equally-spaced data points (this technique is known as bicubic interpolation). It makes
sense to assign small weights to points located away from the center, but our result
assigns negative weights to eight of the 16 points. Explain the meaning of negative
weights and show what role they play in interpolating the center of the surface.

Readers who find it tedious to follow the details above should compare the way two-
dimensional bicubic polynomial interpolation is presented here to the way it is discussed
by [Press and Flannery 88]; the following quotation is from their page 125: “. . . the for-
mulas that obtain the c’s from the function and derivative values are just a complicated
linear transformation, with coefficients which, having been determined once, in the mists
of numerical history, can be tabulated and forgotten.”

Seated at his disorderly desk, caressed by a counterpane of drifting tobacco haze,
he would pore over the manuscript, crossing out, interpolating, re-arguing, and then
referring to volumes on his shelves.

—Christopher Morley, The Haunted Bookshop (1919).

3.6.2 Four Curves

A variant of the previous method starts with four curves (any curves, not just PCs),
P0(u), P1(u), P2(u), and P3(u), roughly parallel, all going in the u direction (Fig-
ure 3.5b). It is possible to select four points Pi(0), Pi(1/3), Pi(2/3), and Pi(1) on each
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curve Pi(u), for a total of 16 points. The surface patch can then easily be constructed
from Equation (3.27).

Example: The surface of Figure 3.7 is defined by the following four curves (shown
in the diagram in an inset). All go along the x axis, at different y values, and are sine
curves (with different phases) along the z axis.

P0(u) = (u, 0, sin(πu)), P1(u) = (u, 1 + u/10, sin(π(u + 0.1))),
P2(u) = (u, 2, sin(π(u + 0.2))), P3(u) = (u, 3 + u/10, sin(π(u + 0.3))),

The Mathematica code of Figure 3.7 shows how matrix basis is created with the 16
points ⎛

⎜⎝
P0(0) P0(.33) P0(.67) P0(1)
P1(0) P1(.33) P1(.67) P1(1)
P2(0) P2(.33) P2(.67) P2(1)
P3(0) P3(.33) P3(.67) P3(1)

⎞
⎟⎠ .

3.7 Coons Surfaces

This type of surface is based on the pioneering work of Steven Anson Coons at MIT in
the 1960s. His efforts are summarized in [Coons 64] and [Coons 67].

We start with the linear Coons surface, which is a generalization of lofted surfaces.
This type of surface patch is defined by its four boundary curves. All four boundary
curves are given, and none has to be a straight line. Naturally, the boundary curves
have to meet at the corner points, so these points are implicitly known.

Coons decided to search for an expression P(u, w) of the surface that satisfies (1)
it is symmetric in u and w and (2) it is an interpolation of P(u, 0) and P(u, 1) in one
direction and of P(0, w) and P(1, w) in the other direction. He found a surprisingly
simple, two-step solution.

The first step is to construct two lofted surfaces from the two sets of opposite
boundary curves. They are Pa(u, w) = P(0, w)(1 − u) + P(1, w)u and Pb(u, w) =
P(u, 0)(1 − w) + P(u, 1)w.

The second step is to tentatively attempt to create the final surface P(u, w) as
the sum Pa(u, w) + Pb(u, w). It is clear that this is not the expression we are looking
for because it does not converge to the right curves at the boundaries. For u = 0,
for example, we want P(u, w) to converge to boundary curve P(0, w). The sum above,
however, converges to P(0, w)+P(0, 0)(1−w)+P(0, 1)w. We therefore have to subtract
P(0, 0)(1−w)+P(0, 1)w. Similarly, for u = 1, the sum converges to P(1, w)+P(1, 0)(1−
w) + P(1, 1)w, so we have to subtract P(1, 0)(1−w) + P(1, 1)w. For w = 0, we have to
subtract P(0, 0)(1 − u) + P(1, 0)u, and for w = 1, we should subtract P(0, 1)(1 − u) +
P(1, 1)u.

Note that the expressions P(0, 0), P(0, 1), P(1, 0), and P(1, 1) are simply the four
corner points. A better notation for them may be P00, P01, P10, and P11.



94 3. Polynomial Interpolation

Clear[p0,p1,p2,p3,basis,fourP,g0,g1,g2,g3,g4,g5];
p0[u_]:={u,0,Sin[Pi u]}; p1[u_]:={u,1+u/10,Sin[Pi(u+.1)]};
p2[u_]:={u,2,Sin[Pi(u+.2)]}; p3[u_]:={u,3+u/10,Sin[Pi(u+.3)]};
(* matrix ‘basis’ has dimensions 4x4x3 *)
basis:={{p0[0],p0[.33],p0[.67],p0[1]},{p1[0],p1[.33],p1[.67],p1[1]},
{p2[0],p2[.33],p2[.67],p2[1]},{p3[0],p3[.33],p3[.67],p3[1]}};
fourP:= (* basis matrix for a 4-point curve *)
{{-4.5,13.5,-13.5,4.5},{9,-22.5,18,-4.5},{-5.5,9,-4.5,1},{1,0,0,0}};
prt[i_]:= (* extracts component i from the 3rd dimen of ‘basis‘ *)
basis[[Range[1,4],Range[1,4],i]];
coord[i_]:= (* calc. the 3 parametric components of the surface *)
{u^3,u^2,u,1}.fourP.prt[i].Transpose[fourP].{w^3,w^2,w,1};
g0=ParametricPlot3D[p0[u], {u,0,1}]
g1=ParametricPlot3D[p1[u], {u,0,1}]
g2=ParametricPlot3D[p2[u], {u,0,1}]
g3=ParametricPlot3D[p3[u], {u,0,1}]
g4=Graphics3D[{AbsolutePointSize[4],
Table[Point[basis[[i,j]]],{i,1,4},{j,1,4}]}];
g5=ParametricPlot3D[{coord[1],coord[2],coord[3]},
{u,0,1,.05},{w,0,1,.05}, DisplayFunction->Identity];
Show[g0,g1,g2,g3, ViewPoint->{-2.576, -1.365, 1.718},
Ticks->False, DisplayFunction->$DisplayFunction]
Show[g4,g5, ViewPoint->{-2.576, -1.365, 1.718},
DisplayFunction->$DisplayFunction]

Figure 3.7: A Four-Curve Surface.
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Today, this type of surface is known as the linear Coons surface. Its expression is
P(u, w) = Pa(u, w) + Pb(u, w) − Pab(u, w), where

Pab(u, w) = P00(1 − u)(1 − w) + P01(1 − u)w + P10u(1 − w) + P11uw.

Note that Pa and Pb are lofted surfaces, whereas Pab is a bilinear surface. The final
expression is

P(u, w) = Pa(u, w) + Pb(u, w) − Pab(u, w)

= (1 − u, u)
(

P(0, w)
P(1, w)

)
+ (1 − w, w)

(
P(u, 0)
P(u, 1)

)

− (1 − u, u)
(

P00 P01

P10 P11

)(
1 − w

w

)
(3.28)

= (1 − u, u, 1)

⎛
⎝ −P00 −P01 P(0, w)

−P10 −P11 P(1, w)
P(u, 0) P(u, 1) (0, 0, 0)

⎞
⎠
⎛
⎝ 1 − w

w
1

⎞
⎠ . (3.29)

Equation (3.28) is more useful than Equation (3.29) since it shows how the surface
is defined in terms of the two barycentric pairs (1 − u, u) and (1 − w, w). They are
the blending functions of the linear Coons surface. It turns out that many pairs of
barycentric functions

(
f1(u), f2(u)

)
and

(
g1(w), g2(w)

)
can serve as blending functions,

out of which more general Coons surfaces can be constructed. All that the blending
functions have to satisfy is

f1(0) = 1, f1(1) = 0, f2(0) = 0, f2(1) = 1, f1(u) + f2(u) = 1,
g1(0) = 1, g1(1) = 0, g2(0) = 0, g2(1) = 1, g1(w) + g2(w) = 1.

(3.30)

Example: We select the four (nonpolynomial) boundary curves

Pu0 = (u, 0, sin(πu)), Pu1 = (u, 1, sin(πu)),
P0w = (0, w, sin(πw)), P1w = (1, w, sin(πw)).

Each is one-half of a sine wave. The first two proceed along the x axis, and the other two
go along the y axis. They meet at the four corner points P00 = (0, 0, 0), P01 = (0, 1, 0),
P10 = (1, 0, 0), and P11 = (1, 1, 0). The surface and the Mathematica code that produced
it are shown in Figure 3.8. Note the Simplify command, which displays the final,
simplified expression of the surface {u, w, Sin[Pi u] + Sin[Pi w]}.

Example: Given the four corner points P00 = (−1,−1, 0), P01 = (−1, 1, 0), P10 =
(1,−1, 0), and P11 = (1, 1, 0) (notice that they lie on the xy plane), we calculate the
four boundary curves of a linear Coons surface patch as follows:

1. We select boundary curve P(0, w) as the straight line from P00 to P01:

P(0, w) = P00(1 − w) + P01w = (−1, 2w − 1, 0).
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<<:Graphics:ParametricPlot3D.m;
Clear[p00,p01,p10,p11,pu0,pu1,p0w,p1w];
p00:={0,0,0}; p01:={0,1,0};
p10:={1,0,0}; p11:={1,1,0};
pu0:={u,0,Sin[Pi u]};
pu1:={u,1,Sin[Pi u]};
p0w:={0,w,Sin[Pi w]};
p1w:={1,w,Sin[Pi w]};
Simplify[
{1-u,u}.{p0w,p1w}+{1-w,w}.{pu0,pu1}
-p00(1-u)(1-w)-p01(1-u)w
-p10(1-w)u-p11 u w]
ParametricPlot3D[%,
{u,0,1,.2},{w,0,1,.2},
PlotRange->All,
AspectRatio->Automatic,
RenderAll->False,
Ticks->{{1},{0,1},{0,1}},
Prolog->AbsoluteThickness[.4]]

1

0

1

0

1

Figure 3.8: A Coons Surface.

2. We place the two points (1,−0.5, 0.5) and (1, 0.5,−0.5) between P10 and P11 and
calculate boundary curve P(1, w) as the cubic Lagrange polynomial [Equation (3.17)]
determined by these four points

P(1, w) =
1
2
(w3, w2, w, 1)

⎡
⎢⎣

−9 −27 27 9
18 −45 36 −9

−11 18 −9 2
2 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(1,−1, 0)
(1,−0.5, 0.5)
(1, 0.5,−0.5)

(1, 1, 0)

⎤
⎥⎦

=
(
1, (−4 − w + 27w2 − 18w3)/4, 27(w − 3w2 + 2w3)/4

)
.

3. The single point (0,−1,−0.5) is placed between points P00 and P10 and bound-
ary curve P(u, 0) is calculated as the quadratic Lagrange polynomial [Equation (3.14)]
determined by these three points:

P(u, 0) = (u2, u, 1)

⎡
⎣ 2 −4 2
−3 4 −1

1 0 0

⎤
⎦
⎡
⎣ (−1,−1, 0)

(0,−1,−.5)
(1,−1, 0)

⎤
⎦ = (2u − 1,−1, 2u2 − 2u).

4. Similarly, a new point (0, 1, .5) is placed between points P01 and P11, and
boundary curve P(u, 1) is calculated as the quadratic Lagrange polynomial determined
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by these three points:

P(u, 1) = (u2, u, 1)

⎡
⎣ 2 −4 2
−3 4 −1

1 0 0

⎤
⎦
⎡
⎣ (−1, 1, 0)

(0, 1, .5)
(1, 1, 0)

⎤
⎦ = (2u − 1, 1,−2u2 + 2u).

The four boundary curves and the four corner points now become the linear Coons
surface patch given by Equation (3.28):

P(u, w) = (1 − u, u, 1)

⎡
⎣ −(−1,−1, 0) −(−1, 1, 0)

−(1,−1, 0) −(1, 1, 0)
(2u − 1,−1, 2u2 − 2u) (2u − 1, 1,−2u2 + 2u)

(−1, 2w − 1, 0)
(1, (−4 − w + 27w2 − 18w3)/4, 27(w − 3w2 + 2w3)/4)

0

⎤
⎦
⎡
⎣ 1 − w

w
1

⎤
⎦ .

This is simplified with the help of appropriate software and becomes

P(u, w) =
(−1 + 2u + (1 − u)(1 − w) − u(1 − w) + (−1 + 2u)(1 − w)

+ (1 − u)w − uw + (−1 + 2u)w,

− 1 + (1 − u)(1 − w) + u(1 − w) + 2w − (1 − u)w

− uw + (1 − u)(−1 + 2w) + u(−4 − w + 27w2 − 18w3)/4,

(−2u + 2u2)(1 − w) + (2u − 2u2)w + 27u(w − 3w2 + 2w3)/4
)
.

The surface patch and the eight points involved are shown in Figure 3.9.

3.7.1 Translational Surfaces

Given two curves P(u, 0) and P(0, w) that intersect at a point

P(u, 0)|u=0 = P(0, w)|w=0
def= P00,

it is easy to construct the surface patch created by sliding one of the curves, say, P(u, 0),
along the other one (Figure 3.10).

P00

P(0,w)

P(u,0)

P(u,w0)
x

Figure 3.10: A Translational Surface.
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x

y

z

p00={-1,-1,0}; p01={-1,1,0}; p10={1,-1,0}; p11={1,1,0};
pnts={p00,p01,p10,p11,{1,-1/2,1/2},{1,1/2,-1/2},
{0,-1,-1/2},{0,1,1/2}};
p0w[w_]:={-1,2w-1,0};
p1w[w_]:={1,(-4-w+27w^2-18w^3)/4,27(w-3w^2+2w^3)/4};
pu0[u_]:={2u-1,-1,2u^2-2u};
pu1[u_]:={2u-1,1,-2u^2+2u};
p[u_,w_]:=(1-u)p0w[w]+u p1w[w]+(1-w)pu0[u]+w pu1[u] \
-p00(1-u)(1-w)-p01(1-u)
w-p10 u(1-w)-p11 u w;
g1=Graphics3D[{AbsolutePointSize[5], Table[Point[pnts[[i]]],
{i,1,8}]}];
g2=ParametricPlot3D[p[u,w], {u,0,1},{w,0,1}, Compiled->False,
Ticks->{{-1,1},{-1,1},{-1,1}}, DisplayFunction->Identity];
Show[g1,g2]

Figure 3.9: A Coons Surface Patch and Code.
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We fix w at a certain value w0 and compute the vector from the intersection point
P00 to point P(0, w0) (marked with an x in the figure). This vector is the difference
P(0, w0)−P00, implying that any point on the curve P(u, w0) can be obtained by adding
this vector to the corresponding point on curve P(u, 0). The entire curve P(u, w0) is
therefore constructed as the sum P(u, 0)+ [P(0, w0)−P00] for 0 ≤ u ≤ 1. The resulting
translational surface P(u, w) is obtained when w is released and is varied in the interval
[0, 1]

P(u, w) = P(u, 0) + P(0, w) − P00.

There is an interesting relation between the linear Coons surface and translational
surfaces. The Coons patch is constructed from four intersecting curves. Consider a pair
of such curves that intersect at a corner Pij of the Coons patch. We can employ this
pair and the corner to construct a translational surface Pij(u, w). Once we construct
the four translational surfaces for the four corners of the Coons patch, they can be used
to express the entire Coons linear surface patch by a special version of Equation (3.29)

(1 − u, u)
[
P00(u, w) P01(u, w)
P10(u, w) P11(u, w)

] [
1 − w

w

]
.

This version expresses the Coons surface patch as a weighted combination of four trans-
lational surfaces

3.7.2 Higher-Degree Coons Surfaces

One possible pair of blending functions is the cubic Hermite polynomials, functions F1(t)
and F2(t) of Equation (4.6)

H3,0(t) = B3,0(t) + B3,1(t) = (1 − t)3 + 3t(1 − t)2 = 1 + 2t3 − 3t2,

H3,3(t) = B3,2(t) + B3,3(t) = 3t2(1 − t) + t3 = 3t2 − 2t3,
(3.31)

where Bn,i(t) are the Bernstein polynomials, Equation (6.5). The sum H3,0(t)+H3,3(t)
is identically 1 (because the Bernstein polynomials are barycentric), so these functions
can be used to construct the bicubic Coons surface. Its expression is

P(u, w) = (H3,0(u), H3,3(u), 1)

⎡
⎣ −P00 −P01 P(0, w)

−P10 −P11 P(1, w)
P(u, 0) P(u, 1) 0

⎤
⎦
⎡
⎣H3,0(w)

H3,3(w)
1

⎤
⎦ (3.32)

= (1 + 2u3 − 3u2, 3u2 − 2u3, 1)

⎡
⎣ −P00 −P01 P(0, w)

−P10 −P11 P(1, w)
P(u, 0) P(u, 1) (0, 0, 0)

⎤
⎦
⎡
⎣ 1 + 2w3 − 3w2

3w2 − 2w3

1

⎤
⎦ .

One advantage of the bicubic Coons surface patch is that it is especially easy to con-
nect smoothly to other patches of the same type. This is because its blending functions
satisfy

dH3,0(t)
dt

∣∣∣∣
t=0

= 0,
dH3,0(t)

dt

∣∣∣∣
t=1

= 0,
dH3,3(t)

dt

∣∣∣∣
t=0

= 0,
dH3,3(t)

dt

∣∣∣∣
t=1

= 0. (3.33)
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Figure 3.11 shows two bicubic Coons surface patches, P(u, w) and Q(u, w), connected
along their boundary curves P(u, 1) and Q(u, 0), respectively. The condition for patch
connection is, of course, P(u, 1) = Q(u, 0). The condition for smooth connection is

∂P(u, w)
∂w

∣∣∣∣
w=1

=
∂Q(u, w)

∂w

∣∣∣∣
w=o

(3.34)

(but see Section 1.10 for other, less restrictive conditions).

Q00

Q01

Q10

Q11

P11

P01

P00

P10
P(1,w

)

P(0,w)

Q(0,w)

Q(1,w)

u

u

Q(u,w)

P(u,w)

P
(u,1)

Q
(u,0)

Figure 3.11: Smooth Connection of Bicubic Coons Surface Patches.

The partial derivatives of P(u, w) are easy to calculate from Equation (3.32). They
are

∂P(u, w)
∂w

∣∣∣∣
w=1

= H3,0(u)
dP(0, w)

dw

∣∣∣∣
w=1

+ H3,3(u)
dP(1, w)

dw

∣∣∣∣
w=1

,

∂Q(u, w)
∂w

∣∣∣∣
w=0

= H3,0(u)
dQ(0, w)

dw

∣∣∣∣
w=0

+ H3,3(u)
dQ(1, w)

dw

∣∣∣∣
w=0

.

(3.35)

[All other terms vanish because the blending functions satisfy Equation (3.33).] The
condition for smooth connection, Equation (3.34), is therefore satisfied if

dP(0, w)
dw

∣∣∣∣
w=1

=
dQ(0, w)

dw

∣∣∣∣
w=0

and
dP(1, w)

dw

∣∣∣∣
w=1

=
dQ(1, w)

dw

∣∣∣∣
w=0

,

or, expressed in words, if the two boundary curves P(0, w) and Q(0, w) on the u = 0
side of the patch connect smoothly, and the same for the two boundary curves P(1, w)
and Q(1, w) on the u = 1 side of the patch.

The reader should now find it easy to appreciate the advantage of the degree-5
Hermite blending functions [functions F1(t) and F2(t) of Equation (4.17)]

H5,0(t) = B5,0(t) + B5,1(t) + B5,2(t) = 1 − 10t3 + 15t4 − 6t5,

H5,5(t) = B5,3(t) + B5,4(t) + B5,5(t) = 10t3 − 15t4 + 6t5.
(3.36)
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They are based on the Bernstein polynomials B5,i(t) hence they satisfy the conditions of
Equation (3.30). They further have the additional property that their first and second
derivatives are zero for t = 0 and for t = 1. The degree-5 Coons surface constructed by
them is

P5(u, w) =
(
H5,0(u), H5,5(u), 1

)⎡⎣ −P00 −P01 P(0, w)
−P10 −P11 P(1, w)
P(u, 0) P(u, 1) 0

⎤
⎦
⎡
⎣H5,0(w)

H5,5(w)
1

⎤
⎦ . (3.37)

Adjacent patches of this type of surface are easy to connect with G2 continuity. All
that’s necessary is to have two pairs of boundary curves P(0, w), Q(0, w) and P(1, w),
Q(1, w), where the two curves of each pair connect with G2 continuity.

3.7.3 The Tangent Matching Coons Surface

The original aim of Coons was to construct a surface patch where all four boundary
curves are specified by the user. Such patches are easy to compute and the conditions
for connecting them smoothly are simple. It is possible to extend the original ideas of
Coons to a surface patch where the user specifies the four boundary curves and also four
functions that describe how (in what direction) this surface approaches its boundaries.
Figure 3.12 illustrates the meaning of this statement. It shows a rectangular surface
patch with some curves of the form P(u, wi). Each of these curves goes from boundary
curve P(0, w) to the opposite boundary curve P(1, w) by varying its parameter u from
0 to 1. Each has a different value of wi. When such a curve reaches its end, it is moving
in a certain, well-defined direction shown in the diagram. The end tangent vectors of
these curves are different and we can imagine a function that yields these tangents as we
move along the boundary curve P(1, w), varying w from 0 to 1. A good name for such
a function is Pu(1, w), where the subscript u indicates that this tangent of the surface
is in the u direction, the index 1 indicates the tangent at the end (u = 1), and the w
indicates that this tangent vector is a function of w.

P00

P10

P11

P01P(0,w)

P(1,w)

P
(u,1)

P(u,0)

P(u,.25)

P
(u,.5)

P
(u,.75)

u=1

w=1

u=0

w=0

Figure 3.12: Tangent Matching in a Coons Surface.
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There are four such functions, namely Pu(0, w), Pu(1, w), Pw(u, 0), and Pw(u, 1).
Assuming that the user provides these functions, as well as the four boundary curves,
our task is to obtain an expression P(u, w) for the surface that will satisfy the following:

1. When we substitute 0 or 1 for u and w in P(u, w), we get the four given corner
points and the four given boundary curves. This condition can be expressed as the eight
constraints

P(0, 0) = P00, P(0, 1) = P01, P(1, 0) = P10, P(1, 1) = P11,

P(0, w), P(1, w), P(u, 0), and P(u, 1) are the given boundary curves.

2. When we substitute 0 or 1 for u and w in the partial first derivatives of P(u, w),
we get the four given tangent functions and their values at the four corner points. This
condition can be expressed as the 12 constraints

∂P(u, w)
∂u

∣∣∣∣
u=0

= Pu(0, w),
∂P(u, w)

∂u

∣∣∣∣
u=1

= Pu(1, w),

∂P(u, w)
∂w

∣∣∣∣
w=0

= Pw(u, 0),
∂P(u, w)

∂w

∣∣∣∣
w=1

= Pw(u, 1),

∂P(u, w)
∂u

∣∣∣∣
u=0,w=0

= Pu(0, 0),
∂P(u, w)

∂u

∣∣∣∣
u=0,w=1

= Pu(0, 1),

∂P(u, w)
∂u

∣∣∣∣
u=1,w=0

= Pu(1, 0),
∂P(u, w)

∂u

∣∣∣∣
u=1,w=1

= Pu(1, 1),

∂P(u, w)
∂w

∣∣∣∣
u=0,w=0

= Pw(0, 0),
∂P(u, w)

∂w

∣∣∣∣
u=0,w=1

= Pw(0, 1).

∂P(u, w)
∂w

∣∣∣∣
u=1,w=0

= Pw(1, 0),
∂P(u, w)

∂w

∣∣∣∣
u=1,w=1

= Pw(1, 1).

3. When we substitute 0 or 1 for u and w in the partial second derivatives of P(u, w),
we get the four first derivatives of the given tangent functions at the four corner points.
This condition can be expressed as the four constraints

∂2P(u, w)
∂u∂w

∣∣∣∣
u=0,w=0

=
dPu(0, w)

dw

∣∣∣∣
w=0

=
dPu(u, 0)

du

∣∣∣∣
u=0

def= Puw(0, 0),

∂2P(u, w)
∂u∂w

∣∣∣∣
u=0,w=1

=
dPu(0, w)

dw

∣∣∣∣
w=1

=
dPu(u, 1)

du

∣∣∣∣
u=0

def= Puw(0, 1),

∂2P(u, w)
∂u∂w

∣∣∣∣
u=1,w=0

=
dPu(1, w)

dw

∣∣∣∣
w=0

=
dPu(u, 0)

du

∣∣∣∣
u=1

def= Puw(1, 0),

∂2P(u, w)
∂u∂w

∣∣∣∣
u=1,w=1

=
dPu(1, w)

dw

∣∣∣∣
w=1

=
dPu(u, 1)

du

∣∣∣∣
u=1

def= Puw(1, 1).

This is a total of 24 constraints. A derivation of this type of surface can be found
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in [Beach 91]. Here, we only quote the final result

P(u, w) =
(
B0(u), B1(u), C0(u), C1(u), 1

)
M

⎡
⎢⎢⎢⎣

B0(w)
B1(w)
C0(w)
C1(w)

1

⎤
⎥⎥⎥⎦ , (3.38)

where M is the 5×5 matrix

M =

⎡
⎢⎢⎢⎣

−P00 −P01 −Pw(0, 0) −Pw(0, 1) P(0, w)
−P10 −P11 −Pw(1, 0) −Pw(1, 1) P(1, w)

−Pu(0, 0) −Pu(0, 1) −Puw(0, 0) −Puw(0, 1) Pu(0, w)
−Pu(1, 0) −Pu(1, 1) −Puw(1, 0) −Puw(1, 1) Pu(1, w)
P(u, 0) P(u, 1) Pw(u, 0) Pw(u, 1) (0, 0, 0)

⎤
⎥⎥⎥⎦ . (3.39)

The two blending functions B0(t) and B1(t) can be any functions satisfying condi-
tions (3.30) and (3.33). Examples are the pairs H3,0(t), H3,3(t) and H5,0(t), H5,5(t) of
Equations (3.31) and (3.36). The two blending functions C0(t) and C1(t) should satisfy

C0(0) = 0, C0(1) = 0, C ′
0(0) = 1, C ′

0(1) = 0,
C1(0) = 0, C1(1) = 0, C ′

1(0) = 0, C ′
1(1) = 1.

One choice is the pair C0(t) = t − 2t2 + t3 and C1(t) = −t2 + t3.
Such a surface patch is difficult to specify. The user has to input the four boundary

curves and four tangent functions, a total of eight functions. The user then has to
calculate the coordinates of the four corner points and the other 12 quantities required
by the matrix of Equation (3.39). The advantage of this type of surface is that once
fully specified, such a surface patch is easy to connect smoothly to other patches of the
same type since the tangents along the boundaries are fully specified by the user.

3.7.4 The Triangular Coons Surface

A triangular surface patch is bounded by three boundary curves and has three corner
points. Such surface patches are handy in situations like the one depicted in Figure 3.15,
where a triangular Coons patch is used to smoothly connect two perpendicular lofted
surface patches. Section 6.23 discusses the triangular Bézier surface patch which is
commonly used in practice. Our approach to constructing the triangular Coons surface
is to merge two of the four corner points and explore the behavior of the resulting surface
patch. We arbitrarily decide to set P01 = P11, which reduces the boundary curve P(u, 1)
to a single point (Figure 3.13). The expression of this triangular surface patch is

P(u, w) =
(
B0(u), B1(u), 1

)⎛⎝ −P00 −P11 P(0, w)
−P10 −P11 P(1, w)
P(u, 0) P11 (0, 0, 0)

⎞
⎠
⎛
⎝B0(w)

B1(w)
1

⎞
⎠ , (3.40)

where the blending functions B0(t), B1(t) can be the pair H3,0 and H3,3, or the pair H5,0

and H5,5, or any other pair of blending functions satisfying Equations (3.30) and (3.33).
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P10

P00

P11

P01

T0

T1

w=0

w=1

P(1,w)

P(0,w)

P(u,1)

P(u,0)

Figure 3.13: A Triangular Coons Surface Patch.

The tangent vector of the surface along the degenerate boundary curve P(u, 1) is
given by Equation (3.35):

∂P(u, w)
∂w

∣∣∣∣
w=1

= B0(u)
dP(0, w)

dw

∣∣∣∣
w=1

+ B1(u)
dP(1, w)

dw

∣∣∣∣
w=1

. (3.41)

Thus, this tangent vector is a linear combination of the two tangents

T0
def=

dP(0, w)
dw

∣∣∣∣
w=1

and T1
def=

dP(1, w)
dw

∣∣∣∣
w=1

,

and therefore lies in the plane defined by them. As u varies from 0 to 1, this tangent
vector swings from T0 to T1 while the curve P(u, 1) stays at the common point P01 =
P11. Once this behavior is grasped, the reader should be able to accept the following
statement: The triangular patch will be well behaved in the vicinity of the common
point if this tangent vector does not reverse its movement while swinging from T0 to
T1. If it starts moving toward T1, then reverses and goes back toward T0, then reverses
again, the surface may have a fold close to the common point. To guarantee this smooth
behavior of the tangent vector, the blending functions B0(t) and B1(t) must satisfy
one more condition, namely B0(t) should be monotonically decreasing in t and B1(t)
should be monotonically increasing in t. The two sets of blending functions H3,0, H3,3

and H5,0, H5,5 satisfy this condition and can therefore be used to construct triangular
Coons surface patches.

Example: Given the three corners P00 = (0, 0, 0), P10 = (2, 0, 0), and P01 =
P11 = (1, 1, 0), we compute and plot the triangular Coons surface patch defined by them.
The first step is to compute the three boundary curves. We assume that the “bottom”
boundary curve P(u, 0) goes from P00 through (1, 0,−1) to P10. We similarly require
that the “left” boundary curve P(0, w) goes from P00 through (0.5, 0.5, 1) to P01 and
the “right” boundary curve P(1, w) goes from P10 through (1.5, 0.5, 1) to P11. All three
curves are computed as standard quadratic Lagrange polynomials from Equation (3.14).
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They become

P(u, 0) = (2u, 0, 4u(u − 1)),
P(0, w) = (w, w, 4w(1 − w)),
P(1, w) = (2 − w, w, 4w(w − 1)).

Figure 3.14 shows two views of this surface and illustrates the downside of this type of
surface. The technique of drawing a surface patch as a wireframe with two families of
curves works well for rectangular surface patches but is unsuitable for triangular patches.
The figure shows how one family of curves converges to the double corner point, thereby
making the wireframe look unusually dense in the vicinity of the point. Section 6.23
presents a better approach to the display of a triangular surface patch as a wireframe.
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<<:Graphics:ParametricPlot3D.m; (* Triangular Coons patch *)
Clear[T,pnt,M,g1,g2];
T[t_]:={1+2t^3-3t^2,3t^2-2t^3,1};
p00={0,0,0}; p10={2,0,0}; p11={1,1,0};
M={{-p00,-p11,{w,w,4w(1-w)}},{-p10,-p11,{2-w,w,4w(1-w)}},
{{2u,0,4u(u-1)},p11,{0,0,0}}};
g2=Graphics3D[{AbsolutePointSize[3],Point[p00], Point[p10], Point[p11] }];
comb[i_]:=(T[u].M)[[i]] T[w][[i]];
g1=ParametricPlot3D[comb[1]+comb[2]+comb[3], {u,0,1},{w,0,1},
Compiled->False, DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{2.933, 0.824, 0.673}, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction]
(*ViewPoint->{1.413, 2.605, 0.974} for alt view *)

Figure 3.14: A Triangular Coons Surface Patch Example.

� Exercise 3.14: What happens if the blending functions of the triangular Coons surface
patch do not satisfy the condition of Equation (3.33)?
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“Now, don’t worry, my pet,” Mrs. Whatsit said cheerfully. “We took care of that
before we left. Your mother has had enough to worry her with you and Charles to
cope with, and not knowing about your father, without our adding to her anxieties.
We took a time wrinkle as well as a space wrinkle. It’s very easy to do if you just
know how.”

—Madeleine L’Engle, A Wrinkle in Time (1962).

� Exercise 3.15: Given the four points P00 = (0, 0, 1), P10 = (1, 0, 0), P01 = (0.5, 1, 0),
and P11 = (1, 1, 0), calculate the Coons surface defined by them, assuming straight lines
as boundary curves. What type of a surface is this?

3.7.5 Summarizing Example

The surface shown in Figure 3.15 consists of four (intentionally separated) patches. A
flat bilinear patch B at the top, two lofted patches L and F on both sides, and a
triangular Coons patch C filling up the corner.

The bilinear patch is especially simple since it is defined by its four corner points.
Its expression is

B(u, w) = (0, 1/2, 1)(1 − u)(1 − w) + (1, 1/2, 1)(1 − u)w
+ (0, 3/2, 1)(1 − w)u + (1, 3/2, 1)uw

= (w, 1/2 + u, 1).

The calculation of lofted patch L starts with the two boundary curves L(u, 0) and L(u, 1).
Each is calculated using Hermite interpolation (Chapter 4) since its extreme tangents,
as well as its endpoints, are easy to figure out from the diagram. The boundary curves
are

L(u, 0) = (u3, u2, u, 1)H
(
(0, 0, 0), (0, 1/2, 1), (0, 0, 1), (0, 1, 0)

)T
,

L(u, 1) = (u3, u2, u, 1)H
(
(1, 0, 0), (1, 1/2, 1), (0, 0, 1), (0, 1, 0)

)T
,

where H is the Hermite basis matrix, Equation (4.7). Surface patch L is thus

L(u, w) = L(u, 0)(1 − w) + L(u, 1)w = (w, u2/2, u + u2 − u3).

Lofted patch F is calculated similarly. Its boundary curves are

F(u, 0) = (u3, u2, u, 1)H
(
(3/2, 1/2, 0), (1, 1/2, 1), (0, 0, 1), (−1, 0, 0)

)T
,

F(u, 1) = (u3, u2, u, 1)H
(
(3/2, 3/2, 0), (1, 3/2, 1), (0, 0, 1), (−1, 0, 0)

)T
,

and the patch itself is

F(u, w) = F(u, 0)(1 − w) + F(u, 1)w = ((3 − u2)/2, 1/2 + w, u + u2 − u3).

The triangular Coons surface C has corner points C00 = (1, 0, 0), C10 = (3/2, 1/2, 0),
and C01 = C11 = (1, 1/2, 1). Its bottom boundary curve is

C(u, 0) = (u3, u2, u, 1)H
(
(1, 0, 0), (3/2, 1/2, 0), (1, 0, 0), (0, 1, 0)

)T
,
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F

C

L

B

(0,0,0)

(1,0,0)

(3/2,1/2,0)

(3/2,3/2,0)

(1,1/2,1)

(1,3/2,1)

(0,3/2,1)

(0,1/2,1)

x

u

u

u

u

w
w

w

w

y

z

b[u_,w_]:={0,1/2,1}(1-u)(1-w)+{1,1/2,1}(1-u)w
+{0,3/2,1}(1-w)u+{1,3/2,1}u w;
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
lu0={u^3,u^2,u,1}.H.{{0,0,0},{0,1/2,1},{0,0,1},{0,1,0}};
lu1={u^3,u^2,u,1}.H.{{1,0,0},{1,1/2,1},{0,0,1},{0,1,0}};
l[u_,w_]:=lu0(1-w)+lu1 w;
fu0={u^3,u^2,u,1}.H.{{3/2,1/2,0},{1,1/2,1},{0,0,1},{-1,0,0}};
fu1={u^3,u^2,u,1}.H.{{3/2,3/2,0},{1,3/2,1},{0,0,1},{-1,0,0}};
f[u_,w_]:=fu0(1-w)+fu1 w;
cu0={u^3,u^2,u,1}.H.{{1,0,0},{3/2,1/2,0},{1,0,0},{0,1,0}};
cu1={1,1/2,1};
c0w={w^3,w^2,w,1}.H.{{1,0,0},{1,1/2,1},{0,0,1},{0,1,0}};
c1w={w^3,w^2,w,1}.H.{{3/2,1/2,0},{1,1/2,1},{0,0,1},{-1,0,0}};
c[u_,w_]:=(1-u)c0w+u c1w+(1-w)cu0+w cu1 \
-(1-u)(1-w){1,0,0}-u(1-w){3/2,1/2,0}-w(1-u)cu1- u w cu1;
g1=ParametricPlot3D[b[u,w], {u,0,1},{w,0,1}]
g2=ParametricPlot3D[l[u,w], {u,0,1},{w,0,1}]
g3=ParametricPlot3D[f[u,w], {u,0,1},{w,0,1}]
g4=ParametricPlot3D[c[u,w], {u,0,1},{w,0,1}]
Show[g1,g2,g3,g4]

Figure 3.15: Bilinear, Lofted, and Coons Surface Patches.
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and its top boundary curve C(u, 1) is the multiple point C01 = C11. The two boundary
curves in the w direction are

C(0, w) = (w3, w2, w, 1)H
(
(1, 0, 0), (3/1, 1/2, 1), (0, 0, 1), (0, 1, 0)

)T
,

C(1, w) = (w3, w2, w, 1)H
(
(3/1, 1/2, 0), (1, 1/2, 1), (0, 0, 1), (−1, 0, 0)

)T
,

and the surface patch itself equals

C(u, w) = (1 − u)C(0, w) + uC(1, w) + (1 − w)C(u, 0) + wC(u, 1)
− (1 − u)(1 − w)1, 0, 0 − u(1 − w)3/2, 1/2, 0 − w(1 − u)C11 − uwC11

= ((2 + u2(−1 + w) − u(−2 + w + w2))/2,

(−u2(−1 + w) − u(−1 + w)w + w2)/2, w + w2 − w3).

3.8 Gordon Surfaces

The Gordon surface is a generalization of Coons surfaces. A linear Coons surface is
fully defined by means of four boundary curves, so its shape cannot be too complex. A
Gordon surface (Figure 3.16) is defined by means of two families of curves, one in each
of the u and w directions. It can have very complex shapes and is a good candidate for
use in applications where realism is important.

P(u,wj)

P(ui,w)

u

w

Figure 3.16: A Gordon Surface.

We denote the curves by P(ui, w), where i = 0, . . . , m, and P(u, wj), j = 0, . . . , n.
The main idea is to find an expression for a surface Pa(u, w) that interpolates the first
family of curves, add it to a similar expression for a surface Pb(u, w) that interpolates
the second family of curves, and subtract a surface Pab(u, w) that represents multiple
contributions from Pa and Pb.

The first surface, Pa(u, w), should interpolate the family of m + 1 curves P(ui, w).
When moving on this surface in the u direction (fixed w), we want to intersect all
m + 1 curves. For a given, fixed w, we therefore need to find a curve that will pass
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through the m + 1 points P(ui, w). A natural (albeit not the only) candidate for such
a curve is our old acquaintance the Lagrange polynomial (Section 3.2). We write it as
Pa(u, w) =

∑m
i=o P(ui, w)Lm

i (u), and it is valid for any value of w. Similarly, we can
write the second surface as the Lagrange polynomial Pb(u, w) =

∑n
j=o P(u, wj)Ln

j (w).
The surface representing multiple contributions is similar to the bilinear part of

Equation (3.28). It is

Pab(u, w) =
m∑

i=o

n∑
j=o

P(ui, wj)Lm
i (u)Ln

j (w),

and the final expression of the Gordon surface is P(u, w) = Pa(u, w) + Pb(u, w) −
Pab(u, w). Note that the (m + 1) × (n + 1) points P(ui, wj) should be located on both
curves. For such a surface to make sense, the curves have to intersect.

A friend comes to you and asks if a particular polynomial p(x) of

degree 25 in F2[x] is irreducible. The friend explains that she

has tried dividing p(x) by every polynomial in F2[x] of degree

from 1 to 18 and has found that p(x) is not divisible by any

of them. She is getting tired of doing all these divisions and

wonders if there’s an easier way to check whether or not p(x) is

irreducible. You surprise your friend with the statement that

she need not do any more work: p(x) is indeed irreducible!

—John Palmieri, Introduction to Modern Algebra for Teachers





4
Hermite Interpolation

The curve and surface methods of the preceding chapters are based on points. Using
polynomials, it is easy to construct a parametric curve segment (or surface patch) that
passes through a given one-dimensional array or two-dimensional grid of points.

The downside of these methods is that they are not interactive. If the resulting
curve or surface isn’t the one the designer wants, the only way to modify it is to add
points. Moving the points is not an option because the curve has to pass through the
original data points. Adding points provides some control over the shape of the curve,
but slows down the computations.

A practical, useful curve/surface design algorithm should be interactive. It should
provide user-controlled parameters that modify the shape of the curve in a predictable,
intuitive way. The Hermite interpolation approach, the topic of this chapter, is such a
method.

Hermite interpolation is based on two points P1 and P2 and two tangent vectors
Pt

1 and Pt
2. It computes a curve segment that starts at P1, going in direction Pt

1 and
ends at P2 moving in direction Pt

2. Before delving into the details, the reader may find
it useful to peruse Figure 4.1 where several such curves are shown, with their endpoints
and extreme tangent vectors.

It is obvious that a single Hermite segment can take on many different shapes. It
can even have a cusp and can develop a loop. A complete curve, however, normally
requires several segments connected with C0, C1, or C2 continuities, as illustrated in
Section 1.4.2. Spline methods for constructing such a curve are discussed in Chapter 5.

The method is called Hermite interpolation after Charles Hermite who developed
it and derived its blending functions in the 1870s, as part of his work on approximation
and interpolation. He was not concerned with the computation of curves and surfaces
(and was actually known to hate geometry), and developed his method as a way to
interpolate any mathematical quantity from an initial value to a final value given the
rates of change of the quantity at the start and at the end.
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P1

P2

Pt
1

Pt
2

Figure 4.1: Various Hermite Curve Segments.

[Hermite] had a kind of positive hatred of geometry and once curiously reproached
me with having made a geometrical memoir.

—Jacques Hadamard.

4.1 Interactive Control

Hermite interpolation has an important advantage; it is interactive. If a Hermite curve
segment has a wrong shape, the user can edit it by modifying the tangent vectors.

� Exercise 4.1: In the case of a four-point PC, we can change the shape of the curve by
moving the points. Why then is the four-point method considered noninteractive?

Figure 4.1 illustrates how the shape of the curve depends on the directions of the
tangent vectors. Figure 4.2 shows how the curve can be edited by modifying the mag-
nitudes of those vectors. The figure shows three curves that start in a 45◦ direction and
end up going vertically down. The effect illustrated here is simple. As the magnitude
of the start tangent increases, the curve continues longer in the original direction. This
behavior implies that short tangents produce a curve that changes its direction early
and starts moving straight toward the final point. Such a curve is close to a straight
segment, so we conclude that a long tangent results in a loose curve and a short tangent
produces a tight curve (see also exercise 4.7).

The reason the magnitudes, and not just the directions, of the tangents affect the
shape of the curve is that the three-dimensional Hermite segment is a PC and calculating
a PC involves four coefficients, each a triplet, for a total of 12 unknown numbers. The two
endpoints supply six known quantities and the two tangents should supply the remaining
six. However, if we consider only the direction of a vector and not its magnitude, then
the vectors (1, 0.5, 0.3), (2, 1, 0.6), and (4, 2, 1.2) are all equal. In such a case, only
two of the three vector components are independent and two vectors supply only four
independent quantities.
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Figure 4.2: Effects of Varying the Tangent’s Magnitude.

� Exercise 4.2: Discuss this claim in detail.

A sketch tells as much in a glance as a dozen pages of print.
—Ivan Turgenev, Fathers and Sons (1862).

4.2 The Hermite Curve Segment

The Hermite curve segment is easy to derive. It is a PC curve (a degree-3 polynomial
in t) with four coefficients that depend on the two points and two tangents. The basic
equation of a PC curve is Equation (3.1) duplicated here

P(t) = at3 + bt2 + ct + d = (t3, t2, t, 1)(a,b, c,d)T = T(t)A. (3.1)

This is the algebraic representation of the curve, in which the four coefficients are still
unknown. Once these coefficients are expressed in terms of the known quantities, which
are geometric, the curve will be expressed geometrically.

The tangent vector to a curve P(t) is the derivative dP(t)/dt, which we denote by
Pt(t). The tangent vector of a PC curve is therefore

Pt(t) = 3at2 + 2bt + c. (4.1)

We denote the two given points by P1 and P2 and the two given tangents by Pt
1 and

Pt
2. The four quantities are now used to calculate the geometric representation of the

PC by writing equations that relate the four unknown coefficients a, b, c, and d to
the four known ones, P1, P2, Pt

1, and Pt
2. The equations are P(0) = P1, P(1) = P2,

Pt(0) = Pt
1, and Pt(1) = Pt

2 [compare with Equations (3.2)]. Their explicit forms are

a·03 + b·02 + c·0 + d = P1,

a·13 + b·12 + c·1 + d = P2,

3a·02 + 2b·0 + c = Pt
1,

3a·12 + 2b·1 + c = Pt
2.

(4.2)

They are easy to solve and the solutions are

a = 2P1 − 2P2 + Pt
1 + Pt

2, b = −3P1 + 3P2 − 2Pt
1 −Pt

2, c = Pt
1, d = P1. (4.3)
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Substituting these solutions into Equation (3.1) gives

P(t) = (2P1 − 2P2 + Pt
1 + Pt

2)t
3 + (−3P1 + 3P2 − 2Pt

1 − Pt
2)t

2 + Pt
1t + P1, (4.4)

which, after rearranging, becomes

P(t) = (2t3 − 3t2 + 1)P1 + (−2t3 + 3t2)P2 + (t3 − 2t2 + t)Pt
1 + (t3 − t2)Pt

2

= F1(t)P1 + F2(t)P2 + F3(t)Pt
1 + F4(t)Pt

2

= (F1(t), F2(t), F3(t), F4(t))(P1,P2,Pt
1,P

t
2)

T

= F(t)B, (4.5)

where

F1(t) = (2t3 − 3t2 + 1), F2(t) = (−2t3 + 3t2) = 1 − F1(t),
F3(t) = (t3 − 2t2 + t), F4(t) = (t3 − t2), (4.6)

B is the column (P1,P2,Pt
1,P

t
2)

T , and F(t) is the row (F1(t), F2(t), F3(t), F4(t)). Equa-
tions (4.4) and (4.5) are the geometric representation of the Hermite PC segment.

Functions Fi(t) are the Hermite blending functions. They create any point on the
curve as a blend of the four given quantities. They are shown in Figure 4.3. Note
that F1(t) + F2(t) ≡ 1. These two functions blend points, not tangent vectors, and
should therefore be barycentric. We can also write F1(t) = (t3, t2, t, 1)(2,−3, 0, 1)T and
similarly for F2(t), F3(t), and F4(t). In matrix notation this becomes

F(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠ = T(t)H.

The curve can now be written

P(t) = F(t)B = T(t)HB = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

Pt
1

Pt
2

⎞
⎟⎠ . (4.7)

Equation (3.1) tells us that P(t) = T(t)A, which implies A = HB. Matrix H is called
the Hermite basis matrix.

The following is Mathematica code to display a single Hermite curve segment.

Clear[T,H,B]; (* Hermite Interpolation *)
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
B={{0,0},{2,1},{1,1},{1,0}};
ParametricPlot[T.H.B,{t,0,1},PlotRange->All]
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� Exercise 4.3: Express the midpoint P(0.5) of a Hermite segment in terms of the two
endpoints and two tangent vectors. Draw a diagram to illustrate the geometric inter-
pretation of the result.

4.2.1 Hermite Blending Functions

The four Hermite blending functions of Equation (4.6) are illustrated graphically in
Figure 4.3. An analysis of these functions is essential for a thorough understanding of
the Hermite interpolation method.

t

F1

F3

F4

F2

f(t)
1

1

Figure 4.3: Hermite Weight Functions

Function F1(t) is the weight assigned to the start point P1. It goes down from
its maximum F1(0) = 1 to F1(1) = 0. This shows why for small values of t the curve
is close to P1 and why P1 has little or no influence on the curve for large values of t.
The opposite is true for F2(t), the weight of the endpoint P2. Function F3(t) is a bit
trickier. It starts at zero, has a maximum at t = 1/3, then drops slowly back to zero.
This behavior is interpreted as follows:

1. For small values of t, function F3(t) has almost no effect. The curve stays close
to P1 regardless of the extreme tangents or anything else.

2. For t values around 1/3, weight F3(t) exerts some influence on the curve. For
these t values, weight F4(t) is small, and the curve is (approximately) the sum of (1)
point F1(t)P1 (large contribution), (2) point F2(t)P2 (small contribution), and (3) vector
F3(t)Pt

1. The sum of a point P = (x, y) and a vector v = (vx, vy) is a point located at
(x + vx, y + vy), which is how weight F3(t) “pulls” the curve in the direction of tangent
vector Pt

1.
3. For large t values, function F3(t) again has almost no effect. The curve moves

closer to P2 because weight F2(t) becomes dominant.

Function F4(t) is interpreted in a similar way. It has almost no effect for small and
for large values of t. Its maximum (actually, minimum, because it is negative) occurs at
t = 2/3, so it affects the curve only in this region. For t values close to 2/3, the curve is
the sum of point F2(t)P2 (large contribution), point F1(t)P1 (small contribution), and
vector −|F4(t)|Pt

2. Because F4(t) is negative, this sum is equivalent to (x − vx, y − vy),
which is why the curve approaches endpoint P2 while moving in direction Pt

2.
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Another important feature of the Hermite weight functions is that F1(t) and F2(t)
are barycentric. They have to be, since they blend two points, and a detailed look at
the four equations (4.2) explains why they are. The first of these equations is simply
d = P1, which reduces the second one to a+b+c+d = P2 or a+b+c = P2−P1. The
third equation solves c, and the fourth equation, combined with the second equation,
is finally used to compute a and b. All this implies that a and b have the form a =
α(P2 − P1) + · · ·, b = β(P2 − P1) + · · ·. The final PC therefore has the form

P(t) = at3 + bt2 + ct + d = (αP2 − αP1 + · · ·)t3 + (βP2 − βP1 + · · ·)t2 + (· · ·)t + P1,

where the ellipsis represent parts that depend only on the tangent vectors, not on the
endpoints. When this is rearranged, the result is

P(t) = (−αt3 − βt2 + 1)P1 + (αt3 + βt2)P2 + (· · ·)Pt
1 + (· · ·)Pt

2,

which is why the coefficients of P1 and P2 add up to unity.

4.2.2 Hermite Derivatives

The concept of blending can be applied to the calculation of the derivatives of a curve, not
just to the curve itself. One way to calculate Pt(t) is to differentiate T(t) = (t3, t2, t, 1).
The result is

Pt(t) = Tt(t)HB = (3t2, 2t, 1, 0)HB.

A more general method is to use the relation P(t) = F(t)B, which implies

Pt(t) = Ft(t)B =
(
F t

1(t), F t
2(t), F t

3(t), F t
4(t)

)
B.

The individual derivatives F t
i (t) can be obtained from Equation (4.6). The results can

be expressed as

Pt(t) = (t3, t2, t, 1)

⎡
⎢⎣

0 0 0 0
6 −6 3 3

−6 6 −4 −2
0 0 1 0

⎤
⎥⎦
⎡
⎢⎣

P1

P2

Pt
1

Pt
2

⎤
⎥⎦ = T(t)HtB. (4.8)

Similarly, the second derivatives of the Hermite segment can be expressed as

Ptt(t) = (t3, t2, t, 1)

⎡
⎢⎣

0 0 0 0
0 0 0 0

12 −12 6 6
−6 6 −4 −2

⎤
⎥⎦
⎡
⎢⎣

P1

P2

Pt
1

Pt
2

⎤
⎥⎦ = T(t)HttB. (4.9)

These expressions make it easy to calculate the first and second derivatives at any point
on a Hermite segment. Similar expressions can be derived for any other curves that are
based on the blending of geometrical quantities.
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� Exercise 4.4: What is Httt?

Example: The two two-dimensional points P1 = (0, 0) and P2 = (1, 0) and the
two tangents Pt

1 = (1, 1) and Pt
2 = (0,−1) are given. The segment should therefore

start at the origin, going in a 45◦ direction, and end at point (1, 0), going straight down.
The calculation of P(t) is straightforward:

P(t) = T(t)A = T(t)HB

= (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(0, 0)
(1, 0)
(1, 1)

(0,−1)

⎤
⎥⎦

= (t3, t2, t, 1)

⎡
⎢⎢⎣

2(0, 0) − 2(1, 0) + 1(1, 1) + 1(0,−1)
−3(0, 0) + 3(1, 0) − 2(1, 1) − 1(0,−1)
0(0, 0) + 0(1, 0) + 1(1, 1) + 0(0,−1)
1(0, 0) + 0(1, 0) + 0(1, 1) + 0(0,−1)

⎤
⎥⎥⎦

= (t3, t2, t, 1)

⎡
⎢⎢⎣

(−1, 0)
(1,−1)
(1, 1)
(0, 0)

⎤
⎥⎥⎦

= (−1, 0)t3 + (1,−1)t2 + (1, 1)t. (4.10)

� Exercise 4.5: Use Equation (4.10) to show that the segment really passes through
points (0, 0) and (1, 0). Calculate the tangent vectors and use them to show that the
segment really starts and ends in the right directions.

� Exercise 4.6: Repeat the example above with Pt
1 = (2, 2). The new curve segment

should go through the same points, in the same directions. However, it should continue
longer in the original 45◦ direction, since the size of the new tangent is

√
22 + 22 = 2

√
2,

twice as long as the previous one, which is
√

12 + 12 =
√

2.

� Exercise 4.7: Calculate the Hermite curve for two given points P1 and P2 assuming
that the tangent vectors at the two points are zero (indeterminate). What kind of a
curve is this?

� Exercise 4.8: Use the Hermite method to calculate PC segments for the cases where
the known quantities are as follows:

1. The three tangent vectors at the start, middle, and end of the segment.
2. The two interior points P(1/3) and P(2/3), and the two extreme tangent vectors

Pt(0) and Pt(1).
3. The two extreme points P(0) and P(1), and the two interior tangent vectors

Pt(1/3) and Pt(2/3) (this is similar to case 2, so it’s easy).

Example: Given the two three-dimensional points P1 = (0, 0, 0) and P2 = (1, 1, 1)
and the two tangent vectors Pt

1 = (1, 0, 0) and Pt
2 = (0, 1, 0), the curve segment is the
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simple cubic polynomial shown in Figure 4.4

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(0, 0, 0)
(1, 1, 1)
(1, 0, 0)
(0, 1, 0)

⎤
⎥⎦

= (−t3 + t2 + t,−t3 + 2t2,−2t3 + 3t2). (4.11)
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<<:Graphics:ParametricPlot3D.m; (* Hermite 3D example *)
Clear[T,H,B];
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
B={{0,0,0},{1,1,1},{1,0,0},{0,1,0}};
ParametricPlot3D[T.H.B,{t,0,1}, Compiled->False,
ViewPoint->{-0.846, -1.464, 3.997}, DefaultFont->{"cmr10", 10}];
(* ViewPoint->{3.119, -0.019, 0.054} alt view *)

Figure 4.4: A Hermite Curve Segment in Space.

I’m retired—goodbye tension, hello pension!
—Anonymous.

4.2.3 Hermite Segments With Tension

This section shows how to create a Hermite curve segment under tension by employing
a nonuniform Hermite segment. Such a segment is obtained when the parameter t varies
in the interval [0,∆], where ∆ can be any real positive number. The derivation of this
case is similar to the uniform case. Equation (4.2) becomes

a·03 + b·02 + c·0 + d = P1,

a∆3 + b∆2 + c∆ + d = P2,

3a·02 + 2b·0 + c = Pt
1,

3a∆2 + 2b∆ + c = Pt
2,
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with solutions

a =
2(P1 − P2)

∆3
+

Pt
1 + Pt

2

∆2
,

b =
3(P2 − P1)

∆2
− 2Pt

1

∆
− Pt

2

∆
,

c = Pt
1,

d = P1.

The curve segment can now be expressed, similar to Equation (4.7), in the form

Pnu(t) = (t3, t2, t, 1)

⎛
⎜⎜⎝

2
∆3

−2
∆3

1
∆2

1
∆2

−3
∆2

3
∆2

−2
∆

−1
∆

0 0 1 0
1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎝

P1

P2

Pt
1

Pt
2

⎞
⎟⎠ = T(t)HnuB. (4.12)

It is easy to verify that matrix Hnu reduces to H for ∆ = 1. Figure 4.5 shows a
typical nonuniform Hermite segment drawn three times for ∆ = 0.5, 1, and 2. Careful
examination of the three curves shows that increasing the value of ∆ causes the curve
segment to continue longer in its initial and final directions; it has the same effect as
increasing the magnitudes of the tangent vectors of the uniform Hermite segment. Once
this is grasped, the reader should not be surprised to learn that the nonuniform curve
of Equation (4.12) can also be expressed as

Pnu(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

∆Pt
1

∆Pt
2

⎞
⎟⎠ . (4.13)

This shows that the nonuniform Hermite curve segment is a special case of the uni-
form curve. Any nonuniform Hermite curve can also be obtained as a uniform Hermite
curve by adjusting the magnitudes of the tangent vectors. However, varying the mag-
nitudes of both tangent vectors has an important geometric interpretation, it changes
the tension of the curve segment. Imagine that the two endpoints are nails driven into
the page and the curve segment is a rubber string. When the string is pulled at both
sides, its shape approaches a straight line. Figure 4.5 shows how decreasing ∆ results
in a curve with higher tension, so instead of working with nonuniform Hermite seg-
ments, we can consider ∆ a tension parameter. Practical curve methods that create
a spline curve out of individual Hermite segments can add a tension parameter to the
spline, thereby making the method more interactive. An example is the cardinal splines
method (Section 5.4).

4.2.4 PC Conic Approximations

Hermite interpolation can be applied to compute (approximate) conic sections (see Ap-
pendix A for more on conics). Given three points P0, P1, and P2 and a scalar α, we
construct the 4-tuple

(P0,P2, 4α(P1 − P0), 4α(P2 − P1)) , where 0 ≤ α ≤ 1, (4.14)
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Clear[T,H,B]; (* Nonuniform Hermite segments *)
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
B[delta_]:={{0,0},{2,0},delta{2,1},delta{2,-1}};
g1=ParametricPlot[T.H.B[0.5],{t,0,1},Compiled->False,
DisplayFunction->Identity];
g2=ParametricPlot[T.H.B[1],{t,0,1},Compiled->False,
DisplayFunction->Identity];
g3=ParametricPlot[T.H.B[1.5],{t,0,1},Compiled->False,
DisplayFunction->Identity];
Show[g1,g2,g3, DisplayFunction->$DisplayFunction, DefaultFont->{"cmr10", 10}]

Figure 4.5: Three Nonuniform Hermite Segments.

to become our two points and two extreme tangent vectors and compute a segment that
approximates a conic section. We obtain an ellipse when 0 ≤ α < 0.5, a parabola when
α = 0.5, and a hyperbola when 0.5 < α ≤ 1 (see below for a circle).

The tangent vectors at the two ends are Pt(0) = 4α(P1−P0) and Pt(1) = 4α(P2−
P1) (note their directions). The tangent vector halfway is Pt(0.5) = (1.5−α)(P2−P0).
It is parallel to the vector P2 − P0.

The case of the parabola is especially useful and is explicitly shown here. Sub-
stituting α = 0.5 in Equation (4.14) and applying Equation (4.7) yields the Hermite
segment

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

P0

P2

2(P1 − P0)
2(P2 − P1)

⎤
⎥⎦

= (1 − t)2P0 + 2t(1 − t)P1 + t2P2.

This is the parabola produced in Exercises 4.9 and 6.2.

� Exercise 4.9: We know that any three points P0, P1, and P2 define a unique parabola
(i.e., a triangle defines a parabola). Use Hermite interpolation to calculate the parabola
from P0 to P2 whose start and end tangents go in the directions from P0 to P1 and
from P1 to P2, respectively.
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Hermite interpolation provides a simple way to construct approximate circles and
circular arcs. Figure 4.6a shows how this method is employed to construct a circular arc
of unit radius about the origin. We assume that an arc spanning an angle 2θ is needed
and we place its two endpoints P1 and P2 at locations (cos θ,− sin θ) and (cos θ, sin θ),
respectively. This arc is symmetric about the x axis, but we later show how to rotate it
to have an arbitrary arc. Since a circle is always perpendicular to its radius, we select as
our start and end tangents two vectors that are perpendicular to P1 and P2. They are
Pt

1 = a(sin θ, cos θ) and Pt
2 = a(− sin θ, cos θ), where a is a parameter to be determined.

The Hermite curve segment defined by these points and vectors is, as usual,

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(cos θ,− sin θ)
(cos θ, sin θ)
a(sin θ, cos θ)

a(− sin θ, cos θ)

⎤
⎥⎦

= (2t3 − 3t2 + 1)(cos θ,− sin θ) + (−2t3 + 3t2)(cos θ, sin θ)

+ (t3 − 2t2 + t)a(sin θ, cos θ) + (t3 − t2)a(− sin θ, cos θ).

(4.15)

We need an equation in order to determine a and we obtain it by requiring that the
curve segment passes through the circular arc at its center, i.e., P(0.5) = (1, 0). This
produces the equation

(1, 0) = P(0.5) =
(

2
8
− 3

4
+ 1

)
(cos θ,− sin θ) +

(
−2

8
+

3
4

)
(cos θ, sin θ)

+
(

1
8
− 2

4
+

1
2

)
a(sin θ, cos θ) +

(
1
8
− 1

4

)
a(− sin θ, cos θ)

=
1
8
(8 cos θ + 2a sin θ, 0),

whose solution is

a =
4(1 − cos θ)

sin θ
.

The curve can now be written in the form

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎢⎢⎣

(cos θ,− sin θ)
(cos θ, sin θ)(

4(1 − cos θ), 4(1−cos θ)
tan θ

)
(
−4(1 − cos θ), 4(1−cos θ)

tan θ

)
⎤
⎥⎥⎥⎦ .

This curve provides an excellent approximation to a circular arc, even for angles θ as
large as 90◦.

� Exercise 4.10: Write Equation (4.15) for θ = 90◦; calculate P(0.25) and the deviation
of the curve from a true circle at this point.

In general, an arc with a unit radius is not symmetric about the x axis but may
look as in Figure 4.6b, where P1 and P2 are any points at a distance of one unit from
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Figure 4.6: Hermite Segment and a Circular Arc.

the origin. All that’s necessary to calculate the arc from Equation (4.15) is the value
of θ (where 2θ is the angle between P1 and P2) and this can be calculated numerically
from the two points using the relations

θ = (θ1 − θ2)/2, cos θ1 = P1 • (1, 0), cos θ2 = P2 • (1, 0),
cos(2θ) = cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2,

cos θ = ±
√

[1 + cos(2θ)]/2, sin θ =
√

1 − cos2 θ.

4.3 Degree-5 Hermite Interpolation

It is possible to extend the basic idea of Hermite interpolation to polynomials of higher
degree. Naturally, more data is needed in order to calculate such a polynomial, and
this data is provided by the user, normally in the form of higher-order derivatives of the
curve. If the user specifies the two endpoints, the two extreme tangent vectors, and the
two extreme second derivatives, the software can use these six data items to calculate the
six coefficients of a fifth-degree polynomial that interpolates the two points. In general,
if the two endpoints and the first k pairs of derivatives at the extreme points are known
(a total of 2k + 2 items), they can be used to calculate an interpolating polynomial
of degree 2k + 1. These higher-degree polynomials are not as useful as the cubic, but
the fifth-degree polynomial is shown here, as a demonstration of the power of Hermite
interpolation (see also Section 5.3).

Given two endpoints P1 and P2, the values of two tangent vectors Pt
1 and Pt

2, and
of two second derivatives Ptt

1 and Ptt
2 , we can calculate the polynomial

P(t) = at5 + bt4 + ct3 + dt2 + et + f (4.16)
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by writing the six equations

P(0) = at5 + bt4 + ct3 + dt2 + et + f |0 = f = P1,

P(1) = at5 + bt4 + ct3 + dt2 + et + f |1 = a + b + c + d + e + f = P2,

Pt(0) = 5at4 + 4bt3 + 3ct2 + 2dt + e|0 = e = Pt
1,

Pt(1) = 5at4 + 4bt3 + 3ct2 + 2dt + e|1 = 5a + 4b + 3c + 2d + e = Pt
2,

Ptt(0) = 20at3 + 12bt2 + 6ct + 2d|0 = 2d = Ptt
1 ,

Ptt(1) = 20at3 + 12bt2 + 6ct + 2d|1 = 20a + 12b + 6c + 2d = Ptt
2 .

Solving for the six unknown coefficients yields the degree-5 Hermite interpolating poly-
nomial

P(t) = F1(t)P1 + F2(t)P2 + F3(t)Pt
1 + F4(t)Pt

2 + F5(t)Ptt
1 + F6(t)Ptt

2

= (−6t5 + 15t4 − 10t3 + 1)P1 + (6t5 − 15t4 + 10t3)P2

+ (−3t5 + 8t4 − 6t3 + t)Pt
1 + (−3t5 + 7t4 − 4t3)Pt

2

+
(−(1/2)t5 + (3/2)t4 − (3/2)t3 + (1/2)t2

)
Ptt

1 +
(
(1/2)t5 − t4 + (1/2)t3

)
Ptt

2

= (t5, t4, t3, t2, t, 1)

⎡
⎢⎢⎢⎢⎢⎣

−6 6 −3 −3 −1/2 1/2
15 −15 8 7 3/2 −1

−10 10 −6 −4 −3/2 1/2
0 0 0 0 1/2 0
0 0 1 0 0 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

P1

P2

Pt
1

Pt
2

Ptt
1

Ptt
2

⎤
⎥⎥⎥⎥⎥⎥⎦ . (4.17)

4.4 Controlling the Hermite Segment

The Hermite method is interactive. In general, the points cannot be moved, but the
tangent vectors can be varied. Even if their directions cannot be changed, their magni-
tudes normally are not fixed by the user and can be modified to edit the shape of the
curve segment.

The simple experiment of this section illustrates the amount of editing and con-
trolling that can be achieved just by varying the magnitudes of the tangents. We start
with the Hermite segment defined by the two endpoints P1 = (0, 0) and P2 = (2, 1)
and by the two tangent vectors Pt(0) = (1, 1) and Pt(1) = (1, 0). The curve starts in
the 45◦ direction and ends in a horizontal direction. The curve is easy to calculate. Its
expression is

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(0, 0)
(2, 1)
(1, 1)
(1, 0)

⎤
⎥⎦ = −(2, 1)t3+(3, 1)t2+(1, 1)t. (4.18)



124 4. Hermite Interpolation

Suppose that the user wants to raise the curve a bit, but also keep the same start
and end directions and endpoints. The only way to edit the curve is to change the
magnitudes of the tangents.

To keep the same directions, the new tangent vectors should have the form (a, a)
and (b, 0), where a and b are two new parameters that have to be computed. To raise
the curve, we go through the following steps:

1. Calculate the midpoint of the curve. This is P(0.5) = (1, 5/8).
2. Decide by how much to raise it. Let’s say we decide to raise the midpoint to

(1, 1).
3. Construct a new curve Q(t), based on the tangents (a, a) and (b, 0).
4. Require that the new curve pass through (1, 1) as its midpoint and determine a

and b from this requirement.
The general form of the new curve is

Q(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(0, 0)
(2, 1)
(a, a)
(b, 0)

⎤
⎥⎦

= (a + b − 4, a − 2)t3 + (−2a − b + 6, 3 − 2a)t2 + (a, a)t. (4.19)

The requirement Q(0.5) = (1, 1) can now be written

(a + b − 4, a − 2)/8 + (−2a − b + 6, 3 − 2a)/4 + (a, a)/2 = (1, 1),

which yields the two equations a+b−4+2(−2a−b+6)+4a = 8 and a−2+2(3−2a)+4a =
8. The solutions are a = b = 4, so the new curve has the form

Q(t) = (4, 2)t3 − (6, 5)t2 + (4, 4)t. (4.20)

A simple check verifies that this curve really starts at (0, 0), ends at (2, 1), has the
extreme tangents (4, 4) and (4, 0), and passes midway through (1, 1).

Raising the midpoint from (1, 5/8) to (1, 1) has completely changed the curve (Equa-
tions (4.18) and (4.20) are different). The new curve starts going in the same 45◦ direc-
tion, then starts going up, reaches point (1, 1), starts going down, and still has “time”
to arrive at point (2, 1) moving horizontally. An interesting question is: How much can
we raise the midpoint? If we raise it from (1, 5/8) to, say, (1, 100), would the curve be
able to change directions, climb up, pass through the new midpoint, dive down, and still
approach (2, 1) moving horizontally?

To check this, let’s assume that we raise the midpoint from (1, 5/8) to (1, 5/8 + α),
where α is a real number. The curve is constrained by Q(0.5) = (1, 5/8 + α), which
yields the equation

(a + b − 4, a − 2)/8 + (−2a − b + 6, 3 − 2a)/4 + (a, a)/2 = (1, 5/8 + α).

The solutions are a = b = 1 + 8α. This means that α can vary without limit. When
α is positive, the curve is pulled up. Negative values of α push the curve down. The
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value α = −1/8 is special. It implies a = b = 0 and results in the curve Q(t) =
(6t2 − 4t3, 3t2 − 2t3). The parameter substitution u = 3t2 − 2t3 yields Q(u) = (2u, u).
This curve is the straight line from (0, 0) to (2, 1). Its midpoint is (1, 1/2).

� Exercise 4.11: Values α < −1/8 result in negative a and b. Can they still be used in
Equation (4.19)?

� Exercise 4.12: How can we coerce the curve of Equation (4.19) to have point (1, 0) as
its midpoint?

Note: Raising the curve is done by increasing the size of the tangent vectors. This
forces the curve to continue longer in the initial and final directions. This is also the
reason why too much raising causes undesirable effects. Figure 4.7 shows the original
curve (α = 0) and the effects of increasing α. For α = 0.4, the curve is raised and still has
a reasonable shape. However, for larger values of α, the curve gets tight, develops a cusp
(a kink), then starts looping on itself. It is easy to see that when α = 5/8, the tangent
vector becomes indefinite at the midpoint (t = 0.5). To show this, we differentiate the
curve of Equation (4.19) to obtain the tangent

Qt(t) = 3(a + b − 4, a − 2)t2 + 2(−2a − b + 6, 3 − 2a)t + (a, a).

From a = b = 1 + 8α, we get

Qt(t) = (48α − 6, 24α − 3)t2 + (6 − 48α, 2 − 32α)t + (1 + 8α, 1 + 8α).

For α = 5/8, this reduces to Qt(t) = (24, 12)t2 − (24, 18)t + (6, 6), so Qt(0.5) = (0, 0).

21
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Figure 4.7: Effects of Changing α.
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� Exercise 4.13: Given the two endpoints P1 = (0, 0) and P2 = (1, 0) and the two
tangent vectors Pt

1 = α(cos θ, sin θ) and Pt
1 = α(cos θ,− sin θ) (Figure 4.8), calculate

the value of α for which the Hermite segment from P1 to P2 has a cusp.

1

x

0

y

θθ

Figure 4.8: Tangents for Exercise 4.13.

The following problem may sometimes occur in practice. Given two endpoints P1

and P2, two unit tangent vectors T1 and T2, and a third point P3, find scale factors α
and β such that the Hermite segment P(t) defined by points P1 and P2 and tangents
αT1 and βT2, respectively, will pass through P3. Also find the value t0 for which
P(t0) = P3.

We start with Equation (4.5), which in our case becomes

P3 = F1(t0)P1 + F2(t0)P2 + F3(t0)αT1 + F4(t0)βT2,

where the Fi(t) are given by Equation (4.6). Since F1(t) + F2(t) ≡ 1 we can write

P3 − P1 = F2(t0)(P2 − P1) + αF3(t0)T1 + βF4(t0)T2.

This can now be written as the three scalar equations

x3 − x1 = F2(t0)(x2 − x1) + αF3(t0)T1x + βF4(t0)T2x,

y3 − y1 = F2(t0)(y2 − y1) + αF3(t0)T1y + βF4(t0)T2y,

z3 − z1 = F2(t0)(z2 − z1) + αF3(t0)T1z + βF4(t0)T2z.

(4.21)

This is a system of three equations in the three unknowns α, β, and t0. In principle,
it should have a unique solution, but solving it is awkward since t0 is included in the
Fi(t0) functions, which are degree-3 polynomials in t0. The first step is to isolate the
two products αF3(t0) and βF4(t0) in the first two equations. This yields(

αF3(t0)
βF4(t0)

)
=
(

T1x T2x

T1y T2y

)−1 [(
x3 − x1

y3 − y1

)
−
(

x2 − x1

y2 − y1

)
F2(t0)

]
.

This result is used in step two to eliminate αF3(t0) and βF4(t0) from the third equation:

z3 − z1 = F2(t0)(z2 − z1) + (T1z, T2z)
(

αF3(t0)

βF4(t0)

)
= F2(t0)(z2 − z1)

+ (T1z, T2z)
(

T1x T2x

T1y T2y

)−1 [(
x3 − x1

y3 − y1

)
−
(

x2 − x1

y2 − y1

)
F2(t0)

]
.
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We now have an equation with the single unknown t0. Step three is to simplify the
result above by using the value F2(t0) = −2t30 + 3t20:∣∣∣∣∣∣

x2 − x1 y2 − y1 z2 − z1

T1x T1y T1z

T2x T2y T2z

∣∣∣∣∣∣ (−2t30 + 3t20) =

∣∣∣∣∣∣
x3 − x1 y3 − y1 z3 − z1

T1x T1y T1z

T2x T2y T2z

∣∣∣∣∣∣ . (4.22)

Step four is to solve Equation (4.22) for t0. Once t0 is known, α and β can be computed
from the other equations. Equation (4.22), however, is cubic in t0, so it may have to
be solved numerically and it may have between zero and three real solutions t0. Any
acceptable solution t0 must be a real number in the range [0, 1] and must result in
positive α and β.

This, of course, is a slow, tedious approach and should only be used as a last resort,
when nothing else works.

4.5 Truncating and Segmenting

Surfaces and solid objects are constructed of curves. When surfaces are joined, clipped,
or intersected, there is sometimes a need to truncate curves. In general, the problem of
truncating a curve starts with a parametric curve P(t) and the two values ti and tj . A
new curve Q(T ) needs be determined, that is identical to the segment P(ti) → P(tj)
(Figure 4.9a) when T varies from 0 to 1. The discussion in this section is limited to
Hermite segments. The endpoints of the new curve are Q(0) = P(ti) and Q(1) = P(tj).
To understand how the two extreme tangent vectors of Q(T ) are calculated, we first
need to discuss reparametrization of parametric curves.

Pi=Q1 Q(T)

Q1(T)

Q2(T)

Q3(T)

Q4(T)P(t)

P(t)

Pj=Q2

t=0

t=1

T=0

T=1

t1

t2

t3
t4=1

t0=0

(a) (b)

Figure 4.9: Truncating and Segmenting.

Reparametrization is the case where a new parameter T (t) is substituted for the
original parameter t. Notice that T (t) is a function of t. One example of reparametriza-
tion is reversing the direction of a curve. It is easy to see that when t varies from 0 to
1, the simple function T = 1 − t varies from 1 to 0. The two curves P(t) and P(1 − t)
have the same shape and location but move in opposite directions. Another example of
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reparametrization is a curve P(t) with a parameter 0 ≤ t ≤ 1 being transformed to a
curve Q(T ) with a parameter a ≤ T ≤ b (Section 5.1.6 has an example). The simplest
relation between T and t is linear, i.e., T = at+ b. We can make two observations about
this relation as follows:

1. At two different points i and j along the curve, the parameters are related by
Ti = ati + b and Tj = atj + b, respectively. Subtracting yields Tj − Ti = a(tj − ti), so
a = (Tj − Ti)/(tj − ti).

2. T = at + b gives dT = a dt.
These two observations can be combined to produce the expression

dt

dT
=

1
a

=
tj − ti
Tj − Ti

. (4.23)

Equation (4.23) is used to calculate the extreme tangent vectors of our new curve Q(T ).
Since it goes from point P(ti) (where T = 0) to point P(tj) (where T = 1), we have
Tj − Ti = 1. The tangent vectors of Q(T ) are therefore

QT (T ) =
dQ(T )

dT
=

dP(t)
dt

dt

dT
= Pt(t) · (tj − ti).

The two extreme tangents are QT (0) = (tj − ti)Pt(ti) and QT (1) = (tj − ti)Pt(tj). The
new curve can now be calculated by

Q(T ) = (T 3, T 2, T, 1)H

⎡
⎢⎣

P(ti)
P(tj)

(tj − ti)Pt(ti)
(tj − ti)Pt(tj)

⎤
⎥⎦ , (4.24)

where H is the Hermite matrix, Equation (4.7).

� Exercise 4.14: Compute the PC segment Q(T ) that results from truncating P(t) =
(−1, 0)t3 + (1,−1)t2 + (1, 1)t [Equation (4.10)] from ti = 0.25 to tj = 0.75.

Segmenting a curve is the problem of calculating several truncations. Assume that
we are given values 0 = t0 < t1 < t2 < · · · < tn = 1, and we want to break a given
curve P(t) into n segments such that segment i will go from point P(ti−1) to point P(ti)
(Figure 4.9b). Equation (4.24) gives segment i as

Qi(T ) = (T 3, T 2, T, 1)H

⎡
⎢⎣

P(ti−1)
P(ti)

(ti − ti−1)Pt(ti−1)
(ti − ti−1)Pt(ti)

⎤
⎥⎦ .

4.5.1 Special and Degenerate Hermite Segments

The following special cases result in Hermite curve segments that are either especially
simple (degenerate) or especially interesting

The case P1 = P2 and Pt
1 = Pt

2 = (0, 0). Equation (4.4) yields P(t) = P1; the
curve degenerates to a point.
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The case Pt
1 = Pt

2 = P2 −P1. The two tangents point in the same direction, from
P1 to P2. Equation (4.4) yields

P(t) =
(
2P1 − 2P2 + 2(P2 − P1)

)
t3 +

(− 3P1 + 3P2 − 3(P2 − P1)
)
t2

+ (P2 − P1)t + P1

= (P2 − P1)t + P1. (4.25)

The curve reduces to a straight segment.

The case P1 = P2. Equation (4.4) yields P(t) = (Pt
1 + Pt

2)t
3 + (−2Pt

1 − Pt
2)t

2 +
Pt

1t + P1. It is easy to see that this curve satisfies P(0) = P(1). It is closed (but is not
a circle).

The case Pt
1 = Pt

2 = (x2 − x1, y2 − y1, 0). Equation (4.4) yields

P(t) =
(
2P1 − 2P2 + 2(x2 − x1, y2 − y1, 0)

)
t3

+
(− 3P1 + 3P2 − 3(x2 − x1, y2 − y1, 0)

)
t2

+ (x2 − x1, y2 − y1, 0)t + (x1, y1, z1)

=
(
x1 + (x2 − x1)t, y1 + (y2 − y1)t, z1 + (z2 − z1)(3t2 − 2t3)

)
.

The x and y coordinates of this curve are linear functions of t, so its tangent vector has
the form (α, β, z(t)). Its x and y components are constants, so it always points in the
same plane. Thus, the curve is planar.

4.6 Hermite Straight Segments

Equation (4.25) shows that the Hermite segment can sometimes degenerate into a
straight segment. This section describes variations on Hermite straight segments. Specif-
ically, we look in detail at the case where the two extreme tangent vectors point in the
same direction, from P1 to P2, but have different magnitudes. We denote them by
Pt

1 = α(P2 − P1) and Pt
2 = β(P2 − P1), where α and β can be any real numbers.

Equation (4.25) is obtained in the special case α = β = 1.
The Hermite segment is expressed as P(t) = F(t)B, where the four Fi(t) functions

are given by Equation (4.6), and B is the geometry vector, which, in our case, has the
form

B =
(
P1,P2, α(P2 − P1), β(P2 − P1)

)T
.

This can be written (since F1(t) + F2(t) ≡ 1) in the form

P(t) = F1(t)P1 + F2(t)P2 + F3(t)α(P2 − P1) + F4(t)β(P2 − P1)
= P1 + (F2(t) + αF3(t) + βF4(t))(P2 − P1)
= P1 +

(
(1 − 2t3 + 3t2) + α(t3 − 2t2 + t) + β(t3 − t2)

)
(P2 − P1)

= P1 +
(
(α + β − 2)t3 − (2α + β − 3)t2 + αt

)
(P2 − P1). (4.26)
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This has the form P(t) = P1 +G(t)(P2−P1), which shows that all the points of P(t) lie
on the straight line that passes through P1 and has the tangent vector (P2 −P1). The
precise form of P(t) depends on the values and signs of α and β. The remainder of this
section analyzes several cases in detail. The remaining cases can be analyzed similarly.
See also Exercise 6.7.

Case 1 is when α = β = 1, which leads to Equation (4.25), a straight segment from
P1 to P2.

Case 2 is when α = β = 0. Equation (4.26) reduces in this case to

P(t) = P1 + (−2t3 + 3t2)(P2 − P1), (4.27)

or P(T ) = P1 + T (P2 − P1), where T = −2t3 + 3t2. This also is a straight segment
from P1 to P2 but moving at a variable speed. It accelerates up to point P(0.5), then
decelerates.

� Exercise 4.15: Explain why this is so.

Case 3 is when α = β = −1. Equation (4.26) becomes in this case

P(t) = P1 + (−4t3 + 6t2 − t)(P2 − P1), (4.28)

which is the curve shown in Figure 4.10a. It consists of three straight segments, but
we can also think of it as a straight line that goes from P1 backward to a certain point
P(i), then reverses direction, passes points P1 and P2, stops at point P(j), reverses
direction again, and ends at P2. We can calculate i and j by calculating the tangent
of Equation (4.28) and equating it to zero. The tangent vector is Pt(t) = (−12t2 +
12t − 1)(P2 − P1) and the roots of the quadratic equation −12t2 + 12t − 1 = 0 are
(approximately) 0.083 and 0.92.

t=0t=0t=0

t=.08 t=.92

t=1

t=1

t=1

t=1/3

t=1/2

t=.1 t=.8

(a) (b) (c)

Figure 4.10: Straight Hermite Segments.

Case 4 is when α > 0, β > 0. As an example, we try the values α = 2 and β = 4.
Equation (4.26) becomes in this case

P(t) = P1 + (4t3 − 5t2 + 2t)(P2 − P1). (4.29)

This curve also consists of three straight segments (Figure 4.10b), but it behaves dif-
ferently. It goes forward from P1 to a certain point P(i), then reverses direction, goes
to point P(j), reverses direction again, and continues to P2. We can calculate i and
j by calculating the tangent of Equation (4.29) and equating it to zero. The tangent
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vector is Pt(t) = (12t2 − 10t + 2)(P2 − P1) and the roots of the quadratic equation
12t2 − 10t + 2 = 0 are 1/3 and 1/2.

Case 5 is when α < 0, β < 0. As an example, we try the values α = −2 and β = −4.
Equation (4.26) becomes in this case

P(t) = P1 + (−8t3 + 11t2 − 2t)(P2 − P1). (4.30)

This curve again consists of three straight segments as in case 3, but points i and j are
different (Figure 4.10c). The tangent of Equation (4.30) is Pt(t) = (−24t2+22t−2)(P2−
P1), and the roots of the quadratic equation −24t2 + 22t − 2 = 0 are (approximately)
0.1 and 0.8.

Table 4.11 summarizes the nine possible cases of Equation (4.26).

Case 1 2 3 4 5 6 7 8 9
α 1 0 −1 > 0 < 0 > 0 < 0 ≤ 0 ≥ 0
β 1 0 −1 > 0 < 0 ≤ 0 ≥ 0 > 0 < 0

Table 4.11: Nine Cases of Straight Hermite Segments.

4.7 A Variant Hermite Segment

The Hermite method starts with four known quantities, two points and two tangents.
These are used to set and solve four equations, so four unknowns can be calculated.
A variation on this technique is the case where two points and just one tangent are
given. These constitute only three quantities, so only three equations can be set and
only three unknowns solved and determined. Thus, this variant curve can be only a
quadratic (degree-2) polynomial. As usual, we denote the points by P1 and P2 and
the tangent vector (which is assumed to be the start tangent, but can also be the end
tangent) by Pt

1. The quadratic polynomial is P(t) = at2 + bt + c, its tangent vector
is Pt(t) = 2at + b, and we can immediately set up the three equations P(0) = P1,
P(1) = P2, and Pt(0) = Pt

1 whose explicit forms are

a·02 + b·0 + c = P1,

a·12 + b·1 + c = P2,

2a·0 + b = Pt
1.

(4.31)

The solutions are c = P1, b = Pt
1, and a = P2 − b − c = P2 − P1 − Pt

1.
The quadratic polynomial is therefore

P(t) = (P2 − P1 − Pt
1)t

2 + Pt
1t + P1

= (−t2 + 1)P1 + t2P2 + (−t2 + t)Pt
1

= (t2, t, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝P1

P2

Pt
1

⎞
⎠ .

(4.32)
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Its tangent vector is Pt(t) = 2at + b = 2(P2 − P1 − Pt
1)t + Pt

1, which implies that the
end tangent is

Pt(1) = 2(P2 − P1) − Pt
1. (4.33)

Figure 4.12 shows the simple geometric interpretation of this.

P1

P2
Pt

1

Pt
2

P1
P2

−

P
t 1

−

P1
P2

−
2(

)

Figure 4.12: The Geometric Interpretation of the End Tangent.

� Exercise 4.16: Derive the nonuniform version of this quadratic polynomial assuming
that the parameter t varies from zero to some positive number ∆.

� Exercise 4.17: Calculate a quadratic parametric polynomial P(t) = at2 + bt + c as-
suming that only the two extreme tangent vectors Pt(0) and Pt(1) are given.

� Exercise 4.18: Use your curve design skills to obtain the cubic polynomial equation of
the curve segment P(t) defined by the following three conditions: (1) The two endpoints
P1 and P2 are given, (2) the end tangent Pt

2 is given, and (3) the start second derivative
Ptt(0) is zero.

4.8 Ferguson Surfaces

A Ferguson surface patch [Ferguson 64] is an extension of the Hermite curve segment.
The patch is specified by its four corner points Pij and by two tangent vectors Pu

ij and
Pw

ij in the u and w directions at each point; for a total of 12 three-dimensional quantities.
Figure 4.13a,b illustrates the notation used. We start by deriving the expressions of the
“bottom” and “top” boundary curves P(u, 0) and P(u, 1). Equation (4.5) yields

P(u, 0) = F1(u)P00 + F2(u)P10 + F3(u)Pu
00 + F4(u)Pu

10,

P(u, 1) = F1(u)P01 + F2(u)P11 + F3(u)Pu
01 + F4(u)Pu

11,

where functions Fi(u) are given by Equation (4.6).
We now concentrate on the two tangent vectors Pw

00 and Pw
10. The points at the

tips of those vectors are labeled Q00 and Q10, respectively and we derive the expression
of the Hermite segment Q(u, 0) connecting these points by assuming that its tangents in
the u direction are identical to those of boundary curve P(u, 0). Similarly, we denote the
two points at the tips of tangents Pw

01 and Pw
11 by Q01 and Q11, respectively and derive

the expression of the Hermite segment Q(u, 1) connecting them. The two segments are

Q(u, 0) = F1(u)Q00 + F2(u)Q10 + F3(u)Pu
00 + F4(u)Pu

10,

Q(u, 1) = F1(u)Q01 + F2(u)Q11 + F3(u)Pu
01 + F4(u)Pu

11.
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Figure 4.13: Ferguson Surface Patches.

Once the two curves P(u, 0) and Q(u, 0) are known, we can express the tangent vector
Pw

u0 in the w direction for any u as the difference

Pw
u0 = Q(u, 0)−P(u, 0) = F1(u)[Q00−P00]+F2(u)[Q10−P10] = F1(u)Pw

00 +F2(u)Pw
10,

and similarly
Pw

u1 = Q(u, 1) − P(u, 1) = F1(u)Pw
01 + F2(u)Pw

11.

We now fix u at a certain value U and examine point P(U, 0) on boundary curve P(u, 0)
and point P(U, 1) on boundary curve P(u, 1). The tangent in the w direction at point
P(U, 0) is the difference of points Q(U, 0)−P(U, 0) and the tangent in the w direction at
point P(U, 1) is the difference of points Q(U, 1)−P(U, 1). Once the two points P(U, 0)
and P(U, 1) and the two tangents Q(U, 0) − P(U, 0) and Q(U, 1) − P(U, 1) are known,
we can easily construct the Hermite segment defined by them. When u is released, this
segment becomes the expression of the entire surface patch. The expression is

P(u, w) = F1(w)P(u, 0) + F2(w)P(u, 1) + F3(w)Pw(u, 0) + F4(w)Pw(u, 1)
= F1(w)P(u, 0) + F2(w)P(u, 1) + F3(w)

[
F1(u)Pw

00 + F2(u)Pw
10

]
+ F4(u)

[
F1(u)Pw

01 + F2(u)Pw
11

]
= F1(w)

[
F1(u)P00 + F2(u)P10 + F3(u)Pu

00 + F4(u)Pu
10

]
+ F2(w)

[
F1(u)P01 + F2(u)P11 + F3(u)Pu

01 + F4(u)Pu
11

]
+ F3(w)

[
F1(u)Pw

00 + F2(u)Pw
10

]
+ F4(w)

[
F1(u)Pw

01 + F2(u)Pw
11

]
=
(
F1(u), F2(u), F3(u), F4(u)

)⎡⎢⎣
P00 P01 Pw

00 Pw
01

P10 P11 Pw
10 Pw

11

Pu
00 Pu

01 0 0
Pu

10 Pu
11 0 0

⎤
⎥⎦
⎡
⎢⎣

F1(w)
F2(w)
F3(w)
F4(w)

⎤
⎥⎦ .(4.34)

Notice that even though we started with the two boundary curves P(u, 0) and
P(u, 1) the final expression, Equation (4.34), is symmetric in u and w. It can also be
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derived by starting with the two boundary curves P(0, w) and P(1, w) (Figure 4.13b)
and going through a similar process.

Notice that the Ferguson surface is very similar to the bicubic Hermite patch of
Section 4.9, but is less flexible because it has zeros instead of the more general twist
vectors.

The Ferguson surface patch is easy to connect smoothly with other patches of the
same type. Given a set of points arranged roughly in a two-dimensional grid, with two
tangent vectors for each point, as in Figure 4.14, Equation (4.34) can be applied to each
set of four points and eight tangents to construct a surface patch and the patches will
connect smoothly because the end tangents of a patch are the start tangents of the next
patch.

As an example, Figure 4.15 shows two patches, one based on corner points P00,
P01, P10, and P11, and the other based on P10, P11, P20, and P21. The 12 tangent
vectors (two per point) are shown in the code with the figure. It’s easy to see how the
two patches (intentionally slightly separated in the figure) are connected smoothly.

4.9 Bicubic Hermite Patch

The spline methods covered in Chapter 5 are based on Hermite curve segments, which
suggests that Hermite interpolation is useful. The Ferguson surface patch of Section 4.8
is an attempt to extend the technique of Hermite interpolation to surface patches. This
section describes a more general extension. A single Hermite segment is a cubic polyno-
mial, so we expect the Hermite surface patch, which is an extension of the Hermite curve
segment, to be a bicubic surface. Its expression should be given by Equation (3.27),
where matrix H [Equation (4.7)] should be substituted for N, and the 16 quantities
should be points and tangent vectors.

The basic idea is to ask the user to specify the four boundary curves as Hermite
segments. Thus, the user should specify two points and two tangent vectors for each
curve, for a total of eight points and eight tangents. For the four curves to form a surface,
they have to meet at the four corners, so the eight points are reduced to four points.
Four points and eight tangents provide 12 of the 16 quantities needed to construct the
surface. Four more quantities are needed in order to calculate the 16 unknowns of
Equation (3.26), and they are selected as the second derivatives of the surface at the
corner points. They are called twist vectors.

To calculate the surface, 16 equations are written, expressing the way we require
the surface to behave. For example, we want P(u, w) to approach the corner point P01

when u → 0 and w → 1. We also want P(0, w) to equal the PC between points P00 and
P01. The equations are obtained from the 16 terms of Equation (3.24)

P00 = a00,

P10 = a30 + a20 + a10 + a00,

P01 = a03 + a02 + a01 + a00,

P11 = a33 + a32 + a31 + a30 + a23 + a22 + a21 + a20

+ a13 + a12 + a11 + a10 + a03 + a02 + a01 + a00,
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Figure 4.14: A Grid for a Ferguson Surface.
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<<:Graphics:ParametricPlot3D.m; (* Two Ferguson patches *)
F1[t_]:=2t^3-3t^2+1; F2[t_]:=-2t^3+3t^2;
F3[t_]:=t^3-2t^2+t; F4[t_]:=t^3-t^2;
F[t_]:={F1[t],F2[t],F3[t],F4[t]};
p00={0,0,0}; p01={0,1,0}; pu00={1,0,1}; pw00={0,1,1}; pu01={1,0,1}; pw01={0,1,0};
p10={1,0,0}; p11={1,1,0}; pu10={1,0,-1}; pw10={0,1,0}; pu11={1,0,-1}; pw11={0,1,-1};
p20={2,0,0}; p21={2,1,0}; pu20={1,0,0}; pw20={0,1,0}; pu21={1,0,0}; pw21={0,1,0};
H={{p00,p01,pw00,pw01},{p10,p11,pw10,pw11},
{pu00,pu01,{0,0,0},{0,0,0}},{pu10,pu11,{0,0,0},{0,0,0}}};
prt[i_]:=H[[Range[1,4],Range[1,4],i]];
g1=ParametricPlot3D[{F[u].prt[1].F[w],F[u].prt[2].F[w],F[u].prt[3].F[w]},
{u,0,.98,.05},{w,0,1,.05}, DisplayFunction->Identity];

H={{p10,p11,pw10,pw11},{p20,p21,pw20,pw21},
{pu10,pu11,{0,0,0},{0,0,0}},{pu20,pu21,{0,0,0},{0,0,0}}};
g2=ParametricPlot3D[{F[u].prt[1].F[w],F[u].prt[2].F[w],F[u].prt[3].F[w]},
{u,0.05,1,.05},{w,0,1,.05}, DisplayFunction->Identity];

g3=Graphics3D[{AbsolutePointSize[4],
Point[p00],Point[p01],Point[p10],Point[p11],Point[p20],Point[p21]}];

Show[g1,g2,g3, ViewPoint->{0.322, 1.342, 0.506},
DefaultFont->{"cmr10", 10}, DisplayFunction->$DisplayFunction]

Figure 4.15: Two Ferguson Surface Patches.
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Pu
00 = a10,

Pw
00 = a01,

Pu
10 = 3a30 + 2a20 + a10,

Pw
10 = a31 + a21 + a11 + a01,

Pu
01 = a13 + a12 + a11 + a10,

Pw
01 = 3a03 + 2a02 + a01,

Pu
11 = 3a33 + 3a32 + 3a31 + 3a30 + 2a23 + 2a22 + 2a21

+ 2a20 + a13 + a12 + a11 + a10,

Pw
11 = 3a33 + 2a32 + a31 + 3a23 + 2a22 + a21 + 3a13

+ 2a12 + a11 + 3a03 + 2a02 + a01,

Puw
00 = a11,

Puw
10 = 3a31 + 2a21 + a11,

Puw
01 = 3a13 + 2a12 + a11,

Puw
11 = 9a33 + 6a32 + 3a31 + 6a23 + 4a22

+ 2a21 + 3a13 + 2a12 + a11.

The solutions express the 16 coefficients aij in terms of the four corner points, eight
tangent vectors, and four twist vectors:

a01 = Pw
00,

a02 = −2Pw
00 − Pw

01 − 3P00 + 3P01,

a03 = Pw
00 + Pw

01 + 2P00 − 2P01,

a10 = Pu
00,

a11 = Puw
00 ,

a12 = −2Puw
00 − Puw

01 − 3Pu
00 + 3Pu

01,

a13 = Puw
00 + Puw

01 + 2Pu
00 − 2Pu

01,

a20 = −2Pu
00 − Pu

10 − 3P00 + 3P10,

a21 = −2Puw
00 − Puw

10 − 3Pw
00 + 3Pw

10,

a22 = 4Puw
00 + 2Puw

01 + 2Puw
10 + Puw

11 + 6Pu
00 − 6Pu

01 + 3Pu
10 − 3Pu

11 + 6Pw
00

+ 3Pw
01 − 6Pw

10 − 3Pw
11 + 9P00 − 9P01 − 9P10 + 9P11,

a23 = −2Puw
00 − 2Puw

01 − Puw
10 − Puw

11 − 4Pu
00 + 4Pu

01 − 2Pu
10 + 2Pu

11 − 3Pw
00

− 3Pw
01 + 3Pw

10 + 3Pw
11 − 6P00 + 6P01 + 6P10 − 6P11,

a30 = Pu
00 + Pu

10 + 2P00 − 2P10,

a31 = Puw
00 + Puw

10 + 2Pw
00 − 2Pw

10,

a32 = −2Puw
00 − Puw

01 − 2Puw
10 − Puw

11 − 3Pu
00 + 3Pu

01 − 3Pu
10 + 3Pu

11 − 4Pw
00

− 2Pw
01 + 4Pw

10 + 2Pw
11 − 6P00 + 6P01 + 6P10 − 6P11,

a33 = Puw
00 + Puw

01 + Puw
10 + Puw

11 + 2Pu
00 − 2Pu

01 + 2Pu
10 − 2Pu

11 + 2Pw
00 + 2Pw

01

− 2Pw
10 − 2Pw

11 + 4P00 − 4P01 − 4P10 + 4P11.
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When Equation (3.26) is written in terms of these values, it becomes the compact
expression

P(u, w) = (u3, u2, u, 1)H

⎡
⎢⎣

P00 P01 Pw
00 Pw

01

P10 P11 Pw
10 Pw

11

Pu
00 Pu

01 Puw
00 Puw

01

Pu
10 Pu

11 Puw
10 Puw

11

⎤
⎥⎦HT

⎡
⎢⎣

w3

w2

w
1

⎤
⎥⎦

= UHBHT WT ,

(4.35)

where H is the Hermite matrix, Equation (4.7). The quantities Puw
ij are the twist

vectors. They are usually not known in advance but the next section describes a way to
estimate them.

4.10 Biquadratic Hermite Patch

Section 4.7 discusses a variation on the Hermite segment where two points P1 and P2 and
just one tangent vector Pt

1 are known. The curve segment is given by Equation (4.32),
duplicated here

P(t) = (P2 − P1 − Pt
1)t

2 + Pt
1t + P1

= (−t2 + 1)P1 + t2P2 + (−t2 + t)Pt
1

= (t2, t, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝P1

P2

Pt
1

⎞
⎠ .

(4.32)

If we denote the curve segment by P(t) = at2 + bt + c, then its tangent vector has the
form Pt(t) = 2at + b = 2(P2 − P1 − Pt

1)t + Pt
1, which implies that the end tangent is

Pt(1) = 2(P2−P1)−Pt
1. The biquadratic surface constructed as the Cartesian product

of two such curves is given by

P(u, w) = (u2, u, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝Q22 Q21 Q20

Q12 Q11 Q10

Q02 Q01 Q00

⎞
⎠
⎛
⎝−1 0 1

1 0 0
−1 1 0

⎞
⎠
⎛
⎝w2

w
1

⎞
⎠ ,

(4.36)
where the nine quantities Qij still have to be assigned geometric meaning. This is done
by computing P(u, w) and its partial derivatives for certain values of the parameters.
Simple experimentation yields

P(0, 0) = Q22, P(0, 1) = Q21, P(1, 0) = Q12, P(1, 1) = Q11,

Pu(0, 0) = Q02, Pu(0, 1) = Q01, Pw(0, 0) = Q20, Pw(1, 0) = Q10,

Puw(0, 0) = Q00.

This shows that the surface can be expressed as

P(u, w) = (u2, u, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝ P(0, 0) P(0, 1) Pw(0, 0)

P(1, 0) P(1, 1) Pw(1, 0)
Pu(0, 0) Pu(0, 1) Puw(0, 0)

⎞
⎠
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×
⎛
⎝−1 0 1

1 0 0
−1 1 0

⎞
⎠
⎛
⎝w2

w
1

⎞
⎠ (4.37)

= (u2, u, 1)

⎛
⎝−1 1 −1

0 0 1
1 0 0

⎞
⎠
⎛
⎝P00 P01 Pw

00

P10 P11 Pw
10

Pu
00 Pu

01 Puw
00

⎞
⎠
⎛
⎝−1 0 1

1 0 0
−1 1 0

⎞
⎠
⎛
⎝w2

w
1

⎞
⎠ .

Thus, this type of surface is defined by the following nine quantities:
The four corner points P00, P01, P10, and P11.
The two tangents in the u direction at points P00 and P01.
The two tangents in the w direction at points P00 and P10.
The second derivative at point P00.
The first eight quantities have simple geometric meaning, but the second derivative,

which is a twist vector, has no simple geometrical interpretation. It can simply be set
to zero or it can be estimated. Several methods exist to estimate the twist vectors of
biquadratic and bicubic surface patches. The simple method described here is useful
when a larger surface is constructed out of several such patches. We start by looking at
the twist vector of a bilinear surface. Differentiating Equation (2.8) twice, with respect
to u and w, produces the simple, constant expression

Puw(u, w) = P00 − P01 − P10 + P11 = (P00 − P01) + (P11 − P10), (4.38)

that’s a vector and is also independent of both parameters. This expression is now
employed to estimate the twist vectors of all the patches that constitute a biquadratic
or a bicubic surface. Figure 4.16a is an idealized diagram of such a surface, showing
some individual patches. The first step is to apply Equation (4.38) to calculate a vector
Ti for patch i from the four corner points of the patch. Vectors Ti are then averaged
to provide estimates for the four twist vectors of each patch.

The principle is as follows: A corner point Pi with one index i belongs to just one
patch (patch i) and is one of the four corner points of the entire surface (P1, P4, P9,
and Pc of Figure 4.16a). The twist vector estimated for such a point is Ti, the vector
previously calculated for patch i. A point Pij with two indexes ij is common to two
patches i and j and is located on the boundary of the entire surface (examples are P15

and P59). The twist vector estimated for such a point is the average (Ti + Tj)/2. A
point Pijkl with four indexes is common to four patches. The twist vector estimated for
such a point is the average (Ti + Tj + Tk + Tl)/4.

This method works well as a first estimate. After the surface is drawn, the twist
vectors determined by this method may have to be modified to bring the surface closer
to its required shape.

Example: Compute twist vectors for the four patches shown in Figure 4.16b. The
first step is to compute a second derivative vector Puw

i from Equation (4.38) for each
patch i.

Puw
1 = [(0, 0, 0) − (1, 1, 1)] + [(2, 1,−1) − (1, 0, 0)] = (0, 0,−2),

Puw
2 = [(1, 0, 0) − (2, 1,−1)] + [(3, 1, 1) − (2, 0, 2)] = (0, 0, 0),
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P1 P12 P23 P34 P4

P15 P1256 P2367 P3478 P48

P59 P569a P67ab P78bc P8c

P9 P9a Pab Pbc Pc

1 2 3

3

4

4

5 6 7 8

9 a b c

1 2

P1= (0,0,0)

P13= (1,1,1)

P3= (−1,2,0)

P2= (2,0,2)

P4= (1,2,0)

P12= (1,0,0)

P34= (1,2,1)

P24= (3,1,1)

P1234= (2,1,−1)

(a) (b)

Figure 4.16: Estimating Twist Vectors.

Puw
3 = [(1, 1, 1) − (−1, 2, 0)] + [(1, 2, 1) − (2, 1,−1)] = (1, 0, 3),

Puw
4 = [(2, 1,−1) − (1, 2, 1)] + [(1, 2, 0) − (3, 1, 1)] = (−1, 0,−3).

The second step is to compute a twist vector Ti for each of the nine points

T1 = Puw
1 = (0, 0,−2),

T13 = [Puw
1 + Puw

3 ]/2 = [(0, 0,−2) + (1, 0, 3)]/2 = (.5, 0, .5),
T3 = Puw

3 = (1, 0, 3),
T12 = [Puw

1 + Puw
2 ]/2 = [(0, 0, 0) + (1, 0, 3)]/2 = (.5, 0, 1.5),

T1234 = [Puw
1 + Puw

2 + Puw
3 + Puw

4 ]/4
= [(0, 0,−2) + (0, 0, 0) + (1, 0, 3) + (−1, 0,−3)]/4 = (0, 0,−.5),

T34 = [Puw
3 + Puw

4 ]/2 = [(1, 0, 3) + (−1, 0,−3)]/2 = (0, 0, 0),
T2 = Puw

2 = (0, 0, 0),
T24 = [Puw

2 + Puw
4 ]/2 = [(0, 0, 0) + (−1, 0,−3)]/2 = (−.5, 0,−1.5),

T4 = Puw
4 = (−1, 0,−3).

The last step is to compute one twist vector for each patch by averaging the four twist
vectors of the four corners of the patch. For patch 1, the result is

[T1 + T13 + T1234 + T12]/4 = [(0,0,−2)+(.5,0,.5)+(0,0,−.5)+(.5,0,1.5)]/4 = (.25, 0,−.125),

and similarly for the other three surface patches.

She could afterward calmly discuss with him such

blameless technicalities as hidden line algorithms and

buffer refresh times, cabinet versus cavalier projections

and Hermite versus Bézier parametric cubic curve forms.

John Updike, Roger’s Version (1986)





5
Spline Interpolation

Given a set of points, it is easy to compute a polynomial that passes through the points.
The LP of Section 3.2 is an example of such a polynomial. However, as the discussion
in Section 1.5 (especially exercise 1.20) illustrates, a curve based on a high-degree poly-
nomial may wiggle wildly and its shape may be far from what the user has in mind. In
practical work we are normally interested in a smooth, tight curve that proceeds from
point to point such that each segment between two points is a smooth arc. The spline
approach to curve design, discussed in this chapter, constructs such a curve from indi-
vidual segments, each a simple curve, generally a parametric cubic (PC). This chapter
illustrates spline interpolation with three examples, cubic splines (Section 5.1), cardinal
splines (Section 5.4), and Kochanek–Bartels splines (Section 5.6). Another important
type, the B-spline, is the topic of Chapter 7. Other types of splines are known and
are discussed in the scientific literature. A short history of splines can be found in
[Schumaker 81] and [Farin 04].

Definition: A spline is a set of polynomials of degree k that are smoothly connected
at certain data points. At each data point, two polynomials connect, and their first
derivatives (tangent vectors) have the same values. The definition also requires that all
their derivatives up to the (k − 1)st be the same at the point.

5.1 The Cubic Spline Curve

The cubic spline was originally introduced by James Ferguson in [Ferguson 64]. Given
n data points that are numbered P1 through Pn, there are infinitely many curves that
pass through all the points in order of their numbers (Figure 5.1a), but the eye often
tends to trace one imaginary smooth curve through the points, especially if the points
are arranged in a familiar pattern. It is therefore useful to have an algorithm that does
the same. Since the computer does not recognize familiar patterns the way humans do,
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such a method should be interactive, thereby allowing the user to create the desired
curve.

The cubic spline method is such an algorithm. Given n data points, it constructs a
smooth curve that passes through the points (see definition of data points in Section 1.3).
The curve consists of n − 1 individual Hermite segments that are smoothly connected
at the n− 2 interior points and that are easy to calculate and display. For the segments
to meet at the interior points, their tangent vectors (first derivatives) must be the same
at each interior point. An added feature of cubic splines is that their second derivatives
are also the same at the interior points. The cubic spline method is interactive. The
user can control the shape of the curve by varying the two extreme tangent vectors at
the beginning and the end of the curve.

Given the n data points P1, P2, through Pn, we look for n − 1 parametric cubics
P1(t), P2(t), . . . ,Pn−1(t) such that Pk(t) is the polynomial segment from point Pk to
point Pk+1 (Figure 5.1b). The PCs will have to be smoothly connected at the n − 2
interior points P2, P3, . . . ,Pn−1, which means that their first derivatives will have to
match at every interior point. The definition of a spline requires that their second
derivatives match too. This requirement (the boundary condition of the cubic spline) is
important because it provides the necessary equations and also results in a tight curve
in the sense that once the curve is drawn, the eye can no longer detect the positions of
the original data points.

Pk

Pk+1
Pk+2

(a) (b)

Pk(t)

Pk+1(t)

Figure 5.1: (a) Three Different Curves. (b) Two Segments.

The principle of cubic splines is to divide the set of n points into n− 1 overlapping
pairs of two points each and to fit a Hermite segment [Equations (4.4) and (4.5)] to
each pair. The pairs are (P1,P2), (P2,P3), and so on, up to (Pn−1,Pn). Recall that a
Hermite curve segment is specified by two points and two tangents. In our case, all the
points are given, so the only unknowns are the tangent vectors. In order for segments
Pk(t) and Pk+1(t) to connect smoothly at point Pk+1, the end tangent of Pk(t) has to
equal the start tangent of Pk+1(t). Thus, there is only one tangent vector per point, for
a total of n unknowns.

The unknown tangent vectors are computed as the solutions of a system of n equa-
tions. The equations are derived from the requirement that the second derivatives of the
individual segments match at every interior point. However, there are only n−2 interior
points, so we can only have n − 2 equations, enough to solve for only n − 2 unknowns.

The key to resolving this shortage of equations is to ask the user to provide the
software with the values of two tangent vectors (normally the first and last ones). Once
this is done, the equations can easily be solved, yielding the remaining n − 2 tangents.
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This seems a strange way to solve equations, but it has the advantage of being interactive.
If the resulting curve looks wrong, the user can repeat the calculation with two new
tangent vectors. Before delving into the details, here is a summary of the steps involved.

1. The n data points are input into the program.
2. The user provides values (guesses or estimates) for two tangent vectors.
3. The program sets up n − 2 equations, with the remaining n − 2 tangent vectors

as the unknowns, and solves them.
4. The program loops n − 1 times. In each iteration, it selects two adjacent points

and their tangent vectors to calculate one Hermite segment.
We start with three adjacent points, Pk, Pk+1, and Pk+2, of which Pk+1 must

be an interior point and the other two can be either interior or endpoints. Thus, k
varies from 1 to n − 2. The Hermite segment from Pk to Pk+1 is denoted by Pk(t),
which implies that Pk(0) = Pk and Pk(1) = Pk+1. The tangent vectors of Pk(t) at
the endpoints are still unknown and are denoted by Pt

k and Pt
k+1. The first step is to

express segment Pk(t) geometrically, in terms of the two endpoints and the two tangents.
Applying Equation (4.4) to our segment results in

Pk(t) = Pk + Pt
kt +

[
3(Pk+1 − Pk) − 2Pt

k − Pt
k+1

]
t2

+
[
2(Pk − Pk+1) + Pt

k + Pt
k+1

]
t3.

(5.1)

When the same equation is applied to the next segment Pk+1(t) (from Pk+1 to Pk+2),
it becomes

Pk+1(t) = Pk+1 + Pt
k+1t +

[
3(Pk+2 − Pk+1) − 2Pt

k+1 − Pt
k+2

]
t2

+
[
2(Pk+1 − Pk+2) + Pt

k+1 + Pt
k+2

]
t3.

(5.2)

� Exercise 5.1: Where do we use the assumption that the first derivatives of segments
Pk(t) and Pk+1(t) are equal at the interior point Pk+1?

Next, we use the requirement that the second derivatives of the two segments be
equal at the interior points. The second derivative Ptt(t) of a Hermite segment P(t) is
obtained by differentiating Equation (4.1)

Ptt(t) = 6at + 2b. (5.3)

Equality of the second derivatives at the interior point Pk+1 implies

Ptt
k (1) = Ptt

k+1(0) or 6ak×1 + 2bk = 6ak+1×0 + 2bk+1. (5.4)

Using the values of a and b from Equations (5.1) and (5.2), we get

6
[
2(Pk − Pk+1) + Pt

k + Pt
k+1

]
+ 2

[
3(Pk+1 − Pk) − 2Pt

k − Pt
k+1

]
= 2

[
3(Pk+2 − Pk+1) − 2Pt

k+1 − Pt
k+2

]
,

(5.5)

which, after simple algebraic manipulations, becomes

Pt
k + 4Pt

k+1 + Pt
k+2 = 3(Pk+2 − Pk). (5.6)
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The three quantities on the left side of Equation (5.6) are unknown. The two quantities
on the right side are known.

Equation (5.6) can be written n − 2 times for all the interior points Pk+1 =
P2, P3, . . . ,Pn−1 to obtain a system of n − 2 linear algebraic equations expressed in
matrix form as

n−2

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝

1 4 1 0 · · · 0
0 1 4 1 · · · 0

. . . . . .
...

0 · · · · · · 1 4 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
n

⎛
⎜⎜⎜⎝

Pt
1

Pt
2
...

Pt
n

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎝

3(P3 − P1)
3(P4 − P2)

...
3(Pn − Pn−2)

⎞
⎟⎟⎠. (5.7)

Equation (5.7) is a system of n − 2 equations in the n unknowns Pt
1, Pt

2, . . . ,P
t
n. A

practical approach to the solution is to let the user specify the values of the two extreme
tangents Pt

1 and Pt
n. Once these values have been substituted in Equation (5.7), it’s

easy to solve it and obtain values for the remaining n − 2 tangents, Pt
2 through Pt

n−1.
The n tangent vectors are now used to calculate the original coefficients a, b, c, and d
of each segment by means of Equations (4.3), (4.4), or (4.7), which should be written
and solved n − 1 times, once for each segment of the spline.

The reader should notice that the matrix of coefficients of Equation (5.7) is tridi-
agonal and therefore diagonally dominant and thus nonsingular. This means that the
system of equations can always be solved and that it has a unique solution. (Matrices
and their properties are discussed in texts on linear algebra.)

This approach to solving Equation (5.7) is called the clamped end condition. Its
advantage is that the user can vary the shape of the curve by entering new values for Pt

1

and Pt
n and recalculating. This allows for interactive design, where each step brings the

curve closer to the desired shape. Figure 5.1a is an example of three cubic splines that
pass through the same points and differ only in Pt

1 and Pt
n. It illustrates how the shape

of the entire curve can be radically changed by modifying the two extreme tangents.
It is possible to let the user specify any two tangent vectors, not just the two extreme

ones. However, varying the two extreme tangents is a natural way to edit and reshape
the curve in practical applications.

Tension control. Section 4.2.3 shows how to control the tension of a Hermite
segment by varying the magnitudes of the tangent vectors. Since a cubic spline is based
on Hermite segments, its tension can also be controlled in the same way. The user may
input a tension parameter s and the software simply multiplies every tangent vector by
s. Small values of s correspond to high tension, so a user-friendly algorithm inputs a
parameter T in the interval [0, 1] and multiplies each tangent vector by s = α(1 − T )
for some predetermined α. Large values of T (close to 1) correspond to small s and
therefore to high tension, while small values of T correspond to s close to α. This makes
T a natural tension parameter. Section 5.4 has the similar relation T = 1 − 2s, which
makes more sense for cardinal splines.

The downside of the cubic spline is the following:

1. There is no local control. Modifying the extreme tangent vectors changes Equa-
tion (5.7) and results in a different set of n tangent vectors. The entire curve is modified!
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2. Equation (5.7) is a system of n equations that, for large values of n, may be too
slow to solve.

Picnic Blues (anagram of Cubic Spline.)

5.1.1 Example

Given the four points P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1), we are
looking for three Hermite segments P1(t), P2(t), and P3(t) that will connect smoothly
at the two interior points P2 and P3 and will constitute the spline. We further select
an initial direction Pt

1 = (1,−1) and a final direction Pt
4 = (−1,−1). Figure 5.2 shows

the points, the two extreme tangent vectors, and the resulting curve.

P1 P2

P3P4

x

y

Figure 5.2: A Cubic Spline Example.

We first write Equation (5.7) for our special case (n = 4)

(
1 4 1 0
0 1 4 1

)⎛
⎜⎝

(1,−1)
Pt

2

Pt
3

(−1,−1)

⎞
⎟⎠ =

(
3[(1, 1) − (0, 0)]
3[(0, 1) − (1, 0)]

)
=
(

(3, 3)
(−3, 3)

)
,

or
(1,−1) + 4Pt

2 + Pt
3 = (3, 3),

Pt
2 + 4Pt

3 + (−1,−1) = (−3, 3).

This is a system of two equations in two unknowns. It is easy to solve and the solutions
are Pt

2 = ( 2
3 , 4

5 ) and Pt
3 = (− 2

3 , 4
5 ).

We now write Equation (4.7) three times, for the three spline segments. For the
first segment, Equation (4.7) becomes

P1(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(0, 0)
(1, 0)

(1,−1)
( 2
3 , 4

5 )

⎞
⎟⎠

= (− 1
3 ,− 1

5 )t3 + ( 1
3 , 6

5 )t2 + (1,−1)t.
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The second segment is calculated in a similar way:

P2(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(1, 0)
(1, 1)
( 2
3 , 4

5 )
(− 2

3 , 4
5 )

⎞
⎟⎠

= (0,− 2
5 )t3 + (− 2

3 , 3
5 )t2 + ( 2

3 , 4
5 )t + (1, 0).

Finally, we write, for the third segment,

P3(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(1, 1)
(0, 1)

(− 2
3 , 4

5 )
(−1,−1)

⎞
⎟⎠

= (1
3 ,− 1

5 )t3 − ( 2
3 , 3

5 )t2 + (− 2
3 , 4

5 )t + (1, 1),

which completes the example.

� Exercise 5.2: Check to make sure that the three polynomial segments really connect
at the two interior points. What are the tangent vectors at the points?

� Exercise 5.3: Redo the example of this section with an indefinite initial direction
Pt

1 = (0, 0). What does it mean for a curve to start going in an indefinite direction?

5.1.2 Relaxed Cubic Splines

The original approach to the cubic spline curve is for the user to specify the two extreme
tangent vectors. This approach is known as the clamped end condition. It is possible to
have different end conditions, and the one described in this section is based on the simple
idea of setting the two extreme second derivatives of the curve, Ptt

1 (0) and Ptt
n−1(1), to

zero. If we think of the second derivative as the acceleration of the curve (see the particle
paradigm of Section 1.3), then this end condition implies constant speeds and therefore
small curvatures at both ends of the curve. This is why this end condition is called
relaxed.

It is easy to calculate the relaxed cubic spline. The second derivative of the para-
metric cubic P(t) is Ptt(t) = 6at + 2b [Equation (5.3)]. The end condition Ptt

1 (0) = 0
implies 2b1 = 0 or, from Equation (4.3)

−3P1 + 3P2 − 2Pt
1 − Pt

2 = 0, which yields Pt
1 = 3

2 (P2 − P1) − 1
2P

t
2. (5.8)

The other end condition, Ptt
n−1(1) = 0, implies 6an−1 + 2bn−1 = 0 or, from Equa-

tion (4.3)

6
(
2Pn−1 − 2Pn + Pt

n−1 + Pt
n

)
+ 2

(−3Pn−1 + 3Pn − 2Pt
n−1 − Pt

n

)
= 0,

or
Pt

n = 3
2 (Pn − Pn−1) − 1

2P
t
n−1. (5.9)
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Substituting Eqs. (5.8) and (5.9) in Equation (5.7) results in

n−2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1 4 1 0 · · · 0
0 1 4 1 · · · 0

. . . . . .
...

0 · · · 1 4 1 0
0 · · · · · · 1 4 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎢⎢⎣

3
2 (P2 − P1) − 1

2P
t
2

Pt
2
...

Pt
n−1

3
2 (Pn − Pn−1) − 1

2P
t
n−1

⎤
⎥⎥⎥⎥⎦

(5.10)

=

⎡
⎢⎢⎢⎢⎣

3(P3 − P1)
3(P4 − P2)

...
3(Pn−1 − Pn−3)
3(Pn − Pn−2)

⎤
⎥⎥⎥⎥⎦ .

This is a system of n−2 equations in the n−2 unknowns Pt
2, P

t
3, . . . ,P

t
n−1. Calculating

the relaxed cubic spline is done in the following steps:
1. Set up Equation (5.10) and solve it to obtain the n − 2 interior tangent vectors.
2. Use Pt

2 to calculate Pt
1 from Equation (5.8). Similarly, use Pt

n−1 to calculate
Pt

n from Equation (5.9).
3. Now that the values of all n tangent vectors are known, write and solve Equa-

tion (4.4) or (4.7) n − 1 times, each time calculating one spline segment.
The clamped cubic spline is interactive. The curve can be modified by varying

the two extreme tangent vectors. The relaxed cubic spline, on the other hand, is not
interactive. The only way to edit or modify it is to move the points or add points. The
points, however, are data points that may be dictated by the problem on hand or that
may be given by a user or a client, so it may not always be possible to move them.

Example: We use the same four points P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and
P4 = (0, 1) of Section 5.1.1. The first step is to set up Equation (5.10) and solve it to
obtain the two interior tangent vectors Pt

2 and Pt
3.

(
1 4 1 0
0 1 4 1

)⎛
⎜⎝

( 3
2 , 0) − 1

2P
t
2

Pt
2

Pt
3

(− 3
2 , 0) − 1

2P
t
3

⎞
⎟⎠ =

(
(3, 3)

(−3, 3)

)
.

The solutions are

Pt
2 =

(
3
5
,
2
3

)
, Pt

3 =
(
−3

5
,
2
3

)
.

The second step is to calculate Pt
1 and Pt

4

Pt
1 =

3
2

(P2 − P1) − 1
2
Pt

2 =
(

3
2
, 0
)
− 1

2

(
3
5
,
2
3

)
=
(

6
5
,−1

3

)
,

Pt
4 =

3
2
(P4 − P3) − 1

2
Pt

3 =
(
−3

2
, 0
)
− 1

2

(
−3

5
,
2
3

)
=
(
−6

5
,−1

3

)
.



148 5. Spline Interpolation

Now that the values of all four tangent vectors are known, the last step is to write and
solve Equation (4.4) or (4.7) three times to calculate each of the three segments of our
example curve.

For the first segment, Equation (4.7) becomes

P1(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎜⎝

(0, 0)
(1, 0)

( 6
5 ,− 1

3 )
( 3
5 , 2

3 )

⎞
⎟⎟⎠

= (− 1
5 , 1

3 )t3 + (6
5 ,− 1

3 )t.

For the second segment, Equation (4.7) becomes

P2(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎜⎝

(1, 0)
(1, 1)
( 3
5 , 2

3 )
(− 3

5 , 2
3 )

⎞
⎟⎟⎠

= (0,− 2
3 )t3 + (− 3

5 , 1)t2 + ( 3
5 , 2

3 )t + (1, 0).

� Exercise 5.4: Compute the third Hermite segment.

5.1.3 Cyclic Cubic Splines

The cyclic end condition is ideal for a closed cubic spline (Section 5.1.5) and also for a
periodic cubic spline (Section 5.1.4). The condition is that the tangent vectors be equal
at the two extremes of the curve (i.e., Pt

1 = Pt
n) and the same for the second derivatives

Ptt
1 = Ptt

n . Notice that the curve doesn’t have to be closed, i.e., a segment from Pn to
P1 is not required.

Applying Equation (4.1) to the first condition yields

Pt
1(0) = Pt

n−1(1)

or
3a1t

2 + 2b1t + c1|t=0 = 3an−1t
2 + 2bn−1t + cn−1|t=1

or
c1 = 3an−1 + 2bn−1 + cn−1. (5.11)

Applying Equation (5.3) to the second condition yields

Ptt
1 (0) = Ptt

n−1(1)

or
6a1t + 2b1|t=0 = 6an−1t + 2bn−1|t=1

or
2b1 = 6an−1 + 2bn−1. (5.12)
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Subtracting Equations (5.11) and (5.12) yields c1 − 2b1 = −3an−1 + cn−1 or, from
Equation (4.3)

Pt
1 − 2[−3P1 + 3P2 − 2Pt

1 − Pt
2] = −3[2Pn−1 − 2Pn + Pt

n−1 + Pt
n] + Pt

n−1.

This can be written

Pt
1 + 4Pt

1 + 3Pt
n = 6(P2 − P1 + Pn − Pn−1) − (Pt

2 + Pt
n−1).

Using the end condition Pt
1 = Pt

n, we get

Pt
1 = Pt

n = 3
4 (P2 − P1 + Pn − Pn−1) − 1

4

(
Pt

2 + Pt
n−1

)
. (5.13)

Substituting Equation (5.13) in Equation (5.7) results in

n−2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1 4 1 0 · · · 0
0 1 4 1 · · · 0

. . . . . .
...

0 · · · 1 4 1 0
0 · · · · · · 1 4 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4 (P2 − P1 + Pn − Pn−1)−

− 1
4

(
Pt

2 + Pt
n−1

)
Pt

2
...

Pt
n−1

3
4 (P2 − P1 + Pn − Pn−1)−

− 1
4

(
Pt

2 + Pt
n−1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.14)

=

⎡
⎢⎢⎢⎢⎣

3(P3 − P1)
3(P4 − P2)

...
3(Pn−1 − Pn−3)
3(Pn − Pn−2)

⎤
⎥⎥⎥⎥⎦ ,

which is a system of n − 2 equations in the n − 2 unknowns Pt
2, Pt

3, . . . ,P
t
n−1. Notice

that in the case of a closed curve, these equations are somehow simplified because the
two extreme points P1 and Pn are identical. Calculating the cyclic cubic spline is done
in the following steps:

1. Set up Equation (5.14) and solve it to obtain the n − 2 interior tangent vectors.
2. Use Pt

2 and Pt
n−1 to calculate Pt

1 and Pt
n from Equation (5.13).

3. Now that the values of all n tangent vectors are known, write and solve Equa-
tion (4.4) or (4.7) n − 1 times, each time calculating one spline segment.

Example: We select the five points P1 = P5 = (0,−1), P2 = (1, 0), P3 = (0, 1),
and P4 = (−1, 0) and calculate the cubic spline with the cyclic end condition for these
points. Notice that the curve is closed since P1 = P5. Also, since the points are
symmetric about the origin, we can expect the resulting four PC segments to be similar.
We start with Equation (5.14)

⎡
⎣ 1 4 1 0 0

0 1 4 1 0
0 0 1 4 1

⎤
⎦
⎡
⎢⎢⎢⎣

3
4 (P2 − P1 + P5 − P4) − 1

4 (Pt
2 + Pt

4)
Pt

2

Pt
3

Pt
4

3
4 (P2 − P1 + P5 − P4) − 1

4 (Pt
2 + Pt

4)

⎤
⎥⎥⎥⎦ =

⎡
⎣ 3(P3 − P1)

3(P4 − P2)
3(P5 − P3)

⎤
⎦ ,
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which is solved to yield Pt
2 = (0, 3/2), Pt

3 = (−3/2, 0), and Pt
4 = (0,−3/2). These

values are used to solve Equation (5.13)

Pt
1 = Pt

5 = 3
4 (P2 − P1 + P5 − P4) − 1

4 (Pt
2 + Pt

4) ,

which gives Pt
1 = Pt

5 = (3/2, 0). The four segments can now be calculated in the usual
way. For the first segment, Equation (4.7) becomes

P1(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(0,−1)
(1, 0)
( 3
2 , 0)

(0, 3
2 )

⎞
⎟⎠

= −( 1
2 , 1

2 )t3 + (0, 3
2 )t2 + ( 3

2 , 0)t + (0,−1).

For the second segment, Equation (4.7) becomes

P2(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(1, 0)
(0, 1)
(0, 3

2 )
(− 3

2 , 0)

⎞
⎟⎠

= (1
2 ,− 1

2 )t3 + (− 3
2 , 0)t2 + (0, 3

2 )t + (1, 0).

� Exercise 5.5: Compute the third and fourth Hermite segments.

Notice how the symmetry of the problem causes the coefficients of P1(t) and P3(t)
to have opposite signs, and the same for the coefficients of P2(t) and P4(t).

It is also possible to have an anticyclic end condition for the
cubic spline. It requires that the two extreme tangent vectors
have the same magnitudes but opposite directions Pt

1 = −Pt
n

and the same condition for the second derivatives Ptt
1 = −Ptt

n .
Such an end condition makes sense for curves such as the cross
section of a vase or any other surface of revolution.

Following steps similar to the ones for the cyclic case, we get for the anticyclic end
condition

Pt
1 = −Pt

n =
3
4

(P2 − P1 − Pn + Pn−1) − 1
4
(
Pt

2 − Pt
n−1

)
. (5.15)

� Exercise 5.6: Given the three points P1 = (−1, 0), P2 = (0, 1), and P3 = (1, 0),
calculate the anticyclic cubic spline for them and compare it to the clamped cubic spline
for the same points.

5.1.4 Periodic Cubic Splines

A periodic function f(x) is one that repeats itself. If p is the period of the function, then
f(x + p) = f(x) for any x. A two-dimensional cubic spline is periodic if it has the same
extreme tangent vectors (i.e., if it starts and ends going in the same direction) and if
its two extreme points P(0) and P(1) have the same y coordinate. If the curve satisfies
these conditions, then we can place consecutive copies of it side by side and the result
would look like a single periodic curve.
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The case of a three-dimensional periodic cubic spline is less clear. It seems that
the two extreme points can be any points (they don’t have to have the same y or z
coordinates or any other relationship), so the condition for periodicity is that the curve
will have the same start and end tangents, i.e., it will be cyclic.

Example: Exercise 1.15 shows that the parametric expression (cos t, sin t, t) de-
scribes a helix (see also Section 2.4.1 for a double helix). Modifying this expression to
P(t) = (0.05t + cos t, sin t, .1t) creates a helix that moves in the x direction as it climbs
up in the z direction. Figure 5.3 shows its behavior. This curve starts at P(0) = (1, 0, 0)
and ends at P(10π) = (0.5π + 1, 0, π). There is no special relation between the start
and end points, but the curve is periodic since both its start and end tangents equal
Pt(0) = Pt(10π) = (0.05, 1, 0.1). We can construct another period of this curve by
copying it, moving the copy parallel to itself, and placing it such that the start point of
the copy is at the end point of the original curve.

Notice that it is possible to make the start and end points even more unrelated by,
for example, tilting the helix also in the y direction as it climbs up in the z direction.
This kind of effect is achieved by an expression such as

P(t) = (0.05t + cos t,−0.05t2 + sin t, 0.1t).

x

y

z 0
1

2−1

0

1

0

1

2

3

0

(* tilted helix as a periodic curve *)
ParametricPlot3D[{.05t+Cos[t],Sin[t],.1t}, {t,0,10Pi}, Compiled->False,
Ticks->{{-1,0,1,2},{-1,0,1},{0,1,2,3}}, DefaultFont->{"cmr10", 10},
PlotPoints->100]

Figure 5.3: A Tilted Helix as a Periodic Curve.
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5.1.5 Closed Cubic Splines

A closed cubic spline has an extra curve segment from Pn to P1 that closes the curve. In
such a curve, every point is interior, so Equation (5.7) becomes a system of n equations
in the same n unknowns. No user input is needed, which implies that the only way to
control or modify such a curve is to move, add, or delete points. It is convenient to
define the two additional points Pn+1

def= P1 and Pn+2
def= P2. Equation (5.7) then

becomes

n

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 1 · · · 0 · · · 0
0 1 4 1 · · · · · · 0

. . . . . .
...

0 · · · · · · · · · 1 4 1
1 · · · · · · · · · 0 1 4
4 1 0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎢⎢⎢⎣

Pt
1

Pt
2
...

Pt
n−1

Pt
n

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

3(P3 − P1)
3(P4 − P2)

...
3(Pn+1 − Pn−1)
3(Pn+2 − Pn)

⎤
⎥⎥⎥⎥⎥⎦. (5.16)

Example: Given the four points of Section 5.1.1, P1 = (0, 0), P2 = (1, 0), P3 =
(1, 1), and P4 = (0, 1), we are looking for four Hermite segments P1(t), P2(t), P3(t),
and P4(t) that would connect smoothly at the four points. Equation (5.16) becomes

⎛
⎜⎝

1 4 1 0
0 1 4 1
1 0 1 4
4 1 0 1

⎞
⎟⎠
⎛
⎜⎝

Pt
1

Pt
2

Pt
3

Pt
4

⎞
⎟⎠ =

⎡
⎢⎣

3(P3 − P1)
3(P4 − P2)
3(P1 − P3)
3(P2 − P4)

⎤
⎥⎦ . (5.17)

Its solutions are Pt
1 = (3/4,−3/4), Pt

2 = (3/4, 3/4), Pt
3 = (−3/4, 3/4), and Pt

4 =
(−3/4,−3/4), and the four spline segments are

P1(t) = (−1/2, 0)t3 + (3/4, 3/4)t2 + (3/4,−3/4)t,
P2(t) = (0,−1/2)t3 + (−3/4, 3/4)t2 + (3/4, 3/4)t + (1, 0),
P3(t) = (1/2, 0)t3 + (−3/4,−3/4)t2 + (−3/4, 3/4)t + (1, 1),
P4(t) = (0, 1/2)t3 + (3/4,−3/4)t2 + (−3/4,−3/4)t + (0, 1).

5.1.6 Nonuniform Cubic Splines

All the different types of cubic splines discussed so far assume that the parameter t varies
in the interval [0, 1] in every segment. These types of cubic spline are therefore uniform
or normalized. The nonuniform cubic spline is obtained by adding another parameter
tk to every spline segment and letting t vary in the interval [0, tk]. Since there are
n − 1 spline segments connecting the n data points, this adds n − 1 parameters to the
curve, which makes it easier to fine-tune the shape of the curve. The nonuniform cubic
splines are especially useful in cases where the data points are nonuniformly spaced. In
regions where the points are closely spaced, the normalized cubic spline tends to develop
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loops and overshoots. In regions where the points are widely spaced, it tends to “cut
corners,” i.e., to be too tight. Careful selection of the tk parameters can overcome these
tendencies.

The calculation of the nonuniform cubic spline is based on that of the uniform
version. We simply rewrite some of the basic equations, substituting tk for 1 as the final
value of t. We start with Equation (4.2) that becomes, for the first spline segment,

a·03 + b·02 + c·0 + d = P1,

a(t1)3 + b(t1)2 + c(t1) + d = P2,

3a·02 + 2b·0 + c = Pt
1,

3a(t1)2 + 2b(t1) + c = Pt
2,

with solutions

a =
2(P1 − P2)

t31
+

Pt
1

t21
+

Pt
2

t21
,

b =
3(P2 − P1)

t21
− 2Pt

1

t1
− Pt

2

t1
,

c = Pt
1,

d = P1.

(5.18)

Equation (4.4) now becomes

P(t) =
[
2(P1 − P2)

t31
+

Pt
1

t21
+

Pt
2

t21

]
t3+

[
3(P2 − P1)

t21
− 2Pt

1

t1
− Pt

2

t1

]
t2+Pt

1t+P1. (5.19)

Equation (5.4) becomes

Ptt
k (tk) = Ptt

k+1(0) or 6ak × tk + 2bk = 6ak+1 × 0 + 2bk+1, (5.20)

and Equation (5.5) is now

2
[
3(Pk+1 − Pk)

t2k
− 2Pt

k

tk
− Pt

k+1

tk

]
+ 6tk

[
2(Pk − Pk+1)

t3k
+

Pt
k

t2k
+

Pt
k+1

t2k

]

= 2
[
3(Pk+2 − Pk+1)

t2k+1

− 2Pt
k+1

tk+1
− Pt

k+2

tk+1

]
.

(5.21)

Equation (5.6) now becomes

tk+1Pt
k + 2(tk + tk+1)Pt

k+1 + tkPt
k+2

=
3

tktk+1

[
t2k(Pk+2 − Pk+1) + t2k+1(Pk+1 − Pk)

]
.

(5.22)
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This produces the new version of Equation (5.7)

n−2

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

t2 2(t1 + t2) t1 0 0 · · · 0
0 t3 2(t2 + t3) t2 0 · · · 0

. . . . . .
...

0 0 · · · · · · tn−1 2(tn−1 + tn−2) tn−2

⎤
⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎣

Pt
1

Pt
2
...

Pt
n

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

3
t1t2

[
t21(P3 − P2) + t22(P2 − P1)

]
3

t2t3

[
t22(P4 − P3) + t23(P3 − P2)

]
...

3
tn−2tn−1

[
t2n−2(Pn − Pn−1) + t2n−1(Pn−1 − Pn−2)

]

⎤
⎥⎥⎥⎥⎦ .

(5.23)

This is again a system of n − 2 equations in the n unknowns Pt
1, Pt

2,. . . , Pt
n. After the

user inputs the guessed or estimated values for the two extreme tangent vectors Pt
1 and

Pt
n, this system can be solved, yielding the values of the remaining n−2 tangent vectors.

Each of the n − 1 spline segments can now be calculated by means of Equation (5.18)
that is written here for the first segment in compact form

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

2/t31 −2/t31 1/t21 1/t21
−3/t21 3/t21 −2/t1 −1/t1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

Pt
1

Pt
2

⎞
⎟⎠ . (5.24)

Notice how each of Equations (5.18) through (5.24) reduces to the corresponding
original equation when all the ti are set to 1. The nonuniform cubic spline can now be
calculated in the following steps:

1. The user inputs the values of the two extreme tangent vectors and the values of
the n − 1 parameters tk. The software sets up and solves Equation (5.23) to calculate
the remaining tangent vectors.

2. The software sets up and solves Equation (5.24) n−1 times, once for each of the
spline segments.

3. Each segment Pk(t) is plotted by varying t from 0 to tk.
Before looking at an example, it is useful to try to understand the advantage of

having the extra parameters tk. Equation (5.18) shows that a large value of tk for spline
segment Pk(t) means small a and b coefficients (since tk appears in the denominators),
and hence a small second derivative Ptt

k (t) = 6ak + 2bk for that segment. Since the
second derivative can be interpreted as the acceleration of the curve, we can predict
that a large tk will result in small overall acceleration for segment k. Thus, most of the
segment will be close to a straight line. This is also easy to see when we substitute small
a and b in Pk(t) = at3 + bt2 + ct + d. The dominant part of the segment becomes
ct +d, which brings it close to linear. If the start and end directions of the segment are
very different, the entire segment cannot be a straight line, so, in order to minimize its
overall second derivative, the segment will end up consisting of two or three parts, each
close to a straight line, with short, highly-curved corners connecting them (Figure 5.4).
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Such a geometry has a small overall second derivative. This knowledge is useful when
designing curves, which is why the nonuniform cubic spline should not be dismissed as
impractical. It may be the best method for certain curves.

Figure 5.4: Curves with Small Overall Second Derivative.

Example: The four points of Section 5.1.1 are used in this example. They are
P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1). We also select the same initial
and final directions Pt

1 = (1,−1) and Pt
4 = (−1,−1). We decide to use tk = 2 for each

of the three spline segments to illustrate how large tk values create a curve very different
from the one of Section 5.1.1. Equation (5.23) becomes

[
t2 2(t1 + t2) t1 0
0 t3 2(t2 + t3) t2

]⎡⎢⎢⎣
(1,−1)

Pt
2

Pt
3

(−1,−1)

⎤
⎥⎥⎦ =

[
3

t1t2
[t21(P3 − P2) + t22(P2 − P1)]

3
t2t3

[t22(P4 − P3) + t23(P3 − P2)]

]
.

For t1 = t2 = t3 = 2, this yields Pt
2 = (1/6, 1/2) and Pt

3 = (−1/6, 1/2). Equation (5.24)
is now written and solved three times:

Segment 1

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

2/t31 −2/t31 1/t21 1/t21
−3/t21 3/t21 −2/t1 −1/t1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎡
⎢⎣

(0, 0)
(1, 0)

(1,−1)
(1/6, 1/2)

⎤
⎥⎦ .

Segment 2

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

2/t32 −2/t32 1/t22 1/t22
−3/t22 3/t22 −2/t2 −1/t2

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎡
⎢⎣

(1, 0)
(1, 1)

(1/6, 1/2)
(−1/6, 1/2)

⎤
⎥⎦ .

Segment 3

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

2/t33 −2/t33 1/t23 1/t23
−3/t23 3/t23 −2/t3 −1/t3

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎡
⎢⎣

(1, 1)
(0, 1)

(−1/6, 1/2)
(−1,−1)

⎤
⎥⎦ .

This yields the coefficients for the three spline segments:

P1(t) = (1/24,−1/8)t3 + (−1/3, 3/4)t2 + (1,−1)t,

P2(t) = (0, 0)t3 + (−1/12, 0)t2 + (1/6, 1/2)t + (1, 0),

P3(t) = −(1/24, 1/8)t3 + (−1/12, 0)t2 + (−1/6, 1/2)t + (1, 1).
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The result is shown in Figure 5.5. It should be compared with the uniform curve of
Figure 5.2 that’s based on the same four points. (Recall that t varies from 0 to 2 in each
of the segments above.)

1.25

−0.25

1

1

0.5

0.2 0.6

P1

P1

P2

P2

(* Nonuniform cubic spline example *)
C1:=ParametricPlot[{1/24,-1/8}t^3+{-1/3,3/4}t^2+{1,-1}t, {t,0,2},
PlotRange->All, Compiled->False, DisplayFunction->Identity];
C2:=ParametricPlot[{-1/12,0}t^2+{1/6,1/2}t+{1,0}, {t,0,2},
PlotRange->All, Compiled->False, DisplayFunction->Identity];
C3:=ParametricPlot[-{1/24,1/8}t^3+{-1/12,0}t^2+{-1/6,1/2}t+{1,1}, {t,0,2},
PlotRange->All, Compiled->False, DisplayFunction->Identity];
Show[C1, C2, C3, PlotRange->All, AspectRatio->Automatic,
DisplayFunction->$DisplayFunction, DefaultFont->{"cmr10", 10}];

Figure 5.5: A Nonuniform Cubic Spline Example.

5.2 The Quadratic Spline

The cubic spline curve is useful in certain practical applications, which raises the question
of splines of different degrees based on the same concepts. It turns out that splines
of degrees higher than 3 are useful only for special applications because they are more
computationally intensive and tend to have many undesirable inflection points (i.e., they
tend to wiggle excessively). Splines of degree 1 are, of course, just straight segments
connected to form a polyline, but quadratic (degree-2) splines can be useful in some
applications. Such a spline is easy to derive and to compute. Each spline segment
is a quadratic polynomial, i.e., a parabolic arc, so it results in fewer oscillations in the
curve. On the other hand, quadratic spline segments connect with at most C1 continuity
because their second derivative is a constant. Thus, a quadratic spline curve may not
be as tight as a cubic spline that passes through the same points.

The quadratic spline curve is derived in this section based on the variant Hermite
segment of Section 4.7. Each segment Pi(t) is therefore a quadratic polynomial defined
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by its two endpoints Pi and Pi+1 and by its start tangent vector Pt
i. Equation (4.33)

shows that the end tangent of such a segment is Pt
i(1) = 2(Pi+1 − Pi) − Pt

i. The first
two spline segments are

P1(t) = (P2 − P1 − Pt
1)t

2 + Pt
1t + P1,

P2(t) = (P3 − P2 − Pt
2)t

2 + Pt
2t + P2.

At their joint point P2 they have the tangent vectors Pt
1(1) = 2(P2 − P1) − Pt

1 and
Pt

2(0) = Pt
2. In order to achieve C1 continuity we have to have the boundary condition

Pt
1(1) = Pt

2(0) or 2(P2 − P1) − Pt
1 = Pt

2. This equation can be written Pt
1 + Pt

2 =
2(P2−P1), and when duplicated n−1 times, for the points P1 through Pn−1, the result
is

n−1

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0

. . . . . .
...

0 0 0 0 · · · 1 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎢⎣

Pt
1

Pt
2
...

Pt
n

⎤
⎥⎥⎥⎦= 2

⎡
⎢⎢⎣

P2 − P1

P3 − P2
...

Pn − Pn−1

⎤
⎥⎥⎦ . (5.25)

As with the cubic spline, there are more unknowns than equations (n unknowns and
n − 1 equations), and the standard technique is to ask the user to provide a value for
one of the unknown tangent vectors, normally Pt

1.

Example: We select the four points of Section 5.1.1, namely P1 = (0, 0), P2 =
(1, 0), P3 = (1, 1), and P4 = (0, 1). We also select the same start tangent Pt

1 = (1,−1).
Equation (5.25) becomes

⎛
⎝ 1 1 0 0

0 1 1 0
0 0 1 1

⎞
⎠
⎛
⎜⎝

Pt
1

Pt
2

Pt
3

Pt
4

⎞
⎟⎠ = 2

⎛
⎝P2 − P1

P3 − P2

P4 − P3

⎞
⎠ =

⎛
⎝ (2, 0)

(0, 2)
(−2, 0)

⎞
⎠ ,

with solutions Pt
2 = (1, 1), Pt

3 = (−1, 1), and Pt
4 = (−1,−1). The three spline segments

become

P1(t) = (P2 − P1 − Pt
1)t

2 + Pt
1t + P1 = (t, t2 − t),

P2(t) = (P3 − P2 − Pt
2)t

2 + Pt
2t + P2 = (−t2 + t + 1, t),

P3(t) = (P4 − P3 − Pt
3)t

2 + Pt
3t + P3 = (−t + 1,−t2 + t + 1).

Their tangent vectors are Pt
1(t) = (1, 2t−1), Pt

2(t) = (−2t+1, 1), and Pt
3(t) = (−1,−2t+

1). It is easy to see that Pt
1(1) = Pt

2(0) = (1, 1) and Pt
2(1) = Pt

3(0) = (−1, 1). Also,
the end tangent of the entire curve is Pt

3(1) = (−1,−1), the same as for the cubic case.
The complete spline curve is shown in Figure 5.6.
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(* quadratic spline example *)
C1:=ParametricPlot[{t,t^2-t}, {t,0,1}, DisplayFunction->Identity];
C2:=ParametricPlot[{-t^2+t+1,t}, {t,0,1}, DisplayFunction->Identity];
C3:=ParametricPlot[{-t+1,-t^2+t+1}, {t,0,1}, DisplayFunction->Identity];
C4=Graphics[{AbsolutePointSize[3],
Point[{0,0}], Point[{1,0}], Point[{1,1}], Point[{0,1}] }];
Show[C1, C2, C3, C4, DisplayFunction->$DisplayFunction,
DefaultFont->{"cmr10", 10}, AspectRatio->Automatic]

Figure 5.6: A Quadratic Spline Example.

5.3 The Quintic Spline

The derivation of the cubic spline is based on the requirement (boundary condition)
that the second derivatives of the individual segments be equal at the interior points.
This produces n− 2 equations to compute the first derivatives, but makes it impossible
to control the values of the second derivatives. In cases where the designer wants to
specify the values of the second derivatives, higher-degree polynomials must be used. A
degree-5 (quintic) polynomial is a natural choice. Section 4.3 discusses the similar case
of the quintic Hermite segment.

The approach to the quintic spline is similar to that of the cubic spline. The spline is
a set of n−1 segments, each a quintic polynomial, so we have to compute the coefficients
of each segment from the boundary conditions. A general quintic spline segment from
point Pk to point Pk+1 is given by Equation (4.16), duplicated here

Pk(t) = akt5 + bkt4 + ckt3 + dkt2 + ekt + fk. (4.16)

The six coefficients are computed from the following six boundary conditions

Pk(0) = Pk, Pk(1) = Pk+1, P′
k(1) = P′

k+1(0),
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P′′
k(1) = P′′

k+1(0), P
′′′
k (1) = P

′′′
k+1(0), P

′′′′
k (1) = P

′′′′
k+1(0).

(Notice that these conditions involve the first four derivatives. Experience indicates that
better-looking splines are obtained when the boundary conditions are based on an even
number of derivatives, which is why the quintic, and not the quartic, polynomial is a
natural choice.)

The boundary conditions can be written explicitly as follows:

fk = Pk, a

ak + bk + ck + dk + ek + fk = fk+1 = Pk+1, b

5ak + 4bk + 3ck + 2dk + ek = ek+1, c

20ak + 12bk + 6ck + 2dk = 2dk+1, (5.26)d
60ak + 24bk + 6ck = 6ck+1, e

120ak + 24bk = 24bk+1. f

These equations are now used to express the six coefficients of each of the n− 1 quintic
polynomials in terms of the second and fourth derivatives.

Equation (5.26)f results in 24bk+1 = P
′′′′
k+1(0) or bk = 1

24P
′′′′
k (0). This also implies

ak = 1
120 [P

′′′′
k+1(0)−P

′′′′
k (0)]. Equation (5.26)d implies 2dk+1 = P′′

k+1(0) or dk = 1
2P

′′
k(0).

Now that we have expressed ak, bk, and dk in terms of the second and fourth derivatives,
we substitute them in Equation (5.26)d to get the following expression for ck

ck =
1
6
[P

′′
k+1(0) − P

′′
k(0)] − 1

36
[P

′′′′
k+1(0) + 2P

′′′′
k (0)].

The last coefficient to be expressed in terms of the (still unknown) second and fourth
derivatives is ek. This is done from Pk(1) = Pk+1 and results in

ek = [Pk+1 − Pk] − 1
6
[P′′

k+1(0) + 2P′′
k(0)] +

1
360

[7P
′′′′
k+1(0) + 8P

′′′′
k (0)].

When these expressions for the six coefficients are combined with P′
k−1(1) = P′

k(0),
all the terms with first and third derivatives are eliminated, and the result is a relation
between the (unknown) second and fourth derivatives and the (known) data points

[Pk−1 − Pk] +
1
6
[P′′

k−1(0) + 2P′′
k(0)] − 1

360
[7P

′′′′
k−1(0) + 8P

′′′′
k (0)] (5.27)

= [Pk+1 − Pk] − 1
6
[P′′

k+1(0) + 2P′′
k(0)] +

1
360

[7P
′′′′
k+1(0) + 8P

′′′′
k (0)].

When these expressions for the six coefficients are similarly combined with P′′′
k−1(1) =

P′′′
k (0), the result is another relation between the second and fourth derivates

−P′′
k−1(0) + 2P′′

k(0) − P′′
k+1(0) +

1
6
P

′′′′
k−1(0) +

2
3
P

′′′′
k (0) +

1
6
P

′′′′
k+1(0) = 0. (5.28)
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Each of Equations (5.27) and (5.28) is n− 1 equations for k = 1, 2, . . . , n− 1, so we
end up with 2(n− 1) equations with the 2n second and fourth unknown derivatives. As
in the case of the cubic spline, we complete this system of equations by guessing values
for some extreme derivatives. The simplest end condition is to require

P
′′′
1 (0) = P

′′′
n−1(1) = P

′′′′
1 (0) = P

′′′′
n−1(1) = 0,

which implies P
′′
1 (0) = P

′′
1 (1) − 1

6P
′′′′
1 (1) and P

′′
n(0) = P

′′
n−1(1) − 1

6P
′′′′
n−1(1) and makes

it possible to eliminate P
′′
1 (0) and P

′′
n(0) from Equations (5.27) and (5.28). [Späth 83]

shows that the end result is the system of equations

[
A −B
C A

] [
P

′′

P
′′′′

]
=
[
D
0

]
, (5.29)

where

P
′′

=
(
P′′

1(0), . . . ,P′′
n−1(0)

)T
, P

′′′′
=
(
P′′′′

1 (0), . . . ,P′′′′
n−1(0)

)T
,

D =
[
6[(P2 − P1) − (P1 − P0)], . . . , 6[(Pn − Pn−1) − (Pn−1 − Pn−2)]

]T
,

and

A =

⎡
⎢⎢⎢⎣

5 1
1 4 1

1 4 1

. . .
1 4 1

1 5

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

26 7
7 16 7

7 16 7

. . .
7 16 7

7 26

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

6 −6
−6 12 −6

−6 12 −6

. . .
−6 12 −6

6 6

⎤
⎥⎥⎥⎦ .

Notice that matrices A, B, and C are tridiagonal and symmetric. In addition, A
and B are diagonally dominant, while C is nonnegative definite. This guarantees that
the block matrix of Equation (5.29) will have an inverse, which implies that the system
of equations has a unique solution.

Solving the system of Equations (5.29) means expressing the second and fourth
derivatives of the spline segments in terms of the data points (the known quantities).
Once this is done, the six coefficients of each of the n−1 spline segments can be expressed
in terms of the data points, and the segments can be constructed.
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5.4 Cardinal Splines

The cardinal spline is another example of how Hermite interpolation is applied to con-
struct a spline curve. The cardinal spline overcomes the main disadvantages of cubic
splines, namely the lack of local control and the need to solve a system of linear equa-
tions that may be large (its size depends on the number of data points). Cardinal splines
also offer a natural way to control the tension of the curve by modifying the magnitudes
of the tangent vectors (Section 4.2.3). The price for all this is the loss of second-order
continuity. Strictly speaking, this loss means that the cardinal spline isn’t really a spline
(see the definition of splines on page 141), but its form, its derivation, and its behavior
are so similar to those of other splines that the name “cardinal spline” has stuck.

Figure 5.7a illustrates the principle of this method. The figure shows a curve that
passes through seven points. The curve looks continuous but is constructed in segments,
two of which are thicker than the others. The first thick segment, the one from P2 to
P3, starts in the direction from P1 to P3 and ends going in the direction from P2 to
P4. The second thick segment, from P5 to P6, features the same behavior. It starts in
the direction from P4 to P6 and ends going in the direction from P5 to P7.

P1
P2

P3

P4 P5

P6

P7

(a) (b)

P3−P1 P
4−P

2

P1 P4

P3
P2

Figure 5.7: Tangent Vectors in a Cardinal Spline.

The cardinal spline for n given points is calculated and drawn in segments, each
depending on four points only. Each point participates in at most four curve segments,
so moving one point affects only those segments and not the entire curve. This is
why the curve features local control. The individual segments connect smoothly; their
first derivatives are equal at the connection points (the curve therefore has first-order
continuity). However, the second derivatives of the segments are generally different at
the connection points.

The first step in constructing the complete curve is to organize the points into n−3
highly-overlapping groups of four consecutive points each. The groups are

[P1,P2,P3,P4], [P2,P3,P4,P5], [P3,P4,P5,P6], . . . , [Pn−3,Pn−2,Pn−1,Pn].

Hermite interpolation is then applied to construct a curve segment P(t) for each group.
Denoting the four points of a group by P1, P2, P3, and P4, the two interior points P2

and P3 become the start and end points of the segment and the two tangent vectors
become s(P3 − P1) and s(P4 − P2), where s is a real number. Thus, segment P(t)
goes from P2 to P3 and its two extreme tangent vectors are proportional to the vectors
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P3 − P1 and P4 − P2 (Figure 5.7b). The proportionality constant s is related to the
tension parameter T . Note how there are no segments from P1 to P2 and from Pn−1

to Pn. These segments can be added to the curve by adding two new extreme points
P0 and Pn+1. These points can also be employed to edit the curve, because the first
segment, from P1 to P2, starts going in the direction from P0 to P2, and similarly for
the last segment.

The particular choice of the tangent vectors guarantees that the individual seg-
ments of the cardinal spline will connect smoothly. The end tangent s(P4 − P2) of the
segment for group [P1,P2,P3,P4] is identical to the start tangent of the next group,
[P2,P3,P4,P5].

Segment P(t) is therefore defined by

P(0) = P2, P(1) = P3,

Pt(0) = s(P3 − P1), Pt(1) = s(P4 − P2)
(5.30)

and is easily calculated by applying Hermite interpolation [Equation (4.7)] to the four
quantities of Equation (5.30)

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P2

P3

s(P3 − P1)
s(P4 − P2)

⎞
⎟⎠

= (t3, t2, t, 1)

⎛
⎜⎝

−s 2 − s s − 2 s
2s s − 3 3 − 2s −s
−s 0 s 0
0 1 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

P3

P4

⎞
⎟⎠ . (5.31)

Tension in the cardinal spline can now be controlled by changing the lengths of the
tangent vectors by means of parameter s. A long tangent vector (obtained by a large
s) causes the curve to continue longer in the direction of the tangent. A short tangent
has the opposite effect; the curve moves a short distance in the direction of the tangent,
then quickly changes direction and moves toward the end point. A zero-length tangent
(corresponding to s = 0) produces a straight line between the endpoints (infinite ten-
sion). In principle, the parameter s can be varied from 0 to ∞. In practice, we use only
values in the range [0, 1]. However, since s = 0 produces maximum tension, we cannot
intuitively think of s as the tension parameter and we need to define another parameter,
T inversely related to s.

The tension parameter T is defined as s = (1−T )/2, which implies T = 1−2s. The
value T = 0 results in s = 1/2. The curve is defined as having tension zero in this case
and is called the Catmull–Rom spline [Catmull and Rom 74]. (Reference [Salomon 99]
has a detailed derivation of this type of spline as a blend of two parabolas.) Increasing
T from 0 to 1 decreases s from 1/2 to 0, thereby reducing the magnitude of the tangent
vectors down to 0. This produces curves with more tension. Exercise 4.7 tells us that
when the tangent vectors have magnitude zero, the Hermite curve segment is a straight
line, so the entire cardinal spline curve becomes a set of straight segments, a polyline,
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the curve with maximum tension. Decreasing T from 0 to −1 increases s from 1/2 to 1.
The result is a curve with more slack at the data points.

To illustrate this behavior mathematically, we rewrite Equation (5.31) explicitly to
show its dependence on s:

P(t) = s(−t3 + 2t2 − t)P1 + s(−t3 + t2)P2 + (2t3 − 3t2 + 1)P2

+ s(t3 − 2t2 + t)P3 + (−2t3 + 3t2)P3 + s(t3 − t2)P4.
(5.32)

For s = 0, Equation (5.32) becomes (2t3 − 3t2 + 1)P2 + (−2t3 + 3t2)P3, which can be
simplified to (3t2 − 2t3)(P3 − P2) + P2. Substituting u = 3t2 − 2t3 reduces this to
u(P3 − P2) + P2, which is the straight line from P2 to P3.

For large s, we use Equation (5.32) to calculate the mid-curve value P(0.5):

P(0.5) =
s

8
[(P3 − P1) + (P2 − P4)] + 0.5(P2 + P3)

=
s

8
[
Pt(0) − Pt(1)

]
+ 0.5(P2 + P3).

This is an extension of Equation (Ans.7). The first term is the difference of the two
tangent vectors, multiplied by s/8. As s grows, this term grows without limit. The
second term is the midpoint of P2 and P3. Adding the two terms (a vector and a point)
produces a point that may be located far away (for large s) from the midpoint, showing
that the curve moves a long distance away from the start point P2 before changing
direction and starting toward the end point P3. Large values of s therefore feature a
loose curve (low tension).

Thus, the tension of the curve can be increased by setting s close to 0 (or, equiv-
alently, setting T close to 1); it can be decreased by increasing s (or, equivalently,
decreasing T toward 0).

� Exercise 5.7: What happens when T > 1?

Setting T = 0 results in s = 0.5. Equation (5.31) reduces in this case to

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

−0.5 1.5 −1.5 0.5
1 −2.5 2 −0.5

−0.5 0 0.5 0
0 1 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

P3

P4

⎞
⎟⎠ , (5.33)

a curve known as the Catmull–Rom spline. Its basis matrix is termed the parabolic
blending matrix.

Example: Given the four points (1, 0), (3, 1), (6, 2), and (2, 3), we apply Equa-
tion (5.31) to calculate the cardinal spline segment from (3, 1) to (6, 2):

P(t) = (t3, t2, t, 1)

⎡
⎢⎣
−s 2 − s s − 2 s
2s s − 3 3 − 2s −s
−s 0 s 0
0 1 0 0

⎤
⎥⎦
⎡
⎢⎣

(1, 0)
(3, 1)
(6, 2)
(2, 3)

⎤
⎥⎦

= t3(4s − 6, 4s − 2) + t2(−9s + 9,−6s + 3) + t(5s, 2s) + (3, 1).
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For high tension (i.e., T = 1 or s = 0), this reduces to the straight line

P(t) = (−6,−2)t3 + (9, 3)t2 + (3, 1) = (3, 1)(−2t3 + 3t2) + (3, 1) = (3, 1)u + (3, 1).

For T = 0 (or s = 1/2), this cardinal spline reduces to the Catmull–Rom curve

P(t) = (−4, 0)t3 + (4.5, 0)t2 + (2.5, 1)t + (3, 1). (5.34)

Figure 5.8 shows an example of a similar cardinal spline (the points are different)
with four values 0, 1/6, 2/6, and 3/6 of the tension parameter.

1.5 2 2.5 3

0.5

1

1.5

2

2.5

3 P1

P2

P3

P4

(* Cardinal spline example *)
T={t^3,t^2,t,1};
H[s_]:={{-s,2-s,s-2,s},{2s,s-3,3-2s,-s},{-s,0,s,0},{0,1,0,0}};
B={{1,3},{2,0},{3,2},{2,3}};
s=3/6; (* T=0 *)
g1=ParametricPlot[T.H[s].B,{t,0,1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
s=2/6; (* T=1/3 *)
g2=ParametricPlot[T.H[s].B,{t,0,1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
s=1/6; (* T=2/3 *)
g3=ParametricPlot[T.H[s].B,{t,0,1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
s=0; (* T=1 *)
g4=ParametricPlot[T.H[s].B,{t,0,1},PlotRange->All, Compiled->False,
DisplayFunction->Identity];
g5=Graphics[{AbsolutePointSize[4], Table[Point[B[[i]]],{i,1,4}] }];
Show[g1,g2,g3,g4,g5, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction]

Figure 5.8: A Cardinal Spline Example.
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5.5 Catmull–Rom Surfaces

The cardinal spline or the Catmull–Rom curve can easily be extended to a surface that’s
fully defined by a rectangular grid of data points. In analogy to the Catmull–Rom curve
segment—which involves four points but only passes through the two interior points—a
single Catmull–Rom surface patch is specified by 16 points, the patch is anchored at the
four middle points and spans the area delimited by them.

We start with a group of m × n data points roughly arranged in a rectangle. We
look at all the overlapping groups that consist of 4×4 adjacent points, and we calculate
a surface patch for each group. Some of the groups are shown in Figure 5.9.

P40P41P42P43 P41P42P43P44 P42P43P44P45 . . . P4,n−3P4,n−2P4,n−1P4n

P30P31P32P33 P31P32P33P34 P32P33P34P35 . . . P3,n−3P3,n−2P3,n−1P3n

P20P21P22P23 P21P22P23P24 P22P23P24P25 . . . P2,n−3P2,n−2P2,n−1P2n

P10P11P12P13 P11P12P13P14 P12P13P14P15 . . . P1,n−3P1,n−2P1,n−1P1n

P30P31P32P33 P31P32P33P34 P32P33P34P35 . . . P3,n−3P3,n−2P3,n−1P3n

P20P21P22P23 P21P22P23P24 P22P23P24P25 . . . P2,n−3P2,n−2P2,n−1P2n

P10P11P12P13 P11P12P13P14 P12P13P14P15 . . . P1,n−3P1,n−2P1,n−1P1n

P00P01P02P03 P01P02P03P04 P02P03P04P05 . . . P0,n−3P0,n−2P0,n−1P0n

Figure 5.9: Points for a Catmull–Rom Surface Patch.

The expression of the surface is obtained by applying the technique of Cartesian
product (Section 1.9) to the Catmull–Rom curve. Equation (1.28) produces

P(u, w) = (u3, u2, u, 1)BPBT

⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ ,

where B is the parabolic blending matrix of Equation (5.33)

B =

⎛
⎜⎝

−0.5 1.5 −1.5 0.5
1 −2.5 2 −0.5

−0.5 0 0.5 0
0 1 0 0

⎞
⎟⎠

and P is a matrix consisting of the 4×4 points participating in the patch

P =

⎛
⎜⎝

Pi+3,j Pi+3,j+1 Pi+3,j+2 Pi+3,j+3

Pi+2,j Pi+2,j+1 Pi+2,j+2 Pi+2,j+3

Pi+1,j Pi+1,j+1 Pi+1,j+2 Pi+1,j+3

Pi,j Pi,j+1 Pi,j+2 Pi,j+3

⎞
⎟⎠ .

Notice that the patch spans the area bounded by the four central points. In general,
the entire surface spans the area bounded by the four points P11, P1,n−1, Pm−1,1, and
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Pm−1,n−1. If we want the surface to span the area bounded by the four corner points
P00, P0n, Pm0, and Pmn, we have to create two new extreme rows and two new extreme
columns of points, by analogy with the Catmull–Rom curve.

Example: Given the following coordinates for 16 points in file CRpoints

0 0 0 1 0 0 2 0 0 3 0 0
0 1 0 .5 .5 1 2.5 .5 0 3 1 0
0 2 0 .5 2.5 0 2.5 2.5 1 3 2 0
0 3 0 1 3 0 2 3 0 3 3 0

the Mathematica code of Figure 5.10 reads the file and generates the Catmull–Rom
patch. Note how the patch spans only the four center points and how the z coordinates
of 0 and 1 create the particular shape of the patch.

0 0 0 1 0 0 2 0 0 3 0 0
0 1 0 .5 .5 1 2.5 .5 0 3 1 0
0 2 0 .5 2.5 0 2.5 2.5 1 3 2 0
0 3 0 1 3 0 2 3 0 3 3 0

<<:Graphics:ParametricPlot3D.m;
Clear[Pt,Bm,CRpatch,g1,g2,g3];
Pt=ReadList["CRpoints",{Number,Number,Number},
RecordLists->True];
Bm:={{-.5,1.5,-1.5,.5},{1,-2.5,2,-.5},
{-.5,0,.5,0},{0,1,0,0}};
CRpatch[i_]:= (* 1st patch, rows 1-4 *)
{u^3,u^2,u,1}.Bm.Pt[[{1,2,3,4},{1,2,3,4},i]].
Transpose[Bm].{w^3,w^2,w,1};
g1=Graphics3D[{AbsolutePointSize[4],
Table[Point[Pt[[i,j]]],{i,1,4},{j,1,4}]}];
g2=ParametricPlot3D[{CRpatch[1],CRpatch[2],CRpatch[3]},
{u,0,.98,.1},{w,0,1,.1}, DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{-4.322, 0.242, 0.306},
DisplayFunction->$DisplayFunction]

Figure 5.10: A Catmull–Rom Surface Patch.

Example: (extended) We now add four more points to file CRpoints, and use rows
2–5 to calculate and display another patch. Notice the five values of y compared to the
four values of x. The code of Figure 5.11 reads the extended file and generates and
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0 0 0 1 0 0 2 0 0 3 0 0
0 1 0 .5 .5 1 2.5 .5 0 3 1 0
0 2 0 .5 2.5 0 2.5 2.5 1 3 2 0
0 3 0 1 3 0 2 3 0 3 3 0
0 4 0 1 4 0 2 4 0 3 4 0

<<:Graphics:ParametricPlot3D.m;
Clear[Pt,Bm,CRpatch,CRpatchM,g1,g2,g3];
Pt=ReadList["CRpoints",{Number,Number,Number},
RecordLists->True];
Bm:={{-.5,1.5,-1.5,.5},{1,-2.5,2,-.5},
{-.5,0,.5,0},{0,1,0,0}};
CRpatch[i_]:= (* 1st patch, rows 1-4 *)
{u^3,u^2,u,1}.Bm.Pt[[{1,2,3,4},{1,2,3,4},i]].
Transpose[Bm].{w^3,w^2,w,1};
CRpatchM[i_]:= (* 2nd patch, rows 2-5 *)
{u^3,u^2,u,1}.Bm.Pt[[{2,3,4,5},{1,2,3,4},i]].
Transpose[Bm].{w^3,w^2,w,1};
g1=Graphics3D[{AbsolutePointSize[4],
Table[Point[Pt[[i,j]]],{i,1,5},{j,1,4}]}];
g2=ParametricPlot3D[{CRpatch[1],CRpatch[2],CRpatch[3]},
{u,0,.98,.1},{w,0,1,.1}, DisplayFunction->Identity];
g3=ParametricPlot3D[{CRpatchM[1],CRpatchM[2],CRpatchM[3]},
{u,0,1,.1},{w,0,1,.1}, DisplayFunction->Identity];
Show[g1,g2,g3, ViewPoint->{-4.322, 0.242, 0.306},
DisplayFunction->$DisplayFunction]

Figure 5.11: Two Catmull–Rom Surface Patches.

displays both patches. Each patch spans four points, but they share the two points
(0.5, 2.5, 0) and (2.5, 2.5, 1). Note how they connect smoothly.

Tension can be added to a Catmull–Rom surface patch in the same way that it
is added to a Catmull–Rom curve or to a cardinal spline. Figure 5.12 illustrates how
smaller values of s create a surface closer to a flat plane.

5.6 Kochanek–Bartels Splines

The Kochanek–Bartels spline method [Kochanek and Bartels 84] is an extension of the
cardinal spline. In addition to the tension parameter T , this method introduces two new
parameters, c and b to control the continuity and bias, respectively, of individual curve
segments. The curve is a spline computed from a set of n data points, and the three
shape parameters can be specified separately for each point or can be global. Thus, the
user/designer has to specify either 3 or 3n parameters.
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s=0.4 s=0.9

(* A Catmull-Rom surface with tension *)
<<:Graphics:ParametricPlot3D.m;
Clear[Pt,Bm,CRpatch,g1,g2,s];
Pt={{{0,3,0},{1,3,0},{2,3,0},{3,3,0}}, {{0,2,0},{.1,2,.9},{2.9,2,.9},{3,2,0}},
{{0,1,0},{.1,1,.9},{2.9,1,.9},{3,1,0}}, {{0,0,0},{1,0,0},{2,0,0},{3,0,0}}};
Bm:={{-s,2-s,s-2,s},{2s,s-3,3-2s,-s}, {-s,0,s,0},{0,1,0,0}};
CRpatch[i_]:= (* rows 1-4 *)
{u^3,u^2,u,1}.Bm.Pt[[{1,2,3,4},{1,2,3,4},i]]. Transpose[Bm].{w^3,w^2,w,1};
g1=Graphics3D[{AbsolutePointSize[2],
Table[Point[Pt[[i,j]]],{i,1,4},{j,1,4}]}];
s=.4;
g2=ParametricPlot3D[{CRpatch[1],CRpatch[2],CRpatch[3]},
{u,0,1},{w,0,1}, DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{1.431, -4.097, 0.011},
DisplayFunction->$DisplayFunction, PlotRange->All]

Figure 5.12: A Catmull–Rom Surface Patch With Tension.

Consider an interior point Pk where two spline segments meet. When the “arriving”
segment arrives at the point it is moving in a certain direction that we call the arriving
tangent vector. Similarly, the departing segment starts at the point while moving in a
direction that we call the departing tangent vector. The three shape parameters control
these two tangent vectors in various ways. The tension parameter varies the magnitudes
of the arriving and departing vectors. The bias parameter rotates both tangents by the
same amount from their “natural” direction, and the continuity parameter rotates each
tangent separately, so they may no longer point in the same direction.

A complete Kochanek–Bartels spline passes through n given data points P1 through
Pn and is computed and displayed in the following steps:

1. The designer (or user) adds two new points P0 and Pn+1. Recall that each
cardinal spline segment is determined by a group of four points but it goes from the
second point to the third one. Adding point P0 makes it possible to have a segment
from P1 to P2, and similarly for the new point Pn+1. All the original n points are now
interior.

2. Two tangent vectors, arriving and departing, are computed for each of the n
interior points from Equations (5.35) and (5.36). The arriving tangent at P1 and the
departing tangent at Pn are not used, so the total number of tangents to compute is
2n − 2.

3. The n+2 points are divided into n−1 overlapping groups of four points each, and
a Hermite curve segment is computed and displayed for each group. The computations
are similar to those for the cardinal spline, the only difference being that the tangent
vectors are computed in a special way.

Figure 5.13 shows two spline segments Pk−1(t) and Pk(t) that meet at interior
point Pk. This point is the last endpoint of segment Pk−1(t) and the first endpoint
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Pk−1

Pk+1

PkPk−1(t) Pk(t)

Pk
d

Pk
a

Pk−1
a

Pk−1
d

Figure 5.13: Two Kochanek–Bartels Spline Segments.

of segment Pk(t). We denote the two tangent vectors at Pk by Pa
k−1

def= Pt
k−1(1) and

Pd
k

def= Pt
k(0). In a cardinal spline the two tangents Pa

k−1 and Pd
k are identical and are

proportional to the vector Pk+1 −Pk−1 (the chord surrounding Pk). This guarantees a
smooth connection of the two segments. In a Kochanek–Bartels spline, the two tangents
are computed as shown here, they have the same magnitude, but may point in different
directions. Notice that the two endpoints of segment Pk(t) are Pk and Pk+1 and its two
extreme tangent vectors are Pd

k and Pa
k. Here is how the tangent vectors are computed.

Tension. In a cardinal spline, tension is controlled by multiplying the tangent vec-
tors by a parameter s. Small values of s produce high tension, so the tension parameter
T is defined by s = (1 − T )/2. Thus, we can express the tangents as

1 − T

2
(Pk+1 − Pk−1) = (1 − T )

1
2
(
(Pk+1 − Pk) + (Pk − Pk−1)

)
.

This can be interpreted as (1 − T ) multiplied by the average of the “arriving” chord
(Pk − Pk−1) and the “departing” chord (Pk+1 − Pk). In a Kochanek–Bartels spline,
the tension parameter contributes the same quantity

(1 − Tk)
1
2
(
(Pk+1 − Pk) + (Pk − Pk−1)

)
to the two tangents Pa

k−1 and Pd
k at point Pk. The value Tk = 1 results in tangent

vectors of zero magnitude, which corresponds to maximum tension. The value Tk = 0
(zero tension) results in a contribution of (Pk+1−Pk−1)/2 to both tangent vectors. The
value Tk = −1 results in twice that contribution and therefore to long tangents and low
tension.

Continuity. Curves are important in computer animation. An object being an-
imated is often moved along a curve and the (virtual) camera may also move along
a path. Sometimes, an animation path should not be completely smooth, but should
feature jumps and jerks at certain points. This effect is achieved in a Kochanek–Bartels
spline by separately rotating Pa

k−1 and Pd
k, so that they point in different directions.

The contributions of the continuity parameter to these vectors are

Contribution to Pa
k−1 is

1 − ck

2
(Pk − Pk−1) +

1 + ck

2
(Pk+1 − Pk) ,

Contribution to Pd
k is

1 + ck

2
(Pk − Pk−1) +

1 − ck

2
(Pk+1 − Pk) ,

where ck is the continuity parameter at point Pk. The value ck = 0 results in Pa
k−1 = Pd

k

and therefore in a smooth curve at Pk. For ck �= 0, the two tangents are different and
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the curve has a sharp corner (a kink or a cusp) at point Pk, a corner that becomes more
pronounced for large values of ck. The case ck = −1 implies Pa

k−1 = Pk − Pk−1 (the
arriving chord) and Pd

k = Pk+1 − Pk (the departing chord). The case ck = 1 produces
tangent vectors in the opposite directions: Pa

k−1 = Pk+1 − Pk and Pd
k = Pk − Pk−1.

These three extreme cases are illustrated in Figure 5.14.

Pk−1

Pk+1Pk+1−Pk

Pk+1−Pk−1

P k
−P

k−
1

Pk

Pk
d

Pk
d

Pk
d

Pk−1
a Pk−1

a

Pk−1
a

c=0c=−1 c=1

Figure 5.14: Effects of the Continuity Parameter.

Tension and continuity may have the same effect, yet they affect the dynamics of
the curve in different ways as illustrated by Figure 5.15. Part (a) of the figure shows five
points and a two-segment Kochanek–Bartels spline from P1 through P2 to P3. Both
the tension and continuity parameters are set to zero at P2, so the direction of the curve
at this point is the direction of the chord P3 − P1. Setting T = 1 at P2 increases the
tension to maximum at that point, thereby changing the curve to two straight segments
[part (b) of the figure]. However, if we leave T at zero and set c = −1 at P2, the resulting
curve will have the same shape (the direction of the arriving tangent Pa

1 is from P1 to
P2 while the direction of the departing tangent Pd

2 is from P2 to P3).

c=−1

T=1

P0

P1

P2

P3

P4

(a) (b) (c)

or

Figure 5.15: Different Dynamics of Tension and Continuity.

Thus, maximum tension and minimum continuity may result in identical geometries,
but not in identical curves. These parameters have different effects on the speed of the
curve as illustrated in Part (c) of the figure. Specifically, infinite tension results in
nonuniform speed. If the first spline segment P1(t) is plotted by incrementing t in equal
steps, the resulting points are first bunched together, then feature larger gaps, and finally
become dense again.

When the user specifies high (or maximum) tension at a point, the tangent vectors
become short (or zero) at the point, but they get longer as the curve moves away from
the point. The speed of the curve is determined by the size of its tangent vector, which
is why high tension results in nonuniform speed. In contrast, low tension does not
affect the magnitude of the tangent vectors, which is why it does not affect the speed.
When low continuity results in a straight segment, the speed will be uniform. Curved
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segments, however, always have variable speed regardless of the continuity parameters
at the endpoints of the segment.

� Exercise 5.8: Compute the tangent vector of the cardinal spline for s = 0 and show
that its length is zero for t = 0 and t = 1, but is nonzero elsewhere.

Bias. In a cardinal spline with zero tension, both tangent vectors at point Pk have
the value

1
2
(Pk+1 − Pk−1) =

1
2
(
(Pk − Pk−1) + (Pk+1 − Pk)

)
,

implying that the direction of the curve at point Pk is the average of the two chords
connecting at Pk.

The Kochanek–Bartels spline introduces an additional (sometimes misunderstood)
parameter bk to control the direction of the curve at Pk by rotating Pa

k−1 and Pd
k by

the same amount. The contribution of the bias parameter to the arriving and departing
tangents is set (somewhat arbitrarily) to

1 + bk

2
(Pk − Pk−1) +

1 − bk

2
(Pk+1 − Pk) .

Setting bk = 1 changes both tangents to Pk − Pk−1, the chord on the left of Pk. The
other extreme value, bk = −1, changes them to the chord on the right of Pk. Figure 5.16
illustrates the effects of the three extreme values of bk.

P0

P1

P2

P3

P4

(a) (b) (c)

b=0 b=1 b=−1

Figure 5.16: Effect of the Bias Parameter b.

Bias is used in computer animation to obtain the effect of overshooting a point
(bk = 1) or undershooting it (bk = −1).

The three shape parameters are incorporated in the tangent vectors as follows: the
tangent vector that departs point Pk is defined by

Pd
k = Pt

k(0) =
1
2
(1−Tk)(1+bk)(1−ck)(Pk−Pk−1)+

1
2
(1−Tk)(1−bk)(1+ck)(Pk+1−Pk).

(5.35)
Similarly, the tangent vector arriving at point Pk+1 is defined by

Pa
k = Pt

k(1) =
1
2
(1 − Tk+1)(1 + bk+1)(1 + ck+1)(Pk+1 − Pk)

+
1
2
(1 − Tk+1)(1 − bk+1)(1 − ck+1)(Pk+2 − Pk+1). (5.36)
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As a result, the Kochanek–Bartels curve segment Pk(t) from Pk to Pk+1 is constructed
by the familiar expression

Pk(t) = (t3, t2, t, 1)H

⎛
⎜⎝

Pk

Pk+1

Pd
k

Pa
k

⎞
⎟⎠ ,

where H is the Hermite matrix, Equation (4.7). Notice that the segment depends on six
shape parameters, three at Pk and three at Pk+1. The segment also depends on four
points Pk−1, Pk, Pk+1, and Pk+2.

Note also that the second derivatives of this curve are generally not continuous at
the data points.

Example: The three points P1 = (0, 0), P2 = (4, 6), and P3 = (10,−1) are given,
together with the extra points P0 = (−1,−1) and P4 = (11,−2). Up to nine shape
parameters can be specified (three parameters for each of the three interior points).
Figure 5.17 shows the curve with all shape parameters set to zero, and the effects of
setting T to 1 (maximum tension) and to −1 (a loose curve), setting c to 1, and setting b
to 1 (overshoot) and −1 (undershoot), all in P2. The Mathematica code that computed
the curves is also included.
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t=1 t=−1

b=−1b=1c=1

Figure 5.17: Effects of the Three Parameters in the Kochanek–Bartels Spline.

Clear[T,H,B,pts,Pa,Pd,te,bi,co]; (* Kochanek Bartels 3+2 points*)
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
Pd[k_]:=(1-te[[k+1]])(1+bi[[k+1]])(1+co[[k+1]])(pts[[k+1]]-pts[[k]])/2+
(1-te[[k+1]])(1-bi[[k+1]])(1-co[[k+1]])(pts[[k+2]]-pts[[k+1]])/2;
Pa[k_]:=(1-te[[k+2]])(1+bi[[k+2]])(1-co[[k+2]])(pts[[k+2]]-pts[[k+1]])/2+
(1-te[[k+2]])(1-bi[[k+2]])(1+co[[k+2]])(pts[[k+3]]-pts[[k+2]])/2;
pts:={{-1,-1},{0,0},{4,6},{10,-1},{11,-2}};
te={0,0,0,0,0}; bi={0,0,0,0,0}; co={0,0,0,0,0};

B={pts[[2]],pts[[3]],Pd[1],Pa[1]};
Simplify[T.H.B]
Simplify[D[T.H.B,t]]
g1=ParametricPlot[T.H.B,{t,0,1},PlotRange->All];
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B={pts[[3]],pts[[4]],Pd[2],Pa[2]};
Simplify[T.H.B]
Simplify[D[T.H.B,t]]
g2=ParametricPlot[T.H.B,{t,0,1},PlotRange->All];
g3=Graphics[{AbsolutePointSize[4], Table[Point[pts[[i]]],{i,1,5}] }];
Show[g1,g2,g3]

Code For Figure 5.17.

At the forward end of the crankshaft there is mounted

a master bevel gear on six splines; this bevel floats

on the splines against a ball thrust bearing, and, in

turn, the thrust is taken by the crank case cover.

—E. Charles Vivian, A History of Aeronautics





6
Bézier Approximation

Bézier methods for curves and surfaces are popular, are commonly used in practical work,
and are described here in detail. Two approaches to the design of a Bézier curve are
described, one using Bernstein polynomials and the other using the mediation operator.
Both rectangular and triangular Bézier surface patches are discussed, with examples.

Historical Notes

Pierre Etienne Bézier (pronounced “Bez-yea” or “bez-ee-ay”) was an applied math-
ematician with the French car manufacturer Renault. In the early 1960s, encouraged by
his employer, he began searching for ways to automate the process of designing cars. His
methods have been the basis of the modern field of Computer Aided Geometric Design
(CAGD), a field with practical applications in many areas.

It is interesting to note that Paul de Faget de Casteljau, an applied mathematician
with Citroën, was the first, in 1959, to develop the various Bézier methods but—because
of the secretiveness of his employer—never published it (except for two internal technical
memos that were discovered in 1975). This is why the entire field is named after the
second person, Bézier, who developed it.

Bézier and de Casteljau did their work while working for car manufacturers. It is
little known that Steven Anson Coons of MIT did most of his work on surfaces (around
1967) while a consultant for Ford. Another mathematician, William J. Gordon, has
generalized the Coons surfaces, in 1969, as part of his work for General Motors research
labs. In addition, airplane designer James Ferguson also came up with the same ideas
for the construction of curves and surfaces. It seems that car and airplane manufacturers
have been very innovative in the CAGD field. Detailed historical surveys of CAGD can
be found in [Farin 04] and [Schumaker 81].
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6.1 The Bézier Curve

The Bézier curve is a parametric curve P(t) that is a polynomial function of the param-
eter t. The degree of the polynomial depends on the number of points used to define
the curve. The method employs control points and produces an approximating curve
(note the title of this chapter). The curve does not pass through the interior points but
is attracted by them (however, see Exercise 6.7 for an exception). It is as if the points
exert a pull on the curve. Each point influences the direction of the curve by pulling
it toward itself, and that influence is strongest when the curve gets nearest the point.
Figure 6.1 shows some examples of cubic Bézier curves. Such a curve is defined by four
points and is a cubic polynomial. Notice that one has a cusp and another one has a
loop. The fact that the curve does not pass through the points implies that the points
are not “set in stone” and can be moved. This makes it easy to edit, modify and reshape
the curve, which is one reason for its popularity. The curve can also be edited by adding
new points, or deleting points. These techniques are discussed in Sections 6.8 and 6.9,
but they are cumbersome because the mathematical expression of the curve depends on
the number of points, not just on the points themselves.
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Figure 6.1: Four Plane Cubic and One Space Bézier Curves With Their Control Points and Polygons.

The control polygon of the Bézier curve is the polygon obtained when the control
points are connected, in their natural order, with straight segments.

How does one go about deriving such a curve? We describe two approaches to the
design—a weighted sum and a linear interpolation—and show that they are identical.
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6.1.1 Pascal Triangle and the Binomial Theorem

The Pascal triangle and the binomial theorem are related because both employ the same
numbers. The Pascal triangle is an infinite triangular matrix that’s built from the edges
inside

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
. . . . . . . . .

We first fill the left and right edges with ones, then compute each interior element as the
sum of the two elements directly above it. As can be expected, it is not hard to obtain
an explicit expression for the general element of the Pascal triangle. We first number the
rows from 0 starting at the top, and the columns from 0 starting on the left. A general
element is denoted by

(
i
j

)
. We then observe that the top two rows (corresponding to

i = 0, 1) consist of 1’s and that every other row can be obtained as the sum of its
predecessor and a shifted version of its predecessor. For example,

1 3 3 1
+ 1 3 3 1

1 4 6 4 1

This shows that the elements of the triangle satisfy(
i

0

)
=
(

i

i

)
= 1, i = 0, 1, . . . ,(

i

j

)
=
(

i − 1
j − 1

)
+
(

i − 1
j

)
, i = 2, 3, . . . , j = 1, 2, . . . , (i − 1).

From this it is easy to derive the explicit expression(
i

j

)
=
(

i − 1
j − 1

)
+
(

i − 1
j

)

=
(i − 1)!

(j − 1)!(i − j)!
+

(i − 1)!
j!(i − 1 − j)!

=
j(i − 1)!
j!(i − j)!

+
(i − j)(i − 1)!

j!(i − j)!

=
i!

j!(i − j)!
.

Thus, the general element of the Pascal triangle is the well-known binomial coefficient(
i

j

)
=

i!
j!(i − j)!

.
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The binomial coefficient is one of Newton’s many contributions to mathematics.
His binomial theorem states that

(a + b)n =
n∑

i=0

(
n

i

)
aibn−i. (6.1)

This equation can be written in a symmetric way by denoting j = n − i. The result is

(a + b)n =
i+j=n∑
i,j≥0

(i + j)!
i!j!

aibj , (6.2)

from which we can easily guess the trinomial theorem (which is used in Section 6.23)

(a + b + c)n =
i+j+k=n∑
i,j,k≥0

(i + j + k)!
i!j!k!

aibjck. (6.3)

6.2 The Bernstein Form of the Bézier Curve

The first approach to the Bézier curve expresses it as a weighted sum of the points (with,
of course, barycentric weights). Each control point is multiplied by a weight and the
products are added. We denote the control points by P0, P1, . . . ,Pn (n is therefore
defined as 1 less than the number of points) and the weights by Bi. The expression of
weighted sum is

P(t) =
n∑

i=0

PiBi, 0 ≤ t ≤ 1.

The result, P(t), depends on the parameter t. Since the points are given by the user,
they are fixed, so it is the weights that must depend on t. We therefore denote them by
Bi(t). How should Bi(t) behave as a function of t?

We first examine B0(t), the weight associated with the first point P0. We want
that point to affect the curve mostly at the beginning, i.e., when t is close to 0. Thus,
as t grows toward 1 (i.e., as the curve moves away from P0), B0(t) should drop down to
0. When B0(t) = 0, the first point no longer influences the shape of the curve.

Next, we turn to B1(t). This weight function should start small, should have a max-
imum when the curve approaches the second point P1, and should then start dropping
until it reaches zero. A natural question is: When (for what value of t) does the curve
reach its closest approach to the second point? The answer is: It depends on the number
of points. For three points (the case n = 2), the Bézier curve passes closest to the second
point (the interior point) when t = 0.5. For four points, the curve is nearest the second
point when t = 1/3. It is now clear that the weight functions must also depend on n
and we denote them by Bn,i(t). Hence, B3,1(t) should start at 0, have a maximum at
t = 1/3, and go down to 0 from there. Figure 6.2 shows the desired behavior of Bn,i(t)
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1 1 1

B20(t) B22(t) B30(t) B33(t) B40(t) B44(t)

B43(t)B41(t)
B42(t)

B31(t) B32(t)
B21(t)

t t t

(* Just the base functions bern. Note how "pwr" handles 0^0 *)
Clear[pwr,bern];
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i] (* t^i x (1-t)^(n-i) *)
Plot[Evaluate[Table[bern[5,i,t], {i,0,5}]], {t,0,1}, DefaultFont->{"cmr10", 10}];

Figure 6.2: The Bernstein Polynomials for n = 2, 3, 4.

for n = 2, 3, and 4. The five different weights B4,i(t) have their maxima at t = 0, 1/4,
1/2, 3/4, and 1.

The functions chosen by Bézier (and also by de Casteljau) were derived by the
Russian mathematician Sergĕı Natanovich Bernshtĕın in 1912, as part of his work on
approximation theory (see Chapter 6 of [Davis 63]). They are known as the Bernstein
polynomials and are defined by

Bn,i(t) =
(

n
i

)
ti(1 − t)n−i, where

(n

i

)
=

n!
i!(n − i)!

(6.4)

are the binomial coefficients. These polynomials feature the desired behavior and have a
few more useful properties that are discussed here. (In calculating the curve, we assume
that the quantity 00, which is normally undefined, equals 1.)

The Bézier curve is now defined as

P(t) =
n∑

i=0

PiBn,i(t), where Bn,i(t) =
(

n
i

)
ti(1 − t)n−i and 0 ≤ t ≤ 1. (6.5)

Each control point (a pair or a triplet of coordinates) is multiplied by its weight, which
is in the range [0, 1]. The weights act as blending functions that blend the contributions
of the different points.

Here is Mathematica code to calculate and plot the Bernstein polynomials and the
Bézier curve:

(* Just the base functions bern. Note how "pwr" handles 0^0 *)
Clear[pwr,bern,n,i,t]
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]
(* t^i \[Times] (1-t)^(n-i) *)
Plot[Evaluate[Table[bern[5,i,t], {i,0,5}]], {t,0,1},
DefaultFont->{"cmr10", 10}]
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Clear[i,t,pnts,pwr,bern,bzCurve,g1,g2]; (* Cubic Bezier curve *)
(* either read points from file
pnts=ReadList["DataPoints",{Number,Number}]; *)
(* or enter them explicitly *)
pnts={{0,0},{.7,1},{.3,1},{1,0}}; (* 4 points for a cubic curve *)
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]
bzCurve[t_]:=Sum[pnts[[i+1]]bern[3,i,t], {i,0,3}]
g1=ListPlot[pnts, Prolog->AbsolutePointSize[4], PlotRange->All,
AspectRatio->Automatic, DisplayFunction->Identity]
g2=ParametricPlot[bzCurve[t], {t,0,1}, DisplayFunction->Identity]
Show[g1,g2, DisplayFunction->$DisplayFunction]

Next is similar code for a three-dimensional Bézier curve. It was used to draw the
space curve of Figure 6.1.

Clear[pnts,pwr,bern,bzCurve,g1,g2,g3]; (* General 3D Bezier curve *)
pnts={{1,0,0},{0,-3,0.5},{-3,0,0.75},{0,3,1},{3,0,1.5},{0,-3,1.75},{-1,0,2}};
n=Length[pnts]-1;
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i] (* t^i x (1-t)^(n-i) *)
bzCurve[t_]:=Sum[pnts[[i+1]]bern[n,i,t], {i,0,n}];
g1=ParametricPlot3D[bzCurve[t], {t,0,1}, Compiled->False,
DisplayFunction->Identity];
g2=Graphics3D[{AbsolutePointSize[2], Map[Point,pnts]}];
g3=Graphics3D[{AbsoluteThickness[2], (* control polygon *)
Table[Line[{pnts[[j]],pnts[[j+1]]}], {j,1,n}]}];
g4=Graphics3D[{AbsoluteThickness[1.5], (* the coordinate axes *)
Line[{{0,0,3},{0,0,0},{3,0,0},{0,0,0},{0,3,0}}]}];
Show[g1,g2,g3,g4, AspectRatio->Automatic, PlotRange->All, DefaultFont->{"cmr10", 10},
Boxed->False, DisplayFunction->$DisplayFunction];

� Exercise 6.1: Design a heart-shaped Bézier curve based on nine control points.

When Bézier started searching for such functions in the early 1960s, he set the
following requirements [Bézier 86]:

1. The functions should be such that the curve passes through the first and last
control points.

2. The tangent to the curve at the start point should be P1 − P0, i.e., the curve
should start at point P0 moving toward P1. A similar property should hold at the last
point.

3. The same requirement is generalized for higher derivatives of the curve at the
two extreme endpoints. Hence, Ptt(0) should depend only on the first point P0 and
its two neighbors P1 and P2. In general, P(k)(0) should only depend on P0 and its k
neighbors P1 through Pk. This feature provides complete control over the continuity at
the joints between separate Bézier curve segments (Section 6.5).

4. The weight functions should be symmetric with respect to t and (1 − t). This
means that a reversal of the sequence of control points would not affect the shape of the
curve.

5. The weights should be barycentric, to guarantee that the shape of the curve is
independent of the coordinate system.

6. The entire curve lies within the convex hull of the set of control points. (See
property 8 of Section 6.4 for a discussion of this point.)
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The definition shown in Equation (6.5), using Bernstein polynomials as the weights,
satisfies all these requirements. In particular, requirement 5 is proved when Equa-
tion (6.1) is written in the form [t + (1 − t)]n = · · · (see Equation (6.12) if you cannot
figure this out). Following are the explicit expressions of these polynomials for n = 2,
3, and 4.

Example: For n = 2 (three control points), the weights are

B2,0(t) = (2
0 )t0(1 − t)2−0 = (1 − t)2,

B2,1(t) = (2
1 )t1(1 − t)2−1 = 2t(1 − t),

B2,2(t) = (2
2 )t2(1 − t)2−2 = t2,

and the curve is

P(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2

=
(
(1 − t)2, 2t(1 − t), t2

)
(P0,P1,P2)

T

= (t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 0 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ . (6.6)

This is the quadratic Bézier curve.

� Exercise 6.2: Given three points P1, P2, and P3, calculate the parabola that goes
from P1 to P3 and whose start and end tangent vectors point in directions P2 −P1 and
P3 − P2, respectively.

In the special case n = 3, the four weight functions are

B3,0(t) = (3
0 )t0(1 − t)3−0 = (1 − t)3,

B3,1(t) = (3
1 )t1(1 − t)3−1 = 3t(1 − t)2,

B3,2(t) = (3
2 )t2(1 − t)3−2 = 3t2(1 − t),

B3,3(t) = (3
3 )t3(1 − t)3−3 = t3,

and the curve is

P(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3 (6.7)

=
[
(1 − t)3, 3t(1 − t)2, 3t2(1 − t), t3

] [
P0,P1,P2,P3

]T
=
[
(1 − 3t + 3t2 − t3), (3t − 6t2 + 3t3), (3t2 − 3t3), t3

] [
P0,P1,P2,P3

]T
= (t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (6.8)

It is clear that P(t) is a cubic polynomial in t. It is the cubic Bézier curve. In general,
the Bézier curve for points P0, P1,. . . , Pn is a polynomial of degree n.
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� Exercise 6.3: Given the curve P(t) = (1 + t + t2, t3), find its control points.

� Exercise 6.4: The cubic curve of Equation (6.8) is drawn when the parameter t varies
in the interval [0, 1]. Show how to substitute t with a new parameter u such that the
curve will be drawn when −1 ≤ u ≤ +1.

� Exercise 6.5: Calculate the Bernstein polynomials for n = 4.

It can be proved by induction that the general, (n + 1)-point Bézier curve can be
represented by

P(t) = (tn, tn−1, . . . , t, 1)N

⎛
⎜⎜⎜⎜⎝

P0

P1
...

Pn−1

Pn

⎞
⎟⎟⎟⎟⎠ = T(t) · N · P, (6.9)

where

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

)(
n
n

)
(−1)n

(
n
1

)(
n−1
n−1

)
(−1)n−1 · · · (

n
n

)(
n−n
n−n

)
(−1)0(

n
0

)(
n

n−1

)
(−1)n−1

(
n
1

)(
n−1
n−2

)
(−1)n−2 · · · 0

...
... · · · 0(

n
0

)(
n
1

)
(−1)1

(
n
1

)(
n−1

0

)
(−1)0 · · · 0(

n
0

)(
n
0

)
(−1)0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6.10)

Matrix N is symmetric and its elements below the second diagonal are all zeros. Its
determinant therefore equals (up to a sign) the product of the diagonal elements, which
are all nonzero. A nonzero determinant implies a nonsingular matrix. Thus, matrix N
always has an inverse. N can also be written as the product AB, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
n
n

)
(−1)n

(
n
1

)(
n−1
n−1

)
(−1)n−1 · · · (

n
n

)(
n−n
n−n

)
(−1)0(

n
n−1

)
(−1)n−1

(
n
1

)(
n−1
n−2

)
(−1)n−2 · · · 0

...
... · · · 0(

n
1

)
(−1)1

(
n
1

)(
n−1

0

)
(−1)0 · · · 0(

n
0

)
(−1)0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎝
(
n
0

)
0 · · · 0

0
(
n
1

) · · · 0
...

. . .
...

0 0 · · · (
n
n

)

⎞
⎟⎟⎟⎠ .

Figure 6.3 shows the Bézier N matrices for n = 1, 2, . . . , 7.

� Exercise 6.6: Calculate the Bézier curve for the case n = 1 (two control points). What
kind of a curve is it?
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N1 =
(−1 1

1 0

)
,

N2 =

⎛
⎝ 1 −2 1

−2 2 0
1 0 0

⎞
⎠ ,

N3 =

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠ ,

N4 =

⎛
⎜⎜⎜⎝

1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎠ ,

N5 =

⎛
⎜⎜⎜⎜⎜⎝

−1 5 −10 10 −5 1
5 −20 30 −20 5 0

−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

N6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −6 15 −20 15 −6 1
−6 30 −60 60 −30 6 0
15 −60 90 −60 15 0 0
−20 60 −60 20 0 0 0
15 −30 15 0 0 0 0
−6 6 0 0 0 0 0
1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

N7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 7 −21 35 −35 21 −7 1
7 −42 105 −140 105 −42 7 0

−21 105 −210 210 −105 21 0 0
35 −140 210 −140 35 0 0 0
−35 105 −105 35 0 0 0 0
21 −42 21 0 0 0 0 0
−7 7 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 6.3: The First Seven Bézier Basis Matrices.
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� Exercise 6.7: Generally, the Bézier curve passes through the first and last control
points, but not through the intermediate points. Consider the case of three points P0,
P1, and P2 on a straight line. Intuitively, it seems that the curve will be a straight line
and would therefore pass through the interior point P1. Is that so?

The Bézier curve can also be represented in a very compact and elegant way as
P(t) = (1 − t + tE)nP0, where E is the shift operator defined by EPi = Pi+1 (i.e.,
applying E to point Pi produces point Pi+1). The definition of E implies EP0 = P1,
E2P0 = P2, and EiP0 = Pi.

The Bézier curve can now be written

P(t) =
n∑

i=0

(
n

i

)
ti(1 − t)n−iPi =

n∑
i=0

(
n

i

)
ti(1 − t)n−iEiP0

=
n∑

i=0

(
n

i

)
(tE)i(1 − t)n−iP0 =

(
tE + (1 − t)

)n
P0,

where the last step is an application of the binomial theorem, Equation (6.1).
Example: For n = 1, this representation amounts to

P(t) = (1 − t + tE)P0 = P0(1 − t) + P1t.

For n = 2, we get

P(t) = (1 − t + tE)2P0

= (1 − t + tE − t + t2 − t2E + tE − t2E + t2E2)P0

= P0(1 − 2t + t2) + P1(2t − 2t2) + P2t
2

= P0(1 + t)2 + P12t(1 − t) + P2t
2.

Given n + 1 control points P0 through Pn, we can represent the Bézier curve for
the points by P(n)

n (t), where the quantity P(j)
i (t) is defined recursively by

P(j)
i (t) =

{
(1 − t)P(j−1)

i−1 (t) + tP(j−1)
i (t), for j > 0,

Pi, for j = 0.
(6.11)

The following examples show how the definition above is used to generate the quantities
P(j)

i (t) and why P(n)
n (t) is the degree-n curve:

P(0)
0 (t) = P0, P(0)

1 (t) = P1, P(0)
2 (t) = P2, . . . ,P(0)

n (t) = Pn,

P(1)
1 (t) = (1 − t)P(0)

0 (t) + tP(0)
1 (t) = (1 − t)P0 + tP1,

P(2)
2 (t) = (1 − t)P(1)

1 (t) + tP(1)
2 (t)

= (1 − t)
(
(1 − t)P0 + tP1

)
+ t

(
(1 − t)P1 + tP2

)
= (1 − t)2P0 + 2t(1 − t)P1 + t2P2,

P(3)
3 (t) = (1 − t)P(2)

2 (t) + tP(2)
3 (t)
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= (1 − t)
(
(1 − t)P(1)

1 (t) + tP(1)
2 (t)

)
+ t

(
(1 − t)P(1)

2 (t) + tP(1)
3 (t)

)
= (1 − t)2P(1)

1 (t) + 2t(1 − t)P(1)
2 (t) + t2P(1)

3 (t)
= (1 − t)2

(
(1 − t)P0 + tP1

)
+ 2t(1 − t)

(
(1 − t)P1 + tP2

)
+ t2

(
(1 − t)P2 + tP3

)
= (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3.

6.3 Fast Calculation of the Curve

Calculating the Bézier curve is straightforward but slow. However, with a little thinking,
it can be speeded up considerably, a feature that makes this curve very useful in practice.
This section discusses three methods.

Method 1: We notice the following:

The calculation involves the binomials (n
i ) for i = 0, 1, . . . , n, which, in turn, require

the factorials 0!, 1!, . . . , n!. The factorials can be precalculated once (each one from its
predecessor) and stored in a table. They can then be used to calculate all the necessary
binomials and those can also be stored in a table.

The calculation involves terms of the form ti for i = 0, 1, . . . , n and for many t values
in the interval [0, 1]. These can also be precalculated and stored in a two-dimensional
table where they can be accessed later, using t and i as indexes. This has the advantage
that the values of (1 − t)n−i can be read from the same table (using 1 − t and n − i as
row and column indexes).

The calculation now reduces to a sum where each term is a product of four quanti-
ties, one control point and three numbers from tables. Instead of computing

n∑
i=0

(
n

i

)
ti(1 − t)n−iPi,

we need to compute the simple sum

n∑
i=0

Table1[i, n] · Table2[t, i] · Table2[1 − t, n − i] · Pi.

The parameter t is a real number that varies from 0 to 1, so a practical implemen-
tation of this method should use an integer T related to t. For example, if we increment
t in 100 steps, then T should be the integer 100t.

Method 2: Once n is known, each of the n + 1 Bernstein polynomials Bn,i(t),
i = 0, 1, . . . , n, can be precalculated for all the necessary values of t and stored in a
table. The curve can now be calculated as the sum

n∑
i=0

Table[t, i]Pi,
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indicating that each point on the computed curve requires n + 1 table lookups, n + 1
multiplications, and n additions. Again, an integer index T should be used instead of t.

Method 3: Use forward differences in combination with the Taylor series represen-
tation, to speed up the calculation significantly. The Bézier curve, which we denote by
B(t), is drawn pixel by pixel in a loop where t is incremented from 0 to 1 in fixed, small
steps of ∆t. The principle of forward differences (Section 1.5.1) is to find a quantity dB
such that B(t+∆t) = B(t)+dB for any value of t. If such a dB can be found, then it is
enough to calculate B(0) (which, as we know, is simply P0) and use forward differences
to calculate

B(0 + ∆t) = B(0) + dB,

B(2∆t) = B(∆t) + dB = B(0) + 2dB,

and, in general,
B(i∆t) = B

(
(i − 1)∆t

)
+ dB = B(0) + idB.

The point is that dB should not depend on t. If dB turns out to depend on t, then
as we advance t from 0 to 1, we would have to use different values of dB, slowing down
the calculations. The fastest way to calculate the curve is to precalculate dB before the
loop starts and to repeatedly add this precalculated value to B(t) inside the loop.

We calculate dB by using the Taylor series representation of the Bézier curve. In
general, the Taylor series representation of a function f(t) at a point f(t + ∆t) is the
infinite sum

f(t + ∆t) = f(t) + f ′(t)∆t +
f ′′(t)∆2t

2!
+

f ′′′(t)∆3t

3!
+ · · · .

In order to avoid dealing with an infinite sum, we limit our discussion to cubic Bézier
curves. These are the most common Bézier curves and are used by many popular graph-
ics applications. They are defined by four control points and are given by Equations (6.7)
and (6.8):

B(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3

= (t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ .

These curves are cubic polynomials in t, implying that only their first three derivatives
are nonzero. In order to simplify the calculation of their derivatives, we need to express
these curves in the form B(t) = at3 + bt2 + ct + d [Equation (3.1)]. This is done by

B(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3

=
(
3(P1 − P2) − P0 + P3

)
t3 +

(
3(P0 + P2) − 6P1

)
t2 + 3(P1 − P0)t + P0

= at3 + bt2 + ct + d,
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so a = 3(P1 − P2) − P0 + P3, b = 3(P0 + P2) − 6P1, c = 3(P1 − P0), and d = P0.
These relations can also be expressed in matrix notation

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ .

The curve is now easy to differentiate

Bt(t) = 3at2 + 2bt + c, Btt(t) = 6at + 2b, Bttt(t) = 6a;

and the Taylor series representation yields

dB = B(t + ∆t) − B(t)

= Bt(t)∆t +
Btt(t)∆2t

2
+

Bttt(t)∆3t

6
= 3a t2∆t + 2b t∆t + c∆t + 3a t∆2t + b∆2t + a∆3t.

This seems like a failure since the value obtained for dB is a function of t (it should
be denoted by dB(t) instead of just dB) and is also slow to calculate. However, the
original cubic curve B(t) is a degree-3 polynomial in t, whereas dB(t) is only a degree-2
polynomial. This suggests a way out of our dilemma. We can try to express dB(t) by
means of the Taylor series, similar to what we did with the original curve B(t). This
should result in a forward difference ddB(t) that’s a polynomial of degree 1 in t. The
quantity ddB(t) can, in turn, be represented by another Taylor series to produce a
forward difference dddB that’s a degree-0 polynomial, i.e., a constant. Once we do
that, we will end up with an algorithm of the form

precalculate certain quantities;
B = P0;
for t:=0 to 1 step ∆t do
PlotPixel(B);
B:=B+dB; dB:=dB+ddB; ddB:=ddB+dddB;
endfor;

The quantity ddB(t) is obtained by

dB(t + ∆t) = dB(t) + ddB(t) = dB(t) + dBt(t)∆t +
dB(t)tt∆2t

2
,

yielding

ddB(t) = dBt(t)∆t +
dB(t)tt∆2t

2

= (6a t∆t + 2b∆t + 3a∆2t)∆t +
6a∆t∆2t

2
= 6a t∆2t + 2b∆2t + 6a∆3t.
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Finally, the constant dddB is similarly obtained by

ddB(t + ∆t) = ddB(t) + dddB = ddB(t) + ddBt(t)∆t,

yielding dddB = ddBt(t)∆t = 6a∆3t.
The four quantities involved in the calculation of the curve are therefore

B(t) = at3 + bt2 + ct + d,

dB(t) = 3a t2∆t + 2b t∆t + c∆t + 3a t∆2t + b∆2t + a∆3t,

ddB(t) = 6a t∆2t + 2b∆2t + 6a∆3t,

dddB = 6a∆3t.

They all have to be calculated at t = 0, as functions of the four control points Pi, before
the loop starts:

B(0) = d = P0,

dB(0) = c∆t + b∆2t + a∆3t

= 3∆t(P1 − P0) + ∆2t
(
3(P0 + P2) − 6P1

)
+ ∆3t

(
3(P1 − P2) − P0 + P3

)
= 3∆t(P1 − P0) + 3∆2t(P0 − 2P1 + P2)

+ ∆3t
(
3(P1 − P2) − P0 + P3

)
,

ddB(0) = 2b∆2t + 6a∆3t

= 2∆2t
(
3(P0 + P2) − 6P1

)
+ 6∆3t

(
3(P1 − P2) − P0 + P3

)
= 6∆2t(P0 − 2P1 + P2) + 6∆3t

(
3(P1 − P2) − P0 + P3

)
,

dddB = 6a∆3t = 6∆3t
(
3(P1 − P2) − P0 + P3

)
.

The above relations can be expressed in matrix notation as follows:

⎛
⎜⎝

dddB
ddB(0)
dB(0)
B(0)

⎞
⎟⎠ =

⎛
⎜⎝

6 0 0 0
6 2 0 0
1 1 1 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

∆3t 0 0 0
0 ∆2t 0 0
0 0 ∆t 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

a
b
c
d

⎞
⎟⎠

=

⎛
⎜⎝

6 0 0 0
6 2 0 0
1 1 1 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

∆3t 0 0 0
0 ∆2t 0 0
0 0 ∆t 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

=

⎛
⎜⎝

−6∆3t 18∆3t −18∆3t 6∆3t
6∆2t − 6∆3t −12∆2t + 18∆3t 6∆2t − 18∆3t 6∆3t

3∆2t − ∆3t − 3∆t −6∆2t + 3∆3t + 3∆t 3∆2t − 3∆3t ∆3t
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠
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= Q

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ ,

where Q is a 4×4 matrix that can be calculated once ∆t is known.
A detailed examination of the above expressions shows that the following quantities

have to be precalculated: 3∆t, 3∆2t, ∆3t, 6∆2t, 6∆3t, P0−2P1 +P2, and 3(P1−P2)−
P0 + P3. We therefore end up with the simple, fast algorithm shown in Figure 6.4. For
those interested in a quick test, the corresponding Mathematica code is also included.

Q1:=3∆t;
Q2:=Q1×∆t; // 3∆2t
Q3:=∆3t;
Q4:=2Q2; // 6∆2t
Q5:=6Q3; // 6∆3t
Q6:=P0 − 2P1 + P2;
Q7:=3(P1 − P2) − P0 + P3;
B:=P0;
dB:=(P1 − P0)Q1+Q6×Q2+Q7×Q3;
ddB:=Q6×Q4+Q7×Q5;
dddB:=Q7×Q5;
for t:=0 to 1 step ∆t do
Pixel(B);
B:=B+dB; dB:=dB+ddB; ddB:=ddB+dddB;
endfor;

n=3; Clear[q1,q2,q3,q4,q5,Q6,Q7,B,dB,ddB,dddB,p0,p1,p2,p3,tabl];
p0={0,1}; p1={5,.5}; p2={0,.5}; p3={0,1}; (* Four points *)
dt=.01; q1=3dt; q2=3dt^2; q3=dt^3; q4=2q2; q5=6q3;
Q6=p0-2p1+p2; Q7=3(p1-p2)-p0+p3;
B=p0; dB=(p1-p0) q1+Q6 q2+Q7 q3; (* space indicates *)
ddB=Q6 q4+Q7 q5; dddB=Q7 q5; (* multiplication *)
tabl={};
Do[{tabl=Append[tabl,B], B=B+dB, dB=dB+ddB, ddB=ddB+dddB},

{t,0,1,dt}];
ListPlot[tabl];

Figure 6.4: A Fast Bézier Curve Algorithm.

Each point of the curve (i.e., each pixel in the loop) is calculated by three additions
and three assignments only. There are no multiplications and no table lookups. This is
a very fast algorithm indeed!
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6.4 Properties of the Curve

The following useful properties are discussed in this section:
1. The weights add up to 1 (they are barycentric). This is easily shown from

Newton’s binomial theorem (a + b)n =
∑n

i=0

(
n
i

)
aibn−i:

1 =
(
t + (1 − t)

)n =
n∑

i=0

(
n

i

)
ti(1 − t)n−i =

n∑
i=0

Bn,i(t). (6.12)

2. The curve passes through the two endpoints P0 and Pn. We assume that 00 = 1
and observe that

Bn,0(0) =
(

n
0

)
00(1 − 0)n−0 = 1 · 1 · 1n = 1,

which implies

P(0) =
n∑

i=0

PiBn,i(0) = P0Bn,0(0) = P0.

Also, the relation

Bn,n(1) =
(

n
n

)
1n(1 − 1)(n−n) = 1 · 1 · 00 = 1,

implies

P(1) =
n∑

i=0

PiBn,i(1) = PnBn,n(1) = Pn.

3. Another interesting property of the Bézier curve is its symmetry with respect
to the numbering of the control points. If we number the points Pn, Pn−1, . . . ,P0, we
end up with the same curve, except that it proceeds from right (point P0) to left (point
Pn). The Bernstein polynomials satisfy the identity Bn,j(t) = Bn,n−j(1− t), which can
be proved directly and which can be used to prove the symmetry

n∑
j=0

PjBn,j(t) =
n∑

j=0

Pn−jBn,j(1 − t).

4. The first derivative (the tangent vector) of the curve is straightforward to derive

Pt(t) =
n∑

i=0

PiB
′
n,i(t)

=
n∑
0

Pi(n
i )
[
i ti−1(1 − t)n−i + ti(n − i)(1 − t)n−i−1(−1)

]

=
n∑
0

Pi(n
i )i ti−1(1 − t)n−i −

n−1∑
0

Pi(n
i )ti(n − i)(1 − t)n−1−i

(using the identity n(n−1
i−1 ) = i(n

i ), we get)
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= n

n∑
1

Pi(n−1
i−1 )ti−1(1 − t)(n−1)−(i−1) − n

n−1∑
0

Pi(n−1
i )ti(1 − t)n−1−i

(but (n−1
i−1 )ti−1(1 − t)(n−1)−(i−1) = Bn−1,i−1(t), so)

= n

n−1∑
0

Pi+1Bn−1,i(t) − n

n−1∑
0

PiBn−1,i(t)

= n

n−1∑
0

[Pi+1 − Pi]Bn−1,i(t)

= n

n−1∑
0

∆PiBn−1,i(t), where ∆Pi = Pi+1 − Pi. (6.13)

Note that the tangent vector is a Bézier weighted sum (of n terms) where each Bernstein
polynomial is the weight of a “control point” ∆Pi (∆Pi is the difference of two points,
hence it is a vector, but since it is represented by a pair or a triplet, we can conveniently
consider it a point). As a result, the second derivative is obviously another Bézier sum
based on the n − 1 “control points” ∆2Pi = ∆Pi+1 − ∆Pi = Pi+2 − 2Pi+1 + Pi.

5. The weight functions Bn,i(t) have a maximum at t = i/n. To see this, we first
differentiate the weights

B′
n,i(t) = (n

i )
[
i ti−1(1 − t)n−i + ti(n − i)(1 − t)n−i−1(−1)

]
= (n

i )i ti−1(1 − t)n−i − (n
i )ti(n − i)(1 − t)n−1−i,

then equate the derivative to zero (n
i )i ti−1(1 − t)n−i − (n

i )ti(n − i)(1 − t)n−1−i = 0.
Dividing by ti−1(1 − t)n−i−1 yields i(1 − t) − t(n − i) = 0 or t = i/n.

6. The two derivatives Pt(0) and Pt(1) are easy to derive from Equation (6.13) and
are used to reshape the curve. They are Pt(0) = n(P1−P0) and Pt(1) = n(Pn−Pn−1).
Since n is always positive, we conclude that Pt(0), the initial tangent of the curve, points
in the direction from P0 to P1. This initial tangent can easily be controlled by moving
point P1. The situation for the final tangent is similar.

7. The Bézier curve features global control. This means that moving one control
point Pi modifies the entire curve. Most of the change, however, occurs at the vicinity
of Pi. This feature stems from the fact that the weight functions Bn,i(t) are nonzero for
all values of t except t = 0 and t = 1. Thus, any change in a control point Pi affects the
contribution of the term PiBn,i(t) for all values of t. The behavior of the global control
of the Bézier curve is easy to analyze. When a control point Pk is moved by a vector
(α, β) to a new location Pk + (α, β), the curve P(t) is changed from the original sum∑

Bni(t)Pi to

n∑
i=0

Bni(t)Pi + Bnk(t)(α, β) = P(t) + Bnk(t)(α, β).

Thus, every point P(t0) on the curve is moved by the vector Bnk(t0)(α, β). The points
are all moved in the same direction, but by different amounts, depending on t0. This
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behavior is demonstrated by Figure 6.19b. (In principle, the figure is for a rational
curve, but the particular choice of weights in the figure results in a standard curve.)

8. The concept of the convex hull of a set of points was introduced in Section 2.2.5.
Here, we show a connection between the Bézier curve and the convex hull. Let P1,
P2,. . . , Pn be a given set of points and let a point P be constructed as a barycentric
sum of these points with nonnegative weights, i.e.,

P =
n∑

i=1

aiPi, where
∑

ai = 1 and ai ≥ 0. (6.14)

It can be shown that the set of all points P satisfying Equation (6.14) lies in the convex
hull of P1, P2 through Pn. The Bézier curve, Equation (6.5), satisfies Equation (6.14)
for all values of t, so all its points lie in the convex hull of the set of control points. Thus,
the curve is said to have the convex hull property. The significance of this property is
that it makes the Bézier curve more predictable. A designer specifying a set of control
points needs just a little experience to visualize the shape of the curve, since the convex
hull property guarantees that the curve will not “stray” far from the control points.

9. The control polygon of a Bézier curve intersects the curve at the first and the
last points and in general may intersect the curve at a certain number m, of points
(Figure 6.1, where m is 2, 3, or 4, may help to visualize this). If we take a straight
segment and maneuver it to intersect the curve as many times as possible, we find that
the number of intersection points is always less than or equal m. This property of the
Bézier curve may be termed variation diminution.

10. Imagine that each control point is moved 10 units to the left. Such a transfor-
mation will move every point on the curve to the left by the same amount. Similarly,
if the control points are rotated, reflected, or are subject to any other affine transfor-
mation, the entire curve will be transformed in the same way. We say that the Bézier
curve is invariant under affine transformations. However, the curve is not invariant un-
der projections. If we compute a three-dimensional Bézier curve and project every point
on the curve by a perspective projection, we end up with a two-dimensional curve P(t).
If we then project the three-dimensional control points and compute a two-dimensional
Bézier curve Q(t) from the projected, two-dimensional points, the two curves P(t) and
Q(t) will be different. Invariance under projections can be achieved by switching from
the standard Bézier curve to the rational Bézier curve (Section 6.15).

6.5 Connecting Bézier Curves

The Bézier curve is a polynomial of degree n, which makes it slow to compute for large
values of n. It is therefore preferable to connect several Bézier segments, each defined
by a few points, typically four to six, into one smooth curve. The condition for smooth
connection of two such segments is easy to derive. We assume that the control points are
divided into two sets P0,P1, . . . ,Pn and Q0,Q1, . . . ,Qm. In order for the two segments
to connect, Pn must equal Q0. We already know that the extreme tangent vectors of
the Bézier curve satisfy

Qt(0) = m(Q1 − Q0) and Pt(1) = n(Pn − Pn−1).
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The condition for a smooth connection is Qt(0) = Pt(1) or mQ1−mQ0 = nPn−nPn−1.
Substituting Q0 = Pn yields

Pn =
m

m + n
Q1 +

n

m + n
Pn−1. (6.15)

The three points Pn−1, Pn, and Q1 must therefore be dependent. Hence, the condition
for smooth linking is that the three points Pn−1, Pn, and Q1 be collinear. In the special
case where n = m, Equation (6.15) reduces to Pn = 0.5Q1 + 0.5Pn−1, implying that
Pn should be the midpoint between Q1 and Pn−1.

Example: Given that P4 = Q0 = (6,−1), Q1 = (7, 0), and m = 5, we compute
P3 by

(6,−1) =
5

4 + 5
(7, 0) +

4
4 + 5

P3,

which yields P3 = (21/4,−9/4).

� Exercise 6.8: A more general condition for a smooth connection of two curve segments
is αQt(0) = Pt(1). The two tangents at the connection point are in the same direction,
but have different magnitudes. Discuss this condition and what it means for the three
control points Pn−1, Pn = Q0, and Q1.

Breaking large curves into short segments has the additional advantage of easy
control. The Bézier curve offers only global control, but if it is constructed of separate
segments, a change in the control points in one segment will not affect the other segments.
Figure 6.5 is an example of two Bézier segments connected smoothly.

P0

P1

P2

P3=Q0

Q1

Q2

Q3

Q4

Figure 6.5: Connecting Bézier Segments.
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6.6 The Bézier Curve as a Linear Interpolation

The original form of the Bézier curve, as developed by de Casteljau in 1959, is based
on an approach entirely different from that of Bézier. Specifically, it employs linear
interpolation and the mediation operator. Before we start, Figure 6.6 captures the
essence of the concepts discussed here. The figure shows how a set of straight segments
(or, equivalently, a single segment that slides along the base lines) creates the illusion
(some would say, the magic) of a curve. Such a curve is called the envelope of the set,
and the linear interpolation method of this section shows how to extend this simple
construction to more than three points and two segments.

P01
(t)

P
12(t)

P0

P1

P2

Figure 6.6: A Curve as an Envelope of Straight Segments.

Figure 6.6 involves only three points, which makes it easy to derive the expression
of the envelope. The equation of the straight segment from P0 to P1 is P01(t) =
(1−t)P0+tP1 and the equation of the segment between P1 and P2 is similarly P12(t) =
(1− t)P1 + tP2. If we fix t at a certain value, then P01(t) and P12(t) become points on
the two segments. The straight segment connecting these points has the familiar form

P(t) = (1 − t)P01(t) + tP12(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2.

For a fixed t, this is a point on the Bézier curve defined by P0, P1, and P2. When t
is varied, the entire curve segment is obtained. Thus, the magical envelope has become
a familiar curve. We can call this envelope a multilinear curve. Linear, because it
is constructed from straight segments, and multi, because several such segments are
required.

In order to extend this method to more than three points, we need appropriate
notation. We start with a simple definition. The mediation operator t[[P0,P1]] between
two points P0 and P1 is defined as the familiar linear interpolation*

t[[P0,P1]] = (1 − t)P0 + tP1 = t(P1 − P0) + P0, where 0 ≤ t ≤ 1.

The general definition, for any number of points, is recursive. The mediation operator

* The term “mediation” seems to have originated in [Knuth 86].
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can be applied to any number of points according to

t[[P0, . . . ,Pn]] = t[[ t[[P0, . . . ,Pn−1]], t[[P1, . . . ,Pn]] ]],
...

t[[P0,P1,P2,P3]] = t[[ t[[P0,P1,P2]], t[[P1,P2,P3]] ]],
t[[P0,P1,P2]] = t[[ t[[P0,P1]], t[[P1,P2]] ]],

t[[P0,P1]] = (1 − t)P0 + tP1 = t(P1 − P0) + P0, where 0 ≤ t ≤ 1.

This operator creates curves that interpolate between the points. It has the advantages of
being a simple mathematical function (and therefore fast to calculate) and of producing
interpolation curves whose shape can easily be predicted. We examine cases involving
more and more points.

Case 1. Two points. Given the two points P0 and P1, we denote the straight
segment connecting them by L01. It is easy to see that L01 = t[[P0,P1]], because the
mediation operator is a linear function of t and because 0[[P0,P1]] = P0 and 1[[P0,P1]] =
P1. Notice that values of t below 0 or above 1 correspond to those parts of the line
that don’t lie between the two points. Such values may be of interest in certain cases
but not in the present context. The interpolation curve between the two points is
denoted by P1(t) and is simply selected as the line L01 connecting the points. Hence,
P1(t) = L01 = t[[P0,P1]]. Notice that a straight line is also a polynomial of degree 1.

P1

P0

P012

P12

P2

P01

L012 L12

L01

Figure 6.7: Repeated Linear Interpolation.

Case 2. Three points. Given the three points P0, P1, and P2 (Figure 6.7), the
mediation operator can be used to construct an interpolation curve between them in the
following steps:

1. Construct the two lines L01 = t[[P0,P1]] and L12 = t[[P1,P2]].
2. For some 0 ≤ t0 ≤ 1, consider the two points P01 = t0[[P0,P1]] and P12 =

t0[[P1,P2]]. Connect the points with a line L012. The equation of this line is, of course,
t[[P01,P12]] and it equals

L012 = t[[P01,P12]] = t[[ t[[P0,P1]], t[[P1,P2]] ]] = t[[P0,P1,P2]].
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3. For the same t0, select point P012 = t0[[P0,P1,P2]] on L012. The point can be
expressed as

P012 = t0[[P0,P1,P2]] = t0[[P01,P12]] = t0[[ t0[[P0,P1]], t0[[P1,P2]] ]].

Now, release t0 and let it vary from 0 to 1. Point P012 slides along the line L012, whose
endpoints will, in turn, slide along L01 and L12. The curve described by point P012 as
it is sliding is the interpolation curve for P0, P1, and P2 that we are seeking. It is the
equivalent of the envelope curve of Figure 6.6. We denote it by P2(t) and its expression
is easy to calculate, using the definition of t[[Pi,Pj ]]:

P2(t) = t[[P0,P1,P2]]
= t[[ t[[P0,P1]], t[[P1,P2]] ]]
= t[[tP1 + (1 − t)P0, tP2 + (1 − t)P1]]
= t[tP2 + (1 − t)P1] + (1 − t)[tP1 + (1 − t)P0]

= P0(1 − t)2 + 2P1t(1 − t) + P2t
2.

P2(t) is therefore the Bézier curve for three points.
Case 3. Four points. Given the four points P0, P1, P2, and P3, we follow similar

steps:
1. Construct the three lines L01 = t[[P0,P1]], L12 = t[[P1,P2]], and L23 = t[[P2,P3]].
2. Select three points, P01 = t0[[P0,P1]], P12 = t0[[P1,P2]], and P23 = t0[[P2,P3]],

and construct lines L012 = t[[P0,P1,P2]] = t[[P01,P12]] and L123 = t[[P1,P2,P3]] =
t[[P12,P23]].

3. Select two points, P012 = t0[[P01,P12]] on segment L012 and P123 = t0[[P12,P23]]
on segment L123. Construct a new segment L0123 as the mediation t[[P0,P1,P2,P3]] =
t[[P012,P123]].

4. Select point P0123 = t0[[P012,P123]] on L0123.

P1

P0

P01

P012

P123

P23

P2P12

P0123

P3

Figure 6.8: Scaffolding for k = 3.
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When t0 varies from 0 to 1, point P0123 slides along L0123, whose endpoints, in
turn, slide along L012 and L123, which also slide. The entire structure, which resembles
a scaffolding (Figure 6.8), slides along the original three lines. The interpolation curve
for the four original points is denoted by P3(t) and its expression is not hard to calculate,
using the expression for P2(t) = t[[P0,P1,P2]]:

P3(t) = t[[P0,P1,P2,P3]] = t[[ t[[P0,P1,P2]], t[[P1,P2,P3]] ]]

= t[t2P3 + 2t(1 − t)P2 + (1 − t)2P1]

+ (1 − t)[t2P2 + 2t(1 − t)P1 + (1 − t)2P0]

= t3P3 + 3t2(1 − t)P2 + 3t(1 − t)2P1 + (1 − t)3P0.

P3(t) is therefore the Bézier curve for four points.
Case 4. In the general case, n + 1 points P0, P1,. . . , Pn are given. The interpo-

lation curve is, similarly, t[[P0,P1, . . . ,Pn]] = t[[P01...n−1,P12...n]]. It can be proved by
induction that its value is the degree-n polynomial

Pn(t) =
n∑

i=0

PiBn,i(t), where Bn,i(t) = (n
i)t

i(1 − t)n−i,

that is the Bézier curve for n + 1 points. The two approaches to curve construction,
using Bernstein polynomials and using scaffolding, are therefore equivalent.

� Exercise 6.9: The scaffolding algorithm illustrated in Figure 6.8 is easy to understand
because of the special placement of the four control points. The resulting curve is similar
to a circular arc and doesn’t have an inflection point (Section 1.6.8). Prove your grasp of
this algorithm by performing it on the curve of Figure 6.9. Try to select the intermediate
points so as to end up with the inflection point.

P0

P1

P2

P3

Figure 6.9: Scaffolding With an Inflection Point.
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Figure 6.10 summarizes the process of scaffolding in the general case. The process
takes n steps. In the first step, n new points are constructed between the original n + 1
control points. In the second step, n − 1 new points are constructed, between the n
points of step 1 and so on, up to step n, where one point is constructed. The total
number of points constructed during the entire process is therefore

n + (n − 1) + (n − 2) + · · · + 2 + 1 = n(n + 1)/2.

# of
Step Points constructed points

1 P01 P12 P23 . . .Pn−1,n n
2 P012 P123 P234 . . .Pn−2,n−1,n n − 1
3 P0123 P1234 P2345 . . .Pn−3,n−2,n−1,n n − 2
...

...
...

n P0123...n 1 P0123

P01 P12 P23

P0 P1 P2 P3

P012 P123

Figure 6.10: The n Steps of Scaffolding.

6.7 Blossoming

The curves derived and discussed in the preceding chapters are based on polynomials. A
typical curve is a pair or a triplet of polynomials of a certain degree n in t. Mathemati-
cians know that a degree-n polynomial Pn(t) of a single variable can be associated with
a function f(u1, u2, . . . , un) in n variables that’s linear (i.e., degree-1) in each variable
and is symmetric with respect to the order of its variables. Such functions were named
blossom by Lyle Ramshaw in [Ramshaw 87] to denote arrival at a promising stage. (The
term pole was originally used by de Casteljau for those functions.) [Gallier 00] is a
general, detailed reference for this topic.

Given a Bézier curve, this section shows how to derive its blossom and how to use the
blossom to label the intermediate points obtained in the scaffolding construction. Other
sections show how to apply blossoms to curve algorithms, such as curve subdivision
(Section 6.8) and degree elevation (Section 6.9).

Dictionary definitions
Blossom:
Noun: The period of greatest prosperity or productivity.
Verb: To develop or come to a promising stage (Youth blossomed into maturity).
Blossoming: The process of budding and unfolding of blossoms.
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We start by developing a special notation for use with blossoms. The equation
of the straight segment from point P0 to point P1 is the familiar linear interpolation
P(u) = (1 − u)P0 + uP1. Its start point is P(0), its end point is P(1), and a general
point on this segment is P(u) for 0 ≤ u ≤ 1. Because a straight segment has zero
curvature, parameter values indicate arc lengths. Thus, the distance between P(0) and
P(u) is proportional to u and the distance between P(u) and P(1) is proportional to
1 − u. We can therefore consider parameter values u in the interval [0, 1] a measure of
distance (called affine distance) from the start of the segment. We introduce the symbol
〈u〉 to denote point P(u). Similarly, points P(0) and P(1) are denoted by 〈0〉 and 〈1〉,
respectively (Figure 6.11a).

〈0〉
〈1〉P(0)

P(u)
P(1)

〈u〉

(a) (b) (c)

〈0〉 〈0〉

〈1〉
〈1〉

〈00〉 〈11〉

〈01〉=〈10〉

Figure 6.11: Blossom Notation For Points (Two Segments).

A spline consists of segments connected at the interior points, so we consider two
straight segments connected at a common point. The endpoints of each segment are
denoted by 〈0〉 and 〈1〉, but this creates an ambiguity. There are now two points labeled
〈0〉 (Figure 6.11b). We distinguish between them by appending a bit to the symbol of
each point. The two endpoints of one segment are now denoted by 〈00〉 and 〈01〉, while
the two endpoints of the other segment are denoted by 〈10〉 and 〈11〉 (Figure 6.11c).
The common point can be denoted by either 〈01〉 or 〈10〉. So far, it seems that the
order of the individual indexes, 01 or 10, is immaterial. The new notation is symmetric
with respect to the order of point indexes.

We now select a point with a parameter value u on each segment. The two new
points are denoted by 〈0u〉 and 〈1u〉 (Figure 6.12a), but they can also be denoted by
〈u0〉 and 〈u1〉, respectively. The two points are now connected by a segment and a
new point selected at affine distance u on that segment (Figure 6.12b). The new point
deserves the label 〈uu〉 because the endpoints of its segment have the common index u.

〈0u〉 〈1u〉

(a)

〈00〉 〈11〉

〈01〉=〈10〉
〈0u〉

〈1u〉
〈uu〉

(b)

〈00〉

〈01〉=〈10〉
〈0u〉

〈1u〉

(c)

Figure 6.12: Blossom Notation For Points (Two Segments).



200 6. Bézier Approximation

At this point it is clear that the simple scaffolding construction of Figure 6.12b is
identical to the de Casteljau algorithm of Section 6.6, which implies that point 〈uu〉
is located on the Bézier curve defined by the three points 〈00〉, 〈01〉, and 〈11〉 (Fig-
ure 6.12c).

To illustrate this process for more points, it is applied to three line segments in
Figure 6.13. Two bits are appended to each point in order to distinguish between the
segments. Thus, a point is denoted by a triplet of the form 〈00x〉, 〈01x〉, or 〈11x〉.
Notice that our indexes are symmetric, so 〈01x〉 = 〈10x〉, which is why we use 〈11x〉
instead of 〈10x〉 to identify the third segment.

〈00u〉

〈0u1〉

〈u11〉

〈000〉

〈001〉
〈010〉 〈011〉

〈110〉

〈111〉

〈001〉

〈001〉

〈011〉

〈011〉

〈000〉

〈000〉

〈111〉

〈111〉
〈0uu〉

〈uu1〉 〈uuu〉 〈uuu〉

Figure 6.13: Blossom Notation For Points (Three Segments).

Again, our familiarity with the Bézier curve and the de Casteljau algorithm indicates
intuitively that point 〈uuu〉 is located on the Bézier curve defined by the four control
points 〈000〉, 〈001〉, 〈011〉, and 〈111〉.
Let us be grateful to people who make us happy, they are the charming gardeners
who make our souls blossom.

—Marcel Proust.

An actual construction of the scaffolding for this case verifies our intuitive feeling.
Given points 〈0uu〉 and 〈uu1〉, we can write them as 〈0uu〉 and 〈1uu〉, which imme-
diately produces point 〈uuu〉 (it’s located an affine distance u from 〈0uu〉). Similarly,
given points 〈00u〉 and 〈0u1〉, we can write them as 〈00u〉 and 〈01u〉, which immedi-
ately produces point 〈0uu〉. A similar step produces 〈00u〉 if points 〈000〉 and 〈001〉
are given. Thus, we conclude that knowledge of the four control points can produce
all the intermediate points in the scaffolding construction and lead to one point 〈uuu〉
that’s located on the Bézier curve defined by the control points. This is an informal
statement of the blossoming principle.

This principle can be illustrated in a different way. We know that point 〈0u1〉 is
obtained from points 〈001〉 and 〈011〉 as the linear interpolation 〈0u1〉 = (1−u)〈001〉+
u〈011〉. We can therefore start from point 〈uuu〉 and figure out its dependence on the
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four original points 〈000〉, 〈001〉, 〈011〉, and 〈111〉 as follows:

〈uuu〉 = (1 − u)〈0uu〉 + u〈1uu〉
= (1 − u)

[
(1 − u)〈00u〉 + u〈01u〉]+ u

[
(1 − u)〈10u〉 + u〈11u〉]

= (1 − u)2〈00u〉 + 2u(1 − u)〈01u〉 + u2〈11u〉
= (1 − u)2

[
(1 − u)〈000〉 + u〈001〉]+ 2u(1 − u)

[
(1 − u)〈010〉 + u〈011〉]

+ u2
[
(1 − u)〈110〉 + u〈111〉]

= (1 − u)3〈000〉 + 3u(1 − u)2〈001〉 + 3u2(1 − u)〈011〉 + u3〈111〉
= B3,0(u)〈000〉 + B3,1(u)〈001〉 + B3,2(u)〈011〉 + B3,3(u)〈111〉,

where B3,i are the Bernstein polynomials for n = 3. This again shows that point 〈uuu〉
lies on the Bézier curve whose control points are 〈000〉, 〈001〉, 〈011〉, and 〈111〉.

So far, blossoming has been used to assign labels to the control points and to the
intermediate points. Even this simple application illustrates some of the power and
elegance of the blossoming approach. Section 6.6 employs the notation P234, while
various authors denote intermediate point i of scaffolding step j by dj

i . The blossom
labels 〈u1u2 . . .un〉 are much more natural and useful.

We are now ready to see the actual blossom associated with the degree-n polynomial
Pn(t) as given by [Ramshaw 87]. The blossom of Pn(t) is a function f(u1, u2, . . . , un)
that satisfies the following:

1. f is linear in each variable ui.
2. f is symmetric; the order of variables is irrelevant. Thus, f(u1, u2, . . . , un) =

f(u2, u1, . . . , un) or any other permutation of the n variables.
3. The diagonal f(u, u, . . . , u) of f equals Pn(u).
Requirement 1 suggests the name “multilinear function” but [Ramshaw 87] explains

why the term “multiaffine” is more appropriate.
Given Pn(t), such a multiaffine function is easy to derive and is also unique. Here is

an example for n = 3. Given the cubic polynomial P (t) = −3t3+6t2+3t, we are looking
for a function f(u, v, w) that’s linear in each of its three parameters and is symmetric
with respect to their order. The general form of such a function is

f(u, v, w) = a1uvw + a2uv + a3uw + a4vw + a5u + a6v + a7w + a8.

If we also require that f(u, v, w) satisfies f(t, t, t) = P (t) for any t, it becomes obvious
that a1 must equal the coefficient of t3. Because of the required symmetry, the sum
a2 + a3 + a4 must equal the coefficient of t2 and the sum a5 + a6 + a7 must equal the
coefficient of t. Finally, a8 must equal the free term of P (t). Thus, we end up with the
blossom f(u, v, w) = −3uvw+2(uv+uw+vw)+(u+v+w)+0. This blossom is unique.

In general, given an n-degree polynomial, the corresponding multiaffine blossom
function is easy to construct in this way. Here are some examples.

Degree-0. P (t) = a → f(u, v, w) = a,

Degree-1. P (t) = at → f(u, v, w) =
a

3
(u + v + w),
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Degree-2. P (t) = at2 → f(u, v, w) =
a

3
(uv + uw + vw), (6.16)

Degree-3. P (t) = a3t
3 + a2t

2 + a1 + a0

→ f(u, v, w) = a3uvw +
a2

3
(uv + uw + vw) +

a1

3
(u + v + w) + a0.

The discussion above shows that the kth control point of the degree-n polynomial
is associated with blossom value f(00 . . . 0︸ ︷︷ ︸

n−k

11 . . . 1︸ ︷︷ ︸
k

). Notice that there are n + 1 such

values, corresponding to the n + 1 control points, and that blossom symmetry implies
f(011) = f(101) = f(110). If t varies in the general interval [a, b] instead of in [0, 1],
then the kth control point is associated with the blossom value f(aa . . . a︸ ︷︷ ︸

n−k

bb . . . b︸ ︷︷ ︸
k

).

� Exercise 6.10: Given the four points P0 = (0, 1, 1), P1 = (1, 1, 0), P2 = (4, 2, 0), and
P3 = (6, 1, 1), compute the Bézier curve defined by them, construct the three blossoms
associated with this curve, and show that the four blossom values f(0, 0, 0), f(0, 0, 1),
f(0, 1, 1), and f(1, 1, 1) yield the control points.

6.8 Subdividing the Bézier Curve

Bézier methods are interactive. It is possible to control the shape of the curve by moving
the control points and by smoothly connecting individual segments. Imagine a situation
where the points are moved and maneuvered for a while, but the curve “refuses” to get
the right shape. This indicates that there are not enough points. There are two ways to
increase the number of points. One is to add a point to a segment while increasing its
degree. This is called degree elevation and is discussed in Section 6.9.

An alternative is to subdivide a Bézier curve segment into two segments such that
there is no change in the shape of the curve. If the original segment is of degree n (i.e.,
based on n + 1 control points), this is done by adding 2n − 1 new control points and
deleting n − 1 of the original points, bringing the number of points to (n + 1) + (2n −
1)− (n− 1) = 2n + 1. Each new segment is based on n + 1 points and they share one of
the new points. With more points, it is now possible to manipulate the control points
of the two segments in order to fine-tune the shape of the segments. The advantage of
this approach is that both the original and the new curves are based on n + 1 points, so
only one set of Bernstein polynomials is needed.

The new points being added consist of some of the ones constructed in the last k
steps of the scaffolding process. For the case k = 2 (quadratic curve segments), the three
points P01, P12, and P012 are added and the single point P1 is deleted (Figure 6.7).
The two new segments consist of points P0, P01, and P012, and P012, P12, and P2. For
the case k = 3 (cubic segments), the five points P01, P23, P012, P123, and P0123 are
added and the two points P1 and P2 are deleted (Figure 6.8, duplicated here, where
the inset shows the two segments with their control polygons). The two new segments
consist of points P0, P01, P012, and P0123 and P0123, P123, P23, and P3.
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P1

P0

P01

P012

P123

P23

P2P12

P0123

P3

Figure 6.8: Scaffolding and Subdivision for k = 3 (Duplicate).

Using the mediation operator to express the new points in the scaffolding in terms
of the original control points produces, for the quadratic case

P01 = αP0+(1−α)P1, P12 = αP1+(1−α)P2, P012 = α2P0+2α(1−α)P1+(1−α)2P2,

where α is any value in the range [0, 1]. We can therefore write

⎛
⎝ P0

P01

P012

⎞
⎠ =

⎛
⎝ 1 0 0

α 1 − α 0
α2 2α(1 − α) (1 − α)2

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ ,

⎛
⎝P012

P12

P2

⎞
⎠ =

⎛
⎝α2 2α(1 − α) (1 − α)2

0 α 1 − α
0 0 1

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ ,

for the left and right segments, respectively.

� Exercise 6.11: Use the mediation operator to calculate the scaffolding for the cubic
case (four control points). Use α = 1/2 and write the results in terms of matrices, as
above.

In the general case where an (n + 1)-point Bézier curve is subdivided, the n − 1
points being deleted are P1, P2,. . . , Pn−1 (the original n − 1 interior control points).
The 2n − 1 points added are the first and last points constructed in each scaffolding
step (except the last step, where only one point is constructed). Figure 6.10 shows
that these are points P01, Pn−1,n (from step 1), P012, Pn−2,n−1,n (from step 2), P0123,
Pn−3,n−2,n−1,n (from step 3), up to P0123...n from step n.

The 2n − 1 points being added are therefore

P01,P012,P0123, . . . ,P0123...n,P123...n,P23...n, . . . ,Pn−1,n.
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These points can be computed in two ways as follows:

1. Perform the entire scaffolding procedure and save all the points, then use only
the appropriate 2n − 1 points.

2. Compute just the required points. This is done by means of the two relations

(a) P0123...k =
k∑

j=0

Bk,j(t)Pj , and (b) Pn−k,n−k+1,...,n =
k∑

j=0

Bk,j(t)Pn−k+j . (6.17)

(These expressions can be proved by induction.)

The first decision that has to be made when subdividing a curve, is at what point
(what value of t) to break the original curve into two segments. Breaking a curve P(t)
into two segments at t = 0.1 will result in a short segment followed by a long segment,
each defined by n + 1 control points. Obviously, the first segment will be easier to edit.
Once the value of t has been determined, the software computes the 2n− 1 new points.
The original n− 1 interior control points are easy to delete, and the set of 2n + 1 points
is partitioned into two sets. The procedure that computed the original curve is now
invoked twice, to compute and display the two segments.

� Exercise 6.12: Given the four points P0 = (0, 1, 1), P1 = (1, 1, 0), P2 = (4, 2, 0), and
P3 = (6, 1, 1), apply Equation (6.17)a,b to subdivide the Bézier curve

∑
B3,i(t)Pi at

t = 1/3.

Figure 6.14 illustrates how blossoms are applied to the problem of curve subdivision.
The points on the left edge of the triangle become the control points of the first segment.
In blossom notation these are points 〈00 . . .0︸ ︷︷ ︸

n−k

tt . . . t︸ ︷︷ ︸
k

〉. Similarly, the points on the right

edge of the triangle become the control points of the second segment. In blossom notation
these are points 〈11 . . .1︸ ︷︷ ︸

n−k

tt . . . t︸ ︷︷ ︸
k

〉. There are n + 1 points on each edge, but the total is

2n − 1 because the top of the triangle has just one point, namely 〈ttt〉.

〈000〉 〈001〉 〈011〉 〈111〉

〈00t〉 〈01t〉 〈11t〉

〈0tt〉 〈1tt〉

〈ttt〉

Figure 6.14: Blossoming for Subdivision.
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6.9 Degree Elevation

Degree elevation of the Bézier curve is a process that starts with a Bézier curve Pn(t) of
degree n (i.e., defined by n + 1 control points) and adds a control point, thereby ending
up with a curve Pn+1(t).

The advantage of degree elevation is that the new curve is based on more control
points and is therefore easier to edit by maneuvering the points. Its shape can be better
fine-tuned than that of the original curve.

Just adding a control point is not very useful because the new point will change the
shape of the curve globally. Degree elevation is useful only if it is done without modifying
the shape of the curve. The principle of degree elevation is therefore to compute a new
set of n + 2 control points Qi from the original set of n + 1 points Pi, such that the
Bézier curve Pn+1(t) defined by the new points will have the same shape as the original
curve Pn(t).

We start with the innocuous identity that’s true for any Bézier curve P(t)

P(t) =
(
t + (1 − t)

)
P(t) = tP(t) + (1 − t)P(t).

The two Bézier curves on the right-hand side are polynomials of degree n, but because
each is multiplied by t, the polynomial on the left-hand side is of degree n + 1. Thus,
we can represent a degree-(n+1) curve as the weighted sum of two degree-n curves and
write the identity in the form Pn+1(t) = (1 − t)Pn(t) + tPn(t). We use the notation

Pn(t) =
n∑

i=0

(
n
i

)
ti(1 − t)n−iPi

def= 〈〈P0,P1, . . . ,Pn〉〉.

(Recall that the angle bracket notation indicates blossoms. The double-angle bracket
notation used here implies that each point should be multiplied by the corresponding
Bernstein polynomial and the products summed.)

The first step is to express tPn(t) in the new notation

tPn(t) =
n∑

i=0

(
n
i

)
ti+1(1 − t)n−iPi =

m∑
k=1

(
m − 1
k − 1

)
tk(1 − t)m−kPk−1

=
m∑

k=0

(
m

k

)
tk(1 − t)m−k k

m
Pk−1 =

〈〈
0,

P0

n + 1
,

2P1

n + 1
, · · · , nPn−1

n + 1
,Pn

〉〉
.

Here, we first use the substitutions k = i + 1 and m = n + 1, and then the identity(
m − 1
k − 1

)
=

k

m

(
m

k

)
.

The next step is to similarly express (1 − t)Pn(t) in the new notation:

(1 − t)Pn(t) =
〈〈

P0,
nP1

n + 1
,
(n − 1)P2

n + 1
, · · · , Pn

n + 1
, 0
〉〉

.
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Adding the two expressions produces

Pn+1(t) = (1 − t)Pn(t) + tPn(t)

=
〈〈

0,
P0

n + 1
,

2P1

n + 1
, · · · , nPn−1

n + 1
,Pn

〉〉

+
〈〈

P0,
nP1

n + 1
,
(n − 1)P2

n + 1
, · · · , Pn

n + 1
, 0
〉〉

=
〈〈

P0,
P0+nP1

n + 1
,
2P1+(n−1)P2

n + 1
, · · · , nPn−1+Pn

n + 1
,Pn

〉〉
, (6.18)

which shows the n + 2 control points that define the new, degree-elevated Bézier curve.
If the new control points are denoted by Qi, then the expression above can be

summarized by the following notation:

Q0 = P0,

Qi = aiPi−1 + (1 − ai)Pi, where ai =
i

n + 1
, i = 1, 2, . . . , n, (6.19)

Qn+1 = Pn.

� Exercise 6.13: Given the quadratic Bézier curve defined by the three control points
P0, P1, and P2, elevate its degree twice and list the five new control points.

It is possible to elevate the degree of a curve many times. Each time the degree
is elevated, the new set of control points grows by one point and also approaches the
curve. At the limit, the set consists of infinitely many points that are located on the
curve.

� Exercise 6.14: Given the four control points P0 = (0, 0), P1 = (1, 2), P2 = (3, 2), and
P3 = (2, 0), elevate the degree of the Bézier curve defined by them.

The degree elevation algorithm summarized by Equation (6.19) can also be derived
as an application of blossoms. We define a three-parameter function f?(u1, u2, u3) as a
sum of blossoms of two parameters

f?(u1, u2, u3) =
1
3
[
f2(u1, u2) + f2(u1, u3) + f2(u2, u3)

]
=

1
3
[
[a2u1u2 +

a1

2
(u1 + u2) + a0] + [a2u1u3 +

a1

2
(u1 + u3) + a0]

+ [a2u2u3 +
a1

2
(u2 + u3) + a0]

]
=

a2

3
(u1u2 + u1u3 + u2u3) + a1(u1 + u2 + u3) + a0. (6.20)

We notice that f?(u1, u2, u3) satisfies the following three conditions

1. It is linear in each of its three parameters.
2. It is symmetric with respect to the order of the parameters.
3. Its diagonal, f?(u, u, u), yields the polynomial P2(t) = a2t

2 + a1t + a0.
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We therefore conclude that f?(u1, u2, u3) is the (n + 1)-blossom of P2(t). It should
be denoted by f3(u1, u2, u3). It can be shown that the extension of Equation (6.20) to
any fn+1(u1, u2, . . . , un+1) is

fn+1(u1, . . . , un+1) =
1

n + 1

n+1∑
i=1

fn(u1, . . . , ui, . . . , un+1). (6.21)

(where the underline indicates a missing parameter).
Section 6.7 shows that control point Pk of a Bézier curve Pn(t) is given by the

blossom f(0 . . . 0︸ ︷︷ ︸
n−k

1 . . . 1︸ ︷︷ ︸
k

). Equation (6.21) implies that the same control point Qk of a

Bézier curve Pn+1(t) is given as the sum

Qk =
n + 1 − k

n + 1
Pk +

k

n + 1
Pk−1,

which is identical to Equation (6.19).

6.10 Reparametrizing the Curve

The parameter t varies normally in the range [0, 1]. It is, however, easy to reparametrize
the Bézier curve such that its parameter varies in an arbitrary range [a, b], where a and
b are real and a ≤ b. The new curve is denoted by Pab(t) and is simply the original
curve with a different parameter:

Pab(t) = P
(

t − a

b − a

)
.

The two functions Pab(t) and P(t) produce the same curve when t varies from a to b in
the former and from 0 to 1 in the latter. Notice that the new curve has tangent vector

Pt
ab(t) =

1
b − a

Pt

(
t − a

b − a

)
.

Reparametrization can also be used to answer the question: Given a Bézier curve
P(t) where 0 ≤ t ≤ 1, how can we calculate a curve Q(t) that’s defined on an arbitrary
part of P(t)? More specifically, if P(t) is defined by control points Pi and if we select
an interval [a, b], how can we calculate control points Qi such that the curve Q(t) based
on them will go from P(a) to P(b) [i.e., Q(0) = P(a) and Q(1) = P(b)] and will be
identical in shape to P(t) in that interval? As an example, if [a, b] = [0, 0.5], then Q(t)
will be identical to the first half of P(t). The point is that the interval [a, b] does not
have to be inside [0, 1]. We may select, for example, [a, b] = [0.9, 1.5] and end up with a
curve Q(t) that will go from P(0.9) to P(1.5) as t varies from 0 to 1. Even though the
Bézier curve was originally designed with 0 ≤ t ≤ 1 in mind, it can still be calculated for
t values outside this range. If we like its shape in the range [0.2, 1.1], we may want to
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calculate new control points Qi and obtain a new curve Q(t) that has this shape when
its parameter varies in the standard range [0, 1].

Our approach is to define the new curve Q(t) as P([b − a]t + a) and express the
control points Qi of Q(t) in terms of the control points Pi and a and b. We illustrate
this technique with the cubic Bézier curve. This curve is given by Equation (6.8) and
we can therefore write

Q(t) = P([b − a]t + a)

=
(
([b−a]t + a)3, ([b−a]t + a)2, ([b−a]t + a), 1

)⎛⎜⎝
−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (t3, t2, t, 1)

⎛
⎜⎝

(b−a)3 0 0 0
3a(b−a)2 (b−a)2 0 0
3a2(b−a) 2a(b−a) b−a 0

a3 a2 a 1

⎞
⎟⎠
⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= T(t)·A·M·P
= T(t)·M·M−1 ·A·M·P
= T(t)·M·(M−1 ·A·M)·P
= T(t)·M·B·P
= T(t)·M·Q,

where

B = M−1 · A · M

=

⎛
⎜⎜⎜⎝

(1 − a)3 3(a − 1)2a 3(1 − a)a2 a3

(a − 1)2(1 − b) (a − 1)(−2a − b + 3ab) a(a + 2b − 3ab) a2b

(1 − a)(−1 + b)2 (b − 1)(−a − 2b + 3ab) b(2a + b − 3ab) ab2

(1 − b)3 3(b − 1)2b 3(1 − b)b2 b3

⎞
⎟⎟⎟⎠ .

(6.22)

The four new control points Qi, i = 0, 1, 2, 3 are therefore obtained by selecting spe-
cific values for a and b, calculating matrix B, and multiplying it by the column P =
(P0,P1,P2,P3)T .

� Exercise 6.15: Show that the new curve Q(t) is independent of the particular coordi-
nate system used.

Example: We select values b = 2 and a = 1. The new curve Q(t) will be identical
to the part of P(t) from P(1) to P(2) (normally, of course, we don’t calculate this part,
but this example assumes that we are interested in it). Matrix B becomes, in this case

B =

⎛
⎜⎝

0 0 0 1
0 0 −1 2
0 1 −4 4
−1 6 −12 8

⎞
⎟⎠
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(it is easy to verify that each row sums up to 1) and the new control points are

⎛
⎜⎝

Q0

Q1

Q2

Q3

⎞
⎟⎠ = B

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ =

⎛
⎜⎝

P3

−P2 + 2P3

P1 − 4P2 + 4P3

−P0 + 6P1 − 12P2 + 8P3

⎞
⎟⎠ .

To understand the geometrical meaning of these points, we define three auxiliary points
Ri as follows:

R1 = P1 + (P1 − P0),
R2 = P2 + (P2 − P1),
R3 = R2 + (R2 − R1) = P0 − 4P1 + 4P2,

and write the Qi’s in the form
Q0 = P3,

Q1 = P3 + (P3 − P2),
Q2 = Q1 + (Q1 − R2) = P1 − 4P2 + 4P3,

Q3 = Q2 + (Q2 − R3) = −P0 + 6P1 − 12P2 + 8P3.

Figure 6.15 illustrates how the four new points Qi are obtained from the four original
points Pi.

P0

P1

P2
P

3=Q
0

R1
R2

R3

Q1

Q2

Q3

P(t)

Q(t)

Figure 6.15: Control Points for the Case [a, b] = [1, 2].
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Example: We select b = 2 and a = 0. The new curve Q(t) will be identical to
P(t) from P(0) to P(2). Matrix B becomes

B =

⎛
⎜⎝

1 0 0 0
−1 2 0 0

1 −4 4 0
−1 6 −12 8

⎞
⎟⎠ ,

and the new control points Vi are⎛
⎜⎝

V0

V1

V2

V3

⎞
⎟⎠ = B

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ =

⎛
⎜⎝

P0

−P0 + 2P1

P0 − 4P1 + 4P2

−P0 + 6P1 − 12P2 + 8P3

⎞
⎟⎠ ,

and it is easy to see that they satisfy V0 = P0, V1 = R1, V2 = R3, and V3 = Q3.

� Exercise 6.16: (1) Calculate matrix B for a = 1 and b = a + x (where x is positive);
(2) calculate the four new control points Qi as functions of the Pi’s and of b; and (3)
recalculate them for x = 0.75.

� Exercise 6.17: Calculate matrix B and the four new control points Qi for a = 0 and
b = 0.5 (the first half of the curve).

6.11 Cubic Bézier Segments with Tension

Adding a tension parameter to a cubic Bézier segment is done by manipulating tangent
vectors similar to how tension is added to the Cardinal spline (Section 5.4). We use
Hermite interpolation [Equation (4.7)] to calculate a PC segment that starts at point P0

and ends at point P3 and whose extreme tangent vectors are s(P1−P0) and s(P3−P2)
[see Equation (6.23).]

� Exercise 6.18: Any set of four given control points P0, P1, P2, and P3 determines a
unique (cubic) Bézier curve. Show that there is a Hermite curve that has an identical
shape and is determined by the 4-tuple

(P0,P3, 3(P1 − P0), 3(P3 − P2)). (6.23)

Substituting these values in Equation (4.7), we manipulate it so that it ends up
looking like a cubic Bézier segment, Equation (6.8)

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P3

s(P1 − P0)
s(P3 − P2)

⎞
⎟⎠

= (t3, t2, t, 1)

⎛
⎜⎝

2 − s s −s s − 2
2s − 3 −2s s 3 − s
−s s 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (6.24)
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A quick check verifies that Equation (6.24) reduces to the cubic Bézier segment, Equa-
tion (6.8), for s = 3. This value is therefore considered the “neutral” or “standard” value
of the tension parameter s. Since s controls the length of the tangent vectors, small val-
ues of s should produce the effects of higher tension and, in the extreme, the value s = 0
should result in indefinite tangent vectors and in the curve segment becoming a straight
line. To show this, we rewrite Equation (6.24) for s = 0:

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 0 0 −2
−3 0 0 3

0 0 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (2t3 − 3t2 + 1)P0 + (−2t3 + 3t2)P3.

Substituting T = 3t2 − 2t3 for t changes the expression above to the form P(T ) =
(P3 − P0)T + P0, i.e., a straight line from P(0) = P0 to P(1) = P3.

The tangent vector of Equation (6.24) is

Pt(t) = (3t2, 2t, 1, 0)

⎛
⎜⎝

2 − s s −s s − 2
2s − 3 −2s s 3 − s
−s s 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

=
(
3t2(2 − s) + 2t(2s − 3) − s

)
P0 +

(
3st2 − 4st + s

)
P1

+
(−3st2 + 2st

)
P2 +

(
3t2(s − 2) + 2t(3 − s)

)
P3.

(6.25)

The extreme tangents are Pt(0) = s(P1 − P0) and Pt(1) = s(P3 − P2). Substituting
s = 0 in Equation (6.25) yields the tangent vector for the case of infinite tension (compare
with Exercise 5.8)

Pt(t) = 6(t2 − t)P0 − 6(t2 − t)P3 = 6(t − t2)(P3 − P0). (6.26)

� Exercise 6.19: Since the spline segment is a straight line in this case, its tangent vector
should always point in the same direction. Use Equation (6.26) to show that this is so.

See also Section 7.4 for a discussion of cubic B-spline with tension.

We interrupt this program to increase dramatic tension.
—Joe Leahy (as the Announcer) in Freakazoid! (1995).



212 6. Bézier Approximation

6.12 An Interpolating Bézier Curve: I

Any set of four control points P1, P2, P3, and P4 determines a unique Catmull–Rom
segment that’s a cubic polynomial going from point P2 to point P3. It turns out that
such a segment can also be written as a four-point Bézier curve from P2 to P3. All that
we have to do is find two points, X and Y, located between P2 and P3, such that the
Bézier curve based on P2, X, Y, and P3 will be identical to the Catmull–Rom segment.
This turns out to be an easy task. We start with the expressions for a Catmull–Rom
segment defined by P1, P2, P3, and P4, and for a four-point Bézier curve defined by
P2, X, Y, and P3 [Equations (5.33) and (6.8)]:

(t3, t2, t, 1)

⎛
⎜⎝

−0.5 1.5 −1.5 0.5
1 −2.5 2 −0.5

−0.5 0 0.5 0
0 1 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

P3

P4

⎞
⎟⎠ ,

(t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P2

X
Y
P3

⎞
⎟⎠ .

These have to be equal for each power of t, which yields the four equations

−0.5P1+1.5P2−1.5P3+0.5P4= −P2+3X−3Y+P3,
P1−2.5P2+2.0P3−0.5P4= 3P2−6X+3Y,

−0.5P1 +0.5P3 =−3P2+3X,
P2 = P2.

P1

P2 P3

P4

X Y

Figure 6.16: Calculating Points X and Y.

These are easily solved to produce

X = P2 +
1
6
(P3 − P1) and Y = P3 − 1

6
(P4 − P2). (6.27)

The difference (P3 − P1) is the vector from P1 to P3. Thus, point X is obtained
by adding 1/6 of this vector to point P2 (Figure 6.16). Similarly, Y is obtained by
subtracting 1/6 of the difference (P4 − P2) from point P3.

This simple result suggests a novel approach to the problem of interactive curve
design, an approach that combines the useful features of both cubic splines and Bézier
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curves. A cubic spline passes through the (data) points but is not highly interactive. It
can be edited only by modifying the two extreme tangent vectors. A Bézier curve does
not pass through the (control) points, but it is easy to manipulate and edit by moving
the points. The new approach constructs an interpolating Bézier curve in the following
steps:

1. The user is asked to input n points, through which the final curve will pass.
2. The program divides the points into overlapping groups of four points each and

applies Equation (6.27) to compute two auxiliary points X and Y for each group.
3. A Bézier segment is then drawn from the second to the third point of each group,

using points X and Y as its other two control points. Note that points Y and P3 of a
group are on a straight line with point X of the next group. This guarantees that the
individual segments will connect smoothly.

4. It is also possible to draw a Bézier segment from P1 to P2 (and, similarly, from
Pn−1 to Pn). This segment uses the two auxiliary control points X = P1 + 1

6 (P2 −P1)
and Y = P2 − 1

6 (P3 − P1).
Users find it natural to specify such a curve, because they don’t have to worry about

the positions of the control points. The curve consists of n − 1 segments and the two
auxiliary control points of each segment are calculated automatically.

Such a curve is usually pleasing to the eye and rarely needs to be edited. However,
if it is not satisfactory, it can be modified by moving the auxiliary control points. There
are 2(n − 1) of them, which allows for flexible control. A good program should display
the auxiliary points and should make it easy for the user to grab and move any of them.

The well-known drawing program Adobe Illustrator [Adobe 04] uses a similar ap-
proach. The user specifies points with the mouse. At each point Pi, the user presses the
mouse button to fix Pi, then drags the mouse before releasing the button, which defines
two symmetrical points, X (following Pi) and Y (preceding it). Releasing the button is
a signal to the program to draw the segment from Pi−1 to Pi (Figure 6.17).

Pi

Xi

Yi−1

drag

press

Bezier segment

release

Pi−1

Xi−1

Figure 6.17: Construction of Xi and Yi by Click and Drag.

Example: We apply this method to the six points P0 = (1/2, 0), P1 = (1/2, 1/2),
P2 = (0, 1), P3 = (1, 3/2), P4 = (3/2, 1), and P5 = (1, 1/2). The six points yield three



214 6. Bézier Approximation

curve segments and the main step is to calculate the two intermediate points for each
of the three segments. This is trivial and it results in:

X1 = P1 + (P2 − P0)/6 = (5/12, 2/3), Y1 = P2 − (P3 − P1)/6 = (−1/12, 5/6),
X2 = P2 + (P3 − P1)/6 = (1/12, 7/6), Y2 = P3 − (P4 − P2)/6 = (3/4, 3/2),
X3 = P3 + (P4 − P2)/6 = (5/4, 3/2), Y3 = P4 − (P5 − P3)/6 = (3/2, 7/6).

Once the points are available, the three segments can easily be calculated. Each is a
cubic Bézier segment based on a group of four points. The groups are

[P1,X1,Y1,P2], [P2,X2,Y2,P3], [P3,X3,Y3,P4],

and the three curve segments are

P1(t) = (1 − t)3P1 + 3t(1 − t)2X1 + 3t2(1 − t)Y1 + t3P2

=
(
(2 − t − 5t2 + 4t3)/4, (1 + t)/2

)
,

P2(t) = (1 − t)3P2 + 3t(1 − t)2X2 + 3t2(1 − t)Y2 + t3P3

=
(
(t + 7t2 − 4t3)/4, (2 + t + t2 − t3)/2

)
,

P3(t) = (1 − t)3P3 + 3t(1 − t)2X3 + 3t2(1 − t)Y3 + t3P4

=
(
(4 + 3t − t3)/4, (3 − 2t2 + t3)/2

)
.

The 12 points and the three segments are shown in Figure 6.18 (where the segments
have been separated intentionally), as well as the code for the entire example.

6.13 An Interpolating Bézier Curve: II

The approach outlined in this section calculates an interpolating Bézier curve by solving
equations. Given a set of n+1 data points Q0, Q1,. . . , Qn, we select n+1 values ti such
that P(ti) = Qi. We require that whenever t reaches one of the values ti, the curve will
pass through a point Qi. The values ti don’t have to be equally spaced, which provides
control over the “speed” of the curve. All that’s needed to calculate the curve is to
compute the right set of n+1 control points Pi. This is done by setting and solving the
set of n + 1 linear equations P(t0) = Q0, P(t1) = Q1,. . . , P(tn) = Qn that’s expressed
in matrix notation as follows:⎛

⎜⎜⎝
Bn,0(t0) Bn,1(t0) . . . Bn,n(t0)
Bn,0(t1) Bn,1(t1) . . . Bn,n(t1)

...
...

. . .
...

Bn,0(tn) Bn,1(tn) . . . Bn,n(tn)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

P0

P1
...

Pn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Q0

Q1
...

Qn

⎞
⎟⎟⎠ . (6.28)

This set of equations can be expressed as MP = Q and it is easily solved by inverting
M numerically. The solution is P = M−1Q. If we select t0 = 0, the top row of
Equation (6.28) yields P0 = Q0. Similarly, if we select tn = 1, the bottom row of
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(* Interpolating Bezier Curve: I *)
Clear[p0,p1,p2,p3,p4,p5,x1,x2,x3,y1,y2,y3,c1,c2,c3,g1,g2,g3,g4];
p0={1/2,0}; p1={1/2,1/2}; p2={0,1};
p3={1,3/2}; p4={3/2,1}; p5={1,1/2};
x1=p1+(p2-p0)/6;
x2=p2+(p3-p1)/6;
x3=p3+(p4-p2)/6;
y1=p2-(p3-p1)/6;
y2=p3-(p4-p2)/6;
y3=p4-(p5-p3)/6;
c1[t_]:=Simplify[(1-t)^3 p1+3t(1-t)^2 x1+3t^2(1-t) y1+t^3 p2]
c2[t_]:=Simplify[(1-t)^3 p2+3t(1-t)^2 x2+3t^2(1-t) y2+t^3 p3]
c3[t_]:=Simplify[(1-t)^3 p3+3t(1-t)^2 x3+3t^2(1-t) y3+t^3 p4]
g1=ListPlot[{p0,p1,p2,p3,p4,p5,x1,x2,x3,y1,y2,y3},
Prolog->AbsolutePointSize[4], PlotRange->All,
AspectRatio->Automatic, DisplayFunction->Identity]
g2=ParametricPlot[c1[t], {t,0,.9}, DisplayFunction->Identity]
g3=ParametricPlot[c2[t], {t,0.1,.9}, DisplayFunction->Identity]
g4=ParametricPlot[c3[t], {t,0.1,1}, DisplayFunction->Identity]
Show[g1,g2,g3,g4, DisplayFunction->$DisplayFunction]

Figure 6.18: An Interpolating Bézier Curve.
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Equation (6.28) yields Pn = Qn. This decreases the number of equations from n + 1 to
n − 1.

The disadvantage of this approach is that any changes in the ti’s require a recalcu-
lation of M and, consequently, of M−1.

If controlling the speed of the curve is not important, we can select the n + 1
equally-spaced values ti = i/n. Equation (6.28) can now be written

⎛
⎜⎜⎝

Bn,0(0/n) Bn,1(0/n) . . . Bn,n(0/n)
Bn,0(1/n) Bn,1(1/n) . . . Bn,n(1/n)

...
...

. . .
...

Bn,0(n/n) Bn,1(n/n) . . . Bn,n(n/n)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

P0

P1
...

Pn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Q0

Q1
...

Qn

⎞
⎟⎟⎠ . (6.29)

Now, if the data points Qi are moved, matrix M (or, rather, M−1) doesn’t have to be
recalculated. If we number the rows and columns of M 0 through n, then a general
element of M is given by

Mij = Bn,j(i/n) =
(

n

j

)
(i/n)j(1 − i/n)n−j =

n!(n − i)n−jij

j!(n − j)!nn
.

Such elements can be calculated, if desired, as exact rational integers, instead of (ap-
proximate) floating-point numbers.

Example: We use Equation (6.29) to compute the interpolating Bézier curve that
passes through the four points Q0 = (0, 0), Q1 = (1, 1), Q2 = (2, 1), and Q3 = (3, 0).
Since the curve has to pass through the first and last point, we get P0 = Q0 = (0, 0)
and P3 = Q3 = (3, 0). Since the four given points are equally spaced, it makes sense
to assume that P(1/3) = Q1 and P(2/3) = Q2. We therefore end up with the two
equations

3(1/3)(1 − 1/3)2P1 + 3(1/3)2(1 − 1/3)P2 + (1/3)3(3, 0) = (1, 1),

3(2/3)(1 − 2/3)2P1 + 3(2/3)2(1 − 2/3)P2 + (2/3)3(3, 0) = (2, 1),

that are solved to yield P1 = (1, 3/2) and P2 = (2, 3/2). The curve is

P(t) = (1 − t)3(0, 0) + 3t(1 − t)2(1, 3/2) + 3t2(1 − t)(2, 3/2) + t3(3, 0).

� Exercise 6.20: Plot the curve and the eight points.
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6.14 Nonparametric Bézier Curves

The explicit representation of a curve (Section 1.3) has the familiar form y = f(x). The
Bézier curve is, of course, parametric, but it can be represented in a nonparametric
form, similar to explicit curves. Given n + 1 real values (not points) Pi, we start with
the polynomial c(t) =

∑
PiBni(t) and employ the identity

n∑
i=0

(i/n)Bni(t) = t (6.30)

to create the curve

P(t) =
(
t, c(t)

)
=

n∑
i=0

(i/n, Pi)Bni(t).

(This identity is satisfied by the Bernstein polynomials and can be proved by induction.)
It is clear that this version of the curve is defined by the control points (i/n, Pi) which
are equally-spaced on the x axis.

This version of the Bézier curve exists only for two-dimensional curves. In the
general case, where t varies in the interval [a, b], the control points are

(
(a + i(b −

a))/n, Pi

)
.

6.15 Rational Bézier Curves

The rational Bézier curve is an extension of the original Bézier curve [Equation (6.5)] to

P(t) =
∑n

i=0 wiPiBn,i(t)∑n
j=0 wjBn,j(t)

=
n∑

i=0

Pi

[
wiBn,i(t)∑n

j=0 wjBn,j(t)

]
=

n∑
i=0

PiRn,i(t), 0 ≤ t ≤ 1.

The new weight functions Rn,i(t) are ratios of polynomials (which is the reason for the
term rational) and they also depend on weights wi that act as additional parameters
that control the shape of the curve. Note that negative weights might lead to a zero de-
nominator, which is why nonnegative weights are normally used. A rational curve seems
unnecessarily complicated (and for many applications, it is), but it has the following
advantages:

1. It is invariant under projections. Section 6.4 mentions that the Bézier curve is
invariant under affine transformations. If we want to rotate, reflect, scale, or shear such
a curve, we can apply the affine transformation to the control points, then use the new
points to compute the transformed curve. The Bézier curve, however, is not invariant
under projections. If we compute a three-dimensional Bézier curve and project every
point of the curve by a perspective projection, we end up with a plane curve P(t). If
we then project the three-dimensional control points and compute a plane Bézier curve
Q(t) from the projected, two-dimensional points, the two curves P(t) and Q(t) will
generally be different. One advantage of the rational Bézier curve is its invariance under
projections.
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2. The rational Bézier curve provides for accurate control of curve shape, such as
precise representation of conic sections (Appendix A).

Section 7.5 shows that the Bézier curve is a special case of the B-spline curve. As
a result, many current software systems use the rational B-spline (Section 7.14) when
rational curves are required. Such a system can produce the rational Bézier curve as a
special case.

Here is a quick example showing how the rational Bézier curve can be useful. Given
the three points P0 = (1, 0), P1 = (1, 1), and P2 = (0, 1), The Bézier curve defined by
the points is quadratic and is therefore a parabola P(t) = (1−t)2P0+2t(1−t)P1+t2P2 =
(1 − t2, 2t(1 − t)), but the rational Bézier curve with weights w0 = w1 = 1 and w2 = 2
results in the more complex expression

P(t) =
(1 − t)2P0 + 2t(1 − t)P1 + 2t2P2

(1 − t)2 + 2t(1 − t) + 2t2
=
(

1 − t2

1 + t2
,

2t

1 + t2

)

which is a circle, as illustrated by Figure 1.6a.
In general, a quadratic rational Bézier curve with weights w0 = w2 = 1 is a parabola

when w1 = 1, an ellipse for w1 < 1, and a hyperbola for w1 > 1. A quarter circle is
obtained when w1 = cos(α/2) where α is the angle formed by the three control points P0,
P1, and P2 (the control points must also be placed as the three corners of an isosceles
triangle). Page 261 of [Beach 91] proves this construction for the special case α = 90◦.

Appendix A shows, among other features, that the canonical ellipse is represented
as the rational expression(

a
1 − t2

1 + t2
, b

2t

1 + t2

)
, −∞ < t < ∞, (A.7)

and the canonical hyperbola is represented as the rational(
a
1 + t2

1 − t2
, b

2t

1 − t2

)
, −∞ < t < ∞. (A.8)

Accurate control of the shape of the curve is provided by either moving the control
points or varying the weights, and Figure 6.19 illustrates the different responses of the
curve to these changes. Part (a) of the figure shows four curves where weight w1 is
increased from 1 to 4. The curve is pulled toward P1 in such a way that individual
points on the curve converge at P1. In contrast, part (b) of the figure illustrates how
the curve behaves when P1 itself is moved (while all the weights remain set to 1). The
curve is again pulled toward P1, but in such a way that every point on the curve moves
in the same direction as P1 itself.

� Exercise 6.21: Use mathematical software to compute Figure 6.19 or a similar illus-
tration.

Section 6.22 extends the techniques presented here to rectangular Bézier surface
patches.
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Figure 6.19: (a) Varying Weights and (b) Moving Points in a Rational Bézier Curve.

6.16 Rectangular Bézier Surfaces

The Bézier surface patch, like its relative the Bézier curve, is popular and is commonly
used in practice. We discuss the rectangular and the triangular Bézier surface methods,
and this section covers the former.

We start with an (m + 1) × (n + 1) grid of control points arranged in a roughly
rectangular grid

Pm,0 Pm,1 . . . Pm,n

...
...

...
P1,0 P1,1 . . . P1,n

P0,0 P0,1 . . . P0,n

and construct the rectangular Bézier surface patch for the points by applying the tech-
nique of Cartesian product (Section 1.9) to the Bézier curve. Equation (1.28) produces

P(u, w) =
m∑

i=0

n∑
j=0

Bm,i(u)Pi,jBn,j(w)

= (Bm,0(u), Bm,1(u), . . . , Bm,m(u))P

⎛
⎜⎜⎝

Bn,0(w)
Bn,1(w)

...
Bn,n(w)

⎞
⎟⎟⎠

= Bm(u)PBn(w), (6.31)

where P =

⎛
⎜⎜⎝

P0,0 P0,1 . . . P0,n

P1,0 P1,1 . . . P1,n

...
...

. . .
...

Pm,0 Pm,1 . . . Pm,n

⎞
⎟⎟⎠ .
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The surface can also be expressed, by analogy with Equation (6.9), as

P(u, w) = UNPNT WT , (6.32)

where U = (um, um−1, . . . , u, 1), W = (wn, wn−1, . . . , w, 1), and N is defined by Equa-
tion (6.10).

Notice that both P(u0, w) and P(u, w0) (for constants u0 and w0) are Bézier curves
on the surface. A Bézier curve is defined by n + 1 control points, it passes through the
two extreme points, and employs the interior points to determine its shape. Similarly,
a rectangular Bézier surface patch is defined by a rectangular grid of (m + 1) × (n + 1)
control points, it is anchored at the four corner points and employs the other grid points
to determine its shape.

Figure 6.20 is an example of a biquadratic Bézier surface patch with the Mathemat-
ica code that generated it. Notice how the surface is anchored at the four corner points
and how the other control points pull the surface toward them.

Example: Given the six three-dimensional points

P10 P11 P12

P00 P01 P02

the corresponding Bézier surface is generated in the following three steps:

1. Find the orders m and n of the surface. Since the points are numbered starting
from 0, the two orders of the surface are m = 1 and n = 2.

2. Calculate the weight functions B1i(w) and B2j(u). For m = 1, we get

B1i(w) =
(

1
i

)
wi(1 − w)1−i,

which yields the two functions

B10(w) =
(

1
0

)
w0(1 − w)1−0 = 1 − w, B11(w) =

(
1
1

)
w1(1 − w)1−1 = w.

For n = 2, we get

B2j(u) =
(

2
j

)
uj(1 − u)2−j ,

which yields the three functions

B20(u) =
(

2
0

)
u0(1 − u)2−0 = (1 − u)2,

B21(u) =
(

2
1

)
u1(1 − u)2−1 = 2u(1 − u),

B22(u) =
(

2
2

)
u2(1 − u)2−2 = u2.
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(* biquadratic bezier surface patch *)
Clear[pwr,bern,spnts,n,bzSurf,g1,g2];
n=2;
<<:Graphics:ParametricPlot3D.m
spnts={{{0,0,0},{1,0,1},{0,0,2}},
{{1,1,0},{4,1,1},{1,1,2}}, {{0,2,0},{1,2,1},{0,2,2}}};
(* Handle Indeterminate condition *)
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,u_]:=Binomial[n,i]pwr[u,i]pwr[1-u,n-i]
bzSurf[u_,w_]:=Sum[bern[n,i,u] spnts[[i+1,j+1]] bern[n,j,w],
{i,0,n}, {j,0,n}]
g1=ParametricPlot3D[bzSurf[u,w],{u,0,1}, {w,0,1},
Ticks->{{0,1,4},{0,1,2},{0,1,2}},
Compiled->False, DisplayFunction->Identity];
g2=Graphics3D[{AbsolutePointSize[3],
Table[Point[spnts[[i,j]]],{i,1,n+1},{j,1,n+1}]}];
Show[g1,g2, ViewPoint->{2.783, -3.090, 1.243}, PlotRange->All,
DefaultFont->{"cmr10", 10}, DisplayFunction->$DisplayFunction];

Figure 6.20: A Biquadratic Bézier Surface Patch.

3. Substitute the weight functions in the general expression for the surface [Equa-
tion (6.31)]:

P(u, w) =
1∑

i=0

2∑
j=0

B1i(w)PijB2j(u)

= B10(w)
2∑

j=0

P0jB2j(u) + B11(w)
2∑

j=0

P1jB2j(u)

= (1 − w) [P00B20(u) + P01B21(u) + P02B22(u)]
+ w [P10B20(u) + P11B21(u) + P12B22(u)]
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= (1 − w)
[
P00(1 − u)2 + P012u(1 − u) + P02u

2
]

+ w
[
P10(1 − u)2 + P112u(1 − u) + P12u

2
]

= P00(1 − w)(1 − u)2 + P01(1 − w)2u(1 − u) + P02(1 − w)u2

+ P10w(1 − u)2 + P11w2u(1 − u) + P12wu2. (6.33)

The final expression is linear in w since the surface is defined by just two points in
the w direction. Surface lines in this direction are straight. In the u direction, where
the surface is defined by three points, each line is a polynomial of degree 2 in u. This
expression can also be written in the form

(1 − w)
∑

B2,i(u)P0i + w
∑

B2,i(u)P1i = (1 − w)P(u, 0) + wP(u, 1),

which is a lofted surface [Equation (2.14)].

A good technique to check the final expression is to calculate it for the four values
(u, w) = (0, 0), (0, 1), (1, 0), and (1, 1). This should yield the coordinates of the four
original corner points.

The entire surface can now be easily displayed, as a wire frame, by performing
two loops. One draws curves in the u direction and the other draws the curves in the w
direction. Notice that the expression of the patch is the same regardless of the particular
points used. The user may change the points to modify the surface, and the new surface
can be displayed (Figure 6.21) by calculating Equation (6.33).

� Exercise 6.22: Given the 3×4 array of control points

P20 = (0, 2, 0) P21 = (1, 2, 1) P22 = (2, 2, 1) P23 = (3, 2, 0)

P10 = (0, 1, 0) P11 = (1, 1, 1) P12 = (2, 1, 1) P13 = (3, 1, 0)

P00 = (0, 0, 0) P01 = (1, 0, 1) P02 = (2, 0, 1) P03 = (3, 0, 0),

calculate the order-2×3 Bézier surface patch defined by them.

Notice that the order-2×2 Bézier surface patch defined by only four control points
is a bilinear patch. Its form is given by Equation (2.8).

6.16.1 Scaffolding Construction

The scaffolding construction (or de Casteljau algorithm) of Section 6.6 can be directly
extended to the rectangular Bézier patch. Figure 6.22 illustrates the principle. Part (a)
of the figure shows a rectangular Bézier patch defined by 3×4 control points (the circles).
The de Casteljau algorithm for curves is applied to each row of three points to compute
two intermediate points (the squares), followed by a final point (the triangle). The final
point is located on the Bézier curve defined by the row of three points. The result of
applying the de Casteljau algorithm to the four rows is four points (the triangles). The
algorithm is now applied to those four points (Figure 6.22b) to compute one point (the
heavy circle) that’s located both on the curve defined by the four (black triangle) points
and on the Bézier surface patch defined by the 3×4 control points. (This is one of the
many curve algorithms that can be directly extended to surfaces.)
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(* A Bezier surface example. Given the six two-dimensional... *)
Clear[pnts,b1,b2,g1,g2,vlines,hlines];
pnts={{{0,1,0},{1,1,1},{2,1,0}},{{0,0,0},{1,0,0},{2,0,0}}};
b1[w_]:={1-w,w}; b2[u_]:={(1-u)^2,2u(1-u),u^2};
comb[i_]:=(b1[w].pnts)[[i]] b2[u][[i]];
g1=ParametricPlot3D[comb[1]+comb[2]+comb[3], {u,0,1},{w,0,1}, Compiled->False,
DefaultFont->{"cmr10", 10}, DisplayFunction->Identity,
AspectRatio->Automatic, Ticks->{{0,1,2},{0,1},{0,.5}}];
g2=Graphics3D[{AbsolutePointSize[5],
Table[Point[pnts[[i,j]]],{i,1,2},{j,1,3}]}];
vlines=Graphics3D[{AbsoluteThickness[2],
Table[Line[{pnts[[1,j]],pnts[[2,j]]}], {j,1,3}]}];
hlines=Graphics3D[{AbsoluteThickness[2],
Table[Line[{pnts[[i,j]],pnts[[i,j+1]]}], {i,1,2}, {j,1,2}]}];
Show[g1,g2,vlines,hlines, ViewPoint->{-0.139, -1.179, 1.475},
DisplayFunction->$DisplayFunction, PlotRange->All, Shading->False,
DefaultFont->{"cmr10", 10}];

Figure 6.21: A Lofted Bézier Surface Patch.

(a) (b)

Figure 6.22: Scaffolding in a Rectangular Bézier Patch.
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Referring to Equation (6.31), we can summarize this process as follows:

1. Construct the n + 1 curves

Pj(u) =
m∑

i=0

Bmi(u)Pij , j = 0, 1, . . . , n.

2. Apply the de Casteljau algorithm to each curve to end up with n+1 points, one
on each curve.

3. Apply the same algorithm to the n + 1 points to end up with one point.

Alternatively, we can first construct the m + 1 curves

Pi(w) =
n∑

j=0

PijBnj(w), i = 0, 1, . . . , m,

then apply the de Casteljau algorithm to each curve to end up with m + 1 points, and
finally apply the same algorithm to the m + 1 points, and end up with one point.

6.17 Subdividing Rectangular Patches

A rectangular Bézier patch is computed from a given rectangular array of m×n control
points. If there are not enough points, the patch may not have the right shape. Just
adding points is not a good solution because this changes the shape of the surface, forcing
the designer to start reshaping it from the beginning. A better solution is to subdivide
the patch into four connected surface patches, each based on m×n control points. The
technique described here is similar to that presented in Section 6.8 for subdividing the
Bézier curve. It employs the scaffolding construction of Section 6.6.

Figure 6.22a shows a grid of 4×3 control points. The first step in subdividing the
surface patch defined by this grid is for the user to select values for u and w. This
determines a point on the surface, a point that will be common to the four new patches.
The de Casteljau algorithm is then applied to each of the three columns of control points
(the black circles of Figure 6.23a) separately. Each column of four control points P0,
P1, P2, and P3 results in several points, of which the following seven are used for the
subdivision (refer to Figure 6.8) P0, P01, P012, P0123, P123, P23, and P3. The result
of this step is three columns of seven points each (Figure 6.23b where the black circles
indicate original control points).

(a) (b) (c)

Figure 6.23: Subdividing a Rectangular 3×4 Bézier Patch.
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The next step is to apply the de Casteljau algorithm to each of the seven rows of
three points, to obtain five points (refer to Figure 6.7). The resulting grid of 7×5 is
shown in Figure 6.23c. This grid is divided into four overlapping subgrids of 4×3 control
points each, and each subgrid serves to compute a new rectangular Bézier patch.

6.18 Degree Elevation

Degree elevation of the rectangular Bézier surface is similar to elevating the degree of
the Bézier curve (Section 6.9). Specifically, Equation (6.19) is extended in the following
way. Given a rectangular Bézier patch of degree m×n (i.e., defined by (m + 1)×(n + 1)
control points), expressed as a double-polynomial by Equation (6.31)

Pmn(u, w) =
m∑

i=0

n∑
j=0

Bm,i(u)Pi,jBn,j(w), (6.31)

we first write the patch as a double polynomial of degree (m + 1)×n defined by inter-
mediate control points Rij

n∑
j=0

[
m+1∑
i=0

Bm+1,i(u)Ri,j

]
Bn,j(w).

Based on the result of Section 6.9 the intermediate points are given by

Rij =
i

m + 1
Pi−1,j + (1 − i

m + 1
)Pi,j . (6.34)

We then repeat this process to increase the degree to (m + 1)×(n + 1) and write

Pm+1,n+1(u, w) =
m+1∑
i=0

n+1∑
j=0

Bm+1,i(u)Qi,jBn+1,j(w),

where the new (m + 2)× (n + 2) control points Qij can be obtained either from the
intermediate points Rij by an expression similar to Equation (6.34) or directly from the
original control points Pij by a bilinear interpolation

Qij =
(

i

m + 1
, 1 − i

m + 1

)[
Pi−1,j−1 Pi−1,j

Pi,j−1 Pi,j

] [ j
n+1

1 − j
n+1

]
, (6.35)

for i = 0, 1, . . . , m + 1, and j = 0, 1, . . . , n + 1.

If i = 0 or j = 0, indexes of the form i − 1 or j − 1 are negative, but (the nonexistent)
points with such indexes are multiplied by zero, which is why this bilinear interpolation
works well in this case. Similarly, when i = m + 1, point Pi,j does not exist, but the
factor 1 − i/(m + 1) that multiplies it is zero and when j = n + 1, point Pi,j does not
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exist, but the factor 1 − j/(n + 1) that multiplies it is also zero. Thus, Equation (6.35)
always works.

Example: Starting with the 2×3 control points

P10 P11 P12

P00 P01 P02
,

(this implies that m = 1 and n = 2), we perform two steps to elevate the degree of the
rectangular patch defined by them from 1×2 to 2×3. The first step is to elevate the
degree of each of the three columns from 1 (two control points P0i and P1i) to 2 (three
intermediate points R0i, R1i, and R2i). This step produces the nine intermediate points

R20 R21 R22

R10 R11 R12

R00 R01 R02

.

For the leftmost column, the two extreme points R00 and R20 equal the two original
control points P00 and P10, respectively. The middle point R10 is computed from
Equation (6.34) as

R10 = 1
2P00 + (1 − 1

2 )P10.

Similarly, the middle column yields

R01 = P01, R21 = P11, R11 = 1
2P01 + (1 − 1

2 )P11

and the rightmost column results in

R02 = P02, R22 = P12, R12 = 1
2P02 + (1 − 1

2 )P12.

The second step is to elevate the degree of each of the three rows from 2 (three
points Ri0, Ri1, and Ri2) to 3 (four new points Qi0, Qi1, Qi2, and Qi3). This step
produces the 12 new control points

Q20 Q21 Q22 Q23

Q10 Q11 Q12 Q13

Q00 Q01 Q02 Q03

.

For the bottom row, the two extreme points Q00 and Q03 equal the two intermediate
control points R00 and R02, respectively. These, together with the two interior points
Q01 and Q02 are computed from Equations (6.34) and (6.35) as

Q00 = R00 = P00 = (0, 1 − 0)
(

P−1,−1 P−1,0

P0,−1 P00

)(
0
1

)
,

Q01 = 1
3R00 + 2

3R01 = 1
3P00 + 2

3P01 = (0, 1)
(

P−1,0 P−1,1

P0,−1 P01

)(
1/3

1 − 1/3

)
,

Q02 = 2
3R01 + 1

3R02 = 2
3P01 + 1

3P02 = (0, 1)
(

P−1,1 P−1,2

P01 P02

)(
2/3

1 − 2/3

)
,

Q03 = R02 = P02 = (0, 1 − 0)
(

P−1,2 P−1,3

P0,2 P03

)(
1
0

)
.
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The middle row yields

Q10 = R10 = 1
2P00 + (1 − 1

2 )P10 = ( 1
2 , 1 − 1

2 )
(

P0,−1 P00

P1,−1 P10

)(
0
1

)
,

Q11 = 1
3R10 + 2

3R11 = 1
3 ( 1

2P00 + 1
2P10) + 2

3 ( 1
2P01 + 1

2P11)

= (1
2 , 1 − 1

2 )
(

P00 P01

P10 P11

)(
1/3

1 − 1/3

)
,

Q12 = 2
3R11 + 1

3R12 = 2
3 ( 1

2P01 + 1
2P11) + 1

3 ( 1
2P02 + 1

2P12)

= (1
2 , 1 − 1

2 )
(

P01 P02

P11 P12

)(
2/3

1 − 2/3

)
,

Q13 = R12 = 1
2P02 + (1 − 1

2 )P12 = ( 1
2 , 1 − 1

2 )
(

P02 P03

P12 P13

)(
1
0

)
.

Finally, the third row of intermediate points produces the four new control points

Q20 = R20 = P10 = (1, 0)
(

P1,−1 P10

P2,−1 P20

)(
0
1

)
,

Q21 = 1
3R20 + 2

3R21 = 1
3P10 + 2

3P11 = (1, 0)
(

P10 P11

P20 P21

)(
1/3

1 − 1/3

)
,

Q22 = 2
3R21 + 1

3R22 = 2
3P11 + 1

3P12 = (1, 0)
(

P11 P12

P21 P22

)(
2/3
1/3

)
,

Q23 = R22 = P12 = (1, 0)
(

P12 P13

P22 P23

)(
1
0

)
.

Figure 6.24 lists code for elevating the degree of a rectangular Bézier patch based
on 2×3 control points. In part (a) of the figure each point is a symbol, such as p00, and
in part (b) each point is a triplet of coordinates. The points are stored in a 2×3 array
p and are transferred to a 4×5 array r, parts of which remain undefined.

6.19 Nonparametric Rectangular Patches

The explicit representation of a surface (Section 1.8) is z = f(x, y). The rectangular
Bézier surface is, of course, parametric, but it can be represented in a nonparametric
form, similar to explicit surfaces. The derivation in this section is similar to that of
Section 6.14. Given (n + 1)×(m + 1) real values (not points) Pij , we start with the
double polynomial

s(u, w) =
n∑

i=0

m∑
j=0

Bni(u)PijBmj(w)

and employ the identity of Equation (6.30) twice, for u and for w, to create the surface
patch

P(u, w) =
(
u, w, s(u, w)

)
=

n∑
i=0

m∑
j=0

Bni(u)(i/m, j/n, Pij)Bmj(w).
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(* Degree elevation of a rect Bezier surface from 2x3 to 4x5 *)
Clear[p,q,r];
m=1; n=2;
p={{p00,p01,p02},{p10,p11,p12}}; (* array of points *)
r=Array[a, {m+3,n+3}]; (* extended array, still undefined *)
Part[r,1]=Table[a, {i,-1,m+2}];
Part[r,2]=Append[Prepend[Part[p,1],a],a];
Part[r,3]=Append[Prepend[Part[p,2],a],a];
Part[r,n+2]=Table[a, {i,-1,m+2}];
MatrixForm[r] (* display extended array *)
q[i_,j_]:=({i/(m+1),1-i/(m+1)}. (* dot product *)
{{r[[i+1,j+1]],r[[i+1,j+2]]},{r[[i+2,j+1]],r[[i+2,j+2]]}}).
{j/(n+1),1-j/(n+1)}
q[2,3] (* test *)

(a)
(* Degree elevation of a rect Bezier surface from 2x3 to 4x5 *)
Clear[p,r,comb];
m=1; n=2; (* set p to an array of 3D points *)
p={{{0,0,0},{1,0,1},{2,0,0}},{{0,1,0},{1,1,.5},{2,1,0}}};
r=Array[a, {m+3,n+3}]; (* extended array, still undefined *)
Part[r,1]=Table[{a,a,a}, {i,-1,m+2}];
Part[r,2]=Append[Prepend[Part[p,1],{a,a,a}],{a,a,a}];
Part[r,3]=Append[Prepend[Part[p,2],{a,a,a}],{a,a,a}];
Part[r,n+2]=Table[{a,a,a}, {i,-1,m+2}];
MatrixForm[r] (* display extended array *)
comb[i_,j_]:=({i/(m+1),1-i/(m+1)}.
{{r[[i+1,j+1]],r[[i+1,j+2]]},{r[[i+2,j+1]],r[[i+2,j+2]]}})[[1]]{j/(n+1),1-j/(n+1)}[[1]]+
({i/(m+1),1-i/(m+1)}.
{{r[[i+1,j+1]],r[[i+1,j+2]]},{r[[i+2,j+1]],r[[i+2,j+2]]}})[[2]]{j/(n+1),1-j/(n+1)}[[2]];
MatrixForm[Table[comb[i,j], {i,0,2},{j,0,3}]]

(b)

Figure 6.24: Code for Degree Elevation of a Rectangular Bézier Surface.

This version of the Bézier surface is defined by the control points (i/m, j/n, Pij) which
form a regular grid on the xy plane.

6.20 Joining Rectangular Bézier Patches

It is easy, although tedious, to explore the conditions for the smooth joining of two
Bézier surface patches. Figure 6.25 shows a typical example of this problem. It shows
parts of two patches P and Q. It is not difficult to see that the former is based on 4× 5
control points and the latter on 4 × n points, where n ≥ 2. It is also easy to see that
they are joined such that the eight control points along the joint satisfy Pi4 = Qi0 for
i = 0, 1, 2, 3.

The condition for smooth joining of the two surface patches is that the two tangent
vectors at the common boundary are in the same direction, although they may have
different magnitudes. This condition is expressed as

∂P(u, w)
∂w

∣∣∣∣
w=1

= α
∂Q(u, w)

∂w

∣∣∣∣
w=0

.
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P03
Q01

P13
Q11

P23

Q21

P33

Q31

P04=Q00

P14=Q10

P24=Q20

P34=Q30

u=1

w=1 w=0

u=0

P(u,w)

Q(u,w)

Figure 6.25: Smoothly Joining Rectangular Bézier Patches.

The two tangents are calculated from Equation (6.32) (and the B3 and B4 matrices
given by Figure 6.3). For the first patch, we have

∂P(u, w)
∂w

∣∣∣∣
w=1

= (u3, u2, u, 1)B3

⎛
⎜⎝

P00 P01 P02 P03 P04

P10 P11 P12 P13 P14

P20 P21 P22 P23 P24

P30 P31 P32 P33 P34

⎞
⎟⎠BT

4

⎛
⎜⎜⎜⎝

4w3

3w2

2w
1
0

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
w=1

= 4(u3, u2, u, 1)B3

⎛
⎜⎝

P04 − P03

P14 − P13

P24 − P23

P34 − P33

⎞
⎟⎠ .

Similarly, for the second patch,

∂Q(u, w)
∂w

∣∣∣∣
w=0

= 4(u3, u2, u, 1)B3

⎛
⎜⎝

Q01 − Q00

Q11 − Q10

Q21 − Q20

Q31 − Q30

⎞
⎟⎠ .

The conditions for a smooth join are therefore

⎛
⎜⎝

P04 − P03

P14 − P13

P24 − P23

P34 − P33

⎞
⎟⎠ = α

⎛
⎜⎝

Q01 − Q00

Q11 − Q10

Q21 − Q20

Q31 − Q30

⎞
⎟⎠ ,

or Pi4 −Pi3 = α(Qi1 −Qi0) for i = 0, 1, 2, and 3. This can also be expressed by saying
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that the three points Pi3, Pi4 = Qi0, and Qi1 should be on a straight line, although not
necessarily equally spaced.

Example: Each of the two patches in Figure 6.26 is based on 3×3 points (n = 2).
The patches are smoothly connected along the curve defined by the common points
(0, 2, 0), (0, 0, 0), and (0,−2, 0). Note that in the diagram they are slightly separated,
but this was done intentionally. The smooth connection is obtained by making sure
that the points (−2, 2, 0), (0, 2, 0), and (2, 2, 0) are collinear (find the other two collinear
triplets). The coordinates of the points are

−2, 2, 2 −2, 2, 0 0, 2, 0
−4, 0, 2 −4, 0, 0 0, 0, 0
−2,−2, 2 −2,−2, 0 0,−2, 0

0, 2, 0 2, 2, 0 2, 2,−2
0, 0, 0 4, 0, 0 4, 0,−2

0,−2, 0 2,−2, 0 2,−2,−2

The famous Utah teapot was designed in the 1960s at the University of Utah
by digitizing a real teapot (now at the computer museum in Boston) and creating 32
smoothly-connected Bézier patches defined by a total of 306 control points. [Crow 87]
has a detailed description. The coordinates of the points are publicly available, as is
a program to display the entire surface. The program is part of a public-domain gen-
eral three-dimensional graphics package called SIPP (SImple Polygon Processor). SIPP
was originally written in Sweden and is distributed by the Free Software Foundation
[Free 04]. It can be downloaded anonymously from several sources and for different
platforms. A more recent source for this important surface is a Mathematica notebook
by Jan Mangaldan, available at [MathSource 05].

She finished pouring the tea and put down the pot.
“That’s an old teapot,” remarked Harold.
“Sterling silver,” said Maude wistfully. “It was my dear mother-in-law’s, part of a
dinner set of fifty pieces. It was sent to me, one of the few things that survived.” Her
voice trailed off and she absently sipped her tea.

—Colin Higgins, Harold and Maude (1971).

6.21 An Interpolating Bézier Surface Patch

An interpolating rectangular Bézier surface patch solves the following problem. Given
a set of (m + 1)×(n + 1) data points Qkl, compute a set of (m + 1)×(n + 1) control
points Pij , such that the rectangular Bézier surface patch P(u, w) defined by the Pij ’s
will pass through all the data points Qkl.

Section 6.13 discusses the same problem for the Bézier curve, and here we apply the
same approach to the rectangular Bézier surface. We select m + 1 values uk and n + 1
values wl and require that the (m + 1)×(n + 1) surface points P(uk, wl) equal the data
points Qkl for k = 0, 1, . . . , m and l = 0, 1, . . . , n. This results in a set of (m+1)×(n+1)
equations with the control points Pij as the unknowns. Such a set of equations may be
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0

2

4 −2

−1
0

1
2
−2

−1

0

1

2

−4

−2

0

2

0

n=2; Clear[n,bern,p1,p2,g3,bzSurf,patch];
<<:Graphics:ParametricPlot3D.m
p1={{{-2,2,2},{-2,2,0},{0,2,0}},
{{-4,0,2},{-4,0,0},{0,0,0}},
{{-2,-2,2},{-2,-2,0},{0,-2,0}}};
p2={{{0,2,0},{2,2,0},{2,2,-2}},
{{0,0,0},{4,0,0},{4,0,-2}},
{{0,-2,0},{2,-2,0},{2,-2,-2}}};
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,u_]:=Binomial[n,i]pwr[u,i]pwr[1-u,n-i]
bzSurf[p_]:={Sum[p[[i+1,j+1,1]]bern[n,i,u]bern[n,j,w],
{i,0,n,1}, {j,0,n,1}],
Sum[p[[i+1,j+1,2]]bern[n,i,u]bern[n,j,w],
{i,0,n,1}, {j,0,n,1}],
Sum[p[[i+1,j+1,3]]bern[n,i,u]bern[n,j,w],
{i,0,n,1}, {j,0,n,1}]};
patch[s_]:=
ParametricPlot3D[bzSurf[s],{u,0,1,.1}, {w,0.02,.98,.1}];
g3=Graphics3D[{AbsolutePointSize[3],
Table[Point[p1[[i,j]]],{i,1,n+1},{j,1,n+1}]}]
g4=Graphics3D[{AbsolutePointSize[3],
Table[Point[p2[[i,j]]],{i,1,n+1},{j,1,n+1}]}]
Show[patch[p1],patch[p2],g3,g4,
DisplayFunction->$DisplayFunction]

Figure 6.26: Two Bézier Surface Patches.
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big, but is easy to solve with appropriate mathematical software. A general equation in
this set is

P(uk, wl) = Bm(uk)PBn(wl) = Qkl for k = 0, 1, . . . , m and l = 0, 1, . . . , n.

Example: We choose m = 3 and n = 2. The system of equations becomes

[
(1 − uk)3, 3uk(1 − uk)2, 3u2

k(1 − uk), u3
k

] ⎡⎢⎣
P00 P01 P02

P10 P11 P12

P20 P21 P22

P30 P31 P32

⎤
⎥⎦
⎡
⎣ (1 − wl)2

2wl(1 − wl)
w2

l

⎤
⎦ = Qkl,

for k = 0, 1, 2, 3 and l = 0, 1, 2. This is a system of 12 equations in the 12 unknowns
Pij . In most cases the uk values can be equally spaced between 0 and 1 (in our case 0,
0.25, 0.5, 0.75, and 1), and the same for the wl values (in our case, 0, 0.5, and 1).

6.22 Rational Bézier Surfaces

Section 6.15 describe the rational Bézier curve. The principle of this type of curve can be
extended to surfaces, and this section discusses the rational rectangular Bézier surface
patch. This type of surface is expressed by

P(u, w) =

∑n
i=0

∑m
j=0 wijBn,i(u)PijBm,j(w)∑n

k=0

∑m
l=0 wklBn,k(u)Bm,l(w)

0 ≤ u, w ≤ 1. (6.36)

When all the weights wij are set to 1, Equation (6.36) reduces to the original rectangular
Bézier surface patch. The weights serve as additional parameters and provide fine,
accurate control of the shape of the surface. Figure 6.27 shows how the surface patch of
Figure 6.20 can be pulled toward the center point [point (4, 1, 1)] by assigning w22 = 5,
while keeping the other weights set to 1.

Note that weights of 0 and negative weights can also be used, as long as the de-
nominator of Equation (6.36) is not zero.

� Exercise 6.23: Use the code of Figure 6.27 to construct a closed rational Bézier surface
patch based on a grid of 2×4 control points.
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(* A Rational Bezier Surface *)
Clear[pwr,bern,spnts,n,m,wt,bzSurf,cpnts,patch,vlines,hlines,axes];
<<:Graphics:ParametricPlot3D.m
spnts={{{0,0,0},{1,0,1},{0,0,2}},
{{1,1,0},{4,1,1},{1,1,2}}, {{0,2,0},{1,2,1},{0,2,2}}};
m=Length[spnts[[1]]]-1; n=Length[Transpose[spnts][[1]]]-1;
wt=Table[1, {i,1,n+1},{j,1,m+1}];
wt[[2,2]]=5;
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,u_]:=Binomial[n,i]pwr[u,i]pwr[1-u,n-i]
bzSurf[u_,w_]:=
Sum[wt[[i+1,j+1]]spnts[[i+1,j+1]]bern[n,i,u]bern[m,j,w], {i,0,n}, {j,0,m}]/
Sum[wt[[i+1,j+1]]bern[n,i,u]bern[m,j,w], {i,0,n}, {j,0,m}];
patch=ParametricPlot3D[bzSurf[u,w],{u,0,1}, {w,0,1},
Compiled->False, DisplayFunction->Identity];
cpnts=Graphics3D[{AbsolutePointSize[4], (* control points *)
Table[Point[spnts[[i,j]]], {i,1,n+1},{j,1,m+1}]}];
vlines=Graphics3D[{AbsoluteThickness[1], (* control polygon *)
Table[Line[{spnts[[i,j]],spnts[[i+1,j]]}], {i,1,n}, {j,1,m+1}]}];
hlines=Graphics3D[{AbsoluteThickness[1],
Table[Line[{spnts[[i,j]],spnts[[i,j+1]]}], {i,1,n+1}, {j,1,m}]}];
maxx=Max[Flatten[Table[Part[spnts[[i,j]], 1], {i,1,n+1}, {j,1,m+1}]]];
maxy=Max[Flatten[Table[Part[spnts[[i,j]], 2], {i,1,n+1}, {j,1,m+1}]]];
maxz=Max[Flatten[Table[Part[spnts[[i,j]], 3], {i,1,n+1}, {j,1,m+1}]]];
axes=Graphics3D[{AbsoluteThickness[1.5], (* the coordinate axes *)
Line[{{0,0,maxz},{0,0,0},{maxx,0,0},{0,0,0},{0,maxy,0}}]}];
Show[cpnts,hlines,vlines,axes,patch, PlotRange->All, DefaultFont->{"cmr10",10},
DisplayFunction->$DisplayFunction, ViewPoint->{2.783, -3.090, 1.243}];

Figure 6.27: A Rational Bézier Surface Patch.
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6.23 Triangular Bézier Surfaces

The first surface to be derived with Bézier methods was the triangular patch, not the
rectangular. It was developed in 1959 by de Casteljau at Citroën. The triangular Bézier
patch, and its properties, is the topic of this section, but it should be noted that the
ideas and techniques described here can be extended to Bézier surface patches with any
number of edges. [DeRose and Loop 89] discusses one approach, termed S-patch, to this
problem.

The triangular Bézier patch is based on control points Pijk arranged in a roughly
triangular shape. Each control point is three-dimensional and is assigned three indexes
ijk such that 0 ≤ i, j, k ≤ n and i + j + k = n. The value of n is selected by the user
depending on how large and complex the patch should be and how many points are
given. Generally, a large n allows for a finer control of surface details but involves more
computations. The following convention is used here. The first index, i, corresponds to
the left side of the triangle, the second index, j, corresponds to the base, and the third
index, k, corresponds to the right side. The indexing convention for n = 1, 2, 3, and 4
are shown in Figure 6.28. There are n+1 points on each side of the triangle and because
of the way the points are arranged there is a total of 1

2 (n + 1)(n + 2) control points:

P010

P001 P100

P020

P011 P110

P002 P101 P200

P030

P021 P120

P012 P111 P210

P003 P102 P201 P300

P040

P031 P130

P022 P121 P220

P013 P112 P211 P310

P004 P103 P202 P301 P400

Figure 6.28: Control Points for Four Triangular Bézier Patches.

The surface patch itself is defined by the trinomial theorem [Equation (6.3)] as

P(u, v, w) =
∑

i+j+k=n

Pijk
n!

i! j! k!
uivjwk =

∑
i+j+k=n

PijkBn
ijk(u, v, w), (6.37)

where u + v + w = 1. Note that even though P(u, v, w) seems to depend on three
parameters, it only depends on two since their sum is constant. The quantities

Bn
ijk(u, v, w) =

n!
i! j! k!

uivjwk

are the Bernstein polynomials in two variables (bivariate). They are listed here for
n = 1, 2, 3, and 4

v
w u

v2

2vw 2uv
w2 2uw u2

v3

3v2w 3uv2

3vw2 6uvw 3u2v
w3 3uw2 3u2w u3

v4

4v3w 4uv3

6v2w2 12uv2w 6u2v2

4vw3 12uvw2 12u2vw 4u3v
w4 4uw3 6u2w2 4u3w u4
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The three boundary curves are obtained from Equation (6.37) by setting each of
the three parameters in turn to zero. Setting, for example, u = 0 causes all terms of
Equation (6.37) except those with i = 0 to vanish. The result is

P(0, v, w) =
∑

j+k=n

P0jk
n!

j! k!
vjwk, where v + w = 1. (6.38)

Since v + w = 1, Equation (6.38) can be written

P(v) =
∑

j+k=n

P0jk
n!

j! k!
vj(1 − v)k =

n∑
j=0

P0j,n−j
n!

j! (n − j)!
vj(1 − v)n−j , (6.39)

and this is a Bézier curve.
Example: We illustrate the case n = 2. There should be three control points on

each side of the triangle, for a total of 1
2 (2 + 1)(2 + 2) = 6 points. We select simple

coordinates:

(1, 3, 1)
(0.5, 1, 0) (1.5, 1, 0)

(0, 0, 0) (1, 0,−1) (2, 0, 0)

Note that four points have z = 0 and are therefore on the same plane. It is only the
other two points, with z = ±1, that cause this surface to be nonflat.

The expression of the surface is

P(u, v, w) =
∑

i+j+k=2

Pijk
n!

i! j! k!
uivjwk

= P002
2!

0! 0! 2!
w2 + P101

2!
1! 0! 1!

uw + P200
2!

2! 0! 0!
u2

+ P011
2!

0! 1! 1!
vw + P110

2!
1! 1! 0!

uv + P020
2!

0! 2! 0!
v2

= (0, 0, 0)w2 + (1, 0,−1)2uw + (2, 0, 0)u2

+ (0.5, 1, 0)2vw + (1.5, 1, 0)2uv + (1, 3, 1)v2

= (2uw + 2u2 + vw + 3uv + v2, 2vw + 2uv + 3v2,−2uw + v2).

It is now easy to verify that the following special values of u, v, and w produce the three
corner points:

u v w point

0 0 1 (0,0,0)
0 1 0 (1,3,1)
1 0 0 (2,0,0)

But the most important feature of this triangular surface patch is the way it is displayed
as a wireframe. The principle is to display this surface as a mesh of three families of
curves (compare this with the two families in the case of a rectangular surface patch).
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(a) (b)

u=
.1

.2
.3

1
.9

Figure 6.29: (a) Lines in the u Direction. (b) The Complete Surface Patch.

Each family consists of curves that are roughly parallel to one side of the triangle (Fig-
ure 6.29a,b).

� Exercise 6.24: Write pseudo-code to draw the three families of curves.

A triangle of points can be stored in a one-dimensional array in computer memory.
A simple way of doing this is to store the top point P0n0 at the beginning of the array,
followed by a short segment consisting of the two points P0,n−1,1 and P1,n−1,0 of the
next row down, followed by a longer segment with three points, and so on, ending with
a segment with the n + 1 points P00n, P1,0,n−1, through Pn00 of the bottom row of the
triangle. A direct check verifies that the points Pijk of triangle row j, where 0 ≤ j ≤ n,
start at location j(j +1)/2+1 of the array, so they can be indexed by j(j +1)/2+1+ i.

Figure 6.30 lists Mathematica code to compute one point on such a surface patch.
Note that j is incremented from 0 to n (from the bottom to the top of the triangle), so
the first iteration needs the points in the last segment of the array and the last iteration
needs the single point at the start of the array. This is why the index to array pnts
depends on j as (n − j)(n − j + 1)/2 + 1 instead of as j(j + 1)/2 + 1.

(* Triangular Bezier surface patch *)
pnts={{3,3,0}, {2,2,0},{4,2,1}, {1,1,0},{3,1,1},{5,1,2},
{0,0,0},{2,0,1},{4,0,2},{6,0,3}};
B[i_,j_,k_]:=(n!/(i! j! k!))u^i v^j w^k;
n=3; u=1/6; v=2/6; w=3/6; Tsrpt={0,0,0};
indx:=(n-j)(n-j+1)/2+1+i;
Do[{k=n-i-j, Tsrpt=Tsrpt+B[i,j,k] pnts[[indx]]}, {j,0,n}, {i,0,n-j}];
Tsrpt

Figure 6.30: Code for One Point in a Triangular Bézier Patch.

Figure 6.31 shows a triangular Bézier surface patch for n = 3. Note how the
wireframe consists of three sets of curves and how the curves remain roughly parallel and
don’t converge toward the three corners. (This should be compared with the triangular
Coons patch of Figure 3.14 and with the lofted sweep surface of Figure 9.3. Each of these
surfaces is displayed as two families of curves and has one dark corner as a result.) The
control points and control polygon are also shown. The Mathematica code for this type
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x

y
z

(* Triangular Bezier patch by Garry Helzer *)
rules=Solve[{u{a1,b1}+v{a2,b2}+w{a3,b3}=={x,y},u+v+w==1},{u,v,w}]
BarycentricCoordinates[Polygon[{{a1_,b1_},{a2_,b2_},{a3_,b3_}}]] \
[{x_,y_}]={u,v,w}/.rules//Flatten
Subdivide[l_]:=l/. Polygon[{p_,q_,r_}] :> Polygon /@ \
({{p+p,p+q,p+r},{p+q,q+q,q+r},{p+r,q+r,r+r},{p+q,q+r,r+p}}/2)
Transform[F_][L_]:= L /. Polygon[l_] :> Polygon[F /@ l]
P[L_][{u_,v_,w_}]:=
Module[{x,y,z,n=(Sqrt[8Length[L]+1]-3)/2},
((List @@ Expand[(x+y+z)^n]) /. {x->u,y->v,z->w}).L]
Param[T_,L_][{x_,y_}]:=With[{p=BarycentricCoordinates[T][{x, y}]},P[L][p]]

Run the code below in a separate cell

(* Triangular bezier patch for n=3 *)
T=Polygon[{{1, 0}, {0, 1}, {0, 0}}];
L={P300,P210,P120,P030, P201,P111,P021, P102,P012, P003} \
={{3,0,0},{2.5,1,.5},{2,2,0},{1.5,3,0},
{2,0,1},{1.5,1,2},{1,2,.5}, {1,0,1},{.5,1,.5}, {0,0,0}};
SubT=Nest[Subdivide, T, 3];
Patch=Transform[Param[T, L]][SubT];
cpts={PointSize[0.02], Point/@L};
coord={AbsoluteThickness[1],
Line/@{{{0,0,0},{3.2,0,0}},{{0,0,0},{0,3.4,0}},{{0,0,0},{0,0,1.3}}}};
cpolygon={AbsoluteThickness[2],
Line[{P300,P210,P120,P030,P021,P012,P003,P102,P201,P300}],
Line[{P012,P102,P111,P120,P021,P111,P201,P210,P111,P012}]};
Show[Graphics3D[{cpolygon,cpts,coord,Patch}], Boxed->False, PlotRange->All,
ViewPoint->{2.620, -3.176, 2.236}];

Figure 6.31: A Triangular Bézier Surface Patch For n = 3.

When an object is digitized mechanically, the result is a large set of points. Such a
set can be converted to a set of triangles by the Delaunay triangulation algorithm.
This method produces a collection of edges that satisfy the following property: For
each edge we can find a circle containing the edge’s endpoints but not containing any
other points.
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of surface is due to Garry Helzer and it works by recursively subdividing the triangular
patch into subtriangles. Figure C.2 shows two triangular Bézier patches for n = 2 and
n = 4.

6.23.1 Scaffolding Construction

The scaffolding construction (or de Casteljau algorithm) of Section 6.6 can be directly
extended to triangular Bézier patches. The bivariate Bernstein polynomials that are the
basis of this type of surface are given by Equation (6.3), rewritten here

Bn
i,j,k(u, v, w) =

i+j+k=n∑
i,j,k≥0

(i + j + k)!
i!j!k!

uivjwk =
i+j+k=n∑
i,j,k≥0

n!
i!j!k!

uivjwk. (6.3)

Direct checking verifies that these polynomials satisfy the recursion relation

Bn
i,j,k(u, v, w) = uBn−1

i−1,jk(u, v, w) + vBn−1
i,j−1,k(u, v, w) + wBn−1

i,j,k−1(u, v, w), (6.40)

and this relation is the basis of the de Casteljau algorithm for the triangular Bézier
patch.

The algorithm starts with the original control points Pijk which are labeled P0
ijk.

The user selects a triplet (u, v, w) where u + v + w = 1 and performs the following step
n times to compute intermediate points Pr

i,j,k for r = 1, . . . , n and i + j + k = n − r

Pr
i,j,k = uPr−1

i+1,j,k + vPr−1
i,j+1,k + wPr−1

i,j,k+1.

The last step produces the single point Pn
000 that’s also the point produced by the

selected triplet (u, v, w) on the triangular Bézier patch.
The algorithm is illustrated here for n = 3. Figure 6.28 shows the 10 control

points. Assuming that the user has selected appropriate values for the parameter triplet
(u, v, w), the first step of the algorithm produces the six intermediate points for n = 2
(Figure 6.32)

P1
002 = uP0

102 + vP0
012 + wP0

003, P1
101 = uP0

201 + vP0
111 + wP0

102,

P1
200 = uP0

300 + vP0
210 + wP0

201, P1
011 = uP0

111 + vP0
021 + wP0

012,

P1
110 = uP0

210 + vP0
120 + wP0

111, P1
020 = uP0

120 + vP0
030 + wP0

021.

The second step produces the three intermediate points for n = 1

P2
001 = uP1

101 + vP1
011 + wP1

002,

P2
100 = uP1

200 + vP1
110 + wP1

101,

P2
010 = uP1

110 + vP1
020 + wP1

011.

And the third step produces the single point

P3
000 = uP2

100 + vP2
010 + wP2

001.

This is the point that corresponds to the particular triplet (u, v, w) on the triangular
patch defined by the 10 original control points.
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003 102 201

012
111

021

030

120

210

300

××

× × ×

×

× ×

×

×

002 101 200

110011

020

001 100

010

Figure 6.32: Scaffolding in a Triangular Bézier Patch.

� Exercise 6.25: Illustrate this algorithm for n = 4. Start with the 15 original control
points and list the four steps of the scaffolding. The final result should be the single
point P4

000. Assume that the user has selected appropriate values for the parameter
triplet (u, v, w),

� Exercise 6.26: Assuming the values u = 1/6, v = 2/6, and w = 3/6, and the 10 control
points

(3, 3, 0)
(2, 2, 0) (4, 2, 1)

(1, 1, 0) (3, 1, 1) (5, 1, 2)
(0, 0, 0) (2, 0, 1) (4, 0, 2) (6, 0, 3)

apply the de Casteljau algorithm to compute point P3
000, then use Equation (6.37) to

compute surface point P(1/6, 2/6/3/6) and show that the two points are identical.

It can be shown that a general intermediate point Pr
i,j,k(u, v, w) obtained in the

scaffolding process can be computed directly from the control points without having to
go through the intermediate steps of the scaffolding construction, as follows

Pr
ijk(u, v, w) =

∑
a+b+c=r

Br
abc(u, v, w)Pi+a,j+b,k+c.

Example: For n = 3 and r = 1, point P1
002 is computed directly from the control

points as the sum

P1
002 =

∑
a+b+c=1

B1
abc(u, v, w)P0+a,0+b,2+c = uP102 + vP012 + wP003.

For n = 3 and r = 2, point P2
001 is computed directly as the sum

P2
001 =

∑
a+b+c=2

B2
abc(u, v, w)P0+a,0+b,1+c

= v2P021 + 2vwP012 + 2uvP111 + w2P003 + 2uwP102 + u2P201.

� Exercise 6.27: For n = 4, compute intermediate points P3
001 and P1

111 directly from
the control points.
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6.23.2 Subdivision

A triangular Bézier patch can be subdivided into three triangular Bézier patches by a
process similar to the one described in Section 6.8 for the Bézier curve. New control
points for the three new patches are computed in two steps. First, all the intermediate
points generated in the scaffolding steps are computed, then the original interior control
points are deleted. We illustrate this process first for n = 3 and n = 4, then for the
general case.

A triangular Bézier patch for n = 3 is defined by 10 control points, of which nine
are exterior. The user first selects the point inside the surface patch where the three
new triangles will meet. This is done by selecting a barycentric triplet (u, v, w). The
user then executes three steps of the scaffolding process to generate 6 + 3 + 1 = 10 new
intermediate points. The new points are added to the nine exterior control points and
the single interior point P111 is deleted. The resulting 19 points are divided into three
overlapping sets of 10 points each (Figure 6.33) that define three adjacent triangular
Bézier patches inside the original patch.

111

Figure 6.33: Subdividing the Triangular Bézier Patch for n = 3.

A triangular Bézier patch for n = 4 is defined by 15 control points, of which 12
are exterior. The user selects a barycentric triplet (u, v, w) and executes four steps of
the scaffolding process to generate 9 + 6 + 3 + 1 = 19 new intermediate points. The
new points are added to the 12 exterior control points and the three interior points are
deleted. The resulting 31 points are divided into three overlapping sets of 15 points each
that define three adjacent triangular Bézier patches inside the original patch.

� Exercise 6.28: Draw a diagram for this case, similar to Figure 6.33.

In general, a triangular Bézier patch is defined by 1
2 (n+1)(n+2) control points, of

which 1+2+2 + · · · + 2︸ ︷︷ ︸
n−2

+(n+1) = 3n points are exterior. The scaffolding construction

is then performed, creating 3(n − 1) points in step 1, 3(n − 2) points in step 2, and so
on, down to 3[n − (n − 1)] = 3 points in step n − 1 and one point in step n, for a total
of 3n

2 (n − 1) + 1 points. For n = 3 through 7, these numbers are 10, 19, 31, 46, and 64.
(Note that there are no interior points for n = 1 and n = 2.) These new points, added
to the original exterior points, provide 3n

2 (n − 1) + 1 + 3n = 3n
2 (n + 1) + 1 points. For

n = 3 through 7, these numbers are 19, 31, 46, 64, and 84. These numbers are enough



6.23 Triangular Bézier Surfaces 241

to construct three adjacent triangular Bézier patches defined by 1
2 (n + 1)(n + 2) control

points each.
The user always starts a subdivision by selecting a surface point P(u, v, w) where

the three new triangular patches will meet. A special case occurs if this point is located
on an edge of the original triangular patch (i.e., if one of u, v, or w is zero). In such
a case, the original triangle is subdivided into two, instead of three triangular patches.
This may be useful in cases where only a few extra points are required to reshape the
surface.

6.23.3 Degree Elevation

Section 6.9 describes how to elevate the degree of a Bézier curve. This section employs
the same ideas to elevate the degree of a triangular Bézier patch. Given a triangular
patch of order n defined by 1

2 (n + 1)(n + 2) control points Pijk, it is easy to compute a
new set of control points Qijk that represent the same surface as a triangular patch of
order n + 1. The basic relation is

i+j+k=n∑
i,j,k≥0

PijkBn
i,j,k(u, v, w) =

∑
i+j+k=n+1

QijkBn+1
i,j,k(u, v, w).

It can be shown, employing methods similar to those of Section 6.9, that the new points
Qijk are obtained from the original control points Pijk by

Qijk =
1

n + 1
[iPi−1,j,k + jPi,j−1,k + kPi,j,k−1] .

Example: We elevate the degree of a triangular Bézier patch from n = 2 to n = 3.
The 10 new control points are obtained from the six original ones by

Q003 = P002, Q102 = 1
3 (P002 + 2P101), Q201 = 1

3 (2P101 + P200), Q300 = P200,

Q012 = 1
3 (P002 + 2P011), Q111 = 1

3 (P011 + P101 + P110), Q210 = 1
3 (2P110 + P200),

Q021 = 1
3 (2P011 + P020), Q120 = 1

3 (P020 + 2P110), Q030 = P020.

It is possible to elevate the degree of a patch repeatedly. Each degree elevation
increases the number of control points and moves them closer to the actual surface.
At the limit, the number of control points approaches infinity and the net of points
approaches the surface patch.
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6.24 Joining Triangular Bézier Patches

The triangular Bézier surface patch is used in cases where a large surface happens to
be easier to break up into triangular patches than into rectangular ones. It is therefore
important to discover the conditions for smooth joining of these surface patches. The
conditions should be expressed in terms of constraints on the control points.

These constraints are developed here for cubic surface patches, but the principles
are the same for higher-degree patches. The idea is to calculate three vectors that
are tangent to the surface at the common boundary curve. Intuitively, the condition
for a smooth join is that these vectors be coplanar (although they can have different
magnitudes). We proceed in three steps:

Step 1. Figure 6.34 shows two triangular Bézier cubic patches, P(u, v, w) and
Q(u, v, w), joined at the common boundary curve P(0, v, w) = Q(0, v, w). Equation (6.39)
shows how the boundary curves can be expressed as Bézier curves. Based on this equa-
tion, our common boundary curve can be written

P(v) =
∑

j+k=3

3!
j! k!

vj(1 − v)3−jP0jk.

This is easy to differentiate with respect to v and the result is

dP(v)
dv

= 3v2(P030 − P021) + 6v(1 − v)(P021 − P012) + 3(1 − v)2(P012 − P003)

= 3v2B3 + 6v(1 − v)B2 + (1 − v)2B1, (6.41)

where each of the Bi vectors is defined as the difference of two control points. They can
be seen in the figure as thick arrows going from P003 to P030.

Step 2. Another vector is computed that’s tangent to the patch P(u, v, w) along
the common boundary. This is done by calculating the tangent vector to the surface
in the u direction and substituting u = 0. We first write the expression for the surface
patch without the parameter w (it can be eliminated because w = 1 − u − v):

P(u, v) =
∑

i+j+k=3

3!
i! j! k!

uivj(1 − u − v)kPijk.

This is easy to differentiate with respect to u and it yields

∂P(u, v)
∂u

∣∣∣∣
u=0

= 3v2(P120 − P021) + 6v(1 − v)(P111 − P012)

+ 3(1 − v)2(P102 − P003)

= 3v2A3 + 6v(1 − v)A2 + 3(1 − v)2A1,

(6.42)

where each of the Ai vectors is again defined as the difference of two control points.
They can be seen in the figure as thick arrows going, for example, from P003 to P102.
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P003
Q003

P012 Q012

P021
Q021

P030
Q030

P120

Q120

P111
Q111

P102

Q102

P201

Q201

P210

Q210

P300 Q300

v=0

w=0

u=0

v=0

w=0

P(u,v,w)
Q(u,v,w)

Figure 6.34: Joining Triangular Bézier Patches Smoothly.

Step 3. The third vector is the tangent to the other surface patch Q(u, v, w) along
the common boundary. It is expressed as

∂Q(u, v)
∂u

∣∣∣∣
u=0

= 3v2(Q120 − Q021) + 6v(1 − v)(Q111 − Q012)

+ 3(1 − v)2(Q102 − Q003)

= 3v2C3 + 6v(1 − v)C2 + 3(1 − v)2C1,

(6.43)

where each of the Ci vectors is again defined as the difference of two control points.
They can be seen in the figure as thick arrows going, for example, from Q003 to Q102.

The condition for smooth joining is that the vectors defined by Equations (6.41)
through (6.43) be coplanar for any value of v. This can be expressed as

3v2B3 + 6v(1 − v)B2 + (1 − v)2B1

= α(3v2A3 + 6v(1 − v)A2 + 3(1 − v)2A1)

+ β(3v2C3 + 6v(1 − v)C2 + 3(1 − v)2C1),

(6.44)

or, equivalently,

v2(B3 − αA3 − βC3) + 2v(1 − v)(B2 − αA2 − βC2) + (1 − v)2(B1 − αA1 − βC1) = 0.
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Since this should hold for any value of v, it can be written as the set of three equations:

B1 = αA1 + βC1,

B2 = αA2 + βC2,

B3 = αA3 + βC3.

(6.45)

Each of the three sets of vectors Bi, Ai, and Ci (i = 1, 2, 3) should therefore be coplanar.
This condition can be expressed for the control points by saying that each of the three
quadrilaterals given by

P003 = Q003, P102, P012 = Q012, Q102,

P012 = Q012, P111, P021 = Q021, Q111,

P021 = Q021, P120, P030 = Q030, Q120,

should be planar. In the special case α = β = 1, each quadrilateral should be a square.
Otherwise, each should have the same ratio of height to width.

The condition for such a set of three vectors to be coplanar is simple to derive.
Figure 6.35 shows a quadrilateral with four corner points A, B, C, and D. Two dashed
segments are shown, connecting A to B and C to D. The condition for a flat quadri-
lateral (four coplanar corners) is that the two segments intersect. The first segment can
be expressed parametrically as (1− u)A + uB and the second segment can be similarly
expressed as (1 − w)C + wD. If there exist u and w in the interval [0, 1] such that
(1 − u)A + uB = (1 − w)C + wD, then the quadrilateral is flat.

A
BD

C

Figure 6.35: A Quadrilateral.

6.24.1 Joining Rectangular and Triangular Bézier Patches

A smooth joining of a rectangular and a triangular surface patches, both of order n,
may be useful in many practical applications. Figure 6.36a shows the numbering of
the control points for the case n = 4. Points Qijk define the triangular patch and
points Pij define the rectangular patch. There are four pairs (in general, n pairs) of
identical points. The problem of joining surface patches of such different topologies
can be greatly simplified by elevating the degree (Section 6.23.3) of the two rightmost
columns of control points of the triangular patch. The column of four points Q0jk where
j + k = 3 is transformed to five points R0jk where j + k = 4, and the column of three
points Q1jk where 1 + j + k = 3 is transformed to four points R1jk where 1 + j + k = 4.
Figure 6.36b shows the new points and how, together with the column of four points
P10 through P13, they create four quadrilaterals. The condition for smooth joining of
the patches is that each quadrilateral be flat.
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Q003=P00
P10

Q012=P01
P11

Q021=P02 P12

Q030=P03
P13

Q120

Q111

Q102

Q201

Q210

Q300

R004

P10

R013

P11

R022

P12

R040

P13

R121

R112

R103

R031

R130

(a) (b)

Figure 6.36: Smooth Joining of Triangular and Rectangular Bézier Surface Patches.

In general, there are n + 1 such quadrilaterals, and each condition can be written
explicitly, as an equation, in terms of some of the points P1i, Q0jk, and Q1jk. A general
equation is

(1 − α)R0,i,n−i + αR0,i+1,n−i = (1 − β)R1,i,n−i + βP1,i, for i = 0, 1, . . . , n.

When the Rijk points are expressed in terms of the original Qijk points, this relation
becomes

1 − α

n
[iQ0,i−1,n−i + (n − i)Q0,i,n−i] +

α

n
[(i + 1)Q0,i,n−i + (n − i)Q0,i+1,n−i−1]

=
β

n
[Q0,i,n−i + iQ1,i−1,n−i + (n − i)Q1,i,n−i−1] + βP1i.

Note that the quantities α and β in these equations should be indexed by i. In general,
each quadrilateral has its own αi and βi, but the surface designer can start by guessing
values for these 2(n + 1) quantities, then use them as parameters and vary them (while
still keeping each quadrilateral flat), until the surface is molded to the desired shape.

If the rectangular patch is given and the triangular patch has to be designed and
manipulated to connect smoothly to it, then the n points Q1jk (the column to the left
of the common boundary) are the unknowns. Conversely, if we start from the triangular
patch and want to select control points for the rectangular patch, then the unknowns
are the n + 1 control points P1i (the column to the right of the common boundary).
[Liu and Hoschek 89] has a detailed analysis of the conditions for smooth connection of
various types of Bézier surface patches.
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6.25 Reparametrizing the Bézier Surface

We illustrate the method described here by applying it to the bicubic Bézier surface
patch. The expression for this patch is given by Equations (6.32) and (6.31):

P(u, w) =
3∑

i=0

3∑
j=0

B3,i(u)Pi,jB3,j(w)

=
3∑

i=0

3∑
j=0

(u3, u2, u, 1)MPM−1(w3, w2, w, 1)T ,

where M is the basis matrix

M =

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠

and P is the 4×4 matrix of control points

⎛
⎜⎝

P3,0 P3,1 P3,2 P3,3

P2,0 P2,1 P2,2 P2,3

P1,0 P1,1 P1,2 P1,3

P0,0 P0,1 P0,2 P0,3

⎞
⎟⎠ .

This surface patch can be reparametrized with the method of Section 6.10. We select
part of patch P(u, w), e.g., the part where u varies from a to b, and define it as a new
patch Q(u, w) where both u and w vary in the range [0, 1]. The method discussed here
shows how to obtain the control points Qij of patch Q(u, w) as functions of a, b and
points Pij .

B-splines are the defacto standard that drives today’s sophisticated computer
graphics applications. This method is also responsible for the developments that
have transformed computer-aided geometric design from the era of hand-built
models and manual measurements to fast computations and three-dimensional
renderings.

Suppose that we want to reparametrize the “left” part of P(u, w), i.e., the part
where 0 ≤ u ≤ 0.5. Applying the methods of Section 6.10, we select a = 0, b = 0.5 and
can write

P(u/2, w) = (u3, u2, u, 1)MBPM−1(w3, w2, w, 1)T ,

where B is given by Equation (6.22)

B =

⎛
⎜⎝

(1 − a)3 3(a − 1)2a 3(1 − a)a2 a3

(a − 1)2(1 − b) (a − 1)(−2a − b + 3ab) a(a + 2b − 3ab) a2b
(1 − a)(−1 + b)2 (b − 1)(−a − 2b + 3ab) b(2a + b − 3ab) ab2

(1 − b)3 3(b − 1)2b 3(1 − b)b2 b3

⎞
⎟⎠ .
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Exercise 6.17 shows that selecting a = 0 and b = 0.5 reduces matrix B to

B =

⎛
⎜⎜⎝

1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8

⎞
⎟⎟⎠ .

The new control points for our surface patch are therefore

⎛
⎜⎝

Q3,0 Q3,1 Q3,2 Q3,3

Q2,0 Q2,1 Q2,2 Q2,3

Q1,0 Q1,1 Q1,2 Q1,3

Q0,0 Q0,1 Q0,2 Q0,3

⎞
⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8

⎞
⎟⎟⎠
⎛
⎜⎝

P3,0 P3,1 P3,2 P3,3

P2,0 P2,1 P2,2 P2,3

P1,0 P1,1 P1,2 P1,3

P0,0 P0,1 P0,2 P0,3

⎞
⎟⎠

=

⎛
⎜⎜⎝

P3,0 P3,1
1
2P3,0 + 1

2P2,0
1
2P3,1 + 1

2P2,1
1
4P3,0 + 1

2P2,0 + 1
4P1,0

1
4P3,1 + 1

2P2,1 + 1
4P1,1

1
8P3,0 + 3

8P2,0 + 3
8P1,0 + 1

8P0,0
1
8P3,1 + 3

8P2,1 + 3
8P1,1 + 1

8P1,0

P3,2 P3,3
1
2P3,2 + 1

2P2,2
1
2P3,3 + 1

2P2,3
1
4P3,2 + 1

2P2,2 + 1
4P1,2

1
4P3,3 + 1

2P2,3 + 1
4P1,3

1
8P3,2 + 3

8P2,2 + 3
8P1,2 + 1

8P2,0
1
8P3,3 + 3

8P2,3 + 3
8P1,3 + 1

8P3,0

⎞
⎟⎟⎠ .

In general, suppose we want to reparametrize that portion of patch P(u, w) where
a ≤ u ≤ b and c ≤ w ≤ d. We can write

Q(u, w)
= P([b − a]u + a, [d − c]w + c)

=
(
([b−a]u+a)3, ([b−a]u+a)2, ([b−a]u+a), 1

)
M · P · M−1

⎛
⎜⎝

([d−c]w+c)3

([d−c]w+c)2

[d−c]w+c
1

⎞
⎟⎠

= (u3, u2, u, 1)AabM · P · MT · AT
cd(w

3, w2, w, 1)T

= (u3, u2, u, 1)M(M−1 · Aab · M)P(MT · AT
cd · (MT )−1)MT (w3, w2, w, 1)T

= (u3, u2, u, 1)M · Bab · P · BT
cd · MT (w3, w2, w, 1)T

= (u3, u2, u, 1)M · Q · MT (w3, w2, w, 1)T , (6.46)

where Bab = M−1 · Aab · M, BT
cd = MT · AT

cd · (MT )−1, Q = Bab · P · BT
cd, and

Aab =

⎛
⎜⎝

(b − a)3 0 0 0
3a(b − a)2 (b − a)2 0 0
3a2(b − a) 2a(b − a) b − a 0

a3 a2 a 1

⎞
⎟⎠ .

The elements of Q depend on a, b, c, and d, and the Pij ’s and are quite complex. They
can be produced by the following Mathematica code:
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B={{(1 - a)^3, 3*(-1 + a)^2*a, 3*(1 - a)*a^2, a^3},
{(-1 + a)^2*(1 - b), (-1 + a)*(-2*a - b + 3*a*b),
a*(a + 2*b - 3*a*b),
a^2*b}, {(1 - a)*(-1 + b)^2, (-1 + b)*(-a - 2*b + 3*a*b),
b*(2*a + b - 3*a*b), a*b^2},

{(1 - b)^3, 3*(-1 + b)^2*b, 3*(1 - b)*b^2, b^3}};
TB={{(1 - c)^3, (-1 + c)^2*(1 - d), (1 - c)*(-1 + d)^2,

(1 - d)^3},
{3*(-1 + c)^2*c, (-1 + c)*(-2*c - d + 3*c*d),
(-1 + d)*(-c - 2*d + 3*c*d), 3*(-1 + d)^2*d},
{3*(1 - c)*c^2, c*(c + 2*d - 3*c*d), d*(2*c + d - 3*c*d),
3*(1 - d)*d^2},
{c^3, c^2*d, c*d^2, d^3}};

P={{P30,P31,P32,P33},{P20,P21,P22,P23},
{P10,P11,P12,P13},{P00,P01,P02,P03}};
Q=Simplify[B.P.TB]

6.26 The Gregory Patch

John A. Gregory developed this method to extend the Coons surface patch. The Gregory
method, however, becomes very practical when it is applied to extend the bicubic Bézier
patch. Recall that such a patch is based on 4×4 = 16 control points (Figure 6.37a).
We can divide the 16 points into two groups: the interior points, consisting of the four
points P11, P12, P21, and P22, and the boundary points, consisting of the remaining 12
points. Experience shows that there are too few interior points to fine-tune the shape of
the patch. Moving point P11, for example, affects both the direction from P01 to P11,
and the direction from P10 to P11.

P00

P01

P10

P11

P02

P03

P12

P13

P20

P21

P22

P23

P33

P32

P31

P30

P111

P110

P121

P120

P221

P220

P210

P211

(a) (b)

Figure 6.37: (a) A Bicubic Bézier Patch. (b) A Gregory Patch.
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The idea in the Gregory patch is to split each of the four interior points into two
points. Hence, instead of point P11, for example, there should be two points P110 and
P111, both in the vicinity of the original P11. Moving P110 affects the shape of the patch
only in the direction from P10 to P110. The shape of the patch around point P01 is not
affected (at least, not significantly). Thus, the bicubic Gregory patch is defined by 20
points (Figure 6.37b), eight interior points and 12 boundary points. Points P110 and
P111 can initially be set equal to P11, then moved interactively in different directions to
obtain the right shape of the surface.

To calculate the surface, we first define 16 new points Qij , then use Equation (6.31)
with the new points as control points and with n = m = 3. Twelve of the Q points
are boundary points and are identical to the boundary P points. The remaining four
Q points are interior and each is calculated from a pair of interior P points. Their
definitions are the following

Q11(u, w) =
uP110 + wP111

u + w
, Q21(u, w) =

(1 − u)P210 + wP211

1 − u + w
,

Q12(u, w) =
uP120 + (1 − w)P121

u + 1 − w
, Q22(u, w) =

(1 − u)P220 + (1 − w)P221

1 − u + 1 − w
.

Note that Q11(u, w) is a barycentric sum of two P points, so it is well defined. Even
though u and w are independent and each is varied from 0 to 1 independently of the
other, the sum is always a point on the straight segment connecting P110 to P111. The
same is true for the other three interior Q points.

After calculating the new points, the Gregory patch is defined as the bicubic Bézier
patch

P(u, w) =
3∑

i=0

3∑
j=0

B3,i(w)Qi,jB3,j(u).

(Note that four of the 16 points Qi,j depend on the parameters u and w.)

6.26.1 The Gregory Tangent Vectors

The first derivatives of the Gregory patch are more complex than those of the bicubic
Bézier patch, because four of the control points depend on the parameters u and w. The
derivatives are

∂P(u, w)
∂u

=
3∑

i=0

3∑
j=0

dB3,i(u)
du

B3,j(w)Qi,j(u, w) +
3∑

i=0

3∑
j=0

B3,i(u)B3,j(w)
∂Qi,j(u, w)

∂u
,

∂P(u, w)
∂w

=
3∑

i=0

3∑
j=0

B3,i(u)
dB3,j(w)

dw
Qi,j(u, w) +

3∑
i=0

3∑
j=0

B3,i(u)B3,j(w)
∂Qi,j(u, w)

∂w
.
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Each derivative is the sum of two similar terms, each of which has the same format
as a derivative of the bicubic Bézier patch. Therefore, only one procedure is needed
to calculate the derivatives numerically. This procedure is called twice for each partial
derivative. The second call involves the derivatives of the control points, which are
shown here.

The 12 boundary Q points don’t depend on u or w, so their derivatives are zero.
The eight derivatives of the four interior points are

∂Q11(u, w)
∂u

=
w(P110 − P111)

(u + w)2
,

∂Q11(u, w)
∂w

=
u(P110 − P111)

(u + w)2
,

∂Q21(u, w)
∂u

=
w(P210 − P211)
(1 − u + w)2

,
∂Q21(u, w)

∂w
=

(1 − u)(P210 − P211)
(1 − u + w)2

,

∂Q12(u, w)
∂u

=
(1 − w)(P120 − P121)

(u + 1 − w)2
,

∂Q12(u, w)
∂w

=
u(P120 − P121)
(u + 1 − w)2

,

∂Q22(u, w)
∂u

=
(1 − w)(P220 − P221)

(1 − u + 1 − w)2
,

∂Q22(u, w)
∂w

=
(1 − u)(P220 − P221)

(1 − u + 1 − w)2
.

After the first derivatives (the tangent vectors) have been calculated numerically at
a point, they are used to numerically calculate the normal vector at the point.

It is interesting to observe that the Bernshtĕın polynomial of

degree 1, i.e., the function z(t) = (1 − t) z1 + t z2, is precisely the

mediation operator t[z1, z2] that we discussed in the previous chapter.

Donald Knuth, The MetafontBook (1986)



7
B-Spline Approximation
B-spline methods for curves and surfaces were first proposed in the 1940s but were
seriously developed only in the 1970s, by several researchers, most notably R. Riesenfeld.
They have been studied extensively, have been considerably extended since the 1970s,
and much is currently known about them. The designation “B” stands for Basis, so
the full name of this approach to curve and surface design is the basis spline. This
chapter discusses the important types of B-spline curves and surfaces, including the
most versatile one, the nonuniform rational B-spline (NURBS, Section 7.14).

The B-spline curve overcomes the main disadvantages of the Bézier curve which are
(1) the degree of the Bézier curve depends on the number of control points, (2) it offers
only global control, and (3) individual segments are easy to connect with C1 continuity,
but C2 is difficult to obtain. The B-spline curve features local control and any desired
degree of continuity. To obtain Cn continuity, the individual spline segments have to be
polynomials of degree n. The B-spline curve is an approximating curve and is therefore
defined by control points. However, in addition to the control points, the user has to
specify the values of certain quantities called “knots.” They are real numbers that offer
additional control over the shape of the curve. The basic approach taken in the first
part of this chapter ignores the knots, but they are introduced in Section 7.8 and their
effect on the curve is explored.

There are several types of B-splines. In the uniform (also called periodic) B-spline
(Sections 7.1 and 7.2), the knot values are uniformly spaced and all the weight functions
have the same shape and are shifted with respect to each other. In the nonuniform
B-spline (Section 7.11), the knots are specified by the user and the weight functions
are generally different. There is also an open uniform B-spline (Section 7.10), where
the knots are not uniform but are specified in a simple way. In a rational B-spline
(Section 7.14), the weight functions are in the form of a ratio of two polynomials. In a
nonrational B-spline, they are polynomials in t. The B-spline is an approximating curve
based on control points, but there is also an interpolating version that passes through
the points (Section 7.7). Section 7.4 shows how tension can be added to the B-spline.
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B-splines are mathematically more sophisticated than other types of splines, so we
start with a gentle introduction. We first use basic assumptions to derive the expressions
for the quadratic and cubic uniform B-splines directly and without mentioning knots.
We then show how to extend the derivations to uniform B-splines of any order. Following
this, we discuss a different, recursive formulation of the weight functions of the uniform,
open uniform, and nonuniform B-splines.

7.1 The Quadratic Uniform B-Spline

We start with the quadratic uniform B-spline. We assume that n + 1 control points,
P0, P1,. . . , Pn, are given and we want to construct a spline curve where each segment
Pi(t) is a quadratic parametric polynomial based on three points, Pi−1, Pi, and Pi+1.
We require that the segments connect with C1 continuity (only cubic and higher-degree
polynomial segments can have C2 or higher continuities) and that the entire curve has
local control. To achieve all this, we have to give up something and we elect to give up
the requirement that a segment will pass through its first and last control points. We
denote the start and end points of segment Pi(t) by Ki and Ki+1, respectively and we
call them joint points, or just joints. These points are still unknown and will have to
be determined. Figure 7.1a shows two quadratic segments P1(t) and P2(t) defined by
the four control points P0, P1, P2, and P3. The first segment goes from joint K1 to
joint K2 and the second segment goes from joint K2 to joint K3, where the joints are
drawn tentatively and will have to be determined and redrawn. Note that each segment
is defined by three control points, so its control polygon has two edges. The first spline
segment is defined only by P0, P1, and P2, so any changes in P3 will not affect it. This
is how local control is achieved in a B-spline.

P1 P2

P3

K3

K2

K1

P0

P1(t)
P2(t)

P1

P2

P3

K3

K2

K1

P0

P1(t)
P2(t)

(a) (b)

Figure 7.1: The Quadratic Uniform B-Spline.

We use the usual notation for the two segments

Pi(t) = (t2, t, 1)M

⎛
⎝Pi−1

Pi

Pi+1

⎞
⎠ , i = 1, 2, (7.1)
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where M is the 3×3 basis matrix whose nine elements have to be calculated. We define
three functions a(t), b(t), and c(t) by:

(t2, t, 1)M = (t2, t, 1)

⎛
⎝ a2 b2 c2

a1 b1 c1

a0 b0 c0

⎞
⎠

= (a2t
2 + a1t + a0, b2t

2 + b1t + b0, c2t
2 + c1t + c0)

=
(
a(t), b(t), c(t)

)
.

(7.2)

The nine elements of M are determined from the following three requirements:
1. The two segments should meet at a common joint and their tangent vectors

should be equal at that point. This is expressed as

P1(1) = P2(0), Pt
1(1) = Pt

2(0) (7.3)

and produces the explicit equations (where a dot indicates differentiation with respect
to t)

a(1)P0 + b(1)P1 + c(1)P2 = a(0)P1 + b(0)P2 + c(0)P3,

ȧ(1)P0 + ḃ(1)P1 + ċ(1)P2 = ȧ(0)P1 + ḃ(0)P2 + ċ(0)P3.

Since the control points Pi are arbitrary and can be any points, we can rewrite these
two equations in the form

a(1) = 0, ȧ(1) = 0, for P0,

b(1) = a(0), ḃ(1) = ȧ(0), for P1,

c(1) = b(0), ċ(1) = ḃ(0), for P2,

0 = c(0), 0 = ċ(0), for P3.

Using the notation of Equation (7.2), this can be written

a2 + a1 + a0 = 0, 2a2 + a1 = 0,

b2 + b1 + b0 = a0, 2b2 + b1 = 0,

c2 + c1 + c0 = b0, 2c2 + c1 = 0,
(7.4)

0 = c0, 0 = c1.

This requirement produces eight equations for the nine unknown matrix elements.
2. The entire curve should be independent of the particular coordinate system

used, which implies that the weight functions of each segment should be barycentric,
i.e., a(t) + b(t) + c(t) ≡ 1. This condition can be written explicitly as

a2 + b2 + c2 = 0, a1 + b1 + c1 = 0, a0 + b0 + c0 = 1, (7.5)

and these add three more equations.
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We now have 11 equations for the nine unknowns, but it is easy to show that only
nine of the 11 are independent. The sum of the first two of Equations (7.5) equals
the sum of the three equations in the right column of Equation (7.4). Taking this into
account, the equations can be solved uniquely, yielding

a2 = 1/2, a1 = −1, a0 = 1/2,

b2 = −1, b1 = 1, b0 = 1/2,

c2 = 1/2, c1 = 0, c0 = 0.

The general quadratic B-spline segment, Equation (7.1), can now be written as

Pi(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝Pi−1

Pi

Pi+1

⎞
⎠

=
1
2
(t2 − 2t + 1)Pi−1 +

1
2
(−2t2 + 2t + 1)Pi +

t2

2
Pi+1, i = 1, 2.

(7.6)

We are now in a position to determine the start and end points, Ki and Ki+1 of
segment i. They are

Ki = Pi(0) =
1
2
(Pi−1 + Pi), Ki+1 = Pi(1) =

1
2
(Pi + Pi+1).

Thus, the quadratic spline segment starts in the middle of the straight segment Pi−1Pi

and ends at the middle of the straight segment PiPi+1, as shown in Figure 7.1b.
The tangent vector of the general quadratic B-spline segment is easily obtained

from Equation (7.6). It is

Pt
i(t) =

1
2
(2t, 1, 0)

⎡
⎣ 1 −2 1
−2 2 0

1 1 0

⎤
⎦
⎡
⎣Pi−1

Pi

Pi+1

⎤
⎦ = (t− 1)Pi−1 +(−2t+1)Pi + tPi+1. (7.7)

The tangent vectors at both ends of the segment are therefore

Pt(0) = Pi − Pi−1, Pt(1) = Pi+1 − Pi,

i.e., each of them points in the direction of one of the edges of the control polygon of
the spline segment.

Since a quadratic spline segment is a polynomial of degree 2, we require continuity
of the first derivative only. It is easy to show that the second derivative of our segment
is Pi−1 −2Pi +Pi+1. It is constant for a segment but is different for different segments.

Equation (8.4) of Section 8.2 shows a relation between the quadratic B-spline and
Bézier curves. A similar relation between the corresponding cubic curves is illustrated
in Section 7.5.
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Example: Given the four control points P0 = (1, 0), P1 = (1, 1), P2 = (2, 1),
and P3 = (2, 0) (Figure 7.2), the first quadratic spline segment is obtained from Equa-
tion (7.6)

P1(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠

=
1
2
(t2 − 2t + 1)(1, 0) +

1
2
(−2t2 + 2t + 1)(1, 1) +

t2

2
(2, 1)

= (t2/2 + 1,−t2/2 + t + 1/2).

It starts at joint K1 = P1(0) = (1, 1
2 ) and ends at joint K2 = P1(1) = (3

2 , 1).

P1 P2

P3

K1 K3

K2

P0

P1
(t) P

2(t)

x

y

Figure 7.2: A Quadratic Uniform B-Spline Example.

The tangent vector of this segment is obtained from Equation (7.7)

Pt
1(t) =

1
2
(2t, 1, 0)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠

= (t − 1)(1, 0) + (−2t + 1)(1, 1) + t(2, 1)
= (t, 1 − t).

Thus, the first segment starts going in direction Pt
1(0) = (0, 1) (straight up) and ends

going in direction Pt
1(1) = (1, 0) (to the right).

� Exercise 7.1: Calculate the second segment, its tangent vector, and joint point K3.

Closed Quadratic B-Splines: Closed curves are sometimes needed and a closed
B-spline curve is easy to construct. Given the usual n + 1 control points, we extend
them cyclically to obtain the n + 3 points

Pn, P0, P1, P2, . . . , Pn−1, Pn, P0

and compute the curve by applying Equation (7.6) to the n + 1 geometry vectors⎛
⎝Pn

P0

P1

⎞
⎠

⎛
⎝P0

P1

P2

⎞
⎠

⎛
⎝P1

P2

P3

⎞
⎠ · · ·

⎛
⎝Pn−2

Pn−1

Pn

⎞
⎠

⎛
⎝Pn−1

Pn

P0

⎞
⎠ .
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Example: Given the four control points P0 = (1, 0), P1 = (1, 1), P2 = (2, 1), and
P3 = (2, 0) of the previous example, it is easy to close the curve by calculating the two
additional segments

P0(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P3

P0

P1

⎞
⎠

=
1
2
(t2 − 2t + 1)(2, 0) +

1
2
(−2t2 + 2t + 1)(1, 0) +

t2

2
(1, 1)

= (t2/2 − t + 3/2, t2/2).

P3(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P2

P3

P0

⎞
⎠

=
1
2
(t2 − 2t + 1)(2, 1) +

1
2
(−2t2 + 2t + 1)(2, 0) +

t2

2
(1, 0)

= (−t2/2 + 2, t2/2 − t + 1/2).

The four segments connect the four joint points (1, 1/2), (3/2, 1), (2, 1/2), (3/2, 0) and
back to (1, 1/2).

TheB stands for “basis”.

7.2 The Cubic Uniform B-Spline

This curve is again defined by n + 1 control points and it consists of spline segments
Pi(t), each a PC defined by four control points Pi−1, Pi, Pi+1, and Pi+2. The general
form of segment i is therefore

Pi(t) = (t3, t2, t, 1)M

⎛
⎜⎝

Pi−1

Pi

Pi+1

Pi+2

⎞
⎟⎠ , (7.8)

where M is a 4 × 4 matrix whose 16 elements have to be determined by translating
the constraints on the curve into 16 equations and solving them. The constraints are
(1) two segments should meet with C2 continuity and (2) the entire curve should be
independent of the particular coordinate system. As in the quadratic case, we give up
the requirement that a segment Pi(t) starts and ends at control points, and we denote its
extreme points by Ki and Ki+1. These joints can be computed as soon as the expression
for the segment is derived. Figure 7.3a shows a tentative design for two cubic segments.
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K1 K3

K2

P0

P1

P2

P3

P4

P1(t
) P

2(t)

(a)

K1
K3

K2

P0

P1

P2

P3

P4

P1(t
)

P2(t)

(b)

Figure 7.3: The Cubic Uniform B-Spline.

We start the derivation by writing

(t3, t2, t, 1)M = (t3, t2, t, 1)

⎛
⎜⎝

a3 b3 c3 d3

a2 b2 c2 d2

a1 b1 c1 d1

a0 b0 c0 d0

⎞
⎟⎠

= (a3t
3 + a2t

2 + a1t + a0, b3t
3 + b2t

2 + b1t + b0,

c3t
3 + c2t

2 + c1t + c0, d3t
3 + d2t

2 + d1t + d0)

=
(
a(t), b(t), c(t), d(t)

)
.

The first three constraints are expressed by

P1(1) = P2(0), Pt
1(1) = Pt

2(0), Ptt
1 (1) = Ptt

2 (0),

or, explicitly

a(1)P0 + b(1)P1 + c(1)P2 + d(1)P3 = a(0)P1 + b(0)P2 + c(0)P3 + d(0)P4,

ȧ(1)P0 + ḃ(1)P1 + ċ(1)P2 + ḋ(1)P3 = ȧ(0)P1 + ḃ(0)P2 + ċ(0)P3 + ḋ(0)P4,

ä(1)P0 + b̈(1)P1 + c̈(1)P2 + d̈(1)P3 = ä(0)P1 + b̈(0)P2 + c̈(0)P3 + d̈(0)P4.

Using the definitions of a(t) and its relatives, this can be written explicitly as

a3 + a2 + a1 + a0 = 0, 3a3 + 2a2 + a1 = 0, 6a3 + 2a2 = 0,

b3 + b2 + b1 + b0 = a0, 3b3 + 2b2 + b1 = a1, 6b3 + 2b2 = 2a2,

c3 + c2 + c1 + c0 = b0, 3c3 + 2c2 + c1 = b1, 6c3 + 2c2 = 2b2, (7.9)
d3 + d2 + d1 + d0 = c0, 3d3 + 2d2 + d1 = c1, 6d3 + 2d2 = 2c2,

0 = d0, 0 = d1, 0 = 2d2.

These are 15 equations for the 16 unknowns.
We already know from the quadratic case that the weight functions of each segment

should be barycentric, i.e., a(t) + b(t) + c(t) + d(t) ≡ 1. This condition can be written
explicitly as

a3 + b3 + c3 + d3 = 0, a2 + b2 + c2 + d2 = 0,

a1 + b1 + c1 + d1 = 0, a0 + b0 + c0 + d0 = 1,
(7.10)
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and they add four more equations. We now have 19 equations, but only 16 of them
are independent, since the first three equations of Equation (7.10) can be obtained by
summing the first four equations of the left column of Equation (7.9). The system of
equations can therefore be uniquely solved and the solutions are

a3 = −1/6, a2 = 1/2, a1 = −1/2, a0 = 1/6,

b3 = 1/2, b2 = −1, b1 = 0, b0 = 2/3,

c3 = −1/2, c2 = 1/2, c1 = 1/2, c0 = 1/6,

d3 = 1/6, d2 = 0, d1 = 0, d0 = 0.

The cubic B-spline segment can now be expressed as

Pi(t) =
1
6
(t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

Pi−1

Pi

Pi+1

Pi+2

⎞
⎟⎠

=
1
6
(−t3 + 3t2 − 3t + 1)Pi−1 +

1
6
(3t3 − 6t2 + 4)Pi

+
1
6
(−3t3 + 3t2 + 3t + 1)Pi+1 +

t3

6
Pi+2.

(7.11)

The two extreme points are therefore

Ki = Pi(0) =
1
6
(Pi−1 + 4Pi + Pi+1), and Ki+1 = Pi(1) =

1
6
(Pi + 4Pi+1 + Pi+2).

In order to interpret them geometrically, we write them as

Ki =
(

1
6
Pi−1 +

5
6
Pi

)
+

1
6

(Pi+1 − Pi) ,

Ki+1 =
(

1
6
Pi +

5
6
Pi+1

)
+

1
6

(Pi+2 − Pi+1) .

(7.12)

Point Ki is the sum of the point (1
6Pi−1 + 5

6Pi) and one-sixth of the vector (Pi+1−Pi).
Point Ki+1 has a similar interpretation. Both are shown in Figure 7.3b.

� Exercise 7.2: Show another way to interpret Pi(0) and Pi(1) geometrically.

Users, especially those familiar with Bézier curves, find it counterintuitive that the
B-spline curve does not start and end at its terminal control points. This “inconvenient”
feature can be modified—and the curve made to start and end at its extreme points—by
adding two phantom endpoints, P−1 and Pn+1, at both ends of the curve, and placing
those points at locations that would force the curve to start at P0 and end at Pn. The
calculation of this case is simple. The first segment starts at 1

6 [P−1 + 4P0 + P1]. This
value will equal P0 if we select P−1 = 2P0 − P1. Similarly, the last segment ends at
1
6 [Pn−1 + 4Pn + Pn+1] and this value equals Pn if we select Pn+1 = 2Pn − Pn−1.
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Adding phantom points adds two segments to the curve, but this has the advantage
that the tangents at the start and the end of the curve have known directions. The
former is in the direction from P0 to P1 and the latter is from Pn−1 to Pn (same as the
end tangents of a Bézier curve). The tangent vector at the start of the first segment is
1
2P−1 + 1

2P1 = P1 − P0, and similarly for the end tangent of the last segment.
The tangent vector of the general cubic B-spline segment is

Pt
i(t) =

1
6
(−3t2 + 6t − 3)Pi−1 +

1
6
(9t2 − 12t)Pi +

1
6
(−9t2 + 6t + 3)Pi+1 +

t2

2
Pi+2.

As a result, the extreme tangent vectors are

Pt
i(0) =

1
2
(Pi+1 − Pi−1), Pt

i(1) =
1
2
(Pi+2 − Pi). (7.13)

They have simple geometric interpretations.
The second derivative of the cubic segment is

Ptt
i (t) =

1
6
(−6t + 6)Pi−1 +

1
6
(18t − 12)Pi +

1
6
(−18t + 6)Pi+1 + tPi+2,

and it’s easy to see that Ptt
i (1) = Ptt

i+1(0) = Pi − 2Pi+1 + Pi+2, which proves the C2

continuity of this curve.

Example: We select the five points P0 = (0, 0), P1 = (0, 1), P2 = (1, 1),
P3 = (2, 1), and P4 = (2, 0). They have simple, integer coordinates to simplify the
computations. We use these points to construct two cubic B-spline segments. The first
one is given by Equation (7.11)

P1(t) =
1
6
(−t3 + 3t2 − 3t + 1)(0, 0) +

1
6
(3t3 − 6t2 + 4)(0, 1)

+
1
6
(−3t3 + 3t2 + 3t + 1)(1, 1) +

t3

6
(2, 1)

= (−t3/6 + t2/2 + t/2 + 1/6, t3/6 − t2/2 + t/2 + 5/6).

It starts at joint K1 = P1(0) = (1/6, 5/6) and ends at joint K2 = P1(1) = (1, 1). Notice
that these joint points can be verified from Equation (7.12). The tangent vector of this
segment is

Pt
1(t) =

1
6
(−3t2 + 6t − 3)(0, 0) +

1
6
(9t2 − 12t)(0, 1)

+
1
6
(−9t2 + 6t + 3)(1, 1) +

t2

2
(2, 1)

= (−t2/2 + t + 1/2, t2/2 − t + 1/2).

The two extreme tangents are Pt
1(0) = (1/2, 1/2) and Pt

1(1) = (1, 0). These can also be
verified by Equation (7.13). Figure 7.4 shows this segment and its successor (the dashed
curves).
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1

(* B-spline example of 2 cubic segs and 3 quadr segs for 5 points *)
Clear[Pt,T,t,M3,comb,a,g1,g2,g3];
Pt={{0,0},{0,1},{1,1},{2,1},{2,0}};
(* first, 2 cubic segments (dashed) *)
T[t_]:={t^3,t^2,t,1};
M3={{-1,3,-3,1},{3,-6,3,0},{-3,0,3,0},{1,4,1,0}}/6;
comb[i_]:=(T[t].M3)[[i]] Pt[[i+a]];
g1=Graphics[{PointSize[.02], Point/@Pt}];
a=0;
g2=ParametricPlot[comb[1]+comb[2]+comb[3]+comb[4], {t,0,.95},
Compiled->False, PlotRange->All, DisplayFunction->Identity,
PlotStyle->AbsoluteDashing[{2,2}]];
a=1;
g3=ParametricPlot[comb[1]+comb[2]+comb[3]+comb[4], {t,0.05,1},
Compiled->False, PlotRange->All, DisplayFunction->Identity,
PlotStyle->AbsoluteDashing[{2,2}]];
(* Now the 3 quadratic segments (solid) *)
T[t_]:={t^2,t,1};
M2={{1,-2,1},{-2,2,0},{1,1,0}}/2;
comb[i_]:=(T[t].M2)[[i]] Pt[[i+a]];
a=0;
g4=ParametricPlot[comb[1]+comb[2]+comb[3], {t,0,.97},
Compiled->False, PlotRange->All, DisplayFunction->Identity];
a=1;
g5=ParametricPlot[comb[1]+comb[2]+comb[3], {t,0.03,.97},
Compiled->False, PlotRange->All, DisplayFunction->Identity];
a=2;
g6=ParametricPlot[comb[1]+comb[2]+comb[3], {t,0,1},
Compiled->False, PlotRange->All, DisplayFunction->Identity];
Show[g2,g3,g4,g5,g6,g1, PlotRange->All, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction];

Figure 7.4: Two Cubic (Dashed) and Three Quadratic (Solid) Segments of a B-spline.
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� Exercise 7.3: Calculate the second spline segment P2(t), its tangent vector, and joint
K3.

� Exercise 7.4: Use the five control points of the example above to construct the three
segments and determine the four joints of the quadratic uniform B-spline defined by the
points.

Exercise 7.4 shows that the same n + 1 control points can be used to construct a
quadratic or a cubic B-spline curve (or a B-spline curve of any order up to n + 1). This
is in contrast to the Bézier curve whose order is determined by the number of control
points. This is also the reason why both n and the degree of the polynomials that make
up the spline segments are needed to identify a B-spline. In practice, we use n and k
(the order) to identify a B-spline. The order is simply the degree plus 1. Thus, a B-
spline defined by five control points P0 through P4 can be of order 2 (linear, with four
segments), order 3 (quadratic, with three segments), order 4 (cubic, with two segments),
or order 5, (quintic, with one segment).

Figure 7.5a,b,c shows how a Bézier curve, a cubic B-spline, and a quadratic B-spline,
respectively, are attracted to their control polygons. We already know that these three
types of curves don’t have the same endpoints, so this figure is only qualitative. It only
shows how the various types of curves are attracted to their control points.

Collinear Points: Segment P2(t) of Exercise 7.4 depends on points P1, P2, and
P3 that are located on the line y = 1. This is why this segment is horizontal (and
therefore straight). We conclude that the B-spline can consist of curved and straight
segments connected with any desired continuity. All that’s necessary in order to have a
straight segment is to have enough collinear control points. In the case of a quadratic
B-spline, three collinear points will result in a straight segment that will connect to its
neighbors (curved or straight) with C1 continuity. In the case of a cubic B-spline, four
collinear points will result in a straight segment that will connect to its neighbors (curved
or straight) with C2 continuity, and similarly for higher-degree uniform B-splines.

A Closed Cubic B-Spline Curve: closing a cubic B-spline is similar to closing a
quadratic curve. Given a set of n+1 control points, we extend them cyclically to obtain
the n + 4 points

Pn, P0, P1, P2, . . . , Pn−1, Pn, P0, P1,

and compute the curve by applying Equation (7.11) to the n + 1 geometry vectors

⎛
⎜⎝

Pn

P0

P1

P2

⎞
⎟⎠

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

⎛
⎜⎝

P1

P2

P3

P4

⎞
⎟⎠ · · ·

⎛
⎜⎝

Pn−2

Pn−1

Pn

P0

⎞
⎟⎠

⎛
⎜⎝

Pn−1

Pn

P0

P1

⎞
⎟⎠ .
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(a)

(b)

(c)

Figure 7.5: A Comparison of (a) Bézier, (b) Cubic B-Spline, and (c)
Quadratic B-Spline Curves.
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7.3 Multiple Control Points

It is possible to have several identical control points and a set of identical points is
referred to as a multiple point. We use the uniform cubic B-spline [Equation (7.11)] as
an example, but higher-degree uniform B-splines behave similarly.

We start with a double control point. Consider the cubic segment P1(t) defined by
the four control points P0, P1 = P2, and P3. Its expression is

P1(t) =
1
6
(−t3 + 3t2 − 3t + 1)P0 +

1
6
(−3t2 + 3t + 5)P1 +

t3

6
P3,

which implies P1(0) =
1
6
P0 +

5
6
P1, P1(1) =

5
6
P1 +

1
6
P3.

This segment therefore starts and ends at the same points as the general cubic segment
and also has the same extreme tangent vectors. The difference is that it is strongly
attracted to the double point.

Next, we consider a triple point. The five control points P0, P1 = P2 = P3, and
P4 define the two cubic segments

P1(t) =
1
6
(−t3 + 3t2 − 3t + 1)P0 +

1
6
(t3 − 3t2 + 3t + 5)P1

= (1 − u)P0 + uP1, for u = (t3 − 3t2 + 3t + 5)/6,

P2(t) =
1
6
(−t3 + 6)P1 +

t3

6
P4

= (1 − w)P1 + wP4, for w = t3/6.

The parameter substitutions above show that these segments are straight (Figure 7.6).
The extreme points of the two segments are

P1(0) =
1
6
P0 +

5
6
P1, P1(1) = P1,

P2(0) = P1, P2(1) =
5
6
P1 +

1
6
P4,

showing that the segments meet at the triple control point.
In general, a cubic segment is attracted to a double control point and passes through

a triple control point. A degree-4 segment is attracted to double and triple control points
and passes through quadruple points, and similarly for higher-degree uniform segments.

The tangent vectors of the two cubic segments are

Pt
1(t) =

1
6
(−3t2 + 6t − 3)P0 +

1
6
(3t2 − 6t + 3)P1,

Pt
2(t) = − t2

2
P1 +

t2

2
P4,
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yielding the extreme directions

Pt
1(0) =

1
2
(P1 − P0), Pt

1(1) = 0 · P0 + 0 · P1 = (0, 0),

Pt
2(0) = (0, 0), Pt

2(1) =
1
2
(P4 − P1).

Thus, the first segment starts in the direction from P0 to the triple point P1. The
second segment ends going in the direction from P1 to P4. However, at the triple point,
both tangents are indefinite, suggesting a cusp. It turns out that the two segments are
straight lines (Figure 7.6).

P1(t) P2(t)

P
3(t)

P4(t)P0

P7

P1=P2=P3

P4=P5=P6

Figure 7.6: A Triple Point.

� Exercise 7.5: Given the eight control points P0, P1 = P2 = P3, P4 = P5 = P6, and
P7, calculate the two cubic segments P3(t) and P4(t) and their start and end points
(Figure 7.6).

� Exercise 7.6: Show that a cubic B-spline segment passes through its first control point
if it is a triple point.

As a corollary, we deduce that a uniform cubic B-spline curve where every control
point is triple is a polyline.

Example: We consider the case where both terminal points are triple and there
are two other points in between. The total number of control points is eight and they
satisfy P0 = P1 = P2 and P5 = P6 = P7. The five cubic spline segments are

P1(t) =
1
6
(−t3 + 6)P0 +

t3

6
P3,

P2(t) =
1
6
(2t3 − 3t2 − 3t + 5)P0 +

1
6
(−3t3 + 3t2 + 3t + 1)P3 +

t3

6
P4,

P3(t) =
1
6
(−t3 + 3t2 − 3t + 1)P0 +

1
6
(3t3 − 6t2 + 4)P3

+
1
6
(−3t3 + 3t2 + 3t + 1)P4 +

t3

6
P5, (7.14)

P4(t) =
1
6
(−t3 + 3t2 − 3t + 1)P3 +

1
6
(3t3 − 6t2 + 4)P4
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+
1
6
(−2t3 + 3t2 + 3t + 1)P5,

P5(t) =
1
6
(−t3 + 3t2 − 3t + 1)P4 +

1
6
(t3 − 3t2 + 3t + 5)P5.

It is easy to see that they satisfy P1(0) = P0 and P5(1) = P5 and that they meet at
the four points

5
6
P0 +

1
6
P3,

1
6
P0 +

4
6
P3 +

1
6
P4,

1
6
P3 +

4
6
P4 +

1
6
P5, and

1
6
P4 +

5
6
P5.

If we want to keep the two extreme points as triples, we can edit this curve only by
moving the two interior points P3 and P4. Moving P4 affects the last four segments,
and moving P3 affects the first four segments. This type of curve is therefore similar
to a Bézier curve in that it starts and ends at its extreme control points and it features
only limited local control.

� Exercise 7.7: Given the eight control points P0 = P1 = P2 = (1, 0), P3 = (2, 1),
P4 = (4, 0), and P5 = P6 = P7 = (4, 1), use Equation (7.14) to calculate the cubic
uniform B-spline curve defined by these points and compare it to the Bézier curve
defined by the points.

7.4 Cubic B-Splines with Tension

Adding a tension parameter to the uniform cubic B-spline is similar to tension in the
cardinal spline (Section 5.4). We use Hermite interpolation [Equation (4.7)] to calculate
a PC segment that starts and ends at the same points as a cubic B-spline and whose
extreme tangent vectors point in the same directions as those of the cubic B-spline, but
whose magnitudes are controlled by a tension parameter s. Substituting 1

6P0+ 4
6P1+ 1

6P2

and 1
6P1 + 4

6P2 + 1
6P3 for the terminal points and s(P2 − P0) and s(P3 − P1) for the

extreme tangents, we write Equation (4.7) and manipulate it such that it ends up looking
like a uniform cubic B-spline segment, Equation (7.11).

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎜⎝

1
6P0 + 4

6P1 + 1
6P2

1
6P1 + 4

6P2 + 1
6P3

s(P2 − P0)
s(P3 − P1)

⎞
⎟⎟⎠

=
1
6

[(
t3(2 − s) + t2(2s − 3) − st + 1

)
P0 +

(
t3(6 − s) + t2(s − 9) + 4

)
P1

+
(
t3(s − 6) + t2(9 − 2s) + st + 1

)
P2 +

(
t3(s − 2) + t2(3 − s)

)
P3

]

=
1
6
(t3, t2, t, 1)

⎛
⎜⎝

2 − s 6 − s s − 6 s − 2
2s − 3 s − 9 9 − 2s 3 − s
−s 0 s 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (7.15)
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A quick check verifies that Equation (7.15) reduces to the uniform cubic B-spline
segment, Equation (7.11), for s = 3. This value is therefore considered the “neutral”
or “standard” value of the tension parameter s. Since s controls the length of the
tangent vectors, small values of s should produce the effects of higher tension and, in
the extreme, the value s = 0 should result in indefinite tangent vectors and in the spline
segment becoming a straight line. To show this, we rewrite Equation (7.15) for s = 0:

P(t) =
1
6
(t3, t2, t, 1)

⎛
⎜⎝

2 6 −6 −2
−3 −9 9 3

0 0 0 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

=
1
6
(2t3 − 3t2 + 1)P0 +

1
6
(6t3 − 9t2 + 4)P1

+
1
6
(−6t3 + 9t2 + 1)P2 +

1
6
(−2t3 + 3t2)P3.

Substituting T = 3t2 −2t3 for the parameter t changes the above expression to the form

P(T ) =
1
6
(−P0 − 3P1 + 3P2 + P3)T +

1
6
(P0 + 4P1 + P2),

which is a straight line from P(0) = 1
6 (P0 + 4P1 + P2) to P(1) = 1

6 (P1 + 4P2 + P3).
The tangent vector of Equation (7.15) is

Pt(t) =
1
6
(3t2, 2t, 1, 0)

⎛
⎜⎝

2 − s 6 − s s − 6 s − 2
2s − 3 s − 9 9 − 2s 3 − s
−s 0 s 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

=
1
6

[(
3t2(2 − s) + 2t(2s − 3) − s

)
P0 +

(
3t2(6 − s) + 2t(s − 9)

)
P1

+
(
3t2(s − 6) + 2t(9 − 2s) + s

)
P2 +

(
3t2(s − 2) + 2t(3 − s)

)
P3

]
.

(7.16)

The extreme tangents are

Pt(0) =
s

6
(P2 − P0) and Pt(1) =

s

6
(P3 − P1).

Substituting s = 0 in Equation (7.16) yields the tangent vector for the case of infinite
tension

Pt(t) =
1
6

[
6(t2 − t)P0 + 18(t2 − t)P1 − 18(t2 − t)P2 − 6(t2 − t)P3

]
= (t2 − t)(P0 + 3P1 − 3P2 − P3).

(7.17)
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s=0

s=3
s=5

(* Cubic B-spline with tension *)
Clear[t,s,pnts,stnp,tensMat,bsplineTensn,g1,g2,g3,g4];
pnts={{0,0},{0,1},{1,1},{1,0}};
stnp=Transpose[pnts];
tensMat={{2-s,6-s,s-6,s-2},{2s-3,s-9,9-2s,3-s},{-s,0,s,0},{1,4,1,0}};
bsplineTensn[t_]:=Module[{tmpstruc}, tmpstruc={t^3,t^2,t,1}.tensMat;
{tmpstruc.stnp[[1]],tmpstruc.stnp[[2]]}/6];
g1=ListPlot[pnts, Prolog->AbsolutePointSize[3],
DisplayFunction->Identity];
s=0;
g2=ParametricPlot[bsplineTensn[t], {t,0,1},
Compiled->False, DisplayFunction->Identity];
s=3;
g3=ParametricPlot[bsplineTensn[t], {t,0,1},
Compiled->False, DisplayFunction->Identity,
PlotStyle->AbsoluteDashing[{2,2}]];
s=5;
g4=ParametricPlot[bsplineTensn[t], {t,0,1},
Compiled->False, DisplayFunction->Identity,
PlotStyle->AbsoluteDashing[{1,2,2,2}]];
Show[g1,g2,g3,g4, DisplayFunction->$DisplayFunction]

Figure 7.7: Figure and Code for a Cubic B-Spline with Tension.

� Exercise 7.8: Since the spline segment is a straight line in this case, its tangent vector
should always point in the same direction. Use Equation (7.17) to show that this is so.

Figure 7.7 illustrates the effect of tension on a cubic B-spline. Three curves are
shown, corresponding to s values of 0, 3, and 5.

See also Section 6.11 for a discussion of cubic Bézier curves with tension.

Sex alleviates tension and love causes it.
—Woody Allen (as Andrew) in A Midsummer Night’s Sex Comedy (1982)



268 7. B-Spline Approximation

7.5 Cubic B-Spline and Bézier Curves

Given a cubic B-spline segment P(t) based on the four control points P0, P1, P2, and
P3, it is easy to find four control points Q0, Q1, Q2, and Q3 such that the Bézier curve
Q(t) defined by them will have the same shape as P(t). This is done by equating the
matrices of Equation (7.11) that define P(t) to those of Equation (6.8) that define Q(t):

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ =

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

Q0

Q1

Q2

Q3

⎞
⎟⎠ .

The solutions are
Q0 =

1
6

(P0 + 4P1 + P2) ,

Q1 =
1
6

(4P1 + 2P2) ,

Q2 =
1
6

(2P1 + 4P2) ,

Q3 =
1
6

(P1 + 4P2 + P3) .

Equation (8.4) of Section 8.2 shows a similar relation between the quadratic B-spline
and Bézier curves.

7.6 Higher-Degree Uniform B-Splines

The methods of Sections 7.1 and 7.2 can be employed to construct uniform B-splines
of higher degrees. It can be shown (see, for example, [Yamaguchi 88], p. 329) that the
degree-n uniform B-spline segment is given by

Pi(t) = (tn, . . . , t2, t, 1)M

⎛
⎜⎜⎜⎜⎝

Pi−1

Pi

Pi+1

...
Pi+n−1

⎞
⎟⎟⎟⎟⎠ ,

where the elements mij of the basis matrix M are

mij =
1
n!

(
n

i

) n∑
k=j

(n − k)i(−1)k−j

(
n + 1
k − j

)
.

Figure 7.8 shows a few examples of these matrices.
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M1 =
1
1!

(−1 1
1 0

)

M2 =
1
2!

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠

M3 =
1
3!

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠

M4 =
1
4!

⎛
⎜⎜⎜⎝

1 −4 6 −4 1
−4 12 −12 4 0
6 −6 −6 6 0
−4 −12 12 4 0
1 11 11 1 0

⎞
⎟⎟⎟⎠

M5 =
1
5!

⎛
⎜⎜⎜⎜⎜⎝

−1 5 −10 10 −5 1
5 −20 30 −20 5 0

−10 20 0 −20 10 0
10 20 −60 20 10 0
−5 −50 0 50 5 0
1 26 66 26 1 0

⎞
⎟⎟⎟⎟⎟⎠

M6 =
1
6!

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −6 15 −20 15 −6 1
−6 30 −60 60 −30 6 0
15 −45 30 30 −45 15 0
−20 −20 160 −160 20 20 0
15 135 −150 −150 135 15 0
−6 −150 −240 240 150 6 0
1 57 302 302 57 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 7.8: Some Basis Matrices for Uniform B-Splines.
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7.7 Interpolating B-Splines

The B-spline is an approximating curve. Its shape is determined by the control points
Pi, but the curve itself does not pass through those points. Instead, it passes through
the joints Ki. In our notation so far, we have assumed that the cubic uniform B-spline
is based on n + 1 control points and passes through n − 1 joint points. The number
of control points for the cubic curve is therefore always two more than the number of
joints.

One person’s constant is another person’s variable.
—Susan Gerhart

This section deals with the opposite problem. We show how to employ B-splines to
construct an interpolating cubic spline curve that passes through a set of n + 1 given
data points K0, K1,. . . , Kn. The curve must consist of n segments and the idea is to
use the Ki points to calculate a new set of points Pi, then use the new points as the
control points of a cubic uniform B-spline curve. To obtain n cubic segments, we need
n + 3 points and we denote them by P−1 through Pn+1.

Using Pi as our control points, Equation (7.11) shows that the general segment
Pi(t) terminates at Pi(1) = 1

6 [Pi−2 + 4Pi−1 + Pi]. We require that the segment ends
at point Ki−1, which produces the equation 1

6 [Pi−2 + 4Pi−1 + Pi] = Ki−1. When this
equation is repeated for 0 ≤ i ≤ n, we get a system of n + 1 equations with the Pis as
the unknowns. However, there are n + 3 unknowns (P−1 through Pn+1), so we need
two more equations.

The required equations are obtained by considering the tangent vectors of the in-
terpolating curve at its two ends. We denote the tangent at the start by T1. It is given
by T1 = 1

2 (P1 − P−1), so it points in the direction from P−1 to P1; similarly for the
end tangent Tn = 1

2 (Pn+1−Pn−1). After these two relations are included, the resulting
system of n + 3 equations is

n+3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 0 3 0 . . . 0 0 0
1 4 1 0 . . . 0 0 0
0 1 4 1 . . . 0 0 0
...

...
0 0 0 0 . . . 4 1 0
0 0 0 0 . . . 1 4 1
0 0 0 0 . . . −3 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
n+3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P−1

P0

P1
...

Pn−1

Pn

Pn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

T1

K0

K1
...

Kn−1

Kn

Tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.18)

The user specifies the values of the two extreme tangents T1 and Tn, the equations are
solved, and the Pi points are then used in the usual way to calculate a cubic uniform
B-spline that passes through the original points Ki. This process should be compared
to the similar computation of the cubic spline, Section 5.1. Specifically, Equation (7.18)
should be compared with Equation (5.7).

Notice that the coefficient matrix of Equation (7.18) is not diagonally dominant
because of the four ±3’s. We can, however, modify it slightly by writing the system of
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equations in the form

n+3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3/2 0 3/2 0 . . . 0 0 0
1 4 1 0 . . . 0 0 0
0 1 4 1 . . . 0 0 0
...

...
0 0 0 0 . . . 4 1 0
0 0 0 0 . . . 1 4 1
0 0 0 0 . . . −3/2 0 3/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
n+3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P−1

P0

P1
...

Pn−1

Pn

Pn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

T1/2
K0

K1
...

Kn−1

Kn

Tn/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.19)

The coefficient matrix of Equation (7.19) is columnwise diagonally dominant and is
therefore nonsingular. Thus, this system of equations has a unique solution, but this
system is mathematically identical to Equation (7.18), so that system of equations also
has a unique solution.

Example: This is the opposite of the example on page 259. We start with K0 =
(1/6, 5/6), K1 = (1, 1), K2 = (11/6, 5/6), and the two extreme tangents T1 = (1/2, 1/2)
and T2 = (1/2,−1/2), and set up the 5×5 system of equations

1
6

⎛
⎜⎜⎜⎝

−3 0 3 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 −3 0 3

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

P−1

P0

P1

P2

P3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(1/2, 1/2)
(1/6, 5/6)

(1, 1)
(11/6, 5/6)
(1/2,−1/2)

⎞
⎟⎟⎟⎠ .

This is easy to solve and the solutions are P−1 = (0, 0), P0 = (0, 1), P1 = (1, 1),
P2 = (2, 1), and P3 = (2, 0), identical to the original control points of the above-
mentioned example.

7.8 A Knot Vector-Based Approach

The knot vector approach to the uniform B-spline curve assumes that the curve is
a weighted sum, P(t) =

∑n
i=0 PiBn,i(t) of the control points with unknown weight

functions that have to be determined. The method is similar to that used in deriving
the Bézier curve (Section 6.2). The cubic uniform B-spline is used here as an example,
but this approach can be applied to B-splines of any order. We assume that five control
points are given—so that five weight functions, B4,0(t) through B4,4(t) are required—
and that the curve will consist of two cubic segments. In this approach we assume that
each spline segment is traced when the parameter t varies over an interval of one unit,
from an integer value u to the next integer u+1. The u values are called the knots of the
B-spline. Since they are the integers 0, 1, 2, . . ., they are uniformly distributed, hence
the name uniform B-spline. To trace out a two-segment spline curve, t should vary in
the interval [0, 2].

The guiding principle is that each weight function should be a cubic polynomial,
should have a maximum at the vicinity of “its” control point, and should drop to zero
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when away from the point. A general weight function should therefore have the bell
shape shown in Figure 7.9a. To derive such a function, we write it as the union of four
parts, b0(t), b1(t), b2(t), and b3(t), each a simple cubic polynomial, and each defined
over one unit of t. Figure 7.9b shows how each weight B4,i(t) is defined over a range of
five knots and is zero elsewhere

b0(t)

ui+1 ui+2 ui+3 ui+4ui

b3(t)

b1(t)

B4,2(t) B4,3(t) B4,4(t)B4,0(t)

b2(t)

t

t

(a)

(b)

(c)

−1−2 1 2 3 4

2/3

1/6

t
b3 b0

b1b2

1/6

2/3

1

Figure 7.9: Weight Functions of the Cubic Uniform B-Spline.

The following considerations are employed to set up equations to calculate the bi(t)
functions:

1. They should be barycentric.
2. They should provide C2 continuity at the three points where they join.
3. b0(t) and its first two derivatives should be zero at the start point b0(0).
4. b3(t) and its first two derivatives should be zero at the end point b3(1).
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We adopt the notation bi(t) = Ait
3 + Bit

2 + Cit + Di. The conditions above yield
the following equations:

1. The single equation B4,0(0) + B4,1(0) + B4,2(0) + B4,3(0) = 1. This is a special
case of condition 1. We see later that the bi(t) functions resulting from our equations
are, in fact, barycentric.

2. Condition 2 yields the nine equations

b0(1) = b1(0), ḃ0(1) = ḃ1(0), b̈0(1) = b̈1(0),
b1(1) = b2(0), ḃ1(1) = ḃ2(0), b̈1(1) = b̈2(0),
b2(1) = b3(0), ḃ2(1) = ḃ3(0), b̈2(1) = b̈3(0).

(7.20)

The first two derivatives of bi(t) are

dbi(t)
dt

= ḃi(t) = 3Ait
2 + 2Bit + Ci,

d2bi(t)
dt2

= b̈i(t) = 6Ait + 2Bi,

so the nine equations above can be written explicitly as

A0 + B0 + C0 + D0 = D1, 3A0 + 2B0 + C0 = C1, 6A0 + 2B0 = 2B1,

A1 + B1 + C1 + D1 = D2, 3A1 + 2B1 + C1 = C2, 6A1 + 2B1 = 2B2,

A2 + B2 + C2 + D2 = D3, 3A2 + 2B2 + C2 = C3, 6A2 + 2B2 = 2B3.

3. Condition 3 yields the three equations

D0 = 0, C0 = 0, 2B0 = 0.

4. Condition 4 yields the three equations

A3 + B3 + C3 + D3 = 0, 3A3 + 2B3 + C3 = 0, 6A3 + 2B3 = 0.

Thus, we end up with 16 equations that are easy to solve. Their solutions are

b0(t) =
1
6
t3, b1(t) =

1
6
(1 + 3t + 3t2 − 3t3),

b2(t) =
1
6
(4 − 6t2 + 3t3), b3(t) =

1
6
(1 − 3t + 3t2 − t3).

(7.21)

The proof that the bi(t) functions are barycentric is now trivial. Figure 7.9c shows the
shapes of the four weights.

Now that the weight functions are known, the entire curve can be expressed as
the weighted sum P(t) =

∑n
i=0 PiB4,i(t), where the weights all look the same and are

shifted with respect to each other by using different ranges for t. Each weight B4,i(t) is
nonzero only in the (open) interval (ui−3, ui+1) (Figure 7.9b).

Each curve segment Pi(t) can now be expressed as the barycentric sum of the four
weighted points Pi−3 through Pi (or, alternatively, as a linear combination of the B4,i(t)
functions), Pi(t) =

∑0
j=−3 Pi+jB4,i+j(t), where ui ≤ t < ui+1. The next (crucial) step
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is to realize that in the range ui ≤ t < ui+1, only component b3 of B4,i−3 is nonzero and
similarly for the other three weights (see the dashed box of Figure 7.9b). The segment
can therefore be written

Pi(t) =
0∑

j=3

Pi−jbj(t)

=
1
6
Pi−3(−t3 + 3t2 − 3t + 1) +

1
6
Pi−2(3t3 − 6t2 + 4)

+
1
6
Pi−1(−3t3 + 3t2 + 3t + 1) +

1
6
Pit

3 (7.22)

=
1
6
(t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

Pi−3

Pi−2

Pi−1

Pi

⎞
⎟⎠ ,

an expression identical (except for the choice of index i) to Equation (7.11). This
approach to deriving the weight functions can be generalized for the nonuniform B-
spline.

The dashed box of Figure 7.9b illustrates how the B4,i(t) weight functions blend the
five control points in the two spline segments. The first weight, B4,0(t), goes down from
1/6 to 0 when t varies from 0 to 1. Thus, the first control point P0 starts by contributing
1/6 of its value to the curve, then decreases its contribution until it disappears at t = 1.
This is why P0 does not contribute to the second segment. The second weight, B4,1(t),
starts at 2/3 (when t = 0), goes down to 1/6 for t = 1, then all the way to 0 when
t reaches 2. This is how the second control point P1 participates in the blend that
generates the first two spline segments. Notice how the weight functions have their
maxima at integer values of t, how only three weights are nonzero at these values, and
how there are four nonzero weights for any other values of t.

Figure 7.10a shows the weight functions for the linear uniform B-spline. Each has
the form of a hat, going from 0 to 1 and back to 0. They also have their maxima at integer
values of t. The weight functions of the quadratic B-spline are shown in Figure 7.10b.
Notice how each varies from 0 to 3/4, how they meet at a height of 1/2, and how their
maxima are at half-integer values of t. The first weight, B3,0(t), drops from 1/2 to 0 for
the first spline segment (i.e., when t varies in the interval [0, 1]) and remains zero for
the second and subsequent segments. The second weight, B3,1(t), climbs from 1/2 to 1,
then drops back to 1/2 for the first segment. For the second segment, this weight goes
down from 1/2 to 0. These diagrams provide a clear understanding of how the control
points are blended by the uniform B-spline.

The general B-spline weight functions are normally denoted by Nik(t) and can be
defined recursively. Before delving into this topic, however, we show how the uniform
B-spline curve itself can be defined recursively, similar to the recursive definition of the
Bézier curve [Equation (6.11)]. Given a set of n + 1 control points P0 through Pn and
a uniform knot vector (t0, t1, . . . , tn+k) (a set of equally-spaced n + k + 1 nondecreasing
real numbers), the B-spline of order k is defined as

P(t) = P(k−1)
l (t), where tl ≤ t < tl+1 (7.23)
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B3,1(t) B3,2(t) B3,3(t)B3,0(t)

t

−1 1 2 3 4

3/4

1/2

(a)

(b)

B2,1(t)
B2,2(t)B2,0(t)

t

−1 1 2 3

1

1/2

Figure 7.10: Weight Functions of the Linear and the Quadratic B-Splines.

and where the quantities P(j)
i (t) are defined recursively by

P(j)
i (t) =

{
Pi, for j = 0,
(1 − Tij)P

(j−1)
i−1 (t) + TijP

(j−1)
i (t), for j > 0,

and
Tij =

t − ti
ti+k−j − ti

.

Figure 7.11 is a pyramid that illustrates how the quantities P(k−1)
l (t) are constructed

recursively. Each P(j)
i (t) in the figure is constructed as a barycentric sum of the two

quantities immediately to its left. Equation (7.23) is the geometric definition of the
uniform B-spline.

We now turn to the algebraic (or analytical) definition of the general (uniform and
nonuniform) B-spline curve. It is defined as the weighted sum

P(t) =
n∑

i=0

PiNik(t),

where the weight functions Nik(t) are defined recursively by

Ni1(t) =
{

1, if t ∈ [ti, ti+1),
0, otherwise,

(7.24)
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...
Pl−k+1

P(1)
l−k+2

Pl−k+2 P(2)
l−k+3

P(1)
l−k+3 .

Pl−k+3 .
Pl−k+4

. P(k−2)
l−1

. P(k−1)
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Figure 7.11: Recursive Construction of P(k−1)
l (t).

(note how the interval starts at ti but does not reach ti+1; such an interval is closed on
the left and open on the right) and

Nik(t) =
t − ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1
Ni+1,k−1(t), where 0 ≤ i ≤ n. (7.25)

The weights Nik(t) may be tedious to calculate in the general case, where the knots ti
can be any, but are easy to calculate in the special case where the knot vector is the
uniform sequence (0, 1, . . . , n + k), i.e., when ti = i. Here are examples for the first few
values of k.

For k = 1, the weight functions are defined by

Ni1(t) =
{

1, if t ∈ [i, i + 1),
0, otherwise.

(7.26)

This results in the “step” functions shown in Figure 7.12. Notice how each step is closed
on the left and open on the right and how Ni1(t) is nonzero only in the interval [i, i+1)
(this interval is its support). It is also clear that each of them is a shifted version of its
predecessor, so we can express any of them as a shifted version of the first one and write
Ni1(t) = N01(t − i).

For k = 2, the weight functions can be calculated for any i from Equation (7.25)

N02(t) =
t − t0
t1 − t0

N01(t) +
t2 − t

t2 − t1
N11(t)
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Figure 7.12: Uniform B-Spline Weight Functions for k = 1.

= tN01(t) + (2 − t)N11(t)

=

{
t, when 0 ≤ t < 1,
2 − t, when 1 ≤ t < 2,
0, otherwise,

N12(t) =
t − t1
t2 − t1

N11(t) +
t3 − t

t3 − t2
N21(t)

= (t − 1)N11(t) + (3 − t)N21(t)

=

{
t − 1, when 1 ≤ t < 2,
3 − t, when 2 ≤ t < 3,
0, otherwise,

N22(t) =
t − t2
t3 − t2

N21(t) +
t4 − t

t4 − t3
N31(t)

= (t − 2)N21(t) + (4 − t)N31(t)

=

{
t − 2, when 2 ≤ t < 3,
4 − t, when 3 ≤ t < 4,
0, otherwise.

The hat-shaped functions are shown in Figure 7.13. Notice how Ni2(t) spans the interval
[i, i+2). It is also obvious that each of them is a shifted version of its predecessor, so we
can express any of them as a shifted version of the first one and write Ni2(t) = N02(t−i).
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Figure 7.13: Uniform B-Spline Weight Functions for k = 2.

For k = 3, the calculations are similar:

N03(t) =
t − t0
t2 − t0

N02(t) +
t3 − t

t3 − t1
N12(t)

=
t

2
N02(t) +

3 − t

2
N12(t)

=

⎧⎪⎪⎨
⎪⎪⎩

t2/2, when 0 ≤ t < 1,
t2

2 (2 − t) + 3−t
2 (t − 1), when 1 ≤ t < 2,

(3 − t)2/2, when 2 ≤ t < 3,
0, otherwise,

=

⎧⎪⎪⎨
⎪⎪⎩

t2/2, when 0 ≤ t < 1,
(−2t2 + 6t − 3)/2, when 1 ≤ t < 2,
(3 − t)2/2, when 2 ≤ t < 3,
0, otherwise,

N13(t) =
t − t1
t3 − t1

N12(t) +
t4 − t

t4 − t2
N22(t)

=
t − 1

2
N12(t) +

4 − t

2
N22(t)
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=

⎧⎪⎪⎨
⎪⎪⎩

(t − 1)2/2, when 1 ≤ t < 2,
(−2t2 + 10t − 11)/2, when 2 ≤ t < 3,
(4 − t)2/2, when 3 ≤ t < 4,
0, otherwise.

Each of these curves (Figure 7.14) is a spline whose three segments are quadratic polyno-
mials (i.e., parabolic arcs) joined smoothly at the knots. Notice again that the support
of Ni3(t) is the interval [i, i+3) and that they are shifted versions of each other, allowing
us to write Ni3(t) = N03(t − i).

N23(t)

10 2 3 4

N13(t)

10 2 3 4

N03(t)

10 2 3 4

Figure 7.14: Uniform B-Spline Weight Functions for k = 3.

� Exercise 7.9: How can we show that the various Ni3(t) are shifted versions of each
other?

In general, the support of Nik(t) is the interval [i, i + k) and Nik(t) = N0k(t − i).
Figure 7.15 shows how a general weight function Nik(t) is constructed recursively. Each
Nij(t) function in this triangle is constructed as a weighted sum of the two functions
immediately to its left.

The geometric and algebraic definitions of the B-spline look different but it can be
shown that they are identical. The proof of this is called the Cox–DeBoor (or DeBoor–
Cox) formula [DeBoor 72].
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Figure 7.15: Recursive Construction of Ni,k(t).

7.9 Recursive Definitions of the B-Spline

The order k of the B-spline curve is an integer in the interval [2, n + 1] (it is possible to
have k = 1, but the curve degenerates in this case to just a plot of the control points).
Each blending function Nik(t) has support over k intervals [ti, ti+k−1) and is zero outside
its support. The knot vector (t0, t1, . . . , tn+k) consists of n + k + 1 nondecreasing real
numbers ti. These values define n + k subintervals [ti, ti+1). The two extreme values
t0 and tn are selected based on the values of n and k. Any terms of the form 0/0 or
x/0 in the calculation of the blending functions are assumed to be zero. Editing the
B-spline curve can be done by (1) adding, moving, or deleting control points without
changing the order k, (2) changing the order k without modifying the control points,
and (3) increasing the size of the knot vector. The knot vector contains n+k +1 values,
so increasing its size implies that either n or k should be increased. Here are a few more
properties of the curve:

1. Plotting the B-spline curve is done by varying the parameter t over the range of
knot values [tk−1, tn+1).

2. Each segment of the curve (between two consecutive knot values) depends on
k control points. This is why the curve has local control and it also implies that the
maximum value of k is the number n + 1 of control points.

3. Any control point participates in at most k segments.
4. The curve lies inside the convex hull defined by at most k control points. This

means that the curve passes close to the control points, a feature that makes it easy for
a designer to place these points in order to obtain the right curve shape.

5. The blending functions Nik(t) are barycentric for any t in the interval [tk−1, tn+1).
They are also nonnegative and, except for k = 1, each has one maximum.

6. The curve and its first k − 1 derivatives are continuous over the entire range
(except that nonuniform B-splines can have discontinuities, see Figure 7.19d).

7. The entire curve can be affinely transformed by transforming the control points,
then redrawing the curve from the new points.

One important difference between the B-spline and the Bézier curve is the use of
a knot vector. This feature (which has already been mentioned) consists of a nonde-
creasing sequence of real numbers called knots. The knot vector adds flexibility to the
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curve and provides better control of its shape, but its use requires experience. There
are three common ways to select the values in the knot vector, namely uniform, open
uniform, and nonuniform. In a uniform B-spline the knot values are equally spaced. An
example is (−2,−1.5,−0.5, 0, 0.5, 1, 1.5), but more typical examples are a vector with
normalized values between 0 and 1 (0, 0.2, 0.4, 0.6, 0.8, 1) or a vector with integer values
(0, 1, 2, 3, 4, 5, 6). Figure 7.16 lists Mathematica code to calculate, print, and plot the
weight functions for any set of knots.

(* B-spline weight functions printed and plotted *)
Clear[bspl,knt,i,k,n,t,p]
bspl[i_,k_,t_]:=If[knt[[i+k]]==knt[[i+1]],0, (* 0<=i<=n *)
bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]])] \
+If[knt[[i+1+k]]==knt[[i+2]],0,
bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]])];
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
n=4; k=3; (* Note: 0<=k<=n *)
(* knt=Table[i, {i,0,n+k}]; *) (* knots for the uniform case *)
knt={0,0,0,1,2,3,3,3}; (* knots for the NONuniform case *)
(* Show the weight functions *)
Do[Print["N(",i,",",k,",",t,")=",Simplify[bspl[i,k,t]]], {i,0,n}]
(* Plot them. Plots are separated using .97 instead of 1 *)
Do[p[i+1]=Plot[bspl[i,k,t], {t,k-.97,n+.97},
DisplayFunction->Identity], {i,0,n}]
Show[Table[p[i+1], {i,0,n}], Ticks->None,
DisplayFunction->$DisplayFunction]

Figure 7.16: Code for the B-Spline Weight Functions.

7.10 Open Uniform B-Splines

The open uniform B-spline is obtained when the knot vector is uniform except at its
two ends, where knot values are repeated k times. The following are simple examples:

For n = 3 and k = 2, there are n + k + 1 = 6 knots, e.g., (0, 0, 1, 2, 3, 3).
For n = 4 and k = 4, there are n + k + 1 = 9 knots, e.g., (0, 0, 0, 0, 1, 2, 2, 2, 2).
For n = 3 and k = 2, there are n + k + 1 = 6 knots, e.g., (0, 0, 0.33, 0.67, 1, 1).
For n = 4 and k = 4, there are n + k + 1 = 9 knots, e.g., (0, 0, 0, 0, 0.5, 1, 1, 1, 1).

(Notice how the last two examples are normalized.) In general, given values for n and
k, we can generate an integer open knot vector by setting

ti =

{ 0, for 0 ≤ i < k,
i − k + 1, for k ≤ i ≤ n,
n − k + 2, for n < i ≤ n + k,

for 0 ≤ i ≤ n + k. (7.27)

An open uniform B-spline curve starts at P0 and ends at Pn. This feature makes
it easy to generate closed curves of this type. The two extreme tangents of this curve
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point in the directions from P0 to P1 and from Pn−1 to Pn, respectively. This is why
open uniform B-spline curves are similar to Bézier curves. In fact, when k = n + 1 (i.e.,
when the degree of the polynomials is n), these curves have knot vectors of the form
(0, 0, . . . , 0, 1, 1, . . . , 1) and they reduce to Bézier curves.

Example: (1) Five control points P0 through P4 are given, implying that n = 4.
We select order 3 (i.e., segments that are polynomials of degree 2) and use Equa-
tion (7.27) to construct the knot sequence (0, 0, 0, 1, 2, 3, 3, 3). The parameter t varies
from tk−1 = t2 = 0 to tn+1 = t5 = 3, so our curve will consist of three segments. Each
of the blending functions Ni3(t) (where 0 ≤ i ≤ n) is nonzero over three subintervals of
t and is calculated from Equations (7.24) and (7.25). The result is

N03(t) = (1 − t)2, 0 ≤ t < 1,

N13(t) =
1
2

{−3t2 + 4t, 0 ≤ t < 1,
(2 − t)2, 1 ≤ t < 2,

N23(t) =
1
2

⎧⎨
⎩

t2, 0 ≤ t < 1,
−2t2 + 6t − 3, 1 ≤ t < 2,
(3 − t)2, 2 ≤ t < 3,

N33(t) =
1
2

{
(t − 1)2, 1 ≤ t < 2,
−3t2 + 14t − 15, 2 ≤ t < 3,

N43(t) = (t − 2)2, 2 ≤ t < 3,

so the three spline segments are

P1(t) = (1 − t)2P0 + 1
2 t(4 − 3t)P1 + 1

2 t2P2, 0 ≤ t < 1,

P2(t) = 1
2 (2−t)2P1+ 1

2

[
t(2−t)+(t−1)(3−t)

]
P2+ 1

2 (t − 1)2P3, 1 ≤ t < 2,

P3(t) = 1
2 (3 − t)2P2 + 1

2 (3 − t)(3t − 5)P3 + (t − 2)2P4, 2 ≤ t < 3.

It is now easy to calculate where each segment starts and ends:

P1(0) = P0, P1(1) = (P1 + P2)/2,

P2(1) = (P1 + P2)/2, P2(2) = (P2 + P3)/2,

P3(2) = (P2 + P3)/2, P3(3) = P4,

Figure 7.17 shows a typical example of the three segments (with intentional gaps between
them).

� Exercise 7.10: Show that the three spline segments provide C1 continuity at the two
interior points P1(1) = P2(1) and P2(2) = P3(2).

Example: (2) We again choose five control points but this time we select k =
n + 1 = 5. The curve will therefore consist of degree-4 polynomial segments. Such a
segment requires five points (it has five coefficients, so five equations are needed), which
is why we will end up with just one segment. Equation (7.27) is again used to construct
the knot vector (0, 0, 0, 0, 0, 1, 1, 1, 1, 1). The parameter t varies from tk−1 = t4 = 0 to
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(* Plot a B-spline curve. Can also print the weight functions *)
Clear[bspl,knt,i,k,n,t,p,g1,g2,pnt] (* First the weight functions *)
bspl[i_,k_,t_]:=If[knt[[i+k]]==knt[[i+1]],0, (* 0<=i<=n *)
bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]])] \
+If[knt[[i+1+k]]==knt[[i+2]],0,
bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]])];
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
n=4; k=3; (* Note: 0<=k<=n *)
(* knt=Table[i, {i,0,n+k}]; knots for the uniform case *)
knt={0,0,0,1,2,3,3,3}; (* knots for the open-unif or non-uniform cases *)
(* Do[Print[bspl[i,k,t]], {i,0,n}] Display the weight functions *)
pnt={{0,0},{1,1},{1,2},{2,2},{3,1}}; (* test for n+1=5 control points *)
p[t_]:=Sum[pnt[[i+1]] bspl[i,k,t], {i,0,n}] (* The curve as a weighted sum *)
g1=ListPlot[pnt, Prolog->AbsolutePointSize[3], DisplayFunction->Identity];
g2=ParametricPlot[p[t], {t,0,.97}, Compiled->False, DisplayFunction->Identity];
g3=ParametricPlot[p[t], {t,1,1.97}, Compiled->False, DisplayFunction->Identity];
g4=ParametricPlot[p[t], {t,2,3}, Compiled->False, DisplayFunction->Identity];
Show[g1,g2,g3,g4, PlotRange->All, DisplayFunction->$DisplayFunction,
DefaultFont->{"cmr10", 10}];

Figure 7.17: An Open Uniform B-Spline.

tn+1 = t5 = 1, showing again that the curve will consist of one segment. This should be
a Bézier curve, because k = n + 1.

The calculation of the blending functions Ni5(t) (where 0 ≤ i ≤ n) is shown here in
detail. We start with the nine functions Ni1(t) that are calculated from Equation (7.24)

N01 = 1 when t0 ≤ t < t1, N11 = 1 when t1 ≤ t < t2, . . . , N81 = 1 when t8 ≤ t < t9.

Since t0 = t1 = t2 = t3 = t4 = 0 and t5 = t6 = t7 = t8 = t9 = 1, we conclude that

N41 = 1 when t ∈ [t4, t5) = [0, 1),

and the other eight functions Ni1(t) are zero. The next step is to calculate the eight
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functions Ni2(t) from Equation (7.25):

N02(t) =
t − t0
t1 − t0

N01 +
t2 − t

t2 − t1
N11 = 0,

N12(t) =
t − t1
t2 − t1

N11 +
t3 − t

t3 − t2
N21 = 0,

N22(t) =
t − t2
t3 − t2

N21 +
t4 − t

t4 − t3
N31 = 0,

N32(t) =
t − t3
t4 − t3

N31 +
t5 − t

t5 − t4
N41 = 0 + (1 − t),

N42(t) =
t − t4
t5 − t4

N41 +
t6 − t

t6 − t5
N51 = t + 0,

N52(t) =
t − t5
t6 − t5

N51 +
t7 − t

t7 − t6
N61 = 0,

N62(t) =
t − t6
t7 − t6

N61 +
t8 − t

t8 − t7
N71 = 0,

N72(t) =
t − t7
t8 − t7

N71 +
t9 − t

t9 − t8
N81 = 0.

Only N32(t) and N42(t) are nonzero. The seven functions Ni3(t) are calculated similarly:

N03(t) =
t − t0
t2 − t0

N02 +
t3 − t

t3 − t1
N12 = 0,

N13(t) =
t − t1
t3 − t1

N12 +
t4 − t

t4 − t2
N22 = 0,

N23(t) =
t − t2
t4 − t2

N22 +
t5 − t

t5 − t3
N32 = 0 + (1 − t)2,

N33(t) =
t − t3
t5 − t3

N32 +
t6 − t

t6 − t4
N42 = t(1 − t) + (1 − t)t,

N43(t) =
t − t4
t6 − t4

N42 +
t7 − t

t7 − t5
N52 = t2 + 0,

N53(t) =
t − t5
t7 − t5

N52 +
t8 − t

t8 − t6
N62 = 0,

N63(t) =
t − t6
t8 − t6

N62 +
t9 − t

t9 − t7
N72 = 0.

Three of the seven functions are nonzero. The six functions Ni4(t) are

N04(t) =
t − t0
t3 − t0

N03 +
t4 − t

t4 − t1
N13 = 0,

N14(t) =
t − t1
t4 − t1

N13 +
t5 − t

t5 − t2
N23 = 0 + (1 − t)3,

N24(t) =
t − t2
t5 − t2

N23 +
t6 − t

t6 − t3
N33 = t(1 − t)2 + 2t(1 − t)2,

N34(t) =
t − t3
t6 − t3

N33 +
t7 − t

t7 − t4
N43 = 2t2(1 − t) + (1 − t)t2,



7.10 Open Uniform B-Splines 285

N44(t) =
t − t4
t7 − t4

N43 +
t8 − t

t8 − t5
N53 = t3,

N54(t) =
t − t5
t8 − t5

N53 +
t9 − t

t9 − t6
N63 = 0.

Four of them are nonzero. The last step is the calculation of the five functions Ni5(t):

N05(t) =
t − t0
t4 − t0

N04 +
t5 − t

t5 − t1
N14 = (1 − t)4,

N15(t) =
t − t1
t5 − t1

N14 +
t6 − t

t6 − t2
N24 = t(1 − t)3 + 3t(1 − t)3,

N25(t) =
t − t2
t6 − t2

N24 +
t7 − t

t7 − t3
N34 = 3t2(1 − t)2 + 3t2(1 − t)2,

N35(t) =
t − t3
t7 − t3

N34 +
t8 − t

t8 − t4
N44 = 3t3(1 − t) + (1 − t)t3,

N45(t) =
t − t4
t8 − t4

N44 +
t9 − t

t9 − t5
N54 = t4.

All five are nonzero and they should look familiar (they are the Bernstein polynomials
for n = 4). The curve consists of the single segment

P(t) =
4∑

i=0

Ni5(t)Pi

= (1 − t)4P0 + 4t(1 − t)3P1 + 6t2(1 − t)2P2 + 4t3(1 − t)P3 + t4P4,

which is the Bézier curve defined by the five points. The B-spline curve is again shown
to be more general than the Bézier curve, since it contains the latter as a special case.

It is the multiplicity of knot values that causes the open B-spline to start and end
at its extreme control points. This is easy to understand when we realize that every
subinterval [ti, ti+1) of knots corresponds to one segment Pi(t) of the B-spline. When
ti = ti+1, that segment reduces to a point. The result is that each repeat of a knot value
decreases the continuity at a joint point by 1. Consider, for example, the open B-spline
of order k = 4. The individual spline segments are degree-3 (cubic) polynomials that
have C2 continuity at their joint points. If knot ti has multiplicity 2 (i.e., ti = ti+1),
then segment Pi(t) reduces to a point and segments Pi−1(t) and Pi+1(t) meet at a joint
point with C1 continuity. If knot ti has multiplicity 3 (ti = ti+1 = ti+2), then segments
Pi(t) and Pi+1(t) reduce to points and segments Pi−1(t) and Pi+2(t) meet at a joint
point (which in this case is a control point) with C0 continuity. If the first knot has
multiplicity 4 (t0 = t1 = t2 = t3), then segments P0(t), P1(t), and P2(t) reduce to
points and segment P3(t) starts at that point with no continuity.
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7.11 Nonuniform B-Splines

The nonuniform B-spline is more general than the uniform or open B-splines, although
it is not the most general type of this curve. It is obtained when the knot values are not
equally spaced. The only requirement is that the knots be nondecreasing. Adjusting the
knot values (as well as having multiple values) is a feature that helps fine-tune the shape
of the curve. Multiple knots can be used to pull the curve in a certain direction and
to create a cusp or even a discontinuity at a join point. Nonuniform B-splines can get
complex, so we limit the discussion in this section to order-4 (i.e., degree-3) nonuniform
B-splines. This is not a serious limitation, as this type is the most commonly used and
it makes it easier to understand the properties and behavior of the nonuniform B-spline.

In the case of order-4 nonuniform B-splines, the knot vector contains values from
t0 to tn+4 (there are four more knots than control points), so the minimum number of
knots is eight (since the minimum number of control points is four) and the parameter
t varies, in this case, from tk−1 = t3 to tn+1 = t4. Spline segment Pi(t) depends on
control points Pi−3, Pi−2, Pi−1, and Pi and its expression is

Pi(t) = Ni−3,4(t)Pi−3 + Ni−2,4(t)Pi−2 + Ni−1,4(t)Pi−1 + Ni,4(t)Pi,

where 3 ≤ i ≤ n and ti ≤ t ≤ ti+1. There are n− 2 segments denoted by P3(t) through
Pn(t). When n = 3 (four control points), the curve consists of just one segment. When
knot ti has multiplicity 2 (i.e., ti = ti+1), segment Pi(t) reduces to a point. As has
been mentioned earlier, it is this feature that makes the nonuniform B-spline so flexible,
powerful, and therefore useful in practical work.

The weight functions are defined recursively by Equations (7.24) and (7.25) but go
up to Ni4 only:

Ni1(t) =
{

1, if t ∈ [ti, ti+1),
0, otherwise,

Ni2(t) =
t − ti

ti+1 − ti
Ni,1(t) +

ti+2 − t

ti+2 − ti+1
Ni+1,1(t),

Ni3(t) =
t − ti

ti+2 − ti
Ni,2(t) +

ti+3 − t

ti+3 − ti+1
Ni+1,2(t), (7.28)

Ni4(t) =
t − ti

ti+3 − ti
Ni,3(t) +

ti+4 − t

ti+4 − ti+1
Ni+1,3(t).

The first set, Ni1(t), are horizontal segments. The second set, Ni2(t), are straight lines.
The third set are quadratic polynomials and the fourth set, Ni4(t), are cubic polynomials.
Each cubic segment is defined by four control points and lies in the convex hull defined
by the points. Thus, segment Pi(t) is defined by points Pi−3, Pi−2, Pi−1, and Pi, while
segment Pi+1(t) is defined by points Pi−2, Pi−1, Pi, and Pi+1.

Figure 7.19 illustrates the effect of knot multiplicities using n = 7 (i.e., eight points)
as an example. The knot vector should contain n + k + 1 = 7 + 4 + 1 = 12 values and t
should vary from tk−1 = t3 to tn+1 = t8, a total of five subintervals. The four parts of
the figure show cubic B-spline curves constructed with the knot vectors

(−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8), (−3,−2,−1, 0, 1, 1, 2, 3, 4, 5, 6, 7),
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(* 8-Point Nonuniform Cubic B-Spline Example. Five Segments *)
Clear[g,Q,pts,seg];
P0={0,0}; P1={0,1}; P2={1,1}; P3={1,0}; P4={2,0}; P5={2.75,1}; P6={3,1}; P7={3,0};
pts=Graphics[{PointSize[.01], Point/@{P0,P1,P2,P3,P4,P5,P6,P7}}];
seg={AbsoluteDashing[{2,2}], Line[{P1,P2,P3}], Line[{P4,P5,P6,P7}]};
Q[t_]:={((1-t)^3 P0 +(3t^3-6t^2+4) P1 +(-3t^3+3t^2+3t+1) P2 +t^3 P3)/6,
((2-t)^3 P1 +(3t^3-15t^2+21t-5) P2 +(-3t^3+12t^2-12t+4) P3 +(t-1)^3 P4)/6,
((3-t)^3 P2 +(3t^3-24t^2+60t-44) P3 +(-3t^3+21t^2-45t+31) P4 +(t-2)^3 P5)/6,
((4-t)^3 P3 +(3t^3-33t^2+117t-131) P4 +(-3t^3+30t^2-96t+100) P5 +(t-3)^3 P6)/6,
((5-t)^3 P4 +(3t^3-42t^2+192t-284) P5 +(-3t^3+39t^2-165t+229) P6 +(t-4)^3 P7)/6};
g=Table[ParametricPlot[Q[t][[i]], {t,i-1,0.97i},
Compiled->False, DisplayFunction->Identity], {i,1,5}];
Show[g, pts, Graphics[seg], PlotRange->All, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction, AspectRatio->Automatic];

For the four segments of part (b), the only difference is
Q[t_]:={(1-t)^3/6 P0 +(11t^3-15t^2-3t+7)/12 P1+(-5t^3+3t^2+3t+1)/4 P2 +t^3/2 P3,
(2-t)^3/2 P2 +(5t^3-27t^2+45t-21)/4 P3+(-11t^3+51t^2-69t+29)/12 P4 +(t-1)^3/6 P5,
(3-t)^3/4 P3 +(7t^3-57t^2+147t-115)/12 P4+(-3t^3+21t^2-45t+31)/6 P5 +(t-2)^3/6 P6,
((4-t)^3 P4 +(3t^3-33t^2+117t-131)P5+(-3t^3+30t^2-96t+100)P6 +(t-3)^3 P7)/6};
g=Table[ParametricPlot[Q[t][[i]], {t,i-1,0.97i},
Compiled->False, DisplayFunction->Identity], {i,1,4}];

For the three segments of part (c), the only difference is
Q[t_]:={(1-t)^3 P0 /6+(11t^3-15t^2-3t+7)P1 /12+(-7t^3+3t^2+3t+1)P2 /4+t^3 P3,
(2-t)^3 P3+(7t^3-39t^2+69t-37)P4 /4+(-11t^3+51t^2-69t+29) P5 /12+(t-1)^3 P6 /6,
(3-t)^3 P4 /4+(7t^3-57t^2+147t-115)P5 /12+(-3t^3+21t^2-45t+31) P6 /6+(t-2)^3 P7 /6};
g=Table[ParametricPlot[Q[t][[i]], {t,i-1,0.97i},
Compiled->False, DisplayFunction->Identity], {i,1,3}];

For the two segments of part (d), the only difference is
Q[t_]:={(1-t)^3P0 /6 +(11t^3-15t^2-3t+7)P1 /12+(-7t^3+3t^2+3t+1)P2 /4 +t^3 P3,
(2-t)^3 P4 +(7t^3-39t^2+69t-37)P5 /4+(-11t^3+51t^2-69t+29)P6 /12+(t-1)^3P7 /6};
g=Table[ParametricPlot[Q[t][[i]], {t,i-1,0.97i},
Compiled->False, DisplayFunction->Identity], {i,1,2}];

Figure 7.18: Code for an 8-Point Nonuniform B-Spline Example, Figure 7.19.

(−3,−2,−1, 0, 1, 1, 1, 2, 3, 4, 5, 6), (−3,−2,−1, 0, 1, 1, 1, 1, 2, 3, 4, 5),

respectively. Notice that only six knots, t3 through t8, are really important. The rest are
distinct and uniform but less important, since only some of them are used in calculating
the blending functions.

In Figure 7.19a, all knots have multiplicity 1, each segment is defined by four points,
and adjacent segments share three points. The first segment, P3(t), is defined by points
P0, P1, P2, and P3, while the last segment, P7(t), is defined by points P4, P5, P6, and
P7. The five segments join with C2 continuity. In Figure 7.19b, we set t4 = t5, thereby
reducing segment P4(t) to zero length, causing segments P3(t) and P5(t) to meet at
join t4 = t5. However, these segments share just two control points, P2 and P3, so they
have less “in common” and, consequently, join with only C1 continuity. In Figure 7.19c,
we set t4 = t5 = t6, thereby reducing segments P4(t) and P5(t) to zero length and
causing segments P3(t) and P6(t) to meet. These segments share just one control point,
namely P3, so they meet at this point, with C0 continuity. In Figure 7.19d, we set
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t4 = t5 = t6 = t7, so now we have three zero-length segments, namely P4(t), P5(t), and
P6(t). Segments P3(t) and P7(t) now have to meet, but they don’t have any common
control points. The result is a discontinuity (a break) in the curve between points P3

and P4.
Figure 7.18 lists the code for Figure 7.19.
Example: This long example is divided into two parts.
Part a. In this part, we calculate the blending functions and spline segments of the

curve of Figure 7.19a, where the knot vector is the uniform sequence

(−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8).

The calculations are done bearing in mind that t varies from t3 = 0 to t8 = 5.
We need to calculate all the functions Ni4(t) that are nonzero in the five subintervals
[0, 1), [1, 2), [2, 3), [3, 4), and [4, 5). Four blending functions are used to construct each
of the five spline segments, so segment P3(t) is defined by functions N04(t) through
N34(t), segment P4(t) is defined by functions N14(t) through N44(t), and segment P7(t)
is defined by functions N44(t) through N74(t). The first step is to calculate Ni1:

N31 = 1 for t ∈ [0, 1), N41 = 1 for t ∈ [1, 2),
N51 = 1 for t ∈ [2, 3), N61 = 1 for t ∈ [3, 4), N71 = 1 for t ∈ [4, 5),

and N01, N11, N21, N81, N91, N10,1, and N11,1 are zero in the range 0 ≤ t < 5.
Step 2 is to calculate functions Ni2 that are nonzero for 0 ≤ t < 5:

N02(t) =
t − t0
t1 − t0

N01 +
t2 − t

t2 − t1
N11 = 0,

N12(t) =
t − t1
t2 − t1

N11 +
t3 − t

t3 − t2
N21 = 0,

N22(t) =
t − t2
t3 − t2

N21 +
t4 − t

t4 − t3
N31 = (1 − t) for t ∈ [0, 1),

N32(t) =
t − t3
t4 − t3

N31 +
t5 − t

t5 − t4
N41 =

{
t for t ∈ [0, 1),
2 − t for t ∈ [1, 2),

N42(t) =
t − t4
t5 − t4

N41 +
t6 − t

t6 − t5
N51 =

{
t − 1 for t ∈ [1, 2),
3 − t for t ∈ [2, 3),

N52(t) =
t − t5
t6 − t5

N51 +
t7 − t

t7 − t6
N61 =

{
t − 2 for t ∈ [2, 3),
4 − t for t ∈ [3, 4),

N62(t) =
t − t6
t7 − t6

N61 +
t8 − t

t8 − t7
N71 =

{
t − 3 for t ∈ [3, 4),
5 − t for t ∈ [4, 5),

N72(t) =
t − t7
t8 − t7

N71 +
t9 − t

t9 − t8
N81 = t − 4 for t ∈ [4, 5).

This step terminates at N72(t) since N82(t) and its successors are zero for 0 ≤ t < 5.
Step 3 requires the calculation of several functions Ni3:

N03(t) =
t − t0
t2 − t0

N02 +
t3 − t

t3 − t1
N12 = 0,
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Figure 7.19: An Eight-Point Nonuniform B-Spline Curve with Multiple Knots.
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N13(t) =
t − t1
t3 − t1

N12 +
t4 − t

t4 − t2
N22 =

1
2
(1 − t)2 for t ∈ [0, 1),

N23(t) =
t − t2
t4 − t2

N22 +
t5 − t

t5 − t3
N32 =

1
2

{
(−2t2 + 2t + 1) for t ∈ [0, 1),
(2 − t)2 for t ∈ [1, 2),

N33(t) =
t − t3
t5 − t3

N32 +
t6 − t

t6 − t4
N42 =

1
2

⎧⎨
⎩

t2 for t ∈ [0, 1),
(−2t2 + 6t − 3) for t ∈ [1, 2),
(3 − t)2 for t ∈ [2, 3),

N43(t) =
t − t4
t6 − t4

N42 +
t7 − t

t7 − t5
N52 =

1
2

⎧⎨
⎩

(t − 1)2 for t ∈ [1, 2),
(−2t2 + 10t − 11) for t ∈ [2, 3),
(4 − t)2 for t ∈ [3, 4),

N53(t) =
t − t5
t7 − t5

N52 +
t8 − t

t8 − t6
N62 =

1
2

⎧⎨
⎩

(t − 2)2 for t ∈ [2, 3),
(−2t2 + 14t − 23) for t ∈ [3, 4),
(5 − t)2 for t ∈ [4, 5),

N63(t) =
t − t6
t8 − t6

N62 +
t9 − t

t9 − t7
N72 =

1
2

{
(t − 3)2 for t ∈ [3, 4),
(−2t2 + 18t − 39) for t ∈ [4, 5),

N73(t) =
t − t7
t9 − t7

N72 +
t10 − t

t10 − t8
N82 =

1
2
(t − 4)2 for t ∈ [4, 5).

We stop at N73 since N83 and its successors are zero for 0 ≤ t < 5.
The last step involves the calculation of eight functions Ni4:

N04(t) =
t − t0
t3 − t0

N03 +
t4 − t

t4 − t1
N13 =

1
6
(1 − t)3 for t ∈ [0, 1),

N14(t) =
t − t1
t4 − t1

N13 +
t5 − t

t5 − t2
N23 =

1
6

{
(3t3 − 6t2 + 4) for t ∈ [0, 1),
(2 − t)3 for t ∈ [1, 2),

N24(t) =
t − t2
t5 − t2

N23 +
t6 − t

t6 − t3
N33 =

1
6

⎧⎨
⎩

(−3t3 + 3t2 + 3t + 1) for t ∈ [0, 1),
(3t3 − 15t2 + 21t − 5) for t ∈ [1, 2),
(3 − t)3 for t ∈ [2, 3),

N34(t) =
t − t3
t6 − t3

N33 +
t7 − t

t7 − t4
N43 =

1
6

⎧⎪⎪⎨
⎪⎪⎩

t3 for t ∈ [0, 1),
(−3t3 + 12t2 − 12t + 4) for t ∈ [1, 2),
(3t3 − 24t2 + 60t − 44) for t ∈ [2, 3),
(4 − t)3 for t ∈ [3, 4),

N44(t) =
t − t4
t7 − t4

N43 +
t8 − t

t8 − t5
N53 =

1
6

⎧⎪⎪⎨
⎪⎪⎩

(t − 1)3 for t ∈ [1, 2),
(−3t3 + 21t2 − 45t + 31) for t ∈ [2, 3),
(3t3 − 33t2 + 117t − 131) for t ∈ [3, 4),
(5 − t)3 for t ∈ [4, 5),

N54(t) =
t − t5
t8 − t5

N53 +
t9 − t

t9 − t6
N63 =

1
6

⎧⎨
⎩

(t − 2)3 for t ∈ [2, 3),
(−3t3 + 30t2 − 96t + 100) for t ∈ [3, 4),
(3t3 − 42t2 + 192t − 284) for t ∈ [4, 5),

N64(t) =
t − t6
t9 − t6

N63 +
t10 − t

t10 − t7
N73 =

1
6

{
(t − 3)3 for t ∈ [3, 4),
(−3t3 + 39t2 − 165t + 229) for t ∈ [4, 5),
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N74(t) =
t − t7

t10 − t7
N73 +

t11 − t

t11 − t8
N83 =

1
6
(t − 4)3 for t ∈ [4, 5).

A careful study of this last group shows that N84 and its successors are zero for 0 ≤ t < 5.
The last group of blending functions can now be used to construct the five spline

segments:

P3(t) = N04(t)P0 + N14(t)P1 + N24(t)P2 + N34(t)P3 t ∈ [0, 1)

=
1
6
[
(1 − t)3P0 + (3t3 − 6t2 + 4)P1

+ (−3t3 + 3t2 + 3t + 1)P2 + t3P3

]
,

P4(t) = N14(t)P1 + N24(t)P2 + N34(t)P3 + N44(t)P4 t ∈ [1, 2)

=
1
6
[
(2 − t)3P1 + (3t3 − 15t2 + 21t − 5)P2

+ (−3t3 + 12t2 − 12t + 4)P3 + (t − 1)3P4

]
,

P5(t) = N24(t)P2 + N34(t)P3 + N44(t)P4 + N54(t)P5 t ∈ [2, 3)

=
1
6
[
(3 − t)3P2 + (3t3 − 24t2 + 60t − 44)P3

+ (−3t3 + 21t2 − 45t + 31)P4 + (t − 2)3P5

]
,

P6(t) = N34(t)P3 + N44(t)P4 + N54(t)P5 + N64(t)P6 t ∈ [3, 4)

=
1
6
[
(4 − t)3P3 + (3t3 − 33t2 + 117t − 131)P4

+ (−3t3 + 30t2 − 96t + 100)P5 + (t − 3)3P6

]
,

P7(t) = N44(t)P4 + N54(t)P5 + N64(t)P6 + N74(t)P7 t ∈ [4, 5)

=
1
6
[
(5 − t)3P4 + (3t3 − 42t2 + 192t − 284)P5

+ (−3t3 + 39t2 − 165t + 229)P6 + (t − 4)3P7

]
.

A direct check verifies that each segment has barycentric weights. The entire curve
starts at P3(0) = (P0 +4P1 +P2)/6 and ends at P7(5) = (P5 +4P6 +P7)/6. The four
joint points between the segments are

P3(1) = P4(1) = (P1 + 4P2 + P3)/6, P4(2) = P5(2) = (P2 + 4P3 + P4)/6,

P5(3) = P6(3) = (P3 + 4P4 + P5)/6, P6(4) = P7(4) = (P4 + 4P5 + P6)/6.

The coordinates of the control points of Figure 7.19a are P0 = (0, 0), P1 = (0, 1),
P2 = (1, 1), P3 = (1, 0), P4 = (2, 0), P5 = (2.75, 1), P6 = (3, 1), and P7 = (3, 0). The
curve therefore starts at (1/6, 5/6), ends at (2.96, 5/6), and passes through the joins
(5/6, 5/6), (7/6, 1/6), (1.96, 1/6), and (2.67, 5/6).

Figure 7.20 lists the code that computes the weight functions for this case. This
code is general and can also compute B-spline weight functions for the uniform and open
uniform cases.

Part b: To continue the example, we now calculate the blending functions and
spline segments of the curve of Figure 7.19b where the knot vector is the nonuniform
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(* Compute the nonuniform weight functions for the 8-point example that follows *)
Clear[bspl,knt]
bspl[i_,k_,t_]:=If[knt[[i+k]]==knt[[i+1]],0, (* 0<=i<=n *)
bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]])] \
+If[knt[[i+1+k]]==knt[[i+2]],0,
bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]])];
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
n=4; k=4; (* Note: 0<=k<=n *)
knt={-3,-2,-1,0,1,2,3,4,5,6,7,8}; (* knots for nonuniform case *)
bspl[i,k,t] (* assign a value to i *)

Figure 7.20: Eight-Point Nonuniform B-Spline Example; Code for Blending Functions.

(−3,−2,−1, 0, 1, 1, 2, 3, 4, 5, 6, 7). Notice that we now have t4 = t5 = 1, resulting in
different blending functions and different spline segments.

It is important to realize that t varies in this case from t3 = 0 to t8 = 4. The five
intervals of t for the five spline segments are [0, 1), [1, 1), [1, 2), [2, 3), and [3, 4). The
second segment P4(t) has now been reduced to a single point.

The first step is to calculate Ni1:

N31 = 1 for t ∈ [0, 1), N41 = 1 for t ∈ [1, 1),
N51 = 1 for t ∈ [1, 2), N61 = 1 for t ∈ [2, 3), N71 = 1 for t ∈ [3, 4),

and N01, N11, N21, N81, N91, N10,1, and N11,1 are zero in the range 0 ≤ t < 4.
Step 2 is to calculate functions Ni2 that are nonzero for 0 ≤ t < 4:

N02(t) =
t − t0
t1 − t0

N01 +
t2 − t

t2 − t1
N11 = 0,

N12(t) =
t − t1
t2 − t1

N11 +
t3 − t

t3 − t2
N21 = 0,

N22(t) =
t − t2
t3 − t2

N21 +
t4 − t

t4 − t3
N31 = (1 − t) for t ∈ [0, 1),

N32(t) =
t − t3
t4 − t3

N31 +
t5 − t

t5 − t4
N41 = t for t ∈ [0, 1),

N42(t) =
t − t4
t5 − t4

N41 +
t6 − t

t6 − t5
N51 = 2 − t for t ∈ [1, 2),

N52(t) =
t − t5
t6 − t5

N51 +
t7 − t

t7 − t6
N61 =

{
t − 1 for t ∈ [1, 2),
3 − t for t ∈ [2, 3),

N62(t) =
t − t6
t7 − t6

N61 +
t8 − t

t8 − t7
N71 =

{
t − 2 for t ∈ [2, 3),
4 − t for t ∈ [3, 4),

N72(t) =
t − t7
t8 − t7

N71 +
t9 − t

t9 − t8
N81 = t − 4 for t ∈ [3, 4).

This step terminates at N72(t) since N82(t) and its successors are zero for 0 ≤ t < 4.
Step 3 requires the calculation of several functions Ni3:

N03(t) =
t − t0
t2 − t0

N02 +
t3 − t

t3 − t1
N12 = 0,
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N13(t) =
t − t1
t3 − t1

N12 +
t4 − t

t4 − t2
N22 =

1
2
(1 − t)2 for t ∈ [0, 1),

N23(t) =
t − t2
t4 − t2

N22 +
t5 − t

t5 − t3
N32 =

1
2
(−3t2 + 2t + 1) for t ∈ [0, 1),

N33(t) =
t − t3
t5 − t3

N32 +
t6 − t

t6 − t4
N42 =

{
t2 for t ∈ [0, 1),
(2 − t)2 for t ∈ [1, 2),

N43(t) =
t − t4
t6 − t4

N42 +
t7 − t

t7 − t5
N52 =

1
2

{
(−3t2 + 10t − 7) for t ∈ [1, 2),
(3 − t)2 for t ∈ [2, 3),

N53(t) =
t − t5
t7 − t5

N52 +
t8 − t

t8 − t6
N62 =

1
2

⎧⎨
⎩

(t − 1)2 for t ∈ [1, 2),
(−2t2 + 10t − 11) for t ∈ [2, 3),
(4 − t)2 for t ∈ [3, 4),

N63(t) =
t − t6
t8 − t6

N62 +
t9 − t

t9 − t7
N72 =

1
2

{
(t − 2)2 for t ∈ [2, 3),
(−2t2 + 14t − 23) for t ∈ [3, 4),

N73(t) =
t − t7
t9 − t7

N72 +
t10 − t

t10 − t8
N82 =

1
2
(t − 3)2 for t ∈ [3, 4).

Here we stop at N73 since N83 and its successors are zero for 0 ≤ t < 4.
The last step involves the calculation of eight functions Ni4:

N04(t) =
t − t0
t3 − t0

N03 +
t4 − t

t4 − t1
N13 =

1
6
(1 − t)3 for t ∈ [0, 1),

N14(t) =
t − t1
t4 − t1

N13 +
t5 − t

t5 − t2
N23 =

1
12

(11t3 − 15t2 − 3t + 7) for t ∈ [0, 1),

N24(t) =
t − t2
t5 − t2

N23 +
t6 − t

t6 − t3
N33 =

{ 1
4 (−5t3 + 3t2 + 3t + 1) for t ∈ [0, 1),
1
2 (2 − t)3 for t ∈ [1, 2),

N34(t) =
t − t3
t6 − t3

N33 +
t7 − t

t7 − t4
N43 =

⎧⎨
⎩

1
2 t3 for t ∈ [0, 1),
1
4 (5t3 − 27t2 + 45t − 21) for t ∈ [1, 2),
1
4 (3 − t)3 for t ∈ [2, 3),

N44(t) =
t − t4
t7 − t4

N43 +
t8 − t

t8 − t5
N53 =

⎧⎨
⎩

1
12 (−11t3 + 51t2 − 69t + 29) for t ∈ [1, 2),
1
12 (7t3 − 57t2 + 147t − 115) for t ∈ [2, 3),
1
6 (4 − t)3 for t ∈ [3, 4),

N54(t) =
t − t5
t8 − t5

N53 +
t9 − t

t9 − t6
N63 =

1
6

⎧⎨
⎩

(t − 1)3 for t ∈ [1, 2),
(−3t3 + 21t2 − 45t + 31) for t ∈ [2, 3),
(3t3 − 33t2 + 117t − 131) for t ∈ [3, 4),

N64(t) =
t − t6
t9 − t6

N63 +
t10 − t

t10 − t7
N73 =

1
6

{
(t − 2)3 for t ∈ [2, 3),
(−3t3 + 30t2 − 96t + 100) for t ∈ [3, 4),

N74(t) =
t − t7

t10 − t7
N73 +

t11 − t

t11 − t8
N83 =

1
6
(t − 3)3 for t ∈ [3, 4).

This group of blending functions can now be used to construct the five spline seg-
ments

P3(t) = N04(t)P0 + N14(t)P1 + N24(t)P2 + N34(t)P3 t ∈ [0, 1)
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=
1
6
(1 − t)3P0 +

1
12

(11t3 − 15t2 − 3t + 7)P1

+
1
4
(−5t3 + 3t2 + 3t + 1)P2 +

1
2
t3P3,

P4(t) = N14(1)P1 + N24(1)P2 + N34(1)P3 + N44(1)P4 t ∈ [1, 1)

= 0P1 +
1
2
P2 +

1
2
P3 + 0P4 = (P2 + P3)/2 (a point),

P5(t) = N24(t)P2 + N34(t)P3 + N44(t)P4 + N54(t)P5 t ∈ [1, 2)

=
1
2
(2 − t)3P2 +

1
4
(5t3 − 27t2 + 45t − 21)P3

+
1
12

(−11t3 + 51t2 − 69t + 29)P4 +
1
6
(t − 1)3P5,

P6(t) = N34(t)P3 + N44(t)P4 + N54(t)P5 + N64(t)P6 t ∈ [2, 3)

=
1
4
(3 − t)3P3 +

1
12

(7t3 − 57t2 + 147t − 115)P4

+
1
6
(−3t3 + 21t2 − 45t + 31)P5 +

1
6
(t − 2)3P6,

P7(t) = N44(t)P4 + N54(t)P5 + N64(t)P6 + N74(t)P7 t ∈ [3, 4)

=
1
6
[
(4 − t)3P4 + (3t3 − 33t2 + 117t − 131)P5

+ (−3t3 + 30t2 − 96t + 100)P6 + (t − 3)3P7

]
.

A direct check verifies that each segment has barycentric weights. The entire curve
starts at P3(0) = (2P0 + 7P1 + 3P2)/12 and ends at P7(4) = (P5 + 4P6 + P7)/6. The
three joint points between the segments are

P3(1) = P5(1) = (P2 + P3)/2, P5(2) = P6(2) = (3P3 + 7P4 + 2P5)/12,

P6(3) = P7(3) = (P4 + 4P5 + P6)/6.

(End of example.)

� Exercise 7.11: Calculate the blending functions and spline segments for the curves of
Figure 7.19c,d.

This example illustrates the power and flexibility of the nonuniform B-spline. Other
curve methods make it possible to control the shape of a curve by moving control points,
by subdividing the curve and adding points, and by repeating certain points. The
nonuniform B-spline method can employ all these operations but can also fine-tune the
curve by changing the values of knots and by using multiple knots.
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7.12 Matrix Form of the Nonuniform B-Spline

The Cox–DeBoor recursive formula, Equations (7.24) and (7.25), is general and can
be used to calculate the blending functions of the uniform, open, and nonuniform B-
splines. However, it is complex and slow to calculate. Explicit, matrix-based expressions
for the B-spline are simpler and faster to use. Such expressions have been derived for the
uniform quadratic B-spline in Section 7.1 [Equation (7.6)] and for the uniform cubic B-
spline in Section 7.2 [Equation (7.11)]. Similar expressions are derived in this section for
the linear, quadratic, and cubic nonuniform B-splines. We temporarily use the notation
u instead of t for the parameter and ui instead of ti for the knots.

For the linear case, where k = 2, the Cox–DeBoor formula becomes

Ni2 =
u − ui

ui+1 − ui
Ni1(u) +

ui+2 − u

ui+2 − ui+2
Ni+1,1(u)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u − ui

ui+1 − ui
for u ∈ [ui, ui+1),

ui+2 − u

ui+2 − ui+1
for u ∈ [ui+1, ui+2),

0 otherwise.

(7.29)

For i = 0, this becomes

N02 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u − u0

u1 − u0
for u ∈ [u0, u1),

u2 − u

u2 − u1
for u ∈ [u1, u2),

0 otherwise.

(7.30)

The other blending function N12 is easily obtained from Equation (7.30) by incrementing
all the indices.

Blending function N02 is zero over the subinterval [u2, u3) and blending function
N12 is zero over [u0, u1). It is therefore only over the interval [u1, u2) that both these
functions are nonzero, so the parameter u should vary from u1 to u2. Over this interval,
we have

N02(u) =
u2 − u

u2 − u1
, N12(u) =

u3 − u

u3 − u2
. (7.31)

To derive the expression for the linear spline, we denote ∆ = u2 − u1 and define the
parameter t by

t =
u − u1

∆
=

u − u1

u2 − u1
.

Notice that u = u1 → t = 0 and u = u2 → t = 1. Also, u − u1 = t∆ and u − u2 =
∆(t−1). Substituting this in Equation (7.31) yields the matrix expression for the linear
nonuniform B-spline

P(t) = (t, 1)
(−1 1

1 0

)(
P0

P1

)
. (7.32)

When t varies from 0 to 1, this becomes the straight line from P0 to P1. The nonuniform
linear B-spline does not depend on ∆, so it is identical to the uniform linear B-spline.



296 7. B-Spline Approximation

When you get an 8 on the midterm, there ain’t a curve in the world that can save you.
—Unknown

Next, we derive the matrix form of the quadratic case. Applying the Cox–DeBoor
formula to Equation (7.30), we get the first quadratic blending function N03:

N03(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u − u0

u2 − u0
· u − u0

u1 − u0
for u ∈ [u0, u1),

u − u0

u2 − u0
· u2 − u

u2 − u1
+

u3 − u

u3 − u1
· u − u1

u2 − u1
for u ∈ [u1, u2),

u3 − u

u3 − u1
· u3 − u

u3 − u2
for u ∈ [u2, u3),

0 otherwise.

(7.33)

Functions N13 and N23 are obtained from Equation (7.33) by incrementing all the indices.
When this is done, we observe that each of the three blending functions Ni3 is zero over
different intervals and it is only over subinterval [u2, u3) that all three are nonzero, and
their values are

N03(u) =
u3 − u

u3 − u1
· u3 − u

u3 − u2
,

N13(u) =
u − u1

u3 − u1
· u3 − u

u3 − u2
+

u4 − u

u4 − u2
· u − u2

u3 − u2
,

N23(u) =
u − u2

u4 − u2
· u − u2

u3 − u2
. (7.34)

Since the knot vector is nonuniform, the differences between consecutive knots may be
different and we denote them

∆1 = u2 − u1, ∆2 = u3 − u2, ∆3 = u4 − u3.

We also define t = (u − u2)/∆2, which implies

u − u1 = t∆2 + ∆1,

u − u2 = t∆2,

u − u3 = (t − 1)∆2,

u − u4 = t∆2 − (∆2 + ∆3). (7.35)

Equations (7.34) and (7.35) yield the matrix form of the nonuniform quadratic B-spline

P(t) = (t2, t, 1)

⎛
⎝ a −a − b b

−2a 2a 0
a 1 − a 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ , (7.36)

where
a =

∆2

∆1 + ∆2
, b =

∆2

∆2 + ∆3
,

and t varies from 0 to 1 (note that u = u2 → t = 0 and u = u3 → t = 1).
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B-splines were known to and studied by Nikolai Lobachevsky whose major con-
tribution to mathematics is perhaps the so-called non-Euclidean (hyperbolic) ge-
ometry in the late eighteenth century. The modern version described here was
developed, in the late 1970s, by C. DeBoor, M. Cox and L. Mansfield. Note that
their algorithm is a generalization of de Casteljau’s scaffolding method.

The next example derives the matrix form of the nonuniform cubic B-spline. We
apply the Cox–DeBoor formula to Equation (7.33) to obtain the first of the four blending
functions Ni4:

N04(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u − u0

u3 − u0
· u − u0

u2 − u0
· u − u0

u1 − u0
for u ∈ [u0, u1),

u − u0

u3 − u0
· u − u0

u2 − u0
· u2 − u

u2 − u1

+
u − u0

u3 − u0
· u3 − u

u3 − u1
· u − u1

u2 − u1

+
u4 − u

u4 − u1
· u − u1

u3 − u1
· u − u1

u2 − u1
for u ∈ [u1, u2),

u − u0

u3 − u0
· u3 − u

u3 − u1
· u3 − u

u3 − u2

+
u4 − u

u4 − u1
· u − u1

u3 − u1
· u3 − u

u3 − u2

+
u4 − u

u4 − u1
· u4 − u

u4 − u2
· u − u2

u3 − u2
for u ∈ [u2, u3),

u4 − u

u4 − u1
· u4 − u

u4 − u2
· u4 − u

u4 − u3
for u ∈ [u3, u4),

0 otherwise.

(7.37)

The remaining three blending functions N14, N24, and N34 are obtained from Equa-
tion (7.37) by incrementing all the indices. When this is done we observe, as before,
that each of the four blending functions Ni4 is zero over different intervals and it is only
over subinterval [u3, u4) that all four are nonzero. Their values are

N04(u) =
u4 − u

u4 − u1
· u4 − u

u4 − u2
· u4 − u

u4 − u3
,

N14(u) =
u − u1

u4 − u1
· u4 − u

u4 − u2
· u4 − u

u4 − u3
+

u5 − u

u5 − u2
· u − u2

u4 − u2
· u4 − u

u4 − u3

+
u5 − u

u5 − u2
· u5 − u

u5 − u3
· u − u3

u4 − u3
, (7.38)

N24(u) =
u − u2

u5 − u2
· u − u2

u4 − u2
· u4 − u

u4 − u3
+

u − u2

u5 − u2
· u5 − u

u5 − u3
· u − u3

u4 − u3

+
u6 − u

u6 − u3
· u − u3

u5 − u3
· u − u3

u4 − u3
,

N34(u) =
u − u3

u6 − u3
· u − u3

u5 − u3
· u − u3

u4 − u3
.

Since the knot vector is nonuniform, the differences between consecutive knots may
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be different and we denote them by

∆1 = u2 − u1, ∆2 = u3 − u2, ∆3 = u4 − u3,

∆4 = u5 − u4, ∆5 = u6 − u5, t = (u − u3)/∆3.

This implies

u − u1 = t∆3 + (∆1 + ∆2),
u − u2 = t∆3 + ∆2,

u − u3 = t∆3,

u − u4 = (t − 1)∆3,
(7.39)

u − u5 = t∆3 − (∆3 + ∆4),
u − u6 = t∆3 − (∆3 + ∆4 + ∆5).

Equations (7.38) and (7.39) yield the matrix form of the nonuniform cubic B-spline:

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

−a a + b + c −b − c − d d
3a −3a − 3b 3b 0
−3a 3a − 3e 3e 0
a 1 − a − f f 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ , (7.40)

where

a =
∆2

3

(∆1 + ∆2 + ∆3)(∆2 + ∆3)
, d =

∆2
3

(∆3 + ∆4 + ∆5)(∆4 + ∆5)
,

b =
∆2

3

(∆2 + ∆3 + ∆4)(∆2 + ∆3)
, e =

∆2∆3

(∆2 + ∆3 + ∆4)(∆2 + ∆3)
,

c =
∆2

3

(∆2 + ∆3 + ∆4)(∆3 + ∆4)
, f =

∆2
2

(∆2 + ∆3 + ∆4)(∆2 + ∆3)
.

The quantities ∆i are defined as differences of knot values ui+1 − ui and a good
choice for those differences is the chord lengths between points. However, a cubic spline
segment requires five ∆i’s, but there are only three chords between the four points
defining it. In general, a B-spline curve is defined by n + 1 points, having n chords
between them, but n + 2 differences ∆i are required. A standard technique is to select

∆1 = ∆2 = |P1 − P0|, ∆n+1 = ∆n+2 = |Pn − Pn−1|,

and ∆i = |Pi−1 − Pi−2| for i = 3, 4, . . . , n.
The last topic discussed in this section is the relation between the quadratic uniform

and quadratic nonuniform B-splines. Given three control points Q0, Q1, and Q2, the
uniform quadratic B-spline Q(t) defined by them is given by Equation (7.6)

Q(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝Q0

Q1

Q2

⎞
⎠ . (7.6)
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The nonuniform quadratic B-spline defined by three control points P0, P1, and P2 is
given by Equation (7.36). If we require the two curves to be identical for any value of
the parameter t, we obtain the equation

1
2

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝Q0

Q1

Q2

⎞
⎠ =

⎛
⎝ a −a − b b

−2a 2a 0
a 1 − a 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ .

This is a system of three equations where we assume that the unknowns are the Qi’s.
The solutions are

Q0 = 2aP0 + (1 − 2a)P1, Q1 = P1, and Q2 = (1 − 2b)P1 + 2bP2.

To see the geometrical interpretation of these relations, we write

Q0 = 2aP0 + (1 − 2a)P1 = 2aP0 + 2(1 − a)P1 − P1 = 2P(0) − P1 = 2Q(0) − Q1,

which implies Q0 − Q(0) = Q(0) − Q1. The distance between Q0 and Q(0) equals the
distance between Q(0) and Q1, and a similar relation among Q1, Q(1), and Q2.

The conclusion is that a group of three points P0, P1, and P2 defining a single
quadratic nonuniform B-spline segment P(t) can be replaced by a group of three points
Q0, Q1, and Q2 defining a single quadratic uniform B-spline segment Q(t) identical to
P(t). However, given a set of n + 1 control points Pi for a nonuniform B-spline curve,
they cannot, in general, be replaced by a set of n+1 points Qi that produce an identical
uniform B-spline curve.

7.13 Subdividing the B-spline Curve

The B-spline curve is easy to manipulate by moving the control points and varying the
knots. Still, if the curve is based on too few points, it may “refuse” to get the right
shape, no matter what. More control points can be added, in such a case, by subdividing
the curve, a process similar to subdividing the Bézier curve (Section 6.8). The method
described here is called the Oslo algorithm and the discussion follows [Cohen et al. 80]
and [Prautzsch 84].

(Control points can also be added by raising the degree of the B-spline curve, similar
to the degree elevation of the Bézier curve, Section 6.9. This operation is discussed in
[Cohen et al. 85].)

The idea behind subdividing a curve is that there are many (even infinitely many)
sets of control points that produce the same B-spline curve. Normally, we are interested
in the smallest number of control points that will produce a given curve, but if we cannot
get the right shape with the original n + 1 control points, we need to find a set of n + 2
points that will produce the same curve, then move the new points around, attempting
to bring the curve to the desired shape.

Given a set of n + 1 control points Pi and a knot vector (t0, t1, . . . , tn+k), we start
the subdivision process by inserting several new knots, thereby obtaining a new knot
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vector (u0, u1, . . . , um+k) where m > n. The new, subdivided curve is based on the
m + 1 control points Qj defined by the Oslo algorithm as

Qj =
n∑

i=0

ak
ijPi, where 0 ≤ i ≤ n and 0 ≤ j ≤ m,

where the coefficients ak
ij are defined recursively by a relation similar to the Cox–DeBoor

formula

a1
ij =

{
1, ti ≤ uj < ti+1,
0, otherwise, (7.41)

ak
ij =

uj+k−1 − ti
ti+k−1 − ti

ak−1
ij +

ti+k − uj+k−1

ti+k − ti+1
ak−1

i+1,j . (7.42)

This relation guarantees that
∑n

i ak
ij = 1, for 0 ≤ j ≤ m.

If the original knot vector is uniform, inserting a single knot will convert it to a
nonuniform vector. However, an open knot vector can sometimes remain open after
inserting new knots, as the following example shows. Suppose that we have the open
vector (0, 0, 0, 1, 2, 2, 2), where t varies from 0 to 2. This corresponds to a two-segment
curve and we want to subdivide both segments. We first multiply each knot by 2,
obtaining the vector (0, 0, 0, 2, 4, 4, 4) that produces the same curve when 0 ≤ t < 4.
Next, we insert knots 1 and 3 to obtain the knot vector (0, 0, 0, 1, 2, 3, 4, 4, 4). This
vector is still open and it corresponds to the four segments [0, 1), [1, 2), [2, 3), and [3, 4).

Example: We assume four control points and quadratic segments (i.e., k = 3). We
already know that each segment is defined by three points, so two segments are needed
for this curve. The knot vector is assumed to be uniform and it goes from t0 = 0 to
tn+k = t6 = 6. The parameter t varies from tk−1 = t2 = 2 to tn+1 = t4 = 4; two
subintervals. This again shows that the curve consists of two spline segments, the first
for the subinterval [t2, t3) and the second for [t3, t4). We decide to subdivide the first
segment. This segment is defined by points P0, P1, and P2 (notice that n = 2 for this
subdivision), so the subdivision process should produce four points, Q0, Q1, Q2, and
Q3 (this implies m = 3), such that the two quadratic segments defined by them will
have the same shape as the segment being subdivided.

To perform the subdivision, we need to insert a new knot between t2 = 2 and t3 = 3.
We (somewhat arbitrarily) select its value to be 2.5. The new knot vector is

(u0, u1, u2, u3, u4, u5, u6, u7) = (0, 1, 2, 2.5, 3, 4, 5, 6),

and it is nonuniform. The calculation of the ak
ij coefficients is done by varying i from 0

to n = 2 and varying j from 0 to m = 3. It requires three steps, for k = 1, 2, 3 (notice
that this k is not the same as the order of the B-spline).

Step 1: We use Equation (7.41). A direct comparison of the ti and ui knots shows
that the only nonzero a1

ij coefficients are a1
00, a1

11, a1
22, and a1

23. Each has a value of 1.
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Step 2: We calculate a2
ij for j = 0, 1, 2, 3 from Equation (7.42). For each value of j,

we stop when we get coefficients that add up to 1. The nonzero coefficients are

a2
00 =

u1 − t0
t1 − t0

a1
00 +

t2 − u1

t2 − t1
a1
10 =

1 − 0
1 − 0

· 1 = 1,

a2
11 =

u2 − t1
t2 − t1

a1
11 +

t3 − u2

t3 − t2
a1
21 =

2 − 1
2 − 1

· 1 = 1,

a2
12 =

u3 − t1
t2 − t1

a1
12 +

t3 − u3

t3 − t2
a1
22 =

3 − 2.5
3 − 2

· 1 = 1/2,

a2
22 =

u3 − t2
t3 − t2

a1
22 +

t4 − u3

t4 − t3
a1
32 =

2.5 − 2
3 − 2

· 1 = 1/2,

a2
23 =

u4 − t2
t3 − t2

a1
23 +

t4 − u4

t4 − t3
a1
33 =

3 − 2
3 − 2

· 1 = 1.

Step 3: The coefficients of step 2 are used to calculate a3
ij :

a3
00 =

u2 − t0
t2 − t0

a2
00 +

t3 − u2

t3 − t1
a2
10 =

2 − 0
2 − 0

· 1 = 1,

a3
01 =

u3 − t0
t2 − t0

a2
01 +

t3 − u3

t3 − t1
a2
11 =

3 − 2.5
3 − 1

· 1 = 1/4,

a3
11 =

u3 − t1
t3 − t1

a2
11 +

t4 − u3

t4 − t2
a2
21 =

2.5 − 1
3 − 1

· 1 = 3/4,

a3
12 =

u4 − t1
t3 − t1

a2
12 +

t4 − u4

t4 − t2
a2
22 =

3 − 1
3 − 1

· 1
2

+
4 − 3
4 − 2

· 1
2

= 3/4,

a3
22 =

u4 − t2
t4 − t2

a2
22 +

t5 − u4

t5 − t3
a2
32 =

3 − 2
4 − 2

· 1
2

= 1/4,

a3
23 =

u5 − t2
t4 − t2

a2
23 +

t5 − u5

t5 − t3
a2
33 =

4 − 2
4 − 2

· 1 = 1.

The four new control points can now be calculated. They are

Q0 =
3∑

i=0

a3
i0Pi = a3

00P0 = P0,

Q1 =
3∑

i=0

a3
i1Pi = a3

01P0 + a3
11P1 =

1
4
P0 +

3
4
P1,

Q2 =
3∑

i=0

a3
i2Pi = a3

12P1 + a3
22P2 =

3
4
P1 +

1
4
P2,

Q3 =
3∑

i=0

a3
i3Pi = a3

23P2 = P2.

The two quadratic B-spline segments defined by Q0Q1Q2 and Q2Q3Q4 have the same
shape as the original segment defined by P0P1P2, but they are easier to modify since
they are based on four points.
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7.14 Nonuniform Rational B-Splines (NURBS)

The use of a knot vector is one reason why the B-spline curve is more general than the
Bézier and other curve methods. The n+k+1 knots can be used as parameters and can
be varied by the user/designer to obtain the desired shape of the curve. The rational
B-spline, described in this section, employs an additional set of n + 1 parameters wi,
called weights, to add even greater flexibility to the curve. In addition to this feature,
the rational B-spline has several more important advantages as follows:

1. It makes it possible to create curves that are true conic sections. It is well known
that a polynomial cannot represent a circle. More generally, it cannot represent arbitrary
conic sections. It is easy to show that the Bézier and B-spline curves can represent
approximate circles (Appendix B). If precise circles or conic sections are needed, then
rational curves are the natural choice.

2. It is invariant under perspective projections. We know that curves that are
barycentric sums are invariant under affine transformations. If we want to rotate, scale,
shear, or translate such a curve, we can apply the transformation to the control points
and use the transformed points to draw the transformed curve. There is no need to
apply the transformation to every pixel on the curve. However, if we want to project a
space (three-dimensional) curve in perspective on a two-dimensional output device, we
have to individually project every pixel on the curve. With a rational curve, we can
(perspective) project the control points and use the projected, two-dimensional points
to calculate the projected curve.

3. It reduces to the nonrational B-spline when all the weights wi are set to 1. This
means that a software package for rational B-splines can be used to generate nonrational
B-splines (uniform, open, and nonuniform). This also implies that the nonuniform ra-
tional B-spline (NURBS for short) is the most general parametric curve. It can take
many shapes and can easily be reduced to simpler forms. Because of this, NURBS is
today the defacto standard for curve design. Three excellent references to NURBS are
[Farin 99], [Piegl 97], and [Rogers 01].

Perhaps the best way to introduce rational B-splines (and rational curves in gen-
eral) is by means of homogeneous coordinates. This method starts by adding an extra
dimension to points, so a two-dimensional point becomes a triplet (x, y, w) and a three-
dimensional point becomes a 4-tuple (x, y, z, w). After transforming or manipulating the
point, it is projected back to its original number of dimensions by dividing its coordi-
nates by w. Given four-dimensional control points Qi = (xi, yi, zi, wi), where we assume
for convenience that the wi coordinates are nonnegative, we can define a (nonrational)
B-spline curve as

Pnr(t) =
n∑

i=0

QiNik(t).

From this we get the rational B-spline Pr(t) by isolating that part of Pnr(t) that depends
on the fourth coordinates wi and dividing by this part.

Pr(t) =
∑n

i=0 PiwiNik(t)∑n
i=0 wiNik(t)

=
n∑

i=0

PiRik(t), (7.43)
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where Pi = (xi, yi, zi) are three-dimensional control points and Rik(t) are the new,
rational blending functions defined by

Rik(t) =
wiNik(t)∑n
i=0 wiNik(t)

. (7.44)

This type of curve has most of the properties of the nonrational B-spline. The following
should be mentioned in particular:

1. The new blending functions Rik(t) are nonnegative and barycentric.
2. The curve reduces to the nonrational curve when all the weights wi equal 1 [this

is a direct consequence of Equation (7.44)].
3. Since the rational curve is the four-dimensional generalization of the nonrational

B-spline, the algorithms for curve subdivision and degree elevation of the B-spline can be
used for the rational version. They simply have to be executed on the four-dimensional
control points (xi, yi, zi, wi).

So much for the definition of the rational B-spline. The main question is how to
select values for the weights in order to modify the shape of the curve in a predictable
way. In order to isolate the effect of one weight on the curve, we first observe that
Equation (7.43) implies that when wk = 0, point Pk has no effect on the curve. To see
how increasing the value of a weight affects the curve, we select an index 0 ≤ k ≤ n and
divide Equation (7.43) by wk

Pr(t) =

∑n
i=0,i �=k Pi

wi

wk
Nik(t) + PkNkk(t)∑n

i=0,i �=k
wi

wk
Nik(t) + Nkk(t)

.

It is easy to see that as wk grows without limit, the result approaches point Pk. We
therefore conclude that those curve segments that are affected by Pk will approach this
point as weight wk grows.

The rest of this section describes two approaches to understanding the weights and
their effects on the curve. The first approach is to set all weights wi = 1, then change
the value of one of them and see how it affects the blending functions. The second
approach is to derive specific sets of weights that will produce B-spline curves that are
conic sections. The first approach is illustrated by a detailed example.

Example: This is an extension of the open B-spline example on page 282. We
assume n = 4 (five control points), select order k = 3 (quadratic polynomial segments),
and the knot vector (0, 0, 0, 1, 2, 3, 3, 3). The parameter t varies from tk−1 = t2 = 0
to tn+1 = t5 = 3, so our curve consists of three segments. The nonrational blending
functions Ni3(t) are

N03(t) = (1 − t)2, 0 ≤ t < 1,

N13(t) =
1
2

{
t(4 − 3t), 0 ≤ t < 1,
(2 − t)2, 1 ≤ t < 2,

N23(t) =
1
2

⎧⎨
⎩

t2, 0 ≤ t < 1,
(−2t2 + 6t − 3), 1 ≤ t < 2,
(3 − t)2, 2 ≤ t < 3,
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N33(t) =
1
2

{
(t − 1)2, 1 ≤ t < 2,
(−3t2 + 14t − 15), 2 ≤ t < 3,

N43(t) = (t − 2)2, 2 ≤ t < 3.

Before we can calculate the rational blending functions, we have to select values
for the five weights. We choose (1, 1, w2, 1, 1), where w2 will later be assigned several
different values. The result is

R03(t) =
w0N03(t)∑4
i=0 wiNi3(t)

=
(1 − t)2

(1 − t)2 + t(4 − 3t)/2 + w2t2/2
, t ∈ [0, 1),

R13(t) =
w1N13(t)∑4
i=0 wiNi3(t)

=

⎧⎨
⎩

t(4−3t)/2
(1−t)2+t(4−3t)/2+w2t2/2 , t ∈ [0, 1)

(2−t)2/2
(2−t)2/2+w2(−2t2+6t−3)/2+(t−1)2/2 , t ∈ [1, 2),

R23(t) =
w2N23(t)∑4
i=0 wiNi3(t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2t2/2
(1−t)2+t(4−3t)/2+w2t2/2 , t ∈ [0, 1)

w2(−2t2+6t−3)/2
(2−t)2/2+w2(−2t2+6t−3)/2+(t−1)2/2 , t ∈ [1, 2)

w2(3−t)2/2
w2(3−t)2/2+(−3t2+14t−15)/2+(t−2)2 , t ∈ [2, 3),

R33(t) =
w3N33(t)∑4
i=0 wiNi3(t)

=

⎧⎨
⎩

(t−1)2/2
(2−t)2/2+w2(−2t2+6t−3)/2+(t−1)2/2 , t ∈ [1, 2)

(−3t2+14t−15)/2
w2(3−t)2/2+(−3t2+14t−15)/2+(t−2)2 , t ∈ [2, 3),

R43(t) =
w4N43(t)∑4
i=0 wiNi3(t)

=
(t − 2)2

w2(3 − t)2/2 + (−3t2 + 14t − 15)/2 + (t − 2)2
t ∈ [2, 3).

We next calculate the three spline segments for the four cases w2 = 0, 0.5, 1, and 5.
For w2 = 0 the three segments are

P1(t) =
(1 − t)2

1 − t2/2
P0 +

(4 − 3t)t
2 − t2

P1 + 0P2,

P2(t) =
(2 − t)2

5 − 6t + 2t2
P1 + 0P2 +

(t − 1)2

5 − 6t + 2t2
P3,

P3(t) = 0P2 +
15 − 14t + 3t2

7 − 6t + t2
P3 +

2(−2 + t)2

−7 + 6t − t2
P4.

For w2 = 0.5 they are

P1(t) =
(1 − t)2

1 − 0.25t2
P0 +

(4 − 3t)t
2 − 0.5t2

P1 +
0.25t2

1 − 0.25t2
P2,

P2(t) =
(2 − t)2

3.5 − 3t + t2
P1 +

0.25(−3 + 6t − 2t2)
1.75 − 1.5t + 0.5t2

P2 +
(t − 1)2

3.5 − 0.5t2
P3,

P3(t) =
0.25(3 − t)2

−1.25 + 1.5t − 0.25t2
P2 +

−15 + 14t − 3t2

−2.5 + 3.5t − 0.5t2
P3 +

(t − 2)2

−1.25 + 1.5t − 0.25t2
P4.
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For w2 = 1 we get

P1(t) = (1 − t)2P0 +
(4 − 3t)t

2
P1 +

t2

2
P2,

P2(t) =
(2 − t)2

2
P1 +

−3 + 6t − 2t2

2
P2 +

(t − 1)2

2 + 6t − 3t2
P3,

P3(t) =
(3 − t)2

2
P2 +

−15 + 14t − 3t2

2
P3 + (t − 2)2P4.

Finally, for w2 = 5 the segments are

P1(t) =
(1 − t)2

1 + 2t2
P0 +

(4 − 3t)t
2 + 4t2

P1 +
5t2

2 + 4t2
P2,

P2(t) =
(2 − t)2

−10 + 24t − 8t2
P1 +

5(−3 + 6t − 2t2)
−10 + 24t − 8t2

P2 +
(t − 1)2

−10 + 54t − 23t2
P3,

P3(t) =
5(3 − t)2

38 − 24t + 4t2
P2 +

−15 + 14t − 3t2

38 − 24t + 4t2
P3 +

(t − 2)2

19 − 12t + 2t2
P4.

They are plotted in Figure 7.21 for control points P0 = (0, 0), P1 = (0, 1), P2 = (1, 0),
P3 = (2, 1), and P4 = (2, 0). It is easy to see how weight w2 affects the shape of the
curve by controlling the amount of “pull” that point P2 exerts on the curve. For w2 = 0,
point P2 has no effect. The curve is defined by the four remaining points and is identical
to the control polygon of these points. As w2 grows toward 5, the curve becomes more
and more attracted to P2.

Now for the second approach. We are looking for specific sets of weights that will
generate conic sections. Since the conics are described by quadratic equations and each
is fully defined by means of three points, it makes sense to try rational B-splines of order
k = 3 defined by three points (i.e., n = 2). The conic is easier to design if the B-spline
curve starts and ends at control points, so it makes sense to use an open B-spline. Since
we have selected k = n + 1, we know (from Section 7.10) that the open B-spline will
be a Bézier curve. The knot vector for our curve is calculated by Equation (7.27) to be
(0, 0, 0, 0, 1, 1, 1, 1). To simplify our task, we try the simple set of weights (1, w1, 1). Our
problem is to find out for what values, if any, of w1 we get precise conics.

There is no need to use the Cox–DeBoor recursive formula [Equation (7.25)] to
calculate the blending functions because they are the quadratic Bernstein polynomials.
The curve itself can easily be written

P(t) =
N03(t)P0 + w1N13(t)P1 + N23(t)P2

N03(t) + w1N13(t) + N23(t)

=
(1 − t)2P0 + 2w1t(1 − t)P1 + t2P2

(1 − t)2 + 2w1t(1 − t) + t2
. (7.45)

� Exercise 7.12: Show that in the special case where w1 = 0, the curve of Equation (7.45)
reduces to the straight line between P0 and P2.
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(* Rational B-spline example. w_2=0, .5, 1, 5 (Slow!) *)
Clear[bspl,knt,w,pnts,cur1,cur2,cur3,cur4,R] (* weight functions *)
bspl[i_,k_,t_]:=If[knt[[i+k]]==knt[[i+1]],0, (* 0<=i<=n *)
bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]])] \
+If[knt[[i+1+k]]==knt[[i+2]],0,
bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]])];
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
R[i_,t_]:=(w[[i+1]] bspl[i,k,t])/Sum[w[[j+1]] bspl[j,k,t], {j,0,n}];
n=4; k=3; w={1,1,0,1,1}; (* weights *)
knt={0,0,0,1,2,3,3,3}; (* knots *)
pnts={{0,0}, {0,1}, {1,0}, {2,1}, {2,0}};
cur1=ParametricPlot[Sum[(R[i,t] pnts[[i+1]]), {i,0,n}], {t,0,3},
PlotRange->All, DisplayFunction->Identity, Compiled->False];
w[[3]]=0.5;
cur2=ParametricPlot[Sum[(R[i,t] pnts[[i+1]]), {i,0,n}], {t,0,3},
PlotRange->All, DisplayFunction->Identity, Compiled->False];
w[[3]]=1;
cur3=ParametricPlot[Sum[(R[i,t] pnts[[i+1]]), {i,0,n}], {t,0,3},
PlotRange->All, DisplayFunction->Identity, Compiled->False];
w[[3]]=5;
cur4=ParametricPlot[Sum[(R[i,t] pnts[[i+1]]), {i,0,n}], {t,0,3},
PlotRange->All, DisplayFunction->Identity, Compiled->False];
Show[cur1,cur2,cur3,cur4, PlotRange->All, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction];

Figure 7.21: Effects of Varying Weight w2.

The midpoint S of the curve of Equation (7.45) is given by

S = P(0.5) =
(P0 + P2)/2

1 + w1
+

w1P1

1 + w1
=

1
1 + w1

M+
w1

1 + w1
P1 = (1−u)M+uP1, (7.46)

where M = (P0 + P2)/2 is the midpoint of P0 and P2 and u
def= w1/(1 + w1). Thus,

point S, which is called the shoulder point of the curve moves along a straight line from
M to P1 when w1 varies from 0 to ∞ (or, equivalently, when u varies from 0 to 1).



7.14 Nonuniform Rational B-Splines (NURBS) 307

Equation (7.46) also yields the relation

w1 =
M − S
S − P1

, (7.47)

which shows that w1 is the ratio of two distances.
It can be shown (see, e.g., [Lee 86]) that the single weight w1 determines the type

of conic generated by Equation (7.45). Values in the range (0, 1) generate an elliptic
curve (with a circle as a special case). The value w1 = 1 produces a parabolic curve,
and values w1 > 1 result in a hyperbolic curve. Figure 7.22 shows examples of these
types of conics (notice that S is not necessarily the maximum point on these curves).

P1

P2M

S

S

S

P0
x

y

w1>1

w1<1

w1=1

elliptic

parabolic

hyp
erb

olic

Figure 7.22: Conics Generated by Varying w1.

A circle is formed when the three control points form an isosceles triangle. If we
denote the base angle of this triangle by θ, it can be shown that a circular arc spanning
2θ degrees is obtained when w1 = cos θ. The most common cases are θ = 60◦ and
θ = 90◦. In the latter case (Figure 7.23b), a complete circle can easily be formed by
using the symmetry of a circle and duplicating every point four times. In the former
case (Figure 7.23a), a complete circle can be obtained by specifying six control points
and calculating three spline segments.

Example: We are given the three points P0 = (0,−1)R, P1 = (−1.732,−1)R, and
P2 = (−0.866, 0.5)R of Figure 7.23a. Substituting these points in Equation (7.45) and
setting w1 to cos 60◦ = 0.5 yields the 60◦ circular arc that goes from P0 to P2:

P(t) =
(1 − t)2P0 + 2w1t(1 − t)P1 + t2P2

(1 − t)2 + 2w1t(1 − t) + t2

= R
(1 − t)2(0,−1) + t(1 − t)(−1.732,−1) + t2(−0.866, 0.5)

(1 − t)2 + t(1 − t) + t2
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(* One third of a circle done by rational B-spline *)
P0={0,-1}; P1={-1.732,-1}; P2={-0.866,0.5}; w1=0.5;
pnts=ListPlot[{P0,P1,P2}, Prolog->PointSize[.04], DisplayFunction->Identity];
axs={AbsoluteThickness[1], Line[{P0,P1,P2}]};
th=ParametricPlot[((1-t)^2 P0+2w1 t(1-t)P1+t^2 P2)/((1-t)^2+2w1 t(1-t)+t^2),
{t,0,1}, PlotRange->All, DisplayFunction->Identity, Compiled->False];
Show[Graphics[axs],th,pnts, PlotRange->All, DisplayFunction->$DisplayFunction];

Figure 7.23: Control Points for Circles.

= R
(0.866t2 − 1.732t, 0.5t2 + t − 1)

(1 − t)2 + t(1 − t) + t2
.

� Exercise 7.13: Show how to figure out the coordinates of the three points from Fig-
ure 7.23a.

� Exercise 7.14: Given the three points P0 = (1, 0)R, P1 = (0, 0), and P2 = (0, 1)R
of Figure 7.23b, calculate the quadratic rational B-spline segment defined by the points
whose shape is a circular arc spanning 90◦.

7.15 Uniform B-Spline Surfaces

The uniform B-Spline surface patch is constructed as a Cartesian product of two uniform
B-spline curves. The biquadratic B-spline surface patch, for example, is fully defined by
nine control points and is constructed as the Cartesian product of Equation (7.6) with
itself

P(u, w) =
(

1
2

)2

(u2, u, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P00 P01 P02

P10 P11 P12

P20 P21 P22

⎞
⎠

×
⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠T ⎛

⎝w2

w
1

⎞
⎠ .

(7.48)
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Its four corner points are not the four extreme control points, but

K00 = P(0, 0) =
1
4
(P00 + P01 + P10 + P11),

K01 = P(0, 1) =
1
4
(P01 + P02 + P11 + P12),

K10 = P(1, 0) =
1
4
(P10 + P11 + P20 + P21),

K11 = P(1, 1) =
1
4
(P11 + P12 + P21 + P22).

(7.49)

Notice that corner point K00 can be written

K00 =
1
2

(
P00 + P01

2
+

P10 + P11

2

)
.

This point is therefore located midway between points (P00 +P01)/2 and (P10 +P11)/2.
Figure 7.24a shows this location, as well as the locations of the other three corner points,
for the case where the control points are equally spaced.

P00 P10 P20 P30

P01 P11 P21 P31

P02 P12 P22 P32

P03 P13 P23 P33

P00

K00

P10 P20

P01 P11 P21

P02 P12 P22

(a) (b)

Figure 7.24: Idealized B-Spline Surface Patches.

Example: Given the nine points

P00 = (0, 0, 0), P01 = (0, 1, 0), P02 = (0, 2, 0),
P10 = (1, 0, 0), P11 = (1, 1, 1), P12 = (1, 2, 0),
P20 = (2, 0, 0), P21 = (2, 1, 0), P22 = (2, 2, 0),
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the biquadratic B-spline surface patch defined by them is given by the simple expression

P(u, w) = (u + 1/2, w + 1/2, (−1 − 2u + 2u2)(−1 − 2w + 2w2)/4).

Its four corner points are

K00 = P(0, 0) =
(

1
2
,
1
2
,
1
4

)
, K01 = P(0, 1) =

(
1
2
,
3
2
,
1
4

)
,

K10 = P(1, 0) =
(

3
2
,
1
2
,
1
4

)
, K11 = P(1, 1) =

(
3
2
,
3
2
,
1
4

)
.

Figure 7.25 shows the relation between this surface and its control points.
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(* BiQuadratic B-spline Patch Example *)
<<:Graphics:ParametricPlot3D.m
Clear[T,Pnts,Q,comb,g1,g2];
T[t_]:={t^2,t,1};
Pnts={{{0,0,0},{0,1.5,0},{0,2,0}},{{1,0,0},{1,1,1},{1,2,0}},
{{2,0,0},{2,0.5,0},{2,2,0}}};
Q={{1,-2,1},{-2,2,0},{1,1,0}};
g1=Graphics3D[{AbsolutePointSize[3], Table[Point[Pnts[[i,j]]],{i,1,3},{j,1,3}]}];
comb[i_]:=((1/4)T[u].Q.Pnts)[[i]] (Transpose[Q].T[w])[[i]]
g2=ParametricPlot3D[comb[1]+comb[2]+comb[3], {u,0,1},{w,0,1}, AspectRatio->Automatic,
Ticks->{{0,1,2},{0,1,2},{0,1}}, Compiled->False, DisplayFunction->Identity];
Show[g2,g1, DisplayFunction->$DisplayFunction, ViewPoint->{-0.196, -4.177, 1.160},
PlotRange->All, DefaultFont->{"cmr10", 10}];

Figure 7.25: A Biquadratic B-Spline Surface Patch.

� Exercise 7.15: Calculate the midpoint P(1/2, 1/2) of this patch.

From the dictionary

A line segment is a part of a line that is bounded by two end points. The midpoint of
a segment is the unique point located at an equal distance from the two end points.
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The bicubic B-spline patch is defined by a grid of 4×4 control points and is con-
structed as the Cartesian product of Equation (7.11) with itself

P(u, w) =
(1

6

)2

(u3, u2, u, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠

×

⎛
⎜⎝

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

⎞
⎟⎠
⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠

T ⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ .

(7.50)

Its four corner points are

K00 = P(0, 0)

=
1
36

(P00 + P02 + 4P10 + 4P12 + P20 + 4P01 + 16P11 + 4P21 + P22),

K01 = P(0, 1)

=
1
36

(P01 + 4P02 + P03 + 4P11 + 16P12 + 4P13 + P21 + 4P22 + P23),

K10 = P(1, 0) (7.51)

=
1
36

(P10 + P12 + 4P20 + 4P22 + P30 + 4P11 + 16P21 + 4P31 + P32),

K11 = P(1, 1)

=
1
36

(P11 + 4P12 + P13 + 4P21 + 16P22 + 4P23 + P31 + 4P32 + P33).

Each is a barycentric sum of nine control points. Notice that the first corner point can
be rewritten in the form

K00 =
1
6

[1
6
(P00 +4P10 +P20)+

4
6
(P01 +4P11 +P21)+

1
6
(P02 +4P12 +P22)

]
. (7.52)

This point is therefore the weighted sum of three points, each the weighted sum of three
control points. Its precise location depends on the positions of the nine points involved.

� Exercise 7.16: What is the value of K00 for the special case where the control points
are equally spaced?

The other three corner points can be expressed similarly. If all 16 points are equally
spaced, the bicubic surface patch has its corners at the four control points P11, P21,
P12, and P22 (Figure 7.24b shows an idealized diagram).

Large B-spline surfaces can be constructed from these bicubic patches by starting
with a mesh of (m + 1) × (n + 1) control points P00 through Pmn, dividing it into
(m− 2)× (n− 2) overlapping groups of 4× 4 points each, as in Figure 5.9 and applying
Equation (7.50) to calculate a cubic patch for each group. The individual patches will
not only connect at their joint points but will have C2 continuity along their boundaries.
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To show that the bicubic patches connect at the joints, we note how joint point K01

can be obtained from joint K00 by incrementing the second indices of the nine control
points involved in their expressions [Equation (7.51)]. The same is true for joints K10

and K11. Similarly, joint point K10 can be obtained from K00 by incrementing the first
index of each control point, and the same is true for joints K01 and K11.

To show first-order continuity we calculate, for example, the two tangent vectors
Pu(u, 0) and Pu(u, 1) of boundary curves P(u, 0) and P(u, 1)

Pu(u, 0) =
(−P02 + P20 + 4P21 + P22 − P00(u − 1)2 − 4P01(u − 1)2

+ 2P02u − 4P10u − 16P11u − 4P12u + 2P20u + 8P21u + 2P22u

− P02u
2 + 3P10u

2 + 12P11u
2 + 3P12u

2 − 3P20u
2 − 12P21u

2

− 3P22u
2 + P30u

2 + 4P31u
2 + P32u

2
)
/12

Pu(u, 1) =
(−P03 + P21 + 4P22 + P23 − P01(u − 1)2 − 4P02(u − 1)2

+ 2P03u − 4P11u − 16P12u − 4P13u + 2P21u + 8P22u + 2P23u

− P03u
2 + 3P11u

2 + 12P12u
2 + 3P13u

2 − 3P21u
2 − 12P22u

2

− 3P23u
2 + P31u

2 + 4P32u
2 + P33u

2
)
/12

(7.53)

Equation (7.53) shows that tangent vector Pu(u, 1) can be obtained from Pu(u, 0) by
incrementing the second index of every control point involved. Equation (7.54) illustrates
the same property for the second derivatives, thereby showing second-order continuity:

Puu(u, 0) =
(
P00 + P02 − 2P10 − 8P11 − 2P12 + P20 + 4P21 + P22

− 4P01(u − 1) − P00u − P02u + 3P10u + 12P11u + 3P12u

− 3P20u − 12P21u − 3P22u + P30u + 4P31u + P32u
)
/6

Puu(u, 1) =
(
P01 + P03 − 2P11 − 8P12 − 2P13 + P21 + 4P22 + P23

− 4P02(u − 1) − P01u − P03u + 3P11u + 12P12u + 3P13u

− 3P21u − 12P22u − 3P23u + P31u + 4P32u + P33u
)
/6.

(7.54)

7.16 Relation to Other Surfaces

This short section shows how the uniform bicubic B-spline surface patch can be expressed
as either a bicubic Coons or a bicubic Bézier patch.

Bicubic Coons and B-Spline Patches. A bicubic B-spline surface patch can
be written as a bicubic Coons patch. That patch [Equation (4.35), duplicated here]
is defined in terms of four corner points, eight tangent vectors, and four twist vectors.
These 16 quantities (the elements of matrix C below) can be expressed in terms of the
16 control points Pij that define the B-spline patch. The idea is to equate the expression
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for the Coons surface

Q(u, w) = (u3, u2, u, 1)H

⎛
⎜⎝

Q00 Q01 Qw
00 Qw

01

Q10 Q11 Qw
10 Qw

11

Qu
00 Qu

01 Quw
00 Quw

01

Qu
10 Qu

11 Quw
10 Quw

11

⎞
⎟⎠HT

⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ = UHCHT WT ,

(4.35)
with that of the B-spline surface, Equation (7.50), and solve for the 16 elements of
matrix C. This process is straightforward and the solutions are

Q00 =
1
6

(
P00

6
+

4P10

6
+

P20

6

)
+

4
6

(
P01
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+

P21

6

)
+

1
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+
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+
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+

4P11

6
+
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+
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+
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+
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+
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+
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+
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Bézier and B-Spline Bicubic Patches. A bicubic B-spline surface patch can
also be written in the form of a bicubic Bézier patch. The bicubic Bézier patch is fully
defined by 16 control points Qij [the elements of matrix P of Equation (6.32)]. They
can be expressed in terms of the 16 control points Pij defining the B-spline patch. The
idea is to equate the expressions for the bicubic Bézier and B-spline surface patches and
solve for the elements of matrix P. The solutions are

Q00 =
1
6
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4P10
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6
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+
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+
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+
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.
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7.17 An Interpolating Bicubic Patch

The uniform bicubic B-spline surface patch is defined by 16 control points. A mesh of
(m+1)× (n+1) control points can be used to calculate (m− 2)× (n− 2) such patches.
Each patch has four corner points, but since the patches are connected, the total number
of joint points is (m−1)×(n−1). This section shows how to solve the opposite problem,
namely given a mesh of (m − 1) × (n − 1) data points Q1,1 through Qm−1,n−1, how to
calculate the bicubic B-spline surface that passes through them.

P00 P10 P20 P30 P40 Pm−1,0 Pm,0

P01 P11

P21

Q21Q11

Q22

Q31

Q32

Q41

Q42

Qm−1,1

Qm−1,2Q12

P31 P41 Pm−1,1

Pm,1

P02 P12 P22 P32 P42 Pm−1,2 Pm,2

P03 P13 P23 P33 P43 Pm−1,3 Pm,3

Figure 7.26: An Interpolating B-Spline Surface.

The given data points Qij are considered the joint points of the unknown surface
and Equation (7.52) shows how they are related to the (yet unknown) control points
P00 through Pmn:

Qij =
1
6

[1
6
(Pi−1,j−1 + 4Pi,j−1 + Pi+1,j−1)

+
4
6
(Pi−1,j + 4Pi,j + Pi+1,j)

+
1
6
(Pi−1,j+1 + 4Pi,j+1 + Pi+1,j+1)

]
. (7.55)

Equation (7.55) can be written (m − 1) × (n − 1) times, once for each given data point
Qij . The number of equations needed, however, is (m+1)× (n+1). We use the relation

(m + 1) × (n + 1) = (m − 1) × (n − 1) + 2m + 2n,

to figure out how many more equations are needed. The extra equations are obtained
by the user specifying the vectors shown in Figure 7.26. There are m − 1 vectors going
from boundary control points Pi,0 to the “bottom” data points Qi1. There are m − 1
more such vectors going from the boundary control points Pi,n+1 to the “top” data
points Qi,n. In addition, there are 2(n − 1) vectors going from the “left” and “right”
boundary control points to the extreme data points Q1,j and Qm−1,j . Finally, there are
four vectors going from the four corner control points to the four corner data points.
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Once all 2(n−1)+2(m−1)+4 vectors have been specified, a system of (m+1)× (n+1)
linear equations can be set and solved, to yield the control points.

If the surface should be closed along one dimension, some of the vectors don’t
have to be specified. For example, if the surface of Figure 7.26 should be closed in the
vertical direction (i.e., if it should resemble a horizontal cylinder), then the bottom row
of control points Pi,0 should be duplicated and renamed Pi,4, and the top row Pi,3

should be duplicated and renamed Pi,−1. Two extra rows of surface patches should be
calculated, but every patch now has control points above and below it, so the 2(m − 1)
vertical vectors need not be specified by the user.

0 0 0 0 1 1 0 2 1 0 2 0
1 0 0 1 1 2 1 2 1 1 3 2
2 0 0 2 1 3 2 2 2 2 3 3
3 0 0 3 1 2 3 2 1 3 3 2
4 0 0 4 1 1 4 2 1 4 2 0

(* a general uniform B-spline surface patch *)
Clear[bsplSurf,surpnts,bspl,g1,g2,knt,i,j,km,kn,m,n,u,w]
bspl[i_,k_,t_]:=bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]]) \
+bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]]) (* 0<=i<=n *)
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
n=3; kn=3; m=4; km=3; (* Note: 0<=kn<=n 0<=km<=m *)
knt=Table[i, {i,0,m+km}]; (* uniform knots *)
(* Input triplets from data file *)
surpnts=ReadList["surf.pnts", {Number,Number,Number}, RecordLists->True];
bsplSurf[u_,w_]:=Sum[Sum[surpnts[[i+1,j+1]]bspl[i,km,u],{i,0,m}]bspl[j,kn,w],{j,0,n}]
g1=Graphics3D[{AbsolutePointSize[3], Table[Point[surpnts[[i,j]]],{i,1,5},{j,1,4}]}];
g2=ParametricPlot3D[bsplSurf[u,w], {u,km-1,m+1},{w,kn-1,n+1},
DisplayFunction->Identity,
AspectRatio->Automatic, Compiled->False];
Show[g1,g2, PlotRange->All, DisplayFunction->$DisplayFunction,
DefaultFont->{"cmr10", 10}, ViewPoint->{1.389, -3.977, 1.042}];

Figure 7.27: A Quadratic-Cubic B-Spline Surface Patch.
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7.18 The Quadratic-Cubic B-Spline Surface

This type of surface patch is defined by a 3×4 mesh of control points and its expression
is a Cartesian product of the quadratic and cubic B-spline curves:

P(u, w) =
(

1
2

)(
1
6

)
(u2, u, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠

×
⎛
⎝P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

⎞
⎠
⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠

T ⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ .

Figure 7.27 is an example.

The excellent mathematical and algorithmic properties,

combined with successful industrial applications, have

contributed to the enormous popularity of NURBS. NURBS

play a role in the CAD/CAM/CAE world similar to

that of the English language in science and business:

“Want to talk business? Learn to talk NURBS”.

Les Piegl and Wayne Tiller, The NURBS Book (1996)





8
Subdivision Methods

8.1 Introduction

The Bézier curve can be constructed either as a weighted sum of control points or by
the process of scaffolding. These are two very different approaches that lead to the
same result. A third approach to curve and surface design, employing the process of
refinement (also known as subdivision or corner cutting), is the topic of this chapter.
Refinement is a general approach that can produce Bézier curves, B-spline curves, and
other types of curves. Its main advantage is that it can easily be extended to surfaces.

8.2 Chaikin’s Refinement Method

In 1974, George Chaikin came up with the idea of constructing a smooth curve from a
small number of control points in several refinement steps. The principle of Chaikin’s
method is to start with a given set of control points Pi, perform a computation that
results in a new set of points P1

i , and repeat the process, producing more and more sets
of points Pk

i . Thus, the original control polygon is successively refined. Table 8.1 shows
the notation used.

P0, P1, . . . , Pn

P1
0, P1

1, . . . , P1
n1

P2
0, P2

1, . . . , P2
n2

...
Pk

0 , Pk
1 , . . . , Pk

nk

Table 8.1: Refining Control Points.
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Each point Pk
j is computed as a weighted sum of the points Pk−1

i of the previous
iteration. Thus,

Pk
j =

nk−1∑
i=0

aijkPk−1
i = (a0jk, a1jk, . . . , ank−1,jk)

⎛
⎜⎜⎜⎝

Pk−1
0

Pk−1
1
...

Pk−1
nk−1

⎞
⎟⎟⎟⎠ ,

where aijk are real coefficients. Notice that each iteration produces a different number
nk + 1 of points. If nk gets smaller with k, then the number of points gets smaller and
smaller until a single point is left. An example is the de Casteljau scaffolding construc-
tion, a process that produces one point of the Bézier curve. At the other extreme, nk

may get larger with k, producing more points in each iteration. We then stop after a few
iterations and draw the curve by drawing straight segments between the points of the
last iteration. An example of this case is the Chaikin algorithm, described in example
(2).

Each iteration can be completely described by its coefficient matrix⎛
⎜⎜⎜⎝

Pk
0

Pk
1
...

Pk
nk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a00k a10k · · · ank−1,0k

a01k a11k · · · ank−1,1k

...
...

...
a0,nk,k a1,nk,k · · · ank−1,nk,k

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

Pk−1
0

Pk−1
1
...

Pk−1
nk−1

⎞
⎟⎟⎟⎠

= Mk

⎛
⎜⎜⎜⎝

Pk−1
0

Pk−1
1
...

Pk−1
nk−1

⎞
⎟⎟⎟⎠ ,

(8.1)

where Mk has nk + 1 rows and nk−1 + 1 columns. Since the number of iterations
may be large, the number of coefficients aijk may be huge. In practice, this number is
significantly reduced in three ways: (1) Using a rule of calculation where most of these
coefficients are zero. (2) Using coefficients aij that are independent of k. (3) Using
coefficients aik that are independent of j. Case 2 is called uniform refinement and case
3 is termed stationary refinement.

Example: (1) This is the de Casteljau scaffolding construction expressed as a
refinement process. The rule of refinement is

Pk+1
j = 0.5(Pk

j + Pk
j+1), (8.2)

which implies that the ai coefficients are independent of j and k (this is a stationary
uniform refinement method) and are zero except for the two coefficients aj and aj+1.
The aijk’s therefore depend on i only and are given by

ai =
{

0.5, i = j, j + 1,
0, otherwise.
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Since Pk
j depends on Pk−1

j and Pk−1
j+1 , the largest value for j is nk − 1. This means

that each iteration reduces the number of points by 1 (Figure 8.2a). We start with the
n + 1 points P0, P1,. . . , Pn. The first iteration produces n points, the second iteration
produces n − 1 points, and so on, until iteration n produces one point. That point is
located on the Bézier curve P(t) defined by the n + 1 original control points. In fact,
that point is P(0.5). If we generalize Equation (8.2) to Pk+1

j = (1 − α)Pk
j + αPk

j+1,
then the final point is P(α). Matrix Mk of Equation (8.1) is

Mk =

⎛
⎜⎜⎜⎜⎝

0.5 0.5 0 0 · · · 0
0 0.5 0.5 0 · · · 0
0 0 0.5 0.5 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · · 0.5 0.5

⎞
⎟⎟⎟⎟⎠ .

It is independent of k and is of order k × (k + 1).

Pj+2 Pnk−1Pj+1Pj

Pj+2 Pj+3 PnkPj+1Pj

P1P0

P1P0
k k k k k k k

P0
k P1

k Pj
k Pj+1

k Pj+2
k Pnk−1

k Pnk
k

k+1 k+1 k+1 k+1 k+1 k+1

P0
k+1 P1

k+1 P2j
k+1 P2j+1

k+1 P2j+2
k+1 P2j+2

k+1 P2nk−1
k+1
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Figure 8.2: (a) de Casteljau Refinement. (b) Chaikin’s Method.

Example: (2) We start with the n + 1 control points P0, P1,. . . , Pn and apply
the rule of refinement

Pk+1
2j =

3
4
Pk

j +
1
4
Pk

j+1, Pk+1
2j+1 =

1
4
Pk

j +
3
4
Pk

j+1. (8.3)

(This is illustrated in Figure 8.2b.) The first iteration starts with the original n + 1
points and produces the 2n points P1

i shown in Table 8.3. Each subsequent iteration
doubles the number of points and brings the points closer to the curve. After k iterations
(where k depends on the required precision), the curve is displayed by drawing straight
segments between the points produced in the last iteration.

This method is due to George Chaikin ([Chaikin 74] and [Riesenfeld 75]) and has a
simple geometric interpretation, which is illustrated in Figure 8.5. Part (a) of the figure
shows a control polygon made of five points. The rule of refinement is: take a segment
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P1
0 = 3

4P0 + 1
4P1, P1

1 = 1
4P0 + 3

4P1,
P1

2 = 3
4P1 + 1

4P2, P1
3 = 1

4P1 + 3
4P2,

P1
4 = 3

4P2 + 1
4P3, P1

5 = 1
4P2 + 3

4P3,
...

...
P1

2n−2 = 3
4Pn−1 + 1

4Pn, P1
2n−1 = 1

4Pn−1 + 3
4Pn.

Table 8.3: First Iteration of Chaikin’s Algorithm.

PiPi+1 of the control polygon and place two new points Qi and Ri at distances from
Pi of 1/4 and 3/4 the segment’s size, respectively (Figure 8.5b, which justifies the term
“corner cutting”). The new points are therefore given by

Qi =
3
4
Pi +

1
4
Pi+1, Ri =

1
4
Pi +

3
4
Pi+1.

This is repeated for all the polygon segments. If we start with n + 1 control points
defining a control polygon with n sides, we end up with 2n new points Qi and Ri. They
should now be connected to form a new control polygon with 2n − 1 sides. As this
process is repeated (Figure 8.5c), the control polygons get closer to the smooth curve
shown in Figure 8.5d. This figure also shows that the midpoint of any segment of the
control polygon is a point on the Chaikin curve. In fact, the midpoint of any segment
generated at any stage of the refinement is a point on the Chaikin curve.

� Exercise 8.1: Is this curve a Bézier curve?

P1 P2

P3P0

Q0

Q1

Q2

Q3

R0

R1

R2

R3

Figure 8.4: Chaikin’s Algorithm for a Closed Curve.

This algorithm works for closed curves too. The only modification needed is to
connect the last point Pn to the first one P0 and compute the two auxiliary points Qn

and Rn. This can be done in a natural way if we copy P0 and name the duplicate Pn+1.
Figure 8.4 shows three instances in the construction of such a curve. Again, we see that
the midpoint of any segment of the control polygon is a point on the closed Chaikin
curve.

To identify the kind of curve that Chaikin’s algorithm produces, let’s consider the
control polygon defined by the three points P0, P1 = B, and P2 (Figure 8.6). Let A
and C be the midpoints of segments P0P1 and P1P2, respectively, and let point P be
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(a) (b)

(c) (d)

P1 P2

P3

P4

Q0

Q1

Q2

Q3

R0

R1

R2

R3

P0

(* Chaikin algorithm for a control polygon *)
n=4;
(* p={p0,p1,p2,p3,p4,p5}; *)
p={{0,0},{0,4},{3,4},{4,0},{6,6}};
Show[Graphics[Line[p]]]
q=Table[If[OddQ[i], (* then *){(3p[[i]]+p[[i+1]])/4, (p[[i]]+3p[[i+1]])/4},
(* else *) {(3p[[i]]+p[[i+1]])/4, (p[[i]]+3p[[i+1]])/4}], {i,1,n}];
q=Flatten[q,1]
Show[Graphics[{AbsoluteDashing[{2,2}], Line[p]}], Graphics[Line[q]]];
r=Table[If[OddQ[i], (* then *){(3q[[i]]+q[[i+1]])/4, (q[[i]]+3q[[i+1]])/4},
(* else *) {(3q[[i]]+q[[i+1]])/4, (q[[i]]+3q[[i+1]])/4}], {i,1,2n-1}];
r=Flatten[r,1]
Show[Graphics[{AbsoluteDashing[{2,2}], Line[p]}], Graphics[Line[r]]];

Figure 8.5: Chaikin’s Algorithm for a Control Polygon.

the midpoint of points Mab = (A + B)/2 and Mbc = (B + C)/2. This point has the
following properties:

1. It is located on the Bézier curve defined by points A, B, and C because it’s been
constructed using the de Casteljau scaffolding process.

2. It is located on the Chaikin curve defined by points P0, P1, and P2. This is
because points Mab and Mbc are the points constructed by the first step of Chaikin’s
algorithm and we already know that the midpoint of any Chaikin segment is a point on
the Chaikin curve.

� Exercise 8.2: Show that points Mab and Mbc are the points constructed by the first
step of Chaikin’s algorithm.
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P2

PP1=B P11

P01

A

C

P0

(B+C)/2

(A+B)/2

Figure 8.6: Points on the Chaikin Curve.

The second refinement step produces the two midpoints, P01 and P11 (Figure 8.6)
using the recursive procedures

B ← (A + B)/2, C ← P, P01 ← (A + 2B + C)/4,

A ← P, B ← (B + C)/2, P11 ← (A + 2B + C)/4.

An argument similar to the previous one shows that these two points are also located
on the quadratic Bézier curve defined by A, B, and C as well as on the Chaikin curve
defined by P0, P1, and P2. Applying this argument to all the points generated by
the refinement steps shows that they are located on both curves, which proves that
the Chaikin curve defined by P0, P1, and P2 is identical to the quadratic Bézier curve
defined by A, B, and C. This Bézier curve is

P(t) = (1 − t)2A + 2t(1 − t)B + t2C,

and it is easy to express in terms of the original control points Pi

P(t) = (t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 0 0

⎞
⎠
⎛
⎝A

B
C

⎞
⎠

= (t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 0 0

⎞
⎠
⎛
⎝ (P0 + P1)/2

P1

(P1 + P2)/2

⎞
⎠

= (t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 0 0

⎞
⎠
⎛
⎝ 1/2 1/2 0

0 1 0
0 1/2 1/2

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠

=
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ . (8.4)
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The result is the quadratic B-spline curve segment, Equation (7.6).
We therefore conclude that the curve produced by Chaikin’s algorithm is not a new

type of curve but the quadratic B-spline for points P0, P1, and P2. This fact lets us
see the B-spline in a new light and it also shows a relation between the quadratic Bézier
and B-spline curves.

� Exercise 8.3: (Easy). State this relation.

The Original Chaikin Algorithm

The description of Chaikin’s algorithm in this section differs from that originally
proposed by George Chaikin. Here is the original description of the method, as it appears
in [Chaikin 74]. Start with four points P1 through P4 (Figure 8.7a). Points P4 and P3

are pushed into a stack and a new P4 = (P2 + P3)/2 is constructed. Points P1 and P4

are now compared. If their distance is greater than or equal to three pixels, then points
P2 and P3 are recomputed according to

P3 = (P2 + P4)/2, P2 = (P2 + P1)/2

(Figure 8.7b,c), points P4 and P3 are pushed into the stack, point P4 is recalculated,
and the distance between P1 and P4 is checked. This is repeated until the distance
becomes smaller than three pixels, in which case the short segment P1P4 is drawn,
point P4 is renamed P1, the stack is popped twice and the resulting points are named
P2 and P4, and the distance P1P4 is checked again. The process terminates when the
stack is empty. Figure 8.7d is a flowchart of this algorithm.

� Exercise 8.4: Why compare the distance to three pixels and not to two?

8.3 Quadratic Uniform B-Spline by Subdivision

The uniform B-spline for a group of n + 1 control points can be constructed as a set of
short segments, each a quadratic polynomial based on three control points. This section
shows how Chaikin’s algorithm (Section 8.2) can be applied to construct such a curve.
We divide the original n + 1 control points into n− 1 overlapping groups of three points
each, and use each group to calculate four new points. The groups are

P0P1P2, P1P2P3, . . . , Pn−2Pn−1Pn.

Subdividing the first group is done by

⎛
⎜⎜⎝

P1
0

P1
1

P1
2

P1
3

⎞
⎟⎟⎠ =

1
4

⎛
⎜⎝

3 1 0
1 3 0
0 3 1
0 1 3

⎞
⎟⎠
⎛
⎝P0

P1

P2

⎞
⎠ =

⎛
⎜⎜⎝

3
4P0 + 1

4P1
1
4P0 + 3

4P1
3
4P1 + 1

4P2
1
4P1 + 3

4P2

⎞
⎟⎟⎠ ,
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P1

P2

P2

P3 P3 P3 P3 P4

P2
P4

P2

P4

P4

(a) (b)

yes

no

(d)

(c)

P1 P1

P2

P3

P4

P1     P4

Draw P1P4

P4=(P2+P3)/2

P3=(P2+P4)/2
P2=(P2+P1)/2

Push P4 and P3

Start

P1−P4  >2 2

Pop P2 and P4

if stack is
empty, STOP

Figure 8.7: The Original Chaikin Algorithm.
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and it yields the four new points P1
0, P1

1, P1
2, and P1

3. Subdividing the second group
is done similarly and yields the four points P1

2, P1
3, P1

4, and P1
5, of which only the last

two are new. Each subsequent group also yields two new points when subdivided. The
process is then repeated on the 2n segments defined by the 2n+2 new points P1

i , yielding
4n + 4 points P2

i . These points, in turn, define 4n + 2 segments. When the number
of points is large enough, the curve can be drawn by connecting each pair of adjacent
points with a straight segment.

It can be shown (see page 325) that the curve obtained this way is the quadratic
uniform B-spline, Equation (7.6).

8.4 Cubic Uniform B-Spline by Subdivision

The approach to constructing cubic B-splines by subdivision is similar to that of Sec-
tion 8.3. We show how Chaikin’s methods (Section 8.2) can be applied to the construc-
tion of a cubic uniform B-spline for a set of n + 1 control points Pi. The points are
divided into overlapping groups of four points each, and each group is used to calculate,
by refinement, a PC that becomes a segment in the entire curve. These cubic segments
have C2 continuity. Since refinement is an iterative process, we denote the control points
obtained in the kth subdivision step by Pk

i . Thus, it makes sense to denote the original
control points by P0

i . They are divided into the overlapping groups

P0
0P

0
1P

0
2P

0
3, P0

1P
0
2P

0
3P

0
4, . . . , P0

n−3P
0
n−2P

0
n−1P

0
n.

Figure 8.8a illustrates the refinement process that leads from the group of four
control points P0

0P
0
1P

0
2P

0
3 to a segment of a cubic uniform B-spline. The treatment

for the other groups is similar. The figure shows the positions of the five iteration-1
points P1

i and the seven points P2
i resulting from iteration 2. The first refinement step

computes the five points P1
0P

1
1P

1
2P

1
3P

1
4 as follows:

1. Each of the three points with even subscripts P1
0P

1
2P

1
4 (termed the edge points)

is located at the center of a segment delimited by two of the original control points.
Thus, P1

0 is located midway between P0
0 and P0

1.
2. Each of the two points with odd subscripts P1

1 and P1
3 (termed the vertex points)

is located at the center of a segment whose endpoints are located at the centers of two
segments delimited by two new edge points and one original control point. Thus, P1

1 is
located at the center of the segment whose endpoints are located at the centers of the
two segments delimited by the three points P1

0, P0
1 and P1

2.
The five points produced by the first refinement step can be expressed in terms of

the four original control points by

⎛
⎜⎜⎜⎜⎜⎝

P1
0

P1
1

P1
2

P1
3

P1
4

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 (P0

0 + P0
1)

1
8 (P0

0 + 6P0
1 + P0

2)
1
2 (P0

1 + P0
2)

1
8 (P0

1 + 6P0
2 + P0

3)
1
2 (P0

2 + P0
3)

⎞
⎟⎟⎟⎟⎟⎟⎠ =

1
8

⎛
⎜⎜⎜⎝

4 4 0 0
1 6 1 0
0 4 4 0
0 1 6 1
0 0 4 4

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

P0
0

P0
1

P0
2

P0
3

⎞
⎟⎟⎠ .
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P2
2 P2

4

P2
6

P2
0

P2
1

P2
3

P2
5

P1
0

P0
0

P0
0123

P3
0123

P2
0123 P2

1234 P2
2345 P2

3456

P1
1234P1

0123

P3
1234 P3

2345 P3
3456 P3

4567 P3
5678 P3

6789 P3
789 10

P0
3

P1
1 P1

3

P0
1 P0

2

P1
4

P1
2

(a)

(b)

Figure 8.8: (a) The First Two Refinement Steps. (b) Groups After Three Steps.

Each of the new points P1
i is computed from either two or three of the points P0

j . The
five new points are then divided into two overlapping groups P1

0P
1
1P

1
2P

1
3 and P1

1P
1
2P

1
3P

1
4

of four points each, and the second subdivision step is applied to each group to produce
five new points denoted by P2

i . Some of the P2
i points, however, are identical, so this

second step produces a total of seven distinct points. Figure 8.8b shows the points
produced by the first three iterations of the refinement process and how each group of
four points Pk

i produces two overlapping groups of four new points Pk+1
i each. The

compact notation P3
0123 stands for a group of four points. It is easy to see that iteration

k produces 2k overlapping groups of four points each, for a total of 4+ (2k − 1) = 3+2k

distinct points. Thus, iteration 0 (the original control points) consists of 3 + 20 = 4
points, and iterations 1, 2, 3, and 4 produce 5, 7, 11, and 19 points, respectively.

Since each point produced in step k is computed from either two or three points of
step k − 1, it is convenient to express a new triplet of points Pk

i P
k
i+1P

k
i+2 as a function
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of a triplet Pk−1
j Pk−1

j+1P
k−1
j+2 . We illustrate this relation for k = 1

⎛
⎝P1

0

P1
1

P1
2

⎞
⎠ = A

⎛
⎝P0

0

P0
1

P0
2

⎞
⎠ ,

⎛
⎝P1

2

P1
3

P1
4

⎞
⎠ = A

⎛
⎝P0

1

P0
2

P0
3

⎞
⎠ , where A =

1
8

⎛
⎝ 4 4 0

1 6 1
0 4 4

⎞
⎠ ,

or, using compact notation P1
012 = AP0

012 and P1
234 = AP0

123. In general P1
i i+1 i+2 =

AP0
j j+1 j+2 for even values of i and for j = i, i − 1.
For k = 2, the computation of the seven points P2

i can be summarized by the
three overlapping triplets P2

012 = AP1
012, P2

234 = AP1
123, and P2

456 = AP1
234, or in

general P2
i i+1 i+2 = AP1

j j+1 j+2, for even values of i and for j = i, i − 1, and i −
2. For k = 3, the calculation of the 11 points P3

i is summarized by the five triplets
P3

i i+1 i+2 = AP2
j j+1 j+2, where i is even and j = i, i−1, i−2, and i−3. In general, the

computation of the 3 + 2k points of step k can be summarized by the 2k−1 + 1 triplets
Pk

i i+1 i+2 = APk−1
j j+1 j+2 where i is even and j goes through the values i, i − 1 and so

on, down to i − (2k−1 − 1).

� Exercise 8.5: Write each of the nine triplets P4
i i+1 i+2 (for even values of i) in terms

of a triplet P3
j j+1 j+2.

Because of the repeated use of matrix A, most triplets produced in step k can be
expressed in terms of triplets produced in earlier steps. For example, the trio of points
P3

012 can be written as AP2
012 = A2P1

012 = A3P0
012, the triplet P3

234 equals AP2
123, and

P3
456 can be written as AP2

234 = A2P1
123. (Note that for the triplet on the left-hand

side, the first subscript is always even, but the first subscript of the triplet on the right
can be even or odd.) These relations point the way to moving forward from an earlier
triplet to a later one. If we start, say, with the triplet P1

123, we can easily compute
the triplets P2

234, P3
456, P4

89 10, P5
16 17 18, and so on by multiplying the three points P1

123

by powers of A. We can use this method to leapfrog across many recursion steps and
proceed, in one step, from any triplet Pk

i i+1 i+2 to a triplet many subdivision steps later!
In the limit, this can be written limk→∞ Pk

i i+1 i+2 = A∞Pk
i i+1 i+2, where A∞ denotes

limk→∞ Ak. Any triplet Pk
i i+1 i+2 is an approximation to the ideal B-spline curve, but

the limit limk→∞ Pk
i i+1 i+2 converges to a point on the actual curve.

The problem is therefore to calculate the limit of Ak as k approaches infinity, and
this can easily be done with the help of the following theorem (see any text on matrices
or linear algebra for the proof and for more information on eigenvalues and eigenvectors):

Theorem: If A is an n×n matrix for which there exist n linearly independent
eigenvectors, then A has the form QΛQ−1, where Q is the matrix whose columns
are the n eigenvectors and Λ is the diagonal matrix whose diagonal elements are the
eigenvalues of A.

This theorem implies that A2 = QΛQ−1QΛQ−1 = QΛ2Q−1, and in general Ak =
QΛkQ−1. Following this theorem, we can write our matrix A (after its eigenvalues and a
set of linearly independent eigenvectors have been computed with appropriate software)
as

A =

⎛
⎝ 1 −1 1

−1/2 0 1
1 1 1

⎞
⎠
⎛
⎝ 1/4 0 0

0 1/2 0
0 0 1

⎞
⎠
⎛
⎝ 1/3 −2/3 1/3

−1/2 0 1/2
1/6 2/3 1/6

⎞
⎠ .
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Since matrix Λ is diagonal, we have

lim
k→∞

Λk = lim
k→∞

⎛
⎝ (1/4)k 0 0

0 (1/2)k 0
0 0 1k

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ .

The limit A∞ is therefore⎛
⎝ 1 −1 1

−1/2 0 1
1 1 1

⎞
⎠
⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠
⎛
⎝ 1/3 −2/3 1/3

−1/2 0 1/2
1/6 2/3 1/6

⎞
⎠ =

1
6

⎛
⎝ 1 4 1

1 4 1
1 4 1

⎞
⎠ ,

so we end up with the limits

lim
k→∞

Pk
i i+1 i+2 =

1
6

⎛
⎝ 1 4 1

1 4 1
1 4 1

⎞
⎠
⎛
⎝Pk

i

Pk
i+1

Pk
i+2

⎞
⎠ def=

1
6
(1, 4, 1)

⎛
⎝Pk

i

Pk
i+1

Pk
i+2

⎞
⎠

=
1
6
(Pk

i + 4Pk
i+1 + Pk

i+2),

where k is any nonnegative integer. Notice that the three points of the triplet converge
to the same point on the B-spline curve.

To summarize, we can (1) select four control points P0
0123, (2) select a value k and

perform k refinement steps, (3) select a value i and a triplet Pk
i i+1 i+2, and (4) compute

(Pk
i +4Pk

i+1 +Pk
i+2)/6. This will be a point on the cubic B-spline curve segment defined

by the four original control points. To show that this is so, we can express each of the
three points Pk

i i+1 i+2 in terms of the original control points P0
0123, and compare the

result with the general cubic B-spline segment, Equation (7.11). Here are some examples.

Example: (1) We start with k = 0 and i = 0. The initial triplet is therefore P0
012.

lim
k→∞

P0
012 =

1
6
(1, 4, 1)

⎛
⎝P0

0

P0
1

P0
2

⎞
⎠ =

1
6
(P0

0 + 4P0
1 + P0

2),

which is the initial point P(0) of the B-spline segment, as can be seen from Equa-
tion (7.11).

Example: (2) The values k = 0 and i = 1 specify the triplet P0
123 (notice that i

does not have to be even).

lim
k→∞

P0
123 =

1
6
(1, 4, 1)

⎛
⎝P0

1

P0
2

P0
3

⎞
⎠ =

1
6
(P0

1 + 4P0
2 + P0

3),

which is the final point P(1) of the B-spline segment, as can be seen from the same
equation.
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Example: (3) We perform one refinement step and select the triplet P1
123 specified

by k = 1 and i = 1. When this triplet is expressed in terms of the control points P0
i ,

the result is

lim
k→∞

P1
123 =

1
6
(P1

1 + 4P1
2 + P1

3)

=
1
6

(
1
8
(P0

0 + 6P0
1 + P0

2) +
4
2
(P0

1 + P0
2) +

1
8
(P0

1 + 6P0
2 + P0

3)
)

=
1
48

(P0
0 + 23P0

1 + 23P0
2 + P0

3).

Equation (7.11) tells us that this is the midpoint P(1/2) of the curve segment.

� Exercise 8.6: Select k = 3 and i = 6 and compute the point on the cubic B-spline
curve segment obtained from these values at the limit of subdivision.

8.5 Biquadratic B-Spline Surface by Subdivision

The method of subdivision has been introduced in Section 8.2, where Chaikin’s algo-
rithm for curves is discussed. Generating the quadratic B-spline curve by subdivision is
described in Section 8.3. This material should be reviewed before reading ahead. The
technique of subdivision can be extended to surfaces that are defined by a mesh of con-
trol points. We use the biquadratic B-spline surface patch as an example. Such a patch
is constructed by Equation (7.48) from a grid of 3×3 control points Pij . We denote this
patch by BSP and the original points by P0

ij . The principle of constructing a BSP by
subdivision is to find a way to subdivide the mesh of original points into a finer mesh
with more points P1

ij and, as a result, with more subpatches. If this is done right, the
new control points P1

ij will be closer to the ideal BSP surface than the original ones.
When this process is repeated, it results in more and more control points Pk

ij that get
closer and closer to the BSP. At the limit, we end up with infinitely many points that
lie on the surface. In practice, we stop the subdivision process after a finite number k
of steps and display the surface as a wireframe by connecting points Pk

ij with straight
segments.

The refinement rule for a BSP P(u, w) employs reparametrization to calculate four
new patches Q(u, w). The technique of reparametrization was introduced in Section 6.10
for curves and has been extended for Bézier surface patches in Section 6.25. It can easily
be modified for the biquadratic B-spline surface by rewriting Equation (6.46) in the form

Q(u, w) = P([b − a]u + a, [d − c]w + c)

=
(
([b − a]u + a)2, ([b − a]u + a), 1

)
M · P · M−1

⎛
⎝ ([d − c]w + c)2

[d − c]w + c
1

⎞
⎠

= (u2, u, 1)AabM · P · MT · AT
cd(w

2, w, 1)T

= (u2, u, 1)M(M−1 · Aab · M)P(MT · AT
cd · (MT )−1)MT (w2, w, 1)T
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= (u2, u, 1)M · Bab · P · BT
cd · MT (w2, w, 1)T

= (u2, u, 1)M · Q · MT (w2, w, 1)T ,

where

M =
1
2

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠ , Aab =

⎛
⎝ (b − a)2 0 0

2a(b − a) b − a 0
a2 a 1

⎞
⎠

(M is the basis matrix for the biquadratic B-spline surface),

P =

⎛
⎝P00 P01 P02

P10 P11 P12

P20 P21 P22

⎞
⎠ ,

Bab = M−1 · Aab · M

=

⎛
⎝ ((1 − a)(1 − 2a + b))/2 (1 + 3a − 4a2 − b + 2ab)/2 a2 − (ab)/2

1/2 − a/2 − b/2 + (ab)/2 (1 + a + b − 2ab)/2 (ab)/2
((1 + a − 2b)(1 − b))/2 (1 − a + 3b + 2ab − 4b2)/2 −(ab)/2 + b2

⎞
⎠ ,

BT
cd = MT · AT

cd · (MT )−1

=

⎛
⎝ ((1 − c)(1 − 2c + d))/2 1/2−c/2−d/2+(cd)/2 ((1 + c − 2d)(1 − d))/2

(1+3c−4c2−d+2cd)/2 (1 + c + d − 2cd)/2 (1−c+3d+2cd−4d2)/2
c2 − (cd)/2 (cd)/2 −(cd)/2 + d2

⎞
⎠ ,

and
Q = Bab · P · BT

cd. (8.5)

The elements of Q depend on the four parameters a, b, c, and d, and on the Pij ’s.
Once the four parameters are known, matrix Q is easy to calculate symbolically with
appropriate mathematical software.

The rule for subdividing a biquadratic B-spline surface patch P(u, w) is as follows:
Call the original surface patch the subdivision step-0 surface. Use reparametrization to
calculate the four step-1 surface patches defined by the following sets of parameters:

a = 0, b = 0.5, c = 0, d = 0.5, a = 0.5, b = 1, c = 0, d = 0.5,

a = 0, b = 0.5, c = 0.5, d = 1, a = 0.5, b = 1, c = 0.5, d = 1.

The basic idea is shown in idealized form in Figure 8.11. Each of the four new step-1
patches is defined by nine points, but some of the new points are identical, so the four
patches are fully defined by 16 points P1

ij for i and j from 00 to 33. The first of the four
patches (Figure 8.11a) is constructed by setting a = 0, b = 0.5, c = 0, and d = 0.5 (it is
a reparametrization of the “upper left” quadrant of the original, step-0 surface patch)
and then applying Equation (8.5). The resulting nine control points P1

ij are (from the
code of Figure 8.9)

P1
00 =

1
16

(9P0
00 + 3P0

10 + 3P0
01 + P0

11), P1
01 =

1
16

(3P0
00 + P0

10 + 9P0
01 + 3P0

11),
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P1
02 =

1
16

(9P0
01 + 3P0

11 + 3P0
02 + P0

12), P1
10 =

1
16

(3P0
00 + 9P0

10 + P0
01 + 3P0

11),

P1
11 =

1
16

(P0
00 + 3P0

10 + 3P0
01 + 9P0

11), P1
12 =

1
16

(3P0
01 + 9P0

11 + P0
02 + 3P0

12),

P1
20 =

1
16

(9P0
10 + 3P0

20 + 3P0
11 + P0

21), P1
21 =

1
16

(3P0
10 + P0

20 + 9P0
11 + 3P0

21),

P1
22 =

1
16

(9P0
11 + 3P0

21 + 3P0
12 + P0

22). (8.6)

(* reparametrize biquadratic B-spline surface *)
Clear[a,b,c,d,A,B,TB,H,M,P,Q];
M={{1,-2,1},{-2,2,0},{1,1,0}}/2;
A={{(b-a)^2,0,0},{2a(b-a),b-a,0},{a^2,a,1}};
(* B=MatrixForm[Simplify[Inverse[M].A.M]] *)
B={{((1 - a)*(1 - 2*a + b))/2, (1 + 3*a - 4*a^2 - b + 2*a*b)/2,
a^2 - (a*b)/2}, {1/2 - a/2 - b/2 + (a*b)/2, (1 + a + b - 2*a*b)/2,
(a*b)/2}, {((1 + a - 2*b)*(1 - b))/2, (1 - a + 3*b + 2*a*b - 4*b^2)/2,
-(a*b)/2 + b^2}};

TB={{((1 - c)*(1 - 2*c + d))/2, 1/2 - c/2 - d/2 + (c*d)/2,
((1 + c - 2*d)*(1 - d))/2},
{(1 + 3*c - 4*c^2 - d + 2*c*d)/2, (1 + c + d - 2*c*d)/2,
(1 - c + 3*d + 2*c*d - 4*d^2)/2},
{c^2 - (c*d)/2, (c*d)/2, -(c*d)/2 + d^2}};
P={{P00,P01,P02},{P10,P11,P12},{P20,P21,P22}};
Q=Simplify[B.P.TB]
a=0; b=.5; c=0; d=.5; Q

Figure 8.9: Code for the Nine Control Points of the “Upper-Left” Patch.

These points can be interpreted geometrically in two ways as follows:
1. The original surface patch has four faces and each new control point is located on

one of these faces. Such a point is a weighted sum (with weights 9/16, 3/16, 3/16, and
1/16) of the four points on its face. Figure 8.10 shows the four possible weight patterns.

2. Take the two points P0
00 and P0

10 and add them with weights 3/4 and 1/4. Do
the same with P0

01 and P0
11. Add the two results also with weights 3/4 and 1/4, and

call the resulting point P1
00. Each new point is therefore the sum of two quantities, each

a sum of two points on the same edge, where all the sums use weights of 3/4 and 1/4.
Recall that these are the weights used by the original Chaikin’s algorithm.

P1
00

P1
02

P1
20

P1
22

9 3

3 1
P1

10

P1
12

3 1

9 3 P1
11

1 3

3 9
P1

01

P1
21

3 9

1 3

Figure 8.10: The Four Weight Patterns.

Using each of the other three sets of parameters to reparametrize the surface results
in three more sets of nine more points each, only some of which are new. Figure 8.11b,c,d



334 8. Subdivision Methods
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P00 P01 P02

P20 P21 P22
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1
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×
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Figure 8.11: The First Two Subdivision Steps.
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shows the points (as small triangles) for the sets

a = 0.5, b = 1, c = 0, d = 0.5, part (b),
a = 0, b = 0.5, c = 0.5, d = 1, part (c),
a = 0.5, b = 1, c = 0.5, d = 1, part (d).

The total number of points P1
ij is 9 + 3 + 3 + 1 = 16, enough for four new (step 1)

biquadratic patches based on nine points each. We can either display the four surface
patches or proceed to step 2.

In step 2 of the subdivision, the new mesh of 16 points is used to calculate 4×9 = 36
points P2

ij . Figure 8.11e shows nine of them, marked as ×, and Figure 8.11f shows all
36, enough points for 4×4 = 16 step-2 biquadratic patches based on nine points each.

This subdivision process is repeated several times, resulting in more and more
points. When enough points have been obtained, the surface can be generated by con-
necting the points with short straight segments. It becomes a polygonal surface made
of four-sided polygons (quadrilaterals).

An examination of all the parts of Figure 8.11 seems to suggest that the subdivi-
sion process produces smaller and smaller meshes of control points, thereby generating
smaller and smaller surface patches. It is easy to show that this is not so. Let Q(u, w)
denote the reparametrization of the “upper left” quadrant of the original surface patch
P(u, w). These two patches are based on different meshes of control points, but we
show that they have the same “upper left” corner point, i.e., Q(0, 0) = P(0, 0). The
corner point P(0, 0) of a general biquadratic B-spline surface patch P(u, w) is shown by
Equation (7.49) to be

P(0, 0) =
1
4
(P00 + P01 + P10 + P11).

The corner point Q(0, 0) is therefore

Q(0, 0) =
1
4
(P1

00 + P1
01 + P1

10 + P1
11)

=
1

4 · 16
[
(9P0

00 + 3P0
10 + 3P0

01 + P0
11) + (3P0

00 + P0
10 + 9P0

01 + 3P0
11)

+ (3P0
00 + 9P0

10 + P0
01 + 3P0

11) + (P0
00 + 3P0

10 + 3P0
01 + 9P0

11)

=
1
4
(P0

00 + P0
01 + P0

10 + P0
11)

]
= P(0, 0).

It turns out that even though consecutive steps of the subdivision process result in
smaller meshes, those meshes converge to a limit and don’t shrink indefinitely.
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8.6 Bicubic B-Spline Surface by Subdivision

The technique used in this section to subdivide a bicubic B-spline surface patch is similar
to the one used in Section 8.5 to subdivide the biquadratic B-spline surface.

The rule for subdividing a bicubic B-spline surface patch P(u, w) uses reparametriza-
tion to calculate four new patches Q(u, w). This is done by rewriting Equation (6.46)
in the form

Q(u, w)
= P([b − a]u + a, [d − c]w + c)

=
(
([b − a]u + a)3, ([b − a]u + a)2, ([b − a]u + a), 1

)
M · P · M−1

⎛
⎜⎝

([d − c]w + c)3

([d − c]w + c)2

[d − c]w + c
1

⎞
⎟⎠

= (u3, u2, u, 1)AabM · P · MT · AT
cd(w

3, w2, w, 1)T

= (u3, u2, u, 1)M(M−1 · Aab · M)P(MT · AT
cd · (MT )−1)MT (w3, w2, w, 1)T

= (u3, u2, u, 1)M · Bab · P · BT
cd · MT (w3, w2, w, 1)T

= (u3, u2, u, 1)M · Q · MT (w3, w2, w, 1)T , (8.7)

where

M =
1
6

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎞
⎟⎠ , Aab =

⎛
⎝ (b − a)2 0 0

2a(b − a) b − a 0
a2 a 1

⎞
⎠

(M is the basis matrix for the bicubic B-spline surface),

P =

⎛
⎜⎝

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

⎞
⎟⎠ ,

Bab = M−1 · Aab · M

=

⎛
⎜⎝

((1−a)(1−5a+6a2+3b−7ab+2b2))/6 (4−22a2+18a3+20ab−21a2b−4b2+6ab2)/6

((a−1)(−1+2a−2ab+b2))/6 (4−4a2−4ab+6a2b+2b2−3ab2)/6

((a−1)(1+a−2b)(b−1))/6 (4+2a2−4ab−3a2b−4b2+6ab2)/6

((1−b)(1+3a+2a2−5b−7ab+6b2))/6 (4−4a2+20ab+6a2b−22b2−21ab2+18b3)/6

1/6+a+(11a2)/6−3a3−b/2−(5ab)/3+(7a2b)/2+b2/3−ab2 a3−(7a2b)/6+(ab2)/3

1/6+a/2+a2/3+(ab)/3−a2b−b2/6+(ab2)/2 (a(2a−b)b)/6

1/6−a2/6+b/2+(ab)/3+(a2b)/2+b2/3−ab2 (ab(−a+2b))/6

1/6−a/2+a2/3+b−(5ab)/3−a2b+(11b2)/6+(7ab2)/2−3b3 (a2b)/3−(7ab2)/6+b3

⎞
⎟⎠ ,

BT
cd = MT · AT

cd · (MT )−1
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=

⎛
⎜⎝

((1−c)(1−5c+6c2+3d−7cd+2d2))/6 ((−1+c)(−1+2c−2cd+d2))/6

(4−22c2+18c3+20cd−21c2d−4d2+6cd2)/6 (4−4c2−4cd+6c2d+2d2−3cd2)/6

1/6+c+(11c2)/6−3c3−d/2−(5cd)/3+(7c2d)/2+d2/3−cd2 1/6+c/2+c2/3+(cd)/3−c2d−d2/6+(cd2)/2

c3−(7c2d)/6+(cd2)/3 (c(2c−d)d)/6

((−1+c)(1+c−2d)(−1+d))/6 ((1−d)(1+3c+2c2−5d−7cd+6d2))/6

(4+2c2−4cd−3c2d−4d2+6cd2)/6 (4−4c2+20cd+6c2d−22d2−21cd2+18d3)/6

1/6−c2/6+d/2+(cd)/3+(c2d)/2+d2/3−cd2 1/6−c/2+c2/3+d−(5cd)/3−c2d+(11d2)/6+(7cd2)/2−3d3

(cd(−c+2d))/6 (c2d)/3−(7cd2)/6+d3

⎞
⎟⎠ ,

and
Q = Bab · P · BT

cd. (8.8)

(a) (b)

(c) (d)
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1
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1
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1
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1
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1
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Figure 8.12: The First Subdivision Step.

The refinement rule for a bicubic B-spline patch P(u, w) is to use reparametrization
to calculate the four surface patches defined by the following sets of parameters:

a = 0, b = 0.5, c = 0, d = 0.5, a = 0.5, b = 1, c = 0, d = 0.5,

a = 0, b = 0.5, c = 0.5, d = 1, a = 0.5, b = 1, c = 0.5, d = 1.

The basic idea is shown in idealized form in Figure 8.12a,b. Each of the new patches is
defined by 16 points, but some of the new points are identical, so the four patches are
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fully defined by 25 points. The first of the four patches is constructed by setting a = 0,
b = 0.5, c = 0, and d = 0.5 (this is a reparametrization of the “upper left” quadrant of
the original surface patch) and applying Equation (8.8). The resulting 16 control points
P1

ij are (see Figure 8.13 for the computations)

P1
00 =

1
4
(P0

00 + P0
10 + P0

01 + P0
11),

P1
01 =

1
16

(P0
00 + P0

10 + 6(P0
01 + P0

11) + P0
02 + P0

12),

P1
02 =

1
4
(P0

01 + P0
11 + P0

02 + P0
12),

P1
03 =

1
16

(P0
01 + P0

11 + 6(P0
02 + P0

12) + P0
03 + P0

13),

P1
01 =

1
16

(P0
00 + P0

01 + 6(P0
10 + P0

11) + P0
20 + P0

21),

P1
11 =

1
64

(P0
00 + 6P0

10 + P0
20 + 6(P0

01 + 6P0
11 + P0

21) + P0
02 + 6P0

12 + P0
22),

P1
12 =

1
16

(P0
01 + P0

12 + 6(P0
11 + P0

12) + P0
21 + P0

22),

P1
13 =

1
64

(P0
01 + 6P0

11 + P0
21 + 6(P0

02 + 6P0
12 + P0

22) + P0
03 + 6P0

13 + P0
23),

P1
20 =

1
4
(P0

10 + P0
20 + P0

11 + P0
21), (8.9)

P1
21 =

1
16

(P0
10 + P0

20 + 6(P0
11 + P0

21) + P0
12 + P0

22),

P1
22 =

1
4
(P0

11 + P0
21 + P0

12 + P0
22),

P1
23 =

1
16

(P0
11 + P0

21 + 6(P0
12 + P0

22) + P0
13 + P0

23),

P1
30 =

1
16

(P0
10 + P0

11 + 6(P0
20 + P0

21) + P0
30 + P0

31),

P1
31 =

1
64

(P0
10 + 6P0

20 + P0
30 + 6(P0

11 + 6P0
21 + P0

31) + P0
12 + 6P0

22 + P0
32),

P1
32 =

1
16

(P0
11 + P0

12 + 6(P0
21 + P0

22) + P0
31 + P0

32),

P1
33 =

1
64

(P0
11 + 6P0

21 + P0
31 + 6(P0

12 + 6P0
22 + P0

32) + P0
13 + 6P0

23 + P0
33).

These points can be classified into face points, edge points, and vertex points. The four
face points are (Figure 8.12c) F00 = P1

00, F01 = P1
02, F10 = P1

20, and F11 = P1
22. Each

is the average of four corner points of one face of the original patch. The eight edge
points are (Figure 8.12d)

E01 = P1
01, E02 = P1

03, E10 = P1
10, E12 = P1

12,

E21 = P1
21, E22 = P1

23, E30 = P1
30, E32 = P1

32.
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(* reparametrize bicubic B-spline surface *)
Clear[a,b,c,d,A,B,TB,H,M,P,Q];
M={{-1,3,-3,1},{3,-6,3,0},{-3,0,3,0},{1,4,1,0}}/6;
A={{(b-a)^3,0,0,0},{3a(b-a)^2,(b-a)^2,0,0},{3a^2(b-a),2a(b-a),b-a,0},{a^3,a^2,a,1}};
(*B=Simplify[Inverse[M].A.M] *)
B={{((1 - a)*(1 - 5*a + 6*a^2 + 3*b - 7*a*b + 2*b^2))/6,
(4 - 22*a^2 + 18*a^3 + 20*a*b - 21*a^2*b - 4*b^2 + 6*a*b^2)/6,
1/6 + a + (11*a^2)/6 - 3*a^3 - b/2 - (5*a*b)/3 + (7*a^2*b)/2 + b^2/3 -
a*b^2, a^3 - (7*a^2*b)/6 + (a*b^2)/3},
{((-1 + a)*(-1 + 2*a - 2*a*b + b^2))/6,
(4 - 4*a^2 - 4*a*b + 6*a^2*b + 2*b^2 - 3*a*b^2)/6,
1/6 + a/2 + a^2/3 + (a*b)/3 - a^2*b - b^2/6 + (a*b^2)/2,
(a*(2*a - b)*b)/6}, {((-1 + a)*(1 + a - 2*b)*(-1 + b))/6,
(4 + 2*a^2 - 4*a*b - 3*a^2*b - 4*b^2 + 6*a*b^2)/6,
1/6 - a^2/6 + b/2 + (a*b)/3 + (a^2*b)/2 + b^2/3 - a*b^2,
(a*b*(-a + 2*b))/6}, {((1 - b)*(1 + 3*a + 2*a^2 - 5*b - 7*a*b + 6*b^2))/
6, (4 - 4*a^2 + 20*a*b + 6*a^2*b - 22*b^2 - 21*a*b^2 + 18*b^3)/6,
1/6 - a/2 + a^2/3 + b - (5*a*b)/3 - a^2*b + (11*b^2)/6 + (7*a*b^2)/2 -
3*b^3, (a^2*b)/3 - (7*a*b^2)/6 + b^3}};

TB={{((1 - a)*(1 - 5*a + 6*a^2 + 3*b - 7*a*b + 2*b^2))/6,
((-1 + a)*(-1 + 2*a - 2*a*b + b^2))/6,
((-1 + a)*(1 + a - 2*b)*(-1 + b))/6,
((1 - b)*(1 + 3*a + 2*a^2 - 5*b - 7*a*b + 6*b^2))/6},
{(4 - 22*a^2 + 18*a^3 + 20*a*b - 21*a^2*b - 4*b^2 + 6*a*b^2)/6,
(4 - 4*a^2 - 4*a*b + 6*a^2*b + 2*b^2 - 3*a*b^2)/6,
(4 + 2*a^2 - 4*a*b - 3*a^2*b - 4*b^2 + 6*a*b^2)/6,
(4 - 4*a^2 + 20*a*b + 6*a^2*b - 22*b^2 - 21*a*b^2 + 18*b^3)/6},
{1/6 + a + (11*a^2)/6 - 3*a^3 - b/2 - (5*a*b)/3 + (7*a^2*b)/2 +
b^2/3 - a*b^2, 1/6 + a/2 + a^2/3 + (a*b)/3 - a^2*b - b^2/6 +
(a*b^2)/2, 1/6 - a^2/6 + b/2 + (a*b)/3 + (a^2*b)/2 + b^2/3 - a*b^2,
1/6 - a/2 + a^2/3 + b - (5*a*b)/3 - a^2*b + (11*b^2)/6 + (7*a*b^2)/2 -
3*b^3}, {a^3 - (7*a^2*b)/6 + (a*b^2)/3, (a*(2*a - b)*b)/6,
(a*b*(-a + 2*b))/6, (a^2*b)/3 - (7*a*b^2)/6 + b^3}};

P={{P30,P31,P32,P33},{P20,P21,P22,P23},{P10,P11,P12,P13},{P00,P01,P02,P03}};
Q=Simplify[B.P.TB]
a=0; b=.5; c=0; d=.5; Q

Figure 8.13: Code for the 16 Control Points of the “Uper-Left” Patch.

Each is the average of two face points and the two points P0
ij that are closest to it.

The remaining four points are called vertex points. There is one vertex point for each
interior vertex of the original mesh. The vertex points are shown in Figure 8.12c and
they have the form V = (Q+2R+S)/4, where S is an interior vertex, Q is the average
of the four face points located on the faces adjacent to S, and R is the average of the
midpoints of the four edges that meet at S. As an example, consider the interior vertex
P11 (Figure 8.14). If we denote S = P11, then Q is the average of the four face points
F00, F01, F10, and F11, and R is the average of the midpoints of the four edges P01P11,
P10P11, P12P11, and P21P11 (the points labeled × in the figure). This interior vertex
therefore corresponds to vertex point

1
4
(Q + 2R + S)

=
1
4
(F00 + F01 + F10 + F11)
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+
2
4

(
P01 + P11

2
+

P10 + P11

2
+

P12 + P11

2
+

P21 + P11

2

)
+ P11

=
1
16

((P00 + P10 + P01 + P11) + (P10 + P20 + P11 + P21)

+(P01 + P11 + P02 + P12) + (P11 + P21 + P12 + P22))

+
1
4

(P01 + P10 + P21 + P12 + 4P11) + P11

=
1
16

(P00 + 6P10 + 6P01 + 36P11 + P20 + 6P21 + P02 + 6P12 + P22)

= P1
11.

F00 F01

P11

P11F10 F11

1

Figure 8.14: Constructing Vertex Point P1
11.

Here are the rules for calculating all 25 points P1
ij :

1. Construct one face point for each face of the original mesh. This point is the
average of all the points defining the face.

2. Construct one edge point for each interior edge of the original mesh. This point
is the average of the midpoint of the edge and the two face points of the faces adjacent
to the edge.

3. Construct one vertex point for each interior vertex of the original mesh. This
point is the average of (1) four face points, (2) four midpoints of edges, and (3) one
interior vertex.

Since the original bicubic mesh consists of 9 faces, 12 interior edges, and 4 interior
vertices, the first subdivision step results in 9 face points, 12 edge points, and 4 vertex
points, a total of 25 points.

It should be noted that even though the mesh resulting from each subdivision is
smaller than its predecessor, they don’t shrink to a point but converge to a limit. All
these meshes define the same bicubic B-spline surface.

� Exercise 8.7: Equation (7.51) shows that the “top left” corner of a bicubic B-spline
patch is given by

P(0, 0) =
1
36

(P00 + P02 + 4P10 + 4P12 + P20 + 4P01 + 16P11 + 4P21 + P22).

Show that this is still the same corner of the patch after one subdivision.



8.7 Polygonal Surfaces by Subdivision 341

8.7 Polygonal Surfaces by Subdivision

Polygonal surfaces have been discussed in Section 2.2. Such a surface is normally ob-
tained by measuring the coordinates of points on an object, either manually or with a
three-dimensional digitizer. The designer then selects a set of points and the software
connects those points with straight segments, resulting in a polygon. This is how the
original mesh of points is converted to a set of polygons. The only condition is that
the polygons be flat. The entire polygonal surface can then be shaded using Gouraud
or Phong shading [Salomon 99]. If the result is not smooth enough, it can be improved
by subdividing the original mesh of points, which is why the subdivision of polygonal
surfaces is important.

8.8 Doo Sabin Surfaces

The method described in this section is due to Donald Doo and Malcolm Sabin [Doo and
Sabin 78]. They observed that the method used in Section 8.5 to subdivide a biquadratic
B-spline surface patch generates each new point P1

ij as a weighted sum of four points: a
vertex point, two edge points, and a face point. For example, Equation (8.6) gives point
P1

00 as

P1
00 =

1
16

(9P0
00 + 3P0

10 + 3P0
01 + P0

11),

so we write it in the form

P1
00 =

1
16

(9P0
00 + 3P0

10 + 3P0
01 + P0

11)

=
1
16
(
4P0

00 + 2(P0
00 + P0

01) + 2(P0
00 + P0

10) + (P0
00 + P0

01 + P0
10 + P0

11)
)

=
1
4
(
4P0

00 + (P0
00 + P0

01)/2 + (P0
00 + P0

10)/2 + (P0
00 + P0

01 + P0
10 + P0

11)/4
)

=
1
4
(
4V + E1 + E2 + F),

where V is the vertex point P0
00, E1 is the average of P0

00 and P0
01 (i.e., it is located

midway between them), E2 is the average of P0
00 and P0

10, and F is the average of the
four corners of the polygon being subdivided.

The idea of Doo and Sabin is to subdivide a mesh of points that consists of any
polygons, not just quadrilaterals, by performing the following steps:

1. Consider a vertex P0
i on the original mesh (Figure 8.15). It is located on a certain

face F (and perhaps on other faces as well) and is at the intersection of two edges, E1
and E2 (two of the edges that form F ). Create a new point P1

i as a weighted average of
P0

i , the two edge points adjacent to P0
i (i.e., the center points of E1 and E2), and the

face point that’s the average of all the vertices forming F . Repeat this for every vertex
P0

i . See Figure 8.16a for an example.
2. Consider face F again. It now contains some new points P1

i . Connect them
so that they form a new polygon. This polygon will become a face in the new, refined
surface. Repeat for all faces F (Figure 8.16b).
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Edge point

Edge point
Face point

Vertex

Figure 8.15: Edge and Face Points.

3. Consider again a vertex P0
i on the original mesh. Such a vertex is normally

common to several faces. For each of those faces, find the new point that’s nearest
P0

i . Connect those points to each other to form a new polygon. This polygon will also
become a face in the new, subdivided surface. Repeat for all vertices P0

i (Figure 8.16c).
4. Consider an edge of the original mesh of points. There will normally be two

faces adjacent to this edge and they will have new points P1
i . Connect the new points

around the edge to form a new polygon. This polygon will also become a face in the
new, subdivided surface. Repeat this step for all edges (Figure 8.16d).

Notice that the new mesh may contain all kinds of polygons, not just triangles or
quadrilaterals.

(a) (b)

(c) (d)

Figure 8.16: The First Doo–Sabin Subdivision Step.
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8.9 Catmull–Clark Surfaces

The method described here is due to Edwin Catmull and Jim Clark [Catmull and
Clark 78] and is an extension of the method of Section 8.6 to arbitrary polygonal sur-
faces. We have seen that subdividing a bicubic B-spline surface patch generates each
new point P1

ij as either a face point, an edge point, or a vertex point. A Catmull–Clark
surface patch starts with an arbitrary polygonal surface and subdivides it by generating
new face, edge, and vertex points and connecting them in a simple way. The rules for
generating the points are the following:

1. A face point is calculated for each face of the original mesh. The point is simply
the average of all the points that bound the face.

2. An edge point is created for each interior edge of the polygonal surface. The
point is the average of the midpoint of the edge and of the two face points on both sides
of the edge.

3. A vertex point is generated for each interior vertex P of the original mesh. The
point is the average of Q, 2R, and S(n− 3)/4, where Q is the average of the face points
on all the faces adjacent to P, R is the average of the midpoints of all the edges incident
on P, and S is simply P itself.

(a) (b)

(e)

face point

(c)

S

S

Q

Q

(d)

R

R

midpoint of interior edge
edge point

first step
second step

Figure 8.17: The First Catmull–Clark Subdivision Step.

Figure 8.17 shows an example. We start with a mesh of eight vertices defining
six polygons, two rectangles and four triangles (notice that the polygons may have any
number of sides, not just three or four). This surface has six faces, seven interior edges,
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and two interior vertices. The six new face points are shown in Figure 8.17a as small
circles. Each is the average of the points bounding its face. Figure 8.17b shows the
midpoints of the edges as small ×’s and the seven new edge points as diamonds. In
Figure 8.17c, we select one of the two interior vertices as S, temporarily connect the
four face points surrounding it (just to identify them), and calculate Q (shown as a
small “+”) as their average. In Figure 8.17d, we show how R (the asterisk) is computed
as the average of four midpoints of edges (temporarily connected).

After the new points have been generated, they are connected according to the
following rules:

1. Each face point is connected to all the edge points of the interior edges bounding
its face. These are shown as long dashes in Figure 8.17e.

2. Each new vertex point is connected to all the edge points that were used in
calculating it. These lines are shown as short dashes in Figure 8.17e.

Notice that even though the original polygonal mesh may have polygons with any
number of sides, the new, subdivided mesh will consist of quadrilaterals (four-sided
polygons) only.

8.10 Loop Surfaces

The Loop subdivision scheme subdivides a triangular mesh surface by performing several
iterations, yet the term Loop refers to its developer, Charles Teorell Loop. In his MS
thesis [Loop 87] Loop developed an algorithm that subdivides each triangle into four
smaller triangles (Figure 8.18a). This is now referred to as a binary Loop subdivision.
In [Loop 02] he extended this algorithm to subdivide each triangle into nine smaller ones
(Figure 8.18b). The extended algorithm is termed Loop ternary subdivision. Notice that
the polygons that make up the surface must be triangles, they cannot be arbitrary flat
polygons.

(a) (b) (c)

V1

V3

V11

E1
V9

V10

V8

V4

V5

V6

V7

V2

Figure 8.18: Binary and Ternary Loop Triangle Subdivisions.

The binary Loop algorithm starts with a set of points that are the vertices of
triangles. Each iteration computes a new set of edge and vertex points that become the
vertices of the new, smaller triangles. Specifically, A new edge point is computed for
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each edge and a new vertex point is computed for each vertex of the triangular mesh.
If the original mesh has E edges and V vertices, the new mesh will have E + V vertex
points (and a number of edges that depends on the complexity of the original mesh).
The new points become the vertices of the new, finer mesh, and more iterations may be
applied to refine the mesh as much as needed.

To understand the rule for generating an edge point, consider the edge between
vertices V1 and V2 of Figure 8.18c. This edge, like any other edge, connects two
vertices. Like most edges, it is shared by two triangles. The new edge point E1 for
this edge is constructed as the weighted sum 3

8 (V1 + V2) + 1
8 (V11 + V7). The two

vertices connected by the edge are given the large weights 3/8, whereas the two edges
of the triangles sharing the edge are assigned the small weights 1/8. The weights are
barycentric. If the edge is on the boundary of the surface and is part of only one triangle,
the edge point is computed as the average of the two vertices connected by the edge.
Thus, if the edge connected by V3 and V11 is on the boundary (i.e., there is no triangle
“above” it), then the new edge point for this edge is the average (V3 + V11)/2 and is
located on the edge.

Notice that even though E1 is called an edge point, it does not have to be located
on an edge, and it becomes a vertex, not an edge, in the new, finer triangular mesh
constructed after the iteration.

Similarly, a new vertex point is also constructed as a weighted sum. The new vertex
for V1, for example, is computed as the sum 5

8V1 + 3
8Q1 where Q1 is the average of the

vertices of all the triangles sharing V1, i.e.,

Q1 = (V3 + V4 + V5 + V6 + V7 + V2 + V11)/7.

If a vertex is located on the boundary of the surface, the weights are slightly different.
For example, if the three vertices V3, V11, and V10 are on the boundary of the surface,
then the new vertex point for V11 is computed as the sum 6

8V11+ 1
8 (V3+V10). Similarly,

if V8 is a boundary point, then the new vertex for V8 is V8 itself.
A downside of this simple algorithm is that the fine mesh obtained after a few

iterations may have several “extraordinary” points where the surface is not smooth.
More precisely, the continuity of the tangent plane is lost at the extraordinary points. An
improvement to the original algorithm computes each new vertex point as the weighted
sum αnVi + (1 − αn)Qi, where Vi is a vertex shared by n triangles, Qi is the average
of the n vertices around Vi, and

αn =
(

3
8

+
1
4

cos
2π

n

)2

+
3
8
.

Figure 8.19 illustrates the principle of ternary triangle subdivision. Dividing a
triangle into nine smaller triangles requires (Figure 8.19a) the construction of one face
point, six edge points (two on each edge) and three vertex points. Part (b) of the figure
shows how one edge point (labeled “b”) is computed as a weighted sum of seven vertices
from six triangles. The weights shown should be normalized by dividing them by their
sum, 81. The other edge points are computed similarly. Part (c) of the figure shows
how the face point “c” is computed as a weighted sum of six vertices in four different



346 8. Subdivision Methods

triangles. The weights should again be divided by their sum, 27. Computing a vertex
point, such as “a” in part (a) of the figure, depends on the number n of the triangles
sharing the vertex. Each vertex on an edge sharing “a” is assigned a weight of (1−α)/n
and “a” itself is assigned weight α, where the value α = 5/9 was found to work in most
cases. Notice that the weights are barycentric.

a b

c

10

102

2

1 20

8

8

11

1

8
36

b
c

(a) (b) (c)

Figure 8.19: Edge and Face Points in Ternary Loop Subdivision.

As in the binary algorithm, the weights have to be modified for cases where a vertex
or an edge is located on the boundary of the surface.

Subdivision is a powerful paradigm for the generation of surfaces of

arbitrary topology. Given an initial triangular mesh the goal is to

produce a smooth and visually pleasing surface whose shape is

controlled by the initial mesh. Of particular interest are interpolating

schemes since they match the original data exactly, and play an

important role in fast multiresolution and wavelet techniques.

D. Zorin, P. Schröder and W. Sweldens



9
Sweep Surfaces

The surfaces described in this chapter are obtained by transforming a curve. They
are not generated as interpolations or approximations of points or vectors and are con-
sequently different from the surfaces described in previous chapters. A reader who
wishes a full understanding of this chapter should be familiar with the important three-
dimensional transformations (rotation, translation, scaling, reflection, and shearing) and
how they are described mathematically by a 4×4 transformation matrix. This mate-
rial is available in most texts on computer graphics, but the next paragraph is a short
summary, for those who only need a refresher.

A three-dimensional point P = (x, y, z) is transformed to a point P∗ = (x∗, y∗, z∗)
by appending a fourth coordinate of 1 to it and then multiplying it by the 4×4 trans-
formation matrix

T =

⎛
⎜⎝

a b c p
d e f q
h i j r
l m n s

⎞
⎟⎠ . (9.1)

The product (x, y, z, 1)T is a 4-tuple (X, Y, Z, H), where H = xp + yq + zr + s. The
three coordinates (x∗, y∗, z∗) of P∗ are obtained by dividing (X, Y, Z) by H. Hence,
(x∗, y∗, z∗) = (X/H, Y/H, Z/H). The top left 3 × 3 submatrix of T is responsible for
scaling and reflection (parameters a, e, and j), shearing (b, c, f , and d, h, i), and rotation
(all nine). The three quantities l, m, and n are responsible for translation, and s is a
global scale factor. The three parameters p, q, and r are used for perspective projection.
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9.1 Sweep Surfaces

A sweep surface is obtained when a space curve C(u), termed the profile, is transformed
by a transformation rule T(w). The transformation must include translation and/or
rotation and may also include scaling and shearing. We say that the surface is swept
by the profile curve when it (the curve) is transformed. The expression of the surface
is simply the product P(u, w) = C(u) · T(w). The transformation T is a 4×4 matrix,
so vector C should be written in homogeneous coordinates, as the 4-tuple C(u) =
(x(u), y(u), z(u), 1).

The simplest example is the translation of a straight line. The straight segment
from the origin to (1, 0, 0) is given by C(u) = (u, 0, 0, 1) where 0 ≤ u ≤ 1. This segment
is translated along the y axis by the transformation matrix

T(w) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 w 0 1

⎞
⎟⎠ ,

where 0 ≤ w ≤ 1. The surface P(u, w) = C(u)·T(w) = (u, w, 0, 1) swept by this segment
is (after dividing by the fourth element) P(u, w) = (u, w, 0). This surface is simply the
square, on the xy plane, whose opposite corners are the origin and point (1, 1, 0).

A more interesting example is the same segment C(u) = (u, 0, 0, 1), where 0 ≤ u ≤
1, translated a distance α along the z axis while being rotated 360◦ about that axis.
The transformation matrix is

T(w) =

⎛
⎜⎝

cos(2πw) sin(2πw) 0 0
− sin(2πw) cos(2πw) 0 0

0 0 1 0
0 0 αw 1

⎞
⎟⎠ , for 0 ≤ w ≤ 1.

The expression of the surface is P(u, w) = (u cos(2πw), u sin(2πw), αw) and it is dis-
played in Figure 9.1a. For w = 0.5, it reduces to the segment (0, u, 0.5α) (in the y
direction), and for w = 1, it becomes the segment (u, 0, α) [a segment in the original x
direction, but at a height α on the z axis].

A more general example is a rectangular surface patch constructed as a sweep
surface by translating an arbitrary profile along another curve, the trajectory. Given the
two cubic Bézier curves

C(t) = (1 − t)3(0, 1, 1) + 3t(1 − t)2(1, 1, 0) + 3t2(1 − t)(4, 2, 0) + t3(6, 1, 1)

= (−3t3 + 6t2 + 3t,−3t3 + 3t2 + 1, 3t2 − 3t + 1)
and

Q(t) = (1 − t)3(0, 0, 0) + 3t(1 − t)2(1, 2, 1) + 3t2(1 − t)(3, 2, 2) + t3(2, 0, 1)

= (−4t3 + 3t2 + 3t,−6t2 + 6t,−2t3 + 3t)

we can create a sweep surface P(u, w) by translating C(u) along Q(w). The expression
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of the surface is the product

P(u, w) = (−3u3 + 6u2 + 3u,−3u3 + 3u2 + 1, 3u2 − 3u + 1, 1)

×

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−4w3+3w2+3w −6w2+6w −2w3+3w 1

⎞
⎟⎠

=(3u+6u2−3u3+3w+3w2−4w3,1+3u2−3u3+6w−6w2,1−3u+3u2+3w−2w3,1).

Figure 9.1b shows the resulting surface patch.
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(* 2 sweep surface examples *)
alf=1;
ParametricPlot3D[
{u Cos[2Pi w],u Sin[2Pi w], alf w},{u,0,1},{w,0,1}, DefaultFont->{"cmr10", 10},
Compiled->False, ViewPoint->{3.369, -2.693, 0.479}, PlotPoints->20]
m={-3u^3+6u^2+3u,-3u^3+3u^2+1,3u^2-3u+1,1}.
{{1,0,0,0},{0,1,0,0},{0,0,1,0},{-4w^3+3w^2+3w,-6w^2+6w,-2w^3+3w,1}};
ParametricPlot3D[Drop[m,-1],{u,0,1},{w,0,1}, DefaultFont->{"cmr10", 10},
Compiled->False, ViewPoint->{4.068, -1.506, 0.133}, PlotPoints->20]

Figure 9.1: Two Sweep Surfaces.

� Exercise 9.1: Calculate the sweep surface obtained when line C(u) = (3u, 0, 0, 1) is
translated along the z axis and at the same time translated in the y direction along a
sine curve.

� Exercise 9.2: Calculate the half-sphere produced when the quarter circle

C(u) =
(

1 − u2

1 + u2
,

2u

1 + u2
, 0
)

, where 0 ≤ u ≤ 1,

is rotated 360◦ about the y axis.
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� Exercise 9.3: Calculate the expression of a cone as a sweep surface. Assume that the
cone is created by constructing the line from the origin to point (R, 0, H), and rotating
it 360◦ about the z axis.

. . . treat Nature by the sphere, the cylinder and the cone . . .

—Paul Cézanne

Example: A Möbius strip can be constructed as a sweep surface by rotating a
short straight segment in a big circle (i.e., through an angle of 2π radians) while also
rotating it about itself at half speed (i.e., through π radians). We start with the segment
segm(t) = (t, 0, 0). When t is varied from, say, −3 to 3, this becomes a short segment
along the x axis from (−3, 0, 0) to (3, 0, 0). Note that it is centered on the origin. The
segment is rotated in steps about the z-axis by varying a variable φ from 0 to 2π. At each
step of this rotation, the segment starts at its original position, it is rotated about the
y-axis through an angle of φ/2, it is then translated 20 units in the positive x direction,
and is finally rotated by φ about the z-axis. Figure 9.2 shows the resulting surface swept
by this segment and the code that does the computations.

x

y

z

(* Mobius strip as a sweep surface *)
<<:Graphics:ParametricPlot3D.m
Clear[r,roty,rotz,segm];
segm[t_]:={t,0,0}; (* a short line segment *)
roty[phi_]:={{Cos[phi],0,-Sin[phi]},{0,1,0},{Sin[phi],0,Cos[phi]}};
rotz[phi_]:={{Cos[phi],-Sin[phi],0},{Sin[phi],Cos[phi],0},{0,0,1}};
ParametricPlot3D[Evaluate[rotz[phi].(roty[phi/2].segm[t]+{20,0,0})],
{phi,0,2Pi}, {t,-3,3}, Boxed->True, PlotPoints->{35,2}, Axes->False]
Show[{%,Graphics3D[{AbsoluteThickness[1], (* show the 3 axes *)
Line[{{0,0,30},{0,0,0},{30,0,0},{0,0,0},{0,30,0}}]}]}]

Figure 9.2: A Möbius Strip.
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The basic sweep surface C(u)T(w) can be extended to the product C(u, w)T(w)
of a surface and a transformation. This product is still a sweep surface, since C(u, w)
reduces to a curve for any value of w. We can think of C(u, w) as a curve that’s a
function of the parameter u but whose shape depends on w. As w is varied, C(u, w)
yields different curves and each is transformed differently.

Example: The lofted surface of Figure Ans.3 is multiplied by a transformation
matrix that scales in the x dimension. The result is shown in Figure 9.3. (This is one
way to obtain a triangular surface patch, but it looks bad as a wireframe because one
family of curves converges to a point.)

0
1

0

1

0

1

0
1

0

1

(* Sweep surface example. Lofted surface with scaling transform *)
<<:Graphics:ParametricPlot3D.m
pnts={{-1,-1,0},{1,-1,0},{-1,1,0},{0,1,1},{1,1,0}};
{2u-1,2w-1,4u w(1-u)}.{{w,0,0},{0,1,0},{0,0,1}};
g1=ParametricPlot3D[%, {u,0,1},{w,0,1}, Compiled->False,
DefaultFont->{"cmr10", 10},
AspectRatio->Automatic, Ticks->{{0,1},{0,1},{0,1}}]
g2=Graphics3D[{AbsolutePointSize[4], Table[Point[pnts[[i]]],{i,1,5}]}]
Show[g1,g2, ViewPoint->{-0.139, -1.179, 1.475}]

Figure 9.3: A Lofted Swept Surface.

Example: A sweep surface that’s a product of the surface C(u, w) = (u, 1, u +
2)w + (−u, 1, u − 2)(1 − w) and a rotation about the z axis. Note that C(u, w) varies
from the curve C(u, 0) = (−u, 1, u − 2) to the straight line C(u, 1) = (u, 1, u + 2) while
being rotated. This is shown in Figure 9.4.

An even more general (and interesting) sweep surface is generated when a profile
curve C(u) is swept along a trajectory curve Q(w) = (Qx(w), Qy(w), Qz(w)) and is also
rotated about a certain axis by a rotation matrix R(w). Such a surface is called a swung
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(* A Sweep Surface.
Curve Cu[u,w] times matrix Trn[w] *)
<<:Graphics:ParametricPlot3D.m;
Clear[Cu,Trn];
Cu[u_,w_]:={u,1,u+2}w+{-u,1,u-2}(1-w);
Trn[w_]:={
{Cos[2Pi w],Sin[2Pi w],0},
{-Sin[2Pi w],Cos[2Pi w],0},
{0,0,1}};
ParametricPlot3D[
{Cu[u,w].Trn[w][[1]],Cu[u,w].Trn[w][[2]],
Cu[u,w].Trn[w][[3]]},
{u,0,1,.2},{w,0,1,.2}, Ticks->None,
PlotRange->All, AspectRatio->Automatic,
RenderAll->False, Prolog->AbsoluteThickness[.4],
ViewPoint->{-0.510, -1.365, 1.210}]

Figure 9.4: Sweeping while Rotating.

surface and its expression is

P(u, w) = C(u)

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

Qx(w) Qy(w) Qz(w) 1

⎞
⎟⎠R(w),

where parameter w is related to the rotation angle θ in a simple way, such as θ = 2πw
(for a 360◦ rotation when w varies from 0 to 1) or θ = πw (for a 180◦ rotation).

In order to construct a useful, meaningful surface, the profile, trajectory, and axis
of rotation have to be selected with care. A simple example is a profile curve in the yz
plane, a trajectory curve in the xy plane, and a rotation about the z-axis. Figure 9.5 is
an example.

x
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Figure 9.5: A Swung Surface.
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9.2 Surfaces of Revolution

A surface of revolution is a special case of a swept surface. It is obtained when a space
curve (termed the profile of the surface) is rotated about an axis r = (rx, ry, rz) in space.
The rotation angle can be 360◦ or less. A general rotation in three dimensions is fully
specified by the axis of rotation (a vector) and the rotation angle (a number). If the
rotation angle is θ and the rotation axis (as a unit vector) is r, then the rotation matrix
T(θ) about u is given by⎛
⎜⎝

r2
x + cos θ(1 − r2

x) rxry(1 − cos θ) − rz sin θ rxrz(1 − cos θ) + ry sin θ

rxry(1 − cos θ) + rz sin θ r2
y + cos θ(1 − r2

y) ryrz(1 − cos θ) − rx sin θ

rxrz(1 − cos θ) − ry sin θ ryrz(1 − cos θ) + rx sin θ r2
z + cos θ(1 − r2

z)

⎞
⎟⎠ .

If the space curve is expressed by P(u), where 0 ≤ u ≤ 1, then the surface of revolution
has the form P(u, θ) = P(u)T(θ), where 0 ≤ u ≤ 1 and 0 ≤ θ ≤ 2π. Varying u moves us
along the curve and varying θ moves us in a circle (or a circular arc) about the rotation
axis.

Example: Given the parametric curve P(u) = (f(u), 0, g(u)) in the xz plane, we
can revolve it around the z axis using the rotation matrix

Tz(w) =

⎛
⎝ cos w sin w 0

− sin w cos w 0
0 0 1

⎞
⎠ (9.2)

to get the surface

P(u)Tz(w) = (f(u) cos w, f(u) sin w, g(u)), where 0 ≤ u ≤ 1 and 0 ≤ w ≤ 2π.

Example: Given the five points P1 = (0, 1, 0), P2 = (1, 1, 0), P3 = (2, 2, 0),
P4 = (1.5, 3, 0), and P5 = (1.5, 5, 0), we construct P(u) as their Bézier curve

P(u) =
(
4t−6t3 +2t4 +(3/2)t4,−4(t−1)3t+12(t−1)2t2−12(t−1)t3 +5t4 +(t−1)4, 0

)
.

Since all the z coordinates are zero, the curve lies in the xy plane. We arbitrarily decide
to rotate it about the y axis, so the rotation matrix is

Ty(w) =

⎛
⎝ cos w 0 sin w

0 1 0
− sin w 0 cos w

⎞
⎠ . (9.3)

The surface expression is

P(u)Ty(w) =
(
(4t − 6t3 + 7t4/2) cos w,

(t − 1)4 − 4(−1 + t)3t + 12(t − 1)2t2 − 12(t − 1)t3 + 5t4,

(4t − 6t3 + 7t4/2) sin w
)
.
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Such a surface is easy to display. To display it as a wire frame, just perform a
double loop in which u is varied from 0 to 1, and w is varied from 0 to 2π, in any desired
steps (Section 1.8.2). To display it as a solid surface, a similar double loop should cover
every pixel (i.e., should iterate in very small steps) and should calculate the normal to
the surface at the pixel and, from it, the intensity of light reflected from the pixel.

Following are other examples of surfaces of revolution (see also Exercise 1.34):
Example: A sphere of radius R is generated by rotating a half-circle 360◦ about

the axis that passes through the half-circle’s endpoints. Figure 9.6a shows the half-
circle P(u) = (R cos u, R sin u, 0) in the xy plane. A sphere P(u, w) is obtained when
this half-circle is rotated about the y axis:

P(u, w) = P(u)Ty(w) = (R cos u cos w, R sin u, R cos u sin w), (9.4)

where −π/2 ≤ u ≤ π/2 and 0 ≤ w ≤ 2π. It is obvious, from Figure 9.6b, that curves
of constant w are meridians of longitude. As u varies from −π/2 to π/2, we travel on a
semicircle (the profile of the surface) on the sphere. Similarly, varying w for a constant
u takes us along a latitude. The north pole is obtained for u = π/2 (and any w). The
equator is the curve obtained when varying w for u = 0.

� Exercise 9.4: Derive the expression for the same sphere centered at (x0, y0, z0).

x

y y y

(a)

profile

(b) (c)

Figure 9.6: A Sphere as a Surface of Revolution.

� Exercise 9.5: Tilt the sphere of Equation (9.4) θ degrees about the z axis (Figure 9.6c).

� Exercise 9.6: Derive the expression of the sphere that’s obtained when the half-circle
in the xz plane is rotated 360◦ about the z axis.

Example: An ellipsoid with radii a and b is obtained by rotating, for example, the
ellipse P(u) = (a cos u, b sin u, 0) about the y axis. After translating by (x0, y0, z0), the
result is

(x0 + a cos u cos w, y0 + b sin u, z0 + a cos u sin w),

where −π/2 ≤ u ≤ π/2 and 0 ≤ w ≤ 2π.
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� Exercise 9.7: Derive the equation of a torus as a surface of revolution. Assume that
the torus is centered at the origin, and its two radii are R and r (Figure 9.7). The
surface is created by drawing the circle of radius r centered at (R, 0, 0), and rotating it
360◦ about the z axis.

R

r x

z

Figure 9.7: Torus as a Surface of Revolution.

Example: Figure 9.8a,b shows a chalice as a surface of revolution and its profile.

9.3 An Alternative Approach

Generating surfaces of revolution with a rotation matrix is simple but slow, since it
requires the use of trigonometric functions. An alternative method is described here.

Two given curves P(u) = (Px(u), Py(u), Pz(u)) and C(w) = (Cx(w), Cy(w), Cz(w))
can be combined as follows:

S(u, w) =
(
Px(u)Cx(w), Py(u)Cy(w), Pz(u)Cz(w)

)
, (9.5)

and it’s easy to show that S(u, w) is a surface. When u is fixed at a value u0, expres-
sion (9.5) becomes

S(u0, w) =
(
Px(u0)Cx(w), Py(u0)Cy(w), Pz(u0)Cz(w)

)
=
(
αCx(w), βCy(w), γCz(w)

)
,

which is a curve in the w direction. For each u0 we therefore have a curve in the w
direction. Similarly, for each value w0 we have a curve going in the u direction. The
only condition is that none of the components of the curves be identical to zero. If, for
example, Cx(w) ≡ 0, then the x component of S(u0, w) is always zero, so it degenerates
from a surface to a curve in the yz plane.

Equation (9.5) can be used to construct a surface of revolution if C(w) is a circle
or an arc. To explain our approach, let’s first restrict the discussion to curves that are
cubic polynomial segments. Such a curve has the form P(u) = (u3, u2, u, 1)MP, where



356 9. Sweep Surfaces
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(a) (b)

(* A Chalice *)
<<:Graphics:SurfaceOfRevolution.m
(* the profile *)
ParametricPlot[{.5u^3-.3u^2-.5u-.2,u+1},{u,-1,1},
AspectRatio->Automatic]
(* the surface *)
SurfaceOfRevolution[{.5u^3-.3u^2-.5u-.2,u+1},{u,-1,1}, PlotPoints->40]

Figure 9.8: A Chalice as a Surface of Revolution.

M is a 4×4 basis matrix and P is a geometry vector, a 4-tuple of points and/or vectors.
We can write such a curve in the form

P(u) =
(
F0(u), F1(u), F2(u), F3(u)

)⎛⎜⎝
P0

P1

P2

P3

⎞
⎟⎠

= F0(u)P0 + F1(u)P1 + F2(u)P2 + F3(u)P3

=
3∑

i=0

Fi(u)Pi.

[See, for example, Equations (4.5), (6.7), and (7.11).] Similarly, curve C(w) can be
expressed as

C(w) = (w3, w2, w, 1)NC
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=
(
G0(w), G1(w), G2(w), G3(w)

)⎛⎜⎝
C0

C1

C2

C3

⎞
⎟⎠

= G0(w)C0 + G1(w)C1 + G2(w)C2 + G3(w)C3

=
3∑

i=0

Gi(w)Ci.

Now, consider the x component of the surface resulting from the product of two
such curves:

Sx(u, w) =
[ 3∑

i=0

Fi(u)Pxi

][ 3∑
j=0

Gj(w)Cxj

]

=
3∑

i,j=0

Fi(u)PxiCxjGj(w)

=
3∑

i,j=0

Fi(u)QxijGj(w)

=
(
F0(u), F1(u), F2(u), F3(u)

)
Qx

⎛
⎜⎝

G0(w)
G1(w)
G2(w)
G3(w)

⎞
⎟⎠ ,

where Qxij = PxiCxj and similarly for the y and z components. The elements Qij of
matrix Q are therefore triplets of the form

Qij = (Qxij , Qyij , Qzij) =
(
PxiCxj , PyiCyj , PziCzj

)
(9.6)

and the entire surface can be expressed as a typical bicubic patch

S(u, w) =
(
F0(u), F1(u), F2(u), F3(u)

)
Q

⎛
⎜⎝

G0(w)
G1(w)
G2(w)
G3(w)

⎞
⎟⎠

= (u3, u2, u, 1)MQNT

⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ .

(9.7)

Equation (9.7) can be generalized to cases where the constructing curves C(w) and P(u)
are not cubic polynomials.

Once the designer has an idea of the shape of the surface, it may not be too hard
to select two curves that will produce this shape. The problem is to place the surface at
the right location in space. The location of the surface depends both on the types and
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the locations of the curves used. Imagine, for example, that two cubic Bézier curves are
used to construct such a surface. One curve starts and ends at control points P0 and
P3, and the other goes from C0 to C3. The resulting surface will be a bicubic Bézier
patch anchored at the four corner points:

Q00 = (Px0Cx0, Py0Cy0, Pz0Cz0), Q01 = (Px0Cx1, Py0Cy1, Pz0Cz1),
Q10 = (Px1Cx0, Py1Cy0, Pz1Cz0), Q11 = (Px1Cx1, Py1Cy1, Pz1Cz1).

There is no reason why these points will happen to be in the right locations and it may
take some effort to vary the coordinates of all the control points to move the curves to
other locations without changing their shape, in order to move points Qij to the right
locations. The use of this surface method may therefore be limited, but it is useful for
surfaces of revolution. Imagine the problem of designing a machine part with circular
symmetry. If the part is to be manufactured under computer control, the location of
the part in three-dimensional space may be irrelevant because the machine making it is
only interested in its shape.

In order to apply Equation (9.7) to create a surface of revolution we need one curve
P(u) to serve as a “profile” and another curve C(w) that’s a circle, an ellipse, or an arc.
As an example, consider the approximate circles obtained by cubic uniform B-splines of
Section B.2. We place four points Ci in the way explained in that section to make curve
C(w) an approximate circle or circular arc. If curve P(u) is also expressed as a cubic
B-spline, then Equation (9.7) becomes the bicubic B-spline patch:

S(u, w) =
[1
6

]2
[u3, u2, u, 1]

⎡
⎢⎣
−1 3 −3 1

3 −6 3 0
−3 0 3 0

1 4 1 0

⎤
⎥⎦Q

⎡
⎢⎣
−1 3 −3 1

3 −6 3 0
−3 0 3 0

1 4 1 0

⎤
⎥⎦

T ⎡
⎢⎣

w3

w2

w
1

⎤
⎥⎦ (9.8)

[compare with Equation (7.50)]. The surface is created in two steps. In step 1, the
surface control points Qij are calculated. If P(u) is based on the n + 1 points P0

through Pn and C(w) is based on the m+1 control points C0 through Cm, then matrix
Q is of order (n+1)×(m+1). In step 2, Equation (9.8) is applied (n−1)×(m−1) times
to calculate all the surface patches. If the surface should make a complete revolution,
then curve C(w) should be closed. The number of control points in this case is the same,
but the number of patches is (n − 1) × (m + 1). If curve P(u) is also closed (as in a
torus), then (n + 1) × (m + 1) surface patches are needed.

If C(w) should be a full circle, at least four control points Ci are needed and the
(closed) curve consists of four segments. If curve P(u) (the “profile” of the surface) is
open and is defined by n+1 points, it consists of n−1 segments. In such a case, the total
number of surface control points Qij is 4×(n + 1) and the entire surface of revolution
consists of 4×(n − 1) patches.

Example: We select the third quarter-circle segment P4(t) of Equation (Ans.32)
and denote it by C(w):

C(w) =
1
4
(2t3 − 6t2 + 4,−2t3 + 6t, 1).
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It is defined by the four control points C0 = (0,−3/2, 1), C1 = (3/2, 0, 1), C2 =
(0, 3/2, 1), and C3 = (−3/2, 0, 1) and it goes from (1, 0, 1) to (0, 1, 1). Notice that we
have located C(w) on the z = 1 plane, so none of its components are identical to zero.
For the curve profile P(u) we select the cubic B-spline segment defined by the four
control points P0 = (0, 0, 0), P1 = (−1, 1, 0), P2 = (−1, 1, 3), and P3 = (0, 0, 3). These
points are located on the x = −y plane and go from z = 0 to z = 3, so none of the
three components of P(u) is zero. Matrix Q is shown in Table 9.9. Figure 9.10 shows
the surface itself and the code that generated it.

(0, 0, 0) (−1, 1, 0) (−1, 1, 3) (0, 0, 3)
(0,−3/2, 1) (0, 0, 0) (0,−3/2, 0) (0,−3/2, 3) (0, 0, 3)
(3/2, 0, 1) (0, 0, 0) (−3/2, 0, 0) (−3/2, 0, 3) (0, 0, 3)
(0, 3/2, 1) (0, 0, 0) (0, 3/2, 0) (0, 3/2, 3) (0, 0, 3)
(3/2, 0, 1) (0, 0, 0) (3/2, 0, 0) (3/2, 0, 3) (0, 0, 3)

Table 9.9: Matrix Q for Surface of Revolution Example.

The location of this surface in space may sometimes be a problem and should there-
fore be discussed. Since our quarter circle goes from (1, 0, 1) to (0, 1, 1), we intuitively
expect the profile P(u) to be rotated from direction (1, 0) (the positive x axis) to direction
(0, 1) (the positive y axis). A direct check, however, shows that the four corners of this
patch are S(0, 0) = (−0.833, 0, 0.5), S(0, 1) = (−0.833, 0, 2.5), S(1, 0) = (0, 0.833, 0.5),
and S(1, 1) = (0, 0.833, 2.5). Thus, the profile has been rotated from direction (−0.833, 0)
to direction (0, 0.833) because of its particular original location (as defined, the profile
is located on the x = −y plane).

Because of the high symmetry of surfaces of revolution, especially those that go
through a complete revolution, their precise position in space may not be important, so
our method may be useful for this type of surface.

The method developed here can be used with any type of parametric curves, not just
B-splines and not just PCs. Equation (9.9) shows how a standard quadratic Lagrange
polynomial [Equation (3.14)] can be combined with a degree-4 Bézier curve to form a
surface patch based on 3×5 points

Qij = (Qxij , Qyij , Qzij) =
(
PxiCxj , PyiCyj , PziCzj

)
.

The surface expression is

S(u, w) = (u2, u, 1)

⎛
⎝ 2 −4 2

−3 4 −1
1 0 0

⎞
⎠Q

⎛
⎜⎜⎜⎝

1 −4 6 −4 1
−4 12 −12 4 0

6 −12 6 0 0
−4 4 0 0 0

1 0 0 0 0

⎞
⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎝

w4

w3

w2

w
1

⎞
⎟⎟⎟⎠ ,

(9.9)
where

Q =

⎛
⎝Q00 Q01 Q02 Q03 Q04

Q10 Q11 Q12 Q13 Q14

Q20 Q21 Q22 Q23 Q24

⎞
⎠ .



360 9. Sweep Surfaces

z

x

y

<<:Graphics:ParametricPlot3D.m; (* Surface of revolution *)
Clear[basis,Cubi]; (* as a combination of 2 cubic B-splines *)
(* matrix ‘basis’ has dimensions 4x4x3 *)
basis={{{0,0,0},{0,-3/2,0},{0,-3/2,3},{0,0,3}}
,{{0,0,0},{-3/2,0,0},{-3/2,0,3},{0,0,3}}
,{{0,0,0},{0,3/2,0},{0,3/2,3},{0,0,3}},{{0,0,0}
,{3/2,0,0},{3/2,0,3},{0,0,3}}};
Cubi={{-1,3,-3,1},{3,-6,3,0},{-3,0,3,0},{1,4,1,0}};
prt[i_]:=basis[[Range[1,4],Range[1,4],i]];
(* ‘prt’ extracts component i from the 3rd dimen of ‘basis‘ *)
coord[i_]:={u^3,u^2,u,1}.Cubi.prt[i].Transpose[Cubi].{w^3,w^2,w,1};
ParametricPlot3D[{coord[1],coord[2],coord[3]}/36,
{u,0,1,.1},{w,0,1,.1},
Prolog->AbsoluteThickness[.5],ViewPoint->{1.736, -0.751, -0.089}]

Figure 9.10: A Quarter-Circle Surface of Revolution made of B-Splines.

9.4 Skinned Surfaces

In many practical applications, the surface designer starts with only a rough idea of the
shape of the required surface. The designer wants to compute and display the result of
this idea, and then improve it interactively. A common example is a pipe that winds
its way inside an engine avoiding hot parts. The pipe has to have a complex shape
in order to go around the various parts of the engine and may even have to change
its cross section as it travels through narrow passages. One approach to such a design
problem is a skinned surface. The designer starts by specifying several curves Ci(u) that
become profiles (or cross sections) of the surface, and the resulting surface P(u, w) is an
interpolation of these cross sections.
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It is intuitively clear that the precise shape of the surface depends on the method
used to interpolate the cross sections. Thus, general-purpose software for skinned sur-
faces should give the user a choice of several interpolation and approximation methods.
Three examples are discussed here.

Section 3.6.2 shows how to select four points on each of four given curves and employ
bicubic interpolation (Section 3.6) to compute a bicubic surface that passes through the
four curves. Such a surface is also a skinned surface that interpolates the four curves.

Given a set of n + 1 Bézier curves, each defined by a set of m + 1 control points,
we can use the Bézier approximation method of Section 6.16 to compute a rectangular
surface patch that’s an interpolation of the curves. This surface passes only through the
four corner points, but it passes through all n + 1 given curves. Figure 9.11 shows how
a set of nine similar (but not identical) Bézier curves can be used as cross sections to
construct the surface of a boat as a skinned surface. Each curve must be defined by the
same number of control points (five in our example) and the fact that they are similar
suggests that we can start by constructing one curve, and then duplicate it as many
times as necessary and scale, move, and shear the copies as needed. In this type of work
it makes sense to start with the most complex curve and use it as the basis of all the
other cross sections. (Each of the curves in this example is actually two mirror image
Bézier curves joined at one point.)

Figure 9.11: Nine Cross Sections of a Boat.

Similarly, given a set of n + 1 B-spline or NURBS curves, each defined by a set of
m + 1 control points, we can use the approximation methods of Chapter 7 to compute
a skinned surface with the curves as its cross sections. The computations in this case
are more intensive, but the advantage is that such a surface may have sharp corners and
edges.

Let everyone sweep in front of his own

door, and the whole world will be clean.

Johann Wolfgang von Goethe





A
Conic Sections

The ellipse, hyperbola, and parabola (and also the circle, which is a special case of the
ellipse) are called the conic section curves (or the conic sections or just conics), since
they can be obtained by cutting a cone with a plane (i.e., they are the intersections of
a cone and a plane).

The conics are easy to calculate and to display, so they are commonly used in
applications where they can approximate the shape of other, more complex, geometric
figures. Many natural motions occur along an ellipse, parabola, or hyperbola, making
these curves especially useful. Planets move in ellipses; many comets move along a
hyperbola (as do many colliding charged particles); objects thrown in a gravitational
field follow a parabolic path.

There are several ways to define and represent these curves and this section uses
a simple geometric definition that leads naturally to the parametric and the implicit
representations of the conics.

(a)

F

F

P
P D

D

(b)

x

y

Figure A.1: Definition of Conic Sections.

Definition: A conic is the locus of all the points P that satisfy the following: The
distance of P from a fixed point F (the focus of the conic, Figure A.1a) is proportional
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to its distance from a fixed line D (the directrix). Using set notation, we can write

Conic = {P|PF = ePD},

where e is the eccentricity of the conic. It is easy to classify conics by means of their
eccentricity:

e =

{= 1, parabola,
< 1, ellipse (the circle is the special case e = 0),
> 1, hyperbola.

In the special case where the directrix is the y axis (x = 0, Figure A.1b) and the focus
is point (k, 0), the definition results in√

(x − k)2 + y2

|x| = e, or (1 − e2)x2 − 2kx + y2 + k2 = 0. (A.1)

In this case, the conic is represented by a degree-2 equation. It can be shown that this
is true for the general case, where the directrix and the focus can be located anywhere.
It can also be shown that the inverse is also true, i.e., any degree-2 algebraic equation
of the form

ax2 + by2 + 2hxy + 2fx + 2gy + c = 0 (A.2)

represents a conic. Equation (A.2) can be used to classify the conics. If D is the
determinant

D =

∣∣∣∣∣∣
a h f
h b g
f g c

∣∣∣∣∣∣ ,
then Table A.2 provides a complete classification of the conics, including degenerate
cases where the conic reduces to two lines (real or imaginary) or to a point.

ab − h2 Conditions Conic
= 0 D �= 0 parabola

D = 0 b �= 0 g2 − bc > 0 2 parallel lines
g2 − bc = 0 2 parallel coincident lines
g2 − bc < 0 2 parallel imaginary lines

b = h = 0 f2 − ac > 0 2 parallel real lines
f2 − ac = 0 2 parallel coincident lines
f2 − ac < 0 2 parallel imaginary lines

> 0 D = 0 point (degenerate ellipse)
D �= 0 −bD > 0 real ellipse

−bD < 0 imaginary ellipse
< 0 D = 0 2 intersecting lines

D �= 0 hyperbola

Table A.2: Classification of Conics.
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� Exercise A.1: Assume that the second-degree equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (A.3)

is given. Show how to use the six parameters to determine which conic is described by
this equation.

Equation (A.1) can be used to generate the familiar implicit representations of the
conics. We first treat the case e �= 1 by transforming x′ = x − k/(1 − e2). When this is
substituted into Equation (A.1) (and the prime is eliminated), the result is

x2

a2
+

y2

b2
= 1, (A.4)

where a =
ke

1 − e2
and b2 = a2(1 − e2).

Case 1: Ellipse. The case e < 1 implies that both a and b are positive and a > b. In
this case, Equation (A.4) represents the canonical ellipse. This ellipse is centered on the
origin with the x and y axes being the major and minor axes of the ellipse, respectively.
The major radius is a and the minor one is b. For a = b, this ellipse reduces to a circle.
Hence, we can think of a circle as the limit of the ellipse when e → 0 and k → ∞.

Case 2: Hyperbola. The case e > 1 implies a negative a and a negative b2 (hence an
imaginary b). If we use the absolute value of the imaginary b, Equation (A.4) becomes

x2

a2
− y2

b2
= 1, a, b > 0. (A.5)

This is a canonical hyperbola, where the x axis is the traverse axis and the y axis is
called the semiconjugate or imaginary axis. The hyperbola consists of two distinct parts
with the imaginary axis separating them. The two points (−a, 0) and (a, 0) are called
the vertices of the hyperbola.

Case 3: Parabola (e = 1). The simple transformation x′ = x − k/2 yields, when
substituted into Equation (A.1), the canonical parabola

y2 = 4ax, where a = k/2 > 0, (A.6)

with focus at (a, 0) (thus, a is the focal distance) and directrix x = −a. The origin is
the vertex of the canonical parabola.

All the conic sections can also be expressed (although not in their canonical forms)
by

f(θ) =
K

1 ± e cos(θ)
.

For e = 0 this is a circle. For 0 < e < 1 this is an ellipse. For e = 1 this is a parabola
and for e > 1 it is a hyperbola.
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The parametric representations of the conics are simple. We start with the ellipse.
In order to show that the expression(

a
1 − t2

1 + t2
, b

2t

1 + t2

)
, −∞ < t < ∞, (A.7)

traces out an ellipse we show that it satisfies Equation (A.4):

a2
(

1−t2

1+t2

)2

a2
+

b2
(

2t
1+t2

)2

b2
=

1 − 2t2 + t4 + 4t2

1 + 2t2 + t4
= 1.

The first quadrant is obtained for 0 ≤ t ≤ 1. To get the second quadrant, however, t
has to vary from 1 to ∞. Quadrants 4 and 3 are obtained for −∞ ≤ t ≤ 0.

The canonical hyperbola is represented parametrically by(
a
1 + t2

1 − t2
, b

2t

1 − t2

)
, −∞ < t < ∞. (A.8)

The right branch is traced out when −1 ≤ t ≤ 1, and the left branch is obtained when
−∞ ≤ t ≤ −1 and 1 ≤ t ≤ ∞. Thus, the two values t = ±1 represent hyperbola points
at infinity.

The simple expression

(at2, 2at), −∞ < t < ∞, (A.9)

traces out the canonical parabola.
Equations (A.7) and (A.8) are called rational parametrics since they contain the

parameter t in the denominator. Rational parametric curves are generally complex but
can represent more shapes and are therefore more general than the nonrational ones.
One disadvantage of the rational parametrics is variable velocity. Varying t in equal
increments generally results in traveling along the curve in unequal steps.

In practice, it is sometimes necessary to have conics placed anywhere in three-
dimensional space, not just on the xy plane. This is done by taking a general two-
dimensional conic P(t) [one of Equations (A.7), (A.8), or (A.9)], adding a third co-
ordinate z = 0 and transforming it with the general 4 × 4 transformation matrix T
[Equation (9.1)]. Normally, such a curve is translated and rotated. It may also be scaled
and sheared. The result is a three-dimensional curve of the form

P∗(t) =
(

a0 + a1t + a2t
2

w0 + w1t + w2t2
,

b0 + b1t + b2t
2

w0 + w1t + w2t2
,

c0 + c1t + c2t
2

w0 + w1t + w2t2

)

=

(∑2
i=0 ait

i∑2
i=0 witi

,

∑2
i=0 bit

i∑2
i=0 witi

,

∑2
i=0 cit

i∑2
i=0 witi

)
.

Denoting xi = ai/wi, yi = bi/wi, zi = ci/wi, and ai = (xi, yi, zi), we can write this as

P∗(t) =
w0a0 + w1a1t + w2a2t

2

w0 + w1t + w2t2
=

∑2
i=0 wiait

i∑2
i=0 witi

. (A.10)
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This is the general rational form of the conic sections. It can also be shown that any
rational parametric expression of the form (A.10) represents a conic.

She could see at once by his degenerate conic and dissipative

terms that he was bent on no good, “Arcsinh,” she gasped.

“Ho, Ho,” he said. “What a symmetric little asymptote

you have. I can see your angles have a lit of secs.”

Richard Woodman, Impure Mathematics (1981)





B
Approximate Circles

Parametric curves are general and can take many shapes. In principle, such a curve can
be based on any functions, but in practice polynomials are virtually always used. It is
well known, however, that one common, important curve, namely the circle, cannot be
precisely represented by a polynomial. This short appendix discusses ways to compute
approximate, albeit high precision, circles with Bézier and B-spline methods.

B.1 Circles and Bézier Curves

The equation of a circle is x2 +y2 = r2 or y = ±√
r2 − x2. This is not a polynomial and,

in fact, Exercise B.1 proves that a polynomial cannot represent a circle. Applying Bézier
methods to circles can be done either by using rational Bézier curves (Section 6.15) or
by deriving an approximation to the circle. This section discusses the latter approach.

We start with a three-point example. We select the three points P0 = (1, 0),
P1 = (k, k), and P2 = (0, 1) and attempt to find the value of k such that the quadratic
Bézier curve defined by the points will best approximate a quarter circle of radius 1
(Figure B.1). The curve is given, of course, by

P(t) = (1 − t)2(1, 0) + 2t(1 − t)(k, k) + t2(0, 1)

=
(
1 + 2t(k − 1) + t2(1 − 2k), 2kt + t2(1 − 2k)

)
=
(
Px(t), Py(t)

)
,

(B.1)

and it equals the circle at its start and end points. We need a constraint that will
produce an equation whose solution will yield the value of k. A reasonable constraint is
to require that the curve be identical to the circle at its midpoint. This can be expressed
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as P(0.5) = (1/
√

2, 1/
√

2) and it produces the equation

P(0.5) =
1
4
(1, 0) +

1
2
(k, k) +

1
4
(0, 1) =

(
1√
2
,

1√
2

)
,

whose solution is

k =
2
√

2 − 1
2

≈ 0.914.

We also note that the tangent vector of Equation (B.1) is

Pt(t) =
(
2(k − 1) + 2t(1 − 2k), 2k + 2t(1 − 2k)

)
. (B.2)

(k,k)
(0,1)

(1,0)

Figure B.1: A Quadratic Bézier Curve Approximating a Quarter Circle.

How much does this curve deviate from a true circle of radius 1? To answer this,
we first notice that the distance of a point P(t) from the origin is

D(t) =
√

P 2
x (t) + P 2

y (t) =
√(

1 + 2t(k − 1) + t2(1 − 2k)
)2 +

(
2kt + t2(1 − 2k)

)2
.

To find the maximum distance, we differentiate D(t):

dD(t)
dt

=
2Px(t) · P t

x(t) + 2Py(t) · P t
y(t)

2
√

P 2
x (t) + P 2

y (t)

and set the result equal to 0. This yields Px(t) · P t
x(t) + Py(t) · P t

y(t) = P(t) ·Pt(t) = 0.
Applying Equations (B.1) and (B.2), we get the equation

2(k − 1) + 2
(
1 + 2(k − 1)2

)
t − 6(1 − 2k)2t2 + 4(1 − 2k)2t3 = 0,

which has two roots in the interval [0, 1], namely t1 ≈ 0.33179 and t2 ≈ 0.66821, close to
the expected values of 1/3 and 2/3. Simple computation shows the maximum distance
of P(t) from the origin to be D(t1) = D(t2) = 0.995685. The maximum deviation of
this from a circle of radius one is thus 0.432%, negligible for most purposes.
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� Exercise B.1: Prove that the Bézier curve cannot be a circle.

� Exercise B.2: Consider the quarter circle from P0 = (1, 0) to P3 = (0, 1). Select two
points P1 and P2 such that the Bézier curve defined by the four points would be the
closest possible to a circle.

� Exercise B.3: Do the same for the oval (elliptic) arc from (1, 0) to (0, 1).

� Exercise B.4: Calculate the cubic Bézier curve that approximates the circular arc of
Figure B.2 spanning an angle of 2θ. The calculation should be based on the requirement
that the curve and the arc have the same endpoints and the same extreme tangent
vectors.

θ
θ

P1

P0

P2

P3

(0,1) x

y

Figure B.2: A Cubic Bézier Curve Approximating an Arc.

Example: We approximate a sine wave by smoothly joining eight cubic Bézier
segments (Figure B.3). The first segment requires four control points and each of the
remaining seven segments requires three additional points. The total number of points
is therefore 25. They are numbered P0 through P24, but because of the high symmetry
of the sine wave, only the first seven points, P0 through P6, need be computed. The
rest can be obtained from these by simple translations and reflections. We require that
the following three points be on the sine curve, making it easy to find their coordinates:

P0 = (0, 0), P3 =
(π

4
, sin

(π

4

))
≈ (0.785, 0.7071), P6 =

(π

2
, sin

(π

2

))
≈ (1.57, 1).

The expression for segment i (where i = 0, 3, 6, 9, 12, 15, 18, and 21) is

Pi(t) = (1 − t)3Pi + 3t(1 − t)2Pi+1 + 3t2(1 − t)Pi+2 + t3Pi+3,

and its tangent vector is

Pt
i(t) = −3(1 − t)2Pi + (3 − 9t)(1 − t)Pi+1 + 3t(2 − 3t)Pi+2 + 3t2Pi+3.

To calculate point P1, we require that the initial tangent Pt
0(0) of the first curve

segment matches the initial slope of the sine wave, which is 45◦. We can therefore
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P1

P2 P3

P4 P6

P5 P7

P9

P12

P15

P18

P21

P24P0

Figure B.3: A Sine Curve Approximated by Eight Cubic Bézier Segments.

write Pt
0(0) = (a, a) for any positive a and we select a = 0.7071 since this produces a

normalized tangent vector. The result is

(0.7071, 0.7071) = Pt
0(0) = −3P0 + 3P1 or P1 = (0.7071, 0.7071)/3 = (0.2357, 0.2357).

To calculate points P2 and P4, we again require that the final tangent vector Pt
0(1)

of the first segment match the slope of the sine wave at x3 = π/4. That slope is 0.7071,
so we select (1, 0.7071) as the tangent vector, then normalize it to (0.816, 0.577). We
end up with

(0.816, 0.577) = Pt
0(1) = −3P2 + 3P3 or P2 = P3 − (0.816, 0.577)/3 = (0.513, 0.5151).

By symmetry we also get P4 = P3 + (0.816, 0.577)/3 = (1.057, 0.899).
Only point P5 remains to be calculated. Again, we require that the final tangent

vector Pt
3(1) of the second segment (segment 3) match the slope of the sine wave at P6,

which is 0. Thus, the normalized tangent vector is (1, 0), which produces the equation

(1, 0) = Pt
3(1) = 3P6 − 3P5, or P5 = P6 − (1, 0)/3 = (1.237, 1).

Points P7 through P24 can be obtained from the first seven points by translation
and reflection. Alternatively, the first four cubic segments can be calculated and each
pixel can be used to calculate one more pixel by translation and reflection.
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B.2 The Cubic B-Spline as a Circle

The uniform B-spline, like the Bézier curve, cannot represent a precise circle. However,
the cubic B-spline can provide an excellent approximation to a circle or a circular arc
using just a few control points. The following discussion shows how to place those points
in order to obtain a unit circle centered on the origin. Figure B.4b shows m equidistant
control points Pi placed on a circle of radius R, where R has to be determined. The
coordinates of those points are

Pi = (R cos θi, R sin θi) =
(

R cos
2πi

m
, R sin

2πi

m

)
for i = 0, 1, . . . , m − 1.

We divide the control points, as usual, into overlapping groups of four points each and
calculate a cubic B-spline segment Pi(t) for each group. We require that the two terminal
points Pi(0) and Pi(1) be at a distance of one unit from the origin.

P2

Pm−1

P0

P1

P2
P3

P1

MP0

θ
θ/2

(a)

R

1

R cosθ

(b)

2π/m

P(0)

P(.5)

?

Figure B.4: A Cubic B-Spline and a Circle.

Exercise 7.2 shows that the start point P1(0) of the first segment of this curve
satisfies (see Figure B.4a)

P(0) =
1
3
P0 + P2

2
+

2
3
P1 =

1
3
M +

2
3
P1.

The distance of P(0) from the origin is therefore

1
3
R cos θ +

2
3
R,

and the same is true for the end point P(1). On the other hand, we require that this
distance equals one unit, so the result is

1
3
R(cos θ + 2) = 1 or R =

3
2 + cos θ

. (B.3)
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Our control points should therefore have coordinates

Pi =

(
3 cos 2πi

m

2 + cos 2π
m

,
3 sin 2πi

m

2 + cos 2π
m

)
for i = 0, 1, . . . , m − 1.

To estimate the number of control points necessary for a good approximation, we
first estimate the error of this representation. Since the curve is identical to a circle at
the control points, we assume that the worst approximation is obtained midway between
control points, i.e., at points Pi(0.5). Figure B.4a shows one such point whose distance
from the origin is labeled “?.” The midpoint of a cubic segment, however, is easily
calculated from Equation (7.11) to be

P1(0.5) =
1
6

(
1
8
P0 +

23
8

P1 +
23
8

P2 +
1
8
P3

)

=
(

(1 + cos θ)(11 + cos θ)
8(2 + cos θ)

,
sin θ(11 + cos θ)

8(2 + cos θ)

)
,

where θ = 2πi/m. The deviation from a true circle is therefore

1 −
√

P2
1(0.5) =

(1 − cos π
m )2(2 − cos π

m )
2(2 + cos 2π

m )
.

Even for m = 4, the deviation is only 2.77%. For m = 5, it is 0.94%, and for m = 6, it is
0.41%. The B-spline can therefore provide an excellent, fast approximation to a circle.

Example: We calculate the four segments for the case m = 4. The value of R is

R =
3

2 + cos 2π
4

= 3/2,

so the control points are

P0 = (R cos 0, R sin 0) = (3/2, 0),

P1 = (R cos
π

2
, R sin

π

2
) = (0, 3/2),

P2 = (R cos π, R sin π) = (−3/2, 0),

P3 = (R cos
3π

2
, R sin

3π

2
) = (0,−3/2).

Equation (7.11) is used to obtain the first segment:

P1(t) =
1
6
(t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

(3/2, 0)
(0, 3/2)

(−3/2, 0)
(0,−3/2)

⎞
⎟⎠

=
1
4
(2t3 − 6t, 2t3 − 6t2 + 4).
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This segment goes from (0, 1) to (−1, 0) and its midpoint is at (−22/32, 22/32) =
(−0.6875, 0.6875). The true circle is at (−0.7071, 0.7071), so the difference is ≈ 0.02.
Normally, a cubic B-spline curve based on four control points has two segments but our
curve is closed, so it consists of four segments.

� Exercise B.5: Calculate the remaining three segments.

Example: Approximating a circular arc. We restrict our discussion to arcs on
the unit circle centered on the origin. To specify such an arc, the user should input the
coordinates of the two endpoints S and E (both at a distance of one unit from the origin)
and the software should use them to calculate the coordinates of the four control points
C0, C1, C2, and C3 that produce the best approximation for the arc C(t). Figure B.5a
shows how S and E become the endpoints C(0) and C(1) of the arc. It also shows that
cos θ = E • S. Equation (B.3) gives the distance R of the four control points from the
origin and shows how to compute the two interior points

C1 = RS =
3

2 + E • S
S, C2 = RE =

3
2 + E • S

E.

Control point C0 is found by rotating C1 clockwise θ degrees and control point C3 is
found by rotating C2 θ degrees counterclockwise. The rotation matrices are obtained
from Equation (3.4) in [Salomon 99], bearing in mind that cos θ = E • S and sin θ =√

1 − (E • S)2:

C0 = C1

(
E • S

√
1 − (E • S)2

−√1 − (E • S)2 E • S

)
,

C3 = C2

(
E • S −√1 − (E • S)2√

1 − (E • S)2 E • S

)
.

Once the four control points are known, the cubic B-spline segment can be constructed.

φ
C0

S

E

C1

C2

C3

x

S

E

M

x

y y

C0

C1

C2

C3

C4

θ
θ
θ

(a) (b)

Figure B.5: Cubic B-Splines and Arcs.
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Approximating long arcs may require more than one spline segment and this can
also be handled by our method. The user should again input the coordinates of the two
endpoints S and E (both at a distance of one unit from the origin) and the software
should use them to determine the coordinates of five control points C0 through C4

(Figure B.5b). The first step is to compute the midpoint M of S and E. Once M is
known, the three interior control points C1, C2, and C3 can easily be calculated. The
two exterior points C0 and C4 are found by rotating C1 and C3, respectively. Once the
five control points are known, two cubic spline segments can be calculated and, together,
they constitute the arc.

� Exercise B.6: How is M calculated?

The discussion on page 307 shows how rational B-splines can be used to generate a
circle precisely.

The circle of the English language has a well-defined

centre, but no discernible circumference.

James Murray, Oxford English Dictionary











D
Mathematica Notes

One of the aims of this book is to give the reader confidence in writing Mathematica code
for curves and surfaces. This chapter lists several of the Mathematica examples in the
book and explains selected lines in each of them. The examples are all about curves and
surfaces, which is why certain commands and techniques appear in several examples.
Each command, technique, and approach is explained here once. Mathematica is an
immense software system, with many commands, arguments, and options, which is why
this short chapter often refers the reader to [Wolfram 03] (or the latest version of this
excellent reference) for more details, more examples, and complete lists of options, data
types, and directives.

The examples in this book have been written for ease of readability and are not the
fastest or most sophisticated. They have all been run on version 3 of Mathematica. The
first listing is the code for Figure 1.7 (effect of nonbarycentric weights).

1 (* non-barycentric weights example *)
2 Clear[p0,p1,g1,g2,g3,g4];
3 p0={0,0}; p1={5,6};
4 g1=ParametricPlot[(1-t)^3 p0+t^3 p1,{t,0,1}, PlotRange->All, Compiled->False,
5 DisplayFunction->Identity];
6 g3=Graphics[{AbsolutePointSize[4], {Point[p0],Point[p1]} }];
7 p0={0,-1}; p1={5,5};
8 g2=ParametricPlot[(1-t)^3 p0+t^3 p1,{t,0,1},PlotRange->All, Compiled->False,
9 PlotStyle->AbsoluteDashing[{2,2}], DisplayFunction->Identity];

10 g4=Graphics[{AbsolutePointSize[4], {Point[p0],Point[p1]} }];
11 Show[g2,g1,g3,g4, DisplayFunction->$DisplayFunction, DefaultFont->{"cmr10", 10}];

Line 1 is a comment. Anyone with any experience in computer coding, in any
programming language, knows the importance of comments. The Clear command of
line 2 is useful in cases where several programs are executed in different cells in one
Mathematica session and should not affect each other. If a variable or a function is used
by a program, and then used by another program without being redefined, it will have
its original meaning. This is a useful feature where a large program can be divided into
two parts (“cells” in Mathematica jargon) where the first part defines functions and the
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second part has the executable commands. However, if several cells are executed and
there is no relation between them, a Clear command can save unnecessary errors and
precious time spent on debugging.

Line 3 defines two variables of type “list.” They are later used as points. Later
examples show how to construct lists of control points or data points, either two-
dimensional or three-dimensional. Line 4 is the first example of the ParametricPlot
command (note the uppercase letters). This command plots a two-dimensional paramet-
ric curve (there is also a ParametricPlot3D version). It expects two or more arguments.
The first argument is an expression (that normally depends on a parameter t) that eval-
uates to a pair of numbers for any value of t. Each pair is plotted as a point. If several
curves should be plotted, this argument can be a list of expressions. The second argu-
ment is the range of values of t, written as {t, tmin, tmax}. The remaining arguments
are options of ParametricPlot. This command has the same options as the low-level
Plot command, and they are all listed in [Wolfram 03]. The options in this example
are:

PlotRange->All. Plot the entire curve. This option can be used to limit the plot
to a certain rectangle.

Compiled->False. Do not compile the parametric function.

DisplayFunction->Identity. Do not display the graphics. Option DisplayFunc-
tion tells Mathematica how to display graphics. The value Identity implies no display.

The curve is not plotted immediately. Instead, it is assigned to variable g1, to be
displayed later, with other graphics.

Line 6 prepares both p0 and p1 for display as points. Each is converted to an object
of type Point, with an absolute size of four printer’s points (there are 72 printer’s points
in an inch). There is also a PointSize option, where the size of a point is computed
relative to the size of the entire display. The list of two points is assigned, as an object
of type Graphics, to variable g3. Notice that the Graphics command accepts one ar-
gument that’s a two-part list. The first part specifies the point size and the second part
is the list of points. The following is a common mistake

Graphics[AbsolutePointSize[4], {Point[p0],Point[p1]} ]
which triggers the error message “Unknown Graphics option AbsolutePointSize.”
Mathematica doesn’t recognize AbsolutePointSize, because it currently expects a sin-
gle argument of type Graphics.

Line 7 assigns different coordinates to the two points, and lines 8 and 10 compute
another curve and another list of two points and assign them to variables g2 and g4.
Option PlotStyle receives the value AbsoluteDashing, which specifies the sizes of the
dashes and spaces between them. In addition to dashing, plot styles may include graphics
directives such as hue and thickness.

Finally, the Show command on line 11 displays the two curves and four points
(variables g1 through g4). This command accepts any number of graphics arguments
(two-dimensional or three-dimensional) followed by options, and displays the graphics.
The options on line 11 are:

DisplayFunction->$DisplayFunction. This tells Mathematica to convert the
graphics to Postscript and send it to the standard output.
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DefaultFont->{"cmr10", 10}. Any text displayed will be in font cmr10 at a size
of 10 printer’s point.

� Exercise D.1: Experiment to find out what happens if the semicolon following Show is
omitted.

The next listing is for Figure 2.7 (a bilinear Surface).

1 (* a bilinear surface patch *)

2 Clear[bilinear,pnts,u,w];

3 <<:Graphics:ParametricPlot3D.m;

4 pnts=ReadList["Points",{Number,Number,Number}, RecordLists->True];

5 bilinear[u_,w_]:=pnts[[1,1]](1-u)(1-w)+pnts[[1,2]]u(1-w) \

6 +pnts[[2,1]]w(1-u)+pnts[[2,2]]u w;

7 Simplify[bilinear[u,w]]

8 g1=Graphics3D[{AbsolutePointSize[5], Table[Point[pnts[[i,j]]],{i,1,2},{j,1,2}]}];

9 g2=ParametricPlot3D[bilinear[u,w],{u,0,1,.05},{w,0,1,.05}, Compiled->False,

10 DisplayFunction->Identity];

11 Show[g1,g2, ViewPoint->{0.063, -1.734, 2.905}];

Line 3 is the Get command, abbreviated “<<.” It is followed by a file name. The
file is read and all the functions defined in it are evaluated, which makes it possible
to use them. The file specifies on this line is :Graphics:ParametricPlot3D.m, where
each colon indicates a folder or subdirectory. Line 4 reads data from file “Points” as
triplets of numbers into variable pnts. If option RecordLists is set to True, the list
in pnts will contain a sublist for each triplet read from the data file. Line 5 defines
the parametric function of the bilinear surface. Notice how the backslash “\” is the
Mathematica continuation symbol. When Mathematica gets to the end of an input line,
it sometimes cannot tell whether this is the end of a command. A continuation symbol
should be used to remove any ambiguity.

The Simplify command on line 7 displays the surface function in a simple form.
It does not contribute anything to the display. Line 8 is an example of Graphics3D, a
command that expects any number of graphics directives (from among Cuboid, Point,
Line, Polygon, and Text) followed by options. Line 9 is an example of the important
command ParametricPlot3D (note the uppercase letters). This command accepts a
parametric function (or a list of parametric functions) that evaluates to a triplet. This
is followed by one or two iterators of the form {u, umin, umax, du} where du is the
step size. If there is just one iterator, the result is a space curve. With two iterators,
this command generates a parametric surface.

� Exercise D.2: What is the effect of the iterators {u,0,1,.2},{w,0,1,.2}?

The Show command on line 11 employs the useful option ViewPoint which specifies
the point in space from which the three-dimensional object being displayed will be
viewed. ViewPoint->{x,y,z} specifies the position of the viewer relative to the center
of the bounding box (a three-dimensional box centered on the object).

Next, the code for Figure 6.27 (a rational Bézier surface patch) is listed. This
illustrates (1) the use of the If statement, (2) sums, (3) several commands to manipulate
lists, and (4) how the control polygon and coordinate axes can be included in a surface
display.
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1 (* A Rational Bezier Surface *)
2 Clear[pwr,bern,spnts,n,m,wt,bzSurf,cpnts,patch,vlines,hlines,axes];
3 <<:Graphics:ParametricPlot3D.m
4 spnts={{{0,0,0},{1,0,1},{0,0,2}},
5 {{1,1,0},{4,1,1},{1,1,2}}, {{0,2,0},{1,2,1},{0,2,2}}};
6 m=Length[spnts[[1]]]-1; n=Length[Transpose[spnts][[1]]]-1;
7 wt=Table[1, {i,1,n+1},{j,1,m+1}];
8 wt[[2,2]]=5;
9 pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];

10 bern[n_,i_,u_]:=Binomial[n,i]pwr[u,i]pwr[1-u,n-i]
11 bzSurf[u_,w_]:=
12 Sum[wt[[i+1,j+1]]spnts[[i+1,j+1]]bern[n,i,u]bern[m,j,w], {i,0,n}, {j,0,m}]/
13 Sum[wt[[i+1,j+1]]bern[n,i,u]bern[m,j,w], {i,0,n}, {j,0,m}];
14 patch=ParametricPlot3D[bzSurf[u,w],{u,0,1}, {w,0,1},
15 Compiled->False, DisplayFunction->Identity];
16 cpnts=Graphics3D[{AbsolutePointSize[4], (* control points *)
17 Table[Point[spnts[[i,j]]], {i,1,n+1},{j,1,m+1}]}];
18 vlines=Graphics3D[{AbsoluteThickness[1], (* control polygon *)
19 Table[Line[{spnts[[i,j]],spnts[[i+1,j]]}], {i,1,n}, {j,1,m+1}]}];
20 hlines=Graphics3D[{AbsoluteThickness[1],
21 Table[Line[{spnts[[i,j]],spnts[[i,j+1]]}], {i,1,n+1}, {j,1,m}]}];
22 maxx=Max[Table[Part[spnts[[i,j]], 1], {i,1,n+1}, {j,1,m+1}]];
23 maxy=Max[Table[Part[spnts[[i,j]], 2], {i,1,n+1}, {j,1,m+1}]];
24 maxz=Max[Table[Part[spnts[[i,j]], 3], {i,1,n+1}, {j,1,m+1}]];
25 axes=Graphics3D[{AbsoluteThickness[1.5], (* the coordinate axes *)
26 Line[{{0,0,maxz},{0,0,0},{maxx,0,0},{0,0,0},{0,maxy,0}}]}];
27 Show[cpnts,hlines,vlines,axes,patch, PlotRange->All, DefaultFont->{"cmr10",10},
28 DisplayFunction->$DisplayFunction, ViewPoint->{2.783, -3.090, 1.243}];

Line 6 illustrates how array dimensions can be determined automatically and used
later. Line 7 creates a table of weights that are all 1’s and line 8 sets the center weight
to 5. Line 9 defines function pwr that computes xy, but returns a 1 in the normally-
undefined case 00. Line 10 is an (inefficient) computation of the Bernstein polynomials
and line 11–13 compute the rational Bézier surface as the ratio of two sums. Lines 18
and 20 prepare the segments of the control polygon. Several pairs of adjacent control
points in array spnts are selected to form Mathematica objects of type Line. Lines 22–24
determine the maximum x, y, and z coordinates of the control points. These quantities
are later used to plot the three coordinate axes. The construct

Table[Part[spnts[[i,j]], 1], {i,1,n+1}, {j,1,m+1}];
in line 22 creates a list with part 1 (i.e., the x coordinate) of every control point. The
largest element of this list is selected, to become the length of the x axis. Line 26 shows
how the Line command can have more than one pair of points. Finally, line 27 displays
the surface with the control points, control polygon, and three coordinate axes.

The next example is a partial listing of the code for Figure 6.21 (a lofted Bézier
surface patch). It illustrates one way of dealing with matrices whose elements are lists.

1 pnts={{{0,1,0},{1,1,1},{2,1,0}},{{0,0,0},{1,0,0},{2,0,0}}};
2 b1[w_]:={1-w,w}; b2[u_]:={(1-u)^2,2u(1-u),u^2};
3 comb[i_]:=(b1[w].pnts)[[i]] b2[u][[i]];
4 g1=ParametricPlot3D[comb[1]+comb[2]+comb[3], {u,0,1},{w,0,1}, Compiled->False,
5 DefaultFont->{"cmr10", 10}, DisplayFunction->Identity,
6 AspectRatio->Automatic, Ticks->{{0,1,2},{0,1},{0,.5}}];

The surface is computed as the product of the row vector b1[w_], the matrix pnts,
and the column b2[u_]. We first try the dot product b1[w].pnts.b2[u], but this works
only if the elements of matrix pnts are numbers. The following simple test
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m={{m11,m12,m13},{m21,m22,m23}}; a={a1,a2}; b={b1,b2,b3};
a.m.b

produces the correct result
b1(a1 m11+a2 m21)+b2(a1 m12+a2 m22)+b3(a1 m13+a2 m23).

In our case, however, the elements of pnts are triplets, so the dot product b1[w].pnts
produces a row of three triplets that we may denote by ((a, b, c), (d, e, f), (g, h, i)). The
dot product of this row by a column of the form (k, l, m) produces the triplet (ka + lb +
mc, kd + le + mf, kg + lh + mi) instead of the triplet k(a, b, c) + l(d, e, f) + m(g, h, i).
One way to obtain the correct result is to define a function comb[i_] that multiplies
part i of b1[w].pnts by part i of b2[u]. The correct expression for the surface is then
the sum comb[1]+comb[2]+comb[3].

� Exercise D.3: When do we need the sum comb[1]+comb[2]+comb[3]+comb[4]?

Finally, the last listing is associated with Figure 6.24 (code for degree elevation of
a rectangular Bézier surface). This code illustrates the extension of a smaller array p
to an extended array r, some of whose elements are left undefined (they are set to the
undefined symbol a and are never used). Array r is then used to compute the control
points of a degree-elevated Bézier surface, and the point is that the undefined elements
of r are not needed in this computation, but are appended to r (and also prepended to
it) to simplify the computations.

1 (* Degree elevation of a rect Bezier surface from 2x3 to 4x5 *)
2 Clear[a,p,q,r];
3 m=1; n=2;
4 p={{p00,p01,p02},{p10,p11,p12}}; (* array of points *)
5 r=Array[a, {m+3,n+3}]; (* extended array, still undefined *)
6 Part[r,1]=Table[a, {i,-1,m+2}];
7 Part[r,2]=Append[Prepend[Part[p,1],a],a];
8 Part[r,3]=Append[Prepend[Part[p,2],a],a];
9 Part[r,n+2]=Table[a, {i,-1,m+2}];

10 MatrixForm[r] (* display extended array *)
11 q[i_,j_]:=({i/(m+1),1-i/(m+1)}. (* dot product *)
12 {{r[[i+1,j+1]],r[[i+1,j+2]]},{r[[i+2,j+1]],r[[i+2,j+2]]}}).
13 {j/(n+1),1-j/(n+1)}
14 q[2,3] (* test *)

Line 5 constructs array r two rows and two columns bigger than array p. Lines 6
and 9 fill up the first and last rows of r with the symbol a, while lines 7 and 8 move
array p to the central area of r and then fill up the leftmost and rightmost columns of
r with symbol a. Array r becomes the 4×5 matrix

⎡
⎢⎣

a a a a a
a p00 p01 p02 a
a p10 p11 p12 a
a a a a a

⎤
⎥⎦ .

Lines 11–13 compute the control points for the degree-elevated Bézier surface as de-
scribed in Section 6.18. Each undefined symbol a corresponds to i = 0, i = m+1, j = 0,
or j = n + 1, and is consequently multiplied by zero.
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� Exercise D.4: Why is it important to clear the value of the undefined symbol a on
line 2?

I have a number of notes about Mathematica, our products, and how

I use them in this website and elsewhere. Please note, however,

that beyond this there is no official connection whatsoever

between Wolfram Research and this website. Everything on it is

my personal opinion, not endorsed, controlled, or vetted any

way by Wolfram Research. I am solely and entirely responsible

for any and all errors, libels, liabilities, dangerous instructions,

or just plain stupidities you may happen to find here.

Theodore Gray, http://www.theodoregray.com
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1: This is a row vector whose four elements are points and are therefore vectors (pairs
in two dimensions and triplets in three dimensions).

1.1: Yes, because (2, 2.5) = 0.5(1, 1) + 0.5(3, 4).

1.2: We can write P1 = P0 + α(P3 − P0) and similarly P2 = P0 + β(P3 − P0). It is
obvious that n collinear points can be represented by two points and n−2 real numbers.

1.3: Three two-dimensional points are independent if they are not collinear. The three
corners of a triangle cannot, of course, be on the same line and are therefore independent.
As a result, the three components of Equation (1.3), which are based on the coordinates
of the corner points, are independent.

1.4: It is always true that P0 = 1·P0 + 0·P1 + 0·P2, so the barycentric coordinates of
P0 are (1, 0, 0). Points outside the triangle have barycentric coordinates, some of which
are negative and others are greater than 1 (Figure Ans.1).

u=
0

v=0

w=
0

u<0
w<0

v<0w>1

v>1
u>1
v>1

u<0

(001) (100)

(010)

Figure Ans.1: Barycentric Coordinates Outside a Triangle.
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1.5: This is easy. The centroid is given by (1/3)P0 + (1/3)P1 + (1/3)P2.

1.6: We can look at this sum in two ways:
1. As the sum (P+v)+(−Q+w). We know that P+v is a point and so is −Q+w.

This is, therefore, the sum of points and it equals the vector from point −Q+w to point
P + v.

2. As the sum (P−Q) + v + w. This is the sum of three vectors, so it is a vector.

1.7: (This is a long answer.) This is easily shown by showing that both dot products
(P×Q) • P and (P×Q) • Q equal zero:

(P × Q) • P = P1(P2Q3 − P3Q2) + P2(−P1Q3 + P3Q1) + P3(P1Q2 − P2Q1) = 0,

and similarly for (P × Q) • Q.
Perhaps the best proof is to construct the cross-product from first principles. Given

the two vectors P and Q, we are looking for a vector R perpendicular to both P and
Q. This requirement does not fully define R, since both R and −R satisfy it, and since
it says nothing about the magnitude of R. We therefore extend our definition of the
cross-product by requiring that the triplet (P,Q,R) be a right-handed triad of vectors
and also that the magnitude of R be the product |P| |Q| sin θ, where θ is the angle
between P and Q.

The derivation exploits the orthogonality of the three coordinate axes i = (1, 0, 0),
j = (0, 1, 0), and k = (0, 0, 1) and also uses our definition. The definition implies that
i×i = 0, because the angle between i and itself is zero, and the same for j and k. It
also implies that the cross-product of any two of the three basis vectors is a unit vector,
because the basis vectors are unit vectors and because sin 90◦ = 1. Once we arrange the
triplet (i, j,k) as a right-handed triad, we can deduce the following: i×j = k, j×k = i,
k×i = j, j×i = −k, k×j = −i, and i×k = −j.

Armed with this information we can easily derive the cross-product R

R = P×Q = (P1i + P2j + P3k)×(Q1i + Q2j + Q3k)
= (P1i + P2j + P3k)×Q1i + (P1i + P2j + P3k)×Q2j + (P1i + P2j + P3k)×Q3k

= (P2Q3 − P3Q2)i + (−P1Q3 + P3Q1)j + (P1Q2 − P2Q1)k
= (P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1).

The magnitude of R can be calculated explicitly

|R|2 = (P2Q3 − P3Q2)2 + (−P1Q3 + P3Q1)2 + (P1Q2 − P2Q1)

= (P 2
1 + P 2

2 + P 2
3 )(Q2

1 + Q2
2 + Q2

3) − (P1Q1 + P2Q2 + P3Q3)2

= |P|2|Q|2 − (P · Q)2 = |P|2|Q|2 − (|P||Q| cos θ)2

= |P|2|Q|2(1 − cos2 θ) = |P|2|Q|2 sin2 θ.

To illustrate the magnitude, we can draw the parallelogram defined by P and Q (with
an angle θ between them) and show that vector Q sin θ is perpendicular to P.
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For those who insist on learning the whole story, here is a short discussion of the
cross-product of vectors in four dimensions.

In three dimensions, for any two linearly independent (i.e., nonparallel) vectors there
is a vector (unique up to magnitude and direction) that’s perpendicular to both. The
cross-product in three dimensions is therefore a binary operation. In four dimensions the
situation is more complex. For any three linearly independent vectors there is a unique
vector that’s orthogonal (a term more general than perpendicular) to all three. The
cross-product in four dimensions is therefore a ternary operation that may be denoted
by ×(U,V,W). Given just two four-dimensional vectors P and Q, there is an entire
subspace of vectors that are orthogonal to both P and Q, so the cross-product of two
vectors in four dimensions is not well defined.

Based on our experience with the cross-product in three dimensions, it is reasonable
to expect the definition of the four-dimensional cross product to satisfy the following
requirements.

1. If the operands are linearly independent, the cross-product must be orthogonal
to each of the operands.

2. Scaling must be conserved. The expressions ×(αU,V,W), ×(U, αV,W), and
×(U,V, αW) should equal α×(U,V,W) for any real α.

3. Changing the order of two of the operands should reverse the direction of the
result.

4. If the three operands are not linearly independent, the four-dimensional cross-
product must be the zero vector.

It is easy to show that these four requirements are satisfied if the determinant
notation of the three-dimensional cross-product is extended to four dimensions. Hence,
we can write

×(U,V,W) =

∣∣∣∣∣∣∣
i j k l

U0 U1 U2 U3

V0 V1 V2 V3

W0 W1 W2 W3

∣∣∣∣∣∣∣
= i

∣∣∣∣∣∣
U1 U2 U3

V1 V2 V3

W1 W2 W3

∣∣∣∣∣∣− j

∣∣∣∣∣∣
U0 U2 U3

V0 V2 V3

W0 W2 W3

∣∣∣∣∣∣+ k

∣∣∣∣∣∣
U0 U1 U3

V0 V1 V3

W0 W1 W3

∣∣∣∣∣∣− l

∣∣∣∣∣∣
U0 U1 U2

V0 V1 V2

W0 W1 W2

∣∣∣∣∣∣ .
(End of answer.)

1.8: In the special case where i = (1, 0, 0) and j = (0, 1, 0), it is easy to verify that the
product i×j equals (0, 0, 1) = k. Thus, the triplet (i, j, i × j = k) has the handedness
of the coordinate system (it is either right-handed or left-handed, depending on the
coordinate system). In a right-handed coordinate system, the right-hand rule makes it
easy to predict the direction of P×Q. The rule is as follows: If your thumb points in
the direction of P and your second finger points in the direction of Q, then your middle
finger will point in the direction of P×Q. In a left-handed coordinate system, a similar
left-hand rule applies.

1.9: They either point in the same direction, or in opposite directions.
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1.10: We are looking for a vector P(t) that’s linear in t and that satisfies P(0) = P1

and P(1) = P2. It is easy to guess that

P(t) = (1 − t)P1 + tP2 = t(P2 − P1) + P1

satisfies both conditions. Note that this result is duplicated in Equation (2.1). It is an
important relation and is used often in graphics.

1.11: This is straightforward

c =
2 · 1 + 1 · 0 + 3 · (−1)

12 + 02 + (−1)2
(1, 0,−1) = (−1/2, 0, 1/2),

d =a − c = (2.5, 1, 2.5).

1.12: This expression is an attempt to find a parametric cubic polynomial that’s close
to a circle in the first quadrant. The general form of such a polynomial is P(t) =
at3 + bt2 + ct + d where the coefficients a,b, c, and d are pairs of numbers and t is
a parameter varying in the interval [0, 1]. To determine the four coefficient pairs, we
need four equations, so we require that the polynomial and the circle be identical at
four points. For t = 0, we require that P(0) = (1, 0) and, for t = 1, that P(1) = (0, 1).
In addition, we select the two equally-spaced values t = 1/3 and 2/3 and require that
P(1/3) = (cos 30◦, sin 30◦) and P(1/3) = (cos 60◦, sin 60◦). This results in the four
equations

P(0) = at3 + bt2 + ct + d|t=0 = (1, 0),

P(1/3) = at3 + bt2 + ct + d|t=1/3 = (cos 30◦, sin 30◦),

P(2/3) = at3 + bt2 + ct + d|t=2/3 = (cos 60◦, sin 60◦),

P(1) = at3 + bt2 + ct + d|t=1 = (0, 1),

whose solutions are a = (0.441,−0.441), b = (−1.485,−0.162), c = (0.044, 1.603), and
d = (1, 0). The cubic polynomial is therefore

P(t) = (0.441,−0.441)t3 + (−1.485,−0.162)t2 + (0.044, 1.603)t + (1, 0).

This polynomial is just an approximation (see Appendix B for more circle approxima-
tions). At other values of t, it passes close to the circle but not on it.

1.13: It is easy to see from Figure 1.6b that d = R cos(π/n), so R−d = R(1−cos(π/n)).
This expression approaches zero for large n.

1.14: This velocity is variable since it goes down from Pt(0) = (0, 2) (a speed of√
02 + 22 = 2) to Pt(1) = (−1, 0) (a speed of

√
(−1)2 + 02 = 1). Notice that the term

“speed” refers to a scalar, whereas “velocity” is a vector, having both direction and
magnitude.
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1.15: We know that the two-dimensional parametric curve (cos t, sin t) is a circle of
radius 1, centered on the origin. As a result, the three-dimensional curve (cos t, sin t, t)
is a helix spiraling around the z axis upward from the origin.

1.16: The two simple curves x(t) and y(t) defined below are identical. When drawn
in the xt or yt plane, each is a horizontal line followed by a 45◦ line:

x(t) = y(t) =
{

0.5, 0 ≤ t ≤ 0.5,
t, 0.5 ≤ t ≤ 1.

The curve itself is now defined parametrically:

P(t) = (x(t), y(t)) =
{

(0.5, 0.5), 0 ≤ t ≤ 0.5,
(t, t), 0.5 ≤ t ≤ 1.

In the range 0 ≤ t ≤ 0.5 the curve stays at point (0.5, 0.5), it is degenerate. Then, when
0.5 ≤ t ≤ 1, the curve moves smoothly from (0.5, 0.5) to (1, 1).

1.17: The following functions are degree-3 polynomials in t and are not straight lines:

x(t) = 2t3 − 3t2 + 2, y(t) = −4t3 + 6t2 + 1, z(t) = −2t3 + 3t2 + 3.

When combined to form a parametric space curve, the result is

P(t) =
(
x(t), y(t), z(t)

)
= (−1, 2, 1)(−2t3 + 3t2) + (2, 1, 3).

A simple change of parameter T = −2t3 + 3t2 yields P(T ) = (−1, 2, 1)T + (2, 1, 3), a
straight line from point (2, 1, 3) to point (−1, 2, 1) + (2, 1, 3) = (1, 3, 4). Notice that
t = 0 → T = 0 and t = 1 → T = 1. The expression (−2t3 + 3t2) also happens to be
function F2(t) of Equation (4.6) and is plotted in Figure 4.3.

1.18: The curve can be written P(t) = P + (Q − P)[2αt + (1 − 2α)t2]. We define
T = 2αt + (1− 2α)t2 and substitute T for t as the parameter. Note that t = 0 → T = 0
and t = 1 → T = 1. The curve can now be written P(T ) = P + (Q − P)T (where
0 ≤ T ≤ 1), which is linear in T and is therefore a straight line. This is a (sometimes
baffling) property of parametric curves. A substitution of the parameter does not change
the shape of the curve and can be used to shed light on its behavior. Intuitively, the
reason our curve is a straight line is that the same vector (Q−P) is used in the coefficients
of both t and t2.

1.19: Such a polynomial is fully defined by three coefficients A, B, and C that can be
considered three-dimensional points and any three points are on the same plane.

1.20: We can gain an insight into the shape of the n-degree polynomial P (x) =∑n
i=0 Aix

i by writing the equation P (x) = 0. This is an nth-degree equation in the
unknown x and consequently has n solutions (some may be identical or complex). Each
solution is an x value for which the polynomial becomes zero. As x is varied, the poly-
nomial crosses the x axis n times, so it oscillates between positive and negative values.
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1.21: Because P1(t) is expressed in Equation (1.12) with the same matrix M and the
same four points as P(t).

1.22: The attributes “vertical” and “horizontal” are extrinsic. “Cusp” and “smooth,”
however, are intrinsic. The length of a curve and area of a polygon or a closed curve are
extrinsic since they can be changed by scaling the coordinate system. If a certain point
on a surface has a tangent plane in one coordinate system (i.e., the surface is smooth in
the vicinity of the point), it will have such a plane (although perhaps a different one) in
any other coordinate system. This property of a surface is therefore intrinsic.

1.23: The principal normal vector at point i points, by definition, in the direction the
curve turns at the point. Since a straight line does not make any turns, its principal
normal vector is undefined. We can also see this from Equation (1.18). The second
derivative of a straight line is the zero vector, so vector K(t) is also zero, resulting in a
principal normal vector of the form 0/0.

1.24: The first two derivatives are Pt(t) = (−3, 0)t2 + (2,−2)t + (1, 1) and Ptt(t) =
(−6, 0)t + (2,−2). The principal normal vector (still unnormalized) is therefore

N(t) = Ptt(t) − Ptt(t) • Pt(t)
|Pt(t)2| Pt(t) = Ptt(t) −

[
18t3 − 18t2 + 2t

9t4 − 12t3 + 2t2 + 2

]
Pt(t).

Simple tests result in N(0) = (2,−2), N(.5) = (0,−2), and N(1) = (−4, 0). Thus, vector
N(t) starts in direction (1,−1), changes to (0,−1) (down) when t = 0.5 (this makes
sense since Pt(0.5) is horizontal), and ends in direction (−1, 0) (i.e., in the negative x
direction). It is always perpendicular to the direction of the curve.

1.25: The curve and its first two derivatives are given by

P(t) = (1 − t)3(0, 0, 0) + 3t(1 − t)2(1, 0, 0) + 3t2(1 − t)(2, 1, 0) + t3(3, 0, 1)

= (3t, 3t2(1 − t), t3),

Pt(t) = (3, 3t(2 − 3t), 3t2),
Ptt(t) = (0, 6 − 18t, 6t).

The unnormalized principal normal vector is given by

N(t) = Ptt(t) −
[
18t(2 − 9t + 10t2)
9 + 9t2(2 − 3t)2

]
Pt(t),

from which we get N(0) = (0, 6, 0), N(0.5) = (0,−3, 3), and N(1) = (−9,−3,−3).
The osculating plane is the solution of det[((x, y, z) − P(t)) Pt(t) Ptt(t)] = 0. The

explicit determinant is ∣∣∣∣∣∣
x − 3t y − 3t2(1 − t) z − t3

3 3t(2 − 3t) 3t2

0 6 − 18t 6t

∣∣∣∣∣∣ .
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Thus, the osculating plane is given by t2x − ty + (1 − 3t)z − t3 = 0. At t = 0, 0.5 and 1
this plane has the equations z = 0, 0.25x−0.5y−0.5z−0.125 = 0, and x−y−2z−1 = 0,
respectively.

1.26: Equation (1.24) becomes

d2x

ds2
= −R

dy

ds
,

d2y

ds2
= R

dx

ds
.

It is easy to guess that the solutions are x(s) = R cos(R·s)+A and y(s) = R sin(R·s)+B.
The curve is a circle of radius R with center at (A, B).

1.27: A surface is two-dimensional because it has no depth. Imagine a flat surface,
such as the xy plane. Each point on this surface has just two coordinates (the third
one, z, is zero) and can be located by means of these two numbers. Now, crumple this
flat surface. Each surface point now has three coordinates (the z coordinate is no longer
zero), but the same two numbers are still the distances of the point from the two edges of
the surface and are therefore still sufficient to locate the point on the crumpled surface.

A surface is a two-dimensional structure embedded in three-dimensional space. Each
point on the surface has three coordinates, but only two numbers are needed to specify
the position of the point on the surface. In contrast, a solid object requires three
parameters to be expressed. The surface function P(u, w) evaluates to a triplet (the
three coordinates of a point on the surface) for every pair (u, w) of parameters.

1.28: It is easy to see that the corner points are P00 = (0, 0, 1), P10 = (1, 0, 0),
P01 = (0.5, 1, 0), and P11 = (1, 1, 0). The boundary curves are also not hard to calculate.
They are

P(0, w) = (0.5w, w, 1 − w), P(u, 1) = (0.5(1 − u) + u, 1, 0),
P(1, w) = (1, w, 0), P(u, 0) = (u, 0, 1 − u).

The two diagonals are

P(u, 1 − u) = (0.5(1 − u)2 + u, 1 − u, (1 − u)u),

P(u, u) = (0.5(1 − u)u + u, u, (1 − u)2).

1.29: The four boundary curves are

P(u, 0) = ((c − a)u + a, b, 0) , P(u, 1) = ((c − a)u + a, d, 0) ,

P(0, w) = (a, (d − b)w + b, 0) , P(1, w) = (c, (d − b)w + b, 0) .

Obviously, they are straight lines. The four corner points can be obtained from the
boundary curves

P00 = (a, b, 0), P01 = (a, d, 0), P10 = (c, b, 0); P11 = (c, d, 0).

The surface patch is the flat rectangle on the xy plane delimited by these points.
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1.30: We can always write the explicit surface z = f(x, y) as the implicit surface
f(x, y) − z = 0. The normal is, therefore,(

∂f(x0, y0)
∂x

,
∂f(x0, y0)

∂y
,−1

)
.

1.31: The normal will point in the negative x direction.

1.32: The face is given by P(u, w) = (a(2u−1)(1−w), a(w−1), Hw). The two partial
derivatives are

∂P
∂u

=
(
2a(1 − w), 0, 0

)
,

∂P
∂w

=
(
a(1 − 2u), a, H

)
.

The normal is the cross-product (Equation (1.5), page 7) 2a(1 − w)[0,−H, a].
To understand this result, recall that the face in question is the triangle defined

by the three points (−a,−a, 0), P2 = (a,−a, 0), and (0, 0, H). This explains why the
x component of the normal is zero. Note that its magnitude depends on w, but its
direction does not. The direction of the normal can be expressed by saying “for each
H units traveled in the negative y direction, we should travel a units in the positive z
direction.”

1.33: The cone is defined by P(u, w) = (Ru cos w, Ru sin w, Hu). The two partial
derivatives are

∂P
∂u

=
(
R cos w, R sin w, H

)
,

∂P
∂w

=
(− Ru sin w, Ru cos w, 0

)
.

The normal is the cross-product [Equation (1.5)] Ru(−H cos w,−H sin w, R). Note that
its direction does not depend on u. When w varies, the normal rotates about the z axis,
and it always has a positive component in the z direction.

1.34: The line from (−a, 0, R) to (a, 0, R) is given by (a(2u − 1), 0, R). The surface is
given by the product of this line and the rotation matrix about the x axis:

P(u, w) = (a(2u − 1), 0, R)

⎛
⎝ 1 0 0

0 cos w − sin w
0 sin w cos w

⎞
⎠

=
(
a(2u − 1), R sin w, R cos w

)
, (Ans.1)

where 0 ≤ u ≤ 1 and 0 ≤ w ≤ 2π. The two partial derivatives are

∂P
∂u

=
(
2a, 0, 0),

∂P
∂w

=
(
0, R cos w,−R sin w

)
.

The normal is the cross-product 2aR(0, sin w, cos w). Note that it is perpendicular to
the x axis. When w varies, the normal rotates about the x axis.
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2.1: Three approaches are discussed.
Approach 1 : The general two-dimensional line y = ax + b goes through point (0, b)

and its direction is the vector (1, a) (for each step in the x direction, take a steps in the
y direction). We can therefore express it as

P(t) = P0 + tv = (0, b) + t(1, a).

Applying Equation (2.2), we get point Q:

Q = P0 +
(P − P0) • v

v • v
v

= (0, b) +
(Px, Py − b) • (1, a)

(1, a) • (1, a)
(1, a)

=
(

aPy + Px − ab

a2 + 1
,
a2Py + aPx + b

a2 + 1
) (Ans.2)

Hence, the distance between P and Q is

D =
√

(Px − Qx)2 + (Py − Qy)2

=

√(
Px − aPy + Px − ab

a2 + 1

)2

+
(

Py − a2Py + aPx + b

a2 + 1

)2

=

√(
a2Px − aPy + ab

a2 + 1

)2

+
(

Py − aPx − b

a2 + 1

)2

=
√

(Py − aPx − b)2 =
|Py − aPx − b|√

1 + a2
;

same as Equation (2.3).
Approach 2 : We denote the line y = ax + b by L1. We find Q, the point on L1

closest to P, by calculating the equation of a line L2 that’s (1) perpendicular to L1 and
(2) goes through P. Denote L2 by y = Ax + B. Since L2 is perpendicular to L1, its
slope is −1/a. The requirement that it goes through P gives us an equation for B:

Py = −1
a
Px + B, whose solution is B = Py +

Px

a
.

Therefore, line L2 is

y = −1
a
x +

(
Py +

Px

a

)
.

The intersection of the two lines yields point Q:

ax + b = −1
a
x +

(
Py +

Px

a

)
yields x =

aPy + Px − ab

a2 + 1
,
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and

y = a

(
aPy + Px − ab

a2 + 1

)
+ b =

a2Py + aPx + b

a2 + 1
.

Thus, point Q is

Q =
(

aPy + Px − ab

a2 + 1
,
a2Py + aPx + b

a2 + 1

)
,

which is the same as that given by Equation (Ans.2).
Approach 3 : Any point Q on the line has coordinates (x, ax + b). The distance D

between P and a general point Q on the line is therefore

D(x) =
√

(Px − x)2 + (Py − ax − b)2.

This distance is a function of x and we are looking for that x value for which D(x) has
a minimum. Instead of differentiating D(x) (tedious because of the square root), we
differentiate D2(x), noting that both functions D(x) and D2(x) have a minimum at the
same value of x. The result is

d

dx
D2(x) = −2(Px − x) − 2a(Py − ax − b)

= −2Px − 2aPy + 2ab + 2x + 2a2x.

When this is equated to zero, we find that D(x) has a minimum for

x =
aPy + Px − ab

a2 + 1
.

Thus, point Q is

Q = (x, ax + b) =
(

aPy + Px − ab

a2 + 1
,
a2Py + aPx + b

a2 + 1

)
,

same as Equation (Ans.2). The distance is therefore given by Equation (2.3)

2.2: Direct calculation shows that in the former case, both α and β have the indefinite
value 0/0. In the latter case, they are both of the form x/0, where x is nonzero.

2.3: We select (1, 0, 0) as our pivot point and calculate the three vectors v1 = (0, 1, 0)−
(1, 0, 0) = (−1, 1, 0), v2 = (1, a, 1) − (1, 0, 0) = (0, a, 1), and v3 = (0,−a, 0) − (1, 0, 0) =
(−1,−a, 0). Next, we calculate the only scalar triple product

v1 • (v2 × v3) =

∣∣∣∣∣∣
−1 1 0
0 a 1
−1 −a 0

∣∣∣∣∣∣ = a + 1.

It equals zero for a = −1.
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2.4: The plane should pass through the three points (0, 0, 0), (0, 0, 1), and (1, 1, 0).
Equation (2.4) gives

A =

∣∣∣∣∣∣
0 0 1
0 1 1
1 0 1

∣∣∣∣∣∣ = −1, B = −
∣∣∣∣∣∣
0 0 1
0 1 1
1 0 1

∣∣∣∣∣∣ = 1,

C =

∣∣∣∣∣∣
0 0 1
0 0 1
1 1 1

∣∣∣∣∣∣ = 0, D = −
∣∣∣∣∣∣
0 0 0
0 0 1
1 1 0

∣∣∣∣∣∣ = 0.

The expression of the plane is, therefore, −x + y = 0

2.5: They are the points where the plane x/a + y/b + z/c = 1 intercepts the three
coordinate axes.

2.6: s = N • P1 = (1, 1, 1) • (1, 1, 1) = 3, so the plane is given by x + y + z −
3 = 0. It intercepts the three coordinate axes at points (3, 0, 0), (0, 3, 0), and (0, 0, 3)
(Figure Ans.2).

(3,0,0)

(0,0,3)

x

y

z

Figure Ans.2: A Plane.

2.7: The expression is

P(u, w) = P1 + u(P2 − P1) + w(P3 − P1) = (3, 0, 0) + u(−3, 3, 0) + w(−3, 0, 3).

2.8: If the cross-product a × b points in the direction of N, the angle between them
is zero. Its cosine therefore equals 1, causing the dot product N • (a× b) to be positive
(since it is the product of the magnitudes of the vectors and the cosine of the angle
between them).

2.9: If the line is parallel to the plane, then its direction vector d is parallel to the
plane (i.e., perpendicular to the normal), resulting in N • d = 0 (infinite t). If the line
is also in the plane, then P1 is in the plane, resulting in s = N • P1 or s − N • P1 = 0
(in this case, t is of the form 0/0, indefinite).
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2.10: We first subtract P2 − P1 = (−2, 1,−0.8) and P3 − P1 = (−2, 9,−0.8). The
triangle is therefore given by

(10,−5, 4) + u(−2, 1,−0.8) + w(−2, 9,−0.8)
=
(
10 − 2(u + w),−5 + u + 9w, 4 − 0.8(u + w)

)
,

where u ≥ 0, w ≥ 0, and u + w ≤ 1.

2.11: We first subtract P2 − P1 = (−2, 1,−0.8) and P3 − P1 = (2,−1, 0.8). The
differences are related because the points are collinear; the triangle is therefore given
by (10,−5, 4) + (−2, 1,−0.8)(u − w) = P1 + (P2 − P1)(u − w). It depends only on
the difference u − w. When u and w are varied independently, the difference between
them changes from −1 to 1. The triangle therefore degenerates into the straight line
P(t) = P1+(P2−P1)t, where −1 ≤ t ≤ 1. This line goes from P(−1) = P1−(P2−P1) =
2P1 − P2 = P3 to P(1) = P1 + (P2 − P1) = P2.

2.12: 1. Equation (2.8) yields the expression of the surface

P(u, w) = ((0, 0, 0)(1−u)(1−w) + (1, 0, 0)u(1−w) + (0, 1, 0)(1−u)w + (1, 1, 1)uw)
= (u, w, uw).

2. The explicit representation is z = xy. This is easy to guess because the x
coordinate equals u, the y coordinate is w, and the z coordinate equals uw.

3. The two conditions z = k and z = xy produce k = xy or y = k/x. This curve is
a hyperbola.

4. The plane through the three points (0, 0, 0), (0, 0, 1), and (1, 1, 0) contains the
z axis and is especially easy to calculate. Its equation is x − y = 0. Intersected with
z = xy, it yields the curve z = x2, a parabola.

This is the reason why the bilinear surface is sometimes called a hyperbolic paraboloid.

2.13: The two tangent vectors are

∂P(u, w)
∂u

= (1 − w, 0, w − 1),
∂P(u, w)

∂w
= (−u, 1, u − 1).

The normal vector is

N(u, w) =
∂P(u, w)

∂u
× ∂P(u, w)

∂w
= (1 − w, 1 − w, 1 − w) = (1 − w)(1, 1, 1).

This vector does not depend on u, it always points in the (1, 1, 1) direction, and its
magnitude varies from (1, 1, 1) for w = 0 to the indefinite (0, 0, 0) for w = 1 at the
multiple point P01 = P11. Thus, the surface does not posses a normal vector at w = 1
since the surface itself reduces to a point at this value. The reason that the normal does
not depend on u is that this surface patch is flat. It is simply the triangle connecting
the three points (0, 0, 1), (1, 0, 0), and (0, 1, 0).
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2.14: The rotation matrix for a 60◦ rotation about the y axis is⎛
⎝ cos 60◦ 0 − sin 60◦

0 1 0
sin 60◦ 0 cos 60◦

⎞
⎠ =

⎛
⎝ 0.5 0 −0.866

0 1 0
0.866 0 0.5

⎞
⎠ .

Applying this rotation to the original pair P00P10 yields the following six points (Fig-
ure 2.10), where the translation in the y direction has already been included

P01 = (−0.5, 0, 0.866), P11 = (0.5, 0,−0.866),
P02 = (0.5, 1, 0.866), P12 = (−0.5, 1,−0.866),

P03 = (1, 2, 0), P13 = (−1, 2, 0).

The three bilinear patches are now easy to calculate:

P1(u, w) = (−1,−1, 0)(1 − u)(1 − w) + (−0.5, 0, .866)(1 − u)w
+ (1,−1, 0)u(1 − w) + (0.5, 0,−0.866)uw

= (−1 + 2u + 0.5uw + 0.5w − 1.5uw,−1 + w,−0.866uw + 0.866w − 0.866uw),
P2(u, w) = (1,−1, 0)(1 − u)(1 − w) + (0.5, 1, .866)(1 − u)w

+ (0.5, 0,−0.866)u(1 − w) + (−0.5, 1,−0.866)uw

= (1 − 0.5u − 0.5uw − 0.5w,−1 + u + uw + 2w − 2uw,−0.866u − 0.866uw + 0.866w),
P3(u, w) = (0.5, 1, 0.866)(1 − u)(1 − w) + (1, 2, 0)(1 − u)w

+ (−0.5, 1,−0.866)u(1 − w) + (−1, 2, 0)uw

= (0.5 − 1u − uw + 0.5w, 1 + 2uw + w − 2uw, 0.866 − 1.732u − 0.866w + 1.732uw).

2.15: (a) The straight line is

P(u, 0) = P1(1 − u) + P2u = P1 + (P2 − P1)u = (−1,−1, 0) + (2, 0, 0)u.

(b) For the quadratic, we set up the equations

(−1, 1, 0) = P3 = P(0, 1) = C,

(0, 1, 1) = P4 = P(0.5, 1) = 0.25A + 0.5B + C,

(1, 1, 0) = P5 = P(1, 1) = A + B + C,

which are solved to yield A = (0, 0,−4), B = (2, 0, 4), and C = (−1, 1, 0). The top
curve is therefore

P(u, 1) = (0, 0,−4)u2 + (2, 0, 4)u + (−1, 1, 0),

and the surface is P(u, w) = P(u, 0)(1 − w) + P(u, 1)w = (2u − 1, 2w − 1, 4uw(1 − u)).
The center point is P(0.5, 0.5) = (0, 0, 0.5). Figure Ans.3 shows this surface.
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x

y

z

(* A lofted surface example. Bottom boundary curve is straight *)
pnts={{-1,-1,0},{1,-1,0},{-1,1,0},{0,1,1},{1,1,0}};
g1=Graphics3D[{AbsolutePointSize[5],

Table[Point[pnts[[i]]],{i,1,5}]}]
g2=ParametricPlot3D[{2u-1,2w-1,4u w(1-u)}, {u,0,1},{w,0,1},
DefaultFont->{"cmr10", 10}, DisplayFunction->Identity,
AspectRatio->Automatic, Ticks->{{0,1},{0,1},{0,1}}]
Show[g1,g2, ViewPoint->{-0.139, -1.179, 1.475}]

Figure Ans.3: A Lofted Surface.

2.16: The base can be considered one boundary curve. Its equation is P1(u) =
(R cos u, R sin u, H), where 0 ≤ u ≤ 2π. The other boundary curve is the vertex
P2(u) = (0, 0, 0) (it is a degenerate curve). The entire surface is obtained, as usual,
by

P(u, w) = P1(u)w + P2(u)(1 − w) = (Rw cos u, Rw sin u, Hw), (Ans.3)

where 0 ≤ w ≤ 1 and 0 ≤ u ≤ 2π.

2.17: The four corner points of the base are (−a,−a, 0), (−a, a, 0), (a,−a, 0), and
(a, a, 0). We select the two points P1 = (−a,−a, 0) and P2 = (a,−a, 0). The straight
segment connecting them is

P(u) = (1 − u)P1 + uP2 = (−a + 2ua,−a, 0).
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The face defined by these points is therefore expressed by

P(u, w) = P(u)(1 − w) + (0, 0, H)w

=
(
a(2u − 1)(1 − w), a(w − 1), Hw

)
.

(Ans.4)

The other three faces are calculated similarly.

2.18: The tangent vector in the u direction is

∂P(u, w)
∂u

=
(
24u2(1 − w) − 24u(1 − w) − 4w + 6,

12u2(1 − w) − 18u(1 − w) + 8uw − 10w + 6, 0
)
.

At u = 0.5, this vector reduces to

∂P(0.5, w)
∂u

=
(
6(w − 1) − 4w + 6, 6(w − 1) − 6w + 6, 0

)
= (2w, 0, 0),

which implies that
∂P(0.5, 0)

∂u
= (0, 0, 0).

This shows that the surface does not have a tangent at the cusp, point (0, 5/4, 0).

3.1: This is straightforward

P(2/3) =(0,−9)(2/3)3 + (−4.5, 13.5)(2/3)2 + (4.5,−3.5)(2/3)
=(0,−8/3) + (−2, 6) + (3,−7/3)
=(1, 1) = P3.

3.2: We use the relations sin 30◦ = cos 60◦ = 0.5 and the approximation cos 30◦ =
sin 60◦ ≈ 0.866. The four points are P1 = (1, 0), P2 = (cos 30◦, sin 30◦) = (0.866, 0.5),
P3 = (0.5, 0.866), and P4 = (0, 1). The relation A = NP becomes

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ = A =NP =

⎛
⎜⎝

−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(1, 0)
(0.866, 0.5)
(0.5, 0.866)

(0, 1)

⎞
⎟⎠ .

The solutions are

a = −4.5(1, 0) + 13.5(0.866, 0.5) − 13.5(0.5, 0.866) + 4.5(0, 1) = (0.441,−0.441),
b = 19(1, 0) − 22.5(0.866, 0.5) + 18(0.5, 0.866) − 4.5(0, 1) = (−1.485,−0.162),
c = −5.5(1, 0) + 9(0.866, 0.5) − 4.5(0.5, 0.866) + 1(0, 1) = (0.044, 1.603),
d = 1(1, 0) − 0(0.866, 0.5) + 0(0.5, 0.866) − 0(0, 1) = (1, 0).
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Thus, the PC is P(t) = (0.441,−0.441)t3 + (−1.485,−0.162)t2 + (0.044, 1.603)t + (1, 0).
The midpoint is P(0.5) = (0.7058, 0.7058), only 0.2% away from the midpoint of the
arc, which is at (cos 45◦, sin 45◦) ≈ (0.7071, 0.7071).

(See also Exercise 1.12.)

3.3: From the definitions of the relative coordinates, we get P2 = ∆1 + P1, P3 =
∆2 + P2 = ∆1 + ∆2 + P1, and P4 = ∆3 + P3 = ∆1 + ∆2 + ∆3 + P1. When this is
substituted in Equations (3.4) and (3.6), they become

P(t) = G(t)P = T(t)NP

= (t3, t2, t, 1)

⎛
⎜⎝

−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

P3

P4

⎞
⎟⎠

= (t3, t2, t, 1)

⎛
⎜⎝

−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P1 + ∆1

P1 + ∆1 + ∆2

P1 + ∆1 + ∆2 + ∆3

⎞
⎟⎠ .

Selecting, for example, ∆1 = (2, 0), ∆2 = (0, 2), and ∆3 = (1, 1) produces

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P1 + (2, 0)
P1 + (2, 2)
P1 + (3, 3)

⎞
⎟⎠

= P1 + (12t − 22.5t2 + 13.5t3,−6t + 22.5t2 − 13.5t3).

It is now clear that the three relative coordinates fully determine the shape of the curve
but do not fix its position in space. The value of P1 is needed for that.

3.4: The new equations are easy enough to set up. With the help of Mathematica,
they are also easy to solve. The code

Solve[{d==p1,
a al^3+b al^2+c al+d==p2,
a be^3+b be^2+c be+d==p3,
a+b+c+d==p4},{a,b,c,d}];
ExpandAll[Simplify[%]]

(where al and be stand for α and β, respectively) produces the (messy) solutions

a = −P1

αβ
+

P2

−α2 + α3 + αβ − α2β

+
P3

αβ − β2 − αβ2 + β3
+

P4

1 − α − β + αβ
,

b = P1

(−α + α3 + β − α3β − β3 + αβ3
)
/γ + P2

(−β + β3
)
/γ



Answers to Exercises 403

+ P3

(
α − α3

)
/γ + P4

(
α3β − αβ3

)
/γ,

c = −P1

(
1 +

1
α

+
1
β

)
+

βP2

−α2 + α3 + αβ − α2β

+
αP3

αβ − β2 − αβ2 + β3
+

αβP4

1 − α − β + αβ
,

d = P1,

where
γ = (−1 + α)α(−1 + β)β(−α + β).

From here, the basis matrix immediately follows:

⎛
⎜⎜⎜⎝

− 1
αβ

1
−α2+α3αβ−α2β

1
αβ−β2−αβ2+β3

1
1−α−β+αβ

−α+α3+β−α3β−β3+αβ3

γ
−β+β3

γ
α−α3

γ
α3β−αβ3

γ

−
(
1 + 1

α + 1
β

)
β

−α2+α3+αβ−α2β
α

αβ−β2−αβ2+β3
αβ

1−α−β+αβ

1 0 0 0

⎞
⎟⎟⎟⎠ .

A direct check, again using Mathematica, for α = 1/3 and β = 2/3 produces the basis
matrix of Equation (3.6).

3.5: This is the case n = 1. The general form of the LP is, therefore, y =
∑1

i=0 yiL
1
i .

The weight functions are easy to calculate:

L1
0 =

x − x1

x0 − x1
, L1

1 =
x − x0

x1 − x0
,

and the curve is therefore

y = y0L
1
0 + y1L

1
1 = y0

x − x1

x0 − x1
+ y1

x − x0

x1 − x0

= x
y0 − y1

x0 − x1
+

y1x0 − y0x1

x0 − x1
= ax + b.

This is a straight line.

3.6: Since there are just two points, the only knots are t0 = 0 and t1 = 1. The weight
functions are

L1
0 =

t − t1
t0 − t1

= 1 − t, L1
1 =

t − t0
t1 − t0

= t,

and the curve is
P(t) = P0L

1
0 + P1L

1
1 = (1 − t)P0 + tP1.

This is a straight line expressed parametrically.
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3.7: Since the three points are approximately equally spaced, it makes sense to use
knot values t0 = 0, t1 = 1/2, and t2 = 1. The first step is to calculate the three basis
functions L2

i (t):

L2
0 =

Π2
j �=0(t − tj)

Π2
j �=0(ti − tj)

=
(t − t1)(t − t2)

(t0 − t1)(t0 − t2)
= 2(t − 1/2)(t − 1),

L2
1 =

Π2
j �=1(t − tj)

Π2
j �=1(ti − tj)

=
(t − t0)(t − t2)

(t1 − t0)(t1 − t2)
= −4t(t − 1),

L2
2 =

Π2
j �=2(t − tj)

Π2
j �=2(ti − tj)

=
(t − t0)(t − t1)

(t2 − t0)(t2 − t1)
= 2t(t − 1/2).

The LP is now easy to calculate:

P(t) = (0, 0)2(t − 1/2)(t − 1) − (0, 1)4t(t − 1) + (1, 1)2t(t − 1/2)
= (2t2 − t,−2t2 + 3t). (Ans.5)

This is a quadratic (degree-2) parametric polynomial and a simple test verifies that it
passes through the three given points.

3.8: We set the knots to t0 = 0, t1 = 1/3, t2 = 2/3, and t3 = 1. The first step is to
calculate the four basis functions L3

i (t):

L3
0 =

Π3
j �=0(t − tj)

Π3
j �=0(ti − tj)

=
(t − t1)(t − t2)(t − t3)

(t0 − t1)(t0 − t2)(t0 − t3)
= −4.5t3 + 9t3 − 5.5t + 1,

L3
1 =

Π3
j �=1(t − tj)

Π3
j �=1(ti − tj)

=
(t − t0)(t − t2)(t − t3)

(t1 − t0)(t1 − t2)(t1 − t3)
= 13.5t3 − 22.5t3 + 9t,

L3
2 =

Π3
j �=2(t − tj)

Π3
j �=2(ti − tj)

=
(t − t0)(t − t1)(t − t3)

(t2 − t0)(t2 − t1)(t2 − t3)
= −13.5t3 + 18t3 − 4.5t,

L3
3 =

Π3
j �=3(t − tj)

Π3
j �=3(ti − tj)

=
(t − t0)(t − t1)(t − t2)

(t3 − t0)(t3 − t1)(t3 − t2)
= 4.5t3 − 4.5t3 + t.

The LP is now easy to calculate:

P(t) = (−4.5t3 + 9t2 − 5.5t + 1)P1 + (13.5t3 − 22.5t2 + 9t)P2

+ (−13.5t3 + 18t2 − 4.5t)P3 + (4.5t3 − 4.5t2 + t)P4.

This is identical to Equation (3.4).

3.9: See Section 3.5.1.
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3.10: The first step is to calculate the basis functions

N0(t) = 1, N1(t) = t − t0 = t, N2(t) = (t − t0)(t − t1) = t(t − 1/2).

The next step is to compute the three coefficients

A0 = P0 = (0, 0),

A1 =
P1 − P0

t1 − t0
=

(0, 1) − (0, 0)
1/2

= (0, 2),

A2 =

(1, 1) − (0, 1)
1 − 1/2

− (0, 1) − (0, 0)
1/2 − 0

1 − 0
= (2,−2).

The polynomial can now be calculated:

P(t) = 1 × (0, 0) + t(0, 2) + t(t − 1/2)(2,−2) = (2t2 − t,−2t2 + 3t).

It is, of course, identical to the LP calculated in Exercise 3.7.

3.11: The curve is given by P(t) = (2t2− t,−2t2 +3t), so its derivative is Pt(t) = (4t−
1,−4t + 3). The three tangent vectors are Pt(t0 = 0) = (−1, 3), Pt(t1 = 1/2) = (1, 1),
and Pt(t2 = 1) = (3,−1). The direction of tangent vector (−1, 3) is described by saying
“for every three steps in the y direction, the curve moves one step in the negative x
direction.”

The slopes are calculated by dividing the y coordinate of a tangent vector by its
x coordinate. The slopes at the three points are therefore −3/1, 1/1, and −1/3. They
correspond to angles of 288.44◦, 45◦, and −18.43◦, respectively.

3.12: The geometry matrix can be transposed without affecting the shape of the
surface. The way the geometry matrix is written in Equation (3.23) implies that point
P00 corresponds to P(1, 1). If we transpose the matrix so that point P(0, 0) becomes
its top-left corner, the surface will be the same, with the only difference that point P00

will correspond to P(0, 0).

3.13: Figure Ans.4a shows a diamond-shaped grid of 16 equally-spaced points. The
eight points with negative weights are shown in black. Figure Ans.4b shows a cut (labeled
xx in Figure Ans.4a) through four points in this surface. The cut is a curve that passes
through pour data points. It is easy to see that when the two exterior (black) points
are raised, the center of the curve (and, as a result, the center of the surface) is lowered.
It is now clear that points with negative weights push the center of the surface in a
direction opposite that of the points. The figure serves to make bicubic interpolation
more intuitive.

Figure Ans.4c is a more detailed example that also shows why the four corner
points should have positive weights. It shows a simple symmetric surface patch that
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interpolates the 16 points

P00 = (0, 0, 0), P10 = (1, 0, 1), P20 = (2, 0, 1), P30 = (3, 0, 0),
P01 = (0, 1, 1), P11 = (1, 1, 2), P21 = (2, 1, 2), P31 = (3, 1, 1),
P02 = (0, 2, 1), P12 = (1, 2, 2), P22 = (2, 2, 2), P32 = (3, 2, 1),
P03 = (0, 3, 0), P13 = (1, 3, 1), P23 = (2, 3, 1), P33 = (3, 3, 0).

We first raise the eight boundary points from z = 1 to z = 1.5. Figure Ans.4d shows
how the center point P(.5, .5) gets lowered from (1.5, 1.5, 2.25) to (1.5, 1.5, 2.10938). We
next return those points to their original positions and instead raise the four corner
points from z = 0 to z = 1. Figure Ans.4e shows how this raises the center point from
(1.5, 1.5, 2.25) to (1.5, 1.5, 2.26563).

3.14: In such a case, the tangent vector of the surface along the degenerate boundary
curve P(u, 1) is the weighted sum of the eight quantities

T0 =
dP(0, w)

dw

∣∣∣∣
w=1

, T1 =
dP(1, w)

dw

∣∣∣∣
w=1

, P(u, 0),P(u, 1),P00,P01,P10,P11,

instead of being the simple linear combination B0(u)T0 + B1(u)T1 of Equation (3.41).
As it swings from T0 to T1, this vector will not have to stay in the plane defined by
T0 and T1 and may wiggle wildly in and out of this plane, causing the surface to be
wrinkled in the vicinity of the common point.

3.15: We start with the boundary curves. They are straight lines, and so are obtained
from Equation (2.1)

P(0, w) = (1 − w)P00 + wP01, P(1, w) = (1 − w)P10 + wP11,

P(u, 0) = (1 − u)P00 + uP10, P(u, 1) = (1 − u)P01 + uP11.

The surface expression is now obtained from Equation (3.28). It is

P(u, w) = (1 − u)(1 − w)P00 + (1 − u)wP01 + u(1 − w)P10 + uwP11

+ (1 − w)(1 − u)P00 + (1 − w)uP10 + w(1 − u)P01 + wuP11

− (1 − u)(1 − w)P00 − u(1 − w)P10 − (1 − u)wP01 − uwP11

= (0.5(1 − u)w + u, w, (1 − u)(1 − w)).

Note that it is identical to the bilinear surface of Equation (2.11).

4.1: When the user specifies four points, the curve should pass through the original
points. After a point is moved, the curve will no longer pass through the original point.
When only the two endpoints are specified, the user is normally willing to consider
different curves that pass through them, with different start and end directions.
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(a)
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x

(b)
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0

1

0

1

2

3

0

1

2
3

1

2

(c) (d) (e)

Clear[Nh,p,pnts,U,W];
p00={0,0,0}; p10={1,0,1}; p20={2,0,1}; p30={3,0,0};
p01={0,1,1}; p11={1,1,2}; p21={2,1,2}; p31={3,1,1};
p02={0,2,1}; p12={1,2,2}; p22={2,2,2}; p32={3,2,1};
p03={0,3,0}; p13={1,3,1}; p23={2,3,1}; p33={3,3,0};
Nh={{-4.5,13.5,-13.5,4.5},{9,-22.5,18,-4.5},
{-5.5,9,-4.5,1},{1,0,0,0}};
pnts={{p33,p32,p31,p30},{p23,p22,p21,p20},
{p13,p12,p11,p10},{p03,p02,p01,p00}};
U[u_]:={u^3,u^2,u,1}; W[w_]:={w^3,w^2,w,1};
(* prt [i] extracts component i from the 3rd dimen of P *)
prt[i_]:=pnts[[Range[1,4],Range[1,4],i]];
p[u_,w_]:={U[u].Nh.prt[1].Transpose[Nh].W[w],
U[u].Nh.prt[2].Transpose[Nh].W[w], \
U[u].Nh.prt[3].Transpose[Nh].W[w]};
g1=ParametricPlot3D[p[u,w], {u,0,1},{w,0,1},
Compiled->False, DisplayFunction->Identity];
g2=Graphics3D[{AbsolutePointSize[2],
Table[Point[pnts[[i,j]]],{i,1,4},{j,1,4}]}];
Show[g1,g2, ViewPoint->{-2.576, -1.365, 1.718}]

Figure Ans.4: An Interpolating Bicubic Surface Patch and Code.
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4.2: Take one of these vectors, say, (2, 1, 0.6) and divide it by its magnitude. The
result is

(2, 1, 0.6)√
22 + 12 + 0.62

≈ (2, 1, 0.6)
2.93

= (0.7272, 0.3636, 0.2045).

The new vector points in the same direction but its magnitude is 1. Its components
therefore satisfy√

0.72722 + 0.36362 + 0.20452 = 1, or 0.72722 + 0.36362 + 0.20452 = 1, (Ans.6)

so they are dependent. Any of them can be calculated from the other two with Equa-
tion (Ans.6).

4.3: Substituting t = 0.5 in Equation (4.4) yields

P(0.5) = (2P1 − 2P2 + Pt
1 + Pt

2)/8 + (−3P1 + 3P2 − 2Pt
1 − Pt

2)/4 + Pt
1/2 + P1

=
1
2
(P1 + P2) +

1
8
(Pt

1 − Pt
2). (Ans.7)

The first part of this expression is the midpoint of the segment P1 → P2 and the second
part is the difference of the two tangents, divided by 8. Figure Ans.5 illustrates how
adding (Pt

1 −Pt
2)/8 to the midpoint of P1 → P2 brings us to the midpoint of the curve.

P1

Pt
1

Pt
2

P2

(P2+P1)/2

Figure Ans.5: The Midpoint P(0.5) of a Hermite Segment.

4.4: The Hermite segment is a cubic polynomial in t, so its third derivative is constant.
It is easy to see, from Equation (4.6), that the third derivatives of the Hermite blending
functions Fi(t) are

F ttt
1 (t) = 12, F ttt

2 (t) = −12, F ttt
3 (t) = 6, F ttt

4 (t) = 6.

The third derivative of the segment is therefore

Pttt(t) = (12P1 − 12P2 + 6Pt
1 + 6Pt

2)

= (t3, t2, t, 1)

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

12 −12 6 6

⎤
⎥⎦
⎡
⎢⎣

P1

P2

Pt
1

Pt
2

⎤
⎥⎦

= T(t)HtttB = HtttB.
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Pttt(t) is independent of t, because the top three rows of Httt are zero. This derivative
is the constant vector 12(P1 − P2) + 6(Pt

1 + Pt
2).

Here are the Hermite matrix and its derivatives side by side. Use your experience
to explain how each is derived from its predecessor.

H =

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠ , Ht =

⎛
⎜⎝

0 0 0 0
6 −6 3 3

−6 6 −4 −2
0 0 1 0

⎞
⎟⎠ ,

Htt =

⎛
⎜⎝

0 0 0 0
0 0 0 0

12 −12 6 6
−6 6 −4 −2

⎞
⎟⎠ , Httt =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

12 −12 6 6

⎞
⎟⎠ .

4.5: It’s trivial to show that P(0) = (−1, 0)03 + (1,−1)02 + (1, 1)0 = (0, 0) and
P(1) = (−1, 0)13 + (1,−1)12 + (1, 1)1 = (1, 0). The tangent vector of P(t) is

dP(t)
d t

= 3(−1, 0)t2 + 2(1,−1)t + (1, 1),

so the two extreme tangent vectors are

dP(0)
d t

=3(−1, 0)02 + 2(1,−1)0 + (1, 1) = (1, 1),

dP(1)
d t

=3(−1, 0)12 + 2(1,−1) + (1, 1) = (0,−1),

as should be.

4.6: Similar to the previous example, we get

P(t) = (t3, t2, t, 1)H ((0, 0), (1, 0), (2, 2), (0,−1))T

= (0, 1)t3 − (1, 3)t2 + (2, 2)t.

It’s a different polynomial and it has a different shape; yet a simple check shows that it
passes through the same endpoints and has the same start and end directions.

4.7: Equation (4.7) becomes

P(t) = (t3, t2, t, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

P1

P2

(0, 0)
(0, 0)

⎤
⎥⎦ = (3t2−2t3)(P2−P1)+P1. (Ans.8)

To find the type of the curve, we substitute j = 3t2 − 2t3 (note that t = 0 ⇒ j = 0
and t = 1 ⇒ j = 1). This results in the familiar expression P(t) = j(P2 − P1) + P1 =
(1 − j)P1 + jP2. The curve is therefore the straight segment from P1 to P2. The
(important) conclusion is: If the initial and final directions of the Hermite segment are
not specified, the curve will “choose” the shortest path from P1 to P2.
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4.8: For case 1, we use the notation Pt(0) = Pt
1, Pt(1/2) = Pt

2, and Pt(1) = Pt
3.

From P(t) = at3 + bt2 + ct + d, we get Pt(t) = 3at2 + 2bt + c, resulting in the three
equations

3a·02 + 2b·0 + c = Pt
1,

3a·(1/2)2 + 2b·(1/2) + c = Pt
2,

3a·12 + 2b·1 + c = Pt
3,

where the unknowns are a, b, c, and d (notice that d does not participate in our
equations). It is clear that c = Pt

1. The other two unknowns are solved by the simple
Mathematica code Solve[{3a/4+2b/2+p1==p2, 3a+2b+p1==p3}, {a,b}], which yields
a = 2

3 (Pt
1 − 2Pt

2 + Pt
3) and b = 1

2 (−3Pt
1 + 4Pt

2 − Pt
3). Thus, the curve is given by

P(t) = at3 + bt2 + ct + d

=
2
3
(Pt

1 − 2Pt
2 + Pt

3)t
3 +

1
2
(−3Pt

1 + 4Pt
2 − Pt

3)t
2 + Pt

1t + d,

which shows that the three given tangents fully determine the shape of the curve but
not its position in space. The latter requires the value of d.

For case 2, we denote P(1/3) = P1, P(2/3) = P2, Pt(0) = Pt
1, and Pt(1) = Pt

2.
This results in the four equations

a(1/3)3 + b(1/3)2 + c(1/3) + d = P1,

a(2/3)3 + b(2/3)2 + c(2/3) + d = P2,

3a·02 + 2b·0 + c = Pt
1,

3a·12 + 2b·1 + c = Pt
2,

where the unknowns are again a, b, c, and d. It is again clear that c = Pt
1 and the

other three unknowns are easily solved by the code

Solve[{a (1/3)^3+b (1/3)^2+p1t (1/3)+d==p1,
a (2/3)^3+b (2/3)^2+p1t (1/3)+d==p2, 3a+2b+p1t==p2t}, {a,b,d}],

which yields the solutions

a = − 9
13

(−6P1 + Pt
1 + 6P2 − Pt

2),

b =
1
13

(−81P1 + 7Pt
1 + 81P2 − 7Pt

2),

d =
1

117
(180P1 − 43Pt

1 − 63P2 + 4Pt
2).

Thus, the PC segment is

P(t) = at3 + bt2 + ct + d

= − 9
13

(−6P1 + Pt
1 + 6P2 − Pt

2)t
3 +

1
13

(−81P1 + 7Pt
1 + 81P2 − 7Pt

2)t
2

+ Pt
1 ·t +

1
117

(180P1 − 43Pt
1 − 63P2 + 4Pt

2).
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Case 3 is similar to case 2 and is not shown here.

4.9: We are looking for a parametric curve P(t) that’s a quadratic polynomial satisfying

P(t) = at2 + bt + c, (Ans.9)
Pt(t) = 2at + b, (Ans.10)
P(0) = c = P0, (Ans.11)
P(1) = a + b + c = P2, (Ans.12)
Pt(0) = b = 4α(P1 − P0), (Ans.13)
Pt(1) = 2a + b = 4α(P2 − P1). (Ans.14)

Subtracting Equation (Ans.12) from Equation (Ans.14) yields

a = 4α(P2 − P1) + P2 − P0. (Ans.15)

Substituting Eqs. (Ans.11), (Ans.13), and (Ans.15) in Equation (Ans.12) yields

a + b + c = 4α(P2 − P1) + P2 − P0 + 4α(P1 − P0) + P0 = P2,

or 4α(P2−P0) = 2(P2−P0), implying α = 0.5. Once α is known, the curve is obtained
from Equation (Ans.9) as

P(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2.

4.10: For θ = 90◦, we have sin θ = 1, cos θ = 0 and a = 4. Equation (4.15) becomes

P(t) = (2t3 − 3t2 + 1)(0,−1) + (−2t3 + 3t2)(0, 1)

+ (t3 − 2t2 + t)4(1, 0) + (t3 − t2)4(−1, 0)

= (−4t2 + 4t,−4t3 + 6t2 − 1).

It is easy to see that P(0) = (0,−1), P(1) = (0, 1), and P(0.5) = (1, 0). At t = 0.25, the
curve passes through point P(0.25) = (12/16,−11/16), whose distance from the origin
is √(

12
16

)2

+
(

11
16

)2

≈ 1.0174.

The deviation from a true circle at this point is therefore about 1.74%, an excellent
approximation for such a large arc.

4.11: Yes. Equation (4.19) was derived for any real values of a and b, not just positive.
However, when a and b become negative, the tangent vectors reverse directions, and the
curve changes its shape completely. Figure 4.7 shows the (dashed) curve for α = −0.4.
Another example of negative a and b is α = −1/4, which yields a = b = −1, changing
Equation (4.19) to Q(t) = −(6, 3)t3 + (9, 5)t2 − (1, 1)t. It is easy to verify that Q(0) =
(0, 0), Q(1) = (2, 1), and Q(0.5) = (1, 3/8).
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4.12: The midpoint of our curve is always (1, 5/8 + α). The condition Q(0.5) = (1, 0)
implies 5/8 + α = 0 or α = −5/8. Since a = b = 1 + 8α, we get a = b = −4, resulting in
Q(t) = −(12, 6)t3 + (18, 11)t2 − (4, 4)t.

4.13: Equation (4.8) yields the first derivative of the Hermite segment

Pt(t) = (t3, t2, t, 1)

⎡
⎢⎣

0 0 0 0
6 −6 3 3

−6 6 −4 −2
0 0 1 0

⎤
⎥⎦
⎡
⎢⎣

(0, 0)
(1, 0)

α(cos θ, sin θ)
α(cos θ,− sin θ)

⎤
⎥⎦

= 3[(−2, 0) + α(2 cos θ, 0)]t2 + 2[(3, 0) − α(3 cos θ, sin θ)]t + (cos θ, sin θ).

Because of the symmetry of the endpoints and vectors, a cusp can only occur in the
middle of this curve. A cusp is the case where the tangent vector of the curve becomes
indefinite, so we are looking for the value of α that’s a solution of Pt(0.5) = (0, 0).

Pt(0.5) =
3
4
(−2, 0) +

3α

4
(2 cos θ, 0) + (3, 0) − α(3 cos θ, sin θ) + α(cos θ, sin θ)

= (3/2, 0) + (−cos θ/2, 0).

It is easy to figure out that Pt(0.5) = (0, 0) yields α = 3/ cos θ.

4.14: The two endpoints of Q(T ) are P(0.25) = (0.3, 0.19) and P(0.75) = (0.89, 0.19).
The two extreme tangents are 0.5Pt(0.25) = (0.66, 0.25) and .5Pt(0.75) = (0.41,−0.25)
[notice the 0.5 factor that equals (tj − ti)]. The new PC and its derivative are therefore

Q(T ) = (T 3, T 2, T, 1)

⎡
⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎦
⎡
⎢⎣

(0.3, 0.19)
(0.89, 0.19)
(0.66, 0.25)

(0.41,−0.25)

⎤
⎥⎦

= (−0.125, 0)t3 + (0.0625,−0.25)t2 + (0.65625, 0.25)t + (0.296875, 0.1875).

QT (T ) = (−0.375, 0)t2 + (0.125,−0.5)t + (0.65625, 0.25).

Direct checks verify that Q(0) = P(0.25), Q(1) = P(0.75), QT (0) = Pt(0.25), and
QT (1) = Pt(0.75).

4.15: The tangent vector of Equation (4.27) is Pt(t) = (−6t2 + 6t)(P2 − P1). Its
absolute value (the speed of the curve) is therefore proportional to the function −6t2+6t.
When t varies from 0 to 1, this function goes up from 0 to a maximum of 1.5 at t = 0.5,
then down to 0.

4.16: In this case, Equation (4.31) becomes

a·02 + b·0 + c = P1,

a∆2 + b∆ + c = P2,

2a·0 + b = Pt
1.

(Ans.16)
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The solutions are

c = P1, b = Pt
1, and a =

P2

∆2
− P1

∆2
− Pt

1

∆

and the polynomial is therefore

P(t) = (t2, t, 1)

⎛
⎜⎝

−1
∆2

1
∆2

−1
∆

0 0 1
1 0 0

⎞
⎟⎠
⎛
⎝P1

P2

Pt
1

⎞
⎠ . (Ans.17)

It is easy to see that Equation (Ans.17) reduces to Equation (4.32) for ∆ = 1.

4.17: We are looking for a curve of the form P(t) = at2 + bt + c. Its tangent vector
is the derivative Pt(t) = 2at + b. We denote the two known quantities by Pt(0) = Pt

1

and Pt(1) = Pt
2. The two equations 2a ·0 + b = Pt

1 and 2a ·1 + b = Pt
2 are easily

solved to yield b = Pt
1 and a = (Pt

2 − Pt
1)/2. Thus, the curve is expressed by P(t) =

1
2 (Pt

2 −Pt
1)t

2 + Pt
1t + c and its derivative is Pt(t) = (Pt

2 −Pt
1)t + Pt

1 (the straight line
from Pt

1 to Pt
2). Notice that the two extreme tangents fully define the shape of this curve

but do not fix its position in space. To place such a curve in space, we have to know the
value of c. The two endpoints of this curve are P(0) = c and P(1) = c + 1

2 (Pt
1 + Pt

2).
The reader is encouraged to draw a diagram that shows the geometric meaning of adding
the vector sum 1

2 (Pt
1 + Pt

2) to point c.

4.18: The curve and its first two derivatives can be expressed as

P(t) = at2 + bt2 + ct + d,

Pt(t) = 3at2 + 2bt + c,

Ptt(t) = 6at + 2b.

In the standard case where 0 ≤ t ≤ 1, the three conditions are expressed as P(0) = P1,
P(1) = P2, Pt(1) = Pt

2, and Ptt(0) = 0. The explicit equations are

a·03 + b·02 + c·0 + d = P1,

a·13 + b·12 + c·1 + d = P2,

3a·12 + 2b·1 + c = Pt
2,

6a·0 + 2b = 0.

(Ans.18)

They are easy to solve and yield a = 1
2P

t
2 − 1

2 (P2 −P1), b = 0, c = 3
2 (P2 −P1)− 1

2P
t
2,

and d = P1. The polynomial is therefore

Pstd(t) =
(

1
2
Pt

2 −
1
2
(P2 − P1)

)
t3 +

(
3
2
(P2 − P1) − 1

2
Pt

2

)
t + P1

=
(

1
2
t3 − 3

2
t + 1

)
P1 +

(
−1

2
t3 +

3
2
t

)
P2 +

(
1
2
t3 − 1

2
t

)
Pt

2
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= (t3, t2, t, 1)

⎛
⎜⎝

1/2 −1/2 1/2
0 0 0

−3/2 3/2 −1/2
1 0 0

⎞
⎟⎠
⎛
⎝P1

P2

Pt
2

⎞
⎠ . (Ans.19)

in the nonstandard case where 0 ≤ t ≤ ∆, Equation (Ans.19) is extended to

Pnstd(t) = (t3, t2, t, 1)

⎛
⎜⎜⎜⎜⎜⎝

1
2∆3

− 1
2∆3

1
2∆2

0 0 0

− 3
2∆

3
2∆

−1
2

1 0 0

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎝P1

P2

Pt
2

⎞
⎠ . (Ans.20)

5.1: By using the same symbol, Pt
k+1, for the end tangent of Pk(t) and the start

tangent of Pk+1(t).

5.2: The three segments are

P1(t) =(− 1
3 ,− 1

5 )t3 + ( 1
3 , 6

5 )t2 + (1,−1)t,

P2(t) =(0,− 2
5 )t3 + (− 2

3 , 3
5 )t2 + ( 2

3 , 4
5 )t + (1, 0),

P3(t) =(1
3 ,− 1

5 )t3 − ( 2
3 , 3

5 )t2 + (− 2
3 , 4

5 )t + (1, 1).

The first intermediate point should be P1(1) and also P2(0). A simple calculation
yields

P1(1) =(− 1
3 ,− 1

5 )13 + ( 1
3 , 6

5 )12 + (1,−1) = (1, 0),

P2(0) =(0,− 2
5 )03 + (− 2

3 , 3
5 )02 + ( 2

3 , 4
5 )0 + (1, 0) = (1, 0).

The second intermediate point should be P2(1) and also P3(0). A similar calculation
gives

P2(1) =(0,− 2
5 )13 + (− 2

3 , 3
5 )12 + ( 2

3 , 4
5 )1 + (1, 0) = (1, 1),

P3(0) =(1
3 ,− 1

5 )03 − ( 2
3 , 3

5 )02 + (− 2
3 , 4

5 )0 + (1, 1) = (1, 1).

Both tangent vectors can be obtained from the second segment. Its derivative is

Pt
2(t) =

dP2(t)
d t

= 3(0,− 2
5 )t2 + 2(− 2

3 , 3
5 )t + ( 2

3 , 4
5 ).

So the two vectors are

Pt
2(0) =3(0,− 2

5 )02 + 2(− 2
3 , 3

5 )0 + (2
3 , 4

5 ) = (2
3 , 4

5 ),

Pt
2(1) =3(0,− 2

5 )12 + 2(− 2
3 , 3

5 )1 + (2
3 , 4

5 )(− 2
3 , 10

5 ).

Thus, the first tangent points in the direction (5, 6) and the second one, in the direction
(−1, 3).
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5.3: Equation (5.7) becomes

(
1 4 1 0
0 1 4 1

)⎛
⎜⎝

(0, 0)
Pt

2

Pt
3

(−1,−1)

⎞
⎟⎠ =

(
3[(1, 1) − (0, 0)]
3[(0, 1) − (1, 0)]

)
=
(

(3, 3)
(−3, 3)

)
,

or explicitly

(0, 0) + 4Pt
2 + Pt

3 = (3, 3), and Pt
2 + 4Pt

3 + (−1,−1) = (−3, 3).

The solutions are Pt
2 = ( 8

15 , 8
15 ) and Pt

3 = ( 37
15 , 37

15 ). The first segment, from Equa-
tion (4.7), is

P1(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(0, 0)
(1, 0)
(0, 0)

( 8
15 , 8

15 )

⎞
⎟⎠

= (− 22
15 , 8

15 )t3 + (37
15 ,− 8

15 )t2.

(.5,0)

(7/15,−1/15)

P1=(0,0) P2=(1,0)

Figure Ans.6: An Indefinite Start Direction.

An initial direction of (0, 0) means that the curve will be the shortest possible
(Figure Ans.6). It also means that the curve will start slowly and will speed up as it
goes along. It is easy to see that

P1(0.5) = (− 22
15 , 8

15 ) 1
8 + (37

15 ,− 8
15 ) 1

4 = ( 7
15 ,− 1

15 ).

At t = 0.5, the curve hasn’t reached the midpoint between P1 and P2.

5.4: For the third segment, Equation (4.7) becomes

P3(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎜⎝

(1, 1)
(0, 1)

(− 3
5 , 2

3 )
(− 6

5 ,− 1
3 )

⎞
⎟⎟⎠

= (1
5 , 1

3 )t3 − ( 3
5 , 1)t2 + (− 3

5 , 2
3 )t + (1, 1).
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5.5: For the third segment, Equation (4.7) becomes

P3(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(0, 1)
(−1, 0)
(− 3

2 , 0)
(0,− 3

2 )

⎞
⎟⎠

= (1
2 , 1

2 )t3 + (0,− 3
2 )t2 + (− 3

2 , 0)t + (0, 1).

For the fourth segment, Equation (4.7) becomes

P4(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(−1, 0)
(0,−1)
(0,− 3

2 )
( 3
2 , 0)

⎞
⎟⎠

= (− 1
2 , 1

2 )t3 + (3
2 , 0)t2 + (0,− 3

2 )t + (−1, 0).

5.6: Equation (5.15) gives

Pt
1 = −Pt

3 =
3
4

(P2 − P1 − P3 + P2) − 1
4
(
Pt

2 − Pt
2

)
=

3
4

(2P2 − P1 − P3) = (0, 3/2).

We next substitute the anticyclic end condition in Equation (5.14), which becomes

(1, 4, 1)

⎡
⎣ (0, 3/2)

Pt
2

(0,−3/2)

⎤
⎦ = 3(P3 − P1) = (6, 0). (Ans.21)

The solution is Pt
2 = (3/2, 0).

The first spline segment can now be calculated from Equation (4.7):

P1(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(−1, 0)
(0, 1)

(0, 3/2)
(3/2, 0)

⎞
⎟⎠

= (− 1
2 ,− 1

2 )t3 + ( 3
2 , 0)t2 + (0, 3

2 )t + (−1, 0).

Its derivative is
Pt

1(t) = (−3/2,−3/2)t2 + (3, 0)t + (0, 3/2),

so Pt
1(0) = (0, 3/2) and Pt

1(1) = (3/2, 0).
The second spline segment is similarly calculated:

P2(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

(0, 1)
(1, 0)

(3/2, 0)
(0,−3/2)

⎞
⎟⎠

= (− 1
2 , 1

2 )t3 + (0,− 3
2 )t2 + ( 3

2 , 0)t + (0, 1).
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Its derivative is
Pt

2(t) = (−3/2, 3/2)t2 + (0,−3)t + (3/2, 0),

so Pt
2(0) = (3/2, 0) and Pt

2(1) = (0,−3/2).
To compare this anticyclic cubic spline to the clamped cubic spline for the same

points, we have to select the same start and end tangents, namely Pt
1 = (0, 3/2) and

Pt
3 = (0,−3/2). When these tangents are substituted in Equation (5.7), it becomes

identical to Equation (Ans.21), showing that for this particular choice of points, the
clamped and anticyclic cubic splines are identical.

5.7: When T > 1, s becomes negative, causing the two tangent vectors to reverse
directions. This changes the shape of the curve completely. However, large negative
values of s still produce a loose curve.

5.8: Differentiating Equation (5.32) and substituting s = 0 results in Pt(t) = 6t(1 −
t)(P3 −P2) [see Equation (6.26)]. This expression is zero for both t = 0 and t = 1, but
is nonzero for any other values of t. It has a maximum for t = 0.5.

6.1: Figure Ans.7 lists the points and the code for this computation. Notice how the
sharp corner at the top-center of the heart is obtained by the particular placement of
points 3 through 6 and how parameter ppr determines the width of the heart.

P0=P9

P3=P6

P1

P2

P7

P8

P4P5

−200 −100 100 200

50

100

150

200

(* Heart-shaped Bezier curve *)
n=9; ppr=130;
pnts={{0,0},{-ppr,70},{-ppr,200},{0,200},{250,0},{-250,0},{0,200},
{ppr,200},{ppr,70},{0,0}};
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]
bzCurve[t_]:=Sum[pnts[[i+1]]bern[n,i,t], {i,0,n}]
g1=ListPlot[pnts, Prolog->AbsolutePointSize[4], PlotRange->All,
AspectRatio->Automatic, DisplayFunction->Identity]
g2=ParametricPlot[bzCurve[t], {t,0,1}, Compiled->False,
PlotRange->All, AspectRatio->Automatic, DisplayFunction->Identity]
g3=Graphics[{AbsoluteDashing[{1,2,5,2}], Line[pnts]}]
Show[g1,g2,g3, DisplayFunction->$DisplayFunction,
DefaultFont->{"cmr10", 10}]

Figure Ans.7: A Heart-Shaped Bézier Curve.
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6.2: We simply calculate the quadratic Bézier curve for the three points. As a quadratic
parametric polynomial it is a parabola (see second paragraph of Section 1.5). Since this
is a Bézier curve, its extreme tangents point in the desired directions:

P(t) = P1(1 − t)2 + 2P2(1 − t)t + P3t
2 = (P1 − 2P2 + P3)t2 + 2(P2 − P1)t + P1.

(See also Section 4.2.4.)

6.3: A simple procedure is to compute

P0 = P(0) = (1, 0), P1 = P(1/3) = (13/9, 1/27),
P2 = P(2/3) = (19/9, 8/27), P3 = P(1) = (3, 1).

6.4: The substitution is u = 2t−1, from which we get t = (1+u)/2 and 1−t = (1−u)/2.
The curve of Equation (6.8) can now be written

P(t) =
1
8
(1 − u)3P0 +

1
4
(1 + u)(1 − u)2P1 + 2

(
1 + u

2

)2 (1 − u

2

)
P2 +

1
8
(1 + u)3P3

=
1
8
(u3, u2, u, 1)

⎛
⎜⎝

−1 2 −2 1
3 −2 −2 3

−3 −2 2 3
1 2 2 1

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ .

The only difference is the basis matrix.

6.5: Direct calculation of B4,i(t) for 0 ≤ i ≤ 4 yields the five functions

B4,0 = (1 − t)4, B4,1 = 4t(1 − t)3, B4,2 = 6t2(1 − t)2, B4,3 = 4t3(1 − t), and B4,4 = t4.

6.6: The weights are B1,0(t) = ( 1
0 )t0(1−t)1−0 = (1−t) and B1,1(t) = ( 1

1 )t1(1−t)1−1 = t,
and the curve is P(t) = P0(1 − t) + P1t, the straight segment from P0 to P1.

6.7: Three collinear points are dependent, which means that any of the three can be
expressed as a linear combination (a weighted sum) of the other two, with barycentric
weights. We therefore assume that P1 = (1−α)P0 + αP2 for some real α. The general
Bézier curve for three points,

P(t) = P0(1 − t)2 + P12t(1 − t) + P2t
2,

now becomes

P(t) = P0(1 − t)2 + [(1 − α)P0 + αP2]2t(1 − t) + P2t
2,
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which is easily simplified to

P(t) = P0 + 2α(P2 − P0)t + (1 − 2α)(P2 − P0)t2

= P0 + (P2 − P0)[2αt + (1 − 2α)t2]
= P0 + (P2 − P0)T. (Ans.22)

This is linear in T and therefore represents a straight line.
This case does not contradict the fact that the Bézier curve does not pass through

the intermediate points. We have considered three collinear points, which really are only
two points. The Bézier curve for two points is a straight line. Note that even with four
collinear points, only two are really independent.

We continue this discussion by examining two cases. The first is the special case
of uniformly-spaced collinear points and the second is the case of three collinear points
P0, P1, and P2 where P1 is not between P0 and P2 but is one of the endpoints.

Case 1. Consider the case of n+1 points that are equally spaced along the straight
segment from P0 to Pn. We show that the Bézier curve for these points is the straight
segment from P0 to Pn. We start with two auxiliary relations;

1. Point Pk (for k = 0, 1,. . . , n) can be expressed in this case as the blend
(1 − k/n)P0 + (k/n)Pn.

2. It can be proved by induction that
∑n

i=0 iBn,i(t) = nt.
Based on these relations, the Bézier curve for uniformly-spaced collinear points is

P(t) =
n∑

i=0

Bn,i(t)Pi =
n∑

i=0

Bn,i(t)
[
(1 − i/n)P0 + (i/n)Pn

]
= P0

∑
Bn,i(t) − P0

n

∑
iBn,i(t) +

Pn

n

∑
iBn,i(t)

= P0 − tP0 + tPn = (1 − t)P0 + tPn.

Case 2. P1 is not located between P0 and P2 but is one of the endpoints. The
two cases α = 0 and α = 1 imply that point P1 is identical to P0 or P2, respectively.
The case α = 0.5 means that P1 is midway between P0 and P2. The cases α < 0 and
α > 1 are special. The former means that P1 “precedes” P0. The latter means that
P1 “follows” P2. In these cases, the curve is no longer a straight line but goes from
P0 toward P1, reverses direction without reaching P1, and continues to P2. The point
where it reverses direction becomes a cusp (a sharp corner), where the curve has an
indefinite tangent vector (Figure Ans.8).

P1 P0 P2 P0 P2 P1

(a) (b)

α>1α<0

Figure Ans.8: Bézier Straight Segments.
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Analysis. We first show that in these cases the curve does not go through point P1.
Equation (Ans.22) can be written

P(t) = P0

(
1 − 2αt − t2 + 2αt2

)
+ P2

(
2αt + t2 − 2αt2

)
.

Let’s see for what value of t the curve passes through point P1 = (1−α)P0 +αP2. The
conditions are

1 − 2αt − t2 + 2αt2 = 1 − α and 2αt + t2 − 2αt2 = α.

These conditions yield the following quadratic equations for t:

α − 2αt + (2α − 1)t2 = 0 and − α + 2αt − (2α − 1)t2 = 0.

These equations are identical and their solutions are

t =
α ±√

α(α − 1)
α

and t =
−α ±√

α(1 − α)
−α

.

The first solution has no real values for negative α and the second one has no real values
for α > 1. For these values of α, the curve does not pass through control point P1.

We now calculate the value of t for which the curve has a cusp (a sharp corner).
The tangent vector of the curve is

Pt(t) = P0 (−2α − 2t + 4αt) + P2 (2α + 2t − 4αt) = (2α + 2t − 4αt)(P2 − P0).

The condition for an indefinite tangent vector is therefore 2α + 2t − 4αt = 0, which
happens for t = α/(2α − 1).

The following three special cases are particularly interesting:
1. α � 0. This is the case where P1 is far away from both P0 and P2. The limit

of α/(2α − 1) in this case is 1/2, which means that the curve changes direction at its
midpoint.

2. α = −1. In this case point P0 is exactly between P1 and P2. The value of
α/(2α − 1) in this case is 1/3 (Figure Ans.8a illustrates why this makes sense).

3. α � 1. Here, P1 is again far from both P0 and P2, but in the other direction
(Figure Ans.8b). The limit of α/(2α − 1) in this case is, again, 1/2.

(End of long answer.)

6.8: The condition αQt(0) = Pt(1) is equivalent to αmQ1 − αmQ0 = nPn − nPn−1.
Equation (6.15) shows that this can be written

Pn =
αm

αm + n
Q1 +

n

αm + n
Pn−1.

The three points should be collinear, but the weights in this case are different. In the
special case where n = m, this condition reduces to

Pn =
α

α + 1
Q1 +

1
2
Pn−1.
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6.9: The process is the same, regardless of the placement of the control points and the
shape of the final curve. Figure Ans.9 illustrates the scaffolding (thin segments), the
intermediate points (squares), and the final point (circle).

P0

P1

P2

P3

Figure Ans.9: Scaffolding With An Inflection Point.

6.10: The curve is easy to compute from Equation (6.5)

P(t) = (1 − t)3(0, 1, 1) + 3t(1 − t)2(1, 1, 0) + 3t2(1 − t)(4, 2, 0) + t3(6, 1, 1)

= (−3t3 + 6t2 + 3t,−3t3 + 3t2 + 1, 3t2 − 3t + 1).

The three associated blossoms are obtained immediately from Equation (6.16).
They are

fx(u, v, w) = −3uvw + 2(uv + uw + vw) + (u + v + w)
fy(u, v, w) = −3uvw + (uv + uw + vw) + 1,
fz(u, v, w) = (uv + uw + vw) − (u + v + w) + 1.

The four control points are given as the four special values of the blossoms as follows:

(
fx(000), fy(000), fz(000)

)
= (0, 1, 1),

(
fx(001), fy(001), fz(001)

)
= (1, 1, 0),(

fx(011), fy(011), fz(011)
)

= (4, 2, 0),
(
fx(111), fy(111), fz(111)

)
= (6, 1, 1).

It is also trivial to verify that

(fx(ttt), fy(ttt), fz(ttt)) = (−3t3 + 6t2 + 3t,−3t3 + 3t2 + 1, 3t2 − 3t + 1).
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6.11: Figure 6.8 shows the new points. For an arbitrary α their values are

P01 = αP0 + (1 − α)P1, P12 = αP1 + (1 − α)P2, P23 = αP2 + (1 − α)P3,

P012 = α2P0 + 2α(1−α)P1 + (1−α2)P2, P123 = α2P1 + 2α(1−α)P2 + (1−α)2P3,

P0123 = α3P0 + 3α2(1 − α)P1 + 3α(1 − α)2P2 + (1 − α)3P3.

Using matrix notation, this can be expressed as,

⎛
⎜⎝

P0

P01

P012

P0123

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0 0
α 1 − α 0 0
α2 2α(1 − α) (1 − α)2 0
α3 3α2(1 − α) 3α(1 − α)2 (1 − α)3

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ = ML(α)G,

⎛
⎜⎝

P0123

P123

P23

P3

⎞
⎟⎠ =

⎛
⎜⎝

α3 3α2(1 − α) 3α(1 − α)2 (1 − α)3

0 α2 2α(1 − α) (1 − α)2

0 0 α 1 − α
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ = MR(α)G,

where G is the column consisting of the four original control points of the segment.
Notice that the elements of each row of matrices ML(α) and MR(α) are barycentric.
For the special case α = 0.5, these expressions reduce to

⎛
⎜⎝

P0

P01

P012

P0123

⎞
⎟⎠ =

1
8

⎛
⎜⎝

8 0 0 0
4 4 0 0
2 4 2 0
1 3 3 1

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ ,

⎛
⎜⎝

P0123

P123

P23

P3

⎞
⎟⎠ =

1
8

⎛
⎜⎝

1 3 3 1
0 2 4 2
0 0 4 4
0 0 0 8

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ .

6.12: Four control points implies n = 3. The two original interior points P1 and P2

are deleted. Three of the six new points are obtained from Equation (6.17)a

P01 =
1∑

j=0

B1j( 1
3 )Pj = B10( 1

3 )P0 + B11( 1
3 )P1 = ( 1

3 , 3
3 , 2

3 ),

P012 =
2∑

j=0

B2j( 1
3 )Pj = B20( 1

3 )P0 + B21( 1
3 )P1 + B22( 1

3 )P2 = ( 8
9 , 10

9 , 4
9 ),

P0123 =
3∑

j=0

B3j( 1
3 )Pj = B30( 1

3 )P0 + B31( 1
3 )P1 + B32( 1

3 )P2 + B33( 1
3 )P3 = ( 14

9 , 11
9 , 3

9 ),
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and the other three are obtained from Equation (6.17)b

P0123 =
3∑

j=0

B3j( 1
3 )P3−3+j = (14

9 , 11
9 , 3

9 ),

P123 =
2∑

j=0

B2j( 1
3 )P3−2+j = (26

9 , 13
9 , 1

9 ),

P23 =
1∑

j=0

B1j( 1
3 )P3−1+j = (14

3 , 5
3 , 1

3 ).

Figure Ans.10 lists the code for this computation.

(* New points for Bezier curve subdivision exercise *)
pnts={{0,1,1},{1,1,0},{4,2,0},{6,1,1}};
t=1/3;
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]
p01=Sum[pnts[[i+1]]bern[1,i,t], {i,0,1}]
p012=Sum[pnts[[i+1]]bern[2,i,t], {i,0,2}]
p0123=Sum[pnts[[i+1]]bern[3,i,t], {i,0,3}]
p0123=Sum[pnts[[3-3+i+1]]bern[3,i,t], {i,0,3}]
p123=Sum[pnts[[3-2+i+1]]bern[2,i,t], {i,0,2}]
p23=Sum[pnts[[3-1+i+1]]bern[1,i,t], {i,0,1}]

Figure Ans.10: Code to Compute Six New Points.

6.13: Applying Equation (6.18) to the original three points yields the four points

P0, (P0 + 2P1)/3, (2P1 + P2)/3, and P2.

Applying the same equation to these points results in the five points

P0,
(
P0 + 3(P0 + 2P1)/3

)
/4 = (P0 + P1)/2,(

2(P0 + 2P1)/3 + 2(2P1 + P2)/3
)
/4 = (P0 + 4P1 + P2)/6,(

2(2P1 + P2)/3 + P2

)
/4 = (P1 + P2)/2, and P2.

6.14: Equation (6.18) gives the five new control points

Q0 = P0 = (0, 0), Q1 =
P0 + 3P1

4
=
(

3
4
,
3
2

)
, Q2 =

2P1 + 2P2

4
= (2, 2),

Q3 =
3P2 + P3

4
=
(

11
4

,
3
2

)
, and Q4 = P3 = (2, 0).

The original curve is

P3(t) = (1 − t)3(0, 0) + 3t(1 − t)2(1, 2) + 3t2(1 − t)(3, 2) + t3(2, 0),



424 Answers to Exercises

and the new one is

P4(t) =(1 − t)4(0, 0) + 4t(1 − t)3(3/4, 3/2) + 6t2(1 − t)2(2, 2)

+ 4t3(1 − t)(11/4, 3/2) + t4(2, 0).

These polynomials seem different, but a closer look reveals that both equal the polyno-
mial t3(−4, 0) + t2(3,−6) + t(3, 6). The two curves P3(t) and P4(t) therefore have the
same shape, but P4(t) is easier to reshape because it depends on five control points.

6.15: A direct check shows that the elements of every row of matrix B add up to 1,
regardless of the values of a and b. This guarantees that each new control point Qi will
be a barycentric sum of the Pi’s.

6.16: (1) For a = 1 and b = a + x, matrix B is

B =

⎛
⎜⎝

0 0 0 1
0 0 −x 1 + x
0 x2 −2x(1 + x) (1 + x)2

−x3 3x2(1 + x) −3x(1 + x)2 (1 + x)3

⎞
⎟⎠ .

(2) The new control points are

Q0 = P3,

Q1 = −(P2x) + P3(1 + x),

Q2 = P1x
2 + P3(1 + x)2 + P2(1 + x)(3 + x − 3(1 + x)),

Q3 = −(P0x
3) + 3P1x

2(1 + x) − 3P2x(1 + x)2 + P3(1 + x)3.

(3) For x = 0.75, they become

Q0 = P3,

Q1 = −0.75P2 + 1.75P3,

Q2 = 0.5625P1 − 2.625P2 + 3.0625P3,

Q3 = −0.421875P0 + 2.953125P1 − 6.890625P2 + 5.359375P3.

Notice how each Qi is a barycentric combination of the Pi’s.

6.17: For a = 0 and b = 0.5, matrix B becomes

B =

⎛
⎜⎝

1 0 0 0
0.5 0.5 0 0
0.25 0.5 0.25 0
0.125 0.375 0.375 0.125

⎞
⎟⎠ ,
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and the new control points are

Q0 = P0,

Q1 =
1
2
P0 +

1
2
P1,

Q2 =
1
4
P0 +

1
2
P1 +

1
4
P2,

Q3 =
1
8
P0 +

3
8
P1 +

3
8
P2 +

1
8
P3.

6.18: This is easy to verify directly. We substitute the two points P0 and P3 and the
two tangents 3(P1 − P0) and 3(P3 − P2) in Equation (4.5)

P(t) = (2t3−3t2 +1)P0 +(−2t3 +3t2)P3 +(t3−2t2 +t)3(P1−P0)+(t3−t2)3(P3−P2).

After rearranging, we get

P(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3,

which is the cubic Bézier curve defined by the four points.

6.19: This is obvious. Equation (6.26) describes a vector whose direction is from P0

to P3. Varying t changes the magnitude of this vector but not its direction.

6.20: Figure Ans.11 shows the curve, the points, and the code that produced them.

6.21: Figure Ans.12 lists the Mathematica code for Figure 6.19.

6.22: The weight functions in the u direction are

B20(u) = (1 − u)2, B21(u) = 2u(1 − u), B22(u) = u2.

Those in the w direction are

B30(w) = (1 − w)3, B31(w) = 3w(1 − w)2,
B32(w) = 3w2(1 − w), B33(w) = w3.

The surface patch is, therefore,

P(u, w)

=
2∑

i=0

3∑
j=0

B2i(u)PijB3j(w)

= B20(u)[P00B30(w) + P01B31(w) + P02B32(w) + P03B33(w)]
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0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

Q1 Q2

P1 P2

P3=Q3P0=Q0

q0={0,0}; q1={1,1}; q2={2,1}; q3={3,0};
p0=q0; p1={1,3/2}; p2={2,3/2}; p3=q3;
c[t_]:=(1-t)^3 p0+3t(1-t)^2 p1+3t^2(1-t) p2+t^3 p3
g1=ListPlot[{p0,p1,p2,p3,q1,q2},
Prolog->AbsolutePointSize[4], PlotRange->All,
AspectRatio->Automatic, DisplayFunction->Identity]
g2=ParametricPlot[c[t], {t,0,1}, DisplayFunction->Identity]
Show[g1,g2, DisplayFunction->$DisplayFunction]

Figure Ans.11: An Interpolating Bézier Curve.

+ B21(u)[P00B30(w) + P01B31(w) + P02B32(w) + P03B33(w)]
+ B22(u)[P00B30(w) + P01B31(w) + P02B32(w) + P03B33(w)]

= (1 − u)2[(1 − w)3(0, 0, 0) + 3w(1 − w)2(1, 0, 1)
+ 3w2(1 − w)(2, 0, 1) + w3(3, 0, 0)]
+ 2u(1 − u)[(1 − w)3(0, 1, 0) + 3w(1 − w)2(1, 1, 1)
+ 3w2(1 − w)(2, 1, 1) + w3(3, 1, 0)]
+ u2[(1 − w)3(0, 2, 0) + 3w(1 − w)2(1, 2, 1) + 3w2(1 − w)(2, 2, 1) + w3(3, 2, 0)]

= (3w, 2u, 3w(1 − w)). (Ans.23)

6.23: The result is shown in Figure Ans.13.

6.24: Here is one such loop. It displays one family of 11 curves (see also Figure Ans.1).

for u:=0 step 0.1 to 1 do (* 11 curves *)
for v:=0 step 0.01 to 1-u do (* 100 pixels per curve *)
w:=1-u-v;
Calculate & project point P(u,v,w)
endfor;

endfor;

The second family consists of the curves parallel to the base of the triangle (the
main loop is on v), and the third family consists of the curves parallel to the right side.
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(* Effects of varying weights in Rational Cubic Bezier curve *)
Clear[RatCurve,g1,g2,w];
pnts={{0,0},{.2,1},{.8,1},{1,0}};
w={1,1,1,1}; (* Four weights for a cubic curve *)
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i] (* t^i*(1-t)^(n-i) *)
RatCurve[t_]:=Sum[(w[[i+1]]pnts[[i+1]]bern[3,i,t])/(Sum[w[[j+1]]bern[3,j,t],
{j,0,3}]), {i,0,3}];
g1=ListPlot[pnts, Prolog->AbsolutePointSize[4], PlotRange->All,
AspectRatio->Automatic, DisplayFunction->Identity]
g2=ParametricPlot[RatCurve[t], {t,0,1}, Compiled->False,
PlotRange->All, AspectRatio->Automatic, DisplayFunction->Identity]
w={1,2,1,1}; (* change weights *)
g3=ParametricPlot[RatCurve[t], {t,0,1}, Compiled->False,
PlotRange->All, AspectRatio->Automatic, DisplayFunction->Identity]
w={1,3,1,1}; (* increase w1 *)
g4=ParametricPlot[RatCurve[t], {t,0,1}, Compiled->False,
PlotRange->All, AspectRatio->Automatic, DisplayFunction->Identity]
w={1,4,1,1}; (* increase w1 *)
g5=ParametricPlot[RatCurve[t], {t,0,1}, Compiled->False,
PlotRange->All, AspectRatio->Automatic, DisplayFunction->Identity]
Show[g1,g2,g3,g4,g5, DisplayFunction->$DisplayFunction,
DefaultFont->{"cmr10",10}]

(* Effects of moving a control point in Rational Cubic Bezier curve *)
Clear[RatCurve,g1,g2,w];
pnts={{0,0},{.2,.8},{.8,.8},{1,0}};
w={1,1,1,1}; (* Four weights for a cubic curve *)
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i] (* t^i*(1-t)^(n-i) *)
RatCurve[t_]:=Sum[(w[[i+1]]pnts[[i+1]]bern[3,i,t])/(Sum[w[[j+1]]bern[3,j,t],
{j,0,3}]), {i,0,3}];
g1=ListPlot[pnts, Prolog->AbsolutePointSize[4], PlotRange->All,
AspectRatio->Automatic, DisplayFunction->Identity]
g2=ParametricPlot[RatCurve[t], {t,0,1}, Compiled->False,
PlotRange->All, AspectRatio->Automatic, DisplayFunction->Identity]
pnts={{0,0},{.2,.8},{.86,.86},{1,0}};
g3=ParametricPlot[RatCurve[t], {t,0,1}, Compiled->False,
PlotRange->All, AspectRatio->Automatic, DisplayFunction->Identity]
pnts={{0,0},{.2,.8},{.93,.93},{1,0}};
g4=ParametricPlot[RatCurve[t], {t,0,1}, Compiled->False,
PlotRange->All, AspectRatio->Automatic, DisplayFunction->Identity]
pnts={{0,0},{.2,.8},{1,1},{1,0}};
g5=ParametricPlot[RatCurve[t], {t,0,1}, Compiled->False,
PlotRange->All, AspectRatio->Automatic, DisplayFunction->Identity]
Show[g1,g2,g3,g4,g5, DisplayFunction->$DisplayFunction,
DefaultFont->{"cmr10",10}]

Figure Ans.12: Code for Figure 6.19.
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(* A Rational closed Bezier Surface *)
Clear[pwr,bern,spnts,n,m,wt,bzSurf,cpnts,patch,vlines,hlines,axes];
<<:Graphics:ParametricPlot3D.m
r=1; h=3; (* radius & height of cylinder *)
spnts={{{r,0,0},{0,2r,0},{-r,0,0},{0,-2r,0},{r,0,0}},
{{r,0,h},{0,2r,h},{-r,0,h},{0,-2r,h},{r,0,h}}};
m=Length[spnts[[1]]]-1; n=Length[Transpose[spnts][[1]]]-1;
wt=Table[1, {i,1,n+1},{j,1,m+1}];
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,u_]:=Binomial[n,i]pwr[u,i]pwr[1-u,n-i]
bzSurf[u_,w_]:=
Sum[wt[[i+1,j+1]]spnts[[i+1,j+1]]bern[n,i,u]bern[m,j,w], {i,0,n}, {j,0,m}]/
Sum[wt[[i+1,j+1]]bern[n,i,u]bern[m,j,w], {i,0,n}, {j,0,m}];
patch=ParametricPlot3D[bzSurf[u,w],{u,0,1}, {w,0,1},
Compiled->False, DisplayFunction->Identity];
cpnts=Graphics3D[{AbsolutePointSize[4], (* control points *)
Table[Point[spnts[[i,j]]], {i,1,n+1},{j,1,m+1}]}];
vlines=Graphics3D[{AbsoluteThickness[1], (* control polygon *)
Table[Line[{spnts[[i,j]],spnts[[i+1,j]]}], {i,1,n}, {j,1,m+1}]}];
hlines=Graphics3D[{AbsoluteThickness[1],
Table[Line[{spnts[[i,j]],spnts[[i,j+1]]}], {i,1,n+1}, {j,1,m}]}];
maxx=Max[Flatten[Table[Part[spnts[[i,j]], 1], {i,1,n+1}, {j,1,m+1}]]];
maxy=Max[Flatten[Table[Part[spnts[[i,j]], 2], {i,1,n+1}, {j,1,m+1}]]];
maxz=Max[Flatten[Table[Part[spnts[[i,j]], 3], {i,1,n+1}, {j,1,m+1}]]];
axes=Graphics3D[{AbsoluteThickness[1.5], (* the coordinate axes *)
Line[{{0,0,maxz},{0,0,0},{maxx,0,0},{0,0,0},{0,maxy,0}}]}];
Show[cpnts,hlines,vlines,axes,patch, PlotRange->All,DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction, ViewPoint->{0.998, 0.160, 4.575},Shading->False];

Figure Ans.13: A Closed Rational Bézier Surface Patch.

6.25: The 15 original control points are listed in Figure 6.28. The first step of the
algorithm produces the 10 intermediate points for n = 3 (Figure Ans.14)

P1
003 = uP0

103 + vP0
013 + wP0

004, P1
102 = uP0

202 + vP0
112 + wP0

103,

P1
201 = uP0

301 + vP0
211 + wP0

202, P1
300 = uP0

400 + vP0
310 + wP0

301,

P1
012 = uP0

112 + vP0
022 + wP0

013, P1
111 = uP0

211 + vP0
121 + wP0

112,

P1
210 = uP0

310 + vP0
220 + wP0

211, P1
021 = uP0

121 + vP0
031 + wP0

022,

P1
120 = uP0

220 + vP0
130 + wP0

121, P1
030 = uP0

130 + vP0
040 + wP0

031.
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the second step of the algorithm produces the six intermediate points for n = 2

P2
002 = uP1

102 + vP1
012 + wP1

003, P2
101 = uP1

201 + vP1
111 + wP1

102,

P2
200 = uP1

300 + vP1
210 + wP1

201, P2
011 = uP1

111 + vP1
021 + wP1

012,

P2
110 = uP1

210 + vP1
120 + wP1

111, P2
020 = uP1

120 + vP1
030 + wP1

021.

The third step produces the three intermediate points for n = 1

P3
001 = uP2

101 + vP2
011 + wP2

002,

P3
100 = uP2

200 + vP2
110 + wP2

101,

P3
010 = uP2

110 + vP2
020 + wP2

011.

And the fourth step produces the single point

P4
000 = uP3

100 + vP3
010 + wP3

001.

This is the point that corresponds to the particular triplet (u, v, w) on the triangular
patch defined by the 15 original control points.

100

010

001

P040
0

P020
2

P011
2 P110

2

P200
2P101

2P002
2

P031
0 P130

0

P022
0 P121

0 P220
0

P013
0 P112

0 P211
0 P310

0

P004
0 P103

0 P202
0 P301

0 P400
0 P003

1 P102
1 P201

1

P012
1 P111

1

P021
1

P030
1

P120
1

P210
1

P300
1300

210

120

030

201

111

021

102

012

003 200

110

020

101

011

002

P010
3

P100
3P001

3
000

P000
4

Figure Ans.14: Scaffolding in a Triangular Bézier Patch.

6.26: The code of Figure Ans.15 does the computations and yields the surface point
(2, 1, 1/2).

6.27: For n = 4 and r = 3, point P3
001 is computed directly from the control points as

the sum

P3
001 =

∑
a+b+c=3

B3
abc(u, v, w)P0+a,0+b,1+c

= w3P004 + 3uw2P103 + 3u2wP202 + u3P301 + 3vw2P013

6uvwP112 + 3u2vP211 + 3v2wP022 + 3uv2P121 + v3P031.
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P0300={3,3,0};
P0210={2,2,0}; P1200={4,2,1};
P0120={1,1,0}; P1110={3,1,1}; P2100={5,1,2};
P0030={0,0,0}; P1020={2,0,1}; P2010={4,0,2}; P3000={6,0,3};
n=3; u=1/6; v=2/6; w=3/6;
P0021=u P1020+v P0120+w P0030;
P1011=u P2010+v P1110+w P1020;
P2001=u P3000+v P2100+w P2010;
P0111=u P1110+v P0210+w P0120;
P1101=u P2100+v P1200+w P1110;
P0201=u P1200+v P0300+w P0210;
P0012=u P1011+v P0111+w P0021;
P1002=u P2001+v P1101+w P1011;
P0102=u P1101+v P0201+w P0111;
P0003=u P1002+v P0102+w P0012
B[i_,j_,k_]:=(n!/(i! j! k!))u^i v^j w^k;
P0030 B[0,0,3]+P1020 B[1,0,2]+P2010 B[2,0,1]+P3000 B[3,0,0]+
P0120 B[0,1,2]+P1110 B[1,1,1]+P2100 B[2,1,0]+
P0210 B[0,2,1]+P1200 B[1,2,0]+P0300 B[0,3,0]

Figure Ans.15: Triangular Bézier Patch Subdivision Exercise.

For n = 4 and r = 1, point P1
111 is computed directly from the control points as the

sum
P1

111 =
∑

a+b+c=1

B1
abc(u, v, w)P1+a,1+b,1+c = uP211 + vP121 + wP112.

6.28: Figure Ans.16 shows the initial triangle with 15 control points and the final
result, with 31 points.

Figure Ans.16: Subdividing the Triangular Bézier Patch for n = 4.

7.1: The second quadratic spline segment is also obtained from Equation (7.6)

P2(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P1

P2

P3

⎞
⎠

=
1
2
(t2 − 2t + 1)(1, 1) +

1
2
(−2t2 + 2t + 1)(2, 1) +

t2

2
(2, 0)

= (−t2/2 + t + 3/2,−t2/2 + 1).
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It starts at joint K2 = P2(0) = (3
2 , 1) and ends at joint K3 = P2(1) = (2, 1

2 ). The
tangent vector is Pt

2(t) = (−t+1,−t), showing that this segment starts going in direction
Pt

2(0) = (1, 0) and ends going in direction Pt
2(1) = (0,−1) (down).

7.2: We write

Pi(0) =
1
6
(Pi−1 + 4Pi + Pi+1) =

1
3
Pi−1 + Pi+1

2
+

2
3
Pi =

1
3
M +

2
3
Pi,

where M is the midpoint between Pi−1 and Pi+1. This shows that Pi(0) is located on
the straight segment connecting M to Pi, two-thirds of the way from M (Figure Ans.17).
Similarly,

Pi(1) =
1
3
Pi + Pi+2

2
+

2
3
Pi+1 =

1
3
M +

2
3
Pi+1.

This is called the 2/3 rule.

Pi−1

Pi

M Pi+1

2/3

2/3

1/3

1/3

Pi(0)

Pi(1)

Figure Ans.17: The 2/3 Rule.

7.3: The second cubic segment is given by Equation (7.11)

P1(t) =
1
6
(−t3 + 3t2 − 3t + 1)(0, 1) +

1
6
(3t3 − 6t2 + 4)(1, 1)

+
1
6
(−3t3 + 3t2 + 3t + 1)(2, 1) +

t3

6
(2, 0)

= (−t3/6 + t + 1,−t3/6 + 1).

It goes from joint K2 = P2(0) = (1, 1) to joint K3 = P2(1) = (11/6, 5/6). The tangent
vector is

Pt
2(t) =

1
6
(−3t2 + 6t − 3)(0, 1) +

1
6
(9t2 − 12t)(1, 1)

+
1
6
(−9t2 + 6t + 3)(2, 1) +

t2

2
(2, 0)

= (−t2/2 + 1,−t2/2).

The two extreme tangents are Pt
2(0) = (1, 0) and Pt

2(1) = (1/2,−1/2). Figure 7.4 shows
this segment.
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7.4: Each of the three quadratic segments is given by Equation (7.6). The first segment
is

P1(t) =
1
2
(t2 − 2t + 1)(0, 0) +

1
2
(−2t2 + 2t + 1)(0, 1) +

t2

2
(1, 1)

= (t2/2,−t2/2 + t + 1/2).

It goes from K1 = P1(0) = (0, 1/2) to K2 = P1(1) = (1/2, 1).
The second segment is

P2(t) =
1
2
(t2 − 2t + 1)(0, 1) +

1
2
(−2t2 + 2t + 1)(1, 1) +

t2

2
(2, 1)

= (t + 1/2, 1).

It goes from K2 = P2(0) = (1/2, 1) to K3 = P2(1) = (3/2, 1). Notice that this segment
is horizontal.

The third segment is

P3(t) =
1
2
(t2 − 2t + 1)(1, 1) +

1
2
(−2t2 + 2t + 1)(2, 1) +

t2

2
(2, 0)

= (−t2/2 + t + 3/2,−t2/2 + 1).

It goes from K3 = P3(0) = (3/2, 1) to K4 = P3(1) = (2, 1/2).
Figure 7.4 shows these segments (the solid curves).

7.5: The two segments are easy to calculate from Equation (7.11). They are

P3(t) =
1
6
(2t3 − 3t2 − 3t + 5)P2 +

1
6
(−2t3 + 3t2 + 3t + 1)P4,

P4(t) =
1
6
(−t3 + 3t2 − 3t + 1)P3 +

1
6
(t3 − 3t2 + 3t + 5)P4.

Their extreme points are therefore

P3(0) =
5
6
P2 +

1
6
P4, P3(1) =

1
6
P2 +

5
6
P4,

P4(0) =
1
6
P3 +

5
6
P4, P4(1) = P4.

They are indicated by small crosses in Figure 7.6.

7.6: Given the four control points P0 = P1 = P2 �= P3, we use Equation (7.11) to
construct such a segment:

P1(t) =
1
6
(−t3 + 6)P0 +

t3

6
P3 = (1 − u)P0 + uP3, for u = t3/6,

which shows the segment to be straight and the start point to be P1(0) = P0.
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7.7: There are five segments. The first is defined by points P0 through P3. The second
is defined by P1 through P4, and so on until the last segment which is defined by P4

through P7.

P1(t) =
1
6
(t3 + 6, t3), a straight line,

P2(t) =
1
6
(3t2 + 3t + 7,−3t3 + 3t2 + 3t + 1),

P3(t) =
1
6
(−3t3 + 3t2 + 9t + 13, 4t3 − 6t2 + 4),

P4(t) =
1
6
(2t3 − 6t2 + 6t + 22,−3t3 + 6t2 + 2),

P5(t) =
1
6
(24, t3 − 3t2 + 3t + 5), a vertical straight line.

They meet at the four joints (7/6, 1/6), (13/6, 4/6), (22/6, 2/6), and (24/6, 5/6). Notice
that the fifth segment is vertical. Figure Ans.18 shows these curves (slightly separated
to indicate the joint points).

The cubic Bézier curve defined by the same points (where only four distinct points
are used) is

P(t) = (1 − t)3(1, 0) + 3t(1 − t)2(2, 1) + 3t2(1 − t)(4, 0) + t3(4, 1)

= (−3t3 + 3t2 + 3t + 1, 4t3 − 6t2 + 3t).

It goes from (1, 0) to (4, 1) but is different from the B-spline because, for example, it is
never vertical. It is shown dashed in Figure Ans.18. The degree-7 Bézier curve defined
by the same points is also shown (dot-dashed) in the same figure for comparison. It is
clear that it is tight because of its strong attraction to the multiple points.

7.8: Equation (7.17) can be written Pt(t) = (t2 − t)[(P0 − P3) + 3(P1 − P2)]. This
is the sum of two differences of points. The first difference is the vector from P3 to P0

and the second is the vector from P2 to P1 (multiplied by 3). The tangent vector of
Equation (7.17) therefore points in the direction of the sum of these vectors, and this
direction does not depend on t. The size of the tangent vector depends on t, but the
size affects just the speed of the spline segment, not its shape.

7.9: By substituting, for example, t + 1 for t in the expression for N13(t).

7.10: The tangent vectors of the three segments are

Pt
1(t) = 2(t − 1)P0 + (2 − 3t)P1 + tP2,

Pt
2(t) = (t − 2)P1 + (3 − 2t)P2 + (t − 1)P3,

Pt
3(t) = (t − 3)P2 + (7 − 3t)P3 + 2(t − 2)P4.

They satisfy Pt
1(1) = Pt

2(1) = P2 − P1, and Pt
2(2) = Pt

3(2) = P3 − P2.
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N34(t) =
t − t3
t6 − t3

N33 +
t7 − t

t7 − t4
N43 =

{
t3 for t ∈ [0, 1),
(2 − t)3 for t ∈ [1, 2),

N44(t) =
t − t4
t7 − t4

N43 +
t8 − t

t8 − t5
N53 =

1
4

{
(7t3 − 39t2 + 69t − 37) for t ∈ [1, 2),
(3 − t)3 for t ∈ [2, 3),

N54(t) =
t − t5
t8 − t5

N53 +
t9 − t

t9 − t6
N63 =

1
12

{
(−11t3 + 51t2 − 69t + 29) for t ∈ [1, 2),
(7t3 − 57t2 + 147t − 115) for t ∈ [2, 3),

N64(t) =
t − t6
t9 − t6

N63 +
t10 − t

t10 − t7
N73 =

1
6

{
(t − 1)3 for t ∈ [1, 2),
(−3t3 + 21t2 − 45t + 31) for t ∈ [2, 3),

N74(t) =
t − t7

t10 − t7
N73 +

t11 − t

t11 − t8
N83 =

1
6
(t − 2)3 for t ∈ [2, 3).

This group of blending functions can now be used to construct the five spline seg-
ments

P3(t) = N04(t)P0 + N14(t)P1 + N24(t)P2 + N34(t)P3

=
1
6
(1 − t)3P0 +

1
12

(11t3 − 15t2 − 3t + 7)P1

+
1
4
(−7t3 + 3t2 + 3t + 1)P2 + t3P3, t ∈ [0, 1),

P4(t) = N14(1)P1 + N24(1)P2 + N34(1)P3 + N44(1)P4

= P3 (a point), t ∈ [1, 1),
P5(t) = N24(1)P2 + N34(1)P3 + N44(1)P4 + N54(1)P5

= P3 (a point), t ∈ [1, 1),
P6(t) = N34(t)P3 + N44(t)P4 + N54(t)P5 + N64(t)P6

= (2 − t)3P3 +
1
4
(7t3 − 39t2 + 69t − 37)P4

+
1
12

(−11t3 + 51t2 − 69t + 29)P5 +
1
6
(t − 1)3P6, t ∈ [1, 2),

P7(t) = N44(t)P4 + N54(t)P5 + N64(t)P6 + N74(t)P7

= (3 − t)3P4 +
1
12

(7t3 − 57t2 + 147t − 115)P5

+ (−3t3 + 21t2 − 45t + 31)P6 +
1
6
(t − 2)3P7, t ∈ [2, 3).

A direct check verifies that each segment has barycentric weights. The entire curve
starts at P3(0) = P0/6 + 7P1/12 + P2/4 and ends at P7(3) = (P5 + 4P6 + P7)/6. The
two join points between the segments are

P3(1) = P6(1) = P3, P6(2) = P7(2) = P4/4 + 7P5/12 + P6/6.

Both segments P4(t) and P5(t) reduce to the single control point P3.
For the curve of Figure 7.19d, the knot vector is

(−3,−2,−1, 0, 1, 1, 1, 1, 2, 3, 4, 5).
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The range of the parameter t is from t3 = 0 to t8 = 2 and we get by direct calculations
(again only the last group Ni4 of blending functions is shown)

N04(t) =
t − t0
t3 − t0

N03 +
t4 − t

t4 − t1
N13 =

1
6
(1 − t)3 for t ∈ [0, 1),

N14(t) =
t − t1
t4 − t1

N13 +
t5 − t

t5 − t2
N23 =

1
12

(11t3 − 15t2 − 3t + 7) for t ∈ [0, 1),

N24(t) =
t − t2
t5 − t2

N23 +
t6 − t

t6 − t3
N33 =

1
4
(−7t3 + 3t2 + 3t + 1) for t ∈ [0, 1),

N34(t) =
t − t3
t6 − t3

N33 +
t7 − t

t7 − t4
N43 = t3 for t ∈ [0, 1),

N44(t) =
t − t4
t7 − t4

N43 +
t8 − t

t8 − t5
N53 = (2 − t)3 for t ∈ [1, 2),

N54(t) =
t − t5
t8 − t5

N53 +
t9 − t

t9 − t6
N63 =

1
4
(7t3 − 39t2 + 69t − 37) for t ∈ [1, 2),

N64(t) =
t − t6
t9 − t6

N63 +
t10 − t

t10 − t7
N73 =

1
12

(−11t3 + 51t2 − 69t + 29) for t ∈ [1, 2),

N74(t) =
t − t7

t10 − t7
N73 +

t11 − t

t11 − t8
N83 =

1
6
(t − 1)3 for t ∈ [1, 2).

This group of blending functions can now be used to construct the five spline seg-
ments

P3(t) = N04(t)P0 + N14(t)P1 + N24(t)P2 + N34(t)P3

=
1
6
(1 − t)3P0 +

1
12

(11t3 − 15t2 − 3t + 7)P1

+
1
4
(−7t3 + 3t2 + 3t + 1)P2 + t3P3, t ∈ [0, 1),

P4(t) = N14(1)P1 + N24(1)P2 + N34(1)P3 + N44(1)P4

= P3 + P4 (undefined), t ∈ [1, 1),
P5(t) = N24(1)P2 + N34(1)P3 + N44(1)P4 + N54(1)P5

= P3 + P4 (undefined), t ∈ [1, 1),
P6(t) = N34(t)P3 + N44(t)P4 + N54(t)P5 + N64(t)P6

= P3 + P4 (undefined), t ∈ [1, 1),
P7(t) = N44(t)P4 + N54(t)P5 + N64(t)P6 + N74(t)P7

= (2 − t)3P4 +
1
4
(7t3 − 39t2 + 69t − 37)P5

+
1
12

(−11t3 + 51t2 − 69t + 29)P6 +
1
6
(t − 1)3P7, t ∈ [1, 2).

A direct check verifies that each segment has barycentric weights. The curve consists of
the two separate segments P3(t) and P7(t). The former goes from P0/6+7P1/12+P2/4
to P3 and the latter from P4 to P5/4 + 7P6/12 + P7/6. The three segments P4(t),
P5(t), and P6(t) get the undefined value P3 + P4 at t = 1.
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7.12: We use the parameter substitution T = t2/((1 − t)2 + t2) to write this curve in
the form (1 − T )P0 + TP2. It is now clear that this is the required line. It is also easy
to see that t = 0 → T = 0 and t = 1 → T = 1.

7.13: It is obvious from the figure that P0 = (0,−1)R. To figure out the coordinates
of P2 we notice the following:

1. The point is on the circle x2 + y2 = R2, so it satisfies

x2
2 + y2

2 = R2. (Ans.24)

2. The point is on line L. The equation of this line can be written y = ax + b,
where the slope a equals tan 60◦ =

√
3 ≈ 1.732, so we have

y2 = ax2 + b, (Ans.25)

where b still has to be determined.
3. P2 is located on the circle at a point where the tangent has a slope of 60◦.

We differentiate the equation of the circle x2 + y2 = R2 with respect to x to obtain
2x + 2y(dy/dx) = 0 or x = −y · y′. A slope of 60◦ means that y′ = tan 60 = a, so P2

also satisfies

x2 = −y2a. (Ans.26)

Equations (Ans.24) through (Ans.26) are easy to solve. The three solutions are y2 =
R/

√
a2 + 1 = 0.5R, x2 = −ay2 = −0.866R, and b = y2−ax2 = R(1+a2)/

√
a2 + 1 = 2R.

To figure out the coordinates of P1, we notice that it is located on line L and its y
coordinate equals −R. It therefore satisfies −R = ax1 + b, so x1 = −aR = −1.732R.

7.14: The base angle of the triangle defined by the three points is θ = 45◦, so a
circular arc is obtained when we set w1 = cos θ = 0.7071. Substituting the points in
Equation (7.45) and setting w1 = 0.7071 yields the 90◦ circular arc that goes from P0

to P2:

P(t) =
(1 − t)2P0 + 2w1t(1 − t)P1 + t2P2

(1 − t)2 + 2w1t(1 − t) + t2

=
(1 − t)2(1, 0) + 1.414t(1 − t)(0, 0) + t2(0, 1)

(1 − t)2 + 1.414t(1 − t) + t2
R

=
((1 − t)2, t2)R

(1 − t)2 + 1.414t(1 − t) + t2
. (Ans.27)

7.15: This is point P(0.5, 0.5) = (1, 1, (−1−2/2+2/4)(−1−2/2+2/4)/4) = (1, 1, 9/16).
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7.16: In the case of equally-spaced control points, we have

(P00 + P20)/2 = P10 ⇒1
6
(P00 + 4P10 + P20) = P10,

(P01 + P21)/2 = P11 ⇒1
6
(P01 + 4P11 + P21) = P11,

(P02 + P22)/2 = P12 ⇒1
6
(P02 + 4P12 + P22) = P12,

so K00 = 1
6P10 + 4

6P11 + 1
6P12 = P11.

8.1: No, since it does not pass through the first and last control points. (However, the
text shows that this is a Bézier curve, but one defined by different control points.)

8.2: The first step of Chaikin’s algorithm selects points

1
4
P0 +

3
4
P1 =

1
2

(
P0 + P1

2
+ P1

)
=

A + B
2

= Mab,

3
4
P1 +

1
4
P2 =

1
2

(
P1 +

P1 + P2

2

)
=

B + C
2

= Mbc.

8.3: Given three control points P0, P1, and P2, the quadratic B-spline segment defined
by them is identical to the quadratic Bézier segment that goes from the midpoint of P0P1

to the midpoint of P1P2. Both segments round out the corner created by the control
points with a parabolic fillet.

8.4: Often, the coordinates of pixels are integers and we know that integer division
truncates the result to the nearest integer. Comparing the distance between P1 and P4

to two pixels may result in a situation where they become identical. If this happens,
then the assignment P1 ← P4 does not do anything, and the flow chart of Figure 8.7d
shows that this results in a loop that empties the stack without doing anything useful.

8.5: This is straightforward and the triplets are P4
012 = AP3

012, P4
234 = AP3

123,
P4

456 = AP3
234, P4

678 = AP3
345, P4

89 10 = AP3
456, P4

10 11 12 = AP3
567, P4

12 13 14 = AP3
678,

P4
14 15 16 = AP3

789, and P4
16 17 18 = AP3

89 10.

8.6: The problem is to compute limk→∞ P3
678 = 1

6 (P3
6 + 4P3

7 + P3
8). The Mathematica

code of Figure Ans.19 does the calculations and produces the result (P0
0 + 121P0

1 +
235P0

2 +27P0
3)/384. A comparison with Equation (7.11) shows that this is point P(3/4)

of the B-spline curve segment.

8.7: The top left corner after one subdivision is

P1(0, 0) =
1
36

(P1
00 + P1

02 + 4P1
10 + 4P1

12 + P1
20 + 4P1

01 + 16P1
11 + 4P1

21 + P1
22)
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a={{4,4,0},{1,6,1},{0,4,4}}/8; {p10,p11,p12}=a.{p00,p01,p02};
{p12,p13,p14}=a.{p01,p02,p03}; {p20,p21,p22}=a.{p10,p11,p12};
{p22,p23,p24}=a.{p11,p12,p13}; {p24,p25,p26}=a.{p12,p13,p14};
{p30,p31,p32}=a.{p20,p21,p22}; {p32,p33,p34}=a.{p21,p22,p23};
{p34,p35,p36}=a.{p22,p23,p24}; {p36,p37,p38}=a.{p23,p24,p25};
{p38,p39,p310}=a.{p24,p25,p26}; Simplify[(p36+4 p37+p38)/6]

Figure Ans.19: Code for Exercise 8.6

=
1
36
[1
4
(P0

00 + P0
10 + P0

01 + P0
11) +

1
4
(P0

01 + P0
11 + P0

02 + P0
12)

+
1
4
(P0

00 + P0
01 + 6P0

10 + 6P0
11 + P0

20 + P0
21)

+
1
4
(P0

00 + 6P0
10 + P0

20 + 6P0
01 + 36P0

11 + 6P0
21 + P0

02 + 6P0
12 + P0

22)

+
1
4
(P0

10 + P0
20 + 6P0

11 + 6P0
21 + P0

12 + P0
22) +

1
4
(P0

11 + P0
21 + P0

12 + P0
22)

]
=

1
36

(P0
00 + 4P0

01 + 16P0
11 + P0

02 + 4P0
12 + P0

20 + 4P0
21 + P0

22)

= P(0, 0).

9.1: We just need to multiply C(u) by the two translation matrices:

(u, 0, 0, 1)

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 w 1

⎞
⎟⎠
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 sin w 0 1

⎞
⎟⎠ .

The result is the surface P(u, w) = (u, sin w, w), displayed in Figure Ans.20.

9.2: This quarter circle starts at point C(0) = (1, 0, 0) on the x axis and ends at point
C(1) = (0, 1, 0) on the y axis. A 360◦ rotation about the y axis is expressed by the 3×3
matrix

T(w) =

⎛
⎝ cos(2πw) 0 sin(2πw)

0 1 0
− sin(2πw) 0 cos(2πw)

⎞
⎠ .

This example involves a rotation but no translation, which is why there is no need for
homogeneous coordinates. Multiplying C(u)·T(w) yields the surface

1
1 + u2

(
(1 − u2) cos(2πw), 2u, (1 − u2) sin(2πw), 1

)
.

For u = 0, this reduces to (cos(2πw), 0, sin(2πw)), that’s the unit circle in the xz plane.
For u = 1, the same expression reduces to 1/2(0, 2, 0) = (0, 1, 0). This is the top of the
half-sphere, a point that does not depend on w.
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x y

z

<<:Graphics:ParametricPlot3D.m;
ParametricPlot3D[{3u,Sin[w],w}, {u,0,1},{w,0,4Pi},
Ticks->False, AspectRatio->Automatic]

Figure Ans.20: A Sweep Surface.

9.3: The equation of the line is

(1 − u)P1 + uP2 = (1 − u)(0, 0, 0) + u(R, 0, H) = (Ru, 0, Hu),

where 0 ≤ u ≤ 1. Multiplying by the rotation matrix about the z axis yields

(Ru, 0, Hu)

⎛
⎝ cos w − sin w 0

sin w cos w 0
0 0 1

⎞
⎠ = (Ru cos w,−Ru sin w, Hu),

where 0 ≤ w ≤ 2π. [Compare with Equation (Ans.3).]

9.4: This is trivial. Just translate each coordinate:

P(u, w) = P(u)Ty(w) = (x0 + R cos u cos w, y0 + R sin u, z0 + R cos u sin w),

where −π/2 ≤ u ≤ π/2 and 0 ≤ w ≤ 2π.

9.5: This is done by multiplying the surface of Equation (9.4) by rotation matrix Tz(θ).
The result is

P(u, w) = P(u)Ty(w)Tz(θ)
= (R cos u cos w cos θ − R sin u sin θ, R cos u cos w sin θ + R sin u cos θ, R cos u sin w),
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where −π/2 ≤ u ≤ π/2 and 0 ≤ w ≤ 2π. Notice how the z coordinates of this sphere
don’t depend on θ.

9.6: The half-circle is P(u) = (R cos u, 0, R sin u). Multiplying this by Tz(w) yields

P(u, w) = (R cos u cos w, R cos u sin w, R sin u).

9.7: We start with the circle (R + r cos u, 0, r sin u), where 0 ≤ u ≤ 2π. The torus is
generated when this circle is rotated 360◦ about the z axis, by means of rotation matrix
Tz(w):

P(u, w) = (R + r cos u, 0, r sin u)

⎛
⎝ cos w − sin w 0

sin w cos w 0
0 0 1

⎞
⎠

=
(
(R + r cos u) cos w,−(R + r cos u) sinw, r sin u

)
,

where 0 ≤ u, w ≤ 2π, or

P(u, w) =
(
(R + r cos(2πu)) cos(2πw),−(R + r cos(2πu)) sin(2πw), r sin(2πu)

)
,

where 0 ≤ u, w ≤ 1 (Figure Ans.21a). In general, R is greater than r, but there are two
special cases. The case R = r creates a horn torus and the case 0 ≤ R ≤ r becomes a
spindle torus (Figure Ans.21b,c, respectively, where only half the torus is shown).

(a) (b) (c)

R=10; r=2; (* The Torus as a surface of revolution *)
ParametricPlot3D[
{(R+r Cos[2Pi u])Cos[2Pi w],-(R+r Cos[2Pi u])Sin[2Pi w],
r Sin[2Pi u]},{u,0,1},{w,0,1},
ViewPoint->{-0.028, -4.034, 1.599}]

Figure Ans.21: The Torus as a Surface of Revolution.

A.1: The particular conic generated by Equation (A.3) is determined by the sign of
the discriminant B2 − 4AC. The exact shape of the curve is determined by the values
of all six parameters. The general rule is

B2 − 4AC

⎧⎨
⎩

< 0, ellipse (or circle),
= 0, parabola,
> 0, hyperbola.
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Example: Three examples are shown.
1. The canonical circle is obtained for A = C = 1, F = −R2, and B = D = E = 0.
2. A straight line is the result of A = B = C = 0.
3. The canonical parabola y2 = 2ax is the result of A = B = E = F = 0, C = 1,

and D = −2a.

B.1: The Bézier curve can be written P(t) = (f(t), g(t)), where f and g are the (x, y)
coordinates of points on the curve. Both f and g are polynomials in t, so they can be
written as

f(t) = a0 + a1t + · · · + aktk, g(t) = b0 + b1t + · · · + bktk.

We now suppose that the curve P(t) = (f(t), g(t)) produces the circle (x−p)2+(y−q)2 =
R2 and will prove that this implies ai = bi = 0 for i = 1, . . . , k.

The assumption implies that

(
a0 + a1t + · · · + aktk − p

)2
+
(
b0 + b1t + · · · + bktk − q

)2
= R2 (Ans.28)

for all values of t. For t = 0, we get (a0 − p)2 + (b0 − q)2 = R2, so now we can write
Equation (Ans.28) as

(
a1t + · · · + aktk

)2
+
(
b1t + · · · + bktk

)2
= 0. (Ans.29)

Carrying out the multiplications produces an expression of the type

(· · · + (a2
k + b2

k)t2k
)

= 0.

This implies that the sum (a2
k + b2

k) is zero, and since it is the sum of squares, each must
be zero. We can now write Equation (Ans.29) as

(
a1t + · · · + ak−1t

k−1
)2

+
(
b1t + · · · + bk−1t

k−1
)2

= 0,

and use similar arguments to prove that ak−1 = bk−1 = 0. In this way, we can show
that all the coefficients of f(t) and g(t) are zero (except a0 and b0, which may create a
circle consisting of one point if they satisfy (a0 − p)2 + (b0 − q)2 = R2).

B.2: Because of the symmetry of a circle, the two interior points must have coordinates
P1 = (1, k) and P2 = (k, 1). To set up an equation that will allow us to solve for k, we
arbitrarily require that the midpoint of the curve P(0.5) coincide with the midpoint of
the quarter circle (1/

√
2, 1/

√
2) (Figure Ans.22a). The equation becomes

P(0.5) =
(

1√
2
,

1√
2

)
,

or
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P(0.5) =
3∑

i=0

PiB3,i(0.5)

=
1
8
P0 +

3
8
P1 +

3
8
P2 +

1
8
P3

=
1
8
(1, 0) +

3
8
(1, k) +

3
8
(k, 1) +

1
8
(0, 1)

=
(

3k + 4
8

,
3k + 4

8

)
,

and the solution is k = 4(
√

2 − 1)/3 ≈ 0.5523.

t=0

t=1

t=.5

x

y

x
t=0

t=1

t=.5

y

(a) (b)

P2=(k,1) P2=(ak,b)

P1=(a,bk)P1=(1,k)

P0=(1,0) P0=(a,0)

P3=(0,1) P3=(0,b)

Figure Ans.22: An Almost-Circular Bézier Curve.

The final expression of the curve is

P(t) =
(
(1 − t)3 + 3t(1 − t)2 + 3t2(1 − t)k,

3t(1 − t)2k + 3t2(1 − t) + t3
)

(Ans.30)

≈ (
0.3431t3 − 1.3431t2 + 1,−0.3431t3 − 0.3138t2 + 1.6569t

)
. (Ans.31)

(See Sections A.2 and 5.12.3 of [Salomon 99] for applications of this expression.) For a
circle of radius R, the expression above is simply multiplied by R.

The maximum deviation of this cubic curve from a true circle can be calculated
similar to the quadratic case. The tangent vector of Equation (Ans.30) is

Pt(t) =
(
6(k − 1)t + 3(2 − 3k)t2, 3k + 6(1 − 2k)t + 3(3k − 2)t2

)
,
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so the condition P(t) · Pt(t) = 0 becomes

(9k2 + 6k − 6)t + (−54k2 + 18k + 6)t2 + (126k2 − 132k + 36)t3

−15(3k − 2)2t4 + 6(3k − 2)t5 = 0.

Numerical solution gives the five roots t1 = 0, t2 = 0.211, t3 = 0.5, t4 = 0.789, and
t5 = 1. Thus, the maximum distance between the origin and a point P(t) on this curve
is D(t2) = D(t4) = 1.00027. The maximum deviation of this cubic curve from a true
circle is this just 0.027%, much better than the quadratic approximation, although the
latter is preferable in practice since it is simpler.

B.3: The implicit expression for the arc is simply the equation of the ellipse

x2

a2
+

y2

b2
= 1, where 0 ≤ x ≤ a.

The two endpoints are P0 = (a, 0) and P3 = (0, b). Based on the symmetry shown in
Figure Ans.22b, we select the other two control points with coordinates P1 = (a, bk)
and P2 = (ak, b). To set up an equation that will allow us to solve for k, we require
that the midpoint of the curve, P(0.5), coincide with the midpoint of the quarter arc
(a/

√
2, b/

√
2) (Figure Ans.22b). The equation becomes

P(.5) =
(

a√
2
,

b√
2

)
,

or

=
3∑

i=0

PiB3,i(.5)

=
1
8
P0 +

3
8
P1 +

3
8
P2 +

1
8
P3

=
1
8
(a, 0) +

3
8
(a, bk) +

3
8
(ak, b) +

1
8
(0, b)

=
(

a(3k + 4)
8

,
b(3k + 4)

8

)
,

and the solution is, again, k = 4(
√

2 − 1)/3 ≈ 0.5523.
The final expression of the curve is

P(t) = (1 − t)3(a, 0) + 3t(1 − t)2(a, bk) + 3t2(1 − t)(ak, b) + t3(0, b).

B.4: The parametric equation of the circular arc is a(u) = (cos u, sin u) for −θ ≤ u ≤ θ.
The expression of the curve is

P(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3,
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where the four control points have to be calculated. To calculate P0 and P3, we require
that the curve passes through the first and last points of the arc. This implies P0 =
(cos θ,− sin θ) and P3 = (cos θ, sin θ). To calculate P1 and P2, we require the curve and
the arc to have the same tangent vectors at their start and end points, i.e.,

da(−θ)
du

=
dP(0)

dt
and

da(θ)
du

=
dP(1)

dt
.

The tangent vectors are

da(u)
du

= (− sin u, cos u),

dP(t)
dt

= −3(1 − t)2P0 + (3 − 9t)(1 − t)P1 + 3t(2 − 3t)P2 + 3t2P3.

Equating them at the start point yields

(− sin(−θ), cos(−θ)) = −3P0 + 3P1 = −3(cos θ,− sin θ) + 3P1,

so
P1 = (sin θ + 3 cos θ,−3 sin θ − cos θ)/3,

and, by symmetry,
P2 = (sin θ + 3 cos θ, 3 sin θ + cos θ)/3.

Thus, the Bézier curve is

P(t) = (1 − t)3(cos θ,− sin θ) + 3t(1 − t)2(sin θ + 3 cos θ,−3 sin θ − cos θ)/3

+ 3t2(1 − t)(sin θ + 3 cos θ, 3 sin θ + cos θ)/3 + t3(cos θ, sin θ).

The midpoint of the arc is a(0.5) = (1, 0) and that of the curve is

P(0.5) =
1
8
(cos θ,− sin θ) +

3
8
(sin θ + 3 cos θ,−3 sin θ − cos θ)/3

+
3
8
(sin θ + 3 cos θ, 3 sin θ + cos θ)/3 +

1
8
(cos θ, sin θ)

= (cos θ +
1
4

sin θ, 0).

For small θ, the deviation of this curve from the true arc is small (for angles up to 45◦

the deviation is less than 12%). For larger angles, the curve deviates much from the arc
(for θ = 90◦, the midpoint of the curve is (0.25, 0), so it is very different from the arc).

B.5: They are all computed from Equation (7.11) by rotating the four control points
to the left in each segment. The result is

P2(t) =
1
6
[(−t3 + 3t2 − 3t + 1)(0, 3/2) + (3t3 − 6t2 + 4)(−3/2, 0)
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+ (−3t3 + 3t2 + 3t + 1)(0,−3/2) + t3(3/2, 0)]

=
1
4
(−2t3 + 6t2 − 4, 2t3 − 6t),

P3(t) =
1
6
[(−t3 + 3t2 − 3t + 1)(−3/2, 0) + (3t3 − 6t2 + 4)(0,−3/2)

+ (−3t3 + 3t2 + 3t + 1)(3/2, 0) + t3(0, 3/2)]

=
1
4
(−2t3 + 6t,−2t3 + 6t2 − 4),

P4(t) =
1
6
[(−t3 + 3t2 − 3t + 1)(0,−3/2) + (3t3 − 6t2 + 4)(3/2, 0)

+ (−3t3 + 3t2 + 3t + 1)(0, 3/2) + t3(−3/2, 0)]

=
1
4
(2t3 − 6t2 + 4,−2t3 + 6t). (Ans.32)

B.6: Compute the midpoint (S + E)/2 and normalize its coordinates.

D.1: Normally a semicolon following a command suppresses any output. In our case,
the DisplayFunction option forces output, and the only effect of omitting the semicolon
is that Mathematica generates in this case another output cell with the word Graphics.

D.2: The surface patch will be displayed as a set of 6×6 small flat rectangles.

D.3: When the matrix of points has four rows or four columns as, for example, in
Figure 3.6 (a bicubic surface patch example).

D.4: Because a previous evaluation of another cell in a Mathematica notebook may
have defined a. Specifically, if a has been defined as a list, matrix r would have a mixture
of scalar and nonscalar elements, and the evaluation of lines 11–13 would result in an
error message.

Solutions are not the answer.

Richard M. Nixon
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The index has been prepared in several steps. While writing the book, the author had
to flag all the index items. When the book was typeset, special TEX macros, written
by the author, wrote the items on a raw (.idx) index file in the format required by
the MakeIndex program. This program was then run to produce the final (.ind) index
file, that in turn was processed by further TEX macros (influenced by the macros on
page 417 of The TEXbook) to typeset the pages of the index. Any errors and omissions
found should be brought to the attention of the author.

2/3 rule, 431

Adobe Illustrator (program), 213
affine transformations, 2

and Bézier curves, 192
definition of, 6

Alexandre, Arsène (1859–1937), v
Allen, Woody (Allen Stewart Konigsberg

1935–), 267
approximating curve, vi, 11, 176
arc

and Bézier curve, 371, 444, 445
circular

and surfaces of revolution, 358
PC approximation, 75
with B-splines, 373, 375

elliptic, 371, 444
arc length

and chord length, 16
in curvature, 31
curvature and torsion, 33

author’s email address, xi

B-spline, 251–308, 319

2/3 rule, 431
algebraic definition of, 275
and circles, 302, 373–376
cubic, 256–261, 327–331

related to Bézier curves, 268
geometric definition of, 275
nonuniform, 286–294

matrix form, 295–299
open, 281–285
order (definition of), 261
quadratic, 252–256, 325–327

related to Bézier curve, 254, 325, 438
rational, 218, 251, 302–308
subdividing, 299–301
tension in, 251, 265–267
uniform, 251–279

collinear points, 261
B-spline surfaces

and Bézier, 314
and Hermite, 312–314
bicubic, 310–316

subdivision, 336–341
biquadratic, 308–310

subdivision, 331–335
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interpolating, 315–316

Bacon, Francis (1561–1626), 379

Balzac, Honoré de (1799–1850), 51

Bartels, Richard H., 167

barycentric coordinates, 4, 5

in a triangle, 5

barycentric Lagrange interpolation, 83–85

barycentric sum, 3, 10, 60, 190

barycentric weights, 4, 15, 114

negative, 3

normalized, 4

Batman (quoted), 38

Bernshtĕın, Sergĕı Natanovich (1880–1968),
179

Bernstein polynomials, 39, 60, 99, 179, 285,
305

bivariate, 234, 238

in Mathematica, 179, 384

Bézier blending, 10

Bézier curve, 23–26, 175–218, 258, 259

affine transformations, 192

alternative representation, 184

and arc, 371, 444, 445

and Catmull–Rom, 212

and circle, 302, 369–372, 442, 444

and sine wave, 371, 372

as a linear interpolation, 194–198

as special case of B-spline, 282–285

Bernstein form of, 178–185

circular, 14

collinear points, 184, 418, 420

connecting segments, 192–193

control polygon, 176, 192

cubic, 181

degree 4, 182

degree elevation, 205–207

disadvantages of, 251

fast calculation of, 21, 185–189

heart shaped, 180, 417

in Mathematica, 179

interpolating, 212–216

linear, 182

nonparametric, 217

parameter substitution, 182, 418

quadratic, 181

rational, 217–218, 369

related to B-spline, 218, 254, 268, 282, 325,
438

reparametrizing, 207–210
representations of, 184–185
subdividing, 202–204
tension in, 210–211

Bézier methods (history of), 175
Bézier, Pierre Etienne (1910–1999), ii, viii,

xii, 175, 179
Bézier surfaces, 60, 219–248, 361

and B-spline, 314
in Mathematica, 220, 383
interpolating, 230–232
rectangular, 60, 219–232, 361
reparametrizing, 246–248, 331
triangular, 6, 103, 234–245

in Mathematica, 378
bias (in curves), 171–173
bicubic Coons surface, 99
bicubic interpolation, 92, 405, 407
bicubic surfaces, 89, 361
bilinear interpolation, 225
bilinear surfaces, 36, 39, 59–64, 222

as lofted surfaces, 65
in Mathematica, 383
triangular, 63

Binet, Alfred (1857–1911), 63
binomial coefficient, 177–179
binomial theorem, 177–178, 184, 190
binormal vector, 29
biquadratic surfaces, 87–89, 137–139
bivariate Bernstein polynomials, 234, 238
blending

Bernstein polynomials, 179
Bézier, 10
Catmull–Rom surface, 165
Coons surface, 95
cubic, 10
Hermite, 111–132
Hermite derivatives, 116–118
Hermite functions, 115–116
lofted surface, 64
parametric, 10–11, 38–40
in a PC, 20
quadratic, 10

blossoming of curves, 198–202, 204, 206–207,
421

boundary curves, 36, 59, 61, 63, 66, 67, 93,
95, 101, 106, 108, 393, 406

degenerate, 104, 406
three, 103, 235
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CAGD (computer assisted geometric design),
viii, 175

cardinal splines, 119, 144, 161–164, 210, 265
Cartesian product, 38–40, 60, 89, 91, 308,

311, 317
Casteljau, Paul, see de Casteljau, Paul de

Faget
Catmull, Edwin, 343
Catmull–Clark surfaces, 343–344
Catmull–Rom

curves, 162, 163
surfaces, 165–167

tension in, 167
center of curvature, 27
centers of triangle, 6
centroid, 6, 388
Cézanne, Paul (1839–1906), 350
Chaikin, George Merrill, 319, 321, 325
Chaikin’s algorithm, 320–325, 327, 331, 333

as a Bézier curve, 438
circle

and B-spline, 302, 373–376
and Bézier curve, 302, 369–372, 442, 444
and Hermite curve, 120–122, 411
and surfaces of revolution, 358
and torus, 13
approximate, 369–376
as a conic section, 442
parametric representation of, 120–122,

369–376, 390, 391
circular arc

and surfaces of revolution, 358
with B-splines, 373, 375
PC approximation of, 75

circular Bézier curve, 14
Clark, Jim, 343
collinear points (and Bézier curve), 184, 418,

420
collinear points (in B-spline), 261
computer aided geometric design, see CAGD
computer animation, 10, 21, 169–173

and bias, 171
computer arithmetic (limited accuracy), 54
cone

as a lofted surface, 67
as a sweep surface, 350
normal vector, 47, 394

conic sections, 119, 218, 363–367, 441
and NURBS, 305–308

approximated, 119–122

connecting surface patches, 40

continuity (in curves), 169–173

continuity parameter in a Kochanek–Bartels
spline, 169

control points, 11, 176, 180, 251

and convex hull, 180, 192

and degree elevation, 205

and scaffolding, 198

auxiliary, 213

collinear, 261

definition of, vi

multiple, 263–265

reversing, 180

control polygon

Bézier curve, 176, 192

convex hull, 58, 192

convex hull property, 192

convex polygons, 57–58

Coons, Steven Anson, viii, 93, 175

Coons surfaces

bicubic, 99–100

degree-5, 100–101

linear, 93–108

tangent matching, 101–103

triangular, 103–106, 236

coordinate system (handedness), 389

Cox, Maurice, 279, 297

Cox–DeBoor formula, 279, 295–297, 300

cross-product, 7–9, 31, 38, 46, 62, 66, 388–
389, 394, 397

in four dimensions, 388–389

cubic blending, 10

cubic Bézier curve, 181

cubic polynomials, 18–21

cubic splines, 141–156

anticyclic, 150, 416

clamped, 144, 146

closed, 148, 152

cyclic, 148–150

four points, 72

indefinite direction, 146, 415

nonuniform, 152–156

normalized, 152

periodic, 148, 150–151

related to B-splines, 270

relaxed, 146–148

uniform, 152
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curvature (definition of), 30–32
curves, see also parametric curves

approximating, vi, 11
B-spline, 251–308

subdividing, 299–301
bias in, 171–173
binormal vector, 29
blossoming, 198–202, 204, 206–207, 421
by subdivision, 319–331
Bézier, 23–26, 175–218, 258, 259

and Catmull–Rom, 212
as special case of B-spline, 282–285
cubic, 181
degree 4, 182
degree elevation, 205–207
disadvantages of, 251
fast calculation of, 21, 185–189
interpolating, 212–216
linear, 182
parameter substitution, 182, 418
quadratic, 181
related to B-spline, 218, 268
reparametrizing, 207–210
representations of, 184–185
subdividing, 202–204
tension, 210–211

Catmull–Rom, 162, 163
center of curvature, 27
circular Bézier, 14
continuity in, 169–173
curvature of, 30–32
degenerate, 35, 391
explicit representation of, 11, 217
extrinsic properties of, 26, 392
fast computation of, 21–23
Hermite, 111–132, 210, 265, 425

degenerate, 128–132
indefinite tangent vectors, 409
nonuniform, 118–119
quadratic, 131–132, 137
quintic, 122–123
special, 128–132
straight, 129–131

implicit representation of, 11
independence of the axes, 14
inflection points, 34
interpolating, vi, 11
intrinsic properties of, 26, 392
introduction to, 11–75

multilinear, 194

nonpolynomial, 14

normal plane, 27

osculating circle, 31

osculating plane, 29–30

parametric (three-dimensional), 15

parametric nonpolynomial, 14

parametric representation of, 11

periodic, 150–151

principal normal vector, 27–29, 31

radius of curvature, 31

rectifying plane, 30

representations of, 11–75

reversing direction, 127

special, 35

speed of, 390

subdividing, 23–26

tangent vector, 15, 21, 26, 86, 117, 147

and continuity, 16, 18

antiequal, 150

B-spline, 254, 255, 259, 270, 431

Bézier, 180, 191

cardinal spline, 161

definition of, 11

direction of, 405

equal, 148

extreme, 142, 144, 146, 147, 154, 213, 270

Hermite, 111

indeterminate, 117, 412, 419, 420

Kochanek–Bartels, 171

magnitude, 125

phantom points, 259

tension, 162

tension in, 119, 144, 161–164, 210–211,
265–267

torsion, 32–33

velocity of, 21, 390

cusp, 13, 14, 125, 126, 170, 176, 392, 419, 420

Hermite segment, 412

in a cubic B-spline, 264

cylinder

as a lofted surface, 65

as a sweep surface, 47

normal vector, 47

data compression (MLP), 92

data points, 11, 142

definition of, vi
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de Boor, Carl Wilhelm Reinhold (1937–),
279, 297

de Casteljau algorithm
for curves, 194–198
for rectangular Bézier surfaces, 222–224
for triangular Bézier surfaces, 238–241

de Casteljau, Paul de Faget, viii, 175, 179,
194, 198, 234, 297

degenerate curves, 35, 391
degenerate Hermite segments, 128–129
degree elevation

Bézier curve, 205–207
rectangular Bézier surface, 225–227
triangular Bézier patches, 241

Delaunay triangulation, 237
determinant, 33, 35, 364, 392

and cross-product, 7
and plane equation, 54
in plane equation, 29
row interchange, 8

diagonally dominant matrix, 144, 160, 270,
271

digitizer (three-dimensional), 341
distance of line and point, 50
divisionism, see pointillism
Doo, Donald, 341
Doo Sabin surfaces, 341–343
dot product, 7
double helix, 67, 151

Eco, Umberto (1932–), xii
ellipse, 120

and surfaces of revolution, 358
ellipsoid

normal of, 46
parametric, 354

elliptic arc, 371, 444
email address of author, xi
Emerson, Ralph Waldo (1803–1882), 447
Escher, Maurits Cornelis (1898–1972), 56
explicit Bézier Curves,
see nonparametric Bézier curves
explicit polygons, 53
explicit representation

of curves, 11
of surfaces, 35, 227

explicit surfaces, 35, 62, 227, 398
normal of, 46
written as implicit, 394

extrinsic properties, 26, 392

fast computation of curves, 21–23, 185–189
fast computation of surfaces, 41–42
Ferguson surface patches, 132–134
Ferguson, James C., viii, 141, 175
fillet (parabolic), 438
fold in a surface, 104
forward differences, 71

for a Bézier curve, 186–189
for a curve, 21
for a surface, 41

geometry matrix, 89, 405
Gerhart, Susan, 270
Gleick, James, 27, 77
global control of the Bézier curve, 191–192
Goethe, Johann Wolfgang von (1749–1832),

361
Gordon surfaces, 78, 108–109
Gordon, William J., viii, 175
Gouraud shading, 53, 341
graphics gallery, 377–379
Gray, Theodore W., 386
Gregory surfaces, 248–250
Grieggs, John, ix

Hadamard, Jacques Salomon (1865–1963),
112

Hartley, Leslie Poles, (1895–1972), 18
helix curve, 67, 151, 391
helix curve (double), 67, 151
Helzer, Garry, xi, 238, 377
Hermite blending, 111–132
Hermite blending functions, 115–116
Hermite, Charles (1822–1901), 111
Hermite interpolation, 106, 111–139

and B-spline curves, 210, 265
and Bézier curves, 210, 425
and circle, 120–122, 411
and parabola, 120
cusp, 412
degenerate, 128–132
derivatives, 116–118, 408
indefinite tangent vectors, 409
midpoint, 115, 408
nonuniform, 118–119
quadratic, 131–132, 137
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quintic, 122–123
special, 128–132
straight, 129–131

Hermite surface patches, 134–139
and B-spline, 312–314

Higgins, Colin (1941–1988), 230
homogeneous coordinates

and rational B-spline, 302
Horner’s rule, 71
hyperbola, 120, 398
hyperbolic paraboloid (as a bilinear surface),

60, 398

Illustrator (Adobe), 213
image compression (MLP), 92
implicit representation

of curves, 11
of surfaces, 35

implicit surfaces, 35
in color, 379
normal of, 46
plane, 46

inflection points, 18, 34, 197
in a PC, 34

interpolating curves, vi, 11
interpolating polynomials, 75, 92
interpolation

bicubic, 92, 405, 407
definition of, vi
Hermite, 106, 111–139

quintic, 122–123
Lagrange, 76–85
linear, 49–69
Newton, 85–86
polynomial, 71–109
spline, 141–173

intrinsic properties, 26, 392
isoparametric curves, 36
isotropic principle, 4, 38

joining Bézier patches, 228–230, 242–245
Juster, Norton (1929–), 90

Kleiman, Carol, 450
knots (in curve design), 77
Knuth, Donald Ervin (1938–), 250
Kochanek, Doris H., 167
Kochanek–Bartels splines, 167–173

L’Engle, Madeleine (1918–), 106

Lagrange interpolation, 76–85

barycentric, 83–85

Lagrange polynomial, 76–85, 109, 403

cubic, 80–83

quadratic, 78–80, 87

Lagrange, Joseph-Louis (1736–1813), 76

Leahy, Joe, 211

line

as a degenerate conic section, 442

distance from point, 50

intersection of segments, 51–53

intersection with plane, 58

overlapping, 52

parallel, 52

parallel to a plane, 58, 397

parametric representation of, 39, 49, 403,
409, 418

vector equation, 50

linear Bézier curve, 182

linear Coons surface, 93

linear interpolation, 49–69

Littlewood, John Edensor (1885–1977), 75

Lobachevsky, Nikolai Ivanovich (1792–1856),
297

lofted surfaces, viii, 64–69, 222

cone, 67

pyramid, 68

swept, 236, 351

twisted ribbon, 67

Long, William Joseph (1867–1952), xvi

loop in a curve, 18, 125, 176

Loop surfaces, 344–346

Loop, Charles Teorell, 344

LP, see Lagrange polynomial

Mangaldan, Jan, 230

Mansfield, L., 297

Mathematica notes, 381–386

matrices

diagonally dominant, 144, 160, 270, 271

geometry, 89, 405

nonsingular, 144

rotation, 399, 440

transformation, 347

translation, 439

tridiagonal, 144

mediation operator, 26, 175, 194, 195, 203
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MLP image compression method, 92
Möbius strip, 350
Morley, Christopher Darlington, (1890–

1957), 92
multidimensional spaces, 388–389
multilinear curves, 194
Murray, James Augustus Henry (1837–1915),

376

Nettesheim, Heinrich Cornelius Agrippa von
(1486–1534?), ii

Newton, Isaac (1642–1727), 52, 71, 77, 85,
178, 190

Newton polynomial, 78, 84–86
Nietzsche, Friedrich Wilhelm (1844–1900), 55
Nixon, Richard Milhous (1913–1994), 446
nonparametric Bézier curves, 217
nonparametric Bézier patches, 227–228
nonsingular matrix, 144
nonuniform parametric representation, 16
normal

calculation of, 46–47
of cone, 47, 394
of cylinder, 47
of pyramid, 47

normal plane, 27
notation used in this book, x–xi, 14
NURBS, see rational B-splines

Oldenburg, Henry (1615?–1677), 77
osculating circle, 31
osculating plane, 29–30, 46, 392
Oslo algorithm, 299–301

parabola, 120, 398
and Bézier curve, 181
and Hermite curve, 120
and triangle, 120
as a conic section, 442
as a fillet, 438

parametric blending, 10–11, 38–40
parametric cubic, 18–21, 111–118

circle approximating, 369–376, 390
four points, 72
geometric representation of, 113
Hermite, 111–132
inflection points, 34
noninteractive, 112
PC, 19

parametric curves

and polynomials, 18–21

continuity of, 16–18

cubic, 18–21

cusp in, 14, 125

intrinsic properties of, 26

loops in, 18, 125

nonpolynomials, 14, 95

nonuniform, 16, 78

properties of, 13–15

rational, 366

reparametrization, 127, 128

substitution of parameter, 17, 125, 127,
182, 263, 391, 409, 418, 437

three-dimensional, 15

uniform, 16, 78

velocity of, 12

parametric quintic, 122–123

parametric representation

of lines, 39, 49

of surfaces, 35

parametric surfaces, 35

Parent, Richard, ix

particle paradigm (in parametric curves), 12,
21

Pascal triangle, 177–178

periodic curves, 150–151

perspective projection (and NURBS), 302

Phong shading, 341

Piegl, Les A., 317

planarity test for polygons, 54

plane

equation of, 54–56

intersection with line, 58

pointillism, v, 377

points

collinear (in B-spline), 261

control, 11, 176, 180, 251

and convex hull, 180, 192

and degree elevation, 205

and scaffolding, 198

auxiliary, 213

collinear, 261

multiple, 263–265

reversing, 180

data, 11, 142

distance from line, 50

inflection, 18, 34, 197
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operations on, 1–7

printer’s, 382

sum of, 388

polygonal surfaces, 53

Catmull–Clark, 343–344

Doo Sabin, 341–343

Loop, 344–346

subdivision, 341–346

polygons

as space dividers, 56–57

convex, 57–58

inscribed in a circle, 12

planarity, 54

plane equation, 54–56

triangle, 58–59

turning on, 57

polyline, 156

curve with maximum tension, 162

in B-spline, 264

polynomial interpolation, 71–109

polynomials

and parametric curves, 18–21

Bernstein, 179, 234, 238

cubic, 18–21

definition of, 71

forward differences, 71

Horner’s rule, 71

interpolating, 75, 92

not a circle, 302, 369, 371, 442

wiggle, 19

Postman, Neil (1931–2003), 460

principal normal vector, 27–29, 31

of a straight line, 29, 392

printer’s points, 382

progressive image compression (MLP), 92

projections (perspective and NURBS), 302

Proust, Marcel Valentin Louis George Eu-
gene (1871–1922), xi, 200, 461

pyramid

as a lofted surface, 68

normal vector of, 47

quadratic blending, 10

quadratic Bézier curve, 181

quadratic polynomial (a plane curve), 19

quadratic splines, 156–157

quaternions, 10

quintic splines, 158–160

radius of curvature, 31

Ramshaw, Lyle, 198

rational B-splines (NURBS), 251, 302–308

rational Bézier curves, 217–218, 369

rational Bézier surfaces, 232, 384

rational parametric curves, 366

rectangular Bézier patches, 60, 219–232, 361

degree elevation, 225–227

interpolating, 230–232

joining, 228–230

nonparametric, 227–228

rational, 232

subdividing, 224–225

rectifying plane, 30

Remini, Leah (1970–), 69

reparametrization of curves, 127, 128

reparametrizing Bézier curves, 207–210

reparametrizing Bézier patches, 246–248, 331

reversing a curve, 127

Riesenfeld, Richard F., viii, 251

right-hand rule, 389

rotation matrix, 399, 440

Rourke, Mickey, 46

ruled surfaces, see lofted surfaces, 64

S-patch surfaces, 234

Sabin, Malcolm, 341

scaffolding method of de Casteljau, 196–198,
202, 203, 297, 319, 320, 323, 421

Schröder, Peter, 346

Seurat, Georges-Pierre (1859–1891), v, 377

shading

Gouraud, 341

Phong, 341

sine wave (and Bézier curve), 371, 372

SIPP (SImple Polygon Processor), 230

skinned surfaces, 360–361

space division by a plane, 56–57

special curves, 35

special Hermite segments, 128–129

speed (of parametric curves), 12, 130, 390,
412

sphere

half, 349, 439

parametric, 354

spiral curve, 67, 391

spline (definition of), 141

spline interpolation, 141–173
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splines
as a piecewise curve, 19
B, 251–308, 319

and circles, 302, 373–376
cubic, 256–261, 327–331
matrix form, 295–299
nonuniform, 286–294
open, 281–285
quadratic, 252–256, 325–327
rational, 218, 251, 302–308
tension, 251, 265–267
uniform, 251–279

cardinal, 119, 144, 161–164, 210, 265
cubic, 141–156, 270

anticyclic, 150, 416
clamped, 144, 146
closed, 148, 152
cyclic, 148–150
four points, 72
Hermite, 111–132
nonuniform, 152–156
normalized, 152
periodic, 148, 150–151
relaxed, 146–148
uniform, 152

Kochanek–Bartels, 167–173
quadratic, 156–157
quintic, 158–160

Hermite, 122–123
tension in, 144, 161–164, 210–211, 265–267

Stephenson, Neal Town (1959–), 47
straight Hermite segments, 129–131
subdividing

the Bézier curve, 202–204
the rectangular Bézier surface, 224–225
the triangular Bézier surface, 240–241

subdividing (refining) curves, 319–331
subdividing (refining) surfaces, 331–346
subdividing curves, 23–26
subdividing surfaces, 43–45
substitution of parameter (in curves), 17,

125, 127, 182, 263, 391, 409, 418, 437
surfaces

B-spline, 308–317, 331–341
and Bézier, 314
and Hermite, 312–314

bicubic, 89, 361
bilinear, 36, 39, 59–64, 222

triangular, 63

biquadratic, 87–89, 137–139

boundary curves, 36, 59, 61, 66, 67, 93, 95,
101, 106, 108, 393, 406

degenerate, 63, 104, 406

three, 103, 235

Bézier

and B-spline, 314

rectangular, 60, 219–232, 361

reparametrizing, 246–248, 331

triangular, xi, 103, 234–245, 377

Cartesian product, 38–40

Catmull–Clark, 343–344

Catmull–Rom, 165–167

connecting patches, 40

Coons

bicubic, 99–100

degree-5, 100–101

linear, 93–108

tangent matching, 101–103

triangular, 103–106, 236

diagonals, 36

Doo Sabin, 341–343

explicit representation of, 35, 62, 227, 398

fast computation of, 41–42

Ferguson, 132–134

fold in, 104

Gordon, 78, 108–109

Gregory, 248–250

Hermite, 134–139

and B-spline, 312–314

implicit representation of, 35

isoparametric curves, 36

lofted, viii, 64–69, 222, 236, 351

Loop, 344–346

normal, 46–47

of revolution, 150, 353–360

torus, 355, 441

osculating plane, 46

parametric representation of, 35

patch, 36

polygonal, 53

subdivision, 341–346

ruled, 64

S-patch, 234

skinned, 360–361

subdividing, 43–45

subdividing (refining), 331–346

sweep, 348–352
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swung, 351–352
tension in, 167
translational, 97–99
wire frame, 36–38, 235, 426
wrinkles in, 406

sweep surfaces, 348–352
cone, 350
cylinder, 47

Sweldens, Wim, 346
swung surfaces, 351–352

tangent vector, 15, 26, 86, 117, 147
and continuity, 16, 18
antiequal, 150
B-spline, 254, 255, 259, 270, 431
Bézier, 180, 191
cardinal spline, 161
definition of, 11
direction of, 405
equal, 148
extreme, 142, 144, 146, 147, 154, 213, 270
Hermite, 111
indeterminate, 117, 412, 419, 420
Kochanek–Bartels, 171
magnitude, 125
of a PC, 21
phantom points, 259
tension, 162

Taylor series, 21–22, 186–187
teapot (Utah), 230
tension (in curves), 119, 144, 161–164, 210–

211, 265–267
tension (in surfaces), 167
tensor product, 38
Tiller, Wayne (1942–), 317
torsion (definition of), 32–33
torus, 13

as a surface of revolution, 355, 441
horn, 441
spindle, 441

translation matrix, 439
translational surfaces, 97–99

triangle, 58–59
barycentric coordinates, 5, 387
centers of, 6
centroid, 6, 388

triangular Bézier patches, xi, 234–245, 377
joining, 242–245
subdividing, 240–241

triangular surface patches
bilinear, 63
Bézier, 234–245
Coons, 103–106, 236

tridiagonal matrix, 144
trinomial theorem, 178, 234
Turgenev, Ivan Sergeyevich (1818–1883), 113
turning (on a polygon), 57
twist vectors, 89, 134, 137, 138
Tze, Sun, 23

uniform parametric representation, 16
Updike, John Hoyer (1932–), 139
Utah teapot, 230

vector equation of a line, 50
vectors

addition, 7
compared to points, 1
cross-product, 7–9, 31, 46, 62, 66, 388–389,

394, 397
direction of, 8, 389

dot product, 7
operations on, 7–9
orthogonal, 7
projection, 8–9

velocity of curves, 21, 390
Vivian, Evelyn Charles (1882–1947), 173

Web site of this book, xi
Woodman, Richard (1944–), 367
wrinkles in a surface, 406

Zorin, Denis, 346

Because he did not have time to read every new book in his field, the

great Polish anthropologist Bronislaw Malinowski used a simple

and efficient method of deciding which ones were worth his

attention: Upon receiving a new book, he immediately checked the

index to see if his name was cited, and how often. The more

“Malinowski” the more compelling the book. No “Malinowski,” and

he doubted the subject of the book was anthropology at all.

Neil Postman



Colophon

From The Webster Dictionary
Colophon, Pronunciation Key (kl-fn, -fn) Noun
An inscription, monogram, or cipher, containing the place and date of publication,
printer’s name, etc., formerly placed on the last page of a book.
The colophon, or final description, fell into disuse, and. . . the title page had become
the principal direct means of identifying the book. —De Morgan.
The book was uninjured from title page to colophon. —Sir Walter Scott.

Most of the material in this book was written during 2004. Some of the presentations,
examples, and exercises were taken from [Salomon 99] and improved or extended. The
book was designed by the author and was typeset by him in plain TEX. The figures
and diagrams were computed by Adobe Illustrator, also on the Macintosh. Diagrams
that require calculations were done in Mathematica, but even those were “polished” by
Adobe Illustrator. The following points illustrate the amount of work that went into the
book:

The book contains about 200,000 words, consisting of about 1,100,000 characters.

The text is typeset mainly in font cmr10, but about 30 other fonts were used.

The raw index file has about 1700 items.

There are about 670 cross references in the book.

I perceived that, to describe these impressions, to write that

essential book, the only true book, a great writer does not

need to invent it, in the current sense of the term, since it

already exists in each one of us, but merely to translate it.

The duty and task of a writer are those of the translator.

—Marcel Proust, Time Regained (1921)



Errata of "Curves and Surfaces for Computer Graphics"
Last Updated 18 Nov 2009.
(available at http://www.davidsalomon.name/CaS/CaSErrata.html)

Error found by Chris Wu

Page 281 line 4: should be (-2,-1.5,-1,-0.5,0,0.5,1,1.5) (the value -1 is
missing).

------

Error found by Joseph North

Page 449 reference Lagrange (1877):
``Le\c cons \'El\'ementaires Sur Les Math\'ematiques, Don\'ees \`a l'Ecole
Normale en 1795,''
should be
``Le\c cons \'El\'ementaires Sur Les Math\'ematiques, Donn\'ees \`a l'Ecole
Normale en 1795,''

------

Error found by Tom Williams

Page 160: Matrix B in the large display equation in paragraph -3 should include
a factor of 1/60.

---------

errata \e'rat-e\ n

a: a list of corrigenda

corrigendum \kor-e'jen-dem\ n

a: an error in a printed work discovered after printing
and shown with its correction on a separate sheet
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